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Preface

Quantum optics has witnessed remarkable developments in recent years, and finds
itself at the center of what is sometimes called the “second quantum revolution.” The
central tenet of this “revolution” is the ability to control and manipulate individual
quantum systems, with a profound impact in basic science and applications, from
cosmology and tests of the foundations of physics to biology and geosciences, and
from precision metrology to quantum information science and engineering.

These advances can be traced back to the inventions of the maser and the laser,
and to the unique opportunities that they provide in controlling both the internal
and the external state of atoms and molecules. This has led to the development of
clocks of unfathomable precision, the cooling of atomic systems to unimaginably
low temperatures, and the isolation of single atoms and molecules in tailored
environments that allow for an exquisite control of their behavior, to mention just
three of many remarkable breakthroughs.

All this is not the result of a grand plan developed by a government agency of
some sort, but rather the consequence of the more or less random way in which
scientific progress takes place. More often than not, ground-breaking advances come
from the most unexpected places as a result of curiosity-driven research, and it
is not unusual that a long time elapses before we fully realize their impact. Who
would have expected when John Bell, a theoretical particle physicist, came up with
his now famous inequalities, that AMO physics would provide an ideal testing
ground to investigate them? And who would have thought when Peter Toschek first
succeeded in trapping a single Barium ion that it would lead to ground-breaking
developments in manipulating quantum entanglement, quantum steering, and to the
recent advances in quantum information science and technology? I can’t imagine
that in his wildest dreams he ever thought of quantum computing at the time!
And how about Edward Purcell’s observation that spontaneous decay rates didn’t
seem to match their established values in some environments, and Dan Kleppner
understanding then that this rate can be changed pretty much at will by controlling
the electromagnetic environment of the atom? Or Vladimir Braginsky, who showed
the way in understanding the standard quantum limit of quantum measurements and
ways to circumvent it, when trying to figure out how to detect gravitational waves?

vii



viii Preface

As scientists we are enormously lucky not just to have such brilliant minds as our
colleagues, but also that there are folks with the vision and intelligence to understand
the importance of curiosity-driven research, and the means and dedication to support
it without being too worried about short-term financial or economic gains.

But I digress. This book is not a history book, and as such it is not the place to
recount the successes, failures, wrong turns, brilliant insights, hard work, and lucky
guesses that led to the current state of quantum optics. Rather, I have attempted
to organize the building blocks that led us to that point in some kind of a logical
fashion, starting from the simplest physical situations and moving to increasingly
complex ones. As a result, the reader might be surprised to find topics such
as quantum entanglement or measurement theory introduced quite early, before
spontaneous emission or laser cooling, for example. My hope is that this perhaps
unconventional approach will prove pedagogically appealing, while providing the
reader with enough theoretical background to follow much of the current literature
and start producing original research of their own.

After a review in Chap. 1 of a few basic elements of the semiclassical description
of light-matter interaction that will be useful in later chapters, Chap. 2 presents an
intuitively appealing approach to the quantization of the electromagnetic field based
on an analogy with the simple harmonic oscillator, and reviews states of the field
of particular importance in quantum optics, most importantly the coherent state,
squeezed state and thermal field, and their descriptions in terms of quasiprobability
distributions.

Atoms make their grand entrance in Chap. 3, which introduces the Jaynes-
Cummings model, the linchpin of quantum optics, and its extension to the more
general quantum Rabi model. It is quite remarkable that this model, which was
introduced as a rather unrealistic toy model in the early 1970s, has become of
increased importance over the years, due in large part to striking advances in
experimental physics.

We then turn in Chap. 4 to a discussion of more general properties of composite
systems, focusing on ways in which their quantum behavior can fundamentally
differ from their classical counterparts. This brings us to the idea of quantum
entanglement and to the demonstration of its profound significance in the violation
of Bell’s inequalities. We then turn to some of its properties, including entanglement
monogamy and sharing and the no-cloning theorem, and their applications in
quantum teleportation and quantum key distribution.

The next level of complication results from the observation that the small systems
discussed so far can never be perfectly isolated from their environment and the need
to deal with the implications of that coupling, most famously perhaps in quantum
optics in the analysis of spontaneous emission. This is the topic of Chap. 5, which
discusses several theoretical methods to describe the system-environment dynamics,
and the onset of apparent irreversibility in a theory that is, at its most fundamental
level, reversible.

These results lead us quite naturally to the challenging problem of quantum
measurements, which we confront in Chap. 6. As eloquently stated by John Wheeler,
“no phenomenon is a phenomenon until it is brought to a close by an irreversible
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act of amplification.” That is, quantum measurements must somehow involve
irreversibility. Without going into philosophical arguments, and at least from an
operational point of view, this is achieved by coupling the system to be measured
to an apparatus that provides this irreversibility. We start in the traditional way
from von Neumann’s projection postulate, followed by an analysis of measurement
back action and the way to limit its effects through quantum non-demolition
measurements. We then move to weak and to continuous measurements, and
conclude with a short discussion of Zurek’s pointer basis, which clarifies the role
of the environment in the measurement process.

Not leaving the environment quite yet, we turn in Chap. 7 to ways to tailor
and control it. This is the general topic of cavity QED, which we consider both
in the resonant and the dispersive regimes. We also discuss the extension of these
ideas to circuit QED, which uses Josephson junction-based artificial atoms coupled
to transmission lines instead of real atoms and offers considerable promise for
applications in quantum information science and technology. The chapter concludes
with a brief discussion of the Casimir force, which presents the double advantage of
illustrating what is arguably the simplest consequence of tailored electromagnetic
environments, and also of introducing the idea of mechanical effects of light.

These mechanical effects are then analyzed in more detail beginning with
Chap. 8, where we first identify the radiation pressure and gradient forces of light,
and consider their effect both in the ray and wave optics regimes of atom optics.
We show in particular how these forces can be exploited to trap atoms, and discuss
several regimes of atomic diffraction and its application to atom interferometry. The
importance of spontaneous emission and the associated random atomic recoil on
these effects are also considered.

In addition to atom interferometry, the most important quantum optics applica-
tion of the mechanical forces of light is arguably laser cooling, to which we turn
in Chap. 9. We consider increasingly sophisticated approaches that permit to reach
ever lower temperatures. Both the cooling of neutral atoms and the sideband cooling
of trapped ions are described in some detail.

This takes us to atomic Bose-Einstein condensation, which is described in various
situations in Chap. 10. Because in such systems the atoms are indistinguishable and
subject to many-body effects, it is useful to treat them as a field. Following introduc-
tions to Schrödinger field quantization and to the mean-field Hartree approximation,
we turn to ultracold atoms trapped in periodic lattices. This is perhaps the simplest
example of a quantum simulator of a condensed matter problem, which we illustrate
with the example of the Bose-Hubbard model. We also highlight the use of atomic
microscopes to image and investigate these systems.

Chapter 11 then shifts to quantum optomechanics, which pairs optical and/or
microwave resonators with massive mechanical oscillators. A sideband cooling
technique directly adapted from the approach used for trapped ions permits to
cool these objects down to their ground state of motion. This opens the way to
determining and controlling the quantum state of truly macroscopic objects, with
applications ranging from the development of extraordinarily sensitive force and
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acceleration sensors operating near or below the standard quantum limit to, possibly,
a more profound understanding of quantum mechanics.

These various aspects of quantum optics demonstrate that in addition to its
intrinsic scientific interest, it is also an enabling tool of considerable value for
basic and applied science, engineering, and technology. Remarkably, it is also
exceptionally positioned to help shed light on aspects of the physical world that
are still a profound mystery to us. The final Chap. 12 elaborates on this point with
a very brief overview of the role of quantum optics in testing the fundamental laws
of nature, from quantum mechanics to relativity, and in exploring the nature of the
particles and fields populating the Dark Sector, the 95% of the physical world that
we still don’t understand.

Tucson, AZ, USA Pierre Meystre
2021
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Chapter 1
Semiclassical Atom–Light Interaction

After a brief summary of the multipole expansion of the interaction between
electromagnetic fields and charged particles and of the Lorentz atom, this
chapter reviews a few aspects of the electric dipole interaction between two-
level atoms and classical fields of particular relevance for the rest of this
book, including semiclassical dressed states, the optical Bloch equations,
Rabi oscillations, and relaxation mechanisms.

This chapter presents a brief review of selected aspects of the semiclassical
interaction between an atom and an electromagnetic field that will be of use in
this book. In subsequent chapters, we will deal mainly with quantized fields—with
a number of notable exceptions, for instance, in some of the discussions of the
mechanical effects of light and laser cooling. However, the atom–field interaction
has the same physical origin, the Lorentz force, independently of whether the optical
fields are treated classically or quantum mechanically. For this reason, this chapter
starts by briefly reviewing how to exploit the multipole expansion of the Lorentz
interaction, considering classical fields for simplicity. It then turns to a summary of
selected key results in the semiclassical description of the electric dipole interaction
between a two-level atom and a classical field. The reader is referenced to other
texts, for instance, Elements of Quantum Optics by P. Meystre and M. Sargent III,
for a more detailed and in-depth semiclassical discussion on these topics [1].

1.1 Multipole Expansion: A Brief Summary

Consider a test charge q of massm and velocity v localized within an atom and acted
upon by an external electromagnetic field with electric field E(r,t) and magnetic
field B(r, t), see Fig. 1.1. The Lorentz force acting on this charge is

F(r, t) = qE(r, t)+ qv× B(r, t) , (1.1)
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2 1 Semiclassical Atom–Light Interaction

Fig. 1.1 Sketch of the
geometry considered in the
multipole expansion, with the
charge distribution under
consideration shaded in dark
gray

so that the electric and magnetic interaction energies between the charge and the
electromagnetic field are

Ve(t) = VE0(t)− q
∫ r

0
ds · E(R+ s, t) ,

Vm(t) = −q
∫ r

0
ds · v× B(R+ s, t) , (1.2)

respectively, with all electric and magnetic fields considered as classical in the
chapter, as already indicated. These energies correspond to the work done by the
electric and magnetic components of the Lorentz force in first moving the charge
to a stationary origin of coordinates at a point R and then to a location r relative to
R. Here, VE0(t) represents the energy of the charge when located at the reference
point R. It may be expressed in terms of the electrostatic potential φ(R, t) as
VE0(t) = +qφ(R, t). Because in electromagnetic waves the amplitude of the
electric field is of the order of c times that of the electromagnetic field, we have
that Vm/Ve ≈ v/c. Considering further that the velocity of an electron in orbit
around a nucleus is of the order of v ≈ e2/4πε0h̄ gives

Vm

Ve
≈ 1

4πε0

e2

h̄c
= α, (1.3)

where α ≈ 1/137 is the fine structure constant.
A Taylor series expansion of Ve(t) and Vm(t) about r = 0 yields, see e.g. Refs. [2,

3],

Ve(t) = VE0(t)− q
∞∑
n=1

1

n!
(

r · ∂
∂R

)n−1

r · E(R, t) , (1.4)

Vm(t) = −qh̄
m

∞∑
n=1

n

(n+ 1)!
(

r · ∂
∂R

)n−1

� · B(R, t) , (1.5)
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where h̄� = r × p is the angular momentum of the test charge relative to the
coordinate origin R. Note that the use of the mechanical momentum p = mṙ
instead of the canonical momentum neglects the electromagnetic component of the
momentum responsible for diamagnetic effects.

In addition to the electromagnetic interaction, electrons and nuclei are character-
ized by a spin magnetic moment ms = (qh̄/2m)gss, where s is the spin of the test
charge and gs its gyromagnetic factor, equal to 2.002 . . . for electrons. The factor
qh̄/2m is the particle’s magneton. The spin magnetic moment yields an additional
term to the magnetic energy Vm, which becomes

Vm(t) = − eh̄
2m

∞∑
n=1

1

n!
(

r · ∂
∂R

)n−1 (
2

n+ 1
g��+ gss

)
· B(R, t) , (1.6)

where the orbital g-factor is g� = q/e and g� = −1 for an electron. For an ensemble
{ς} of particles of charges qς and masses mς in an atom, these expressions are to
be summed over all particles. Thus, the electric energy becomes

Ve(t) ≡ VE0(t)+ VE1(t)+ VE2(t)+ . . .

=
∑
ι

qαφ(R, t)−
3∑
i=1

∑
ι

qαri(ς)Ei(R, t)

−1

2

3∑
i,j=1

[∑
ς

qς ri(ς)rj (ς)

]
∂

∂Rj
Ei(R, t)+ . . . , (1.7)

where φ(R, t) is the electrostatic potential, and the magnetic energy becomes

Vm(t) ≡ VM1(t)+ VM2(t)+ · · ·

=
3∑
i=1

Bi(R, t)×
∑
ς

eh̄

2mς
[g�(ς)�i(ς)+ gs(ς)si(ς)] (1.8)

−
3∑

i,j=1

∂Bi(R, t)
∂Rj

∑
ς

eh̄

2mς

[
2

3
g�(ς)�i(ς)rj (ς)+ gs(ς)si(ς)

]
+ · · ·

For electromagnetic fields whose wavelength λ = 2π/k is large compared with
the size of interacting atom, only the first few terms in the Taylor expansions of
Ve(t) and Vm(t) need to be retained, since the expansion factor

r
∂

∂R
≈ kr � 1 . (1.9)

It is instructive to recast this condition in terms of generic order of magnitude atomic
properties. Specifically, we know that the typical radius of an electron orbit around
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an atomic nucleus is given by the Bohr radius a0 so that

r ≈ a0 = 4πε0h̄2

me2 = h̄

mcα
. (1.10)

Also, typical field frequencies ω are comparable to atomic transition frequencies,
which are of the order of

ω0 ≈ RE
h̄
= mc

2α2

h̄
, (1.11)

where RE = 1
2mc

2α2 is the Rydberg energy. It follows that in situations involving
the interaction between atoms and optical fields, the product kr appearing in
Eq. (1.9) is of the order of

kr ≈ h̄α , (1.12)

which shows that the expansion of Ve(t) and Vm(t) can be understood as an
expansion in powers of the fine structure constant α. Armed with this insight, we
now focus on the first two terms in the expansion of Ve(t) and the first term only for
Vm(t).

Electric Dipole Interaction The first term VE0(t) of Ve(t) is proportional to the
net charge of the atom, and it vanishes for neutral atoms. The second term, VE1(t),
is the electric dipole interaction energy. Introducing the electric dipole moment

d =
∑
ς

qςr(ς) , (1.13)

or d = ∫
d3rρ(r)r for a charge distribution, this contribution to the interaction

energy may be reexpressed as

VE1(t) = −d · E(R, t) . (1.14)

This interaction dominates most quantum optical phenomena of interest in this book.

Electric Quadrupole Interaction The VE2(t) contribution to Ve(t) describes
electric quadrupole (E2) interactions. In terms of the quadrupole tensor

Qij = 3
∫

d3rρ(r)rirj , (1.15)

it becomes

VE2(t) = −1

6

3∑
i,j=1

Qij
∂

∂Ri
Ej (R, t) . (1.16)
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Alternatively, electric quadrupole interactions can be expressed in terms of the
traceless quadrupole tensorQ(2)ij =

∫
d3rρ̂(r)×(3rirj−δij r2). Electric quadrupole

interactions are typically weaker than electric dipole interactions by a factor a0/λ,
where a0 is the Bohr radius and λ is the wavelength of the transition. Since a0/λ

is very small for optical transitions, these interactions are typically neglected in
quantum optics.

Magnetic Dipole Interaction The first term in the multipole expansion of the
magnetic interaction is the magnetic dipole (M1) interaction of a magnetic moment
m in a magnetic field

VM1 = −m · B(R, t) , (1.17)

where

m =
∑
α

(
qαh̄

2mα

)
[g�(α)�(α)+ gs(α)s(α)] = −μB(L+ 2S), (1.18)

and we have used the fact that for electrons g� = −1 and gs � −2. The Bohr
magneton μB is

μB = eh̄

2mc
= αea0

2
, (1.19)

where α is the fine structure constant. Thus, magnetic dipole interactions tend to
be smaller than electric dipole interactions by a factor of order α. The connection
between m and the angular momentum J = � + s is m = γ J, where γ is the
gyromagnetic ratio.

1.2 The Lorentz Atom

The Lorentz atom consists of a classical electron harmonically bound to a proton,
see e.g. Refs. [1, 4, 5]. It provides a framework to understand a number of elementary
aspects of the electric dipole interaction between a single atom and light. Assuming
for now that the center of mass motion of the atom is unaffected by the field, a
restriction that will be removed when we turn to the mechanical effects of light
and laser cooling in Chaps. 8 and 9, and neglecting in addition magnetic effects, the
equation of motion of the electron is

(
d2

dt2
+ 2γ

d

dt
+ ω2

0

)
r = − e

m
E(R, t) , (1.20)
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where ω0 is the electron’s natural oscillation frequency and γ represents a frictional
decay rate that accounts for the effects of radiative damping. For the classical
Lorentz atom, it is given by

γ = ω2
0r0/3c , (1.21)

where

r0 = 1

4πε0

(
e2

mc2

)
(1.22)

is the classical electron radius. This damping arises physically from the radiation
reaction of the field radiated by the atom on itself, as will be analyzed in detail in
Sect. 5.1. In the electric dipole approximation, the electric field is evaluated at the
location R of the atomic center of mass.

The study of light-matter interactions is simplified by the introduction of complex
variables [6–8]; for example, an electric field

E(R, t) =
∑
n,μ

�εμEn cos(ωnt) , (1.23)

where �εμ is the polarization vector of the Fourier component of the field at frequency
ωn, is expressed as

E(R, t) = E+(R, t)+ E−(R, t) , (1.24)

where the positive frequency part of the field is

E+(R, t) = 1

2

∑
n,μ

�εμEn exp[i(kn · R− ωnt)] . (1.25)

Due to the linearity of Eq. (1.20), it is sufficient to study the response of the
Lorentz atom to a plane monochromatic electric field of frequency ω, complex
amplitude E , and polarization �ε. Introducing the complex dipole moment

d = −er = �ε α(ω)E exp[i(k · R− ωt)] + c.c. , (1.26)

where α(ω) is the complex polarizability, one finds readily

α(ω) = e2/m

ω2
0 − ω2 − iγω

. (1.27)
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Beer’s Law Combining Eq. (1.25) with the Maxwell wave equation

(
∇2 − 1

c2

∂2

∂t2

)
E(R, t) = 1

ε0c2

∂2P(R, t)
∂t2

, (1.28)

where P(R, t) is the electric polarization, given by the electric dipole density of the
medium as

P ≡ Nd = −Ner = N �ε α(ω)E exp[i(k · R− ωt)] + c.c. , (1.29)

N being the atomic density, the plane wave dispersion relation is easily found to be

k2 = ω
2

c2
n2(ω) , (1.30)

where the index of refraction n(ω) is

n(ω) =
√

1+ Nα(ω)
ε0

. (1.31)

Since the polarizability (1.27) is normally complex, so is the index of refraction.
Its real part leads to dispersive effects and its imaginary part to absorption.
Specifically, Re[n(ω)] − 1 has the form of a standard dispersion curve, positive
for ω−ω0 < 0 and negative for ω−ω0 > 0, while Im[n(ω)] is a Lorentzian peaked
at ω = ω0. The intensity absorption coefficient a(ω) is

a(ω) = 2Im [n(ω)]ω/c = 2ω

c
Im

[
1+

(
Ne2

mε0

) (
ω2

0 − ω2
)+ iγω(

ω2
0 − ω2

)2 + γ 2ω2

]1/2

.

(1.32)

For atomic vapors, the corrections to the vacuum index of refraction are normally
small, so that the square root in Eq. (1.32) can be expanded to first order, giving

a(ω) =
(
Ne2

ε0mc

)
γω2

(
ω2

0 − ω2
)2 + γ 2ω2

, (1.33)

see Fig. 1.2. The intensity of a monochromatic field propagating along the z
direction through a gas of Lorentz atoms is therefore attenuated according to Beer’s
law,

I (ω, z) = I (ω, 0)e−a(ω)z . (1.34)
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Fig. 1.2 Real part (dashed
curve) and imaginary part
(solid curve) of the complex
polarizability α(ω) as a
function of ω2

0 − ω2, in
arbitrary units. The dispersive
real part of α(ω) results in
changes in index of refraction
of the medium, while its
nearly Lorentzian imaginary
part results in the absorption
of the light field by the atomic
medium

If the index of refraction at a given frequency becomes purely imaginary, no
electromagnetic wave can propagate inside the medium. This is the case for field
frequencies smaller than the plasma frequency

ωp =
√
Ne2

mε0
. (1.35)

While the Lorentz atom model gives an adequate description of absorption
and dispersion in weakly excited absorbing media, it fails to predict important
phenomena such as saturation and light amplification. This is because, in this
model, the phase of the induced atomic dipoles with respect to the incident field
is always such that the polarization field adds destructively to the incident field.
The description of light amplification requires a quantum treatment of the medium,
which gives a greater flexibility to the possible relative phases between the incident
and polarization fields. Despite its important limitations, though, the Lorentz model
often provides valuable intuition. One such example is the cavity cooling of atoms
that will be discussed in Sect. 9.4.

Slowly Varying Envelope Approximation Light-matter interactions often involve
quasi-monochromatic fields. Their electric field, taken for concreteness to propagate
along the z-axis, can be expressed in the form

E(R, t) = 1

2
�ε E+(R, t)ei(kz−ωt) + c.c. , (1.36)
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with
∣∣∣∣∂E

+

∂t

∣∣∣∣� ω
∣∣E+∣∣ ,

∣∣∣∣∂E
+

∂z

∣∣∣∣� k
∣∣E+∣∣ . (1.37)

It is consistent within this approximation to assume that the polarization (1.29)
takes then the form

P(R, t) = 1

2
�ε P+(R, t)ei(kz−ωt) + c.c. , (1.38)

with
∣∣∣∣∂P

+

∂t

∣∣∣∣� ω
∣∣P+∣∣ . (1.39)

Under these conditions, known as the slowly varying envelope approximation,
Maxwell’s wave equation reduces to

(
∂

∂z
+ 1

c

∂

∂t

)
E+(z, t) = − k

2iε0
P+(z, t). (1.40)

Hence, in the slowly varying envelope approximation, we ignore the backward
propagation of the field [9]. The slowly varying amplitude and phase approximation
is essentially the same, except that it expresses the electric field envelope in terms
of a real amplitude and phase.

The slowly varying polarization P+(z, t) associated with the classical Lorentz
oscillator is readily obtained by expressing x(t) as

x(z, t) = 1

2
X(z, t)e−iωt + c.c. , (1.41)

where z should be understood for now as a parameter labeling the position of the
oscillating dipole in the electric field E(z, t). Later in this book, in Chaps. 8 and
following, we will discuss the mechanical effects of light on atoms, in particular
how light can be exploited to cool them. The oscillators will then be allowed to move
under the influence of optical forces, and z will become a dynamical variable. In
this sense, the current description essentially assumes that the dipole has an infinite
mass.

Substituting x(t) into Eq. (1.20) and neglecting the small quantities Ẍ and γ Ẋ,
this gives readily

dX(z, t)

dt
= −

[
γ + i(ω2

0 − ω2)/2ω
]
X − ieE(z, t)

2ωm
. (1.42)
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In steady state, we have therefore

X(z) = −
(

ieE(z)
2mω

)
1

γ + i(ω2
0 − ω2)/2ω

, (1.43)

or, for

ω2
0 − ω2 ≈ 2ω(ω0 − ω) , (1.44)

an approximation valid for detunings � = ω0 − ω small compared to ω and ω0,

X(z) = −
(

ieE(z)
2mω

)
1

γ + i(ω0 − ω) , (1.45)

and

x(z, t) = X(z, t)eiωt + c.c. (1.46)

The slowly varying polarization P(z) is then

P(z) = −N(z)eX(z) , (1.47)

with N(z) the number of dipoles per unit volume.
It will occasionally prove useful to decompose the slowly varying dipole

oscillation amplitude X(t) as the sum of its real and imaginary parts as

X(z, t) = U(z, t)− iV (z, t) , (1.48)

with equations of motion

dU

dt
= −(ω0 − ω)V − γU

dV

dt
= (ω0 − ω)U − γV + eE/2mω , (1.49)

which gives in steady state

U(z) =
(−eE(z)

2mω

)
ω0 − ω

(ω0 − ω)2 + γ 2 ,

V (z) =
(−eE(z)

2mω

)
γ

(ω0 − ω)2 + γ 2 . (1.50)

These equations will be encountered again in Sect. 1.3.2, where the classical
oscillator will be replaced by a two-level atom. In that case, the atomic dynamics
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will acquire a third componentW(z), which describes the difference in populations
of the excited and ground atomic state, or inversion. The resulting equations of
motion for the vector U = (U, V,W)will become the optical Bloch equations, from
which the dynamics of the Lorentz oscillator results from assuming that W = −1,
that is, the atom remains in its lower level.

1.3 Two-Level Atoms

A large number of optical phenomena can be understood by considering the
interaction between a quasi-monochromatic field of central frequency ω and a two-
level atom, which simulates a dipole-allowed transition in an atom, a molecule, or
an artificial atom.1 This approximation, which is well justified for near-resonant
interactions, ω � ω0, is central to the discussion of a wide range of phenomena in
quantum optics [1, 5, 7, 8, 10, 11]. It is also of particular importance in quantum
information science, where the two-level atom changes name to become a qubit, the
quantum mechanical version of the bit familiar from classical information science.
This section discusses the model Hamiltonian for this system in the semiclassical
approximation where the electromagnetic field can be described classically. It will
then be revisited at considerably more length for the case of quantized fields in
subsequent chapters.

1.3.1 Hamiltonian

In the absence of dissipation mechanisms, the dipole interaction between a quasi-
monochromatic classical field and a two-level atom is

Ĥ = h̄ωe|e〉〈e| + h̄ωg|g〉〈g| − d · E(R, t) , (1.51)

where |e〉 and |g〉 label the upper and lower atomic levels, of frequencies ωe and ωg ,
respectively, with ωe − ωg = ω0, and R is the location of the center of mass of the
atom. The electric dipole operator that couples the excited and ground levels may
be expressed as

d = �εdd (|e〉〈g| + |g〉〈e|) , (1.52)

1A dipole-allowed transition between two atomic levels |g〉 and |e〉 is a transition for which the
matrix element 〈e|VE1|g〉 
= 0. Since successive terms in the multipole expansion of the atom–field
interaction scale with increasing powers of 1/α, it is therefore usually—but not always—sufficient
to ignore higher order terms in that case.
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where �εd is a unit vector in the direction of the dipole and d is the matrix element of
the electric dipole operator between the ground and excited states, which we take to
be real for simplicity. We also neglect the vector character of d and E(R, t) in the
following, assuming, for example, that both �εd and �ε are parallel to the x-axis. The
Hamiltonian (1.51) may then be expressed as

Ĥ = h̄ωe|e〉〈e| + h̄ωg|g〉〈g| − d (|e〉〈g| + |g〉〈e|)
[
E+(R, t)+ E−(R, t)] .

(1.53)

It is often convenient to introduce the matrix representation of the atomic level

|e〉 =
(

1
0

)
; |g〉 =

(
0
1

)
(1.54)

and the Pauli spin operators

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
. (1.55)

With Eqs. (1.54), these matrices can readily be written in terms of |e〉 and |g〉, for
example,

σ̂z = (|e〉〈e| − |g〉〈g|) . (1.56)

Introducing in addition the spin raising and lowering operators

σ̂+ ≡ 1
2

(
σ̂x + iσ̂y

) = |e〉〈g| = σ̂ †
− (1.57)

and redefining the zero of atomic energy result in the commonly used form of the
Hamiltonian

Ĥ = 1

2
h̄ω0σ̂z − d

(
σ̂+ + σ̂−

) [
E+(R, t)+ E−(R, t)] . (1.58)

Rotating Wave Approximation Under the influence of a monochromatic elec-
tromagnetic field of frequency ω, atoms undergo transitions between their lower
and upper states by interacting with both the positive and the negative frequency
parts of the field. The corresponding contributions to the atomic dynamics oscillate
at frequencies ±(ω0 − ω) and ±(ω0 + ω), respectively, and their contributions to
the probability amplitudes involve denominators containing these same frequency
dependences. For near-resonant atom–field interactions, |ω0 − ω| � ω, the rapidly
oscillating contributions lead to small corrections, the first-order one being the
Bloch–Siegert shift, whose value near resonance ω � ω0 is

δωeg = −
(
d
∣∣E+∣∣/h̄)2

4ω
(1.59)
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to lowest order in d E/h̄ω. The neglect of these terms is the rotating wave
approximation (RWA). Note that it is often (but not always) inconsistent to regard
an atom as a two-level system and not to perform the RWA, a point further discussed
in Sect. 3.6.

In the RWA, the atomic system is described by the Hamiltonian

Ĥ = 1

2
h̄ω0σ̂z − d

[
σ̂+E+(R, t)+ σ̂−E−(R, t)

]
, (1.60)

or, in a frame rotating at the frequency ω of the field,

Ĥ = 1

2
h̄�σ̂z − 1

2
d
(
σ̂+Eeik·R + h.c.

)

= 1

2
h̄�σ̂z − 1

2
h̄�r

(
σ̂+eik·R + h.c.

)
, (1.61)

where

�r ≡ dE/h̄ (1.62)

is called the resonant Rabi frequency for a reason that will soon be apparent, and

� = ω0 − ω (1.63)

is the atom–light detuning.2 In the rest of this chapter, we consider atoms at rest and
located at the origin, R = 0.

Rabi Frequency The dynamics of the two-level atom is conveniently expressed in
terms of its density operator ρ̂, whose evolution is given by the Schrödinger equation

dρ̂

dt
= − i

h̄
[Ĥ , ρ̂] . (1.64)

Its diagonal elements ρ̂ee = 〈e|ρ̂|e〉 and ρgg = 〈g|ρ̂|g〉 are the upper and lower state
populations, respectively, while the off-diagonal matrix elements ρ̂eg = 〈e|ρ̂|g〉 =
ρ̂�ge are called the atomic coherences, or simply coherences, between levels |e〉 and
|g〉. These coherences, which are proportional to the expectation value of the electric
dipole operator, play a key role in much of optical physics and quantum optics.

Equation (1.64) readily gives the equations of motion

2Note that the alternative detuning definition δ = ω − ω0 is also frequently used in the quantum
optics and laser spectroscopy literature, as there is usually no obvious reason to prefer one over the
other. It is therefore important to always check which definition is used when comparing results
from different publications.
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dρee
dt
= − i�r

2

(
ρeg − ρge

)
, (1.65a)

dρgg
dt
= i�r

2
(ρeg − ρge) , (1.65b)

dρeg
dt
= −i�ρeg − i�r

2
(ρee − ρgg) . (1.65c)

As we will see more explicitly in the discussion of the optical Bloch equations of
Sect. 1.3.2, the evolution of the atomic populations Pg(t) and Pe(t) = 1− Pg(t) is
characterized by oscillations at the generalized Rabi frequency

� =
(
�2
r +�2

)1/2
. (1.66)

Specifically, assuming that the atom is initially in its ground state |g〉, the
probability that it is in the excited state |e〉 at a subsequent time t is given by Rabi’s
formula

ρee(t) = (�r/�)2 sin2(�t/2) . (1.67)

At resonance � = 0, the generalized Rabi frequency � reduces to the Rabi
frequency �r .

Semiclassical Dressed States Instead of using as a basis set the eigenstates |e〉 and
|g〉 of the Hamiltonian h̄ω0σ̂z of non-interacting atoms, the so-called bare states,
their dynamics can alternatively be described in terms of the dressed states basis
of the eigenstates of the full Hamiltonian (1.60), see in particular Ref. [12]. By
convention, the state |1〉 is the one with the greatest energy. They are conveniently
expressed in terms of the bare states via the Stückelberg angle θ as

|1〉 = sin θ |g〉 + cos θ |e〉,
|2〉 = cos θ |g〉 − sin θ |e〉, (1.68)

where sin(2θ) = −�r/� and cos(2θ) = �/�. The corresponding eigenenergies
are

E1 = +1

2
h̄� ; E2 = −1

2
h̄� (1.69)

and are plotted in Fig. 1.3. These dressed levels repel each other and form an
anticrossing at resonance ω = ω0. As the detuning � varies from positive to
negative values, state |1〉 passes continuously from the excited state |e〉 to the bare
ground state |g〉, with both bare states having equal weights at resonance. The
distances between the perturbed levels and their asymptotes for |�| � �1 represent
the ac Stark shifts, or light shifts, of the atomic states when coupled to the optical
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Fig. 1.3 Semiclassical
dressed states as a function of
the detuning � = ω0 − ω.
The upper part of the figure
shows for reference the
interaction picture bare
energies of the atom in the
absence of field, taking the
energy h̄ωg of the ground
state |g〉 to be constant. The
bottom part illustrates that the
energy separation of the
dressed states is the Rabi
frequency � and reaches its
lowest value �r at the
avoided crossing point � = 0

field. The ac Stark shift of |g〉 is positive for � < 0 and negative for � > 0, while
the |e〉 state shift is negative for � < 0 and positive for � > 0.

1.3.2 Optical Bloch Equations

Introducing the real quantities

U = ρegeiωt + c.c. ,

V = iρege
iωt + c.c. ,

W = ρee − ρgg , (1.70)

their equations of motion may be expressed with Eq. (1.65) as

dU

dt
= −�V

dV

dt
= �U +�1W

dW

dt
= −�1V . (1.71)
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Fig. 1.4 Schematic of the Bloch sphere. In the absence of dissipation, the Bloch vector U =
(U, V,W) processes on the surface of that sphere about the vector � ≡ (−�r, 0,�). The state of
the two-level system at the locations of the blue points on the axes of the sphere is also indicated

These are the optical Bloch equations. Physically, U describes the component of the
atomic coherence in phase with the driving field, V the component in quadrature
with the field, andW the atomic inversion.

The optical Bloch equations have a simple geometrical interpretation offered by
thinking of U , V , andW as the three components of a vector called the Bloch vector
U whose equation of motion is

dU
dt
= �× U , (1.72)

where we have introduced the vector � ≡ (−�r, 0,�). Thus, U processes about
the vector �, of length �, while conserving its length, as illustrated in Fig. 1.4. The
evolution of a two-level atom driven by a monochromatic field is thus a rotation on
the surface of the Bloch sphere,

|ψ(t)〉 = e−iĤ t |ψ(0)〉 , (1.73)

about the “Hamiltonian vector”

Ĥ = −�rσ̂x +�σ̂z . (1.74)
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Mathematically, this motion is equivalent to that of a spin- 1
2 system in two magnetic

fields B0 and 2B1 cosωt that are parallel to the z- and x-axis, respectively, and
whose amplitudes are such that the Larmor spin precession frequencies around them
are ω and 2�1 cosωt .

1.3.3 Relaxation Mechanisms

In addition to their coherent interaction with light fields, atoms suffer incoherent
relaxation mechanisms, whose origin can be as diverse as elastic and inelastic colli-
sions or spontaneous emission. This will be considered in detail in the discussion of
system–reservoir interactions in Chap. 5. For now, it is sufficient to remark that one
advantage of describing the atomic state in terms of the density operator ρ̂ is that the
physical interpretation of its matrix elements allows us to add phenomenologically
various relaxation terms directly to them.

Relaxation Toward Unobserved Levels If the relaxation mechanisms transfer
populations or atomic coherences toward uninteresting or unobserved levels, their
description can normally be given in terms of a Schrödinger equation, but with
an effective non-Hermitian Hamiltonian. Specifically, the evolution of the atomic
density operator restricted to the levels of interest is of the general form

dρ̂

dt
= − i

h̄

(
Ĥeffρ̂ − ρ̂Ĥ †

eff

)
, (1.75)

where

Ĥeff = Ĥ + �̂ , (1.76)

Ĥ being the atom–field Hamiltonian and �̂ a non-Hermitian relaxation operator
defined by its matrix elements

〈n|�̂|m〉 = h̄

2i
γnδnm . (1.77)

Both inelastic collisions and spontaneous emission to unobserved levels can be
described by this form of evolution.

Relaxation Toward Levels of Interest As will be discussed in detail in Chap. 5,
a description of the atomic dynamics in terms of a so-called master equation, or
alternatively of quantum Langevin equations, is necessary when all involved levels
are observed. This is also the case when a proper account of the coupling of the atom
to the full electromagnetic field is needed and/or atomic collisions are involved.
For now we limit ourselves to stating without proof an equation that describes the
dynamics of a two-level atom subject to upper to lower level spontaneous decay and



18 1 Semiclassical Atom–Light Interaction

to elastic or soft collisions, that is, collisions that change the separation of energy
levels during the collision but leave the level populations unchanged. In that case, the
atomic evolution is no longer governed by a Hermitian Hamiltonian or the simple
non-Hermitian Hamiltonian of Eq. (1.75), but rather by a master equation of the
form

dρ̂

dt
= − i

h̄
[Ĥ , ρ̂] − �

2

(
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2σ̂−ρ̂σ̂+

)− 1

2
γphρ̂ + 2γphσ̂zρ̂σ̂z .

(1.78)

The first term on the right-hand side of this equation accounts for the Hamiltonian
dynamics of the system, while the term proportional to � accounts for the fact that
the atom is coupled to a continuum of modes of the electromagnetic field, which are
responsible for spontaneous emission and the irreversible decay of the atom from
the excited state |e〉 to the ground state |g〉. The free space spontaneous decay rate �,
whose determination requires a detailed quantum electrodynamics (QED) analysis
that will be given in Sect. 5.1, is

� = 1

4πε0

4d2ω3
0

3h̄c3 , (1.79)

Finally, the terms proportional to γph account for additional decay rate(s) that the
atoms may be subject to, oftentimes as a result of elastic collisions, as discussed, for
instance, in Ref. [1].

Optical Bloch Equations with Decay In general, the optical Bloch equations
cannot be generalized straightforwardly to cases where relaxation mechanisms are
present. There are, however, two notable exceptions corresponding to situations
where

1. the upper level spontaneously decays to the lower level only, while the atom
undergoes only elastic collisions and

2. spontaneous emission between the upper and lower levels can be ignored in
comparison with decay to unobserved levels, which occurs at equal rates γe =
γg = 1/T1.

Under these conditions, the Bloch equations generalize to

dU

dt
= −U/T2 −�V

dV

dt
= −V/T2 +�U +�rW

dW

dt
= −(W −Weq)/T1 −�rV , (1.80)
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where we have introduced the longitudinal and transverse relaxation times T1 and
T2, with T1 = 1/� and T2 = (1/2T1 + γph)

−1 in the first case and T2 = (1/T1 +
γph)

−1 in the second case. The equilibrium inversion Weq is equal to zero in the
second case since the decay is to unobserved levels.

1.3.4 Density Matrix Equations

In the general case, it is necessary to revert to the master equation (5.31) that results
from a proper analysis of the coupling of the two-level atom to a reservoir instead of
the optical Bloch equations (1.80). The equations of motion for the matrix elements
of ρ̂ become then, for the general case of a complex Rabi frequency �r ,

dρee
dt
= −γeρee − 1

2

(
i�∗r ρeg + c.c.

)

dρgg
dt
= −γgρgg + 1

2

(
i�∗r ρeg + c.c.

)

dρeg
dt
= −(γ + i�)ρeg − i

�r

2

(
ρee − ρgg

)
, (1.81)

where γ = (γe + γg)/2+ γph and ρ̃eg = ρeg eiωt. In the case of spontaneous decay
from the upper to the lower level, these equations become

dρee
dt
= −�ρee − 1

2

(
i�∗r ρeg + c.c.

)

dρgg
dt
= +�ρee + 1

2

(
i�∗r ρeg + c.c.

)

dρeg
dt
= −(γ + i�)ρeg − i

�r

2

(
ρee − ρgg

)
, (1.82)

where γ = �/2+ γph.

Rate Equation Approximation If the coherence decay rate γ is dominated by
elastic collisions and hence is much larger than the population decay rates γe and
γg , ρeg can be adiabatically eliminated from the equations of motion (1.81) and
(1.82) to obtain the rate equations

dρee
dt
= −γeρee − R

(
ρee − ρgg

)
,

dρgg
dt
= −γgρgg + R

(
ρee − ρgg

)
, (1.83)
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and

dρee
dt
= −�ρee − R

(
ρee − ρgg

)
,

dρgg
dt
= +�ρgg + R

(
ρee − ρgg

)
, (1.84)

respectively, where the transition rate is

R = |�r |2L(�)/(2γ ), (1.85)

and we have introduced the dimensionless Lorentzian

L(�) = γ 2

γ 2 +�2
. (1.86)

The transitions between the upper and lower states are thus described in terms of
simple rate equations.

Adding phenomenological pumping rates �e and �g on the right-hand side of
these pairs of equations provides a description of the excitation of the upper and
lower levels from some distant levels, as would be the case in a laser. The equations
then form the basis of conventional, single-mode laser theory.

Steady State In the absence of additional external processes, often referred to as
pump mechanisms, that repopulate the atomic levels, the populations ρee and ρgg
eventually decay away for the case of decay to unobserved levels, while for the case
of upper to lower level decay, they reach a steady state with corresponding inversion

Wst = − �

� + 2R
= − 1

1+ s , (1.87)

where s is the saturation parameter. In the case of pure radiative decay, γph = 0, s
is given by

s = �2
r /2

�2/4+�2 . (1.88)

The inversionWst, which equals −1 for �r = 0, first increases quadratically and
asymptotically approaches Wst = 0 as �r → ∞. At this point, where the upper
and lower state populations are equal, the transition is said to be saturated, and
the medium becomes effectively transparent or bleached. The inversion is always
negative, which means in particular that no steady-state light amplification can be
achieved in this system. This is one reason why external pump mechanisms are
required in lasers.
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In steady state, the other two components of the Bloch vector U are given by

Ust = −2�

�r

(
s

1+ s
)

(1.89)

and

Vst = �

�r

(
s

1+ s
)
. (1.90)

Ust varies as a dispersion curve as a function of the detuning �, while Vst is
a Lorentzian of power-broadened half-width at half maximum

(
�2/4+�2

r

)1/2. As
the intensity of the driving field, or �2

r , increases, Ust and Vst first increase linearly
with �r , reach a maximum, and finally tend to zero as �r →∞.

Einstein’s A and B Coefficients When atoms interact with broadband radiation
instead of the monochromatic fields considered so far, the rate equations still apply,
but the rate R becomes

R→ Beg�(ω) , (1.91)

where �(ω) is the spectral energy density of the inducing radiation. Einstein’s A
and B coefficients apply to an atom in thermal equilibrium with the field, which is
described by Planck’s blackbody radiation

�(ω) = h̄ω3

π2c3

1

eh̄ω/kBT − 1
, (1.92)

where T is the temperature of the source and kB is Boltzmann’s constant. Invoking
the principle of detailed balance, which states that in thermal equilibrium the
average number of transitions |i〉 → |k〉 between arbitrary states |i〉 and |k〉 must be
equal to the number of transitions |k〉 → |i〉, one finds

Aeg

Beg
= h̄ω3

π2c3 , (1.93)

where Aeg is the rate of spontaneous emission � from |e〉 to |g〉 of Eq. (1.79), in the
notation traditionally used when discussing the Einstein A and B coefficients.

Problems

Problem 1.1 The fine structure constant α = e2/4πε0h̄c is one of the most
important constants in physics. In addition to having a rich history, it has several
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physical interpretations that are worth thinking about. With all this in mind, consider
how it is related to (a) the classical electron radius re, the Compton wavelength of
the electron λ and the Bohr radius a0, (b) to the electrostatic of two electrons a
distance d apart and the energy of a photon of wavelength 2πd, (c) to the velocity
of an electron on its lowest energy orbit in the Bohr model of the atom and the
velocity of light, and (d) to the elementary charge e and the Planck charge.

Problem 1.2 Derive the slowly varying expression for the polarization P(t) of the
Lorentz atom to obtain the full expression of the slowly varying Maxwell wave
equation (1.40).

Problem 1.3 Derive the rate equations (1.83) and (1.84), and solve them in steady
state in terms of the transition rate R and the saturation parameter s.

Problem 1.4 (Lagrangian and Hamiltonian Formulations)
This and the next three problems address important aspects of the Lagrangian and
Hamiltonian formulations of the interaction between charges and electromagnetic
fields and their connection to the minimum coupling Hamiltonian. This topic
is discussed pedagogically in the text by Cohen-Tannoudji, Dupont-Roc, and
Grynberg [2], which gives an excellent discussion of the Hamiltonian approach
to electrodynamics, the electric dipole interaction, and the A · p vs. E · r forms of
the electric dipole interaction.

The classical Lagrangian describing the coupling of the electromagnetic field to
a collection of charges {qα} of masses {mα} at locations rα and with velocities ṙα is

L = 1

2

∑
α

mα ṙ2
α +

ε0

2

∫
d3r

{[
E(r, t)2 − c2B(r, t)2

]}

+
∫

d3r {J(r, t) · A(r, t)− ρ(r, t)U(r, t)} , (1.94)

where the first and second terms are the free particle and free field Lagrangian,
respectively, and the third term describes their coupling. Here, A(rα, t) is the vector
potential, U(r, t) is the scalar potential, and E(r, t) and B(r, t) are the electric and
magnetic fields, with

E(r, t) = ∂A(r, t)
∂t

− ∇U(r, t) , (1.95)

B(r, t) = ∇ × A(r, t) . (1.96)

Finally, the total charge is

ρ(r, t) =
∑
α

qαδ(r− rα(t)) , (1.97)
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and the current is

J(r, t) =
∑
α

ṙα(t)δ(r− rα(t)) . (1.98)

Show that when applied to this Lagrangian, the Euler–Lagrange equations of motion

∂L
∂Fi
−∇ ∂L

∂(∇Fi) −
d

dt

∂L
∂Ḟi
= 0 , (1.99)

where the components Fi of the field F are the vector potential A and the scalar
potential U , yield the Maxwell equations

∇ × B = 1

c2

∂E
∂t
+ μ0J , (1.100)

∇ · E = ρ

ε0
. (1.101)

Show also that the Euler–Lagrange equations of motion for a particle,

∂L
∂rα
− d

dt

∂L
∂ ṙα
= 0 , (1.102)

yield the Lorentz equations of motion

mα r̈α = qα[E(rα, t)+ ṙα × B(rα, t)] . (1.103)

Hint: Use the vector identity

∇(A · B) = (B ·∇) ·A+ (A ·∇) · B+ B× (∇ ×A)+A× (∇ × B) . (1.104)

Problem 1.5 Starting from the Lagrangian (1.94) of Problem (1.4), show that the
conjugate momenta pα of rα and Π of A are

pα = ∂L
∂ ṙα
= mα ṙα + qαA(rα, t) (1.105)

and

Π = ∂L
∂Ȧ
= ε0E(r, t) . (1.106)

What is the conjugate momentum of the scalar potential U?
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From these results, show that the Hamiltonian corresponding to that Lagrangian
is the minimum coupling Hamiltonian

H =
∑
α

[pα − qαA(rα, t)]2 +
∑
α

qαU(rα, t)

+ε0
∫
d3r[E2(r, t)+ c2B2(r, t)] + E(r, t) ·∇U(r, t) , (1.107)

In the Coulomb gauge

U(r, t) = 0 (1.108)

∇ · A(r, t) = 0, (1.109)

commonly used in quantum optics, it simplifies to

H =
∑
α

∫
d3r

{
1

2mα
[pα − qαA(rα, t)]2δ(r− rα)

+ ε0
∫
d3r[E2(r, t)+ c2B2(r, t)]

}
, (1.110)

where the second line accounts for the free field part, which is essential to obtain
Maxwell’s equations.

Problem 1.6 Consider the form of the minimum coupling Hamiltonian (1.110),
and use the Hamilton–Jacobi equations of motion

ṗ = ∂H
∂r
,

ṙ = −∂H
∂p
, (1.111)

to prove that the motion of a particle of charge q is governed by the Lorentz equation

mr̈ = q
(
−∇U − ∂A

∂t

)
+ q ṙ× (∇ × A), (1.112)

or, with E = −∂A/∂t , B = ∇ × A and U = 0,

mr̈ = qE+ q(ṙ× B) . (1.113)

Hint: Use the same vector identity as in Problem 1.4.

Problem 1.7 Quantizing the motion of a charge is achieved by promoting its posi-
tion r and canonical momentum p to operators satisfying the canonical commutation
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relation

[r̂i , p̂j ] = ih̄δij . (1.114)

With the coordinate representation form of the canonical momentum p̂ = −ih̄∇,
and the Hamiltonian (1.110), the Schrödinger equation describing the dynamics of
a single charge bound to a nucleus by a potential V̂ (r̂) is then

ih̄
∂ψ(r, t)
∂t

= − h̄
2

2m

[
∇ − iq

h̄
A(R, t)

]2

+ V̂ (r) . (1.115)

Show by introducing the new wave function φ(r, t) via the gauge transformation

ψ(r, t) = exp[(−iqr/h̄) · A(R, t)]φ(r, t) , (1.116)

we find that φ(r, t) obeys the Schrödinger equation

ih̄
∂φ(r, t)
∂t

= [Ĥ0 − q r̂ · E(R, t)]φ(r, t) , (1.117)

where Ĥ0 = p̂2/2m + V (r̂) is the unperturbed Hamiltonian of the charge.
This shows that in the electric dipole approximation, the interaction between the
electron and the electromagnetic field is described by the electric dipole interaction
Hamiltonian (1.14),

V̂E1 = −q r̂ · E(R, t),

where R is the position of the center of the mass of the atom. Hint: Remember that
in the coordinate representation [p, f (x)] = −ih̄f ′(x) and in the Coulomb gauge,
the electric field and the potential vector are related by

E(R, t) = −∂A(R, t)
∂t

. (1.118)

Problem 1.8 Consider an ensemble of two-level atoms, 30% of which are in the
state 1/

√
2(|e〉 + |g〉), 50% are in the state 1/

√
10(|e〉 − 3|g〉), and 20% are in the

state |g〉. Find the density matrix ρ̂ of this system, and determine the probability for
the atoms to be in the ground state |g〉. Is this state a pure state or a mixed state?
Why?

Problem 1.9 Quantum mechanically, the von Neumann entropy is defined as

S = −kB Tr{ρ̂ ln ρ̂} , (1.119)
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where ρ̂ is the density operator of the system and kB is Boltzmann’s constant. Show
that S vanishes for a pure state. What does this mean physically?

Problem 1.10 Calculate |Ce(t)|2 for an atom interacting with a resonant but
incoherent light source characterized by the intensity fluctuation function P(I)
given by

P(I) = 1

I0
e−I/I0

in the absence of relaxation mechanisms, that is, assuming that γe = γg = 0.
Assume also that the field phase vanishes, so that E = √I . Discuss the results as
t →∞.

Problem 1.11 Consider a two-level atom subject to the Hamiltonian (1.60) and
initially in its ground state |g〉, with a Rabi frequency �r(t) that is constant for a
time τ and zero otherwise and some detuning �. Under what condition(s) will the
system evolve to (a) the state |ψ〉 = (1/√2)[|g〉 + |e〉] and (b) the state |ψ〉 = |e〉.
A pulse that permits to achieve the first state is called a π/2-pulse, and a pulse that
permits to reach the second state is called a π -pulse.3 Why?

Problem 1.12 (a) Derive the rate equations (1.83) by adiabatically eliminating ρeg
from the density operator equations (1.81), and solve these equations in steady state.
(b) Do the same for the rate equations (1.84). (c) Discuss physically the difference
in the steady-state solutions for these two systems.
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Chapter 2
Electromagnetic Field Quantization

Following a brief review of the quantization of the simple harmonic oscil-
lator starting from the Lagrangian formalism, we use a formal analogy to
quantize the single-mode electromagnetic field along the same lines. We then
extend the analysis to multimode fields and consider a number of states of
the field of importance for quantum optics before discussing two important
ways to characterize them, photocounting and homodyne detection. The
chapter concludes with a discussion of quasiprobability distribution function
descriptions of the field.

This chapter starts with a brief review of the quantization of the simple harmonic
oscillator, starting from its Lagrangian and introducing conjugate variables to derive
the corresponding Hamiltonian and proceed with its canonical quantization. We then
exploit this result to carry out the quantization first of a single-mode electromagnetic
field and then of a multimode field, relying on a formal analogy between their
classical Hamiltonians. We also clarify a small but important difference between
field quantization in terms of running and standing modes. We then analyze a
few specific examples of states of the field of particular interest in quantum
optics, most importantly thermal fields, coherent states, and squeezed states. This is
followed by a review of two important models of photodetection, photocounting and
balanced homodyne detection. They illustrate in particular the physical importance
of normally ordered field correlation functions and of the field quadratures. We
conclude with a discussion of three useful descriptions of the electromagnetic field
in terms quasiprobability functions, the P -representation, the Husimi function, and
the Wigner distribution.

2.1 Quantum Harmonic Oscillator

The harmonic oscillator is a central ingredient of physics in general and of
quantum optics in particular, where it appears in a number of guises, including in
particular the description of electromagnetic fields, phonon modes, and Schrödinger
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matter wave fields. Because of that central role, it is perhaps useful to review its
quantization starting from its classical Lagrangian, rather than from its classical
Hamiltonian as is sometimes the case. This may help in refreshing our memory on
the standard way in which conjugate momenta and canonical commutation relations
are introduced and will also prove useful when we carry out the quantization of LC
circuits and transmission line resonators in Chap. 6.

The Lagrangian of the simple harmonic oscillator with position q, mass m, and
spring constant k is the difference between its kinetic and potential energies,

L = 1

2
mq̇2 − 1

2
kq2 , (2.1)

from which the Euler–Lagrange equation

∂L
∂q
− d

dt

∂L
∂q̇
= 0 (2.2)

gives the familiar oscillator equation of motion

q̈ + ω2q = 0, (2.3)

where ω = √k/m. The corresponding system Hamiltonian H is obtained by first
determining the momentum conjugate to q via

p = ∂L
∂q
= mq̇ , (2.4)

and H is then defined as

H = pq̇ − L = p2

2m
+ 1

2
mω2q2 , (2.5)

with Hamilton equations of motion

q̇ = ∂H
∂p
= p
m
, (2.6)

ṗ = −∂H
∂q
= −mω2q = −kq . (2.7)

The quantization of the oscillator is completed by promoting q and p to quantum
operators with canonical commutation relation

[q̂, p̂] = ih̄ (2.8)
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and associated Heisenberg uncertainty relation

�p�q ≥ 1/2|〈[p̂, q̂]〉| = h̄/2 (2.9)

between their standard deviations �p = √〈p̂2〉 − 〈p̂〉2 and �q = √〈q̂2〉 − 〈q̂〉2,
so that

Ĥ = p̂2

2m
+ 1

2
mω2q̂2 . (2.10)

In the coordinate representation, we have

p̂ = −ih̄
d

dq̂
, (2.11)

so that Ĥ takes the form

Ĥ = − h̄
2

2m

d2

dq̂2 +
m

2
ω2q̂2. (2.12)

Its eigenfunctions un(q) are well known. They may be expressed in terms of
Hermite polynomials Hn(αq) as

un(q) =
√

α√
π2nn!Hn(αq) exp(−α2q2/2) , (2.13)

where α = √mω/h̄, see Fig. 2.1, with corresponding eigenenergies

h̄ωn = h̄ω(n+ 1
2 ) , n = 0, 1, 2, . . . (2.14)

Fig. 2.1 First four
eigenstates n = 0 . . . 3 of the
one-dimensional harmonic
oscillator, with eigenenergies
En = (n+ 1

2 )h̄ω
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We now introduce two new operators â and â† defined as

â =
√
mω

2h̄
(q̂ + i

mω
p̂) , (2.15)

â† =
√
mω

2h̄
(q̂ − i

mω
p̂) , (2.16)

which are readily seen from Eq. (2.8) to obey the boson commutation relation

[â, â†] = 1. (2.17)

Inverting these expressions, we find the position and momentum

q̂ =
√

h̄

2mω
(â + â†) ≡ qzpf(â + â†) , (2.18)

p̂ = i

√
h̄mω

2
(â − â†) ≡ ipzpf(â − â†) , (2.19)

where qzpf and qzpf are called the zero-point position and momentum, so that in
terms of â and â†, Ĥ becomes

Ĥ = h̄ω
(
â†â + 1

2

)
. (2.20)

In the Heisenberg picture, the time evolution of â is easily found to be

dâ

dt
= i

h̄
[Ĥ , â] = −iωâ (2.21)

with solution

â(t) = â(0) e−iωt . (2.22)

Similarly, we find that

â†(t) = â†(0) eiωt . (2.23)

Consider now an energy eigenstate |H 〉 of the harmonic oscillator with eigen-
value h̄�,

Ĥ |H 〉 = h̄�|H 〉, (2.24)
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and evaluate the energy of the state |H ′〉 = â|H 〉. From Eq. (2.17), we have Ĥ â =
âĤ − h̄ωâ so that

Ĥ â|H 〉 = Ĥ |H 〉 − h̄ωâ|H 〉 = h̄(�− ω)â|H 〉 ; (2.25)

that is, â|H 〉 is again an eigenstate of the Hamiltonian, but with eigenenergy h̄ω
lower than |H 〉. Because â lowers the energy, it is called an annihilation operator.
Repeating the operation m times, we find

Ĥ âm|H 〉 = h̄(�−mω)âm|H 〉. (2.26)

We can see that the lowest of these eigenvalues is positive as follows. For an arbitrary
normalized vector |φ〉, the expectation value of Ĥ is

h̄ω〈φ|a†â + 1
2 |φ〉 = h̄ω〈φ′|φ′〉 + h̄ω/2 > 0 , (2.27)

where |φ′〉 = â|φ〉. Calling the lowest eigenvalue h̄ω0 with eigenstate |0〉, we have

â|0〉 = 0 (2.28)

and

Ĥ |0〉 = h̄ω(â† â + 1
2 )|0〉 = h̄ω0|0〉 = 1

2 h̄ω|0〉 , (2.29)

that is, the lowest energy eigenvalue h̄ω0 = h̄ω/2 .
Similarly, we find

Ĥ â†|0〉 = [â†Ĥ + h̄ωâ†]|0〉 = h̄ω(1+ 1
2 )â

†|0〉 ; (2.30)

that is, the eigenstate |1〉 has eigenvalue h̄ω(1 + 1
2 ). Because â† raises the energy,

it is called a creation operator. Substituting successively higher eigenstates into this
equation, we find

Ĥ (â†)n|0〉 = h̄ω(n+ 1
2 )(â

†)n|0〉, (2.31)

and hence the eigenstate |n〉 ∝ (â†)n|0〉 has the eigenvalue h̄ω(n + 1
2 ). To find the

constant of proportionality, we note that

â|n〉 = sn|n− 1〉 , (2.32)

where sn is some scalar. This implies that

〈n|â†â|n〉 = |sn|2〈n− 1|n− 1〉 = |sn|2 . (2.33)
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Since â†â|n〉 = n|n〉, this gives sn = √n . Thus,

â|n〉 = √n|n− 1〉
â†|n〉 = √n+ 1|n+ 1〉 , (2.34)

yielding the normalized eigenstates

|n〉 = 1√
n! (â

†)n|0〉 . (2.35)

Since â†â|n〉 = n|n〉, â†a is called the number operator. It gives the number of
quanta of excitation of the harmonic oscillator in the states {|n〉}, which are called
number states or Fock states.

We can obtain the coordinate representation u0(q) of the ground state |0〉 by
substituting the definition (2.15) of â into Eq. (2.28) to find

(mωq̂ + ip̂)u0(q) = 0. (2.36)

With p̂ = −ih̄(d/dq̂), Eq. (2.11), this gives

d

dq
u0(q) = −

(
mω

h̄

)
q u0(q) , (2.37)

which has the normalized solution

u0(q) =
(
mω

πh̄

)1/4

e−(mω/2h̄)q2
. (2.38)

Similarly, we have

un(q) = 1√
n! (a

†)nu0(q) = 1√
n!

(
mω

2h̄

)n/2 (
q − h̄

mω

d

dq

)n
u0(q) , (2.39)

which yields the wave function (2.13).

2.2 Electromagnetic Field Quantization

2.2.1 Single-Mode Field

To quantize the electromagnetic field, we consider a cavity of volume V closed by
perfectly reflecting mirrors, see Fig. 2.2. For problems in free space, we can then
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Fig. 2.2 One-dimensional
cavity of length L closed by
end mirrors of reflectivity
R = 1, supporting field
modes of wavelength
λ = 2L/n, with n integer

take this volume to be infinite at the end of the calculation. The electromagnetic
field satisfies Maxwell’s equations in a vacuum,

∇ · B = 0 , (2.40)

∇ · E = 0 , (2.41)

∇ × E = −∂B
∂t
, (2.42)

∇ × B = μ0ε0
∂E
∂t
, (2.43)

where E is the electric field, B is the magnetic field, and μ0 and ε0 are the
permeability and the permittivity of free space, respectively. Alternatively, it is
useful to substitute c2 for 1/μ0ε0, where c is the speed of light in vacuum.
The electric and magnetic components of a classical monochromatic, single-mode
electromagnetic field propagating along z and polarized in the �x direction can
conveniently be cast in the form

E(z, t) = �x
√

2ω2

ε0V
q(t) sin(Kz) , (2.44)

B(z, t) = �y
c2K

√
2ω2

ε0V
q̇(t) cos(Kz) , (2.45)

where ω is the single-mode field oscillation frequency,K = ω/c is the wave number
ω/c, q(t) is a measure of the field amplitude, and �x and �y are unit vectors in
directions x and y perpendicular to the field propagation direction z. The classical
electromagnetic energy density is given by

U = 1

2

[
ε0E

2 + B2/μ0

]
, (2.46)

with corresponding classical Hamiltonian

H = 1

2

∫
V

dV [ε0E2 + B2/μ0] , (2.47)
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where dV is a volume element and E and B are the magnitudes of E and B,
respectively. Inserting Eqs. (2.44) and (2.45) into H gives

H = 1
2 (ω

2q2 + p2) , (2.48)

which is formally identical with the classical Hamiltonian (2.5) for a simple
harmonic oscillator of unit mass. We can therefore immediately quantize a single
mode of the electromagnetic field by applying the results of the previous section on
the quantization of the simple harmonic oscillator. In terms of the annihilation and
creation operators â and â†, the single-mode electromagnetic field Hamiltonian is
therefore

Ĥω = h̄ω(â†â + 1
2 ) . (2.49)

The corresponding eigenstates |n〉 of the field satisfy

Ĥ |n〉 = h̄ω(n+ 1
2 )|n〉, n = 0, 1, 2, . . . , (2.50)

where n may be loosely interpreted as the “number of photons” in the state |n〉, and
the ground state |0〉 of the field mode is referred to as the vacuum state. General
state vectors of the field are linear superpositions of these energy eigenstates

|ψ〉 =
∑
n

cn|n〉 . (2.51)

Substituting the expression (2.18) of the position operator in terms of creation
and annihilation operators into Eq. (2.44) with m = 1 gives for the electric and
magnetic fields

Ê(z, t) = Eω(â + â†) sinKz , (2.52)

B̂(z, t) = i
Eω
c
(â − â†) cosKz , (2.53)

where we have introduced the “electric field per photon”

Eω ≡ [h̄ω/ε0V ]1/2 . (2.54)

In complete analogy with classical fields, see Eq. (1.36), it is often convenient to
decompose Ê(z, t) into its positive and negative frequency components as

Ê(z, t) = Ê+(z, t)+ Ê−(z, t) (2.55)



2.2 Electromagnetic Field Quantization 37

with

Ê+(z, t) = Eωâe−iωt sinKz , (2.56)

Ê−(z, t) = (Ê+)† = Eωâ†eiωt sinKz , (2.57)

and where we have used Eqs. (2.22) and (2.23) for the free time evolution of â and
â†, respectively.

2.2.2 Multimode Field

The generalization of the single-mode analysis to a multimode electromagnetic
field is straightforward. Considering for concreteness linearly polarized plane wave
modes, the classical electric field becomes

E(z, t) =
∑
s

�εs
√

2ω2
s

ε0V
qs(t) sin(Ksz) , (2.58)

where �εs is the polarization of mode s, ωs = cKs,Ks = sπ/L, s = 1, 2, 3, . . . ,
and L is the length of the cavity in the ẑ direction. The Hamiltonian Ĥ of such a
multimode field is simply the sum of the Hamiltonians Ĥs of the individual modes

Ĥ =
∑
s

Ĥs , (2.59)

where Ĥs is given in terms of the single-mode annihilation and creation operators
âs and â†

s of Eqs. (2.15) and (2.16) by

Ĥs = h̄ωs(â†
s âs + 1

2 ) , (2.60)

with

[âs , â†
s′ ] = δs,s′ . (2.61)

The single-mode electric field operator generalizes then to

Ê(z, t) =
∑
s

Es(âs + â†
s ) sin(Ksz) , (2.62)

where

Es = [h̄ωs/ε0V ]1/2 (2.63)

is the electric field per photon of mode s for standing wave quantization.
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The eigenstates of the multimode Hamiltonian (2.60) are products of the single-
mode eigenstates

|n1n2 . . . ns . . .〉 ≡ |{n}〉 (2.64)

and have eigenvalues given by the eigenvalue equation

Ĥ |{n}〉 = h̄
∑
s

ωs

(
ns + 1

2

)
|{n}〉 . (2.65)

When acting on the state |{n}〉, the creation and annihilation operators â†
s and âs of

the sth mode give

â†
s |{n}〉 =

√
ns + 1|n1n2 . . . ns + 1 . . .〉 ,

âs |{n}〉 = √ns |n1n2 . . . ns − 1 . . .〉 ; (2.66)

for example,

â1|n1, n2〉 = √n1|n1 − 1, n2〉 ; â2|n1, n2〉 = √n2|n1, n2 − 1〉 . (2.67)

The general state vector of a multimode field is a linear superposition of states such
as |{n}〉,

|ψ〉 =
∑
n1

∑
n2

. . .
∑
{ns }
cn1n2...ns ...|n1n2 . . . ns . . .〉 ≡

∑
{n}
c{n}|{n}〉 . (2.68)

Note that this form is more general than the factorized state

|ψ〉 = |ψ1〉|ψ2〉 . . . |ψs〉 . . . (2.69)

where the |ψs〉 are state vectors for the individual modes.
For the field ground state |{n}〉 = |{0}〉, Eq. (2.65) reduces to

Ĥ |{0}〉 = 1

2
h̄
∑
s

ωs |{0}〉 , (2.70)

so that the ground state energy of the field, the so-called zero-point energy, is∑
s

1
2 h̄ωs . Since this energy is a constant for a given mode configuration, it is

often possible to just ignore it. However, this is not always the case, and we will
encounter in Sect. 7.5 an important example of its effect in the discussion of the
attractive Casimir force between two perfectly conducting plates in a vacuum. As
we shall see, the origin of that force is this zero-point energy, more precisely the
radiation pressure exerted by the vacuum field on the cavity end plates. While this
force is minute and can be ignored in most everyday situations, this is not always
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the case. In particular, it plays an increasing role in a number of nanophotonics and
nanoscience applications.

Standing Waves Versus Traveling Waves Both standing and traveling wave
modes are routinely used as basis field modes in quantum theories of electrody-
namics. To appreciate the difference between them, consider the positive frequency
field operator

Ê+(z, t) = Er [â1e
iKz + â2 e

−iKz]e−iωt . (2.71)

Here, Er is the running wave electric field per photon, and âi and â†
i , i = 1, 2, are the

annihilation operators for two oppositely running wave modes, obeying the boson
commutation relations [âi , â†

j ] = δij . Their action on the state |n1, n2〉r describing
the two running waves is

â1|n1, n2〉r = √n1|n1 − 1, n2〉r ; â2|n1, n2〉r = √n2|n1, n2 − 1〉r . (2.72)

Alternatively, in terms of the operators âc = (â1+ â2)/
√

2 and âs = (â1− â2)/
√

2,
the electric field operator (2.71) is given by

Ê+(z, t) = √2 Er [âc cos(Kz)+ iâs sin(Kz)]e−iωt , (2.73)

where
√

2 Er is just the electric field per photon Es of Eq. (2.63). The operators âc
and âs also obey boson commutation relations but act on standing wave rather than
traveling wave modes. Importantly, then, if one chooses to expand the field in terms
of running wave modes instead of standing wave modes as done here, the “electric
field per photon” Er is reduced by a factor of

√
2 compared to its standing wave

value,

Er = Es√
2
=

√
h̄ω

2ε0V
. (2.74)

The choice of using a standing or running wave quantization scheme is one of
mathematical convenience, and both approaches predict the same single-photon
transition rates, such as those for spontaneous emission and photoionization,
provided that the contributions of all modes are accounted for. In practice, though,
there are cases in which the two approaches are not equivalent. Standing wave
modes are the natural choice when a field is contained within a two-mirror cavity. In
such situations, one can then oftentimes use a single-mode description, but it is then
important to keep in mind that one of the two field modes needed to provide a full
correspondence with running wave quantization, either the sin(Kz) or the cos(Kz)
mode, is implicitly assumed to never be excited, due to boundary conditions
imposed, say, by a cavity with perfectly reflecting end mirrors. Conversely, traveling
waves are for instance the natural choice when the field consists of counter-
propagating waves in a three-mirror ring cavity.
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In such situations, one can expect differences between the physics described by a
single standing mode field and by two counter-propagating running waves of equal
frequencies and amplitudes, in contrast with the classical intuition. In particular, for
small photon numbers, atoms are diffracted differently by the true standing wave
than by the superposition of two waves.1 We can understand this result intuitively
from the following argument: with running waves, it is possible in principle to know
which running wave exchanges a unit of momentum with the atom. In contrast, a
standing wave is an inseparable quantum unit with zero average momentum. This
unity is imposed by the fixed mirrors that establish the standing wave and that act as
infinite sinks and sources of momentum. Quantum mechanics forbids one even in
principle to determine, via a field measurement, “which traveling wave” exchanges
momentum with the atom, and hence one expects interference phenomena. Indeed,
the atomic diffraction patterns reflect this fundamental difference between a “true”
standing wave and a superposition of two running waves [1].

2.3 States of the Field

2.3.1 Single-Mode Field in Thermal Equilibrium

A thermal single-mode field is a field from which we only know the average
energy 〈Ĥ 〉

〈Ĥ 〉 = Tr{ρ̂Ĥ } . (2.75)

Much as would be the case in classical physics, we can find its state by invoking the
maximum entropy principle. Quantum mechanically, this amounts to determining
the density operator ρ̂ by using the method of Lagrange multipliers to maximize the
von Neumann entropy of the mode subject to the constraint (2.75).

Von Neumann Entropy Before proceeding, it may be useful to first give a very
brief refresher on the von Neumann entropy. We recall that this entropy is the
quantum extension of the classical Gibbs entropy Sclassical of a system,

Sclassical = −kB
∑
�

P� lnP� , (2.76)

where P� is the probability of finding the system in the state �. In quantum systems,
P� is replaced by the density operator ρ̂, and the sum is replaced by the trace,

1We will discuss atomic diffraction by optical fields in some detail in Chap. 8.
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resulting in the von Neumann entropy

S = −kBTr{ρ̂ ln ρ̂} or S = −Tr{ρ̂ log2 ρ̂} . (2.77)

The quantum equivalent of the normalization condition Σ�P� = 1 is Tr{ρ̂} = 1.
Note that the von Neumann entropy (2.77) is defined sometimes with and

sometimes without the Boltzmann factor kB , depending on the context of the
problem. In statistical physics and quantum thermodynamics, S usually includes
the Boltzmann factor, but in quantum information science it does not, as we shall
see in some detail in Chap. 4. Like the Gibbs entropy in the classical world, the von
Neumann entropy has an important interpretation in terms of information content: it
characterizes the missing information about the system. For this reason, in quantum
information science, it is computed on a log2 basis and measured in bits.

Maximizing the Entropy We now proceed to determine the density operator
of a single-mode field in thermal equilibrium by maximizing S under the two
constraints (2.75) and Trρ̂ = 1. We use here its statistical mechanics form with
the Boltzmann factor included. Without constraints, we have

δS � −Tr

[
∂

∂ρ̂
(ρ̂ ln ρ̂)

]
δρ̂ = −Tr{(1+ ln ρ̂)δρ̂} . (2.78)

The constraint (2.75) leads to the extra contribution Tr{Ĥ δρ̂} = 0 and the
normalization of ρ̂ to Tr{δρ̂} = 0, with β and λ the associated Lagrange multipliers.
Inserting these into Eq. (2.78) gives

δS = −Tr{(1+ ln ρ̂ + λ+ βĤ )δρ̂} . (2.79)

Maximizing the entropy requires that δS = 0 for any δρ̂, which yields

1+ ln ρ̂ + λ+ βĤ = 0 , (2.80)

so that

ρ̂ = e−(1+λ)e−βĤ . (2.81)

We still have to determine the two Lagrange multipliers λ and β. With Tr{ρ̂} = 1,
Eq. (2.81) gives

e1+λ = Tr{exp(−βĤ )} ≡ Z , (2.82)
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where Z is the so-called partition function of the system. Substituting this definition
into Eq. (2.81), then, we have

ρ̂ = exp(−βĤ )
Tr{exp(−βĤ )} =

exp(−βĤ )
Z

. (2.83)

From classical statistical mechanics, we recognize

β ≡ 1/kBT (2.84)

as the Boltzmann coefficient, which we use as a definition of the temperature T .
So far, our result is quite general, and the density operator (2.83) describes the

thermal equilibrium state of any system with Hamiltonian Ĥ and subject to the mean
energy constraint (2.75).2 We now specialize it to the case of the simple harmonic
oscillator Hamiltonian. We proceed by redefining the zero of the energy scale by
removing the “zero-point energy” h̄ω/2 from Ĥ . Then, the density operator (2.81)
becomes

ρ̂ = e−βh̄ωâ†â

Tr{e−βh̄ωâ†â} . (2.85)

In general, we can expand the field density operator on any complete set of states,
in particular on the number states |n〉 where ρ̂ takes the form

ρ̂ =
∑
n,m

m|n〉〈n|ρ̂|m〉〈m| =
∑
n,m

ρnm|n〉〈m| . (2.86)

Noting that 〈n|â†â|m〉 = nδnm, we obtain the photon number expansion

ρnm = e−nβh̄ω
[∑
n

e−nβh̄ω
]−1
δnm = e−nβh̄ω

[
1− e−βh̄ω

]
δnm , (2.87)

where we have used the identity

∞∑
n=0

exp(−nx) = 1− exp(−x) .

Hence, we see that the thermal distribution has a diagonal expansion in terms of
the photon number states. This diagonality causes the expectation value of the

2Additional constraints can be accounted in the same way with the introduction of additional
Lagrange multipliers. We will encounter such an example in the analysis of Bose–Einstein
condensation of Chap. 10, where the conserved mean number of particles will be an additional
constraint and the chemical potential μ the associated Lagrange multiplier.
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electric field to vanish in thermal equilibrium. Equation (2.86) also shows that the
probability pn that the field has n photons, the so-called photon statistics, is given
by the Maxwell–Boltzmann distribution

pn = ρnn = [1− e−βh̄ω]e−nβh̄ω . (2.88)

The density operator (2.85) permits us to compute the expectation value of any
observable of interest, such as, e.g. the mean energy in the field

〈Ĥ 〉 = Tr(ρ̂Ĥ ) = 1

Z
Tr

(
h̄ωâ†âe−βh̄ωâ†â

)
= 1

Z

∑
n

h̄ωne−h̄ωn/kBT . (2.89)

Expanding the partition function Z of Eq. (2.82) on a number states basis and
differentiating it with respect to the temperature gives

dZ

dT
= 1

kBT 2

∑
n

nh̄ωe−nh̄ω/kBT . (2.90)

Comparing this result with Eq. (2.89), we find

〈Ĥ 〉 = kBT 2 1

Z

dZ

dT
= h̄ω

eh̄ω/kBT − 1
, (2.91)

or reintroducing the field zero-point energy h̄ω/2,

〈Ĥ 〉 = h̄ω
2
+ h̄ω

eh̄ω/kBT − 1
. (2.92)

At absolute zero, the oscillator is in its ground state, with zero-point energy
〈Ĥ 〉 = h̄ω/2. This is to be contrasted to the classical oscillator energy, which is
2· 12kBT in thermal equilibrium and hence vanishes as T → 0. At high temperatures,

kBT � h̄ω, 〈Ĥ 〉 → kBT so that the quantum and classical oscillators approach
the same mean energy. Note that in Eq. (2.92), it was important to keep the zero-
point energy of the oscillator since we wish to compare the quantum to the classical
energy and therefore need to use the same reference point in both cases. As already
mentioned, though, it is often—but not always—appropriate to redefine the energy
of the quantum oscillator such that its zero-point energy is zero, a convenient
typographical simplification.

The mean energy calculation also permits us to find the mean number of photons
〈n〉 in a mode in thermal equilibrium at temperature T ,

〈n〉 =
∑
n

nρnn = 1

eh̄ω/kBT − 1
, (2.93)
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Fig. 2.3 Left: photon statistics pn of the single-mode thermal field (2.85) with mean photon
number 〈n〉 = 9. Right: corresponding photon statistics (2.107) for a coherent field |α〉 with
〈n〉 = |α|2 = 9

which allows us to reexpress the photon statistics (2.88) as

pn = 1

〈n〉 + 1

( 〈n〉
〈n〉 + 1

)n
. (2.94)

Figure 2.3 shows an example of a single-mode thermal field photon statistics, with
〈n〉 = 9.

2.3.2 Coherent States

We now turn to a class of states of the simple harmonic oscillator that play a
central role in the quantum theory of radiation and in quantum optics. These are
the states that minimize the Heisenberg uncertainty relation (2.9), �p�q ≥ h̄/2.
Since only the product of uncertainties is bound by the Heisenberg uncertainty,
one can minimize it with a smaller uncertainty for one conjugate variable at the
expense of increasing the uncertainty of the other. Such states, called “squeezed
states,” are discussed in Sect. 2.3.3. One subclass of particular importance is the so-
called coherent states [2], which simultaneously minimize the variance in both the
position and momentum operators.

There are several ways to introduce coherent states. Here, we choose a method
that emphasizes their nearly classical character. Specifically, we seek pure states of
the harmonic oscillator with mean energy equal to the classical energy. We proceed
by applying Ehrenfest’s theorem, which states that in the cases of free particles,
particles in uniform fields, or particles in quadratic potentials (harmonic oscillators),
the motion of the center of the quantum wave packet obeys precisely the laws of
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classical mechanics

〈ψ |q̂(t)|ψ〉 = qc(t) ,
〈ψ |p̂(t)|ψ〉 = pc(t) ,

where we use the index c to label the classical variables. Inserting these into
Eq. (2.10), we obtain the classical energy

Hc = p
2
c

2
+ ω

2q2
c

2
= 1

2
[〈ψ |p̂(t)|ψ〉2 + ω2〈ψ |q̂(t)|ψ〉2] (2.95)

or, with Eqs. (2.15) and (2.16),

Hc = h̄ω〈ψ |â†|ψ〉〈ψ |â|ψ〉 . (2.96)

The corresponding quantum mechanical oscillator has the energy

〈Ĥ 〉 = 〈ψ |Ĥ |ψ〉 = h̄ω〈ψ |â†â|ψ〉 , (2.97)

where we have shifted the zero of energy by the zero-point energy h̄ω/2.
The requirement that the classical energy be equal to the quantum mechanical

energy for the coherent state, denoted |α〉, leads therefore to the factorization
condition

〈α|â†|α〉〈α|â|α〉 = 〈α|â†â|α〉 . (2.98)

This implies that coherent states are eigenstates of the annihilation operator,

â|α〉 = α|α〉 . (2.99)

It is readily seen by direct substitution that Eq. (2.99) satisfies the condition (2.98).
To show conversely that Eq. (2.98) implies (2.99), we note that it may be rewritten
as

|〈α|â†|α〉|2 = 〈α|â†â|α〉 . (2.100)

The Gram–Schmidt orthogonalization procedure tells us that starting with |α〉, we
can construct a complete orthonormal basis set consisting of |α〉 and an infinite
complementary set of vectors {|R〉}. Writing this statement in terms of the identity
operator, we have

Î = |α〉〈α| +
∑
R

|R〉〈R| . (2.101)
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Inserting this expression between the â† and â operators on the right-hand side of
Eq. (2.100), we have

〈α|â†â|α〉 = 〈α|â†|α〉〈α|â|α〉 +
∑
R

〈α|â†|R〉〈R|â|α〉

= |〈α|â†|α〉|2 +
∑
R

|〈R|â|α〉|2 , (2.102)

and equating this result with the left-hand side of Eq. (2.100) gives

∑
R

|〈R|â|α〉|2 = 0 . (2.103)

Since every term in this sum is positive definite, we must have 〈R|â|α〉 = 0 for all
|R〉, which implies that â|α〉 must be orthogonal to any |R〉, that is, proportional to
|α〉, namely,

â|α〉 = α|α〉 . (2.104)

This concludes the proof that all states satisfying the factorization property (2.98)
must be eigenstates of the annihilation operator.

Number States Representation To obtain an explicit form for |α〉 in terms of the
number states |n〉, we write

|α〉 =
∑
n

|n〉〈n|α〉 =
∑
n

|n〉〈0| â
n

√
n! |α〉 = 〈0|α〉

∑
n

αn√
n! |n〉 . (2.105)

Using the normalization condition 〈α|α〉 = 1, we find that |〈0|α〉|2 = e−|α|2 , so that
choosing a unit phase factor gives finally

|α〉 = e−|α|2/2
∑
n

αn√
n! |n〉 . (2.106)

This expression immediately gives the probability of finding n photons in the
coherent state as the Poisson distribution, with corresponding photon statistics

pn = |〈n|α〉|2 = e−|α|2 |α|
2n

n! , (2.107)

see Fig. 2.3, from which the mean photon numbers 〈n〉 is the field is readily found
to be
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〈n〉 = e−|α|2
∞∑
n=0

n
|α|2n
n! = |α|

2 . (2.108)

The corresponding variance is likewise |α|2,

σ 2
n ≡ 〈n2〉 − 〈n〉2 = |α|2 . (2.109)

It is also useful to express the coherent states in terms of the vacuum state |0〉.
We find, with (â†)n|0〉 = √n!|n〉,

|α〉 = e−|α|2/2
∑
n

(αâ†)n

n! |0〉 = e
−|α|2/2eαâ† |0〉

= e−|α|2/2eαâ†
e−α∗â|0〉 , (2.110)

where we have used the fact that â|0〉 = 0 to perform the last step. Using the Baker–
Hausdorff relation

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 , (2.111)

which holds if the operators Â and B̂ commute with their commutator

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 ,

we can rewrite this expression as

|α〉 = D̂(α)|0〉 , (2.112)

where

D̂(α) ≡ eαâ†−α∗â (2.113)

is the displacement operator. As such, we can call the coherent states |α〉 displaced
states of the vacuum.

The coherent states will prove very useful in describing a number of electromag-
netic fields, although they have the complication of being overcomplete, with

1

π

∫
d(Reα)d(Imα)|α〉〈α| = 1

π

∫
d2α|α〉〈α| = 1 , (2.114)

as well as nonorthogonal, since

〈α|β〉 = exp

[
−1

2
(|α|2 + |β|2 − 2α∗β)

]
(2.115)
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does not vanish for α 
= β. However, squaring this expression, we have that

|〈α|β〉|2 = exp(−|α − β|2) , (2.116)

which shows that the states become increasingly orthogonal if α differs sufficiently
from β.

Minimum Uncertainty States We now show that as advertised, the coherent states
|α〉 are minimum uncertainty states of the harmonic oscillator. Since â and â† are
not self-adjoint operators and therefore not subject to the Heisenberg uncertainty
relations, this requires returning to the position and momentum operators q̂ and p̂
instead, see Eqs. (2.18) and (2.19). From â|α〉 = α|α〉, we find readily

〈α|â + â†|α〉 = (α + α∗) ,
〈α|(â + â†)2|α〉 = (α + α∗)2 + 1 ,

〈α|(â − â†)2|α〉 = (α − α∗)2 − 1 .

Substituting these expressions into the expressions for q̂, p̂, and q̂2 and p̂2 then
gives the variances

σ 2
q = 〈q̂2〉 − 〈q̂〉2 = h̄/2ω (2.117)

σ 2
p = 〈p̂2〉 − 〈p̂〉2 = h̄ω/2 (2.118)

so that

σ 2
q σ

2
p = h̄2/4 . (2.119)

Since [q̂, p̂] = ih̄, this is precisely the minimum product of uncertainties between
two arbitrary observables Â and B̂ permitted by the Heisenberg uncertainty principle

σA σB ≥ 1

2
|〈[Â, B̂]〉| . (2.120)

Interestingly, the vacuum state |0〉 is itself a minimum uncertainty state, since it is
an eigenstate of the annihilation operator with â|0〉 = 0.

2.3.3 Squeezed States

As already indicated, the Heisenberg uncertainty principle has a built-in degree of
freedom: one can “squeeze” the standard deviation of one observable provided one
“stretches” that for the conjugate observable [3–5]. For example, while the standard
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deviations in position and momentum obey the uncertainty relation �x�p ≥ h̄/2,
all quantum mechanics requires is that the product be bounded from below: one can
in principle squeeze �x to an arbitrarily small value at the expense of increasing
the standard deviation �p accordingly. As we have seen, the electric and magnetic
fields form a pair of observables analogous to the position and momentum of a
simple harmonic oscillator. Hence, they obey a similar uncertainty relation

σE σB ≥ (constant) h̄/2 , (2.121)

and we can likewise squeeze the variance σ 2
E at the expense of stretching σ 2

B , or vice
versa. Such squeezing of the electromagnetic field is of considerable importance
in the context of precision quantum measurements, where it offers the promise of
achieving quantum noise reduction beyond the “standard shot noise limit,” as will
be discussed in Chap. 6.

Field Quadratures However, as a monochromatic electromagnetic field oscillates
in time, its energy is transferred between E and B each quarter period. As a result,
if we initially squeeze σE , it will then spread for a quarter of a cycle, then return
to the squeezed value at the half cycle, and so on. This is in contrast to the result
for coherent states: a displaced ground state of the simple harmonic oscillator of
the correct width oscillates back and forth with unchanging width. Looking at the
mean and standard deviation of the electric field vector in the complex α plane, the
coherent state appears as in Fig. 2.4a, while a squeezed state appears as in Fig. 2.4b.

To observe the squeezing in σE , we must therefore somehow select its active
quadratures from the general electromagnetic oscillation. Given a field described
by the annihilation operator â, we proceed by forming two Hermitian conjugate

Fig. 2.4 (a) Amplitude vector of length |α| of a coherent state |αeiθ 〉 and its variance. (b)
Amplitude vector of length [|α|2 + sinh2 r]1/2 and variance of a squeezed coherent state |α, ζ 〉,
that is, a coherent state |αeiθ 〉 that has been squeezed by the operator S(ζ ) of Eq. (2.127) at an
angle φ with respect to the real axis. See Eq. (2.145) for a discussion of the length of its state
vector
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quadrature operators as

d̂1(φ) = 1

2
(â eiφ + â†e−iφ)

d̂2(φ) = 1

2i
(â eiφ − â† e−iφ) , (2.122)

with [d̂1, d̂2] = i/2, so that the product of their variances is σ 2
d1
σ 2
d2
≥ 1/4. These

operators would correspond to position and momentum in the case of a mechanical
oscillator.

The quadrature operators are of considerable importance in quantum optics. In
particular, they are the observables that are measured in homodyne and heterodyne
detection, two detection methods that multiply the signal to be measured with a
reference sine wave called the local oscillator and are frequently exploited for
precision field measurements near the limits imposed by quantum mechanics.
Sect. 2.4.2 will show explicitly for the specific example of balanced homodyne
detection how one can examine any quadrature of the signal by varying its phase
relative to the phase of the local oscillator. We will also see in Sect. 11.4 how these
quadratures play a central role in characterizing the noise of optical interferometers
and in establishing their standard quantum limit, that is, the minimum level of
quantum noise that is achievable under normal circumstances, and how squeezed
light permits to circumvent that limit.

Consider then for a moment a quantum state such that the expectation value of
the electric field is zero, 〈â〉 = 〈â†〉 = 〈d̂i〉 = 0. This reduces the variance σ 2

d1
to

σ 2
d1
= 〈d̂ 2

1 〉 − 〈d̂1〉2 = 1

4

[
〈â†â〉 + 〈ââ†〉 + (〈â2〉e2iφ + c.c.)

]

= 1

4
+ 1

2
〈â†â〉 + 1

2
Re {〈â2〉e2iφ} . (2.123)

For a given set of expectation values, the minimum variance is given by the phase
φ that yields 〈â2〉 e2iφ + c.c. = −2|〈â2〉|, that is,

σ 2
d1
= 1

4
+ 1

2
〈â†â〉 − 1

2
|〈â2〉| , (2.124)

with the conjugate variance σ 2
d2

given then by

σ 2
d2
= 1

4
+ 1

2
〈â†â〉 + 1

2
|〈â2〉| , (2.125)
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which is greater than or equal to σ 2
d1

. These equations satisfy the Heisenberg
uncertainty

σd1 σd2 =
1

4

√
[1+ 2〈â†â〉 − 2|〈â2〉|][1+ 2〈â†â〉 + 2|〈â2〉|] ≥ 1

4
, (2.126)

which corresponds geometrically to the equation for an ellipse. For a coherent
state |α〉, this gives σ 2

d1
= σ 2

d2
= 1/4. Squeezing occurs for the quadrature d̂1

if its standard deviation σd1 becomes smaller than 1
2 , that is, is squeezed below the

minimum uncertainty product value for a coherent state. Again, this does not violate
the uncertainty principle, since d̂2 then has a correspondingly increased variance.

Squeeze Operator In the present example, it is the |〈â2〉| term that leads to
squeezing. A way to obtain such squeezing formally is to “squeeze” the state vector
with the squeeze operator

Ŝ(ζ ) = eζ â†2−ζ ∗â2
, (2.127)

which converts the circular variance of a coherent state illustrated in Fig. 2.4a into
a rotated ellipse of Fig. 2.4b. That this is the case can be seen by calculating the
standard deviations σd1 and σd2 in the state Ŝ(ζ )|α〉. We proceed by first evaluating
the expectation values of â, â†, â2, and â†2, which involve the operator products
S†(ζ )âŜ(ζ ) and Ŝ†(ζ )â†Ŝ(ζ ). We can express these products in terms of simple
powers of â and â† by using the Baker–Hausdorff operator identity

eB̂X̂e−B̂ = X̂ + [B̂, X̂] + 1

2! [B̂, [B̂, X̂]] + . . .+
1

n! [B̂, [B̂, . . . [B̂, X̂]...]]] + ...,
(2.128)

where we take exp(−B̂) = Ŝ and note that Ŝ†(ζ ) = Ŝ−1(ζ ), that is, Ŝ(ζ ) is a
unitary operator. In working with the operator Ŝ, it is convenient to write ζ in polar
coordinates as

ζ = 1

2
re−2iφ. (2.129)

With the relations

[â, â†m] = mâ†(m−1) ; [â†, âm] = −mâm−1 , (2.130)

which can easily be proven by induction, we have that

[B̂, âeiφ] = [ζ ∗â2 − ζ â†2, âeiφ] = ζeiφ[â, â†2] = râ†e−iφ , (2.131)
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where we included the factor eiφ since it simplifies the derivation. The adjoint of
this equation is

[B̂, â†e−iφ] = râeiφ . (2.132)

Using these commutators repeatedly, we obtain the series

Ŝ†(ζ )â eiφŜ(ζ ) = âeiφ + râ† e−iφ + r
2

2! â e
iφ + r

3

3! â
† e−iφ + . . .

= â eiφ cosh r + â† e−iφ sinh r , (2.133)

which has the adjoint

Ŝ†(ζ )â†e−iφŜ(ζ ) = â†e−iφ cosh r + âeiφ sinh r . (2.134)

The corresponding squeezed versions of the Hermitian operators d̂i are therefore

Ŝ†(ζ )d̂1Ŝ(ζ ) = 1

2
d̂1[cosh r + sinh r] = d̂1e

r ,

Ŝ†(ζ )d̂2Ŝ(ζ ) = d̂2e
−r , (2.135)

and likewise

Ŝ†(ζ )d̂ 2
1 Ŝ(ζ ) = Ŝ†(ζ )d̂1Ŝ(ζ )Ŝ

†(ζ )d̂1Ŝ(ζ ) = d̂ 2
1 e

2r ,

Ŝ†(ζ )d̂ 2
2 Ŝ(ζ ) = d̂ 2

2 e
−2r . (2.136)

Hence, the unitary transformation (2.127) has indeed the effect of squeezing and
stretching the operators d̂1 and d̂2, as advertised.

Squeezed Coherent States These results provide all the pieces required to calcu-
late the standard deviations σd1 and σd2 in the squeezed coherent state Ŝ(ζ )|α〉. With
Eqs. (2.135), we have

〈α|Ŝ†(ζ )d̂1Ŝ(ζ )|α〉 = er 〈α|d̂1|α〉 = 1

2
er (αeiφ + α∗e−iφ) ,

〈α|Ŝ†(ζ )d̂2Ŝ(ζ )|α〉 = 1

2
ier (αeiφ − α∗e−iφ) , (2.137)

while the expressions in Eq. (2.136) give

〈α|Ŝ†(ζ )d̂ 2
1 Ŝ(ζ )|α〉 =

1

4
e2r 〈α|â2e2iφ + â†2e−2iφ + 2â†â + 1|α〉

= 1

4
e2r (α2e2iφ + α∗2e−2iφ + 2α∗α + 1) . (2.138)
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Combining these expressions gives the standard deviation

σd1 =
1

2
er (2.139)

and similarly

σd2 =
1

2
e−r . (2.140)

Equations (2.139) and (2.140) reveal that the squeezed state

|α, ζ 〉 ≡ Ŝ(ζ )|α〉 = Ŝ(ζ )D̂(α)|0〉 , (2.141)

where we have used Eq. (2.112), is a minimum uncertainty state, or squeezed
coherent state, since σd1σd2 = 1

4 independently of r and φ.
The standard deviation of the field quadrature at the angle φ with respect to the

real and imaginary α axes is stretched, and that of the field quadrature at the angle
φ + 1

2π is squeezed. The angle φ is determined by the squeezing parameter ζ , and
the angle θ that the phasor α makes with respect to its real and imaginary axes is in
general independent of φ. The state with φ = θ is called a phase squeezed state, and
the state with φ = θ+ 1

2π is called an amplitude squeezed state. They are illustrated
in Fig. 2.5b, c, respectively.

Fig. 2.5 Electric field of a monochromatic light wave versus time, for (a) a coherent state, (b) a
phase squeezed state, and (c) amplitude squeezed state. Arbitrary units
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More generally, squeezed states exist that yield variances less than the average
minimum uncertainty for one quadrature, but whose uncertainty product exceeds
the minimum uncertainty value of 1

4 . It is also easily shown that both the magnitude
and the mean photon numbers of the squeezed states increase with squeezing.

Squeezed Vacuum A squeezed state of particular importance is the squeezed
vacuum

|ζ 〉 ≡ Ŝ(ζ )|α〉 = Ŝ(ζ )|0〉 , (2.142)

as it permits as we shall see in Sect. 11.4 to reduce the noise of interferometers
below the standard quantum limit. With Eqs. (2.133) and (2.134), we find that the
mean photon number in that state is

〈n〉 = 〈ζ |â†â|ζ 〉 = 〈0|Ŝ†(ζ )â†Ŝ(ζ )Ŝ†(ζ )âŜ(ζ )|0〉 = sinh2 r . (2.143)

The mean photon number in the squeezed vacuum |ζ 〉 is therefore not equal to zero,
much like the mean photon number 〈n〉 = |α|2, or the coherent state, or displaced
vacuum, is larger than zero as well. Indeed, combining these two results, the mean
photon number 〈n〉 of the squeezed coherent state (2.141)

|α, ζ 〉 ≡ Ŝ(ζ )D̂(α)|0〉 (2.144)

is readily found to be

〈n〉 = |α|2 + sinh2 r . (2.145)

We can determine the photon statistics of the squeezed vacuum by first noting
that since Ŝ(ζ )â|0〉 = 0, we have

Ŝ(ζ )âŜ†(ζ )Ŝ(ζ )|0〉 = Ŝ(ζ )âŜ†(ζ )|ζ 〉 = 0 , (2.146)

so that, with Eq. (2.134) ,

â cosh r + â†e−2iφ sinh r = μâ + νâ† = 0 , (2.147)

where we have introduced the short-hand notation μ ≡ cosh r and ν ≡ e−2iφ sinh r
for convenience. Expanding |ζ 〉 on the number states basis as

|ζ 〉 =
∑
n

cn|n〉, (2.148)

we have, with Eq. (2.147),

(
μâ + νâ†

)∑
n

cn|n〉 = 0 (2.149)
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so that

cn+1 = − ν
μ

√
n

n+ 1
cn−1 . (2.150)

It follows that only even number states are populated. This is of course not
surprising, since we start from the vacuum and Ŝ(ζ ) adds or subtracts excitations
to or from the field two photons at a time. Determining the probability amplitudes
c2m iteratively from c0 and requiring that the state be properly normalized, one finds
finally

|ζ 〉 = 1√
cosh r

∞∑
n=0

(−1)m
√

2n!
2nn! e

−2inφ tanhn r|2n〉 , (2.151)

with corresponding photon statistics

p2m = |〈2m|ζ 〉|2 = 2m!
22m(m!)2

tanh2m r

cosh r
,

p2m+1 = |〈2m+ 1|ζ 〉|2 = 0 , (2.152)

as illustrated in Fig. 2.6.

Two-Mode Squeezing Instead of considering a single mode of the electromagnetic
field, one can also extend these considerations to multimode fields and, in particular,
to two-mode fields, in which case squeezed uncertainties can be achieved in
the combined quadratures of the two modes. The two-mode squeeze operator is
defined as

Ŝ2(ζ ) = eζ â
†
1 â

†
2−ζ ∗â1â2 , (2.153)

Fig. 2.6 Photon statistics of
the squeezed vacuum state
|ζ 〉 = Ŝ(ζ )|0〉 with
r = 1.8185 and mean photon
number 〈n〉 = sinh2 r = 9,
illustrating that pn = 0 for n
odd. Compare to Fig. 2.3
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where â†
i and âi , i = 1, 2, are the creation and annihilation operators of the

two modes. (Note that since field modes are fully characterized not just by their
frequency but also by their wave vector and polarization, the two modes could have
the same frequency, ω1 = ω2.) With

ζ = re−2iφ, (2.154)

we find, see Problem 2.12, that the corresponding two-mode squeezed vacuum sate
|TMSV 〉 is

|TMSV 〉 ≡ Ŝ2(λ)|0, 0〉 = 1

cosh r

∞∑
n=0

(−e−2iφ tanh r)n|n, n〉 . (2.155)

Importantly, when tracing over one of the modes, say mode 1, we find, see
Problem 2.13, that the remaining mode is left in a thermal state

Tr1|TMSV 〉〈TMSV | = 1

cosh2 r

∞∑
n=0

tanh2n(r)|n2〉〈n2| , (2.156)

with mean photon number 〈n2〉 = sinh2 r .
We will encounter two-mode squeezing again in the discussion of optomechanics

of Chap. 11. In particular, Sect. 11.3.1 will show explicitly that the two-mode
squeeze operator permits to squeeze the variance of the two-mode quadrature
operator X̂ = 1

23/2 (â1 + â†
1 + â2 + â†

2)

Squeezing by Three- and Four-Wave Mixing We conclude this section by noting
that since the squeeze operator Ŝ(ζ ) involves two-photon processes, it resembles the
evolution operator exp(−iĤ t/h̄) associated with effective two-photon Hamiltonians
of the form

Fig. 2.7 Schematic of (a) three-wave mixing and (b) four-wave mixing, with one, respectively,
two pump photons at frequency ωp being converted into a signal photon at frequency ωs and an
idler photon at frequency ωi . In many cases, the pump field(s) can be treated classically, with
amplitude Epump(ωp). The dotted lines indicate the virtual levels involved in the wave mixing
process. For far off-resonant transitions, these levels can be adiabatically eliminated, resulting in
effective Hamiltonians of the form (2.157)
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Ĥ = h̄ωs â†
s âs + h̄ωi â†

i âi + ih̄λâ†
s â

†
i − ih̄λ∗âs âi , (2.157)

where the coupling strength λ is proportional to the field amplitude Epump(ωp) or to
E2

pump(ωp) for three- and four-wave mixing, respectively see Fig. 2.7.3 In particular,

in the degenerate case âi = âs ≡ â and ωs = ωi ≡ ω, the Hamiltonian Ĥ reduces
to

Ĥ = h̄ωâ†â − ih̄
[
λâ†2 − λ∗â2

]
, (2.158)

with an associated interaction picture evolution operator

Û (t) = eζ â†2−ζ ∗â2
, (2.159)

which is nothing but the squeeze operator Ŝ(ζ ), with ζ = −λt . This suggests that
effective two-photon interactions are indeed a good way to generate squeezing. In
the non-degenerate case ω1 
= ω2, the corresponding evolution operator becomes
the two-mode squeeze operator

Û (t) ≡ Ŝ2(λ) = eζ â
†
1 â

†
2−ζ ∗â1â2 . (2.160)

2.4 Photodetection and Correlation Functions

Chapter 6 will discuss quantum measurements in detail, but at this point, we
can already consider a practical aspect of this problem that is central to the
characterization of optical fields. Specifically, the question that we now address is to
determine what property or properties of the field can be inferred from two types of
measurements: the detection of the field by absorption, which accesses its intensity,
and balanced homodyne detection, which combines the field to be characterized
with a local oscillator to access its quadratures. This discussion illustrates the central
role of field correlation functions in these measurements.

2.4.1 Detection by Absorption

We consider first a simple detector that operates by absorption [7]. This detector
could be a single two-level atom initially in its ground state |g〉. Its electric dipole
interaction with the field can result in the atom undergoing a transition to its excited

3For a comprehensive discussion of nonlinear optics, see, for example, the excellent text by R. W.
Boyd [6].
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Fig. 2.8 Schematic of a detector operating by absorption. The electric dipole interaction between
an incident field and a detector atom induces a transition from its ground state |g〉 to its excited
state |e〉, and the detection consists in measuring the probability for the atom to be in that state
by state-selective ionization, whereby a free electron is emitted only if the atom is in the excited
state |e〉

state |e〉. The detection consists in measuring the probability for the atom to be
in that state, for instance, by state-selective ionization, whereby a free electron is
emitted only if the atom is in |e〉, see Fig. 2.8.

A simple model for the operation of this detector is based on the observation that
the probability to absorb a photon at the position r of the detector and at time t is

wi→f ∝ |〈f |Ê+(r, t)|i〉|2 , (2.161)

where Ê+(r, t) is the positive frequency component of the field and |i〉 and |f 〉 are
the initial and final states of the atom–field system, respectively. Since we are not
interested in the final state of the system, just about the counting rate, we can sum
over all possible final states and find

wi→f ∝
∑
f

|〈f |Ê+(r, t)|i〉|2 = 〈i|Ê−(r, t)Ê+(r, t)|i〉, (2.162)

where we have used the completeness relation
∑
f |f 〉〈f | = 1. Furthermore,

although we do know that the atom starts in the ground state, we typically do
not know the initial state |i〉 of the field precisely. To allow for the corresponding
statistical variations, we average the rate (2.162) over |i〉 using the field density
operator ρ̂ = ∑

i pi |i〉〈i|, with pi the probability to be in state |i〉. Inserting this
into Eq. (2.162), we obtain

w = Tr[ρ̂Ê−(x)Ê+(x)] . (2.163)
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This shows that the counting rate at the photodetector is given by the normally
ordered, first-order correlation function

G(1)(x1, x2) ≡ Tr{ρ̂Ê−(x1)Ê
+(x2)} (2.164)

evaluated at x1 = x2, where xi = (ri , ti ). Here, the qualifier normally ordered refers
to the fact that the annihilation operators appear at the right of the creation operators,
a characteristic of all measurement by absorption processes.

Correlation Functions and Field Coherence Higher order interference experi-
ments require the use of higher order correlation functions like

G(n)(x1 . . . xn, y1 . . . yn) = Tr{ρ̂Ê−(x1) . . . Ê
−(xn)̂E+(y1) . . . Ê

+(yn)} .
(2.165)

Such correlation functions present a close formal analogy to those used in the
classical theory of coherence [8]. Pursuing this analogy, a quantum field is said
to exhibit nth-order coherence if all of itsmth-order correlation functions form ≤ n
satisfy

G(m)(x1 . . . xm, y1 . . . ym) = E∗(x1) . . . E∗(xm)E(y1) . . . E(ym) , (2.166)

where E(x) is a complex function. One important concrete illustration is discussed
in Problem 2.1, which analyzes the famous Hanbury–Brown experiment where two
detectors are used to determine second-order correlation functions of the field.

As an example, consider a single mode of the electromagnetic field in an
eigenstate |n〉, i.e., with density operator ρ̂ = |n〉〈n|. From Eq. (2.166), a field
possessing second-order coherence satisfies

G(2)(x1x1, x1x1) = |E(x1)|4 = |G(1)(x1)|2 . (2.167)

However, directly calculating G(1) and G(2) from Eq. (2.165), we find

|G(1)(x1)|2 = |Eω sinKz|4n2 , (2.168)

G(2)(x1x1, x1x1) = |Eω sinKz|4n(n− 1) ; (2.169)

that is, an n-photon state does not possess second-order coherence. This is in sharp
contrast with the coherent states |α〉, which are easily shown to satisfy the general
coherence condition (2.166) to all orders, since for all m, we have

〈α|â†(x1)â
†(x2) . . . â

†(xm)â(ym) . . . a(y1)|α〉
= E∗(x1)E∗(x2) . . . E∗(xm)E(ym) . . . E(y1) , (2.170)
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where the field amplitudes

E∗(xi) ≡ α exp(−iωti) . (2.171)

The generalization to multimode fields is straightforward.

2.4.2 Balanced Homodyne Detection

So far, we have considered a detector that measures the field intensity. However,
there are many circumstances where one needs to gain information on other field
observables, most importantly perhaps the field quadratures d̂1 and d̂2 of Eq. (2.122),
which are necessary for the characterization of squeezing. Such measurements may
appear challenging, as optical fields oscillate at frequencies beyond the response
time of electronic detectors. One solution is balanced homodyne detection, a
technique that exploits interferences between the field to be characterized and a
reference field called a local oscillator, which oscillates at the same frequency ω—
see e.g. Ref. [9] for a detailed quantum theory of this technique. The interferences
are produced by a symmetric beam splitter, whose two output field intensities are
then differentially measured by a conventional intensity detector, see Fig. 2.9.

Beam Splitter Hamiltonian To see how this works in some detail, consider first
the operation of the beam splitter, see Fig. 2.10. Although in balanced homodyne
detection, the local oscillator is typically a classical field, it is useful to consider the
more general case of a beam splitter that combines two quantized field modes, a
situation that we will encounter again in quantum optomechanics in Chap. 11.

Fig. 2.9 Schematic setup of
balanced homodyne
detection. A bright coherent
beam, called local oscillator
(LO), interferes with a signal
beam at a beam splitter (BS).
The difference current of the
two detectors is the output
signal of the homodyne
detector
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Fig. 2.10 Schematic of a
beam splitter, with input
fields Ea and Eb and output
fields E′a and E′b

Classically, a beam splitter is a semi-transparent mirror that mixes two modes so
that the outgoing fields E′a and E′b are related to the incoming fields Ea and Eb by

(
E′a
E′b

)
=

(
t r

r t

)(
Ea

Eb

)
≡ U(θ, φ)

(
Ea

Eb

)
, (2.172)

where the complex, frequency dependent transmission and reflection coefficients t
and r must satisfy the unitarity conditions

|t |2 + |r|2 = 1 ,

tr∗ + t∗r = 0 . (2.173)

These equations show that if t is taken to be real positive, then r is purely imaginary.
They are readily satisfied with t = cos(θ/2) and r = i exp(iφ) sin(θ/2), so that

U(θ, φ) =
(

cos(θ/2) ieiφ sin(θ/2)
ieiφ sin(θ/2) cos(θ/2)

)
. (2.174)

The corresponding quantum description of the beam splitter must be such that
one recovers the classical result in the limit of strong fields. Since it entails a
linear mapping of two input modes onto two output modes, it is described by a
Hamiltonian of the form

V̂ (t) = − 1
2 h̄g(t)

(
âb̂† + h.c.

)
, (2.175)

see e.g. Ref. [10], where the time-dependent coupling constant g(t) switches the
interaction of the light fields only for the short time interval τ during which the
wave packets of both modes are simultaneously passing through the beam splitter.
The annihilation operators of the outgoing fields â′ and b̂′ are then given by

â′ = Û†(θ, φ)âÛ (θ, φ) ; b̂′ = Û†(θ, φ)b̂Û (θ, φ) , (2.176)
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where

Û (θ, φ) = exp

[
− i

h̄

∫
dt V̂ (t)

]
= exp

[
−iĜ(φ)θ/2

]
, (2.177)

with

Ĝ(φ) = −e−iφâb̂† + h.c. (2.178)

and θ = ∫
dt g(t). Using the Baker–Hausdorff identity (2.128), Eq. (2.176) then

gives

â′ = â+ iθ

2
[Ĝ, â] +

(
iθ

2

)2

[Ĝ, [Ĝ, â]]+· · · +
(

iθ

2

)n
[Ĝ, [Ĝ, [. . . [Ĝ, â]]]] + · · ·

(2.179)

and similarly for b̂′. Since [Ĝ, â] = eiφb̂ and [Ĝ, [Ĝ, â]] = â, it follows that all
even order terms in this expansion are proportional to â and all odd order terms
to b̂. Using these commutation relations repeatedly much like in the derivation
of Eq. (2.135), we obtain a pair of input–output relationships that are as required
formally identical to the classical ones,

â′ = cos(θ/2)â + ieiφ sin(θ/2)b̂ ,

b̂′ = ie−iφ sin(θ/2)â + cos(θ/2)b̂ , (2.180)

with corresponding results for â′† and b̂′†. In particular, θ = π/2 corresponds to the
case of a symmetric, 50–50 beam splitter.

This result allows us to easily complete the discussion of balanced homodyne
detection. We take â and b̂ to be the annihilation operators of the field to be
characterized and of the local oscillator, respectively, and assume that the second
field is essentially classical as is usually the case, so that b̂ → ELO. Remembering
that the two fields have the same frequency ω, then, we have, for θ = π/2 and
φ = −π/2,

â′ = 1√
2

(
ELOe

iϕ + â) ,
b̂′ = 1√

2

(
ELOe

iϕ − â) . (2.181)

In these expressions, we have also introduced a variable and externally controllable
phase ϕ between the local oscillator and the field to be characterized, as can be
achieved, for instance, with a dielectric phase shifter, thereby permitting to perform
multiple measurements of the field quadratures. Taking ELO to be real without
loss of generality, and assuming that its amplitude is high enough that its relative
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quantum noise is negligible, the difference in intensities at the two detectors is

Î−(t) ∝ â′†â′ − b̂′†b̂′ = ELO

[
â(t)e−iϕ + â†(t)eiϕ

]
, (2.182)

providing a direct measurement of the quadrature d̂1 ∝ â(t)e−iϕ+â†(t)eiϕ . Another
choice of the phase ϕ results likewise in measurements of the quadrature d̂2.

2.5 Quasiprobability Distributions

In many problems, it is useful to describe the state of the field in terms of coherent
states, rather than with photon number states. This presents some difficulties,
however, since the coherent states are not orthogonal and are overcomplete, as we
have seen. On the other hand, this overcompleteness also allows us to obtain a useful
diagonal expansion of the density operator in terms of complex matrix elements
P(α). This representation can be interpreted as a quasiprobability distribution
function, whose dynamics can, under appropriate conditions, be expressed in the
form of a Fokker–Planck equation with applications in a number of problems in
quantum optics. A number of other quasiprobability distribution descriptions of the
electromagnetic field can also be introduced, see e.g. Ref. [11], including the Wigner
functionW(α) and the HusimiQ-functionQ(α).4

The P(α) representation is defined in terms of the expansion of the field density
operator ρ̂ in coherent states as [2, 12]

ρ̂ =
∫

d2αP (α)|α〉〈α| , (2.183)

where d2α = dRe(α) d Im(α). In terms of P(α), the expectation value of an
operator Â is therefore

〈Â〉 = Tr(ρ̂Â) =
∑
n

〈n|
∫

d2αP (α)|α〉〈α|Â|n〉

=
∫

d2αP (α)
∑
n

〈α|Â|n〉〈n|α〉

=
∫

d2αP (α)〈α|Â|α〉 =
∫

d2αP (α)A(α) , (2.184)

4The reason why these representations are called quasiprobability functions is that they are not in
general positive definite.
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where A(α) = 〈α|Â|α〉. Provided that the operator Â is expressed in normal order,
a frequent occurrence in quantum optics, this leads to simple calculations involving
only complex numbers. This is easily seen by considering the expectation value
of the normally ordered operator 〈â†nâm〉 = Tr

[
â†nâmρ̂

]
. With the definition

of (2.183), this gives readily

〈â†nâm〉 =
∫

d2αP (α)Tr
[
â†nâm|α〉〈α|

]
=

∫
d2αP (α)Tr

[
âm|α〉〈α|â†n

]

=
∫

d2αP (α)α∗nαm . (2.185)

The P(α) distribution can be expressed as the Fourier transform of the normally
ordered characteristic function

CN(λ) = Tr(ρ̂ eλâ
†
e−λ∗â) , (2.186)

where the subscript N stands for “normal order” and λ is a complex number, a
formulation that is oftentimes convenient for its evaluation. Substituting Eq. (2.183)
into Eq. (2.186) gives readily

CN(λ) =
∑
n

〈n|
∫

d2α P (α)|α〉〈α|eλâ†
e−λ∗â|n〉

=
∑
n

∫
d2α P (α)〈n|e−λ∗â|α〉〈α|eλâ† |n〉

=
∫

d2α P (α) eλα
∗−λ∗α , (2.187)

which shows that CN(λ) is the Fourier transform of P(α). Hence, P(α) is likewise
the Fourier transform of CN(λ),

P(α) = 1

π2

∫
d2λeαλ

∗−α∗λCN(λ) . (2.188)

Other Characteristic Functions In addition to CN(λ), one can also introduce the
antinormally ordered and symmetrically ordered characteristic functions

CA(λ) = Tr(ρ̂ e−λ∗âeλâ†
) (2.189)

and

CS(λ) = Tr(ρ̂ eλâ
†−λ∗â) . (2.190)
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From the Baker–Hausdorff relation (2.111), it is easily shown that

CN(λ) = CS(λ)e|λ|2/2 = CA(λ)e|λ|2 . (2.191)

The difference in operator ordering of the characteristic functions CA(λ) and CS(λ)
as compared toCN(λ) hints at the fact that they are associated with quasidistribution
functions adapted to the evaluation of antinormally ordered, respectively symmetri-
cally ordered operators.5

Husimi Q-Function Much like P(α) and CN(λ) are Fourier transforms of each
other, a similar relation relates the antinormally ordered characteristic function
CA(λ) to a probability distribution functionQ(α), the Husimi function, via

CA(λ) = 1

π

∫
d2α 〈α|ρ̂ e−λ∗âeλâ† |α〉 = 1

π

∫
d2α 〈α|eλâ†

ρ̂ e−λ∗â|α〉

≡
∫

d2α Q(α)eλα
∗−λ∗α , (2.192)

where

Q(α) = 1

π
〈α|ρ̂|α〉 . (2.193)

and we have used Eq. (2.114). Note that Q(α) is positive, Q(α) ≥ 0, since ρ̂ is a
positive operator, hence, a true probability distribution function. The inverse Fourier
transform of Eq. (2.192) gives also

Q(α) = 1

π2

∫
d2λ eαλ

∗−α∗λCA(λ) . (2.194)

The proof thatQ(α) is the appropriate distribution to evaluate antinormally ordered
correlation functions follows readily from the series of equalities

〈âmâ†n〉 = Tr
[
ρ̂ âmâ†n

]
= 1

π

∑
�

〈�|
∫

d2α ρ̂ âm|α〉〈α|â†n|�〉

= 1

π

∑
�

∫
d2α〈α|�〉〈�|ρ̂|α〉α∗nαm = 1

π

∫
d2α〈α|ρ̂|α〉α∗nαm

=
∫

d2αQ(α)α∗nαm . (2.195)

5Symmetric ordering is an ordering of annihilation and creation operators that is the average of all
different products of these operators. For instance, the symmetrically ordered expression for â†â

is {â†â} = 1
2 (â

†â + ââ†), and for â†â2, it is {â†â2} = 1
3 (â

†â2 + ââ†â + â2â†).
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Wigner Distribution Finally, the Wigner distribution W(α) is defined as the
Fourier transform of the symmetric characteristic function CS(λ),

CS(λ) = 1

π

∫
d2α〈α|ρ̂ eλâ†−λ∗â|α〉

with

W(α) = 1

π2

∫
d2λeαλ

∗−α∗λCS(λ)

= 1

π2

∫
d2λTr

[
ρ̂ eλ(â

†−α∗)e−λ∗(â−α)
]
e−|λ|2/2 . (2.196)

The Wigner function, first introduced by E. Wigner in 1932 [13], has a long history
and plays a central role in many areas of physics, in particular, in providing a
description of quantum mechanics in phase space and in investigating the quantum
to classical transition. It is usually defined for mixed states characterized density
operator ρ̂ as

W(q, p) = 1

2π

∫ ∞
−∞

dy〈q + y
2
|ρ̂|q − y

2
〉e−ipy/h̄ , (2.197)

where q and p are the position and conjugate momentum and 〈q|ψ〉 = ψ(q). As
shown in Problem 2.9, this definition is equivalent to the form (2.196), which is
perhaps more frequently used in quantum optics.

An important property of the Wigner function is that its marginals

∫
dpW(q, p) = 〈q|ρ̂|q〉 and

∫
dq W(q, p) = 〈p|ρ̂|p〉 (2.198)

give the x and p probability distributions. For a pure state, this yields readily

∫
dq W(q, p) = |ψ(p)|2 ;

∫
dpW(q, p) = |ψ(q)|2 . (2.199)

With Eqs. (2.18) and (2.19) and the definitions (2.122) of the field quadratures, it is
not surprising that the Wigner function can be used to obtain averages of symmetric
functions of annihilation and creation operators,

〈{â†nâm}S〉 =
∫

d2αW(α)α∗nαm (2.200)

and, in particular, of correlation functions of the quadratures d̂1 and d̂2. The formal
correspondence between the forms (2.196) and (2.197) of the Wigner function is
further discussed in detail in Ref. [14].
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Summarizing, then, the normally ordered distribution P(α), antinormally
ordered Husimi distribution Q(α), and symmetrically ordered Wigner distribution,
W(α) distributions are given by

P(α) = 1

π2

∫
d2λeαλ

∗−α∗λCN(λ) ,

Q(α) = 1

π2

∫
d2λeαλ

∗−α∗λCA(λ) ,

W(α) = 1

π2

∫
d2λeαλ

∗−α∗λCS(λ) . (2.201)

These expressions permit, for example, to express the Wigner distribution and Q-
function in terms of the P distribution as

W(α) = 2

π

∫
d2βP (β) exp(−2|β − α|2) (2.202)

and

Q(α) = 1

π

∫
d2βP (β) exp(−|β − α|2) . (2.203)

This shows that both the Husimi Q-function and the Wigner distribution are
convolutions of Gaussians with the P -function. Note however that theQ-function is
convoluted with a Gaussian of width

√
2 times larger than is the case for the Wigner

function. As a consequence, the Q-function is positive definite, as can also be seen
directly from its definition, while P(α) and W(α) are not. This non-positivity is
illustrated in Fig. 2.11, which shows the Wigner functions of the ground state |0〉

Fig. 2.11 Wigner function W(q, p) for the number states |n = 0〉, |n = 1〉, and |n = 4〉,
illustrating its non-positivity. Here, q and p are given by α = √ω/2h̄q+ i/

√
2h̄ωp, and the ranges

of p and q are [−3, 3], and [−5, 5] for the last three cases. The horizontal plane corresponds in all
cases to W(q, p) = 0. (See Problem 2.10 for the expression of the Wigner function of the Fock
state |n〉)
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Fig. 2.12 Experimentally measured Wigner functions represented in 3D and 2D: (a) coherent state
with 〈n〉 = 2.5 and (b) |n = 3〉 Fock state. (From Ref. [15])

and the excited states |1〉 and |5〉 of the simple harmonic oscillator, and in Fig. 2.12,
which shows the experimental reconstruction of Wigner functions for a coherent
state with 〈n〉 = 2.5 photons and the number state |n = 3〉. Because the coherent
state |α〉 is a displaced vacuum state, its Wigner function is identical to the Wigner
function of the state |n = 0〉, itself a coherent state, simply displaced in the {q, p}
phase space by α.

Example: P(α) Function of a Thermal Field As an illustration of the evaluation
of a P(α) distribution, we consider the thermal field described by the density
operator (2.85). Its quasidistribution P(α) is best obtained by considering first the
Q(α) distribution

Q(α) = (1− e−x)
∑
n

e−nx〈α|n〉〈n|α〉

= (1− e−x) exp[−|α|2(1− e−x)] , (2.204)

where x = h̄ω/kBT . Inverting Eq. (2.93) for the average photon number 〈n〉, we
find 1− e−x = 1/(〈n〉 + 1), which gives

Q(α) = 1

〈n〉 + 1
exp[−|α|2/(〈n〉 + 1)] . (2.205)

From this result, we can readily obtain P(α) since from a two-dimensional Fourier
transform of Eq. (2.203), we have

F[Q(α)] = F[P(α)]F[exp−|α|2],
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and hence

P(β) = F−1 F[Q(α)]
F[exp(−|α|2)] .

This gives, after carrying out the integrals,

P(α) = 1

π〈n〉 exp[−|α|2/〈n〉] . (2.206)

It is interesting to note that in the classical limit of large mean photon numbers,
the expressions for Q(α) and P(α) approach each other. This is because in that
limit distinctions depending on the ordering of operators vanish. This point is
discussed further in R. J. Glauber’s Les Houches Lectures [16], while a more
detailed discussion of quasiprobability distributions and their use in quantum optics
is presented in the text by D. F. Walls and G. Milburn [17].

The probability of finding n photons in a single-mode thermal field is given
by the photon statistics ρnn of Eq. (2.85). This exponentially decaying distribution
contrasts with the Poisson distribution characteristic of a coherent state. The
difference betweenQ(α) and P(α) for the two cases is even more striking, since for
thermal light P(α) is given by a Gaussian distribution, as we have seen, while for the
coherent state |α0〉, it is given by the δ-function δ(α−α0). From this and Eqs. (2.202)
and (2.203), we immediately find that both the Wigner and the Q-distribution for a
coherent state are Gaussian.

While one might be tempted to interpret P(α) as the probability of finding
the field in the coherent state |α〉, this is not correct in general, because P(α)
and likewise W(α) are not positive definite and hence cannot be interpreted as
probabilities. Sometimes, fields described by a positive P(α) and/or W(α) are
referred to as “classical fields.” This is however somewhat misleading and does
not mean that these fields have vanishing quantum mechanical uncertainties. For
example, a coherent state itself is described by a positive definite Dirac delta
function P -distribution, but it has minimum, not vanishing, quantum mechanical
uncertainties.

The description of electromagnetic fields in terms of quasiprobability distribution
functions often permits to replace the quantum mechanical description of the
problem by an equivalent description in terms of c-numbers. For instance, as we
have seen in Eqs. (2.195) and (2.185), if one is interested in computing antinormally
ordered correlation functions, one has

〈âm(â†)n〉 =
∫

d2αQ(α)αmα∗n . (2.207)

Similarly, for normally ordered correlation functions,

〈(â†)mân〉 =
∫

d2α P (α)α∗mαn . (2.208)
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In particular, correlation functions can readily be computed from the appropriate
characteristic function. From the definitions of CA(λ) and CN(λ), one finds readily

∂m+nCA(λ, λ∗)
(∂λ∗)m(∂λ)n

= Tr[ρ̂ e−λ∗â(−â)meλâ†
(â†)n] = (−1)m〈âm(â†)n〉 , (2.209)

where the last equality holds for λ = λ∗ = 0. Similarly, under the same conditions,

∂m+nCS(λ, λ∗)
(∂λ)m(∂λ∗)n

= Tr[ρ̂ eλâ†
(â†)me−λ∗â ân] = (−1)m〈(â†)mân〉 . (2.210)

Problems

Problem 2.1 (Hanbury Brown and Twiss Experiment)
Recording fields with single-photon detectors as discussed in Sect. 2.4.1 is just one
example of photon detection, which can be extended by the use of two or more
photodetectors. In the Hanbury Brown and Twiss experiment, a beam of light is
split into two beams that are detected by two detectors D1 and D2 that work by
absorption and perform measurements on the same field, one at time t = 0 and the
other at time τ , see Fig. 2.13.

(a) For two photodetectors at locations r1 and r2, the field matrix element associ-
ated with the detection of photon coincidences will be

〈f |Ê+(r1, t1)Ê
+(r2, t2)|i〉 .

Fig. 2.13 Schematic of the experimental arrangement to measure the normally ordered second-
order correlation of the electric field in a Hanbury Brown and Twiss experiment
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Following the same approach as the derivation leading to the counting rate of
Eq. (2.163) shown that the total rate at which such transitions occur is [7]

w2 ∝ 〈Ê−(r1, t1)Ê
−(r1, t1)Ê

+(r2, t2)Ê
+(r1, t1)〉 ,

that is, this arrangement measures the normally ordered second-order correla-
tion of the field

G(2)(r1, t1), r2, t2)) = 〈Ê−(r1, t1)Ê
−(r1, t1)Ê

+(r2, t2)Ê
+(r1, t1)〉 .

For detectors at equivalent positions and stationary fields, this correlation func-
tion depends only on τ = t2 − t1, that is,G(2)→ 〈Ê−(0)Ê−(τ )Ê+(τ )Ê+(0)〉,
or its normalized form

g(2)(τ ) = G(2)(τ )

|G(1)(0)|2 ,

and fields with g(2)(0) > 1 are said to exhibit photon bunching and fields with
g(2)(0) < 1 exhibit antibunching.

(b) Show that a single-mode thermal field in a Fock state |n〉 exhibits antibunching,
and a thermal field rather than antibunching. What is the result for a coherent
state?

Problem 2.2 Calculate the variance of the single-mode electric field operator in the
vacuum state.

Problem 2.3 Given that a single-mode field has an average of one photon, what is
the probability of having n photons for (a) a Poisson distribution and (b) a thermal
distribution? Calculate the variance of a Poisson distribution.

Problem 2.4 Write the operator â2â†3â in normal order and in symmetric order.

Problem 2.5 Express the Wigner function and theQ-distribution of a single-mode
field in terms of its P(α) distribution.

Problem 2.6 A photon-added coherent state is the state |α, 1〉 = N â†|α〉. Find the
normalization factor N of this state, and determine both its photon statistics and its
Wigner function.

Problem 2.7 More generally, an m-photon-added state of a single-mode field state
|ψ〉 is the state |ψ,m〉 = Nmâ†|ψ〉, where Nm is a normalization constant.
Determine the explicit form of state |ψ,m〉 in the Fock states basis, as well as
its photon statistics for |ψ〉 = ∑

n cn|n〉. What is the probability that this state
has p < m photons? Find also the photon statistics of the photon-subtracted field
|ψ,−m〉 ∝ âm|ψ〉.
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Problem 2.8 A two-mode field is described by the density operator

ρ̂ = ρ̂1 ⊗ ρ̂2 ,

with ρ̂1 =∑
n pn|n〉〈n| and ρ̂2 =∑

m pm|m〉〈m|. What are the density operators of
fields “1” an “2”? Consider now a two-mode field described by the density operator

ρ̂ =
∑
n,m

pnm|n,m〉〈n,m| .

What are the density operators of fields “1” and “2” in that case? Why are they not
the same as in the first case? Explain in physical terms the difference between the
two situations.

Problem 2.9 Show that the Wigner function

W(α) = 1

π2

∫
d2λTr

[
ρ̂ eλ(â

†−α∗)e−λ∗(â−α)
]
e−|λ|2/2

can be represented as

W(q, p) = 1

2π

∫ ∞
−∞

dy〈q + y
2
|ρ̂|q − y

2
〉e−ipy/h̄

by introducing the new variables q and p through

α =
√
ω

2h̄
q + i√

2h̄ω
p .

Hint: Express â and â† in terms of the position and momentum operators, and use
the facts that exp[−ix0p̂/h̄]|x〉 = |x+x0〉 and that (1/2π)

∫∞
−∞ dx exp(iax) = δ(a).

Problem 2.10 Calculate the characteristic function CN = Tr(|n〉〈n| eλâ†
e−λ∗â) for

a Fock state |n〉. Use this result to evaluate the Wigner function of that state. Hint:

n∑
�=0

(
n

k

)
(−1)�

�! x
� = Ln(x),

where Ln(x) is the nth Laguerre polynomial.
Answer:

W|n〉(q, p) = (−1)n

π
e−(q2+p2)Ln[2(q2 + p2)] .
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Problem 2.11 Using the Baker–Hausdorff relation (2.111) shows that the symmet-
ric, normally ordered and antinormally ordered field characteristic functions are
related by

CN(λ) = CS(λ)e|λ|2/2 = CA(λ)e|λ|2 .

Problem 2.12 Find the P(α), Husimi, and Wigner distributions for (a) a coherent
state |α〉 and (b) a squeezed state |α, ζ 〉.
Problem 2.13 Show that the two-mode squeezed vacuum is

|TMSV 〉 = Ŝ2(λ)|0, 0〉 = 1

cosh r

∞∑
n=0

(−e−2iφ tanh r)n|n, n〉 (2.211)

and that when tracing over one of the modes, say mode 1, the remaining mode is
left in the thermal state

Trmode 1|TMSV 〉〈TMSV | = 1

cosh2 r

∞∑
n=0

tanh2n(r)|n〉〈n| , (2.212)

with mean photon number 〈n2〉 = sinh2 r .
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Chapter 3
The Jaynes–Cummings Model

The simplest model of interaction between a quantized electromagnetic field
and an atomic system is a single-mode field interacting with a single two-
level atom. This is the exactly solvable Jaynes–Cummings model, which
describes this interaction in the rotating wave approximation (RWA). After
giving its eigenstates and eigenenergies, this chapter discusses quantum
Rabi oscillations, Cummings collapse, and quantum revivals and gives an
elementary first introduction to spontaneous emission. It then introduces the
idea of repeated measurements, a topic that will be revisited several times in
later chapters. Removing then the RWA leads us to the quantum Rabi model,
for which we outline the main steps of an exact diagonalization.

3.1 The Linchpin of Quantum Optics

The simplest situation that one can think of in the study of the interaction between a
quantized electromagnetic field and an atomic system is that of a single-mode field
interacting with a two-level atom, see Fig. 3.1. This is the Jaynes–Cummings model,
first introduced in the early 1960s by E. T. Jaynes and F. W. Cummings [1] to study
some basic aspects of laser theory. What seemed perhaps like an overly simplified
model at the time has proven to be of fundamental importance in understanding
key aspects of light-matter interaction and has become of added relevance after it
was experimentally realized, in particular with Rydberg atoms in cavity quantum
electrodynamics (cavity QED), see Chap. 7, or with artificial atoms in circuit
quantum electrodynamics (cQED), as will be discussed in Sect. 7.4. The Jaynes–
Cummings model is also central to many aspects of quantum information science,
where two-level atoms are given the name qubits. In addition, this model presents
the considerable advantage of being exactly solvable. As such it is an excellent entry
point to the study of quantum optics.

In the Jaynes–Cummings model, the atom and its dipole interaction with the field
are still described by the Hamiltonian (1.60), except that the positive and negative
frequency components of the field are now the operators of Eq. (2.55), and the free
field Hamiltonian must be included. Then, the rotating wave Hamiltonian of the total
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P. Meystre, Quantum Optics, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-76183-7_3

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76183-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-76183-7_3


76 3 The Jaynes–Cummings Model

Fig. 3.1 Schematic of the
Jaynes–Cummings model,
with a single atom at rest
inside a single-mode optical
resonator with perfectly
reflecting mirrors

atom–field system becomes

Ĥ = 1

2
h̄ω0σ̂z + h̄ω

(
â†â + 1

2

)
+ h̄g

(
σ̂+â + â†σ̂−

)
, (3.1)

where the coupling constant

g = dEω
ε0V

sin(Kz) (3.2)

is the vacuum Rabi frequency for the cavity field mode, with V being the field
quantization volume and d the electric dipole matrix element of the transition. Here,
the sin(Kz) term accounts for the longitudinal spatial dependence of the cavity field,
taken to be a standing wave mode, and we recognize dEω/ε0V as the “electric field
per photon”. Remember that for a running wave field mode, it is smaller by a factor
of
√

2, Eω → Eω/
√

2, see Eq. (2.74). The Hamiltonian (3.1) defines the Jaynes–
Cummings model.

Consider for now an atom located at z = π/2K so that sin(Kz) = 1, a
simplification that will be removed in later chapters when atomic motion is taken
into account. Very much like for the interaction between a classical field and a two-
level atom of Chap. 1, the Jaynes–Cummings Hamiltonian can be diagonalized in
terms of dressed states, except that we now need an infinite number of them, a result
of the infinite dimensionality of the Hilbert space of the field. This is because in
the RWA, the dipole interaction only couples pairs of states |e, n〉 and |g, n + 1〉
of the atom–field system with the same total excitation number, so that for each of
these manifolds, the diagonalization of the Jaynes–Cummings Hamiltonian reduces
to that of the semiclassical driven two-level atom. The dressed states introduced in
a semiclassical context in Eq. (1.68) can therefore be readily generalized to a two-
level atom interacting with a single-mode quantized field where they become1

|1, n〉 = sin θn|e, n〉 + cos θn|g, n+ 1〉

1Note that the ground state |g, 0〉, with eigenenergy E0 = −h̄ω0/2, is not coupled to any other
state, a consequence of the RWA.
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|2, n〉 = cos θn|e, n〉 − sin θn|g, n+ 1〉 , (3.3)

with

tan(2θn) = −2g
√
n+ 1

�
. (3.4)

The corresponding eigenenergies are

E1n = h̄(n+ 1/2)ω + h̄�n
E2n = h̄(n+ 1/2)ω − h̄�n , (3.5)

where

�n = 1

2

√
�2 + 4g2(n+ 1) (3.6)

is called the n-photon Rabi frequency, in analogy with the semiclassical Rabi
frequency. As we shall see in Sect. 3.2, this dependence has a profound impact on
the dynamics of the atom, leading in particular to quantum collapses and revivals,
which are an unambiguous signature of the “granular” nature of the field.

Resonant Interaction At resonance ω = ω0, the dressed states (3.3) become

|1, n〉 = 1√
2

[|g, n+ 1〉 + |e, n〉]

|2, n〉 = 1√
2

[|g, n+ 1〉 − |e, n〉] , (3.7)

with eigenenergies

E1,n = h̄(n+ 1/2)ω + h̄g√n+ 1

E2,n = h̄(n+ 1/2)ω − h̄g√n+ 1 , (3.8)

resulting in n-dependent energy gaps �En = 2g
√
n+ 1 at the avoided crossings

between dressed levels, as illustrated in Fig. 3.2.

Dispersive Limit Another limit of interest is the so-called dispersive limit, where
the field frequency is far off-resonant from the atomic transition frequency, so that
the atom–field detuning � = ω0 − ω is such that

|�| � g√n+ 1 (3.9)
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Fig. 3.2 Dressed state energy level diagram of the Jaynes–Cummings model as a function of the
detuning � = ω0 − ω. The gray dashed lines are the energy eigenvalues of the non-interacting
atom–field system, with the bare states |e, n〉 and |g, n + 1〉 indicated by dashed arrows. The
dressed state energies are the solid black lines, with the states corresponding to the eigenenergies
E1,n and E2n indicated by the solid arrows. The manifolds of states with equal total excitation
number exhibit avoided crossings with n-dependent energy gaps �En = E1n − E2n = 2g

√
n+ 1

occurring at resonance ω = ω0

for all n of interest. In this limit, the eigenenergies (3.5) reduce to

E1n = h̄(n+ 1/2)ω + 1

2
h̄�+ h̄g

2(n+ 1)

�
,

E2n = h̄(n+ 1/2)ω − 1

2
h̄�− h̄g

2(n+ 1)

�
, (3.10)

with eigenstates approaching the bare states as

|1, n〉 → |e, n〉
|2, n〉 → |g, n+ 1〉 (3.11)

for � > 0 and

|1, n〉 → |g, n+ 1〉
|2, n〉 → |e, n〉 (3.12)

for � < 0, see Fig. 3.2. From Eqs. (3.10), (3.11), and (3.12), it follows that the
dispersive limit of the Jaynes–Cummings Hamiltonian is

HJC,eff = 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�

[
(â†â + 1)|e〉〈e| − â†â|g〉〈g|

]
. (3.13)
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It is instructive to rewrite this Hamiltonian as

HJC,eff = 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�
â†â σ̂z + h̄g

2

�
|e〉〈e|

≈ 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�
â†â σ̂z , (3.14)

which shows that the term

�ls = h̄g
2

�
â†â (3.15)

is an intensity dependent increase, or light shift, of the transition frequency ω0 that
results from the elimination of the upper electronic state from the system dynamics.

The additional small term (g2/�)|e〉〈e|, in contrast, is a vacuum induced energy
shift of the excited level |e〉 present also if the field is in the vacuum state |0〉. It
is frequently ignored or effectively incorporated in the frequency ωe, ωe → ωe +
g2/� ≈ ωe. It is sometimes called the vacuum ac Stark shift and can also be thought
of as a single-mode remnant of the Lamb shift. Importantly, there is no similar shift
of the ground state energy. This asymmetry between the states |e〉 and |g〉 finds its
roots in spontaneous emission, an important point to which we return in Sect. 3.4.

We will revisit the dispersive regime of the Jaynes–Cummings model in Chap. 6
in the context of quantum non-demolition (QND) measurements, in particular when
describing continuous weak-field measurements in Sect. 6.3.4, as well as in the
discussions of the inverse Stern–Gerlach effect and of the generation of optical
Schrödinger cats of Chap. 7.

Entangled States The dressed states (3.3) of the coupled atom–field system are an
important example of a class of quantum states called entangled states, which are
central actors in modern quantum optics and quantum information science. They
will be discussed at length in the next chapter, with their role revisited in a number of
situations throughout the book, but they are sufficiently important to already deserve
a brief introduction in the context of the Jaynes–Cummings model.

The entanglement of two (or more) quantum mechanical objects, in the present
case a single mode of the electromagnetic field and a two-level atom, describes
situations where the states of these systems exhibit quantum correlations such that
they must necessarily be described with reference to each other. One way to describe
these peculiar situations is by noting, following Schrödinger, that the best possible
knowledge of a whole system—a pure state—does not necessarily include the best
possible knowledge of its parts. It is important to realize that this lack of knowledge
is by no means due to some ignorance on the details of the interaction between the
two systems. Rather, it is a key property of quantum systems that differentiates them
fundamentally from their classical counterparts.

One can imagine situations where a two-level atom flies through a single-mode
cavity, during which time it becomes entangled with the field mode in such a
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way that the system will be described, say, by the dressed state |1, n〉 at the
end of the interaction. We will see in Chap. 7 how cavity QED environments
permit to experimentally realize entangled states called Schrödinger cats (or perhaps
more accurately Schrödinger “kitten”) in cavity QED by exploiting the Jaynes–
Cummings interaction while at the same time reducing the decoherence resulting
from dissipation mechanisms to a remarkable level.

3.2 Quantum Rabi Oscillations

Since the dressed states are the eigenstates of the two-level atom interacting with a
single mode of the radiation field, we can use them to obtain the state vector of the
combined system as a function of time. Writing the Schrödinger equation in integral
form as

|ψ(t)〉 = e−iĤ t/h̄|ψ(0)〉 , (3.16)

where

|ψ(0)〉 =
∞∑
n=0

2∑
j=1

ci,n|i, n〉

is the initial state of the system, we insert the identity operator expressed in terms
of the dressed states |j, n〉 to find

|ψ(t)〉 =
∞∑
n=0

2∑
j=1

exp (−iEjnt/h̄)|j, n〉〈j, n|ψ(0)〉 , (3.17)

where Ejn is given by Eq. (3.5). We have seen in the preceding section that the
various eigenstate manifolds of the Jaynes–Cummings Hamiltonian are uncoupled.
In matrix form and in an interaction picture rotating at the frequency (n+ 1

2 )�, the
dressed state amplitude coefficients inside one such manifold read

[
c2n(t)

c1n(t)

]
=

[
exp( 1

2 i�nt) 0
0 exp(− 1

2 i�nt)

] [
c2n(0)
c1n(0)

]
. (3.18)

In particular, for an initially excited atom interacting resonantly with the field, � =
0, we have, after returning to the bare states |e, n〉 and |g, n〉,

|ψ(0)〉 =
∑
n

|e, n〉 = 1√
2

∑
n

(|1, n〉 − |2, n〉) (3.19)



3.3 Collapse and Revivals 81

and

|ce,n(t)|2 = cos2(g
√
n+ 1 t) , (3.20)

|cg,n+1(t)|2 = sin2(g
√
n+ 1 t) . (3.21)

This shows how the atom “Rabi flops” between the upper and lower levels within
each Jaynes–Cummings manifold at the resonant quantum Rabi frequency (3.6).
These oscillations have the same form as the semiclassical result (1.67), with the
semiclassical Rabi frequency replaced by its n-dependent quantum mechanical
value 2g

√
n+ 1.

3.3 Collapse and Revivals

The expressions (3.20) and (3.21) show explicitly that different photon number
states undergo periodic oscillations at different Rabi frequencies. This can have
important consequences, since quantum fields are not normally in a single number
state |n〉, but rather in a superposition or mixture of such states as we have seen.

Consider for example an initially excited atom interacting with a field initially in
a coherent state. Combining the coherent state photon number probability (2.107)
with the single-photon state result (3.20), we find that the probability pe(t) for the
atom to be in its excited state at time t is

pe(t) =
∑
n

pn|ce,n(t)|2 = e−|α|2
∑
n

|α|2n
n! cos2(g

√
n+ 1 t) . (3.22)

For a sufficiently intense field, |α|2 � 1, and short enough times t � |α|/g,
Problem 3.1 shows that this sum reduces approximately to

pe(t) � 1

2
+ 1

2
cos(2|α|gt)e−g2t2 . (3.23)

That this is the case can be intuitively understood by noting that the range of
dominant Rabi frequencies in Eq. (3.22) is from � = g[〈n〉 + σn]1/2 to g[〈n〉 −
σn]1/2, where σn is the standard deviation of the photon distribution, and the
probability (3.22) dephases in a time tc such that

t−1
c = g[〈n〉 + σn]1/2 − g[〈n〉 − σn]1/2 � g .

The collapse of the upper state population (3.23) results from the interference of
Rabi oscillations at the frequencies of the various number states involved.

Remarkably, though this collapse occurs with a Gaussian envelope that is
independent of the mean photon number 〈n〉 = |α|2. It is called the “Cummings
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collapse” after the physicist who first predicted it [2]. It can be derived more
quantitatively from the following argument. For a large average photon number,
〈n〉 = |α|2 � 1, the atom initially oscillates roughly at a frequency close to
g
√〈n〉 + 1. However, the dispersion in Rabi frequencies due to the distribution of

photon numbers rapidly changes this behavior. For the Poisson distribution p(n)
characteristic of a coherent state, the variance-to-mean ratio is σ 2

n /〈n〉2 � 1/〈n〉, so
that for large 〈n〉, we can expand the square root in Eq. (3.22) as

√
n+ 1 t ≈ √〈n〉

[
1+ (n− 〈n〉)+ 1

2〈n〉
]
t .

Carrying the sum over n in the limit gt � 〈n〉 reduces it then to Eq. (3.23). For
longer times, the system exhibits a series of “revivals” and “collapses” discussed
in detail by J. H. Eberly et al. [3]. Because the photon numbers n are discrete, the
n-dependent Rabi oscillations rephase in the revival time

tr � 4πα/g = 4π〈n〉1/2tc ,

as illustrated in Fig. 3.3.

Fig. 3.3 Collapse and revivals in the interaction of a quantized single-mode field initially in a
coherent state with |α|2 = 12 with an atom initially in its excited state |e〉. The small insert shows
the long-time dynamics of the upper state population for the same mean photon number |α|2 = 12.
Time in units of the inverse vacuum Rabi frequency g
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The Cummings collapse is an important illustration of the fact that contrary to a
frequently held belief, it is not in general correct to approximate strong quantized
fields by their classical counterpart [4]. However, the revival property is a more
unambiguous signature of quantum electrodynamics than the collapse: any spread
in field strengths will dephase Rabi oscillations, but the revivals are entirely due
to the “grainy” nature of the field, so that the atomic evolution is determined by
the individual field quanta. The recurring long-time revivals are shown in the small
insert of the figure. They are never complete and get broader and broader, eventually
overlapping and resulting in a quasi-random time evolution. The Jaynes–Cummings
model thus exhibits fascinating nontrivial quantum features, despite its conceptual
simplicity. These effects have been observed experimentally in various cavity QED
experiments, see e.g. Refs. [5–7]

It may appear rather surprising that while the coherent state is the most classical
state allowed by the Heisenberg uncertainty principle, it leads to a result quali-
tatively different from the classical Rabi flopping formula (1.67). In contrast, the
very quantum mechanical number state |n〉 has a nice, if superficial, semiclassical
correspondence. This is because the Jayne-Cummings Hamiltonian eigenstates
consist of an infinite number of uncoupled manifolds {|e, n〉, |g, n + 1〉}, each
of the same form as their classical counterpart (1.68). This property, combined
with the fact that the number state and the classical field share the property of a
definite intensity, results in the absence of the interferences leading to the Cummings
collapse. The indeterminacy in the field phase fundamentally associated with the
number state by the Heisenberg principle (but not with the classical field) is not
important for Rabi flopping since the atom and field maintain a precise relative
phase in the absence of decay processes. In contrast, the coherent state field features
a minimum uncertainty phase and associated minimum uncertainty intensity, and it
is this latter uncertainty that causes the atom–field relative phase to “diffuse.”

3.4 Single-Mode Spontaneous Emission

One intriguing difference between the semiclassical and fully quantum Rabi
flopping problems is that in the quantum case (3.20), an initially excited atom Rabi
flops even in the absence of any applied field, that is, even for the vacuum state
|n = 0〉. Mathematically, this is because the quantum Rabi-flopping frequency is
�n = 2g

√
n+ 1, and hence �0 = 2g for the vacuum state |n = 0〉, while the

semiclassical expression is �r = dE0/h̄ = 0 for E0 = 0.
More physically, the reason why a (single-mode) quantized electric field in the

vacuum state can drive an excited atom to oscillate between its excited state |e〉 and
ground state |g〉 is a direct consequence of its form (2.53)

Ê(z, t) = Eω(â + â†) sinKz .
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With â|0〉 = 0 and â†|0〉 = |1〉, we have that while its expectation value in the
vacuum state is

〈0|Ê(z, t)|0〉 = 0, (3.24)

the expectation value of its intensity does not vanish,

〈0|Ê2(z, t)|0〉 = E2
ω〈0|(â + â†)2|0〉 = E2

ω . (3.25)

It is these vacuum fluctuations of the field that are responsible for driving the atom
down from its excited state. These same fluctuations are also responsible for the
vacuum frequency shift g2/� of the excited atomic level |e〉 that we encountered in
the discussion of the dispersive Jaynes–Cummings Hamiltonian (3.15).

One may wonder, then, why it is not possible to likewise drive the atom from its
ground state |g〉 to |e〉 with a vacuum field |0〉, as is readily seen from Eq. (3.21)
for the initial state |g, 0〉. This can be understood by recalling the discussion of
photodetection of Sect. 2.4, where we found that the probability (2.162) to excite an
atom is given by the normally ordered correlation function of the field (replacing i
by g to match the notation to the situation at hand)

wg→e ∝ 〈e|Ê−(r, t)Ê+(r, t)|e〉 . (3.26)

Conversely, it is easily shown that the probability to emit a photon from the excited
state is given by the antinormally ordered correlation function

we→g ∝ 〈e|Ê+(r, t)Ê−(r, t)|e〉 , (3.27)

that is, absorption is driven by normally ordered field correlations and emission by
antinormally ordered ones. The expectation value of the first ones is equal to zero,
for a vacuum field 〈0|â†â|0〉 = 0, but not the second one, 〈0|ââ†|0〉 = 1. This is
why atoms can undergo spontaneous emission, but not spontaneous absorption.

In the single-mode model considered here, spontaneous emission is followed
by the reabsorption of the photon, resulting in periodic oscillations of the atomic
population at the vacuum Rabi frequency 2g. This is not the situation encountered
under usual circumstances, in which case once the photon is emitted, it escapes into
free space, with no chance of return to the atom to be reabsorbed. This difference
results from the fact that free space situations are not adequately described by
a single-mode model. They require, instead, a description of the electromagnetic
field as a “reservoir” with a continuum of modes, as will be discussed in Chap. 5.
Single-mode systems, and more generally systems with tailored densities of field
modes, can however be experimentally realized in cavity QED and circuit QED
environments, the topic of Chap. 7.
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3.5 Repeated Field Measurements

We saw in Sect. 2.4 how a detector operating by absorption measures the normally
ordered field correlation function 〈Ê−(r, t)Ê+(r, t)〉. In many cases, one is inter-
ested in monitoring the evolution of a system as a function of time, and this requires
performing a sequence of measurements on that system. A simple extension of the
Jaynes–Cummings model provides an example of a model system that can achieve
this goal.

We consider an idealized detection scheme where a stream of two-level atoms is
used as probes to learn about the dynamics of a single-mode field. The atoms enter
the field one at a time in their excited state |e〉 and interact with it for a time τ .
Information on the field is then extracted from the measurement of the final state of
the successive atoms after their exit from the interaction region. Despite the fact that
it is a caricature of a realistic measurement protocol, this model already teaches us
important lessons on the back action of quantum measurements, and illustrates the
care that must be exercised in performing them and understanding their impact on
the observed system. It may therefore prove useful in preparation for the quantum
trajectories method of Sect. 5.4.1, and the issues that it raises will be expanded upon
in much detail in Chap. 6.

Assuming for simplicity that the field is diagonal in the energy eigenstates {|n〉},
as the ith atom enters the field at time ti , the state of the system is

ρ̂(ti) = |e〉〈e|
∑
n

pn(ti)|n〉〈n| , (3.28)

where pn(ti) is the field photon statistics at ti . The atom–field interaction is
described by the Jaynes–Cummings Hamiltonian Ĥ of Eq. (3.1), so that the field
density operator at the end of its interaction with the atom is

ρ̂f (ti + τ) = Tratom

[
Û (τ )ρ̂(ti)Û

†(τ )
]
, (3.29)

where Û (τ ) = exp(−iĤ τ/h̄). It follows directly from Eqs. (3.20) and (3.21) that
the field photon statistics at that time is therefore

pn(ti + τ) = 〈n|ρ̂f (ti + τ)|n〉
= pn−1(ti) sin2(g

√
n+ 1 τ)+ pn(ti) cos2(g

√
n τ). (3.30)

However, a measurement of the state of the atom changes this result. Specifically,
the field density operator will then be projected to

ρ̂f = Tratom

[
|s〉〈s|Û (τ )ρ̂(ti)Û†(τ )

]
, (3.31)
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where |s〉 = |e〉 or |g〉 for an atom measured to be in its excited or ground state,
respectively, with corresponding photon statistics

pn|e(ti + τ) = Ne pn(ti) cos2(g
√
n+ 1 τ) , (3.32)

pn|g(ti + τ) = Ng pn−1(ti) sin2(g
√
n τ) , (3.33)

where Ne and Ng are normalization constants. Ignoring field dissipation during the
intervals between probe atoms, one or the other of these photon statistics, depending
on the result of the measurement, will become the field initial condition at the time
ti+1 when the next atom starts interacting with it.

A numerical simulation of this measurement sequence proceeds by choosing the
initial photon statistics pn(t1) and interaction time τ . This permits to compute the
probability

pe(t1 + τ) = Tr[|e〉〈e|ρ̂(τ )] =
∞∑
n=0

pn(t1) cos2(g
√
n+ 1τ) (3.34)

to measure the first atom in the excited state at time t1 + τ . A random number
generator then returns a uniform deviate between 0 and 1, and the atom is said to
have been measured in the excited state |e〉 if 0 ≤ r < pe, and in the ground state
otherwise. This results in an updated field density operator ρ̂f (t1 + τ ), with photon
statistics given by either Eq. (3.32) or (3.33), that will be the initial condition for the
next atom.

Figure 3.4 shows selected results from two typical sequences of 12 measurements
each, for a field initially in a thermal state with mean photon number 〈n〉 = 20.

Fig. 3.4 The left and right tables show extracts from the records of two typical numerical
experiments. For each of the successive probe atoms, pe is the probability to be in the excited
state at the end of its interaction with the field, “Result” is the outcome of the measurement of
the atomic state, and n̄ and σ 2 are the updated mean photon number 〈n〉 and variance of the field
following that measurement outcome. (From Ref. [8])
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This table illustrates important features of repeated measurement sequences. First
of all, measuring an exiting atom in its excited state |e〉 does not mean that nothing
happened to the field and that the mean photon number 〈n〉 is conserved. Rather, its
photon statistics is reshuffled according to Eq. (3.32). This implies in particular that
the mean photon number is changed, since

∑
n

npn(ti) 
= Ne
∑
n

n pn(ti) cos2(g
√
n+ 1 tint) . (3.35)

Likewise, measuring the exiting atom in its ground state does not mean that the
mean photon number has increased by one.

These results are not surprising: before the measurement, the mean photon
number 〈n〉 is known only within its variance σ 2, and not conserving it if the
state of the atom is the same before and after the interaction does not violate any
conservation law. It is only for a number state, pn = δ(n−m), at the time of injection
of the ith atom, that the conservation of 〈n〉 is guaranteed if the atom is measured in
its excited state at the end of the interaction. The successive measurements also tend
to reduce σ 2, although this is not always the case, and consistently with the previous
comment, as σ 2 is reduced, one reaches a regime of much better conservation of
energy.

The main message of this section is that quantum mechanics permits the
simulation of typical realizations of measurement sequences on a single quantum
system and that these measurements typically change the state of the system
in significant ways. The changes in photon statistics and mean photon number
observed in our specific measurement scheme are an example of measurement back
action, a fundamental feature of quantum measurements to which we will return at
length in Chap. 6.

3.6 The Quantum Rabi Model

We mentioned that it is usually inconsistent to describe an atom as a two-state
system, thereby ignoring all other levels that may be coupled by the optical
field, while not performing the rotating wave approximation at the same time.
This is based on the simple fact that “a theory is only as good as its weakest
element.” However “usually” does not mean “always,” and experimental advances,
in particular in circuit QED, have resulted in situations where the dipole coupling
constant g can be large enough that this statement needs to be reconsidered. There
are indeed cases where it is necessary to go beyond the Jaynes–Cummings model
and consider its more general version, the quantum Rabi model. This is an extension
of the model originally developed by E. Rabi for the case of classical fields [9, 10]
and characterized by the Hamiltonian

Ĥ = 1

2
h̄ω0σ̂z + h̄ω

(
â†â + 1

2

)
+ h̄gσ̂x

(
â + â†

)
, (3.36)
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which is the Jaynes–Cummings Hamiltonian, extended to include the counter-
rotating terms in the dipole interaction. It reduces to the Jaynes–Cummings model
in the limit g,�� ω,ω0.

Due to the mathematical difficulties associated with the inclusion of the counter-
rotating terms, the Rabi Hamiltonian has been mostly analyzed either numerically
or by approximate methods appropriate for the particular situations and sets of
parameters at hand. More specifically, in addition to the atom–field interaction,
which is characterized by the vacuum Rabi frequency g, experiments always include
dissipation mechanisms as well. The most important ones in quantum optics are
typically spontaneous emission and cavity losses, which are characterized by decay
rates γ and κ , respectively, as will be discussed in Chap. 7. The strong coupling
regime of the Rabi model is usually defined as that regime where g � κ, γ , the
ultrastrong coupling regime by g ≥ ω/10, ω0/10, and the deep strong coupling
regime by g � ω,ω0.

It is beyond the scope of this section to cover all aspects of the Rabi model and
the various situations in which it is being applied, see, for instance, Refs. [11–15]
for more details. Indeed, such a review might merit its own monograph. Instead, we
concentrate here on just one recent development, the discovery of an exact solution
to this model [16]. While its analytical form is not particularly transparent, it is of
sufficient importance to merit our attention. In the following, we outline the main
steps of its derivation, using the Bogoliubov transformation approach of Ref. [17].

Bogoliubov Diagonalization To reflect the role of the two-level atom in the Rabi
model, we proceed by expressing its eigenstates |ψ〉 as the two-component wave
functions

|ψ〉 =
(
ψ1

ψ2

)
. (3.37)

Inserting this form in the time-independent Schrödinger equation Ĥ |ψ〉 = E|ψ〉,
then, gives

h̄
(ω0

2
+ ωâ†â

)
ψ1 + h̄g

(
â + â†

)
ψ2 = Eψ1 ,

h̄
(
−ω0

2
+ ωâ†â

)
ψ2 + h̄g

(
â + â†

)
ψ1 = Eψ2 , (3.38)

or, with φ1 = ψ1 + ψ2 and φ2 = ψ1 − ψ2,

Ĥ

(
φ1

φ2

)
≡ h̄

(
ωâ†â + g(â + â†) ω0/2

ω0/2 ωâ†â − g(â + â†)

)
= E

(
φ1

φ2

)
. (3.39)
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We now introduce the Bogoliubov transformation2

Â = â + g/ω ; Â† = â† + g/ω , (3.40)

in terms of which the Hamiltonian Ĥ becomes

Ĥ ′ = h̄
(
ωÂ†Â− g2/ω ω0/2

ω0/2 Â†Â− 2g(Â+ Â†)+ 3g2/ω

)
, (3.41)

as well as the trial form of the eigenstates of Ĥ

(
φ1

φ2

)
=
∞∑
n=0

√
n!

(
en|nA〉
fn|nA〉

)
. (3.42)

Here, the states |nA〉 are the “extended coherent states”3

|nA〉 =
∞∑
n=0

(A†)n√
n! |0A〉 , (3.43)

and |0A〉 is the displaced vacuum state |0〉 of the field mode,

|0A〉 = e−(g/ω)(â†−â)|0〉 , (3.44)

which we recognize with Eq. (2.112), the coherent state | − g/ω〉. The diagonal-
ization of Ĥ ′ amounts to determining the expansion coefficients en and fn and
the associated eigenenergies En. Substituting Eq. (3.42) into Eq. (3.39) with the
form (3.41) of Ĥ ′ and multiplying by the state 〈mA| yield readily [17]

en = − ω0/2

nω − g2/ω − E/h̄fn (3.45)

and

(nω + 3g2/ω − E/h̄)fn − 2g(n+ 1)fn+1 − 2gfn−1 = ω0en . (3.46)

2Bogoliubov transformations are linear, canonical transformations of creation and annihilation
operators of the general form

Â = uâ + vâ† + w ; Â† = u�â† + v�â + w∗.
For the transformation to be canonical, it must preserve the bosonic commutation relation,
[Â, Â†] = 1, resulting in the condition |u|2−|v|2 = 1 or u = exp (iθ1) cosh r , v = exp (iθ2) sinh r .
3Importantly, the states |nA〉 should not be confused with the familiar Fock states |n〉 of the field
mode, despite the similar notation.
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This expression can be expressed as the recursion relation

ηfη = �(η − 1)fη−1 − fη−2 , (3.47)

with

�(n) = 1

2g

(
nω + 3g2/ω − E/h̄− ω2

0/4

nω − g2/ω − E/h̄

)
, (3.48)

and one can choose f0 = 1 and f1 = �(0), up to the normalization of the state.

However, we are not yet quite done and still need to determine the eigenenergies
E. This is achieved by repeating the same procedure with a second Bogoliubov
transformation

B̂ = â − g/ω ; B̂† = â† − g/ω (3.49)

and requiring that the resulting form of the eigenstates be the same as given by
Eq. (3.42). As we now show, this additional requirement will provide us with a final
equation that will yield the eigenenergies E.

In terms of the transformation (3.49), the Hamiltonian (3.39) becomes

Ĥ ′ = h̄
(
ωB̂†B̂ + 2g(B̂ + B̂†)+ 3g2/ω ω0/2

ω0/2 B̂†B̂ − g2/ω

)
, (3.50)

and following the same procedure as before, we introduce the eigenstate

(
φ′1
φ′2

)
=
∞∑
n=0

√
n!

(
f ′n|nB〉
e′n|nB〉

)
. (3.51)

This leads now to

e′n = −
ω0/2

nω − g2/ω − E/h̄f
′
n (3.52)

and

ηf ′n = �′(n− 1)f ′n−1 − f ′n−2 , (3.53)

again with f0 = 1 and f1 = �(0) and an overall normalization of the state.
Requiring that the eigenstates resulting from the two Bogoliubov transformations
represent the same physical state, we must have

(
φ1

φ2

)
= r

(
φ′1
φ′2

)
, (3.54)
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and multiplying these equations by 〈0| gives

( ∞∑
n=0

eng
n

)( ∞∑
n=0

e′ngn
)
−

( ∞∑
n=0

fng
n

)( ∞∑
n=0

f ′ngn
)
= 0 . (3.55)

Since fn and f ′m satisfy the same recurrence relation, it follows that fn = f ′n and
en = e′n. With Eq. (3.45), this equation reduces simply to G+G− = 0, where

G± ≡
∞∑
n=0

fn

(
1∓ h̄ω0/2

E + h̄g2/ω − nh̄ω
)
gn . (3.56)

Therefore, the full energy spectrum of the Rabi model is given by the zeros of the
two functions G+ and G−, indicative of the existence of two distinct manifolds of
eigenfunctions and eigenenergies.

Energy Spectrum Figure 3.5 shows G±(x) as functions of x = (E + g2/ω)/h̄.
Their zeros give the eigenenergy spectrum of the system, which is shown in Fig. 3.6.
It consists, as just mentioned, of two manifolds, one of them associated with G+
and the other with G−. We observe that G+ and G− also exhibit simple poles at
x = 0, ω, 2ω, . . . These poles correspond to special values of g, ω0, and ω such that

x = (E + g2/ω)/h̄ = 0, 1, 2, . . . (3.57)

Ref. [16] calls the associated energiesEen = h̄(nω−g2/ω) the exceptional spectrum.

Fig. 3.5 Functions G+(x) (red lines) and G−(x) (blue lines) as a function of the variable x/ω,
where x = (E+g2/ω)/h̄. The zeros of these functions for the regular eigenenergy spectrum of the
system. The poles at locations x = nω, n = 0, 1, 2, . . ., give the so-called exceptional spectrum.
(From Ref. [16])
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Fig. 3.6 Eigenenergy spectrum of the Rabi model for ω0 = 0.8 and 0 ≤ g ≤ 0.8, in units of ω.
The eigenenergy spectrum consists of two intersecting ladders of levels, each corresponding to a
different parity subspace, the G+ = 0 (red) and G− = 0 (blue) subspaces. Within each subspace,
the states are labeled with ascending numbers, shown on the right-hand side of the figure. This
labeling does not change with g because no lines intersect within spaces of fixed parity. On the left
side of the graph, the states for g = 0 are labeled in the gray box by the bare states |e, n〉 and |g, n〉
of the atom–field system. (Figure adapted from Ref. [16])

Figure 3.6 shows the two manifolds of the Rabi spectrum as functions of g.
Importantly, there are no level crossings within each subspace of levels, allowing
their unique labeling with two quantum numbers ± and n = 0, 1, . . . For g →
0, pairs of levels within alternating manifolds converge to pairs of bare states
{|e, n〉, |g, n+ 1〉}, with

|−, n〉 → |e, n〉 ; |−, n+ 1〉 → |g, n+ 1〉 , n odd ,

|+, n〉 → |e, n〉 ; |+, n+ 1〉 → |g, n+ 1〉 , n even . (3.58)

For g � 1, the eigenstates of the Rabi Hamiltonian converge therefore as should be
expected to the Jaynes–Cummings dressed states.

Conserved Quantities The reason why the dressed eigenstates of the Jaynes–
Cummings model form an infinite set of manifolds {|1, n〉, |2, n〉} is that in the
rotating wave approximation the bare levels are only coupled pairwise, |e, n〉 ↔
|g, n+ 1〉. Mathematically, this is due to the fact that the operator Ĉ ≡ â†â+ σ̂+σ̂−
commutes with the Jaynes–Cummings Hamiltonian. However, this is no longer
the case for the quantum Rabi Hamiltonian. As pointed out in Ref. [16], there is
however another conserved quantity in that case in addition to energy; this is the
parity operator

Π̂ ≡ −σ̂z(−1)â
†â , (3.59)
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see Problem 3.7. It is this symmetry that leads to a decomposition of the state space
of the Rabi Hamiltonian into two subspaces of infinite dimension.

Problems

Problem 3.1 Following the steps outlined after Eq. (3.23), show that for large
enough 〈n〉 and times gt � 〈n〉, the probability for an atom driven by a coherent
state |α〉 to be in its excited state pe(t) at time t undergoes a Cummings collapse in
a time that is independent of 〈n〉 and with

pe(t) � 1
2 + 1

2 cos(2|α|gt) exp(−g2t2) .

Problem 3.2 Consider a two-photon Jaynes–Cummings model described by the
Hamiltonian

Ĥ = 1
2 h̄ω0σ̂z + h̄ω

(
â†â + 1

2

)
+ h̄g (σ̂+â2 + â†2σ̂−

)
. (3.60)

(a) Find the eigenstates and eigenenergies of this system.
(b) For a field initially in a coherent state and an initially excited atom, find and plot

the probability pe(t) for the atom still to be in that state at time t . Compare and
discuss the differences between that solution and the single-photon transition
case of Sect. 3.3.

Problem 3.3 Considering the two-photon Jaynes–Cummings model of Prob-
lem 3.2

(a) find and plot the probability pe(t) for the atom to be in its excited state as a
function of time for the initial state |ψ(0〉 = |e, α〉, where |α〉 is a coherent state
with |α|2 = 10.

(b) Find and plot also the resulting photon statistics pn(t) as a function of time.

Problem 3.4 Consider now the dispersive limit of the Jaynes–Cummings Hamilto-
nian

HJC,eff = 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�

[
(â†â + 1)|e〉〈e| − â†â|g〉〈g|

]
.

It is possible to approximate it as

HJC,eff ≈ 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�
â†â [|e〉〈e| − |g〉〈g|] .
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Carry out this approximation and discuss what is involved in this step in physical
terms. When is it justified, and what condition(s) must be satisfied to make this
approximation acceptable?

Problem 3.5 In the dispersive Jaynes–Cummings model of Problem 3.4, find and
plot the probability pe(t) for the atom to be in its excited state as a function of
time for the initial state |ψ(0〉 = |e, α〉, where |α〉 is a coherent state with |α|2 =
10, h̄ω0/� = 0.02ω0. Find and plot also the resulting photon statistics pn(t) as a
function of time. Evaluate also 〈n〉(t), and explain this result.

Problem 3.6 Considering the resonant Rabi Hamiltonian

Ĥ = h̄ω
(ω0

2
σz + â†â

)
+ h̄σx(â + â†) ,

determine under which condition(s), the counterrotating terms of the interaction can
be treated as a small perturbation. To lowest order in the corrections due to the no-
rotating terms of the interaction, evaluate then the probability pe(t) for the atom
to be in its upper state for an atom initially in the ground state and a field (a) in a
coherent state and (b) in its ground state.

Problem 3.7 (a) Show that the operator Ĉ ≡ â†â + σ̂+σ̂− commutes with the
Jaynes–Cummings Hamiltonian (3.1) and (b) show also that the parity operator
Π̂ ≡ −σ̂z(−1)â

†â commutes with the Rabi Hamiltonian (3.36).

Problem 3.8 Consider a field with initial photon statistics pn and coupled for a
time τ with an atom initially in its excited state |e〉 by the Jaynes–Cummings
Hamiltonian.

(a) Find the atom–field density operator at the end of the interaction.
(b) Assuming now that the atom is measured to be in its excited state |e〉 after the

interaction, determine the resulting field density operator, and do the same for a
measurement finding the atom in the ground state |g〉.

(c) Considering the two explicit cases of Poisson photon statistics and of a thermal
field with initial mean photon number 〈n〉 = 9, plot the initial and final photon
statistics of the field, and find the change in mean photon number following
these measurements.

(d) Determine also the change in von Neumann entropy of the field following these
measurements.

Problem 3.9 Carry out the derivation of Eqs. (3.55) and (3.56).



References 95

References

1. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with
application to the beam maser. Proc. IEEE 51, 89 (1963)

2. F.W. Cummings, Stimulated emission of radiation in a single mode. Phys. Rev. 140, A1051
(1965)

3. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival
in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)

4. P. Meystre, A. Quattropani, H. Baltes, Quantum-mechanical approach to Rabi-flopping. Phys.
Lett. 49A, 85 (1974)

5. G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in a one-atom
maser. Phys. Rev. Lett 58, 353 (1987)

6. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche,
Quantum Rabi oscillation: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76,
1800 (1996)

7. S. Haroche, J.-M. Raimond, Exploring the Quantum—Atoms, Cavities and Photons (Oxford,
New York, 2006)

8. P. Meystre, Repeated quantum measurements on a single harmonic oscillator. Optics Lett. 13,
669 (1997)

9. I.I. Rabi, On the process of space quantization. Phys. Rev. 49, 324 (1936)
10. I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 49, 324 (1936)
11. Q. Xie, H. Zhong, M.T. Batchelor, C. Lee, The quantum Rabi model: solution and dynamics.

J. Phys. A Math. Theor. 50, 11300 (2017)
12. J.S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, E. Solano, Quantum Rabi model with

trapped ions. Phys. Rep. 5, 15472 (2015)
13. J. Braumueller, M. Marthaler, A. Schneider, A. Stehli, H. Rotzinger, M. Weides, A.V. Ustinov,

Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Nature
Commun. 8, 779 (2017)

14. D.Z. Rossatto, C.J. Villas-Boas, M. Sanz, E. Solano, Spectral classification of coupling regimes
in the quantum Rabi model. Phys. Rev. A 96, 013849 (2017)

15. A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savastava, F. Nori, Ultrastrong coupling
between light and matter. Nat. Rev. Phys. 1, 19 (2019)

16. D. Braak, On the integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011)
17. Q.H. Chen, C. Wang, T. Liu, K.L. Wang, Exact solvability of the quantum Rabi model using

Bogoliubov operators. Phys. Rev. A 86, 023822 (2012)



Chapter 4
Composite Systems and Entanglement

Besides wave–particle duality the most puzzling aspect of quantum systems
is arguably quantum entanglement, whereby the state of a subsystem of a
composite quantum system cannot be described independently of the state
of its other subsystem(s). Following a discussion of the EPR paradox, we
introduce formally the concepts of entanglement, maximum entanglement,
and monogamy of entanglement. We then turn to Bell’s inequalities and
summarize their most recent experimental tests. This is followed by a
discussion of the no-cloning theorem and of two important applications of
quantum entanglement: quantum teleportation and quantum key distribution.

In contrast to their classical counterparts, quantum systems present a number of
counter-intuitive features: they can exist in a superposition of several states and can
exhibit either wave-like or particle-like behavior, depending on the circumstances.
But most puzzling perhaps is quantum entanglement, whereby the state of subsys-
tems of a composite quantum system cannot be described independently of the state
of the others. Perhaps the most famous consequence of quantum entanglement is the
“spooky action at a distance” discussed by Einstein, Podolsky, and Rosen in their
famous paper [1] that concluded (erroneously)1 that quantum mechanics does not
give a complete description of reality. This chapter gives an introduction to some of
the central aspects of quantum entanglement, concentrating largely on two-particle
entanglement.

After a brief summary of the Einstein–Podolsky–Rosen (EPR) paradox, whose
extraordinary merit is to point out a fundamental implication of quantum entan-
glement and forces one to confront the profound difference between the classical
and quantum worlds, we introduce some central aspects of entanglement, including
entanglement entropy and entanglement monogamy. We then turn to the Bell’s

1Attaching the qualifier “erroneous” to that paper, while technically correct, is profoundly
misleading: few papers in physics have had as much impact in advancing our understanding of
nature and of the quantum world. I suspect that many of us wish we would be capable of writing
such an “erroneous” paper.
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inequalities and summarize their most recent experimental tests. This is followed
by a discussion of two important applications of quantum entanglement, quantum
teleportation and quantum cryptography, a discussion that will also lead us to
introduce the no-cloning theorem central to these applications. This chapter deals
almost exclusively with two-level systems, or qubits, in pure states, as they are of
particular relevance for applications in quantum information. Mixed states will then
take center stage in Chaps. 5 and 6.

4.1 The EPR Paradox

In a famous 1935 paper titled “Can Quantum-Mechanical Description of Physical
Reality be Considered Complete?” A. Einstein, B. Podolsky, and N. Rosen puzzled
on the implications of quantum entanglement and the associated “spooky action at
a distance” and argued that the description of physical reality provided by quantum
mechanics is incomplete as it failed to account for the existence of “elements of
reality.” It took several decades to finally put this argument to rest, following a series
of increasingly sophisticated experimental tests that quantum mechanics passed
with flying colors. But the importance of the EPR paper cannot be overstated: not
only does the resolution of the EPR paradox have fundamental implications for
the interpretation of quantum mechanics, but the deeper understanding of quantum
entanglement resulting from its resolution also paves the way to remarkable new
developments, most notably perhaps in quantum information science and quantum
metrology.

We begin by briefly reviewing the EPR argument, in the slightly modified form
put forward by D. Bohm. Consider a source in which pairs of identical spin-
1/2 particles are produced, say, by the photodissociation of a diatomic molecule
prepared in the singlet state S = 0. Upon emerging from the source, the two particles
fly toward two space-like separated Stern–Gerlach magnets acting as analyzers and
detectors. Long after the particles are emitted, an observer orients the first magnet
so as to measure the spin component Sa = a ·S1 of particle 1 along a. For a spin-1/2
particle, the result of this measurement is±h̄/2. Because the total spin of the system
is zero, we then know for sure that the spin of the second particle along that same
direction is ∓h̄/2.

At this point, EPR introduce the concept of reality: “If, without in any way
disturbing a system we can predict with certainty (i.e. with probability equal to
unity) the value of a physical quantity, then there is an element of physical reality
corresponding to this quantity.” EPR further require that “every element of the
physical reality must have a counterpart in the physical theory.”

According to this criterion, we can attribute an element of physical reality to the
spin component Sa. However, the observer could just as well have chosen to set the
detector 1 in direction a’, thus measuring the spin component Sa′ of the first particle.
In that way, he would have inferred, without in any way disturbing particle “2,”
its spin component Sa′ . It follows that there is also an element of physical reality
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attached to Sa′ . But in quantum mechanics the Pauli’s uncertainty principle states
that one cannot predict precise values for non-commuting observables. Thus, as
stated by Einstein in a letter to Max Born, “...one must consider the description
given by quantum mechanics as an incomplete and indirect description of reality,
destined to be later replaced by an exhaustive and direct description...”

The EPR argument was refuted by many of the founders of quantum mechanics,
but for many years, it seemed that no experiment was able to determine which was
the correct attitude. The situation has now changed drastically, due largely to the
seminal contributions of J. S. Bell. A fascinating collection of his contributions to
that topic can be found in Ref. [2].

4.2 Quantum Entanglement

Roy Glauber, the father of Quantum Optics, was fond of saying that “paradoxes
are cleverly stated incorrect statements.” The EPR paradox results from the fact
that it implicitly treats the photodissociation products, in the example of the
previous section, as consisting of two separate particles. But this is not correct:
the dissociation products still comprise a single quantum system, albeit with the
property of possibly being strongly delocalized. That this is the case can be seen
by considering its von Neumann entropy S, which we already encountered when
discussing thermal states of the electromagnetic field, see Eq. (2.77).

The von Neumann entropy S, like the Gibbs entropy in the classical world,
has an important interpretation in terms of information content: basically, it
characterizes the missing information about the system. If computed in a log 2
basis, this information is measured in bits. Pure states have zero entropy, as follows
immediately from the fact that their density operator is idempotent, ρ̂2 = ρ̂, and
hence S = −Tr[ρ̂ log2 ρ̂] = 0.2 There is no missing information in a pure state.
At the other extreme, in a Hilbert space of dimension d the entropy can be at most
Smax = log d bits. This happens for a maximally mixed state, where all eigenstates
|m〉 of the system are equally probable so that its density operator is proportional to
the identity operator,

ρ̂mm = (1/d)Î . (4.1)

For a two-state system, the maximally mixed state is characterized precisely by one
bit (log22) of missing information.

2We now use the expression of S that omits Boltzmann’s constant, as is traditionally done in the
context of quantum information. For notational simplicity we omit the subscript 2 in the following
when no ambiguity is possible. That is, “log” implies a log 2 basis, while ‘ ln′ is reserved for natural
logarithms.
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Fig. 4.1 Schematic representation of the dissociation process. (a) State of the system after the
dissociation process, with the curved line indicating that the two dissociation partners still form a
unique quantum system, in a pure state and with zero von Neumann entropy, rather than individual
particles. (b) Maximally mixed state resulting from “cutting the cord” and considering the particles
separately, with a loss of log 2 in information as compared with the pure state of (a)

Consider then again the photodissociation experiment. After the molecule disso-
ciates, the state of the system is

|ψ〉 = 1√
2

[| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2] , (4.2)

where | ↑〉1 stands for spin up for the left-propagating component of the dissociation
product, with corresponding notations for the other kets. This is clearly a pure
state, and hence, its entropy is equal to zero, that is, it contains the maximum
possible information about the system, see Fig. 4.1a. But then look at just one of
its components, say component 1. This is achieved by tracing over component 2,
resulting in the reduced density operator

ρ̂1 = Tr2|ψ〉〈ψ | = (1/2) [ | ↑〉1〈↑ |1 + | ↓〉1〈↓ |1 ] . (4.3)

This is no longer a pure state, but rather the maximally mixed state (4.1). Its von
Neumann entropy is exactly one bit, S1 = log 2, indicating that the subsystem is
in a state of maximum missing information, as illustrated in Fig. 4.1b. Together, the
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two subsystems contain all possible information about the system, but separately
they contain none. That is, they form an inseparable whole, not individual particles.
This property, which is at the heart of quantum entanglement, is a fundamental
aspect of quantum mechanics with no equivalent in the classical world. As we shall
see, it is the essential ingredient for a number of emerging applications of quantum
mechanics, in particular in quantum cryptography and quantum information science
more generally, as well as in quantum metrology.

4.2.1 Schmidt Decomposition and Maximum Entanglement

Entangled pure states are profoundly different from separable states, which for
bipartite systems composed of two subsystems A and B take the general form

|ψ〉AB = |ψ〉A ⊗ |ψ〉B . (4.4)

As such they are a subset of the most general pure states

|ψ〉AB =
∑
i,j

cij |i〉A ⊗ |j 〉B (4.5)

where {|i〉}A and {|j 〉}B are complete sets of basis states for these subsystems. One
powerful method to determine whether a bipartite state is separable is the Schmidt
decomposition theorem, which states that any pure state of a bipartite system can be
expressed as

|ψAB〉 =
min(dA,dB)∑

i=1

λi |ui〉A ⊗ |vi〉B , (4.6)

where λi are the so-called Schmidt coefficients, with
∑
i λi = 1, and the Schmidt

vectors {|ui〉A}, {|vi〉}B form basis sets of the subsystems A and B of dimensions
dA and dB , respectively. That this is the case can be shown by first expressing the
matrix of coefficients C ≡ (cij ) in terms of its singular value decomposition3 as

C =
∑
k

αk|uk〉A〈vk|B, (4.7)

3Remember that the singular value decomposition of an (m × n) real or complex matrix M is a
factorization of the form M = UΣV∗, where U is an (m×m) real or complex unitary matrix, V is
an (n × n) real or complex unitary matrix, and Σ is an (m × n) rectangular diagonal matrix with
non-negative real numbers on the diagonal. If M is real, then U and VT = V∗ are real orthogonal
matrices. The diagonal entries Σii of Σ are called the singular values of M, and the number of
non-zero singular values is the rank of M. The columns of U and of V are called the left-singular
(ket) vectors and right-singular (bra) vectors of M, respectively.
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where αk are the singular values of C, and the singular kets |uk〉A and |vk〉B are
basis sets for the subsystems A and B, respectively.

Substituting then cij = 〈i|C|j 〉 into Eq. (4.5) gives

|ψ〉AB =
∑
i,j

∑
k

αk〈i|uk〉|i〉A ⊗ 〈vk|j 〉|j 〉B , (4.8)

or, with
∑
i |i〉〈i| =

∑
j |j 〉〈j | = 1,

|ψ〉AB =
∑
k

αk|uk〉A ⊗ |v∗k 〉B . (4.9)

Since the singular values αk can in general be complex, the last step consists in
introducing their amplitudes λk = |αk| and absorbing the remaining phase factors
exp(−iφk) into |uk〉, |uk〉 → |uk exp(−iφk)〉, completing the proof of the Schmidt
decomposition (4.6).

The coefficients λk are called Schmidt coefficients, and the Schmidt rank of
the state |ψ〉AB is the number of non-zero coefficients in the Schmidt decompo-
sition (4.6). If only one such coefficient is needed, the state is simply |ψ〉AB =
|uk〉A|v∗k 〉B and hence is separable. A pure state is entangled if and only if its
Schmidt rank is larger than one. The maximum Schmidt rank of a system is the
dimension of the Hilbert space of the smallest of its subsystems, min(dA, dB). A
pure state with this Schmidt rank is maximally entangled. For spin- 1

2 subsystems,
this rank is 2.

Entanglement Entropy The entropy of one of the subsystems of a bipartite
system is called its entanglement entropy. It follows directly from the Schmidt
decomposition of the state |ψ〉AB that the reduced density operators of the two
subsystems are

ρ̂A =
min(dA,dB)∑

i=1

λ2
i |ui〉〈ui | ; ρ̂B =

min(dA,dB)∑
i=1

λ2
i |vi〉〈vi | , (4.10)

from which it follows that their entanglement entropies are equal,

SA = SB = −
∑
i

λ2
i log

(
λ2
i

)
. (4.11)

Since for a separable state only one Schmidt coefficient is different from zero, λ1 =
1, we have that SA = SB = 0 in that case. An important consequence of this result
is that for bipartite pure states the von Neumann entropy of the reduced states is
a well-defined measure of entanglement since it is equal to zero if and only if the
system is in a product state.
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4.2.2 Monogamy of Entanglement

The quantum mechanical violation of Bell’s inequalities, the topic of Sect. 4.3, will
show quantitatively how bipartite entangled states can exhibit stronger correlations
than any correlations that can be generated classically. Importantly, though, these
correlations cannot be extended to or be shared with a third party. This property,
called monogamy of entanglement, is in contrast with the situation in classical
physics, where a joint probability distribution that is shared between two members
A and B of a bipartite system can in principle also be shared with a third party C, in
the sense that the marginal distributions on A and B are the same as those on A and
C. It forms the basis for the secure quantum key distribution that will be discussed
in Sect. 4.4.

Specifically, consider a system of three qubits A, B, and C and suppose that
the subsystems A and B share an entangled state with the most general Schmidt
representation4

|ψ〉AB = λ0|0, 0〉AB + λ1|1, 1〉AB. (4.12)

The question that we wish to answer is whether it is possible to find a tripartite state
|ψ〉ABC such that its reduced density operators on A and B, and on A and C, both
yield a state of the form (4.12). A natural choice would be the state

|ψ〉ABC = λ0|0, 0, 0〉ABC + λ1|1, 1, 1〉ABC , (4.13)

which appears to provide the same correlations between A and B as between A and
C. From the corresponding density matrix ρ̂ABC = |ψ〉〈ψ |ABC we find readily

ρ̂AB = TrC ρ̂ABC = |λ0|2|0, 0〉〈0, 0|AB + |λ1|2|1, 1〉〈1, 1|AB ,
ρ̂AC = TrB ρ̂ABC = |λ0|2|0, 0〉〈0, 0|AC + |λ1|2|1, 1〉〈1, 1|AC , (4.14)

that is, both density operators are mixtures of tensor products of states of the two
subsystems involved. If the density operator of a system comprised two subsystems
A and B can be cast in the form

ρ̂AB =
∑
i

pi ρ̂A,i ⊗ ρ̂B,i , (4.15)

with
∑
i pi = 1, then the state of the system is said to be separable, with pi

interpreted as the probability for the system to be in the state ρ̂A,i ⊗ ρ̂B,i . The

4Here and in the rest of the book, we omit the tensor product symbol ⊗ when no ambiguity is
possible, as this lightens the notation significantly. For instance, the state |1〉A ⊗ |1〉B will then
be written simply |1〉A|1〉B , or even more compactly |1, 1〉AB , with or without comma, whenever
possible.
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reduced density operators (4.14) describe therefore separable mixed states, with
probabilities |λ0|2 and |λ1|2 to be in the uncorrelated product states |0, 0〉〈0, 0| and
|1, 1〉〈1, 1| of the subsystems AB and AC.

The fact that partial traces should produce the mixed states (4.14) rather than
pure states is due to the fact that they erase the correlations, and hence the
information, associated with the entanglement between the party that is traced
over and the other two parties. As a result they do produce the same classical
correlations between the two subsystems that are kept, whether they are AB, AC,
or BC, but no quantum entanglement remains. Entanglement monogamy refers
to this impossibility to share the same entanglement between three parties: if a
bipartite system is maximally entangled, then it is unentangled from everything else.
Importantly, though, entanglement can be partly shared between three parties, so
that if A is only party entangled with B, then it can also share some entanglement
with C, an aspect of entanglement monogamy to which we now turn.

Coffman, Kundu, and Wooters Inequality Distributing entanglement between
several parties is a topic of considerable importance in quantum information
processing and the object of ongoing research. A detailed discussion of this complex
topic is beyond the scope of this book, and we limit our discussion again to the
relatively simple but important case of the sharing of entanglement between three
qubits in a pure state. V. Coffman and coworkers [3] showed that in this case the
trade-off in the amount of entanglement that can be shared between these three
parties can be quantified through an entanglement measure called the concurrence.5

Consider first the parties A and B and the associated pair of qubits, characterized
by a density operator ρ̂AB expressed on the basis {|00〉, |01〉, |10〉, |11〉}. We proceed
by introducing the spin-flipped density operator

ρ̃AB = (σ̂y ⊗ σ̂y)ρ̂∗AB(σ̂y ⊗ σ̂y) , (4.16)

where the asterisk stands for the complex conjugate of the density matrix elements
on that basis, and the σ̂y are the Pauli operators

σ̂y =
(

0 −i
i 0

)

acting on the states of the two subsystems. Since density operators are positive
operators, ρ̂AB must have real non-negative eigenvalues, and therefore so does ρ̃AB ,
as well their product ρ̂AB ρ̃AB . Calling λi the square roots of the four eigenvalues of
ρ̂AB ρ̃AB , the concurrence of ρ̂AB is defined in terms of these eigenvalues arranged

5The concept of concurrence was originally introduced by W. Wooters [4] to quantify the resources
required to create a given entangled state, the so-called entanglement of formation.
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in decreasing order as

CAB = max{λ1 − λ2 − λ3 − λ4, 0} . (4.17)

For a system in a pure state Problem 4.2 shows that CAB reduces to

CAB = 2
√

det(ρ̂A) (4.18)

with ρ̂A = TrBρ̂AB . It is also easily verified that we then have CAB = 1 for a
completely entangled state and CAB = 0 for an unentangled state.

With this property of the concurrence of pure states at hand, the question that we
wish to address is the following: given a general pure state |ψ〉 of three qubits A, B,
and C, what is the relationship between the concurrences of the subsystems A and
B and of the subsystems A and C?

Problem 4.3 demonstrates that the density operator ρ̂AB of a system of 2 qubits
in a pure state has at most two non-zero eigenvalues, and hence so does ρ̃AB .
Equation (4.17) gives then

C2
AB = (λ1 − λ2)

2 = λ2
1 + λ2

2 − 2λ1λ2

= Tr(ρ̂ABρ̃AB)− 2λ1λ2 ≤ Tr(ρ̂ABρ̃AB) , (4.19)

so that, after carrying out the same argument for parties A and C we have

C2
AB + C2

AC ≤ Tr(ρ̂ABρ̃AB)+ Tr(ρ̂ACρ̃AC) . (4.20)

To interpret the right-hand side of this inequality we first expand it explicitly for
a general three-qubit pure state |ψ〉 = ∑

ijk cijk|i, j, k〉 with i, j, k ∈ {0, 1}.
Problem 4.4 shows that after some algebra this permits to re-express its two terms
as

Tr(ρ̂ABρ̃AB) = 2[det(ρ̂A)+ det(ρ̂B)− det(ρ̂C)] ,
Tr(ρ̂ACρ̃AC) = 2[det(ρ̂A)+ det(ρ̂C)− det(ρ̂B)] , (4.21)

so that Eq. (4.20) reduces to

C2
AB + C2

AC ≤ 4 det(ρ̂A) . (4.22)

We now turn to the subsystem BC and observe that any general pure state |ψ〉 of
the tripartite system can be expressed as |ψ〉 = |0〉A|α〉BC + |1〉A|β〉BC , with

|α〉BC =
∑
jk

c0jk|j, k〉BC ; |β〉BC =
∑
jk

c1jk|j, k〉BC .
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This means that even though the state space of BC is four-dimensional, only two
of those dimensions are necessary to express the state of the full system ABC, a
consequence of the facts that A is a single qubit and the state of the whole system
is pure. The subsystem BC can therefore be thought of as an effective qubit, and
the full system ABC can be decomposed into the subsystems A and BC, each
composed of one qubit, one of them real and the other effective. With Eq. (4.18),
it is then possible to interpret 2

√
det(ρ̂A) as the concurrence of the A(BC) system,

CA(BC) = 2
√

det(ρ̂A) . (4.23)

When substituted into Eq. (4.22), this result yields finally the Coffman, Kundu, and
Wooters monogamy inequality

C2
AB + C2

AC ≤ C2
A(BC) . (4.24)

This shows that if the qubit A possesses a certain amount of entanglement with the
subsystemBC, then the entanglement that it shares individually with the subsystems
B and C cannot be larger than that entanglement. Whatever entanglement is shared,
say, with B is not available to be shared with C.

The extension of this discussion to the case of mixed states is beyond the scope
of this brief introduction. It is complicated in particular by the fact that the system
BC can no longer be considered as an effective qubit, as discussed in Ref. [3].
Reference [5] also proves the important result that the bipartite entanglement in
multipartite states of qubits satisfies a Coffman, Kundu, and Wooters inequality
as well. Because of the importance for quantum cryptography and quantum
information science of understanding the trade-offs involved in the amount of
quantum entanglement that can be shared between multiple parties, this remains
a very active topic of research, in particular when considering its generalization to
higher dimensions.

4.3 Bell’s Inequalities

Armed with our understanding of basic aspects of quantum entanglement we now
return to the EPR paradox and discuss its profound and ground-breaking extension,
published by John Bell in a 1964 paper titled “On the Einstein Podolsky Rosen
Paradox” [6]. The fundamental importance of that work is that it moved the EPR
argumentation to a point where it became experimentally and quantitatively testable.
How? By allowing for the EPR analyzers 1 and 2 to be set at different angles a and
b, rather than at the same angle a, and measuring the joint probabilities of obtaining
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a given outcome, say+h̄/2 for the spin components Sa and Sb of the two particles.6

Bell showed that correlation experiments of this type permit to distinguish between
the predictions of quantum mechanics and those of a class of theories called “local
realistic hidden variable theories” of nature. What hides behind this term is what
would be broadly considered to be the fundamental ingredients of any “reasonable”
theory of nature. Hopefully this will become more clear as we go along.

To see how this works more concretely, consider again an experimental arrange-
ment where a source emits two correlated particles “1” and “2.” This could be for
instance a diatomic molecule dissociating into two atoms, a pair of photons emitted
in a three-level cascade, or a number of other possible situations. Two detectors
measure then some property of these particles for settings a and b of the analyzers.

Let us denote by p1(a) and p2(b) the probabilities of detecting particle 1, resp.
particle 2, for these settings. If we had a complete theory at hand, these probabilities
would depend on all parameters {λ} describing the emission process in the source.
But in the absence of such a theory, we have no way to know, or measure, or even
guess what these parameters might be. They are hidden, out of our control—hence
the “hidden variables” theory. What we detect in a series of experiments is some
average over them,

p1(a) =
∫

dλρ(λ)p1(a, λ) , (4.25)

where dλ is a (unknown) measure over the space of hidden variables and ρ(λ) is
some weight function. (For simplicity we write λ instead of {λ}.) Similarly,

p2(b) =
∫

dλρ(λ)p2(b, λ) . (4.26)

Suppose now that we could actually control the hidden parameters {λ} and know
their value precisely. We could then ask the joint probability p12(a, b, λ) of
detecting both particles for detector settings a and b. If the detectors are space-
like separated, and their settings chosen long after the particles have been emitted
from the source, the result at one detector should be unaffected by the result at the
setting of the other. This is the principle of locality: no influence of any kind can
travel faster than the speed of light. Thus the counting rates at detectors 1 and 2
must be uncorrelated,

p12(a, b, λ) = p1(a, λ)p2(b, λ) . (4.27)

6We did learn in the previous section that in the quantum context we should avoid using the word
“particles” to describe the two subsystems. But since the Bell argument is not or at least not yet
about quantum physics at this point we will continue to use it for now.
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However, this does not imply that the joint probability actually measured is
uncorrelated. Integrating over the hidden variables, we have

p12(a, b) =
∫

dλρ(λ)p1(a, λ)p2(b, λ) . (4.28)

The weight function ρ(λ), which contains all information about the hidden variables
in the source, leads in general to a non-factorizable joint probability distribution
p12(a, b)—these are correlations through a common cause.

A simple theorem [7] states that for any four numbers 0 ≤ x, x′, y, y′ ≤ 1 we
have

− 1 ≤ xy − xy′ + x′y + x′y′ − x′ − y′ ≤ 0 . (4.29)

Noting that probabilities lie between 0 and 1, and choosing two possible directions
a and a′, respectively b and b′ for the analyzers 1 and 2, we have therefore

− 1 ≤ p1(a, λ)p2(b, λ)− p1(a, λ)p2(b
′, λ)+ p1(a

′, λ)p2(b, λ)

+p1(a
′, λ)p2(b

′, λ)− p1(a
′, λ)− p2(b, λ) ≤ 0 , (4.30)

or, with Eq. (4.28),

− 1 ≤ p12(a, b, λ)− p12(a, b
′, λ)+ p12(a

′, b, λ)

+p12(a
′, b′, λ)− p1(a

′, λ)− p2(b, λ) ≤ 0 . (4.31)

Integrating this last equation over the hidden variables yields then

−
∫

dλρ(λ) ≤ p12(a, b)− p12(a, b
′)+ p12(a

′, b)

+p12(a
′, b′)− p1(a

′)− p2(b) ≤ 0 . (4.32)

The left-hand side of this double inequality is equal to −1 if
∫

dλρ(λ) = 1, but we
actually do not need it. Keeping the right-hand side only yields

p12(a, b)−p12(a, b
′)+p12(a

′, b)+p12(a
′, b′)−p1(a

′)−p2(b) ≤ 0 , (4.33)

which is a form of Bell’s inequalities due to J. F. Clauser and M. A. Horne.
Another form of Bell’s inequalities, due to J. F. Clauser, M. A. Horne, A.

Shimony, and R. A. Holt [8], results from a similar argument but holds when there
are only two possible outcomes for the various measurements, call them ↑ and ↓.
We proceed by introducing the correlation function

E(a, b) = p(↑,↑ |a, b)−p(↑,↓ |a, b)−p(↓,↑ |a, b)+p(↓,↓ |a, b) , (4.34)



4.3 Bell’s Inequalities 109

where p(↑,↑ |a, b) is the probability of getting the outcome (↑,↑) for detector
settings a and b. With Eq. (4.28) E(a, b) can be expressed, again with the help of
Eq. (4.28), as

E(a, b) =
∫

dλρ(λ)p1(↑ |a, λ)p2(↑ |b, λ)−
∫

dλρ(λ)p1(↑ |a, λ)p2(↓ |b, λ)

−
∫

dλρ(λ)p1(↓ |a, λ)p2(↑ |b, λ)+
∫

dλρ(λ)p1(↓ |a, λ)p2(↓ |b, λ)

=
∫

dλρ(λ) [p1(↑ |a, λ)− p1(↓ |a, λ)] [p2(↑ |b, λ)− p2(↓ |b, λ)]

≡
∫

dλρ(λ)Ā(a, λ)B̄(b, λ) , (4.35)

where Ā and B̄ stand for the first and second square brackets. It follows that

E(a, b)± E(a, b′) =
∫

dλρ(λ)Ā(a, λ)
[
B̄(b, λ)± B̄(b′, λ)] . (4.36)

Since the pi’s are probabilities, we have that 0 ≤ pi ≤ 1, and

|Ā(a, λ)| and |B̄(a, λ)| ≤ 1 (4.37)

so that

|E(a, b)± E(a, b′)| ≤
∫

dλρ(λ)|B̄(b, λ)± B̄(b′, λ)| . (4.38)

Likewise we also have

|E(a′, b)∓ E(a′, b′)| ≤
∫

dλρ(λ)|B̄(b, λ)∓ B̄(b′, λ)| , (4.39)

and, with Eq. (4.37),

|B̄(b, λ)± B̄(b′, λ)| + |B̄(b, λ)∓ B̄(b′, λ)| ≤ 2 , (4.40)

giving finally the Clauser–Horne–Shimony–Holt inequality

|E(a, b)± E(a, b′)| + |E(a′, b)∓ E(a′, b′)| ≤ 2 . (4.41)

Aspect Experiments Bell’s inequalities have now been tested in a number of
situations. One momentous early series of experiments was performed by A. Aspect
et al. [9]. Instead of spins, as in the Bohm version of the EPR paradox, the system
they used consisted of pairs of entangled photons emitted in a radiative atomic
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Fig. 4.2 Schematic of an experimental setup used to test Bell’s inequalities with photon pairs.
A source of pairs of entangled photons sent to space-like separated 2-channel polarizers that are
independently set at random by two people, call them Alice and Bob, long after the photons have
left the source, and the resulting signals are collected at (a) coincidence monitor

Fig. 4.3 Energy levels of the calcium atom, showing the two-photon pumping scheme (grey
arrows) and the two photons at frequencies ν1 and ν2 correlated in polarization emitted by the
atom during its decay back to the ground state (green and blue arrows)

cascade in Calcium, as sketched in Fig. 4.2, whereby the 4p2 1S0 level populated
by two-photon excitation decays back to the 4s2 1S0 state over the 4s4p1P1 level,
emitting two photons at wavelengths of about λ1 ≈ 551 nm and λ2 ≈ 423 nm, see
Fig. 4.3. Because the change in angular momentum in the transition is J = 0 →
J = 1 → J = 0, no net angular momentum is carried by the pair of photons. For
emitted photons counter-propagating in the ±z directions, the state of polarization
of the total system must therefore be of the form

|ψ〉 = 1√
2
[|↑〉1| ↑〉2 + | →〉1| →〉2] , (4.42)
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where | ↑〉 represents the polarization of a photon along the x-axis and | →〉 along
the y-axis, and the subscript i labels the photon of wavelength λi .

Quantum Mechanical Predictions The quantum mechanical prediction for the
measurement of photon pair polarizations is easily derived. The single probabilities
P±(a) and P±(b) of getting the results ± for the photon at wavelength λi, i =
1, 2, are of course equal to 1/2, and Problem 4.5 shows that the joint detection
probabilities are

P++(a, b) = P−−(a, b) = 1
2 cos2(a, b) ,

P+−(a, b) = P−+(a, b) = 1
2 sin2(a, b) , (4.43)

so that the correlation function (4.34) becomes

E(a, b) = P++(a, b)+ P−−(a, b)− P+−(a, b) = P−+(a, b) = cos 2(a, b) .
(4.44)

Problem 4.5 also shows that the Clauser–Horne–Shimony–Holt combination of
correlation functions (4.41), for instance

S ≡ |E(a, b)− E(a, b′)| + |E(a′, b)+ E(a′, b′)| (4.45)

reaches a maximum of 2
√

2 for (a, b) = (b, a′) = (a′, b′) = π/8, thereby strongly
violating this form of Bell’s inequality.

Eliminating the Loopholes The early experimental results of A. Aspect and
coworkers, for angles of 22.5◦ between the polarizers a and b, b and a′, and a′
and b′, and an angle of 67.5◦ between the polarizers a and b′ used to analyze the
correlations between the emitted photons, demonstrated an excellent agreement with
quantum mechanics, with |E(a, b) ± E(a, b′)| + |E(a′, b) ∓ E(a′, b′)| � 2.7, a
definite violation of Bell’s inequality (4.41), see Fig. 4.4. As such they confirmed
to a high degree of confidence the incompatibility between quantum mechanics and
local realistic hidden variable theories. Subsequent experiments further improved
very significantly on these early results.

Despite their remarkable success, the original Bell tests suffered however from
three loopholes, referred to as the “locality,” “fair sampling,” and “free will”
loopholes. These offered a potential “escape route” to local realistic hidden variable
theories.

The “locality” loophole raises the possibility that a local realistic theory might
rely on some type of signal sent from one entangled particle to its partner, perhaps in
the form of a signal containing information about the specific measurement carried
out on the first particle. In the Aspect experiments, that loophole was closed by a fast
random setting of the two polarizers, while the pairs of photons, separated by a large
distance, were in flight between the source and the detectors. Photons traveling in
different directions could then be measured in a space-like separated configuration.
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Fig. 4.4 S(θ) = cos(a, b) − cos(a, b′) + cos(a′, b) + cos(a′, b′) for θ ≡ (a, b) = (b, a′) =
(a′, b′) = (a, b′)/3 as a function of θ . The indicated experimental errors are ±2 standard
deviations. The solid curve is the quantum mechanical prediction for the actual experiment. For
an ideal experiment, the curve would exactly reach 2

√
2, but in the original experiment by A.

Aspect and coworkers reached 2.697± 0.015. (From Ref. [10])

Since according to relativity no influence can travel faster than the speed of light,
this approach allowed to remove the locality loophole.

The “fair sampling” loophole took longer to close: The issue here is that detectors
do not have a unit efficiency, so that a fraction of the particles emitted by the source
will not be detected. It might therefore be argued that a subset of detected particles
would violate Bell’s inequality, although the entire ensemble can be described by a
local realistic theory. A highly efficient experimental setup is therefore necessary to
demonstrate a conclusive Bell violation without having to assume that the detected
particles represent a “fair” sample. It can be shown that this requires detectors whose
probability of detecting a photon when its partner has been detected is higher than
2/3 [11, 12]. This was first achieved in 2013 in two optical experiments [13, 14].

While at that point the locality and fair sampling loopholes had both been indi-
vidually closed, it took another 2 years to close them simultaneously, in three series
of experiments using electron spins in one case [15] and entangled photons with
rapid setting generation, together with highly efficient superconducting detectors in
the others [16, 17], see also the viewpoint article [18] where A. Aspect comments
on these experiments.

The “free will” loophole refers to the fact that if for some reason the random
polarization selection is not really random, but correlated to other aspects of
the experiment, then the outcome of the Bell test could be affected. To close
this loophole, J. Handsteiner and coworkers [19] used the random nature of the
color changes in starlight to decide the setting of their polarization detectors. In
subsequent work M. H. Li, D. Rauch, and their respective coworkers [20, 21] carried
out experiments where the detector settings were based on real time measurements
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of the wavelength of photons emitted billions of years ago by high redshift quasars.
These experiments are also consistent with the nonlocality requirement but do
assume fair sampling. Since any influence trying to engineer the outcome of this
experiment would have had to act prior to the photons leaving their cosmic source,
this pushes back to an impressive 0.8 Gigayears the most recent time by which
any local realistic influences could have been exploited to engineer the observed
violation of Bell inequalities!

4.4 Quantum Key Distribution

4.4.1 The BB84 Protocol

Entangled states, in addition to their seminal importance in exposing the profound
differences between the classical and quantum worlds, also find remarkable appli-
cations in quantum metrology and quantum information processing. While practical
quantum computers may still be relatively far into the future, other applications
of quantum information science and technology are already being implemented.
A particularly elegant example is offered by quantum cryptography and quantum
teleportation, to which we now turn. This will allow us to also introduce another
remarkable aspect of quantum physics, the no-cloning theorem.

The central element of quantum cryptography is the distribution of secret
communication keys: the sender and receiver of coded messages (call them Alice
and Bob to follow the tradition) must share a “key” that allows Alice to encrypt the
message and Bob, but nobody else, to decrypt it. The only completely secure method
of encryption is a secret, random key that connects the plain text to the encoded text.

One way to establish such a key would be for Alice and Bob to meet and agree
upon it, or for a trusted agent to be sent from one to the other to distribute the
key. The difficulty and inefficiency of such an operation are obvious (in particular
to anybody who has read a spy novel or watched a spy movie) so more efficient
but less secure methods are generally used. Most current key distribution systems
derive their security from the use of convoluted algorithms or intractable problems, a
simple example being the factoring of two large prime numbers. Yet, as the security
of these methods relies on the assumption that the eavesdropper does not possess
the advanced techniques capable to defeat such algorithms, there is a need for key
distribution techniques that are absolutely secure, especially with the potential on
the horizon of quantum computers that open up powerful potential avenues to break
the code.

The remarkable advantage of quantum key distribution is that it offers uncon-
ditional security, rather than a security guaranteed by the limitations of current
technology. This is because it is bound only by the laws of quantum mechanics,
more specifically by the fact that quantum measurements are accompanied by an
unavoidable back action, a feature that we have already encountered at in Sect. 3.5,
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and that quantum states cannot be cloned, a property that will be discussed in some
detail in Sect. 4.4.2.

The first quantum key distribution protocol was proposed in 1984 by C. H.
Bennett and G. Brassard [22], and for that reason it is called the BB84 protocol.
In that scheme, which is easily explained in optical terms, Alice sends Bob a string
of bits coded into the polarization of individual photons, the essential point being
that the successive bits are imprinted into polarization basis states varied at random
from one bit to the next.

Assume for concreteness that the first basis is a horizontal/vertical basis ⊕, and
the second one a left-diagonal/right-diagonal basis ⊗. Alice decides that in the ⊕
basis the bit “1” would be mapped to a vertically polarized photon ↑ and the bit “0”
to a horizontally polarized photon →. Similarly, in the basis ⊗ the bit “1” would
correspond to a diagonally polarized photon at 45◦, and the bit “0” to the polarized
photon at 135◦. The four qubit states are then

|ψ0,⊕〉 = |0〉 ,
|ψ1,⊕〉 = |1〉 ,

|ψ0,⊗〉 = 1√
2

[|0〉 + |1〉] ,

|ψ1,⊗〉 = 1√
2

[|0〉 − |1〉] .

Assuming that Alice wishes to send the string (1, 0, 0, 1, 1, 1, 0, 1) and chooses
at random the successive basis sets (⊕,⊗,⊗,⊕,⊗,⊕,⊕,⊗), then the polarization
of the transmitted photons will be

(↑,↖,↖,↑,↗,↑,↓,↗) ,

and it will be transmitted to Bob as the tensor product of n qubits

|ψ1,⊕〉 |ψ0,⊗〉 |ψ0,⊗〉 |ψ1,⊕〉 |ψ1,⊗〉 |ψ1,⊕〉 |ψ0,⊕〉 |ψ1,⊗〉 .

Just like Alice, Bob selects at random the successive basis states of his measuring
device. Assume for concreteness that he chooses the sequence

(⊕,⊕,⊗,⊕,⊕,⊕,⊗,⊗) .

For those bits where Alice’s and Bob’s bases are the same (bits 1, 3, 4, 6, and 8
in this example), the measured photon polarization will match exactly that of the
emitted photon (assuming noiseless transmission.) In other cases, though, Bob’s
measurement will give one or the other result at random, and the outcome will be
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something like

(↑,→,↖,↑,→,↑,↗,↗) .

Alice and Bob then communicate over an open channel their choices of polariza-
tions. Keeping only those elements of the bit sequence where their choice coincides,
bits number 1, 3, 4, 6, and 8 in our example, results in the generation of the secret
key (1,0,1,1,1).

To determine whether eavesdropping has taken place, Alice and Bob generate a
significantly longer key than actually needed and exchange the values of the bits
for a subset of the values of the key, again on an open channel. The point is that
an eavesdropper, Eve, trying to intercept the communication between Alice and
Bob has no way of knowing their choice of basis; hence, she will guess the wrong
one half the time on average. In those cases, she will therefore randomly modify
the polarization of the photon before reinjecting it in the channel, thereby spoiling
the perfect correlations that would otherwise observed by Alice and Bob in the
verification step. They will then have determined for sure that their communication
has been tempered with, and reject the key.

4.4.2 No-cloning Theorem

One might however imagine that Eve would be able to defeat the key distribution
scheme if she were in possession of advanced technology that allowed her to clone
any ancillary input state |ψi〉. If that were possible, she would then be able to tap the
communication channel unnoticed. However, this is forbidden by the “no cloning
theorem” [23, 24]. This key ingredient in the development of quantum cryptography
states that it is impossible to clone into a system B an arbitrary state of a system A,
that is, that there is no “cloning operator” Ûc that allows to achieve the cloning
operation

Ûc|ψ〉A|0〉B = |ψ〉A|ψ〉B (4.46)

independently of the state |ψ〉A. The proof of the theorem is deceptively simple.
Assume first that the cloning operation does work for two orthogonal states |ψ〉A
and |φ〉A, that is, that

Ûc|ψ〉A|0〉B = |ψ〉A|ψ〉B ,
Ûc|φ〉A|0〉B = |φ〉A|φ〉B , (4.47)
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and consider then the new state |ξ 〉A = (1/
√

2)[|ψ〉A + |φ〉A]. It follows
immediately from Eq. (4.47) that

Ûc|ξ 〉A|0〉B = Ûc[|ψ〉A + |φ〉A] ⊗ |0〉B
= 1√

2
[|ψ〉A|ψ〉A + |φ〉A|φ〉B ] , (4.48)

rather than the desired state |ξ 〉A|ξ 〉B = (1/
√

2)[|ψ〉A + |φ〉A] ⊗ (1/
√

2)[|ψ〉B +
|φ〉B ]. This demonstrates the impossibility to clone an arbitrary quantum state.
Hence, Eve cannot clone perfectly the state of the photon sent by Alice. Her spying
is detectable in principle at the most fundamental level of quantum mechanics.

4.4.3 Quantum Teleportation

In the discussion of the BB84 quantum key distribution scheme we considered a
situation where Alice needed to transfer a known sequence of states under her
control to Bob. A more challenging situation is encountered when the state to
transfer is unknown. The notion of transferring an object from one to another
location by teleporting it in a way that causes it to disappear at the first location and
to simultaneously reappear at the second one is familiar to Star Trek aficionados.
Teleportation of macroscopic or live objects remains science fiction today, not
least because of the massive amount of information that would be required to
be transferred. Still, at a much more modest level it is possible to exploit EPR
correlations to teleport unknown quantum states of photons and atoms, for atoms
over very short distances so far, but for photons over distances of several kilometers.
Because the so-called Bell states basis plays a prominent role in this scheme,
we proceed by first introducing it before turning to the details of the quantum
teleportation scheme.

The Bell States Basis The so-called Bell states form a basis of maximally
entangled states of a pair of qubits with eigenstates |0〉 and |1〉. These could be
two-level atoms, two orthogonal states of polarization of a single photon, states of
the artificial atoms discussed of Sect. 7.4, or a number of other systems with only
two essential states. The Bell states are defined as

|"+〉 = 1√
2
(|0, 0〉 + |1, 1〉) , (4.49)

|"−〉 = 1√
2
(|0, 0〉 − |1, 1〉) , (4.50)

|#+〉 = 1√
2
(|0, 1〉 + |1, 0〉) , (4.51)

|#−〉 = 1√
2
(|0, 1〉 − |1, 0〉) , (4.52)
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in terms of which

|0, 0〉 = 1√
2
(|"+〉 + |"−〉) ; |0, 1〉 = 1√

2
(|#+〉 + |#−〉) ;

|1, 0〉 = 1√
2
(|#+〉 − |#−〉) ; |1, 1〉 = 1√

2
(|"+〉 − |"−〉) . (4.53)

It is easily shown that these states are orthonormal. They provide a remarkably
powerful basis to describe a number of problems in quantum information science
involving bipartite systems. We have already seen the role of |"+〉 in demonstrations
of violations of Bell’s inequalities, see e.g. Eq. (4.42) in the summary of Aspect’s
experiments. We now show how these states are also central to the teleportation of
unknown states of a qubit between two distant parties, calling them again Alice and
Bob [25].

Teleportation of Unknown States Suppose that Alice wishes to transfer to Bob a
state of the qubit

|ψ〉C = (α|0〉 + β|1〉)C (4.54)

that is unknown to her. We attach the label C to that unknown qubit for clarity in the
following argument, although it belongs to Alice. The protocol goes as follows: first,
Alice shares a maximally entangled pair of qubits with Bob, say the Bell state |"+〉.
It will prove useful to label explicitly which part “belongs” to Alice and which part
to Bob, that is,

|"+〉AB = 1√
2
(|0〉A|0〉B + |1〉A|1〉B) . (4.55)

In the presence of the unknown state to be teleported, the total state of the system is

|#〉 = |ψ〉C |"+〉AB = 1√
2

[α|0〉C + β|1〉C] [|0〉A|0〉B + |1〉A|1〉B ] , (4.56)

which with Eq. (4.53) can readily be rearranged as

|#〉 = 1√
2
(α|00〉CA|0〉B + α|01〉CA|1〉B + β|10〉CA|1〉B + β|11〉CA|1〉B)

= 1

2

[|"+〉CA ⊗ (
α|0〉 + β|1〉)

B
+ |"−〉CA ⊗

(
α|0〉 − β|1〉)

B

+ |#+〉CA ⊗
(
α|1〉 + β|0〉)

B
+ |#−〉CA ⊗

(
α|1〉 − β|0〉)

B

]
. (4.57)

While this last step may at first sight seem innocuous, this is not the case: The
key point is that when decomposed in that way, the total state |#〉 is seen to be a
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superposition of tensor products of four Bell states belonging to Alice—remember,
C belongs to Alice—times single qubit states belonging to Bob, with probability
amplitudes given by those of the unknown state, albeit not necessarily attached to
the proper qubit state |0〉 or |1〉, or with the right sign.

With this result in mind, Alice’s strategy is straightforward: she performs a
Bell state measurement of the local two-qubit system AC, resulting with equal
probabilities in one of the four Bell states of her system. The outcome instantly
projects Bob’s qubit to the corresponding state. If Alice indicates, over a classical
channel, that her result is |"+〉CA, Bob knows his qubit is already in the desired
state. Otherwise, he will apply the unitary transformation σ̂z if her result is |"−〉CA,
σ̂x if it is |#+〉CA, and iσ̂y if it is |#+〉CA. This will achieve the Bloch sphere
rotations, see Fig. 1.4, required to complete the teleportation of the unknown state,
since with Eq. (1.55) we have readily

σ̂z

(
α

−β
)
= σ̂x

(
β

α

)
= iσ̂y

(−β
α

)
=

(
α

β

)
. (4.58)

Importantly, at the end of the teleportation protocol Alice’s original qubit has not
remained unchanged, but rather it has become part of an entangled state. Hence,
there is no violation of the no-cloning theorem. Also, the quantum teleportation
protocol is not instantaneous since it requires the classical communication of the
outcome of Alice’s measurement, which can proceed no faster than the speed
of light. Quantum teleportation of atomic qubits was first demonstrated in two
experiments by M. Riebe et al. and M. D. Barrett et al. [26, 27].

Problems

Problem 4.1 Evaluate the spin-flipped density matrix

ρ̃AB = (σ̂y ⊗ σ̂y)ρ̂∗AB(σ̂y ⊗ σ̂y)

for the separable state |ψ〉AB = 1√
2
|1〉A(|1〉 + |0〉)B and for the entangled state

|ψ〉AB = 1
2 (|11〉AB + |00〉AB).

Problem 4.2 Show that for a system in a pure state the concurrence CAB =
max{λ1 − λ2 − λ3 − λ4, 0} reduces to CAB = 2

√
det(ρ̂A), with ρA = TrBρ̂AB .

Evaluate it for the two examples of Problem 4.1.

Problem 4.3 Consider a bipartite system A,B consisting of a pair of qubits
described by the most general pure state |ψ〉 = ∑

i,j cij |i, j 〉, where {i, j} =
{0, 1}. Show that the associated density operators ρ̂AB and ˜̂ρAB have at most two
eigenvalues that are not equal to zero.
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Fig. 4.5 Possible directions
of the pairs of polarizers used
in the optical tests of Bell’s
inequality

Problem 4.4 For any pure state |ψ〉 =∑
ijk cijk|ijk〉we have of a tripartite system

ABC:

(a) Show that

Tr(ρ̂ABρ̃AB) = 2det(ρ̂A)− Tr(ρ̂2
B)+ Tr(ρ̂2

C) .

(b) Using the unicity of the trace, show also that this result implies that

Tr(ρ̂ABρ̃AB) = 2
[
det(ρ̂A)+ det(ρ̂B)− det(ρ̂C)

]
.

Problem 4.5 Digging deeper into the Aspect experiments—after finishing this
problem (and even if you do not do it), you should read the account of the loophole-
free Bell test experiments by A. Aspect in Ref. [18].

In the original Aspect experiments, pairs of entangled photons were emitted in
a radiative atomic cascade in Calcium, with the 4p2 1S0 level, populated by two-
photon excitation, decaying back to the 4s2 1S0 state over the 4s4p1P1 level, emitting
a photon at λ1 = 551 nm and a second photon at λ2 = 423 nm. Because the change
in angular momentum in the transition is J = 0 → J = 1 → J = 0, no net angular
momentum is carried by the pair of photons, so that for emitted photons counter-
propagating in the ±z direction, the state of polarization of the total system must be
of the form

|ψ〉 = 1√
2
[|↑〉1| ↑〉2 + | →〉1| →〉2] .

(a) With “+” and “-” labeling the outcome of a measurement where the measured
polarization of the photon is parallel or perpendicular to the polarizer’s angle,
respectively, determines the probabilities P++(a, b), P−−(a, b), P+−(a, b),
and P−+(a, b) of measuring the pairs of polarization(++), (−−), (+−), and
(−+) for the two polarizers at angles (a, b).

(b) Evaluate the Clauser–Horne–Shimony–Holt inequality as a function of the
angles (a, b), (a′, b), and (a′, b′) see Fig. 4.5, and find which combination of
angles results in a maximum violation of the inequality by quantum mechanics.
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Problem 4.6 Show that the Bell states form an orthonormal basis, and determine
the unitary transformations in the four-dimensional Hilbert space of the pair of
qubits that generate them from the state |0, 0〉.

Hint: Use tensor products of unitary Pauli matrix transformations acting on the
individual qubits.
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Chapter 5
Coupling to Reservoirs

This chapter gives an introduction to the coupling of small systems to
reservoirs. After setting the stage with a discussion of spontaneous emission
in free space, we introduce three major theoretical methods used in the
analysis of system–reservoir interactions in the Markovian limit: the master
equation, Langevin equations, and Monte Carlo wave function approaches.
We conclude with a brief discussion of the input-output formalism.

The bipartite systems that we have encountered so far consisted largely of small
subsystems A and B of one or few particles prepared in pure quantum states. The
reason we focused on those situations is that it is for such states that the distinctive
quantum mechanical features associated with quantum entanglement, for instance,
the violation of Bell inequalities, are most readily apparent. However, a couple of
important points need to be kept in mind: first, the separation of a quantum system
into separate subsystems is largely arbitrary, dictated either by convenience and/or
by experimental considerations. That was, for instance, the case in the discussion of
quantum state teleportation, where the system was separated into two subsystems A
and B based on the location of its various components. While this was certainly
the appropriate decomposition in that case, one can well imagine that another
question might be more easily handled by separating the full system into a different
set of subsystems. One such situation appeared in the analysis of entanglement
distribution, where we separated a system ABC into a subsystem consisting of the
qubit A and a second subsystem consisting of the effective qubit (BC). In addition,
the simple systems that we have considered so far can never be completely isolated
from their environment, even by the most astute and careful experimentalist, and we
have largely ignored this key issue so far.

In the simplest cases, it is again possible to think of a system coupled to the
environment as a bipartite system, where one of the systems is now “small,” and
the other, the environment (or reservoir), is “large,” in the sense that it contains a
large number of degrees of freedom and is characterized by some density of states
and some spectral density function D(ω). Depending on the specific properties of
D(ω), the large system may exhibit memory effects or not, that is, be either non-
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Markovian or Markovian. In the Markovian case, the small system will wind up
being characterized by the effective irreversible decay of energy and coherence,
despite the fact that at the fundamental level, it is described by a Schrödinger (or
Dirac in the relativistic case) equation, which is a time-reversible equation. For non-
Markovian systems, though, memory effects can result in the small system regaining
some of its energy and coherence in a time-dependent fashion.

In general, one has relatively little control over the environment and may only
know its average energy, or temperature, and perhaps its mean number of particles.
Its state is then described by a density operator maximizing its entropy under
the known constraints, following an approach along the lines already discussed
in Sect. 2.3.1, but generalized to multimode and/or multiparticle systems. In most
cases, it can also be assumed that whatever happens to the small system does not
change the state of the reservoir in any significant way—think of a drop of water
added to the ocean.

This chapter gives an introduction to the coupling of small systems to reser-
voirs. After setting the stage with a discussion of spontaneous emission in free
space, we introduce three major theoretical approaches used in the analysis of
system–reservoir interactions in the Markovian limit: the master equation, Langevin
equations, and Monte Carlo wave function approaches. We conclude with a brief
discussion of the input–output formalism, which becomes, for example, important
in quantum optics situations where the reservoir, or parts of it, serves as a measuring
apparatus as well and it becomes necessary to treat it more explicitly than is done in
the simplest reservoir formalism approach. Chapter 6 will then go one step further
and introduce the idea of a reservoir serving as a “pointer basis” in the context
of quantum measurements. Chapter 7 on cavity quantum electrodynamics (cavity
QED) will introduce a number of ways to tailor the electromagnetic environment in
highly controlled fashion, with applications in basic physics, quantum metrology,
and information processing.

5.1 Spontaneous Emission in Free Space

We have seen in Sect. 3.4 that an excited atom interacting with a single-mode
electromagnetic field can spontaneously undergo a transition to the ground state
even in the absence of cavity photons, |n = 0〉. It can then reabsorb this photon,
resulting in vacuum Rabi oscillations of the atomic populations pe(t) and pg(t).
The situation is however quite different in free space: the atom interacts not with a
single field mode, but rather with an electromagnetic environment that consists of a
broad continuum of modes. From the blackbody energy density formula

u(ω, T )dω =
(
h̄ω3

π2c3

)
1

eh̄ω/kBT − 1
dω, (5.1)

it follows that in the visible region and at room temperature, these modes can be
taken to an excellent approximation to be at zero temperature, T ≈ 0, and are for all
practical purposes in the vacuum state {|0〉}, as is apparent from Fig. 5.1. The excited
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Fig. 5.1 Blackbody power
density spectrum (in arbitrary
units) as a function of
wavelength for temperatures
T = 3000K, T = 4000K,
T = 5000K, and T = 6000K

atom can therefore spontaneously emit a photon into any of this infinite number of
vacuum modes, and once this happens, spontaneously emitted photons escape for
good, with a vanishing probability of being reabsorbed.1

5.1.1 Free Space Density of Modes

A quantitative description of spontaneous emission requires a precise formulation of
the density of electromagnetic modes D(ω) that is specific to the geometry at hand.
It can be very broad, as is the case in free space, but could also be narrow or have
a complex structure, perhaps with band gaps. These various situations can lead to
qualitatively and quantitatively different atomic behaviors, as will be seen in some
detail in Chap. 7.

The free space geometry that we consider can be handled by considering field
quantization in a three-dimensional cubic cavity of side length L with periodic
boundary conditions, with L eventually taken to infinity. Along the x̂ direction, the
cavity can sustain running modes with wave numbersKx = 2πnx/L, nx = 1, 2, . . .
Taking differentials of this expression, we find the number of modes between Kx
andKx+dKx to be dnx = dKxL/2π . Performing the same calculation for the ŷ and
ẑ directions, the number of modes in the volume element dKxdKydKz is therefore

1This would however not be the case for transitions in the microwave regime, where the mean
number of thermal photons is small, but different from zero at room temperature. The reabsorption
of spontaneously emitted photons is also an important consideration in many cavity QED
experiments, which can create situations where the photon is forced to return to the atom, maybe
by an appropriate arrangement of mirrors.
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dn =
(
L

2π

)3

d3K . (5.2)

For large L, it is possible to go to a continuous limit by replacing the summation
over K by the integral

1

V

∑
K

f (K)→ 1

V

∫
dnf (K) = 1

(2π)3

∫
d3Kf (K) , (5.3)

where V = L3 is the volume of the cavity and d3K = K2 sin θdKdθ dφ in spherical
coordinates. Transforming to frequencies with ω = Kc gives then

1

V

∑
K

f (K)→ 1

(2π)3

∫ ∞
0

dω
ω2

c3

∫ π

0
dθ sin θ

∫ 2π

0
dφf (K) . (5.4)

In addition, we have to sum over the two polarizations of the transverse
electromagnetic field. In performing any particular sum over states, we should
insert the desired function f (K) into Eq. (5.4) and carry out the three integrals,
taking into account the two possible field polarizations.

5.1.2 Weisskopf–Wigner Theory of Spontaneous Emission

Armed with the three-dimensional free space density of states, we can now proceed
with the dynamics of a two-state atom interacting with a field initially in the vacuum
state {|0s〉}, where s labels the field modes. In the electric dipole interaction and
rotating wave approximation, the atom–field Hamiltonian is

Ĥ = h̄
∑
s

ωs â
†
s âs + h̄ωe|e〉〈e| + h̄ωg|g〉〈g| + h̄

∑
s

(gs âs σ̂+ + h.c.) , (5.5)

where the electric dipole interaction Hamiltonian

V̂ = h̄
∑
s

(gs âs σ̂+ + h.c.) (5.6)

connects the state |e{0}〉 only to the set of states |g{1s}〉, which describe an atom in
its lower state with one photon in the sth mode and no photons in any other mode.
This reduces the most general state vector describing the system to

|ψ(t)〉 = Ce0(t)e−iωet |e{0}〉 +
∑
s

Cg{1s }(t)e−i(ωg+ωs)t |g{1s}〉 . (5.7)

Substituting this state into the Schrödinger equation with the Hamiltonian (5.5) and
projecting onto the states |e{0}〉 and |g{1s}〉 give the probability amplitude equations
of motion
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dCe0(t)

dt
= −i

∑
s

gse
−i(ωs−ω0)tCg{1s }(t) , (5.8)

dCg{1s }(t)
dt

= −ig∗s ei(ωs−ω0)tCe0(t) , (5.9)

with ω0 = ωe − ωg . Inserting the formal time integral of the second equation into
the first one yields an integro-differential equation for Ce0 alone,

dCe0(t)

dt
= −

∑
s

|gs |2
∫ t

t0

dt ′e−i(ωs−ω0)(t−t ′)Ce0(t ′) . (5.10)

We now use Eq. (5.4) to convert the sum over states to a three-dimensional integral,
which gives

dCe0(t)

dt
= − V

(2πc)3

∫
dωω2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

×|g(ω, θ)|2
∫ t

t0

dt ′e−i(ω−ω0)(t−t ′)Ce0(t ′) . (5.11)

Figure 5.2 shows the coordinate system for one running wave with two possible
polarizations e1 and e2 interacting with the atomic dipole. To calculate |g(ω, θ)|2,
we evaluate

|g(ω, θ)|2 = |Eω/h̄|2
2∑
σ=1

|〈α|er · eσ |b〉|2

= |Eωd/h̄|2 sin2 θ(cos2 φ + sin2 φ)

= |Eωd/h̄|2 sin2 θ , (5.12)

Fig. 5.2 Coordinate system
for a plane running wave with
wave vector K and two
transverse polarizations along
the directions e1 and e2. The
atomic dipole points in a
direction at angle θ with
respect to the propagation
direction K and φ with
respect to e1
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which is independent of the azimuthal coordinate φ. Remembering that for running
waves, the square of the “electric field per photon” differs from its value for standing
waves by a factor of 1/

√
2 and is given by

Eω =
√
h̄ω/2ε0V , (5.13)

see Eq. (2.74), and substituting Eq. (5.12) into Eq. (5.11), we encounter the integral

∫ π

0
dθ sin3 θ =

∫ 1

−1
d(cos θ)(1− cos2 θ) = 4

3
. (5.14)

With this result, Eq. (5.11) becomes

dCe0(t)

dt
= − 1

6ε0π2h̄c3

∫
dωω3|d|2

∫ t

t0

dt ′e−i(ω−ω0)(t−t ′)Ce0(t ′) . (5.15)

Markov Approximation This equation is nonlocal in time since Ce0(t) is a
function of the earlier amplitudes Ce0(t ′) and depends therefore on all of its
past history. To solve it approximately, we observe that ω3|d|2 varies little in the
frequency interval over which the integral over t ′ has an appreciable value and
perform in addition a coarse-grained integration, that is, assume that Ce0(t ′) varies
sufficiently slowly that it can be evaluated at t ′ = t and factored outside the
integrals. This is in essence the Markov approximation, where all memory effects
resulting from the interaction between the atom and the reservoir are being ignored.
This results in a remaining time integral that has a highly peaked value at ω = ω0,
since

lim
t→∞

∫ t

t0

dt ′e−i(ω−ω0)(t−t ′) = πδ(ω − ω0)− P
[

i

ω − ωo
]
, (5.16)

and allows us therefore to evaluate the product ω3|d|2 at ω0. The principal part
P[i/(ω−ω0)] leads to a frequency shift related to the Lamb shift, and the πδ(ω−ω0)

term gives

dCe0(t)

dt
= −�

2
Ce0(t) , (5.17)

where � is the Weisskopf–Wigner spontaneous emission decay rate

� = |d|2ω3
0

3πε0h̄c3 =
1

4πε0

4|d|2ω3
0

3h̄c3 . (5.18)

As a result of the Markov approximation, the Weisskopf–Wigner theory of spon-
taneous emission predicts therefore an irreversible exponential decay of the upper
state population, with no revivals. Although under the action of each individual
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mode, the atom would have a finite probability to return to the upper state, as in the
Jaynes–Cummings vacuum Rabi oscillations, the probability amplitudes for such
events effectively interfere destructively when summed over the continuum of free
space modes. This is quite a remarkable result, since we started from a system
described by the completely reversible dynamics of the Schrödinger equation and
wound up with an effective irreversible decay of the upper state atomic population.
This irreversible dissipation of the small system energy into the reservoir is of
course only approximate and results from ignoring all memory effects in the
system dynamics. It is a frequent signature of the interaction of small systems with
Markovian reservoirs as will be discussed in a more general context in the following
sections.

While the Markov approximation is oftentimes excellent, it is certainly not
always justified, and it is not uncommon to face situations where the coupling of
small systems to reservoirs is characterized by memory effects such as recurrences
or other remnants of reversible behavior. We have already encountered the most
extreme such situation in the Jaynes–Cummings model and will see in Chap. 7 that
electromagnetic environments can be tailored in ways that result in situations where
the spontaneous emission rate can be either enhanced or inhibited from its free space
value (5.18).

5.1.3 Superradiance and Subradiance

In addition to the use of tailored electromagnetic environments, radiative decay
can also be modified by the presence of other radiators. While based on everyday
experience, one might intuitively expect that with more than one atom in an atomic
vapor each of them will still decay at the same rate �, this need not be the case.
Remarkably, under appropriate conditions, even the presence of just one additional
atom can drastically modify the decay of an atom, a result of constructive or
destructive quantum interferences between the one-photon radiation fields emitted
by the two atoms. This is perhaps best illustrated by considering the simple example
of two co-located identical atoms prepared in the entangled state

|ψ〉atoms(0) = 1√
2

[|e, g〉 ± |g, e〉] , (5.19)

with the electromagnetic field initially in the free space vacuum. This system is
again described by the Hamiltonian (5.5), with the only difference that we now have
two atoms instead of one so that

Ĥ = h̄
∑
s

ωs â
†
s âs +

2∑
m=1

[
h̄ωe|e〉〈e|m + h̄ωg|g〉〈g|m + h̄

∑
s

(
gsâs σ̂m,++h.c.

)]
.

(5.20)
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The state of the atom–field system at time t is then

|ψ(t)〉 = Ceg0(t)e
−i(ωe+ωg)t |e, g, {0}〉 + Cge0(t)e−i(ωe+ωg)t |e, g, {0}〉

+
∑
s

Cgg{1s }(t)e−i(2ωg+ωs)t |g, g, {1s}〉 . (5.21)

Following the same procedure as in the previous section, we replace the sum over
modes by an integral, formally integrate the equation of motion for Cgg{1s }(t), and
carry out the Weisskopf–Wigner approximation. This yields readily the coupled
equations of motion for the excited state probability amplitudes of the two atoms
as

d

dt
Ceg0(t) = −�

2

[
Ceg0(t)+ Cge0(t)

]
,

d

dt
Cge0(t) = −�

2

[
Ceg0(t)+ Cge0(t)

]
. (5.22)

Contrary to what might have been intuitively expected, but not surprising perhaps
following our discussion of quantum entanglement, this result indicates that the
decay of one of the atoms is not independent of the presence of a second atom.
Importantly, its decay rate can be either increased, decreased, or left unchanged by
the presence of the second atom. This is easily seen by adding and subtracting the
two equations (5.22) to find

d

dt

[
Ceg0(t)+ Cge0(t)

] = −� [
Ceg0(t)+ Cge0(t)

]
,

d

dt

[
Ceg0(t)− Cge0(t)

] = 0 . (5.23)

The second of these equations indicates that if Cge0(0) = Ceg0(0) = 1/
√

2, then
they remain equal at all times, so that

d

dt
Ceg0(t) = d

dt
Cge0(t) = −�Ceg0(t) ; (5.24)

that is, the atoms decay at twice the rate of the isolated atoms. This effect, called
superradiance, was first predicted by R. H. Dicke in 1954 [1], see also the review [2]
for a more detailed presentation. In contrast, for Cge0(0) = −Ceg0(0) = 1/

√
2, we

have

d

dt
Ceg0(t) = d

dt
Cge0(t) = 0 , (5.25)

and the atoms do not decay at all. Not surprisingly, this is called subradiance.
Importantly, it is easily shown, for instance, by imposing a random phase between
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Ceg0(0) and Cge0(0), that if the atoms are in the incoherent mixture

ρatoms(0) = 1

2

[|e, g〉〈e, g| + |g, e〉〈g, e|] (5.26)

rather than an entangled state such as Eq. (5.19), then the two atoms decay at
the individual spontaneous decay rate �, with equal excited state population
probabilities pe(t) given by

dpe(t)

dt
= −�pe(t). (5.27)

Superradiance and subradiance originate from quantum interferences in the fields
emitted and reabsorbed by the two atoms. When two initially excited atoms radiate
into the vacuum field, they act as sources for the evolution of the two-atom ground
state probability amplitudesCgg{1s }(t), rather than of the individual atom probability
amplitudes Cg{1s }(t), see Eq. (5.9). The fields from these two sources can interfere
either destructively or constructively, and as a result, they drive the dynamics
of the two-atom system differently when the field is repeatedly reabsorbed and
reemitted. For a mixed state, the relative phases of the fields originating from
the two atoms add at random. Hence, the interferences are washed out and each
atom acts independently of the other. This is the situation encountered in everyday
situations, but that this is not necessarily the case must be kept in mind, in particular
in quantum information applications where optically driven qubits might or might
not be entangled.

5.2 Master Equation

The Weisskopf–Wigner theory of spontaneous emission is an example of a general
class of problems involving the coupling of a small system to its environment, in
this case the continuum of modes of the electromagnetic field. When computing the
atomic decay rate, we were not interested in the field itself, but only in its effect on
the atomic dynamics. In stark contrast with the situations encountered in Chap. 4,
where both subsystems were treated on an equal footing, we never explicitly
computed the field dynamics. Instead, we carried out a pair of approximations that
resulted in the effectively irreversible decay of the atomic upper state population
and the associated transfer of energy to the field. They were (a) the assumption that
the probability amplitude Ce0(t) varies little during the time interval defined by the
inverse bandwidth of the continuum of modes of the electromagnetic field and (b)
the replacement of the remaining time integration in Eq. (5.15) by a δ-function.

This chapter discusses two primary methods to describe system–reservoir inter-
actions. The first one is based on the Schrödinger picture and leads to the so-called
master equation. The alternative Heisenberg approach leads to the introduction of
quantum noise operators giving the description of the problem a flavor reminiscent



132 5 Coupling to Reservoirs

of the Langevin approach to stochastic problems in classical physics. In addition
to these two approaches, we will also consider the method of Monte Carlo wave
functions, which permits to unravel the master equation into “quantum trajectories”
of considerable intuitive appeal and numerical convenience.

We consider a generic system consisting of a small system S coupled to a large
reservoir R by some interaction V̂ . It is described by the Hamiltonian

Ĥ = Ĥs + Ĥr + V̂ ≡ Ĥ0 + V̂ , (5.28)

which, together with initial conditions, completely specifies the problem at hand.
We assume that at the initial time t0, the small system is described by a density
operator ρ̂s(t0) with Trs ρ̂s(t0) = 1, where Trs stands for the partial trace over the
system. In contrast, we take the reservoir to be a very large system with an immense
number of degrees of freedom. In most cases (but not always), it is taken to be in
thermal equilibrium at some temperature T and is therefore described by the time-
independent density operator ρ̂r of Eq. (2.83),

ρ̂r (Ĥr ) = e−βĤr

Trr{e−βĤr }
, (5.29)

with β = 1/kBT and Trr ρ̂r (Ĥr ) = 1, with Trr the trace over the reservoir.
Assuming that the system and reservoir are brought into contact at time t = t0,
they initially do not exhibit any correlations, and thus the initial state of the system
is described by the factorized density operator

ρ̂sr (t0) = ρ̂s(t0)⊗ ρ̂r (Ĥr ) . (5.30)

Its Schrödinger picture evolution is given by

∂ρ̂sr

∂t
= − i

h̄
[Ĥ , ρ̂sr ] . (5.31)

When solved for all times, it provides a full characterization of the states of both the
system and the reservoir.

The goal of the master equation is less ambitious: it is to provide, in the
Schrödinger picture, a partial and simplified description that allows us to achieve
the limited goal to determine the expectation value of the system operators Ô only,

〈Ô(t)〉 = Trsr{Ôρ̂sr (t)} , (5.32)

where the trace is over both the system and the reservoir. Since Ô is a system
operator, we may rewrite this expression as

〈Ô(t)〉 = Trs{Ô Trr ρ̂st (t)} ≡ Trs{Ôρ̂s(t)} . (5.33)
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The operator

ρ̂s(t) ≡ Trr ρ̂st (t) (5.34)

is called the reduced density operator of the system, and all we need to determine
the expectation value of system operators is to know ρ̂s(t) at all times. The equation
of motion for ρ̂s(t) is called a master equation.

Our strategy to derive the master equation is quite simple: we solve the
problem to second order in perturbation theory, trace over the reservoir, take into
account if appropriate that it has a very broad bandwidth to perform the Markov
approximation, and obtain directly an equation for ρ̂s(t) that is valid for times long
compared to the inverse bandwidth τc of the reservoir.

In doing so, it is important not to confuse τc with the characteristic time scale
of the free evolution of the system, which can possibly be fast as well. To make
sure that things do not get mixed up, we therefore first go into an interaction picture
where all free evolutions are eliminated. Assuming that the Hamiltonian Ĥ0 has no
explicit time dependence, the interaction picture density operator P̂sr (t) is related
to the Schrödinger picture density operator by the unitary transformation

P̂sr (t) = eiĤ0(t−t0)/h̄ρ̂sr (t)e−iĤ0(t−t0)/h̄ , (5.35)

and the corresponding interaction picture reduced density operator ρ̂(t) for the
system2

ρ̂(t) ≡ Trr{P̂sr (t)} (5.36)

is related to the Schrödinger picture reduced density operator ρ̂s(t) by

ρ̂s(t) = e−iĤs (t−t0)/h̄ρ̂(t)eiĤs (t−t0)/h̄ . (5.37)

Differentiating Eq. (5.35) with respect to time, and using Eq. (5.31), yields the
equation of motion for Psr(t)

∂P̂sr (t)

∂t
= − i

h̄
[V̂I (t − t0), P̂sr (t)] , (5.38)

where

V̂I (t − t0) = eiĤ0(t−t0)/h̄V̂ e−iĤ0(t−t0)/h̄ (5.39)

2The notation for the various density operators appearing here, while not necessarily completely
satisfying, is motivated by the desire to keep the master equation as free of indices as possible in
the interaction picture, where it is usually applied.
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is the interaction Hamiltonian in the interaction picture. Finally, differentiating
Eq. (5.37) with respect to time gives

∂ρ̂s(t)

∂t
= − i

h̄
e−iĤs (t−t0)/h̄

(
[Ĥs, ρ̂(t)] + ih̄

∂ρ̂(t)

∂t

)
eiĤs (t−t0)/h̄ , (5.40)

an equation that relates the equations of motion for the Schrödinger and interaction
picture reduced density operators ρ̂s and ρ̂.

With this relationship established, we now proceed to determine the evolution of
ρ̂(t), using as our starting point the evolution of P̂sr (t). In general, system–reservoir
coupling problems are not amenable to an exact solution, and here we solve the
problem to second order in perturbation theory. Specifically, we integrate Eq. (5.38)
from t0 to t, taking P̂sr (t) � P̂sr (t0) in the commutator to obtain a first-order
solution for P̂sr (t).We then use this improved value in the commutator, integrating
again to obtain a value of Psr(t) accurate to second order. We find

P̂sr (t) = P̂sr (t0)− i

h̄

∫ t

t0

dt ′[V̂I (t ′ − t0), P̂sr (t0)]

− 1

h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[V̂I (t ′ − t0), [V̂I (t ′′ − t0), P̂sr (t0)]] + . . . , (5.41)

and tracing over the reservoir yields the evolution of the reduced density operator
ρ̂(t). Performing this trace, we can define a coarse-grained equation of motion for
ρ̂(t) by

˙̂ρ(t) � ρ̂(t)− ρ̂(t − τ)
τ

, (5.42)

where the time interval τ = t − t0 is taken to be long compared to the reservoir
memory time τc, but short compared to times yielding significant changes in the
system variables. In explicit calculations, it is convenient to shift the time origin by
τ , i.e., to write

˙̂ρ(t + τ) � ρ̂(t + τ)− ρ̂(t)
τ

. (5.43)

Since we assume that ρ̂(t) does not vary significantly in the time τ , we suppose
that ∂ρ̂(t)/∂t itself is given by this expression. We further note that the double
commutator in Eq. (5.41) simplifies somewhat since

[V̂ ′, [V̂ ′′, P̂sr ]] = V̂ ′V̂ ′′P̂sr − V̂ ′P̂sr V̂ ′′ + adj.

This is easily shown since (ÂB̂Ĉ)† = Ĉ†B̂†Â† and all operators appearing in this
equation are Hermitian. Combining these observations yields the interaction picture
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coarse-grained equation of motion for the system density operator

∂ρ̂(t)

∂t
� − i

h̄τ

∫ τ

0
dτ ′Trr{V̂I (τ ′)P̂sr (t)} − 1

h̄2τ

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′

×Trr
[
V̂I (τ

′)V̂I (τ ′′)P̂sr (t)− V̂I (τ ′)P̂sr (t)V̂I (τ ′′)
]
+ adj. (5.44)

Importantly, we observe that the reduced density operator actually has two time
dependencies, t and τ . As we shall see, τ is associated with the dynamics
of reservoir operators, and this dependence disappears in case the reservoir is
stationary and with infinitely short memory.

To proceed further, it is pedagogically helpful to temporarily sacrifice generality
and use explicit forms of the interaction Hamiltonian V̂I that make the underlying
physics of the system–reservoir interaction more transparent. With this goal in mind,
we concentrate first on the important case of a simple harmonic oscillator coupled
to a bath of harmonic oscillators, before returning to more general considerations in
Sect. 5.2.2.

5.2.1 Damped Harmonic Oscillator

The system and reservoir Hamiltonians of a simple harmonic oscillator of frequency
� coupled to a bath of harmonic oscillators of frequencies ωj are

Ĥs = h̄�â†â (5.45)

and

Ĥr =
∑
j

h̄ωj b̂
†
j b̂j . (5.46)

This is a broadly used model of a reservoir that finds applications in many situations,
well past the relatively narrow confines of quantum optics where its most familiar
application is in the description of the radiative coupling of an atom to the continuum
of modes of the electromagnetic field. More generally, it also accounts for electron–
phonon interactions in conductors, mechanical damping by a phonon bath in
optomechanics, and many other examples. This is because while different problems
require of course different system Hamiltonians Ĥs , the general impact of the bath
on the system dynamics is usually not very sensitive to the explicit form of Ĥr , in
particular if it is a Markovian reservoir characterized by a broadband spectrum and
hence a very short correlation time compared to the characteristic time(s) of the
small system. In addition to this main reason, another motivation for the broad use
of this model is that harmonic oscillators are some of the simplest quantum systems,
and they make our lives particularly easy.
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To complete our model, we assume that the elementary exchange of energy
between system and bath consists of the simultaneous creation of a quantum of
excitation of the system with annihilation of a quantum in the j th mode of the bath,
or the reverse process,

V̂ = h̄
∑
j

(gj â
†b̂j + g∗j b̂†

j â) , (5.47)

or, in the interaction picture,

V̂I (t) = h̄
∑
j

gj â
†b̂j e

i(�−ωj )(t−t0) + adj. , (5.48)

where we made use of the free evolution of the annihilation and creation operators
and remembered that system and reservoir operators commute at equal times. We
can simplify the form of Eq. (5.48) by writing it in the more compact form

V̂I (τ ) = h̄â†F̂ (τ )+ h̄âF̂ †(τ ), (5.49)

where the operator

F̂ (τ ) ≡ −i
∑
j

gj b̂j e
i(�−ωj )τ (5.50)

acts only on states of the reservoir Hilbert space. We will see explicitly in Sect. 5.3
how F̂ (τ ) can be interpreted as a quantum noise operator.

Reservoir Correlation Functions When tracing over a reservoir in thermal equi-
librium, we encounter terms of the type

Trr{â†F̂ (τ )P̂sr (t)} = â†ρ̂(t)Trr{F̂ (τ )ρ̂r (Ĥr )} ,

where we have used Eqs. (5.29) and (5.30) and the fact that at time t0 the interaction
picture and Schrödinger density operators are identical. The trace on the right-hand
side of this equation is readily identified as the expectation value 〈F̂ (τ )〉 of the
reservoir operator F̂ (τ ). It vanishes provided that the reservoir density operator ρ̂r
is diagonal in the Fock states basis, as is the case for the thermal density operator
(5.29). We can then cyclically permute reservoir operators under the reservoir trace
in the remaining terms of Eq. (5.44) to find

˙̂ρ(t) = − 1

h̄2τ

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′

[
â†âρ̂(t)〈F̂ (τ ′)F̂ †(τ ′′)〉r − âρ̂(t)â†〈F̂ (τ ′′)F̂ †(τ ′)〉r

+ââ†ρ̂(t)〈F̂ †(τ ′)F̂ (τ ′′)〉r − â†ρ̂(t)â〈F̂ †(τ ′′)F̂ (τ ′)〉r
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+ââρ̂(t)〈F̂ †(τ ′)F̂ †(τ ′′)〉r − âρ̂(t)â〈F̂ †(τ ′′)F̂ †(τ ′)〉r
+ â†â†ρ̂(t)〈F̂ (τ ′)F̂ (τ ′′)〉r − â†ρ̂(t)â†〈F̂ (τ ′′)F̂ (τ ′)〉r

]
+ adj. (5.51)

Averages such as 〈F̂ (τ ′)F̂ †(τ ′′)〉r are readily identified as first-order correlation
functions of the bath. If the bath is stationary, as is the case in thermal equilibrium,
see Eq. (5.29), they depend only on the time difference T = τ ′ − τ ′′, so that

〈F̂ (τ ′)F̂ †(τ ′′)〉r = 〈F̂ (τ ′′)F̂ †(τ ′)〉∗r .

Using Eq. (5.50), we find that these expressions have explicit forms like

〈F̂ (τ ′)F̂ †(τ ′′)〉r =
∑
i,j

gig
∗
j 〈b̂i b̂†

j 〉rei�(τ ′−τ ′′)ei(ωj τ ′′−ωiτ ′)

=
∑
i

|gi |2〈b̂i b̂†
i 〉rei(�−ωi)(τ ′−τ ′′) , (5.52)

where the reservoir density operator is assumed to be diagonal in the energy
representation—that is, on the Fock states basis—to obtain the second equality. It is
important to keep in mind that while this condition is satisfied in thermal equilib-
rium, it must be relaxed when considering, for example, “squeezed reservoirs.”

Markov Approximation Equation (5.52) tells us how fast the bath correlations
decay away. We now perform the Markov approximation, which we already
encountered in Sect. 5.1, and which assumes that this correlation time is infinitely
short compared to all times of interest for the system. For example, with the change
of variable T = τ ′ − τ ′′, Eq. (5.52) becomes

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′〈F̂ (τ ′)F̂ †(τ ′′)〉r =

∫ τ

0
dτ ′

∑
i

|gi |2〈b̂i b̂†
i 〉r

∫ τ ′

0
dT ei(�−ωi)T .

(5.53)

In the Weisskopf–Wigner theory of spontaneous emission, we replaced the sum over
modes with an integral and interpreted the integral over the exponential as a δ-
function. Similarly, calling D(ω) the density of modes of the reservoir, and assuming
that the reservoir has sufficient bandwidth to justify the δ-function approximation of
the integral, we find that (5.53) becomes

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′〈F̂ (τ ′)F̂ †(τ ′′)〉r = γ τ

2
〈b̂(�)b̂†(�)〉r , (5.54)

where in analogy with the Weisskopf–Wigner theory, we introduced a decay rate

γ = 2πD(�)|g(�)|2, (5.55)
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and we neglected the simple harmonic oscillator analog of the Lamb shift. The factor
|g(�)|2〈b̂(�)b̂†(�)〉r is a measure of the strength of the coupling of the simple
harmonic oscillator with the mode of the reservoir that oscillates at its frequency �.

When effectively extending the upper limit of the time integration to infinity in
the second integral of Eq. (5.53) to approximate it as a δ-function, we implicitly
assumed that the reservoir correlation time τc is so small that the integrand vanishes
after times short enough for second-order perturbation theory to remains valid. Thus,
the approximate solution (5.54) is valid for times short compared to the decay of
the system, but long compared to the correlation time of the reservoir. This is the
essence of the Markov approximation. We will revisit this approximation in the
Heisenberg picture in the next section and confirm that it amounts to assuming that
the correlation functions of the bath are effectively δ-correlated, that is, the reservoir
loses its memory instantaneously.

From Eq. (5.29), the average n̄ of the number operator b̂†(�)b̂(�) over a thermal
distribution is given by

n̄ ≡ 〈b̂†(�)b̂(�)〉r = 1

eβh̄� − 1
, (5.56)

and from the bosonic commutation relation [b̂(�), b̂†(�)] = 1, 〈b̂(�)b̂†(�)〉 =
n̄+ 1.

Substituting Eqs. (5.54) and (5.56) along with corresponding expressions for
the terms with 〈F̂ †(τ ′)F̂ (τ ′′)〉r gives finally the master equation that governs the
dynamics of the system reduced density operator in the interaction picture

dρ̂(t)

dt
= −γ

2
(n̄+ 1)[â†âρ̂(t)− âρ̂(t)â†]

−γ
2
n̄[ρ̂(t)ââ† − â†ρ̂(t)â] + adj. ≡ L̂ρ̂ , (5.57)

where the superoperator L̂ is called the Liouvillian. Here, we have neglected
terms containing correlation functions like 〈F̂ (τ ′)F̂ (τ ′′)〉 and 〈F̂ †(τ ′)F̂ †(τ ′′)〉, an
approximation valid if the density operator is diagonal in the energy representation.
If the reservoir is at zero temperature, n̄ = 0, then the remaining terms in the master
equation (5.57) result from reservoir vacuum fluctuations only.

Detailed Balance As advertised at the beginning of this section, we can use the
master equation (5.57) to determine the time dependence of the expectations value
of system operators without needing to worry any longer about the reservoir. For
example, the average excitation number 〈â†â〉s = Trs[â†âρ̂(t)] in the oscillator is
governed by the equation of motion

d〈â†â〉s
dt

= −γ 〈â†â〉s + γ n̄ , (5.58)
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where we have used the cyclic property of the trace and the boson commutation
relation [â, â†] = 1. This shows that the oscillator is damped by its coupling to the
reservoir and that it will reach an equilibrium point with

〈â†â〉s = n̄ ; (5.59)

that is, the mean excitation number of the oscillator will equal the excitation number
of the thermal reservoir at its frequency �.

A useful way to interpret this result is to reexpress Eq. (5.58) as

d〈â†â〉s
dt

= −γ 〈â†â〉s(n̄+ 1)+ γ n̄(〈â†â〉s + 1) .

When written in this form, the rate of change of the mean number 〈â†â〉s of system
excitations is seen to result from the balance between emission from the system
into the bath and from the bath into the system. In both terms, the “+1” is the
contribution from spontaneous emission and would vanish if the boson creation
and annihilation operators commuted. The other term is the result of stimulated
emission. For a reservoir at zero temperature, n̄ = 0, all that is left is spontaneous
decay from the system into the reservoir.

Equation (5.58) is readily solved to give

〈â†â〉s(t) = 〈â†â〉s(0)e−γ t + n̄[1− e−γ t ] . (5.60)

For large times, the average number of excitations in the simple harmonic oscillator
(the average number of photons if it describes an electromagnetic field mode)
equilibrates to that of the bath oscillator at the same frequency �, as we have seen.
Similarly, we find that the expectation value of 〈â〉 (proportional to the complex
electric field operator for optical fields) obeys the interaction picture equation of
motion

d〈â〉s
dt
= −γ

2
〈â〉s (5.61)

and equilibrates at 〈â〉s = 0.
It is also instructive to calculate the equation of motion for the diagonal matrix

elements pn ≡ 〈n|ρ̂|n〉 in the number states representation. We find readily

ṗn = −γ (n̄+ 1)[npn − (n+ 1)pn+1] − γ n̄[(n+ 1)pn − npn−1] . (5.62)

The four terms in this equation represent flows of number probability up and
down the harmonic oscillator ladder of energy levels. These are illustrated in
Fig. 5.3, which shows the absorptive and emissive roles of the first and second
bracketed expressions, respectively. A steady state occurs when a detailed balance
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Fig. 5.3 Detail of the energy
level diagram of the damped
harmonic oscillator with the
number probability flows of
Eq. (5.62) into (green arrows)
and out of (red arrows) state
|n〉

is established between the emissive and absorptive processes, that is, when

γ (n̄+ 1)npn = γ n̄npn−1 . (5.63)

Note that steady state implies this detailed balance: Eq. (5.63) must be true for the
lowest probability p0 to be constant, which implies that it must be true for p1 to be
constant, and so on up the ladder. This gives the thermal number distribution

pn = n̄

n̄+ 1
pn−1 =

(
n̄

n̄+ 1

)n
p0 = e−nh̄�/kBT [1− e−h̄�/kBT ] , (5.64)

which, when taking the harmonic oscillator to describe a single-mode optical field,
is precisely the thermal photon statistics of Eq. (2.94). As would be intuitively
expected, the contact of the oscillator to a thermal reservoir at temperature T
thermalizes it at that temperature, resulting in a state of thermal equilibrium between
the system and the reservoir.

Damped Two-level Atom It is straightforward to modify the derivation of the
master equation (5.57) to describe a two-level atom with upper to lower level decay
and damped by a thermal reservoir of simple harmonic oscillators. In this case, the
atom–bath interaction Hamiltonian is

V̂I (τ ) = h̄σ̂+F̂ (τ )+ h̄σ̂−F̂ †(τ ), (5.65)

where F̂ (τ ) is still given by Eq. (5.50). The derivation of the master equation follows
along exactly the same lines as before, with the replacement of â by σ̂− and â† by
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â+. Hence, we find

dρ̂(t)

dt
= −�

2
(n̄+ 1)[σ̂+σ̂−ρ̂(t)− σ̂−ρ̂(t)σ̂+]

−�
2
n̄[ρ̂(t)σ̂−σ̂+ − σ̂+ρ̂(t)σ̂−] + adj. (5.66)

5.2.2 Lindblad Form

The two examples of master equations (5.57) and (5.66) that we have explicitly
considered can be cast in the general form

dρ̂

dt
= − i

h̄
[Ĥs, ρ̂] + L̂[ρ̂] , (5.67)

where the Liouvillian L[ρ̂] describes the non-Hermitian evolution of the system due
to its coupling to the reservoir and is responsible for irreversible dissipation. It can
be shown that in order to preserve the trace of the density operator, Trρ̂ = 1, for any
Markovian system, this term must be of the so-called Lindblad form

L̂[ρ̂] = −1

2

∑
i

(Ĉ
†
i Ĉi ρ̂ + ρ̂Ĉ†

i Ĉi)+
∑
i

Ĉi ρ̂Ĉ
†
i , (5.68)

where the Ĉi’s are system operators. See e.g. Ref. [3] for the mathematical proof of
this result.

That this is the case for the examples that we have explicitly considered is
easily seen by substitution. For instance, for the master equation (5.57) describing a
damped harmonic oscillator, we have

Ĉ1 =
√
γ (n̄+ 1)â ,

Ĉ2 =
√
γ n̄â . (5.69)

The same expressions hold for the damped two-level atom master equation (5.66),
but with â replaced by σ̂−.

5.2.3 Fokker–Planck Equation

Starting from the master equation (5.57), we now derive a more classical looking
equation that provides complementary insights by using quasiprobability distribu-
tions introduced in Sect. 2.5. As a concrete example, if the system is a harmonic
oscillator, we can use the P(α)-distribution (2.183) to expand the system density
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operator on a coherent states basis as

ρ̂ =
∫

d2αP (α)|α〉〈α| . (5.70)

Substituting this form into the master equation (5.57) gives

∫
d2αṖ (α, t)|α〉〈α| = −γ

2
(n̄+ 1)

∫
d2αP (α, t)[â†â|α〉〈α| − â|α〉〈α|â†]

−γ
2
n̄

∫
d2αP (α, t)[|α〉〈α|ââ† − â†|α〉〈α|â] + c.c.

(5.71)

With the representation of a coherent state (2.110), |α〉 = e|α|2/2eαâ† |0〉, we have
that

|α〉〈α| = e−|α|2eαâ† |0〉〈0|eα∗â , (5.72)

so that |α〉〈α|â may be written as

|α〉〈α|â = e−|α|2 ∂
∂α∗
[eαâ† |0〉〈0|eα∗â] =

(
∂

∂α∗
+ α

)
|α〉〈α| , (5.73)

and similarly

â†|α〉〈α| =
(
∂

∂α
+ α∗

)
|α〉〈α| . (5.74)

Substituting these expressions into Eq. (5.71) and with the definition â|α〉 = α|α〉
of the coherent state, we find

∫
d2αṖ (α, t)|α〉〈α| = −γ

2
(n̄+ 1)

∫
d2αP (α, t)α

∂

∂α
|α〉〈α|

+γ
2
n̄

∫
d2αP (α, t)

(
α
∂

∂α
+ ∂2

∂α∂α∗

)
|α〉〈α| + adj. (5.75)

We can integrate the right-hand side of this equation by parts and drop the
constants of integration since P(α, t)must vanish for |α| → ∞. Thus, for example,

∫
d2αP (α, t)α

∂

∂α
|α〉〈α| = −

∫
d2α

[
∂

∂α

(
αP (α, t)

)]
|α〉〈α| . (5.76)

Equation (5.75) becomes, after equating the coefficients of |α〉〈α| in the integrand,
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Ṗ (α, t) = γ
2

[
∂

∂α

(
αP (α, t)

)
+ c.c.

]
+ γ n̄ ∂2

∂α∂α∗
P(α, t) . (5.77)

This expression is in the form of a Fokker–Planck equation for the quasiprobability
P(α, t) of finding the harmonic oscillator in the coherent state |α〉 at time t . For
reasons explained shortly, the coefficients of the first derivatives on the RHS of
Eq. (5.77) are the elements of the drift matrix, and the coefficients of the second
derivatives compose the diffusion matrix. The steady-state solution of this equation
is easily verified to be

P(α) = 1

πn̄
e−|α|2/n̄ , (5.78)

which is a thermal distribution with average excitation value n̄.
Although it is hard in general to find the time-dependent solution of P(α, t),

Eq. (5.77) can readily be used to obtain the rate of change of the expectation value
of observables of interest; for instance, for n̄ = 0,

d

dt
〈â〉 =

∫
d2α αṖ (α, t) = −γ

2
〈â〉 , (5.79)

in agreement with Eq. (5.61).
We can gain an intuitive understanding of how a Fokker–Planck equation works

by considering the general one-dimensional form

∂

∂t
p(x, t) = − ∂

∂x
(M1 p(x, t))+ ∂2

∂x2 (M2 p(x, t)) , (5.80)

where M1(x) and M2(x) are called the first- and second-order moments of the
distribution p(x) or alternatively the drift and diffusion coefficients of the Fokker–
Planck equation. In the more general multidimensional case, one speaks of drift
and diffusion matrices. As shown in Fig. 5.4, for x values to the left of the peak of
M1p, the slope of M1p is positive, which causes a decrease of p(x) in that region,
while for x values to the right of the peak of M1p, the slope is negative, causing
an increase of p(x). This results in a movement of the peak toward larger values
of x provided M1 is itself positive. The second derivative at the peak of M2p(x) is
negative, which according to Eq. (5.80) causes a decrease in p(x), while on either
side of the peak of M2p, the second derivative is positive causing an increase of
p(x). This results in a diffusion of p(x). For these reasons, the M1 term is called
the drift term and theM2 term is called the diffusion term.

It is important to realize that the derivation of a Fokker–Planck equation via
quasiprobability distributions does not always lead to well-behaved results. We have
seen that P(α) need not be positive and does not lend itself to a simple interpretation
as a probability distribution. In situations where P(α) becomes negative or singular,
which are typical if truly nonclassical effects are important, we often find that
the resulting Fokker–Planck equation has a nonpositive diffusion matrix and hence
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Fig. 5.4 The left diagram shows how theM1p(x, t) term in Eq. (5.75) causes a distribution p(x)
(solid line) to “drift” along the x-axis and evolve at a later time toward the distribution shown
as a dotted line. The right diagram shows the effect of the M2p(x, t) term on that same initial
distribution, which causes p(x) to diffuse to the dotted line distribution

is not mathematically well behaved. In such situations, one can take advantage of
the overcompleteness of the coherent states to introduce generalizations of the P(α)
distribution that eliminate this difficulty, typically at the expense of doubling the
phase space dimensions.

5.3 Langevin Equations

We now turn to a Heisenberg picture analysis of the same system–reservoir model
and show that in that approach the reservoir operators F̂ (t) play a role analogous
to the Langevin forces familiar from classical statistical mechanics. These quantum
noise operators are the source of both fluctuations and of the irreversible dissipation
of energy from the system to the reservoir.

Focusing again on the case of a damped harmonic oscillator, we readily obtain
from the Hamiltonians (5.45), (5.46), and (5.47) the Heisenberg equations of motion
for the annihilation operators â(t) and b̂j (t) as

dâ(t)

dt
= −i�â(t)− i

∑
j

gj b̂j (t) , (5.81)

db̂j (t)

dt
= −iωj b̂j (t)− ig∗j â(t) . (5.82)

Integrating the second of these equations formally gives

b̂j (t) = b̂j (t0)e−iωj (t−t0) − ig∗j
∫ t

t0

dt ′â(t ′)e−iωj (t−t ′)

≡ b̂free(t)+ b̂radiated(t) . (5.83)
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The first term b̂free on the right-hand side of this equation accounts for the free
evolution of the reservoir operators b̂j , while the second term b̂radiated gives the
modification of that evolution due to their coupling with the system. It shows
that â(t) is the source of b̂j (t). If the small system were, say, a two-level system
instead of a harmonic oscillator and the reservoir consisted of a continuum of
electromagnetic field modes, then the appropriately modified Eq. (5.83) would show
that the atomic polarization is the source of the field.

Inserting Eq. (5.83) into Eq. (5.81), we find then

dâ(t)

dt
= −i�â(t)− i

∑
j

gj b̂j (t0)e
−iωj (t−t0) −

∑
j

|gj |2
∫ t

t0

dt ′â(t ′)e−iωj (t−t ′) ,

(5.84)

where the first summation describes the effect of fluctuations and the second one
those of radiation reaction from the reservoir on the oscillator dynamics.

As in the Schrödinger picture approach, we move to an interaction picture in
order to separate the free evolution of â(t) at frequency � from the fast evolution
with characteristic time τc due to the large bandwidth of the bath. This is now done
by introducing the slowly varying operator

Â(t) = â(t)ei�t , (5.85)

with

[Â(t), Â†(t)] = 1 . (5.86)

From Eq. (5.84), the evolution of Â(t) is given by

dÂ(t)

dt
= −

∑
j

|gj |2
∫ t

t0

dt ′Â(t ′)e−i(ωj−�)(t−t ′) + F̂ (t) , (5.87)

where we have introduced the quantum noise operator F̂ (t)

F̂ (t) = −i
∑
j

gj b̂j (t0)e
i(�−ωj )(t−t0) . (5.88)

This is the same operator that we already encountered in Eq. (5.50), aside from a
shift in time origin. Note that this operator varies rapidly in time due to the presence
of all the reservoir frequencies. Furthermore, as previously mentioned in the master
equation analysis, the expectation value 〈F̂ (t)〉r vanishes if the reservoir is described
by a density operator diagonal in the energy representation.

We have encountered integrals that resemble the first term on the right-hand
side of Eq. (5.87) earlier in this chapter. We handle it in the same fashion here
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by replacing the sum over modes of the reservoir by an integral and invoke the
Markov approximation by claiming that Â(t) varies little over the inverse reservoir
bandwidth. This allows us to extend the limit of integration to infinity. Using the
representation (5.16) of the delta function, then, we obtain the quantum Langevin
equation

dÂ(t)

dt
= −γ

2
Â(t)+ F̂ (t) . (5.89)

Its expectation value

d〈Â(t)〉
dt

= −γ
2
〈Â(t)〉 (5.90)

is the same as Eq. (5.61) for the expectation value of 〈â(t)〉s obtained from the
master equation, as it should be since expectation values may not depend on whether
they are evaluated in the Heisenberg or the Schrödinger picture.

We should keep in mind however that equations for expectation values are
profoundly different in nature from Eq. (5.89), which gives the evolution of the
operator itself. Importantly, one cannot expect an operator to have an evolution
as simple as that given by Eq. (5.90). If that were the case, its value at time t
would be Â(t) = Â(0) exp(−γ t/2), and for times long compared to γ , we would
have [Â(t), Â†(t)] → 0, in violation of the laws of quantum mechanics, since
commutation relations must be valid at all times. It is the rapidly fluctuating operator
F̂ (t) in (15.69) that guarantees by construction that this is the case, even though its
expectation value is 〈F̂ (t)〉 = 0.

As advertised, the noise operator F̂ (t) plays a role similar to that of the Langevin
forces in the theory of Brownian motion. In both cases, the associated random force
of zero average value leads to dissipation. The only difference here is that this force
has now the character of an operator. It is because of this analogy that Eq. (5.89) is
sometimes called a quantum Langevin equation and the operator F̂ (t) a quantum
noise operator. In principle, one can write down a quantum Langevin equation for
any system operator, but of course each equation will have a different noise operator;
for instance, the adjoint of Eq. (5.89) is

dÂ†(t)

dt
= −γ

2
Â†(t)+ F̂ †(t) . (5.91)

Operator Ordering The Heisenberg picture has the appealing feature that the
operator equations of motion resemble the corresponding classical equations of
motion. As such it can provide useful intuition, but it does present a few pitfalls
as well. The most important one has to do with the ordering of operators. System
operators commute with reservoir operators at equal times, but not usually at
different times. This is, for example, illustrated in Eq. (5.83), which shows that
as time evolves, b̂j (t) acquires some of the character of â(t). Importantly, the
homogeneous (free field) part of b̂j (t) alone does not commute with â(t) even at
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equal times, although [â(t), b̂j (t)] = 0. For this reason, after separating b̂j (t) into
b̂free and b̂radiated, we can no longer interchange the order of system and reservoir
operators without taking the chance of committing serious errors. Therefore, once
we chose the order in which to write system and reservoir operators in the initial
Hamiltonian, we must stick to it. Here, we always put all operators with a “†” to
the left, which is called “normal ordering.” Any other ordering will do, provided
that it is used consistently throughout the calculation. As we have seen in Sect. 2.5,
different quasiprobability distributions are associated with these different orderings.

Although final answers do not depend on the choice of ordering, the physical
interpretation of the results is typically different in different orderings. For instance,
the normal ordering attributes spontaneous emission to radiation reaction, since
〈F̂ (t)〉r = 0, while vacuum fluctuations give the Langevin force F̂ (t). In contrast,
J. Dalibard and coworkers [4] advocate the use of symmetric ordering, which
presents the advantage of making the contributions of the free and radiated
fields to the system evolution separately Hermitian. With this choice of ordering,
radiation reaction and vacuum fluctuations give contributions of equal magnitude to
spontaneous emission. These contributions have equal phase and add for the upper
level of a two-level atom but have opposite phase and cancel exactly for the lower
level.

Correlation Functions In addition to the evolution of simple system operators
such as Â(t) and Â†(t), one typically needs to consider the evolution of additional
observables as well, for instance, to evaluate the intensity, the spectrum, or higher
order correlation functions of a field. In many problems, this can rapidly become
rather complex, as the resulting set of quantum Langevin equations does not close
in general. Particular care needs to be taken to properly describe the resulting noise
correlation functions, which account for important aspects of the system dynamics
as we have seen. For example, the equation of motion for the number operator
â†â(t) = Â†Â(t) is readily found to be

d

dt
(Â†Â) = −i

∑
j

gj Â
†b̂j e

i�t + adj. , (5.92)

or, by substitution of Eq. (5.89) and its adjoint

d

dt
(Â†Â) = −

∑
j

|gj |2Â†(t)

∫ t

t0

dt ′A(t ′)ei(�−ωj )(t−t ′)

−i
∑
j

gj Â
†(t)b̂j (t0)e

i(�−ωj )(t−t0) + adj. (5.93)

Performing the Markov approximation as before results then in the “Langevin”
equation for the number operator

d

dt
(Â†Â) = −γ Â†Â+ ĜA†A(t) , (5.94)
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where

ĜA†A(t) = i
∑
j

g∗j b̂
†
j (t0)Â(t)e

−i(�−ωj )(t−t0) + adj . (5.95)

Here, we put “Langevin” in quotation marks, because we like to think that in such
equations the fluctuating force should have zero average. This is not the case for
〈ĜA†A〉r , which can be shown by substitution of a formal integral for Â(t) to be
equal to γ n̄, see Problem 5.8, and of course n̄ 
= 0 for T 
= 0. To obtain a proper
Langevin equation, we introduce a new quantum noise operator that subtracts this
expectation value,

ĜA†A(t) = ĜA†A(t)− 〈ĜA†A(t)〉r = ĜA†A(t)− γ n̄ , (5.96)

in terms of which Eq. (5.94) becomes

d

dt
(Â†Â) = −γ Â†Â+ γ n̄+ ĜA†A(t) . (5.97)

This equation gives the same evolution as Eq. (5.94) for the mean excitation number,
as it should.

Noise Spectral Density In the analysis of the damped harmonic oscillator, we
encountered in Eq. (5.54) the correlation function |g(�)|2〈b̂(�)b̂†(�)〉, a measure
of the intensity of the noise at a given frequency. Such spectral noise densities,
which are essentially the Fourier transforms of two-time correlation functions of the
reservoir noise operators, provide an important characterization of the interaction
between the system and the reservoir, as they determine the rate of noise-induced
transitions that eventually lead to the thermalization of the system.

To show that this is the case, consider the generic system–reservoir interaction

V̂ = −ÂF̂ (t) , (5.98)

where Â is a system operator and F̂ (t) is a (Hermitian) noise operator.3 We assume
that the system is initially in the state |ψi〉 of energy h̄ωi , so that in the interaction
picture

|ψ(t)〉 = |ψi〉 − i

h̄

∫ t

0
dτ V̂ (τ )|ψi〉 . (5.99)

3Note that the form (5.98) of V̂ implies a Hermitian noise operator, so that F̂ † = F̂ . In general,
the individual contributions to an interaction Hamiltonian need not be Hermitian, as we have seen
for instance, in the Jaynes–Cummings interaction h̄g(âσ̂+ + h.c.), although of course the full
interaction potential must be. Since it is often sufficient to keep track explicitly of just part of the
full interaction when carrying out calculations, in the following we allow for the fact that in such
situations F̂ may not be Hermitian.
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The probability pf (t) for the system to be at time t in some state |ψf 〉 of energy
h̄ωf and orthogonal to |ψi〉 is therefore

pf (t) =
∣∣∣∣−i

h̄

∫ t

0
dτ 〈ψf |Â|ψi〉e−iωf iτ F̂ (τ )

∣∣∣∣
2

= |d|
2

h̄2

∫ t

0
dτ

∫ t

0
dτ ′e−iωf i(τ−τ ′)F̂ (τ )F̂ †(τ ′) , (5.100)

where d = 〈ψf |Â|ψi〉, ωf i = ωf −ωi , and the second line in Eq. (5.100) accounts
for the fact that F̂ may not be Hermitian in a specific calculation, see footnote
2. Accounting also for the fact that F̂ is a quantum noise operator, the average
probability 〈pf (t)〉 to be in the final state is therefore

〈pf (t)〉 = |d|
2

h̄2

∫ t

0
dτ

∫ t

0
dτ ′e−iωf i(τ−τ ′)〈F̂ (τ )F̂ †(τ ′)〉 . (5.101)

For times t larger than the noise correlation time τc of the reservoir, the limits of the
integral over τ can be extended to infinity. Using time translational invariance, we
then have

〈pf (t)〉 ≈ |d|
2

h̄2

∫ t

0
dτ ′

∫ ∞
∞

dτ e−iωf iτ 〈F̂ (τ )F̂ †(0)〉 (5.102)

or, introducing the noise spectral density

SFF (ω) ≡
∫ ∞
−∞

dτeiωτ 〈F̂ (τ )F̂ †(0)〉 , (5.103)

〈pf 〉(t) ≈ |d|
2

h̄2
SFF (−ωf i) t , (5.104)

compare with Eq. (5.54). Hence, the transition rate between the initial state |ψi〉 and
a final state |ψf 〉 separated in frequency by ωf i is

Ai→f = |d|
2

h̄2 SFF (−ωf i) . (5.105)

As an example, consider a system consisting of a simple harmonic oscillator of
frequency �, and take the quadrature X̂ = â + â† as the system operator Â. For
transitions between neighboring levels, the spectral density spectrum needs only be
evaluated at ±�, and

An→n−1 = nSFF (�) ; An−1→n = nSFF (−�) . (5.106)
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For a reservoir in thermal equilibrium, we must have, invoking detailed balance,

An−1→n = e−h̄�/kBT An→n−1 , (5.107)

so that

SFF (�) = eh̄�/kBT SFF (−�) . (5.108)

This is an important relationship that we will encounter again in the context of
quantum optomechanics of Chap. 11.

Fluctuation–Dissipation Theorem We conclude this section by deriving, again
for the simple case of a damped harmonic oscillator of frequency �, an important
relationship between the correlation functions of the noise operators and the
damping coefficient γ.

We proceed once more by considering the correlation function of the noise oper-
ators F̂ (t) and F̂ †(t) and converting the sum over modes to an integral. Introducing
the reservoir average number of quanta at frequency ω via 〈b̂(ω)b̂†(ω)〉 = n̄(ω)+ 1
gives then, in the continuous limit of Eq. (5.88),

〈F̂ (t ′)F̂ †(t ′′)〉r =
∫

dωD(ω)|g(ω)|2[n̄(ω)+ 1]ei(�−ω)(t ′−t ′′) . (5.109)

Assuming as before that the correlation time of the reservoir is short compared to all
times of interest for the system, we can evaluate D(ω)|g(ω)|2n̄(ω) at� and remove
it from the integral, giving

〈F̂ (t ′)F̂ †(t ′′)〉r = D(�)|g(�)|2[n̄(�)+ 1]
∫

dωei(�−ω)(t ′−t ′′) . (5.110)

For a broadband reservoir, we can extend the limits of integration to infinity, thereby
performing once again the Markov approximation. Using Eq. (5.55) for γ and the
integral representation of the δ-function

∫ ∞
−∞

dωei(�−ω)(t ′−t ′′) = 2πδ(t ′ − t ′′), (5.111)

we find

〈F̂ (t ′)F̂ †(t ′′)〉r = γ (n̄(�)+ 1)δ(t ′ − t ′′) . (5.112)

Similarly, we have for the normally ordered correlation function

〈F̂ †(t ′)F̂ (t ′′)〉r = γ n̄(�)δ(t ′ − t ′′) . (5.113)

This shows that the Markov approximation amounts to assuming that the correlation
functions of the noise operators are δ-correlated in time, a mathematical statement of
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the fact that it assumes that the reservoir has no memory. Under that approximation,
the noise operator correlation functions depend on the operator ordering, but not on
time ordering.

Integrating both sides of Eq. (5.113) over τ = t ′ − t ′′ yields a simple example of
the fluctuation–dissipation theorem that relates the first-order correlation function
of the quantum noise operator F̂ (t) to the dissipation rate γ ,

γ = n̄(�)−1
∫ ∞
−∞

dτ 〈F̂ †(τ )F̂ (0)〉r . (5.114)

5.4 Monte Carlo Wave Functions

We mentioned in Sect. 5.2.2 that the master equation of a small system coupled to a
Markovian bath must be of the general Lindblad form

dρ̂

dt
= − i

h̄
[Ĥs, ρ̂] + L[ρ̂] ,

where Ĥs is the system Hamiltonian, L[ρ̂] is the Liouvillian

L[ρ̂] = −1

2

∑
i

(Ĉ
†
i Ĉi ρ̂ + ρ̂Ĉ†

i Ĉi )+
∑
i

Ĉi ρ̂Ĉ
†
i ,

and the Ĉi’s are system operators. This equation can be recast in the form

dρ̂

dt
= − i

h̄
(Ĥeffρ̂ − ρ̂Ĥ †

eff)+ Ljump[ρ̂] , (5.115)

where we have introduced the non-Hermitian effective Hamiltonian

Ĥeff ≡ Ĥs − ih̄

2

∑
i

Ĉ
†
i Ĉi (5.116)

and the “quantum jump” Liouvillian

Ljump[ρ̂] ≡
∑
i

Ĉi ρ̂Ĉ
†
i . (5.117)

For example, for the case of a damped harmonic oscillator, the effective Hamiltonian
is

Ĥeff = h̄�â†â − ih̄γ (n̄+ 1/2) â†â , (5.118)
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with

Ljump[ρ̂] = γ (2n̄+ 1)âρ̂â† + γ n̄âρ̂â† , (5.119)

while for a two-level atom from upper to lower level decay, we have

Ĥeff = 1
2 h̄ω0σ̂z − ih̄�

(
n̄+ 1

2

)
σ̂+σ̂− (5.120)

and

Ljump[ρ̂] = �(n̄+ 1)σ̂−ρ̂σ̂+ + γ n̄σ̂+ρ̂σ̂− . (5.121)

The evolution of the system density operator can therefore be thought of as resulting
from two contributions: a Schrödinger-like part governed by the non-Hermitian
effective Hamiltonian Ĥeff and a “quantum jump” part resulting from Ljump[ρ̂],
with the “quantum jump” qualifier becoming clear shortly. This decomposition is
the basis of the quantum trajectories approach to the solution of the master equation,
to which we now turn.

5.4.1 Quantum Trajectories

The quantum trajectory method starts by considering the evolution of pure states
of the small system and carries out a statistical average over an ensemble of
them in the end. But in contrast to the situation for closed systems, where this
is straightforwardly achieved by solving the Schrödinger equation, the system
evolution is now intrinsically stochastic, as it results from the combination of a
Schrödinger-like, but non-Hermitian evolution and random “quantum jumps.”

We proceed by expressing the density operator as a statistical mixture of state
vectors

ρ̂ =
∑
ψ

Pψ |ψ〉〈ψ | , (5.122)

the summation over ψ resulting from a classical average over the various states that
the system can occupy with probabilities Pψ . Introducing that expression into the
master equation (5.115), we have

∑
ψ

Pψ

[
|ψ̇〉〈ψ | + |ψ〉〈ψ̇ | = − i

h̄

(
Ĥeff|ψ〉〈ψ |−|ψ〉〈ψ |Ĥ †

eff

)
+

∑
i

Ĉi |ψ〉〈ψ |Ĉ†
i

]
.

(5.123)
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If we restrict ourselves for now to a single representative state vector |ψ〉 in the
mixture, we recognize that the first term on the right-hand side of this equation
can be simply interpreted as resulting from the non-Hermitian, but Schrödinger-like
evolution of |ψ〉 under the influence of Ĥeff,

ih̄|ψ̇〉 = Ĥeff|ψ〉 . (5.124)

Things are more tricky for the second term, which is clearly not a Schrödinger-like
term. Rather, it seems to result from a discontinuous evolution whereby the state
|ψ〉 is projected—or “jumps”—onto one of the possible states

|ψ〉 → |ψ〉i = Ĉi |ψ〉 . (5.125)

This is precisely what motivates calling Ljump[ρ̂] a “quantum jump” Liouvillian.
The decomposition of the evolution of the representative state vector |ψ〉 into

a Schrödinger-like part and a quantum jump contribution suggests therefore an
elegant way to solve master equations by carrying out an ensemble average over
the evolution of a large number of such state vectors. It proceeds by first selecting
an arbitrary state vector |ψ〉 out of the initial ensemble and evolving it for a short
time δt under the influence of Ĥeff only. For sufficiently small time intervals, this
gives

|ψ̃(t + δt)〉 =
(

1− iĤeffδt

h̄

)
|ψ(t)〉 . (5.126)

An important consequence of the non-Hermitian nature of Ĥeff is that |ψ̃(t + δt)〉 is
not normalized. Rather, the square of its norm is

〈ψ̃(t + δt)|ψ̃(t + δt)〉 = 〈ψ(t)|
(

1+ iĤ †
effδt

h̄

)(
1− iĤeffδt

h̄

)
|ψ(t)〉 ≡ 1− δp ,

(5.127)
where to the lowest order in δt

δp = iδt

h̄
〈ψ(t)|Ĥeff − Ĥ †

eff|ψ(t)〉 = δt
∑
i

〈ψ(t)|Ĉ†
i Ĉi |ψ(t)〉 ≡

∑
i

δpi .

(5.128)

This lack of norm preservation results from the fact that we have so far ignored
the effects of Ljump[ρ̂]. The “missing norm” δp must therefore be accounted for by
the states |ψ〉i resulting from the jumps part of the evolution. It is consistent with
Eq. (5.128) to interpret this observation as a result of the fact that Ljump[ρ̂] projects
the system into the state |ψ〉i = Ĉi |ψ〉with a probability δpi such that

∑
i δpi = δp.

Hence, the next step of a Monte Carlo simulation consists in deciding whether a
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jump occurred or not. Numerically, this is achieved by choosing a uniform random
variate 0 ≤ r ≤ 1. If its value is larger than δp, no jump is said to have occurred,
and the next integration step proceeds from the normalized state vector

|ψ(t + δt)〉 = |ψ̃(t + δt)〉
|||ψ̃(t + δt)〉|| . (5.129)

If, on the other hand, r ≤ δp, then a jump is said to have occurred. The state vector
|ψ̃(t + δt)〉 is then projected to the normalized new state

|ψ(t + δt)〉 = Ĉi |ψ(t)〉
||Ĉi |ψ(t)〉||

=
√
δt

δpi
Ĉi |ψ(t)〉 (5.130)

with probability δpi/δp, with δpi given by Eq. (5.128). This state is then taken as the
initial condition for the next integration step. The procedure is repeated for as many
iterations as desired and yields a possible time evolution of the initial state vector
|ψ〉, sometimes called a “quantum trajectory.” Clearly, the random nature of the
jumps implies that different trajectories will be obtained in successive simulations
of the system evolution from the same initial state.

In some cases, it is possible to interpret the reservoir to which the small system
is coupled as a “measurement apparatus,” a point to which we return briefly in
the next section and in more detail in Chap. 6, in particular in the “pointer basis”
discussion of Sect. 6.4. In such situations, the individual quantum trajectories may
be interpreted as “typical” of a single sequence of measurements on the system. It is
not normally possible to say for sure whether a given numerical realization will be
achieved in practice or not, though. Nonetheless, the individual Monte Carlo wave
function trajectories can often provide one with useful intuition about the way a
given system behaves in the laboratory.

We still need to prove that in an ensemble average sense, the predictions of the
Monte Carlo wave function simulations are identical to those of the corresponding
master equation. This is easily done by considering the quantity

�̂(t) ≡
∑
ψ

Pψ 〈|ψ(t)〉〈ψ(t)|〉traj ,

which is a double average over both a large number of Monte Carlo wave function
trajectories resulting from a given initial state and a representative set of initial states
necessary to reproduce the initial density operator (5.122). Consider first the average
over trajectories for a fixed initial state: by construction, the Monte Carlo wave
function algorithm implies that

�̂(t + δt) = (1− δp) |ψ̃(t + δt)〉√
1− δp

〈ψ̃(t + δt)|√
1− δp
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+δp
∑
i

δpi

δp

(√
δt

δpi
Ĉi |ψ(t)〉

)(√
δt

δpi
〈ψ(t)|Ĉ†

i

)
, (5.131)

where the average over trajectories is accounted for by the probabilities δp and δpi .
With Eq. (5.126), one has therefore to the lowest order in δt

�̂(t + δt) = �̂(t)+ iδt

h̄
[�̂(t), Ĥs] + δtLjump[�(t)] . (5.132)

In the case of a mixed initial state, one needs in addition to perform also an average
over the distribution Pψ of initial states, as already indicated. But this step is trivial,
since Eq. (5.131) is linear in �̂. Hence, the result of the double averaging yields
for �̂ an evolution identical to that given by the master equation (5.115). The two
approaches are therefore equivalent, provided that the initial conditions for ρ̂ and �̂
are the same.

An important practical advantage of the Monte Carlo wave function approach
occurs in situations where the number of states N that need to be considered is
large. Since ρ̂ scales as N2, such problems can easily stretch the capabilities of
even the largest computers. In contrast, the Monte Carlo simulations deal with state
vectors only, whose dimensions scale as N . Hence, the memory requirements are
significantly reduced, the trade-off being the additional CPU time normally required
in order to achieve good statistical accuracy.

In addition to these practical considerations, the Monte Carlo wave function
method also provides one with additional physical insight into the way a physical
system behaves in a single experiment. Consider, for example, the problem of
spontaneous decay by a two-level atom at zero temperature. In that case,

Ĥeff = 1
2 h̄ωσ̂z − 1

2 ih̄�σ̂+σ̂− (5.133)

and

Ljump[ρ̂] = �σ̂−ρ̂σ̂+ . (5.134)

In this example, single quantum trajectories will illustrate the distribution of times
after which the system undergoes a transition from the upper to the lower state.

Note also that when taking the expectation value of the right-hand side of the
master equation between 〈e| and |e〉, the contribution of Ljump[ρ̂] vanishes, and
we obtain an effective Hamiltonian that describes the upper state population decay
averaged over a large number of experiments, see Problem 5.11. Hence, if all we
are interested in is the evolution of the upper state |e〉, it is sufficient to consider
the evolution of the system under the influence of the effective Hamiltonian (5.120)
only. This justifies a posteriori the phenomenological treatment of atomic decay
introduced in Sect. 1.3. For finite reservoir temperatures, single trajectories will also
illustrate the successive quantum jumps between the atomic states driven by both
spontaneous and stimulated emission.
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5.5 Input–Output Formalism

While the system–reservoir approach that we considered so far in this chapter can
be extremely powerful, it does have its limitations, as there are many situations
where treating the environment as a thermal bath whose state remains essentially
unchanged is inappropriate. This is, for example, the case in cavity QED, the topic
of Chap. 7. In these systems, atoms or artificial atoms are confined inside a resonator
where they interact with an intracavity field. This small atom–field system is in turn
coupled, typically through mirrors, to external fields that drive it and/or serve as
external probes of its dynamics. Clearly, in such circumstances, the state of the
probe cannot be assumed to remain unchanged. M. Collett and C. Gardiner [5] have
developed an input–output formalism that permits to describe such open quantum
systems. That approach does not involve tracing over a quantum bath, that is,
it makes no assumption on its quantum state. Rather, it determines its dynamics
assuming that the system dynamics is known.

We consider again the Hamiltonian (5.28)

Ĥ = Ĥs + Ĥr + V̂ ,

where for concreteness, the system is taken to be a single intracavity field mode of
frequency � with annihilation and creation operators â and â†,

Ĥs = h̄�â†â (5.135)

coupled to a continuum of external field modes with Hamiltonian

Ĥr =
∫

dω h̄ω b̂†(ω)b̂(ω) (5.136)

by the interaction Hamiltonian

V̂ = h̄
∫

dωg(ω)
[
b̂(ω)â† + âb̂†(ω)

]
(5.137)

with

[b̂(ω), b̂†(ω′)] = δ(ω − ω′) . (5.138)

We have not specified explicitly the limits of integration over frequencies, but it is
a good approximation to extend them to ±∞ in the following, much like in the
Weisskopf–Wigner theory of spontaneous emission of Sect. 5.1.

At first sight, this might appear to be precisely the problem that we already
considered when studying the damped harmonic oscillator, except that as advertised
the continuum of modes will no longer be treated as a reservoir whose state remains
effectively unchanged by its coupling to the intracavity field.
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The Heisenberg equations of motion for the operators â(t) and b̂(ω, t) are

dâ(t)

dt
= i

h̄
[Ĥs, â] − i

∫
dωg(ω)b̂(ω, t) , (5.139a)

db̂(ω, t)

dt
= −iωb̂(ω, t)− ig∗(ω)â(t) . (5.139b)

Formally integrating the second of these equations gives readily

b̂(ω, t) = b̂(ω, t0)e−iω(t−t0) − ig�(ω)
∫ t

t0

dt ′â(t ′)e−iω(t−t ′) , (5.140)

where t0 < t .
Not surprisingly, this is essentially the same equation as Eq. (5.83) which we

encountered in the Langevin approach to system–reservoir interactions of Sect. 5.3.
There we recognized the first term on the RHS of that equation as describing the
free evolution of the field, while the second term accounts for the coupling of mode
“ω” to the intracavity field. Alternatively, since the time-dependent Schrödinger
evolution is reversible, we may also express b̂(ω, t) in terms of fields at later times
as

b̂(ω, t) = b̂(ω, t1)e−iω(t−t1) + ig�(ω)
∫ t1

t

dt ′â(t ′)e−iω(t−t ′) , (5.141)

with t1 > t . Physically, the two forms (5.140) and (5.141) of b̂(t) can be thought of
as corresponding to solving the Heisenberg equations of motion for t > t0 in terms
of boundary conditions that describe “input fields” or for t < t1 in terms of “output
fields.” Inserting the solution (5.140) into Eq. (5.139a) gives

dâ(t)

dt
= i

h̄
[Ĥs, â(t)] (5.142)

−i
∫

dωg(ω)b̂(ω, t0)e
−iω(t−t0) −

∫
dω|g(ω)|2

∫ t

t0

dt ′â(t ′)e−iω(t−t ′)

As in the Weisskopf–Wigner theory of spontaneous emission, we assume that g(ω)
is approximately independent of ω over the frequency range of interest and set

|g(ω)|2 = κ/2π . (5.143)

With the relation
∫ ∞
−∞

dωe−iω(t−t ′) = δ(t − t ′), (5.144)
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Fig. 5.5 Schematic of the coupling of the intracavity field â to the input and output fields âin and
âout. Here, the mirror on the right side of the resonator is assumed to be perfectly reflecting. The
generalization of the input–output description to the case where both mirrors are semi-transparent
in the subject of Problem 5.4

the third term on the right-hand side of Eq. (5.143) can then be interpreted like in
system–reservoir theory as describing the decay of the intracavity field at rate κ/2.

The second term is more interesting. In Sect. 5.3, we interpreted it as a noise
operator, but in the present context, it describes more generally the effect on the
intracavity field of the external field at some initial time t0 < t , that is, of the input
field, see Fig. 5.5,

âin(t) ≡ − 1√
2π

∫
dω b̂(ω, t0)e

−iω(t−t0) . (5.145)

The factor of 1/
√

2π in this expression guarantees that the input field satisfies
bosonic commutation relations,

[âin(t), â
†
in(t
′)] = δ(t − t ′) , (5.146)

as can easily be verified with the help of Eq. (5.144). We then obtain the evolution
of the intracavity field â(t) as

dâ(t)

dt
= i

h̄
[Ĥs, â(t)] − κ

2
â(t)+√κâin(t) , (5.147)

where the term that was interpreted as a noise operator in Sect. 5.3 appears now
explicitly as the input field.

Similarly, we may relate â(t) to the output field

âout(t) ≡ 1√
2π

∫
dω b̂(ω, t1)e

−iω(t−t1) (5.148)

as

dâ(t)

dt
= i

h̄
[Ĥs, â(t)] − κ

2
â(t)−√κâout(t) . (5.149)
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Subtracting Eq. (5.149) from Eq. (5.147) relates the input and output fields to the
intracavity field as

âout(t)+ âin(t) = √κâ(t). (5.150)

Note importantly that âin(t) and âout(t) have units of 1/
√

time and represent
therefore photon fluxes in and out of the cavity.

It is possible to gain additional insight into the relationship between the intra-
cavity and output fields in case the dynamics of â(t) is linear. The corresponding
Heisenberg equations of motion can then be cast in the simple form

d

dt
â(t) = Ââ(t)− κ

2
â(t)+√κ âin(t) , (5.151)

where we have introduced the short-hand notation

â =
[
â

â†

]
; âin =

[
âin

â
†
in

]
, (5.152)

and Â is a 2×2 matrix that accounts for the intracavity Hamiltonian dynamics of the
field. Taking the Fourier transform of this equation, we get

[
Â+ (iω − κ/2) Î

]
â(ω) = −√κ âin(ω) , (5.153)

with Î the 2×2 identity operator. Combining this result with a similar equation
relating a(ω) to aout(ω) yields then

âout(ω) = −
[
Â+ (iω + κ/2) Î

] [
Â+ (iω − κ/2) Î

]−1
âin(ω) . (5.154)

For the case of a simple harmonic oscillator Ĥs = h̄�â†â, this gives finally

â(ω) =
√
κ

κ/2+ i(�− ω) âin(ω) , (5.155)

and

âout(ω) = κ/2− i(�− ω)
κ/2+ i(�− ω) âin(ω) , (5.156)

indicating that the transmission function is a Lorentzian of width κ/2, as expected.
D. F. Walls and G. Milburn [6] discuss the application of the input–output formalism
to a number of quantum optics situations, including the spectrum of squeezing, the
parametric oscillator, and laser fluctuations.
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Classical Cavity Driving In many cases, the cavity field, in addition to being
coupled to a continuum of modes acting as a reservoir, is also driven by a
macroscopically populated field mode that can be treated classically, typically a
laser field at some frequency ω. Calling the annihilation and creation operators of
this mode b̂0 and b̂†

0, its coupling to the cavity mode is given by the Hamiltonian

V̂0 = h̄g0[b̂0â
† + b̂†

0â] . (5.157)

For a classical field, we have b̂0 → 〈b̂0〉. In that case, V̂0 takes the form of a
displacement operator, and Eq. (5.147) becomes

dâ(t)

dt
= i

h̄
[Ĥs, â(t)] − κ

2
â(t)+√καin(t) , (5.158)

where the classical input field αin has again the units of a flux. This situation
will be encountered at several occasions in the following chapters, for example,
in Problem 7.1 in the context of cavity QED, in Sect. 9.4 on cavity cooling, and in
the discussion of optomechanics of Chap. 11.

Problems

Problem 5.1 In order to highlight the importance of the density of modes on
spontaneous emission, derive the analog of the Weisskopf–Wigner spontaneous
emission rate in a one-dimensional system and a two-dimensional system.

Problem 5.2 Determine and explain in physical terms the spontaneous emission
rates of two two-level atoms whose internal state is |ψ〉(0) = 1√

2
[|e, g〉 ± |g, e〉],

but whose centers of mass are at locations r1 and r2, respectively.

Problem 5.3 Derive the equation of motion (5.58) for the mean excitation number
of a damped harmonic oscillator

d〈â†â〉s
dt

= −γ 〈â†â〉s + γ n̄ .

Problem 5.4 Consider the situation discussed in the input–output fields analysis,
but with both mirrors of the resonator now semi-transparent, and coupled to separate
field reservoirs consisting of the continuous sets of modes {b̂(ω)} and {ĉ(ω)},
with associated damping rates κL and κR , see Fig. 5.6. Determine the input–output
relations between the fields â, âin, L, âout, L, âin, R, and âout, R in that case.

Problem 5.5 Follow steps that parallel those leading to the derivation of the master
equation for a damped harmonic oscillator to derive the master equation (5.66) for
a damped two-level atom.
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Fig. 5.6 Schematic of the cavity considered in Problem 5.4

Problem 5.6 Determine and explain in physical terms the spontaneous emission
rates of two two-level atoms whose internal state is ρ̂ = 1

2 [|e, e〉 + |g, g〉].
Problem 5.7 Carry out the explicit steps to derive equations (5.38), (5.40), and
(5.44).

Problem 5.8 Show that the expectation value of the operator

ĜA†A(t) = i
∑
j

g∗j b̂
†
j (t0)Â(t)e

−i(�−ωj )(t−t0) + adj .

of Eq. (5.95) is 〈ĜA†A(t)〉 = γ n̄.

Problem 5.9 Derive the Fokker–Planck equation (5.77) from Eq. (5.70), and show
that its steady-state solution is

P(α) = 1

πn̄
e−|α|2/n̄ .

Problem 5.10 Solve the master equation for a damped two-level atom initially
in its excited state |e〉 numerically by using the quantum trajectories method by
(1) decomposing the associated master equation into an effective non-Hermitian
Hamiltonian Ĥeff and a quantum jump Liouvillian, (b) writing a code to compute
the evolution of a typical stochastic trajectory, and (c) averaging the result over at
least 50 trajectories. Show that in that limit, one recovers the average excited state
population pe(t) predicted by an analytical solution of the master equation. What
could you expect if you had a lab where you could monitor the decay of individual
atoms?

Problem 5.11 The life and death of a photon The following references are
strongly suggested reading in connection with this chapter, in particular with
Problems 5.11 and 5.12: “Quantum jumps of light recording the birth and death of a
photon in a cavity,” by Gleyzes and coworkers [7], as well as Refs. [8] and [9] by the
same group. These papers report on a series of remarkable cavity QED experiments
that measured and characterized in detail the decay of a single-mode field.
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Consider a damped harmonic oscillator coupled to a reservoir at zero temperature
and initially in the mixed state ρ̂ = |3〉〈3|. Solve the associated master equation
numerically by using the quantum trajectories method, averaging the result over a
number of trajectories large enough to obtain good statistics. Determine then the
time dependence of the average photon number 〈n〉 and of the time dependence
of the populations pn(t) of the various levels |n〉, with n = 0, 1, 2, 3, and give a
physical interpretation of your result.

Problem 5.12 Carry out a similar simulation as for Problem 5.10, but for the initial
state ρ̂ = (1/4)|1〉〈1| + (1/2)|2〉〈2| + (1/4)|3〉〈3|.
Problem 5.13 Show that for a cavity mode at frequency � and a driving field at
frequency ω, Eq. (5.147) becomes

dâ

dt
= [i(ω −�)− κ/2]â + η +√κâin(t) . (5.159)
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Chapter 6
Quantum Measurements

This chapter presents an operational approach to quantum measurements
based on the von Neumann projection postulate. After reviewing that
postulate we turn to a discussion of measurement back action, leading to
an understanding of the standard quantum limit and to the idea of quantum
non-demolition measurements. We then extend the idea of projective mea-
surements to positive operator-valued measures, which are then applied to a
formulation of weak measurements and to the development of a stochastic
Schrödinger equation description of continuous weak measurements. We
illustrate this approach with the example of weak continuous measurements
of optical fields. The chapter concludes with a brief introduction to the role
of environment in establishing a measurement pointer basis.

Quantum measurements are a topic of central importance not just in quantum
optics, but in all of quantum mechanics. Because as we have seen the Schrödinger
equation predicts that quantum dynamics is reversible, some additional ingredient
must be added to the theory to account for the irreversibility and finality of quantum
measurements. This is a difficult and somewhat unsettling topic that continues
to be the object of much debate, associated at least in part to the interpretation
of quantum mechanics. We will not engage in this debate here, but rather limit
ourselves to a simple, operational approach based on the von Neumann postulate
and its extensions.

The first section briefly reviews that postulate by introducing the concept of
projective measurements. We then turn to a discussion of measurement back action,
the property that the measurement of some observable of a quantum system usually
impacts its subsequent dynamics. This leads to an understanding of the standard
quantum limit of measurements and to a discussion of ways to circumvent that
limit through the use of the so-called quantum non-demolition measurements [1, 2].
We continue in Sect. 6.3 with an extension of projective measurements to positive
operator-valued measures (POVM) and their use in the formulation of weak
measurements, more specifically in continuous weak measurements, a type of
measurements of considerable practical interest.
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Because of the irreversible nature of quantum measurements, it is perhaps not
surprising that they should be associated with considerations of system–reservoir
interactions, which can likewise result in irreversible dynamics as we have seen.
With this in mind we conclude this chapter with an introduction to the concept of
pointer basis. This shows how specific environments provide a preferred basis of
the detector that is immune to environmental decoherence and defines a classical
measuring apparatus unambiguously, and closes a loop with the previous chapter.

An excellent and much broader discussion of quantum measurements and their
applications, in particular in the detection of classical forces, can be found in the
monograph “Quantum Measurement” by V. Braginsky and F. Ya. Khalili [2].

6.1 The von Neumann Postulate

Our starting point is the von Neumann postulate. In its simplest form it deals with
the exact measurement of an operator Â with a (discrete) set of n eigenvectors {|n〉}
and associate eigenvalues {an}. The von Neumann postulate states that if the system
is in a state described by the density operator ρ̂i prior to the measurement, then the
result of a measurement of Â will be one of its eigenvalues |n〉, with probability

pn = Tr
(|n〉〈n|ρ̂i) , (6.1)

following which the system will be projected to the pure state |n〉, with correspond-
ing density operator ρ̂f = |n〉〈n|. For this reason such a measurement is called a
projective measurement, as its action on the system density operator is characterized
by the projection operator

P̂n = |n〉〈n| . (6.2)

This formulation also applies in the situation by now familiar to us where the
system is comprised of several subsystems, and one is interested in observables of
one of the subsystems only, call it subsystem A. If the pre-measurement density
operator of the full system is ρ̂i , then the n-th possible final state following the
measurement of an observable Â of subsystem A is

ρ̂f = P̂nρ̂i P̂n

Tr(P̂nρ̂i P̂n)
(6.3)

with probability p(n) = Tr(P̂nρ̂i P̂n) = |cn|2. It is readily seen that in case Â is
an observable of the full system rather than a subsystem, then ρ̂i can be expanded
on its complete set of eigenstates as ρ̂i = ∑

j,k cjk|j 〉〈k| and Eq. (6.3) reduces to
ρ̂f = |n〉〈n|, that is, to the pure state |n〉 of Eq. (6.1).
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Quantum Steering Suppose that a bipartite system is initially prepared in the
entangled state |ψi〉 = 1√

2
[ | ↑,↓〉 + | ↓,↑〉]AB , with the corresponding density

operator

ρ̂i = 1

2
[ | ↑,↓〉 + | ↓,↑〉] [〈↑,↓ | + 〈↓,↑ | ]AB . (6.4)

Following a measurement projecting one of the subsystems onto one of its
eigenstates—say, measuring a qubit A to be in its upper state | ↑〉A—the post-
measurement state of the system will be

ρ̂f = | ↑,↓〉〈↑,↓ | , (6.5)

which is nothing but the pure state |ψ〉f = | ↑,↓〉AB . In contrast, if A is found to
be in the lower state | ↓〉A, we will have |ψ〉f = | ↓,↑〉AB . This result is actually
more profound that may appear because it demonstrates that the state of the second
spin can be steered by a measurement on a far distant other spin. This quantum
steering is the result that so bothered Einstein, Podolsky, and Rosen and led to the
formulation of the EPR paradox that we discussed in Sect. 4.1.

6.2 Measurement Back Action

An important consequence of performing a measurement on a quantum system is the
back action of that measurement on the subsequent system evolution, an effect that
is a direct consequence of the Heisenberg uncertainty principle. To gain of intuitive
feeling for its origin, consider for a moment the dynamics of a free particle of mass
m in one dimension. It is described by the Hamiltonian

Ĥ = p̂2

2m
, (6.6)

and its position is

x̂(τ ) = x̂(0)+ p̂(0)τ/m . (6.7)

Suppose now that at time t = 0 we measure x̂ with some uncertainty characterized
by a variance σ 2

x . From the Heisenberg uncertainty relation σxσp ≥ h̄/2 and
Eq. (6.7) it follows that after a time τ the uncertainty in position will have increased
to

σ 2
x (τ ) ≥ σ 2

x (0)+ σ 2
p(0)τ

2/m2 (6.8)
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so that

σx(τ ) ≥
[
σ 2
x (0)+

(
h̄τ

2mσx(0)

)2
]1/2

≥
(
h̄τ

m

)1/2

. (6.9)

This is the so-called standard quantum limit (SQL) for free mass position. Phys-
ically, the uncertainty in p̂ resulting from a first measurement of its conjugate
variable x̂ imposes an additional uncertainty on subsequent measurements of x̂.
This back action can be particularly severe if one wishes to perform a sequence
of measurements on a system, as we already saw in the simple example of Sect. 3.5.

6.2.1 The Standard Quantum Limit

Since it depends explicitly on the Heisenberg uncertainty relation for the observable
under consideration, the standard quantum limit is a function of the specific physical
system and type of measurements under consideration. One example of considerable
interest is of course the characterization of the ubiquitous harmonic oscillator, which
we already encountered in the quantization of the electric field, and will also be
central to the discussion of quantum optomechanics in Sect. 11.4.

We limit ourselves for now to a discussion of versions of the standard quan-
tum limit associated with two methods frequently used to characterize quantum
harmonic oscillators and that we already encountered in Chap. 2, intensity and
quadrature measurements. We will have several opportunities to revisit this problem
in other examples in subsequent chapters.

Our starting point is the Hamiltonian,

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 , (6.10)

of a quantum harmonic oscillator of mass m, frequency ω, position x̂, momentum
p̂, and their associated creation and annihilation operators

â† =
√
mω

2h̄
(x̂ − ip̂/mω)

â =
√
mω

2h̄
(x̂ + ip̂/mω) (6.11)

where we keep the massm explicitly since it is important once we stop talking about
light fields. We also introduce the quadrature operators

X̂1 = x̂ cosωt − (p̂/mω) sinωt

X̂2 = x̂ sinωt + (p̂/mω) cosωt , (6.12)
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or, in terms of â and â†,

X̂1 =
√

h̄

2mω

[
âeiωt + â†e−iωt

]
,

X̂2 = −i

√
h̄

2mω

[
âeiωt − â†e−iωt

]
. (6.13)

Except for a different normalization, they are the same as the operators d̂1 and d̂2
introduced in the discussion of squeezed states in Eq. (2.122). Classically, x and
p/mω can be thought of as Cartesian coordinates in a phase plane, and X1 and
X2 as coordinates that rotate clockwise at frequency ω relative to them. Quantum
mechanically, these two quadrature operators do not commute,

[X̂1, X̂2] = [x̂, p̂/mω] = ih̄/mω (6.14)

so that their variances satisfy

σX1σX2 = σx σ(p/h̄ω) ≥ h̄/2mω . (6.15)

As we discussed in Sect. 2.3.3, and as is also readily apparent from Eqs. (6.13), for
a coherent state |α〉 we have σX1 = σX2 =

√
h̄/2mω, resulting in a circular “error

box” in phase space of area πh̄/2mω. Squeezed coherent states produce the same
area, but in the shape of an ellipse with principal axes �X1 and �X2 of different
lengths.

Position Measurement Consider then a measurement scheme where the position
is measured essentially instantly, that is, in a time short compared to 1/ω, with a
small uncertainty �x0 � (h̄/2mω)1/2. This produces an uncertainty in momentum
of �p0/mω � �x0, and correspondingly, an uncertainty error box around the
oscillator in the form of a strongly elongated ellipse. This ellipse rotates clockwise
at frequency ω, see Fig. 6.1, and as a result, the value of a second position
measurement will be accompanied by an error �x1 that can be anywhere between
�x0 and �p0/mω � (h̄/2mω)(1/�x0), depending on the precise time at which
it is carried out. To guarantee that the maximum possible error is minimized
requires therefore that the error box be circular with the minimum allowed radius
�x0 = �p0/mω = �X1 = �X2 = (h̄/2mω)1/2. An ideal measurement with
these uncertainties will drive the oscillator to a minimum uncertainty state that
simultaneously minimizes the uncertainties in position and momentum, that is,
a coherent state. This uncertainty defines the standard quantum limit of position
measurements for a harmonic oscillator.

Amplitude and Phase Measurements Measurements that attempt to determine
both the oscillator’s amplitude of motion |X| = (|X1|2 + |X2|2)1/2 and its phase
φ = tan−1(X2/X1) are of much interest for a number of applications. An ideal way
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Fig. 6.1 Schematics of the position measurements of a harmonic oscillator, showing the impact
of (a) an initial measurement with precision �x0 � (h̄/2mω)1/2, and (b) measurements with
precision �x1 = �x2 = (h̄/2mω)1/2, which minimize the maximum error and drive the system
toward a coherent state

to achieve minimum uncertainties in both quantities involves once more the circular
error bar characteristic of a coherent state. This results in a Gaussian distribution of
measured values of 〈X̂1〉 and 〈X̂2〉 with equal variances σX1 = σX2 = (h̄/2mω)1/2.
From Eq. (2.108) the standard deviation of a coherent state |α〉 with mean photon
number 〈n〉 ≡ 〈â†â〉 = (mω/2h̄)(〈X̂2

1〉 + 〈X̂2
2〉)� 1 is

σn =
√
〈n2〉 − 〈n〉2 ≈ 〈n〉1/2 , (6.16)

and

σφ = 1

2σn
= 1

2〈n〉1/2 . (6.17)

These standard deviations represent the standard quantum limit of amplitude and
phase measurements.

We will return to this topic in Sect. 11.4, which will characterize the noise
limits of optical interferometers in some detail. In particular we will show how
the optical noise sources acting on the field quadratures d̂1 and d̂2 of Eqs. (2.122),
or equivalently on X̂1 and X̂2, are the radiation pressure noise and shot noise,
respectively. This understanding plays a central role both in establishing the standard
quantum limit of these devices and in finding their optimal point of operation for a
specific application, for instance gravitational wave detection. That section will also
show how the use of squeezed light permits to circumvent the standard quantum
limit in these systems.

Although it is always useful to keep in mind the standard quantum limit as a
reference point, it is just as important to also remember that it is not a fundamental
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measurement precision limit and that it is sometimes possible to evade it. This
is the topic of quantum non-demolition measurements, or back action evading
measurements, to which we now turn. Substantially more detailed discussions of
this topic can be found in the classic book by Braginsky and Khalili [2] and in the
review [3] by C. M. Caves and coworkers.

6.2.2 Quantum Non-demolition Measurements

When discussing the back action of a measurement of the position of a free
particle, we found that because x̂(τ ) = x̂(0)+ p̂(0)t/m the resulting uncertainty in
momentum feeds back into the subsequent evolution of x̂, limiting the accuracy of
successive measurements. The first measurement has “demolished” the possibility
of making a second measurement of the same precision. However, this would not
be the case if we had chosen to measure p̂ instead of x̂. Because the momentum is
a constant of motion for free particles,

dp̂

dt
= i

h̄
[Ĥ , p̂] = 0 , (6.18)

the uncertainty �x that results from a first measurement of p̂ with precision �p0
does not feed back into its subsequent evolution, that is, it does not demolish the
possibility to carry out subsequent measurements of p̂ with the same precision. Such
measurements are called back action evading, or quantum non-demolition (QND)
measurements. We now derive a necessary and sufficient condition for an observable
Â to be a QND variable.

Let us assume that the observable Â has a complete set of eigenstates {|A,μ〉},
where μ labels the states in any degenerate subspace, and that a first measurement of
Â returns some eigenvalue A0, with a corresponding eigenstate that will in general
be a superposition of the form

|ψ(t0)〉 =
∑
μ

cμ|A0, μ〉 . (6.19)

The system evolves then freely until the next measurement at time t1. During that
time interval the Heisenberg picture operator Â(t) changes, but the state |ψ(t0)〉
does not, so that in general it will no longer be an eigenstate of Â(t1). However, if
the second measurement is to produce a perfectly predictable result, that is, in order
to ensure that the free motion of Â is not altered by the first measurement, then all
states |ψ(A0, μ)〉 within a given degenerate subspace must still be eigenstates of
Â(t1), all with the same eigenvalue—which however needs not in general be equal
to A0. That is, we must have

Â(t1)|A0, μ〉 = f (A0)|A0, μ〉 for all μ . (6.20)
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This condition must hold for all eigenvalues A0, and for all times tk in a series of k
measurements. That is, if the measurements sequence starts with the measurement
returning some eigenvalue A0 of Â, its subsequent free evolution must leave it in an
eigenstate of Â at each time in the measurement sequence.

An observable that satisfies Eq. (6.20) at all times is called a continuous QND
observable, and the simplest way to satisfy that condition is with an observable that
is conserved,

dÂ

dt
= − i

h̄
[Â, Ĥ ] + ∂Â

∂t
= 0 , (6.21)

or

[Â(t), Â(t ′)] = 0 for all t, t ′ . (6.22)

Examples of continuous QND variables that we have encountered so far are the
momentum p̂ of a free particle, as well as the quadratures X̂1 and X̂2 and excitation
number N̂ = â†â of the harmonic oscillator.

If, on the other hand, the observable satisfies that condition only at some specific
times, it is called a stroboscopic QND observable, with examples including the
position x̂ and momentum p̂ of the simple harmonic oscillator.

Quantum Mechanics Free Subsystems M. Tsang and C. M. Caves [4] and
K. Hammerer and coworkers [5, 6] realized that it is sometimes possible to
isolate quantum mechanics free subsystems (QMFS) of a quantum system. If this
can be achieved, then all observables in these subsystems are by construction
QND observables. QMFS may find a number of applications in the detection of
feeble forces and fields, including optomechanical sensing, magnetometry, and
gravitational wave detection.

A simple setup to implement a QMFS comprises two harmonic oscillators of
identical frequencies and opposite masses with Hamiltonian

Ĥ = p̂2

2m
+ 1

2
mω2q̂2 − p̂

′2

2m
− 1

2
mω2q̂ ′2 , (6.23)

where [q̂, p̂] = [q̂ ′, p̂′] = ih̄. Considering then the variables

Q̂ = q̂ + q̂ ′ P̂ = 1

2
(p̂ + p̂′) ,

"̂ = 1

2
(q̂ − q̂ ′) $̂ = p̂ − p̂′ , (6.24)

it is easily verified that

˙̂
Q(t) = $̂(t)

m

˙̂
$ = −mω2Q̂(t) . (6.25)
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Since [Q̂, $̂] = 0, this means that the dynamical pair of observables {Q̂, $̂}
formed by the collective position Q̂ and relative momentum $̂ forms a QMFS—
and likewise for the pair {"̂, P̂ }.

Implementations of this idea involving for instance two spin ensembles oppo-
sitely polarized along an external magnetic field [7] or a hybrid system consisting
of a macroscopic mechanical oscillator and a spin oscillator [8] were recently
demonstrated. Several other systems have also been proposed, including the use of
mechanical oscillators [4] and ultracold atomic systems with an effective negative
mass component produced by an optical lattice [9].

Interaction with a Measuring Apparatus While the von Neumann postulate
answers the question of what happens to the object during a measurement, it does
not address the question of how the measuring device must be designed to achieve a
desired measurement. To answer this question one needs to account for the presence
of a detector and its interaction with the system to be characterized.

A good measuring apparatus must (obviously) be sensitive to the observable X̂
of interest, but ideally it should not be coupled to any other system observable. Its
interaction Hamiltonian with the system should therefore be of the form

V̂ = h̄gX̂M̂, (6.26)

where M̂ is an observable of the measuring apparatus and g a coupling constant. It
is easily shown that if X̂ is a continuous QND observable, then its evolution is not
affected by a system–apparatus interaction of the form (6.26).

Broadly speaking one can consider two types of measurements: direct measure-
ments, which are quantum measurements where the system interacts directly with
a classical device, and indirect measurements, which are two-step processes where
the object to be characterized interacts directly with another quantum object—a
quantum probe—whose state has been carefully prepared, the state of the probe
being then reduced through its interaction with a macroscopic detector, for example
an amplifier or a photodetector.

Direct measurements are typically characterized by significant randomness in the
interaction between the object and the detector, and as a result the detector disturbs
the object much more strongly than the minimum required by the Heisenberg
uncertainty relations. As a consequence, much better results can be achieved with
indirect measurements. Still, since the first step of the measurement process involves
the build-up of correlations between the object and the quantum probe, the reduction
of the state of the probe results nonetheless in an irreversible back action on the state
of the object and an irreversible change in that object as well. This key aspect of the
measurement process will be discussed in much more detail in Sect. 6.4.
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6.3 Continuous Measurements

Repeated measurements have become increasingly important in quantum optics,
where they are routinely used for example to monitor the dynamics of trapped ions
or atoms or the optical field in a laser interferometer gravitational wave antenna.
We discussed in Sect. 3.5 a crude scheme of repeated measurements of a single-
mode field by a stream of two-level atoms and commented on the considerable
measurement back action associated with them. QND measurements can mitigate
this issue in principle, but they are not necessarily easy to realize. Another way to
minimize the effects of measurement back action consists in probing the system so
gently as to not significantly perturb its subsequent evolution. This is the approach
taken by non-projective weak measurements, to which we turn our attention in this
section. We will show how in the limit of continuous measurements these can
be described in terms of stochastic master equations, or alternatively stochastic
Schrödinger equations. To set the stage for this discussion, though, we first revisit
briefly the role of back action on continuous projective measurements.

6.3.1 Continuous Projective Measurements

As is clear from their name, continuous measurements extract information from the
system continuously. To construct such measurement schemes, time is divided into
a sequence of small intervals �t and a measurement is performed during each of
them.

As in the example of Sect. 3.5 we assume that the system, with Hamiltonian Ĥ , is
monitored by a stream of j identical and non-interacting particles that successively
interact with it during the intervals tj ≤ t ≤ tj+1, with tj = (j − 1)�t ,
and �t → 0 for continuous monitoring. Information can then be extracted from
measuring the state of the successive probes after they exit the system. We denote
the system observable to be monitored by the Hermitian operator X̂ and assume that
the individual system–probe Hamiltonians are of the form (6.26). The associated
system–probe evolution operators Ûj are

Ûj = exp
[
(−i/h̄)(Ĥ + h̄gX̂M̂j )

]

≈ 1− i�t

h̄
(Ĥ + h̄gX̂M̂j )− 1

2

(
�t

h̄

)2 (
Ĥ + h̄gX̂M̂j

)2 + . . . (6.27)

so that

�̂(tj+1) = Ûj (�t)�̂(tj )Û†
j (�t), (6.28)
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where �̂ is the combined system–probe density operator. Since the system is initially
not correlated with the successive probes, we have that �̂(tj ) = ρ̂(tj )⊗ρ̂j (tj ), where
ρ̂ and ρ̂j are the system and probe density operators.

If the state of the probe is not measured at the end of its interaction with the
system, that is, if the state of the probe is not collapsed into one of its eigenstates by a
direct projective measurement, then the resulting system density operator ρ̂(tj+1) =
Trprobe�̂(tj+1) is, to second order in �t ,

ρ̂(tj+1) = ρ̂(tj )− i�t

h̄
[Ĥ + h̄gX̂〈Mj 〉, ρ̂(tj )] − 1

2

(
�t

h̄

)2 {
[Ĥ , [Ĥ , ρ̂(tj )]]

+h̄g〈M̂j 〉
(
[Ĥ , [X̂, ρ̂(tj )]] + [X̂, [Ĥ , ρ̂(tj )]]

)

+ (h̄g)2〈M̂2
j 〉[X̂j , [X̂j , ρ̂(tj )]]2

}
, (6.29)

where 〈M̂j 〉 and 〈M̂2
j 〉 are the mean and mean square of the probe operator M̂

before the interaction with the system. The term proportional to 〈M̂j 〉 is the direct
back action of the probe on the system, while the term proportional to 〈M̂2

j 〉 is
its fluctuational back action. It introduces random noise in the measurements [2].
Assuming a measurement such that the direct back action can be eliminated,
〈M̂j 〉 = 0, and taking the limit �t → 0 give then

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − 1

2h̄2 σ
2
M [X̂[X̂, ρ̂]] , (6.30)

where we have introduced the variance of the probe’s back action force on the
system

σ 2
M = h̄2g2〈M̂2〉 . (6.31)

It is not surprising that Eq. (6.30) should be of the same form as the master
equations that we encountered in the discussion of system–reservoir interactions,
since as long as we do not follow the state of the probes, they act effectively as
a reservoir that tends to bring the system to a state of equilibrium. Problem 6.4
discusses how this happens for the specific example of a driven two-level system.
Of course the situation changes if projective measurements on the successive probe
particles are carried out, as we saw in the example of Sect. 3.5. Problem 6.5 explores
in particular the quantum Zeno paradox [10] associated with continuous projective
measurements where the state of the probe is determined at each step.
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6.3.2 Positive Operator-Valued Measures

We indicated that rather than minimizing the effects of projective measurements
back action via QND schemes, one can also think of probing the system so gently
as to not significantly perturb its subsequent evolution. This is the approach taken
by the non-projective, weak measurements to which we now turn. This discussion
follows largely the excellent tutorial of Ref. [11], to which the reader is referred for
more details.

Measurements other than projective measurements, and weak measurements
in particular, are conveniently described by generalizing the idea of projection
operators P̂n. Specifically, if we pick any set of mmax operators �̂m with the
restriction

mmax∑
m=1

�̂†
m�̂m = Î (6.32)

where Î is the identity operator, then it is possible to design a measurement with
potential outcomes

ρ̂f = �̂mρ̂i�̂
†
m

Tr[�̂mρ̂i�̂
†
m]

(6.33)

occurring with probabilities

P(m) = Tr[�̂mρ̂i�̂†
m] (6.34)

and with the total probability of obtaining a result in the range [a, b] given by

P(m ∈ [a, b]) =
b∑
m=a

Tr[�̂mρ̂�̂†
m] = Tr

[
b∑
m=a

�̂†
m�̂mρ̂

]
. (6.35)

These generalized measurements are referred to as positive operator-valued mea-
sures or POVM. They can be implemented by performing a unitary interaction
between the system to be characterized and an auxiliary system and then performing
a projective von Neumann measurement on that system. They are of particular
interest in the context of weak continuous measurements, to which we now turn,
focusing on an outline of the main steps in the derivation of a powerful and elegant
description of these measurements in terms of stochastic master equations (or
alternatively of stochastic Schrödinger equations).
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6.3.3 Weak Continuous Measurements

As in Sect. 6.3.1 we denote the observable to be monitored by the Hermitian
operator X̂ and assume for simplicity that it has a continuous spectrum of eigen-
values {x} with corresponding eigenstates {|x〉}, so that 〈x|x′〉 = δ(x − x′). Weak
measurements of X̂ are characterized by a POVM of the form

Â(α) ≡
(

4k�t

π

)1/4 ∫ +∞
−∞

dx e−2k�t(x−α)2 |x〉〈x| , (6.36)

where α is a continuous index that labels the spectrum of measurement results. As
we shall see, the parameter k can be understood as a measure of the measurement
strength. A continuous measurement results from making a sequence of these
measurements and taking the limit �t → 0, or equivalently �t → dt . That is,
more measurements are made in any finite time interval, but each is increasingly
weak.

A key attribute of Â(α) is that since it is a Gaussian-weighted sum of projectors
onto the eigenstates of X̂ peaked at α, it provides only partial information about
the observable. To see what this information is, consider a generic state |ψ〉 =∫

dx ψ(x)|x〉 of the system, expanded on the eigenstates {|x〉} of X̂. First, by
applying Eq. (6.34) to the POVM Â(α) we have that the probability P(α) to obtain
the measurement outcome α is

P(α) = Tr[Â(α)|ψ〉〈ψ |Â†(α)] , (6.37)

from which it follows immediately that

〈α〉 =
∫ ∞
−∞

dα αP (α) =
∫ ∞
−∞

dα αTr[Â(α)†Â(α)|ψ〉〈ψ |]

=
√

4k�t

π

∫ ∞
−∞

dx |ψ(x)|2
∫ ∞
−∞

dα e−4k�t(x−α)2

=
∫ ∞
−∞

dx x|ψ(x)|2 = 〈X̂〉 . (6.38)

This shows that the expectation value of α is equal to the expectation value of X̂, as
should be the case.

Inserting next the definition (6.36) of Â(α) into Eq. (6.37) gives for the explicit
form of P(α)

P (α) =
√

4k�t

π

∫ +∞
−∞

dx |ψ(x)|2e−4k�t(α−x)2 . (6.39)
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If �t is sufficiently small, the Gaussian under the integral is much broader than
ψ(x), and it is possible to approximate |ψ(x)|2 by a delta function centered at the
expectation value 〈X̂〉 = 〈α〉. We then have that

P(α) �
√

4k�t

π
e−4k�t(α−〈X̂〉)2 , (6.40)

which is a Gaussian of variance σ 2 = 1/(8k�t) centered at 〈X̂〉. We can therefore
think of α as the stochastic quantity

α = 〈X̂〉 + σ �w√
�t
= 〈X̂〉 + �w√

8k�t
, (6.41)

where �w is a zero-mean Gaussian random variable of variance σ 2
�w = �t

since 4k�t(α − 〈X̂〉)2 = �w2/2�t . That is, its root mean square scales as
(�t)1/2. It is this stochastic nature of α that accounts for the random nature of
the successive quantum measurements. Importantly, Eq. (6.41) shows that the larger
the parameter k, the smaller the fluctuations in the measurement outcomes. This
justifies associating it with the measurement strength.

In the infinitesimal limit �t → dt and �w → dw the stochastic variable w(t)
is referred to as a Wiener process, a random walk with arbitrary small, independent
steps taken arbitrarily often. Importantly, one needs to keep in mind that the Wiener
differential dw satisfies the Itô rule dw2 = dt . This might appear surprising since
while dw is a stochastic quantity dt is not, and therefore neither is dw2. This subtle
point is discussed in a pedagogical way in Section 5 of Ref. [11].1

These results permit to numerically determine at each time step the evolution
of the wave function |ψ(t)〉, subject to measurements characterized by the POVM
Â(α). The infinitesimal, stochastic change in the quantum state following a single
measurement is given (before normalization) by

|ψ(t +�t)〉 ∝ Â(α)|ψ(t)〉 ∝ e−2k�t(α−X̂)2 |ψ(t)〉 . (6.42)

Inserting the expression (6.41) for α into this equation, expanding the exponential to
first order in �t → dt , but keeping terms up to second order in the Wiener process
dw, a necessary step since dw2 = dt , give

|ψ(t + dt)〉 =
[
1− 2kX̂2dt + X̂

(
4k〈X̂〉dt +√2kdw + kX̂dw2

)]
|ψ(t)〉 .

(6.43)

1The basic rule of Itô calculus is that dw2 = dt , and dt2 = dtdw = 0. To use this calculus,
count the increment dw as if it were equivalent to

√
dt . As an example, if dx = αdt + βdw and

y = exp(x), then dy = exp(x + dx) − exp(x) = exp(x)[exp(dx) − 1] is obtained by expanding
exp(dx) to second order and keeping terms up to first order in dt but second order in dw, with the
result dy = y[αdt + βdw + (β2/2)dt], see Ref. [11].
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Finally normalizing |ψ(t + dt)〉 results in the stochastic Schrödinger equation

d|ψ〉 = [−k(X̂ − 〈X̂〉)2dt +√2k(X̂ − 〈X̂〉)dw]|ψ(t)〉, (6.44)

where d|ψ〉 = |ψ(t+dt)〉−|ψ(t)〉 and the expectation values are taken using |ψ(t)〉.
This equation describes the evolution of the system conditioned on a specific stream
of random measurement results

dy = 〈X̂〉dt + dw√
8k

(6.45)

in that time interval. The successive measurements give the expected value 〈X̂〉
plus a random component due to the width of P(α). The measurements record is
called a quantum trajectory, just like in Sect. 5.4.1, albeit for a very different type
of measurement. In the present situation it describes the result of weak continuous
measurements, while the quantum jumps characteristic of Monte Carlo trajectories
considered in that earlier section could be interpreted as resulting from projective
measurements effectively performed by the environment.

The stochastic Schrödinger equation (6.44) can also be written in terms of a
density operator ρ̂ as the stochastic master equation

dρ̂ = (
d|ψ〉〈ψ | + |ψ〉(d〈ψ |)+ (

d|ψ〉(d〈ψ |)

= −k[X̂[X̂, ρ̂]]dt +√2k
(
X̂ρ̂ + ρ̂X̂ − 2〈X̂〉ρ̂

)
dw , (6.46)

where we have kept all terms proportional to dw2.
Importantly, Eqs. (6.44) and (6.46) only account for the effect of the continuous

weak measurements. A full description of the system must include also its unitary
evolution from the Hamiltonian Ĥ not associated with the measurement process,

d|ψ〉 = − i

h̄
Ĥ |ψ〉dt or dρ̂ = − i

h̄
[Ĥ , ρ̂]dt .

6.3.4 Continuous Field Measurements

As an illustration of continuous weak measurements we revisit the example of
Sect. 3.5, where we considered the repeated measurements of a single-mode field
confined in an optical cavity by a sequence of two-state atoms acting as probes. We
now modify this scheme so that the interaction of the field with the successive atoms,
taken to form a continuous stream, is described by a weak measurement POVM. As
a result the field dynamics is then governed by a stochastic Schrödinger equation of
the general form (6.44).
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We consider both the case where the atom–field interaction is resonant and
described by the Jaynes–Cummings Hamiltonian (3.1)

Ĥa = 1
2 h̄ω0σ̂z + h̄ωâ†â + h̄g (σ̂+â + â†σ̂−

)
(6.47)

and the off-resonant regime described by its dispersive limit (3.14),

Ĥd ≈ 1
2 h̄ω0σ̂z + h̄ωâ†â + h̄gd â†â σ̂z . (6.48)

Here gd = g2/� and the vacuum induced light shift (h̄g2/�) of state |e〉 has been
absorbed in the atomic Hamiltonian, ωe → ωe + h̄g2/�, as discussed in Chap. 3.
Measuring the state of the successive atoms as they exit the resonator provides
information on the field, following well-established methods of cavity QED that
will be discussed in the next chapter.

Absorptive Measurements We first consider the resonant situation ω0 = ω and
assume that the successive atoms are prepared in their ground state |g〉. Their
interaction with the optical field induces Rabi changes in the atomic state that can
then be monitored by indirect projective measurements on the atoms after they
exit the cavity. Each series of measurements results in a stochastic measurement
sequence, or quantum trajectory “j” described by the stochastic wave function
|ψj (t)〉 of Eq. (6.44), adapted to the system at hand. Since the Hamiltonian Ĥa
corresponds to measurements of the amplitude of the single-mode field the relevant
system observable is X̂ = (â + â†) and one finds readily, with σ̂−|g〉 = 0, [11, 12]

d|ψ(t)〉 =
{[
− i

h̄
Ĥa − 1

2
λa

(
â†â − 〈â + â†〉â + 〈â + â

†〉2
4

)]
dt

+ √
λa

(
â − 〈â + â

†〉
2

)
dw

}
|ψ(t)〉 , (6.49)

where the measurement strength λa = gτ can be controlled by varying the
atomic transit time τ . The term proportional to λa on the right-hand side of
Eq. (6.49) accounts for the measurement-induced dissipation of the intracavity field,
a consequence of the absorption of photons by the successive probe atoms. The
stochastic term proportional to

√
λa and to the Wiener process dw describes the

stochastic changes of the intracavity field about its expected value 〈â+ â†〉 resulting
from the measurement outcomes.

Dispersive Measurements In this second measurement scheme the atoms are far
off-resonant from the optical field, and we assume that they are prepared in the
coherent superposition |+〉 = (|e〉+|g〉)/√2 of the ground and excited states before
entering the resonator. Information on the intracavity field is then inferred from a
change in the phase of the atomic state. The effect of the measurements on the
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optical field is now described by the stochastic Schrödinger equation

d|ψj (t)〉 =
{[
− i

h̄
Ĥd − 1

2
λd

(
n̂− 〈n̂〉)2

]
dt +√

λd(n̂− 〈n̂〉)dw
}
|ψj (t)〉,

(6.50)

where λd = g2
dτ [13].

Like Eq. (6.49) this equation comprises two contributions, but the underlying
physics that they describe accounts for the important differences in the back action
of the two measurement schemes. Specifically, because the non-resonant atom–field
coupling V̂d = h̄gd â†âσ̂z of Eq. (6.48) is a QND interaction for the photon number
n̂a = â†â, the dissipative channel of Eq. (6.49) is replaced by a number conserving
term, resulting therefore in additional damping of the phase of the optical field.

Figure 6.2 shows several stochastic trajectories corresponding to these QND
measurements. Each path corresponds to a different initial seed value for the
random noise generator and traces an individual continuous QND measurement
of n̂. The estimated photon number fluctuates immediately after the measurement
starts, but these fluctuations diminish as the measurement sequence proceeds. The
distribution of final estimated values of 〈n̂〉 reflects the stochastic nature of light, and
the computer simulations confirm that the distribution of estimates of the photon
number n tends to coincide with the initial photon number distribution.

Fig. 6.2 Typical stochastic trajectories for the dispersive measurements of the photon number in
a field initially in a coherent state. Arbitrary units. (Adapted from Ref. [13])
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6.4 The Pointer Basis

We now return to a point briefly brought up in Sect. 6.2.2 and related to the
importance of the environment on the measurement process. When discussing
quantum measurements we indicated that the system to be measured is coupled
to a detector, or probe, itself a quantum object, and that this probe is in turn coupled
to the environment, a quantum object as well. So far we have however not really
addressed the reason for this additional coupling.

The key point here is that the Schrödinger equation predicts a fully reversible
time evolution, and yet a specific measurement results in a single outcome that is
a classical quantity, “cast in stone.” To quote John Wheeler [14] “No elementary
quantum phenomenon is a phenomenon until it is a registered (‘observed, indelibly
recorded’) phenomenon, brought to a close by an irreversible act of amplification.”
This brings up the fundamental question of what introduces classicality in an
otherwise quantum world. If we assume that quantum physics is the fundamental
theory of the Universe, then the Universe is itself a quantum object, and since it
is a closed system (by definition of the Universe) its evolution must keep it in a
pure state. Classicality must therefore be an emerging property, associated somehow
with the ignorance associated with considering only subsystems of the full Universe.
As we have seen in Chap. 5, the coupling of such subsystems to their environment
can for all practical purposes introduce irreversibility in their otherwise reversible
behavior, so it makes considerable operational sense to include them as the final
element of the measurement process.

To further illustrate the difficulty associated with the lack of irreversibility when
coupling a quantum system to a probe consider the simplest quantum system, a
single two-state system initially in the state

|ψ〉S = 1√
2
[|1〉 + |0〉]S , (6.51)

and a probe that is likewise a two-state system. Assume for concreteness that their
interaction leaves the combined system in the state

|ψ〉 = 1√
2
[|1〉S |1〉P + |0〉S |0〉P ] (6.52)

that maps the state |1〉S of the system to the state |1〉P of the probe, and its state |0〉S
to the state |0〉P . The corresponding density operator is simply

ρ̂SP = 1

2

[ |1, 1〉〈1, 1| + |1, 1〉〈0, 0| + |0, 0〉〈1, 1| + |0, 0〉〈0, 0| ]
SP
. (6.53)

We might (carelessly) decide to associate the mapping of the system to the probe
with the diagonal elements of ρ̂SP and the probabilities that they provide. However,
this would be not just careless, but also incorrect. This is because we could just as
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well describe the state (6.52) in the {|+〉, |−〉} basis of the system and probe, with
|±〉 = 1

2 [ |1〉 ± |0〉 ]. It is easy to verify that the state of the combined system would
then read

|ψ〉 = 1√
2
[|+〉S |+〉P + |−〉S |−〉P ] . (6.54)

However, the diagonal elements of the corresponding density operator

ρ̂SP = 1

2
[ |+,+〉〈+,+| + |+,+〉〈−,−| + |−,−〉〈+,+| + |−,−〉〈−,−| ]SP

(6.55)

are completely different from those of the density operator (6.53), although they
both describe precisely the same state! Why then should we not associate the
mapping of the system to the probe with the diagonal elements in the {|+〉, |−〉}
basis instead? There is nothing at this point that allows us to favor one representation
over the other, and it is indeed incorrect in general to associate the diagonal elements
of ρ̂ with classical probabilities.

Since there are an infinite number of bases on which to expand the state of the
system, there are also an infinite number of equivalent density operators that contain
the same information, with different elements on their diagonal. There is therefore
no unambiguous way to associate pure states with classical probabilities: In order
for the measurement to produce a classical result, pure states must be somehow
transformed into mixtures. This was already realized by J. von Neumann when he
postulated the nonunitary “reduction of the wave function” in order to project pure
states into an appropriate mixture that depends on the measurement being carried
out.

As stated by W. H. Zurek in his analysis of the measurement problem [15, 16],
“the role of measurements is to convert quantum states and quantum correlations
into classical, definite outcomes.” Since a unitary transformation is involved in the
interaction between the system and the probe, and hence the purity of pure states is
preserved, a way must be found to eliminate the maximum quantum information
characteristic of that state, or perhaps more accurately, to disperse it to a place
where it is not accessible to the detector. The considerable merit of the pointer basis
approach is the additional role played by the environment: in addition to providing
the loss of information and irreversible system dynamics that we are already familiar
with, it plays in addition a fundamental role in determining a preferred basis for the
detector. This pointer basis is immune to environmental decoherence and defines a
classical measuring apparatus unambiguously.

To see how this works more concretely, let us include, in addition of the coupling
of the system to the probe, a coupling of the probe to the environment, so that they
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become correlated either through an interaction V̂ (1)PE , resulting in a state of the form

|ψ〉 = 1√
2

[|1, 1〉SP ⊗ |1〉E + |0, 0〉SP ⊗ |0〉E] , (6.56)

or alternatively through an interaction V (2)PE resulting in the state

|ϕ〉 = 1√
2
[|+,+〉SP ⊗ |+〉E + |−,−〉SP ⊗ |−〉E ] . (6.57)

Tracing over the environment results in the first case in the system–probe density
operator

ρ̂
(1)
SP =

1

2
[ |1, 1〉〈1, 1| + |0, 0〉〈0, 0| ]SP , (6.58)

and in the second case to

ρ̂
(2)
SP =

1

2
[ |+,+〉〈+,+| + |−,−〉〈−,−| ]SP , (6.59)

a result reminiscent of the discussion of entanglement monogamy, see for instance
Eq. (4.14). The coupling V (1)PE of the probe to the environment results in the selection
of the {|1〉, |0〉} pointer basis after tracing over the environment, and hence in the
unambiguous measurement of the classical probabilities to find the system in states
|1〉 or |0〉. For the probe–environment coupling V (2)PE , in contrast, the resulting
pointer basis is the set of states {|+〉, |−〉}, with the probe measuring then the
classical probabilities of finding the system in either state |+〉 or |−〉. That is, while
the system–probe coupling develops the quantum correlations needed to learn about
the system, it is the coupling of the probe to the environment that develops the
additional correlations that, when traced over the environment, select the observable
measured by the probe.

The results and insight gained from this simple example can easily be generalized
to any system–detector combination and to a variety of environments. Environments
have typically a very large number of degrees of freedom, and their interaction
with the probe must be described carefully, see in particular Refs. [15, 17]. The
main conclusion of this analysis is that the detector–environment coupling should
preserve the relevant diagonal elements of the system–detector density operator.
This will occur only if it leaves the diagonal terms of the system–detector density
operator invariant, that is, if it commutes with the projection operators that appear
in that diagonal.

Calling V̂PE the probe–environment coupling Hamiltonian and {|Bk〉} a complete
orthonormal set of desired pointer basis states, this implies that

∑
k

pk

[
V̂PE, |Bk〉〈Bk|

]
= 0 , (6.60)
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for all pk real with
∑
k pk = 1, that is, not surprisingly the operator

∑
k |Bk〉〈Bk|

must be a quantum non-demolition operator with respect to its coupling to the
environment.

Problems

Problem 6.1 Consider a system described by the Hamiltonian Ĥ (Â, B̂), where
the operators Â and B̂ are conjugate variables. Can they be simultaneous QND
observables of the system, and why?

Problem 6.2 Show that the quadratures

X̂1 =
√

h̄

2mω

[
âeiωt + â†e−iωt

]
; X̂2 = −i

√
h̄

2mω

[
âeiωt − â†e−iωt

]

are QND variables of the harmonic oscillator.

Problem 6.3 Carry out the steps that lead from Eq. (6.27) to Eq. (6.30),

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − 1

2h̄2
σ 2
M [X̂[X̂, ρ̂]] .

Problem 6.4 Consider a system consisting of a two-level atom driven by a classical
field, and described in the rotating wave approximation by the Hamiltonian (1.60),

Ĥ = 1

2
h̄ω0σ̂z − d

[
σ̂+E+(R, t)+ σ̂−E−(R, t)

]
.

For an atom initially in its excited state |e〉 determine the dynamics of this system
under the combined effects of the classical field E+(R, t) and of continuous
measurements on the dynamics of this system, assuming that the state of the
probe is not measured at the end of its interaction with the system. Show that the
measurements result in the evolution of the system toward a stationary state, and
determine both that state and the rate at which it is reached.

Problem 6.5 The quantum Zeno paradox— This problem addresses the quantum
Zeno paradox, the fact that the evolution of quantum systems can be inhibited
by measuring it frequently. It was first discussed theoretically by E. C. G. Sudar-
shan and B. Misra [10] and first demonstrated experimentally by W. Itano and
colleagues [18].

We consider an observable Â of some system described by the Hamiltonian Ĥ
that is monitored by a series of instantaneous measurements, separated by an interval
�t , that put the system in one of the eigenstates |ψm〉 of Â. We assume that the
measurements are “exact,” in the sense that they barely induce transitions from one
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to some other eigenstate of Â and do not affect the free evolution in the intervals
between measurements.

(a) Assuming that the system is left in the eigenstate |ψn〉 after a first measurement,
show that just after the next measurement its probability to still be in that state
is, to lowest order in �t ,

pn ≈ 1−
(
�t

h̄

)2

σ 2
En
,

where σ 2
En
=

[
〈ψn|Ĥ 2|ψn〉 − (〈ψn|Ĥ |ψn〉)2

]
is the variance in energy of the

initial state |ψn〉.
(b) Show then that after sequence of k measurements over an interval τ = k�t and

the limit of continuous monitoring,�t → 0 and k→∞, the probability to still
be in the initial state |ψn〉 at time τ becomes

pn(τ)→ exp

[
−

(
τ�t

h̄2

)2

σ 2
En

]

so that in the limit �t → 0 we have pn(τ) = 1, that is, the system remains in
its initial state, no matter how long the total measurement time τ . This effect is
known as the quantum Zeno paradox [10].

Hint: Remember the identity ex = limn→∞(1+ x/n)n.
Problem 6.6 Carry out the steps that lead from Eq. (6.42) to the stochastic differ-
ential equation (6.44).

Problem 6.7 Show that for the absorptive measurement of a single-mode intra-
cavity field amplitude X̂ = â + â† the stochastic equation (6.44) results in the
form (6.50),

d|ψj (t)〉 =
{[
− i

h̄
Ĥd − 1

2
λd

(
n̂− 〈n̂〉)2

]
dt +√

λd(n̂− 〈n̂〉)dw
}
|ψj(t)〉.

Problem 6.8 Write a program to simulate the stochastic equation of Problem 6.6
numerically for (a) a field initially in a coherent state |α〉 and (b) a number state, both
with 〈n〉 = 9. Plot a sample of several characteristic resulting stochastic trajectories
as a function of time.
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Chapter 7
Tailoring the Environment—Cavity QED

It is possible to create electromagnetic environments where spontaneous
emission can be enhanced or inhibited, or even becomes reversible. This
is the domain of cavity QED. Following a review of its basic aspects we
discuss the micromaser, where a tailored environment allows to produce
strongly nonclassical radiation. We also consider the off-resonant situation
where a single atom operates as a dispersive medium. We then transition to
the quantization of LC electric circuits and superconducting qubits, which
permit to extend cavity QED to the emerging area of many-body circuit
QED and the possibility to reach extremely high atom–field couplings. The
chapter concludes with a brief introduction to the Casimir effect.

As apparent from the previous chapters, quantum optics deals with the dynamics
of coupled quantum systems that can be as small as one or two atoms or a single
mode of the electromagnetic field, or very large like an electromagnetic continuum
of modes, an atomic vapor, or perhaps a solid in which a handful of qubits are
embedded. Their coupling may be under superb control, as for instance in quantum
cryptography experiments, when trying to detect extraordinarily faint signals, or
when making measurements of exquisite precision. In other cases it is much less
so, in particular when dealing with the unavoidable coupling of a system to its
environment, a coupling that can also lead as we have seen to the emergence of
classical dynamics.

As early as 1946, E. M. Purcell et al. [1] observed an increased spontaneous
emission rate of several orders of magnitude when an atom was surrounded by
a cavity tuned to the transition frequency of the atom. This observation was
later further elaborated upon by D. Kleppner [2], who discussed theoretically the
possibilities of enhanced and inhibited spontaneous emission. With hindsight the
fact that controlling the rate of spontaneous emission should be possible is not
surprising: the Weisskopf–Wigner theory of Sect. 5.1 shows that the spontaneous
decay rate of an atom depends explicitly on the mode density of the electromagnetic
field. It follows that it must be possible to modify it by manipulating the density
of modes, that is, by controlling the electromagnetic environment. Still, it took a
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few more years before experimental capabilities permitted to achieve this goal in
a controlled way, first in the microwave regime, and later in optical resonators,
opening up the field of cavity quantum electrodynamics, or cavity QED. Progress
in this direction has now reached the point where it is even possible to create
electromagnetic environments where spontaneous emission becomes reversible, the
environment ceasing to behave as a Markovian reservoir where energy is forever
dissipated.

Following a review of the basic aspects of cavity QED this chapter discusses
in some detail the micromaser, where a tailored environment allows to produce
radiation that is strongly nonclassical, in contrast to the situation in conventional
lasers. We also consider the off-resonant situation where a single atom operates as a
dispersive medium that can for instance be exploited to generate optical Schrödinger
cats, or perhaps more accurately Schrödinger kitten. We then transition to the use of
“artificial atoms” in the form of superconducting qubits that permit to extend cavity
QED to the emerging area of circuit QED. These systems raise the possibility to
reach atom–field coupling constants in the ultrastrong coupling regime introduced
in Sect. 3.6, in addition to offering much promise for quantum information science
and technology applications.

The chapter concludes with an introduction to the Casimir effect. In 1948 H.
Casimir realized that the vacuum forces are dependent on the geometry of the
system in which they are contained, resulting in particular in an attractive force
between two conducting plates facing each other due to the simple presence of
the electromagnetic vacuum. An important physical quantity when discussing the
Casimir force is the radiation pressure exerted from light on massive objects. As
such this force, in addition to being arguably the simplest manifestation of a tailored
vacuum, also provides a natural bridge to the discussion of the mechanical effects
of light that comprise much of the next three chapters.

For a much more complete presentation of cavity QED the reader is referred to
Chap. 5 of “Exploring the Quantum—Atoms, Cavities and Photons,” by S. Haroche
and J.-M. Raimond [3], a wonderful text that covers this topic in considerably more
detail and depth than can be done in this short chapter.

7.1 Enhanced and Inhibited Spontaneous Emission

7.1.1 Master Equation for the Atom–Cavity System

A simple theoretical model that permits to identify the three main regimes of
spontaneous emission in tailored environments consists of a single two-level atom of
transition frequency ω0 trapped in an open-sided Fabry–Pérot cavity and effectively
interacting with a single cavity mode of frequency ω ≈ ω0. This situation can
be realized if the cavity length L is short enough that the axial mode frequency
separation c/2L is large compared to the dipole coupling frequency between the
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Fig. 7.1 Fabry-Pérot cavity with a standing wave mode of frequency ω interacting with an atom
of center-of-mass momentum p. The rates γ and κ account for atomic losses into the free space
background and cavity losses due to imperfect mirrors and diffraction, respectively

atom and that mode, their detuning |�| = |ω0 − ω|, as well as the cavity decay
rate—or, in the microwave regime, if c/2L is large compared to ω and ω0.

Under these conditions, and neglecting the effects of transverse modes for now,1

the subsystem consisting of the atom and field mode can then be described by the
Jaynes–Cummings Hamiltonian (3.1) with spatially dependent dipole coupling

g(z) = −(dEω/2h̄) cosKz, (7.1)

where z is the position of the atom along the resonator axis.
As we have already discussed, it is impossible in practice to perfectly isolate it

from the external world. In contrast to the situations that we have encountered so
far, it should be thought of as interacting with (at least) two reservoirs: The first
one is associated with the coupling of the atom to the free space electromagnetic
background through the sides of the resonator, and the second one to the coupling of
the cavity mode to the outside world via mirror losses and diffraction, as illustrated
in Fig. 7.1. The first process is important in open cavities and cannot be ignored
then. It results in an incoherent decay of the excited atomic state a la Weisskopf–
Wigner, but at a rate γ that can be significantly different from the free space rate
� of Eq. (5.18). The second reservoir accounts for the irreversible escape of cavity
photons.

Due to the additive nature of the two decay mechanisms the single reservoir
master equation of Chap. 5 can readily be expanded to a form whose non-Hermitian
component now comprises two contributions. The first one, given by Eq. (5.57),
accounts for the dissipation of the cavity field mode at rate κ and the second one,
given by Eq. (5.66), for a spontaneous emission of the atom at rate γ into the subset

1We will return to this important point later in this section.
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of the free space modes determined by the solid angle over which the atom “sees”
that background.

Decomposing the master equation as in Sect. 5.4.1 as the sum of a contribution
from a non-Hermitian effective Hamiltonian Ĥeff and the two jump operators L̂κ
and L̂γ associated with these decay channels it becomes, at zero temperature,

dρ̂s
dt
= − i

h̄
[Ĥeffρ̂s − ρ̂sĤ †

eff] + L̂κ [ρ̂] + L̂γ [ρ̂] . (7.2)

Here

Ĥeff = Ĥs + Ĥloss, (7.3)

where Ĥs is the Jaynes–Cummings Hamiltonian (3.1) and

Ĥloss = − ih̄

2
[γ σ̂+σ̂− + κâ†â] . (7.4)

The Liouvillian

L̂κ [ρ̂] = κâρ̂s â† (7.5)

accounts for quantum jumps associated with the dissipation of the cavity field mode
at rate κ and

L̂γ [ρ̂] = γ σ̂−ρ̂s σ̂+ (7.6)

accounts for those associated with the spontaneous decay of the excited atomic state
|e〉.

We are interested in the spontaneous emission of the excited atom in the cavity
environment, or more precisely perhaps, in the dynamics of the small atom–cavity
mode subsystem initially in the state

|ψ(0)〉 = |e, 0〉 (7.7)

and coupled to its two reservoirs. As we have seen in the discussion of the Jaynes-
Cummings model, in the absence of dissipation, the total number of excitations in
the atom–field mode subsystem, one in the present case, remains constant. However,
the coupling to the reservoirs involves the loss of excitation from the small system.
Consequently there are now three relevant states involved in its dynamics: the “one-
quantum” states |e, 0〉 and |g, 1〉, and the “zero-quantum” state |g, 0〉.

Following the Monte Carlo wave function approach of Sect. 5.4 we proceed by
introducing the unnormalized one-quantum state

|ψ(t)〉 = Ce e−i�/2|e, 0〉 + Cg ei�/2|g, 1〉 , (7.8)
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where � = ω0 − ω. It is governed by the effective non-Hermitian Schrödinger
equation

ih̄
d|ψ(t)〉

dt
= Ĥeff|ψ(t)〉 , (7.9)

which describes the evolution of the system within the one-excitation manifold. In
addition, the transitions to the zero-quantum state |g, 0〉 are driven by the quantum
jumps

|ψ〉 → √κ â|ψ〉 or |ψ〉 → √γ σ̂−|ψ〉 (7.10)

for events resulting in cavity field mode and atomic energy dissipation, respectively.
The Schrödinger-like equation (7.9) yields the probability amplitude equations

of motion

dCe(t)

dt
= −(γ /2)Ce(t)− igCg(t) , (7.11)

dCg(t)

dt
= (i�− κ/2)Cg(t)− igCe(t) . (7.12)

At this point it is useful to distinguish between two qualitatively different regimes. In
the first one the irreversible decay rates κ and γ dominate over the dipole interaction
between the atom and the cavity mode, whose strength is given by g. This is
traditionally called the weak coupling regime, or bad cavity limit. In contrast, the
strong coupling regime, or good cavity limit, is characterized by the fact that the
coherent interaction between the atom and the cavity mode dominates over the
irreversible decay mechanisms. In the closed superconducting cavities sometimes
used in microwave experiments we have γ � 0, so that the strong coupling regime
corresponds to g � κ and the weak coupling regime to g � κ . In contrast, most
optical cavities encompass only a small fraction of the free space solid angle 4π , so
that γ � �. In this case, the strong coupling regime corresponds to g � {�, κ} and
the weak coupling regime to g � {�, κ}.

7.1.2 Weak Coupling Regime

Formally integrating Eq. (7.12) gives readily

Cg(t) = −ig
∫ t

0
dt ′ Ce(t ′)e(i�−κ/2)(t−t

′) . (7.13)

Assuming consistently with the weak coupling condition g � {�, κ} that Ce(t ′)
varies slowly compared to 1/(|�| + |κ|/2) it can be taken outside the integral and
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evaluated at t ′ = t , a step that we recognize from the discussion of the Markov
approximation. That is, all memory effects in its evolution are effectively washed
out by the dissipation of the intracavity field and the evolution of the one-excitation
manifold becomes Markovian. From Eqs. (7.11) and (7.12), this requires that g and
γ are small compared to |�| + |κ|/2. The remaining integral gives, for t � κ−1,

Cg(t) = ig

i�− κ/2Ce(t) , (7.14)

and, after substitution of this expression into Eq. (7.11),

dCe(t)

dt
= −

[
(γ /2)+ g

2(κ/2+ i�)

�2 + κ2/4

]
Ce(t) . (7.15)

Hence, the upper electronic state population pe(t) undergoes an exponential decay
at the rate

γeff = γ + γc , (7.16)

where the term

γc =
(

2g2

κ

)
1

1+ (2�/κ)2 (7.17)

accounts for a contribution to the upper atomic state damping from the dissipation
of the intracavity field. In the free space limit κ → ∞ and γ → �, γeff reduces as
it should to the Weisskopf–Wigner result �.

Closed Cavity Consider now the case of a closed cavity, γ = 0, so that γeff = γc.
Assume also that the atom is at an antinode of the field mode, so that cos(Kz) = 1.
Expressing the dipole matrix element g in terms of the free space decay rate � using
Eq. (5.18) with Eω = √h̄ω/ε0V and introducing the quality factor of the resonator
Q ≡ ω/κ we find at resonance � = 0

γc → γmax = 3Q

4π2

(
λ3

V

)
� , (7.18)

where λ = 2πc/ω. The enhancement factor

γmax

�
= 3Q

4π2

(
λ3

V

)
(7.19)

is called the Purcell factor. For sufficiently high quality factors Q and transition
wavelengths comparable to the cavity size, this expression predicts a considerable
enhancement of the spontaneous emission rate as compared to its free space value.
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This is essentially the effect observed by E. M. Purcell and first quantitatively
verified by R. Goy et al. [4].

Equation (7.17) also predicts an inhibition of spontaneous emission for atoms far
detuned from the cavity resonance frequency ω. For instance, for |�| = ω we have
forQ� 1

γc � γmax

(
1

4Q2

)
= 3

16π2Q

(
λ3

V

)
� . (7.20)

For large quality factors it is therefore possible to almost completely switch off
spontaneous emission, an effect first demonstrated by R. Hulet and colleagues [5].

We note that Eqs. (7.18) and (7.20) seem to imply that a transition wavelength
comparable to the cavity size is necessary to obtain a significant enhancement
or inhibition of spontaneous emission. This turns out to be incorrect, however,
and results from an oversimplified description of the cavity modes that neglects
transverse effects. In particular, in the case of a confocal resonator of length L
and for Gaussian modes of waist w0 = √Lλ/π the possible wavelengths are
given by L = (q + 1/4)λ/2, where q is an integer, and the mode volume is
v = πw2

0L/4 = (q + 1/4)2λ3/16. In this case, the wavelength dependence
in Eqs. (7.18) and (7.20) largely disappears, demonstrating that wavelength-size
cavities are not required in general to observe enhanced or inhibited spontaneous
emission.

Propagation Effects It may be useful at this point to make a general comment on
the dependence of the spontaneous emission rate on the cavity density of modes. The
mode structure depends on the boundary conditions imposed by the cavity, and one
may wonder how the atom can initially “know” that it is inside a cavity rather than
in free space. Is there some instantaneous action at a distance involved, and if not,
what is the mechanism through which the atom learns about its environment? The
single-mode theory presented in this section does not permit to answer this question,
since it cannot account for the propagation of wave packets along the cavity axis.
Using a proper multimode theory, J. Parker and C. Stroud [6] and R. J. Cook and P.
W. Milonni [7] showed that there is a simple answer to that question. In a real cavity,
the initially excited atom starts to decay while radiating a wave packet in the form
of a multimode field that propagates away from it. Eventually, this field encounters
the cavity walls, which reflect it. The reflected field acts back on the atom, carrying
information about the cavity walls as well as about the state of the atom itself at
earlier times. Depending upon the phase of this field relative to that of the atomic
polarization, it will either accelerate or prevent the further atomic decay. But for
times shorter than the transit time between the atom and the cavity walls and back,
it always decays at its free space rate.
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7.1.3 Strong Coupling Regime

We now turn to the strong coupling regime, characterized by the fact that the
coupling g between the atom and the cavity mode is now large enough for a photon
emitted into the cavity to have a significant probability of being reabsorbed before it
escapes the resonator. To analyze this regime we first consider the general solution
of Eqs. (7.11) and (7.12) for arbitrary values of γ , κ , and g,

Ce(t) = Ce1 eα1t + Ce2 eα2t , (7.21)

where

α1,2 = 1

2

(γ
2
+ κ

2
− i�

)
± 1

2

[(γ
2
+ κ

2
− i�

)2 − 4g2
]1/2

(7.22)

and the constants Ce1 and Ce2 are determined from the initial conditions Ce(0) = 1
and Cg(0) = 0.

In the strong coupling regime g � γ, κ these exponents reduce to

α1,2 = −1

2

(γ
2
+ κ

2
− i�

)
± ig , (7.23)

and the amplitude of their imaginary part is much larger than that of the real part. As
a result the evolution of the upper state population consists now of slowly decaying
oscillations at the vacuum Rabi frequency 2g, see Fig. 7.2. These vacuum Rabi
oscillations were first observed in the microwave regime by M. Brune et al. [8].
In this regime, the spectrum of spontaneous emission consists of a doublet of
Lorentzian lines of equal widths (γ + κ)/4 and split by the vacuum Rabi frequency
2g, rather than the familiar Lorentzian associated with free space exponential decay.

Fig. 7.2 Atomic excited state
probability as a function of
time, in dimensionless units.
The dashed exponentially
decaying curve is for the
weak coupling regime, and
the solid damped oscillations
correspond to the strong
coupling regime
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A simple physical interpretation of that spectrum can be obtained from the
Jaynes–Cummings dressed energy spectrum (3.5) of the atom–cavity mode system,

E1n = h̄(n+ 1
2 )ω + h̄�n

E2n = h̄(n+ 1
2 )ω − h̄�n , (7.24)

where

�n = 1

2

√
�2 + 4g2(n+ 1) . (7.25)

In the case of spontaneous emission the atom–cavity system is initially in the one-
quantum manifold, and there are only two allowed transitions, |1, 0〉 → |g, 0〉 and
|2, 0〉 → |g, 0〉. The frequencies of these transitions are−�/2±2g, consistent with
the result of Eq. (7.23).

7.2 The Micromaser

So far we have considered the spontaneous decay of a single atom at rest inside the
optical or microwave resonator. An interesting extension consists in injecting a beam
of atoms transversally through the cavity, at a rate low enough that only one atom
at a time is present inside the resonator—at least if one wishes to avoid collective
effects such as sub- or superradiance, see Fig. 7.3. This situation is reminiscent of the
discussions of Sect. 3.5, where a stream of atoms was used to gain information on an
intracavity field, and of Sect. 6.3.4, where this measurement scheme was improved
upon by using weak continuous measurements of the field, again using a stream of
atoms as probes.

Our present goal is however different: rather than using the atoms as field sensors
we now exploit them to build a specific intracavity field in the presence of weak
dissipation. We have seen in the previous section that in the strong coupling regime
atoms injected in their upper state |e〉 undergo damped vacuum Rabi oscillations.
One can therefore expect that if the time the atoms remain inside the resonator and
the rate at which they are injected are just right, they will tend to deposit their energy
inside the resonator and build the intracavity field. As such this system is reminiscent
of traditional lasers or masers, but with the field built up “one photon at a time.”
Since in this system only one atom at a time is inside the resonator, instead of the
vast numbers characteristic of usual lasers and masers, this system is called a “one-
atom maser,” or micromaser. This is a deceptively simple idea, but not surprisingly
its experimental realization, first achieved by H. Walther and collaborators [9], is
much less so.

Theoretical Model If the cavity transit time of the individual atoms is much shorter
than both the spontaneous emission time 1/γ and the cavity mode decay time 1/κ ,
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Fig. 7.3 Schematic of a micromaser, with a beam of two-level atoms traversing a high-Q single-
mode microwave cavity at a rate such that at most one atom is present in the cavity at a time. If
desired, information on the state of the field can be inferred from atomic state measurements after
they exit the resonator, in many cases in the form of state-selective field ionization. This approach
is often favored in microwave cavity QED due to the absence of good single-photon detectors in
that wavelength regime

one can separate the evolution of the atom–field system into alternating intervals,
where an interval during which an atom is inside the resonator and the dynamics is
governed by the Jaynes–Cummings Hamiltonian is followed by a period where the
resonator is empty and the field dynamics follows the master equation (5.57) for a
damped harmonic oscillator.

Consider then the evolution of the system, starting from the time ti when the ith
atom enters the cavity. At that instant the atom and the field are uncorrelated, so that
the state of the combined atom–field system is

ρ̂af (ti) = ρ̂a(ti)⊗ ρ̂f (ti) , (7.26)

with ρ̂a(ti) and ρ̂f (ti) the atomic and field mode density operators, respectively.
After a transit time τ the atom exits the resonator, leaving the field in the state

ρ(ti + τ) = Tratom{Û (τ )ρ̂af (ti)Û†(τ )} ≡ F̂ (τ )[ρ̂(ti)] , (7.27)

where Û (t) = exp(−iĤ t/h̄) and Ĥ is the Jaynes–Cummings Hamiltonian (3.1).
This equation also defines the operator F̂ (τ ), which we use in the following to
simplify the notation.

Importantly, in contrast with the repeated field measurements of Sects. 3.5
and 6.3.4, or the Schrödinger cats generation to be discussed in Sect. 7.3, we focus
here on the situation where the internal state of the successive atoms is not measured
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after they exit the resonator. Between ti+τ and the time ti+1 at which the next atom
is injected, the field then simply dissipates energy at rate κ = ω/Q, with its density
operator governed by the master equation (5.57)

dρ̂

dt
≡ L̂[ρ̂] = − ω

2Q
(nth + 1)[â†âρ̂(t)− âρ̂(t)â†]

− ω
2Q
nth[ρ̂(t)ââ† − â†ρ̂(t)â] + h.c. (7.28)

If waiting long enough it would reach a thermal steady state with a temperature-
dependent mean number nth of thermal photons2 so clearly the next atom needs
to be injected at a time ti+1 before this can happen. At that time the field density
operator is simply given by

ρ̂(ti+1) = exp(L̂tp)F̂ (τ )ρ̂(ti) . (7.29)

More concretely, if the successive atoms enter the cavity in their excited state
|e〉 and the field is initially diagonal in energy, the reduced field density operator is
easily verified to remain diagonal at all times and it is sufficient to concentrate on its
diagonal elements pn = 〈n|ρ̂f |n〉. The atom–field density operator as the ith atom
enters the cavity is then

ρaf (ti) = |e〉〈e| ⊗
∑
n

pn(ti)|n〉〈n| , (7.30)

and in the resonant case ω = ω0 the reduced field density operator becomes simply,
with Eqs. (3.20) and (3.21),

ρ̂(ti + τ) =
∑
n

pn(ti) cos2(g
√
nτ)|n〉〈n| + sin2(g

√
n+ 1τ)|n+ 1〉〈n+ 1| .

(7.31)

The diagonality of the field is preserved during its decay, so that the master
equation (7.28) can be restricted to its diagonal elements

dpn
dt
= −κ(nth + 1)[npn − (n+ 1)pn+1] − κnth[(n+ 1)pn − npn−1] . (7.32)

2Instead of labeling the mean number of thermal photons by n̄ as in Chap. 5, we use here the less
compact but more descriptive notation nth, while “〈n〉” denotes the average photon numbers over
the successive atoms driving the micromaser.



198 7 Tailoring the Environment—Cavity QED

Under these conditions, successive iterations of the Jaynes–Cummings and field
dissipation sequence eventually yield a diagonal steady-state field density matrix
ρst, which is the solution of this equation with ρ̂(ti+1) = ρ̂(ti).3

As a final step we assume that the atoms enter the cavity according to a Poisson
process with mean spacing 1/R between events, where R is the atomic flux, and
average over the random times tp between events. Since ρ̂(ti) depends only on
earlier time intervals, it is statistically independent of the current exp(L̂tp), and we
can factor the average of ρ̂(ti+1) as

〈ρ̂(ti+1)〉 = 〈exp(L̂tp)〉F̂ (τ )〈ρ̂(ti)〉

= R
∫ ∞

0
dtp exp[−(R − L̂)tp]F̂ (τ )〈ρ̂(ti)〉

= R

R − L̂
F̂ (τ )〈ρ̂(ti)〉 . (7.33)

In the last step we have averaged the damping operator exp(L̂tp) over an exponential
distribution of intervals between atoms with average injection rate R. In steady state
〈ρ̂(ti+1)〉 = 〈ρ̂(ti)〉 ≡ ρ̄, so that

R[1− F̂ (τ )]ρ̄ = L̂ρ̄ . (7.34)

This leads, with Eqs. (7.31) and (7.32) and after some straightforward algebra, to

p̄n = nthκ + R sin2(g
√
nτ)

(nth + 1)κ
p̄n−1 , (7.35)

that is,

p̄n = p̄0

n∏
k=1

nthκ + R sin2(g
√
kτ)

(nth + 1)κ

= p̄0

(
nth

1+ nth

)n n∏
k=1

[
1+

(
N

nth

)
sin2(

√
k/N%)

]
(7.36)

with p̄0 determined by the normalization condition
∑
n p̄n = 1. In the second line

we have introduced the dimensionless parameters

N = R/κ , (7.37)

3Note that this is not a “true” steady state, but rather a stroboscopic steady state. Physically, it
corresponds to a situation where the same field state repeats at the precise instants when successive
atoms exit the cavity.
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which is the number of atoms injected by cavity decay time 1/κ , as well as the
effective “pump parameter”

% = √Ngτ . (7.38)

Features of the Photon Statistics Since the intracavity field always remains
diagonal, the photon statistics (7.36) contain all information about the single-time
statistical properties of the steady-state field reached by the micromaser.

The left side of Fig. 7.4 shows the average photon number

〈n〉 =
∑
n

np̄n , (7.39)

normalized to N as a function of the pump parameter %. Figure 7.4a, c corresponds
to N = 20 and 200, respectively, with a number of thermal photons nth = 0.1. A
feature common to all cases is that 〈n〉 is nearly zero for small %, but a finite value
of 〈n〉 emerges at the threshold value % = 1. For % increasing past this point, 〈n〉
first grows rapidly but then decreases to reach a minimum at about % � 2π, where

Fig. 7.4 Average photon number 〈n〉, normalized to N , as a function of the pump parameter %
for (a) N = 20 and (c) N = 200, and corresponding normalized standard deviation σ/

√〈n〉 =
[〈n2〉−〈n〉2)/〈n〉]1/2 for (b)N = 20 and (d)N = 200. The number of thermal photons is nth = 0.1
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the field abruptly jumps to a higher intensity. This general behavior recurs roughly
at integer multiples of 2π , although it becomes less pronounced for increasing %.
Finally, a stationary regime with 〈n〉 nearly independent of % is reached. Outside
the time scale of the figure there is an additional structure somewhat reminiscent of
the Jaynes–Cummings revivals.

The number and sharpness of the features in the mean photon number depend on
N . At the onset of the field around % = 1, 〈n〉 is essentially independent of N for
N � 1, but the subsequent transitions become sharper for increasingN although the
micromaser remains largely dominated by thermal noise for small N , as illustrated
in Fig. 7.4a, c. In the limit N → ∞, this behavior hints at an interpretation of
the first transition, the analog of the threshold in conventional lasers, in terms of a
continuous phase transition, while subsequent transitions near % ≈ 2nπ are similar
to first-order phase transitions [10]. As expected these transitions are characterized
by the onset of bimodal photon statistics, as illustrated for the case of the first such
transition in Fig. 7.5. They are also responsible for the sharp peaks in the normalized
standard deviation σ/

√〈n〉 = [〈n2〉 − 〈n〉2)/〈n〉]1/2 of 〈n〉, which is shown in
Fig. 7.4b, d for the two cases N = 20 and N = 200.

Both the photon statistics and its second moment show that the micromaser field
is characterized by features alien to ordinary single-mode masers and lasers, which
far above threshold are characterized by Poisson photon statistics, see e.g. Ref. [11].

Fig. 7.5 Changes in the steady-state photon statistics p̄n for N = 200 and n̄ = 0.1, as the pump
parameter % is varied across the values near % = 2π where the micromaser undergoes its first
phase-like transition, and p̄n acquires a bimodal nature. The values of % corresponding to the
cases just below, at, and just above the transition are indicated on the respective plots
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The field is typically strongly “nonclassical,” where by classical we mean a field
with a positive definite P(α) distribution. And it has no particular tendency, even
far above threshold, of being Poissonian, in which case we would have as we have
seen σ = √〈n〉.

These differences with conventional lasers originate from the fact that the
micromaser possesses less stochasticity and noise than macroscopic masers and
lasers, for which the atom–field interaction is terminated by exponential atomic
decays rather than a transit time. As a result, the coherence of the quantum
mechanical light-matter interaction is averaged over in conventional lasers, and the
purely quantum mechanical features appearing in micromasers are largely lost.

Temperature Dependence The temperature dependence of the micromaser steady
state illustrates particularly clearly the difference between the effects of quantum
and thermal noise. To see this, note that the n-dependence of the quantum Rabi
oscillations implies the existence of number states |nq〉 that cause successive atoms
to experience 2qπ pulses, where q is an integer, during their transit time τ through
the cavity. At resonance ω = ω0 this happens for g(nq + 1)1/2τ = qπ . That is,
for these states the atom entering the resonator in its excited state will exit it in that
same state, thereby prohibiting the growth of the cavity field past them.

Competing with the blocking effect of these trapping states [12] is dissipation,
which leads to an incoherent transfer of population both up and down the ladder
of states of the cavity mode. Hence, thermal fluctuations allow the micromaser to
jump past the trapping states and rapidly wash out their effect. In the limit T → 0,
however, nth → 0 and Eq. (7.32) reduces to

ṗn = − ω
Q
[npn − (n+ 1)pn+1] , (7.40)

so that in the absence of thermal effects dissipation only causes downward tran-
sitions. In contrast to thermal fluctuations, vacuum fluctuations do not permit the
growth of the maser past the trapping states. In this limit, we can expect remnants
of these states to appear in the steady-state properties of the maser.

Figure 7.6 shows the steady-state mean photon number 〈n〉, normalized to N =
200 and for nth = 10−6 thermal photons, as a function of the micromaser pump
parameter%. The “narrow resonances” are easily interpreted in terms of the trapping
condition that becomes, in terms of the parameters N and %,

N

%2 =
nq + 1

q2π2 . (7.41)

For fixed N , the successive resonances correspond to values of % where decreasing
Fock states |n1〉 become trapping states for q = 1, see Ref. [12] for more details.
The existence of these trapping states was experimentally demonstrated by M.
Weidinger et al. [13].
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Fig. 7.6 Mean photon number 〈n〉, normalized to N , as a function of the pump parameter % for
N = 200 and nth = 10−6. For these parameters and q = 1 the Fock state |nq=1 = 38〉 becomes
a dark state for % ≈ 7.2, the state |n1 = 37〉 at % ≈ 7.3, |n1 = 36〉 at % ≈ 7.4, |n1 = 35〉 at
% ≈ 7.5, and |n1 = 34〉 at % ≈ 7.6

7.3 Dispersive Regime

So far we have concentrated on the resonant regime� = 0 of the Jaynes–Cummings
model. We now turn to the dispersive regime, where the field frequency is far off-
resonant from the atomic transition frequency so that

|�| = |ω0 − ω| � g
√
n+ 1 (7.42)

for all relevant number states |n〉. We have seen in Sect. 3.1 that in this limit the
eigenenergies (3.5) reduce to

E1n = h̄(n+ 1/2)ω + 1

2
h̄�+ h̄g

2(n+ 1)

�

E2n = h̄(n+ 1/2)ω − 1

2
h̄�− h̄g

2(n+ 1)

�
, (7.43)

and the Jaynes–Cummings dressed states approach the bare states of the atom–field
system,

|1, n〉 → |e, n〉
|2, n〉 → |g, n+ 1〉 (7.44)
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for � > 0 and

|1, n〉 → |g, n+ 1〉
|2, n〉 → |e, n〉 (7.45)

for � < 0. In that limit the Jaynes–Cummings Hamiltonian simplifies to the
effective Hamiltonian

ĤJC, eff = 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�

[
(â†â + 1)|e〉〈e| − â†â|g〉〈g|

]

≈ 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�
â†â σ̂z , (7.46)

where the last term is the intensity dependent light shift of Eq. (3.15). In the second
line of Eq. (7.46) we have incorporated the vacuum induced shift s0 = g2/� in
the upper state frequency, ωe → ω′e = ωe + s0, and used the fact that for large
detunings s0 � ωe, so that ω′0 ≡ ω′e − ωg ≈ ω0, an approximation that we already
encountered in Eqs. (3.14) and (6.48). It follows from the discussion of Sect. 6.2.2
that in this limit the number operator N̂ = â†â is a QND variable since it commutes
with ĤJC, eff, and so is σ̂z.

Inverse Stern–Gerlach Effect Consider then an atom injected transversally into a
resonator along some trajectory r(t). It will experience a spatially dependent vac-
uum Rabi frequency g(r), a simple extension of the Rabi frequency expression (3.2)
that accounts for the transverse profile of the cavity mode.4 If in addition the atom
is slow enough that it will not undergo any nonadiabatic transition between |e〉 and
|g〉 during its transit, that is, if [14]

1

�2

dg(r(t))
dt

< 1 , (7.47)

then all that happens is that it acquires a number state |n〉 and position-dependent
light shift −(h̄g(r)2/�)n for a ground state atom or (h̄g(r)2/�)(n + 1) for an
excited atom.

Since both â†â and σ̂z are constants of motion of the Hamiltonian (7.46), one
can think of these light shifts as potentials acting on the center-of-mass motion of
the atom only. The n-dependence of the associated forces, given by the negative of
their derivatives, implies that the atomic center-of-mass wave function will split into

4This spatial dependence was ignored for simplicity in the discussion of the micromaser.
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Fig. 7.7 Schematic of the inverse Stern–Gerlach effect, with the atom, taken to be in its excited
state |e〉, exiting the cavity in a superposition of |n〉 dependent trajectories with probabilities
reflecting the photon statistics pn of the intracavity field

partial waves whose trajectories reflect the state of the field and its photon statistics.5

In particular the vacuum field |n〉 = |0〉 only produces a force on excited atoms, but
not on ground state atoms, as follows from the discussion of the vacuum ac Stark
shift of Eq. (3.15).

Let us assume for concreteness that a very slow atom enters the cavity in its
excited state |e〉 with wave packet |ψe(r, t)〉, and that the field is in a superposition
|"〉 =∑

n cn|n〉, so that the initial state of the atom–field system is

|#(r, ti )〉 =
∑
n

cn|ψe(r, ti )〉 ⊗ |n〉 ≡
∑
n

cn|#e,n(r, ti )〉 . (7.48)

As the atom enters the resonator and starts interacting with the field, and assuming a
positive atom–field detuning � > 0, we have that |#e(r, ti )〉 → |#1(r, ti )〉 =∑
n |#1,n(r, ti )〉, with the individual components all subject to different n-

dependent optical potentials and their evolution governed by the corresponding
Schrödinger equations

ih̄
∂|#1,n(r, t)〉

∂tf
=

[
− h̄

2

2m
∇2 + E1n(r)

]
|#1,n(r, t)〉 . (7.49)

As a result they will have acquired an n-dependent spatial component when the atom
exits the resonator at time tf and the dressed states of the system are mapped back
to the bare states, |#1,n(r, t)〉 → |#e,n(r, tf )〉, as schematically shown in Fig. 7.7.

The spatially resolved detection of the atom at a given point and time will
therefore collapse the field wave function to a single number state |n〉, in analogy

5To properly account for these forces and the mechanical effects of light on atoms requires that the
Hamiltonian (7.46) be properly modified to include their kinetic energy. This step will be carried
out in some detail in the following chapters.
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to the way a particle detection on a traditional Stern–Gerlach apparatus reduces its
spin to a single value. For this reason this effect has been dubbed the inverse Stern
Gerlach effect by S. Haroche and J. M. Raimond [15].

We will return to the mechanical effects of light in considerably more detail in the
discussions of atom optics, laser cooling, and cavity optomechanics of Chaps. 8–11.
In particular, Sect. 8.4.3 will show how the optical inverse Stern–Gerlach effect just
discussed is formally closely related to the matter-wave Stern–Gerlach effect.

Dispersive Schrödinger Cats In addition to resulting in a number-state-dependent
force on the atomic center of mass, the effective Hamiltonian (7.46) indicates that
as an atom traverses the resonator at velocity v along some trajectory it imprints on
the field an additional state-dependent phase

φ1(n) = 1

v

∫
dxE1n(x)/h̄−� (7.50)

for the state |1, n〉 and similarly for the state |2, n〉, where the spatial dependence
of the eigenenergies E1,n(x) results as before from the spatial dependence of the
vacuum Rabi frequency g(x) along the atomic trajectory.

Consider then an excited atom interacting with an intracavity field in a coherent
state |α〉 with mean photon number |α|2 = n̄.6 As we recall, its photon statistics is a
Poisson distribution with width

√
n̄, so that the initial state of the atom–field system

is

|#e(ti)〉 = e−|α|2/2
∑
n

αn√
n! |n〉|e〉 . (7.51)

For large n̄ we can expand the accumulated phase (7.50) about its value for n = n̄
as

φ(n) = φ(n̄)+ (n− n̄)φ′(n̄)+O(1/n̄), (7.52)

where, with the form (3.5) of E1,n,

φ′(n̄) = 1

4v

∫
4g2(x)√

�2 + 4g2(n̄+ 1)
. (7.53)

The phase (7.52) has two components of very different natures [3]: The first one,

ψe(n̄) ≡ φ(n̄)− n̄φ′(n̄) , (7.54)

6To keep the notation from becoming unnecessarily cumbersome we call the mean photon number
n̄ rather than 〈n〉 in this section.
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is an overall phase that depends on n̄ only and is accumulated by the state of the
system as a whole. In contrast, the phase

φn ≡ nφ′(n̄) (7.55)

is a number state-dependent phase. It follows that φn effectively adds a classical
phase"(n̄) = φ′(n̄) to α, so that α→ α exp[iφ′(n̄)] and the coherent field becomes

|α〉 → e−|α|2/2
∑
n

αn einφ′(n̄)
√
n! |n〉 ≡ |αei"(n̄)〉 . (7.56)

For positive detuning �, as the atom exits the cavity at time tf , the dressed state
|1, n〉 returns adiabatically back to the bare state |e, n〉 so that the input state (7.51)
has evolved to

|#e(tf )〉 = e−iψe(n̄)|e, αe−i"(n̄)〉 . (7.57)

Similarly, if the atom had been prepared in its ground state |g〉, the final state of the
atom–field system would be

|#g(tf )〉 = e−iψg(n̄)|g, αe+i"(n̄)〉 (7.58)

with

ψg(n̄) ≡ φ(n̄− 1)+ n̄φ′(n̄− 1) , (7.59)

the (n̄− 1) factor accounting for the fact that |g, n〉 is a superposition of the dressed
states |1, n− 1〉 and |2, n− 1〉, see Eq. (3.3).

Under many circumstances the global phase of a quantum state is irrelevant,
but this is of course not so if two states with different global phases are made to
interfere. Such a situation can be realized here if the atoms enter the resonator in
the coherent superposition (|e〉 + |g〉)/√2, in which case the state of the atom–field
system evolves to the entangled state

|#(tf )〉 = 1√
2

[
e−iψe(n̄)|e, αe−i"(n̄)〉 + e−iψg(n̄)|g, αe+i"(n̄)〉

]
. (7.60)

After exiting the resonator, the atomic states can be subjected to the unitary
transformation

|e〉 → 1√
2

[
|e〉 + eiϕ |g〉

]
; |g〉 → 1√

2

[
|g〉 − e−iϕ |e〉

]
, (7.61)
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for example through a sequence of two spatially separated π/2 pulses with an
adjustable relative phase, a so-called Ramsey interferometer. Following this step
the state of the atom–field system becomes

|#〉 = 1

2
|e〉 ⊗

[
e−iψe(n̄)|αe−i"(n̄)〉 + e−i[ψg(n̄)+ϕ]|αe+i"(n̄)〉

]

+1

2
|g〉 ⊗

[
e−i[ψe(n̄)−ϕ]|αe−i"(n̄)〉 − e−iψg(n̄)|αe+i"(n̄)〉

]
. (7.62)

A final detection of the atomic state then projects the field into one of the two cat
states

|#〉cat, e = e
−iψe(n̄)

√
2

[
|α e−i"(n̄)〉 + |α e+i"(n̄)〉

]
(7.63)

or

|#〉cat, g = e
−iψg(n̄)

√
2

[
|α e−i"(n̄)〉 − |α e+i"(n̄)〉

]
, (7.64)

where we have set the adjustable phase to ϕ = ψe(n̄) − ψg(n̄). These states are
coherent superpositions of two coherent states centered at the angles ±"(n̄) in the
{Re(α), Im(α)} phase plane. Because coherent states can be relatively large quan-
tum objects, the states (7.63) and (7.64) can therefore be considered as Schrödinger
cats—or perhaps more accurately Schrödinger kittens, see Fig. 7.8. These optical
Schrödinger cats were first experimentally demonstrated by S. Deléglise et al. [16].

Fig. 7.8 Schrödinger cat and decoherence: (a) Reconstruction of the Wigner function of a cat state
with 〈n〉 = 3.5 photons, a short time (1.3 ms) after its preparation by a single atom crossing the
cavity. (b) and (c) The same cat state after 4.3 and 16 ms: the vanishing of the fringe interfering
features is a manifestation of decoherence. The inserts are the corresponding theoretical Wigner
functions. (From Ref. [16])
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7.4 Circuit QED

Circuit QED (cQED) is an extension of cavity QED that uses artificial atoms
instead of atoms to achieve many of the same objectives, but with differences
that open up promising new opportunities. The artificial atoms most frequently
used in these systems comprise several varieties of superconducting qubits. They
are coupled to microwave fields, most often in one-dimensional transmission line
resonators. The qubit–field interactions can be orders of magnitude larger than in
atomic systems, see Table 7.1, a result of the extremely small mode volumes that
can be achieved in one-dimensional transmission lines. In addition these systems
can be fabricated on microchips and as such offer an elegant route toward the
solid-state realization of multiple qubit systems of interest for quantum information
science, quantum communications, and quantum metrology. However, potential
experimental challenges arise from the fact that they must operate in cryogenic
environments and that artificial atoms can suffer from atom to atom variations, in
contrast to the situation for atoms—all sodium atoms are the same!

This section gives a brief overview of these systems, starting with the field
quantization of LC circuits and extending then the discussion to multimode one-
dimensional transmission line resonators. As it turns out, LC circuits quantization
is also useful in the description of artificial atoms, since they are likewise generated
by electric circuits, with the nonlinearity required to simulate atoms provided
by superconducting Josephson junctions that act as nonlinear inductances. As an
example we will discuss in some detail one specific type of superconducting
artificial atom, the Cooper pair box, and will show how its coupling to the field
results under appropriate conditions in a realization of the Jaynes–Cummings
model. We conclude the section with a brief comparison of typical parameters that
can be achieved in cQED and in more traditional cavity QED systems.

7.4.1 LC Circuit Quantization

Circuit QED exploits resonators and microwave fields generated in electric circuits
consisting of capacitors, inductors, and resistors, although since resistors generate
dissipation it is normally preferable to avoid them. We consider therefore first an
undamped LC oscillator of inductance L and capacitance C, where L = "/I with
" the magnetic flux through the inductor and I the inductor current, and C = q/V
with V the voltage across the capacitor and q the capacitor charge.

A possible Lagrangian L for the LC oscillator can be obtained from the difference
between the energy LI 2/2 stored in the inductor and the potential energy q2/2C
inside the capacitor. Making use of charge conservation I = q̇, it takes the form

L = 1

2
L q̇2 − 1

2C
q2 . (7.65)
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The associated Euler–Lagrange equation

∂L
∂q
− d

dt

∂L
∂q̇
= 0 (7.66)

yields the familiar harmonic oscillator equation of motion

q̈ + ω2q = 0 , (7.67)

with ω = √LC, which is the known equation of motion for the charge in an
LC oscillator. This justifies a posteriori the choice of the Lagrangian (7.65). The
conjugate momentum of the charge q,

∂L
∂q̇
= Lq̇ = LI = ", (7.68)

is the magnetic flux " though the inductor. The Hamiltonian of the circuit is
therefore

H = "q̇ − L = 1

2L
"2 + 1

2C
q2 , (7.69)

with associated Hamilton equations of motion

q̇ = ∂H
∂"
= "
L

; "̇ = −∂H
∂q
= − q

C
= V , (7.70)

where V is the voltage at the node connecting the inductor with the capacitor.
In analogy with the harmonic oscillator of Sect. 2.1 we quantize this system by

promoting q and " to quantum operators subject to the canonical commutation
relation

[q̂, "̂] = ih̄ , (7.71)

and introduce the creation and annihilation operators

â = 1√
2h̄ωC

q̂ + i
1√

2h̄ωL
"̂ , (7.72)

â† = 1√
2h̄ωC

q̂ − i
1√

2h̄ωL
"̂ , (7.73)

with [â, â†] = 1, so that

Ĥ = h̄ω
(
â†â + 1

2

)
. (7.74)
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Fig. 7.9 Lossless LC electrical oscillator. (a) The coordinate is taken to be q and the conjugate
momentum is "; (b) the coordinate is taken to be φ and the conjugate momentum is Q. Note the
important sign change in the definitions q andQ of the charge between the two approaches, needed
to maintain the canonical commutation relation between momentum and coordinate. (Adapted
from Ref. [17])

As discussed by S. Girvin in his comprehensive Les Houches Lecture Notes
on cQED [17], this description amounts to considering q̂ as the coordinate, so
that the inductance plays effectively the same role as the mass in the mechanical
oscillator, and C takes the role of the inverse spring constant. Alternatively, instead
of considering q as the “coordinate” and " as the momentum, it is also possible to
reverse their roles and choose the integral of the voltage across the capacitor, the
node flux φ, as the “coordinate” and Q as the associated “momentum.” This point
of view, which amounts to exchanging the roles of the “kinetic” and “potential”
energies as compared with the Lagrangian (7.65), is useful in the description of
superconducting qubits, which behave as nonlinear inductors, see Fig. 7.11. In that
case it is better, or at least intuitively more appealing, to think of the energy stored
in the inductor as a potential energy.

To proceed in this way we note that the node flux at the location indicated in
Fig. 7.9b is

φ(t) =
∫ t

−∞
dτV (τ) , (7.75)

or V = φ̇, so that the potential energy stored in the capacitor is U = Cφ̇2/2,
except that with the new choice of coordinates it now looks like a “kinetic energy.”
At the same time, the kinetic energy φ2/2L stored in the inductor now looks like a
“potential energy,” so that the Lagrangian of the LC circuit takes the form

L = C
2
φ̇2 − 1

2L
φ2 , (7.76)
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compare this expression with Eq. (7.65). In this approach C plays therefore the role
of the mass, and L of the inverse spring constant.

The conjugate variable of " is now

Q = ∂L
∂φ̇
= +Cφ̇ , (7.77)

so that the Hamiltonian associated with the Lagrangian (7.76) is

H = Qφ̇ − L = 1

2C
Q2 + 1

2L
φ2 , (7.78)

with Hamilton equations of motion

φ̇ = ∂H
∂Q
= Q
C
= V ; Q̇ = −∂H

∂φ
= −φ

L
. (7.79)

Comparing these equations with Eq. (7.70) shows an important sign change in the
definition of the charge, Q = −q. This is required to maintain the canonical
commutation relation between momentum and coordinate, which is now [φ̂, Q̂] =
ih̄.

With this choice of coordinates, and when expressed in terms of annihilation
and creation operators, the quantized Hamiltonian of the LC circuit still takes the
form (7.74), but now with

â = 1√
2h̄ωL

φ̂ + i
1√

2h̄ωC
Q̂ , (7.80)

â† = 1√
2h̄ωL

φ̂ − i
1√

2h̄ωC
Q̂ . (7.81)

With V̂ = dφ̂/dt = Q̂/C this gives

V̂ = −i

√
h̄ω

2C
(â − â†) . (7.82)

One-dimensional Transmission Line Resonator We now extend these results
to the quantization of a one-dimensional transmission line resonator of length L,
following again Ref. [17]. In that case the flux (7.75) becomes

"(x, t) =
∫ t

−∞
dτV (x, τ ) , (7.83)

and the local voltage on the transmission line is

V (x, t) = ∂t"(x, t) , (7.84)
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so that the flux through the inductance �dx along a segment of the line of length dx
is −[∂x"(x, t)]dx, the voltage drop is ∂x[∂t"(x, t)]dx, and the local value of the
current is

I (x, t) = −1

�
∂x"(x, t) . (7.85)

The Lagrangian (7.76) is therefore replaced by

L =
∫ L

0
dx

[
c

2
(∂t")

2 − 1

2�
(∂x")

2
]
, (7.86)

where � and c are the inductance and capacitance per unit length.7 The conjugate
momentum to "(x) is now the charge density

δL
δ(∂t")

= q(x, t) = c ∂t"(x, t) = cV (x, t), (7.87)

and the Hamiltonian becomes

Ĥ =
∫ L

0
dx

[
1

2c
q2 + 1

2�
(∂x")

2
]
. (7.88)

Very much like in the multimode field quantization of Sect. 2.2 we now expand
"(x, t) in a set of orthonormal modes as

"(x, t) =
∞∑
n=0

ξn(t)un(x) . (7.89)

We consider open boundary conditions such that the current (but not the voltage)
vanishes at the ends of the resonator. We then have

un(x) =
√

2 cos(knx) (7.90)

and kn = nπ/L so that

1

L

∫ L

0
dx un(x)um(x) = δnm

1

L

∫ L

0
dx |∂xun(x)||∂xum(x)| = k2

nδnm .

7Importantly, keep in mind that L is now the length of the transmission line, rather than an
induction as was the case in the discussion of the LC circuit, and c is an inductance per unit
length, not the speed of light.
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The Lagrangian (7.86) becomes the sum over modes

L = L
2
c
∑
n

[
|∂t ξn|2 − ω2

nξ
2
n

]
, (7.91)

where ωn = vpkn and vp = 1/
√
�c. All modes are then individually quantized,

resulting after introduction of associated creation and annihilation operators in the
multimode Hamiltonian

Ĥ = 1

2

∑
n

[
1

Lc
q̂2
n + Lcω2

nξ
2
n

]
=

∑
n

h̄ωn

(
â†
nân + 1

2

)
(7.92)

with

ξ̂n =
√

h̄

2ωnLc

(
ân + â†

n

)
, (7.93)

q̂n = −i

√
h̄ωnLc

2

(
ân − â†

n

)
. (7.94)

The voltage operator V̂ (x) = q̂(x)/c, which will be needed in determining the
coupling Hamiltonian between the transmission line and the superconducting qubit,
is therefore

V̂ (x) = 1

Lc

∑
n

un(x)q̂n = −i
∑
n

√
h̄ωn

2Lc

(
ân − â†

n

)
un(x) . (7.95)

7.4.2 Superconducting Qubits

The idea of cQED is to couple superconducting artificial atoms to microwave fields
supported by LC transmission lines. One significant advantage of these systems
is that in addition to single qubit–field systems, which can as we shall see be
described by the Jaynes–Cummings Hamiltonian under appropriate conditions, it
is also relatively straightforward to set up multi-qubit configurations, for example
to investigate collective and many-body effects and/or to develop modules such
as quantum gates for quantum information applications. In addition, as already
mentioned, the small mode volume of the field in one-dimensional transmission
lines can result in vacuum Rabi frequencies orders of magnitude larger than can be
achieved in more traditional cavity QED configurations.

Superconductivity is the phenomenon whereby below a critical temperature the
electrical resistance of a material vanishes and magnetic flux fields are expelled
from it. The physical effect underlying superconductivity is that the effective
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Fig. 7.10 (a) Schematic of a Josephson junction, with the wave functions ψL and ψR of the
superconducting states at the left and right of the junction. (b) Sketch of the energy diagram of a
Josephson junction, showing in red the ground state of its left and right superconducting elements,
with all electrons bound in Cooper pairs (for an even number of electrons). This state is separated
by the continuum of not fully paired states, shown in grey, by an energy gap 2�. The blue arrow
illustrates the tunneling of Cooper pairs between the two sides of the junction

attractive interaction resulting from virtual phonon exchange leads to the pairing
of electrons of opposite spins into Cooper pairs, which are composite spin S = 0
bosons.8 If the number of electrons in the electrode is even, then the quantum
ground state of the system is characterized by all of the electrons paired up. The
energy required to break a pair is the energy gap 2�. The remarkable properties of
superconducting materials have now been exploited to develop a variety of artificial
atoms, with properties described in detail in several excellent reviews [17–19]. Here
we concentrate on just one system, the so-called Cooper pair box.

Just like this book is not a book on atomic physics, it is also not the place to pro-
vide a detailed description of superconductivity and Josephson junctions. These can
be found in numerous texts, for example the classic book by Tinkham [20]. Instead,
we limit ourselves to those few elements that are essential for a phenomenological
understanding of these systems and the way they can operate as two-state systems,
starting with a brief review of Josephson junctions.

Josephson Junction Josephson junctions are devices that consist of two
superconductors coupled by a thin insulating barrier or a short section of non-
superconducting metal (Fig. 7.10). At low enough temperatures the ground state of
the junction corresponds to the two superconductors being occupied by macroscopic
numbersNL andNR of Cooper pairs withNR+NL = N , each with charge−2e. At
the simplest level, it is possible to ignore the continuum of non-fully paired states,
which are separated from the ground state by an energy gap 2�, and to describe the

8Unconventional Cooper pairing resulting in spin S = 1 composite bosons is also possible.
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junction in terms of the effective single-particle wave function

|ψ〉 = ψL|L〉 + ψR|R〉 , (7.96)

with the number of pairs on each side of the junction given by

Ni = N |ψi |2 , i = {L,R} . (7.97)

The tunneling of pairs between the two sides of the junction can be described by a
hopping Hamiltonian

Ĥ = −
(

2eVL w

w 2eVR

)
, (7.98)

where

|L〉 =
(

1
0

)
; |R〉 =

(
0
1

)
, (7.99)

with corresponding equations of motion

ih̄
∂ψL

∂t
= −2eVLψL − wψR

ih̄
∂ψR

∂t
= −2eVRψR − wψL . (7.100)

Here VL and VR are the external electric potentials on the left and right sides of the
junction and w is a constant that is characteristic of the junction and accounts for
quantum tunneling across it. If the electric potential difference across the junction
is V , then 2e(VR − VL) = 2e V .

Introducing the so-called Ginzburg–Landau order parameter

ψi = √nieiϕi (7.101)

where i = (R,L) and ni are the densities of Cooper pairs on both sides of the
junction, it is easily found from Eq. (7.100) that

∂nL

∂t
= −∂nR

∂t
= −2w

h̄

√
nLnR sin(ϕL − ϕR) , (7.102)

∂

∂t
(ϕR − ϕL) =

(
2e

h̄

)
(VR − VL) . (7.103)

With Eq. (7.97) and introducing the Cooper pair current I = −2e(∂NL/∂t) and
ϕ = ϕL − ϕR finally gives the first and second Josephson relations. Noting that the
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variations in NR and NL remain small they take the form

I (ϕ) = Ic sinϕ , (7.104)

∂ϕ

∂t
= 2eV (t)

h̄
, (7.105)

where the critical current is

Ic = 2e

h̄
EJ . (7.106)

The parameter EJ , given in this model by

EJ = 2w
√
NLNR , (7.107)

is called the Josephson coupling energy. It is a measure of the ability of Cooper pairs
to tunnel through the junction. The Josephson relations show that a DC current can
be drawn through the junction even without a voltage drop V , as long as the current
is smaller than Ic. This is the so-called DC Josephson effect. But if a voltage V or
a DC current larger than IC is applied to the junction, Eq. (7.105) shows that the
Josephson current will oscillate at the frequency (2e/h̄)V , the AC Josephson effect.

The Cooper Pair Box A Cooper pair box consists of a superconducting island that
is connected via Josephson junctions to a grounded reservoir, so that Cooper pairs
can tunnel into and out of the island, see Fig. 7.11. It is modeled by a capacitance

Fig. 7.11 Schematic of Cooper pair box, illustrating the coupling of a superconducting island to
a bulk superconductor via a Josephson junction modeled by a capacitance CJ in parallel with an
effective nonlinear inductor characterized by the Josephson coupling energy EJ . The charging
energy required to add another Cooper pair to the system is EC = e2/2(CJ + Cg). The applied
gate potential Vg capacitively coupled to the island provides a gate charge ng = CgVg/2e that acts
as a control parameter
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CJ in parallel with an effective nonlinear inductor characterized by the Josephson
coupling energy EJ , and in addition by the charging energy

EC = e2

2(CJ + Cg) ≡
e2

2C&
(7.108)

required to add another Cooper pair to the island. Finally, the applied gate potential
Vg capacitively coupled to the island provides a gate charge ng = CgVg/2e that acts
as a control parameter.

We model this device by considering two superconducting electrodes with
nominal numbers of Cooper pairs NL and NR and separated by a tunnel junction
that permits Cooper pairs to be transferred from one to the other, see Fig. 7.11. The
tunneling process can be described by the phenomenological Hamiltonian

ĤT = −1

2
EJ

∑
n

[ |n〉〈n+ 1| + |n+ 1〉〈n| ] , (7.109)

where |n〉 = |NL −m,NR +m〉 is the state of the system with m pairs having been
transferred from the nominal values {NL,NR} through the junction from the “left” to
the “right” electrode, and m can either increase or decrease by unity corresponding
to the tunneling of a pair to the right or the left. It is easily verified by direct
substitution that its (unnormalized) eigenstates are

|ϕ〉 =
∞∑

m=−∞
eimϕ |m〉 , (7.110)

with eigenvalues

ĤT |ϕ〉 = −EJ cosϕ|ϕ〉 . (7.111)

Introducing the number of pairs operator

n̂ =
∑
n

n|n〉〈n| (7.112)

and the associated current operator Î = 2e dn̂/dt , given by

Î = 2e
i

h̄
[ĤT , n̂] = −eEJ

h̄

∞∑
m=−∞

[|m〉〈m+ 1| − |m+ 1〉〈m|] , (7.113)

it is easily shown that the eigenstates |φ〉 of ĤT are also eigenstates of Î with

Î |ϕ〉 = Ic sinϕ|ϕ〉 , (7.114)

which recovers the first Josephson relation (7.104).
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A full description of the Cooper pair dynamics must also account for the
Coulomb energy

U = 4EC(n− ng)2 (7.115)

required to transfer n pairs of charge 2e across the junction. Here the gate charge
ng = CgVg/2e is a continuously variable control parameter. It accounts for
the effect of an externally applied gate voltage Vg to a nearby electrode that is
capacitively coupled to the island. The total effective Hamiltonian describing the
Cooper pair box is therefore

Ĥ =
∑
n

[
4EC(n− ng)2|n〉〈n| − 1

2
EJ |n〉〈n+ 1| + |n+ 1〉〈n|

]
, (7.116)

which shows explicitly the anharmonicity resulting from the presence of the
Josephson junction.

Two-level Approximation In the regime 4Ec � EJ and for most values of the
external voltage, the eigenenergies of the Hamiltonian (7.116) are dominated by the
charging part

∑
n 4EC(n − ng)2|n〉〈n|, with the tunnel coupling acting as a small

perturbation. If the controllable gate charge ng ∈ [0, 1] it is easily verified that
the box has two low energy levels |0〉 and |1〉 with energies E0 ≈ E1 ≈ EC/4
(with equal signs for EJ = 0), all other levels having much higher energies.
More generally, for ng = n + 1/2 the two levels of Ĥ of energies En and
En+1 become approximately degenerate with En ≈ En+1 ≈ EC—and exactly
so for EJ → 0—while the next neighboring levels have much higher energies,
En−1 ≈ En+2 ≈ 9EC/4. That is, there are two close energy levels that are
well separated from all other levels, making this a good two-state system for an
appropriate choice of driving field frequencies.

Concentrating for concreteness on the case n = 0 and discarding all terms that
involve states other than the two states |0〉 and |1〉 reduce the Cooper pair box to an
effective two-level system described by the qubit Hamiltonian

Ĥ = −Eel

2
σ̂z − EJ

2
σ̂x , (7.117)

where Eel = 4EC(1 − 2ng). The eigenstates |e〉 and |g〉 of this Hamiltonian are
easily found to be

|e〉 = cos θ |1〉 − sin θ |0〉 ,
|g〉 = sin θ |1〉 + cos θ |0〉 , (7.118)
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with eigenenergies

Ee = −Eg = 1

2

√
E2

el + E2
J (7.119)

and tan(2θ) = EJ /Eel = EJ /4EC(1− 2ng).

Other Superconducting Qubits Following the realization of the Cooper pair box
a number of other superconducting qubits have been invented, characterized by var-
ious ratios EJ /EC of Josephson to charging energy, number of Josephson junctions
involved, and topology of the circuits in which they are embedded. These include
in particular the quantronium [21], the transmon [22], and the fluxionum [23]. It
is beyond the scope of this brief section to review these developments, which are
discussed in some detail in the Lecture Notes [17] and the recent reviews [18] and
[19].

7.4.3 Field–Qubit Coupling

We have seen in Sect. 7.4.1 that a one-dimensional transmission line produces the
voltage (7.95)

V̂ (x) = 1

Lc

∑
n

un(x)q̂n = −i
∑
n

√
h̄ωn

2Lc

(
ân − â†

n

)
un(x) , (7.120)

so that the Cooper box will be driven both by the DC voltage Vg and the AC field
V̂ (x). For a single-mode field and a Cooper box at a location x inside the resonator,
see Fig. 7.12, the Hamiltonian of the full system is then [24]

Ĥ = 1

2
h̄�σ̂z + h̄ωâ†â − ie

Cg

C&

√
h̄ω

Lc
(â − â†)

[
1− 2ng − cos(2θ)σ̂z + sin(2θ)σ̂x

]
,

(7.121)

where the Pauli matrices σ̂x and σ̂z are now in the {|e〉, |g〉} basis. For a gate charge
ng = 1/2 and 2θ = π/2 this reduces to the Jaynes–Cummings Hamiltonian

Ĥ = 1

2
h̄�σ̂z + h̄ωâ†â − ih̄g(â − â†)σ̂x (7.122)

with vacuum Rabi frequency

g = eβ
h̄

√
h̄ω

cL
(7.123)

and β = Cg/C& .
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Fig. 7.12 Schematic of a 1-D transmission line resonator with Cooper pair box placed at a
maximum of the voltage standing wave. The transmission line resonator consists of a full-
wave section of superconducting coplanar waveguide. Multiple qubits can be placed at different
antinodes of the standing wave across distances of several millimeters. Such 1-D configurations
are characterized by extremely small mode volumes, of the order of 10−6λ, resulting in vacuum
Rabi frequencies that can be orders of magnitude larger than achievable in atomic systems, see
Table 7.1. (Adapted from Ref. [24])

Table 7.1 Typical rates and parameters for 3-D cavity QED optical and microwave atomic
systems, compared to 1-D systems using superconducting circuits and artificial atoms

Optical Microwave Circuit
Parameter Symbol CQED CQED QED

Transition frequency ω0 350 THz 50 GHz 10 GHz

Vacuum Rabi frequency g/2π 220 MHz 50 KHz 100 MHz

Cavity lifetime 1/κ 10 ns > 10 ms 150 ns

Atomic transition lifetime 1/� 60 ns 30ms > 2μs

Atomic transit time τ >50 μs 100 μs ∞
Single atom cooperativity C = g2/2κ� 50 1.5 · 108 6 · 104

Critical photon number n0 = �2/8g2 10−4 5 · 10−8 2.5 · 10−6

Microwave cavity QED systems operate typically on transitions between neighboring atomic
Rydberg states of high principal quantum number n and orbital quantum number � = n − 1 (the
so-called circular Rydberg states), for which the electric dipole moment scales approximately as
n2 and the radiative lifetime as n3. Cavity lifetimes of tens of milliseconds have been achieved
in the superconducting cavities used in these systems. The superconducting cQED parameters are
for a full-wave L = λ resonator, a relatively low Q = 104, and Cg/C& = 0.1. See Problem 7.1
for the physical interpretation of the single atom cooperativity C, critical photon number n0, and
“critical atom number” N0 ≡ 1/C. (Adapted from Ref. [24])

As already indicated, superconducting qubit-based circuit QED can present
considerable advantages over real atom-based cavity QED, as summarized in
Table 7.1. In particular, these systems can have considerably larger vacuum Rabi
frequencies, longer lifetimes, and of course, infinite transit times through the
resonator. For this reason they are of much interest both in fundamental studies,
as well as in potential applications in quantum information science.
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7.5 The Casimir Force

The previous sections discussed how the electromagnetic vacuum can be tailored
to qualitatively and quantitatively control the radiative properties of atoms. As it
turns out, tailoring the electromagnetic vacuum results in observable effects even in
the absence of atoms or other radiators. The most famous of these manifestations is
the attractive Casimir force between two perfectly conducting plates in a vacuum.
This force, which was predicted as early as 1948 [25, 26], was long considered an
academic curiosity, but it now plays an increasing role in nanophotonics and other
nanoscience applications.

The origin of the Casimir force is the zero-point energy of the electromagnetic
field, which we first encountered in the Hamiltonian Ĥ = h̄ω(â†â+ 1

2 ) of the single-
mode electromagnetic field. We determined then, in the quantization of multimode
fields, that every mode contains such a zero-point energy contribution. Since free
space contains an infinite number of modes, we conclude that this energy must be
infinite. Since it is also a constant, we have largely ignored it so far, but as a wise
physicist once explained to me, “it is not because a quantity is infinite that you can
simply set it as equal to zero!” . . . The Casimir force is a perfect example in point,
although it is minute and can be ignored in most everyday situations. It was first
observed by M. J. Sparnaay [27], but it is not until 1997 that S. K. Lamoreaux [28]
carried out its first precision measurement between a spherical lens and an optical
quartz plate connected to a torsion pendulum. He was able to demonstrate that the
Casimir force pulled the two objects together and caused the pendulum to twist, in
agreement with theory. His results permitted in addition to test the inverse square
law of gravitational attraction at distances much shorter than had been possible until
then, a point to which we will return in Sect. 12.1.

That this force should be attractive can be understood by a simple argument:
if instead of being separated by d the plates were separated by a larger distance
d +�d, then the zero-point energy would be larger, since at a larger separation the
system enclosed by the plates can support more modes of the electromagnetic field.
The minimal energy configuration must therefore be for zero separation, and hence,
the force must be attractive.

Consider then an empty box with perfectly conducting walls and of transverse
dimensions Lx = Ly = L and longitudinal length d � L, see Fig. 7.13. The total
zero-point energy of the system is the sum of the contributions of all field modes
supported by the cavity

E(d) =
∑
α

1

2
h̄ωα = h̄c

2

∑
α

|k⊥| (7.124)

= h̄c
2

(
L

2π

)2 ∫∫
d2k⊥

(
|k⊥| + 2

∞∑
n=1

√
|k⊥|2 + n2π2/d2

)
,
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Fig. 7.13 Schematic
illustration of the origin of the
Casimir force, with the
zero-point energy from the
outside modes exerting a
larger radiation pressure force
on the plates than the
zero-point energy from the
intracavity modes

where we have used the fact that each wave vector, except for kz = 0, supports
two field polarizations. In the case of free space quantization we have instead,
considering the same volume,

E0 = h̄c
2

(
L

2π

)2 ∫∫
d2k⊥

∫ ∞
0

dn 2
√
|k⊥|2 + n2π2/d2

= h̄c
2

d

2π

(
L

2π

)2 ∫∫
d2k⊥

∫ ∞
−∞

dkz 2
√
|k⊥|2 + k2

z . (7.125)

The difference in energies per unit area is therefore, when expressed in polar
coordinates,

�E = E(d)− E0

L2 (7.126)

= h̄c

2π

∫ ∞
0
k dk

(
k

2
+
∞∑
n=1

√
k2 + n2π2/d2 −

∫ ∞
0

dn
√
k2 + n2π2/d2

)
.

The integral in this expression diverges for k → ∞; however, it is important to
keep in mind that our analysis is not really valid in this regime, in part because the
model of perfectly conducting plates is not realistic above the plasma frequency,
where they become effectively transparent. For this reason we introduce a cutoff
momentum kmax and require that

f (k) =
{

1 for k < kmax ,

0 for k ≥ kmax .
(7.127)

The specific value of kmax is not important as long as it is large enough since as
we shall see it disappears from the final answer. With the change of variable u =
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d2k2/π2, �E takes then the form

�E = h̄c π
2

4d3

[
1

2
F(0)+

∞∑
n=1

F(n)−
∫ ∞

0
dnF(n)

]
, (7.128)

where we have introduced the function

F(n) ≡
∫ ∞

0
du

√
u+ n2f

(π
d

√
u+ n2

)
. (7.129)

This expression can be evaluated using the Euler–Maclaurin resummation formula

1

2
F(0)+

∞∑
n=1

F(n)−
∫ ∞

0
dnF(n) = − 1

2!B2F
′(0)− 1

4!B4F
′′′(0)+ . . . , (7.130)

where the coefficients Bn are Bernoulli numbers with B2 = 1/6 and B4 = −1/30.
Rewriting F(n) as

F(n) =
∫ ∞
n2

dv
√
vf (π

√
v/d) , (7.131)

we find readily

F ′(n) = −2n2f (nπ/d) ; F ′′′(n) = −4 , (7.132)

with all further derivatives vanishing. Inserting these expressions into Eq. (7.128)
gives finally

�E = − π
2

720

h̄c

d3 , (7.133)

a result independent of the cutoff momentum kmax, as advertised. The Casimir force
per unit area is

F = − ∂
∂d
�E = − π

2

240

h̄c

d4 . (7.134)

As expected from our discussion of its physical origin, this is a purely quantum
mechanical effect, as evidenced by its disappearance for h̄ = 0. For a plate
separation of d = 1μm this attractive force is just F = −1.3 · 10−3Nm−2.

Despite its weak magnitude, it can be argued that the Casimir force is perhaps
the most fundamental consequence of tailoring the electromagnetic vacuum, since
it manifests itself with no atom or other radiating elements between the conducting
plates. The Casimir force also offers a fascinating link between the topic of this
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chapter and the mechanical effects of light to which we will turn next. This is
because it can be thought of as resulting from the radiation pressure exerted by
the vacuum field on the cavity end plates. While at the resonance frequency of the
resonator the radiation pressure inside the cavity is stronger than outside, and the
mirrors can therefore be pushed apart, out of resonance, the radiation pressure inside
the cavity is smaller than outside and the mirrors are drawn toward each other. On
balance, the attractive components have a slightly stronger impact than the repulsive
ones. For two perfect plane parallel mirrors the radiation pressure of the Casimir
force is therefore attractive and the mirrors are pulled together.

Problems

Problem 7.1 Driven-damped Jaynes–Cummings model—This important exer-
cise discusses the situation where the optical cavity is driven by an external field.
It introduces two important parameters frequently encountered in cavity QED and
circuit QED, the single atom cooperativity parameter C and the critical photon
number n0.

We consider a two-level atom placed in a cavity and subject to the master
equation

dρ̂s
dt
= − i

h̄
[Ĥ , ρ̂s] + L̂κ [ρ̂] + L̂γ [ρ̂] ,

where

Ĥ = 1

2
h̄�σ̂z + h̄δâ†â + h̄g(âσ̂+ + âσ̂−)+ h̄√κEL(â + â†)

is the Jaynes–Cummings Hamiltonian, with an extra term accounting for the fact
that the intracavity field is driven by a classical field EL of frequency ωL. Here
� = ω0−ωL and δ = ωc−ωL, with ω0 the atomic transition frequency and ωc the
cavity mode frequency. In addition,

L̂κ [ρ̂] = −κ
2
[â†âρ̂(t)− âρ̂(t)â†] + adj.

is the Liouvillian describing the dissipation of the cavity mode at rate κ , see
Eq. (5.57), and

L̂�[ρ̂] = −�
2
[σ̂+σ̂−ρ̂(t)− σ̂−ρ̂(t)σ̂+] + adj.

is the Liouvillian that accounts for atomic spontaneous emission, see Eq. (5.66).
Both reservoirs are assumed to be at zero temperature.
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(a) Show that the equations of motion for 〈â〉, 〈σz〉, and 〈σ−〉 are then

d

dt
〈â〉 = − (κ/2+ iδ) 〈â〉 − i

√
κEL − ig〈σ̂−〉 ,

d

dt
〈σ̂−〉 = − (�/2+ i�) 〈σ̂−〉 + ig〈âσ̂−〉 ,

d

dt
〈σ̂z〉 = −�(〈σz〉 + 1)− 2ig[〈âσ̂+〉 − 〈â†σ̂−〉] .

(b) What additional information/equations would be required to solve this problem
exactly?

(c) Introducing a semiclassical approximation where â → α, so that 〈âσ̂−〉 →
α〈σ̂−〉 and 〈âσ̂+〉 → α∗〈σ̂+〉, show that in steady state and for � = δ = 0 we
have then

α = −2iEL√
κ

[
1+ 2C

1+ n/n0

]−1

,

〈σ̂z〉 = − 1

1+ n/n0
,

〈σ̂−〉 = 2ig

�
α〈σ̂z〉 ,

where n = |α|2 and

C = 2g2/κ� ; n0 = �2/8g2 . (7.135)

C is called the single atom cooperativity and n0 is the critical photon parameter.
Some authors also introduce the critical atom number N0 = 1/C.

(d) Discuss the interpretation and physical significance of these parameters, in
particular in terms of the strong coupling regime and the saturation of the atomic
transition.

Problem 7.2 Consider a micromaser system pumped by a mixture of excited and
ground state atoms injected inside the cavity at rate Re for atoms in state |e〉, and
Rg for atoms in the ground state |g〉. Determine and plot the resulting steady-state
photon statistics as a function of the pump parameter % and a function of the ratio
Re/Rg for nth = 0.1.

Problem 7.3 Consider a micromaser operated in the dispersive limit, where the
atom–field interaction is described by the effective Jaynes–Cummings Hamiltonian

H = 1

2
h̄ω0σ̂z + h̄ωâ†â + h̄g

2

�
â†â [|e〉〈e| − |g〉〈g|] .
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Following an approach that parallels the analysis leading to Eq. (7.36), determine
the stationary photon statistics p̄n as a function of %

√
ngτ in that regime.

Problem 7.4 Evaluate and plot the P(α) distribution of the cat states

|ψ〉± = 1√
2
(|α〉 ± | − α〉) ,

where |α〉 is a coherent state with α = 2.

Problem 7.5 Evaluate and plot the Wigner function of these same two cat states as
in Problem 7.4.

Problem 7.6 Show that the charge and flux operators Q̂ and φ̂ of an LC circuit can
be expressed as

Q̂ = −iQZPF(â − â†) ; φ̂ = "ZPF(â + â†) ,

with QZPF = (h̄/2Z)1/2 and "ZPF = (h̄Z/2)1/2, where Z is the characteristic
impedance Z = √L/C of the circuit. Express also these quantities in terms of the
superconducting resistance quantum RQ = h/(2e)2 and the superconducting flux
quantum "0 = h/2e.
Problem 7.7

(a) Show that the eigenstates and eigenenergies of the Hamiltonian

ĤT = −1

2
EJ

∑
n

[ |n〉〈n+ 1| + |n+ 1〉〈n| ]

are

|φ〉 =
∞∑

m=−∞
eimϕ |m〉

with eigenvalues −EJ cosϕ, that is, ĤT |ϕ〉 = −EJ cosϕ|ϕ〉.
(b) Show also that

Î = 2e
i

h̄
[ĤT , n̂] = −eEJ

h̄

∞∑
m=−∞

[|m〉〈m+ 1| − |m+ 1〉〈m|] ,

where n̂ =∑
n n|n〉〈n|.
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Chapter 8
Mechanical Effects of Light

This chapter takes a first quantitative look at the way light can modify atomic
trajectories. Except for spontaneous emission, which is treated phenomeno-
logically, we describe the optical fields classically, an approximation that is
sufficient to introduce two key components of the light force, the gradient (or
dipole) force and the dissipative radiation pressure force. We then introduce
several aspects of atomic diffraction by light fields, including the Raman–
Nath, Bragg, and Stern–Gerlach regimes. The chapter concludes with an
introduction to atom interferometry.

The idea that light carries momentum and hence can influence the trajectory of
massive particles goes back to Johannes Kepler, who observed that the tail of comets
always points away from the sun and concluded that “The direct rays of the Sun
strike upon it [the comet], penetrate its substance, draw away with them a portion
of this matter, and issue thence to form the track of light we call the tail.” (J. Kepler,
as quoted in “A Comet Called Halley,” by I. Ridpath [1].) This idea was elaborated
upon by Newton, but of course it is Maxwell’s theory of electromagnetism that put
it on a solid theoretical footing.

In the previous chapter we briefly encountered mechanical effects of light in
the discussion of the inverse Stern–Gerlach effect and the realization of optical
Schrödinger cats, and then again in the discussion of the Casimir force. Our goal
is now to put this analysis on a more solid footing, concentrating first on two-level
atoms. The next chapters will then move on to laser cooling and the remarkable
new directions of research that it has opened, most importantly perhaps with the
realization of quantum degenerate atomic systems and of quantum simulators of
many-body solid-state systems. We will finally turn to quantum optomechanics,
where the cooling of mesoscopic and macroscopic objects offers enormous promise
in quantum metrology and quantum information. As such we are now redirecting our
focus toward the analysis of optical ways to bring the motion of massive systems
deep into the quantum regime and to optically control and manipulate that motion.
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8.1 Semiclassical Atom–Field Interaction Revisited

Our purpose in this chapter is to take a first quantitative look at the way light can
modify the trajectory of two-level atoms. At this stage we describe the optical field
classically, an approximation that is sufficient to introduce two key components of
the light force, the gradient (or dipole) force and the radiation pressure force. It is
characterized by a slowly varying amplitude E(z), frequency ω, and polarization
�ε(z),

E(ẑ, t) = �ε(ẑ)E(ẑ) cos[ωt +"(ẑ)] . (8.1)

Note that when expressed in this form the phase "(z) is not slowly varying, as it
includes the usual kz spatial dependence of the quasi-monochromatic field E(ẑ, t).
Spontaneous emission is introduced phenomenologically, and we assume that it
leads to the decay of the atom from its excited state |e〉 to the ground state |g〉 at
the Weisskopf–Wigner rate (5.18),

� = 1

4πε0

4ω2
0|d|2

3h̄c2
. (8.2)

This is essentially the level of approximation of Chap. 1, the new element being that
we now account explicitly for the changes in the center-of-mass motion of the atom
resulting from its interaction with the field.

Working for now in one spatial dimension only we proceed by quantizing
the atomic center-of-mass position and momentum z and p, which become the
canonically conjugate operators ẑ and p̂. It is therefore no longer sufficient to
describe the atoms with a density operator ρ̂ that characterizes their internal atomic
state only. Rather, the matrix elements ρij , with i, j = {e, g}, are now operator-
valued quantities ρ̂ij (z) or ρ̂ij (p), depending on the representation—coordinate or
momentum—selected for the description of the center-of-mass dynamics.

After adding the kinetic energy of a two-level atom of mass m to the Hamilto-
nian (1.61) the atom–field system is then described in the electric dipole and rotating
wave approximations by

Ĥ = p̂2

2m
+ h̄ω0|e〉〈e| − h̄�r(ẑ)

2

[
e−i[ωt+"(ẑ)]|e〉〈g| + h.c.

]
, (8.3)

where we have taken the energy h̄ωg of the ground electronic level |g〉 as the zero of
energy. The electric field is evaluated at the position ẑ of the atom, and the spatially
dependent resonant Rabi frequency (1.62) has been slightly generalized to account
for a potentially spatially varying field polarization. It reads now

�r(ẑ) = d[�εz · �ε(ẑ)]E(ẑ)/h̄ , (8.4)



8.2 Gradient and Radiation Pressure Forces 231

where �εz is a unit vector along the quantization axis. In addition, the atom is subject
to spontaneous emission.

8.2 Gradient and Radiation Pressure Forces

The change in momentum p̂ of the atom under the influence of the Hamiltonian (8.3)
is given by the Heisenberg equation of motion

dp̂

dt
= i

h̄
[Ĥ , p̂] , (8.5)

which readily yields

dp̂

dt
= i

h̄

[
− h̄�r(ẑ)

2

(
e−i"(ẑ)e−iωt |e〉〈g| + h.c.

)
, p̂

]

= h̄
2
|e〉〈g|∇

[
�r(z)e

−i"(z)e−iωt
]
+ h.c. , (8.6)

where we have used in the second equality the coordinate representation commuta-
tion relation

[f (x̂), p̂] = ih̄∇f (x̂) . (8.7)

Although it might appear that the kinetic energy part of the atomic Hamiltonian
plays no role here since it commutes with p̂, this is not the case since in addition to
Eq. (8.6) we need to consider the equation of motion for the center-of-mass position,

dx̂

dt
= p̂
m
. (8.8)

The full description of the influence of light on atomic trajectories requires the
simultaneous solution of the coupled operator equations (8.6) and (8.8), but for now
we just consider the expectation value of Eq. (8.6), which can be thought of as a
form of Newton’s law for the mean atomic momentum. In this spirit, the right-hand
side of that equation can be interpreted as a light force acting on the atomic center
of mass. Its explicit form is

F(z) =
〈

dp̂

dt

〉
= h̄

2

〈
|e〉〈g|∇

[
�r(z)e

−i"(z)e−iωt
]
+ c.c.

〉
, (8.9)

where the expectation value is taken on both the internal degrees of freedom and the
center-of-mass state of the atom.
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The recoil momentum imparted on the atom by the absorption or stimulated
emission of a photon is h̄k, and the associated frequency is the recoil frequency

ωrec = h̄k
2

2m
. (8.10)

Its inverse defines a characteristic time ω−1
rec for the center-of-mass dynamics. It

should be compared to the characteristic time for the internal dynamics, which is of
the order of the spontaneous lifetime �−1 of the transition. In many cases these two
time scales are vastly different, with ωrec typically of the order of 10–500 s−1 and �
of the order of 106 − 109 s−1. If that is the case, the internal state of the atoms can
be assumed to be in a quasi-steady-state relative to that of the center of mass, and
the internal and external contributions to the force (8.9) may be factorized as

F(z) = h̄
2
〈|e〉〈g|〉internal

〈
∇[�r(z)e−i"(z)]e−iωt

〉
external

+ c.c. (8.11)

It is important however to keep in mind that this factorization scheme is not always
justified. In particular it ignores any possible quantum entanglement between the
internal and center-of-mass motion of the atom. This is an important pitfall in many
of the most interesting applications of atom optics, which oftentimes exploit such
entanglements as we already saw in the discussion of optical Schrödinger cats of
Sect. 7.3.

A further difficulty arises when trying to evaluate the center-of-mass expectation
value of the operator ∇ [

�(z) exp(−i"(z))
]

because it is generally a complicated
function of z. For ultracold particles, in particular, there is no obvious way to
evaluate this expression short of determining the center-of-mass wave function
ψ(z, t). For well-localized particles, however, one can approximate this wave
function by a δ-function located at some location z0(t). In this case, and keeping
in mind these limitations, Eq. (8.11) reduces to

F(z) � h̄
2
〈|e〉〈g|〉internal ∇[�r(z)e−i"(z)e−iωt ]z=z0 + c.c. , (8.12)

where z0(t) is the classical center-of-mass location of the atom. Because this
approximation is reminiscent to the ray optics limit of conventional optics we adopt
the same usage here and call it the ray atom optics limit of the light force. We will
first encounter the wave atom optics regime in the discussion of atomic diffraction
of Sect. 8.4.

In the limit where 〈|e〉〈g|〉internal can be evaluated in steady state we have finally

F(z) = h̄�r(z)
2

[Ustα(z)+ Vstβ(z)] , (8.13)
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where we have introduced the parameters

α(r) ≡ ∇�r(r)
�r(r)

(8.14)

β(r) ≡ ∇"(r) , (8.15)

or more precisely their one-dimensional version, and expressed the density matrix
elements ρeg and ρge in terms of the steady-state Bloch vector components of
Eqs. (1.89) and (1.90),

Ust = −2�

�r

(
s

1+ s
)

; Vst = �

�r

(
s

1+ s
)
,

with

s = �2
r /2

�2/4+�2

the saturation parameter. We also dropped the subscript in r0 for notational clarity.
We recall from Chap. 1 that the U -component of the Bloch vector is responsible

for dispersive effects, while the V -component is responsible for absorption and
emission. This is apparent from the dispersive form of Ust(�), which should be
contrasted to the Lorentzian absorption/emission profile associated with Vst(�).
This naturally leads to the decomposition of the force F into two components as

F(z) = Frp(z)+ Fgr(z), (8.16)

where Frp(z) is the radiation pressure force

Frp(z) = 1

2
h̄�rVstβ = h̄�

2

(
s

1+ s
)
∇"(z) , (8.17)

which we already briefly encountered in the discussion of the Casimir force of
Sect. 7.5, and Fgr(z) is a reactive force known as the dipole or gradient force1

Fgr(z) = 1

2
h̄�rUstα = −h̄�

(
s

1+ s
) ∇�r(z)
�r(z)

. (8.18)

Radiation Pressure Force The expression (8.17) shows that the radiation pressure
force is nonvanishing provided the laser field exhibits a phase gradient. This force is
central to the Doppler cooling technique that will be discussed in the next chapter.

1Remember when comparing different publications that many authors use the alternative definition
of detuning δ = ω − ω0 = −�.



234 8 Mechanical Effects of Light

In contrast, the dipole (or gradient) force requires a field amplitude gradient. Note
also the change in sign of the dipole force as the laser is tuned across the atomic
resonance, a direct consequence of its dispersive nature. This property can be
used to achieve state-selective atomic mirrors and optical dipole traps, which play
an important role in the study of ultracold and quantum degenerate atomic and
molecular systems, as we will see in Chap. 10.

For a monochromatic running wave

E(z, t) = �ε E cos(ωt − kz) , (8.19)

the radiation pressure force becomes

Frp(z) = h̄k �
2

(
�2
r /2

�2
r /2+�2 + (�/2)2

)
. (8.20)

It has the familiar power-broadened Lorentzian line shape associated with absorp-
tion in two-level systems, see Fig. 8.1. Note that as the Rabi frequency � is
increased, Frp saturates to the value Frp → h̄�k/2.

Since the reemission of a photon into the laser mode from which it was absorbed
does not change the momentum of the field, it follows that the atomic momentum
must remain constant as well. It follows that the radiation pressure force must result
from the absorption of a photon from the laser beam, with associated momentum

Fig. 8.1 Radiation pressure force, in units of h̄k�/2, as a function of the laser-atom detuning
� = ω0 − ω for a monochromatic running wave. All frequencies are in units of the damping rate
�. Note that if the atomic center-of-mass motion is treated classically, the velocity dependence of
the force is readily obtained by including the Doppler shift, � → � ± kv, where the “+” sign
corresponds to an atom moving in the opposite direction of propagation of the field and the “−”
sign to an atom moving in the direction of propagation of the field
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Fig. 8.2 Gradient (or dipole)
force Fgr(z,�) resulting from
a standing wave along the
z-axis as a function of the
detuning � = ω0 − ω, in
units of �

transfer h̄k to the atom, followed by its spontaneous reemission into the continuum
of vacuum modes, a process that on the average does not result in any change in
atomic momentum, but see Sect. 8.3 for a more careful discussion of this point.

Gradient Force In contrast to the radiation pressure force the gradient force (8.18)
vanishes in the case of a plane running wave since such a wave does not exhibit a
gradient in its field amplitude. But the situation is of course different for a standing
wave or for a general superposition of plane waves. In that case we have, in one
dimension,

Fgr(z) = h̄�
4

( ∇�2
r (z)

�2
r (z)/2+�2 + (�/2)2

)
. (8.21)

This force is plotted in Fig. 8.2 as a function of � for a standing wave along the
z-axis.

Because Fgr(z) is proportional to the U -component of the Bloch vector, it does
not involve the absorption of energy from the field. Rather, it is due solely to
the redistribution of momentum between the various plane waves composing that
field by the atom. More specifically, an optical beam with a spatial inhomogeneity
�(r) is comprised of a superposition of many plane waves propagating within the
divergence angle of the beam, and the elementary process underlying the gradient
force is the absorption by the atom of a photon from one of these plane waves
and its subsequent stimulated emission into another, a point discussed in detail in
Ref. [2]. For lasers tuned to the red of the atomic transition frequency, � > 0,
the atom is “strong field seeking,” in that the dipole force directs the atoms toward
regions of stronger fields. For blue detunings � < 0, this force is repulsive and
leads the atoms to regions of weak laser intensity. Note that in contrast to Frp,
Fgr does not saturate for increasing Rabi frequencies. Also, in addition to having
different physical origins, Frp and Fgr are also in general in different directions.
This is illustrated in Fig. 8.3 for the case of a Gaussian beam profile.
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Fig. 8.3 Schematic of the
radiation force F = Frp + Fgr
on a two-level atom in a
focused Gaussian laser beam

Fig. 8.4 Optical potential (in
arbitrary units) associated
with the dipole force of
Fig. 8.2. Detuning
� = ω0 = ω in units of �

Since in contrast to the radiation pressure force the gradient force is associated
with a conservative process it can be described in terms of a potential Uopt (not to be
confused with the U -component of the Bloch vector), so that with Fgr = −∇Uopt it
is possible to interpret the gradient force Fgr as deriving from the “optical potential”

Uopt(z) = − h̄�
2

ln

(
1+ �2

r (z)/2

�2 + (�/2)2
)
, (8.22)

which is plotted in Fig. 8.4 for the example of Fig. 8.2. At large detunings, |�| �
�,�r is reduced simply to

Uopt(z) ≈ − h̄�
2
r (z)

4�
. (8.23)

The gradient and radiation pressure forces are central to a number of applications
in AMO physics and quantum optics, ranging from optical tweezers to optical
lattices, and from laser cooling and atom interferometry to the study of quantum
degenerate atomic systems. In many cases, though, it is necessary as we shall see
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to go past the simple ray atom optics description considered so far and to properly
account for the quantum nature of the atomic center-of-mass motion. The multilevel
nature of the atoms is also often an essential ingredient, in particular in the design
of optical traps and in laser cooling.

8.3 Dissipation

So far, our discussion of light forces has ignored the effects of spontaneous emission,
except at the simple phenomenological level required to establish steady-state
populations of the atomic levels. Except in the average sense invoked in the physical
interpretation of the radiation pressure force, this treatment fails to account for the
fact that the emission of a spontaneous photon must be accompanied by a random
atomic recoil, with a recoil velocity

vrec = h̄k
m
, (8.24)

of the order of 10−2 m/s for alkali atoms. This recoil is oftentimes negligible, for
instance when dealing with atomic samples at room temperature since thermal
velocities are of the order of hundreds of meters per second. But this is not so
in ultracold samples, where the random momentum kicks translate into a non-
negligible heating of the atomic sample, or in atom interference or diffraction
experiments, which usually require atomic beams of high monochromaticity. In
such situations it is important to properly account for the impact of the random
momentum fluctuations associated with spontaneous emission.

We have seen in Chap. 5 that the irreversibility of spontaneous emission makes it
necessary to describe the evolution of the atomic state in terms of a master equation
of the form

dρ̂

dt
= − i

h̄
[Ĥ , ρ̂] + L̂[ρ̂] , (8.25)

where Ĥ is the atomic Hamiltonian and the Liouvillian L[ρ̂] accounts for irre-
versible processes. We now revisit this analysis to include not just the electronic
degrees of freedom of the atom, but also its center-of-mass dynamics. The resulting
master equation [3–5] can be derived using simple symmetry arguments and
transformation properties [6].

Consider the atomic density matrix elements ρ̂ee, ρ̂gg , and ρ̂eg . As we already
indicated, when the atomic center-of-mass motion is quantized they become
operator-valued quantities rather than simple complex matrix elements. When
atomic recoil is neglected and for atoms with upper to lower level decay the
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spontaneous emission contribution to their equations of motion is simply

dρ̂ee
dt

∣∣∣∣
sp
= − dρ̂gg

dt

∣∣∣∣
sp
= −�ρ̂ee , (8.26)

dρ̂eg
dt

∣∣∣∣
sp
= −�

2
ρ̂eg , (8.27)

as we have seen, the first two equations describing the familiar irreversible transfer
of population from the excited to the ground state, and the third one giving the
concomitant decay of the atomic coherence.

When atomic recoil is included, however, an excited atom with center-of-mass
momentum p̂ that decays to its ground state will have a shifted center-of-mass
momentum p̂ − h̄k, where k is the momentum of the emitted photon. However, the
depletion of the excited state population and the decay of the electronic coherences
are then still described by Eqs. (8.26) and (8.27). This must be so, because the
decay of the upper state cannot depend on the motional state of the atom, a direct
consequence of Galilean invariance, and it cannot change the momentum of the
excited atom, due to momentum conservation. The only modification is therefore in
the ground state equation of motion. It is conveniently described by the momentum
shift operator exp[−ik · r̂], which acts on the center-of-mass state vector as

e−ik·r̂ |p〉 = |p− h̄k〉 , (8.28)

where |p〉 is an eigenstate of the atomic center-of-mass momentum operator.
Energy conservation in the atomic rest frame requires that k = ω0/c for the wave

number of the emitted photon, so that the contribution of a spontaneous emission
event in the n direction to the increase in population of the atomic ground state is

d�ne
−ikn·r̂ ρ̂eeeikn·r̂ , (8.29)

where the differential rate of spontaneous emission d�n along n is

d�n = �"(n)d2n, (8.30)

and "(n)d2n is the probability of emission into the infinitesimal solid angle d2n.
For example, in the case of a linear dipole transition in free space one would have

"(n) = 3

8π

(
1− (n · d)

2

d2

)
. (8.31)

Integrating over all directions yields then

dρ̂gg
dt

∣∣∣∣
sp
=

∫
d�ne

−ikn·r̂ ρ̂eeeikn·r̂ , (8.32)
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and inserting Eqs. (8.26), (8.27), and (8.32) into Eq. (8.25) gives the master equation
describing spontaneous emission by a freely traveling two-level atom as

dρ̂

dt
= − i

h̄
[Ĥeffρ̂ − ρ̂Ĥ †

eff] + �
∫

d2n"(n)e−ikn·r̂ σ̂−ρ̂σ̂+eikn·r̂ . (8.33)

As in the Monte Carlo wave functions approach of Sect. 5.4 we have introduced the
effective non-Hermitian Hamiltonian

Ĥeff = ĤA − ih̄
�

2
σ̂+σ̂− . (8.34)

The limit where photon recoil is neglected is recovered by setting k = 0 in
the exponents of the integrand of Eq. (8.33), resulting in the master equation of
Eqs. (5.120) and (5.121),

dρ̂

dt
= − i

h̄
[Ĥeffρ̂ − ρ̂Ĥeff] + �σ̂−ρ̂σ̂+ . (8.35)

The integral term in Eq. (8.33) accounts for the irreversible increase in population
of the electronic ground state. It prevents a description of the atomic dynamics in
terms of a simple Schrödinger equation for a state vector. If however one is only
interested in the dynamics of the excited electronic state, such a description is still
possible and compatible with the master equation (8.33). This can be seen from the
following argument: The equation for ρ̂ee is readily obtained from Eq. (8.33) as

dρ̂gg
dt
= − i

h̄

[
p̂2

2m
, ρ̂ee

]
− �ρ̂ee . (8.36)

Writing then ρ̂ee = |φe(t)〉〈φe(t)|, where |φe(t)〉 is a ket describing the center-of-
mass motion of the atom in its excited state, the equation for ρ̂ee is immediately
recognized to be compatible with the effective Schrödinger equation

ih̄
d|φe〉

dt
=

[
p̂2

2m
+ h̄

(
ω0 − i

�

2

)]
|φe〉 , (8.37)

which is typically much easier to solve than the corresponding master equation, as
we discussed in the analysis of the Monte Carlo quantum trajectories of Sect. 5.4.
From Eq. (8.37) one finds immediately the upper state probability

Pe(t) = e−�t 〈φe(0)|φe(0)〉 , (8.38)
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with a lifetime that is independent of the center-of-mass state of the atom, as we
argued should be the case.2

8.4 Atomic Diffraction

In the analysis of the gradient and radiation pressure forces of Sect. 8.2 we
mentioned the difficulty in evaluating the center-of-mass expectation value of the
operator ∇ [

�r(z) exp(−i"(z))
]

and restricted ourselves to the ray atom optics
regime where the center-of-mass atomic wave function is approximated by its
center-of-mass position. This approach is particularly useful in situations where the
thermal de Broglie wavelength of the atoms remains short compared to an optical
wavelength, that is, in atomic samples above the so-called recoil temperature

Trecoil = h̄2k2/2mkB . (8.39)

However, it typically fails in the subrecoil temperature regime, atomic diffraction
experiments, and the description of the interaction between Bose–Einstein conden-
sates and light. This is the regime considered in this section, which discusses a first
example of wave atom optics, the diffraction of atomic matter waves by a light field.

In 1933, P. Kapitza and P. M. Dirac [7] predicted that an electron beam could be
diffracted by a standing light field as a result of stimulated Compton scattering.
However, they concluded that the experiment was not feasible, due to the lack
of a suitable light source. It was not until 1965 that the experiment was finally
carried out by L. S. Bartell et al. [8]. Shortly thereafter it was suggested that
diffraction by light fields could occur for neutral atoms as well [9, 10]. It was
noted that the effect could be significantly stronger than with electrons, as a result
of the resonant enhancement of the atom–field interaction. The first experimental
observations of atomic diffraction by optical gratings were carried out by D.
Pritchard and his coworkers [11–13], following a series of earlier experiments on
atomic deflection that lacked however the resolution required to separate various
diffraction orders [14, 15].

A typical atomic diffraction experiment consists of a monoenergetic beam of
atoms interacting with a standing wave light field, see Fig. 8.5. After leaving the
field region, the atoms further propagate toward a screen or some other detection
system. The resulting near-resonant atomic Kapitza–Dirac effect can be categorized
into three major regimes, commonly named the Raman–Nath, Bragg, and Stern–
Gerlach regimes. In the first two cases the wave packets of the impinging atoms

2This last statement assumes that the Doppler effect does not shift the atomic transition frequency
ω0 to a value for which the density of modes of the electromagnetic vacuum exhibits unusual
features, such as might be the case near a photonic band gap with a field mode density equal to
zero.
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Fig. 8.5 Schematic of an atomic diffraction experiment at a standing wave light field. The atoms
are typically detected in the far-field region to the right of the optical grating

are large compared to the period of the standing wave pattern. As a result, the atoms
probe the full spatial structure of the potential. In contrast, the Stern–Gerlach regime
is characterized by wave packets that are well localized compared to the periodicity
of the optical potential.

To describe these various regimes theoretically we consider an atomic beam
of high enough momentum px in the direction perpendicular to the direction of
propagation z of the field that it can be treated classically. In contrast, its transverse
momentum p̂z is assumed to be comparable to or smaller than the recoil momentum
h̄k and is treated quantum mechanically. Ignoring for now the effects of spontaneous
emission, the Hamiltonian describing the interaction of the atoms with the standing
wave is therefore, in a frame rotating at the laser frequency ω,

Ĥ = p̂2
z

2m
+ h̄�|e〉〈e| + h̄�r cos(kẑ)f (t) (|e〉〈g| + h.c.) , (8.40)

where [ẑ, p̂z] = ih̄, �r = dE/h̄ is the resonant Rabi frequency (1.62), and � =
ω0 − ω. The function f (t) accounts for the details of interaction time and strength
of the dipole coupling between the atom and the laser beam. It is determined by the
velocity vx of the atoms and the laser beam profile. In the following we assume for
simplicity that this profile is rectangular of width L, so that

f (t) = %(t)−%(t − L/vx) , (8.41)

where % is the Heaviside function.
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8.4.1 Raman–Nath Regime

Raman–Nath diffraction refers to a regime where it is appropriate to neglect the
kinetic energy term in the Hamiltonian (8.40), while still treating ẑ as an operator.
This approximation amounts to considering an atom of infinite mass. As such
it accounts properly for the light-induced momentum changes in the transverse
atomic motion but neglects its changes in velocity. This regime was first analyzed
theoretically in Refs. [16–18].

It follows from the property (8.28) of the momentum translation operator that the
action of cos(kẑ) on the ket |p〉 is simply3

cos(kẑ)|p〉 = 1

2

(
eikz + e−ikz

)
|p〉 = 1

2
(|p + h̄k〉 + |p − h̄k〉) , (8.42)

an expression that provides a simple picture of the effect of the optical field on
the atomic center-of-mass motion. Each time the atom absorbs energy from the
wave propagating in the +z direction, its center-of-mass momentum is increased
by h̄k. Conversely, each time it decays by emitting light in that same direction,
its momentum is decreased by h̄k. Since the situation is reversed for the wave
propagating in the −z direction, it follows that each atomic transition can result in
a momentum kick ±h̄k. The result of successive absorption and emission events is
that the atom acquires ever higher and lower momentum components, which differ
from the initial momentum by integer numbers of h̄k.

In order to quantify this effect it is convenient to work in the momentum
representation and to express the state vector of the atom as

|ψ(t)〉 = Ce(p, t)|e〉 + Cg(p, t)|g〉 , (8.43)

where Ce(p, t) and Cg(p, t) are the momentum representation wave functions
associated with the atom in its excited and ground electronic states, respectively.
Substituting |ψ(t)〉 into the Schrödinger equation yields the infinite set of coupled
ordinary differential equations

ih̄
dCe(p, t)

dt
= h̄�r

2

[
Cg(p + h̄k, t)+ Cg(p − h̄k, t)

]+ h̄�Ce(p, t)

ih̄
dCg(p, t)

dt
= h̄�r

2
[Ce(p + h̄k, t)+ Ce(p − h̄k, t)] . (8.44)

Consider for concreteness the resonant situation � = 0 and the initial condition
|ψ(0)〉 = Cg(p = 0, t = 0)|g〉. It describes an atom in its ground state with
a well-defined transverse momentum p = 0, corresponding to a plane wave for

3To simplify the notation we omit the subscript “z” in the z-component p̂z of the momentum
operator in the following unless confusion is possible.
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the center-of-mass atomic wave function. This initial condition, combined with
Eq. (8.44), implies that only transverse momenta that are integer numbers of h̄k
can ever become populated. We can therefore expand the partial wave functions
Ce(p, t) and Cg(p, t) as

Ce(p, t) =
∞∑

�=−∞
e�(t)δ(p − �h̄k) ,

Cg(p, t) =
∞∑

�=−∞
g�(t)δ(p − �h̄k) , (8.45)

with the initial condition4 e�(0) = 0, g�(0) = δ�0. The equations of motion (8.44)
reduce then to

ih̄
dx�
dt
= h̄�r

2
[x�−1 + x�+1] , (8.46)

where x� = e� for � odd and x� = gm for � even, since for our initial condition
even scattering orders always correspond to ground state atoms and odd scattering
orders to excited atoms. The solution of this equation is known to be in the form of
�th-order Bessel functions of the first kind [16],

x�(t) = i�J� (�r t) . (8.47)

This gives the probability P�(t) for the atom to have a transverse momentum �h̄k as

P�(t) = J 2
� (�r t) . (8.48)

The Raman–Nath approximation is valid provided that the transverse kinetic
energy of the atoms remains small compared with the interaction energy h̄�r .
Clearly, as more and more scattering orders are excited, this condition eventually
ceases to be valid. The transverse kinetic energy corresponding to the �th scattering
order is easily seen to be h̄�2ωrec, which implies that we must have �2ωrec � �r .
From the properties of the Bessel functions J� one can show that after an interaction
time t , 2�max translational states are populated, with �max � 2�0t . This implies that
the Raman–Nath approximation holds provided that t � 1/

√
4�rωrec.

Figure 8.6 shows a numerical solution of Eq. (8.44) that also includes the kinetic
energy term of the Hamiltonian (8.40) and the effects of spontaneous emission.
It illustrates the linear increase in the number of scattering orders as a function
of time predicted by the Raman–Nath approach and shows how this growth is

4The δ-functions should not be taken literally. What is meant instead is a series of sharply peaked
and normalizable functions whose momentum width is much smaller than the recoil momentum
h̄k.



244 8 Mechanical Effects of Light

Fig. 8.6 Momentum distribution P� of an atomic beam interacting with a resonant standing wave
optical field as a function of time. The units are recoil units, i.e. time is in units of ω−1

rec and the
momentum is in units of h̄k. The figure results from simulations also including the kinetic energy
part of the Hamiltonian and spontaneous emission at rate � = 20ωrec. This leads for long enough
times to the washing-out of the diffraction structure

eventually stopped by the effects of the atomic kinetic energy. Physically, this
saturation results from a violation of energy–momentum conservation. Specifically,
because the dispersion relation of light is linear while that of atoms is quadratic, it
is impossible to conserve both energy and momentum at large scattering orders, a
feature reminiscent of phase mismatch in nonlinear optics. A numerical solution
of the problem that accounts the kinetic energy term and spontaneous emission
normally is therefore necessary in the general case, see e.g. Refs. [17, 18].

8.4.2 Bragg Regime

The Bragg regime of atomic diffraction is that regime where the effects of energy–
momentum conservation are sufficiently important that the kinetic energy term in
the atomic Hamiltonian cannot be ignored. As a result the number of allowed
diffraction orders is severely limited when compared to the Raman–Nath regime.
This is the atom optics analog of optical Bragg diffraction, where substantial
diffraction only occurs if the Bragg condition is fulfilled. Atomic Bragg diffraction
was first demonstrated in Ref. [13] and a more detailed theory that outlined here can
be found e.g. in Refs. [18, 19].

Rather than using the momentum representation as in the analysis of Raman–
Nath diffraction we treat Bragg diffraction in the coordinate representation, expend-
ing the state vector of the atom as

|ψ(t)〉 = Ce(z, t)|e〉 + Cg(z, t)|g〉 , (8.49)
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where e(z, t) and g(z, t) are the center-of-mass wave functions corresponding to the
excited and ground electronic states, respectively. The equations of motion for these
wave functions are

ih̄
∂Ce(z, t)

∂t
= − h̄

2

2m

∂2Ce(z, t)

∂z2 + h̄�r cos(kz)Cg(z, t)+ h̄�e(z, t)

ih̄
∂Cg(z, t)

∂t
= − h̄

2

2m

∂2Cg(z, t)

∂z2
+ h̄�r cos(kz)Ce(z, t) .

For large detunings |�| � (�r, ωrec) and atoms initially in their ground electronic
state, we can adiabatically eliminate the upper electronic state. The ground state
wave function equation of motion reduces then to

ih̄
∂Cg(z, t)

∂t
= − h̄

2m

∂2Cg(z, t)

∂z2 − h̄�
2
r

�
cos2(kz)Cg(z, t) . (8.50)

This is a Mathieu equation, whose analytical solution is not possible in general.
We proceed to find an approximate solution in the regime of Bragg diffraction by
first transforming it into an infinite set of ordinary differential equations via the
introduction of the Fourier series expansion

Cg(z, t) =
∑
�

g�(t)e
i�kz , (8.51)

where � labels again the units of transverse momentum. When inserted into the
Mathieu equation (8.50) this yields the coupled difference–differential equations

ih̄
dg�(t)

dt
=

(
�2h̄ωrec − h̄�

2
r

2�

)
g�(t)− h̄�

2
r

4�
(g�+2(t)+ g�−2(t)) (8.52)

or, concentrating on first-order Bragg scattering, g�(0) = δ�,1,

ih̄
dg1(t)

dt
=

(
h̄ωrec − h̄�

2
r

2�

)
g1(t)− h̄�

2
r

4�
(g3(t)+ g−1(t)) ,

ih̄
dg−1(t)

dt
=

(
h̄ωrec − h̄�

2
r

2�

)
g−1(t)− h̄�

2
r

4�
(g1(t)+ g−3(t)) . (8.53)

These two equations are coupled to equations for � = ±3, which are in turn
coupled to equations for � = ±5, etc. As such they belong to an infinite set
of difference–differential equations. However, the energy difference between an
initial state of momentum pi = �i and a final state with momentum �f h̄k is
�E = (�i + �f )2h̄2k2 − �2

i h̄
2k2, so that conservation of energy demands that

2�f = �i ± �i . In particular, for �i = 1 as considered here, the only other energy
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conserving diffraction order is for �f = −1. This permits one to truncate Eq. (8.53)
at � = ±1. The resulting equations can be solved straightforwardly to give

g1(t) = exp
[
−i

(
ωrec −�2

r /2�
)
t
]

cos
(
ωpt

)
,

g−1(t) = −i exp
[
−i

(
ωrec −�2

r /2�
)
t
]

sin
(
ωpt

)
,

where ωp = �2
r /4|�|. This shows that Bragg diffraction provides a method to

coherently split an atomic beam into two parts, much like a diffraction grating
in optics. It is characterized by a periodic oscillation between the � = 1 and
� = −1 scattering orders, an effect known in neutron diffraction as Pendellösung
oscillations, and observed in atom optics experiments by P. J. Martin et al. [13].

8.4.3 Stern–Gerlach Regime

The final limiting case of atomic diffraction that we consider is the Stern–Gerlach
regime, where in contrast to Raman–Nath and Bragg diffraction the atomic beams
are spatially narrow compared to the period of the optical potential. We already
encountered Stern–Gerlach diffraction in the discussion of the inverse Stern–
Gerlach effect of Sect. 7.3, where we showed how the different number states
comprising a quantized cavity field mode deflect excited and ground state atoms
differently. We now revisit this situation more quantitatively for the case of a
classical field, noting that with a proper change of the classical Rabi frequency �r
to the appropriate n-photon Rabi frequency, the same analysis would also hold for a
quantized field in some number state |n〉.

Stern–Gerlach diffraction is conveniently analyzed by considering the optical
forces acting on the initially well-localized wave packet. They can be determined
simply by ignoring the kinetic energy term in the Hamiltonian (8.40) and locally
diagonalizing the remaining potential energy term. At resonance � = 0 this term is
simply

Ĥ → Ĥlocal(z) = h̄�r cos(kz) (|e〉〈g| + h.c.) , (8.54)

and its local eigenstates are the spatially dependent dressed states

|1〉f (z) = 1√
2
(|g〉 + |e〉) f (z) ,

|2〉f (z) = 1√
2
(|g〉 − |e〉) f (z) , (8.55)
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with local eigenvalues

E1(z) = �r cos(kz) ,

E2(z) = −�r cos(kz) . (8.56)

Consider then what happens to an atomic wave packet initially in its ground
electronic state |g〉 and at location z0,

|ψ(z, 0)〉 = |g〉f (z0) , (8.57)

or, in terms of the local eigenstates (8.56),

|g〉f (z) = 1√
2

[|1〉f (z)+ |2〉f (z)] . (8.58)

The two components of |g〉f (z) in Eq. (8.58) are subject to equal and opposite
forces

F1(z) = −dE1(z)

dz
= h̄k �0 sin(kz),

F2(z) = −dE2(z)

dz
= −h̄k �0 sin(kz) , (8.59)

which are π out of phase with each other. As a result, the mean positions 〈z1〉 and
〈z2〉 of the partial wave packets associated with the atom in the dressed states |1〉
and |2〉 are subject to the equations of motion

d2〈z1〉
dt2

= h̄k
m
�r sin(k〈z1〉) ,

d2〈z2〉
dt2

= − h̄k
m
�r sin(k〈z2〉) , (8.60)

with 〈z1(0)〉 = 〈z2(0)〉 = z0. These are pendulum equations. They show that an
atomic wave packet initially at rest is split into two parts that oscillate within a
potential well with period of small oscillations

√
2�rωrec, with ωrec = h̄k2/2m the

recoil frequency, as illustrated in Fig. 8.7. This behavior, which is the analog for
atomic matter waves of the Stern–Gerlach effect for spin-1/2 particles in a magnetic
field gradient, was first experimentally verified by T. Sleator and colleagues [20].
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Fig. 8.7 Splitting and oscillations of the two dressed states of a two-level atom in a Stern–Gerlach
experiment as a function of time. The atomic beam is characterized by an initial width (FWHM)
of �x = 0.25λ. Time and position are in recoil units

8.5 Spontaneous Emission

The previous section showed that in the absence of spontaneous emission, the
treatment of atomic diffraction by periodic light gratings is relatively simple.
For a plane wave incident atomic beam, it leads to sharply defined diffraction
peaks. However, these peaks are smeared as a result of the random momentum
kick imparted on the atoms by spontaneous decay. By increasing the number of
spontaneous decays during the time of interaction between the atom and the optical
field, the system undergoes a transition from a diffractive regime to a diffusion-
dominated regime [21, 22]. It appears that in that regime the only way to obtain a
good agreement with the experiments is by direct numerical solution of the master
equation accounting for the random atomic recoil resulting from the spontaneous
emission, see e.g. Refs. [23, 24].

More specifically, when taking spontaneous emission into account, the atomic
dynamics is governed by the master equation (8.25),

dρ̂

dt
= − i

h̄
[Ĥ , ρ̂] + dρ̂

dt

∣∣∣∣
sp
≡ (L̂H + L̂D)ρ̂ , (8.61)

where Ĥ is given by Eq. (8.40). Consistently with the discussion of Sect. 8.3 we
express L̂Dρ̂ as

L̂Dρ̂ = �
2

(
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂−

)+ �
∫

d2n"(n)e−ikn·r̂ σ̂−ρ̂σ̂+eikn·r̂ , (8.62)

where Eq. (8.31) gives the angular distribution of spontaneously emitted photons for
a dipole-allowed transition. The master equation (8.61) can be solved numerically
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Fig. 8.8 Same as Fig. 8.7, but including the effects of spontaneous emission at rate � = 10ωrec

using, for example, a Lie–Trotter product formula to disentangle its formal solution
as

ρ̂(t +�t) = T exp

[∫ t+�t

t

dt (L̂H + L̂D)
]
ρ̂(t) � exp[L̂H�t] exp[L̂D�t]ρ̂(t),

(8.63)

where T stands for “time-ordered” and commutators of order �t2 have been
neglected in the exponents. Its solution permits one to study the transition from the
diffractive regime to the spontaneous emission dominated diffusive regime of inter-
action between the atoms and the light grating. Figure 8.8 shows one such example
for the case of Stern–Gerlach diffraction. This clearly demonstrates the need to
avoid spontaneous emission as much as possible in atomic diffraction experiments.

8.6 Atom Interferometers

Very much like mirrors and beam splitters are the basic building blocks of optical
interferometers, it is not hard to imagine that, by simple role reversal, optical
gratings and mirrors can serve as basic elements of atom interferometers by
coherently separating an atomic matter wave into two components that will follow
different paths before being recombined at a detector. Changes in the resulting
matter-wave interference pattern can then provide a signature of a perturbation on
one of the arms, or a differential perturbation on both arms. Because in contrast
to photons atoms are massive, they present several important advantages in a
number of applications, in particular related to measurements of accelerations
and gravitational forces. Two such examples are gravimetry, the measurement of
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gravitational acceleration, and gravity gradiometry, which uses combinations of two
or more atom interferometers to study variations in the earth gravitational field,
as further discussed in Problems 8.7–8.9. Gravity gradiometry is for instance an
important resource for mineral exploration, where it relies on the different densities
of types of rocks or liquids.

Atom interferometers were by no means the first matter-wave interferometers.
Electron interferometry goes back to the 1950s [25–27] and neutron interferometry
was developed in the 1960s by H. Maier-Leibnitz [28] and brought to a great degree
of sophistication by H. Rauch and his coworkers [29, 30]. While these interfer-
ometers are valuable tools for probing fundamental physics, atom interferometry
has a number of advantages of its own. It offers a wealth of possibilities stemming
from the different internal structures of atoms, the wide range of properties that
they possess, and their great variety of interactions with the environment, including
other atoms, electromagnetic and gravitational fields, and perhaps even dark matter,
as will be further elaborated upon in Chap. 12.

The previous section suggests several ways to exploit atomic diffraction by
light fields to realize atomic beam splitters and mirrors. However, a number of
potential difficulties need to be dealt with, most importantly perhaps spontaneous
emission and the associated random changes in atomic momentum, as we have
seen. In addition, it is usually important to limit the number of partial beams in
the interferometer, ruling out the use of Raman–Nath diffraction. Bragg diffraction
is more promising from this point of view, but finding the right balance between the
large detunings required to avoid a significant population of the excited electronic
state |e〉 and limit spontaneous emission, while at the same time allowing for a fast
enough atom–field interaction, usually proves to be a challenge.5

For this reason we concentrate in the following on the two-photon stimulated
Raman transitions approach [32, 33], a method that has proven remarkably suc-
cessful in a number of situations and largely avoids the issues associated with
spontaneous emission. In this approach two-photon stimulated Raman transitions
are exploited to coherently split an ultracold atomic wave function. This is realized
by two counter-propagating lasers of amplitudes E1 and E2 and frequencies ω1 =
ck1 and ω2 = ck2, respectively, which drive a transition between two hyperfine
ground states |g〉 and |e〉 via a far off-resonant intermediate level |i〉, as illustrated
in Fig. 8.9.6

Our starting point is the Hamiltonian of a three-level system interacting with two
classical fields at frequencies ω1 and ω2. It is a straightforward generalization of
Eq. (1.51), but including the center-of-mass kinetic energy of the atom as well since

5There are however notable but relatively rare exceptions, see for instance Ref. [31], which uses
a ultranarrow clock transition in 88Sr to develop an atom interferometer based on single-photon
transitions, a system to which we will return in Chap. 12.
6Although that figure may be somewhat intimidating due to the various detunings that it involves,
the only complication compared to the familiar two-level situation is the need for careful
bookkeeping of these detunings and the fields involved. Except for that, the analysis follows very
much the lines that we are already familiar with.
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Fig. 8.9 Level scheme for an atom interferometer beam splitter or mirror element based on
stimulated Raman transitions. The far off-resonant intermediate level |i〉 is drawn in light grey
to indicate that it is adiabatically eliminated, leaving only the effective two-level system {|g〉, |e〉}.
The two driving fields are shown in different colors for clarity, with the solid arrows showing the
relevant transitions. The most important detunings are � and δ

we are interested in mechanical effects. This Hamiltonian reads

Ĥ = p̂2

2m
+ h̄ωg|g〉〈g| + h̄ωe|e〉〈e| + h̄ωi |i〉〈i| − h̄

[
�1|i〉〈g| +�2|i〉〈e| + h.c.

]
,

(8.64)

where we have introduced the Rabi frequencies �i = dEi/h̄, i = {1, 2} of the two
dipole-allowed transitions |g〉− |i〉 and |e〉− |i〉, with dipole moments d taken to be
equal for simplicity, and

E(r, t) = E1 cos(k1 · r− ω1t + φ1)+ E2 cos(k2 · r− ω2t + φ2) , (8.65)

with k1 ≈ −k2 for counter-propagating fields.
For this geometry the field E1(r, t) couples the state |g,p〉 to the state |i,p+h̄k1〉,

and that state is coupled in turn to |e,p + h̄(k1 + k2)〉 ≈ |e,p + 2h̄k〉 by the
field E2(r, t). The atoms making a transition from |g〉 to |e〉 experience therefore a
momentum recoil h̄(k1 + k2) ≡ h̄keff ≈ 2h̄k, and the general state of the system
can therefore be decomposed into a series of uncoupled manifolds {|g,p〉, |i,p +
h̄k〉, |e,p+ 2h̄k〉} characterized by states of the general form

|ψp(t)〉 = Cg,p(t)|g,p〉 + Ci,p+k|i,p+ h̄k〉 + Ce,p+2k|e,p+ 2h̄k〉 . (8.66)
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We consider the limit of strongly off-resonant transitions,

�1g ≡ ω1 − (ωi − ωg)� �1 ,

�2e ≡ ω2 − (ωi − ωe)� �2 , (8.67)

and also assume that the two-photon transition between |e〉 and |g〉 is nearly
resonant,7 ωe − ωg ≈ ω1 − ω2, with

(ω1 − ω2)− (ωe − ωg) ≡ δ � �1g ,�2e ,

so that we have approximately

�1g ≈ �2e ≡ �, (8.68)

as shown in Fig. 8.9.
The detuning conditions (8.67) allow us to adiabatically eliminate the interme-

diate state |i〉 by proceeding along lines analog to those already encountered in
deriving the dispersive limit of the Jaynes–Cummings model. As was the case there,
an important outcome of this elimination is the appearance of a light shift similar to
Eq. (3.15). Especially in precision measurement applications of atom interferometry
these shifts cannot be ignored, and neither can the Doppler shifts resulting from
atomic motion. The resulting effective Hamiltonian describing the dynamics of the
remaining two-state system manifold {|g,p〉 , |e,p+ keff〉} is therefore

Ĥ = h̄
2

( |�2|2
2� �effe

−i(δ12+φeff)

�effe
i(δ12t+φeff) |�1|2

2� ,

)
(8.69)

where

δ12 = (ω1 − ω2)−
[
(ωe − ωg)+ p · keff

m
+ h̄k

2
eff

2m

]
, (8.70)

keff = k1 + k2, and the relative phase φeff ≡ φ1 − φ2 between the two fields is
chosen to make the effective two-photon Rabi frequency

�eff = �1�
∗
2

2�
eiφeff (8.71)

7For convenience, the detunings are expressed in this section in the form of field frequencies minus
atomic frequencies, in contrast to the convention adopted in much of this book.
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real and positive. Note that in addition to the photon recoil h̄k2
eff/2m the detuning

δ12 also includes the Doppler shift p · keff/m , with p the center-of-mass atomic
momentum, as shown in Problem 8.7.

Except for the light shifts |�i |2/2� appearing in the diagonal of Ĥ the situation
is now formally equivalent to that of a driven two-level system of Chap. 1. For atoms
in the initial state

|ψ(t0)〉 = Cg,p(t0)|g,p〉 + Ce,p+keff(t0)|e,p+ keff〉

we have therefore

Ce,p+keff(t0 + τ) = e−i[(�2
1+�2

2)/4�+δ12]τ/2

×
{
Ce,p+keff(t0)

[
cos(�τ/2)− i cos θ sin(�τ/2)

]

−iCg,p(t0)e
−i(δ12t0+φeff) sin θ sin(�τ/2)

}

Cg,p(t0 + τ) = e−i[(�2
1+�2

2)/4�−δ12]τ/2

×
{
− iCe,p+keff(t0)e

i(δ12t0+φeff) sin θ sin(�τ/2)

+Cg,p(t0)
[

cos(�τ/2)+ i cos θ sin(�τ/2)
]}
, (8.72)

where

� =
√
�2

eff + (δ12 − (|�1|2 − |�2|2)/4�)2 ,
sin θ = �eff/� ,

cos θ = −δ12 − (|�1|2 − |�2|2)/4�
�

, (8.73)

where we recognize the correction to δ12 from the light shifts in the last expression.
The expressions (8.72) are somewhat cumbersome, a consequence of the multiple

detunings associated with two-photon processes in three-level systems, combined
with the light shifts and effective two-photon Rabi frequencies that result from the
elimination of the intermediate state |i〉. The key point, though, is that qualitatively
they describe essentially the same physics as the Rabi oscillations familiar from
driven two-level systems, with periodic oscillations between the two states |g,p〉
and |e,p + h̄keff〉, as further elaborated upon in Problem 8.7. In particular, it is
possible to chose the field amplitudes and interaction times τ such that an equal
superposition of the probability amplitudes of these two states is realized, thereby
forming a 50/50 beam splitter for the atomic wave function. Such a pulse is called
a π/2 pulse in reference to the evolution of the state vector on the Bloch sphere.
At a later time T one can then apply a π pulse that acts as a mirror by exchanging
|g,p〉 and |e,p + h̄keff〉, as sketched in Fig. 8.10. This has the effect of redirecting
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Fig. 8.10 Diagram of a stimulated Raman atom interferometer scheme. The green solid and red
dashed lines indicate paths for which the atom is in the states |g,p〉 and |e,p+ h̄keff〉, respectively.
The π/2, π , and π/2 pulses act as beam splitters (the π/2 pulses) and “mirror” (the π pulse)

the partial waves, so that they overlap again at a time 2T , at which time a second
π/2 pulse recombines them and produces a matter-wave interference pattern.

Because of their remarkable potential sensitivity, in particular when using “clock
transitions” such as for instance the ultranarrow 1S0−3P1 intercombination line of
88Sr, atom interferometers are a tool of choice to carry out precision measurements
both in applied science and in engineering as well as in fundamental science.
For example, Problem 8.9 discusses their use as gravity gradiometers. Laser
cooled atoms in atomic fountains can result in transit times through the arms of
the interferometer approaching one second and separations between the partial
atomic waves of the order of centimeters. These, and other improvements in atom
interferometers, can yield extraordinary sensitivities to minute changes in forces and
positions. Chapter 12 will illustrate how these properties can be exploited to address
profound questions in fundamental science.

Mechanical Gratings Instead of optical gratings it is also possible to develop atom
interferometers that use nanofabricated diffraction gratings consisting, for example,
of thin, low-stress silicon nitride membranes with precisely patterned holes. The first
experimental verification of atomic diffraction by a transmission mask was given by
J. A. Leavitt and F. A. Bills [34] who used a self-made single slit for that purpose.
To make mechanical gratings suitable for use in atom interferometers, great care
must be taken to obtain a pattern with positional accuracy below a small fraction
of the grating period. Their fabrication process is described in Refs. [35, 36]. In
addition to their applications in matter-wave diffraction and atom interferometers,
nanofabricated gratings have been used in the generation of matter-wave holograms.
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Problems

Problem 8.1 Determine the gradient force Fgr(x, y) and optical potential
Uopt(x, y) resulting from two standing waves propagating in perpendicular
directions �x and �y. Plot the potential for two values of the detuning � of opposite
signs, with |δ| = �.

Problem 8.2

(a) Solve analytically the Bragg diffraction equations of motion

ih̄
dg�(t)

dt
=

(
�2h̄ωrec − h̄�

2
r

2�

)
g�(t)− h̄�

2
r

4�
(g�+2(t)+ g�−2(t))

after truncating them at � = ±1.
(b) Keeping then terms up to � = ±5, solve these equations numerically to

investigate, and verify the role of energy conservation in the system dynamics.

Problem 8.3 Using atomic diffraction in the Bragg regime and two standing
wave fields, determine quantitatively how to design a beam splitters and “mirrors”
arrangement that operates as an atom interferometer.

Problem 8.4 Consider the problem of atomic diffraction, but instead of a classical
field, with the interaction of the atoms driven by a quantized field described by the
standing wave Ê = Es(â + â†) sin(kẑ). Extend the Hamiltonian (8.40) to handle
this situation, and solve the atom diffraction problem in the Raman–Nath regime for
the resonant case � = 0 and a field in a number state |n〉, ignoring spontaneous
emission into other modes.

Problem 8.5 Solve that same problem, but for an electromagnetic field consisting
of two counter-propagating running waves, Ê = Er (â1 + â†

1) exp(ikẑ) + Er (â2 +
â

†
2) exp(−ikẑ). Explain why the diffraction pattern of the atoms is different in

that case. Hint: Think of the discussion of standing waves vs. running waves of
Sect. 2.2.2 and of quantum entanglement.

Problem 8.6 Extend the analysis of the Stern–Gerlach regime of atomic diffraction
to the case of a single-mode quantized field, with an atom–field interaction of the
form Ĥ → Ĥlocal(z) = h̄g cos(kz)

(
â|e〉〈g| + h.c.

)
, by extending the dressed states

of Eq. (8.55) to include the state of the field, much as in the discussion of the Jaynes–
Cummings problem, see Eqs. (3.7), but with spatially dependent dressed states.

Problem 8.7 (Atom Interferometers and Gradiometry) This and the next two
problems dig somewhat deeper into atom interferometry and in particular derive
a result that motivates the use of atom interferometers as gradiometers, gravity
gradiometers, and even gravity wave antennas.

(a) Consider the stimulated Raman problem of Sect. 8.6, but ignoring the recoil
effects associated with the absorption and emission of light, that is, ignore the
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kinetic energy term in the Hamiltonian (8.64), and consider the resonant case
δ = 0. The general state of the system is then

|ψ(t)〉 = Cg(t)|g〉 + Ce(t)|e〉 + Ci(t)|i〉 .

In the limit of large detunings �, eliminate adiabatically the intermediate state
|i〉, determine the ac Stark shift and the effective two-photon Rabi frequency
that couples then the remaining levels |g〉 and |e〉, and derive the equations of
motion for the probability amplitudes Ce(t) and Cg(t).

(b) How are these equations modified for a moving atom whose center-of-mass
momentum when it is in the ground electronic state is p? Show that in that case
the dynamics of the system is described by the effective Hamiltonian (8.69).

Problem 8.8 Determine the conditions under which the combined effects of the
fieldsE1 andE2 act as (a) a π/2 and (b) a π pulse for the two states |e〉 and |g〉 in the
stimulated Raman scattering situation described by the effective Hamiltonian (8.69).

Problem 8.9 We will encounter in Chap. 12 atom interferometers relying on “clock
transitions,” that is, transitions between a ground state |g〉 and an excited state |e〉
with extremely long spontaneous lifetimes, possibly as long as tens of seconds, see
e.g. Ref. [31]. These operate on true two-state transitions rather than on effective
ones, in which case the equations of motion (8.72) simplify to

Ce,p+k(t0 + τ) = e−iδτ/2
{
Ce,p+k(t0)

[
cos(�τ/2)− i cos θ sin(�τ/2)

]

− iCg,p(t0)e
−i(δt0+φ) sin θ sin(�τ/2)

}
,

Cg,p(t0 + τ) = eiδτ/2
{
− iCe,p+k(t0)e

i(δt0+φ) sin θ sin(�τ/2)

+ Cg,p(t0)
[

cos(�τ/2)+ i cos θ sin(�τ/2)
]}
,

where �r = dE0/h̄ is the field Rabi frequency and � = √|�r |2 + δ2 the
generalized Rabi frequency associated with the electric field

E(r, t) = E0 cos(k · r− ωt + φ]) ,

and the detuning

δ = ω −
[
(ωe − ωg)+ p · k

m
+ h̄k

2

2m

]

accounts for both the Doppler shift associated with atomic motion and the photon
recoil frequency.
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(a) Show that for an atom with initial ground and electronic state probability
amplitudes Cg,p(t0) and Ce,p+k(t0) the state of the system after a π pulse of
duration τ will be

Ce,p+k(t0 + τ) = −iCg,p(t0)e
−iδτ/2e−i[δt0+φ] ,

Cg,p(t0 + τ) = −iCe,p+k(t0)e
iδτ/2ei[δt0+φ] .

Similarly, for a π/2 pulse or duration τ/2,

Ce,p+k(t0 + τ/2) = e−iδτ/4
[
Ce,p+k(t0)− iCg,p(t0)e

−i[δt0+φ]
]
/
√

2 ,

Cg,p(t0 + τ/2) = eiδτ/4
[
−iCe,p+k(t0)e

i[δt0+φ] + Cg,p(t0)
]
/
√

2 .

(b) Consider an atom interferometer with a π/2-π -π/2 configuration, with the first
π/2 pulse occurring at time t1, the π pulse at t2 = t1+T + τ/2, and the second
π/2 pulse at t3 = t1 + 2T + 3τ/2. Show then that for an atom initially in its
ground electronic state, we have, following these three pulses,

Ce,p+k(t3 + τ/2) = −(i/2)e−iδτ/2e−i[δt2+φ(t2)](1− e−iδτ/2e−i�φ),

where

�φ = φ(t1)− 2φ(t2)+ φ(t3) ,

and φ(ti) is the phase of the light relative to the atom at time ti , referenced to
the phase at some fixed time point.

(c) If the atom is falling under the action of gravity and the π/2-π -π/2 sequence
is produced by a vertically oriented laser, show that �φ = −k · gT 2, where g
is the acceleration of gravity. As such this system permits to measure g, or any
other acceleration, and a gravity gradiometer can be realized with the use of two
interferometers that measure g at two elevations.
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Chapter 9
Laser Cooling

This chapter discusses how the mechanical effects of light can be exploited
to cool atomic samples. We focus first on Doppler cooling, Sisyphus cooling,
and subrecoil cooling, three techniques that allow the cooling of free space
atomic samples to temperatures increasingly close to absolute zero. We
then turn to cavity cooling, which relies on the spatial dependence of
the field Rabi frequency in optical resonators, before concluding with the
sideband cooling of trapped ions, an important method for applications in
quantum information and quantum metrology and that can also be extended
to mesoscopic and macroscopic mechanical oscillators.

We understand intuitively that shining light on an object tends to heat it up, but what
is perhaps less evident is that light can also be used to cool objects to remarkably
low temperatures. Laser cooling of atoms and ions is a well-established area of
AMO physics, and similar techniques are now exploited to cool mesoscopic and
macroscopic objects as well, a topic to which we will return in Chap. 11. In this
chapter, we concentrate largely on atomic cooling and discuss a series of methods
that permit to reach increasingly low temperatures, to the point where the atoms are
so cold and their thermal de Broglie wavelength so large and that their individual
center-of-mass wave packets start to overlap with those of neighboring atoms. This
can result in the onset of phase transitions to many-body states of the atomic sample
as a whole, more famously perhaps to the Bose–Einstein condensation of bosonic
atoms which will be the topic of Chap. 10.

9.1 Doppler Cooling

The ray atom optics description of the effect of light forces on atomic motion
introduced in Sect. 8.2 is sufficient to understand the simplest form of laser cooling,
Doppler cooling, which was proposed and demonstrated in the 1970s [1, 2]. All that
is required is to generalize the form of the radiation pressure and gradient forces of
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Eqs. (8.17) and (8.18) to account for the situation of moving atoms rather than atoms
at rest. This generalization will allow us to see how a properly detuned light beam
can slow down atoms and thereby cool an atomic sample. Since as we shall see
Doppler cooling does not typically permit to approach the recoil limit v = h̄k/m of
atomic velocities, it is sufficient for now to describe the atomic motion classically.

Consider specifically an atom moving at constant velocity v0 in the plane
monochromatic running wave

E(r, t) = �ε E cos(ωt − k · r) . (9.1)

Assuming that it is initially at the origin r = 0, the field E(r, t) at its position at
time t will be

E(r, t) = �ε E cos(ωt − k · v0t) = �ε E cos[(ω − ωd)t], (9.2)

where we recognize ωd = k · v0 as a Doppler frequency shift. For moving atoms,
then, the atom–field detuning � appearing in Eqs. (8.20) and (8.21) becomes

�→ �d = ω0 − (ω − ωd) = �+ ωd . (9.3)

We recall from Sect. 8.2 that the gradient force acting on an atom vanishes for
plane running waves, since they do not exhibit any field amplitude gradient. We
are therefore left with the radiation pressure force Frp only, and for an atom moving
along the axis of the running wave, Eq. (8.20) yields

Frp(v0) = 1

2
h̄k�

(
�2
r /2

�2
d + (�/2)2 +�2

r /2

)
. (9.4)

For small velocities, we can expand this expression to lowest order in v0 as

Frp(v0) � Frp(v0 = 0)− ηv0 , (9.5)

where

η = h̄k2�

[
��2

r /2

[�2 + (�/2)2 +�2
r /2]2

]
. (9.6)

The first term in Eq. (9.5) is a constant, and the second term acts as the detuning-
dependent friction force illustrated in Fig. 9.1. The interpretation of this force is
quite simple: because of the Doppler effect, the atom sees a field propagating toward
it as having a higher frequency than a field propagating in the same direction. Hence,
an optical field that is red-detuned from the atomic frequency for an atom at rest
(� > 0) will appear closer to resonance in the first case and further from resonance
in the second case. As a result of this imbalance, atoms moving toward the light field
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Fig. 9.1 Frictional
coefficient η, in arbitrary
units, as a function of the
detuning � = ω0 − ω
between the atomic transition
and field frequencies, for
�r = �/4. Detuning in units
of �

are decelerated more than atoms moving away from it are accelerated. Cooling can
therefore be achieved by combining two counter-propagating red-detuned fields. In
case these fields are weak enough that the two running waves treated as independent,
we have immediately that the net force acting on an atom is

FDoppler � −2ηv0 . (9.7)

The situation is more complicated in the case of strong laser fields, since the
two counter-propagating waves can no longer be assumed to act independently.
Under these conditions, the atomic dynamics can become quite complicated, and
one can even reach a situation where damping requires the laser to be blue-detuned.
A complete theory of the strong-field regime of Doppler cooling is given in Ref. [3],
which also discusses in detail the theoretical limit to the temperature that can be
achieved by this method. Here, we give a simple heuristic argument to evaluate this
limit, based on the balance between the cooling effect of the friction force (9.7) and
the heating effect of spontaneous emission.

Doppler Cooling Limit We saw in Sect. 8.3 that each spontaneous emission event
is accompanied by a momentum kick h̄k of the atom in some random direction.
This results in a random momentum diffusion, that is, in the heating of the atomic
center-of-mass motion. In steady state, the number of random momentum kicks in
the time interval δt is given by

δn = �ρeeδt, (9.8)

and the resulting momentum spread of the atom is

〈δp2〉 = h̄2k2�ρeeδt = h̄
2k2�

2

(
s

1+ s
)
δt , (9.9)

where we have used the steady-state inversion (1.87) to evaluate ρee.
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Table 9.1 Tabulated values
of the Doppler temperature
TDoppler and the recoil
temperature Trecoil for
selected elements

Atom TDoppler (μK) Trecoil (μK)
1H 2389 1285
7Li 142.11 6.06
23Na 240.18 2.40
85Rb 143.41 0.37
133Cs 124.39 0.20

In addition to the randomness of spontaneous emission, a second source of
heating is the randomness of light absorption, a result of the fact that the direction
from which a given photon is absorbed is uncorrelated with the others. It can be
shown that this leads to a heating roughly equal to that associated with spontaneous
emission, so that Eq. (9.9) should be multiplied by a factor of 2. Doppler cooling
reaches a steady state when the decrease in momentum due to the cooling force (9.7)
balances this diffusion,

(
δp2

δt

)
cooling

=
(
δp2

δt

)
diffusion

, (9.10)

that is, with δp2 = 2pδp, for

− 2η
p2

m
= h̄2k2�

(
s

1+ s
)
. (9.11)

From Eq. (9.6), one finds readily that the maximum friction is obtained for � =
�/2, which yields the lowest equilibrium temperature TDoppler. In the weak-field
limit, this gives

kBTDoppler = δp
2

m
= h̄�/4 , (9.12)

where kB is Boltzmann’s constant. A more precise analysis [3] finds

TDoppler � h̄�/2kB , (9.13)

the so-called Doppler limit of laser cooling. This limit is of the order of 240 μK for
sodium and is listed in Table 9.1 for several other elements.

It was long believed that this was the fundamental limit of laser cooling, but
multilevel effects ignored in the current discussion, and to which we now turn, show
that this is far from being the case.1

1W. D. Phillips is fond of saying that “there is no such thing as a two-level atom, and Sodium is
not one of them.”
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9.2 Sisyphus Cooling

At the Doppler temperature limit TDoppler, the atomic thermal de Broglie wavelength

�dB ≡ 2πh̄√
2mkBT

(9.14)

is still very small, of the order of 10 nm or so, the precise value depending on the
atom under consideration. Since �dB is a rough measure of the spatial extent of
the atomic wave packet, this indicates that above or near the Doppler temperature
limit the center-of-mass wave packet is at least one or two orders of magnitude
smaller than an optical wavelength. Hence, its dynamics is still well described in
the ray atom optics approximation. One way to reach the wave optics regime is to
filter the velocity distribution of the atoms, as this has been the case in many atomic
diffraction experiments. Another route consists in further cooling the sample below
the Doppler limit. Polarization gradient cooling, or weak-field Sisyphus cooling, is
an efficient laser cooling mechanism that achieves this goal. It was first observed by
P. Lett et al. [4] and explained by J. Dalibard and C. Cohen-Tannoudji [5].

In its simplest form, polarization gradient cooling results from the optical force
associated with two optical potentials out of phase with each other and acting on
an atom with two degenerate ground states. Under appropriate conditions, the atom
preferentially jumps from one to the other ground state when it approaches a max-
imum of the potential associated with the first ground state and hence a minimum
of the other. As a result, it mostly moves “uphill,” much like Sisyphus of the Greek
legend, and loses its kinetic energy in the process. The underlying mechanism is an
“optical pumping” process whereby the atom undergoes a transition to an excited
electronic state followed by spontaneous emission. This section briefly reviews the
main characteristics of this cooling method in the simple case of a multilevel atom
with a Jg = 1/2 ↔ Je = 3/2 atomic transition between its ground and excited
states.

In one dimension, one possible way to generate an appropriate optical potential
is to use two counter-propagating light fields in a so-called lin⊥lin geometry,

E(z, t) = 1

2

[
�εxE0e

i(kz−ωt) − i�εyE0e
−i(kz+ωt) + c.c.

]
. (9.15)

Both fields are traveling waves of amplitude E0, wave number k, and frequency
ω, but they have perpendicular linear polarizations �εx and �εy along the +x and
+y directions, respectively, hence the denomination lin⊥lin. The phases of the two
traveling waves are chosen such that the total field has a σ− circular polarization at
the locations z = ±nλ/2 and a σ+ polarization at z = λ/4 ± nλ/2, where n is an
integer. The field (9.15) may then be reexpressed as

E(z, t) = 1

2

[
�ε(z)Ee−iωt + c.c.

]
, (9.16)
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Fig. 9.2 Level scheme, with the Clebsch–Gordan coefficients indicated, for polarization gradient
(Sisyphus) cooling on a Jg = 1/2 ↔ Je = 3/2 transition. The |e〉 level manifold is shown in
light gray to emphasize the fact that these levels are only virtually populated by far off-resonant
transitions and adiabatically eliminated, so that the optical fields and spontaneous emission
effectively couple only the two levels of the ground state manifold

where E = √2E0 and �ε(z) is the position-dependent polarization vector

�ε(z) = �ε− cos(kz)− i�ε+ sin(kz) (9.17)

with

�ε± = ± 1√
2

(�εx ∓ i�εy
)
. (9.18)

As we shall see, this position-dependent polarization is essential in achieving
Sisyphus cooling.

In contrast to the two-level atoms considered in much of this book, the optical
field interacts now with the Jg = 1/2 ↔ Je = 3/2 transition of the multilevel
atomic system sketched in Fig. 9.2. We indicate the ground state manifold with the
subscript “g” and the excited state manifold with “e,” so that the corresponding
atomic Hamiltonian reads

Ĥ = p̂2
z

2m
+ h̄ωgP̂g + h̄ωeP̂e, (9.19)

where we have introduced the projection operators P̂g and P̂e for the ground and
excited manifolds as

P̂g =
∑
mg

|gmg 〉〈gmg | , mg =
{− 1

2 ,
1
2

}
,

P̂e =
∑
me

|eme〉〈eme| , me =
{− 3

2 ,− 1
2 ,

1
2 ,

3
2

}
. (9.20)
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The electric dipole interaction ĤAF between the atom and the laser field (9.16)
must be modified from its two-level atom expression to include the various
levels involved and the relative strengths of their transitions, given by appropriate
Clebsch–Gordan coefficients. For the Jg = 1/2 ↔ Je = 3/2 transition at hand, it
takes the form [3, 5]

V̂ = −d̂+ · E(ẑ, t)e−iωt + h.c.

= − i

2
h̄�r sin(kẑ)

[
|e3/2〉〈g1/2| + 1√

3
|e1/2〉〈g−1/2|

]
e−iωt (9.21)

+1

2
h̄�r cos(kẑ)

[
|e−3/2〉〈g−1/2| + 1√

3
|e−1/2〉〈g1/2|

]
e−iωt + h.c.,

which displays explicitly the spatial dependence of the various transitions involved,
a critical element of Sisyphus cooling. The reduced atomic raising operator d̂+
and its adjoint d̂− are defined in terms of the Clebsch–Gordan coefficients for the
allowed transitions as

�εq · d̂+|mg〉 = 〈Jg1mgq|Jeme〉|me〉 ,
�εq · d̂+|me〉 = 0 , (9.22)

with q = ± gives the polarization of the laser field. Their values for a Jg =
1/2 ↔ Je = 3/2 transition are shown in Fig. 9.2. We have also introduced the
Rabi frequency

�r = −〈e3/2|d̂ · �ε+|g1/2〉E
h̄
. (9.23)

In weak-field polarization gradient cooling, one always considers situations
where the laser field is detuned far to the red of the atomic transition. In that case,
it is possible to adiabatically eliminate the upper electronic states. The evolution of
the remaining two magnetic ground states is then governed by the effective atomic
Hamiltonian

Ĥeff = p̂2

2m
− h̄�s0�̂†(z)�̂(z) , (9.24)

where the operator �̂(z) is

�̂(z) = �ε(ẑ) · d̂+ = [�ε− cos(kẑ)− i�ε+ sin(kẑ)
] · d̂+, (9.25)

and

s0 = 1

4

(
�2
r

�2 + (�/2)2
)

(9.26)
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is the individual saturation parameter corresponding to each of the two counter-
propagating waves.

The Hamiltonian (9.24) is the sum of the atomic kinetic energy and an effective
optical potential

V̂opt = −h̄�s0�̂†(ẑ)�̂(ẑ) (9.27)

that is local in the z-coordinate and diagonal in the ground state basis |g±1/2〉.
Problem 9.2, see also Ref. [5], shows that

V̂opt|g1/2〉 = −h̄�s0
[

1− 2

3
cos2(kẑ)

]
|g1/2〉 ≡ U+(z)|g1/2〉 ,

V̂opt|g−1/2〉 = −h̄�s0
[

1− 2

3
sin2(kẑ)

]
|g−1/2〉 ≡ U−(z)|g−1/2〉 . (9.28)

This demonstrates that the two ground state sublevels |g1/2〉 and |g−1/2〉 are subject
to optical potentials, or light shifts, resulting from both the σ+ and σ− standing
waves appearing in Eq. (9.22). They are illustrated in Fig. 9.3, which shows that
the minima of the light shift Û−(z) repeat periodically at z = nλ/2, while those
of Û+(z) occur at z = λ/4 + nλ/2. These are the locations where the laser field
exhibits either pure σ+ or pure σ− polarization, respectively.

If the atomic dynamics were only driven by the optical field E(z, t), then atoms
in the ground states |g1/2〉 and |g−1/2〉 would simply move in the periodic potentials
U+(z) and U−(z), respectively, without undergoing any electronic transition. In the
ray atom optics regime, this motion is similar to that of a ball being alternatively

Fig. 9.3 Light shifts of the magnetic sublevels |g±1/2〉 as a function of position. The dotted arrows
indicate the virtual transitions to the excited state manifold, followed by spontaneous transitions
back from one to the other of the two magnetic ground states. The size of the dots is proportional
to the steady-state populations of these levels for an atom at rest at position z, for � > 0
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accelerated and decelerated as it moves down and up the successive potential “hills”
of a corrugated roof. In the wave atom optics regime, the situation is a bit more
subtle, as the periodic potential acts as a diffraction grating for the atoms, as we
saw in Sect. 8.4. However, neither in the ray optics nor in the wave optics regime
would the interaction of the atoms with these potentials alone lead to cooling: what
is still missing is a mechanism through which the atomic center-of-mass energy can
be dissipated. In this case, this mechanism is spontaneous emission, which we have
ignored so far. Specifically, the effective ground state Hamiltonian (9.24) accounts
only for virtual transitions from one of the magnetic ground states to the excited
state manifold, followed by stimulated transitions back to the other ground state.

The omission of spontaneous emission can be corrected along the same lines as
in the discussion of Sect. 8.3, that is, by describing the atomic dynamics in terms of
a master equation for the ground state manifold that includes both a non-Hermitian
effective Hamiltonian and a “jump” Liouvillian. Following the adiabatic elimination
of the excited state manifold, it takes the form [3]

dρ̂

dt
= 1

ih̄

(
Ĥeffρ̂ − ρ̂Ĥ †

eff

)
+ L̂[ρ̂] , (9.29)

where

Ĥeff = p̂2

2m
− h̄s0

(
�+ i�

2

)
�̂†(ẑ)�̂(ẑ) , (9.30)

L̂[ρ̂] = �s0
∑
q=0,±

(�εq � · d̂−)�̂(ẑ)ρ̂�̂†(ẑ)(�εq · d̂+) , (9.31)

and the vectors �εq give the polarization of the spontaneously emitted photon, with
q = 0 corresponding to linear polarization. Importantly, the master equation (9.29)
is valid only to zeroth order in the parameter

η = kv0

�
, (9.32)

where v0 is the atomic velocity. As such, it does not include the effects of Doppler
cooling and hence would apply to a precooled atomic sample. Furthermore, it does
not account for the random atomic recoil associated with spontaneous emission that
we already encountered in Sect. 8.3, a point to which we will return when discussing
the Sisyphus cooling limit at the end of this section.

Note that the Liouvillian L̂[ρ̂] involves the laser field through the operators �̂(ẑ)
and �̂†(ẑ). This is because after eliminating the excited state manifold, the effects
of spontaneous emission appear in the ground state only, and for these levels, the
Liouvillian must account for the combined effects of the virtual absorption of a laser
photon, then, followed by spontaneous emission. This contribution to the atomic
evolution is key to the cooling process, as it is the mechanism that couples the two
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degenerate ground states |g1/2〉 and |g−1/2〉. This is easily seen intuitively, because
the laser field can, for example, induce a transition from the ground state |g−1/2〉 to
the excited state |e1/2〉, from which the atom can then spontaneously decay to the
ground state |g1/2〉, as indicated by the dotted arrows in Fig. 9.3.

The master equation (9.29) permits to compute the dynamics of the populations
P±1/2 of the two sublevels of the ground state manifold resulting from this optical
pumping mechanism. Treating the atomic center-of-mass motion classically, its
evolution is governed by the rate equations

dP1/2(z, t)

dt
= −2�′

9
cos2(kz)P1/2(z, t)+ 2�′

9
sin2(kz)P−1/2(z, t) ,

dP−1/2(z, t)

dt
= −dP1/2

dt
(z, t) , (9.33)

where we have introduced the scaled decay rate �′ = s0�.
The first of these equations shows that optical pumping out of |g1/2〉 into |g−1/2〉

is largest at the positions z = nλ/2 of σ− polarization, that is, at the locations of
maxima of the optical potential U+(z), from which the atom undergoes a transition
to a minimum of U−(z). As a result, then, the atom has a tendency to always move
uphill, resulting in the cooling of its center-of-mass motion.

Sisyphus Cooling Limit Returning for a moment to the full internal atomic
dynamics, the interaction potential (9.21) readily allows one to extend the gradient
force (8.18) to the multilevel system considered here to give

Fgr = h̄k�r
2

cos(kz)

[
〈g1/2|ρ̂|e3/2〉e−iωt + 1√

3
〈g−1/2|ρ̂|e1/2〉e−iωt + c.c.

]

+ h̄k�r
2

sin(kz)

[
〈g−1/2|ρ̂|e−3/2〉e−iωt + 1√

3
〈g1/2|ρ̂|e−1/2〉e−iωt + c.c.

]

along the z-axis. In the far off-resonant situation considered here and for velocities
low enough that kv � �, the upper electronic states can be adiabatically eliminated,
and this equation reduces approximately to

Fgr = kU0 sin 2kz
[
P1/2(z, t)− P−1/2(z, t)

]
, (9.34)

where

U0 = 2

3
h̄�

(
�2
r

�2 + (�/2)2
)
� 2

3

(
h̄�2

r

�

)
(9.35)

and |U0| is the depth of the optical potential. The reactive force is therefore
proportional to the difference in populations of the two ground state sublevels, as
would be intuitively expected. From Eq. (9.33), we note that the characteristic rate
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governing optical pumping between these states is

1

τP
≡ 2�′

9
= 2s0�

9
. (9.36)

For low intensities, s0 � 1, it can be orders of magnitude smaller than the
spontaneous emission rate �. This is why polarization gradient cooling can lead to
a temperature orders of magnitude lower than Doppler cooling. Indeed, one could
intuitively argue that the final temperature that can be achieved by this method is
roughly given by the depth h̄|�|s0 of the periodic optical potentials. In the case of
large detunings |�| � �, this gives

kBT � h̄�
2
r

|�| . (9.37)

This result might convey the impression that arbitrarily low temperatures can be
achieved simply by reducing the Rabi frequency �r . This, however, is not correct:
in finding the expression (9.37), we assumed that the energy lost by the atom while
climbing a potential well is large compared with the kinetic energy change in a
fluorescence cycle due to the atomic recoil, an assumption implicit in the neglect of
spontaneous recoil in the master equation (9.29). This condition clearly ceases to
hold when h̄�2

r |�| � h̄2k2/2m. Consequently, the true limit of Sisyphus cooling
turns out to be a few recoil temperatures.

9.3 Subrecoil Cooling

In both Doppler and Sisyphus cooling, the final cooling temperature is a result of a
balance between the cooling force and spontaneous heating. Hence, it appears that
to reach temperatures below the recoil limit, one needs to find a mechanism that
leaves the atoms in a final state that is completely immune to spontaneous emission.
Such dark states are central to cooling via velocity-selective coherent population
trapping (VSCPT) [6], the cooling mechanism to which we now turn.

For concreteness, we consider a Jg = 1 ↔ Je = 1 atomic transition driven by
two counter-propagating laser fields of orthogonal polarizations, see Fig. 9.4. The
positive frequency part of the combined laser fields is then

E(z, t) = 1

2
E
[
�ε+eikz + �ε−e−ikz

]
. (9.38)

A key element of this level scheme is the vanishing electric dipole matrix element
between the levels |e0〉 and |g0〉, so that it can thought of as consisting of a “V”-
type and a “�”-type three-level systems that are not coupled to each other by an
electric field of the form (9.38). In addition, spontaneous emission can optically
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Fig. 9.4 Schematics of a Jg = 1 ↔ Je = 1 atomic transition, showing the � (red) and V (blue)
subsystems, and the levels coupled by spontaneous emission, with the non-zero Clebsch–Gordan
coefficients indicated

pump population from the “V” into the “�” system, but not the other way round, as
illustrated in Fig. 9.4.

For atoms initially in the ground state manifold, it is therefore possible to ignore
the levels associated with the “V”-subsystem and restrict the analysis to the “�”
system only, for which the laser–atom interaction takes the form

V̂ = − h̄�r
2
√

2

(
|e0〉〈g1|e−ikz − |e0〉〈g−1|eikz

)
e−iωt + h.c. , (9.39)

where �r = dE/h̄ is the Rabi frequency. The minus sign in front of the second
contribution to Ĥ follows from the relative signs of the Clebsch–Gordan coefficients
associated with a Jg = 1 ↔ Je = 1 electric dipole transition and indicated in
Fig. 9.4.

In the momentum representation, the interaction Hamiltonian (9.39) becomes

V̂ = h̄�r
2
√

2

∫
dp (|e0, p〉〈g1, p + h̄k| − |e0, p〉〈g−1, p − h̄k|) e−iωt + h.c. ,

(9.40)
where we have used the integral representation of the translation operator

e±ikz =
∫

dp|p〉〈p ∓ h̄k| . (9.41)

From Eq. (9.40), we have that

V̂ |e0, p〉 = − h̄�r
2
√

2
(|g1, p + h̄k〉 − |g−1, p − h̄k〉) e−iωt , (9.42)
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that is, the laser field couples the excited electronic state |e0〉 of the atom with
momentum p to a coherent superposition of the two electronic ground states
|g1, p + h̄k〉 and |g−1, p − h̄k〉 with momenta differing by 2h̄k. All such dipole-
coupled triplets form closed manifolds M(p) that we label with the value of the
excited state momentum,

M(p) ≡ {|e0, p〉, |g1, p + h̄k〉, |g−1, p − h̄k〉} . (9.43)

This suggests introducing the new basis set

|ψc(p)〉 = 1√
2
(|g1, p + h̄k〉 − |g−1, p − h̄k〉)

|ψnc(p)〉 = 1√
2
(|g1, p + h̄k〉 + |g−1, p − h̄k〉)

|ψe(p)〉 = |e0, p〉 , (9.44)

for which one readily finds

V̂ |ψc(p)〉 = − h̄�r
2
e−iωt |ψe(p)〉 (9.45a)

V̂ |ψe(p)〉 = − h̄�r
2
eiωt |ψc(p)〉 (9.45b)

V̂ |ψnc(p)〉 = 0 . (9.45c)

Importantly, though, two additional mechanisms need to be considered in the
description of subrecoil cooling limit, and both of them couple the various manifolds
M(p). They are of as always spontaneous emission, which produces an incoherent
coupling between them resulting from atomic recoil kicks randomly distributed
between −h̄k and h̄k and, in addition, a coherent motional coupling between
the levels |ψc(p)〉 and |ψnc(p)〉 due to the kinetic energy part of the atomic
Hamiltonian. Both are essential in understanding the subrecoil cooling limit.

Dark States Equation (9.45c) shows that the state |ψnc(p)〉 is not coupled to any
other state by the laser field. Hence, if spontaneous emission resulted in a transition
from the excited state |e(p)〉 to |ψnc(p)〉, it would appear that the atom would remain
trapped in that state forever. This, however, is not correct, because we still need to
account for the effects of the kinetic energy p̂2/2m on the atomic dynamics. While
the states |e0, p〉, |g1, p+h̄k〉 and |g−1, p−h̄k〉 are eigenstates of the kinetic energy
operator, such is not the case for the superpositions |ψc(p)〉 and |ψnc(p)〉. This is
what leads to the advertised motional coupling of |ψc(p)〉 and |ψnc(p)〉, with matrix
elements

〈ψc(p)| p̂
2

2m
|ψnc(p)〉 = h̄k p

m
. (9.46)
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As a result, atoms can therefore escape from the state |ψnc(p)〉 except, however, for
p = 0: the state |ψnc(0)〉 is a perfect trap, a dark state uncoupled to any other state
of the system, be it via laser-induced dipole transitions, spontaneous emission, or
motional coupling.

This observation leads to a simple qualitative explanation of atomic cooling via
velocity-selective coherent population trapping. We discuss the one-dimensional
situation for simplicity, but an extension to three dimensions is straightforward.
Consider an atom initially in the manifold M(p) and spontaneously emitting a
photon of momentum h̄k0, with k0 = ω0/c, in some random direction. Denoting
its component along the z-axis h̄k0,z = u, this results in a transition from the state
|e0, p〉 to some linear superposition of the states |g1, p − u〉 and |g−1, p + u〉.
From Eq. (9.43), it is apparent that the first of these states belongs to the manifold
M(p − u − h̄k) and the second to M(p + u + h̄k). Because −h̄k ≤ u ≤ h̄k,
spontaneous emission results therefore in a redistribution of states in the manifold
M(p) into the manifolds M(p′), with

p − 2h̄k ≤ p′ ≤ p + 2h̄k , (9.47)

where we have assumed that k0 � k .
In addition to this recoil effect, spontaneous emission is the cause of the finite

linewidth � of the upper states |ψe(p)〉 and �′ � �2
r /� of the ground states

|ψc(p)〉—this latter value, which results from the laser coupling between the ground
and excited electronic states, being valid at resonance and in the weak-field limit
�r � �. Also, the states |ψnc(p)〉 acquire a linewidth �′′, a result of their motional
coupling to the states |ψc(p)〉, which are in turn optically coupled to the excited
states |ψe(p)〉. For kp/M � �′, one finds

�′′ = 4

(
kp

M

)2
�

�2
r

, (9.48)

which can be interpreted as the probability per unit time that the atom leaves the
state |ψnc(p)〉.

Because the only state with an infinite lifetime is |ψnc(0)〉, subsequent fluores-
cence cycles eventually lead to an accumulation of atoms in that state. Hence, the
final momentum distribution of the atoms will be given (in one dimension) by two
arbitrarily narrow peaks centered at p = ±h̄k. A detailed theory of VSCPT cooling
can be found in Refs. [3, 7].

9.4 Cavity Cooling

We have seen in Chap. 3.4 that cavity environments provide significant additional
flexibility compared to free space situations for the control of atom–field inter-
actions. It is therefore not too surprising that these added features can also be
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exploited to cool atoms. This section discusses a method of cavity cooling [8, 9]
that is somewhat reminiscent of Sisyphus cooling, except that it relies now on
dressed states of the atom–cavity system. To provide an intuitive understanding
of this approach, we first discuss a fully classical model that describes the cavity
cooling of the Lorentz atom of Sect. 1.2 before turning to a full, albeit simplified
description where both the atom and the intracavity field are quantized.

Classical Oscillator We consider a single-mode optical cavity supporting a stand-
ing wave field mode of frequency ωc and wave vector K , driven by a classical
field of amplitude Ein and frequency ω. After a straightforward modification of
Eq. (5.147) for classical fields, see Eq. (5.158) and Problem 9.3, the equation of
motion for the slowly varying amplitude E(t) of the intracavity field is

E(z, t) = E(t)e−iωt cos(Kz)+ c.c. (9.49)

given by

dE(t)
dt
+ (κ/2−�c)E(t) = iω

2ε0
P(t)+√κEin , (9.50)

where P is the slowly varying polarization, κ/2 is the amplitude decay rate of
the resonator of length L and �c = ω − ωc. The intracavity field interacts with
a harmonically bound electron of frequency ω0 described as a Lorentz atom. Its
position x(t) relative to the “atomic nucleus” located at position za undergoes
damped oscillations governed by Eq. (1.20),

(
d2

dt2
+ 2γ

d

dt
+ ω2

0

)
x(t) = − e

m
E(za, t) . (9.51)

In the slowly varying amplitude and phase approximation, and with Eqs. (9.49)
and (1.50), the Maxwell wave equation simplifies to

dE(t)
dt
+ (κ/2− i�c)E(t) = [−�(za)− iU(za)] E(t)+√κEin, (9.52)

where � = ω0 − ω,

�(za) =
(

e2

4mε0V

)
γ

�2 + γ 2
cos2(Kza) (9.53)

is a spatially dependent decay rate resulting from the scattering of light from the
dipole oscillator, and

U(za) = −
(

e2

4mε0V

)
�

�2 + γ 2 cos2(Kza) (9.54)
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is the associated spatially dependent frequency shift of the cavity mode frequency.
The cavity volume V was introduced to convert P(t) into a proper polarization
density.

For convenience, we now scale the intracavity field to

E =
√
h̄ω

ε0V
α , (9.55)

keeping in mind that this is a somewhat misleading step due to the appearance of h̄ in
a completely classical theory. The motivation for this scaling is merely to allow for
an easy generalization to a quantum description, where α will then be interpreted
as the square root of the mean number of intracavity photons. The coupled self-
consistent equations that describe the coupled evolution of the field and the center
of mass of the classical “atom” read then

dα

dt
= [−κ/2− �(za)− i�c − iU(za)]α + η , (9.56a)

dpa
dt
= −|α|2 d

dza
U(za) , (9.56b)

dza
dt
= pa
m
, (9.56c)

where η accounts for the coupling of α to the driving field Ein and pa is the particle
momentum. Equation (9.56b) shows that the force−|α|2(dU(za)/dza) acting on the
classical oscillator is essentially the gradient force introduced in Sect. 8.2, except
that as it now acts on a classical oscillator in a cavity instead of on a two-state
system.

The cooling of the oscillator results from the periodic dependence of the
intracavity field on the atomic position. Equation (9.56a) shows that it is driven
both by U(za), which changes the mode frequency locally, and by �(za), which is
due to the spatially dependent spontaneous light scattering by the dipole, resulting
in a spatially dependent cavity response time.

More specifically, for empty cavities, the maximum transmission and intracavity
intensity occurs when it is driven by a resonant field, but the situation is different
with an atom inside the resonator: The atom–field interaction results in a shift in the
cavity resonance frequency U(za) that depends on the atomic position. In particular,
the strong coupling for an atom at an antinode of the cavity mode may shift the
pump into resonance, thereby increasing the intracavity field. However, the field is
also subject to a position-dependent damping κ/2 + �(za) that results in a time
delayed response, and for appropriate conditions, field maxima can therefore occur
after the particle reaches a location where the cavity mode function—in the present
example, sinKz with K = nπ/L, n integer—imposes a minimum to U(z). As a
consequence, the particle will climb up the optical potential hills at times when they
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Fig. 9.5 Schematic of the classical picture of cavity cooling. The lower figure shows U(za)
(negative in this example), which governs the position-dependent change in the frequency of the
cavity field due to its interaction with the particle. Its zeros are the zeros of the cavity mode function
sin(Kz). The upper figure shows both the intracavity field |α|2static(za) for a dipole at rest (solid line)
and its value |α|2(za) (dashed line) for a dipole moving at constant velocity, as a function of the
dipole position za . The red shaded area shows a region where the particle is moving uphill against a
field |α|2(za). That field is larger than in the green area, where the particle moves downhill against
a weaker field |α|2(za), resulting in its cooling. Arbitrary units

are higher than when it moves downhill. This results in the cooling of its motion, as
illustrated in Figs. 9.5 and 9.6. This mechanism, whose origin is a properly time-
delayed gradient force, is reminiscent of Sisyphus cooling, as will also become
evident from a simplified quantum description in terms of dressed states to which
we now turn.

Simplified Quantum Description A simple quantum interpretation of cavity cool-
ing follows directly from the Jaynes–Cummings model, with the only differences
that the two-level atom is now allowed to propagate along the cavity axis and that the
system is driven by an external field, see Eq. (5.147) or its approximate form (5.158)
for a classical driving field.

Since the vacuum Rabi frequency is now spatially dependent, the dressed
states (3.3) of the (non-driven) Jaynes–Cummings model are spatially dependent
as well,

|1, n〉 = sin θn(z)|e, n〉 + cos θn(z)|g, n+ 1〉
|2, n〉 = cos θn(z)|e, n〉 − sin θn(z)|g, n+ 1〉, (9.57)

with

tan[2θn(za)] = −2g(za)
√
n+ 1

�
(9.58)
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Fig. 9.6 Solid line: evolution of the particle position za (solid line) and momentum pa (dashed
line) during the cavity cooling of a classical oscillator of mass m and frequency ω0. The position
za is in units of the wavelength λ, the momentum pa is in units of h̄k, and time is in units of κ . In
this example, �(za = 0) = 0.16, U(za = 0) = 0.45, � = −2, �c = 0, and η = 1.0. For long
enough times, the oscillator becomes trapped in one potential well of the optical potential

and corresponding eigenenergies

E1n(za) = h̄(n+ 1/2)ω + h̄�n(za) ,
E2n(za) = h̄(n+ 1/2)ω − h̄�n(za) , (9.59)

where

�n(za) = 1

2

√
�2 + 4g2(za)(n+ 1) . (9.60)

In order to identify the basic physics underlying the cavity cooling mechanism, it
is sufficient to consider the limit of weak excitation, where the atoms are mostly in
the ground state. For large negative detunings, the dressed state |1, n〉 of the undriven
system approaches |g, n + 1〉, with eigenenergy E1,n ≈ h̄ω(n + 1) − h̄ω0/2 near
the nodes of the intracavity field, see Eqs. (7.43). Similarly, |2, n〉 → |e, n〉, with
energy E2n ≈ h̄ωn+ h̄ω0/2. In particular, the energy difference between the states
E1,0 and E2,0 becomes

E1,0 − E2,0 ≈ −h̄�, (9.61)

as illustrated in Fig. 9.7. At these locations, the energy difference between the state
|1, 0〉 and the ground state |g, 0〉 is readily found to be h̄ω, that is, this transition is
resonant with the driving field. It follows that at these locations, the atom will be
preferentially pumped by that field from |g, 0〉 to the state |1, 0〉. From the point on,
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Fig. 9.7 Schematic of the
cavity cooling mechanism,
illustrating the Sisyphus
cooling mechanism whereby
for negative detunings
� = ω0 − ω, the atoms are
pumped to the dressed state
|1, 0〉 near the nodes of the
field and then move uphill on
the spatially dependent
potential associated with that
state before decaying
spontaneously back to the
ground state |g, 0〉. Cooling is
achieved by the atom being
forced to always move uphill
and thereby losing its kinetic
energy

a slow atom will adiabatically follow that state. As it moves further away from the
node of the field, it is forced to climb up the potentialE1,0(z), loosing kinetic energy
in the process, until spontaneous emission brings it back to the state |g, 0〉. The
excitation followed by spontaneous emission sequence is then repeated, much like
in Sisyphus cooling. It will eventually cease when the atom no longer has sufficient
kinetic energy to climb up the potential hills and is trapped in one of the wells.

Reference [9] discusses additional conditions under which this type of cavity
cooling can also be achieved, in particular by a careful choice of cavity detuning
�c = ω − ωc and positive detunings � = ω0 − ω. This situation is the topic of
Problem 9.6.

9.5 Sideband Cooling

So far, we have considered the optical cooling of neutral atoms in atomic vapors or
beams. We now turn to the case of trapped particles, more specifically trapped ions.
These are of considerable interest for quantum information applications, where the
capability to manipulate the internal state of strings of trapped ions cooled to their
motional ground state provides a promising approach to quantum state engineering
and quantum information processing.

Ion Traps Ions can be trapped by electromagnetic restoring forces, either in
combinations of static electric and magnetic fields as in Penning traps [10] or in
time-dependent electric fields as in Paul traps [11], see Fig. 9.8. In both cases, the
resulting potential can be approximated as a quadratic potential, so that the motion
of an ion near the trap center can be characterized by three frequencies. In the
Penning trap, the axial motion is at a frequency νax, while the radial motion is the
sum of a harmonic cyclotron motion of cyclotron frequency νcyc and a repulsive
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Fig. 9.8 The Paul trap and the Penning trap are geometrically similar quadrupole traps. The Paul
trap exploits an intermediate frequency AC voltage between a hyperbolic ring and hyperbolic end
electrodes, while the Penning trap has a repulsive DC voltage on the end electrodes and a strong
magnetic field in the axial direction

magnetron motion at frequency νmag due to the fact that the electric field forces
the ion away from the trap center, with νcyc � νax � νmag. Similarly, the ion
motion near the center of a Paul trap is well described by a harmonic motion in
three dimensions characterized by three frequencies νx , νy , and νz. In the following,
we restrict ourselves for simplicity to one dimension. The generalization to three
dimensions is straightforward.

Resolved Sideband Cooling We consider a single two-level ion of massm trapped
in a one-dimensional harmonic trap of frequency ν and interacting with a classical
field E(z, t) = E0�ε cos(ωt − kz). This system is described by adding the harmonic
center-of-mass motion of the ion to the Hamiltonian (1.61). With the results of
Sect. 2.1, this gives readily

Ĥ = p̂2

2m
+ 1

2
mν2ẑ2 + h̄�|e〉〈e| + h̄�r

2

[
σ̂+eikẑ + h.c.

]

= h̄νb̂†b̂ + h̄�|e〉〈e| + h̄�r
2

[
|e〉〈g|eikẑ + h.c.

]
, (9.62)

where the Hamiltonian h̄νb̂†b̂, with eigenstates |n〉, accounts for the harmonic
motion of the trapped ion. The operators b̂ and b̂†, with [b̂, b̂†] = 1, are annihilation
and creation operators of vibrational quanta or phonons.

As before, the optical field-induced center-of-mass recoil of the ion is described
by the translation operator (8.28) or its integral form (9.41)

e±ikẑ =
∫

dp|p〉〈p ∓ h̄k| . (9.63)
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On the basis {|n〉} of vibrational Fock states, this operator is associated with
transitions |n〉 → |n′〉, with transition matrix elements

Fn→n′ = 〈n′|e±ikẑ|n〉 . (9.64)

It follows that a state |g, n〉 of the ion is in general coupled to a set of states {|e, n′〉},
with transition frequencies

ωn,n′ = ω0 + (n′ − n)ν . (9.65)

The linewidth of the excited electronic state |e〉 is given by its spontaneous decay
rate �, and for large � � ν, there will be a number of accessible states |e,m〉
whose transition frequency (9.65) falls within it. This should be contrasted with the
opposite limit � � ν, where the various frequencies ωn,n′ will be resolved. This is
the so-called resolved sideband limit of sideband cooling. In that regime, the laser
can be tuned to a specific sideband and selectively drive transitions between bands.

Consider then the transition matrix elements (9.64), and reexpress the position
operator ẑ of the ion in terms of the annihilation and creation operators b̂ and b̂† as

ẑ = zzpf(b̂ + b̂†), (9.66)

where zzpf is the zero-point position

zzpf =
√
h̄

2mν
. (9.67)

Further introducing the Lamb–Dicke parameter

η = kzzpf , (9.68)

with η2 = ωrec/ν, Eq. (9.64) becomes

Fn→n′ = 〈n′|eiη(b̂+b̂†)|n〉
= 〈n′|1+ iη(b̂ + b̂†)+O(η2)|n〉 . (9.69)

If the trap frequency ν is much larger than the recoil frequency ωrec, then η � 1. In
that case Eq. (9.69) shows that transitions where n′ differs from n by more than one
are largely suppressed, and it is sufficient to consider ground to excited transitions
involving the levels

|g, n〉 → |e, n± 1〉 , (9.70)

as illustrated in Fig. 9.9.
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Fig. 9.9 Schematics of the resolved sideband cooling of trapped ion, with ν the trap frequency
and ω the frequency of the cooling laser. The straight green arrows indicate the laser-induced
transitions |g, n〉 ↔ |e, n′〉, with n′ = n or n ± 1 in the Lamb–Dicke limit, and the wavy arrows
indicate spontaneous emission between the states |e, n〉 and |g, n〉

Motional cooling will be achieved if transitions from the state |n〉 to |n − 1〉 are
favored over transitions from |n〉 to |n+1〉. This is because from a given initial state
|e, n−1〉, spontaneous emission will on the average result in the decay |e, n−1〉 →
|g, n−1〉, so that following subsequent transitions, the ion will eventually approach
the |n = 0〉 state.

From the analysis of the rate equation approximation of Chap. 1, we recall that
the transition rate between two levels coupled by a field with Rabi frequency�r and
with atom–field detuning � is given by Eq. (1.85),

R = �
2
r

�

(
(�/2)2

�2 + (�/2)2
)
. (9.71)

With Eqs. (9.69) and (9.65), this result becomes, when considering the Lamb–Dicke
limit of the motional transition matrix elements,

Rn→n−1 = nη2�
2
r

�

(
(�/2)2

�2− + (�/2)2
)
≡ nA− (9.72)

Rn→n+1 = (n+ 1)η2�
2
r

�

(
(�/2)2

�2+ + (�/2)2
)
≡ (n+ 1)A+ , (9.73)

with

�± = (ω0 ± ν)− ω . (9.74)
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The rate A− is maximally favored over A+ for �− = 0, or ω = ω0 − ν, and hence
|�+| = 2ν, that is, for a laser detuned to the red of the transition frequency ω0 by
the trap frequency ν, see Fig. 9.9. From a detailed balance argument along the lines
of Sect. 5.2, the rate of change of the probability pn to be in the motional state |n〉 is

dpn
dt
= −nA−pn + (n+ 1)A−pn+1 − (n+ 1)A+pn + nA+pn−1 , (9.75)

see in particular the discussion leading to Eq. (5.63). This results in the steady-state
solution

pn = A+
A−
pn−1, (9.76)

which gives, for a field resonant with the blue-shifted transition |g, n〉 → |e, n− 1〉
so that �− = 0 and �+ = ν and � � ν,

pn ≈
(
�

2ν

)2

pn−1 (9.77)

corresponding to a thermal distribution with n̄ = (�/2ν)2 � 1.
In addition to being of considerable importance in precision measurements and

in the implementation of trapped ion-based quantum information systems, sideband
cooling also finds significant applications in quantum optomechanics, where the
same idea is exploited to cool mesoscopic mechanical systems to their ground state
of vibration. This will be discussed in Chap. 11.

9.6 Evaporative Cooling

While laser cooling has found a number of applications in quantum optics and
optomechanics, it turns out not to always be sufficient to achieve the combined
phase space densities and low temperatures required to investigate the many-body
dynamics of quantum gases, such as e.g. Bose–Einstein condensation. In such cases
laser cooling can be complemented by other techniques, the most common being
evaporative cooling. For the sake of completeness, we briefly discuss elementary
aspects of this approach of interest for quantum optics applications.

In contrast to the laser cooling methods discussed so far, evaporative cooling is
quite familiar in everyday life. It is the mechanism that leads to the cooling of a cup
of coffee and that is also used as a very effective, low-tech, and inexpensive way
to cool houses in hot and dry climates. As time goes on, coffee cools down as the
most energetic (warmest) molecules escape from the cup and the remaining ones
rethermalize at a lower temperature.
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The evaporative cooling of atomic samples works in much the same way, except
that the coffee cup is replaced by an atomic trap, and, more importantly, the
atomic densities and temperatures involved are much lower. It was first proposed
by Hess [12], and its first experimental demonstration was accomplished in spin-
polarized atomic hydrogen [13]. Extensive reviews of evaporative cooling can be
found in Refs. [14] and [15].

To achieve efficient cooling, the high energy tail of the thermal distribution
of atoms must be constantly repopulated by collisions so that an equilibrium
distribution can be maintained and the cooling process sustained. Hence, an essential
condition for evaporative cooling is that the lifetime of the sample to be cooled
must be long compared with the collisional thermalization time. The problem,
however, is that at the low densities typical of atom optics experiments, the collisions
are rare, with a concomitant long thermalization time. Indeed, typical collisional
thermalization times in Bose–Einstein condensation experiments are of the order of
seconds.

An efficient way to improve evaporative cooling in atomic vapors is the technique
of radio frequency-induced evaporation, first proposed by D. Pritchard et al. [16]
and by T. W. Hijmans et al. [17]. The basic idea beyond this approach is quite
simple: consider a magnetic trap with trapping potential of the form

V (r) = mFgμB [B(r)− B0] , (9.78)

where mF is the magnetic quantum number of the trapped magnetic sublevel, g is
the Landé g-factor, μB is the Bohr magneton, B0 is the bias field of the trap and
B(r) is the radially dependent trap magnetic field, and apply a radio frequency field
at frequency ωrf that can flip the atomic magnetic spin, hence leaving the atoms in a
state expelled from the trap. The resonance condition for such transitions is

h̄ωrf = |g|μBBres(r), (9.79)

which, combined with Eq. (9.78), shows that only atoms with an energy

E > |mF ||g|μB [Bres(r)− B0 ] = h̄|mF |(ωrf − ω0) , (9.80)

where ω0 is the frequency associated with the bias field B0, will escape the trap, or
evaporate. Slowly varying ωrf in a way appropriate for the details of the trap under
consideration allows one to achieve sustained evaporation without having to reduce
the potential depth of the actual magnetic trap, making it easier to cool the sample
in an efficient fashion.

To discuss evaporative cooling in a slightly more quantitative way, consider a
sample of atoms of initial total energy ET and average energy per atom 〈E〉 =
ET /N , and assume that the average energy of the evaporated atoms is (1 + ε)〈E〉.
The energy removed from the sample by dN particles is therefore (1 + ε)〈E〉dN ,
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and the change in average energy per atom is

〈E〉 − d〈E〉 = ET − (1+ ε)〈E〉dN
N − dN

, (9.81)

so that to the lowest order

d〈E〉
〈E〉 = ε

dN

N
(9.82)

or

〈E〉
〈E0〉 =

(
N

N0

)ε
, (9.83)

where 〈E0〉 and N0 are initial values. In this simple model, the average energy
of the particles, and hence their temperature, decreases as a power of the number
of particles. While this is an oversimplified picture, which assumes that ε is
independent of N and ignores the detailed role of the thermalizing collisions and
of possible external influences such as radio frequency fields, it does give a rough
idea of the way evaporative cooling works.

Problems

Problem 9.1 Evaluate the recoil temperature, recoil velocity, recoil temperature,
and Doppler temperature, as well as the acceleration associated with the force F =
h̄k� for the D2 (32S1/2 → 32P3/2 line of a sodium atom (mass = 3.82 · 10−26 kg,
ω = 2π × 508.8 THz, � = 62 · 106s−1). Evaluate also its de Broglie wavelength at
both the Doppler temperature and the recoil temperature.

Problem 9.2 Derive the optical potentials (9.28)

V̂opt|+ 1
2 〉 = −h̄�s0

[
1− 2

3 cos2(kẑ)
]
|+ 1

2 〉 ≡ Û+(ẑ)|+ 1
2 〉 ,

V̂opt|− 1
2 〉 = −h̄�s0

[
1− 2

3 sin2(kẑ)
]
|− 1

2 〉 ≡ Û−(ẑ)|− 1
2 〉 ,

which account for the stimulated dynamics of the ground state manifold in Sisyphus
cooling by adiabatically eliminating the evolution of the excited manifold.

Problem 9.3 Derive equation (9.50)

dE(t)
dt
+ (κ/2−�c)E(t) = iω

2ε0
P(t)+√κEin ,

for the intracavity field in case it is driven by an external field Ein.
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Problem 9.4 Derive Eq. (9.52) and Eqs. (9.29)–(9.31) by following an approach
that parallels the analysis leading to Eq. (5.115) and adiabatically eliminating the
upper state manifold.

Problem 9.5 Derive Eq. (9.50) by extending the analysis of the slowly varying
approximation of Sect. 1.2 to the case of a cavity with damping rate κ and mode
frequency ωc driven by an external field of frequency ω. Derive also Eqs. (9.56a)–
(9.56c) by extending Eqs. (1.26) and (1.27) to the case of a Lorentz atom inside the
resonator.

Problem 9.6 Show that a cavity cooling scheme similar to the one discussed in
Sect. 9.4 can be achieved by a proper choice of cavity detuning �c = ω − ωc and
positive atom–field detunings � = ω0 − ω. In that case, you should find that the
atom needs to be pumped into the minima of the lower, rather than the upper dressed
state.

Problem 9.7

(a) Derive the rate equations that govern the sideband cooling of a single ion
confined to a one-dimensional trap in the Lamb–Dicke limit.

(b) Solve these equations numerically for η = 0.1, ω2
r /� = 1, �− = 0 and

parameters �, (ω−ωo) and ν such that the resolved sideband regime is satisfied.
Assume in the numerical solution that the ion motion is initially in thermal
equilibrium with a mean phonon number n̄ = 3.

(c) Verify that the steady state reached by the ion satisfies the detailed balance
condition (9.77).
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Chapter 10
Bose–Einstein Condensation

Bosonic atomic vapors cooled to extremely low temperatures may undergo
transitions to Bose–Einstein condensates (BEC). After a brief review of
this effect in non-interacting free space systems this chapter discusses new
features resulting from trapped samples. We then turn to an introduction to
Schrödinger field quantization and apply this formalism to the derivation
of the Gross–Pitaevskii equation and the description of Bogoliubov quasi-
particles. The final part of this chapter focuses on optical lattices, a type
of optical traps that permits to develop powerful bridges with condensed
matter physics, for example in realizations of the Bose–Hubbard model. We
conclude with a brief overview of atom microscopes, which allow for a direct
characterization, atom by atom, of ultracold atomic samples on lattices.

The experimental realization of quantum degenerate atomic systems, in particular
of atomic Bose–Einstein condensation (BEC), is arguably one of the most important
achievements resulting from the availability of laser cooling and advances in
evaporative cooling techniques. In addition to opening a new area of investigation in
AMO physics and in quantum and atom optics, this breakthrough also provides the
opportunity to build exciting bridges with other areas of physics, most importantly
perhaps with condensed matter physics and field theory.

The theoretical prediction of Bose–Einstein condensation goes back to the
realization by A. Einstein [1, 2], following the original ideas by S. N. Bose [3],
that below a critical temperature Tc a gas of non-interacting bosons can develop a
macroscopic population of its lowest energy state. Although it had been predicted
for decades, the first atomic BEC was successfully realized only in 1995 by E.
Cornell et al. [4], who cooled a gas of rubidium atoms to 1.7 ·10−7 K above absolute
zero, and shortly thereafter by W. Ketterle et al. [5], who created a BEC of sodium
atoms. The requisite breakthroughs to achieve this goal were the ability to produce
low enough temperatures, combined with trapping techniques that permit to confine
atoms with a sufficient phase space density without the need for material containers.

The first experimental demonstrations of atomic Bose–Einstein condensation
were rapidly followed by a broad spectrum of advances in the theoretical and
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experimental study of ultracold atomic gases. They offer exciting new avenues to
investigate a wide range of topics at the boundary between AMO science, condensed
matter physics, and field theory and are driven to a significant extent by the ability to
develop quantum simulators that permit the quantitative study of strongly correlated
bosonic or fermionic systems, quantum phase transitions, topological phases of
matter, and much more.

The theory of BEC is well documented in most books on statistical mechanics [6–
8], although surprisingly, there are still difficulties being addressed, especially
relative to the fluctuations in particle numbers predicted by different statistical
ensembles, see e.g. Refs. [9–12]. However, these issues seem to be restricted to
the case of non-interacting gases and we will not dwell on them here.

Although our focus in this chapter will be on trapped, low-density, and weakly
interacting alkali bosonic gases, we begin with a brief review of the phenomenology
of BEC in free, non-interacting systems, concentrating on the mean occupation of
the various states of the particles. We then discuss in Sect. 10.2 the new features
resulting from trapped samples before turning to a more formal development of
Schrödinger field quantization, a formalism of considerable use in the discussion
of the more elaborate aspects of BEC. The last part of this chapter focuses
on optical lattices, an important type of optical traps that permit to build cold
atom quantum simulators with controlled inter-particle interactions of many-body
condensed matter systems, the Bose–Hubbard model being an example. We also
discuss the use of “atomic microscopes” as unique tools for the manipulation and
readout atom by atom of these simulators.

10.1 Phenomenology

We consider a Bose gas of free, non-interacting particles described by the Hamilto-
nian

Ĥ =
∑
i

Ĥi =
∑
i

p̂2
i

2m
(10.1)

or equivalently1

Ĥ =
∑
j

Ej ĉ
†
j ĉj , (10.2)

1Ĥ is the so-called second-quantized form of Ĥ . Both Hamiltonians describe the same ensemble
of N non-interacting particles of energies Ei and they are fully equivalent, as will be shown in
some detail in Sect. 10.3. Here we briefly “jump the gun” and use Ĥ without formal justification
so as to exploit the intuition that we have gained from quantized optical fields, whose Hamiltonian
is formally identical.
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where ĉj and ĉ†
j are annihilation and creation operators that satisfy the boson

commutation relations [ĉj , ĉ†
k] = δjk , that annihilate, respectively, create a particle

of energy Ej = p̂2
j /2m, with n̂j = ĉ†

j ĉj the number operator for these particles.
As shown in Problem 10.1, this system is characterized by the thermal equilib-

rium density operator (compare also to Eq. (2.85))

ρ̂ = 1

Z

∏
j

e
−β(Ej−μ)ĉ†

j ĉj , (10.3)

where β = 1/kBT , Z is the partition function, and the energies Ej are those of free
particles of mass m. Finally μ is the chemical potential of the system, determined
in the case of a canonical ensemble from the normalization condition N = ∑

nj ,
with N the number of particles in the system.

The associated Bose–Einstein distribution for the mean occupation number of
the level of energy Ej is

〈nj 〉 = 1

exp[β(Ej − μ)] − 1
. (10.4)

As a consequence, for the non-interacting particles considered here μ must satisfy
the condition

μ < 0 , (10.5)

a direct consequence of the form of the distribution (10.4) and the fact that the
number of particles in a given state must remain positive.

For simplicity, we adopt periodic boundary conditions for a cubic box of volume
V = L3. The particle center-of-mass eigenfunctions are then

ϕn(x, y, z) = 1√
V

exp

[
i

h̄
(pxx + pyy + pzz)

]
, (10.6)

where

px = 2πnx
L
h̄ , py = 2πny

L
h̄ , pz = 2πnz

L
h̄ , (10.7)

and ni are integer numbers, and the corresponding energy eigenvalues are

Ej = 1

2m

(
p2
x + p2

y + p2
z

)
≡ p2

2m
. (10.8)

For a large enough box, the allowed momenta become quasicontinuous, and the
number of eigenstates in a momentum space volume d3p is V d3p/(2πh̄)3. The
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number of states with energy below some given value E is therefore

N (E) = V

(2πh̄)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ √2mE

0
p2dp

= 4π

3

V

(2πh̄)3
(2mE)3/2 , (10.9)

with corresponding density of states

D(E) ≡ dN (E)
dE

=
(

V√
2π2h̄3

)
m3/2
√
E . (10.10)

In the continuum limit the total number of particles is therefore

N = 〈n0〉 +
∫ ∞

0
dED(E) 1

exp[β(E − μ)] − 1
, (10.11)

where we have used Eq. (10.4) and the ground state population n0 was added “by
hand,” a step required since D(0) = 0.

Critical Temperature As previously mentioned, the chemical potential μ can
be determined from the number of particles in the system. To achieve this goal,
Eqs. (10.11) and (10.5) must be solved self-consistently, a task performed numeri-
cally in general. However, we can gain further insight into the physics involved by
introducing the fugacity

z ≡ eβμ (10.12)

with

0 ≤ z < 1 , (10.13)

as follows directly from Eq. (10.5).
With the density of states (10.10), Eq. (10.11) then becomes, neglecting for now

the ground state population 〈n0〉,

4π2

(
h̄2β

2m

)3/2
N

V
=

∫ ∞
0

dx
x1/2

ex/z− 1
, (10.14)

where we have introduced the dimensionless energy x ≡ βE, and the quantity to
be determined is now the fugacity rather than the chemical potential. The solution
of Eq. (10.14) is obtained by intersecting a horizontal line at a value equal to its
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Fig. 10.1 The function I (z)
of Eq. (10.15)

left-hand side with the function

I (z) ≡
∫ ∞

0
dx

x1/2

ex/z− 1
, (10.15)

which is plotted in Fig. 10.1. This procedure does yield a unique solution as long as
z < 1, that is, as long as

4π2

(
h̄2β

2m

)3/2
N

V
< I (z = 1) � 2.315 . . . , (10.16)

However, there appears to be no solution otherwise. For a fixed density N/V , the
condition (10.16) implies that the sample temperature must be larger than a critical
Bose temperature Tc given by

kBTc � 6.632

(
h̄2

2m

)(
N

V

)2/3

. (10.17)

This is a very disturbing result, since it should be possible in principle both to have
as many particles as we wish in the sample, and also to cool it to an arbitrarily low
temperature. So something seems to be missing in our analysis. What could it be?

Ground State Population The answer to this question is immediately apparent if
we return for a minute to the approximation that leads to Eq. (10.14): The absence
of a solution below Tc simply results from the fact that the ground state population
〈n0〉 was ignored in that expression. From the Bose–Einstein distribution (10.4) it is
given by

〈n0〉 = 1

e−βμ − 1
= z

1− z , (10.18)
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and it becomes macroscopic as the fugacity approaches its limiting value of one, or
equivalently as the chemical potential approaches zero from below. Specifically, we
then have exp(−βμ) � 1− βμ = 1+ 1/〈n0〉, or

〈n0〉 � − 1

βμ
, (10.19)

which is increasingly macroscopic quantity as βμ→ 0.
Importantly, while the ground state population becomes macroscopic below Tc,

such is not the case for the populations of the excited states. This is easily seen to
be the case for states of energy Ej of the order of or larger than kBT , since from
Eq. (10.4) one has immediately

〈nj 〉 = 1

exp[β(Ej − μ)] − 1
<

1

e − 1
< 1 , (10.20)

and 〈nj 〉 � 〈n0〉. The proof is somewhat more delicate for states of energy Ej
separated from the ground state energy by much less than kBT . Because μ � 0, we
have that β(Ej − μ)� 1, and hence

〈nj 〉 � 1

β(Ej − μ) =
1

βEj + 1/〈n0〉 , (10.21)

where we have used Eq. (10.19) to obtain the last equality. Consider specifically the
first excited state, of energy E1 = 2π2h̄2/MV 2/3. Below Tc, and with Eq. (10.17),
we have

E1/kBT > E1/kBTc � 1/N2/3 (10.22)

so that for a total particle number sufficiently large that the inequality βE1 � |βμ|
holds

〈n1〉
〈n0〉 �

|μ|
E1
� 1

〈n0〉/N2/3 + 1
. (10.23)

The explicit temperature dependence of the ground state population 〈n0〉 for
temperatures below the critical temperature Tc can be obtained from Eq. (10.11),
with the substitution μ ≈ −1/β〈n0〉 from Eq. (10.19) and noting that below Tc
this value is so close to zero that we can safely set μ = 0 in the integral. In other
words, for T < Tc the chemical potential remains essentially zero, and 〈n0〉 adjusts
itself to satisfy Eq. (10.11). Carrying out the integration as before yields, with the
definition (10.17) of Tc,

〈n0〉 = N
[

1−
(
T

Tc

)3/2
]
. (10.24)
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Fig. 10.2 Free space
condensate fraction—ground
state condensate fraction 〈n0〉
normalized to the total
number of particles N—as a
function of the normalized
temperature T/Tc

Hence, the ground state population grows continuously from 0 to N as T decreases
from Tc to T = 0, as illustrated in Fig. 10.2. For T � Tc we have therefore that
〈n0〉 � N , so that for N � 1

〈n1〉
〈n0〉 �

1

N1/3 � 1 . (10.25)

This confirms that while the ground state is macroscopically populated the indi-
vidual populations of all excited levels are negligible by comparison. This is the
phenomenon of Bose–Einstein condensation.

10.2 BEC in Traps

The experimental realization of atomic Bose–Einstein condensation always involves
samples trapped in either magnetic or optical traps. However, the analysis of the
previous section, while initially depending explicitly on the density of states D(ω),
was then specialized to a free space geometry. In this section we show that tailoring
the environment of ultracold atomic vapors can change this behavior dramatically
and that confined geometries can significantly modify Bose–Einstein condensation
as compared to its free space behavior or even lead to its absence. This state of affairs
is somewhat reminiscent of Chap. 7, where we showed how the radiative properties
of atoms can be profoundly influenced by their environment, in that case the density
of modes of the electromagnetic field.
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We consider for concreteness the situation where the trapping potential of the
atoms is a three-dimensional harmonic oscillator

Vtrap(r) = m
2

(
ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3

)
, (10.26)

with energy levels

En1,n2,n3 =
(
n1 + 1

2

)
h̄ω1 +

(
n2 + 1

2

)
h̄ω2 +

(
n3 + 1

2

)
h̄ω3, (10.27)

where ni are integers larger than or equal to zero. As before, the density of states is
obtained by first evaluating the number of states N (E) whose energy is below some
value E in the continuum limit. Noting that the surfaces of equal energy are planes
given by Eq. (10.27) it is readily found to be

N (E) = E3

6h̄3ω1ω2ω3
(10.28)

and the associated density of states is

D(E) ≡ dN (E)
dE

= E2

2h̄3ω1ω2ω3
. (10.29)

It is also useful [13] to introduce a more general density of states

D(E) = CαEα−1 , (10.30)

where α = 3/2 for the free space situation of Sect. 10.1, α = 3 for a three-
dimensional harmonic trap, and α = 1 for a gas of free particles in two dimensions.
Here Cα is a constant depending on the geometry at hand.

We saw in the preceding section that the critical temperature Tc corresponds to
the point where the chemical potential μ becomes equal to zero and 〈n0〉 starts to
build up macroscopically. At precisely that temperature, we still have 〈n0〉 � 0.
Setting μ = 0 with the density of states (10.30) in Eq. (10.11) with μ = 0 gives for
the total number of particles at that temperature

N = Cα
∫ ∞

0
dE

Eα−1

eE/kBTc − 1
= Cα(kBTc)α

∫ ∞
0

dx
xα−1

ex − 1

= Cα(kBTc)α�(α)ζ(α) , (10.31)

where x = E/kBTc,

�(α) =
∫ ∞

0
dx xα−1e−x
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Table 10.1 Tabulated values
of the functions �(α) and
ζ(α)

α �(α) ζ(α)

1 1 ∞
1.5 0.8862 2.612

2 1 1.645

2.5 1.3293 1.341

3 2 1.202

3.5 3.326 1.127

4 6 1.082

is the � function, and

ζ(α) = 1

�(α)

∫ ∞
0

dx
xα−1

ex − 1

is the Riemann ζ -function. Some numerical values of these functions are given in
Table 10.1.

From Eq. (10.31) we have that

kBTc =
(

N

Cα�(α)ζ(α)

)1/α

. (10.32)

For a 3-dimensional harmonic trap we have α = 3 and Cα = 1/2h̄3ω1ω2ω3, and
the critical temperature becomes

kBTc � 0.94h̄ (ω1ω2ω3N)
1/3 , (10.33)

compared with the free space result (10.17), in which case Tc scales as N2/3.
The condensate fraction can be obtained as in the three-dimensional free space

case of Sect. 10.1 by reintroducing the ground state population, so that

〈n0〉(T ) = N − Cα
∫ ∞

0
dE Eα−1 1

eE/kBT − 1
. (10.34)

For α = 3 and with the definition (10.33) this gives

〈n0〉(T ) = N
[

1−
(
T

Tc

)3
]
, (10.35)

as illustrated in Figs. 10.3 and 10.4. In contrast to the free space situation of
Eq. (10.24), 〈n0〉 now scales as T 3 rather than T 3/2.

Importantly, since ζ(α) diverges for the two-dimensional case α = 1, we observe
that in that case, Bose–Einstein condensation can occur only at T = 0, a dramatic
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Fig. 10.3 Condensate
fraction 〈n0〉/N in a
three-dimensional harmonic
trap as a function of the
normalized temperature
T/Tc. The dashed curve
shows that same fraction in
free space, for comparison
(Remember however that Tc
takes different values on free
space and in a trap, see
Eqs. (10.17) and (10.33))

Fig. 10.4 Iconic picture of the first atomic BEC experimental demonstration at JILA. The false-
color 3-D images display the velocity distribution of the cloud (a) just before and (b) just after
the appearance of the condensate; and (c) after further evaporation has left a sample of nearly
pure condensate. The circular pattern of the non-condensed fraction is indicative of an isotropic
velocity distribution consistent with thermal equilibrium. In contrast, the sharp condensate fraction
is elliptical, indicative that it is a highly nonthermal distribution (Credit M. Matthews, JILA.
Courtesy of NIST/JILA/CU-Boulder)

demonstration of the impact of the system’s density of states on its behavior.
This shows in a dramatic fashion the dependence on dimensionality and density
of states of Bose–Einstein condensation, a situation reminiscent of the changes in
the radiative properties of atoms in tailored electromagnetic environments of cavity
QED.
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10.3 Schrödinger Field Quantization

We have seen in earlier chapters how the quantization of the electromagnetic field
is a central element in the study of quantum optical systems. A similar tool to
theoretically describe Bose–Einstein condensates is provided by the formalism of
Schrödinger field quantization, or second quantization, to which we turn in this
section. Note however that while the quantization of the electromagnetic field leads
to the appearance of new physics, for instance spontaneous emission, such is not
the case when second quantization is narrowly applied just to the nonrelativistic
problems that we address in this book. In this limited context it is merely a
very convenient and powerful way to describe the many-body physics of identical
particles satisfying either bosonic or fermionic statistics.

We introduce second quantization by considering first a system of N non-
interacting particles that evolves according to the Schrödinger equation for the
N -particle Hamiltonian

ĤN =
N∑
i=1

Ĥi , (10.36)

where

Ĥi ≡ − h̄
2

2m
∇2
i + V̂ (ri ) (10.37)

is the Hamiltonian of particle i. Its N -particle wave function φ(r1, . . . , rN, t)
is either symmetric or antisymmetric under particle exchange, depending on the
particles being bosons or fermions. Second quantization recasts this same problem
in a field-theoretical formalism by introducing a Fock space and particle creation
and annihilation operators for these particles, see for instance Refs. [14–16]. This
allows us to easily account for systems where the total number of particles is not
conserved, and offers a powerful tool to treat many-body effects. This formalism
also permits to account for the quantum statistics of massive particles, fermions, or
bosons, in a simple way. Last but not least, it has the considerable merit of providing
significant additional insight into the problem and elegant calculation techniques
and also lends itself to a number of powerful approximation methods.

Field Operators It is beyond the scope of this chapter to give a rigorous treatment
of second quantization starting from a canonical quantization approach. Rather, we
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postulate that the Schrödinger wave function ψ(r) becomes an operator2 #̂(r) that
for bosonic particles satisfies the commutation relations

[#̂(r), #̂†(r′)] = δ(r− r′) ,

[#̂(r), #̂(r′)] = 0 , (10.38)

and for fermionic particles the anticommutation relations

[#̂(r), #̂†(r′)]+ = δ(r− r′) ,

[#̂(r), #̂(r′)]+ = 0 , (10.39)

where [. . .]+ is an anticommutator, [Â, B̂]+ = ÂB̂ + B̂Â. As we shall see, #̂(r)
may be interpreted as an operator annihilating a particle at position r, and #̂†(r)
creates a particle at location r.

The second-quantized Hamiltonian corresponding to the N -particle Hamiltonian
ĤN =∑

i

[− h̄2∇i2/2m+ V̂ (ri )
]

is

Ĥ =
∫

d3r#̂†(r)

(
− h̄

2

2m
∇2 + V̂ (r)

)
#̂(r) . (10.40)

Physically, one can understand this Hamiltonian in the following way: the field
operator #̂(r) picks a particle at location r, the Hamiltonian evolution Ĥ =
−h̄2∇2/2m+V̂ (r) is applied to this particle, and the operator #̂†(r) puts it back into
place. Finally, the integral in Eq. (10.40) guarantees that all particles in the ensemble
are subject to this treatment.

With the Hamiltonian Ĥ the Heisenberg equation of motion for the field operator
#̂(r, t) is, for the case of bosons,

ih̄
d#̂(r, t)

dt
= [#̂(r, t), Ĥ]

=
∫

d3r ′
[
#̂(r, t), #̂†(r′, t)

(
− h̄

2

2m
∇2 + V̂ (r′)

)
#̂(r′, t)

]

=
(
− h̄

2

2m
∇2 + V̂ (r)

)
#̂(r, t) , (10.41)

where we have used the identity [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ and the commuta-
tion relations (10.38). Problem 10.3 shows that the same result holds for fermions,
despite the different (anti)commutation relations. Hence, the Heisenberg equation

2Hence, the moniker second quantization.
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of motion for the Schrödinger field operator #̂(r, t) has the same form as the
Schrödinger equation for the wave function ψ(r, t) in usual quantum mechanics. In
this sense we can think of the operator #̂(r, t) as the quantized form of the single-
particle (or very loosely speaking “classical”) Schrödinger field ψ(r, t), in much
the same way that we promoted the classical electric field E(r, t) to a quantized
field operator, E(r, t) → Ê(r, t), with Ê(r, t) obeying Maxwell’s equations just
like E(r, t).

N -Particle State In terms of the Schrödinger field creation operator #̂†(r) an N -
particle state takes the general form

|φN 〉 = 1√
N !

∫
d3r1 . . . d

3rNφN(r1, . . . , rN, t)#̂†(rN) . . . #̂†(r1)|0〉 ,
(10.42)

where |0〉 is the vacuum state (absence of particles),

#̂(r)|0〉 = 0 , (10.43)

and φN(r1, . . . rN, t) is an N -particle wave function.
Introducing the number operator

N̂ ≡
∫

d3r#̂†(r)#̂(r) (10.44)

it is easily shown that

N̂ |φN 〉 = N |φN 〉 (10.45)

by using the commutator identity

[Â, B̂N . . . B̂1] =
N∑
i=1

B̂N . . . B̂i+1[Â, B̂i]B̂i−1 . . . B̂1 ,

which follows directly from [Â, B̂2B̂1] = [Â, B̂2]B̂1+B̂2[Â, B̂1], see Problems 10.4
and 10.5. Similarly we have

#̂(r)|φN 〉 = N√
N !

∫
d3r1 . . . d

3rN−1φN(r1, . . . rN−1, r)#̂†(rN−1) . . . #̂
†(r1)|0〉 ,

(10.46)

which confirms that the operator #̂(r) annihilates a particle at position r.
The equivalence of the formalism of second quantization with the conventional

quantum mechanical description of the N -body problem in terms of the sum of N
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individual Hamiltonians of the form (10.37) is easily demonstrated by applying the
many-body Hamiltonian (10.40) to the N -particle state |φN 〉, showing that

Ĥ|φN 〉 = 1√
N !

∫
d3r #̂†(r)Ĥ (r)#̂(r)

×
∫

d3r1 . . . d
3rNφN(r1, . . . rN)#̂†(rN) . . . #̂†(r1)|0〉

= 1√
N !

N∑
i=1

∫
d3r1 . . . d

3rN#̂
†(rN) . . . #̂†(r1)|0〉

× ĤiφN(r1 . . . rN) , (10.47)

where Ĥi = −∇2
i /2m+ V̂ (ri ). That is, the multiparticle evolution governed by the

Schrödinger equation of motion

ih̄
d

dt
φN(r1, . . . , rN, t) = ĤNφN(r1, . . . , rN, t) (10.48)

with ĤN = ∑
i Ĥi is equivalent to the evolution given by the Fock space

Schrödinger equation

ih̄
d|φN 〉

dt
= Ĥ|φN 〉 , (10.49)

a direct consequence of the fact that the Schrödinger field operator evolution is
governed by the single-particle Hamiltonian Ĥ , see Eq. (10.41).

Continuity Equation It is easily shown that the Schrödinger field operator #̂(r)
satisfies a conservation of probability law. Introducing the particle density operator

n̂(r, t) = #̂†(r, t)#̂(r, t)

yields the continuity equation

dn̂(r, t)
dt

= d#̂†(r, t)
dt

#̂(r, t)+ #̂†(r, t)
d#̂(r, t)

dt

= −ih̄

2m

[(
∇2#̂†(r, t)

)
#̂(r, t)− #̂†(r, t)∇2#̂(r, t)

]

= −∇ · ĵ , (10.50)
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where we have introduced the probability current

ĵ ≡
(−ih̄

2m

)[
#̂†(r, t)∇#̂(r, t)−

(
∇#̂†(r, t)

)
#̂(r, t)

]
. (10.51)

Mode Expansion Just as it was useful to introduce a mode expansion of the
electric field Ê(r, t), we now introduce a mode expansion of the Schrödinger field
operator #̂(r, t). To illustrate this procedure, we expand #̂(r, t) on a complete set
of orthonormal eigenfunctions ϕn(r) of the time-independent Schrödinger equation

(
− h̄

2

2m
∇2 + V̂ (r)

)
ϕn(r) = Enϕn(r)

as

#̂(r, t) =
∑
n

ϕn(r)ĉn(t) , (10.52)

where ∫
d3rϕ�n(r)ϕm(r) = δnm (10.53)

and the label n stands for a complete set of quantum numbers necessary to
characterize that mode. For example, in the case of atoms, it could be their
internal state and center-of-mass momentum. The ĉn and ĉ†

n operators will soon
be interpreted as annihilation and creation operators for a particle in mode n, much
as was the case for the electromagnetic field.

Inserting the expression (10.52) and its Hermitian conjugate into the second-
quantized Hamiltonian (10.40) gives then

Ĥ =
∑
n

Enĉ
†
nĉn , (10.54)

where we assume a discrete energy spectrum for simplicity.3 With Eq. (10.53) we
can furthermore express the operators ĉn from Eq. (10.52) as

ĉn(t) =
∫

d3rϕ�n(r)#̂(r, t) . (10.55)

For a bosonic field with commutation relations (10.38) this gives

[ĉn, ĉ†
m] = δnm ,

[ĉn, ĉm] = 0 , (10.56)

3We recognize this expression as the Hamiltonian for N non-interacting bosons of Eq. (10.2).
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a familiar result that we recognize from the quantization of the electromagnetic field,
while for fermionic particles one finds

[ĉn, ĉ†
m]+ = δnm ,

[ĉn, ĉm]+ = 0 . (10.57)

Furthermore, combining Eqs. (10.52) and (10.56) yields the useful commutation
relation

[#̂(r), ĉ†
n] = ϕn(r) . (10.58)

The second-quantized Hamiltonian (10.54), together with the bosonic commu-
tation relations (10.56), shows that we have mapped the description of the system
of N non-interacting bosons to a set of modes of energies En. We can therefore
interpret ĉn as the annihilation operator and ĉ†

n as the creation operator for a particle
in mode n, with

ĉn|Nn〉 =
√
Nn|Nn − 1〉 ,

ĉ†
n|Nn〉 =

√
Nn + 1|Nn + 1〉 ,

ĉ†
nĉn|Nn〉 = Nn|Nn〉 , (10.59)

where Nn is the number of particles in mode n. The total number of particles in the
system N̂ = ∫

d3r#̂†(r)#̂(r) of Eq. (10.44) is given by the sum of the occupations
N̂n of the individual modes as

N̂ =
∑
n

N̂n =
∑
n

ĉ†
nĉn (10.60)

and is clearly a constant of motion for the Hamiltonian (10.54). Likewise, the
individual populations of all modes of the matter field are also constants of
motion, which is not surprising since ϕn are eigenstates of the system. But
obviously this latter property ceases to hold as soon as interactions are permitted,
e.g. in the presence of a light field or collisions. Much like was the case for
optical fields, matter-wave fields can be in a variety of pure or mixed states,
such as for example number states, thermal states, coherent states, or squeezed
states, and quantum entanglement between various modes is of course also pos-
sible.

Coupling to Optical Fields In case a many-particle system is coupled to a single-
mode electromagnetic field via the electric dipole interaction, the second-quantized
Hamiltonian that describes their interaction is bilinear in the optical field creation
and annihilation operators, but quadratic in matter field creation and annihilation
operators, a direct consequence of the conservation of the total number of particles
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N . An example of such an interaction is

V̂ = h̄gnm
(
âĉ†
nĉm + h.c.

)
,

with photon absorption resulting in the atom being “annihilated” from mode m and
“created” in a mode n characterized in general by a different internal state and
center-of-mass momentum.

Two-Body Collisions In the framework of second quantization, two-body col-
lisions characterized by an interaction energy V̂ (ri , rj ) are described by the
Hamiltonian

V̂ = 1

2

∫
d3rd3r ′#̂†(r)#̂†(r′)V̂ (r− r′)#̂(r′)#̂(r) , (10.61)

where the operator #̂(r′)#̂(r) picks two particles at locations r and r′, to which the
two-body Hamiltonian V̂ (r, r′) is applied before they are put back into place. The
application of V̂ on the state vector |φN 〉 gives

V̂|φN 〉 = (10.62)

1√
N !

N∑
i=1

∑
j>i

∫
d3r1 . . . d

3rN V̂ (ri − rj )φN(r1, . . . , rN)#̂†(rN) . . . #̂†(r1)|0〉 .

Fermions vs. Bosons As is the case for the simple harmonic oscillator or the
electromagnetic field, nothing prevents one from populating a mode n with any
number of bosons. This is not the case for fermions, however, as is directly apparent
from the anticommutation relation [ĉn, ĉm]+ = 0, which for m = n yields

ĉmĉm = ĉ†
mĉ

†
m = 0 .

This implies that it is not possible to populate a single mode with more than one
particle, and that its ground state |0〉 is reached once that single particle has been
removed. This property is further evidenced by the fact that the number operator N̂n
and its square N̂2

n are easily shown to be equal,

N̂2
n = N̂n

so that the population of a given mode must be either zero or one. Since in addition

N̂nĉ
†
n|0〉 = ĉ†

n|0〉 (10.63)
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ĉ
†
n|0〉 is an eigenstate of mode n with eigenvalue 1. This is nothing but a statement

of the Pauli exclusion principle, expressed in the formalism of second quantization
in terms of anticommutator relations.

10.3.1 The Hartree Approximation

With this brief introduction to the powerful formalism of second quantization at
hand, let us now return to Bose–Einstein condensation. We saw in Sects. 10.1
and 10.2 that for temperatures much below the critical temperature Tc condensates
are characterized by the fact that nearly all atoms are in the ground state, and
hence are described by the same wave function. Under these circumstances it seems
reasonable to factorize the N -particle wave function φN(r1, . . . rN) as

φN(r1, . . . rN) =
rN∏

r=r1

ϕN(r) , (10.64)

so that the N -particle state (10.42) becomes

|φN 〉 = 1√
N !

∫
d3r1 . . . d

3rN [ϕN(r1) . . . ϕN(rN) ] #̂†(rN) . . . #̂†(r1)|0〉 ,
(10.65)

where the effective single-particle states ϕN(r) are assumed to be normalized. In the
so-called time-dependent Hartree mean-field approximation, or Hartree approxima-
tion in short, the equations of motion for these wave functions, called Hartree wave
functions, are determined from the Hartree variational principle [17, 18]

δ

δϕ�N(r)

[
〈φN |ih̄ ∂

∂t
− Ĥ|φN 〉

]
= 0 . (10.66)

For a many-body Hamiltonian Ĥ including in addition to the single-particle
Hamiltonian Ĥ0 a two-body interaction of the form (10.61) Problem 10.7 shows
that it yields the nonlinear equation

ih̄
∂ϕN(r)
∂t

= Ĥ0ϕN(r)+ (N − 1)
∫

d3r ′V̂ (r, r′)ϕ�N(r)ϕ2
N(r

′) . (10.67)

The factor (N − 1) appearing in this expression results from the fact that the
two-body Hamiltonian V̂ involves two creation operators on the left of V , see
Eq. (10.61). This leads to N(N − 1) equivalent terms, while the single-particle
Hamiltonian, which involves only one annihilation operator on the left of Ĥ0, leads
to N equivalent terms.
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Many situations involve multicomponent Schrödinger fields rather than the scalar
fields considered so far, one example of particular interest in quantum optics being
situations where in addition to the center-of-mass motion the internal degrees of
freedom of the atoms play an important role. In that case, Eqs. (10.40) and (10.61)
must account for the complete set of quantum numbers required to fully specify
the problem. Traditionally, this is done by lumping all such quantum numbers into
just one symbol, often denoted as a number, as already mentioned in the discussion
of the mode expansion (10.52). For example, the Schrödinger field operator #̂(1)
could stand for an electronic ground state field #̂g(r) and #̂(2) for an excited state
#̂e(r). For the case of two-body interactions the many-body Hamiltonian of the
system takes then the form

Ĥ =
∫

d1d2 #̂†(1)〈1|Ĥ0|2〉#̂(2)

+ 1

2

∫
d1d2d3d4 #̂†(1)#̂†(2)〈1, 2|V̂ |3, 4〉#̂(3)#̂(4) , (10.68)

where we have accounted for the fact that neither the single-particle Hamiltonian Ĥ0
nor the two-body interaction V̂ needs to be diagonal in the basis chosen to describe
the system. The Hartree ansatz (10.64) reads then

fN(1, . . . , N) =
N∏
�=1

ϕN(�) (10.69)

and the nonlinear Hartree equation of motion (10.67) becomes

ih̄
∂ϕN(�)

∂t
=

∫
d2〈�|Ĥ0|2〉ϕN(2)

+ (N − 1)
∫

d2d3d4〈�, 2|V̂ |3, 4〉ϕ�N(2)ϕN(3)ϕN(4) . (10.70)

Equations (10.67) and (10.70) illustrate the important point that despite the
fact that the Hartree ansatz factorizes the N -particle wave function into a product
of N Hartree wave functions, these are not equivalent to the single-particle
wave functions of a non-interacting system: their dynamics are not governed
solely by the single-particle Hamiltonian Ĥ0, but also by a nonlinear contribu-
tion resulting from the mean-field energy of the N − 1-particles surrounding a
given atom, a contribution to the dynamics that can become completely domi-
nant.

Gross–Pitaevskii Equation Equations of motion such as Eqs. (10.67) and (10.70)
are called nonlinear Schrödinger equations. In particular, for a scalar Schrödinger
field and a local potential of the form

V̂ (r, r′) = V̂0 δ(r− r′). (10.71)
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Eq. (10.70) reduces to the so-called Gross–Pitaevskii equation

ih̄
∂ϕN(r)
∂t

= Ĥ0ϕN(r)+ (N − 1)V̂0|ϕN(r)|2ϕN(r) . (10.72)

Such local potentials are of particular relevance in the study of Bose–Einstein
condensates, as their dynamics are typically influenced mostly by very low energy
two-body collisions between ground state atoms that can be described in the so-
called s-wave scattering limit.

s-Wave Scattering The standard way to describe the scattering of low energy
particles from a spherically symmetric potential is a partial wave expansion where
one proceeds by decomposing the outgoing wave in terms of its angular momentum
components, and considering only a few of these partial waves. For the extremely
slow moving atoms in Bose condensates only the first of these, the s-wave, is
important. Physically, this is because at such low energies the de Broglie wavelength
of the atoms is so long that they cannot resolve the short-range structure of
the potential with which they interact. In this s-wave scattering limit two-body
collisions can be described to an excellent approximation by the two-body pseudo-
potential [19]

V̂ (r) = 4πh̄2a

m
δ(r) , (10.73)

where a is the s-wave scattering length, in terms of which the total scattering cross-
section is σ = 4πa2. The scattering length is positive if the interaction is repulsive,
and negative if the interaction is attractive.

Expanding the potential (10.61) on a momentum basis and with the pseudo-
potential (10.73) we have then

V̂ = 1

2

∫
dp1dp2dp3dp4〈p3,p4|V |p1,p2〉ĉ†

p3
ĉ†

p4
ĉp1 ĉp2 , (10.74)

where ĉ†
p and ĉp are creation and annihilation operators for a particle of momentum

p and

〈p3,p4|V |p1,p2〉 = 1

V

∫
d3rV (r)e−ip·r/h̄ = 4πh̄2a

mV
. (10.75)

Furthermore, conservation of momentum requires that

p = p4 − p2 = − (p3 − p1) (10.76)
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so that V̂ simplifies finally to

V̂ = 2πh̄2a

mV

∫
dp1dp2dp ĉ†

p2+pĉ
†
p1−pĉp2 ĉp1 . (10.77)

Nonlinear Schrödinger equations, of which the Gross–Pitaevskii equation is an
important example, are ubiquitous in many fields of physics, including nonlinear
optics [20–22], where they describe the propagation of light in media exhibiting a
cubic nonlinearity, or Kerr media. They have been studied in considerable detail
and are known to lead to optical effects such as four-wave mixing, self-focusing,
and defocusing, the existence of solitons, etc. It is therefore not surprising that
many of the concepts first developed in optics can readily be extended to ultracold
bosonic samples, in particular to dilute atomic condensates, opening up the fields
of nonlinear and quantum atom optics [23–27]. For example Eq. (10.72) shows
explicitly that in the s-wave scattering limit, two-body collisions are the matter-
wave equivalent of a local Kerr medium with instantaneous response.

10.3.2 Quasiparticles

The standard way to determine the response of a system to small perturbations is
through its linearized dynamics about some equilibrium value. The Bogoliubov
approach [14, 28–30], which is particularly appropriate in the description of the
response of condensates to small perturbations, proceeds by decomposing the
matter-wave field into a classical mean value about which fluctuations are treated
quantum mechanically. Its main outcome is the determination of the spectrum of
low-lying excitations, often referred to as quasiparticle excitations.

To illustrate how this works we consider the free space situation described by the
many-body Hamiltonian

Ĥ =
∑

k

Tkĉ
†
kĉk + U0

2V

∑
k,k′,q

ĉ
†
k+qĉ

†
k′−qĉk′ ĉk , (10.78)

where

U0 = 4πh̄2a

m
, (10.79)

see Eq. (10.77), and

Tk = h̄
2k2

2m
(10.80)
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is the kinetic energy of particles with momentum k. For convenience we have
returned from integrals to discrete sums in the expression of Ĥ.

We then assume that the mode k = 0 of the system is macroscopically populated
with n0 � 1 atoms and can be treated classically, while all other modes are only
microscopically populated, and neglect all terms in the two-body Hamiltonian that
are not at least proportional to n0. This is an appropriate approximation for a Bose–
Einstein condensate well below the critical temperature Tc, as we have seen. This
results in the approximate Hamiltonian

Ĥ � n
2
0U0

2V
+

∑
k 
=0

Tkĉ
†
kĉk + n0U0

V

∑
k 
=0

(
ĉ

†
kĉk + ĉ†

−kĉ−k + 1

2
ĉ

†
kĉ

†
−k +

1

2
ĉkĉ−k

)
.

(10.81)

Instead of using the population n0 of the macroscopically populated mode, it is
convenient to reexpress this Hamiltonian in terms of the total number of atoms N ,

N = n0 + 1

2

∑
k 
=0

(
ĉ

†
kĉk + ĉ†

−kĉ−k

)
, (10.82)

where the factor of 1/2 results from the fact that each mode is counted twice in this
expression. This changes Eq. (10.81) to

Ĥ � N
2U0

2V
+ 1

2

∑
k 
=0

[(
Tk + NU0

V

)(
ĉ

†
kĉk + ĉ†

−kĉ−k

)

+ NU0

V

(
ĉ

†
kĉ

†
−k + ĉkĉ−k

)]
. (10.83)

This Hamiltonian can be diagonalized exactly by the Bogoliubov transformation

ĉk = ukα̂k − vkβ̂
†
k ,

ĉ−k = ukβ̂k − vkα̂
†
k , (10.84)

with the new operators α̂k and β̂k required to satisfy the bosonic commutation
relations

[α̂k, α̂
†
k′ ] = δk,k′ ,

[β̂k, β̂
†
k′ ] = δk,k′ . (10.85)

This gives, with Eqs. (10.84),

u2
k − v2

k = 1 , (10.86)
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a condition that is automatically satisfied if the uk and vk are parametrized as

uk = cosh ζk ,

vk = sinh ζk . (10.87)

Inserting the expressions (10.84) into the approximate Hamiltonian (10.83) yields

Ĥ =
∑

k

{
2v2

k

(
Tk + NU0

V

)
− 2ukvk

NU0

V
(10.88)

+
[(
Tk + NU0

V

)
(u2

k + v2
k)− 2ukvk

NU0

V

]
(α̂

†
kα̂k + β̂†

kβ̂k)

+
[
NU0

V
(u2

k + v2
k)− 2ukvk

(
Tk + NU0

V

)]
(α̂

†
kβ̂

†
k + α̂kβ̂k)

}
.

The constants uk and vk are then chosen so that the terms proportional to α̂†
kβ̂

†
k +

α̂kβ̂k vanish, that is, so that

[
NU0

V
(u2

k + v2
k)− 2ukvk

(
Tk + NU0

V

)]
= 0 . (10.89)

Substituting Eqs. (10.87) into these equations gives

tanh(2ζk) = NU0/V

Tk +NU0/V
. (10.90)

Rewriting u2
k, v2

k, and ukvk in terms of this expression finally yields the diagonalized
form of the Hamiltonian (10.83). This is the topic of Problem 10.8, which shows that
these steps result in its explicit form

Ĥ =
∑

k

Ekα̂
†
kα̂k , (10.91)

with

Ek =
√
T 2

k + 2TkNU0/V . (10.92)

This Hamiltonian describes the elementary excitations, or Bogoliubov spectrum, of
the condensate.

For large momenta, the eigenenergies Ek associated with these excitations are
roughly the same as those of free particles,

Ek � Tk , (10.93)
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but for small k, the effect of the mean-field energy NU0/V is to replace the
quadratic dispersion relation of the quasiparticles by a linear dispersion relation

Ek � csh̄k, (10.94)

where we have introduced the Bogoliubov velocity

cs =
√
NU0/mV . (10.95)

The characteristic wave number kζ at which the two contributions to the quasiparti-
cle energy Ek become comparable defines the healing length

ζ ≡ 1

kζ
= h̄√

mNU0/V
, (10.96)

which plays an important role in characterizing the spatial properties of Bose–
Einstein condensates.

The Bogoliubov linearization procedure can easily be generalized to more
complicated situations, such as multicomponent condensates [28]. In the spirit of
quantum and nonlinear optics, it allows one to understand many of their properties
in terms of wave mixing phenomena [27], much like a linear stability analysis yields
a simple understanding of many nonlinear optical phenomena in terms of pump–
probe arguments.

10.4 Ultracold Atoms on Optical Lattices

The first experimental demonstrations of atomic Bose–Einstein condensation were
followed by a wealth of advances in the theoretical and experimental study of
ultracold atomic gases. In this context, the availability of optical lattices has played
a particularly important role, as they permit to address a number of questions at the
boundary between AMO physics, quantum optics, and condensed matter physics.
In particular they lead to the experimental realization of quantum simulators aimed
at the study of strongly correlated bosonic or fermionic systems, quantum phase
transitions, novel topological phases of matter, and much more.

Optical lattices are formed by interfering two or more laser beams to realize
periodic light structures whose geometry, depth, and dimensionality can be easily
controlled. The gradient force of Sect. 8.2 can then be exploited to trap atoms in
these structures. For example, a standing wave interference pattern can generate an
array of optical traps in one dimension, so that ultracold atoms can either be trapped
in the individual wells or made to tunnel between adjacent wells. By interfering
more optical beams one can also generate arrays of one-dimensional potential tubes,
realizing effectively a series of one-dimensional systems, while three orthogonal
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Fig. 10.5 Optical lattices formed from (a) two and (b) three interfering standing wave optical
fields (From Ref. [31])

standing waves can create a three-dimensional “cubic crystal” of tightly confining
harmonic oscillator potentials, as sketched in Fig. 10.5.

It is also possible to create more exotic lattices, for instance by using bichromatic
optical potentials to produce Kagome lattices beset by geometric frustration [32].
Another development has been the use of synthetic dimensions [33, 34], the idea
being to exploit the spin degree of freedom of atoms in situations where the different
spin states behave essentially like a spatial dimension. For instance, an atom with �
distinct spin states and trapped in a one-dimensional optical lattice would appear to
move in a two-dimensional optical lattice strip of width �.

Experiments in this variety of optical lattices open the door to a new regime of
ultracold atomic physics that cannot be described theoretically in terms of weakly
interacting gases. The resulting possibilities to investigate the many-body physics
of strongly correlated systems are particularly attractive, both theoretically and
experimentally, in that in contrast to the condensed matter physics systems that they
simulate the various parameters characterizing them can be controlled almost at will.

At the same time, ultracold atoms trapped in optical lattices are also revolu-
tionizing atomic clocks. In particular, a clock formed by trapping thousands of
fermionic strontium atoms in a three-dimensional optical lattice, and operating in
the so-called Mott-insulating regime that will be discussed in the next section, has
achieved a relative precision of 2.5× 10−19, or better than 1 s over the entire age of
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the Universe [35–37]. We will return briefly to these extraordinary clocks and some
of their potential applications in Chap. 12.

10.4.1 The Bose–Hubbard Model

To illustrate the remarkable capability of ultracold atoms on optical lattices to serve
as quantum simulators we consider the example of the Bose–Hubbard model of
an interacting gas of bosons. This system has a long history in condensed matter
physics, where it was initially introduced to study granular superconductors—cubic
grains of superconductor weakly coupled by Josephson junctions. It also captures
the main features of a superfluid to insulator transition.

When adapted to the situation at hand the Bose–Hubbard Hamiltonian describes
a system of ultracold atoms trapped on an optical lattice, but with some hopping
amplitude J between lattice sites that will delocalize them. In addition, if two atoms
are on the same site, they will also feel a repulsion. This is the simplest model that
contains all important aspects of the competition between kinetic energy and two-
body interactions in a lattice of ultracold bosons. The corresponding Hamiltonian
is [38]

Ĥ = −J
∑
<i,j>

ĉ
†
i ĉj +

U

2

∑
i

n̂i (n̂i − 1)− μ
∑
i

n̂i , (10.97)

where ĉ†
i and ĉi are boson creation and annihilation operators for atoms on site i

and n̂i = ĉ
†
i ĉi . The first term in Ĥ describes the tunneling of particles between

neighboring lattice sites, with the < i, j > summation index indicating that the
sum is limited to nearest neighbors. The second term accounts for on-site atomic
two-body collisions, with U > 0 for repulsive collisions, and μ is the chemical
potential.

For a sufficiently deep optical lattice potential of the form

V (x, y, z) = V0

[
sin2(kx)+ sin2(ky)+ sin2(kz)

]
(10.98)

with k = 2π/λ and ultracold atoms the confining potential of a single site can be
approximated by a harmonic potential with trapping frequencies of the order of [38]

ν = (h̄k2/2πm)
√
V0/h̄ωrec .

Superfluid State It is immediately apparent from the Hamiltonian (10.97) that
if tunneling dominates, J � U , the dynamics is dominated by atomic hopping
between lattice sites and will result in the atoms being completely delocalized. The
ground state energy of the system will be minimized if the single-particle wave
functions of the individual atoms are spread over the full lattice. That is, the system
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will evolve toward a superfluid with many-particle wave function

|#SF〉 ∝
(
M∑
i=1

ĉ
†
i

)N
|0〉 , (10.99)

whereM is the number of lattice sites and N the number of atoms.

Mott Insulator In the other extreme situation where tunneling is negligible and
intrasite interactions dominate, the site occupation numbers n̂i become constants
of motion, so that the ground state of the system will consist of localized Wannier
atomic wave functions with a fixed number n of atoms per site. This is a so-called
Mott insulator, with many-particle wave function

|#MI〉 ∝
M∏
i=1

(ĉ
†
i )
n|0〉 (10.100)

and with no phase coherence.
To understand this behavior more quantitatively, we consider a single lattice site

i in the limit where the various sites are decoupled, J = 0. For that site, the energy
of a state with n-particles is

E =
〈
n|U

2
n̂i (n̂i − 1)− μn̂i |n

〉
= U

2
n(n− 1)− μn . (10.101)

It is equal to E = 0 for n = 0, E = −ν for n = 1, E = −nμ + U
2 n(n −

1) for n, etc. For a given value of U the energy of the n-particle state becomes
lower than that of the (n − 1)-particle state for (n − 1)U = μ, so that the ground
state of an isolated lattice site, the red line in Fig. 10.6, will have n atoms in the
interval

(n− 1)U < μ < nU . (10.102)

Mean-Field Theory Small departures from the isolated lattice sites results for J =
0 can be obtained by invoking a mean-field approximation, where the effects of
the neighboring lattice sites of a given site are treated in an average fashion by
introducing their “mean fields” ψj = 〈cj 〉, with the further assumption that that
mean field is the same for all sites, ψi = ψj = ψ . With the further assumption
(ĉi − ψi)(ĉ†

j − ψ∗j ) ≈ 0, this allows one to introduce the dynamical mean-field
decoupling

ĉi ĉ
†
j ≈ ψiĉ†

j + ψ∗j ĉi − ψiψ∗j = ψĉ†
j + ψ∗ĉi − |ψ |2 (10.103)
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Fig. 10.6 Illustration of the level crossings (circles) between states with different integer site
fillings n for μ = nU . Away from these points these states are separated by an energy gap, so that
they are stable against small changes in the Hamiltonian, such as a small amount of tunneling. The
red line shows the ground state energy, with corresponding number of particles per site indicated,
as a function of μ

which also implies that 〈ĉ†
i ĉj 〉 ≈ 〈ĉ†

i 〉〈ĉj 〉, an approximation sometimes referred to
as the random phase approximation. The Hamiltonian (10.97) reduces then to the
effective mean-field Hamiltonian

ĤMF =
∑
i

Ĥi (10.104)

with

Ĥi = U
2
n̂i (n̂i − 1)− μn̂i − J ′(ψ∗ĉi + ψĉ†

i )+ J ′|ψ |2 , (10.105)

where J ′ = zJ and the coordination number z is the number of nearest neighbors
of the site i. The zeroth-order energy of the i-th lattice occupied with m atoms is
therefore

E(0)n = −μn+
U

2
n(n− 1)+ J ′|ψ |2 , (10.106)
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and the second-order correction to that energy resulting from the coupling to
neighboring sites is

E(2)n = J ′2|ψ |2
∑
n 
=m

|〈m|ĉi + ĉ†
i |n〉|2

E
(0)
n − E(0)m

= −J ′2|ψ |2
[

U + μ
(μ− Un)(U(n− 1)− μ)

]
.

(10.107)

If tunneling between nearest neighbor sites results in a decrease in energy of the
system, the outcome will be a transition from the Mott insulator phase to a Bose
condensate phase. In the mean-field description considered here the ground state
energy of the system En = E(0)n + E(2)n is

En = U
2
n(n−1)−μn+J ′|ψ |2

[
1− J ′ U + μ

(μ− Un)(U(n− 1)− μ)
]
, (10.108)

so that the boundary between the Mott insulator phase with occupation n and the
superfluid phase is given by

E(ψ) = J ′|ψ |2
[

1− J ′ U + μ
(μ− Un)(U(n− 1)− μ)

]
= 0 . (10.109)

The domains of Mott insulator, or Mott shells, and superfluidity resulting from this
condition are plotted in Fig. 10.7.

Insulator to Superfluid Transition The Mott insulator to superfluid transition in
an ultracold atomic gas was first experimentally demonstrated by M. Greiner et
al. [38]. A magnetically trapped condensate was transferred into an optical lattice
potential, and after raising the lattice potential the condensate was distributed over

Fig. 10.7 Mean-field phase
diagram of the Bose–Hubbard
model showing the
Mott-insulating (MI) phases,
or Mott shells, with
commensurate occupations n,
the BEC phase, and vacuum,
as a function of μ/Uand
zJ/U
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Fig. 10.8 Absorption images of multiple matter-wave interference patterns. These were obtained
after suddenly releasing the atoms from an optical lattice potential with different potential depths
V0. The values of V0 were: (a) 0 Erec; (b) 3 Erec; (c) 7 Erec; (d) 10 Erec; (e)13 Erec; (f) 14 Erec;
(g)16 Erec; and (h) 20 Erec (From Ref. [38])

more than 150,000 lattice sites, with an average atom number of up to 2.5 atoms
per lattice site at the center of the lattice. The lattice potential was then suddenly
switched off, resulting in the atomic wave functions expanding freely and interfering
with each other. In the superfluid regime all atoms are delocalized over the entire
lattice with equal relative phases between different lattice sites, resulting in the
high-contrast three-dimensional interference pattern expected for a periodic array
of phase coherent matter-wave sources, see Fig. 10.8. The atoms could also re-enter
the Mott insulator phase by increasing the lattice potential depth. In this regime
the interference pattern changed markedly, as the higher localization of the atoms at
individual lattice sites resulted in a decrease of the interference maxima. At the same
time an incoherent background of atoms gained more and more strength, until above
some potential depth no interference pattern was visible at all. Phase coherence
was completely lost at that potential depth. Remarkably, though, it could be rapidly
restored when the optical potential was lowered again to a value where the ground
state of the many-body system is a superfluid.

The Fermi–Hubbard Model Because their interactions and geometry can rel-
atively easily be tuned and controlled with external fields, systems of ultracold
atoms on optical lattices provide a rich playground to design and investigate a
variety of many-body Hamiltonians and serve as quantum simulators, with the
potential to answer important open questions in material science. While this chapter
concentrated on bosonic atoms, ultracold atomic fermions are of course at least as
significant, due in great part to the fact that they obey the same statistics as electrons.
In this context, it is important to note that in addition to the Bose–Hubbard model, it
is also possible to realize the Fermi–Hubbard model by loading ultracold fermions
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in optical lattices [39, 40]. In particular, the Fermi–Hubbard model is believed
to capture the essential physics of high-temperature superconductors and of other
quantum materials. The quantum simulations that can now be realized in optical
lattices promise therefore to have a large impact on the understanding of the physics
of these systems.

Quantum Gas Microscopes While experiments on quantum gases rely typically
on measuring ensemble properties of the system, there would also considerable
merit in probing it at the single atom level, as this would permit to determine directly
particle–particle correlation functions. However, because strongly correlated atomic
systems such as realized in the Bose–Hubbard model require small lattice spacings
to ensure desirable values of tunnel coupling and interaction strengths, these sub-
micron optical potential structures are typically created by directly projecting a
lithographically generated spatial light pattern onto the atom plane. This is in
contrast to optical lattice setups that rely on the interference patterns generated by
multiple laser beams and whose period is limited by the diffraction limit.

At first sight, then, probing these systems at the single atom level might appear
to be an impossible task, since the size of the lattice sites is far smaller than the
diffraction limit of optical microscopes. However, a recently developed quantum
gas microscope [41] provides this capability through a remarkable combination of
resolution and sensitivity that does enable the imaging of single atoms with near
unit fidelity on individual sites of short-period optical lattices. This is a significant
advance from the previously available site-resolved optical imaging of single atoms,
which was limited to lattices with periods large compared to an optical wavelength
[42]. The quantum gas microscope developed by W. S. Bakr and colleagues, and
shortly thereafter by several other groups, is based on a high aperture optical system
that simultaneously serves to generate the lattice potential and to detect single atoms
with site-resolved resolution. By placing a two-dimensional quantum gas only a
few microns away from the front surface of this microscope, an optical resolution
of approximately 600 nm could be achieved. It was then possible to read out of up
to tens of thousands lattice sites by imaging the light scattered by the atoms while
enabling the detection of single atoms on each individual lattice site with near unity
fidelity.

Figure 10.9 shows an example of the type of information that can be obtained
with such quantum gas microscopes. As a result of the imaging process the many-
body wave function of the quantum gas is projected onto number states on each
lattice site. This provides a remarkable experimental view of the Mott insulator to
superfluid transition as the depth of the lattice is changed. In the superfluid regime
(a) and (b), sites can be occupied with odd or even atom numbers, which appear
as full or empty sites, respectively, in the images. This is due to the fact that light-
assisted collisions immediately eject atoms in pairs from individual lattice sites,
leaving behind an atom on a site only if its initial occupation was odd. Deep in the
Mott insulator phase of column (d), in contrast, site occupancies other than 1 are
highly suppressed.
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Fig. 10.9 Single-site imaging of atom number fluctuations across the superfluid–Mott insulator
transition. (a to d) Images within each column are taken at the same final 2D lattice depth of (a)
6 Erec; (b) 10Erec; (c), 12 Erec; and (d) 16 Erec. Top row: In situ fluorescence images from a
region of 10× 8 lattice sites within the n = 1 Mott shell that forms in a deep lattice. Middle row:
Results of an atom detection algorithm for images in the top row. Solid and open circles indicate the
presence and absence, respectively, of an atom on a site. The bottom row shows the corresponding
time-of-flight fluorescence images (From Ref. [43])

Problems

Problem 10.1 A grand canonical ensemble is an ensemble of particles that can
exchange both energy and particles with a reservoir, so that the expectation values
of the energy and particle number are E = 〈Ĥ 〉 and N = 〈N̂〉, with N̂ the
particle number operator. Much like the temperature is the Lagrange multiplier
regulating the energy of the system as we saw in Sect. 2.3.1, the chemical potential
μ (normalized to −1/kBT ) may be defined as the Lagrange multiplier regulating
the particle number.

(a) Considering then a grand canonical ensemble of bosons with system Hamilto-
nian Ĥ =∑

j Ej ĉ
†
j ĉj show that the corresponding thermal equilibrium density

operator is

ρ̂ = 1

Z

∏
j

e
−β(Ej−μ)ĉ†

j ĉj ,

where Z is the partition function.
(b) Determine the corresponding mean particle number 〈nj 〉 in mode j .
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Hint: Generalize the derivation of Eq. (2.85) to a multimode situation and to include
the additional constraint on the mean number of particles.

Problem 10.2 Determine the density of states D(E) and the ground state popu-
lation 〈n0〉(T ) of a condensate on non-interacting bosons in a trap with harmonic
potential Vtrap(r) = 1

2m
(
ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3

)
.

Problem 10.3 Show that independently of whether the particles are bosons or
fermions the Schrödinger field operator #̂(r, t) satisfies the Heisenberg equation
of motion

ih̄
d#̂(r, t)

dt
=

(
− h̄

2

2m
∇2 + V̂ (r)

)
#̂(r, t) .

Problem 10.4 Prove the operator identity

[Â, B̂N . . . B̂1] =
N∑
i=1

B̂N . . . B̂i+1[Â, B̂i]B̂i−1 . . . B̂1 .

Problem 10.5

(a) Show that when applied on the N -particle wave function

|φN 〉 = 1√
N !

∫
d3r1 . . . d

3rNφN(r1, . . . , rN, t)#̂†(rN) . . . #̂†(r1)|0〉

the number operator N̂ ≡ ∫
d3r#̂†(r)#̂(r) gives

N̂ |φN 〉 = N |φN 〉 .
(b) Show also that

#̂(r)|φN 〉 = N√
N !

∫
d3r1 . . . d

3rN−1φN(r1, . . . rN−1, r)#̂†(rN−1) . . . #̂
†(r1)|0〉 .

Problem 10.6 Derive the continuity equation (10.50)

dn̂(r, t)
dt

= ∇ · j ,

where n̂(r, t) = #̂†(r, t)(̂r, t).

Problem 10.7 Show that for a Hamiltonian Ĥ including in addition to the single-
particle Hamiltonian Ĥ0 a two-body interaction of the form (10.61) the time-
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dependent Hartree variational principle

δ

δϕ�N(r)

[
〈φN |ih̄ ∂

∂t
− Ĥ|φN 〉

]
= 0

yields the equation of motion

ih̄
∂ϕN(r)
∂t

= Ĥ0ϕN(r)+ (N − 1)
∫

d3r ′V̂ (r, r′)ϕ�N(r)ϕ2
N(r

′)

for the Hartree wave functions ϕN(r, t).

Problem 10.8 Carry out the explicit steps that lead from the BEC Hamiltonian

Ĥ =
∑

k

Tkĉ
†
kĉk + U0

2V

∑
k,k′,q

ĉ
†
k+qĉ

†
k′−qĉk′ ĉk ,

to the linearized Hamiltonian

Ĥ =
∑

k

Ekα̂
†
kα̂k

that characterizes its elementary excitations, and plot the resulting elementary
excitation spectrum Ek as a function of the momentum k.

Problem 10.9 Evaluate the second-order correction to the Mott insulator energy
for a Bose–Hubbard system with n atoms per site due to the mean-field correction
resulting from intersite tunneling.
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Chapter 11
Quantum Optomechanics

Quantum optomechanics extends the idea that light forces can achieve the
quantum control of mechanical motion to mesoscopic and macroscopic
systems. Following a semiclassical introduction to cold damping and the
optical spring effect, we show how sideband cooling can bring those
systems to their quantum mechanical ground state. We then discuss ways
to prepare, manipulate, and characterize other quantum states of mechanical
oscillators. This is followed by an analysis of the standard quantum limit
of optomechanical interferometers that clarifies the roles of shot noise and
radiation pressure noise. We finally return to ultracold atoms to show how
their collective density excitations can likewise behave as optomechanical
oscillators.

The previous three chapters discussed how to exploit the mechanical effects of
light to trap and cool atoms or ions to extraordinarily low temperatures, even to
their quantum ground state of motion, thereby providing a remarkable platform to
address a wealth of questions at the boundary between AMO physics, condensed
matter physics, and field theory. One may ask, then, whether similar advances can
also be achieved in mesoscopic or macroscopic systems. Quantum optomechanics,
the topic of this chapter, shows that this is indeed the case and that light forces
provide a universal tool to achieve the quantum control of mechanical motion in
devices spanning a vast range of parameters, with mechanical frequencies from a
few Hertz to GHz and with masses from 10−20 g to several kilos. As such it offers
a route to control the quantum state of truly macroscopic objects and opens the
way to experimental and theoretical advances that may lead to a more profound
understanding of the quantum world. And from the point of view of applications,
quantum optomechanical techniques in both the optical and microwave regimes hold
the promise of major advances in quantum metrology, in particular in motion and
force detection near the fundamental limit imposed by quantum mechanics.
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Fig. 11.1 Left: schematic of the LIGO laser interferometer gravitational wave antenna. Right:
aerial view of the LIGO antenna in Hanford, in the state of Washington (From https://www.ligo.
org/science/GW-Overview)

The underlying ideas of quantum optomechanics were largely driven by the
developments in optical gravitational wave antennas spearheaded by V. Braginsky,
K. Thorne, C. Caves, and others in the 1970s and 1980s [1–3]. These antennas
operate by optically measuring changes in the positions of suspended kilogram-
size test masses that serve as the end mirrors of large path length (kilometers long)
Michelson interferometers as a result of the passage of gravitational waves, see
Fig. 11.1. These waves produce time-dependent variations in the curvature of space-
time, resulting in differential changes in the optical path length of the interferometer
arms and a modulation of the optical transmission through it. It is in this context
that researchers first understood a number of fundamental quantum optical effects
on mechanics and mechanical detection, including the standard quantum limit of
optical interferometers and the importance of back action evading measurements.
They also recognized the importance of nonclassical states of light such as squeezed
states in reducing the quantum noise in these interferometers.

Further progress in quantum optomechanics relied heavily on combining the
detailed understanding of the mechanical effects of light that we introduced in
Chaps. 8 and 9 with the availability of advanced micro- and nanomechanical
devices. This opened a path to the realization of macroscopic mechanical systems
that operate deep in the quantum regime, with no significant thermal noise remain-
ing. This allows for the determination and control of their quantum state, resulting
in the development of detectors of feeble forces and fields of increased sensitivity,
precision, and accuracy.

Although this chapter is primarily about quantum effects, it will be useful to
begin with a classical description of optomechanics, to introduce in simple terms
the underlying phenomenology, most importantly the ideas of cold damping and
optical spring effect. We will then turn to a full quantum description and show how a
resolved sideband cooling method directly adapted from the technique discussed in
Sect. 9.5 for trapped ions permits to cool these systems to their quantum mechanical
ground state. This is an essential first step in eliminating the thermal fluctuations
that normally mask quantum features.

https://www.ligo.org/science/GW-Overview
https://www.ligo.org/science/GW-Overview
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However, the ground state is not particularly interesting by itself, so the next
challenge is to prepare, manipulate, and characterize quantum states of mechanical
oscillators directed at specific science or engineering goals. We then revisit the idea
of standard quantum limit in the context of optomechanical detection and show that
when light is used as the probe of mechanical motion, that limit arises from the
balance between the uncertainty in photon number, or shot noise, and radiation
pressure noise. The chapter finally returns to ultracold atoms and closes a loop
by showing how collective density excitations of Bose condensates can behave
precisely as optomechanical oscillators.

11.1 Classical Analysis

We have seen that resonant light-matter interactions can result in a very large
enhancement of their coupling, but at the cost of being limited to narrow ranges
of wavelengths. This is in contrast to non-resonant interactions, which are typically
much weaker but largely wavelength independent. Cavity optomechanics exploits
the best of both worlds by achieving resonant enhancement through engineered
resonant structures rather than via the internal structure of materials. This permits
to achieve optomechanical effects for a broad range of wavelengths, from the
microwave to the optical regime, and in a vast range of platforms, from nanometer-
sized devices with as little as 107 atoms to micromechanical structures of 1014 atoms
and to the centimeter-sized mirrors used in gravitational wave detectors.

Generic Model A simple model system that displays the main features of cavity
optomechanics consists of an optically driven Fabry–Pérot resonator with one fixed
end mirror, effectively assumed to have infinite mass, and the other mirror, of
mass m, harmonically bound and allowed to oscillate under the action of radiation
pressure from the intracavity light field, as sketched in Fig. 11.2. V. B. Braginsky
and A. B. Manukin recognized as early as 1967 that as the radiation pressure
drives the mirror, it changes the cavity length and hence the intracavity field
intensity and phase [4]. This results in two main effects: the optical spring effect,
an optically induced change in the oscillation frequency of the mirror that can
produce a significant stiffening of its effective frequency and even result in a form of
radiation pressure driven optical bistability, and optical damping, or cold damping,
whereby the optical field acts effectively as a viscous fluid that can damp the mirror
oscillations and cool its center-of-mass motion.
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Fig. 11.2 Generic cavity
optomechanical system. The
cavity consists of a highly
reflective fixed input mirror
and a small movable end
mirror harmonically coupled
to a support that acts as a
thermal reservoir

One can readily understand how the optical spring effect can result in a more
quantum behavior of the oscillator of frequency �m by recalling that its mean
number of thermal phonons 〈nm〉 at temperature T is

〈nm〉 = kBT /h̄�m . (11.1)

For a given temperature, increasing �m therefore automatically reduces 〈nm〉 and
the quantum regime can be approached without having to reduce T .

Cold damping, on the other hand, reduces the temperature of the oscillating
mirror by opening up a dissipation channel to a reservoir that is effectively at
zero temperature. To see how this works, we first recall that in the absence of
an optical field, the average center- of-mass energy 〈E〉 of an oscillating mirror
dissipatively coupled to a thermal bath at temperature T results from the balance
between dissipation and heating,

d〈E〉
dt
= −�m〈E〉 + �mkBT , (11.2)

where �m is the intrinsic mechanical damping rate and kBT the mean thermal
energy at temperature T . When the oscillator is coupled in addition to an optical
field, it is however possible to arrange their interaction in such a way that an
additional dissipation channel with damping rate �opt comes into play, so that

d〈E〉
dt
= −�m〈E〉 + �mkBT − �opt〈E〉 + �optkBTopt

≈ −�m〈E〉 + �mkBT − �opt〈E〉 , (11.3)

where we have used the fact that the frequencies of optical fields are orders of
magnitude higher than those of mechanical oscillators, and for a system at room
temperature, the blackbody reservoir to which they are coupled can effectively be
considered to be at zero temperature, Topt ≈ 0, as we have seen in Sect. 5.1.1 In
steady state, Eq. (11.3) gives 〈E〉 = �mkBT/(�m + �opt), or

Teff = �mT

�m + �opt
. (11.4)

1Remember however that this is not the case for microwave fields.
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This phenomenological picture predicts that the limit of cooling can approach
T ≈ 0 for �opt � �m, although a more detailed quantum analysis presented in the
next section will yield a fundamental limit given by quantum noise, as expected.
However, this is usually not a major limitation to cooling a mechanical mode
arbitrarily close to the quantum ground state 〈nm〉 ≈ 0.

More quantitatively, consider a single mode of the optical resonator of nominal
frequency ωc = �πc/L, � integer, and assume that radiation pressure causes a
displacement x(t) of the harmonically bound end mirror. This results in a change in
the frequency of the optical mode to

ω′c = ωc −Gx(t) , (11.5)

where

G = −∂ω′c/∂x . (11.6)

For a single-mode Fabry–Pérot resonator of length L and x(t) � L, this last
expression becomes simply G ≈ ωc/L.

Typical mechanical oscillator frequencies �m are in the range of 2π · 10 Hz to
2π · 109 Hz, and the mechanical quality factors of the mirrors are in the range of
perhaps Qm ≈ 103 − 107, so that the mechanical damping rate �m = �m/Qm
of the oscillating mirror is typically much slower than the damping rate κ/2 of the
intracavity field. One can therefore gain considerable intuition by first neglecting
�m altogether and assuming that the mirror motion is approximately harmonic,

x(t) ≈ x0 sin(�mt) . (11.7)

For a classical monochromatic pump of frequency ωL and amplitude αin, the
intracavity field obeys the equation of motion

dα(t)

dt
= [i (�c +Gx(t))− κ/2]α(t)+√καin, (11.8)

which is the classical limit of Eq. (5.159), and we introduced as in Sect. 9.4 the
detuning

�c = ωL − ωc (11.9)

between the frequency ωL of the driving laser field and the cavity mode frequency
ωc.2 The steady-state solution is

2Due to the number of relevant frequencies in optomechanics, we use ωL instead of the more
compact notation ω in this chapter to avoid possible confusion.



330 11 Quantum Optomechanics

α =
√
καin

−i(�c +Gx)+ κ/2 , (11.10)

where the intracavity field amplitude α is normalized in such a way that

|α|2 = κ

(�c +Gx)2 + (κ/2)2
(
P

h̄ωL

)

= κ

(�c + ωcx/L)2 + (κ/2)2
(
P

h̄ωL

)
, (11.11)

so that

P ≡ h̄ωL|αin|2 (11.12)

is the input laser power driving the cavity mode. Remember that this normalization,
which we already introduced in the discussion of cavity cooling of Sect. 9.4,
is somewhat misleading since the analysis is completely classical at this point.
Planck’s constant h̄ has been introduced “by hand” with the sole purpose of allowing
for an easy generalization to the quantum description of Sect. 11.2. The amplitude α
will then be interpreted as the square root of the mean number of intracavity photons
α = √〈â†â〉, with â and â† the annihilation and creation operators of the intracavity
field, and |αin|2 as an input flux having units of “photons per second.”

For periodic mirror oscillations of the form

x(t) = x0 sin(�mt) (11.13)

with x0 small enough that Gx0 � �m, the moving mirror boundary acts as a
modulator, resulting in the generation of two sidebands at frequencies ωL ± �m
[5]. Specifically, solving Eq. (11.8), for instance, in Fourier space, shows that the
time-dependent complex field amplitude α(t) takes then the approximate form
α(t) � α0(t)+ α1(t) with

α0(t) �
√
καin

−i�c + κ/2 ,

α1(t) �
(
Gx0

2

) √
καin

−i�c + κ/2

×
(

e−i�mt

−i(�c +�m)+ κ/2 −
e+i�mt

−i(�c −�m)+ κ/2
)
, (11.14)



11.1 Classical Analysis 331

and

|α(t)|2 ≈ |α0(t)|2 + α0(t)α
∗
1(t)+ α∗0(t)α1(t)

= κ|αin|2
�2
c + κ2/4

×
[

1+Gx0

(
�c +�m

(�c +�m)2 + κ2/4
+ �c −�m
(�c −�m)2 + κ2/4

)
sin(�mt)

+ Gx0

(
κ/2

(�c +�m)2 + κ2/4
+ κ/2

(�c −�m)2 + κ2/4

)
cos(�mt)

]
.

(11.15)

The first sideband in Eq. (11.14) can be interpreted as an anti-Stokes line, with a
resonance at ωL = ωc−�m, and the second one as a Stokes line at ωL = ωc+�m.3

An important feature of these sidebands is that their amplitudes can be vastly
different since they are determined by the cavity Lorentzian response function
evaluated at ωL − �m and ωL + �m, respectively. This asymmetry parallels a
situation previously encountered in the sideband cooling of trapped ions of Sect. 9.5.
It is therefore not surprising that this analogy can be exploited in the optomechanical
cooling of oscillating membranes, as we will see in Sect. 11.1.2. First, however, we
briefly return to the optical spring effect and show how in addition to increasing
the oscillation frequency of the mechanical system, it can also result in radiation
pressure induced optical bistability.

11.1.1 Static Phenomena: Optical Spring Effect

To properly describe the optomechanical system, it is of course not sufficient
in general to consider only the intracavity field dynamics under the influence of
periodic mirror oscillations, as we have done so far, but we must also include the
back action of the field on the membrane motion. In a first step, we consider the limit
where the damping rate κ/2 of the field is much faster than all other characteristic
times of the system, in which case α(t) follows the membrane motion adiabatically.

We have seen that the oscillations of the mirror, which evolve under the combined
effects of its harmonic restoring force and the radiation pressure force Frp of the
intracavity field |α|2, result in the generation of sidebands in that field, and these
exert in turn a back action force on the mirror motion. Ignoring for a moment the
restoring force, adiabatically eliminating |α|2 for large κ and with Eq. (11.5), we
have that

3We recall that the Stokes and anti-Stokes nomenclature finds its origin in Raman scattering: Stokes
scattering refers to the situation where the emitted radiation is of lower frequency than the incident
radiation and anti-Stokes scattering to the case where it is of higher frequency.
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Frp = −h̄ d

dx

(
−G|α|2x

)
= h̄ωc

L
|α|2 , (11.16)

where the first equality defines the optomechanical coupling “per photon”—again
with the understanding that using the word photon is a stretch in the context of this
classical description—and the second equality holds for a simple Fabry–Pérot, and
|α|2 is then given by Eq. (11.11). One can easily show that the force Frp can be
derived from the potential

Vrp = − h̄κ|αin|2
2

arctan [2(�c +Gx)/κ] , (11.17)

and the mirror of mass m is therefore subject to the total potential

V (x) = 1

2
m�2

mx
2 − h̄κ|αin|2

2
arctan [2(�c +Gx)/κ] . (11.18)

The effect of Vrp is both to slightly shift the equilibrium position of the mirror to a
position x0 
= 0, as would be intuitively expected, and to change its spring constant
from its intrinsic value k = m�2

m to

krp = m�2
m +

d2Vrp(x)

dx2

∣∣∣∣∣
x=x0

. (11.19)

The second term in this expression is the static optical spring effect. For realistic
parameters, it can increase the stiffness of the mechanical system by orders of
magnitude.

An additional static effect of radiation pressure is that in general, there is a range
of parameters for which the potential V (x) can exhibit three extrema, see Fig. 11.3
and Problem 11.2. Two of them correspond to stable local minima of V (x) and the
third one to an unstable maximum. This results in the onset of radiation pressure
induced optical bistability [6], the coexistence of two possible stable lengths x of
the resonator for a given incident intensity |αin|2. This effect is closely related to
the more familiar form of bistability that can occur in Kerr nonlinear media. The
difference is that in the latter case, it is the optical length of the resonator—the
product of its physical length and the intensity dependent refractive index of the
medium—that is changed, its physical length remaining unchanged. In contrast, in
radiation pressure induced bistability, there is no nonlinear medium; it is x itself that
is bistable.

11.1.2 Effects of Retardation: Cold Damping

Beside the adiabatic effects characteristic of the regime where the field damping rate
κ dominates the system dynamics, cooling (or heating) of the mechanical motion
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Fig. 11.3 Left: contour plot of the radiation pressure induced optical potential V (x) of Eq. (11.18)
resulting in radiation pressure induced optical bistability, in units of 1

2m�
2
m. Right: 3D rendition

of the same potential as a function of the dimensionless position x of the moving mirror and the
dimensional driving field intensity |αin|2, scaled to 2/h̄κ . In this example, |αin|2 is scaled to 2/h̄κ ,
�c = −3κ , and G = 3κ

becomes possible when this condition is no longer fulfilled. This is a consequence of
the dispersive nature of the optomechanical interaction and of the resulting delayed
response of the intracavity field to mechanical motion, which can produce under
appropriate conditions an additional field-induced oscillator damping and cooling.
We already encountered a similar mechanism in the description of cavity cooling
of Sect. 9.4, although as we shall see a much closer analogy can be drawn with the
sideband ion cooling of Sect. 9.5.

To analyze this regime, we proceed by assuming that the system is initially
in equilibrium at some mirror position x̄ with intracavity field ᾱ, taken to be
real without loss of generality, and consider the linearized dynamics of small
displacements δx(t) and δα(t) from that state resulting from a small external
perturbation δF (t). To lowest order, Eq. (11.8) gives then

d

dt
δα = (i�c − κ/2)δα + iGᾱ δx , (11.20)

with the resulting perturbation in the harmonically bound mirror position given by

[
d2

dt2
+ �m d

dt
+�2

m

]
δx = h̄Gᾱ (

δα + δα∗) . (11.21)

The first of these equations can be solved in Fourier space to give

δα(ω) =
(

iGᾱ

−i(�̄c + ω)+ κ/2
)
δx(ω) (11.22)
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with

�̄c = �c +Gx̄ , (11.23)

and from Eq. (11.21), the associated modification of the radiation pressure force is

δFrp(ω) = −h̄Gᾱ
[
δα(ω)+ δα∗(ω)] . (11.24)

This shows that the mirror motion δx(t) exerts a dynamical back action on the
radiation pressure force, which acquires both a real and an imaginary component.
The physical origin of that imaginary component is the delayed response of the
intracavity field to that motion. As a result, the intracavity power acquires a
component that oscillates out of phase with the mirror motion, that is, with its
velocity, see Eq. (11.15). It is through that friction force that the optical field acts
as a viscous field for the mirror.

The net effect of the real and imaginary components of δFrp can be conveniently
cast in terms of a back action frequency shift δ�opt and corresponding damping rate
�opt, with

δ�opt = h̄G
2ᾱ2

2m�m

[
�̄c +�m

(�̄c +�m)2 + κ2/4
+ �̄c +�m
(�̄c −�m)2 + κ2/4

]
, (11.25)

�opt = h̄G
2ᾱ2

2m�m

[
κ

(�̄c +�m)2 + κ2/4
− κ

(�̄c −�m)2 + κ2/4

]
, (11.26)

as illustrated in Fig. 11.4.

Fig. 11.4 Back action frequency shift δ�opt(�c) (solid line) and damping rate �opt(�c) (dashed
line) as a function of �c (arbitrary units)
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For detunings �̄c ≈ −�m, the first term in Eq. (11.26) dominates over the second
term, and the dynamical back action results in an increase in the damping of the
mechanical oscillator and cooling, as already indicated in Eq. (11.4). It is therefore
the asymmetry between the response function of the Fabry–Pérot at the frequencies
of the two side modes that is responsible for cooling—or heating if one changes
the sign of �c and uses a blue-detuned instead of a red-detuned driving field. The
existence of two sidebands, one associated with heating and the other with cooling,
parallels closely the situation already encountered in Sect. 9.5. It can likewise be
exploited to achieve sideband cooling, but now of a vibrating membrane rather than
a trapped ion. Physically, this is a consequence of the fact that the optomechanical
coupling between the intracavity field and the mirror results in the scattering of the
driving field into an anti-Stokes line that is strongly damped due to the high density
of states at the cavity resonance. Conversely, for the opposite detuning �̄c ≈ −�m,
it is the Stokes line that is strongly damped, resulting in an anti-damping of the
mirror motion that can lead to parametric oscillations and dynamical instabilities.

Together with Eq. (11.4), this analysis predicts that the cooling of the center-of-
mass motion of the mirror can be arbitrarily close to Teff = 0. More specifically, in
the resolved sideband limit �m � κ , we find from Eq. (11.26)

�opt ≈
(

2

κ

)
h̄G2ᾱ2

m�m
, (11.27)

which can become arbitrarily large for small optical damping rates.
The quantum description of the next section will show that cold damping and

mirror cooling can also be interpreted in terms of the annihilation of phonons from
the center-of-mass mode of oscillation when scattering the driving laser field into the
anti-Stokes sideband, much like we interpreted the sideband cooling of trapped ions,
and heating can be understood as resulting from the creation of phonons associated
with the scattering of the driving field into the lower frequency Stokes side mode.

Optomechanical cooling was first observed in the microwave domain by D. G.
Blair et al. [7] in a Niobium high-Q resonant mass gravitational radiation antenna
and 10 years later in the optical domain in several laboratories around the world:
first, via feedback cooling of a mechanical mirror by P. F. Cohadon et al. [8] and
shortly thereafter in a broad range of mesoscopic and macroscopic systems ranging
in weight from micrograms to kg scale, see e.g. Ref. [9–13], and most remarkably
perhaps Ref. [14], which reported the cooling of a 10 kg mirror deep into the
quantum regime, with about 10 thermal phonons of excitation left.

11.2 Quantum Theory

The classical prediction that one can in principle reach an arbitrarily large degree
of cooling needs to be qualified to account for the effects of quantum noise.
In particular, the open port of the resonator used to supply the optical drive
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of the oscillating mirror allows for the coupling of vacuum fluctuations into
the resonator [15], as will be discussed in detail in Sect. 11.4. This leads to a
fundamental limit to the degree of cooling that can be achieved.

Ignoring in a first step this coupling to the environment, the optomechanical
Hamiltonian for a single optical mode of the Fabry–Pérot resonator and a single
mode of oscillation of the suspended mirror is simply

Ĥ = h̄ω(q̂)â†â + p̂
2

2m
+ 1

2
m�2

mq̂
2 , (11.28)

where â and â† are bosonic annihilation and creation operators for the cavity mode
of frequency ω(q̂), and p̂ and q̂ are the momentum and position of the oscillating
mirror of mass m and frequency �m. In reality, though, this Hamiltonian is more
subtle than that may appear at first. This is because the mode frequency ω(q̂)
depends on the length of the resonator, which in turn depends on the intracavity
intensity. Stated differently, the boundary conditions for the quantization of the light
field are changing in time and do so in a fashion that depends on the state of that field
and its history. The rigorous quantization of this system is a far-from-trivial problem,
but for most cases of interest in quantum optomechanics the situation is significantly
simplified since the damping rate κ/2 of the optical field is much larger than the
mechanical frequency �m and the displacements considered are a small fraction
of an optical wavelength. The intracavity field “learns” therefore about changes
in its environment in times short compared to 1/�m. Under these conditions, one
can assume that the cavity frequency follows adiabatically any change in resonator
length,

ω(q̂) = �πc

L+ q̂ = ωc
(

1

1+ q̂/L
)
≈ ωc(1− q̂/L), (11.29)

where � is an integer that labels the mode of nominal frequency ωc and L is the
nominal resonator length, that is, its length in the absence of light. In the classical
limit, we recover the result G = ωc/L of Eq. (11.6) valid for a simple Fabry–Pérot.
The Hamiltonian (11.28) reduces then to [17]

Ĥ = h̄ωcâ†â + p̂
2

2m
+ 1

2
m�2

mq̂
2 − h̄Gâ†âq̂

= h̄ωcâ†â + h̄�mb̂†b̂ − h̄g0â
†â(b̂ + b̂†) , (11.30)

where b̂ and b̂† are the annihilation and creation operators for the mechanical
oscillator,

q̂ = xzpf(b̂ + b̂†) (11.31)
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with xzpf = √
h̄/2m�m the zero-point motion. We have also introduced the

optomechanical coupling frequency

g0 = xzpfG = −xzpf∂ω
′
c/∂x , (11.32)

which scales the optomechanical displacement of the oscillator to xzpf. The Hamil-
tonian (11.30) is the starting point for most quantum mechanical discussions of
cavity optomechanics, with the system coupled in addition to two reservoirs, one
for the intracavity field, with field decay rate κ/2, and the other for the mechanical
oscillator, with decay rate �m.

Cooling Limit We mentioned that the optical port through which the classical field
driving the resonator is injected also admits vacuum and thermal noise. As we have
seen in Sect. 5.3, this noise induces in the system transitions that are responsible
for establishing its final equilibrium state and hence its final temperature. Splitting
the field as â = α + ĉ, where α is its classical component and ĉ the displaced
annihilation operator that accounts for its fluctuations, their dominant contribution
to the optomechanical interaction is

h̄g0(αĉ
† + α∗ĉ)(b̂ + b̂†) ≡ h̄g0F̂ (b̂ + b̂†) . (11.33)

For a field reservoir at effective temperature T = 0, the noise spectral density
SFF (ω) is, see Eq. (5.103) and Problem 11.3,

SFF (ω) =
∫ ∞
−∞

dτeiωτ 〈F̂ (τ )F̂ (0)〉 = n
∫ ∞
−∞

dτeiωτ e(i�c−κ/2)τ

= |α|2 κ

(�c + ω)2 + κ2/4
. (11.34)

Since the phononic levels of the mechanical oscillator are equidistant, the “cooling”
and “heating” rates of noise-induced transitions between the states |nm − 1〉 and
|nm〉 are simply nmA1→0 and nmA0→1, respectively, with

A0→1 = g2
0SFF (ω = −�m) ; A1→0 = g2

0SFF (ω = �m) , (11.35)

where we have used the result of Eqs. (5.106).
The asymmetry between these processes is analogous to the asymmetry between

the damping and anti-damping contributions responsible for the resolved sideband
cooling of trapped ions, see Eqs. (9.73), with the difference between cooling and
heating rates maximized for �c = −�m, as illustrated in Fig. 11.5. In the absence
of mechanical damping, we then have from detailed balance that the steady-state
phonon number distribution is given by

n̄0
m + 1

n̄0
m

= SFF (�m)

SFF (−�m) = exp[h̄�m/kBTeff], (11.36)
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Fig. 11.5 Schematic of sideband cooling. A coherent electromagnetic field driving the optome-
chanical resonator acquires frequency sidebands due to the membrane oscillations, as discussed
in Sect. 11.1. The solid line illustrates the corresponding spectrum of the intracavity field, with a
peak at ωL and two sidebands at ωL±�m. The dotted line illustrates the bandwidth κ of the cavity
mode of frequency ωc. Quantum mechanically, the origin of the high frequency sideband is the
parametric transfer of phonons from the membrane to the microwave field and the lower sideband
is due to the reverse process, see Sect. 11.2. Sideband cooling results when the upper sideband
frequency ωl + �m is resonant with the cavity frequency ωc. The detuning �c is in units of �m,
and the vertical axis is in arbitrary units

which gives in the resolved sideband limit κ � �m [18, 19]

n̄0
m =

(
κ

4�m

)2

. (11.37)

The inclusion of mechanical damping changes this result to a cooling limit with
minimum mean phonon number

〈nm〉 = �optn̄
0
m + �mn̄Tm

�m + �opt
, (11.38)

where n̄Tm is the equilibrium phonon occupation determined by the mechanical bath
temperature. This shows that in the presence of quantum fluctuations, the ground
state can be approached, but not quite reached, as expected. For n̄Tm � 0, one
recovers the classical result of Eq. (11.4), with 〈nm〉 → n̄0

m if the optical damping
�opt dominates over �m.
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Fig. 11.6 Artist conception of the microwave optomechanical circuit of Ref. [21]. Capacitor ele-
ment of the LC circuit is formed by a 15 μm diameter membrane lithographically suspended 50 nm
above a lower electrode. Insert: cut through the capacitor showing the membrane oscillations.
(Adapted from Refs. [21] and [24])

Experiments The cooling of the oscillator center-of-mass motion deep into the
quantum regime has been demonstrated in a number of micromechanical systems,
with a mean phonon number within a fraction of a phonon of their ground state
of vibrational motion, 〈nm〉 < 1, see Refs. [20–22] for early experiments. In the
first case, the frequency of the mechanical oscillator was high enough that cooling
to the ground state could be achieved by conventional cryogenic refrigeration,
while the other two experiments exploited resolved sideband cooling to approach
the mechanical ground state of center-of-mass motion. In one case [21], the
mechanical resonator was a suspended circular aluminum membrane tightly coupled
to a superconducting lithographic microwave cavity, Fig. 11.6. That cavity was
precooled to 20 mK, corresponding to an initial occupation of 40 phonons, and
then further cooled by radiation pressure forces to an average phonon occupation of
〈nm〉 ≈ 0.3, as shown in Fig. 11.7. In contrast, Ref. [22] utilized an optomechanical
structure with co-located photonic and phononic band gaps in a suspended on-
chip waveguide. The structure was precooled to 20 K, corresponding to about
100 thermal quanta, and then cooled via radiation pressure to 〈nm〉 ≈ 0.85.
Shortly thereafter, that same group also observed the motional sidebands generated
on a second probe laser by a mechanical resonator optically cooled optically to
near its vibrational ground state. They were able to detect the asymmetry in the
sideband amplitudes between up-converted and down-converted photons, a smoking
gun signature of the asymmetry between the quantum processes of emission and
absorption of phonons, as we have seen [23].
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Fig. 11.7 Phonon occupancy (blue) and intracavity photon occupancy (red) as a function of the
drive photon number. In this example, sideband cooling reduces the thermal occupancy of the
mechanical mode from nm = 40 into the quantum regime, reaching a minimum of nm = 0.34 ±
0.05. (From Ref. [21])

11.3 Beyond the Ground State

Cooling mechanical resonators to their ground state of motion is essential in
eliminating the thermal fluctuations that normally mask quantum features. However,
by itself that state is not particularly interesting, so the next challenge is to prepare,
manipulate, and characterize quantum states of the mechanical resonator required
for some specific science or engineering goal.

Like in cavity QED, the control of the quantum state of a mechanical oscillator
requires typically that one operates in the strong coupling regime, where the energy
exchange between the mechanical object and the system to which it is coupled
is not adversely affected by dissipation and decoherence. This section reviews
briefly selected examples of developments that have taken place along these lines.
Substantially more details can be found in references [25–27].

Section (11.1) showed that the key frequencies that come into play in describing
the interaction between the intracavity light field and the mechanical element are
the detuning �c = ωL − ωc between the driving field and cavity mode frequencies
and the frequency �m of the mechanical oscillator. To bring �c more explicitly to
the fore, it is useful to transform the optomechanical interaction (11.30) to a frame
rotating at the frequency ωL by applying the unitary transformation

Û (t) = eiωLâ†ât , (11.39)
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resulting in the transformed Hamiltonian

Ĥ ′ = Û (t)Ĥ Û†(t)+ ih̄

(
∂Û(t)

∂t

)
Û†(t)

= −h̄�câ†â + h̄�mb̂†b̂ − h̄g0â
†â(b̂ + b̂†)

≡ Ĥ0 + Ĥint . (11.40)

11.3.1 Linearized Coupling

A number of quantum effects have been predicted in the regime when the radiation
pressure of a single or very few photons displaces the mechanical oscillator by more
than xzpf. They include two-photon blockade and quantitative changes in the output
spectrum and cavity response of the optomechanical system that can lead to the
generation of non-Gaussian steady states of the oscillator [28–30]. Unfortunately,
for realizable levels of the optomechanical coupling frequency, g0 is typically much
too small for these effects to dominate over the incoherent dynamics.

There is however a way around this difficulty, the trade-off being that the intrinsic
nonlinear nature of the optomechanical interaction (11.40) is then replaced by an
effective linear interaction. To achieve this goal, we proceed again by decomposing
the electromagnetic field as the sum of a classical part and a small quantum
mechanical component, â → α + ĉ, with ĉ interpreted as before as a displaced
photon annihilation operator that accounts for quantum fluctuations. With n = |α|2
and introducing the effective optomechanical coupling frequency

g = g0
√
n , (11.41)

the optomechanical interaction in Eq. (11.40) becomes then to lowest order in ĉ and
ĉ†

Ĥint � −h̄g0n(b̂ + b̂†)− h̄g
(
ĉ + ĉ†

)
(b̂ + b̂†) . (11.42)

The first term in this Hamiltonian describes a simple Kerr effect, with a change in
resonator length proportional to the classically intracavity intensity. This is the term
that leads to radiation pressure induced optical bistability. The second term can be
reexpressed in an interaction picture with respect to Ĥ0 = −h̄�câ†â + h̄�mb̂†b̂ as

V̂ = −h̄g
[
b̂ĉ†e−i(�c+�m)t + h.c.

]
− h̄g

[
b̂†ĉ†e−i(�c−�m)t + h.c.

]
. (11.43)
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This interaction describes a linear coupling between the quantized component of
the optical field and the mechanical oscillator, enhanced from the single-photon
coupling frequency g0 by a factor

√
n, which can be very substantial.

Beam Splitter Hamiltonian and State Transfer On the red-detuned side of
the Fabry–Pérot resonance, �c = −�m, and after invoking the rotating wave
approximation, the interaction Hamiltonian (11.43) reduces to

V̂ � −h̄g
(
b̂ĉ† + h.c.

)
, (11.44)

which is the beam splitter Hamiltonian (2.175) first encountered in the discussion
of balanced homodyne detection of Sect. 2.4.2. In contrast, on the blue-detuned side
of the resonance, �c = +�m, we have

V̂ � −h̄g
(
b̂†ĉ† + h.c.

)
. (11.45)

This interaction describes the parametric amplification of the phonon mode and the
optical field.

One of the remarkable properties of the beam splitter Hamiltonian (11.44)
is that it provides a mechanism to precisely transfer the quantum state of the
mechanical oscillator to the electromagnetic field, and conversely. This is easily seen
by considering the Heisenberg equations of motion for the annihilation operators b̂
and ĉ,

b̂(t) = b̂(0) cos(h̄gt)+ iĉ(0) sin(h̄gt)

ĉ(t) = ĉ(0) cos(h̄gt)+ ib̂(0) sin(h̄gt) , (11.46)

which we already encountered in Eqs. (2.180) in the context of balanced homodyne
detection. Since the optomechanical interaction g can readily be made time
dependent by pulsing the classical driving laser field intensity so that n → n(t),
it follows that for an interaction time tint and a driving laser pulse intensity such that

h̄g0

∫ tint

0
dt

√
n(t) = π/2,

we then have

b̂(tint) = ĉ(0) ; ĉ(tint) = ib̂(0) , (11.47)

indicative of a perfect state transfer between the optical and phonon modes—
assuming of course that dissipation and decoherence can be ignored during that
time interval.

The interest in high-fidelity state transfer between optical and acoustical fields is
largely motivated by applications that would benefit from combining the best of their
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complementary features: the potentially slow decoherence rate of motional states in
mechanical systems makes them well suited for information storage, with phonon
lifetimes of 1.5 s or more and nano-acoustic resonators with quality factors Q as
high as 5 × 1010 having been experimentally demonstrated [31]. However, these
systems do not permit fast information transfer rates, in contrast to optical fields,
which are ideal as information carriers but are typically subject to a fast decoherence
that limits their interest for storage. Hybrid systems capable of combining the
benefits of both subsystems are therefore of obvious benefit in quantum information
applications. The coherent quantum mapping of phonon fields to optical modes also
promises to be useful in quantum sensing applications, by combining the remarkable
sensitivity of nanoscale cantilevers to feeble forces and fields with reliable and high-
efficiency optical detection schemes. We will return to this point at some length in
the next chapter.

In addition to standard state transfer between motional and optical states, phonon
fields can also operate as high-fidelity transducers between optical fields of different
wavelengths or even between optical and microwave fields. The first theoretical
proposal that analyzed a scheme to transfer quantum states from a propagating
light field to the vibrational state of a movable mirror by exploiting radiation
pressure effects is due to J. Zhang and coworkers [32], and the first experimental
demonstration of state transfer between a microwave field and a mechanical
oscillator with amplitude at the single quantum level is due to T. A. Palomaki et
al. [33].

Two-Mode Squeezing By explicitly introducing the (controllable) phase φ of the
classical driving field so that

g = g0
√
n→ ig0

√
n exp(iφ),

the Hamiltonian (11.45) takes the form

V̂ = −ih̄
[
gb̂†ĉ† − g∗b̂ĉ

]
, (11.48)

with associated evolution operator

Ŝab(t) = e(g∗b̂ĉ−gb̂†ĉ†)t , (11.49)

which we recognize as the two-mode squeezing operator (2.160).
We can demonstrate that Ŝab(t) can indeed squeeze the state of a two-mode field

by introducing the generalized two-mode quadrature operator

X̂ = 1

23/2
(â + â† + b̂ + b̂†) . (11.50)
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Problem 11.5 shows that the variance of a system initially in a two-mode vacuum
state is then [34]

σ 2
X =

1

4

[
e−2|g|t cos2(φ/2)+ e2|g|t sin2(φ/2)

]
, (11.51)

and taking for example φ = π/2, one finds that σ 2
X can be well below the standard

quantum limit of 1/4, a signature of two-mode squeezing. That same result also
holds if the two modes are initially in coherent states, a direct consequence of the
fact that the coherent state is a displaced vacuum.

Two-mode squeezed states are easily shown to be entangled, indicating that
this form of interaction can result in quantum entanglement between the photon
and phonon modes. As such this configuration represents a useful resource for the
demonstration of fundamental quantum mechanical effects as well as to exploit
cavity optomechanical devices in quantum information applications.

Back Action Evading Measurements V. Braginsky and coworkers [1] showed in
a work that was later on expanded upon by A. Clerk et al. [35] that it is possible to
implement back action evading measurements of the membrane position. The way
to do it is to drive it with an input field resonant with the cavity frequency ωc, but
modulated at the mirror frequency �m. The mean-field amplitude of the intracavity
field is then

α(t) = √n cos(�mt) , (11.52)

where, following an argument similar to the input–output analysis leading to
Eq. (5.155),

α =
√
καin

i�m + κ/2 . (11.53)

We proceed by introducing then the quadratures of the motional mode

X̂1(t) = 1√
2

(
ĉei�mt + ĉ†e−i�mt

)
,

X̂2(t) = − i√
2

(
ĉei�mt − ĉ†e−i�mt

)
, (11.54)

with [X̂1(t), X̂2(t)] = i in terms of which the position operator is

x̂(t) = √2xzpf

(
X̂1(t) cos�mt + X̂2(t) sin�mt

)
. (11.55)
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The term −h̄g (ĉ + ĉ†
)
(b̂ + b̂†) of the interaction Hamiltonian (11.42) becomes

then

V̂ = −√2h̄g
[
X̂1(1+ cos(2�mt))+ X̂2 sin(2�mt)

]
(b̂ + b̂†) , (11.56)

where g = g0α = g0
√
n as before, and its time-averaged form reduces to

V̂ →−√2h̄gX̂1(b̂ + b̂†) , (11.57)

an expression that commutes with X̂1. In that time-averaged sense, it is therefore
possible to perform a back action evading measurement of the d̂1 quadrature of
mirror motion.

11.3.2 Quadratic Coupling

So far we have considered geometries where the strong classical component of
the optical field results in a quantum optomechanical coupling that is linear in the
oscillator displacement. Other forms of coupling can however be considered, most
interestingly perhaps a coupling quadratic in the displacement. This can be realized
in a so-called membrane-in-the-middle geometry [36–39]. As implied by its name,
this geometry involves an oscillating mechanical membrane placed inside a Fabry–
Pérot with fixed end mirrors as sketched in Fig. 11.8.

An attractive feature of membrane-in-the-middle configurations is the ability
to realize relatively easily either linear or quadratic optomechanical couplings,
depending on the precise equilibrium position of the membrane. In case it is located

Fig. 11.8 Mirror-in-the-middle configuration
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at an extremum of ω′c(x), so that G = −∂ω′c/∂x = 0, see Eq. (11.6), we have, to
lowest order,

ω′c(x) ≈ ωc +
1

2

∂2ωc

∂x2 (11.58)

so that the optomechanical Hamiltonian becomes

Ĥ = h̄ωcâ†â + h̄�Mb̂†b̂ + 1

2

∂2ωc

∂x2 x
2
zpt(b̂ + b̂†)2â†â. (11.59)

In the rotating wave approximation, this reduces to

Ĥ = h̄ωcâ†â + h̄�Mb̂†b̂ + h̄g(2)0

(
b̂†b̂ + 1/2

)
â†â , (11.60)

where

g
(2)
0 ≡ x2

zpf
∂2ωc

∂x2
. (11.61)

Since the quadratic coupling interaction commutes with b̂†b̂, it opens a number of
interesting possibilities, including the direct quantum non-demolition measurement
of energy eigenstates of the mechanical element.

11.3.3 Polariton Spectrum

A familiar characteristic of strongly coupled systems is the occurrence of normal
mode splitting, which we first encountered in the dressed states discussion of
Sects. 1.3 and 3.1. Similarly, the optomechanical Hamiltonian (11.40) can be
diagonalized in terms of two bosonic normal modes with annihilation operators
Â and B̂. These normal modes are often referred to as optomechanical polariton
modes.

Ĥ0 ≡ Ĥ(AB) = h̄ωAÂ†Â+ h̄ωBB̂†B̂ + const. (11.62)

The diagonalization proceeds by expressing the polariton annihilation and creation
operators Â and B̂ in terms of the bare modes via the Bogoliubov transformation4

4This is the two-mode extension

Âi =
∑
j=1,2

(
uij âj + vij â†

j

)
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⎛
⎜⎜⎝
Â

B̂

Â†

B̂†

⎞
⎟⎟⎠ =

(
U† −V †

−V T UT

)
⎛
⎜⎜⎝
â

b̂

â†

b̂†

⎞
⎟⎟⎠ , (11.63)

where U and V are 2× 2 submatrices that satisfy the relationships

U†U − V †V = I , (11.64)

UTV − V TU = 0 , (11.65)

with the inverse transformation

⎛
⎜⎜⎝
â

b̂

â†

b̂†

⎞
⎟⎟⎠ =

(
U V ∗
V U∗

)
⎛
⎜⎜⎝
Â

B̂

Â†

B̂†

⎞
⎟⎟⎠ . (11.66)

Problem 11.5 carries out this diagonalization and shows that the resulting
polariton mode frequencies are [40]

ωA(�c) = 1√
2

[
�2
c +�2

m +
√
(�2
c −�2

m)
2 − 16g2�c�m

]1/2

, (11.67)

ωB(�c) = 1√
2

[
�2
c +�2

m −
√
(�2
c −�2

m)
2 − 16g2�c�m

]1/2

, (11.68)

see Fig. 11.9. At the avoided crossing �c = −�m, they simplify to

ωA,B(−�m) = �m
√

1± 2g

�m
, (11.69)

indicating that the minimum frequency difference between the polariton branches
“A” and “B” is proportional to g/�m. Importantly, for �c/�m → −∞, we have
ωA(−∞) → −�c and ωB(−∞) → �m. In that limit, the branch “A” describes a

of the single-mode canonical Bogoliubov transformation Â = uâ + vâ† that we already
encountered in the discussions of the Rabi model in Sect. 3.6 and of quasiparticles in Sect. 10.3.2.
We recall that the requirement that the transformation be canonical, [Â, Â†] = 1, resulted in the
condition |u|2 − |v|2 = 1 or u = exp (iθ1) cosh r , v = exp (iθ2) sinh r .
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Fig. 11.9 Frequencies ωA (red) and ωB (blue) of the two polariton branches (normal modes) of
the optomechanical system, in units of �m, for G/�m = 0.05 in the red-detuned case �c < 0.
The dashed curves correspond to the frequencies of the bare photon and phonon modes

photon-like excitation and the branch “B” a phonon-like excitation. In contrast, for
−�m < �c < 0, we have

ωA(�c) ≈ �m
(

1+ 2g2�c

(�2
c −�2

m)�m

)
,

ωB(�c) ≈ −�c
(

1− 2g2�m

(�2
c −�2

m)�c

)
, (11.70)

so that, or �c → 0(−), the polariton “A” is phonon-like and “B” is photon-like.
This is reminiscent of the situation for atom field coupling, where as we have seen,
one of the dressed states becomes atom-like of the other one photon-like for large
detunings.

For small dimensionless optomechanical couplings and detunings

g ≡ g/�m � 1 ; δ ≡ �c/�m � −1, (11.71)

the normal mode operators are given in terms of the bare mode operators by

Â =
[

1+ 2δg2

(δ − 1)2

]
â − g

1+ δ b̂ +
g2

δ(1− δ2)
â† + g

1− δ b̂
†, (11.72)

B̂ = g

1+ δ â +
[

1+ 2δg2

(δ − 1)2

]
b̂ + g

1− δ â
† + g2δ

δ2 − 1
b̂†, (11.73)
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and the polariton number operators n̂A ≡ Â†Â and n̂B ≡ B̂†B̂ become

n̂A =
[

1+ 4δg2

(δ − 1)2

]
â†â + 2(1+ δ2)g2

(δ − 1)2
b̂†b̂ +

(
g

1− δ
)2

− g

1+ δ (â
†b̂ + b̂†â)+ g2

δ(1− δ2)
(â2 + â†2)

+ g

1− δ (âb̂ + b̂
†â†)− g2

1− δ2 (b̂
2 + b̂†2) , (11.74a)

n̂B =
[

1+ 4δg2

(δ − 1)2

]
b̂†b̂ + 2(1+ δ2)g2

(δ − 1)2
â†â +

(
g

1− δ
)2

+ g

1+ δ (â
†b̂ + b̂†â)+ g2

1− δ2 (â
2 + â†2)

+ g

1− δ (âb̂ + b̂
†â†)+ g2δ

δ2 − 1
(b̂2 + b̂†2) . (11.74b)

To the lowest order, one can neglect the intermode correlations and squeezing terms
appearing in these expressions. This approximates the mean polariton numbers by
the mean thermal occupation n̄a of the optical reservoir and n̄b of the mechanical
reservoir, respectively. When the optomechanical coupling is small but finite,
though, all terms in Eqs. (11.74a) and (11.74b) contribute, and the steady-state
polariton populations deviate from thermal equilibrium. For −1 < δ < 0, the
expressions for Â and B̂ are simply interchanged.

11.4 Standard Quantum Limit of Optomechanical Detection

The next chapter will show examples of optomechanical measurements of extraor-
dinarily feeble displacements and forces and discuss situations where detectors
of even greater sensitivity would be highly desirable. But efforts to increase the
precision of measurements are constrained by the Heisenberg uncertainty principle,
as we have seen in Chap. 6. This section revisits this issue in the context of
optomechanical detection and shows that when light is used as the probe of
mechanical motion, the standard quantum limit arises from the balance between the
uncertainties in photon number, the shot noise, and the back action of the radiation
pressure applied to the object.

The most remarkable optomechanical detectors to date are without a doubt the
LIGO and VIRGO gravitational wave antennas. They work by optically measuring
changes in the positions of two suspended masses that serve as the end mirrors
of kilometers-long Michelson interferometers, see Fig. 11.1. Gravitational waves,
resulting, for example, from the merger of two black holes, cause minute changes
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in the curvature of space-time and hence in the lengths of the interferometer arms.
Because the changes caused by such collisions are so small, the sensitivity of these
antennas must be truly extraordinary. At its most sensitive state, the Advanced LIGO
system will be able to detect a change in distance between its mirrors 1/10,000th
the width of a proton, equivalent to measuring the distance to the nearest star,
some 4.2 light-years away, to an accuracy smaller than the width of a human
hair [41]. It should therefore come as no great surprise that the development of
these systems has played, and continues to play, a central role in developing a more
profound understanding of the role of quantum noise and quantum back action in
optomechanical detectors. For this reason, we focus in the following on the specific
case of a LIGO-type Michelson interferometer antenna.

Intuitively, one might argue that since the photon statistics of single mode lasers
are Poissonian, their intensity fluctuations, or shot noise, scale as the square root of
the intensity. One might therefore contend that interferometer noise can be reduced
simply by increasing that intensity. This, however, is not the case, as discussed
by C. Caves and colleagues in a series of classic papers [15, 16]. Optomechanical
interferometers are subject to two fundamental sources of quantum noise: the shot
noise that we just mentioned, which is a sensing noise, and radiation pressure noise,
which is a back action noise. It is their combined effect that results in the standard
quantum limit of optomechanical interferometers.5

Michelson interferometers are characterized by two input modes, labeled a1 and
a2 in Fig. 11.10. A laser field a1 of wavelength λ is injected through the first port
and distributed to the two interferometer arms by a beam splitter. The mode a2 is
the field entering the interferometer through the detection port. Typically, it is in a
vacuum state. The output signal is obtained by a photodetector measuring the power
in the exit mode c2.

We saw in the discussion of homodyne detection that the fields b1 and b2 that
enter the interferometer arms after the beam splitter are related to the input modes
a1 and a2 by the input–output matrix relation (2.174)

U(θ, φ) =
(

cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
, (11.75)

where we have set φ = 0. To eliminate unimportant phase factors, we assume that
the beam splitter is complemented by two phase shifters acting on the mode a1,
thereby imposing on the two fields exiting the beam splitter opposite phase shifts

5We ignore here all technical noise, which can at least in principle be reduced to an arbitrarily low
level.
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Fig. 11.10 Schematic of a
Michelson interferometer,
with the various fields
considered in the text labeled.
Typically (but not always),
the input field â1 is a laser
field, and â2 is a vacuum field

±ϕ, that is,

U(θ, φ)→
(
eiϕ 0
0 1

)(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)(
e−iϕ 0

0 1

)

=
(

cos(θ/2) ieiϕ sin(θ/2)
ie−iϕ sin(θ/2) cos(θ/2)

)
. (11.76)

For a 50/50 beam splitter, we have θ = π/2, and with φ = −π/2, this gives finally

U = 1√
2

(
1 −1
1 1

)
. (11.77)

The annihilation operators of the interferometer modes are then related to those of
the input modes by the unitary transformation

(
b̂1

b̂2

)
= 1√

2

(
1 −1
1 1

)(
â1

â2

)
= 1√

2

(
â1 − â2

â1 + â2

)
. (11.78)

Similarly, those of the output modes are given by

(
ĉ1

ĉ2

)
= 1√

2

(
eiζ/2b̂1 − e−iζ/2b̂2

eiζ/2b̂1 + e−iζ/2b̂2

)
=

(
i sin(ζ/2)â1 − cos(ζ/2)â2

cos(ζ/2)â1 − i sin(ζ/2)â2

)
, (11.79)
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where the phase

ζ = 4π�z/λ (11.80)

accounts for the difference in length�z between the two arms of the interferometer.

Shot Noise The power measured at the output of the interferometer is proportional
to

n̂ = ĉ†
2 ĉ2 = cos2(ζ/2)â†

1 â1+sin2(ζ/2)â†
2 â2+ i

2
sin(ζ )

[
a

†
2 â1 − â†

1 â2

]
. (11.81)

We assume that the field injected in mode a1 is a strong coherent field |α〉, with
â1|α〉 = α|α〉 and mean photon number α2, with α taken real for convenience and
without loss of generality. In contrast, the field injected in mode a2 is very weak,
a reasonable assumption since it is in most (but not all) cases the vacuum field.
Equation (11.81) can then be approximated by

n̂ ≈ cos2(ζ/2)â†
1 â1 + α sin(ζ )d̂2(a2) , (11.82)

where α is the amplitude of the coherent state and

d̂2(a2) = 1

2i

(
â2 − â†

2

)
(11.83)

is the quadrature of the input mode a2, see Eq. (2.122). The average photon number
at the detector is therefore

〈n̂〉 = α2 cos2(ζ/2) , (11.84)

and its variance is

σ 2
n = 〈n̂2〉 − 〈n̂〉2 = α2

[
cos4(ζ/2)+ sin2(ζ/2)σ 2

d2
(a2)

]
, (11.85)

where σ 2
d2
(a2) is the variance of the quadrature d̂2(a2), and we have accounted for

the fact that the photon number variance of a coherent state |α〉 is |α|2. This shows
that the shot noise of the interferometer is not due only to the shot noise of the input
laser field. Rather, it also comprises a component proportional to the variance of
the quadrature d2 of the weak-field injected in its second port, typically the vacuum
field.

The measurement of small relative phase changes δζ , and hence of small
differences �z in the lengths of the interferometer arms, can be inferred from the
detected mean photon number 〈n̂〉 since from Eq. (11.84), we have

d〈n̂〉
dζ
= − 1

2α
2 sin(ζ/2) cos(ζ/2) = − 1

2α
2 sin(ζ ) , (11.86)
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or, with ζ = (4π/λ)�z,
d〈n̂〉

d(�z)
= −2π

λ
α2 sin(ζ ) . (11.87)

With Eq. (11.85), this gives for the variance σ 2
sn(�z) of the random fluctuations of

�z resulting from the shot noise in the input fields

σ 2
sn(�z) =

λ2

4π2α2 sin2(ζ )

[
cos4(ζ/2)+ sin2(ζ/2)σ 2

d2
(a2)

]

= λ2

16π2α2

[
cot2(ζ/2)+ 4σ 2

d2
(a2)

]
. (11.88)

The first term in this expression can be eliminated by operating the interferometer
near a dark fringe, in which case cot2(ζ/2) = 0. The variance in signal resulting
from the shot noise reduces then to

σ 2
sn(�z) =

λ2

4π2α2
σ 2
d2
(a2) . (11.89)

Remarkably, it is entirely due to the fluctuations in the quadrature d̂2 of the (typically
vacuum) input mode a2. Because it scales as 1/α2, the shot noise decreases with
increased laser intensity as expected. However, we still have to account for the
second unavoidable source of quantum noise, radiation pressure noise, and as we
now show, it becomes increasingly dominant as α2 increases.

Radiation Pressure Noise In optomechanical interferometers such as the LIGO
antennas, the end mirrors of the two interferometer arms are suspended and can
therefore move under the influence of radiation pressure from the intracavity
field. Differential changes in the lengths of the two arms result in changes in
the corresponding intracavity field intensities and hence in a differential radiation
pressure force between the two mirrors proportional to the difference in photon
numbers of these two fields, b̂†

2b̂2 − b̂†
1b̂1. This back action force imparts a change

in the relative momenta of the mirrors

�p = 2h̄k(b̂†
2b̂2 − b̂†

1b̂1) , (11.90)

and an associated additional noise source. A derivation that parallels the analysis of
balanced homodyne detection of Sect. 2.4.2 and is the topic of Problem 11.8 shows
that the variance in momentum resulting from radiation pressure fluctuations is

σ 2
rp(�p) = (4h̄k)2α2σ 2

d1
(a2) , (11.91)
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where σ 2
d1
(a2) is the variance of the quadrature

d̂1 = 1

2
(â2 + â†

2) (11.92)

of the input mode a2. For a measurement time τ , the corresponding variance in �z
will be

σ 2
rp(�z) =

( τ
2m

)2
σ 2

rp(�p) =
(

4πh̄τ

mλ

)2

α2σ 2
d1
(a2) . (11.93)

Standard Quantum Limit The total variance of z is the sum of its shot noise and
radiation pressure noise contributions,

σ 2(�z) = σ 2
sn(�z)+ σ 2

rp(�z)

= 1

α2

(
λ

2π

)2

σ 2
d2
(a2)+ α2

(
4πh̄τ

mλ

)2

σ 2
d1
(a2) . (11.94)

Importantly, in contrast to the shot noise contribution, which scales as 1/α2, the
radiation pressure contribution scales linearly with α2, as illustrated in Fig. 11.11.
As already indicated, then, the intuitively appealing idea that increasing the laser

Fig. 11.11 Schematic of the dependence of the variance in the differential lengths of the
optomechanical interferometer arms σ 2(�z) on the dimensionless input laser power α2, illustrating
the transition from shot noise dominated to radiation pressure dominated fluctuations as the
intensity is increased. Arbitrary units
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power will reduce the noise of the interferometer is therefore not correct, as it fails
to account for the effects of radiation pressure.

From the Heisenberg uncertainty relation (2.126) for the variances of the single-
mode field quadratures, we have

σd1(a2) σd2(a2) ≥ 1

4
, (11.95)

with σd1(a2) = σd2(a2) = 1
2 for coherent states, and in particular for the input field

mode a2 is in a vacuum. In that case, Eq. (11.94) reduces to

σ 2(�z) = 1

α2

(
λ

2π

)2

+ α2
(

4πh̄τ

mλ

)2

. (11.96)

Because the shot noise and radiation pressure noise contributions scale as 1/α2 and
α2, respectively, the variance σ 2(�z) is minimized for the optimum mean photon
number of the input laser

α2 = mλ2

8π2h̄τ
, (11.97)

in which case shot noise and radiation pressure noise contributions are equal and

σ 2(�z) = 4h̄τ/m . (11.98)

This is the standard quantum limit of optomechanical interferometers. But as already
pointed out in Sect. 6.2, it is important to remember that the standard quantum limit
is not a fundamental measurement precision limit and that it is sometimes possible
to circumvent it. In the particular example considered here, this can be achieved by
injecting a squeezed state with an appropriately chosen squeezed variance in the
a2 input mode of the interferometer, so as to reduce either the shot noise or the
radiation pressure noise. The impact of the remaining variance can then be further
reduced with an appropriate choice of laser power α2. This technique has now been
implemented in the advanced LIGO gravitational wave antenna.

11.5 Ultracold Atoms

We conclude this chapter by drawing a few additional connections and parallels
between mesoscopic and macroscopic systems and atomic ensembles made to
behave much like “moving atomic mirrors.” For this brief overview, we limit
ourselves to neutral atomic samples cooled well below their recoil temperature and
trapped inside a single-mode Fabry–Pérot resonator. These could be, for example,
a nearly homogeneous and collisionless Bose–Einstein condensate at T ≈ 0 or an
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atomic sample cooled near the vibrational ground state of an optical trap. Side-mode
excitations of the condensate in the first case, and the vibrational motion of thermal
atoms in the second case, provide formal analogs of one or several moving mirrors.

Bose–Einstein Condensate To see how this works, we consider a generic model
consisting of a collisionless Bose condensate at T = 0 trapped inside a Fabry–Pérot
cavity of length L and mode frequency ωc. The atoms of mass m are driven by
a pump laser of frequency ωL and wave number k. When ωL is far detuned from
the atomic transition frequency ω0, the excited electronic state of the atoms can be
adiabatically eliminated, as we have seen, and the atoms interact dispersively with
the cavity field, see e.g. Eq. (3.13). In a frame rotating at the laser frequency ω, the
system is therefore described by the Hamiltonian

Ĥ = Ĥbec + Ĥfield + Ĥκ , (11.99)

where

Ĥfield = ih̄η(â† − â)− h̄�câ†â (11.100)

describes the driven cavity field mode,

Ĥbec =
∫

dx#̂†(x)

[
p̂2
x

2m
+ g

2

�
cos2(kx̂)â†â

]
#̂(x), (11.101)

which accounts for the (one-dimensional) condensate and its off-resonant interac-
tion with the intracavity field, and Ĥκ depicts the coupling of the resonator field to
the outside world, leading to its dissipation at rate κ/2. Here, #̂(x) is the bosonic
Schrödinger field operator of the atoms, g is the vacuum Rabi frequency, and
� = ω0 − ω is the atom–field detuning.

When the light field can be approximated by a plane wave, the atomic field
operator can likewise be expanded in terms of plane waves as

#̂(x) = 1√
L

∑
q

b̂ke
iqx , (11.102)

where b̂q and b̂†
q are annihilation and creation operators for atomic bosons with

momentum k, satisfying the bosonic commutation relations [b̂q , b̂†
q ′ ] = δq,q ′ and

[b̂q , b̂q ′ ] = 0.
In the absence of light and at T = 0, the ground state of the atomic sample is a

condensate of N atoms with zero momentum in the state

|#0〉 = (b̂†
0)
N |0〉 . (11.103)
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However, as a result of virtual transitions induced by the intracavity field, the atoms
can acquire a recoil momentum ±2�h̄k, where � = 0, 1, 2, . . ., as we have seen in
Chap. 8 in the context of atomic diffraction. In the limit of low photon numbers,
it is sufficient to consider the lowest diffraction order, � = 1. The atomic field
operator can therefore be expressed in terms of a zero-momentum and a “sine mode”
component as

#̂ ∼ b̂0φ0(x)+ b̂2φ2(x), (11.104)

where φ0(x) = 1 is the condensate wave function and φ2(x) =
√

2 cos(2kx), with
the
√

2 factor required for normalization of the mode function.
For very weak optical fields, the occupation of the sine mode remains much

smaller than the zero-momentum mode, so that b̂0 �
√
N and 〈b̂†

2b̂2〉 � N.

Substituting then Eq. (11.104) into the Hamiltonian (11.101) and in a frame rotating
at the pump laser frequency, the Hamiltonian Ĥom, bec becomes [42]

Ĥom,bec = 4h̄ωrecb̂
†
2b̂2 + h̄â†â

[
�′ + g2(b̂2 + b̂†

2)
]
, (11.105)

where

g2 = g
2√N/2
�s

, (11.106)

ωrec = h̄k2/2m is the recoil frequency, and �′ = � + g2N/2� is an effective
Stark-shifted detuning.

The reduced Hamiltonian (11.105) describes the coupling of two oscillators, the
cavity mode â and the momentum side mode b̂2, via the optomechanical coupling
g2â

†â(b̂2 + b̂†
2). In this sense, the momentum side mode of the condensate behaves

formally just like a moving mirror driven by the radiation pressure of the intracavity
field, in complete analogy with the situation described by Eq. (11.30).

F. Brenneke et al. [42] studied the dynamics of a Bose condensate of 87Rb
atoms trapped inside a high-finesse Fabry–Pérot and driven by a feeble optical field.
This experiment demonstrated the optomechanical coupling of a collective density
excitation of the condensate, showing that it behaves precisely as a mechanical
oscillator coupled to the cavity field, in quantitative agreement with a cavity
optomechanical model of Eq. (11.105).

Ultracold Atoms A similar analogy can be established when considering a sample
of ultracold two-level atoms with transition frequency ω0 tightly confined in a
harmonic trap of frequency ωz centered at the location z0 along the axis of an optical
resonator and driven far off resonance by field at frequency ω. The vacuum Rabi
frequency of the intracavity field at the location zi = z0 + δzi of atom i is

g(zi) = g0 sin(kz0 + 2kδzi) , (11.107)
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so that far off resonance, the atom–field Hamiltonian is

Ĥ = h̄ωâ†â + h̄ωzb̂†
i b̂i − h̄

∑
i

|g(zi)|2
�

â†â , (11.108)

where h̄ωzb̂
†
i b̂i accounts for the harmonic center-of-mass motion of that atom and

� = ω0 − ω.
Summing over all atoms in the sample and expanding the far off-resonant atom–

field interaction to the lowest order in kδzi , one finds, see Problem 11.10,

Ĥ ≈ h̄
(
ω − Ng

2
0

�
sin2 kz0

)
â†â + h̄ωz

∑
i

b̂
†
i b̂i −

h̄g2
0

�
sin(2kz0)â

†â
[∑
i

k δzi
]
,

(11.109)

where N is the number of atoms and the operator b̂i describes the annihilation of a
phonon from the center-of-mass motion of atom i.

The last term of this Hamiltonian describes the optomechanical coupling of the
intracavity field to the collective atomic variable

Ẑcm = 1

N

∑
i

δ̂zi , (11.110)

which is nothing but the center-of-mass position of the sample, that is, its normal
mode. For small displacements, that mode can be described as a harmonic oscillator
of frequency ωz and mass Nm. In this picture, the atom–field system is therefore
modeled by the optomechanical Hamiltonian

Ĥom, at = h̄ω′câ†â + h̄ωzb̂†
cmb̂cm − h̄gN(b̂cm + b̂†

cm)â
†â , (11.111)

where ω′ = ω − (Ng2
0/�) sin2 kz0, b̂cm and b̂†

cm are bosonic annihilation and
creation operators for the center-of-mass mode of motion of the atomic ensemble,
zzpf = √h̄/2Nmωz, and

gN = Nzzpf
h̄kg2

0

�
sin(2kz0) . (11.112)

In a trailblazing experiment [43], T. Purdy and colleagues positioned a sample
of cold atoms with sub-wavelength accuracy at various positions in a Fabry–
Pérot cavity and succeeded in particular in demonstrating the tuning from linear
to quadratic optomechanical coupling regime. A comprehensive review of cavity
optomechanics with cold atoms can be found in Ref. [44].
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11.6 Functionalization and Hybrid Systems

The rapid progress witnessed by quantum optomechanics makes it increasingly
realistic to consider the use of mechanical systems operating in the quantum
regime to make precise and accurate measurements of feeble forces and fields.
In many cases, these measurements amount to the detection of exceedingly small
displacements, and in that context, the remarkable potential for functionalization
of optomechanical devices is particularly attractive. Their motional degree(s) of
freedom can be coupled to a broad range of other physical systems, including
photons via radiation pressure from a reflecting surface, spin(s) via coupling to a
magnetic material, electric charges via the interaction with a conducting surface,
etc. In that way, the mechanical element can serve as a universal transducer or
intermediary that enables the coupling between otherwise incompatible systems.
The potential of these hybrid systems for functionalization also suggests that
quantum optomechanical systems have the potential to play an important role in
classical and quantum information processing, where transduction between different
information-carrying physical systems is crucial.

Much potential for the functionalization of optomechanical devices is offered
by interfacing them with a single quantum object. This could be, for example, an
atom, a molecule, or a Bose–Einstein condensate [45]. For example, S. Camerer
and coworkers [46] realized a hybrid optomechanical system by coupling ultracold
atoms trapped in an optical lattice to a micromechanical membrane, the coupling
being mediated by the light field, and observed both the effect of the membrane
motion on the atoms and the back action of the atomic motion on the membrane.

Alternatively, one can also couple optomechanical systems to artificial atoms,
for example, to superconducting qubits [20, 47, 48] or to another type of artificial
atoms called nitrogen vacancy centers or NV centers. NV centers consist of a nearest
neighbor pair of a nitrogen atom, which substitutes for a carbon atom and a lattice
vacancy in a diamond crystal. Their ground state is a spin triplet that can be optically
initialized, manipulated, and read out by a combination of optical and microwave
fields, and they are characterized by remarkably long room temperature coherence
times for solid-state systems. Due to their attractive combination of optical and
electronic spin properties, they are of particular interest for hybrid optomechanical
systems [49] and offer much promise for applications in quantum information
processing and in ultrasensitive magnetometry, where the spin is used as an atomic-
sized magnetic sensor, see e.g. Refs. [50, 51].

Even more remarkably perhaps, micromechanical oscillators in the quantum
regime also offer a possible route toward new tests of the quantum mechanics and
gravitation at unprecedented size and mass scales, as well as to the exploration of the
“dark sector” and its yet unidentified constituents of Dark Matter and Dark Energy,
topics to which we turn in the final chapter.
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Problems

Problem 11.1 Show that the field equation of motion

dα(t)

dt
= [i (�c +Gx(t))− κ/2]α(t)+√καin ,

with x(t) = x0 sin(�mt), has the approximate solution α(t) � α0(t) + α1(t), with
α0(t) and α1(t) given by Eq. (11.14).

Problem 11.2 Determine the conditions on |αin|2, �c, and G under which the
potential

V (x) = 1

2
m�2

mx
2 − h̄κ|αin|2

2
arctan [2(�c +Gx)/κ]

results in optical bistability in the steady-state mirror displacement x. Plot the
potential, as well as the steady-state resonator length x as a function of |αin|2 for
parameters that satisfy this condition.

Problem 11.3 Consider an optomechanical resonator where the cavity field is
coupled with damping rate κ/2 to a reservoir at temperature T = 0. Decomposing
the intracavity field operator as â = α + ĉ, show that to the lowest order in the
creation and annihilation operators ĉ† and ĉ the associated noise power spectrum is

Snn(ω) = n κ

(ω +�c)2 + (κ/2)2 ,

where n = |α|2.

Problem 11.4 Carry out the steps that lead to the polariton mode frequencies
ωA(�c) and ωB(�c) of Eq. (11.68).

Problem 11.5 Determine the polariton modes and polariton spectrum for the
simple optomechanical Hamiltonian (11.40), h̄�câ†â+ h̄�mb̂†b̂− h̄g0â

†â(b̂+ b̂†).

Problem 11.6 Find the evolution of the operators â(t) and b̂(t) for the beam splitter
Hamiltonian V̂ = −h̄g(âb̂† + h.c.) Hint: The Baker–Hausdorff relation may prove
useful.

Problem 11.7 Show that under the action of the two-mode squeezing operator

Ŝab(t) = e
[
g∗âb̂−gâ†b̂†

]
t
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the variance of the generalized two-mode quadrature operator X̂ = 1
23/2 (â + â† +

b̂ + b̂†) of a system initially in a two-mode vacuum state becomes

σ 2
X =

1

4

[
exp(−2|g|t) cos2(φ/2)+ exp(2|g|t) sin2(φ/2)

]
.

Determine also the variance of a system initially when the two modes are initially
in coherent states. Hint: Use the fact that the coherent state is a displaced vacuum.

Problem 11.8 Show that in a LIGO-type two-arm interferometer, the variance in
momentum resulting from radiation pressure fluctuations is given by Eq. (11.91),

σ 2
rp(�p) = (4h̄k)2α2σ 2

d1
(a2) ,

where σ 2
d1
(a2) is the variance of the quadrature d̂1 = (1/2)(â2 + â†

2) of the input
mode a2. Show also that for a measurement time τ , the corresponding variance in
�z will be

σ 2
rp(�z) =

(
4πh̄τ

mλ

)2

α2σ 2
d1
(a2) .

Problem 11.9 Show that in the limit where the Schrödinger field #̂(x) ≈
φ0(x)b̂0 +

√
2 cos(2kx)b̂2(x), the atom–field Hamiltonian

Ĥ = h̄ωâ†â +
∫

dx#̂†(x)

[
p̂2
x

2m
− g

2

�
cos2(kx̂)â†â

]
#̂(x)

reduces to the form

Ĥom,bec = 4h̄ωrecb̂
†
2b̂2 + h̄â†â

[
�′ + g2(b̂2 + b̂†

2)
]

of Eq. (11.105), with g2 = g2√N/2
�s

, ωrec = h̄k2/2m, and �′ = �+ g2N/2�.

Problem 11.10 Carry out the steps that lead to the Hamiltonian (11.111)

Ĥom, at = h̄ω′câ†â + h̄ωzb̂†
cmb̂cm − h̄gN(b̂cm + b̂†

cm)â
†â,

which describes a sample of ultracold atoms tightly confined in a harmonic trap of
frequency ωz centered at some location z0 along the axis of an optical resonator and
driven far off resonance by a field at frequency ω, in the limit where the positions
of the individual atoms are zi = z0 + δzi , with δzi much smaller than an optical
wavelength.
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Chapter 12
Outlook

In addition to being a field of research in its own right, quantum optics is of
considerable value for basic and applied science, as well as for engineering
and technology. But even more remarkably perhaps, it is also exceptionally
positioned to help shed light on aspects of the physical world that is still
a profound mystery to us. This final chapter elaborates on that point with
a brief overview of some contributions of quantum optics to tests of the
fundamental laws of nature and to searches for the particles and fields
populating the Dark Sector, these 95% of the physical world that we still
do not understand.

If there is one main lesson to be learned from the previous chapters, it is that
over the years quantum optics has perfected a remarkable set of tools to tame the
quantum. They range from manipulating the precise quantum state of optical or
microwave fields to isolating and trapping atoms, molecules, and ions in controlled
environments; from being able to address these particles individually to tailoring
their interactions in many-body systems; and from bringing objects of increasing
mass deep into the quantum regime to integrating them in powerful hybrid systems.

Combined with our increased understanding, at least at an operational level,
of quantum measurements and of the importance and implications of quantum
entanglement, these developments have uniquely positioned quantum optics to
tackle a remarkable spectrum of problems in fundamental and applied science and
engineering—most notably perhaps in quantum metrology and quantum informa-
tion science. They also create important synergies at the boundary between quantum
optics and a broad spectrum of physics subfields from AMO and condensed matter
physics to astrophysics and high-energy physics and provide new opportunities in
areas ranging from chemistry to biology and from engineering to health science
as well. These scientific and technical advances, sometimes referred to as the
second quantum revolution, bring to the fore the extraordinary potential of quantum
mechanics, a potential that was initially largely unforeseen. Interested readers
are encouraged to consult the timely and eye-opening report of the National
Academy of Sciences, Engineering and Medicine Manipulating Quantum Systems:
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An Assessment of Atomic, Molecular and Optical Physics in the United States,
which covers many of these points in much detail [1].

Despite all these successes, however, we should try not to be too complacent: in
many ways, the current state of physics is not completely unlike the situation faced
by classical physics at the turn of the twentieth century, when it had reached the
superb degree of maturity that was central to the industrial revolution. Now as then,
things are not quite as fully understood as one would wish. In 1900, Lord Kelvin
gave a celebrated talk entitled “Nineteenth Century Clouds over the Dynamical
Theory of Heat and Light” [2] in which he stated with remarkable insight that “The
beauty and clearness of the dynamical theory, which asserts heat and light to be
modes of motion, is at present obscured by two clouds.” He went on to explain that
the first of these two clouds was the inability to experimentally detect the luminous
ether—the medium that was thought to be vibrating to create light waves; and the
second was the so-called ultraviolet catastrophe of blackbody radiation—the fact
that Maxwell’s theory utterly failed to predict the amount of ultraviolet radiation
emitted by objects as a function of their temperature. As we know, these two clouds
led to two earthshaking revolutions in physics: relativity and quantum mechanics.

The parallel with the current state of physics is actually quite striking. Despite
the extraordinary successes of the Standard Model, one might argue that it is
not just two clouds that obscure our full understanding of the physical world,
but something more like a thick fog. Indeed, it is now well established that we
only understand only about 5% of the Universe. The particles included in the
Standard Model, quarks, leptons and the associated force carriers of the weak,
strong, and electromagnetic interaction, plus the Higgs boson, properly describe
ordinary matter. But they account neither for dark matter, which accounts for 26%
of the Universe composition, nor for dark energy, which accounts for another 69%.
Dark matter and dark energy are jointly referred to as the dark sector. And in
addition, despite continuing attempts the Standard Model still fails to unify gravity
with the other fundamental interactions.

Understanding the dark sector and its hypothetical collection of yet unobserved
quantum fields and corresponding particles is arguably the greatest current challenge
in fundamental physics. Not surprisingly, its experimental component relies heavily
on the use of large particle colliders and/or astronomical observations—after all, the
existence of dark matter has been inferred for decades from the observation of its
gravitational effects such as the rotation of spiral galaxies [3, 4], and dark energy
somewhat more recently from the accelerating expansion of the Universe [5, 6]. But
as we shall see, quantum optics also contributes essential tools and expertise to the
cross-disciplinary efforts aimed at solving this deepest puzzle of physics.1

The next two sections give a brief overview of some of the ways in which
quantum optics contributes to this enterprise. It does not go into any detail and

1This is of course not a new state of affairs. Optics has a long and distinguished history of doing
so, having for example been at the heart of the development of fields from astronomy to quantum
mechanics and to relativity, to mention just three examples.
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is by no means meant to be comprehensive. Rather, it is limited to a mention
of a few selected examples that rely on concepts and approaches that we have
become familiar with, most importantly interferometry, atom interferometry, and
optomechanics. The goal here is simply to give a taste of the kind of questions and
challenges that can be addressed with these tools. Because so little is known about
the dark sector, it is hard to go beyond this elementary level without diving into some
of the theories and scenarios that have been proposed to describe it. Unfortunately
the current lack of experimental guidance—none of the proposed dark particles
and fields have been observed yet—makes it challenging to decide which of
these theories to focus on. A very thorough review of AMO and quantum optics
contributions to recent developments in tests of fundamental physics, including
parity violation, searches for permanent electric dipole moments, tests of general
relativity and of the equivalence principle, and searches for dark matter and dark
energy can be found in Ref. [7].

12.1 Gravitation

Guided by the fact that we are quite familiar with gravity, which we understand
reasonably well—at least at the classical level since we are constantly confronted
by its effects in everyday life, we focus on that topic first. We then turn to the much
more elusive dark sector in the following section, with the caveat that this is a
somewhat arbitrary and not very satisfactory division, since as we shall see there
is a considerable overlap between these two topics, which really address the same
fundamental questions.

It has been known since Newton’s 1687 publication of the law of universal
gravitation in Philosophiæ Naturalis Principia Mathematica that the gravitational
attraction between two point bodies is proportional to the product of their massesM
and m and inversely proportional to the square of their distance r , F = GMm/r2,
whereG = 6.674×10−11 m3kg−1s−2 is Newton’s gravitational constant. Einstein’s
1915 general relativity theory improved significantly on that law by providing
a description of gravity as a geometric property of space and time, or four-
dimensional space-time, and predicted new effects such as gravitational waves,
gravitational lensing, and gravitational time dilation. But despite all its successes,
general relativity is largely expected not to be the final word, as it cannot so far be
unified with the other known forces of nature, the electromagnetic, weak, and strong
forces, which are themselves unified in the Standard Model. The quest to unify all
known forces of nature remains a major challenge, and precise tests of the laws of
gravity may provide important hints toward the solution of this problem.

Consider for example the equivalence principle, the fundamental principle that
forms the basis of Einstein’s theory of general relativity. It states that all objects fall
with the same acceleration under the influence of gravity, that is, that all forms of
matter or energy respond to gravity in the same way. So far the equivalence principle
has been experimentally verified at a level of accuracy such that the accelerations of
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two falling objects have been shown to differ by no more than one part in 1013. But it
is widely believed that general relativity and the Standard Model are both low energy
limits of a more complete theory that unifies all forces at high energies. We simply
do not know if the equivalence principle will hold for that unified theory, or whether
it will be violated at some level. Higher precision experiments are therefore needed
to determine if, when, and how it ceases to hold. A similar motivation also lies
behind improved tests of the 1/r2 dependence of the law of universal gravitation.
As we shall see, such precision experiments also provide powerful tools in the search
for new physics, such as candidates for dark matter and dark energy.

We will turn to these topics in the following subsections but first focus on a
prediction of general relativity that has been spectacularly confirmed in the last few
years, the existence of gravitational waves.

12.1.1 Gravitational Wave Detection

Four centuries after Galileo Galilei used telescopes to study and revolutionize our
understanding of the Universe they remain our most powerful tool to learn about it,
whether they detect radio waves, submillimeter waves, infrared radiation, visible
light, ultraviolet radiation, or X-rays. However, extremely significant additional
information is provided by the detection and characterization of other “messenger
signals” from outer space such as neutrinos, cosmic rays, and, since 2015, grav-
itational waves. These disturbances of space-time are produced by the motion of
massive objects, in particular by closely orbiting compact massive objects such as
neutron stars or black holes binaries, merging supermassive black holes, collapsing
supernovae, or pulsars, and they propagate outward from their source at the speed
of light. Gravitational waves also hold the promise to provide information on the
processes that took place in the early Universe, shortly after the Big Bang.

While gravitational waves were predicted by Einstein in 1916, it is not until
1974 that R. A. Hulse and J. H. Taylor obtained the first indirect evidence of
their existence through the observation of the gradual decline of the orbit period
of a binary pulsar that matched the loss of energy and angular momentum by
gravitational radiation predicted by general relativity [8–10]. The first direct detec-
tion of gravitational waves finally occurred on September 14, 2015, when LIGO
(which stands for Laser Interferometer Gravitational Wave Observatory) physically
sensed the undulations in space-time caused by gravitational waves generated by
two colliding black holes 1.3 billion light-years away [11], see Fig. 12.1. Without a
doubt, LIGO’s discovery will go down in history as one of the humanity’s greatest
scientific achievements.
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Fig. 12.1 Signals of the first
gravitational waves detected
by the twin LIGO
observatories in Livingston,
Louisiana, and Hanford,
Washington. The signals
come from two merging black
holes, each about 30 times the
mass of the sun and 1.3
billion light-years away. The
top two plots show data
received at Livingston and
Hanford, with the thin lines
showing the predicted shapes
for the waveform. Time is
plotted on the horizontal axis
and strain on the vertical axis.
The strain represents the
fractional amount by which
distances are distorted. The
bottom plot compares data
from both detectors, where
the Hanford data have been
inverted for comparison, due
to the differences in
orientation of the detectors at
the two sites. (Image Credit:
Caltech-MIT-LIGO Lab)

LIGO We mentioned in Chap. 6 and again in Sect. 11.4 that the LIGO antennas use
large-scale Michelson interferometers2 with free standing end mirrors to detect the
changes in space-time curvature resulting from the passage of gravitational waves,
see Fig. 11.1. Gravitational waves passing through the interferometer produce a
metric disturbance that results in an effective differential change in the arm lengths,
imparting in turn a phase shift to the optical fields circulating in the arms.

This seems straightforward enough in principle, so one might ask why it took a
century after Einstein’s prediction to directly detect these waves? The simple reason
is that while the processes that generate gravitational waves can be extremely violent
and destructive, by the time the waves reach the Earth they are thousands of billions
of times weaker. In fact, by the time gravitational waves from LIGO’s first detection
reached us, the amount of space-time wobbling they generated was a 1000 times
smaller than the nucleus of an atom! These inconceivably small perturbations in
space-time are what LIGO is designed to measure.

2The arms of the LIGO interferometer are 4 km long, but each arm consists of a Fabry-Pérot
interferometer such that the light beams effectively traverse the cavity about 450 times, resulting
in an effective arm length of 1800 km, see Fig. 12.2.
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Achieving the seemingly impossible task of detecting such minute length
changes required to gain a deeper understanding of quantum measurements and of
the standard quantum limit. This led as we have seen to the development of quantum
non-demolition measurements and to the use of squeezed states to reduce shot noise
in interferometric gravitational wave detectors [12–15]. As pointed out in the third
of these references, during the first LIGO observing run, which took place from
September 2015 to January 2016, three binary black hole detections were made, and
the second observing run, which ran from November 2016 to August 2017, detected
seven binary black hole mergers, and one binary neutron star merger. In contrast,
the improved performance of the detectors, combined with the permanent addition
of the Italy-based Advanced Virgo antenna in the third observing run, which took
place from April 1 to September 30, 2019 and from November 1, 2019 until March
27, 2020, resulted in the observation of 56 candidate gravitational wave signals,
including at least one new compact binary coalescence in the binary neutron star
mass range. In particular, as discussed in Sect. 11.4 and shown in Fig. 12.2, shot
noise was reduced by the use of squeezed vacuum injected in the second input of
the interferometer.

Fig. 12.2 Schematic of the LIGO antenna, illustrating the presence of Fabry–Pérot interferometers
(FP) in the two arms of the Michelson interferometer, thereby increasing their effective length by
a factor of 450, as well as the power recycling mirror (PRM) whose goal is to effectively increase
the laser power inside the antenna, and the squeezed vacuum injection in the otherwise “empty”
interferometer input
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Fig. 12.3 Spectrum of the expected frequency ranges of the gravitational waves emitted in
selected cosmic events. BH stands for black hole and NS for neutron star. (Adapted from https://
LISA.NASA.gov)

LISA The LIGO gravitational wave detectors and their cousin, the Virgo interfer-
ometer, detect gravitational waves in the hertz to kilohertz range, a consequence of
the effective length of the interferometer arms. There is also considerable interest
in detecting gravitational waves of much lower frequencies, in the millihertz to
hertz range, corresponding to binaries that orbit each other with periods of seconds
to hours [16]. Examples of systems emitting such waves include white dwarf
binaries, as well as stellar-size black holes with large separations. They initially
lose energy in the form of low frequency gravitational waves, leading to a slow
decrease of their orbital separation before their orbital frequency increases in the
last instants preceding their merger. The detection of gravitational waves in the
millihertz frequency range would therefore permit to observe the evolution of these
systems long before their final merger.

A third class of objects that could be observed in a low frequency observatory
is the merger of massive black holes of tens of thousands of solar masses. Because
these systems have a larger effective radius than solar-mass black holes, they cannot
approach one another sufficiently closely to reach the high orbital frequencies and
merge instead at the low frequencies, see Fig. 12.3. It is expected that the merger
of binary supermassive black holes located at arbitrary distances will be observable
with such an antenna, thus making it a deep Universe observatory where sources
detected with good sky localization would help chart the cosmic expansion history
up to high cosmological redshifts.3 Finally, it may be that at much lower frequencies
the primordial gravitational wave background analog of the cosmic microwave
background might also be detectable [17].

3The cosmological redshift refers to the lengthening of a radiation wavelength as it travels through
expanding space. It should not be confused with the Doppler shift, which depends on the motion
of the radiating object relative to an observer.

https://LISA.NASA.gov
https://LISA.NASA.gov
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The length of the interferometer arms needs to be at least comparable to the
wavelength of the signal, as its sensitivity decreases rapidly for wavelengths shorter
than them. The detection of low frequency gravitational waves leads therefore to
extremely challenging requirements on the size of the antennas. For example, since
gravitational waves propagate at the velocity of light a signal at a frequency of
ω ≈ 6s−1 has a wavelength of about 3 × 108 m, which quite obviously calls for a
space-based interferometer. The proposed gravitational wave antenna LISA (Laser
Interferometer Space Antenna), expected to be placed on orbit in 2030, consists
of three spacecrafts arranged in an equilateral triangle with sides 2.5 million km
long and flying along an Earth-like heliocentric orbit, see Fig. 12.4. All three will
carry two telescopes, two lasers, and two test masses, each a 46 mm, roughly 2 kg
gold-coated cube of gold/platinum, pointed at the other two spacecrafts and forming
Michelson-like interferometers, each centered on one of the spacecrafts [18]. The
entire arrangement will be ten times larger than the orbit of the Moon, and the mean
linear distance between the formation and the Earth will be 50 million kilometers.
The arms of the interferometer will be 2.5 × 106 km long, corresponding to a
frequency of 0.75 s−1.

An Earth orbiting system, the Gravity Recovery and Climate Experiment Follow-
on mission (GRACE-FO), was developed in part to test some of the elements of
the future LISA space antenna. It consists of two satellites separated by about 220
km, a distance constantly measured by an extremely precise microwave ranging

Fig. 12.4 Artist illustration of LISA. The three LISA spacecrafts will be in individual Earth-like
orbits around the sun to create the triangle. The test masses are free-falling and shielded by the
enclosing spacecraft from disturbances of the solar wind and radiation pressure. (Image credit:
http://lisa.jpl.nasa.gov/gallery/lisa-waves.html)

http://lisa.jpl.nasa.gov/gallery/lisa-waves.html
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system (Fig. 12.5). Since areas of slightly stronger gravity affect the lead satellite
first and pull it away from the trailing satellite, distance variations amount to
a monitoring of small changes in Earth gravity. This information provides in
particular global measurements on seasonal river basin water storage variations,
human influences on water storage changes, continental aquifer changes, and more.
This is a spectacular and powerful example of the beneficial cross-fertilization that
can arise between basic sciences and applications, in that case gravitational waves
detection and the study of climate changes and human impact on the environment.
More details on this remarkable project can be found on the GRACE-FO website
https://gracefo.jpl.nasa.gov.

Atom Interferometer Antennas Atom interferometers continue to witness
remarkable experimental developments and can now achieve coherence times of
seconds and wave packet separations of tens of centimeters. Of particular relevance
in the context of gravitational wave detection are “large momentum transfer clock
atom interferometers” such as the system recently reported in Ref. [19]. In contrast
with most atom interferometers, which make use of two-photon interactions to
minimize the negative effects of spontaneous emission as we mentioned in Sect. 8.6,
they rely on single-photon transitions on the 1S0-3P1 intercombination line of 88Sr,
a transition characterized by a very narrow natural linewidth of just 7.4 KHz. Using
that transition J. Rudolph and coworkers have demonstrated an atomic momentum

Fig. 12.5 Illustration of GRACE-FO in orbit. (Image credit: NASA/JPL-Caltech)

https://gracefo.jpl.nasa.gov
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separation of 141 h̄k between the two arms of the interferometer. At the same
time, as briefly mentioned in Sect. 10.4, progress in atomic clocks has been just as
spectacular, with the best atomic clocks having now a stability better than 1 s over
the age of the Universe [20, 21].4

These developments have lead M. Kasevich and his coworkers to propose
an alternative gravitational wave detector that combines optical methods and
atom interferometry [24]. Their proposal draws on the use of atomic clocks to
measure the differential acceleration of two spatially separated, free-falling atom
interferometers, as discussed in Sect. 8.6, Problems 8.7–8.9. As such it expands on
the same basic idea as LIGO or LISA, but with the important difference that the free
standing mirrors are now replaced by atom interferometers.

We outlined in Problem 8.9 how atom interferometers can be used to measure
the local acceleration due to gravity. This results from the fact that if the excited and
ground state atoms have momenta p and p + h̄keff, once they are recombined the
phase difference between the two paths of the interferometer is given by

�" = keff · gT 2 , (12.1)

where T is the time interval between the π/2 and π optical pulses that act as
atomic “beam splitter” and “mirror,” respectively, keff is the effective momentum
difference imparted on the excited and ground electronic states of the atom, and g
the acceleration of gravity, see Refs. [25, 26] for more details. Furthermore, using
two spatially separated atom interferometers allows to measure gravity gradients as
well. If they are separated by a large distance, and with the help of high precision
clocks, comparing the matter-wave interference fringes in the two interferometers
provides a record of the effect of gravitational waves on the travel time of a laser
pulse linking the two atom interferometers. It is argued in particular that using atoms
instead of mirrors as test masses could reduce a number of systematic errors.

This technique is also central to the proposed Mid-band Atomic Gravitational
wave Interferometric Sensor (MAGIS) proposal [27], which will be designed to
detect gravitational waves in the frequency band of 0.03 Hz–10 Hz complementary
to existing detectors. MAGIS-100, a 100-m tall atomic sensor now being constructed
at Fermilab, will serve as a prototype of such a gravitational wave detector.
Interestingly, it is also expected to be sensitive to proposed ultralight dark matter
candidates,5 see Sect. 12.2.2, as well as to provide several other opportunities in
fundamental physics, such as testing the equivalence principle and the inverse square
law of gravity, to which we now turn.

4The 1S0-3P0 clock transition of 88Sr has an extremely narrow linewidth of just 1 mHz, correspond-
ing to an excited state lifetime in excess of 100 s. Currently, strontium clocks equipped with the best
ultra-stable lasers show a fractional stability at the low 10−18 total uncertainty level after preparing
ultracold strontium atoms in an optical lattice and probing the 1S0-3P0 mHz clock transition with
a 698-nm laser stabilized to a linewidth of 26 mHz [20, 22, 23].
5As we will see in Sect. 12.2 ultralight dark matter is a proposed class of dark matter consisting of
bosons with masses ranging from 10−22eV < m < 1eV [28].
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12.1.2 Tests of the Equivalence Principle

The equivalence principle states the equivalence of the inertial and gravitational
masses of an object. That is, when objects are in free fall, the trajectories that
they follow are entirely independent of their masses. This principle can be tested
by measuring the differential acceleration �a of two test masses of different
composition relative to each other while falling in the gravitational field of a
source body of massM , for example the Earth. Combining the law of gravitational
attraction

F = GmgM/r2 (12.2)

for the force F on a gravitational mass mg due to the gravitational field of an
attractor of massM with the definition of the inertial mass mi

F = mia (12.3)

gives for the acceleration a of that mass

a = GM
r2

(
mg

mi

)
, (12.4)

which is independent of mass if the equivalence principle holds and mg = mi .
Deviations from the universality of free fall can be quantified by the Eötvös
parameter

η = a1 − a2

(a1 + a2)/2
= 2

(mg/mi)1 − (mg/mi)2
(mg/mi)1 + (mg/mi)2 , (12.5)

where the subscripts � = 1, 2 refer to the two test masses 1 and 2, and a� is their
free-fall acceleration. The second equality results from the assumption that the ratio
of gravitational to inertial masses (mg)� and (mi)� depends on their composition.
The finding of a value η 
= 0 would indicate a violation of the equivalence principle.

We mentioned that general relativity and the Standard Model are believed to be
low energy limits of a unified theory. It is hoped that testing fundamental laws such
as the equivalence principle with ever increasing accuracy and under a broad range
of conditions will provide valuable hints toward achieving this unification. The most
accurate laboratory measurements of the Eötvös parameter to date were carried out
by the Eöt-Wash group [29, 30] using torsion balances and found that η < 10−13

for the case of Be–Ti test masses with Earth as the attractor.6 Space experiments

6Note that strictly speaking, in order to truly test the equivalence principle and constrain the Eötvös
parameter to the η < 10−13 level would require to repeat the experiment for every possible
combination of materials.
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carried out by the MICROSCOPE satellite, which measured the force required to
maintain two test masses of titanium and platinum alloys exactly in the same orbit
[31], found an upper limit of η < 1.3× 10−14.

Atom Interferometer Tests Because of their remarkable potential sensitivity as
gravimeters and gravity gradiometers, atom interferometers are an alternative tool
of choice to test the equivalence principle, an important distinction with the torsion
pendulum or space-based experiments being that they deal with single atoms. Atom
clouds are well-suited test masses because they spend 99.9% of the interrogation
time in free fall and the remainder in precisely controlled interactions with the lasers
serving as beam splitters and mirrors. In addition, atoms have uniform and well-
characterized physical properties.

The group of M. Kasevich at Stanford performs tests of the equivalence principle
by interferometrically measuring the relative acceleration of freely falling clouds of
85Rb and 87Rb atoms in a 8.9-meter-long dual species atom interferometer located
in a 10-meter-high drop tower, see Fig. 12.6—an arrangement that is the inspiration
for the proposed MAGIS detector mentioned earlier. The long drift time of that
interferometer enables it to have an acceleration sensitivity of 7× 10−12 g, which is
roughly the same as the gravitational attraction that you would feel toward a person
10 m away from you. Their latest results [32] report an atom-interferometric Eötvös
parameter measurement of η = [1.6±1.8(stat)±3.4(sys)]×10−12, consistent with
η = 0. Here “sys” stands for systematic errors and “stat” for statistical error.

Fig. 12.6 Stanford 10-m
tower used for tests of the
equivalence principle.
(Courtesy Mark Kasevich,
Stanford University)
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12.1.3 Testing the Inverse Square Law

Testing gravity at the shortest possible distances is important as proposed theories to
unify gravity and the Standard Model, as well as hypothesized dark matter particles
and dark energy candidates, involve features that could imply short-range deviations
from the gravitational inverse square law [33].

The results of experimental tests of that law are usually formulated in the form
of constraints on the parameters α and λ that characterize a possible Yukawa
interaction of the form

V (r) = GmM
r2

[
1+ αe−r/λ] . (12.6)

Below 10 μm the tests of the inverse square law rely often on measurements of the
Casimir force of Sect. 7.5. S. Lamoreaux [34] used a torsion balance to measure
that force in the range 0.6 to 6 μm and was able to probe the Casimir force with
about 5% accuracy. These measurements permitted to set a limit on the violation of
the inverse square law, excluding Yukawa-type forces with α > 109 in the range
100 nm ≤ λ ≤ 10 μm [35]. More recent studies using a variety of alternative
experimental setups that largely avoid the need to rely on the Casimir effect have
further enlarged the excluded region of the {λ, α} parameter space, see Fig. 12.7.
These include the observation of the oscillations of a test mass attached to a micro-
electromechanical oscillator and gravitationally coupled a rotating source mass [36],
as well as the study of the harmonic torque exerted on a detector pendulum by a
rotating attractor [37, 38].

12.1.4 Gravitationally Induced Decoherence

In Chap. 6 we adopted an operational approach to the problem of quantum measure-
ment based on the von Neumann projection postulate. We motivated it phenomeno-
logically in terms of the coupling of the measuring apparatus to a reservoir with a
very large number of degrees of freedom where quantum information is irreversibly
dispersed. We also adopted the view that the state vector describes our knowledge
of the system and as such provides us with a means to calculate probabilities
when a measurement is performed. Since each time we make a measurement our
knowledge of the system is changed, it is not surprising that the state vector
should make a “quantum jump” as a result. This is essentially the so-called
Copenhagen interpretation of quantum mechanics. This, however, is not necessarily
a satisfying state of affairs, and there has been a lively and ongoing discussion of this
problem, including most famously perhaps the “many-worlds” interpretation of H.
Everett [39], as well as a number of other interpretations, although these proposals
do not normally result in falsifiable deviations from standard quantum mechanics.
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Fig. 12.7 The colored area shows the experimental constraints on a Yukawa violation of the
Newtonian 1/r2 law, with that region excluded at the 90% level. IUPUI2016 refers to the results
of Ref. [36]. The green area shows the improvement reported in Ref. [37]. The purple and green
lines indicate the expected domains of impact on the 1/r2 law of two dark matter candidates, the
dilaton and the radion. (From Ref. [37], which also gives the full journal references of the results
summarized in the figure)

The belief that general relativity and the Standard Model are low energy limits
of a more complete theory that unifies all forces at high energies raises the question
of whether the measurement problem is related to that issue, and more specifically
whether the collapse of the wave function might be a gravitational effect. In contrast
to the view that it is a mechanism such as environment-induced decoherence
that rapidly destroys quantum superpositions in massive objects and establishes
the transition from the quantum to the classical world, several authors [40–43]
have advanced collapse models associated with more fundamental mechanisms
and the appearance of new physical principles. Specifically, they propose that
gravitational effects play a role in the reduction of the state vector, based on the
idea that macroscopic quantum superpositions of two differing mass distributions
are unstable.

D. Bouwmeester et al. [44] pioneered the idea that quantum optomechanics
experiments may shed light on this issue and on possible unconventional deco-
herence processes by attempting to generate spatial quantum superpositions of
massive objects. O. Romero-Isart has analyzed the experimental requirements to test
some of these models and discussed the feasibility of a quantum optomechanical
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implementation using levitating dielectric nanospheres [45]. He estimates that
combined with cryogenic, extreme high vacuum, and low-vibration environments
it should be experimentally feasible to prepare the center of mass of a micrometer-
sized object in a spatial quantum superposition comparable to its size. In such a
hitherto unexplored parameter regime gravitationally induced decoherence could
be unambiguously falsified. An important step in this direction was recently
achieved with the cooling of a levitated 150-nm silica microsphere to its quantum
mechanical ground state [46] by M. Aspelmeyer’s group in Vienna. Such levitated
optomechanical systems are a promising playground to study the interface between
quantum physics and gravity using quantum optical control over the motion of
increasingly massive solids and provide a viable route toward experiments in which
macroscopic systems deep in the quantum regime act as gravitational source masses.

12.2 The Dark Sector

A number of astronomical observations point to the existence of dark matter,
which constitutes the majority of the mass of galaxies, and of an unknown force
field, called dark energy, which is responsible for the accelerated expansion of the
Universe. Together they constitute 95% of the Universe, and understanding them
remains a major challenge.

The �CDM (Lambda Cold Dark Matter) model, see e.g. Ref. [47], is the model
that provides our best current understanding of the origin of the Cosmos. In this
cosmological model the Universe contains three major components: a cosmological
constant � associated with dark energy, cold dark matter (abbreviated CDM), and
ordinary matter. It is frequently referred to as the Standard Model of cosmology
because it accounts in particular for the existence and structure of the cosmic
microwave background, the large-scale structure in the distribution of galaxies, and
the observed accelerating expansion of the Universe.

Although it has not been directly detected so far, cosmologists believe that cold
dark matter is comprised of cold, slow moving particles that do not absorb or scatter
electromagnetic radiation, so that it appears “dark,” or perhaps more accurately
“invisible.” Astronomical observations indicate that the dark matter density in the
solar neighborhood is of the order of7 ρ = 0.3 GeV/cm3 ≈ 4.8 · 10−25 g/cm3, so
that assuming that it is comprised of a single component of particles of mass mDM,
the local number density of these particles would be

nDM = 0.3

(
1GeV

mDM

)
cm−3 . (12.7)

7To put the density ρ in perspective, if the Earth consisted of dark matter, with its volume of
approximately V = 1021 m3 its mass would be about 0.1 kg.
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Fig. 12.8 Dark matter candidates as a function of their expected mass, in units of eV/c2, which
covers a range of over 80 orders of magnitude. For reference we note that 1062eV/c2 corresponds
approximately to 30 solar masses M$, while 1eV/c2 is the mass of the neutrino. The axion is a
proposed dark particle that would solve the so-called strong CP problem. It is characterized as
something like a cousin of the photon, but with a small mass. Dilatons are scalar particles that
appear in particular in the Brans–Dicke theory of gravity, where Newton’s constant G is no longer
presumed to be constant, but replaced by a scalar field φ and its associated particle, the dilaton.
The dark photons and the axions are vector and pseudo-scalar candidate particles, respectively. The
hypothetical WIMPs, or weakly interacting massive particles, are another proposed candidate for
dark matter

This indicates that dark matter candidates can be separated into objects with mass
greater than about mDM ≈ 1 eV/c2, which would appear as distinct particles,
and ultralight dark matter particles with masses below 1 eV, which would be
characterized by enormous occupation numbers, see Fig. 12.8. Dark matter particles
of the first type and with a velocity vDM would impart a momentum p = mDMvDM
when colliding with a detector. In the second case, on the other hand, they would
have enormous occupation numbers, indicating that they are bosonic. They would
behave as a background of oscillating waves at frequency ωDM = mDMc

2/h̄ and
would produce extremely weak, coherent, and persistent signals. Searching for these
two classes of signals calls therefore for different measurement techniques.

While much of the past focus has been on “weakly interacting massive particles,”
or WIMPs, which are usually theorized to be heavier than the proton, the absence of
new particles beyond the Standard Model being discovered at the LHC, combined
with the failure by large-scale detectors to find them after decades of effort, see
e.g. Refs. [48, 49], has led to a plethora of new ideas. Many of them are ideally
suited for AMO and quantum optics experiments and their broad range of tools
including atomic clocks, interferometers, magnetometers, atom interferometers, and
optomechanical detectors.

Cold dark matter is currently thought to be mostly non-baryonic, that is, to consist
of matter other than protons and neutrons (and electrons). Since at this point we are
aware of its existence only through its gravitational effects, dark matter particles are
assumed to interact with each other and other particles primarily through gravity—
and possibly the weak force. It is thought that they may also couple weakly to
photons, exert minute torques on magnetic spins, be associated to new forces, or lead
in small variations of the fundamental constants. However, there is no experimental
evidence for any of these speculated manifestations.
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Since gravitational effects are the only certain influence of dark matter, it is not
surprising that experiments aimed at testing the laws of gravity of the previous
section are also intimately related to investigations of the dark sector. It is however
important not to forget that our level of ignorance of the dark sector is such that
speculations about the nature of dark matter cover over 80 orders of magnitude.
Needless to say, this makes their search extraordinarily challenging, and it is
therefore essential that all possible tools that might provide any light on their nature
should be considered.

What quantum optics brings to the table is the availability of exquisitely
controlled normal matter such as ultracold atoms and mesoscopic mechanical
oscillators, optical and atom interferometry measurement techniques of distances
and accelerations at or below the standard quantum limit, and more. Combined with
spectacular advances in precision time and frequency metrology, these techniques
complement and enhance significantly the powerful tools offered by high energy
physics and astronomy. They allow for tests of the fundamental laws of physics
of unprecedented sensitivity and are likely to contribute in multiple and important
ways to the search for an understanding of the dark sector.

12.2.1 Coupling to Photons

While dark matter is believed not to absorb or scatter light, P. Sikivie [50, 51]
proposed that a modification of the Maxwell equations might arise from a light,
stable axion, which could be one of the dark matter particles. This hypothetical
elementary particle has been proposed to resolve the so-called strong charge-parity
(CP) problem in particle physics, the puzzling fact that Quantum Chromodynamics
seems to preserve CP symmetry, although that symmetry can in principle be violated
in strong interactions [52]. Incorporating the axion into Maxwell’s equations has the
effect of rotating the electric and magnetic fields into each other,

(
E′
cB′

)
= 1

cos ξ

(
cos ξ sin ξ
− sin ξ cos ξ

)(
E
cB

)
, (12.8)

where the mixing angle ξ depends on a coupling constant κ and the axion field
strength θ , tan ξ = −κθ . If this is correct, then these axions could be detected
on Earth by converting them into photons with the help of strong magnetic fields.
This proposal has led to several experiments, in particular the Axion Dark Matter
eXperiment (ADMX) [53]. We saw in Chap. 7 in the context of cavity QED that
resonant electromagnetic cavities provide a powerful platform for detecting particles
that couple to the electromagnetic field. This is the general approach used by this
experiment, which began in the 1990s. It combines a strong (8 T) magnetic field with
a cryogenically cooled, tunable high-Q electromagnetic resonator and relies on the
proposed electromagnetic coupling whereby ultralight axions in a magnetic field are
converted into detectable microwave photons. Another experiment, set up at CERN
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and dubbed OSQAR for “Optical Search for QED Vacuum Birefringence, Axions
and Photon Regenerations,” looks for axions and axion-like particles by exposing a
laser beam to a 9 T magnetic field, with the idea that that field will cause some of
the photons in the laser to turn into axions. The experiment takes place in a vacuum
chamber containing a barrier that stops the laser beam but lets axions pass through.
If light is observed on the other side of the barrier, they would be evidence that
axions have travelled through the barrier and turned back into detectable photons on
the other side.

The signals that can be expected from these experiments are extraordinarily
weak, and so far no evidence for the existence of the axions has been found [53, 54].
It is however possible that the advances in the preparation and measurement of
quantum states of microwave frequency electrical circuits hinted at in Sect. 7.4
could prove valuable in improving these detectors, as would be the ability to search
for axions by performing quantum non-demolition measurements of the microwave
photon number.

12.2.2 Atom-Interferometric Searches

We mentioned briefly in Sect. 12.1 that precision tests of the law of universal
gravitation also provide powerful tools in the search for dark matter candidates.
This is not surprising since gravitational effects are the most important signature of
dark matter, and the only one so far.

One such example is the 100-meter-long Matter-wave Atomic Gradiometer
Interferometric Sensor MAGIS-100 already mentioned in the context of tests of
the equivalence principle (Fig. 12.9). In this system, atomic clouds located at either
end of the MAGIS-100 shaft are manipulated by counter-propagating sequences of
optical pulses that are used to divide, redirect, and recombine the atomic de Broglie
waves, resulting in the formation of two atom interferometers at elevations x1 and
x2, as illustrated in Fig. 12.10. The phase difference between these interferometers
produces the gradiometer signal that is sensitive to the relative acceleration between
the atoms. MAGIS-100 will look for ultralight dark matter candidates that weigh
much less than a WIMP, see Fig. 12.8. An example of such a particle is again the
axion, which would weigh less than the mass of a neutrino. Axions are expected to
cause quantities thought of as fundamental constants to oscillate with time, and these
oscillations, for example in the gravitational constant G, could then be detected by
the gradiometer.

12.2.3 Cavity Optomechanical Searches

Optomechanical systems that are read out interferometrically below the standard
quantum limit have been demonstrated across a wide range of mass scales, with
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Fig. 12.9 Proposed site for MAGIS-100: Elevation profile view of the existing Neutrino Main
Injector tunnel at Fermilab. MAGIS-100 will be located in the 100-m-deep access shaft (yellow
circle). (Figure from the U.S. Dept. of Energy Proposal P-110: Matter-wave Atomic Gradiometer
Interferometric Sensor (MAGIS-100) [55], courtesy of J. Hogan, Stanford University)

Fig. 12.10 Left: Atomic clouds (blue) are located at either end of the MAGIS-100 shaft, and
counter-propagating sequences of optical pulses are used to divide, redirect, and recombine the
atomic de Broglie waves, resulting in the formation of two atom interferometers at elevations x1
and x2. The phase difference between these interferometers produces the gradiometer signal. Right:
Space-time diagram showing the resonant atom interferometry scheme in the MAGIS gradiometer.
The thin black lines represent the counter-propagating pulses of light, the blue lines are the ground
state, and the red lines the excited electronic state of the atoms. (Adapted from Figs. 6 and 7 of the
U.S. Dept. of Energy Proposal P-110: Matter-wave Atomic Gradiometer Interferometric Sensor
(MAGIS-100) [55], courtesy J. Hogan, Stanford University)

natural frequencies ranging from millihertz to terahertz [56]. As such they open
promising avenues to search for dark matter over a large range of energy scales.
In particular, monitoring solid objects allows for the coherent integration of long-
wavelength interactions, as well as for the integration of small cross-sections over
large numbers of target atoms.
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To detect heavy (particle-like) dark matter candidates on can consider either the
detection of localized phonons in bulk materials or the direct monitoring of impulses
to the center-of-mass motion of a single device. For example, single phonons at the
μeV level can be read out in micromechanical oscillators [57, 58] or superfluid
helium [59]. Alternatively, one can monitor the center-of-mass motion of an entire
object. This technique could be particularly advantageous in the setting where the
collisions act coherently on the entire mechanical component, for example when the
dark matter couples to the sensor through a long-range force. As a long-term goal,
mechanical sensing might open the possibility of direct detection of particle dark
matter purely through its gravitational interaction with visible matter, a coupling
that is the only one guaranteed to exist. Achieving this goal would require reducing
noise levels to well below the standard quantum limit of impulse sensing [60, 61].

Ultralight dark matter, in contrast, is characterized by extremely high population
numbers, so that it behaves as classical fields rather than individual particles. Several
ultralight field candidates would cause a time variation of fundamental constants
such as the fine structure constant α or the mass me of the electron. A variety
of experimental techniques have been used or proposed for their search, including
resonant cavities, torsion balances, atom interferometers, and more.

For example, optical cavities have been proposed in searches for a coupling
between axion dark matter and photons, whereby axions are absorbed by or emitted
from an optical field, with the appearance of sidebands displaced by the axion
frequency. This process could then be resonantly enhanced by the cavity [62].
Another proposal would search for these effects via differential strain measurement
of rigid and suspended-mirror cavities [63]. Other ideas include searching for a
signal using resonant mass antennas, including acoustic resonators composed of
superfluid helium or single crystal materials, producing displacements that are
accessible with opto- or electromechanical readout techniques [64]. It is well beyond
the scope of this chapter to discuss these ideas in any depth, but interested readers
will find a discussion of a number of recent ideas on the use of mechanical quantum
sensing in the search for dark matter in Ref. [65].

For now, though, it will be sufficient to conclude by underscoring one more time
the dual role of quantum optics as a research field in its own right and as an enabling
science, with an impact on science and technology second to none. A partial list
would include astronomy, astrophysics and cosmology, physics broadly understood,
life and health sciences, earth sciences, quantum information science and quantum
metrology, engineering, and industrial development. And remarkably, quantum
optics also stands to help shed significant light on the 95% of the physical world
that is still a deep mystery to us. All of this is what makes it a uniquely attractive
and fulfilling research field. There is something in it for just about everybody!

“There is a crack in everything
that’s how the light gets in”
Leonhard Cohen – Anthem (1992)
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levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020)

47. J. Frieman, M. Turner, D. Huterer, Dark energy and the accelerating universe. Ann. Rev.
Astron. Astrophys. 65, 385 (2008)

48. J.H. Davis, The past and future of light dark matter direct detection. Int. J. Mod. Phys. A 30,
1530038 (2015)

49. E. Gibney, Last chance for WIMPs: physicists launch all-out hunt for dark-matter candidate.
Nature 586, 344 (2020)

50. P. Sikivie, Experimental tests of the “invisible” axion. Phys. Rev. Lett 51, 1415 (1983)
51. P. Sikivie, Detection rates for “invisible” axion searches. Phys. Rev. D 32, 2988 (1985)
52. J.E. Kim, G. Carosi, Axions and the strong CP problem. Phys. Rev. Lett 82, 557 (2010)
53. T. Braine, R. Cervantes, N. Crisosto, N. Du, S. Kimes, L.J. Rosenberg, G. Rybka, J. Yang,

D. Bowring, A.S. Chou, R. Khatiwada, A. sonnenschein, W. Wester, G. Carosi, N. Woollett,
L.D. Duffy, R. Bradley, C. Boutan, M. Jones, B.H. LaRoque, N.S. Oblath, M.S. Taubman,
J. Clarke, A. Dove, A. Eddins, S. R. O’Kelley, S. Nawaz, I. Siddiqi, N. Stevenson, A. Agrawal,
A.V. Dixit, J.R. Gleason, S. Jois, P. Sikivie, J.A. Solomon, N.S. Sullivan, D.B. Tanner, E. Lentz,
E.J. Daw, J.H. Buckley, P.M. Harrington, E.A. Henriksen, K.M. Murch, Extended search of the
invisible axion in the Axion Dark Matter eXperiment. Phys. Rev. Lett 124, 101303 (2020)

54. P. Pugnat, R. Ballou, M. Schott, T. Husek, M. Sulc, G. Deferne, L. Duvillaret, M. Finger
Jr., M. Finger, L. Flekova nd J. Hosek, V. Jary, R. Jost, M. Kral, S. Kunc, K. Macuchova,
K.A. Meissner, J. Morville, D. Romanini, A. Siemko, M. Slunewcka, G. Vitrant, J. Zicha,
Search for weakly inteacting sub-eV particles with the OSQAR laser-based experiment: results
and perspectives. European Phys. J. 74, 3027 (2014)

55. P. Adamson, S. Chattopadhyay, J. Coleman, P. Graham, S. Geer, R. Harnik, S. Hahn, J. Hogan,
M. Kasevich, T. Kovachy, J. Mitchell, R. Plunkett, S. Rajendran, L. Vaerio, A. Vaspmos,
Proposal P-1101 Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
(2018). https://www.osti.gov/biblio/1605586

56. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86,
1391 (2014)

57. J.D. Cohen, S.M. Meenehan, G.S. McCabe, S. Gröblacher, A.H. Safavi-Naemi, F. Marsili,
M.D. Shaw, O. Painter, Phonon counting and intensity interferometry of a nanomechanical
resonator. Nature 520, 522 (2015)

58. R. Riedinger, S. Hong, R.A. Norte, J.A. Slater, J. Shang, A.G. Krause, V. Anant,
M. Aspelmeyer, S. Gröblacher, Non-classical correlations between single photons and phonons
from a mechanical oscillator. Nature 530, 313–316 (2015)

59. A. Shkarin, A. Kashkanova, C. Brown, S. Garcia, K. Ott, J. Reichel, J. Harris, Quantum
optomechanics in a liquid. Phys. Rev. Lett. 122, 153601 (2019)

60. E.D. Hall, R.X. Adhikari, V.V. Frolov, H. Müller, M. Pospelov, Laser interferometers as dark
matter detectors. Phys. Rev. D 98, 083019 (2018)

61. A. Kawasaki, Search for kilogram-scale dark matter with precision displacement sensors. Phys.
Rev. D 99, 023005 (2019)

62. A.C. Mellisinos, Proposal for a search for cosmic axions using an optical cavity. Phys. Rev.
Lett. 102, 202001 (2009)

63. A.A. Geraci, C. Bradley, D. Gao, J. Weinstein, A. Derevienko, Searching for ultralight dark
matter with optical cavities. Phys. Rev. Lett. 123, 031304 (2019)

64. J. Manley, D.J. Wilson, R. Stump, D. Grin, S. Singh, Searching for scalat dark matter with
compact mechanical resonators. Phys. Rev. Lett. 124, 151301 (2020)

https://www.osti.gov/biblio/1605586


388 12 Outlook

65. D. Carney, G. Krnjaic, D.C. Moore, C.A. Regal, G. Afek, S. Bhave, B. Brubaker, T. CVorbitt,
J. Cripe, N. Cristosto, A. Geraci, S. Ghosh, J.G.E. Harris, A. Hook, E.W. Kolb, J. Kunjummen,
R.F. Lang, T. Li, Z. Liu, J. Luykken, L. Magrini, J. Manley, N. Matsumoto, A. Monte,
F. Monteiro, T. Purdy, C.J. Riedel, R. Singh, S. Singh, K. Sinha, J.M. Taylor, J. Qin, D.J.
Wilson, Y. Zhao, Mechanical quantum sensing in the search for dark matter. Quantum Sci.
Technol. 6, 024002 (2021)



Index

A
Absorption coefficient, 7
Ac Stark shift, 14

vacuum, 79
Annihilation operator, 33

LC circuit, 209
Anticommutator, 304
Anti-Stokes line, 331
Approximation

Hartree, 306
rate equation, 19
rotating wave, 12
semiclassical, 11
slowly varying envelope, 8

Artificial atom, 208
Atomic clock

in optical lattice, 313
Atomic diffraction, 240

Bragg regime, 244
Raman-Nath regime, 242
spontaneous emission, 248
Stern-Gerlach regime, 246

Atom interferometer, 249
clock transition, 250, 373
large momentum transfer, 373
2-photon Raman transition, 250

Axion, 380, 381

B
Back action

direct, 173
dynamical, 334
fluctuational, 173

Bad cavity limit, 191

Baker-Hausdorff relation, 47
Balanced homodyne detection, 60
BB84 protocol, 113
Beam splitter, 350
Beam splitter Hamiltonian, 60
Beer’s law, 7
Bell inequalities, 106

Clauser-Horne-Shimony-Holt, 109
Bell states basis, 116
Bell test loophole, 111

fair sampling, 111
free will, 111
locality, 111

Blackbody spectrum, 125
Bloch sphere, 16
Bloch vector, 16
Bogoliubov spectrum, 311
Bogoliubov transformation, 89, 310, 346
Bogoliubov velocity, 312
Bohr radius, 4
Boltzmann coefficient, 42
Bose-Einstein condensation, 289, 356

ground state population, 294
in trap, 295

Bose-Hubbard mean field, 316
Bose-Hubbard model, 314

phase diagram, 317

C
Canonical commutation relation, 30
Casimir force, 221
Cavity QED, 187
Characteristic function

antinormally ordered, 65

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
P. Meystre, Quantum Optics, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-76183-7

389

https://doi.org/10.1007/978-3-030-76183-7


390 Index

Characteristic function (cont.)
normally ordered, 64
quasiprobability distribution, 64
symmetrically ordered, 66

Charge, 22
Chemical potential, 291
Circuit QED, 208
Classical electron radius, 6
Coarse graining, 134
Coffman, Kundu and Wooters inequality, 104
Coherent state, 44, 45
Cold damping, 327
Cold dark matter, 379
Composite system, 97
Concurrence, 104
Continuous measurements

field, 177
projective, 172
weak, 175

Cooling limit
Doppler, 263
optomechanical, 338
Sisyphus, 270

Cooper pair, 214
Cooper pair box, 216
Coordination number, 316
Correlation function, 59

antinormally ordered, 84
first order, 59, 137
normally ordered, 59
reservoir, 136

Coulomb gauge, 24
Creation operator, 33
Critical photon parameter, 224
Critical temperature, 292, 296, 310
Cummings collapse, 82

D
Dark energy, 366
Dark matter, 366
Dark sector, 366
Dark state, 271, 273
De Broglie wavelength

thermal, 265
Density operator

reduced, 133
thermal equilibrium, 132

Detailed balance, 138, 139
Diffraction

optical grating, 240
Diffusion matrix, 143
Dilaton, 380
Dipole force, 233

Dipole moment, 6
Displacement operator, 47
Doppler cooling limit, 263
Doppler shift, 253
Doppler temperature, 264
Dressed states

quantum mechanical, 76
semiclassical, 14

Drift matrix, 143

E
Ehrenfest theorem, 44
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