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Preface
Optics plays a crucial role in the success of today’s science and technology. It does so 
from the vast spaces of astronomy to nanotechnology. Within optics, quantum optics 
is the dominant asset. The aim of this book is to make available the principles of 
quantum optics directly to engineers, engineering students, and scientists in general. 
This is done by presenting the subject, and associated elements of coherent optics, 
from a pragmatic and forthright perspective using Dirac’s notation. This second 
edition entitled Quantum Optics for Engineers: Quantum Entanglement retains 
all the main features included in the original first edition while expanding substan-
tially the coverage of quantum entanglement. In addition to presenting quantum 
entanglement via its interferometric physics origin, the mechanics itself is explained 
via a practical matrix formalism particularly apt for engineering applications. It is 
indeed a pleasure to offer, to the scientific and engineering communities, this second 
edition of Quantum Optics for Engineers: Quantum Entanglement.

F. J. Duarte
Jonesborough, Tennessee.

July, 2023.



xvii

Author’s Biography

F. J. Duarte �is a Chilean-born laser physi-
cist, quantum physicist, inventor, and author. 
He has been residing in the United States since 
1983. Duarte studied mathematics and phys-
ics at Macquarie University (Sydney, Australia) 
where he was a student of the quantum physicist 
John C. Ward. At Macquarie, in 1978, he was the 
first to be awarded a First Class Honors in phys-
ics for his thesis on the Excitation Processes in 
Continuous Wave Rare Gas-Metal Halide Vapour 
Lasers. Also at Macquarie, he completed his 

PhD research, on optically-pumped molecular lasers, in 1981, under the guidance of 
James A. Piper. The same year he became a Postdoctoral Fellow at the University 
of New South Wales, where he designed and built UV tunable lasers for high-res-
olution IR-UV double-resonance spectroscopy. Duarte has worked and contributed 
professionally in the academic, industrial, and defense sectors and has practiced 
physics in Australia, the Americas, and Europe. Notable in his career is his tenure 
at the Eastman Kodak Company’s Imaging Research Laboratories (1985–2006)  
where he led the Imaging and Spectral Measurements Laboratory. He is the author of 
numerous refereed papers and US patents.

Duarte is the editor/author of some 17 scholarly books including Dye Laser 
Principles (1990), High-Power Dye Lasers (1991), Tunable Lasers Handbook 
(1995), Tunable Laser Applications (1995, 2009, 2016), and Organic Lasers 
and Organic Photonics (2018). He is the co-author of Quantum Entanglement 
Engineering and Applications (2021) and the sole author of Tunable Laser 
Optics (2003, 2015), Fundamentals of Quantum Entanglement (2019, 2022), and 
Quantum Optics for Engineers (2014, 2024). Duarte has made original contribu-
tions in the fields of coherent imaging, directed energy, extremely-expanded laser 
beams (up to 3000:1), heat conduction, high-power tunable lasers, laser metrol-
ogy, liquid and polymer-nanoparticle organic gain media, narrow-linewidth tun-
able laser oscillators, N-slit quantum interferometry, electrically-pumped organic 
semiconductor coherent emission, quantum entanglement, and space-to-space 
interferometric communications. He is also the author of the generalized multi-
ple-prism grating dispersion theory and has pioneered the use of Dirac’s quantum 
notation in interferometry and classical optics.

Duarte’s contributions have found applications in atomic physics, astronomy, 
chemistry, coherence, cytology, electrophoresis, femtosecond laser microscopy, 
geodesics, geophysics, gravitational lensing, heat transfer, imaging, laser isotope 



xviii Author’s Biography

separation, laser medicine, laser pulse compression, laser spectroscopy, mathemati-
cal transforms, nanoengineering, nanophotonics, nonlinear optics, optofluidics, 
organic semiconductor lasers, phase imaging, polarization rotation, quantum com-
puting, quantum entanglement, quantum fluctuations, quantum philosophy, quantum 
thermodynamics, space exploration, and tunable diode laser design.

Duarte was elected Fellow of the Australian Institute of Physics in 1987 and Fellow 
of the Optical Society of America (OSA) in 1993. He has received the Engineering 
Excellence Award (1995) for the invention of the N-slit laser interferometer, and the 
David Richardson Medal (2016) ‘for seminal contributions to the physics and tech-
nology of multiple-prism arrays for narrow-linewidth tunable laser oscillators and 
laser pulse compression’ from the Optical Society (now Optica).



Introduction

1.1  INTRODUCTION

Perhaps no other subject in the history of physics has captured the human imagina-
tion more than quantum mechanics has. This captivation has extended beyond phys-
ics, and science, and well into the realm of popular culture. This is because quantum 
mechanics, also known as quantum physics, correctly describes the micro world and 
the sub-nano world in a mathematical way that appears to be mysterious and inef-
fable to the inhabitants of the classical world.

A most succinct description of quantum mechanics has been given by the well-
known quantum and particle physicist John Clive Ward: The inner mysteries of 
quantum mechanics require a willingness to extend one’s mental processes into a 
strange world of phantom possibilities, endlessly branching into more and more 
abstruse chains of coupled logical networks, endlessly extending themselves for-
ward and even backwards in time’ (Ward, 2004).

In Quantum Optics for Engineers, second edition, we explore fascinating aspects 
of quantum optics from the perspective of quantum interference and quantum entan-
glement. The presentation of the physics, via direct and transparent mathematics, 
neutralizes mysteries and paradoxes often associated with quantum entanglement 
and quantum mechanics.

1.2  BRIEF HISTORICAL PERSPECTIVE

Quantum mechanics came to light via the work of Max Planck, published in 1901. 
In that contribution, Planck used concepts of thermodynamics to explain the energy 
distribution of light sources as a function of wavelength (Planck, 1901). In doing so, 
he introduced, without derivation, an equation in which the energy of the emission 
was a function of frequency ν , that is,

	 ν=E h 	 (1.1)

where the units of the energy E is Joule (J), the units of the frequency ν  is Hz, and 
h is known as Planck’s constant ( 6.62607015 10 34= × −h  Js). That was the birth of 
quantum mechanics. It was born from the experiment, and it was a macroscopic 
empirical birth.

Another experimental observation relevant to the development of quantum 
mechanics was the photoelectric effect (Hertz, 1887). This effect of fundamental 
significance to modern photomultipliers, and photodetectors in general, means that 
when a surface comprised of charged particles is irradiated with light of frequency ν , 
there is a probability that electrons will be emitted from that surface. An explanation 
to the photoelectric effect was provided by Einstein (1905) via the relationship
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	 ω= −E W 	 (1.2)

where W  is defined as the work function or energy required to emit an electron from 
the irradiated surface. Einstein also proposed that light behaves as a stream of energy 
units that he called lightquanta.

A few years later, Bohr (1913) postulated that electrons in an atom can only popu-
late well-defined orbits at discrete energies Wn. When the electron jumps from one 
orbit of energy Wn to another one at 1+Wn , it does so by emitting radiation at a fre-
quency ν , so that (Bohr, 1913)

	 1 ν− =+W W hn n 	 (1.3)

The developments introduced above were the preamble to the 1925–1927 revolution 
that yielded the quantum mechanics we know today. Heisenberg (1925), Born and 
Jordan (1925), and Born et al. (1926) introduced quantum mechanics in matrix form. 
Schrödinger (1926) introduced his quantum wave equation. Dirac (1925) first established 
that there was a correspondence between Heisenberg’s non-commuting dynamical vari-
ables and the Poisson bracket. Then he discovered that there was an equivalence between 
the Born–Jordan formulation and the Schrödinger equation (Dirac, 1926). Further, he 
demonstrated that there was a direct correspondence between the Heisenberg–Dirac 
quantum mechanics and Schrödinger’s wave mechanics (Dirac, 1927).

In addition to the three formulations just mentioned, Dirac (1939) further intro-
duced his bra ket notation, also known as Dirac’s notation, which is the preferred 
formulation of quantum mechanics used in this book.

Further approaches to quantum mechanics include the Feynman formulation via 
integral paths (Feynman and Hibbs, 1965) and the phase-space formulation (Moyal, 
1949). There are also other lesser-known formulations.

Post–quantum mechanical developments include quantum electrodynamics 
(Tomonaga, 1946; Schwinger, 1948; Feynman, 1949; Dyson, 1949), renormalization 
theory (Ward, 1950), Feynman diagrams (Feynman, 1949), and the standard model 
of particle physics (Salam and Ward, 1959, 1964; Glashow, 1961; Weinberg, 1967). 
Figure 1.1 provides an approximate time line of key developments in the quantum era.

1.3  THE PRINCIPLES OF QUANTUM MECHANICS

The Principles of Quantum Mechanics is a landmark book written by one of the 
creators of quantum mechanics, Paul Adrien Maurice Dirac. The first edition of this 
masterpiece was published in 1930. The second edition was published in 1935 and 
the third edition in 1947. The fourth edition, used by us as a reference throughout 
this work, was published in 1958, and it is this edition that gives origin to the 1978 
version, its ninth revised printing.

An interesting aspect for this book is that Dirac’s bra ket notation was intro-
duced in its third edition (1947). This is explained by the Australian particle physicist  
R. H. Dalitz (known of the Dalitz plot and the Dalitz pair), who in 1947 was taking 
lectures from Dirac in Cambridge (Dalitz, 1987).

The Principles of Quantum Mechanics, third and fourth editions, are the vehicles 
by which Dirac’s notation was introduced to physicists although Dirac first disclosed 
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the notation in a paper entitled A New Notation for Quantum Mechanics (Dirac, 
1939). This paper, in a fairly mechanistic style, limits itself to introducing the new 
notation and providing a correspondence between it and the ‘old notation.’ The paper 
does not explain how Dirac discovered or created the new notation. Nor does he 
explain it in the book. At one time, I did ask Dick Dalitz if Dirac had explained in 
his lectures how he created, or discovered, his bra ket notation, and his reply was… 
‘no’ (Duarte, 2014). The Principles of Quantum Mechanics used by us as a reference 
throughout this work is the fourth edition (Dirac, 1958).

The most relevant chapters to our immediate interest from The Principles of 
Quantum Mechanics are as follows:

•	 The principle of superposition
•	 Dynamical variables and observables
•	 Representations
•	 The quantum conditions
•	 The equations of motion
•	 Perturbation theory
•	 Systems containing several similar particles
•	 Theory of radiation

Throughout the book, he does use his bra ket notation extensively albeit it is not the 
only type of notation he utilizes.

Besides issues of notation, Dirac’s book is remarkable in that it provides probably 
the very first discussion of optics in a quantum context. It does so via a brilliant and 
prophetic discussion of interferometry. He begins by considering a beam of ‘roughly 
monochromatic light’ and continues by referring to this beam of light as ‘consisting 

FIGURE 1.1  Timeline depicting important developments in the quantum era.
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of a large number of photons.’ The beam is then ‘split up into two components of 
equal intensity’ (Dirac, 1958). In today’s terminology, Dirac’s discussion applies 
perfectly to an ensemble of indistinguishable photons as in a high-power narrow-
linewidth laser beam undergoing interference in a Mach–Zehnder interferometer 
(Duarte, 1998).

This discussion qualifies Dirac as the father of quantum optics and the father of 
laser optics (Duarte, 2003).

It is also apparent that The Principles of Quantum Mechanics served as inspira-
tion to Feynman for his lectures on physics not only on the central topic of Dirac’s 
notation but also on the fundamental ideas on interference and various other math-
ematical formalisms.

1.4  THE FEYNMAN LECTURES ON PHYSICS

Volume III of The Feynman Lectures on Physics (Feynman et al., 1965) offers a bril-
liant discussion of quantum mechanics via Dirac’s notation. From a fascinating dis-
cussion of the two-slit interference thought experiments, using electrons, to practical 
applications of two-state systems, and beyond, this book is a physics treasure. At a 
basic level, The Feynman Lectures on Physics, Volume III, is a brilliant introduction 
to the use and practice of Dirac’s notation in quantum mechanics.

At this stage, it is also instructive to mention that in his 1965 book on the path inte-
gral approach to quantum mechanics, Feynman applies quantum mechanics directly 
to the classical macroscopic problem of diffraction (Feynman and Hibbs, 1965). It is 
necessary to make this explicit observation for the benefit of some practitioners who 
insist on imposing the use of classical tools to describe macroscopic diffraction and 
interference.

1.5  THE PHOTON

In this section, first we explore the opinion on this subject given by a few luminaries 
of quantum physics: Dirac, Feynman, Haken, and Lamb. Then, our own opinion on 
the subject is offered.

Dirac (1958): ‘The essential point is the association of each of the translational 
states of a photon with one of the wave functions of ordinary wave optics… 
the wave function gives information about the probability of one photon 
being in a particular place and not the probable number of photons in that 
place.’

Feynman (1965): ‘Newton thought that light was made up of particles, but then 
it was discovered that it behaves like a wave… We say: It is like neither.’

Haken (1981): ‘In quantum mechanics we attribute an infinite extended wave to 
a freely moving particle with momentum p so that /λ = h p. The wave must 
be of infinite extent, otherwise it would not have a definite wavelength.’

Lamb (1995): ‘Photons cannot be localized in any meaningful manner, and 
they do not behave at all like particles, whether described by a wave func-
tion or not.’
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Indeed, the nonlocality of the photon is intuitive to experimentalists experienced in 
optics: ‘All the indistinguishable photons illuminate the array of N slits, or grating, 
simultaneously. If only one photon propagates, at any given time, then that individual 
photon illuminates the whole array of N slits simultaneously’ (Duarte, 2003). The 
nonlocality of the photon is central to the physics of this book.

Those are some written thoughts on a photon. As can be observed, there is no 
complete conceptual convergence on the meaning of a photon. Here, rather than 
offering yet another language-based concept of the photon, we shall examine in a 
pragmatic approach what we know about the basic features of the photon:

	 1.	A single photon moves, in vacuum, at the speed of light c.
	 2.	A single photon has a wavelength λ, which is related to its frequency ν  by

	 λ
ν

= c
	 (1.4)

	 3.	A single photon exhibits a quantum energy of

	 ν=E h 	 (1.5)

or ω=E  .

	 4.	A single photon exhibits a quantum momentum of

	
λ

= =p k
h

 	 (1.6)

	 5.	A single photon is associated with complex wave functions of the form

	 ( , ) 0
( )ψ ψ= ω− −x t e i t kx 	 (1.7)

	 6.	Photons are non-local and can exhibit enormous coherence lengths

	
ν

∆ ≈
∆

x
c

	 (1.8)

Under these premises, we can attempt a conceptual description of a pho-
ton as a unique physical entity that can be mathematically described using 
complex wave functions while exhibiting a quantum energy ν=E h . Hence, 
the photon can be outlined as a coherent non-local form of energy (Duarte, 
2022). As of now, limitations in the existing language prevent us from a 
more definite description other than this approximate outline. Besides 
issues of ineffability, here we refer to the photon, or quantum, as a unique 
form of coherent non-local energy.
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Notice that in the case of emission resulting in the generation of an 
ensemble of coherent photons, as in the case of a narrow-linewidth laser, a 
refinement on the wave description of Haken (1981) should refer to a near-
infinite wave since the wavelength, in practice, would always exhibit a mea-
surable linewidth; in other words, the wavelength is λ λ± ∆  and not just λ.

Quantum mechanically, indistinguishable photons are the same pho-
ton. In other words, two photons coming from different narrow-linewidth 
lasers with energies 1ν=E h  and 1ν=E h  are the same photon and will 
interfere precisely as described by Dirac (1958) even though they origi-
nate from different sources. Thus, a seventh item to be added to the list 
above becomes:

	 7.	Ensembles of indistinguishable photons exhibiting very narrow linewidth 
ν∆  originating from monochromatic sources, such as narrow-linewidth 

lasers, approximate the behavior of a single photon. This means that single 
photons and ensembles of indistinguishable photons can be described math-
ematically via identical superposition probability amplitudes.

1.6  QUANTUM OPTICS

As described previously, the first known discussion of quantum optics was provided 
by Dirac. He did so via interference. Furthermore, and very importantly, he did so 
considering a macroscopic interferometric experiment involving a beam of ‘roughly 
monochromatic light’ and continues by referring to this beam of light as ‘consisting 
of a large number of photons.’ The beam is then ‘split up into two components of 
equal intensity’ (Dirac, 1958). In other words, Dirac applies his quantum concepts 
directly to a macroscopic interferometric experiment involving ensembles of indis-
tinguishable photons.

When Dirac says ‘split up into two components of equal intensity,’ he means equal 
probability. In turn, this means that initially the photon, or ensemble of indistin-
guishable photons, had a probability amplitude to propagate into each path of the 
interferometer.

The use of quantum physics in macroscopic optics is not unique to Dirac. In 1965, 
Feynman used his path integrals to describe divergence and diffraction resulting 
from the passage through a Gaussian slit (Feynman and Hibbs, 1965). Even fur-
ther, Feynman in his Feynman Lectures on Physics (problem book to Feynman 
et al., 1965) gives credit to Hanbury Brown and Twiss (1956) as performing an early 
experiment in quantum optics. Hanbury Brown and Twiss collected light from the 
star Sirius in two separate detectors; the signals from these detectors are then made 
to interfere. Building on Feynman’s description of double-slit electron interference, 
Dirac’s quantum notation was applied to N-slit photon interference (Duarte, 1991).

In addition to applications to macroscopic interference, a clear and intrinsic quan-
tum physics development was the derivation of probability amplitude equations asso-
ciated with counter-propagating photons with entangled polarizations (Pryce and 
Ward, 1947; Ward, 1949):

	 2 1/2
1 2 1 2x y y xψ ( )〉 = 〉 〉 − 〉 〉− 	 (1.9)
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and the subsequent experimental confirmation provided via the measurements of 
polarization correlations by Wu and Shaknov (1950). A development directly related 
to photon entanglement was the introduction of Bell’s inequality (1964). All-optical 
experiments on polarization entanglement were reported by Aspect (1982).

A further development in quantum optics was the introduction of quantum cryp-
tography (Bennett and Brassard, 1984; Ekert, 1991). An advance directly related to the 
physics of entanglement is quantum teleportation (Bennett et al., 1993; Bouwmeester 
et al., 1997). Figure 1.2 highlights the timeline of key developments in quantum 
optics while emphasizing the application of Dirac’s notation.

1.7  QUANTUM OPTICS FOR ENGINEERS

Quantum Optics for Engineers is designed as a textbook, primarily utilizing Dirac’s 
quantum notation, to describe optics in a unified and cohesive approach. The empha-
sis is pragmatic. This approach uses a minimum of mathematical sophistication. In 
other words, the reader should be able to use the tools provided primarily with the 
knowledge of first-year courses in calculus and algebra.

The subject matter is contained in Chapters 1–23, while a set of companion 
Appendices (A–K) provide additional necessary information relevant to the chapter 
material and quantum optics in general. The concept here is to offer the student a 
self-contained book, thus minimizing the need to refer to additional texts except for 
those who would like to expand their knowledge of a particular subject.

The reader will also notice that some of the equations, and figures, in this book, 
are reproduced in several of the chapters. In other words, they are repeated. This has 
been done quite deliberately to avoid having to go back in the text to find a particular 

FIGURE 1.2  Timeline depicting important developments in quantum optics while empha-
sizing the application of Dirac’s notation.
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equation and then forward again to continue the work. Besides highlighting the 
importance of some concepts, this approach should facilitate remembering those 
equations and easing the lecture process. Hopefully, this will enhance the learning 
process according to the old Roman saying: repetitio est mater studiorum (approxi-
mately translated as ‘repetition is the mother of learning’).

1.7.1 � Quantum Optics for Engineers: Quantum 
Entanglement, Second Edition

The second edition of Quantum Optics for Engineers: Quantum Entanglement 
differs from the first edition in the following:

	 1.	 It has a new chapter entitled Bell’s Theorem (Chapter 14).
	 2.	 It has a new chapter entitled Quantum Entanglement Probability Amplitudes 

for n = N = 2 (Chapter 15).
	 3.	 It has a new chapter entitled Quantum Entanglement Probability Amplitudes 

for n = N = 21, 22, 23, … 2r (Chapter 16).
	 4.	 It has a new chapter entitled Quantum Entanglement Probability Amplitudes 

for n = N = 3, 6  (Chapter 17).
	 5.	 It has a new chapter entitled Quantum Entanglement in Matrix Notation 

(Chapter 18).
	 6.	 It has a new chapter entitled Quantum Computing in Matrix Notation 

(Chapter 19).
	 7.	 It has a new chapter entitled Quantum Principles and the Probability 

Amplitude (Chapter 22).
	 8.	The chapter on quantum interpretations has been rewritten and is now enti-

tled On the Interpretation of Quantum Mechanics (Chapter 23).
	 9.	Previous chapters on Laser Excitation, Laser Resonators and Laser Cavities 

via Dirac’s Notation, and Generalized Multiple-Prism Dispersion Theory, 
have been moved to the Appendix.

	 10.	All chapters and appendices from the first edition have been revised, updated, 
and some, such as the chapters on Interferometry via Dirac’s Notation 
(Chapter 7) and Matrix Notation in Quantum Mechanics (Chapter 9), have 
been updated and expanded.

When necessary and appropriate, the first edition (Duarte, 2014) is cited. This is 
particularly relevant to some physics and statements revealed for the first time in the 
first edition.
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Planck’s Quantum 
Energy Equation

2.1  INTRODUCTION

In his work on light sources and black body radiation, Max Planck, around 1900, was 
confronted with experimental data that could not be explained with the prevailing 
theoretical concepts of the time. The problem was to express the energy distribution 
of light emission as a function of wavelength.

His approach to solve this problem is outlined here using Planck’s notation: the 
number of electromagnetic modes per unit volume can expressed as (Planck, 1901)

	
8 2

3

ν= π
u

c
U 	 (2.1)

where ν  is the frequency of the emission, in Hz or cycles per second, and c is the 
speed of light ( 2.99792458=c  m/s). The question then becomes how to define the 
energy distribution U. Planck approaches this problem using thermodynamic argu-
ments related to the entropy. However, immediately before doing that, he takes a 
crucial step of introducing, without any derivation whatsoever, the energy expression 
(Planck, 1901)

	 ν=E h 	 (2.2)

Prior to this equation, he writes that the ‘energy is proportional to the frequency ν .’ 
Once he unveils this enormous discovery, Planck proceeds with his thermodynamics 
argument providing an explicit expression for the entropy of the system

	 1 ln 1 ln
ν ν ν ν

= +



 +



 − 











S k
U

h

U

h

U

h

U

h
	 (2.3)

and then using (1/ ) /=T dS dU, he proceeds to differentiate Equation (2.3) and 
arrives at

	 ( 1)/ 1ν= −ν −U h eh kT 	 (2.4)

which, using Equation (2.1), leads directly to Planck’s distribution (Planck, 1901)

	
8

( 1)
3

3
/ 1ν= π −ν −u

h

c
eh kT 	 (2.5)
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In the previous equations, 1.380649 10 23= × −k  J/K is Boltzmann’s constant, T is the 
absolute temperature, and 6.62607015 10 34= × −h  Js is of course Planck’s constant.

Planck’s quantum equation, also known as Planck’s relation, ν=E h , is one of the 
most fundamental principles of quantum mechanics and one of the most important 
equations in physics. The fact that the energy of the emission depends on the fre-
quency of the emission ν , according to the elegant relation ν=E h , is a fundamental 
quantum law that was arrived to from macroscopic observations performed on a 
classical experiment. Planck’s contribution represents one of the greatest triumphs of 
a physicist’s intuition in the history of physics. Around 1900, when Planck discovered 
this empirical law, the physics world was classical and entirely macroscopic.

2.2  PLANCK’S EQUATION AND WAVE OPTICS

From Planck’s quantum energy equation

	 ν=E h

one can use special relativity’s 2=E mc  to arrive at (de Broglie, 1923)

	
ν=p h
c

	 (2.6)

which, using /λ ν= c , leads directly to

	 =p k 	 (2.7)

where 2 /λ= πk  is known as the wavenumber. This momentum expression in wave 
form, =p k , is known as de Broglie’s equation and plays a significant role in devel-
oping further concepts in quantum optics.

In Chapter 3, Heisenberg’s uncertainty principle (Heisenberg, 1927; Feynman 
et al., 1965; Dirac, 1958) is developed from transparent physics. The approach is based 
on interferometry principles that lead to the interferometric identity (Duarte, 2003)

	 2xλ λ∆ ∆ ≈ 	 (2.8)

which can also be expressed as

	 x cν∆ ∆ ≈ 	 (2.9)

Using the expression for momentum =p k , which is based on ν=E h , one arrives 
directly to Heisenberg’s uncertainty principle

	 p x h∆ ∆ ≈ 	 (2.10)

This simple exercise is useful in exposing the order of fundamental concepts in quan-
tum mechanics. This order places ν=E h , and interferometric principles, at the very 
foundations of quantum physics.
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2.3  PLANCK’S CONSTANT h

Planck’s constant h is one of the most important constants in physics and certainly 
the most important constant in quantum mechanics. Indeed, it can be said that in 
quantum mechanics and quantum optics, h is everywhere. In other words, h is syn-
onymous with quantum.

As noted by Duarte (2022), there appears to be no straightforward and transparent 
‘independent derivation’ of ν=E h , via quantum physics, since this expression and h 
are deeply engrained in the very foundations of the theory.

Since Dirac’s probability amplitudes, such as d j , originally depend only on 
wave functions of the form

	 ( , ) 0
( )Ψ = Ψ ω− −x t e i t kx 	 (2.11)

perhaps a careful re-derivation of transition and emission probabilities might open a 
path forward to find an expression for ν=E h  in the absence of ad hoc assumptions.

In his experiment, Planck arrived at 6.55 10 34= × −h  Js. In this book, the current 
National Institute of Standards and Technology (NIST) value of 6.62607015 10 34= × −h  
Js is used (see Table K.1 for values of fundamental constants). A review of the history 
and methodology of measurements for h is given by Steiner (2013).

Planck’s constant is directly related to another extraordinarily important constant, 
the fine structure constant α (Dirac, 1938)

	
4

2

0

α
ε

=
π





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e

c
	 (2.12)

which can be rearranged to yield

	
2

1
2

0

α
ε

=






−h
e

c
	 (2.13)

Measurements in quantum electrodynamics yield 137.0359990841α =−  (Hanneke 
et al., 2008). Feynman referred to the number 1/137 as the ‘mysterious number’ 
(Feynman et al., 1963). At present, there is no theory that predicts α. A theory 
that would predict α was Dirac’s focus of attention for a long time (Dirac, 1938; 
Kursunoglu, 1987).

2.3.1  Back to νν=E h

From experimental evidence, Planck knew that energy E and frequency ν  were 
related so that ν=E h  was a very good guess. Is it possible to arrive at an equation 
of the form of ν=E h  from first principles independent of Plank’s experimental evi-
dence? A simple heuristic approach to the ν=E h  question is as following: 2=E mc  
can also be written as

	 =E pc	 (2.14)
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ν

ν= 



 ⋅E

pc
	 (2.15)

And thus,

	 ην=E 	 (2.16)

where ( / )η = pc v  a quantity with units of energy × time, or Js, that is, the same units 
as h. This heuristic approach provides a direct relation between E and v which is 
dimensionally correct without ad hoc assumptions. Perhaps Planck did consider such 
an approach and did not bother to disclose it.

PROBLEMS

	 2.1	 Use Equation (2.4) into Equation (2.1) to arrive at Equation (2.5).
	 2.1	 Use Equation (2.8) and =p k  to arrive at ∆ ∆ ≈p x h.
	 2.2	 Show that Equation (2.8) can be expressed as Equation (2.9).
	 2.3	 Show that Equation (2.12) can be rearranged to yield Equation (2.13).
	 2.4	� Using the constant values given in Table K.1, verify that Equation (2.12) 

leads to the numerical value of 137.0359991α ≈− .
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The Uncertainty Principle

3.1  HEISENBERG’S UNCERTAINTY PRINCIPLE

Perhaps no other topic in physics is surrounded with more awe and mystique as 
Heisenberg’s succinct and beautiful uncertainty principle. Besides its beauty, the 
uncertainty principle is central to the most successful physical theory ever discov-
ered by mankind: quantum mechanics. Richard Feynman, by far, the most success-
ful communicator of physics, said, ‘The uncertainty principle protects quantum 
mechanics’ (Feynman et al., 1965).

Heisenberg (1927) introduced his famed uncertainty principle as

	 ~1 1p q h	 (3.1)

where 1p  refers to the momentum uncertainty, 1q  refers to the position uncertainty, 
and 6.62607015 10 34= × −h  Js is Planck’s constant, one of the most fundamental con-
stants in the whole of nature. Dirac in his book expresses the Heisenberg uncertainty 
principle as (Dirac, 1958)

	 ∆ ∆ ≈q p h	 (3.2)

Similarly, Feynman et al. (1965) describe the uncertainty relation as

	 ∆ ∆ ≈y p hy 	 (3.3)

In general, for the three space coordinates, we have

	 , ,∆ ∆ ≈ ∆ ∆ ≈ ∆ ∆ ≈x p h y p h z p hx y z 	 (3.4)

Considering the uncertainty principle relevant to the x coordinate

	 ∆ ∆ ≈x p hx 	 (3.5)

it should be mentioned that the uncertainties in x and px are intimately related. In other 
words, a series of measurements on these quantities yield ( )± ∆x x  and ( )± ∆p px x  with 
∆x and ∆px directly related via x p hx∆ ∆ ≈ . The larger the value of ∆x, the smaller the 
value of ∆px. In other words, the more accurately we can measure the position of a par-
ticle, the less accurately we can determine its momentum, and vice versa. In quantum 
physics, x and px are said to be non-commuting observables (Dirac, 1958). Uncertainty 
and errors are essential to physical measurements and have been part of physics since 
the dawn of physics. Newton in his Principia (Newton, 1687) has already dealt with 
measurement errors and uncertainties. In this regard, a measurement of x with 0∆ =x  

3
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is not possible in physics. Similarly, a measurement of px with ∆ =px 0 is physically 
impossible. There is always an uncertainty, no matter how small, no matter how infini-
tesimal. A similar observation was made, in the quantum context, by Dirac in 1930 
(Dirac, 1958), and as we shall see later, this observation is crucial to interpretational 
issues of quantum mechanics (see Chapter 23).

In his lectures, Feynman also relates the uncertainty principle to the double-slit 
experiment and hence to interferometry. He did so conceptually, in reference to the 
impossibility of determining the path of the electron without disturbing the interfer-
ence pattern (Feynman et al., 1965). In this chapter, we offer further elucidation 
on the link between the uncertainty principle and N-slit interferometry. In fact, we 
show that it is possible to obtain the original uncertainty principle from interfero-
metric principles, thus indicating that interferometry is of fundamental importance 
to quantum mechanics—even more fundamental than the Heisenberg’s uncertainty 
principle itself.

The approach to Heisenberg’s uncertainty principle, disclosed here, is from a 
physics perspective while avoiding the use of unnecessary mathematics, or pre-
established analytical techniques, which might obscure the essence of physics.

3.2  THE WAVE-PARTICLE DUALITY

The quantum energy of a wave, of frequency v, is given by Planck’s quantum energy 
equation

	 =E hv 	 (3.6)

Equating this to the relativistic energy of a particle 2=E mc  and using the identity 
/cλ ν= , an expression for the momentum is given as

	
λ

=p
h

	 (3.7)

which, using the identity

	
2π
λ

=k 	 (3.8)

can also be expressed as

	 =p k 	 (3.9)

This momentum equation was applied to particles, such as electrons, by de Broglie 
(Haken, 1981). Thus, wave properties such as frequency and wavelength were attrib-
uted to the motion of particles. Notice that the momentum expression can be rewrit-
ten as

	 λ =p h	 (3.10)
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which already embodies the dimensionality described in Heisenberg’s uncertainty 
principle. As will be seen in the exposition given next, this expression is crucial in 
the approximate derivation of the uncertainty principle.

Note: the particle-duality concept applies perfectly to known particles as the 
electron.

However, the photon is not a particle (Lamb, 1995): ‘All the indistinguishable 
photons illuminate the array of N slits, or grating, simultaneously. If only one pho-
ton propagates, at any given time, then that individual photon illuminates the whole 
array of N slits simultaneously’ (Duarte, 2003). The best way to describe a photon 
is as a form of a field or as ‘nonlocal coherent energy’ (Duarte, 2022). Many of the 
difficulties associated with the interpretation of quantum mechanics arise from the 
unnecessary representation of the photon as a particle. This is important since this 
book is about photons and quanta.

3.3  THE FEYNMAN APPROXIMATION

In his book on Quantum Mechanics and Path Integrals, Feynman makes use of the 
two-slit experiment to provide an approximate description of the physics behind the 
uncertainty principle (Feynman and Hibbs, 1965). Here, Feynman’s description is 
outlined using a slightly different notation. Feynman observes that in the two-slit 
experiment (see Figure 3.1), the separation of the center of the slits, a, divided by the 
intra-interferometric distance (distance from the slits to the interferometric plane) D, 
that is, /a D is approximately equal to the ratio of the wavelength λ to the distance 
from the central maxima to the first secondary maxima at the interferometric plane 
∆x. In other words,

	
λ≈
∆

a

D x
	 (3.11)

FIGURE 3.1  Two-slit interferometer used in the Feynman approximation. The separation 
between the center of the slits is a, while the intra-interferometric distance from the slits to 
the interferometric plane is D.
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It should be noted that this geometrical identity can be either obtained directly 
from experimental results or by using the interferometric equation (Duarte, 1993) 
described in the next section. Then, using the same two-slit experiment for electrons, 
Feynman postulates that the passage through the slits induces a change in momen-
tum and that the ratio ( / )p p∆  is approximately equal to /a D, so that

	
∆ ≈p

p

a

D
	 (3.12)

and then, using λ =p h, we get

	 ∆ ∆ ≈x p h	 (3.13)

3.1.1  Example

In Figure 3.1, the basic geometry of a two-slit interferometer is illustrated. The 
separation of the center of the slits is a, the intra-interferometric distance from the 
slits to the interferometric plane is D. For two 570 μm slits, separated by 570 μm, 

1140≈a  μm. Thus, for 7.235≈D  m, the ratio ( / ) 1.58 10 4a D ≈ × − . The correspond-
ing two-slit interferogram for He–Ne laser illumination at 632.82λ ≈  nm is shown 
in Figure 3.2. From this interferogram, given that each pixel is ~20 μm wide, we get 
( / ) 1.62 10 4xλ ∆ ≈ × − , thus corroborating Feynman’s approximation ( / ) ( / )a D xλ≈ ∆ .  
The slight difference between the two ratios is well within the experimental uncer-
tainties involved, which are not included here to keep the exposition simple.

FIGURE 3.2  Measured double-slit interferogram generated by two slits of 570 μm sepa-
rated by 570 μm. The intra-interferometric distance (from the slits to the interferometric 
plane) is 7.235≈D  m, and the laser wavelength from the He–Ne laser is 632.8λ ≈  nm.
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3.4  THE INTERFEROMETRIC APPROXIMATION

As mentioned at the instruction, Feynman relates the uncertainty principle to the 
double-slit electron experiment and hence to interferometry. Here, the link between 
the uncertainty principle and generalized N-slit interferometry is described in detail. 
The following exposition is based on the approach given in Duarte (2003).

The generalized one-dimensional interferometric equation derived using Dirac’s 
notation is given by (Duarte, 1991, 1993)

	 ( ) 2 ( ) ( )cos( )2

111

d s d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑〈 〉 〈 〉 = Ψ + Ψ Ψ Ω − Ω












∗

= +==

	 (3.14)

The interference term in this equation, cos( )Ω − Ωm j , can be expressed as (Duarte, 
1997)

	 cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m mθ θ ϕ ϕ( ) ( )− ± − = − ± −− − 	 (3.15)

and from this equation, the diffraction grating equation can be obtained (see 
Chapter 5)

	 (sin sin ) λΘ ± Φ =d mm m m 	 (3.16)

where 0, 1, 2, 3...= ± ± ±m . For a grating utilized in the reflection domain, in Littrow 
configuration, Θ = Φ = Θm m , so that the grating equation reduces to

	 2 sin λΘ =d m 	 (3.17)

Using Equation (3.17) and considering an expanded light beam incident on a reflec-
tion grating, as illustrated in Figure 3.3, and allowing for an infinitesimal change in 
wavelength

	
2

1
1λ = ∆





d

m

x

l
	 (3.18)

	
2

2
2λ = ∆





d

m

x

l
	 (3.19)

where l is the grating length and Δx is the path difference. From the geometry,

	 sinΘ = ∆x

l
	 (3.20)

and subtracting Equation (3.18) from (3.19), it follows that
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	 1 2λ λ∆ =
∆

∆ − ∆





l

x

x x

l
	 (3.21)

To distinguish between a maximum and a minimum, the difference in path differ-
ences should be equal to a single wavelength, so that

	 ( )1 2 λ∆ − ∆ ≈x x 	 (3.22)

Hence, Equation (3.21) reduces to the well-known and important diffraction identity

	
2

x
λ λ∆ ≈

∆
	 (3.23)

Considering λ =p h for two slightly different wavelengths

	
( )

1 2
1 2

1 2

λ λ
λ λ

− = −
p p h 	 (3.24)

and since the difference between λ1 and λ2 is infinitesimal, then we have

	 2

λ
λ

∆ ≈ ∆
p h 	 (3.25)

Substitution of Equation (3.23) into (3.25) leads directly to

	 ∆ ∆ ≈p x h	 (3.26)

FIGURE 3.3  Path differences in a diffraction grating of the reflective class in Littrow con-
figuration. From the geometry, sin ( / )Θ = ∆x l .
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which is known as Heisenberg’s uncertainty principle (Dirac, 1958). This approach 
describes the interferometric foundation of the uncertainty principle and hints toward 
interference as a more fundamental principle.

It should be noted that the ‘interferometric approximation’ toward the uncertainty 
principle is perfectly sufficient since the uncertainty principle is the essence of inde-
terminancy, a concept crucial to quantum mechanics (Born, 1949). Researchers have 
also found the interferometric approach to the uncertainty principle compatible with 
a quantum fluctuations approach to the subject (Madrid, 2020).

3.5  THE MINIMUM UNCERTAINTY PRINCIPLE

The paths described here have used approximate optical and interferometric methods 
to arrive at the uncertainty principle

	 ∆ ∆ ≈p x h

where ∆x and ∆p are outlined as the uncertainties in displacement x and momentum 
p, respectively. From a physics perspective, this is quite alright since an ‘exact’ deri-
vation of the uncertainty principle appears to be a contradiction.

An alternative, more restrictive, version of the uncertainty principle is given by 
Feynman as

	
2
∆ ∆ ≈p x 	 (3.27)

Feynman arrives at this expression using a probability density approach and states 
‘for any other form of a distribution in x or p, the product ∆ ∆p x cannot be smaller 
than the one we have found here’ (Feynman et al., 1965). Thus, we call this the mini-
mum uncertainty principle.

The literature offers several approaches to this definition. Here, we briefly describe 
the approach of Landau and Lifshitz (1976). These authors begin by defining the 
uncertainties via the standard of deviation

	 ( ) ( )2
_

2δ = −x x x 	 (3.28)

	 ( ) ( )2
_

2p p px x xδ = − 	 (3.29)

and then, they consider the inequality

	 ( / ) 0
2

x d dx dx∫ α ψ ψ+ ≥
−∞

∞

	 (3.30)

where α is an arbitrary real constant and ψ  is an ordinary wave function. Evaluation 
of this integral leads to
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2
δ δ ≥x px 	 (3.31)

which is known as the least possible value of the δ δx px product or as the minimum 
uncertainty product. Thus, the minimum product is 4π smaller than the approximate 
expression derived from the physics. Landau and Lifshitz (1976) write that ‘the least 
possible value’ of the uncertainty product is ( /2).

3.6  THE GENERALIZED UNCERTAINTY PRINCIPLE

In this chapter, we mainly refer to a generalization of Heisenberg’s uncertainty prin-
ciple provided by Robertson in 1929. In that short paper, Roberson states, ‘This prin-
ciple, as formulated by Heisenberg for two conjugate quantum-mechanical variables 
states that the accuracy with which two such variables can be measured simultane-
ously is subject to the restriction that the product of the uncertainties in the two mea-
surements is at least of order h’ (Robertson, 1929). He then explains the desirability 
to extend the principle to two variables that are not conjugate.

To this effect, Robertson defines a mean value 0( )A  of a Hermitian operator A   
(see Chapter 11), in a system described by the wave function ψ , as

	 0
*∫ψ ψ τ=A A d 	 (3.32)

The uncertainty in A , that is ∆A , is defined ‘in accordance with statistical usage’ as 
(Robertson, 1929)

	 ( ) ( )2 *
0

2∫ψ ψ τ∆ = −A A A d 	 (3.33)

likewise, we can write

	 ( ) ( )2 *
0

2∫ψ ψ τ∆ = −B B B d 	 (3.34)

Then, Robertson introduces the Schwarzian inequality

	 ( ) ( ) ( )1 1
*

2 2
*

1 1
*

2 2
*

1 1 2 2

2

∫ ∫ ∫τ τ τ+





+





≥ +f f f f d g g g g d f g f g d 	 (3.35)

and defines

	 ( )1
*

0 2ψ= − =f A A f 	 (3.36)

	 ( )1 0 2
*ψ= − = −g B B g 	 (3.37)

Using these definitions, it follows that
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	 ( )1 0
*

2
*ψ= − =f A A f 	 (3.38)

	 ( )1
*

0
*

2ψ= − = −g B B g 	 (3.39)

substituting into the left-hand side of Equation (3.35), we get

	 2 ( ) 2 ( ) ( )*
0

2 *
0

2
1 1 2 2

2

∫ ∫ ∫ψ ψ τ ψ ψ τ τ−





−





≥ +A A d B B d f g f g d 	 (3.40)

Next, reducing the ( )1 1 2 2+f g f g  term, within the integral on the right-hand side of 
Equation (3.35), and using Equations (3.33) and (3.34) (on the left-hand side), leads 
to Robertson’s result

	 4 ( ) ( ) ( )2 2 *
2

∫ψ ψ τ∆ ∆ ≥ −A B AB BA d 	 (3.41)

	
1
2

( )*∫ψ ψ τ∆ ∆ ≥ −A B AB BA d 	 (3.42)

This result is also reproduced in the recent literature as (Erhart et al., 2012)

	 ( ) ( )
1
2

[ , ]A B A Bσ σ ψ ψ≥ 	 (3.43)

where

	 [ , ] = −A B AB BA	 (3.44)

Revisiting the Robertson result here teaches us that this generalization flows mainly 
from a mathematical technique, that is, the application of the Schwarz inequality.

Recent work has led to further generalized formulations of Heisenberg’s uncer-
tainty principle. This work has been carried out motivated by concerns that the origi-
nal Heisenberg version of the uncertainty principle only applies to a limited array of 
measurement apparatuses (Ozawa, 2004). Very briefly, and without further discus-
sion, a generalized version of the uncertainty principle has been put forward for a 
measurable A and an observable B (Erhart et al., 2012)

	 e( ) ( ) ( ) ( ) ( ) ( )
1
2

[ , ]A B e A B A B A Bη σ σ η ψ ψ( )+ + ≥ 	 (3.45)

where ( )e A  is the root mean square deviation of an output operator OA, while the 
disturbance ( )η B  is defined as the root mean square of the change in the observable 
B during the measurement. The second and third terms, of the left-hand side, flow 
from the non-commutability of A and B (Ozawa, 2004).

Notice that the right-hand side of the inequality is the same as Robertson’s, and 
it is on the right-hand side that the physics resides. It should be mentioned here 
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that in Chapter 15, on the subject of entanglement, an analogous expression to 
[ , ] = −A B AB BA is developed in the form of x y y x( )− .

3.7 � EQUIVALENT VERSIONS OF HEISENBERG’S 
UNCERTAINTY PRINCIPLE

Heisenberg’s uncertainty principle, ∆ ∆ ≈x p h, can be expressed in several useful 
versions. Assuming an independent derivation of ∆ ∆ ≈p x h, and using =p k, it can 
be expressed in its wavelength-spatial form

	
2

x
λ λ∆ ≈

∆
	 (3.46)

This is a widely used identity in interferometry utilized to express linewidth in wave-
length units (m). We also know that the interferometric identity given in Equation 
(3.46) can be expressed in its frequency-spatial version

	
c
x

ν∆ ≈
∆

	 (3.47)

which is also widely used in interferometry to express linewidth in frequency units 
(Hz).

Using 2=E mc , the uncertainty principle can also be expressed in its energy–time 
form

	 ∆ ∆ ≈E t h	 (3.48)

which, using the quantum energy =E hv , can be transformed into its frequency–time 
version

	 1ν∆ ∆ ≈t 	 (3.49)

This succinct and beautiful expression is a crucial result for the field of pulsed lasers 
and in particular for femtosecond (fs) and attosecond (at) lasers. In fact, 1ν∆ ∆ ≈t  
means that, for a laser working optimally at the limit established by the uncertainty 
principle, the time duration of the pulses ∆t can be determined from its spectral 
profile.

From Equation (3.49), we can write directly an expression for the time segment

	
1
ν

∆ ≈
∆

t 	 (3.50)

which is also known as the coherence time. From this time, the coherence length can 
be defined as

	
ν

∆ ≈
∆

x
c

	 (3.51)

which is an alternative form of Equation (3.47).
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One final observation: the highly practical identities /2 xλ λ∆ ≈ ∆  and /c xν∆ ≈ ∆  
are routinely applied in the field of interferometry to express measured linewidths 
either in frequency or wavelength units (Duarte, 2003). Note that all these expres-
sions are simply based on ∆ ∆ ≈x p h and not in its more restrictive minimum product 
version.

3.7.1  Example

An optimized multiple-prism grating solid-state organic dye laser (Duarte, 1999) 
yields kW pulses tunable in the 565 603λ≤ ≤  nm range. Its smooth temporal pulse 
is indicative of single-longitudinal-mode oscillation and is shown in Figure 3.4. The 
duration of this pulse at full-width-half-maximum (FWHM) is 3∆ ≈t  ns. The cor-
responding Fabry–Perot interferogram from this single-longitudinal-mode emission 
is shown in Figure 3.5. The half-width of the rings is measured to be 350ν∆ ≈  MHz. 
Thus, it can be directly established that the product 1.06ν∆ ∆ ≈t  for this narrow-
linewidth pulsed laser emission which is near the limit established frequency–time 
version of the Heisenberg uncertainty principle 1ν∆ ∆ ≈t .

3.8  APPLICATIONS OF THE UNCERTAINTY PRINCIPLE IN OPTICS

The uncertainty principle is widely applied in optics. It applies to interferometry, 
linewidth measurements, and beam divergence measurements. Here we focus on the 
uncertainty principle and beam divergence. Applications of these concepts to astron-
omy are also mentioned.

3.8.1  Beam Divergence

Heisenberg’s uncertainty principle can be used to derive some useful identities in 
optics and interferometry. Starting from

	 ∆ ∆ ≈p x h

and substituting for ∆p using =p k, yields

FIGURE 3.4  Temporal profile of a laser pulse from an optimized multiple-prism grating 
solid-state dye laser. The temporal scale is 1 ns/div (Reproduced from Duarte, F. J., Appl. 
Opt. 38, 6347–6349, 1999, with permission from Optica).
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	 2∆ ∆ ≈ πk x 	 (3.52)

which leads to

	
2

λ λ∆ ≈
∆x

For a diffraction-limited beam traveling in the z direction kx = k sin θ. Thus, for a 
very small angle θ

	 θ≈k kx 	 (3.53)

so that

	 θ∆ ≈ ∆k kx 	 (3.54)

Using Δkx Δx ≈ 2π and Equation (3.54), it is readily seen that the beam has an angu-
lar divergence given by

	 θ λ∆ ≈
∆x

	 (3.55)

FIGURE 3.5  Corresponding Fabry–Perot interferogram of the single-longitudinal-mode 
oscillation from the optimized multiple-prism grating solid-state dye laser (Reproduced from 
Duarte, F. J., Appl. Opt. 38, 6347–6349, 1999, with permission from Optica).
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which is a succinct equation for angular beam divergence, and in essence an addi-
tional manifestation of the uncertainty principle. Equation (3.55) indicates that the 
angular spread of a propagating beam of wavelength λ is inversely proportional to its 
original width. The narrower the beam, the larger its divergence. This equation also 
states that light of shorter wavelength experiences less beam divergence, which is a 
well-known experimental fact in laser physics. This implies that the beam divergence 
can be controlled using geometrical ( )∆x  as well as physical means (λ).

Equation (3.55) has the same form as the return-pass beam divergence equation 
derived from classical principles (Duarte, 1990), namely,

	 RR RR1
2 2 1/2

w
L
B

A L

B
θ λ∆ =

π
+ 



 + 



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





	 (3.56)

where w is the beam waist, R ( / )2L w λ= π  is known as the Rayleigh length, and A and 
B are geometrical–spatial matrix propagation parameters defined in Duarte (2003, 
2015) and explained in Appendix F. For an optimized design,

	 RR RR1 1
2 2 1/2

L
B

A L

B
+ 



 + 



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





≈ 	 (3.57)

and Equation (3.56) reduces to

	 θ λ∆ ≈
πw

	 (3.58)

This minimized beam divergence is known as the diffraction limit. The equivalence 
of Equations (3.55) and (3.58) is self-evident.

In summary, the generalized interference equation, that is Equation (3.14), leads 
to the interferometric identity /2 xλ λ∆ ≈ ∆  which, in conjunction with the uncer-
tainty principle ∆ ∆ ≈p x h, leads to the expression of the diffraction-limited beam 
divergence / xθ λ∆ ≈ ∆ .

3.8.2  Beam Divergence in Astronomy

An important application of the uncertainty principle manifests itself in calcula-
tions of the angular resolution limit of telescopes used in astronomical observations. 
Reflection telescopes such as the Newtonian and Cassegrain telescopes are depicted 
in Figure 3.6 and discussed further in Duarte (2003). The angular resolution that can 
be achieved with these telescopes, under ideal conditions, is approximately quanti-
fied by the diffraction limit of the beam divergence given in Equation (3.55), that is, 
the smallest angular discrimination, or resolution limit, of a telescope with a diam-
eter 2=D w is given by

	
2θ λ∆ ≈
πD

	 (3.59)
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This equation teaches us that the two alternatives to improve the angular resolu-
tion of a telescope are either to observe at shorter wavelengths (λ) or to increase the 
diameter (D) of the telescope. This equation explains the quest toward the building of 
large, very large, and extremely large terrestrial telescopes. Previously, we estimated 
the angular resolution for telescope diameters of 10 m and 100 m Duarte (2003). For 
λ = 500 nm, the angular resolutions for large and very large telescopes, at various 
diameters, are listed in Table 3.1. In addition to better angular resolutions, large 
aperture telescopes provide increased signal since the area of collection increases 
substantially. The construction of very large telescopes, with diameters greater than 
50 m, should be feasible in the future via the use of very light segmented mirrors.

The James Webb Space Telescope is of Cassegrain type with a segmented pri-
mary mirror with a diameter 6.5D ≈  m optimized for the infrared. At 13λ ≈  μm, 

(4/ ) 10 6θ∆ ≈ π × −  rad.

FIGURE 3.6  Reflection telescopes used in astronomical observations. (a) Newtonian tele-
scope. (b) Cassegrain telescope. The diameter D of the main mirror determines the angular 
resolution of the telescope. 

TABLE 3.1
Angular Resolutions for Newtonian and Cassegrain Telescopes

Diameter (m) Area (m2) θ∆  (rad)

10 25π (1/π) × 10−7

50 625π (2/π) × 10−8

100 2500π (1/π) × 10−8

1000/π (25/π) × 104 10−9
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The subject of laser beam divergence for laser guide star in astronomy, using 
narrow-linewidth oscillators emitting at 589λ ≈  nm, is discussed by Duarte (2003, 
2015).

3.8.3  The Uncertainty Principle and the Cavity Linewidth Equation

In this section, the nexus between the uncertainty principle and the single-pass cav-
ity linewidth equation is outlined: the generalized one-dimensional interferometric 
equation (Duarte, 1991, 1992)

	 ( ) 2 ( ) ( )cos( )2

111

d s d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












∗

= +==

is used in Appendix B to derive the cavity linewidth equation (Duarte, 1992)

	
1

λ θ θ
λ

∆ ≈ ∆ ∂
∂







−

	 (3.60)

which is also expressed as

	 ( ) 1λ θ θ∆ ≈ ∆ ∇λ
− 	 (3.61)

where ( / )θ θ λ∇ = ∂ ∂λ . This equation is used extensively to determine the emission 
linewidth in high-gain pulsed narrow-linewidth dispersive laser oscillators (Duarte, 
1990). As indicated, this equation originates from the generalized N-slit interference 
equation and incorporates the beam divergence expression Δθ whose diffraction-
limited value

	 x
θ λ∆ ≈

∆

can be derived from the uncertainty principle ∆ ∆ ≈p x h, as previously illustrated.
In addition to the explicit equations for beam divergence given here, it is also 

important to indicate that the beam profile can be generated directly from the gen-
eralized N-slit interferometric equation, Equation (3.14), and the beam divergence 
calculated from the history of the beam profiles. In other words, the interferometric 
equation inherently contains the correct information on beam divergence, which is 
not surprising since it can also be used to derive the uncertainty principle as we have 
just seen.

Equation (3.60) also has a geometrical origin (Robertson, 1955), thus illustrating, 
once again, the synergy between classical and quantum physics.
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3.8.4  Tuning Laser Microcavities

A fine-tuning technique applicable to microelectromechanical systems (MEMS)–
driven miniature laser cavities consists simply in changing the cavity length as illus-
trated in Figure 3.7. This approach exploits the very fact that the free spectral range 
(FSR) of the cavity is a function of ∆x. Here, we examine this approach to wave-
length tuning, following the approach of Duarte (2003, 2009). Going back to the 
interferometric identity

	
2

δλ λ≈
∆x

	 (3.62)

one can write for an initial wavelength 1λ

	
2

1
1
2

δλ λ≈
L

	 (3.63)

and for a subsequent wavelength 2λ

	
2( )

2
2
2

δλ λ≈
± ∆L L

	 (3.64)

Moreover, it is convenient to define the number of longitudinal modes in each case as

	 1
1

1

λ
δλ

= ∆
N 	 (3.65)

and

	 2
2

2

λ
δλ

= ∆
N 	 (3.66)

FIGURE 3.7  Wavelength tuning by changing the length of the cavity L. This is accom-
plished via the displacement of one of the mirrors of the resonator.
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where 1λ∆  and 1λ∆  are the corresponding laser linewidths. If the laser linewidth, 
during this ΔL change, is maintained so that 1 2λ λ∆ ≈ ∆ , then taking the ratio of 
Equations (3.63) and (3.64) leads to (Duarte, 2003)

	 12 1
1

2

1/2 1/2

λ λ≈ 





± ∆





N

N

L

L
	 (3.67)

For 1 2≈N N , or single-longitudinal-mode oscillation, this equation reduces to Duarte 
(2003)

	 12 1

1/2

λ λ≈ ± ∆





L

L
	 (3.68)

Uenishi et al. (1996) report on experiments using the /L L∆  method to perform 
wavelength tuning in a MEMS driven semiconductor laser cavity. In that experi-
ment, they observed wavelength tuning, in the absence of mode-hoping, as long as 
the change in wavelength did not exceed 12 1λ λ− ≈  nm. Using their graphical data 
for the scan initiated at 15471λ ≈  nm, it is established that 0.4∆ ≈L  μm, and using 

305≈L  μm, Equation (3.65) yields 15491λ ≈  nm, which approximately agrees with 
the authors’ observations (Uenishi et al., 1996). In this regard, it should be mentioned 
that Equation (3.65) was implicitly derived with the assumption of a wavelength 
scan obeying the condition 1 2δλ δλ≈ . Albeit here we use the term microcavity, this 
approach should also apply to cavities in the sub-micrometer regime or nanocavities.

3.8.5  Nanocavities

The longitudinal-mode spacing in a cavity of length /2L x= ∆  is known as the FSR 
of the cavity and can be designated as

	
2

2

δλ λ≈
L

	 (3.69)

or

	
2

δν ≈ c

L
	 (3.70)

For very short cavities, with cavity lengths in the sub-micrometer range, or the nano-
meter range, the longitudinal-mode spacing becomes rather large. For example, for 

300≈L  nm at 540λ ≈  nm, the longitudinal-mode spacing becomes 486δλ ≈  nm, 
which is an enormous separation. This means that a measured linewidth in the tens 
of nm easily meets the criteria for single-longitudinal-mode emission. Thus, the chal-
lenge with nanocavities lies in restricting the emission to a single-transverse mode 
since, as established by Equation (3.14), a very short cavity length requires an infini-
tesimal aperture size.
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Nanocavities are of interest not only because of their size but also because they 
exhibit some interesting characteristics such as lasing with extremely low thresholds 
(De Martini and Jakobovitz, 1980). High spatial and spectral coherent emission, with 
a measured visibility of 0.90v ≈ , from an electrically driven laser dye-doped organic 
semiconductor nanocavity ( 300≈L  nm), in the pulsed regime, has been reported by 
Duarte et al. (2005, 2008). A directional beam with a near-Gaussian spatial distribu-
tion was obtained by using an extra-cavity double-interferometric filter configura-
tion. More recently, the coherence of this emission has been described as intrinsic 
quantum coherence (Duarte and Taylor, 2022).

PROBLEMS

	 3.1	 Show that ∆ ∆ ≈x p h can be expressed as /2 xλ λ∆ ≈ ∆ .
	 3.2	 Show that ∆ ∆ ≈x p h can be expressed as /c xν∆ ≈ ∆ .
	 3.3	 Show that ∆ ∆ ≈x p h can be expressed as 1ν∆ ∆ ≈t .
	 3.4	 Show that /c xν∆ ≈ ∆  follows from /2 xλ λ∆ ≈ ∆ .
	 3.5	 Show that ( ) ( )1 1 2 2

*ψ ψ+ = −f g f g AB BA .
	 3.6	� Calculate the diffraction-limited beam divergence, at FWHM, for (a) a 

laser beam with a 150 μm radius at λ = 590 nm, and (b) a laser beam with 
a 500 μm radius at λ = 590 nm.

	 3.7	� Repeat the calculations of the first problem for the excimer laser (XeCl) 
wavelength λ = 308 nm. Comment.

	 3.8	� Calculate the dispersive cavity linewidth for a high-power tunable laser 
yielding a diffraction-limited beam divergence, 150 μm in radius, at 
λ = 590 nm. Assume that an appropriate beam expander illuminates a 
3300 l/mm grating deployed in the first order. The grating has a 50 mm 
length perpendicular to the grooves.

	 3.9	� (a) For a pulsed laser delivering a 350 MHz laser linewidth, at the limit 
established by Heisenberg’s uncertainty principle, estimate its short-
est possible pulse width. (b) For a laser emitting 1 fs pulses estimate its 
broadest possible spectral width in nanometers centered around 500λ =  
nm.

	 3.10	� For a cavity with a length 100=L  μm, calculate the change in wavelength 
for 1.0∆ =L  μm, given that the initial wavelength is 1500λ =  nm.
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4 The Dirac–Feynman 
Quantum Interferometric 
Principle

4.1  DIRAC’S NOTATION IN OPTICS

Dirac’s notation is one of the mathematical avenues that can be used to describe 
nature quantum mechanically. This mathematical notation was invented, or discov-
ered, by Dirac in 1939 and is particularly well suited to describe quantum optics. In 
this chapter, we introduce the basics of Dirac’s notation and apply the notation to the 
generalized description of the fundamental phenomenon of interference that, as it 
will be seen, is crucial to quantum physics itself. This description is based on topics 
and elements of a review given by Duarte (2003).

In The Principles of Quantum Mechanics, first published in 1930, Dirac discusses 
the essence of interference as a one-photon phenomenon. Albeit his discussion is 
qualitative, it is also profound. In 1965, Feynman discussed electron interference via 
a double-slit thought experiment using probability amplitudes and Dirac’s notation 
as a tool (Feynman et al., 1965). In 1987, inspired by Feynman’s discussion, Dirac’s 
notation was applied to the propagation of coherent light, or ensembles of indistin-
guishable photons, in an N-slit interferometer (Duarte and Paine, 1989, 1991, 1993).

The ideas of the notation invented by Dirac (1939) can be explained by consider-
ing the propagation of a photon from plane s to plane d, as illustrated in Figure 4.1. 

34 DOI: 10.1201/9781003398707-4

FIGURE 4.1  Propagation from s to the interferometric plane d is expressed as the probabil-
ity amplitude d s . D d s  is the physical distance between the two planes. 

https://doi.org/10.1201/9781003398707-4
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According to the Dirac’s concept, there is a probability amplitude, denoted by d s ,  
that quantifies such propagation. Historically, Dirac introduced the nomenclature of 
ket vectors, denoted by , and bra vectors, denoted by , which are mirror images 
of each other. Thus, the probability amplitude is described by the braket d s , which 
is a complex number.

In Dirac’s notation, the propagation from s to d is expressed in reverse order by 
d s . In other words, the starting position is at the right and the final position is at 

the left. If the propagation of the photon is not directly from plane s to plane d, but it 
involves the passage through an intermediate plane j, as illustrated in Figure 4.2, then 
the probability amplitude describing such propagation becomes

	 d s d j j s= 	 (4.1)

If the photon from s must also propagate through planes j and k in its trajectory to d, 
that is s j k d→ → → , as illustrated in Figure 4.3, then the probability amplitude is 
given by

	 d s d k k j j s= 	 (4.2)

If an additional intermediate plane l is added, so that the propagation, from plane 
to plane proceeds as s j k l d→ → → → , then the probability amplitude is given by

	 d s d l l k k j j s= 	 (4.3)

When at the intermediate plane, in Figure 4.2, a number of N alternatives are available 
to the passage of the photon, as depicted in Figure 4.4, then the overall probability 
amplitude must consider every possible alternative, which is expressed mathemati-
cally by a summation over j in the form of

FIGURE 4.2  Propagation from s to the interferometric plane d via an intermediate plane 
j is expressed as the probability amplitude d s d j j s= . D j s  and D d j  are the distances 
between the designated planes. 
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1

d s d j j s
j

N

∑=
=

	 (4.4)

Consideration of every possible alternative N in the computation of probability 
amplitude, as described in Equation (4.4), is an essential and crucial quantum feature.

For the case of an additional intermediate plane with N alternatives, as illustrated 
in Figure 4.5, the probability amplitude is written as

	
1

d s
k

N

∑=
= 1

d k k j j s
j

N

∑
=

	 (4.5)

FIGURE 4.3  Propagation from s to the interferometric plane d via two intermediate planes j 
and k is expressed as the probability amplitude d s d k k j j s= . D j s , D k j , and D d k  
are the distances between the designated planes.

FIGURE 4.4  Propagation from s to the interferometric plane d via an array of N slits posi-
tioned at the intermediate plane j. D d j  is the distance between the N-slit array and the d 
plane.
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Moreover, for the case including three intermediate N-slit arrays, the probability 
amplitude becomes

	
1 1 1

d s d l l k k j j s
l

N

k

N

j

N

∑ ∑ ∑=
= = =

	 (4.6)

The addition of further intermediate planes, with N alternatives, can then be system-
atically incorporated into the notation. The Dirac notation albeit originally applied 
to the propagation of single particles (Dirac, 1958; Feynman et al., 1965) also applies 
to describe the propagation of ensembles of coherent, or indistinguishable, photons 
(Duarte, 1991, 1993, 2004).

4.2  THE DIRAC–FEYNMAN INTERFEROMETRIC PRINCIPLE

Any state, such as ψ , can be described in terms of a set, or superposition, of base 
states (Dirac, 1958; Feynman et al., 1965). The amplitude to transition from any state 
to another state is written as a sum of products, such as

	
1

d s d i i s
i

N

∑=
=

	 (4.7)

This is inherently well suited to describe N-slit interferometry as already described 
in the previous section. Later, in Chapter 15, it will be shown that this fundamen-
tal interferometric principle is also the basis to derive the superposition probability 
amplitude for quantum entanglement (Duarte 2013, 2022).

The Dirac–Feynman interferometric principle applies to either single-photon illu-
mination or to illumination via an ensemble of indistinguishable photons as available 

FIGURE 4.5  Propagation from s to the interferometric plane d via an array of N slits posi-
tioned at the intermediate plane j and via an additional array of N slits positioned at k. |〈 〉D k j  
is the distance between the N-slit arrays.
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from narrow-linewidth tunable lasers (Duarte, 1993). In this regard, ‘All the indistin-
guishable photons illuminate the array of N slits, or grating, simultaneously. If only 
one photon propagates, at any given time, then that individual photon illuminates the 
whole array of N slits simultaneously’ (Duarte, 2003).

The base states are orthogonal.

	 i j ijδ= 	 (4.8)

Furthermore, the amplitude to get from one state to another directly is the complex 
conjugate of the reverse

	
*

d s s d= 	 (4.9)

Albeit implicitly intuitive, it should be made explicit that a probability amplitude of 
the form d s  inherently incorporates the concepts of space and time in it since the 
photon propagates in space from s to d at the speed of light c.

As a matter of formality, it should be mentioned that the space of bra ket vectors, 
when the vectors are restricted to a finite length and finite scalar products, is called 
a Hilbert space (Dirac, 1958). However, Dirac himself points out that bra ket vectors 
form a more general space than a Hilbert space. (Note: a Hilbert space is a general-
ized Euclidean space.)

4.3 � INTERFERENCE AND THE INTERFEROMETRIC 
PROBABILITY EQUATION

Dirac’s notation offers a natural avenue to describe the propagation of quanta from a 
source to a detection plane, via a pair of slits. This was done by Feynman in a thought 
experiment using electrons and two slits. The Feynman approach was extended to 
the description of indistinguishable photon propagation from a source s to an inter-
ferometric plane d, via a transmission grating j comprised of N slits, as illustrated in 
Figure 4.6, by Duarte (1989, 1991).

In the interferometric architecture of Figure 4.6, an expanded laser beam, from 
a single-transverse-mode, narrow-linewidth laser, becomes the radiation source (s) 
and illuminates an array of N slits, or transmission grating ( j). The interaction of 
the coherent radiation with the N-slit array (j) produces an interference signal at d. 
A crucial point here is that ‘all the indistinguishable photons illuminate the array of 
N slits, or grating, simultaneously. If only one photon propagates, at any given time, 
then that individual photon illuminates the whole array of N slits simultaneously’ 
(Duarte, 2003).

The probability amplitude that describes the propagation from the source (s) to 
the detection plane (d), via the array of N slits ( j), is given by (Duarte, 1991, 1993)

	
1

d s d j j s
j

N

∑=
=
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According to Dirac (1958), the probability amplitudes can be represented by wave 
functions of ordinary wave optics. Thus, following Feynman et al. (1965)

	 ( ),j s r ej s
i j= Ψ θ− 	 (4.10)

	 ( ),d j r ex j
i j= Ψ φ− 	 (4.11)

where θj and ϕj are the phase terms associated with the incidence and diffraction 
waves, respectively. Using Equations (4.10) and (4.11), for the probability amplitudes, 
the propagation probability amplitude

	
1

d s d j j s
j

N

∑=
=

can be written as

	 ( )
1

d s r ej
i

j

N

j∑= Ψ − Ω

=

	 (4.12)

where

	 ( ) ( ) ( ), ,r r rj x j j sΨ = Ψ Ψ 	 (4.13)

FIGURE 4.6  N-slit laser interferometer: a near-Gaussian beam from a single-transverse-
mode (TEM00), narrow-linewidth laser is pre-expanded in a two-dimensional telescope and 
then expanded in one dimension (parallel to the plane of incidence) by a multiple-prism beam 
expander (Duarte, 1987). This expanded beam can be further transformed into a nearly uni-
form illumination source (s) (Duarte, 2003). Then, uniform light source (s) illuminates an 
array of N slits at j. Interaction of the coherent emission with the slit array produces interfer-
ence at the interferometric plane d (Duarte, 1993).
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and

	 ( )j j jθ φΩ = + 	 (4.14)

Next, the propagation probability is obtained by expanding Equation (4.12) and mul-
tiplying the expansion by its complex conjugate (Born, 1926)

	
2 *

d s d s d s= 	 (4.15)

Expansion of the probability amplitude and multiplication with its complex conju-
gate, following some algebra, leads to

	 ( ) ( )
1

( )

1

d s d s r r e sj

j

N

m
i

m

N

m j∑ ∑= Ψ Ψ∗

=

Ω −Ω

=

	 (4.16)

Expanding Equation (4.16) and using the identity

	 2cos( ) ( ) ( )e em j
i im j m jΩ − Ω = +− Ω −Ω Ω −Ω 	 (4.17)

lead to the explicit form of the generalized propagation probability in one dimension 
(Duarte and Paine, 1989; Duarte, 1991)
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	 (4.18)

This equation is the one-dimensional generalized interferometric equation. The 
reader should keep in mind that it is completely equivalent to Equation (4.16).

4.3.1 � Examples: Double-, Triple-, Quadruple-, 
and Quintuple-Slit Interference

Expanding Equation (4.16) for two slits ( 2)N = , as applicable to double-slit interfer-
ence, we get
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1 1
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	 ( ) ( ) 2 ( ) ( )cos( )
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2
2

1 2 2 1d s r r r r= Ψ + Ψ + Ψ Ψ Ω − Ω 	 (4.19)

Expanding Equation (4.18) for three slits ( 3)N = , applicable to triple slit interference, 
we get
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Expanding Equation (4.18) for four slits ( 4)N = , applicable to quadruple slit interfer-
ence, we get
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Expanding Equation (4.18) for five slits ( 5)N = , applicable to quintuple-slit interfer-
ence, we get
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and so on. Besides the explicit interferometric expressions for 2N = , 3N = , 4N = ,  
and 5N = , Equation (4.18) can be programmed to include sextuple ( 6N = ), septuple 
( 7N = ), octuple ( 8N = ), nonuple ( 9N = ), or any number of slits and in practice, 
it has been used to do calculations, and comparisons with measurements, in the 
2 2000N≤ ≤  range (Duarte, 1993, 2009).

4.3.2 G eometry of the N-Slit Quantum Interferometer

The relevant geometry, and geometrical parameters, at the transmission grating (j) 
and the plane of interference (d) is illustrated in Figures 4.6–4.8. According to the 
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geometry, the phase difference term in Equations (4.16) and (4.18) can be expressed 
as (Duarte, 1997)

	 cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m mθ θ φ φ( ) ( )− ± − = − ± −− − 	 (4.23)

where

	
v

2
1

1k
n

λ
= π

	 (4.24)

and

	
v

2
2

2k
n

λ
= π

	 (4.25)

are the wavenumbers of the two optical regions are defined in Figure 4.8. Here, 
v /1 1nλ λ=  and v /2 2nλ λ=  where vλ  is the vacuum wavelength, while 1n  and 2n  are the 

corresponding indexes of refraction (Wallenstein and Hänsch, 1974; Born and Wolf, 
1999). The phase differences are expressed via direct geometrical equations of the 
form (Duarte, 1993)

	
( )

1L L
d d

L
m m

m m m

m

δ− = ∆ +
− 	 (4.26)

FIGURE 4.7  The N-slit array, or transmission grating, plane ( j) and the interferometric 
plane (d) (not to scale) illustrating the path difference and the various parameters involved in 
the exact description of the geometry. 
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	 ( )2 2L D dm d j m mδ= + ∆ + 	 (4.27)

	 1
2 2 2L Dm d j mδ= + ∆− 	 (4.28)

In this notation, mδ∆  is the lateral displacement on the d plane, and D d j〈 〉 is the intra-
interferometric distance from the j plane to the d plane. Accurate representation of 
the geometry is important when writing software to generate numerical interfero-
grams based on Equation (4.18). The geometry is discussed further in Appendix E.

4.3.3 T he Diffraction Grating Equation

In the phase term equation

	 cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m mθ θ φ φ( ) ( )− ± − = − ± −− −

the corresponding path differences are 1l lm m− −  and 1L Lm m− − . Since maxima  
occur at

FIGURE 4.8  Close-up of the N-slit array, or transmission grating, plane ( )j  illustrating the 
path length difference and the angles of incidence ( )Θm  and diffraction ( )Φm  for the condition 
D dd j m>>  (Reproduced from Duarte, F. J., Am. J. Phys. 65, 637-640, 1997, with permission 
of the American Association of Physics Teachers).
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v

2
1 1 1 2l l n L L n Mm m m m λ

( )− ± − π = π− − 	 (4.29)

where 0, 2, 4, 6...M = ± ± ± , it can be shown that

	
v

sin sin
2

1 2d n n Mm m m λ
( )Θ ± Φ π = π	 (4.30)

which, for 11 2n n= =  and vλ λ= , reduces to

	 (sin sin )d k Mm m mΘ ± Φ = π	 (4.31)

that can be expressed as the well-known grating equation

	 (sin sin )d mm m m λΘ ± Φ = 	 (4.32)

where 0, 1, 2, 3...m = ± ± ±  For a grating utilized in the reflection domain, in Littrow 
configuration, m mΘ = Φ = Θ so that the grating equation reduces to

	 2 sind mλΘ = 	 (4.33)

These diffraction equations are reconsidered, in a more general form, with an extra 
sign alternative, in Chapter 5.

4.3.4  N-Slit Interferometer Experiment

The N-slit interferometer is illustrated in Figure 4.9. In practice, this interferometer 
can be configured with a variety of lasers including tunable lasers. However, one 
requirement is that the laser to be utilized must emit in the narrow-linewidth regime 
and in a single-transverse-mode (TEM00) with a near-Gaussian profile. Ideally, the 

FIGURE 4.9  Top view schematics of the N-slit interferometer. A neutral density filter fol-
lows the TEM00 narrow-linewidth. The laser beam is then magnified in two dimensions by 
a telescope beam expander (TBE). The magnified beam is then expanded in one dimension 
by a multiple-prism beam expander (MPBE). A wide aperture then selects the central part  
of the expanded beam to illuminate the N-slit array ( j). The interferogram then propagates 
via the intra-interferometric path D d j  on its way toward the interference plane d. Detection 
of the interferogram at d can either be performed by a silver halide film or a digital array such 
as a CCD or CMOS detector. 
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source should be a single-longitudinal-mode laser. The reason for this requirement is 
that narrow-linewidth lasers yield sharp, well-defined interference patterns close to 
those predicted theoretically for a single wavelength.

One particular configuration of the N-slit laser interferometer (NSLI), described 
by Duarte (1993), utilizes a TEM00 He–Ne laser ( 632.82λ ≈  nm) with a beam 
0.5 mm in diameter, as the illumination source. This class of laser yields a smooth 
near-Gaussian beam profile and narrow-linewidth emission ( 1ν∆ ≈  GHz). The laser 
beam is then magnified, in two dimensions, by a Galilean telescope. Following the 
telescopic expansion, the beam is further expanded, in one dimension, by a multi-
ple-prism beam expander. This class of optical architecture can yield an expanded 
smooth near-Gaussian beam approximately 50 mm wide. An option is to insert a 
convex lens prior to the multiple-prism expander, thus producing an extremely elon-
gated near-Gaussian beam (Duarte, 1987, 1993). The beam propagation through this 
system can be accurately characterized using ray transfer matrices as discussed in 
Duarte (2003). Also, as an option, at the exit of the multiple-prism beam expander an 
aperture, a few mm wide, can be deployed.

The beam profile thus produced can be neatly reproduced by the interferometric 
equation as illustrated later in this chapter. Thus, the source s can be either the exit 
prism of the multiple-prism beam expander or the wide aperture. For the results dis-
cussed in this chapter, on the detection side, the interference screen at d is a digital 
detector comprised of a photodiode array with individual pixels each 25 μm in width.

Now, we consider a series of cases that demonstrate the measurement capabil-
ity of the NSLI and the ability of the generalized interferometric equation to either 
predict or reproduce the measurement. The first case considered is the well-known 
double-slit experiment also known as Young’s interference experiment. For ( 2N = ) 
with slits 50 μm in width, separated by 50 μm, the elongated Gaussian beam provides 
a nearly plane illumination. That is also approximately the case even if a larger num-
ber of slits, of these dimensions, are illuminated. For the particular case of a two-slit 
experiment involving 50 μm slits separated by 50 μm and a grating to screen distance 

10D d j =  cm, the interference signal is displayed in Figure 4.10a. The calculated 
interference, using Equation (4.18), and assuming plane wave illumination is given 
in Figure 4.10b.

For an array of 23N =  slits, each 100 μm in width and separated by 100 μm, the 
measured and calculated interferograms are shown in Figure 4.11.  Here the grating 
to digital detector distance is 1.5D d j =  cm. This is a near-field result and corre-
sponds entirely to the interferometric regime.

For an array of 100N =  slits, each 30 μm in width and separated by 30 μm, the 
measured and calculated interferograms are shown in Figure 4.12. Here the grating 
to digital detector distance is 75D d j =  cm. In Figure 4.12, the 1±  diffraction orders 
are present.

In practice, the transmission gratings are not perfect and offer an uncertainty in 
the dimension of the slits. The uncertainty in the slit dimensions of the grating, incor-
porating the 30 μm slits, used in this experiments was measured to be 2≤ %. The 
theoretical interferogram for the grating comprised of 100N =  slits, each 30.0 0.6±  
μm wide and separated by 30.0 0.6±  μm, is given in Figure 4.13. Notice the sym-
metry deterioration.
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When a wide slit is used to select the central portion of the elongated Gaussian 
beam, the interaction of the coherent laser beam with the slit results in diffraction 
prior to the illumination of the transmission grating. The interferometric Equation 
(4.18) can be used to characterize this diffraction. This is done by dividing the wide 
slit in hundreds of smaller slits. As an example, a 4 mm wide aperture is divided into 
800 slits, each 4 μm wide and separated by a 1 μm interslit distance (Duarte, 1993). 
The calculated near-field diffraction pattern, for a distance of 10D d j =  cm, is shown 
in Figure 4.14.

Using this as the radiation source to illuminate the 100N =  slit grating, com-
prised of 30 μm slits with an interslit distance of 30 μm (for 75D d j =  cm), yields the 
theoretical interferogram displayed in Figure 4.15. This is a cascade interferometric 

FIGURE 4.10  (a) Measured interferogram resulting from the interaction of coherent laser 
emission at 632.82λ =  nm and two slits ( 2=N ) 50 μm wide, separated by 50 μm. The j to d 
distance is 10D d j =  cm. Each pixel is 25 μm wide. (b) Corresponding theoretical interfero-
gram from Equation (4.18).
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technique in which the interferometric distribution in one plane is used to illumi-
nate an N-slit array in the immediately following plane and is applied further in 
Chapter 22.

4.4  COHERENT AND SEMI-COHERENT INTERFEROGRAMS

The interferometric equation
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FIGURE 4.11  (a) Measured interferogram, in the near field, resulting from the interaction 
of coherent laser emission at 632.82λ =  nm and 23N =  slits, 100 μm wide, separated by 
100 μm. Here, 1.5D d j = cm. (b) Corresponding near-field theoretical interferogram from 
Equation (4.18) (Reproduced from Duarte, F. J., Opt. Commun. 103, 8–14, 1993, with permis-
sion from Elsevier).
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was originally derived to account for single-photon propagation only (Duarte, 1993, 
2004). This is illustrated by adding a single-wavelength subscript to Equation (4.18), 
as made explicit now in Equation (4.33). Thus, this equation is intrinsically related to 
monochromatic and/or highly-coherent emission. In practice, it has also been found 
that it accounts for the propagation of ensembles of indistinguishable photons or 

FIGURE 4.12  (a) Measured interferogram resulting from the interaction of coherent laser 
emission at 632.82λ =  nm and 100N = , slits 30 μm wide, separated by 30 μm. Here, 

75D d j = cm. (b) Corresponding theoretical interferogram from Equation (4.18) (Reproduced 
from Duarte, F. J., Opt. Commun. 103, 8–14, 1993, with permission from Elsevier).
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FIGURE 4.13  Theoretical interferometric/diffraction distribution using a ≤ 2% uncertainty 
in the dimensions of the 30 μm slits. In this calculation 100=N  and 75D d j = cm. A deterio-
ration in the spatial symmetry of the distribution is evident (Reproduced from Duarte, F. J., 
Opt. Commun. 103, 8–14, 1993, with permission from Elsevier).

FIGURE 4.14  Theoretical near-field diffraction distribution produced by a 4 mm aper-
ture illuminated at 632.82λ =  nm, and 10D d j =  cm (Reproduced from Duarte, F. J., Opt. 
Commun. 103, 8–14, 1993, with permission from Elsevier).
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narrow-linewidth emission as available from narrow-linewidth laser sources (Duarte, 
1993, 2003). The question then arises on the applicability of Equation (4.34) to the 
case of semi-coherent, partially-coherent, or broadband emission.

Equation (4.34) provides an interferogram for a single wavelength and in prac-
tice for an ensemble of indistinguishable photons. These interferograms are narrow, 
spatially sharp, and well defined. For broadband emission, or semi-coherent emis-
sion, the sharpness of the interferogram diminishes and the interferometric pattern 
becomes broad and less defined. This is how this occurs: each wavelength has a 
unique interferometric signature defined by Equation (4.34). A detector registers 
that signature. If the emission is broadband or semi-coherent, a multitude of differ-
ent interferograms are generated and the detector (either digital or a photographic 
plaque) provides an integrated picture of a composite interferogram produced by the 
array of wavelengths involved in the emission.

Thus, for broadband emission, Equation (4.34) is modified to include a sum over 
the wavelength range involved, so that
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FIGURE 4.15  Theoretical interferometric distribution incorporating diffraction-edge 
effects in the illumination. In this calculation, the width of the slits in the array is 30 μm, 
separated by 30 μm, 100=N  and 75D d j =  cm. The aperture-grating distance is 10 cm 
(Reproduced from Duarte, F. J., Opt. Commun. 103, 8–14, 1993, with permission from 
Elsevier).
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The concept just described has been previously outlined by Duarte (2007, 2008) 
and is further illustrated next. In Figure 4.16, the double-slit interferogram produced 
with narrow-linewidth emission from the 3 22 10s p−  transition of a He–Ne laser, at 

543.3λ ≈  nm, is displayed. The visibility of this interferogram is calculated using 
(Michelson, 1927)

	 VV 1 2

1 2

I I
I I

= −
+

	 (4.36)

to be ≈VV 0.95. In Figure 4.17, the double-slit interferogram produced, under identical 
geometrical conditions, but with the emission from an electrically excited coherent 

FIGURE 4.16  Measured double-slit interferogram generated with He–Ne laser emission 
from the 3 22 10−s p  transition at 543.3λ ≈ nm. Here, 2=N  for a slit width of 50 μm. The 
intra-interferometric distance is 10D d j =  cm (Reproduced from Duarte, F. J., Opt. Lett. 32, 
412–414, 2007, with permission from Optica).

FIGURE 4.17  Measured double-slit interferogram generated with emission from an organic 
semiconductor interferometric emitter at 540λ ≈  nm. Here, 2=N  for a slit width of 50 μm. 
The intra-interferometric distance is 10| =〈 〉D d j  cm (Reproduced from Duarte, F. J., Opt. Lett. 
32, 412–414, 2007, with permission from Optica).



52 Quantum Optics for Engineers

organic semiconductor interferometric emitter, at 540λ ≈  nm, is displayed. Here the 
visibility is slightly lower – V 0.90≈ .

A double-slit interferogram produced, under identical geometrical conditions, but 
with the emission from a broadband source, centered around 540λ ≈  nm, is depicted 
in Figure 4.18. The corresponding visibility is V 0.44≈ . A survey of measured dou-
ble-slit interferograms visibilities from relevant semi-coherent, or partially-coherent, 
sources reveals a visibility range of V0.4 0.65≤ ≤ . On the other hand, the visibil-
ity range for double-slit interferograms originating from various laser sources is 

V0.85 0.99≤ ≤  (Duarte, 2008).

4.5 � THE INTERFEROMETRIC PROBABILITY EQUATION 
IN TWO AND THREE DIMENSIONS

The two-dimensional interferometric case can be described considering a diffractive 
grid, or two-dimensional N-slit array, as depicted in Figure 4.19. Photon propagation 
takes place from s to the interferometric plane d via a two-dimensional transmission 
grating jxy, that is, j is replaced by a grid comprised of j components in the y direction 
and j components in the x direction. Note that in the one-dimensional case, only the 
y component of j is present which is written simply as j. The plane configured by the 
jxy grid is orthogonal to the plane of propagation. Hence, for photon propagation from 
s to d, via jxy, the probability amplitude is given by (Duarte, 1995)
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Now, if the j is abstracted from jxy, then Equation (4.37) can be expressed as

FIGURE 4.18  Measured double-slit interferometer generated via a broadband visible 
source. Here, 2=N  for a slit width of 50 μm. The intra-interferometric distance is 10D d j =  
cm (Reproduced from Duarte, F. J., Tunable Laser Optics, 2nd ed. CRC, Boca Raton, 2015).
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and the corresponding probability is given by (Duarte, 1995)
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For a three-dimensional transmission grating, it can be shown that
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These equations apply either to the propagation of single photons or to the propaga-
tion of ensembles of coherent, indistinguishable, or monochromatic photons.

For broadband emission, as described in the previous section, an interferometric 
summation over the emission spectrum is necessary.

The application of quantum principles to the description of propagation of a large 
number of monochromatic, or indistinguishable, photons was already advanced by 
Dirac in his discussion of interference (Dirac, 1958; Duarte, 1998).

4.6  CLASSICAL AND QUANTUM ALTERNATIVES

Increasingly, the field of optics has seen a transition from a classical to a quantum 
description. Some phenomena are purely quantum and cannot be described classically. 

FIGURE 4.19  Two-dimensional depiction of the interferometric system d j j s  (Adapted 
from Duarte, F. J., Interferometric imaging, In: Tunable Laser Applications, Duarte, F. J. 
(ed.), Marcel Dekker, New York, 1995). 
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Other phenomena, such as polarization and interference, can be described either 
classically or quantum mechanically. In the case of interference, and diffraction, the 
beauty is that the quantum mechanical description also applies to the description of 
ensembles of indistinguishable photons. Moreover, when we describe interference 
and diffraction using quantum mechanical tools, all we are doing is following the 
steps of giants such as Dirac (1958) and Feynman (Feynman and Hibbs, 1965).

As we shall see in Chapter 5, there is another powerful reason to describe interfer-
ence quantum mechanically: this description provides a unified avenue to the whole 
of optics in a succinct hierarchy that goes

	 INTERFERENCE DIFFRACTION REFRACTION REFLECTION→ → →

(Duarte, 1997). By contrast, the situation from a traditional classical perspective is 
rather disjointed as can be observed by perusing any good book on classical optics. 
There, the description goes like reflection, refraction, diffraction, and interference 
in a non-cohesive manner. Classically, there is no mathematical coherence in the 
description.

Furthermore, in our quantum description, a single equation is used to describe 
interference, and interference–diffraction phenomena, in the near and the far field in 
a unified manner (Duarte, 1993, 1997).

PROBLEMS

	 4.1	� Show that substitution of Equations (4.10) and (4.11) into Equation (4.9) 
leads to Equation (4.11).

	 4.2	 Show that Equation (4.16) can be expressed as Equation (4.18).
	 4.3	 From the geometry of Figure 4.7 derive Equations (4.26) to (4.28).

	 4.4	� Write an equation for 
2

d s  in the case relevant to 3N =  staring from 
Equation (4.16).

	 4.5	� Write an equation for 
2

d s  in the probability amplitude given in 
Equation (4.5).
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Interference, 
Diffraction, Refraction, 
and Reflection via 
Dirac’s Notation

5.1  INTRODUCTION

In this chapter, we use the generalized one-dimensional interferometric equation 
to introduce the concepts of diffraction, refraction, and reflection, cohesively and 
unified.

In this regard, we have an equation derived using the probabilistic concept of 
single-photon propagation, via Dirac’s quantum notation, explaining in a unified 
manner the major concepts of classical optics.

In the original exposition of this united and cohesive approach to optics (Duarte, 
1997, 2003), only positive refraction was considered. Here, both, positive and nega-
tive refractions (Veselago, 1968) are incorporated (Duarte, 2006). Subsequently, the 
brief exposition of generalized prismatic dispersion also encompasses the positive 
and negative alternatives.

5.2  INTERFERENCE AND DIFFRACTION

Feynman, in his usual style, stated that ‘no one has ever been able to define the dif-
ference between interference and diffraction satisfactorily’ (Feynman et al., 1965).

In the discussion related to Figure 5.1, and its variants, reference was only made to 
interference. However, what we really have is interference in three diffraction orders. 
That is, the 0th, or central order, and the 1± , or secondary orders. In other words, 
there is an interference pattern associated with each diffraction order. Physically, 
however, it is part of the same phenomenon. The interaction of coherent light with 
a set of slits, in the near field, gives rise to an interference pattern. As the intra-
interferometric distance D d j  increases, the central interference pattern begins to 
provide origin to secondary patterns, which gradually separate from the central order 
at lower intensities. These are the 1±  diffraction orders. This physical phenomenon, 
as one goes from the near to the far field, is clearly illustrated in Figures 5.2–5.5. 
One of the beauties of the Dirac description of optics is the ability to continuously 
describe the evolution of the interferometric distribution, as it moves from the near 
to the far field, with a single mathematical equation.

5
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The second interference-diffraction entanglement refers to the fact that our gener-
alized interference equation can be naturally applied to describe a diffraction pattern 
produced by a single wide slit as shown in Figure 5.6. Under those circumstances, the 
wide slit is mathematically represented by a multitude of subslits.

FIGURE 5.1  (a) Measured interferogram resulting from the interaction of coherent laser 
emission at λ  = 632.82 nm and 100 slits 30 μm wide, separated by 30 μm and 75D d j =  cm. 
(b) Corresponding theoretical interferogram from Equation (5.1) (Reproduced from Duarte, 
F. J., Opt. Commun. 103, 8–14, 1993, with permission from Elsevier).
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FIGURE 5.2  Interferogram at a grating to screen distance of 5D d j =  cm. The interfero-
metric distribution, in the near field, is mainly part of a single order. At the boundaries, there 
is an incipient indication of emerging orders. Slit width is 30 μm and slits are separated by  
30 μm, 100=N , and 632.82λ =  nm (Reproduced from Duarte, F. J., Tunable Laser Optics, 
2nd ed. CRC, Boca Raton, FL, 2015).

FIGURE 5.3  Interferogram at a grating to screen distance of 10D d j =  cm. The presence 
of the emerging (±1) orders is more visible. Slit width is 30 μm and slits are separated by  
30 μm, 100=N , and 632.82λ =  nm (Reproduced from Duarte, F. J., Tunable Laser Optics, 
2nd ed. CRC, Boca Raton, FL, 2015).
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FIGURE 5.5  Interferogram at a grating to screen distance of 75D d j =  cm. The −1, 0, and 
+1 diffraction orders are clearly established. Notice the increase in the width of the distribu-
tion as the j to d distance increases from 5 to 75 cm. Slit width is 30 μm and slits are separated 
by 30 μm, 100=N , and 632.82λ =  nm (Reproduced from Duarte, F. J., Tunable Laser Optics, 
2nd ed. CRC, Boca Raton, FL, 2015).

FIGURE 5.4  Interferogram at a grating to screen distance of 25D d j =  cm. The emerging 
(±1) orders give rise to an overall distribution with clear ‘shoulders.’ Slit width is 30 μm and 
slits are separated by 30 μm, 100=N , and 632.82λ =  nm (Reproduced from Duarte, F. J., 
Tunable Laser Optics, 2nd ed. CRC, Boca Raton, FL, 2015).
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5.2.1 G eneralized Diffraction

The intimate relation between interference and diffraction has its origin in the inter-
ferometric equation itself (Duarte, 2003):

	 d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












= +==

( ) 2 ( ) ( )cos( )
2 2

111

	 (5.1)

for, it is the cos( )m jΩ − Ω  term, that gives rise to the different diffraction orders.
Here, we revisit the geometry at the N-slit plane j and illustrate what is obvi-

ously seen in Figures 5.1–5.5: up on arrival to a slit, diffraction occurs symmetri-
cally toward both sides as illustrated in Figures 5.7–5.10. Figure 5.7 depicts the usual 
description associated with incidence below the normal ( )−  and diffraction above 
the normal ( )+ . Figure 5.8 illustrates incidence above the normal ( )+  and diffrac-
tion above the normal ( )+  (Duarte, 2006). For completeness, we also include the 
case of incidence below the normal ( )−  followed by diffraction below the normal 
( )−  and incidence above the normal ( )+  followed by diffraction below the normal ( )−  
(Figures 5.9 and 5.10).

Thus, the equations describing the geometry (Duarte, 1997) are slightly modified 
to account for all the ± alternatives

	 cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m mθ θ φ φ( ) ( )± − ± − = ± − ± −− − 	 (5.2)

FIGURE 5.6  Theoretical near field diffraction distribution produced by a 4 mm aperture 
illuminated at λ = 632.82 nm. Here, 10D d j =  cm (Reproduced from Duarte, F. J., Opt. 
Commun. 103, 8–14, 1993, with permission from Elsevier).
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where

	
2

1
1

λ
= π

k
n

v

	 (5.3)

and

	
2

2
2k

n

vλ
= π

	 (5.4)

are the wavenumbers of the two optical regions defined in Figures 5.7–5.10. Here, as 
we saw previously, /1 1nλ λ= v  and /2 2nλ λ= v , where vλ  is the vacuum wavelength and 
n1 and n2 are the corresponding indexes of refraction.

As previously explained in Chapter 4, the phase differences can be expressed via 
geometrical expressions of the form (Duarte, 1993)

	
( )

1L L
d d

L
m m

m m m

m

δ− = ∆ +
− 	 (5.5)

	
2 2 2L Dm d j mδ= + ∆ 	 (5.6)

FIGURE 5.7  Outline of the j plane in a transmission grating showing incidence below the 
normal ( )−  and diffraction above the normal ( )+  consistent with the convention leading to 
positive refraction (Reproduced from Duarte, F. J., Appl. Phys. B. 82, 35–38, 2006, with per-
mission from Springer Nature).
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	 1
2 2 2

L D dm d j m δ( )= + ∆ −− 	 (5.7)

From the geometry of Figure 5.11

	 sin 1L L

d
m

m m

m

Φ = − − 	 (5.8)

and

	 sin1L L dm m m m− ≈ Φ− 	 (5.9)

	 sin1l l dm m m m− ≈ Θ− 	 (5.10)

where mΘ  and mΦ  are the angles of incidence and diffraction, respectively. Given that 
maxima occur at

FIGURE 5.8  Outline of the j plane in a transmission grating showing incidence above the 
normal ( )+  and diffraction above the normal ( )+  consistent with the convention leading to 
negative refraction (Reproduced from Duarte, F. J., Appl. Phys. B. 82, 35–38, 2006, with 
permission from Springer Nature).
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v

2
1 1 1 2l l n L L n Mm m m m λ( )± − ± − π = π− − 	 (5.11)

then using Equations (5.9) and (5.10)

	 sin sin
2

1 2d n n Mm m m
vλ

( )± Θ ± Φ π = π 	 (5.12)

where 0, 2, 4, 6,...M =  For 1 2n n= , we have vλ λ= , and this equation reduces to the 
generalized diffraction grating equation

	 sin sind mm m m λ( )± Θ ± Φ = 	 (5.13)

where 0,1, 2, 3,...m =  are the various diffraction orders.
An observation is due here: in our discussion on the interferometric equations, 

we have made explicit reference to the exact geometrical equations (Equations 
(5.5)–(5.7)).

However, in the derivation of Equations (5.12) and (5.13), we have used the approx-
imation D dd j m>> . Are we being consistent? The answer is yes! Equations (5.5) 

FIGURE 5.9  Outline of the j plane in a transmission grating showing incidence below the 
normal ( )−  and diffraction below the normal ( )−  consistent with the convention leading to 
negative refraction.
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FIGURE 5.10  Outline of the j plane in a transmission grating showing incidence above the 
normal ( )+  and diffraction below the normal ( )−  consistent with the convention leading to 
positive refraction

FIGURE 5.11  Close-up of the N-slit array, or transmission grating, plane ( )j  illustrating 
the path length difference and the angles of incidence ( )m−Θ  and diffraction ( )+Φm  for the 
condition D dd j m>> .
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to (5.7) are used in the generalized interferometric equation (Equation (5.1)), while 
the approximation D dd j m>>  has been applied in the derivation of the generalized 
diffraction equation

	 sin sind mm m m λ( )± Θ ± Φ =

that manifests itself in the far field as beautifully illustrated in Figures 5.2–5.5. From 
this equation, it is clear that beyond the zeroth order, m can take a series of ± values, 
that is 1, 2, 3...m = ± ± ±

Note: the parameter dm depicts a fractional distance on the j plane and should be 
labeled as jm∆ . However, here we use dm to be consistent with tradition in the pub-
lished literature.

5.2.2 P ositive Diffraction

From the generalized diffraction equation (Equation (5.13)) including both ± alterna-
tives, the usual traditional equation can be stated as

	 sin sind mm m m λ( )Θ ± Φ = 	 (5.14)

which was previously derived starting from (Duarte, 1997)

	 cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m mθ θ φ φ ( )( )− ± − = − ± −− − 	 (5.15)

From Equation (5.14), setting m mΘ = Φ = Θ, the diffraction grating equation for 
Littrow configuration emerges the well-known grating equation

	 2 sinm dmλ = Θ	 (5.16)

5.3  POSITIVE AND NEGATIVE REFRACTION

So far, we have discussed interference and diffraction and have seen how diffraction 
manifests itself as the interferometric distribution propagates toward the far field. An 
additional fundamental phenomenon in optics is refraction.

Refraction is the change in the geometrical path, of a beam of light, due to trans-
mission from the original medium of propagation to a second medium with a differ-
ent refractive index. For example, refraction is the bending of a ray of light caused 
due to propagation in a glass, or crystalline, prism.

If in the diffraction grating equation, dm is made very small relative to a given λ, 
diffraction ceases to occur, and the only solution can be found for 0m =  (Duarte, 
1997). That is, under these conditions, a grating made of grooves coated on a trans-
parent substrate, such as optical glass, does not diffract and exhibits the refraction 
properties of the glass. For example, since the maximum value of ( sin sin )m m± Θ ± Φ  
is 2, for a 5000 lines/mm transmission grating, let us say, no diffraction can be 
observed for the visible spectrum. Hence, for the condition dm λ<< , the diffraction 
grating equation can only be solved for
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	 sin sin
2

01 2d n nm m m
vλ

( )± Θ ± Φ π = 	 (5.17)

which leads to

	 ( sin sin ) 01 2n nm m± Θ ± Φ = 	 (5.18)

For the case of incidence below the normal ( )−  and refraction above the normal ( )+  
(Figure 5.7)

	 sin sin 01 2n nm m− Θ + Φ = 	 (5.19)

so that

	 sin sin1 2n nm mΘ = Φ 	 (5.20)

which is the well-known equation of refraction, also known as Snell’s law. Under the 
present physical conditions, mΘ  is the angle of incidence and mΦ  becomes the angle 
of refraction. The same outcome is obtained for incidence above the normal ( )+  and 
refraction below the normal ( )−  (Figure 5.10). In textbooks, Equation (5.20) is usually 
expressed as

	
sin
sin

n m

m

= Θ
Φ

	 (5.21)

Snell’s law is sometimes also written as (sin / sin ) ( / )n cm m υΘ Φ = = , which is referred 
to as Maxwell’s formula (Born and Wolf, 1999).

 For the case of incidence above the normal ( )+  and refraction above the normal 
( )+   (Figure 5.8)

	 sin sin 01 2n nm m+ Θ + Φ = 	 (5.22)

so that

	 sin sin1 2n nm mΘ = − Φ 	 (5.23)

which is Snell’s law for negative refraction. The same outcome is obtained for inci-
dence below the normal ( )−  and diffraction below the normal ( )−  (Figure 5.9).

5.3.1  Focusing

Once the law of refraction is introduced, focusing is the next logical and natural 
step. This is because focusing naturally flows from the law of refraction, or Snell’s 
law, acting on a curved surface. The relationships between surface radius of curva-
ture, refractive index, and focal length for various lens types is discussed in detail 
in classical optics books such as Fundamental of Optics (Jenkins and White, 1957).  
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For completeness, in Appendix F, we provide an extensive table with focusing param-
eters for various lenses of interest using the ABCD propagation matrix formalism 
(Siegman, 1986; Duarte, 2003).

5.4  REFLECTION

The discussion on interference, up to now, has involved an N-slit array or a transmis-
sion grating. It should be indicated that the arguments and physics apply equally 
well to a reflection interferometer (Duarte, 2003). That is, to an interferometer incor-
porating a reflection, rather than a transmission, grating. Explicitly, if a mirror is 
placed at an infinitesimal distance immediately behind the N-slit array, as illustrated 
in Figure 5.12, then the transmission interferometer becomes a reflection interferom-
eter. Under those circumstances, the equations

	 sin sin
2

1 2d n n Mm m m
vλ

( )± Θ ± Φ π = π

and

	 sin sind mm m m λ( )± Θ ± Φ =

apply in the reflection domain, with mΘ  being the incidence angle and mΦ  the diffrac-
tion angle in the reflection domain. For the case of dm λ<<  and 1 2n n= , we then have

	 sin sin 0m m( )± Θ ± Φ = 	 (5.24)

FIGURE 5.12  Approaching a mirror, at an infinitesimal distance, to an N-slit array, is used 
to configure a reflection diffraction grating. The incidence angle is Θ, and the diffraction 
angle is Φ.
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For incidence above the normal ( )+  and reflection below the normal ( )−

	 sin sin 0m m+ Θ − Φ = 	 (5.25)

which means

	 m mΘ = Φ 	 (5.26)

where mΘ  is the angle of incidence and mΦ  is the angle of reflection. This is known 
as the law of reflection.

5.5  SUCCINCT DESCRIPTION OF OPTICS

A summary of fundamental optical principles can now be given. Starting from the 
Dirac quantum principle (Dirac, 1939, 1958)

	
1

d s d j j s
j

N

∑=
=

the generalized one-dimensional interferometric probability equation is derived 
(Duarte, 1989, 1991)
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From the phase term of this equation, the generalized diffraction equation

	 sin sin
2

1 2d n n Mm m m
vλ

( )± Θ ± Φ π = π

can be obtained, from which the generalized diffraction grating equation

	 sin sind mm m m λ( )± Θ ± Φ =

can be arrived to. From the generalized diffraction equation and applying the condi-
tion dm λ<< , the generalized refraction equation

	 ( sin sin ) 01 2n nm m± Θ ± Φ =

is obtained. From this equation, one can arrive at the law of reflection

	 m mΘ = Φ

Most other important optical phenomena, such as focusing and dispersion, can be 
explained from the principles outlined here. This hierarchical, orderly, and uni-
fied description of optics: interference → diffraction → refraction → reflection  
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(Duarte, 1997, 2003) illustrates that quantum principles are perfectly compatible 
with classical empirical phenomena. The phenomenon of multiple-prism dispersion 
originates from the derivatives of refraction and is treated in Appendix C.

Going back to the Feynman statement, on interference and diffraction, we can 
confidently state that this whole phenomenon is succinctly and beautifully described 
by the interferometric probability equation

	 ( ) 2 ( ) ( )cos( )
2 2

111
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Indeed, in reference to the interferometric progression illustrated in Figures 5.2–5.5, 
we see that the basic phenomenon is interference. Pure interference dominates in the 
near field. However, as the propagation distance increases toward the far field, dif-
fraction orders ( 1, 2, 3...m = ± ± ± ) do appear. This appearance of diffraction orders 
is analogous to a quantization of the interferometric distribution.

5.6  QUANTUM INTERFERENCE AND CLASSICAL INTERFERENCE

The following is a summary following a discussion on the distinctions between quan-
tum and classical interference provided by Duarte (2022).

In classical interference

	 Maxwell equations 2 cos
111
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2I I In n m

m n
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N
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	 (5.27)

where In are intensities so that Equation (5.27) is a mathematical expression describ-
ing the interference of classical intensities.

In quantum interference
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the origin is a superposition of probability amplitudes. The single-photon quantum 
probability is obtained via the use of Born’s rule leading to
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	 (5.29)

and its corresponding intensity is1

	 I( ) K h d s d sν ν= ∗
	 (5.30)
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Here, Equation (5.29) is a quantum probability equation, while Equation (5.30) is a 
quantum intensity equation whose spatial distribution depends on the dimensionless 
probability given in (5.29).

For r indistinguishable quanta, the corresponding intensity becomes

	 I( ) r h d s d srν ν= Κ ∗
	 (5.31)

Here, it should be emphasized that d s d s
∗
, I( )ν , and I( )rν  are purely quantum.

In the classical domain, where intensities are measured, a transition is allowed, 
or an equivalence is permitted, for r indistinguishable quanta (Duarte and Taylor, 
2021), that is

	 I( ) Ir nν → 	 (5.32)

thus allowing the interference of , , ...1 2 3I I I In via the classical N-slit interference 
equation
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Note: the quantum-classical I( ) Ir nν →  transition occurs here via diffraction at each 
of the slits in the classical array as described in Chapter 4 and Section 5.2. In other 
words, each of the slits in the classical array is subdivided into N-subslits, each of 
which gives rise to a diffractive light source In that then interferes via Equation (5.27).

PROBLEMS

	 5.1	 Show that the geometry depicted in Figure 5.11 leads to Equation (5.12).
	 5.2	� Substitute Equations (5.9) and (5.10) into Equation (5.11) to obtain 

Equation (5.13).
	 5.3	� Show that from the geometry outlined in Figure 5.6, Equation (5.20) 

follows.
	 5.4	� Show that from the geometry outlined in Figure 5.8, Equation (5.23) 

follows.
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Dirac’s Notation 
Identities

6.1  USEFUL IDENTITIES

Dirac’s quantum bra ket notation was introduced by Dirac (1939) in the absence of a 
written explanation on its origin. This remarkable occurrence has since remained a 
mystery other than to assume that to Dirac, the bra ket avenue was a natural way to 
represent and discuss probability amplitudes in time and space. Dalitz (2000) who 
took many lectures from Dirac, when asked, responded that he did not observe Dirac 
discussing the origin of his brilliant notation. In this regard, Dirac only acknowl-
edged his desire to improve the existing quantum notation. It should be added that 
‘good notation’ was very important to Dirac (Dirac, 1939; Kragh, 1990).

As described by Dirac (1958) and Feynman et al. (1965), Dirac’s notation includes 
various mathematical properties and allows for abstractions and permutations. Here, 
a few useful set of identities and properties of the notation are described.

First, the complex conjugate of φ ψ  is defined as

	
*

φ ψ ψ φ= 	 (6.1)

Also, the probability amplitude

	 j jφ ψ φ ψ= 	 (6.2)

can be expressed in abstract form as

	 j jψ ψ= 	 (6.3)

An additional form of abstract notation is

	 A i i A j jχ φ χ φ= 	 (6.4)

where A is

	 A i j A j j= 	 (6.5)

Another abstraction is illustrated by

	 A i i A j jφ φ= 	 (6.6)

Further, A can be multiplied by B so that

6
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	 BA i i B j j A k kχ φ χ φ= 	 (6.7)

To express

	 A i i A j jχ φ χ φ= 	 (6.8)

in the abstract form

	 i iχ ψ χ ψ= 	 (6.9)

it is necessary that

	 i i A j j i Aψ φ φ= = 	 (6.10)

which means that

	 Aχ ψ χ φ= 	 (6.11)

Further abstracting leads to

	 Aψ φ= 	 (6.12)

Other examples of abstractions include

	 i Ciφ = 	 (6.13)

	 i Diχ = 	 (6.14)

	 i Ci

i

∑φ = 	 (6.15)

	 i Di

i

∑χ = 	 (6.16)

	 *D ii

i

∑χ = 	 (6.17)

which is the abstracted version of

	 *D j i Cj

ij

i∑χ φ = 	 (6.18)

and since j i ijδ=
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	 *D Ci

i

i∑χ φ = 	 (6.19)

Finally, using the ultimate abstraction suggested by Dirac (Feynman et al., 1965), 
Equation (6.19) can be expressed as

	 i i
i

∑= 	 (6.20)

In practice, to keep a clear track of the physics, it is advisable to use abstractions only 
when necessary.

6.1.1  Example

The probability amplitude describing interference in a Mach–Zehnder interferom-
eter can be described as (Duarte, 2003)

	 d s d k k j j s
kj

∑= 	 (6.21)

Defining

	 j s C j= 	 (6.22)

	 k d Dk= 	 (6.23)

	 *d s D k j Ck

kj

j∑= 	 (6.24)

and using k j kjδ= , we get

	 *d s D Cj
j

j∑= 	 (6.25)

6.2  LINEAR OPERATIONS

Dirac (1958) describes various mathematical properties related to his ket vectors. 
First, if 1c  and 2c  are complex numbers, ket vectors can be multiplied by these com-
plex numbers and added to produce a new ket vector

	 1 2c cφ ψ θ+ = 	 (6.26)

Superposition of a state, with itself, yields the original state

	 ( )1 2 1 2c c c cφ φ φ+ = + 	 (6.27)
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Additional sum and product conditions are illustrated by

	 φ ψ χ φ ψ φ χ( )+ = + 	 (6.28)

	 c cφ ψ φ ψ( ) = 	 (6.29)

and

	 φ χ ψ φ ψ χ ψ( )+ = + 	 (6.30)

	 c cφ ψ φ ψ( ) = 	 (6.31)

If α  is a linear operator, then

	 ϑ α ψ= 	 (6.32)

and

	 α ψ χ α ψ α χ( )+ = + 	 (6.33)

	 c cα ψ α ψ( ) = 	 (6.34)

	 ( )α β ψ α ψ β ψ+ = + 	 (6.35)

	 ( )αβ ψ α β ψ( )= 	 (6.36)

	 φ α ψ φ α ψ( )( ) = 	 (6.37)

Further useful identities introduced by Dirac (1958) are

	 φ ψ ψ φ= 	 (6.38)

	 φ ψ ψ φ φψ= = 	 (6.39)

	  φ ψ χ φψχ= 	 (6.40)
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Also, for indistinguishable quanta, Dirax (1958) expresses the ket for the assembly as

	 1 2 3 1 2 3a b c g a b c gn n = 	 (6.41)

which can be rewritten as (Duarte, 2019)

	 1 2 3 1 2 3a b c g a b c gn n
 = 	 (6.42)

and ultimately as

	 1 2 3X a b c g
n

= 	 (6.43)

This combined state identity is crucial to the interferometric derivation of superposi-
tion probability amplitude for quantum entanglement (Duarte, 2013, 2014).

6.2.1  Example

The Pryce–Ward probability amplitude (Pryce and Ward, 1947; Ward, 1949), prior to 
normalization, for entangled photons, with polarizations x and y, traveling in oppo-
site directions 1 and 2, is given by (see Chapter 15)

	 1 2 1 2x y y xψ ( )= − 	 (6.44)

which can also be expressed as

	 , ,x y y xψ ( )= − 	 (6.45)

6.3  EXTENSION TO INDISTINGUISHABLE QUANTA ENSEMBLES

Identity (6.43) can also be expressed as

	 1 2 3x x x x xI g = 	 (6.46)

	
1 2 3

y y y y y
II g

 = 	 (6.47)

which can be applied to explain the origin of coherent emission from electrically-
pumped organic semiconductors (Duarte and Taylor, 2022). Here, x I represents an 
ensemble of indistinguishable quanta in the x  state of polarization, while y

II
 rep-

resents an ensemble of indistinguishable quanta in the y  state of polarization (see 
Chapter 22).

Using Equations (6.46) and (6.47), the quantum entanglement state ψ −  becomes

	 2 1/2 x y y xI II I IIψ ( )= −−
− 	 (6.48)
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where the entanglement refers to the entanglement of ensembles of indistinguishable 
states such as x I and y

II
 (Duarte and Taylor, 2022).

PROBLEMS

	 6.1	� Write in abstract form the probability amplitude corresponding to a Sagnac 
interferometer given by (Duarte, 2003)

	 d s d k k j j s
kj

∑=

assuming that 1k j =  (see Chapter 7).

	 6.2	� The probability amplitude for a multiple beam interferometer, see Chapter 7,  
can be expressed as Duarte (2003)

	 d s d m m l l k k j j s=

Use the various abstract identities, given in this chapter, to efficiently 
abstract this probability amplitude.

	 6.3	� Show that using k j kjδ=  Equation (6.24) can be written as Equation 
(6.25).
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7 Interferometry via 
Dirac’s Notation

7.1  INTERFERENCE À LA DIRAC

The genesis of quantum optics can be found in Dirac’s discussion on interference as 
disclosed in The Principles of Quantum Mechanics (Dirac, 1958). This is a master-
ful, and prophetic discussion, that begins by considering a ‘roughly monochromatic 
light’ source. The discussion continues by considering ‘a beam of light consisting 
of a large number of photons.’ In other words, Dirac is considering a beam of light 
with a definite spectral linewidth and high power, a beam of light as available from 
narrow-linewidth high-power lasers (Duarte, 1998, 2003). For the discussion at 
hand, the term monochromatic is reserved for single-photon emission, while quasi-
monochromatic, semi-monochromatic, or nearly monochromatic relates to spectrally 
narrow emission as available from narrow-linewidth high-power lasers. These nar-
row-linewidth lasers provide populations of indistinguishable photons. The narrower 
the laser linewidth, the more indistinguishable the photons are. In the case of opti-
mized pulsed laser oscillators, the emission linewidth can be as narrow as allowed 
by Heisenberg’s uncertainty principle, that is, ν∆ ≈ 350 MHz (or λ∆ ≈ 0.0004 nm at 
λ ≈ 590 nm) ν∆ ∆ ≈ 1.05t  (Duarte, 1999).

Thus, in Dirac’s discussion on interference, we are dealing with a population, 
or ensemble, of indistinguishable photons. He then goes on to associate ‘the trans-
lational state of a photon with one of the wave functions of ordinary wave optics’ 
(Dirac, 1958).

He argues that the association is only statistical and that the wave function pro-
vides information ‘about the probability of our finding the photon in any particular 
place.’ This idea is reinforced with a similar sentence stating that the wave function 
gives us information about ‘one photon being in a particular place’ (Dirac, 1958). 
He then considers a beam of light with a large number of nearly monochromatic, 
that is, indistinguishable photons and divides it into two beams of equal intensity, 
and the two subbeams are made to interfere. In this regard, Dirac’s thought experi-
ment applies directly to a high-power laser beam (of linewidth ν∆ ) made to interfere 
in a Mach–Zehnder interferometer. Dirac explains that each photon travels partly 
into the two interfering subbeams: ‘each photon then interferes with itself’ (Dirac, 
1958). This statement is directly applicable to the experiment at hand in which a 
large number of indistinguishable photons is divided into two subbeams. Under these 
circumstances, each individual photon in that ensemble of indistinguishable photons 
travels partly into each beam (given that they have a large coherent length defined by 

ν∆ ≈ ∆x c/ ) and interferes with itself. Now, mathematically, what interferes are the 
probability amplitudes associated with each photon.
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At this stage, three explanations are necessary. First, as Dirac himself explains, 
when the beam is divided into two sub-components, this means that a single photon 
partially propagate into subbeams. The photon is nonlocal. It is not a particle (Lamb, 
1995).

Second, under Dirac’s description, interference between two beams from differ-
ent lasers emitting at the same frequency is perfectly allowed since the photons are 
indistinguishable and therefore the same. In other words, interference from two laser 
sources, of the exact same frequency, and linewidth, appears the same as if the beam 
of one of the lasers were divided and then allowed to interfere.

Third, as explained elsewhere in this book, the equation for N-slit interference 
is derived for a single photon. However, it applies equally well to a population or 
ensemble of indistinguishable photons. If light from a narrow-linewidth laser is used 
(that would be a nearly perfect population of indistinguishable photons), the inter-
ferograms are perfectly sharp and exhibit a visibility (Michelson, 1927)

	 = −
+

V 1 2

1 2

I I
I I

	 (7.1)

with ≈V 1. If, on the other hand, broadband emission is used, the interference equa-
tion becomes part of an interferometric distribution, including the interferograms 
corresponding to all the different wavelengths used. Thus, the interferograms become 
broad, with decreased spatial definition and decreased visibility (Duarte, 2008). This 
effect is explained in detail in Chapter 4.

Emphasizing the nonlocality of the photon: ‘All the indistinguishable photons 
illuminate the array of N slits, or grating, simultaneously. If only one photon propa-
gates, at any given time, then that individual photon illuminates the whole array of N 
slits simultaneously’ (Duarte, 2003).

Dirac (1958) provided the genesis for quantum interferometry. Useful references 
on classical interferometry include Steel (1967), Meaburn (1976), and Born and Wolf 
(1999).

7.2  THE N-SLIT INTERFEROMETER

The N-slit laser interferometer (NSLI) is depicted in Figure 7.1. The coherent light 
is expanded via a multiple-prism beam expander to illuminate the N-slit array. The 
single-photon source, or the source of the ensemble of indistinguishable photons, is 
labeled as s.

The N-silt array is j and the interferometric plane, or detector, d. The intra-inter-
ferometric distance from j to d is D d j . Utilizing the Dirac–Feynman principle, the 
probability amplitude for single-photon propagation from s to d is given by

	
1

∑=
=

d s d j j s
j

N

	 (7.2)

Using Born’s rule, the propagation probability becomes (Duarte, 1993)
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which is equivalent to
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	 (7.4)

it can be shown that for = 2N , or a double-slit interferometer, the superposition prob-
ability becomes (Duarte 1993)

	 ( ) ( ) 2 ( ) ( )cos( )1
2

2
2

1 2 2 1= Ψ + Ψ + Ψ Ψ Ω − Ω∗
d s d s r r r r 	 (7.5)

It can also be shown that for = 7N , the interferometric probability becomes

d s r r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

(
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FIGURE 7.1  N-slit coherent interferometer. Illumination (s) is delivered via a multiple-
prism beam expander to illuminate the N-slit array ( j). The intra-interferometric distance is 
D d j .
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In Figures 7.2 and 7.3, two calculated interferograms, using Equation (7.4), for the 
N-slit interferometer, with = 50N , and 25D d j =  cm, are shown for λ = 5891  nm and
λ = 5902  nm, respectively.

Careful scrutiny of the spatial profile of the calculated probabilities reveals dis-
cernible differences. The wavelength sensitivity of multiple-beam interferometry has 

FIGURE 7.2  Interferogram at 5891λ =  nm. These calculations are for slits 30 μm wide, 
separated by 30 μm, and 50=N . The j to d distance is 25D d j =  cm. 

FIGURE 7.3  Interferogram at 5902λ =  nm. These calculations are for slits 30 μm wide, 
separated by 30 μm, and 50=N . The j to d distance is 25D d j =  cm. 
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its origin in the phase information of the equations describing the behavior of the 
interferometric signal. In the case of the N-slit interferometer the interferometric pro-
file is characterized by the interferometric Equation (7.3) or its equivalent Equation 
(7.4). This equation includes a phase difference term that, as explained in Chapter 4, 
can be expressed as

	 cos ( ) ( ) cos 1 1 1 2θ θ φ φ( ) ( )− ± − = − ± −− −l l k L L km j m j m m m m 	 (7.7)

where

	
λ

= π
v

2
1

1k
n

	 (7.8)

and

	
λ

= π
v

2
2

2k
n

	 (7.9)

Here, /1 1λ λ= nv  and /1 2λ λ= nv  where λv is the vacuum wavelength and 1n  and 2n  are 
the corresponding indexes of refraction (Wallenstein and Hänsch, 1974; Born and 
Wolf, 1999). Hence, it is easy to see that different wavelengths will produce differ-
ent interferograms. Hence, one of the applications of the N-slit interferometer is as 
a wavelength meter. For a given set of geometrical parameters measured interfero-
grams can be matched, in an iterative process, with theoretical interference patterns 
to determine the wavelength of the radiation. Again, resolution depends on the opti-
cal path length between the slit array and the digital detector, the size of the pixels, 
and the linearity of the detector. In this regard, increased resolution in CCD and 
CMOS detectors should improve significantly the wavelength resolution achievable 
with the N-slit interferometer. This, coupled with the simplicity of the optics, should 
enhance considerably the application perspectives of this interferometer as a wave-
length meter. For a review in the subject of wavelength meters, the reader should refer 
to Demtröder (2003).

Further applications of the NSLI are described by Duarte (2016) and include inter-
ferometric imaging, microdensitometry, microscopy, and secure optical communica-
tions (see Chapter 8).

7.3  THE HANBURY BROWN–TWISS INTERFEROMETER

The Hanbury Brown–Twiss effect originates in interferometric measurements per-
formed by an ‘intensity interferometer’ used for astronomical observations (Hanbury 
Brown and Twiss, 1956). A diagram of the stellar intensity interferometer used to 
determine the diameter of stars is depicted in Figure 7.4. Feynman in one of his exer-
cises to the Feynman Lectures in Physics (Feynman et al., 1965) explains that the 
electrical currents from the two detectors are mixed in a coincidence circuit in which 
the currents become indistinguishable. Feynman then asks to show that the coinci-
dence counting rate, in the Hanbury Brown–Twiss configuration, is proportional to 
an expression of the form



83Interferometry via Dirac’s Notation

	 + −2 2cos ( )2 1k R R 	 (7.10)

where 1R  and 2R  are the distances from detectors 1 and 2 to the source. Using the 
N-slit interferometric equation (Duarte, 1991, 1993)

	 d s r r rj j m m j

m j

N

j

N
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N

∑∑∑= Ψ + Ψ Ψ Ω − Ω
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= +==

( ) 2 ( ) ( )cos( )
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with = 2N  one immediately arrives at

	 d s r r r r= Ψ + Ψ + Ψ Ψ Ω − Ω( ) ( ) 2 ( ) ( )cos( )
2

1
2

2
2

1 2 2 1

and setting Ψ = Ψ =( ) ( ) 11 2r r

	 d s = + Ω − Ω2 2cos ( )
2

2 1 	 (7.12)

Now, using (as suggested by Feynman) Ω =1 1kR  and Ω =2 2kR

	 d s k R R= + −2 2cos ( )
2

2 1 	 (7.13)

FIGURE 7.4  The Hanbury Brown and Twist interferometer. The light, from an astronomi-
cal source, is collected at mirrors M1 and M2, and focused onto detectors D1 and D2. The 
current generated at these detectors, i1 and i2, interfere with the electronics to produce an 
interference signal characterized by an equation of the form of Equation (7.13). 
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From the measured signal distribution, and these equations, the angular spread of the 
emission can be determined, and knowing the distance from the source to the detec-
tor, it becomes possible to estimate the diameter of the aperture at the emission; in 
other words, the diameter of the star under observation.

The Hanbury Brown–Twiss interferometric argument was not easily accepted by 
the physics community at the time given that many physicists erroneously thought 
of visible photons as uncorrelated particles arriving either at detector 1 or detector 2.  
In other words, many had not accepted the Dirac description of interference and 
did not understand the concept of coherent length. Feynman was very keen on the 
Hanbury Brown–Twiss interferometer and he thought of it as a pioneering experi-
ment in quantum optics.

7.4  BEAM-SPLITTER INTERFEROMETERS

Two-beam interferometers are optical devices that divide and then recombine to 
form a light beam. It is on recombination of the beams that interference occurs. 
The most well-known two-beam interferometers are the Mach–Zehnder interfer-
ometer, the Michelson interferometer, the Sagnac interferometer, and the HOM 
interferometer.

For a highly coherent light beam, such as the beam from a narrow-linewidth laser, 
the coherence length

	
ν

∆ ≈
∆

x
c

	 (7.14)

can be rather large, thus demanding a relatively large optical path length in the two-
beam interferometer of choice. This relation provides an avenue to accurately deter-
mine the linewidth of a laser.

The following discussion on interferometry is based on the original chapter of the 
first edition plus material from reviews by Duarte (2003, 2022).

7.4.1 T he Mach–Zehnder Interferometer

The Mach–Zehnder interferometer is illustrated in Figure 7.5. In this interferometer, 
the incident light beam is divided into two subbeams by a beam splitter. The reflected 
beam, on the incidence beam splitter, is then sent into a path defined by the reflec-
tion on 1M  toward the exit beam splitter. The transmitted beam, on the incidence 
beam splitter, is sent into a path defined by the reflection on 2M  toward the exit beam 
splitter.

Both counter-propagating beams are recombined at the exit beam splitter. The 
interference mechanics of the counter-propagating beams can be described using 
Dirac’s notation via the superposition probability amplitude

	 1 1 2 2= ′ ′ ′ + ′ ′d s d k d k k M M j j s d k k M M j j s 	 (7.15)
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where j and k refer to the beam splitters in the reflective mode, while ′j  and ′k  refer 
to the beam splitters in the transmission mode. Assuming perfect reflectivity at the 

1M  and 2M  mirrors, Equation (7.15) is equivalent to (Duarte 2003, 2014)

	 = ′ ′ + ′ ′d s d k k j j s d k k j j s  � (7.18)

Using the Dirac identity j jφ φ= , Equation (7.18) reduces to

	 = ′ ′ +d s d k k C d k k D 	 (7.19)

where

	 C j j s= 	 (7.20)

and

	 D j j s= ′ ′ 	 (7.21)

then, abstracting the d〈  and normalizing, Equation (7.19) reduces to

	 2 1/2s E F( )= +− 	 (7.22)

where

	 E k k C= ′ ′ 	 (7.23)

and

FIGURE 7.5  Mach–Zehnder interferometer configured with entrance ( j) and exit (k) beam 
splitters and internal mirrors M1 and M2. In the schematics, ′d  represents a weak secondary 
output.
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	 F k k D= 	 (7.24)

and once its linear combination is considered, the overall probability amplitude 
becomes

	 2 1/2s E F( )= ±− 	 (7.25)

For the ′d  detector

	 1 1 2 2′ = ′ + ′ ′ ′ ′ ′d s d k k M M j j s d k k M M j j s 	 (7.26)

	 ′ = ′ + ′ ′ ′ ′ ′d s d k k j j s d k k j j s 	 (7.27)

	 ′ = ′ + ′ ′ ′d s d k k C d k k D 	 (7.28)

and ultimately to an equation of the form of (7.25). It should be noticed that if the 
mirrors 1M  and 2M  are not abstracted, the final result is still given by Equation (7.25).

Equation (7.25) is the probability amplitudes that describe single-photon propa-
gation, or the propagation of an ensemble of indistinguishable photons, in Mach–
Zehnder interferometers.

One final observation is that Equation (7.25) can be directly derived from the 
generalized Dirac–Feynman superposition probability amplitude

	
1

2

∑=
=

=

d s d j j s
j

N

	 (7.29)

for = 2N , which is applicable to the double-slit interferometer (see Chapter 4). 
However, physically speaking a Mach–Zehnder interferometer is very different to 
a double-slit interferometer. In the double-slit interferometer the single photon, or 
the ensemble of indistinguishable photons, undergoes violent diffraction at the slits. 
This diffraction makes the physics between the two interferometers quite different. 
The only similarity between the two interferometers is that they are both two-path 
interferometers, that is, = 2N . However, while the Mach–Zehnder interferometer is 
a two-beam interferometer the double-slit, two-slit, or Young, interferometer is a 
parallel diffraction interferometer (Duarte, 2019).

A prismatic Mach–Zehnder interferometer is illustrated in Figure 7.6. In this 
prismatic version of the Mach–Zehnder, there is asymmetry in regard to the intra-
interferometric beam dimensions. The − −1 2 2P M P  beam is expanded relatively to 
the − −1 1 2P M P  beam. Moreover, in this particular example (based on a prism with 
a magnification of ≈ 51,1k , see Chapter 12), there is also a power asymmetry since 
the unexpanded beam propagating in the − −1 1 2P M P  arm has about 30% of the inci-
dent power, while the expanded beam − −1 2 2P M P  carries the remaining 70% of the 
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incident power, for light polarized parallel to the plane of incidence. In this regard, 
it should be possible to design a prismatic Mach–Zehnder where the power density 
(W/m2) in each arm is balanced. Applications for this type of interferometer include 
imaging and microscopy. Additional Mach–Zehnder interferometric configurations 
include transmission gratings as beam splitters (Steel, 1967).

7.4.2 T he Michelson Interferometer

The Michelson interferometer (Michelson, 1927) is illustrated in Figure 7.7. In this 
interferometer, the incident light beam is divided into two subbeams by a beam split-
ter that serves both as input and output elements. The reflected beam, on the inci-
dence beam splitter, is then sent into a path defined by the reflection on 1M  and back 
toward the exit beam splitter. The transmitted beam, on the incidence beam splitter, 

FIGURE 7.6  Prismatic Mach–Zehnder interferometer configured with 1 →P j, M1, and exit 
prism 2 →P k .

FIGURE 7.7  Michelson interferometer includes a single beam splitters and mirrors  
M1 and M2.
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is sent into a path defined by the reflection on 2M  and back toward the exit beam 
splitter. Both beams are recombined interferometrically at the beam splitter. For the 
Michelson interferometer, the interference can be characterized using a probability 
amplitude of the form

	 2 2 1 1= ′ ′ + ′ ′d s d j j M M j j s d j j M M j j s 	 (7.30)

where j represents reflection at the beam splitter and ′j  stands for transmission.
Assuming perfect mirror reflectivity, Equation (7.30) can be abstracted to

	 = ′ ′ + ′ ′d s d j j j j s d j j j j s 	 (7.31)

Further abstraction, using j jφ φ= , leads to

	 = + ′ ′d s d j j s d j j s 	 (7.32)

which again leads to a probability amplitude of the form of Equation (7.29). Equation 
(7.32) can be expressed as

	 2 1/2s G H( )= ±− 	  (7.33)

where

	 G j j s= 	 (7.34)

	 H j j s= ′ ′ 	 (7.35)

which is not surprising since the mirrors 1M  and 2M  are being treated as idealized 
perfect mirrors leaving all the physics to the beam splitter. A variant of the Michelson 
interferometer uses retroreflectors (Steel, 1967).

7.4.3 T he Sagnac Interferometer

The Sagnac, or cyclic, interferometer is illustrated in Figure 7.8. In this interferom-
eter, the incident light beam is divided into two subbeams by a beam splitter. The 
reflected beam, on the incidence beam splitter, is then sent into a path defined by the 
reflections on 1M , 2M , and 3M  mirrors. The transmitted beam, on the incidence beam 
splitter, is sent into a path defined by the reflections on 3M , 2M , and 1M  mirrors. Both 
counter-propagating beams are recombined at the beam splitter. The interference 
mechanics of the counter-propagating round trips can be described using Dirac’s 
notation via the probability amplitude

	
3 3 2 2 1 1

1 1 2 2 3 3

=

+ ′ ′ ′ ′

d s d j j M M M M M M j j s

d j j M M M M M M j j s
	 (7.36)
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Assuming perfect reflectivity at the mirrors

	 13 3 2 2 1 1 =j M M M M M M j 	 (7.37)

	 11 1 2 2 3 3′ ′ =j M M M M M M j 	 (7.38)

and Equation (7.36) reduces to

	 = + ′ ′d s d j j s d j j s 	 (7.39)

which can ultimately be expressed as

	 2 1/2s I J( )= ±− 	 (7.40)

where

	 I j j s= 	 (7.41)

and

	 J j j s= ′ ′ 	 (7.42)

Again, it should be noted that the physics of Equation (7.40) can be traced back to the 
Dirac–Feynman probability amplitude given in Equation (7.29).

FIGURE 7.8  Sagnac interferometer. All three mirrors M1, M2, and M3 are assumed to be 
identical. For the description given in the text, the beam splitter is assumed to be lossless and 
to divide the incident beam exactly into two components half the intensity of the original 
beam. 
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The alternative triangular Sagnac interferometer, with only two mirrors  
( 1M  and 2M ), illustrated in Figure 7.9, leads to

	
2 2 1 1

1 1 2 2

=

+ ′ ′ ′ ′

d s d j j M M M M j j s

d j j M M M M j j s
	 (7.43)

with the same conclusions as with the Sagnac interferometer with three mirrors.

7.4.4 T he HOM Interferometer

This description of the HOM interferometer (Hong et al., 1987), illustrated in 
Figure 7.10, follows the review given in Duarte (2022). An equivalent optical dia-
gram, assuming identical detectors = =1 2d d d , is given in Figure 7.11 (Duarte and 
Taylor, 2021). The incident quanta are assumed to be identical and indistinguishable.

Using Dirac–Feynman interferometric principle (Dirac, 1958; Feynman et al., 
1965)

	
1

∑=
=

d s d m m s
j

N

	  (7.44)

	 = ′ ′ +d s d m m s d m m s 	 (7.45)

	 s m m s m m s= ′ ′ + 	  (7.46)

FIGURE 7.9  Sagnac interferometer in a triangular configuration.
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where m is for the beam splitter in its reflection mode and ′m  is for the beam splitter 
in its transmission mode.

Using the Dirac identity i iφ φ= , Equation (7.46) can be abstracted into an 
equation of the form

	 s γ δ( )= + 	 (7.47)

Using the Dirac identity (see Chapter 6)

	 1 2 3X a b c g
n

= 	 (7.48)

FIGURE 7.10  HOM interferometer (Duarte, F. J., Fundamentals of Quantum Entanglement, 
2nd ed. Institute of Physics, Bristol, 2022, © IOP Publishing. Reproduced with permission. 
All rights reserved).

FIGURE 7.11  Optical equivalent for the HOM interferometer (Duarte, F. J., Fundamentals 
of Quantum Entanglement, 2nd ed. Institute of Physics, Bristol, 2022, © IOP Publishing. 
Reproduced with permission. All rights reserved).
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allow us to apply the identities

	 1 2
x yγ = 	 (7.49)

	
1 2y xδ = 	 (7.50)

so that (see Chapter 15)

	 1 2 1 2x y y xψ ( )= + 	 (7.51)

Taking into consideration its linear combination and normalizing lead again to the 
quantum entanglement states

	 2 1/2
1 2 1 2x y y xψ ( )= ±±

− 	 (7.52)

which equivalent to

	 2 1/2ψ γ δ( )= ++
− 	 (7.53)

	 2 1/2ψ γ δ( )= −−
− 	 (7.54)

In matrix form, Equations (7.53) and (7.54) can be expressed as

	 2 1 1
1 1

1/2
ψ

ψ

γ

δ













=
−



















+

−

− 	 (7.55)

where the matrix corresponds to the matrix for the Hadamard gate (see Chapter 19)

	 =
−







−2 1 1
1 1

1/2HG 	 (7.56)

which is widely associated with representing the quantum beam splitter and used in 
the description of the HOM interferometer.

7.5  MULTIPLE-BEAM INTERFEROMETERS

The Fabry–Perot interferometer depicted in Figure 7.12 can be described as a mul-
tiple-beam interferometer. This interferometer is also considered in Appendix B 
as an intracavity etalon. Generally, intracavity etalons are a solid slab of optical 
glass, or fused silica, with highly parallel surfaces coated to increase reflectivity 
(Figure 7.12a). These are also known as Fabry–Perot etalons. Fabry–Perot interfer-
ometers, on the other hand, are constituted by two separate slabs of optical flats with 
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their inner surfaces coated as shown in Figure 7.12b. The space between the two 
coated surfaces is filled with air or other inert gas. The optical flats in a Fabry–Perot 
interferometer are mounted on rigid metal bars, with a low thermal expansion coef-
ficient, such as invar. The plates can be moved, with micrometer precision or better, 
to vary the free spectral range (FSR).

These interferometers are widely used to characterize and quantify the laser 
linewidth.

In Chapter 3, we saw that alternative forms of the uncertainty principle

	 ∆ ∆ ≈x p h	 (7.57)

are

	 λ λ∆ ∆ ≈ 2x 	 (7.58)

and

	 ν∆ ∆ ≈x c	 (7.59)

For solid Fabry–Perot etalons made of optical glass with refractive index n, 2∆ =x nde,  
and λ∆  becomes the free spectral range (FSR) so that

FIGURE 7.12  (a) Frabry-Perot etalon and (b) Fabry-Perot interferometer. Darker lines 
represent coated surfaces.
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λ≈

2

2

FSR
nde

	 (7.60)

and in the frequency domain

	 ≈
2

FSR
c
nde

	 (7.61)

For an air-spaced Fabry–Perot interferometer, = 1n  and ∆ = 2x de.
A Fabry–Perot interferogram generated with a narrow-linewidth laser is shown 

in Figure 7.13. The FSR corresponds to the separation of the rings, and a measure of 
the width of the rings determines the linewidth of the emission being observed. The 
minimum resolvable linewidth ν∆ FRS is given by

	 ν∆ =
F

FRS
FRS 	 (7.62)

where F  is the effective finesse. Thus, a Fabry–Perot etalon with a = 7.0FRS  GHz 
=F 50 provides discrimination down to ν∆ ≈ 140FRS  MHz. The finesse is a function 

of the flatness of the surfaces (often in the λ/100–λ/50 range), the dimensions of the 

FIGURE 7.13  Fabry–Perot interferogram depicting single-longitudinal-mode oscillation, at 
ν∆ ≈ 500 MHz, from a tunable multiple-prism grating solid-state oscillator (Reproduced 

from Duarte, F. J., Opt. Commun. 117, 480–484, 1995, with permission from Elsevier).
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aperture, and the reflectivity of the surfaces. The FSR concept also applies to laser 
cavities as discussed in Appendix B.

The effective finesse of a Fabry–Perot interferometer is given by (Meaburn, 1976)

	 =  + + − − − −F F F FR
2 2 2 2

F A 	 (7.63)

where FR , FF, and F A are the reflective, flatness, and aperture finesses, respectively. 
The reflective finesse is given by (Steel, 1967; Born and Wolf, 1999)

	 = π
−

F
R
RR

(1 )
	 (7.64)

where R  is the reflectivity.
The mechanics of multiple-beam interferometry can be described in some detail 

considering the multiple reflection, and refraction, of a beam incident on two parallel 
surfaces separated by a region of refractive index n as illustrated in Figure 7.14. In 
this configuration, at each point of reflection and refraction, a fraction of the beam, 
or a subbeam, is transmitted toward the boundary region. Following propagation, 
these subbeams propagate, diverge, and subsequently interfere. In this regard, the 
physics is similar to that of the N-slit interferometer with the exception that each 
parallel beam has less intensity due to the increasing number of reflections. Here, for 
transmission, interference can be described using a series of probability amplitudes 
representing the events depicted in Figure 7.14 (Duarte, 2003).

	
111 1

d s d m m l l k k j j s
k

N

l

N

m

N

j

N

∑∑∑ ∑=
=== =

	 (7.65)

FIGURE 7.14  Multiple-beam interferometer diagram illustrating the multiple internal 
reflection geometry. 
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where j is at the reflection surface of incidence, k is immediately next to the surface 
of reflection, l is at the second surface of reflection, and m is immediately next to the 
second surface of reflection as illustrated in Figure 7.14. From s to l, the overall prob-
ability amplitude can be written as

	 =l k k j j s A tj 	 (7.66)

which represents a probability amplitude attenuated by a transmission factor t. Thus, 
Equation (7.65) reduces to an equation of the form

	
1

∑=
=

d s A t d m m lj

m

N

	 (7.67)

which, as seen previously, gives rise to a probability interferometric pattern. Each m 
point on the exit surface of the interferometric slab gives origin to a beam that will 
interfere with adjacent m beams while propagating to the interferometric plane d.

7.6  THE RAMSEY INTERFEROMETER

Finally, we very briefly touch on a different types of interferometer: the Ramsey 
interferometer, which was discovered by Norm Ramsey around 1950 (Ramsey, 1950, 
1990). This is a very different type of interferometer to those described previously 
since it uses atoms rather than photons as the interfering entities. In the Ramsey inter-
ferometer, the laser, or photon source, is replaced by an atom source as described in 
Figure 7.15. In its path toward the detector, the atom beam is allowed to interact with 
microwave radiation at two places. The first place is near the source and the second is 
near the detector. At each of those spatial sections, the microwave field is allowed to 
modulate the state of the atoms. Defining Pg as the probability of being in the ground 
state and Pe the probability of being in the excited state (Haroche et al., 2013)

	
ϕ= − = −

(1 )
(1 cos )

2
P Pg e 	 (7.68)

where the angle ϕ  represents the phase difference between the ground state and the 
excited state. If ϕ = π2 m (where m is an integer), the states are in phase, and thus there 
is constructive interference. In other words, when ϕ = π2 m there is atomic coherence.

FIGURE 7.15  Simplified depiction of the Ramsey interferometer showing the source of 
atomic beam and microwave field regions 1 and 2. Sources of atomic beams include laser-
cooled cesium and rubidium. 
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The origin of Equation (7.68) can be outlined using the relevant Dirac notation, 
introduced in Chapter 15. The probability amplitude of the initial unmodulated state 
can be defined as

	 2
1

1/2 a bψ ( )= +− 	  (7.69)

and the probability amplitude of the modulated state as

	 2
2

1/2 a e biψ ( )= + ϕ− 	 (7.70)

Multiplying Equation (7.70) with its complex conjugate leads to a probability of the 
form

	
ϕ= +(1 cos )

2
Pe 	 (7.71)

and using = −(1 )P Pg e  enable us to write 
ϕ= −(1 cos )

2
Pg  as given in Equation (7.68).

The phase angle itself is a function of the frequency difference between the fre-
quency of the transition (between the ground state and the excited state, i.e., νeg) 
and the microwave frequency ν  (Haroche et al., 2013): ϕ ν ν= π − ∆2 ( ) teg . Thus, the 
interference pattern produced is a function of ν ν−( )eg . Locking the microwave fre-
quency to the transition frequency, that is ν ν= eg, yields a time standard anchored to 
the atomic transition (Haroche et al., 2013). This principle, coupled to laser-cooled 
atomic beams, is central to the technology of atomic clocks.

PROBLEMS

	 7.1	� Use the generalized probability given in Equation (7.4) to arrive at an 
explicit

	
∗

d s d s  for = 3N .

	 7.2	� Interferometric measurements with a Hanbury Brown–Twiss type inter-
ferometer yield a measured angular spread of θ∆ ≈ 5.94 milli arc second 
from the emission from the Sirius. Determine the radius of this star (Hint: 
1 milli arc second is × −4.8481368 10 9 radians and the distance to Sirius is 
approximately 8.6 light-years).

	 7.3	� A laser beam fails to provide interference fringes when the length of each 
of the arms, in a Mach–Zehnder interferometer, is 1 m. Estimate the line-
width of the laser in Hz units. Note: the arms are defined by the beam 
paths − −1j M k and − −2j M k.

	 7.4	� Using the usual complex-wave representation for probability amplitudes 
use Equation (7.18) to arrive at an equation for the probability of transmis-
sion in a Mach–Zehnder interferometer.

	 7.5	 Show that Equation (7.28) can be expressed in the form of Equation (7.25).
	 7.6	 Show that Equation (7.43) can be expressed in the form of Equation (7.40).
	 7.7	 Starting from Equation (7.70) arrive at Equation (7.68).
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Quantum Interferometric 
Communications 
in Free Space

8.1  INTRODUCTION

The N-slit laser interferometer (NSLI) was first introduced to secure free-space 
optical communications in 2002. Albeit its initial propagation distance in the labo-
ratory was only 10 cm, it was envisioned as an interferometric tool ideally suited 
for propagation in the vacuum, or outer space (Duarte, 2002). Subsequently, NSLI 
experiments have also been conducted over hundreds of meters, in the field, via open 
atmosphere (Duarte et al., 2010, 2011).

The idea is that an N-slit interferometric signal, designated as an interferometric 
character, or a series of interferometric characters can be used to transmit informa-
tion securely from one point in space to another point in space. The interferometric 
character propagates from its origin ( )s  to its destiny, the interference plane ( )d  (see 
Figure 8.1), while the integrity of the character itself is secured by quantum interfer-
ence principles.

In other words, attempts to optically intercept the interferometric character 
severely distort its spatial and intensity profile, thus informing the receiver that the 
message has been compromised. Hence, the security of this free-space communica-
tions method rests simply on the principle that any optical attempt to intercept causes 
the collapse of the interferometric character. This means that, in its most basic form, 
no security key, or code, is necessary. However, a code could be easily added as an 
extra layer of security (see Figure 8.1).

8
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FIGURE 8.1  Cryptographic diagram applicable to N-slit interferometric communications 
in free space. 

https://doi.org/10.1201/9781003398707-8
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Interest in secure optical communications in free space appears to be driven as 
a matter of principle and by practical reasons such as saturation in the spectrum of 
traditional radio frequency communications (Hogan, 2013). A brief historical review 
of free-space optical communications is given by Duarte (2002).

8.2  THEORY

The probability amplitude for propagation from the source ( )s  to the interferometric 
plane ( )d , via the slit array ( )j , as illustrated in Figure 8.2, can be expressed using 
Dirac’s notation (Duarte, 1993)

	
1

∑=
=

d s d j j s
j

N

	 (8.1)

Assigning each probability amplitude a complex wave function as taught by Dirac 
(1958), and following some algebra (see Chapter 4), leads to the generalized one-
dimensional N-slit interferometric equation (Duarte, 1991, 1993)

	 ( ) 2 ( ) ( )cos( )2

111

∑∑∑= Ψ + Ψ Ψ Ω − Ω












∗

= +==

d s d s r r rj j m m j

m j

N

j

N

j

N

	 (8.2)

where Ψ( )r j  are complex wave functions (Dirac, 1958; Duarte, 2004), and the term 
in parenthesis is the phase that describes the exact geometry of the N-slit interferom-
eter (Duarte, 1991, 1993). As explained by Duarte (2004), the measured intensity is 
proportional to the probability, that is,

	 ∝ ∗
I d s d s 	 (8.3)

FIGURE 8.2  Top view of the N-slit laser interferometer highlighting the intra-interferomet-
ric path D d j .
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and it is this probability (Born, 1926)

	
2

=∗
d s d s d s 	 (8.4)

that provides the spatial distribution of the observed intensity (see Chapter 4).
It is important to emphasize that this equation was originally derived for single-

photon propagation (Duarte, 1993) albeit in practice, it also applies to the propaga-
tion of ensembles of indistinguishable photons, as in the case of narrow-linewidth 
laser emission (Duarte, 1993, 2003). In the material discussed here, the illumination 
is via ensembles of indistinguishable photons. The generalized N-slit interferometric 
equation accurately describes measurements performed in a macroscopic appara-
tus using quantum principles, and as such, it neatly follows the van Kampen (1988) 
criteria.

8.3 � N-SLIT INTERFEROMETER FOR SECURE FREE-SPACE  
QUANTUM COMMUNICATIONS

The NSLI used for free-space optical communications is depicted in Figure 8.3. The 
essence of this method consists in the expanded beam illumination ( )s  of an N-slit 
array, or grating ( )j , where the interferometric characters are produced.

The interferometric character then propagates via the intra-interferometric dis-
tance ( )D d j  until it reaches the interferometric plane at d. In other words, the genera-
tion, propagation, and detection of the interferometric characters take place within 
the NSLI, thus highlighting the conceptual and configurational simplicity of the 
interferometric approach.

The illumination section of the NSLI requires a single-transverse-mode narrow-
linewidth laser. For the experiments described here, the coherent source is a He–Ne 
laser yielding 2 mW in a TEM00 laser beam at λ = 632.82 nm. The laser is followed 
by neutral density filters. Following the attenuation stage, a two-dimensional tele-
scopic beam expander (M ≈ 10) includes a 25 μm spatial filter. The expanded beam 
then undergoes one-dimensional multiple-prism beam expansion, thus yielding an 

FIGURE 8.3  Top perspective of the optical architecture of the N-slit laser interferometer, 
see text for details. Also included in this diagram is a thin beam splitter (BS), inserted at the 
Brewster angle (relative to the optical axis), to intercept the propagating interferometer or the 
interferometric characters. 
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elongated near-Gaussian beam of ~10 mm maximum height by ~50 mm maximum 
width. Following the prismatic beam expander, a high-precision chromium master 
grating ( j in Figure 8.3) is positioned.

The high-precision master gratings have rather large dimensions. For instance, 
one of the gratings utilized has 570 μm slits separated by 570 μm isles, and the other 
grating has 1000 μm slits separated by 1000 μm isles. The tolerances in the slits 
dimensions are quoted by the manufacturer as 0.5 μm. The 570 μm grating has a total 
of 44 slits and the 1000 μm grating has a total of 25 slits. The overall ruled area is  
50 mm × 50 mm (Duarte et al., 2010).

The digital detector, deployed at the interferometric plane ( )d , is a digital detector 
(either CCD or CMOS) with pixels in the 20–25 μm width range. In the experiments 
described here, the detector was not cooled, and there was no subtraction of back-
ground noise from the measurements.

8.4  INTERFEROMETRIC CHARACTERS

The concept of interferometric characters was introduced when the NSLI was 
disclosed as an alternative for secure free-space optical communications (Duarte, 
2002). In this approach, there is an infinite number of possible slit combinations 
that can lead to a set of interferometric characters. The simplest one consists to two 
slit interferometry resulting in the interferometric character a, that is, = →2N a, 

= →3N b, = →4N c … = →26N z (Duarte, 2002). Calculated interferograms for 
the interferometric characters a, b, c, and z are given in Figure 8.4.

In the N-slit interferometric approach, once the emitter, controlling the illumina-
tion of the N-slit array at j, and the receiver at d, decide on an interferometric alpha-
bet the communications can begin immediately with the receiver reading directly the 
interferometric characters sent by the emitter. Since all these characters have also a 
theoretical counterpart, the received characters can be compared with the calculated 
character to verify its fidelity. As demonstrated by Duarte (2002, 2005) any attempt 
to optically intercept an interferometric character results in a catastrophic collapse of 
the interferometric signal and is immediately noticed by the receiver. The collapse 
sequence, and displacement, of the interferometric character a, due to the insertion 
of a very thin high-optical surface quality beam splitter in the intra-interferometric 
optical path ( )D d j  is illustrated in Figure 8.5. An additional sequence of measure-
ments, using the interferometric character c ( 4=N ), is given in Figures 8.6–8.9.

The violent distortion of the interferometric characters, following insertion of a 
thin beam splitter, as illustrated in Figures 8.5 and 8.7, can be explained in refer-
ence to Equation (8.2) which interferometrically entangles the probability amplitudes 
d j  originating at each slit ( )j . This entanglement is a function of photon wave-

length, the number of slits illuminated N, slit geometry, and propagation geometry 
(see Chapter 4). This entanglement is violently disrupted by the insertion of an opti-
cal edge as provided by a classical, or macroscopic, beam splitter regardless of the 
finesse of that beam splitter.

An alternative way to think about this effect is that the mechanics of the overall 
superposition probability amplitude
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1

∑=
=

d s d j j s
j

N

allow us to observe the input and the output but it does not allow us to obtain infor-
mation while the interferometric character propagates via the intra-interferometric 
beam path ( )D d j . In other words, the integrity of the interferometric character is 
protected by the very essence of interference, be it single-photon interference or 
interference generated by an ensemble of indistinguishable photons.

Indeed, as soon as the beam splitter is introduced, the probability Equation (8.2), 
that is,

	 d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












= +==

( ) 2 ( ) ( )cos( )
2 2

111

FIGURE 8.4  Interferometric characters a (N = 2), b (N = 3), c (N = 4), and z (N = 26) for 
632.82λ =  nm and 10D d j =  cm. The slit width here is 50 μm and uniformly separated by  

50 μm. Note: the detailed and exact contour, as compared to measurements, of these 
interferograms (specially at the minima) depends on the choice of function to represent the 
radiation at the individual slits (Adapted from Duarte, F. J., Opt. Commun. 205, 313–319, 
2002, with permission from Elsevier).
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ceases to describe the experimental situation illustrated in Figure 8.2 which origi-
nates in the probability amplitude expressed by Equation (8.1). The new experimen-
tal situation, illustrated in Figure 8.10, is accounted for by a probability amplitude 
of the form

	
11

∑∑= ′ ′
==

d s d j j j j s
j

N

k

N

	 (8.5)

FIGURE 8.5  Collapse sequence of the interferometric characters a, following insertion of 
a thin beam splitter into the intra-interferometric path D d j . (a) Interferometric character 
a prior to insertion of the beam splitter, (b)–(d) collapse of the interferometric character a 
during insertion, and (c) displaced interferometric character a once insertion is completed. 
Here, 2=N , the slit width is 50 μm, slit separation is 50 μm, and 10D d j =  cm. Each pixel 
is 25 μm in width (Reproduced from Duarte, F. J., Opt. Commun. 205, 313–319, 2002, with 
permission from Elsevier).
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where the ′j j  term represents the probability amplitude of transmission via the 
beam splitter. In reality this is an undetermined spatially unsymmetric transmission 
that results in the destruction of the original interferometric pattern.

FIGURE 8.6  The interferometric character c, generated with 4=N  (570 μm slits separated 
by 570 μm), 632.8λ =  nm, at an intra-interferometric distance of 7.235D d j =  m. Each pixel 
is 25 μm in width (Duarte, F. J., J. Opt. A: Pure Appl. Opt. 7, 73–75, 2005, © IOP Publishing. 
Reproduced with permission. All rights reserved).

FIGURE 8.7  The interferometric character c, as in Figure 8.6, severely collapsed due to the 
insertion of a thin beam splitter, at Brewster’s angle, 2 m from the grating ( j) (Duarte, F. J., 
J. Opt. A: Pure Appl. Opt. 7, 73–75, 2005, © IOP Publishing. Reproduced with permission. 
All rights reserved).
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8.5  PROPAGATION IN TERRESTRIAL FREE SPACE

As mentioned at the introduction, the first experiment on the use of the NSLI as a 
tool for secured free-space optical communications took place in the laboratory over 
a distance of 0.10D d j =  m (Duarte, 2002). Further series of measurements have 
taken place over intra-interferometric distances of 7.235D d j =  m (Duarte, 2005), 

35D d j =  m (Duarte et al., 2010), and 527D d j =  m (Duarte et al., 2011).

FIGURE 8.8  The interferometric character c, as in Figure 8.6, clearly distorted due to the 
static presence of a thin beam splitter, at Brewster’s angle, 2 m from the grating ( j) (Duarte, 
F. J., J. Opt. A: Pure Appl. Opt. 7, 73–75, 2005, © IOP Publishing. Reproduced with permis-
sion. All rights reserved).

FIGURE 8.9  The interferometric character c, as in Figure 8.6, restored due to the removal 
of the thin beam splitter that caused the distortions depicted in the previous figures (Duarte, 
F. J., J. Opt. A: Pure Appl. Opt. 7, 73–75, 2005, © IOP Publishing. Reproduced with permis-
sion. All rights reserved).
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For 0.10D d j =  m, and propagation in homogeneous laboratory air, the interfero-
metric character a is depicted in Figure 8.5. For 7.235D d j =  m, and propagation 
in homogeneous laboratory air, the interferometric character c is depicted in Figure 
8.6. For 35D d j =  m, and propagation in near-homogeneous air (at ≈ °30 CT ), the 
measured interferometric character c is depicted in Figure 8.11 while its calculated 
version is displayed in Figure 8.12. For 527D d j =  m, and propagation in near-homo-
geneous air (at ≈ °24 CT  and 66% humidity), the measured interferometric charac-
ter d  =( 5)N  is shown in Figure 8.13, while its calculated version is displayed in 
Figure 8.14.

FIGURE 8.10  The N-slit laser interferometer with a thin beam splitter (BS) inserted in the 
intra-interferometric path D d j . For the propagation at the top of the figure, the probability 

amplitude is modified from d j j s  to ′ ′d j j j j s . The latter probability amplitude 
varies continuously, as a function of distance, along the beam splitter.

FIGURE 8.11  The interferometric character c ( = 4N , 1000 μm slits separated by 1000 μm)  
for 35D d j =  m recorded outside the laboratory. Each pixel is 20 μm wide (Duarte,  
F. J. et al., J. Opt. 12, 015705, 2010, © IOP Publishing. Reproduced with permission.  
All rights reserved).
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8.5.1 C lear-Air Turbulence

As mentioned previously the original propagation space envisioned for communica-
tions via interferometric characters was vacuum, or outer space, where the interfero-
metric characters can propagate free of refractive index distortions (Duarte, 2002). 
That is not the case for propagation in a terrestrial environment where the propaga-
tion space is subject to refractive index variations due to thermal gradients and clear-
air turbulence (CAT).

The question then becomes: can we differentiate between interferometric charac-
ter distortions due to CAT and distortions due to third-party intrusion into the intra-
interferometric optical path D d j ?

This question can be answered empirically. To do this, attention should be paid 
to Figures 8.5b–d, 8.7, and 8.15, all of which illustrate the catastrophic collapse of 
the given interferometric character due to the insertion of a beam splitter in the D d j  

path. Now, by contrast, we consider Figure 8.16 where the distortions due to mild 

FIGURE 8.12  The calculated version of the interferometric character c (N = 4, 1000 μm 
slits separated by 1000 μm) for 35D d j =  m (Duarte, F. J. et al., J. Opt. 12, 015705, 2010, © 
IOP Publishing. Reproduced with permission. All rights reserved).

FIGURE 8.13  The interferometric character d (N = 5, 1000 μm slits separated by 1000 μm) 
for 527D d j = m (Duarte, F. J. et al., J. Opt. 13, 035710, 2011, © IOP Publishing. Reproduced 
with permission. All rights reserved).
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clear-air turbulence detected at 7.235D d j =  m, for the c ( 4)=N  character, are illus-
trated (Duarte, 2009). Severe CAT causes the interferometric character to lose all its 
spatial information and to tend toward a ‘smooth’ distribution (Duarte et. al., 2010). 
It appears that the effect of CAT might be statistically predictable. This is very dif-
ferent to the massive distortions and catastrophic collapse induced by beam splitter 
incursions into the D d j  optical path.

FIGURE 8.14  The calculated version of the interferometric character d (N = 5, 1000 μm 
slits separated by 1000 μm) for 527D d j =  m.

FIGURE 8.15  The interferometric character c ( = 4N , 1000 μm slits separated by 1000 μm) 
for 35D d j =  m, while a thin beam splitter is inserted at a distance 10 m from the N-slit array. 
Each pixel is 20 μm in width (Duarte, F. J. et al., J. Opt. 12, 015705, 2010, © IOP Publishing. 
Reproduced with permission. All rights reserved).
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Finally, it should be mentioned that CAT is a phenomenon of significant impor-
tance to aviation safety. This class of turbulence is difficult to detect with traditional 
radar methods. In this regard, the ability of the NSLI to detect CAT offers a practical 
and demonstrated avenue of detection, specially by installing infrared-laser based 
N-slit interferometers at airports near the runway thresholds (Duarte, 2009, 2016).

8.6  ADDITIONAL APPLICATIONS

In addition to secure free-space communications and detection of CAT, the coherent 
N-slit interferometer used in conjunction with its interferometric probability equation 
is useful in a series of further applications Duarte (1995, 2009, 2016). These appli-
cations include biomedicine, cytology, densitometry, film imaging, film granularity 
measurements, metrology, microscopy, nanoscopy, interferometry of fine textiles, 
wavelength measurements, surface imaging, transmission grating characterization, 
and x-ray film imaging.

8.7  DISCUSSION

The N-slit interferometer, in conjunction with the N-slit interferometric probabil-
ity equation, has been used to generate interferometric characters that have proven 
extremely sensitive to interception with classical, or macroscopic, optical methods. 
Thus, an interferogram or interferometric character can be generated according to an 
established interferometric alphabet and used for free space communications know-
ing that attempts to intercept the optical character will lead to its catastrophic col-
lapse. This implies that transparent communications, without the use of a classified 

FIGURE 8.16  The effect of mild clear-air turbulence introduced in the laboratory for 
the interferometric character c, generated with 4=N  (570 μm slits separated by 570 μm), 

632.82λ =  nm, at an intra-interferometric distance of 7.235D d j =  m. Each pixel is 25 μm in 
width (From Duarte, F. J., Interferometric imaging, in Tunable Laser Applications, 2nd ed., 
(Duarte, E. J., ed.), CRC, Boca Raton, FL, Chapter 12, 2009). 
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key, can proceed through the open space. However, a cryptographic key could be 
easily added and implemented, if desired.

In Chapter 21, we describe how microscopic optical methods can be used to intercept 
the interferometric character causing minimal distortions. Moreover, in Chapter 21, a 
more detailed interplay between measured and calculated interferograms is described.

As already mentioned, the N-slit interferometric method was originally conceived 
for outer space communications in vacuum (Duarte, 2002). However, here we have 
seen that deployment in a terrestrial environment, devoid of CAT, should be practi-
cally feasible. Moreover, given the different nature of the distortions due to CAT, as 
compared with macroscopic optical interception, deployment in atmospheric envi-
ronments including some degree of CAT should also be possible.

The main advantages of the N-slit interferometric method for optical communica-
tions in free space are as follows:

	 1.	The extraordinary simplicity of the optical architecture.
	 2.	The use of single-transverse-mode, narrow-linewidth, lasers as illumination 

sources that neutralize significant signal to noise problems.
	 3.	The ease with which additional security features could be implemented into 

its optical configuration: tunable infrared lasers and variable interferomet-
ric characters, among others.

In Chapter 15, it is shown how the physics of quantum entanglement is derived from 
the Dirac–Feynman interferometric principle utilized here. In this regard, it can be 
argued that the security, in space-to-space communications, provided by straight-
forward N-slit quantum interferometry is guaranteed by quantum mechanics in the 
same manner as the security provided by quantum entanglement is guaranteed by 
quantum mechanics.

PROBLEMS

	 8.1	� Suggest an optimum laser for use in a secure interferometric character 
generating configuration. Explain the reasons for your selection.

	 8.2	� Suggest an optimum laser for use in an NSLI for the detection of CAT. 
Explain the differences with the selection of Problem 8.1.

	 8.3	� Suggest an optimum laser for use in an NSLI for motion picture film imag-
ing. Explain the differences with the selection of Problem 8.1.
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9 Schrödinger’s Equation

9.1  INTRODUCTION

As mentioned in Chapter 1, Schrödinger’s equation (Schrödinger, 1926) provides one 
of the three main avenues to quantum mechanics. It also has important applications 
in atomic and molecular physics (Herzberg, 1950; Feynman et al., 1965). Given the 
importance of this equation in semiconductor lasers, we examine a couple of deri-
vational approaches. The principal aim is to gain an understanding of the physics 
behind this quantum wave equation. Since the application of this equation is widely 
and extensively treated in many textbooks (see, e.g., Saleh and Teich, 1991; Silfvast, 
2008; Hooker and Webb, 2010) we only briefly describe a few applications relevant 
to semiconductor lasers.

It is also relevant to highlight that in the fields of quantum interference and quan-
tum entanglement, the Schrödinger equation does not come into play since the pho-
ton is considered as a form of nonlocal coherent energy and not as a particle (see 
Chapter 3). Under those circumstances, the principal tools are superposition prob-
abilities amplitudes effectively described by the complex wave equations mentioned 
by Dirac (1958).

9.2 � A HEURISTIC EXPLICIT APPROACH TO 
SCHRÖDINGER’S EQUATION

Here, Schrödinger’s equation is arrived at in an alternative heuristic path modeled 
after Haken (1981). This approach relies on the use of the complex wave function 
ψ ( , )x t . The advantage of this approach is that the argument is much simpler and 
clearer.

A free particle moves with classical kinetic energy according to

	 1
2

2E m= v 	 (9.1)

which, using p m= v , can be re-stated as

	 /22E p m= 	 (9.2)

Now, using Planck’s quantum energy (Planck, 1901)

	 ν=E h 	 (9.3)

in conjunction with /cλ ν= , and = 2E mc , the well-known de Broglie’s expression for 
momentum can be arrived to (de Broglie, 1923)
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	 =p k	 (9.4)

The classical ‘wave functions of ordinary wave optics’ (Dirac, 1958) can be written 
as

	 ψ ψ= ω− −( , ) 0
( )x t e i t kx 	 (9.5)

whose derivative with respect to time becomes

	
ψ ω ψ∂

∂
= − ω− −( , )

( ) 0
( )x t

t
i e i t kx 	 (9.6)

Similarly, the first and second derivatives with respect to displacement are

	
ψ ψ∂

∂
= + ω− −( , )

( ) 0
( )x t

x
ik e i t kx 	 (9.7)

	
ψ ψ∂
∂

= − ω− −( , )
( )

2

2
2

0
( )x t

x
k e i t kx 	 (9.8)

Multiplying the first-time derivative by −( )i  yields

	  

ψ ω ψ− ∂
∂

= − ω− −( , )
( ) 0

( )i
x t
t

e i t kx 	 (9.9)

and multiplying the second displacement derivative by ( /2 )2 m−  yields

	
 ψ ψ− ∂

∂
= ω− −

2
( , )

2

2 2

2

2 2

0
( )

m
x t

x
k
m

e i t kx 	 (9.10)

Recognizing that  /22 2E k m= , allow us to write

	




ψ ψ− ∂
∂

= + ∂
∂2

( , ) ( , )2 2

2m
x t

x
i

x t
t

	 (9.11)

which is the basic form of Schrödinger’s equation. Observing Equations (9.9) to (9.11) 
the importance of the concept of energy in these equations becomes immediately 
apparent. Adding a term for a constant potential energy ψV  to the LHS of Equation 
(9.11) yields

	




ψ ψ ψ− ∂
∂

+ = + ∂
∂2

( , )
( ) ( , )

( , )2 2

2m
x t

x
V x x t i

x t
t

	 (9.12)

which makes Schrödinger’s equation compatible with the Hamiltonian which is the 
sum of kinetic and potential energy.

The Schrödinger equation is a wave equation that incorporates classical particle 
concepts, and classical wave function concepts, in its derivation. In other words, 
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a heuristic approach to Schrödinger’s equation utilizes Planck’s quantum energy, 
classical kinetic energy of a free particle, and the complex wave functions. In this 
approach, it is clear that Schrödinger’s equation refers to a free particle propagating 
in a wave motion according to wave optics. Once again, the central role of complex 
wave equation

	 ψ ψ= ω− −( , ) 0
( )x t e i t kx

is highlighted.

9.3  SCHRÖDINGER’S EQUATION VIA DIRAC’S NOTATION

Here, once again the Feynman approach (Feynman et al., 1965) is adopted. In the 
Hamiltonian Hij (see Appendix A), the time dependence of the amplitude Ci is given 
by (Dirac, 1958)

	  ∑=i
dC
dt

H Ci
ij i

j

	 (9.13)

For ψ=C ii , this equation can be rewritten as

	 ∑ψ
ψ=i

d i

dt
i H j j

j

	 (9.14)

which, for =i x, can be written as

	 ∑ψ
ψ= ′ ′i

d x

dt
x H x x

j

	 (9.15)

Since ( )ψ ψ=x x , this equation can be reexpressed as

	  ∫ψ ψ= ′ ′ ′( )
( , ) ( )i

d x
dt

H x x x dx 	 (9.16)

The integral on the right-hand side is given by

	
∫ ψ ψ ψ′ ′ ′ = − +( , ) ( )
2

( )
( ) ( )

2 2

2H x x x dx
m

d x
dx

V x x 	 (9.17)

About this stage, Feynman poses and asks the question: ‘Where did we get that from? 
Nowhere… it came from the mind of Schrödinger, invented in his struggle to find an 
understanding of the experimental observations of the real world’ (Feynman et al., 
1965).

Next, combining Equations (9.16) and (9.17), we get Schrödinger’s equation

	 

ψ ψ ψ+ = − +( )
2

( )
( ) ( )

2 2

2i
d x

dt m
d x

dx
V x x 	 (9.18)
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In three dimensions, we use ψ ( , , )x y z  and ( , , )V x y z  and

	 ( / ) ( / ) ( / )2 2 2 2 2 2 2∇ = ∂ ∂ + ∂ ∂ + ∂ ∂x y z 	 (9.19)

so that Schrödinger’s equation in three dimensions takes the succinct form

	 

ψ ψ ψ+ ∂
∂

= − ∇ +
2

2
2i

t m
V 	 (9.20)

It is clear that even in this approach, using the quantum tools provided by Dirac and 
Feynman, the derivation of Schrödinger’s equation still depends on Schrödinger’s 
classical concepts. Defining the Hamiltonian operator Ĥ  as

	 Ĥ  ( /2 )2 2= − ∇ +m V 	 (9.21)

the Schrödinger equation can be expressed as

	 

ψ ψ+ ∂
∂

= Ĥi
t

	 (9.22)

Finally, for a large number of particles, Feynman restates the Schrödinger equation 
as

	 �
… �

…∑ψ
ψ ψ+

∂
∂







= − ∇ +−

i

( , , )

2
( , , )1 2 2

2
1 2

1 2 2i
r r r

t
m V r r ri i 	 (9.23)

where

	 ( / ) ( / ) ( / )2 2 2 2 2 2 2∇ = ∂ ∂ + ∂ ∂ + ∂ ∂x y zi i i i 	 (9.24)

This is the type of Schrödinger’s equation applied in the description of molecular 
physics (Herzberg, 1950).

9.4  THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

As suggested by Feynman, using a solution of the form

	 ψ = Ψ −( ) ( ) /x x e iEt 	 (9.25)

Equation (9.20), in one dimension, takes the form of

	


( )∂ Ψ
∂

− − Ψ =( ) 2
( ) ( ) 0

2

2 2

x
x

m
V x E x 	 (9.26)

or

	


( )∂ Ψ
∂

= − Ψ( ) 2
( ) ( )

2

2 2

x
x

m
V x E x 	 (9.27)
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which is known as a one-dimensional time-independent Schrödinger equation. This 
simple form of the Schrödinger equation is of enormous significance to semiconduc-
tor physics and semiconductor lasers. This equation has exactly the same form as 
Schrödinger introduced his equation originally (Schrödinger, 1926)

	 ψ ψ∇ + π − =8
( ) 02

2

2

m
h

E V 	 (9.28)

9.4.1  Quantized Energy Levels

Let us consider a static potential well as described by the function ( )V x  in Figure 9.1. 
Since E is a constant, it is shown on the vertical axis. From Equation (9.27), Ψ( )x  can 
be evaluated along x as E is varied, along the vertical, by small amounts. This evalu-
ation indicates that Ψ( )x  shows an oscillatory behavior within the well. For certain 
definite vales of E, the shape of the curve is symmetrical as x increases pass the well 
boundary. However, for other slightly different values of E, Ψ( )x  diverges toward 
large positive or large negative values. In other words, as indicated in Figure 9.2, 
within a potential well, the particle is only bound for definite discrete values of 

= 0,1, 3, 4E  (Feynman et al., 1965). The behavior of Ψ( )x , as a function of E, 
illustrates the phenomenon of quantized energy levels within a potential well.

9.4.2 S emiconductor Emission

Going back to the time-independent Schrödinger equation

	


ψ ψ( )∂
∂

− − =( ) 2
( ) ( ) 0

2

2 2

x
x

m
V x E x 	 (9.29)

and using the spatial component of the wave function as solution

	 ψ ψ= −( ) 0x e ikx	 (9.30)

FIGURE 9.1  Static potential energy well ( )V x .
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leads directly to

	
= +

2
( )

2 2

E
k

m
V x 	 (9.31)

This energy expression is the sum of kinetic and potential energy so that

	
+ = +

2
( )

2 2

E E
k

m
V xK P 	 (9.32)

and

	
=

2

2 2

E
k

m
K 	 (9.33)

The kinetic energy EK as a function of 2 /k λ= π  is shown graphically in Figure 9.3.
The graph is a positive parabola for positive values of m and a negative parabola 

for negative values of m. In a semiconductor, the positive parabola is known as the 
conduction band and the negative parabola is known as the valence band. The sepa-
ration between the two bands is known as the band gap, EG. If an electron is excited 
and transitions from the valence band to the conduction band, it is said to leave 
behind a vacancy or hole.

Electrons can transition from the bottom of the conduction band to the top of 
valence band by recombining with holes. In a material like gallium arsenide, the 
band gap is ≈ 1.43EG  eV and the recombination emission occurs around 870 nm 
(Silfvast, 2008).

Under certain conditions, radiation might also occur higher from the conduction 
band as suggested in Figure 9.4; however, that process is undermined by fast phonon 
relaxation.

FIGURE 9.2  Potential energy well depicting a series of discrete energy levels 0,1, 3, 4=E 

 
and corresponding ( )Ψ x  functions.
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FIGURE 9.3  Conduction and valence bands according to ( /2 )2 2= ±E k mK  .

FIGURE 9.4  Emission due to recombination transitions from the bottom of the conduction 
band to the top of the valence band.



120 Quantum Optics for Engineers

9.4.3  Quantum Wells

Starting with a potential well as described by Silfvast (2008): =( ) 0V x  for < <0 x L ; 
and = ∞( )V x  for = 0x  or =x L , illustrated in Figure 9.5, then Equation (9.27)

	
( ) 2

( ) ( ) 0
2

2 2

ψ ψ( )∂
∂

− − =


x

x

m
V x E x

becomes

	


ψ ψ∂
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( ) 0

2

2 2

x
x

m
E x 	 (9.34)

for < <0 x L . This is a wave equation of the form

	
ψ ψ+ =( )

( ) 0
2

2
2d x

dx
k xx 	 (9.35)

with

	


= 22
2k

m
Ex

c 	 (9.36)

The solution to Equation (9.35) is

	 ψ =( ) sinx k xx 	 (9.37)

Since ψ =( ) 0x  at = 0x  or =x L , we have

FIGURE 9.5  Potential well ( ) 0=V x  for 0 < <x L; and ( ) = ∞V x  for 0=x  or =x L .
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	 = π
k

n
L

x 	 (9.38)

for = 1, 2, 3n . Substituting Equation (9.38) into (9.36) leads to

	
= π

2

2 2 2

2E
n

m Lc

	 (9.39)

which should be labeled as En to account for the quantized nature of the energy,  
that is

	
= π

2

2 2 2

2E
n

m L
n

c

	 (9.40)

This quantized energy En indicates a series of possible discrete energy levels above 
the lowest point of the conduction band so that the total energy above the valence 
band becomes (Silfvast, 2008)

	 = +E E Ec n	 (9.41)

9.4.4  Quantum Cascade Lasers

These lasers operate via transitions between quantized levels, within the conduction 
band, of multiple quantum well structures. The carriers involved are electrons gener-
ated in an n-doped material. A single stage includes an injector and an active region. 
The electron is injected into the active region at = 3n  and the transition occurs down 
to = 2n  (see Figure 9.6). Following emission, the electron continues into the next 
injector region. Practical devices include a series of such stages. From Equation 
(9.40), the energy difference between the two levels can be expressed as (Silfvast, 
2008)

	
∆ = − π

(3 2 )
2

2 2
2 2

2E
m Lc

	 (9.42)

where L  is the thickness of the well. Using ν∆ =E h , it follows that the wavelength 
of emission is given by

	 λ = − −(3 2 )
82 2 1

2m cL
h
c 	 (9.43)

Quantum cascade lasers (Faist et al., 1994) are tunable sources emitting in the infra-
red from a few micrometers to beyond 20 μm.

9.4.5  Quantum Dots

Besides the multiple quantum well configurations, other interesting semiconduc-
tor geometries include the quantum wire and the quantum dot. The quantum wire 
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narrowly confines the electrons and holes in two directions ( , )x y . The quantum dot 
geometry severely confines the electrons in three dimensions ( , , )x y z . Under these 
circumstances, the quantized energy can be expressed as

	
  = + + +

2 2 2

2 2 2 2 2 2

E E
k

m

k

m
k

m
c

x

c

y

c

x

c

	 (9.44)

where , , andk k kx y z are defined according to Equation (9.38).
The concept of quantum dot is not limited to semiconductor materials; it also 

applies to nanoparticle gain media and nanoparticle core–shell gain media. For 
instance, for nanoparticle core–shells the physics can be described with a Schrödinger 
equation of the form

	 ( )
2

( ) ( ) 02
2ψ ψ( )∇ − − =


r
m

V r E r 	 (9.45)

with the potential ( )V r  defined by the core–shell geometry (Dong et al., 2013).

FIGURE 9.6  Simplified illustration of a multiple quantum well structure relevant to quan-
tum cascade lasers. An electron is injected from the “injector region” into the active region 
at 3=n . Thus a photon is emitted via the 3 2→  transition. The electron continues to the next 
region where the process is repeated.  By configuring a series of such stages, one electron can 
generate the emission of numerous photons.
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9.5  NONLINEAR SCHRÖDINGER EQUATION

For the sake of completeness, and without derivation, we now introduce the nonlin-
ear Schrödinger equation (Zakharov and Manakov, 1974)

	
2

2
2 2ψ ψ ψ+ ∂

∂
= − ∇ + +







�
�

i
t m

V g 	 (9.46)

that adds an extra term 
2ψ ψ( )g  to the original equation. In the extra term, 

2ψ  is a 
dimensionless probability and g is the nonlinear interaction strength. This equation is 
relevant to the physics of solitons in nonlinear optics. It should be mentioned that multi-
ple-prism arrays for laser pulse compression (see Appendix C) are used to compensate 
for intracavity dispersion in the ‘soliton shaping’ of laser pulses (Spence et al., 1991).

9.6  DISCUSSION

In this chapter, we have seen that the Schrödinger equation is an emergent math-
ematical statement whose individual terms display units of energy (J). Derivation 
of the Schrödinger equation depends on more fundamental complex wave equations

	 ψ ψ= ω− −( , ) 0
( )x t e i t kx

which are the direct physical representation of Dirac’s probability amplitudes

	 d j e i j→ φ−

Thus, it can be argued that the quantum mechanics based on Dirac’s probability 
amplitudes is more basic, more fundamental, than the quantum mechanics that relies 
on Schrödinger’s equation.

PROBLEMS

	 9.1	� Verify that multiplication of Equation (9.8) by �( /2 )2 m−  yields a kinetic 
energy multiplied by the complex wave function.

	 9.2	� Use the wave Equation (9.25) into Equation (9.20) to verify Equation (9.27).
	 9.3	� Use the wave Equation (9.30) into Equation (9.29) to verify Equation (9.31).
	 9.4	� For a particle in a potential well ( )V x  assume that the wave func-

tion describing the state of the particle is given by ( , ) ( ) ( )x t x tψ φ ϑ= . 
Given that

	 ϑ = ω−( )t Ce i t

show that ( )xφ  and ϑ( )t  satisfy the equation

	
�

( ) 2
( ) ( ) 0

2

2 2

x
x

m
V x E x

ψ φ( )∂
∂

− − =
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	 9.5	� Find the stationary solutions to the Schrödinger equation for the three 
regions (I, II, and III) defined in Figure 9.7.

	 9.6	 Verify that g, in Equation (9.46), has units of energy (J).
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Introduction to Feynman 
Path Integrals

10.1  INTRODUCTION

Feynman’s path integrals provide an alternative version of quantum mechanics 
(Feynman and Hibbs, 1965). This approach is outlined here since Feynman applied it 
to describe macroscopic beam divergence. The presentation is brief and limited since 
this subject was mainly selected as an example of an alternative version of quantum 
mechanics and is not utilized elsewhere in the book.

From a historical perspective, it should further be mentioned that the quantum 
analog of the classical action was first introduced, as a concept, by Dirac in early 
editions of his book The Principles of Quantum Mechanics where he introduced a 
section entitled ‘The action principle’ (Dirac, 1958).

10.2  THE CLASSICAL ACTION

Feynman was fascinated by the principle of least action, and he gave a lecture on 
this topic in the Feynman Lectures of Physics (Feynman et al., 1965). This prin-
ciple can be used to describe the possible paths of a particle from an initial to a 
final point. There is a quantity S that can be computed for each path, and that S is 
a minimum. Feynman explains further that S is an extremum, that is, the value of 
S remains unchanged to a first order even if the path is changed slightly (Feynman 
and Hibbs, 1965). In his lecture, Feynman states, ‘the average kinetic energy less 
the average potential energy is as little as possible for the path of an object.’ Then 
he introduces the integral

	 ∫= 



 −







1
2

2

1

2

S m
dx

dt
mgx dt

t

t

	 (10.1)

which he also writes as

	 ∫ ( )= −
1

2

S KE PE dt
t

t

	 (10.2)

	 ∫= ( , , )S L x x t dt
t

t

a

b

 	 (10.3)

10
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where

	 = 



 −

2
( , )2L

m
x V x t 	 (10.4)

is known as the Lagrangian.
In summary: for the true path, between an initial point xa and a final point xb, S is a 

minimum. This concept is illustrated in Figure 10.1, where 1S  and 2S  are two possible 
paths, 1S  is the true path, and <1 2S S .

10.3  THE QUANTUM LINK

Feynman and Hibbs (1965) introduce a notation in which a square bracket repre-
sents a path between two points in a two-dimensional space. Thus, the action S 
between a and b is expressed as [ , ]S b a . For the amplitudes due to successive events, 
Feynman writes

	 = +[ , ] [ , ] [ , ]S b a S b c S c a 	 (10.5)

and then he defines the kernel ( , )K b a  as a path integral

	 ∫=( , ) ( )( / ) [ , ]K b a e D x ti S b a

a

b

 	 (10.6)

This is the crucial step in which he introduces the concept of quantum energy into his 
otherwise classical approach. This is done via de Broglie’s relation

	 = = ∂
∂

p k
S

x
 	 (10.7)

FIGURE 10.1  Least action: 1S  and 2S  are two possible paths between an initial 0x  and a final 
point xn . 1S  represents the direct true path. 2S  represents a longer convoluted path: 1 2S S< .
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which dimensionally leads to an exponent of the form

	 → → −( / ) [ , ] ( /2 ) ( /2 )2

e e ei S b a i px mx i t
  	 (10.8)

Here, it should be mentioned that equations of the form

	 /′ ′′ = q q et
iS 	 (10.9)

were first introduced by Dirac (1958) in his discussion of the action principle.
Evaluation of the kernel, via integration, leads to (Feynman and Hibbs, 1965)

	 = π





−

( , ; 0, 0)
2 1/2

( /2 )2

K x t
i t

m
e imx t

 	 (10.10)

In terms that are familiar with concepts already introduced, elsewhere in this book, 
the probability ( , )P b a  to go from xa (at ta) to xb (at tb) is given by

	 ( , ) ( , )
2

=P b a K b a 	 (10.11)

and an alternative way to express the probability amplitude is

	 ∑ ∑ϕ= =
→ →

( , ) [ ( )] ( / ) [ ( )]K b a x t ce
a b

i S x t

a b

 	 (10.12)

where c is a constant and →a b means all possible paths from a to b.
Thus, Equations (10.10) and (10.12) refer to probability amplitudes and thus relate 

to the usual wave function.

10.4 � PROPAGATION THROUGH A SLIT AND 
THE UNCERTAINTY PRINCIPLE

Now we consider Feynman’s description of propagation through a slit, and we do this 
in reference to Figure 10.2. The event to be described here can be summarized in the 
following set of steps:

	 1.	The particle is at = 0x  at = 0t .
	 2.	The particle passes between −( )0x w  and +( )0x w  at =t T .
	 3.	The problem is to calculate the probability of finding the particle at position 

x at a later time τ= +t T .
	 4.	The width of the slit, from −w to +w, is 2w.

The correct quantum mechanical answer must consider all possible paths, so the 
wave function depends on the sum of all possible paths in the range −w to +w, or the 
integral in that range. Thus, Feynman and Hibbs (1965) write
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  	   ∫ψ τ= + + + +
−

+

( ) ( , ; , ) ( , ; 0,0)0 0 0x K x x T x y T K x y T dy
w

w

	 (10.13)

which, using Equation (10.10), can be expressed as

	 ∫ψ = π





π





τ
−

−
−

+

−

+
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2 21/2

( ( ) /2 )
1/2

( ( ) /2 )2
0

2

x
i t

m
e

i T

m
e dyim x y im x y T

b

b
 

  	 (10.14)

Feynman then argues that a Gaussian function ( )G y  can be introduced in the inte-
grand while extending the range of integration to ±∞. The function ( )G y  has a value 
of unity in the − ≤ ≤ +w y w range and zero elsewhere. The introduction of ( )G y  with

	 = −( ) /22 2

G y e y w 	 (10.15)

FIGURE 10.2  Propagation through a slit of width 2w. The particle starts at 0x =  at 0t =  
and passes through 2w at t T= . This passage position can also be designated as lying between 

0x w−  and 0x w+ . First, one can calculate the probability amplitude ( )xψ  of finding the 
particle at a position x at some time later denoted by t T τ= + . Once ( )xψ  is established then 
the probability ( )

2ψ x  can be calculated.
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modifies Equation (10.14) to

	 ∫ψ τ=
π







τ− − + −

−∞

+∞

( )
2

( ) 1/2 ( ( ) /2 ) ( ( ) /2 ) /22
0

2 2 2

x
m

i
T e e e dyim x y im x y T y w



  	 (10.16)

Expanding the exponentials, this equation can be written as

	 ∫ψ τ=
π







α β γ− + +

−∞

+∞

( )
2

( ) 1/2 2

x
m

i
T e dyy y



	 (10.17)

where

	 α
τ

= +




2

2
0
2im x x

T

	 (10.18)

	 β
τ

= − +




2

2 2 0im x x

T

	 (10.19)

	 γ
τ

= + +



2

1 1
2

im

T

i

mw



	 (10.20)

This integral, via the exponent described by Equation (10.20), links the quantum 
quantity i to the width of the slit 2w, the interesting physics is in the term ( / )2i mw .  
Feynman goes on to perform the integral and ends up with the quantity

	
τ

+ +



2

1 1
2

im

T

i

mw



	 (10.21)

as a component of the amplitude of ψ ( )x . However, rather than performing the inte-
gral and following the steps of Feynman and Hibbs (1965), we return to our previous 
observation that the physics of interest is contained in the term ( / )2i mw  and that this 
term is the inverse of a temporal quantity, so that

	 ≈1
2t

i

mw



	 (10.22)

The absolute value of this quantity is obtained by multiplying it with its complex 
conjugate and taking its square root, so that

	
1

2t mw
≈ 	 (10.23)

If we abstract the absolute notation and notice that the quantity w is a segment of x, 
that is, → ∆w x (see Figure 10.1), then



130 Quantum Optics for Engineers

	
∆ ≈

∆
x

t m x



	 (10.24)

	 ∆ ≈
∆

p
x



	 (10.25)

and we arrive at an expression of the form

	 ∆ ∆ ≈p x 	 (10.26)

which is a reduced expression of the uncertainty principle as compared with

	 ∆ ∆ ≈p x h	 (10.27)

as given by Dirac (1958). In Chapter 3, we describe how to use the uncertainty prin-
ciple to arrive at the diffraction-limited beam divergence

	 θ λ
π

∆ ≈
w

	 (10.28)

where 2w is the width of the slit.

10.4.1 D iscussion

Beyond discussing the propagation through a slit and its link to Heisenberg’s uncer-
tainty principle, Feynman goes on to derive the Schrödinger equation and discuss 
many other applications to quantum mechanics using his path integral approach. 
Regarding our optics perspective, in this brief introduction, we have learned that

	 1.	The path integral approach can be used to describe propagation of particles 
through macroscopic slits. Yes! Quantum mechanics also applies to macro-
scopic physics.

	 2.	This approach leads to the uncertainty principle which can be used to 
describe diffraction-limited beam divergence (see Chapter 3).

	 3.	The path integral approach is mathematically more involved and not as suc-
cinct and elegant as the straight-forward Dirac notation to describe basic 
optics phenomena such as beam divergence.

10.5  FEYNMAN DIAGRAMS IN OPTICS

Since we are discussing about the subject of Feynman, perhaps this is the best place 
to briefly touch on Feynman diagrams. An introduction to this subject is provided 
by Feynman himself in his book QED: The Strange Theory of Light and Matter 
(Feynman, 1985). Feynman is said to have invented these diagrams ‘as a bookkeep-
ing device for wading through complicated calculations’ (Kaiser, 2005) in his par-
ticle physics renormalization work.
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The very basics of Feynman diagrams are illustrated in Figure 10.3. Time is in the 
vertical axis, and space is in the horizontal axis. A photon is represented by an undulat-
ing line, while an electron is represented by a straight line. Using Feynman’s language, 
a photon has an amplitude to go from point A to point B as depicted in Figure 10.3a.

Similarly, an electron has an amplitude to go from point A to point B as depicted 
in Figure 10.3b. Note: in Feynman’s language, the concept of ‘amplitude’ is equivalent 

to ‘kernel’ and since ( , ) ( , )
2

=P b a K b a , it is also equivalent to probability amplitude.

An electron has an amplitude to emit or absorb a photon as depicted in Figure 10.4.

FIGURE 10.3  (a) Time–space Feynman diagram for the photon amplitude to go from point 
1 to point 2. (b) Time–space Feynman diagram for the electron amplitude to go from point 
1 to point 2. 
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Here, a photon is emitted at 5 and absorbed at 6. The emission is caused by the 
electron at 1 transitioning to 3, and the absorption is allowed by the electron at 2 
transitioning to 4. Each of the electron lines corresponds to elements of probability 
amplitudes (kernels) as does the undulating line of the photon.

The overall probability amplitude of the scattering process depicted in this 
Feynman diagram can be written as

	 γ γ−





ν µν ν(3, 5) (1, 5) (4, 6) (6, 2)2K ie K
ig

p
K ie K 	 (10.29)

The reader will observe that this is a multiplication involving the incident and 
output electron kernels, the amplitude representing the vertices γ νie , and the 
photon amplitude ( / )2ieg p− µν . The quantity µνg  is a tensor. For the complete set 
of rules governing Feynman diagrams, the reader should refer to Peskin and 
Schroeder (1995).

The scattering process depicted in Figure 10.4, involving only one photon, is the 
simplest alternative. Other more complicated alternatives involving two photons, or 
three photons, are also possible. However, the probability is significantly lower each 
time an extra photon is involved.

Perhaps the first use of Feynman diagrams in quantum optics was initiated via the 
description of ‘the scattering of light by light’ by Ward (1950). Yariv (1977) applied 
Feynman diagram concepts to the description of Raman scattering, while Butcher 
and Cotter (1991) applied the same diagram technique to describe the third harmonic 
generation. Feynman diagrams should also be useful in the description of photon 
absorption by electrons at single-photon detector surfaces.

FIGURE 10.4  Feynman diagram for the most basic form of electron scattering involving 
emission and absorption of a photon.
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PROBLEMS

	 10.1	 Show that the exponential forms in Equation (10.8) are equivalent.
	 10.2	� Show that Equation (10.16) can be expressed as Equation (10.17) in 

conjunction with Equations (10.18) to (10.20).
	 10.3	� Draw a Feynman diagram for the scattering process illustrated in 

Figure 10.4 involving (a) one extra photon and (b) two extra photons.
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Matrix Aspects of 
Quantum Mechanics and 
Quantum Operators

11.1  INTRODUCTION

As mentioned in Chapter 1, Heisenberg’s matrix mechanics provides one of the three 
main avenues of quantum mechanics. This approach to quantum mechanics was dis-
closed in three papers authored by Heisenberg (1925), Born and Jordan (1925), and 
Born et al. (1926). An iconic result from the Heisenberg–Born–Jordan contribution 
was the commutation rule

	 − =
π2

pq qp
h

i
	 (11.1)

	 − = −pq qp i 	 (11.2)

Here, we examine the origin of the commutation rule, using Feynman’s approach, 
and provide a brief pragmatic introduction to some salient aspects of matrix quantum 
mechanics with a focus on Pauli matrices. We begin with a review preamble on vec-
tor and matrix algebra.

11.2  INTRODUCTION TO VECTOR AND MATRIX ALGEBRA

Here, a few of the salient and useful features of classical vector and classical matrix 
algebra are introduced in a very pragmatic approach.

11.2.1 V ector Algebra

A vector in three dimensions ( , , )x y z  is depicted in Figure 11.1. The sum of two vec-
tors r s+ , illustrated in Figure 11.2, is defined as
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	 (11.3)

Subtraction of two vectors −r s, illustrated in Figure 11.3, is defined as

11
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	 (11.4)

Multiplication of a vector r with a scalar number a, thus creating a new vector ar, is 
defined as

FIGURE 11.3  Vector subtraction −r s.

FIGURE 11.2  Vector addition r s+ .

FIGURE 11.1  Vector in three dimensions.
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The length of a vector s is defined as | s |
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2 	 (11.6)

and the dot product of two vectors ⋅r s, as shown in Figure 11.4, is a scalar defined as
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In reference to Figure 11.4, the angle between the two vectors is defined as θ  and the 
law of cosines is applied

	 r s r s cosθ⋅ = 	 (11.8)

The cross-product of two vectors ×r s is a new vector defined as

FIGURE 11.4  Dot product r s⋅ . The angle between the two vectors is θ .



137Matrix Aspects of Quantum Mechanics and Quantum Operators

	

















×
















=
−
−
−

















r

r

r

s

s

s

r s r s

r s r s

r s r s

1

2

3

1

2

3

2 3 3 2

3 1 1 3

1 2 2 1

	 (11.9)

The magnitude of ×r s is the area of the parallelogram formed by r and s, and its 
direction is determined by the right-hand rule as illustrated in Figure 11.5.

Some useful vector identities involve the derivative operators ∇ and ∇2

	 ∇ = ∇ + ∇ = ∇ + ∇AB A B A B B A A B( ) ( ) ( ) 	 (11.10)

	 ∇ × = ∇ × − × ∇AB B A A B( ) ( ) 	 (11.11)

	 ∇ × ∇ × = ∇ ∇ ⋅ − ∇ ⋅∇C C C( ) ( ) ( ) 	 (11.12)
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	 (11.13)

and

	 ∇ = ∂ ∂ + ∂ ∂ + ∂ ∂x y z( / / / )2 2 2 2 2 2 	 (11.14)

These identities are useful in dealing with wave equations (see Chapter 12) and a 
range of other applications including electromagnetism.

FIGURE 11.5  Cross-product ×r s (vector diagram not to scale).
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11.2.2 M atrix Algebra

For simplicity, we consider mainly ×2 2 matrices albeit the algebra is also applicable 
to ×3 3 and higher order matrices. We begin by defining the ×2 2 matrix A

	 =








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11 12

21 22
A

a a

a a
	 (11.15)

and the ×2 2 matrix B

	 =










11 12

21 22
B

b b

b b
	 (11.16)

thus the matrix addition +A B yields
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and the subtraction −A B yields
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Multiplication of the matrix A by −( 1) is equivalent to multiply each individual com-
ponent of the matrix by −( 1)
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Similarly, multiplication of the matrix A by the quantity i is equivalent to multiplying 
each individual component of the matrix by i
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The simple product of two matrices AB is
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AB

a a

a a

b b

b b

a b a b a b a b

a b a b a b a b

� (11.21)

and the simple product of two matrices BA is
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	 =


















 =

+ +
+ +











11 12

21 22

11 12

21 22

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22
BA

b b

b b

a a

a a

b a b a b a b a

b a b a b a b a

� (11.22)

Notice that

	 − ≠ 0AB BA 	 (11.23)

or

	 ≠AB BA	 (11.24)

which is an iconic result in matrix algebra. However, with certain very special matri-
ces, the condition described by Equation (11.24) might not hold as we shall see next.

Identity matrices are defined as follows: for a ×2 2 matrix

	 =






1 0
0 1

I 	 (11.25)

a ×3 3 matrix

	 =












I

1 0 0
0 1 0
0 0 1

	 (11.26)

and a ×4 4 matrix

	 =



















I

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

	 (11.27)

	 = =IA AI A	 (11.28)

Obviously, − = 0IA AI  which is an exception to the condition described in Equation 
(11.24).

The inverse, or reciprocal, matrix −1C  is a unique matrix that, multiplied with the 
original matrix C, yields the identity matrix, so that

	 = =− −1 1C C C C I 	 (11.29)

	 =− −( )1 1C I 	 (11.30)
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If matrices C and H have inverses, −1C  and −1H , then

	 =− − −( ) 1 1 1C H C H 	 (11.31)

and

	 = =− − − −1 1 1 1C H C H C H C H I 	 (11.32)

The determinant of a ×2 2 matrix is defined as

	 = = −A
a a

a a
a a a a

11 12

21 22
11 22 21 12	 (11.33)

For a ×3 3 matrix the determinant is defined as

= = − +A

a a a

a a a

a a a

a
a a

a a
a

a a

a a
a

a a

a a

11 12 13

21 22 23

31 32 33

11
22 23

32 33
12

21 23

31 33
13

21 22

31 32

� (11.34)

and so on for ×N N  matrices.
Finally, in this section, we define the trace of a matrix: this quantity Tr  is defined 

as the sum of the diagonal elements of a matrix

	 ∑=( )Tr A ajj

j

	 (11.35)

so that for our ×3 3 matrix

	 ∑= = + +
=

=

( ) 11 22 33

1

3

Tr A a a a ajj

j

N

	 (11.36)

For example, if

	 = −
+ −







1 1
1 1

D
i

i
	 (11.37)

	 = −
+ −







− −3
1 1

1 1
1 1D

i
i

	 (11.38)

    = −
+ −







−
+ −







=






=− − −1 1
1 1

3
1 1

1 1
3

3 0
0 3

1 1 1D D
i

i
i

i
I 	 (11.39)
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Moreover, the determinant of this matrix D  (see Equation (11.33)) is

	 = −
+ −







= − + + − = − + =D
i

i
i i

1 1
1 1

1 (1 ) (1 ) 1 2 1 	 (11.40)

and its trace is

	 = + − =( ) 1 ( 1) 0Tr D 	 (11.41)

11.2.3 U nitary Matrices

A complex matrix G, obeying the property

	 = =∗ *G G G G I	 (11.42)

is considered to be a unitary matrix (Lipschutz, 1968). For example, if

	 =






0
0

G
i

i
	 (11.43)

then

	 =






−
−







=∗ 0
0

0
0

G G
i

i
i

i
I 	 (11.44)

Here it should be noted that some authors (Tropper, 1968) define a unitary matrix as 
a matrix J exhibiting the more stringent property

	 = =∗( ) ( )*J J J J IT T 	 (11.45)

In this regard, if

	 = +
−







0
0

J
i

i
	 (11.46)

	 = −
+







∗( )
0

0
J

i
i

T 	 (11.47)

and the condition imposed in Equation (11.45) is met, namely,

−
+







+
−







= +
−







−
+







=






i
i

i
i

i
i

i
i

0
0

0
0

0
0

0
0

1 0
0 1

	(11.48)
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11.3  PAULI MATRICES

Pauli matrices are widely used in quantum polarization (see Chapter 16); thus, here 
we provide an introduction to the subject via the Hamiltonian following Feynman’s 
style.

The time-dependent equation for a two-state system is (Dirac, 1958)

	  ∑=i
dC
dt

H Ci
ij j

j

	 (11.49)

or

	  = +1
11 1 12 2i

dC
dt

H C H C 	 (11.50)

	  = +2
21 1 22 2i

dC
dt

H C H C 	 (11.51)

and for a spin one-half particle, such as an electron, under the influence of a magnetic 
field, the Hamiltonian becomes (Feynman et al., 1965)

	
µ µ

µ µ








 =

− − −
− + +











H H

H H

B B iB

B iB B

z x y

x y z

( )

( )
11 12

21 22
	 (11.52)

In general, the Hamiltonian for a spin one-half particle can be defined as (Feynman 
et al., 1965)

	 H B B Bij ij
x

x ij
y

y ij
z

zµ σ σ σ( )= − + + 	 (11.53)

While observing the definitions given in Equations (11.52) and (11.53), we see that for 
the z component, that is Bz, we have

	 µσ µ= − = −11 11H B Bz
z z 	 (11.54)

	 µσ= − = 012 12H Bz
z 	 (11.55)

	 µσ= − = 021 21H Bz
z 	 (11.56)

	 µσ µ= − = +22 22H B Bz
z z	 (11.57)

which implies that
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	 σ = 111
z 	 (11.58)

	 σ = 012
z 	 (11.59)

	 σ = 021
z 	 (11.60)

	 σ = −122
z 	 (11.61)

so that, in matrix form (Dirac, 1958)

	 σ σ= =
−







ij
z

z
1 0
0 1

	 (11.62)

Similarly, we find for the x and y components (Dirac, 1958)

	 σ σ= =






ij
x

x
0 1
1 0

	 (11.63)

	 σ σ= = −





i
iij

y
y

0
0

	 (14.64)

The ×2 2 matrices σ x, σ y, and σ z  are known as Pauli matrices (Dirac, 1958) and are 
very important to spin and magnetic moment computations. Some properties of these 
matrices are (Dirac, 1958; Jordan, 1986)

	 σ σ σ= = = 12 2 2
x y z 	 (11.65)

	 σ σ σ= ix y z	 (11.66)

	 σ σ σ= −iy x z	 (11.67)

	 σ σ σ= iy z x	 (11.68)

	 σ σ σ= −iz y x	 (11.69)

	 σ σ σ= iz x y	 (11.70)
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	 σ σ σ= −ix z y	 (11.71)

	 σ σ σ = ix y z 	 (11.72)

The σ y matrix is also known to be Hermitian, that is, this matrix is identical to its 
own conjugate transpose. In other words, the conjugate of σ y is

	 σ = −
+







= +
−







∗ 0
0

0
0

*
i

i
i

i
y 	 (11.73)

and the transpose (rows → column) of σ ∗
y is σ ∗( )y

T

	 σ σ= +
−







= −
+







=∗ i
i

i
i

( )
0

0
0

0y
T

T

y	 (11.74)

Comparison of Equation (11.73) and (11.74) indicate that

	 σ σ= ( )†
y y 	 (11.75)

where the symbol † represents the combined conjugate transpose operation, that is, 
the Hermitian property.

11.3.1  Eigenvalues of Pauli Matrices

In the matrix identity

	 =AX tX	 (11.76)

the vector

	 =






X

x
y

	 (11.77)

is an eigenvector and the scalar t is an eigenvalue. Setting σ=A x:

	












=







x
y

t
x
y

0 1
1 0

	 (11.78)

	 + =0 1x y tx	 (11.79)

	 + =1 0x y ty	 (11.80)
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−

−
t

t
1

1
	 (11.81)

	 − =t 1 02 	 (11.82)

and the eigenvalues are

	 = ±1t 	 (11.83)

For = +1t

	 + −
− +







1 1
1 1

	 (11.84)

so that

	 − = 0x y 	 (11.85)

	 − + = 0x y 	 (11.86)

and an eigenvector is

	 =






=







1
11X

x
y

	 (11.87)

Similarly for = −1t , the second eigenvector can be

	 =
−







1
12X 	 (11.88)

For σ=A y:

	
−











=







i

i
x
y

t
x
y

0
0

	 (11.89)

	 − =0x iy tx	 (11.90)

	 + =0ix y ty	 (11.91)
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+

−
t i
i t

	 (11.92)

	 − =1 02t 	 (11.93)

and the eigenvalues are

	 = ±1t 	 (11.94)

A set of corresponding eigenvectors, for = ±1t , is

	 = −



11X

i
	 (11.95)

	 =
−







1
2X

i
	 (11.96)

11.3.2 P auli Matrices for Spin One-Half Particles

Electrons and protons are defined as Fermions and have an intrinsic angular momen-
tum of /2 (Feynman et al., 1965). Thus, the electron is said to be a spin one-half, 
or spin − 1

2, particle. Moreover, the electron can have its spin up +  or it can have 
its spin down − . Pauli introduced spin operators to describe the condition of the 
electron as

	 σ=Ŝ ˆ1
2 	 (11.97)

where

	 =






ˆ 0 1
1 0

1
2Sx 	 (11.98)

	 = −





ˆ 0
0

1
2S

i
i

y 	 (11.99)

	 =
−







ˆ 1 0
0 1

1
2Sz 	 (11.100)

These matrices satisfy (Robson, 1974)

	 + + =






ˆ ˆ ˆ 1 0
0 1

2 2 2 3
4

2S S Sx y z 	 (11.101)
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and the angular momentum commutation rules become

ˆ ˆ ˆ ˆ
4

0 1
1 0

0
0

0
0

0 1
1 0

2
1 0
0 1

2

2

− =






−





− −























=
−







S S S S
i

i
i

i

i

x y y x


 	(11.102)

so that

	 − =ˆ ˆ ˆ ˆ ˆS S S S i Sx y y x z	 (11.103)

and similarly

	 − =ˆ ˆ ˆ ˆ ˆS S S S i Sz x x z y	 (11.104)

	 − =ˆ ˆ ˆ ˆ ˆS S S S i Sy z z y x	 (11.105)

as can be verified by expansion. Equations (11.98) to (11.101) are useful in the descrip-
tion of polarized beam of electrons (Robson, 1974).

The eigenvalues of Equation (11.101) are

	  = +( 1)3
4

2 2s s 	 (11.106)

where = 1
2s . By inspection, eigenvalues of Ŝz are

	  ± = ±1
2 s 	 (11.107)

Now, without derivation, we introduce the quantum angular momentum

	 [ ( 1)]1/2
= +J j j 	 (11.108)

where

	 = ± = ± 1
2j l s l 	 (11.109)

Here, we already know that s is related to the spin angular momentum and can take 
the values ± 1

2 . On the other hand, l is related to the orbital angular momentum and 
can take the values = 0, 1, 2, 3...l . Equation (11.109) in conjunction with Pauli’s 
exclusion principle can be used to gain a glimpse of the energy level structure of 
hydrogen. This is an alternative way to describe the hydrogen atom to the formal 
Schrödinger equation path outlined in Chapter 9.

Pauli’s exclusion principle: ‘two electrons are never in the same state’ (Dirac, 
1958). This means that no two electrons can have the same quantum numbers.



148 Quantum Optics for Engineers

11.3.3 T he Tensor Product

This section is based on the brief introduction given by Duarte (2019), and it is spe-
cifically tailored to deal with tensor elements applicable to the mathematics of the 
probability amplitude of quantum entanglement. This is an alternative notation to the 
vector product notation used in Chapters 15–17.

The tensor product is also known as the Kronecker product ⊗U W:

	 〉 ⊗ 〉 =








 ⊗









 =



















u w
u

u

w

w

u w

u w

u w

u w

1

2

1

2

1 1

1 2

2 1

2 2

	 (11.110)

For the vectors

	 〉 =






1
1
0

	 (11.111)

	 〉 =






0
0
1

	 (11.112)

we can find the following products

	 〉 ⊗ 〉 =



















1 1

1
0
0
0

	 (11.113)

	 〉 ⊗ 〉 =



















1 0

0
1
0
0

	 (11.114)

	 〉 ⊗ 〉 =



















0 1

0
0
1
0

	 (11.115)

	 〉 ⊗ 〉 =



















0 0

0
0
0
1

	 (11.116)
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For ×2 2 matrices, the Kronecker product ⊗U W  is defined as









 ⊗









 =



















11 12

21 22

11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

u u

u u

w w

w w

u w u w u w u w

u w u w u w u w

u w u w u w u w

u w u w u w u w

� (11.117)

Kronecker multiplication of Pauli matrices yields the following ×4 4 matrices

	 σ σ⊗ =






⊗ −





=

−

−



















0 1
1 0

0
0

0 0 0
0 0 0
0 0 0

0 0 0

i
i

i
i

i
i

x y 	 (11.118)

	 σ σ⊗ =






⊗
−







= −

−



















0 1
1 0

1 0
0 1

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

x z 	(11.119)

	 σ σ⊗ = −





⊗






=

−
−



















0
0

0 1
1 0

0 0 0
0 0 0
0 0 0

0 0 0

i
i

i
i

i
i

y x 	(11.120)

	 σ σ⊗ = −





⊗
−







=

−

−



















0
0

1 0
0 1

0 0 0
0 0 0

0 0 0
0 0 0

i
i

i
i

i
i

y z 	(11.121)

	 σ σ⊗ =
−







⊗






=
−

−



















1 0
0 1

0 1
1 0

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

z x 	(11.122)

      σ σ⊗ =
−







⊗ −





=

−

−



















1 0
0 1

0
0

0 0 0
0 0 0

0 0 0
0 0 0

i
i

i
i

i
i

z y 	 (11.123)
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11.4  INTRODUCTION TO THE DENSITY MATRIX

Here we provide a brief introduction to the concept of density matrices. The descrip-
tion given here is aimed at illustrating the density matrix formalism applicable to 
the description of multiple-level transitions (see Appendix A). First, we express the 
Schrödinger equation as (Dirac, 1958)

	 

〉
= 〉i

d m

dt
H m 	 (11.124)

	 

〈
= 〈i

d m

dt
H m 	 (11.125)

and define the ‘quantum density’ as (Dirac, 1958)

	 ∑ρ = 〉 〈m P mm

m

	 (11.126)

where Pm  is an mth state. Differentiating the quantum density with respect to time, 
yields

	  ∑ρ =
〉

〈 + 〉
〈





i
d

dt
i

d m

dt
P m m P

d m

dt
m m

m

	 (11.127)

and using Equations (11.124) and (11.125)

	  ∑ρ ( )= 〉 〈 + 〉 〈i
d

dt
H m P m m P H mm m

m

	 (11.128)

which can be written as (Dirac, 1958)

	 

ρ ρ ρ( )= −i
d
dt

H H 	 (11.129)

	


ρ ρ= − [ , ]
d
dt

i
H 	 (11.130)

Dirac argues that the sum of the Pm  states can be equal to unity, thus allowing 
Equation (11.126) to be expressed simply as

	 ρ = 〉 〈m m 	 (11.131)

which can be expanded in an explicit form as
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ρ
ρ ρ
ρ ρ( )= 〉 〈 =









 =











=








∗ ∗

∗ ∗

∗ ∗
1

2
1 2

1 1 1 2

2 1 2 2

11 12

21 22
m m

m

m
m m

m m m m

m m m m

� (11.132)

Characteristics of the density matrix include the Hermitian property ρ ρ= †, ρ =( ) 1Tr , 
and ρ ρ=2 .

11.4.1  Examples

If a state is described by the vector

	 〉 =






ϕ

−
−

m e i

2
1

1/2 	 (11.133)

let us find out the corresponding density matrix. Using Equation (11.132)

    ( )〉 〈 =








 =











ϕ
ϕ

ϕ

ϕ

− −

−
− −

−

m m
e

e
e

e

i
i

i

i

2

2
2 2

1/2 /2

/2 1/2

1/2

1/2

1/2 1/2 	 (11.134)

Next, we can easily verify that all the conditions for a normalized density matrix, 
that is, ρ ρ= †, ρ =( ) 1Tr , and ρ ρ=2 , are met (see Problem 11.8).

If /2ϕ = π , then this equation becomes the matrix for right-handed circularly 
polarized light

	 〉 〈 = −





m m
i

i
1/2 /2
/2 1/2

	 (11.135)

and if /2ϕ = −π , then this equation becomes the matrix for left-handed circularly 
polarized light (see Chapter 13)

	 〉 〈 =
−







m m
i

i
1/2 /2

/2 1/2
	 (11.136)

Dirac’s definition given in Equation (11.106) suggests that density matrices can be 
added, thus creating mixed states. If we take linearly polarized light in the x-direction

	 ( )〉 〈 =






=






1 1
1
0

1 0
1 0
0 0

	 (11.137)

and mix it with light linearly polarized in the y-direction

	 ( )〉 〈 =






=






0 0
0
1

0 1
0 0
0 1

	 (11.138)
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we get a mixed state described by the density matrix

	 ρ ( )= 〉 〈 + 〉 〈 =






1
2

0 0 0 0
1
2

1 0
0 1

	 (11.139)

which is the density matrix for unpolarized light (Robson, 1974). The density matrix 
description of polarization in photons is considered in more detail in Chapter 13, 
including Stokes parameters and Pauli matrices.

11.4.2 T ransitions Via the Density Matrix

Equation (11.131) is the starting point of the description of excitation of multi-level 
systems. For a two-level system, this equation can be written in vector form with 
wave function components

	 ρ
ψ
ψ

ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ( )=









 =













* *
* *

* *

a

b
a b

a a a b

b a b b

	 (11.140)

Using the waveform definitions given by Demtröder (2008), we write

	 ψ α= −( , ) ( ) /r t t u ea a
iE ta 	 (11.141)

	 ψ β= φ− +( , ) ( ) /r t t u eb b
iE t ib 	 (11.142)

and the density matrix becomes





( ) ( ) ( )

( ) ( ) ( )

2 [( ) / ]

[( ) / ] 2

t t t e

t t e t

aa ab

ba bb

i E E t

i E E t

a b

a b

ρ ρ
ρ ρ

α α β

α β β









 =













φ

φ

− − +

+ − +
	 (11.143)

since the u factors normalize to unity Demtröder (2008). The non-diagonal terms in 
this matrix (ρab and ρba) describe the coherence of the system. If ρab and ρba average 
to zero, then the matrix

	 ρ
α

β
=













( ) 0

0 ( )

2

2

t

t
in 	 (11.144)

describes the incoherently excited system.
Equation (11.130) can be used to describe the relaxation of coherently excited 

systems (Demtröder, 2008). For this, the total Hamiltonian is separated into three 
components
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	 = + +( )0H H H t HI R	 (11.145)

where

	 =










0

00H
E

E
a

b

	 (11.146)

	
µ

µ
ω φ=

− ⋅
− ⋅









 +

0 ( )

( ) 0
cos( )

0

0
H

E t

E t
tI

ab

ba

	 (11.147)

	 

γ γ
γ γ

=












ϕ

ϕ
HR

a a

b b

	 (11.148)

are the internal ( 0H ), interaction (HI ), and relaxation (HR) Hamiltonians, respectively 
(Demtröder, 2008). The population relaxation of state 〉b  to state 〉a , with a decay 
rate (1/ )Tb bγ =  (see Figure 11.6), can be described, using Equation (11.130), as

	 

ρ ρ= −[ , ]i
T

Hbb

b
R bb	 (11.149)

	 

ρ ρ= +[ , ]i
T

Hbb

b
R aa	 (11.150)

Furthermore, using Equations (11.130) and (11.140), a complete set of motion equa-
tions known as ‘master equations’ can be derived. The density matrix formalism 
is particularly apt to describe quantum mechanically the transition mechanics of 
n-level systems. For example, this has been done in detail for lithium, a five-level 
system, by Olivares et al. (1998, 2002). Note that n-level transitions are considered, 
using rate equations, in Appendix A.

FIGURE 11.6  Spontaneous emission from level 〉b  to level 〉a .



154 Quantum Optics for Engineers

11.5  QUANTUM OPERATORS

There are three types of operators in quantum mechanics: the position operator, the 
momentum operator, and the energy operator. The Hamiltonian, as an energy opera-
tor Hamiltonian, is described in Appendix A. Here, the position, momentum, and 
energy operators are introduced using Feynman’s style and notation (Feynman et al., 
1965).

Note: given the similarity of the equations involved, Feynman’s approach appears 
to be inspired in Dirac’s discussion on momentum (Dirac, 1958).

11.5.1 T he Position Operator

The position operator is related to the average position of a particle. More specifi-
cally, it is related to the average value of x in a state ψ 〉. Following a probabilistic 
argument, Feynman defines the average of x using an integral first disclosed by Dirac 
(1958)†

	 ∫ ψ ψ= 〈 〉 〈 〉x x x x dx 	 (11.151)

Then, Feynman identifies the average of x with the probability amplitude

	 ψ α= 〈 〉x 	 (11.152)

where

	 α ψ〉 = 〉x̂ 	 (11.153)

Hence, combining Equations (11.151) and (11.152), we get

	 ∫ψ α ψ ψ= 〈 〉 = 〈 〉 〈 〉x x x x dx	 (11.154)

and since, by definition,

	 ∫ψ α ψ α〈 〉 = 〈 〉 〈 〉x x dx	 (11.155)

then, a comparison of Equations (11.154) and (11.155) yields

	 α ψ〈 〉 = 〈 〉x x x 	 (11.156)

	 α ψ〉 = 〉x 	 (11.157)
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and from the definition in Equation (11.153)

	 α ψ ψ〉 = 〉 = 〉x xˆ 	 (11.158)

Hence, the position operators ˆ, ˆ, ˆx y z  are related to the coordinates , ,x y z  according to

	 ψ ψ〉 = 〉x̂ x 	 (11.159)

	 ψ ψ〉 = 〉ŷ y 	 (11.160)

	 ψ ψ〉 = 〉ẑ z 	 (11.161)

†Equations of the form

	 ∫ ψ ψ〈 〉 〈 〉x x x dx	 (11.162)

were first introduced by Dirac in his discussion of the momentum representation 
(Dirac, 1958).

11.5.2 T he Momentum Operator

Again, following Feynman’s style, as with the position operator, the process begins 
by relating the average momentum p to a state β〉

	 ψ β= 〈 〉p 	 (11.163)

	 β ψ〉 = 〉p 	 (11.164)

	 β ψ〉 = 〉p̂ 	 (11.165)

Next, in analogy with the position operator approach, Feynman defines

	 ∫ψ β ψ β= 〈 〉 = 〈 〉 〈 〉p x x dx	 (11.166)

and

	 ∫β β〈 〉 = 〈 〉 〈 〉p p x x dx 	 (11.167)

where, following Dirac (1958), we define
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	 〈 〉 = − /p x e ipx 	 (11.168)

Then, using the definitions given in Equations (11.164) and (11.168), with 
ψ ψ〈 〉 = ( )x x

	 ∫∫β ψ ψ ψ〈 〉 = 〈 〉 = 〈 〉 〈 〉 = − ( )/p p p p p x x dx e p x dxipx 	 (11.169)

which can be integrated into parts (Feynman et al., 1965) to yield

	 

∫β ψ〈 〉 = − − ( )/p i e
d x

dx
dxipx 	 (11.170)

Comparison of Equations (11.167) and (11.170) renders

	 β ψ〈 〉 = − ( )
x i

d x

dx
	 (11.171)

which is equivalent to

	 β ψ〈 〉 = − 〈 〉x i
d

dx
x 	 (11.172)

	 β ψ〉 = − 〉i
d

dx
	 (11.173)

Now, using the definition given in Equation (11.165)

	 β ψ ψ〉 = 〉 = − 〉p i
d

dx
ˆ 	 (11.174)

In this manner, the three momentum operators become (Dirac, 1958; Feynman  
et al., 1965)

	 →℘ = − ∂
∂xˆ ˆp i

x
x 	 (11.175)

	 →℘ = − ∂
∂

ˆ ˆp i
y

y y 	 (11.176)

	 →℘ = − ∂
∂

ˆ ˆp i
z

z z 	 (11.177)

In three dimensions, and using vector notation, these results are nicely summarized 
as (Feynman et al., 1965)

	 →℘ = − ∇p̂ ˆ i 	 (11.178)
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11.5.3  Example

Letting the operator p̂x operate on some function ψ ( )x , analogously to −x p p xx x , 
yields

	  ψ ψ ψ ψ− = − ∂
∂

− − ∂
∂

ˆ ( ) ˆ ( ) ( )
( )

( )
( ( ))

x p x p x x x i
x

x
i

x x
x

x x 	 (11.179)

	    

ψ ψ ψ ψ− ∂
∂

+ + ∂
∂

= +( )
( )

( )
( )

( )x i
x

x
i x xi

x
x

i x 	 (11.180)

	 − =ˆ ˆx p p x ix x 	 (11.181)

as given by Dirac (1958). If both sides of this equation are multiplied by −1, we get

	 − = −ˆ ˆp x x p ix x 	 (11.182)

which is the all-important result discovered by Heisenberg et al. in 1926, see Equation 
(11.1). Notice that in the classical analogy, − = 0x p p xx x .

In general, any two operators, Â and B̂, exhibiting the condition

	 − ≠ˆ ˆ ˆ ˆ 0AB BA 	 (11.183)

are said not to commute. In other words, ‘the operators do not commute’ (Feynman 
et al., 1965). Moreover, Equation (11.181) is referred to as the commutation rule. 
Note that this result is analogous to that encountered in classical matrix algebra, see 
Equation (11.23).

11.5.4 T he Energy Operator

The energy operator is the Hamiltonian and has already been introduced in  
Chapter 9 as (Dirac, 1958)

	
→ = − ∇ +Hˆ ˆ
2

( )
2

2H
m

V r 	 (11.184)

which in vector notation becomes

	 → = ℘⋅℘+Hˆ ˆ 1
2

ˆ ˆ ( )H
m

V r 	 (11.185)

11.5.5 T he Heisenberg Equation of Motion

Feynman defines an operator Â which he eventually links to the operator Ĥ via an 
equation of the form (Dirac, 1958)
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	 �
�

=ˆ [ ˆ , ˆ ]A
i

H A 	 (11.186)

where = −[ ˆ , ˆ ] ( ˆ ˆ ˆ ˆ )H A HA AH  is the Poisson Bracket introduced by Dirac (1958).
Here we’ll do things a little bit differently since we are interested in Heisenberg’s 

equation of motion. To do this, we consider Dirac’s definition of ( )A t  (Dirac, 1958)

	  = −( ) / /A t e AeiHt iHt 	 (11.187)

Differentiation of this function leads to

	
 

= + ∂
∂

−( )dA t
dt

iH
A

A
t

A
iH

	 (11.188)

	


( )= − + ∂
∂

( )dA t
dt

i
HA AH

A
t

	 (11.189)

	


= + ∂
∂

( )
[ , ]

dA t
dt

i
H A

A
t

	 (11.190)

which is known as the Heisenberg equation of motion.
Finally, we should mention that operators provide the entrance stage to the sub-

field of ‘second quantization’ where a creation operator ξat  creates a quantum state ξ 
and an annihilation operator ηa  annihilates a quantum state η . Bosons satisfy several 
commutation rules including =ξ η[ , ] 0.a at t  For an introduction to this subject, see Judd 
(2006).

PROBLEMS

	 11.1	 Use Equations (11.52) and (11.53) to find the Pauli matrices σ ij
x  and σ ij

y .
	 11.2	� Using Equations (11.62)–(11.64), prove the following Pauli matrix identi-

ties: σ σ σ= = = 12 2 2
x y z

	 11.3	� Using Equations (11.62)–(11.64), prove the following Pauli matrix identi-
ties: σ σ σ= iz x y  and σ σ σ= −ix z y.

	 11.4	 Evaluate the determinant and the trace of σ x, σ y, and σ z .
	 11.5	� Find the eigenvalues for the matrix σ σ= +( )A x y  and show that 

+ ≠σ σ σ σ+t t tx y x y

	 11.6	� Use the definitions for the spin one-half particles given in Equations 
(11.98)–(14.100) to verify Equation (11.101).

	 11.7	� Use the definitions for the spin one-half particles given in Equations 
(11.98)–(11.100) to verify the commutation rules given in Equations 
(11.104) and (11.105).

	 11.8	� Verify the conditions ρ ρ= †, ρ =( ) 1Tr , and ρ ρ=2 , for the normalized 
density matrix given in Equation (11.134).
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	 11.9	� Perform the integration by parts of the integral in Equation (11.169) and 
show that the result corresponds to Equation (11.170). Hint: ψ →x( ) 0 at 
±∞.
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Classical Polarization

12.1  INTRODUCTION

In this chapter, we provide a revision of concepts and techniques in classical polariza-
tion as a background to Chapter 13 that deals with quantum polarization. Moreover, 
various elements and techniques considered here are used as tools in optical systems 
in quantum optics experiments. This exposition is based on a revised version of a 
review given by Duarte (2003) and includes new and updated material.

12.2  MAXWELL EQUATIONS

Maxwell equations are of fundamental importance since they describe the whole 
of classical electromagnetic phenomena. From a classical perspective, light can be 
described as waves of electromagnetic radiation. As such, Maxwell equations are very 
useful to illustrate a number of the characteristics of light including polarization. It is 
customary to just state these equations without derivation. Since our goal is simply to 
apply them, the usual approach will be followed. However, for those interested, it is 
mentioned that a derivation by Dyson (1990) attributed to Feynman is available in the 
literature. Maxwell equations in the rationalized metric system are given by

	 ⋅∇ =B 0	 (12.1)

	 ⋅ ρ
ε

∇ =E
0

	 (12.2)

	 2

0

c
t ε

∇ × = ∂
∂

+





−B
E j

	 (12.3)

	
t

∇ × = − ∂
∂

E
B

	 (12.4)

Feynman et al. (1965). These equations illustrate, with succinct beauty, the unique 
coexistence of the electric field and the magnetic field in nature. The first two equa-
tions provide the value of the given flux through a closed surface, while the second 
two equations give the value of a line integral around a loop. In this notation,

	 ( / , / , / )x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂

where
E is the electric vector
B is the magnetic induction
ρ is the electric charge density

12
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j is the electric current density
ε0 is the permittivity of free space
c is the speed of light (see Appendix K).

In addition to Maxwell equations, the following identities are useful

	 σ=j E	 (12.5)

	 ε=D E 	 (12.6)

	 µ=B H 	 (12.7)

where
D is the electric displacement
H is the magnetic vector
σ is the specific conductivity
ε is the dielectric constant (or permittivity)
μ is the magnetic permeability.

In the Gaussian systems of units, the unsymmetric Maxwell equations are given in 
the form of

	 ⋅∇ =B 0	 (12.8)

	 ⋅ ρ∇ = πE 4 	 (12.9)

	 41c
t

∇ × = ∂
∂

+ π





−H
D

j 	 (12.10)

	 1c
t

∇ × = − ∂
∂

−E
B

	 (12.11)

(see, e.g., Born and Wolf, 1999). It should be noted that many authors in the field of 
optics prefer to use Maxwell equations in the Gaussian system of units. As explained 
by Born and Wolf (1999), in this system E, D, j, and ρ are measured in electrostatic 
units, while H and B are measured in electromagnetic units.

For the case of no charges or currents, that is j = 0 and ρ = 0, and a homogeneous 
medium, Maxwell equations and the given identities can be applied in conjunction 
with the vector identity

	 2⋅∇ × ∇ × = ∇ ∇ − ∇E E E	 (12.12)

to obtain wave equations of the form (Born and Wolf, 1999)

	
εµ∇ − ∂

∂
=E

E
02

2

2

2c t
	 (12.13)
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This leads to an expression for the velocity of propagation

	 ε µ= −v ( ) 1/2c 	 (12.14)

Comparison of this expression with the law of positive refraction given in Chapter 5,  
(sin / sin ) ( / )n cm m υΘ Φ = = , leads to what is known as Maxwell’s formula (Born and 
Wolf, 1999)

	 ε µ= ( )1/2n 	 (12.15)

where n is the refractive index. It is useful to note that in vacuum

	 ε µ= −( )2
0 0

1c 	 (12.16)

in the rationalized metric system, where µ0 is the permeability of free space (Lorrain 
and Corson, 1970). The values of fundamental constants are listed in Appendix K.

12.2.1 S ymmetry in Maxwell Equations

As beautiful as they are, Maxwell equations are not symmetric. Symmetry can be 
incorporated, however, via the introduction of the concept of the magnetic monopole 
(Dirac, 1931). If the magnetic monopole is brought into Maxwell equations, then 
these become symmetric and take the form of

	 ⋅ ρ
ε

∇ =B
0

m 	 (12.17)

	 ⋅ ρ
ε

∇ =E
0

e 	 (12.18)

	 2

0

c
t ε

∇ × = ∂
∂

+





−B
E je 	 (12.19)

	 E
B

0t
jm

ε
∇ × = − ∂

∂
+





	 (12.20)

There is a long history of experimental research, and the use of a variety of measure-
ment techniques, in search of the magnetic monopole. It makes sense for it to exist, 
thus the reason for the inclusion of these beautiful equations.

12.3  POLARIZATION AND REFLECTION

Following the convention of Born and Wolf (1999), we consider a reflection bound-
ary, depicted in Figure 12.1, and a plane of incidence established by the incidence ray 
and the normal to the reflection surface. Here, the reflected component R



 is parallel 
to the plane of incidence, while the reflected component R ⊥  is perpendicular to the 
plane of incidence.
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For the case of µ µ= = 11 2 , Born and Wolf (1999) consider the electric, and mag-
netic, vectors as complex plane waves. In this approach, the incident electric vector 
is represented by equations of the form

	 φ ( )= − τ−cos( )
||E A ex

i i i 	 (12.21)

	 ( )= − τ
⊥

−( )E A ey
i i i 	 (12.22)

	 φ ( )= − τ−sin( )
||E A ez

i i i 	 (12.23)

where RR || and R ⊥ are complex amplitudes and τ i is the usual plane wave phase factor.
Using corresponding equations for E and H for transmission and reflection in con-

junction with Maxwell’s relation, with µ = 1, and the law or positive refraction, the 
Fresnel formulae can be derived (Born and Wolf, 1999). Using the Fresnel formulae, 
the transmissivity and reflectivity, for both polarizations, can be expressed as

	
φ ψ

φ ψ φ ψ
=

+ −






T
(sin 2 sin 2 )

sin ( )cos ( )
|| 2 2 	 (12.24)

	
φ ψ
φ ψ

=
+





⊥T

(sin 2 sin 2 )
sin ( )2 	 (12.25)

	
φ ψ
φ ψ

= −
+







R
tan ( )
tan ( )

||

2

2 	 (12.26)

FIGURE 12.1  Reflection boundary defining the plane of incidence.
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φ ψ
φ ψ

= −
+





⊥R

sin ( )
sin ( )

2

2 	 (12.27)

and

	 + =R T 1|| || 	 (12.28)

	 + =⊥ ⊥R T 1	 (12.29)

Using these expressions for transmissivity and reflectivity, the degree of polarization 
P  is defined as (Born and Wolf, 1999)

	 = −
+

⊥

⊥
P

R R
R R
( )
( )

||

||

	 (12.30)

The usefulness of these equations is self-evident once R || is calculated, as a function of 
the angle of incidence (Figure 12.2), for fused silica at λ ≈ 590 nm (n = 1.4583). Here 
we see that =R 0||  at 55.5604°. At this angle, φ ψ+( ) becomes 90° so that φ ψ+tan( ) 

FIGURE 12.2  Reflection intensity as a function of angle of incidence. The angle at which 
the reflection vanishes is known as the Brewster angle.
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approaches infinity, thus causing =R 0|| . This particular ϕ is known as the Brewster 
angle φ( )B  and has a very important role in laser optics. Since at φ φ= B, the angle of 
refraction becomes ψ φ= − °(90 )  and the law of refraction takes the form of

	 φ =tan nB 	 (12.31)

For orthogonal, or normal, incidence, the difference between the two polarizations 
vanishes. Using the law of positive refraction and the appropriate trigonometric iden-
tities, in Equations (12.24)–(12.27), it can be shown that (Born and Wolf, 1999)

	 = −
+





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R
( 1)
( 1)

2
n
n

	 (12.32)

and

	 =
+





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T
4

( 1)

2
n

n
	 (12.33)

12.3.1 T he Plane of Incidence

The discussion in the preceding section uses parameters such as R || and ⊥R . In this 
convention, || means parallel to the plane of incidence and ⊥ means perpendicular, 
orthogonal, or normal to the plane of incidence. The plane of incidence is defined, fol-
lowing Born and Wolf (1999), in Figure 12.1. However, in more explicit terms, let us 
consider a laser beam propagating on a plane parallel to the surface of an optical table.

If that beam is made to illuminate the hypotenuse of a right-angle prism, whose 
triangular base is parallel to the surface of the table, then the plane of incidence is 
established by the incident laser beam and the perpendicular to the hypotenuse of the 
prism. In other words, in this case, the plane of incidence is parallel to the surface of 
the optical table.

Moreover, if that prism is allowed to expand the transmitted beam, as discussed 
later in this chapter, then the beam expansion is parallel to the plane of incidence.

The linear polarization of a laser can often be orthogonal to an external plane of 
incidence. When that is the case, and maximum transmission of the laser through 
external optics is desired, the laser is rotated by π/2 about its axis of propagation as 
will be discussed later in this chapter.

12.4  JONES CALCULUS

Jones calculus is a matrix approach to describe, in a unified form, both linear and cir-
cular polarization. It was introduced by Jones (1947) and a good review of the subject 
is given by Robson (1974). Here, salient features of the Jones calculus are described 
without derivation.

A more general approach to express the electric field in complex terms in x and y 
coordinates is in vector form
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In this notation, linear polarization in the x direction is represented by
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while linear polarization in the y direction is described by
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Subsequently,
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describes diagonal (or oblique) polarization at a /4π  angle, relative to the x axis +( ),  
or relative to the y axis −( ).

Circular polarization is described by the vector
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where +i applies to right-circularly polarized light and −i to left-circularly polarized 
light (Appendix G for a description of i). Figure 12.3 illustrates the various polariza-
tion alternatives.

Jones calculus introduces ×2 2 matrices to describe optical elements transforming 
the polarization of the incidence radiation in the following format:
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where the ×2 2 matrix represents the optical element, the polarization vector mul-
tiplying this matrix corresponds to the incident radiation, and the resulting vector 
describes the polarization of the resulting radiation.

Useful Jones matrices include the matrix for transmission of linearly polarized 
light in the x direction
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and the y direction
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FIGURE 12.3  The various forms of polarization.
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For light linearly polarized at a /4π  angle, the matrix becomes

	








 =







−2 1 1
1 1

11 12

21 22

1a a

a a
	 (12.42)

The generalized polarization Jones matrix for linearly polarized light, at an angle θ  
to the x axis, is given by
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The right-circular polarizer is described as
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while the left-circular polarizer is described as
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In Chapter 13, we see how these matrices can be obtained from the density matrix 
formalism.

The generalized rotation matrix for birefringent rotators is given by (Robson, 
1974)
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where δ is the phase angle and α is the rotation angle about the z axis. For a quarter-
wave plate, /2δ = π , the rotation matrix becomes

	
θ θ
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12.4.1  Example

A laser beam polarized in the x direction is sent through an optical element that 
allows the transmission of y polarization only, thus using Equations (12.31) and 
(12.37)
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we find that no light is transmitted as can be demonstrated by a simple experiment.
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12.5  POLARIZING PRISMS

There are two avenues to induce polarization using prisms. The first involves simple 
reflection as characterized by the equations of reflectivity and straightforward refraction.

This approach is valid for windows, prisms, or multiple-prism arrays, made from 
homogeneous optical materials such as optical glass or fused silica. The second approach 
involves double refraction in crystalline transmission media exhibiting birefringence.

12.5.1 T ransmission Efficiency in Multiple-Prism Arrays

For a generalized multiple-prism array, as shown in Figure 12.4, the cumulative reflec-
tion losses at the incidence surface of the mth prism are given by (Duarte et al., 1990)

	 = + −− − R 1,(1 )1, 2,( 1) 2,( 1)L L Lm m m m	 (12.49)

FIGURE 12.4  Generalized multiple-prism array (Reproduced from Duarte, F. J., and Piper, 
J. A., Am. J. Phys. 51, 1132–1134, 1983, with permission of the American Association of 
Physics Teachers).
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while the losses at the mth exit surface are given by

	 = + − R 2,(1 )2, 1, 1,L L Lm m m m	 (12.50)

where R1,m  and R 2,m are given by either R || or ⊥R . In practice, the optics is deployed 
so that the polarization of the propagation beam is parallel to the plane of incidence 
meaning that the reflection coefficient is given by R ||. It should be noted that these 
equations apply not only to prisms but also to optical wedges and any homogeneous 
optical element, with an input and exit surface, used in the transmission domain.

12.5.2 I nduced Polarization in a Double-Prism Beam Expander

Polarization induction in multiple-prism beam expanders should be apparent 
once the reflectivity equations are combined with the transmission Equations 
(12.49) and (12.50). In this section, this effect is made clear by considering the 
transmission efficiency, for both components of polarization, of a simple dou-
ble-prism beam expander as illustrated in Figure 12.5. This beam expander is a 
modified version of one described by Duarte (2003) and consists of two identical 
prisms made of fused silica, with = 1.4583n  at λ ≈ 590 nm, and an apex angles 
of °42.7098 . Both prism are deployed to yield identical magnifications and for 
orthogonal beam exit. This implies that φ φ= = °81.551,1 1,2 , ψ ψ= = °42.70981,1 1,2 , 
φ φ= = °02,1 2,2 , ψ ψ= = °02,1 2,2 .

Thus, for radiation polarized parallel to the plane of incidence

	 = =R 0.30081,1 1,1L

	 =2,1 1,1L L

	 = + − =R(1 ) 0.51111,2 2,1 2,1 1,2L L L

	 =2,2 1,2L L

FIGURE 12.5  Double-prism expander as described in the text.
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while for radiation polarized perpendicular to the plane of incidence

	 = =R 0.57581,1 1,1L

	 =2,1 1,1L L

	 R= + − =(1 ) 0.82001,2 2,1 2,1 1,2L L L

	 =2,2 1,2L L

also

	 = = 5.00051,1 1,2k k

	 = = 25.00451,1 1,2M k k

Thus, for this particular beam expander, the cumulative reflection losses are 51.11% 
for light polarized parallel to the plane of incidence, while they increase to 82.00% 
for radiation polarized perpendicular to the plane of incidence. This example helps 
to illustrate the fact that multiple-prism beam expanders exhibit a clear polarization 
preference. It is easy to see that the addition of further stages of beam magnification 
leads to increased discrimination. When incorporated in frequency selective disper-
sive laser cavities, these beam expanders contribute significantly toward the emission 
of laser emission polarized parallel to the plane of propagation.

The reader should refer to Appendix C for a generalized description of multiple-
prism dispersion. Appendix B describes the use of multiple-prism arrays in laser 
oscillators.

12.5.3 D ouble-Refraction Polarizers

These are crystalline prism pairs that exploit the birefringence effect in crystals.  
In birefringent materials, the dielectric constant, ε, is different in each of the x, y, and 
z directions so that the propagation velocity is different in each direction

	 ε= −v ( ) 1/2ca x 	 (12.51)

	 ε= −( ) 1/2cb yv 	 (12.52)

	 ε= −v ( ) 1/2cc z 	 (12.53)

Since polarization of a transmission medium is determined by the D vector, it is possible 
to describe the polarization characteristics in each direction. Further, it can be shown 
that there are two different velocities, for the refracted radiation, in any given direction 
(Born and Wolf, 1999). As a consequence of the law of refraction, these two velocities 
lead to two different propagation paths in the crystal and give origin to the ordinary 
and extraordinary ray. In other words, the two velocities lead to double refraction.
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Of particular interest in this class of polarizers are those known as the Nicol prism, 
the Rochon prism, the Glan–Foucault prism, the Glan–Thompson prism, and the 
Wollaston prism. According to Bennett and Bennett (1978), a Glan–Foucault prism 
pair is an air-spaced Glan–Thompson prism pair. In Glan-type polarizers, the extraor-
dinary ray is transmitted from the first to the second prism in the propagation direction 
of the incident beam. On the other hand, the diagonal surface of the two prisms is 
predetermined to induce total internal reflection for the ordinary ray (see Figure 12.6).

Glan-type polarizers are very useful since they can be oriented to discriminate 
in favor of either polarization component with negligible beam deviation. Normally, 
these polarizers are made of either quartz or calcite. Commercially available calcite 
Glan–Thompson polarizer with a useful aperture of 10 mm provides extinction ratios 
of ~5× showing that there are two different velocities, for the refracted radiation, in 
any given direction (Born and Wolf, 1999). As a consequence of the law of refraction, 
these two velocities lead to two different propagation paths in the crystal and give 
origin to the ordinary and extraordinary rays. In other words, the two velocities lead 
to double refraction.

Of particular interest in this class of polarizers are those known as the Nicol 
prism, the Rochon prism, the Glan–Foucault prism, the Glan–Thompson prism, and 
the Wollaston prism. According to Bennett and Bennett (1978), a Glan–Foucault 
prism pair is an air-spaced Glan–Thompson prism pair. In Glan-type polarizers, 
the extraordinary ray is transmitted from the first to the second prism in the propa-
gation direction of the incident beam. On the other hand, the diagonal surface of 
the two prisms is predetermined to induce total internal reflection for the ordinary 
ray (see Figure 12.6).

Glan-type polarizers are very useful since they can be oriented to discriminate 
in favor of either polarization component with negligible beam deviation. Normally, 
these polarizers are made of either quartz or calcite. Commercially available calcite 
Glan–Thompson polarizer with a useful aperture of 10 mm provides extinction ratios 
of ~ 5 ×  10−5. It should be noted that Glan-type polarizers are used in straightfor-
ward propagation applications as well as intracavity elements. For instance, the tun-
able single-longitudinal-mode laser oscillator depicted in Figure 12.7 incorporates a 

FIGURE 12.6  Generic Glan–Thompson polarizer. The beam polarized parallel to the plane 
of incidence is transmitted while the complementary component is deviated (drawing not to 
scale). For further details refer to Jenkins and White (1957). 
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Glan–Thompson polarizer as an output coupler. In this particular polarizer, the inner 
window is antireflection coated, while the outer window is coated for partial reflec-
tivity to act as an output coupler mirror. The laser emission from multiple-prism grat-
ing oscillators is highly polarized parallel to the plane of incidence by the interaction 
of the intracavity flux with the multiple-prism expander and the grating. The function 
of the polarizer output coupler here is to provide further discrimination against unpo-
larized single-pass amplified spontaneous emission. These dispersive tunable laser 
oscillators yield extremely low levels of broadband amplified spontaneous emission 
measured to be in the 10−7–10−6 range (Duarte, 1995, 1999).

The Wollaston prism, illustrated in Figure 12.8, is usually fabricated with either 
crystalline quartz or calcite. These prisms are assembled from two matched and 
complimentary right-angled prisms whose crystalline optical axes are oriented 
orthogonal to each other. The Wollaston prisms are widely used as beam splitters 
of beams with orthogonal polarizations. The beam separation provided by calcite 
is significantly greater than the beam separation achievable with crystalline quartz. 
Moreover, for both materials, the beam separation is wavelength-dependent.

FIGURE 12.7  Solid-state MPL grating dye laser oscillator, yielding single-longitudinal-
mode emission, incorporating a Glan–Thompson polarizer output coupler. The reflective 
coating is applied to the outer surface of the polarizer (Reproduced from Duarte, F. J., Opt. 
Commun. 117, 480–484, 1995, with permission from Elsevier).

FIGURE 12.8  Generic Wollaston prism. The lines and circle represent the direction of the 
crystalline optical axis of the prism components (drawing not to scale).
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The use of these prisms in quantum cryptography optical configurations is out-
lined in Chapter 20. In those optical configurations, a Wollaston prism is used after 
an electro-optical polarization rotator (such as a Pockels cell) to spatially separate 
photons corresponding to orthogonal polarizations. For a description of electro-opti-
cal polarization rotators, see Saleh and Teich (1991).

12.5.4 A ttenuation of the Intensity of Laser Beams Using Polarization

A very simple yet powerful technique to attenuate the intensity of linearly polar-
ized laser beams involves the transmission of the laser beam through a prism pair 
such as a Glan–Thompson polarizer followed by rotation of the polarizer. This 
technique has been illustrated in Figure 12.9. In this technique for a ~100% laser 
beam polarized parallel to the plane of incidence, there is almost total transmis-
sion when the Glan–Thompson prism pair is oriented as in Figure 12.9a. As the 
prism pair is rotated about the axis of propagation, the intensity of the transmission 

FIGURE 12.9  Attenuation of polarized laser beams using a Glan–Thompson polarizer. 
(a) Polarizer set for ~100% transmission. (b) Rotation of the polarizer, about the axis of 
propagation by π/2 , yields ~0% transmission. The amount of transmitted light can be 
varied continuously by rotating the polarizer in the 0 /2θ≤ ≤ π  range (From Duarte, F. 
J., Laser sensitometer using a multiple-prism beam expander and a polarizer. US Patent 
6236461 B1, 2001).
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decreases until it becomes zero once the angular displacement has reached π/2. 
With a precision rotation of the prism pair, a scale of well-determined intensities 
can be easily obtained (Duarte, 2001). This has a number of applications includ-
ing the generation of precise laser intensity scales for exposing instrumentation, 
and laser printers, used in imaging (Duarte, 2001). Moreover, this technique has 
been successfully applied to laser cooling experiments to independently vary 
the intensity of the cooling and repumping lasers as illustrated in Figure 12.10 
(Olivares et al., 2009).

12.6  POLARIZATION ROTATORS

Maximum transmission efficiency is always a goal in optical systems. If the polar-
ization of a laser is mismatched to the polarization preference of the optics, then 
transmission efficiency will be poor. Furthermore, efficiency can be significantly 
improved if the polarization of a pump laser is matched to the polarization preference 
of the laser being excited (Duarte, 1990). Although sometimes the efficiency can be 
improved, or even optimized, by the simple rotation of a laser, it is highly desirable 

FIGURE 12.10  Top view of schematics of a laser cooling experiment including Glan–
Thompson polarizers to independently control the laser intensity of the cooling lasers (L1) 
and the repumping laser (L2). S1 and S2 are stabilizer systems, RGTP1 and RGTP2 are 
the rotating Glan–Thompson polarizers, /2λ  is a half-wave plate, PBS is a polarizer beam 
splitter, and BE a beam expander. Polarizations perpendicular to the plane of propagation 
are indicated by the solid dot. Rotation by /2π  of an RGTP extinguishes the transmission of 
the laser beam which is polarized perpendicular to the plane of propagation (Adapted from 
Olivares, I. E. et al., J. Mod. Opt. 56, 1780–1784, 2009, with permission). 
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and practical to have optical elements to perform this function. In this section, we 
shall consider three alternatives to perform such rotation: birefringent polarization 
rotators and prismatic rotators. An additional alternative to rotate polarization is the 
use of rhomboids (Figure 12.11), which is described in Duarte (2003).

12.6.1  Birefringent Polarization Rotators

In birefringent uniaxial crystalline materials, the ordinary and extraordinary rays 
propagate at different velocities. The generalized matrix for birefringent rotators is 
given by Equation (12.46)
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For a quarter-wave plate /2δ = π , the phase term is = +π /2e ii , and the rotation matrix 
becomes

	
θ θ
θ θ









 =

−






cos sin
sin cos

11 12

21 22

a a

a a i i
	 (12.54)

For a half-wave plate δ = π  and the phase term is = −π 1ei . Thus, the rotation matrix 
becomes
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From experiment, we know that a half-wave plate causes a rotation of a linearly 
polarized beam by /2θ = π  so that Equation (12.55) reduces to
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	 (15.56)

FIGURE 12.11  Side view of double Fresnel rhomb. Linearly polarized light is rotated by 
/2π  and exits with polarized orthogonally to the original polarization.
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12.6.2  Example

Thus, if we send a beam polarized in the x direction through a half-wave plate, the 
emerging beam polarization will be
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0
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	 (12.57)

which corresponds to a beam polarized in the y direction as observed experimentally 
and as illustrated in Figure 12.10 (Duarte, 2003; Olivares et al., 2009).

12.6.3  Broadband Prismatic Polarization Rotators

An alternative to frequency selective polarization rotators is prismatic rotators 
(Duarte, 1989). These devices work at normal incidence and apply the principle 
of total internal reflection. The basic operation of polarization rotation, by π/2, 
due to total internal reflection is shown in Figure 12.12. This operation, however, 
reflects the beam into a direction that is orthogonal to the original propagation. 
Furthermore, the beam is not in the same plane. To achieve collinear polariza-
tion rotation, by π/2, the beam must be displaced upwards and then be brought 
into alignment with the incident beam while conserving the polarization rotation 
achieved by the initial double reflection operation. A collinear prismatic polar-
ization rotator, which performs this task using seven total internal reflections, is 
depicted in Figure 12.13. For high-power laser applications, this rotator is best 
assembled using a high-precision mechanical mount that allows air interfaces 
between the individual prisms. The useful aperture in this rotator is about 10 mm 
and its physical length is 30 mm.

It should be noted that despite the apparent complexity of this collinear polariza-
tion rotator, the transmission efficiency is relatively high using antireflection coat-
ings. In fact, using broadband (425–675 nm) antireflection coatings with a nominal 
loss of 0.5% per surface, the measured transmission efficiency becomes 94.7% at 
λ = 632.82 nm.

The predicted transmission losses using

	 = − −1 (1 )L Lr
r 	 (12.58)

are 4.9%, with = 0.5L  %, as compared with a measured value of 5.3%. Equation 
(12.58) is derived by combining Equations (12.49) and (12.50) for the special case 
of identical reflection losses. Here, r is the total number of reflection surfaces. For 
this particular collinear rotator, = 10r . A further parameter of interest is the trans-
mission fidelity of the rotator since it is also important to keep spatial distortions of 
the rotated beam to a minimum. The integrity of the beam due to transmission and 
rotation is quantified in Figure 12.14 where a very slight beam expansion, of ~3.2% 
at full-width-half-maximum (FWHM), is evident (Duarte, 1992).
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FIGURE 12.12  Basic prism operator for polarization rotation using two reflections. This 
can be composed of two 45° prisms adjoined /2π  to each other (note that it is also manufac-
tured as one piece). (a) Side view of the rotator illustrating the basic rotation operation due 
to one reflection. The beam with the rotated polarization exists the prism into the plane of 
the figure. (b) The prism rotator is itself rotated anti clockwise by /2π  about the rotation axis 
(as indicated), thus providing an alternative perspective of the operation: the beam is now 
incident into the plane of the figure and it is reflected downwards with is polarization rotated 
by /2π  relative to the original orientation (From Duarte, F. J., Optical device for rotating the 
polarization of a light beam. US Patent 4822150, 1989).
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12.6.4  Example

The /2π  prismatic polarization rotator just described rotates linearly x polarized 
radiation into linearly y polarized radiation and vice versa. Here we will find the 
Jones matrix that describes its rotational capability. Considering first the case of 

→x y and using the Jones matrix formalism, we can write
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which means that = 011a  and = 121a . To find the other two components, we use the 
complementary rotation →y x which can be described as
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which implies that = 112a  and = 022a . Thus, the Jones matrix for /2π  rotation, which 
applies directly to the prismatic rotator described in Figure 12.13, becomes

	 =








 =







0 1
1 0

11 12

21 22
R

a a

a a
	 (12.61)

Thus, we have again arrived at the /2π  rotation matrix Equation (12.56), by observa-
tion, using simple linear algebra.

FIGURE 12.13  Broadband collinear prism polarization rotator (From Duarte, F. J., Optical 
device for rotating the polarization of a light beam. US Patent 4822150, 1989).
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PROBLEMS

	 12.1	� Design a single right-angle prism, made of fused silica, to expand a laser 
beam by a factor of two with an orthogonal beam exit. Calculate R || and ⊥R .  
(Use = 1.4583n  at λ ≈ 590 nm.)

	 12.2	� For a four-prism beam expander, with orthogonal beam exit, using fused 
silica prisms with an apex angle of 41°, calculate the overall beam mag-
nification factor M. Moreover, calculate the overall transmission effi-
ciency for a laser beam polarized parallel to the plane of incidence. (Use 

= 1.4583n  at λ ≈ 590 nm.)

FIGURE 12.14  Transmission fidelity of the broadband collinear polarization rotator:  
(a) intensity profile of incident beam, prior to rotation, and (b) intensity profile of transmitted 
beam with rotated polarization (Reproduced from Duarte, F. J., Appl. Opt. 31, 3377–3378, 
1992, with permission from Optica).
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	 12.3	� Use Maxwell equations in the Gaussian system, for the j = 0 and ρ = 0 
case, to derive the wave equations

	 εµ∇ − ∂
∂

=−E
E

( ) 02 2
2

2c
t

	 εµ∇ − ∂
∂

=−H
H

( ) 02 2
2

2c
t

	 12.4	 Using the values for ε0 and µ0 given in Appendix K, verify that ε µ= −( )2
0 0

1c .
	 12.5	� Compare the set of symmetric Maxwell equation to Equations (12.1)–

(12.4). In light of the final observation stipulated in Section 12.2.1 com-
ment on the likely synergy between mathematical beauty and nature.

	 12.6	� If a linearly polarized beam in the x direction is sent through a rotator 
plate represented by the matrix

	








 =

−






0 1
0

11 12

21 22

a a

a a i

�What will be the polarization of the transmitted beam? What kind of plate 
would that be?
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Quantum Polarization

13.1  INTRODUCTION

In this chapter, we examine the quantum aspects of polarization primarily via 
Dirac’s notation (Dirac, 1958) and also using density matrices. The approach follows 
the style of Feynman (Feynman et al., 1965). Classical polarization is examined in 
Chapter 12.

13.2  LINEAR POLARIZATION

This section contains all of the elements included in the first edition of this book 
(Duarte, 2014) while extended by further details introduced in Duarte (2022).

Linear polarization in the x direction represented in Jones calculus by (Jones, 
1947)

	
1
0

0

0

E

E
x

y









 =





 	 (13.1)

is expressed simply as 〉x  in the bra ket representation. Linear polarization in the y 
direction described in Jones calculus by

	








 =







E

E
x

y

0
1

0

0
	 (13.2)

is expressed as simply as 〉y  in the bra ket representation.
The rotation of axes, → ′x x  and → ′y y , as illustrated in Figure 13.1, leads directly 

to the following rotation identities

	 ϕ
′

= cos
x
x

	 (13.3)

	
'

sin
x
y

ϕ= − 	 (13.4)

	 ϕ
′

= sin
y
x

	 (13.5)

	 ϕ
′

= cos
y
y

	 (13.6)

13
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Using the simple geometrical rotations given above

	 ϕ〈 ′〉 = 〈 ′ 〉 = cosx x x x 	 (13.7)

	 ϕ〈 ′〉 = 〈 〉 =' siny x x y 	 (13.8)

	 ϕ〈 ′〉 = 〈 ′ 〉 = − sinx y y x 	 (13.9)

	 ϕ〈 ′〉 = 〈 〉 =' cosy y y y 	 (13.10)

Probability amplitudes of interest are

	 〈 ′〉 = 〈 〉 〈 ′〉 + 〈 〉 〈 ′〉x x x x x x x y y x 	 (13.11)

	 〈 ′ 〉 = 〈 ′ ′〉 〈 ′ 〉 + 〈 ′ ′〉 〈 ′ 〉y x y x x x y y y x 	 (13.12)

	 〈 ′ 〉 = 〈 ′ ′〉 〈 ′ 〉 + 〈 ′ ′〉 〈 ′ 〉x y x y y y x x x y 	 (13.13)

	 〈 ′〉 = 〈 〉 〈 ′〉 + 〈 〉 〈 ′〉y y y y y y y x x y 	 (13.14)

Using Equations (13.11)–(13.14) leads to the following probability amplitudes:

	 ϕ ϕ〈 ′〉 = 〈 〉 + 〈 〉cos sinx x x x x y 	 (13.15)

	 ϕ ϕ〈 ′ 〉 = 〈 ′ ′〉 + 〈 ′ ′〉 −cos ( sin )y x y x y y 	 (13.16)

	 ϕ ϕ〈 ′ 〉 = 〈 ′ ′〉 + 〈 ′ ′〉cos sinx y x y x x 	 (13.17)

	 ϕ ϕ〈 ′〉 = 〈 〉 + 〈 〉 −cos ( sin )y y y y y x 	 (13.18)

FIGURE 13.1  x and y axes and rotating x′ and y′ axes.
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In abstract form, these equations become (Duarte, 2014)

	 ϕ ϕ′〉 = 〉 + 〉x x ycos sin 	 (13.19)

	 ϕ ϕ〉 = ′〉 − ′〉x x ycos sin 	 (13.20)

	 ϕ ϕ〉 = ′〉 + ′〉y y xcos sin 	 (13.21)

	 ϕ ϕ′〉 = 〉 − 〉y y xcos sin 	 (13.22)

It should be noticed that Equation (13.19) is the one equation given by Feynman et al. 
(1965) in their description of quantum polarization.

Since 〈 〉 = 1x x , 〈 〉 = 1y y , and 〈 〉 = 0x y , 〈 〉 = 0y x , then

	 ϕ〈 ′〉 = cosx x 	 (13.23)

	 ϕ〈 ′ 〉 = − siny y 	 (13.24)

	 ϕ〈 ′ 〉 = sinx y 	 (13.25)

	 ϕ〈 ′〉 = cosy y 	 (13.26)

which is consistent with the geometrical identities (13.7) to (13.10). Hence, using 
Born’s rule, the polarization probabilities are

	 cos
2 2 ϕ〈 ′〉 =x x 	 (13.27)

	 sin
2 2 ϕ〈 ′ 〉 =y x 	 (13.28)

	 sin
2 2 ϕ〈 ′ 〉 =x y 	 (13.29)

	 cos2 2 ϕ〈 ′〉 =y y 	 (13.30)

13.2.1  Example

Consider the polarization configuration described in Figure 13.2: a source s is fol-
lowed by a polarizer deployed to allow y polarization only which is followed by a 
polarizer deployed to allow x polarization only. The light is then detected at detector 
d. The probability amplitude of this transmission configuration can be described as

	 〈 〉 = 〈 〉 〈 〉 〈 〉d s d x x y y s 	 (13.31)
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and assuming 〈 〉 = 〈 〉 = 1y s d x , the probability amplitude reduces to 〈 〉x y

	 〈 〉 = 〈 〉d s x y 	 (13.32)

which, by definition, is 〈 〉 = 0x y , so that

	 〈 〉 = 0d s 	 (13.33)

If, instead, we now add a /4π  polarizer in between x and y polarizers, as illustrated 
in Figure 13.3, the probability amplitude becomes

	 〈 〉 = 〈 〉 〈 ′〉 〈 ′ 〉 〈 〉d s d x x x x y y s 	 (13.34)

Assuming, as before, that 〈 〉 = 〈 〉 = 1y s d x

	 〈 〉 = 〈 ′〉 〈 ′ 〉d s x x x y 	 (13.35)

and using Equation (13.7)

	 ϕ〈 〉 = 〈 ′ 〉cosd s x y 	 (13.36)

FIGURE 13.2  Top view of polarization configuration including a polarizer set for y trans-
mission followed by a polarized set for transmission in the x direction. No light reaches the 
detector d. The y direction is perpendicular to the plane of incidence and is indicated by a dot.

FIGURE 13.3  Top view of polarization configuration including a polarizer set for y trans-
mission followed by a polarizer set for transmission in the x direction. A polarizer set for /4π  
is inserted between the two polarizers. As explained in the text, some light is now allowed to 
reach the detector d.
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Now, substituting Equation (13.9) for ′x y  yields

	 ϕ ϕ= sin cosd s 	 (13.37)

so that the probability of transmission at /4ϕ = π  becomes

	 (sin cos ) 1/4
2 2ϕ ϕ= =d s 	 (13.38)

13.3  POLARIZATION AS A TWO-STATE SYSTEM

From the solution to the two-state system described by (Feynman et al., 1965)

	  ∑=i
dC
dt

H Ci
ij j 	 (13.39)

where Hij is the Hamiltonian, we obtain (see Appendix A)

	 = +−2 ( )1/2
1 2C C CII 	 (13.40)

and

	 = −−2 ( )1/2
1 2C C CI 	 (13.41)

which eventually leads to probability amplitudes of the form

	 ( )〉 = 〉 + 〉−s B A2 1/2 	 (13.42)

	 ( )〉 = 〉 − 〉−s B A2 1/2 	 (13.43)

13.3.1 D iagonal Polarization

In Chapter 12, the classical vector representation for diagonally polarized light was 
introduced as

	








 =

±






−E

E
x

y
2 1

1
0

0

1/2 	 (13.44)

Linearly polarized light sustaining a /4π  angle relative to the x-axis is referred to as 
diagonally polarized light and is described by the probability amplitude

	 ( )〉 = 〉 + 〉−D x y2 1/2 	 (13.45)
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If the angle is ( /4)− π , this obliquely polarized light is represented by the probability 
amplitude

	 ( )〉 = 〉 − 〉−A x y2 1/2 	 (13.46)

Diagonally polarized light is described in Figure 13.4.

13.3.2 C ircular Polarization

In Chapter 12, the classical vector representation for circularly polarized light was 
introduced as

	








 =

±






−E

E i
x

y
2 10

0

1/2 	 (13.47)

FIGURE 13.4  Diagonally polarized light depicting quantum notation.
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where the +i factor applies to right-handed polarization and the −i factor applies to 
left-handed polarization. Circularly polarized light is described in Figure 13.5.

Using Equations (13.30) and (13.31), the probability amplitude representation for 
right-handed polarization R( ) and left-handed polarization L( ) becomes

	 ( )〉 = 〉 − 〉−R x i y2 1/2
	 (13.48)

	 ( )〉 = 〉 − 〉−R x i y2 1/2
	 (13.49)

Adding and subtracting Equations (13.48) and (13.49) yield

	 ( )〉 = 〉 + 〉−x R R2 1/2 	 (13.50)

	 〉 = − 〉 − 〉−y i R L2 ( )1/2 	 (13.51)

FIGURE 13.5  Circularly polarized light depicting quantum notation.
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Further, we can write

	 ′〉 = ′〉 + ′〉−R x i y2 ( )1/2 	 (13.52)

and from Equations (13.19) and (13.22), we get (Feynman et al., 1965)

	 θ θ θ θ( )′〉 = 〉 + 〉 + 〉 − 〉−R x y i y i x2 cos sin cos sin1/2 	 (13.53)

	 θ θ( )( )′〉 = − 〉 + 〉−R i x i y2 (cos sin )1/2 	 (13.54)

	 ( )′〉 = 〉θ−R e Ri 	 (13.55)

so that

	 ( )′〉 = 〉θ+L e Ri 	 (13.56)

13.4  DENSITY MATRIX NOTATION

Here we return to the Jones calculus initially to consider the classical density 
matrix for polarization followed by the quantum description. The notation used is 
consistent with that of Robson (1974) in the matrix case and that of Feynman in the 
bra ket approach.

Jones calculus does not offer a direct representation for unpolarized or partially 
polarized light. However, Robson (1974) points out that Jones vectors of the form

	








δ

a

bei
	 (13.57)

generally describe polarized beams. If we define the above vector as a state 〉J

	 〉 =








δJ

a

a ei

1

2

	 (13.58)

then, using the definition for the density matrix given in Chapter 11, we can write

	 ( )=








 =











δ

δ
δ

δ
−

−
1

2
1 2

1 1 1 2

2 1 2 2

J J
a

a e
a a e

a a a a e

a a e a a
i

i
i

i
	 (13.59)

and the resulting matrix is a ×2 2 density matrix

	 ρ
ρ ρ
ρ ρ

=








 =













δ

δ

−
11 12

21 22

1 1 1 2

2 1 2 2

a a a a e

a a e a a

i

i
	 (13.60)
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The trace of this matrix

	 ρ = +( ) 1 1 2 2Tr a a a a 	 (13.61)

corresponds to the intensity of the beam and the off-diagonal terms provide informa-
tion about the phase of the two components (Robson, 1974).

The Stokes parameters (see Appendix J) are defined in terms of combinations of 
the density matrix elements (Robson, 1974)

	 ρ ρ= +11 22I 	 (13.62)

	 ρ ρ= −1 11 22P 	 (13.63)

	 ρ ρ= +2 12 21P 	 (13.64)

	 ρ ρ= −( )3 12 21P i 	 (13.65)

Thus, for polarized light, the density matrix can be re-expressed as

	 ρ
ρ ρ
ρ ρ

=








 =

+ −
+ −











−2
11 12

21 22

1 1 2 3

2 3 1

I P P iP

P iP I P
	 (13.66)

For unpolarized light = = = 01 2 3P P P  so that the matrix reduces to

	 ρ =






−2
0

0
1 I

I
u 	 (13.67)

As seen in Chapter 11, we can write the 〉J  state in a general form, so that

 
ρ ρ
ρ ρ

ρ( )=








 =













=








 =∗ ∗

∗ ∗

∗ ∗

1

2
1 2

1 1 1 2

2 1 2 2

11 12

21 22
J

j

j
j j

j j j j

j j j j
q	 (13.68)

The trace of this matrix

	 ρ = +( ) 1
2

2
2

Tr j jq 	 (13.69)

gives information on the relative intensities of the two linearly polarized, and orthog-
onal components. If we define = 〉1j x  and = 〉2j y , then the trace of the matrix pro-
vides information on the relative probabilities of finding a photon in the 〉x  and 〉y  

polarization states (Robson, 1974).
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13.4.1 S tokes Parameters and Pauli Matrices

Previously in Chapter 11, we found that the identity matrix and the x, y, and z Pauli 
matrices are given by

	 =






1 0
0 1

I 	 (13.70)

	 σ =






0 1
1 0x 	 (13.71)

	 σ = −





0
0
i

i
y 	 (13.72)

	 σ =
−







1 0
0 1z 	 (13.73)

Multiplication of the density matrix with these matrices yield

	 ρ
ρ ρ
ρ ρ

ρ ρ
ρ ρ

=














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=










1 0
0 1

11 12

21 22

11 12

21 22
I 	 (13.74)

	 ρσ
ρ ρ
ρ ρ

ρ ρ
ρ ρ

=














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=










0 1
1 0

11 12

21 22

12 11

22 21
x 	 (13.75)

	 ρσ
ρ ρ
ρ ρ

ρ ρ
ρ ρ

=










−



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=
−
−











0
0

11 12

21 22

12 11

22 21

i
i

i i

i iy 	 (13.76)

	 ρσ
ρ ρ
ρ ρ

ρ ρ
ρ ρ

=








 −







=
−
−











1 0
0 1

11 12

21 22

11 12

21 22
z 	 (13.77)

Computing the trace of these matrices leads directly to

	 ρ ρ ρ= + =( ) 11 22Tr I I 	 (13.78)

	 ρσ ρ ρ= − =( ) 11 22 1Tr Pz 	 (13.79)

	 ρσ ρ ρ= + =( ) 12 21 2Tr Px 	 (13.80)

	 ρσ ρ ρ= − =( ) ( )12 21 3Tr i Py 	 (13.81)
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Due to Stoke’s nomenclature, Robson (1974) uses a different notation (see 
Appendix J):

	 σ σ→ =






ˆ 0 1
1 02x 	 (13.82)

	 σ σ→ = −





ˆ 0
03
i

i
y 	 (13.83)

	 σ σ→ =
−







ˆ 1 0
0 11z 	 (13.84)

Here, Robson (1974) points out that while the σ x, σ y, and σ z  matrices refer to ordinary 
space, the matrices σ̂1, σ̂ 2, and σ̂ 3 correspond to the Poincaré space that defines 1P , 

2P , and 3P . Moreover, notice the use of the operator hat to designate these matrices. 
By introducing the operator γ̂  to designate the identity matrix, the set of relations just 
described becomes (Robson, 1974)

	 ργ ρ ρ= + =( ˆ) 11 22Tr I 	 (13.85)

	 ρσ ρ ρ= − =( ˆ )1 11 22 1Tr P 	 (13.86)

	 ρσ ρ ρ= + =( ˆ )2 12 21 2Tr P 	 (13.87)

	 ρσ ρ ρ= − =( ˆ ) ( )3 12 21 3Tr i P 	 (13.88)

Albeit most of the applications of Pauli matrices are found in the context of spin one-
half particles (Fermions), such as electrons, some applications are found for spin one 
particles (Bosons) such as the photon. For instance, in Chapter 11, we discovered that 
the matrix describing a /2π  rotator of linear polarization, for either a half-wave plate 
or a prismatic rotator, is given by

	 =






0 1
1 0

R 	 (13.89)

This matrix is identical to either σ x or σ̂ 2. This means that σ̂ 2 is a rotation operator 
of linear polarization by /2θ = π . In general, σ̂1 and σ̂ 2 are used in the description of 
linearly polarized photons, while σ̂ 3 is used in the description of circularly polarized 
photons.

13.4.2 T he Density Matrix and Circular Polarization

Using the probability amplitude representation for right-handed polarization ( 〉R ) 
and left-handed polarization ( 〉L ) given previously, we can write
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	 ( )〉 = 〉 + 〉−R x i y2 1/2

	 ( )〉 = 〉 − 〉−L x i y2 1/2

which can be expressed in vector form as

	 〉 =
+







−R
i

2 11/2 	 (13.90)

	 〉 =
−







−L
i

2 11/2 	 (13.91)

Using these vectors, the density matrix for right-handed polarization becomes  
(see Chapter 11)

	 ( )〉 〈 =
+







− = −
+







− −R R
i

i
i

i
2 1 1 2

1
1

1 1 	 (13.92)

and the density matrix for left-handed polarization becomes

	 ( )〉 〈 =
−







+ = +
−







− −L L
i

i
i

i
2 1 1 2

1
1

1 1 	 (13.93)

13.4.3  Example

Setting = = −21 2
1/2a a  and /2δ = π , in Equation (13.60), gives us again

	
ρ ρ
ρ ρ









 = −

+






−2
1

1
11 12

21 22

1 i
i

	 (13.94)

which is the density matrix for right-handed polarized light.

PROBLEMS

	 13.1	� Starting from Equations (13.11) to (13.14) arrive at Equations 
(13.19)–(13.22).

	 13.2	� Circular polarization: using the same approach outlined in Equations 
(13.52)–(13.55) derive the expression for L′〉 given in Equation (13.56).

	 13.3	� Set = = −21 2
1/2a a  and /2δ = −π , in Equation (13.60), to obtain the density 

matrix for left-handed polarized light.
	 13.4	� Use the definition of the Stokes parameters given in Equations (13.62)–

(13.65) to express the polarization density matrix given in Equation (13.66).
	 13.5	� For the density matrix applicable to unpolarized light, Equation (13.67), 

find the values of ρ11 and ρ22 so that ρ =( ) 1Tr .
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Bell’s Theorem

14.1  INTRODUCTION

Bell wrote a breakthrough paper in the interpretational realm of quantum mechanics. 
His paper was entitled On the Einstein-Podolsky-Rosen paradox (Bell, 1964). Bell’s 
paper provided a transparent mathematical avenue to show that hidden variable 
theories were incompatible with the predictions of quantum mechanics. Bell’s 
starting point was the famous contribution of Einstein et al. (1935) and their claim 
that quantum mechanics was incomplete and should be ‘supplemented by additional 
variables.’ He then continues ‘that idea will be formulated mathematically and 
shown to be incompatible with the statistical predictions of quantum mechanics’ 
(Bell, 1964). This mathematical statement became known as either Bell’s theorem 
or Bell’s inequality.

As a preamble to a discussion on Bell’s work, it should be mentioned that as early 
as 1932, John von Neumann wrote about quantum mechanics and hidden variables 
theories. In this regard, von Neumann states that ‘hidden parameters’ are incompat-
ible with the fundamental postulates of quantum mechanics (von Neumann, 1932). 
However, Bell reconsidered von Neumann’s work and arrived at the conclusion that 
von Neumann’s proof was ‘wanting’ (Bell, 1964). He then proceeded to offer his own 
proof on the incompatibility of hidden variables with quantum mechanics.

In the interest of fairness, it should be mentioned that Bell’s dismissal of von 
Neumann’s proof has been questioned by Bub (2010) who concludes that von 
Neumann’s work still excludes two classes of hidden variable theories.

The following exposition of Bell’s theorem is based on Bell’s own work and on the 
reviews of this theorem by Duarte (2014, 2019, 2022).

14.2  BELL’S THEOREM

Bell’s work begins defining a hidden variable λ, or hidden variables, as having a 
probability density ρ λ( ). In turn, this probability density ρ λ( ) obeys the normalization 
property (Bell, 1964)

	 ∫ ρ λ λ =( ) 1d 	 (14.1)

The correlation between observables, which are a function of this hidden variable λ,  
λ( , )A x  and λ( , )B y  is stated by Bell as

	 ∫ λ λ ρ λ λ=( , ) ( , ) ( , ) ( )P x y A x B y d 	 (14.2)

where x and y are ‘setting directions,’ and the condition of locality requires that A 
depends only on x and B depends only on y. The variables ′x  and ′y  are assumed to 
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be ‘alternative settings’ in the two measuring instruments. The experimenter freely 
determines these settings. Further assumptions made (Bell, 1964) are

	 λ = ±( , ) 1A x 	 (14.3)

	 λ = ±( , ) 1B y 	 (14.4)

	 λ ≤A x( , ) 1	 (14.5)

	 λ ≤B y( , ) 1	 (14.6)

Bell provides at least two approaches to derive his theorem (Bell, 1964, 1971). Our 
approach begins by following Bell, but it is also influenced by the discussion of 
Mandel and Wolf (1995).

Using the nomenclature of Equation (14.2)

	 ∫ λ λ λ λ ρ λ λ− ′ ≤ − ′P x y P x y A x B y A x B y d( , ) ( , ) [ ( , ) ( , ) ( , ) ( , )] ( ) 	 (14.7)

and

	 ∫ λ λ λ λ ρ λ λ′ ′ + ′ ≤ ′ ′ + ′P x y P x y A x B y A x B y d( , ) ( , ) [ ( , ) ( , ) ( , ) ( , )] ( ) 	 (14.8)

Adding Equations (14.7) and (14.8)

∫ λ λ λ

λ λ λ ρ λ λ

− ′ + ′ ′ + ′ ≤ − ′ +

′ ′ +

P x y P x y P x y P x y A x B y B y

A x B y B y d

( , ) ( , ) ( , ) ( , ) ( , )[ ( , ) ( , )]

( , )[ ( , ) ( , )] ( )

	 (14.9)

The right-hand-side (RHS) of this inequality includes four distinct probabilities 
as does the left-hand-side (LHS) (Duarte and Taylor 2021). Thus, the mathemati-
cal expression is balanced. Since the probabilities obey the definitions λ = ±( , ) 1A x , 

λ′ = ±( , ) 1A x , λ = ±( , ) 1B y , λ′ = ±( , ) 1B y , then

  ∫ λ λ λ λ λ λ ρ λ λ− ′ + ′ ′ + =( , )[ ( , ) ( , )] ( , )[ ( , ) ( , ) ] ( ) 2A x B y B y A x B y B y d 	 (14.10)

Substituting the result of Equation (14.10) for the RHS of inequality (14.9) yields

	 − ′ + ′ ′ + ′ ≤P x y P x y P x y P x y( , ) ( , ) ( , ) ( , ) 2	 (14.11)

as required by the central result of Bell’s theorem (Bell, 1964, 1971).
Up to this stage, Bell’s theorem is a statement in classical statistics. The quantum 

aspect is introduced ad hoc via the substitution of quantum mechanical superposition 
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probabilities, from polarization quantum entanglement measurements, for ( , )P x y , 
′ ′( , )P x y , ′( , )P x y , and ′( , )P x y . More explicitly

	 ϕ ϕ→( , ) ( , )1 2P x y P 	 (14.12)

	 ϕ ϕ′ → ′( , ) ( , )1 2P x y P 	 (14.13)

	 ϕ ϕ′ ′ → ′ ′( , ) ( , )1 2P x y P 	 (14.14)

	 ϕ ϕ′ → ′( , ) ( , )1 2P x y P 	 (14.15)

So that inequality (14.11) becomes

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− ′ + ′ ′ + ′ ≤P P P P( , ) ( , ) ( , ) ( , ) 21 2 1 2 1 2 1 2 	 (14.16)

In reality, however, substituting experimentally measured quantum superposition 
probabilities for ϕ ϕ( , )1 2P , ϕ ϕ′( , )1 2P , ϕ ϕ′ ′( , )1 2P , and ϕ ϕ′( , )1 2P  leads to

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− ′ + ′ ′ + ′ ≥P P P P( , ) ( , ) ( , ) ( , ) 21 2 1 2 1 2 1 2 	 (14.17)

thus violating Bell’s inequality (14.11).

14.3  QUANTUM ENTANGLEMENT PROBABILITIES

In Chapter 17, it is shown that the Pryce–Ward probability amplitude for quantum 
entanglement is

	 ψ ( )〉 = 〉 〉 − 〉 〉− x y y x2 1/2
1 2 1 2 	 (14.18)

Completing the bra ket expression on the RHS leads to

	 ψ ( )〉 = 〈 ′ 〉 〈 ′ 〉 − 〈 ′ 〉 〈 ′ 〉− x x x y x y x x2 1/2
1 2 1 2 	 (14.19)

and, via Born’s rule ψ ψ〉 〉∗
, the probability becomes (Duarte, 2014)

	 2
2 1

1 2 1 2

2
ψ ( )= 〈 ′ 〉 〈 ′ 〉 − 〈 ′ 〉 〈 ′ 〉− x x x y x y x x 	 (14.20)

Substitution of the corresponding individual probability amplitudes (see Chapter 13) 
into Equation (14.20) yields

	 2 (cos sin sin cos )
2 1

1 2 1 2
2ψ ϕ ϕ ϕ ϕ= −− 	 (14.21)

Using the appropriate geometrical identity (see Appendix H), this probability 
reduces to

	 2 sin ( )
2 1 2

2 1ψ ϕ ϕ= −− 	 (14.22)
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Revisiting Equation (14.19) and assuming that quantum 1 is incident on 1p , as illus-
trated in Figure 14.1, and quantum 2 is incident 2p , then

	 ψ ϕ ϕ ϕ ϕ( )〉 = −−2 cos sin sin cos1/2
1 2 1 2 	 (14.23)

	 ψ ϕ ϕ〉 = −−2 sin( )1/2
2 1 	 (14.24)

Rotating the polarization analyzers by /2π

	 ψ ϕ ϕ〉 = −−2 cos( )1/2
2 1 	 (14.25)

Using the convention of Mandel and Wolf (1995): transmission through a polariza-
tion analyzer is denoted by + and absorption through a polarization analyzer by − 
then the corresponding probabilities become

	 ϕ ϕ ϕ ϕ ϕ ϕ+ + = − − = −−( , ) ( , ) 2 sin ( )1 2 1 2
1 2

2 1p p 	 (14.26)

	 ϕ ϕ ϕ ϕ ϕ ϕ+ − = − + = −−( , ) ( , ) 2 cos ( )1 2 1 2
1 2

2 1p p 	 (14.27)

Noting that the overall probability ϕ ϕ( , )1 2P  is the sum of the individual probability 
alternatives (Mandel and Wolf, 1995)

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + − − − + − − − +( , ) ( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2 1 2P p p p p 	 (14.28)

	 ϕ ϕ ϕ ϕ ϕ ϕ= − − −( , ) sin ( ) cos ( )1 2
2

2 1
2

2 1P 	 (14.29)

and using the geometrical identities given in Appendix H, the overall probability becomes

	 ϕ ϕ ϕ ϕ= − −( , ) cos2( )1 2 2 1P 	 (14.30)

Moreover,

	 ϕ ϕ ϕ ϕ− − = − −cos2( ) cos2( )2 1 1 2 	 (14.31)

FIGURE 14.1  Quantum entanglement experimental configuration.
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so that

	 ϕ ϕ ϕ ϕ= − −( , ) cos2( )1 2 1 2P 	 (14.32)

Hence, the probability depends on the angular difference of the polarization settings 
ϕ1 and ϕ2 as shown by Pryce and Ward (1947).

From Equation (14.32), the complete set of quantum probabilities is given by

	 ϕ ϕ ϕ ϕ= − −( , ) cos2( )1 2 1 2P 	 (14.33)

	 ϕ ϕ ϕ ϕ′ = − − ′( , ) cos2( )1 2 1 2P 	 (14.34)

	 ϕ ϕ ϕ ϕ′ ′ = − ′ − ′( , ) cos2( )1 2 1 2P 	 (14.35)

	 ϕ ϕ ϕ ϕ′ = − ′ −( , ) cos2( )1 2 1 2P 	 (14.36)

14.4  EXAMPLE

For ϕ = 01 , 4 /112ϕ = π , /71ϕ′ = π , ϕ′ = 02

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = − ′ + ′ ′ + ′( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P PP

leads to the numerical expression

	 0.65 1.0 0.62 0.18 2.45PΣ ≈ + + + − − ≈ 	 (14.37)

so that Σ ≥ 2P . In other words, Bell’s inequality is violated when using probabilities 
derived from the Pryce–Ward probability amplitude for quantum entanglement.

14.5  DISCUSSION

Bell’s theorem is a statement in classical probability theory. The quantum probabili-
ties are introduced ad hoc replacing the original classical probabilities in the final 
inequality expression.

Moreover, Bell’s theorem is disconnected from the physics leading to the deriva-
tion of ψ 〉+, ψ 〉−, ψ 〉+

, and ψ 〉−
, and unrelated to the quantum probabilities calcu-

lated from these probability amplitudes (see Chapters 15–17).
In Duarte (2022), a simple all-quantum approach (see Chapter 20) leads to

	 ( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P Pϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = + ′ + ′ ′ + ′ψ ψ− −
∗ 	 (14.38)

which can also be used to determine the security of quantum communications, via 
quantum entanglement.

The main significance of Bell’s theorem was to reinforce that hidden variable 
theories were incompatible with quantum mechanics, thus neutralizing much of the 
criticism and discomfort, within some academic circles, toward quantum mechanics 
for being ‘incomplete.’
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PROBLEMS

	 14.1	 Work out what happens if − ′P x y P x y( , ) ( , )  becomes + ′P x y P x y( , ) ( , ) .
	 14.3	 Verify that for non-quantum probabilities Equation (14.10) holds.
	 14.3	 Use ϕ ϕ ϕ ϕ= − −( , ) cos2( )1 2 1 2P  to calculate

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = − ′ + ′ ′ + ′( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P PP

for 4 /111ϕ = π , ϕ = 02 , ϕ′ = 01 , 2 /112ϕ′ = π .
	 14.4	 Use ϕ ϕ ϕ ϕ= − −( , ) cos2( )1 2 1 2P  to calculate

	 ( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P Pϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = + ′ + ′ ′ + ′ψ ψ ∗

for 4 /111ϕ = π , ϕ = 02 , ϕ′ = 01 , 2 /112ϕ′ = π .
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Quantum Entanglement 
Probability Amplitude 
for n = N = 2

15.1 � INTRODUCTION

In this chapter, the probability amplitude for quantum entanglement is derived from 
the Dirac–Feynman principle (Dirac 1939, 1958; Feynman et al., 1965) as shown by 
Duarte (2013, 2014). This derivation applies to the most basic quantum entanglement 
cases, that of two quanta (n = 2) and two propagation channels (N = 2), and it is thus 
referred to as n N= = 2.

15.2 � THE DIRAC–FEYNMAN PROBABILITY AMPLITUDE

The Dirac–Feynman probability amplitude (Dirac 1939, 1958; Feynman et al., 1965)

	
1

∑=
=

d s d j j s
j

N

	 (15.1)

applies to single photon propagation or to the propagation of an ensemble of indistin-
guishable photons (Duarte, 1993). This principle is crucial to quantum mechanics. 
It is quite a succinct mathematical statement and yet profound:

	 1.	 It states that ‘all the indistinguishable photons illuminate the array of N 
slits, or grating, simultaneously. If only one photon propagates… then that 
individual photon illuminates the whole array of N slits simultaneously’ 
(Duarte, 2003).

	 2.	To obtain the correct result, the interaction of the probability amplitude via 
every slit, under illumination, with the probability amplitude via every other 
slit in the array must be included in the calculation.

	 3.	 It inherently includes information about space, that is d j j s , and time 
since photons propagate with velocity c.

If an array of two thousand slits is illuminated, either by a single photon or by an 
ensemble of indistinguishable photons, it means that the interaction of the probability 
amplitude of slit number 1 with all the other 1999 slits must be accounted for, and so 
on (Duarte, 1993). In other words, all the probability amplitudes are interconnected 
in accordance with Dirac’s superposition principle (Dirac, 1958).

15
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The material in this section is based on original descriptions of Duarte (2013a, 
2013b, 2014) and on the review of Duarte (2022).

15.3 � THE QUANTUM ENTANGLEMENT PROBABILITY AMPLITUDE

The experimental situation applicable to the basic n N= = 2 configuration of quan-
tum entanglement is depicted in Figure 15.1. Here, s is a photon source of ν1 and ν2

emitted in the z+  and z−  directions, respectively. The quanta propagate along the 
optical axis, in the z+  and z−  directions, through the polarization analyzers p1 and p2 
toward the detectors d1 and d2, respectively.

The first essential, and experimentally sound, assumption is that the quanta emit-
ted by the source are indistinguishable, that is, ν ν ν= =1 2 . Then, expanding the 
Dirac interferometric principle stated in Equation (15.1), for N = 2

	 2 2 1 1= +d s d p p s d p p s 	 (15.2)

Implicitly, this equation assumes that d d d= =1 2 , which is quite reasonable for a pair 
of matched detectors. Abstracting d  from Equation (15.2)

	 2 2 1 1s p p s p p s= + 	 (15.3)

Next, using the Dirac identity

	 j jψ ψ= 	 (15.4)

allows the expression of

	 2 2 2D p p s= 	 (15.5)

FIGURE 15.1  The Pryce–Ward quantum entanglement experiment simplified for the visi-
ble spectrum. The photon pair source s emits photon v1 and photon v2 in the +Z and minus sign 
Z directions. The two linear polarization states x  and y  are orthogonal to each other. The 
angles φ2 and are φ2 the polarization angles measured on a plane perpendicular to the propa-
gation axis, while d1 and d2 are the corresponding detectors (Duarte, F. J., Fundamentals of 
Quantum Entanglement, 2nd ed. Institute of Physics, Bristol, U.K., 2022, © IOP Publishing. 
Reproduced with permission. All rights reserved).
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and

	
1
21 1 1D p p s= 	 (15.6)

Substituting identities (15.5) and (15.6) into Equation (15.3) yields

	 2 1s D D( )= + 	 (15.7)

Equation (15.7) is a probability amplitude s  that represents the linear combination of 
two probability amplitudes, 1D  and 2D , and applies equally to an interferometric 
situation involving a single photon, or a population of indistinguishable photons, and 
to the n N= = 2 quantum entanglement situation. The crucial difference between 
interference and entanglement occurs at this very stage. For the entanglement situa-
tion, 1D  and 2D  are expanded via the Dirac identity for ‘similar particles’

	 1 2 3X a b c g
n

= 	 (15.8)

This very step diverges from a purely interferometric situation given that the pos-
sibility of identifiable quanta, quanta 1 and quanta 2, is allowed with each quanta in 
different alternative states, that is, state x  and state y . Rewriting 1D  and 2D  in 
terms of polarization states as per identity (15.8), and using 1C  and 2C  to distin-
guish from a pure interferometric event, leads to

	 2 1s C C( )= + 	 (15.9)

where

	 2 1 2
C x y= 	 (15.10)

and

	 1 1 2C y x= 	 (15.11)

Inserting identities (15.10) and (15.11) in the expression for the probability amplitude 
in Equation (15.9) leads to

	 1 2 1 2s x y y x( )= + 	 (15.12)

Following normalization, and designating s  as ψ , Equation (15.12) can be 
expressed as

	 2 ( )1/2
1 2 1 2x y y xψ = ++

− 	 (15.13)

and its linear combination is (Duarte 2013a, 2013b, 2014)

	 2 1/2
1 2 1 2x y y xψ ( )= −−

− 	 (15.14)
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which is the iconic probability amplitude for quantum entanglement.
Equations (15.13) and (15.14) also be expressed in a ×2 2 arrangement as Duarte 

(2022)

	 1 2

1 2

+ +

+ −

C C

C C
	 (15.15)

15.4 � IDENTICAL STATES OF POLARIZATION

If the two quanta pairs have identical states of polarization, then Equations (15.10) 
and (15.11) become (Duarte, 2022)

	 2 1 2C x x= 	 (15.16)

	 1 1 2
C y y= 	 (15.17)

so that

	 2 1/2
1 2 1 2

x x y yψ ( )= ++ − 	 (15.18)

and

	 2 1/2
1 2 1 2

x x y yψ ( )= −− − 	 (15.19)

The probability amplitudes ψ +
 and ψ −

 are also of interest in quantum computing. 
In summary, the whole family of probability amplitudes relevant to the quantum 
entanglement situation of n N= = 2 is represented by ψ + , ψ − , ψ +

, and ψ −
.

15.5 � ENTANGLEMENT OF INDISTINGUISHABLE ENSEMBLES

The original Pryce–Ward probability amplitude for quantum entanglement can be 
re-expressed as (Duarte, 2022)

	 2 1/2 x y y xI II I IIψ ( )= −−
− 	 (15.20)

Dirac’s rules for bosons do not prevent states such as x I and y
II
 from becoming 

combined states of indistinguishable polarized quanta ensembles like

	 1 2 3x x x x xI g = 	 (15.21)

	
1 2 3

y y y y y
II g

 = 	 (15.22)

so that, via Equation (15.20), ensembles x I and y
II
 are themselves entangled. This 

allows the design of sources of entangled laser emission thus vastly improving the 
signal-to-noise ratio for quantum communications and other applications.
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It should be noted that identities (15.21) and (15.22) explain beautifully the coher-
ent emission from electrically-pumped organic semiconductors at a very fundamen-
tal level (Duarte and Taylor, 2022). Indeed, narrow-linewidth laser sources randomly 
emitting x I and y

II
 states in opposite directions, via the use of intracavity elements 

driven by quantum random number generators (QRNG), have been proposed and 
designed by Duarte (2018).

15.6 � DISCUSSION

The probability amplitude for quantum entanglement was first applied in 1947 by 
Pryce and Ward, and a semi-heuristic derivation was disclosed in 1949 by Ward 
(Pryce and Ward 1947; Ward 1949). Since 1949, and until 2013, there is no record 
in the open literature of additional derivations. In 1965, Feynman wrote down 
the physics, via a two-level Hamiltonian, which leads to equations of the form of 

2 1s D D( )= +  but did not consider the relevant Dirac identity nor the additional 
steps that would have led to the probability amplitude for quantum entanglement 
ψ − . When Feynman considers the issue of quantum entanglement, he brings in an 
equation of the relevant form in an ad hoc manner and he writes ‘theoretical physicist 
have shown’ (Feynman et al., 1965).

The derivation detailed here shows that the Dirac–Feynman interferometric 
principle

	
1

∑=
=

d s d j j s
j

N

that is central to the development of generalized interferometric probability equa-
tions is also at the foundations of quantum entanglement. The derivation of the quan-
tum entanglement probability amplitude, à la Dirac, flows naturally, it is transparent, 
straightforward, and free of ‘paradoxes’ (Duarte 2022, 2023).

PROBLEMS

	 15.1	� Expand Equation (15.1) to arrive at an equation of the form of (15.2) for 
N = 2.

	 15.2	� Show that Equations (15.13) and (15.14) can be written in a matrix-like 
form as expressed in (15.15).

	 15.3	 Express Equations (15.18) and (15.19) in matrix-like form.
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Quantum Entanglement 
Probability Amplitude for 
n = N = 21, 22, 23,…, 2r

16.1 � INTRODUCTION

The interferometric derivation, à la Dirac, of the iconic superposition quantum 
entanglement probability amplitude

	 x y y xψ ( )= −−
−2 1/2

1 2 1 2 	 (16.1)

for 2n N= =  is described in Chapter 15. In this chapter, the interferometric deri-
vational approach is extended to the cases of 4n N= = , 8n N= = , and 16n N= = .  
Moreover, generalized equations applicable to 2 , 2 , 2 , 2 ,... 21 2 3 4n N r= =  or simply 

2n N r= = , where 1, 2, 3, 4, 5...r = , are also given.
The physics in this chapter is a revision, in a handbook style, of various treatments 

previously considered by Duarte (2013a, 2013b, 2014, 2015, 2016, 2022) and Duarte 
and Taylor (2017).

16.2 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 4

The quantum entanglement experimental configuration for 4n N= =  is given in 
Figure 16.1. The photon source s emits two pairs of quanta in opposite directions 
relative to each other: ( 1ν , 2ν ) and ( 3ν , 4ν ). Quanta 1ν  and 2ν  are emitted in the z+  
and –z directions, while quanta 3ν  and 4ν  are emitted in the x+  and –x directions, 
respectively. Traditional axes labels are obviated and only polarization alternatives 
are assigned in pairs, in this case ( , )x y  along the z+  and –z directions, and ( , )ϕ ϕ′  

along the corresponding orthogonal direction.
For the case 22n N= = , the Dirac–Feynman interferometric principle (Dirac, 

1958; Feynman et al., 1965)

	
1

∑=
=

d s d j j s
j

N

	 (16.1)

can be expanded for 4N = , while assuming that the quanta emitted by the source are 
indistinguishable, 1 2 3 4d d d d d= = = = , and that j pj→ , so that

    4 4 3 3 2 2 1 1= + + +d s d p p s d p p s d p p s d p p s 	 (16.2)

16
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and following the procedure introduced in Chapter 15

	 D p p s=4 4 4 	 (16.3)

	 D p p s=3 3 3 	 (16.4)

	 D p p s=2 2 2 	 (16.5)

	 D p p s=1 1 1 	 (16.6)

so that Equation (16.2) becomes

	 s D D D D( )= + + +4 3 2 1 	 (16.7)

Using the Dirac identity (Dirac, 1958)

	 X a b c g
n

= 1 2 3 	 (16.8)

and using D Cm m→  to differentiate from the interferometric situation

	 C x y ϕ ϕ= ′1 1 2 3 4
	 (16.9)

FIGURE 16.1  Schematics for a quantum entanglement situation of n N= = 22 (Duarte, F. J., 
Fundamentals of Quantum Entanglement, 2nd ed. Institute of Physics, Bristol, U.K., 2022, © 
IOP Publishing. Reproduced with permission. All rights reserved).
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	 C y x ϕ ϕ= ′2 1 2 3 4
	 (16.10)

	 C x yϕ ϕ= ′3 1 2 3 4
	 (16.11)

	 C y xϕ ϕ= ′4 1 2 3 4	 (16.12)

The normalized probability amplitude 
R

ψ , where R is a Roman numeral, is given 
by (Duarte, 2015)

	 N s
R

ψ = −1/2 	 (16.13)

and the normalization condition for 4N =  is

	 1
2 2 2 2

ψ ψ ψ ψ= + + +
I II III IV

	 (16.14)

Hence, the normalization condition leads to

	 C C C C
I

ψ ( )= + + +−4 1/2
1 2 3 4 	 (16.15)

	 C C C C
II

ψ ( )= + − −−4 1/2
1 2 3 4 	 (16.16)

	 C C C C
III

ψ ( )= − + −−4 1/2
1 2 3 4 	 (16.17)

	 C C C C
IV

ψ ( )= − − +−4 1/2
1 2 3 4 	 (16.18)

Substituting identities (16.9)–(16.12) into Equations (16.15)–(16.18) reveals the 
explicit expressions for the relevant superposition probability amplitudes

	
x y y x

x y y x

I
ψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(
)

= ′ + ′

+ ′ + ′

−4 1/2
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

	 (16.19)

	
x y y x

x y y x

II
ψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(
)

= ′ + ′

− ′ + ′

−4 1/2
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

	 (16.20)

	
x y y x

x y y x

III
ψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(
)

= ′ − ′

+ ′ − ′

−4 1/2
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

	 (16.21)

	
x y y x

x y y x

IV
ψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(
)

= ′ − ′

− ′ + ′

−4 1/2
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

	 (16.22)

The symmetry pattern in the sign convention of the C m states can be best observed 
via a 4 4×  mathematical arrangement (Duarte, 2018)
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

+ + + +

+ + − −

+ − + −

+ − − +

C C C C

C C C C

C C C C

C C C C

	 (16.23)

16.3 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 8

The quantum entanglement experimental configuration for 8n N= =  is given in 
Figure 16.2. Four axes are involved, each adjacent axis at θ = π /4 rad relative to each 
other. If each axis has a + and a − direction, then there are 8N =  channels of propa-
gation. Here, s is the photon source of four pairs of quanta emitted in opposite direc-
tions relative to each other. Axes labeling in reference to Figure 16.2: x y( , ) along the 

z+  and z−  directions, and ( , )ϕ ϕ′  along the corresponding orthogonal direction.
The first axis at θ = π /4, relative to the z axis, involves the ( , )φ φ′  polarizations, 

and the axis orthogonal to it involves the ( , )ϑ ϑ′  polarizations.
Following the same methodology as in the previous section

	 s D D D D D D D D= + + + + + + +8 7 6 5 4 3 2 1	 (16.24)

FIGURE 16.2  Schematics for a quantum entanglement situation of n N= = 23 (Duarte, F. J., 
Fundamentals of Quantum Entanglement, 2nd ed. Institute of Physics, Bristol, U.K., 2022, © 
IOP Publishing. Reproduced with permission. All rights reserved).
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Applying the Dirac identity (Dirac, 1958)

	 X a b c g
n

= 1 2 3 	 (16.25)

and using D Cm m→  to differentiate from the interferometric situation

	 C x y ϕ ϕ φ φ ϑ ϑ= ′ ′ ′1 1 2 3 4 5 6 7 8	 (16.26)

	 C y x ϕ ϕ φ φ ϑ ϑ= ′ ′ ′2 1 2 3 4 5 6 7 8	 (16.27)

	 C x yϕ ϕ φ φ ϑ ϑ= ′ ′ ′3 1 2 3 4 5 6 7 8
	 (16.28)

	 C y xϕ ϕ φ φ ϑ ϑ= ′ ′ ′4 1 2 3 4 5 6 7 8	 (16.29)

	 C x yφ φ ϑ ϑ ϕ ϕ= ′ ′ ′5 1 2 3 4 5 6 7 8
	 (16.30)

	 C y xφ φ ϑ ϑ ϕ ϕ= ′ ′ ′6 1 2 3 4 5 6 7 8
	 (16.31)

	 C x yϑ ϑ ϕ ϕ φ φ= ′ ′ ′7 1 2 3 4 5 6 7 8
	 (16.32)

	 C y xϑ ϑ ϕ ϕ φ φ= ′ ′ ′8 1 2 3 4 5 6 7 8
	 (16.33)

For 23n N= = , the normalized probability amplitudes become

	 C C C C C C C C
I

ψ ( )= + + + + + + +−8 1/2
1 2 3 4 5 6 7 8 	 (16.34)

	 C C C C C C C C
II

ψ ( )= + + + − − − −−8 1/2
1 2 3 4 5 6 7 8 	 (16.35)

	 C C C C C C C C
III

ψ ( )= + − − + + − −−8 1/2
1 2 3 4 5 6 7 8 	 (16.36)

	 C C C C C C C C
IV

ψ ( )= + − − − − + +−8 1/2
1 2 3 4 5 6 7 8 	 (16.37)

	 C C C C C C C C
V

ψ ( )= − + − + − + −−8 1/2
1 2 3 4 5 6 7 8 	 (16.38)
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	 C C C C C C C C
VI

ψ ( )= − + − − + − +−8 1/2
1 2 3 4 5 6 7 8 	 (16.39)

	 C C C C C C C C
VII

ψ ( )= − − + + − − +−8 1/2
1 2 3 4 5 6 7 8 	 (16.40)

	 C C C C C C C C
VIII

ψ ( )= − − + − + + −−8 1/2
1 2 3 4 5 6 7 8 	 (16.41)

A better appreciation of the sign alternatives is offered if the C m amplitudes are 
expressed in an 8 8×  format with the bra ket ( ) symbols abstracted, so that (Duarte, 
2018)

	

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ + − − − − + +
+ − + − + − + −
+ − + − − + − +
+ − − + + − − +
+ − − + − + + −

	 (16.42)

For the row and column originating at 1C+ , the sign sequences (right and down) 
are , , , , , , ,+ + + + + + + + and , , , , , , ,+ + + + + + + +. On the other hand, for 
the terms on the diagonal, the sign sequence is , , , , , , ,+ + − − + + − −. The sign 
sequence for the second column and the second row is , , , , , , ,+ + + + − − − −, while 
the sequence for the third column and the third row is , , , , , , ,+ + − − + + − −, and 
so on.

16.4 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 16

For 24n N= = , the first normalized probability 
I

ψ  amplitudes becomes

    
C C C C C C C C

C C C C C C C C

I
ψ (

)
= + + + + + + +

+ + + + + + + +

−16 1/2
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

	 (16.43)

and so on for 
II III IV XVI

ψ ψ ψ ψ, , . Going straight to the sign alternatives for 

the C m probability amplitudes expressed in an 16 16×  format, with the bracket ( ) 
symbols abstracted (Duarte, 2018)
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16.5 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 21, 22, 23, … 2r

First, the probability amplitude s  can generally be expressed as (Duarte, 2016, 2018)

	 s C N j

j

N

∑= ± + −
=

( ) 1

1

	 (16.45)

and for notational consistency, the normalized probability amplitude is expressed as

	 N s
R

ψ = −1/2 	 (16.46)

which means

	 N C
R N j

j

N

∑ψ = ±−
+ −

=

( )1/2
1

1

	 (16.47)

where the subscript R is a Roman numeral, the 1/2N −  factor is derived from the nor-
malization operation

	 1
2 2 2 2

ψ ψ ψ ψ= + + + +
I II III IV

	 (16.48)

and the sign alternative ( )±  means that every possible sign alternative in the series is 
allowed. Equation (16.47) is the generalized superposition probability amplitude for 
quantum entanglement for situations applicable to 2 , 2 , 2 21 2 3n N r= = .

The individual path probability amplitudes C N j+ −1  are expressed in a generalized 
form as (Duarte, 2016, 2018)

	 C a bN j m m

m

n



∏=+ − +
=

1 1

1, 3, 5

	 (16.49)

Equation (16.49) is a mathematical expression for a series of probability amplitudes 
beginning at C N j+ −1  with 1j = , and ending at C 1 which is reached when j N= .

In this notation, n is the total number of quanta, which is an even number since 
quanta participate in pairs. For each pair, (1, 2), (3, 4) ( , 1)m m + , a bm m+, 1 rep-
resent a set of orthogonal polarization alternatives such as ( , )x y , ( , )ϕ ϕ′ , and so on 
(Duarte, 2018).

16.5.1  Example

Consider the case of 23n N= = : expanding C N j+ −1 , that is Equation (16.49) for 

8, 7, 6, 5, 4, 3, 2, 1j = , explicit values for C C C C, ,1 2 3 8 are obtained.

Substitution of the corresponding C N j+ −1  amplitudes, that is C C C C, ,1 2 3 8 
into Equation (16.47), lead to the explicit series of probability amplitudes 

I II III VIII
ψ ψ ψ ψ, ,  in terms of the polarization coordinates ( , )x y , ( , )ϕ ϕ′ , ( , )φ φ′ ,  

and ( , )ϑ ϑ′  (Duarte and Taylor, 2017)
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x y

y x

x y

y x

x y

y x

x y

y x

I
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.50)

	

x y

y x

x y

y x

x y

y x

x y

y x

II
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

− ′ ′ ′

− ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.51)

	

x y

y x

x y

y x

x y

y x

x y

y x

III
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.52)
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x y

y x

x y

y x

x y

y x

x y

y x

IV
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.53)

	

x y

y x

x y

y x

x y

y x

x y

y x

V
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.54)

	

x y

y x

x y

y x

x y

y x

x y

y x

VI
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.55)
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x y

y x

x y

y x

x y

y x

x y

y x

VII
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.56)

	

x y

y x

x y

y x

x y

y x

x y

y x

VIII
ψ ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

ϕ ϕ φ φ ϑ ϑ

φ φ ϑ ϑ ϕ ϕ

φ φ ϑ ϑ ϕ ϕ

ϑ ϑ ϕ ϕ φ φ

ϑ ϑ ϕ ϕ φ φ

(

)

= ′ ′ ′

− ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

+ ′ ′ ′

+ ′ ′ ′

− ′ ′ ′

−8 1/2
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

	 (16.57)

16.6 � SUMMARY

	 1.	The generalized quantum entanglement equations for the n  =  N  =
r2 , 2 , 2 21 2 3

  configurations are (Duarte, 2016, 2022)

	 N C
R N j

j

N

∑ψ = ±−
+ −

=

( )1/2
1

1

	 1
2 2 2 2

ψ ψ ψ ψ= + + + +
I II III IV

	 C a bN j m m

m

n



∏=+ − +
=

1 1

1,3,5
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	 2.	Each individual probability amplitude includes n N=  terms.
	 3.	The normalization factor for a quantum entanglement configuration includ-

ing N propagation channels is 1/2N − .
	 4.	For a given n N=  entanglement configuration, there are n N=  probability 

amplitudes obeying sign permutations leading to symmetric sign distribu-
tions starting with all + signs for the first row and the first column of the 
arrangement.

It can be observed that the interferometric derivation à la Dirac of the generalized 
equations for quantum entanglement, that is Equations (16.47)–(16.49), is beautifully 
transparent, completely free of paradoxes (Duarte, 2023), and entirely decoupled 
from Bell’s theorem.

PROBLEMS

	 16.1	� Expand Equation (16.49) for 8, 7, 6, 5, 4, 3, 2,1j = , to arrive at explicit 
expressions for C C C C, ,1 2 3 8.

	 16.2	� Use the explicit results for C C C C, ,1 2 3 8 to arrive at the corre-
sponding explicit probability amplitudes given in Equations (16.50)–
(16.57) for 23n N= = .

	 16.3	� Use Equations (16.47) to (16.49), to derive explicit probability amplitudes, 

I II III IV XVI
ψ ψ ψ ψ ψ, , ,  for 24n N= = .
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Quantum Entanglement 
Probability Amplitudes 
for n = N = 3, 6

17.1  INTRODUCTION

In the chapter, interferometric derivation, à la Dirac, of the probability amplitude 
for quantum entanglement applicable to three quanta ( 3n = ) and three propagation 
channels ( 3N = ), that is 3n N= = , is described. The same approach is then extended 
to 6n N= = .

The presentation in this chapter is a summary and revision of previous publica-
tions by Duarte (2015, 2016, 2022).

17.2 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 3

The quantum entanglement experimental configuration applicable to 3n N= =  is 
depicted in Figure 17.1. Here, s is the photon source of three quanta emitted in three 
directions at a relative angle of 2 /3π .

For the case 3n N= = , the Dirac–Feynman interferometric principle (Dirac, 
1958; Feynman et al., 1965)

	
1

d s d j j s
j

N

∑=
=

	 (17.1)

can be expanded for 3N =  while assuming that the quanta emitted by the source are 
indistinguishable, 1 2 3d d d d= = = , and that j pj→ , so that

	 3 3 2 2 1 1d s d p p s d p p s d p p s= + + 	 (17.2)

is obtained, and observing the methodology introduced in Chapter 15

	 D p p s=3 3 3 	 (17.3)

	 D p p s=2 2 2 	 (17.4)

	 D p p s=1 1 1 	 (17.5)

17
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so that Equation (17.2) can be written as

	 s D D D( )= + +3 2 1 	 (17.6)

Again, applying the Dirac identity (Dirac, 1958)

	 X a b c g
n

= ...1 2 3 	 (17.7)

for 3n =  and using C m s to differentiate from a pure interferometric situation

	 C α β χ=1 1 2 3
	 (17.8)

	 C χ α β=2 1 2 3
	 (17.9)

	 C β χ α=3 1 2 3	 (17.10)

The generalized superposition probability amplitude for quantum entanglement 
(Duarte 2016), introduced in Chapter 16, with a slight modification in notation is 
expressed as

FIGURE 17.1  Experimental diagram applicable to quantum entanglement for the 3n N= =  
configuration (Duarte, F. J., Fundamentals of Quantum Entanglement, 2nd ed. Institute of 
Physics, Bristol, U.K., 2022, © IOP Publishing. Reproduced with permission. All rights reserved).
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	 N q C
R N j

j

N

∑ψ = ±−
+ −

=

( )1/2
1

1

	 (17.11)

where

	 C a bN j m m

m

n

∏=+ − +

=

1 1

1, 3, 5...

	 (17.12)

and the condition for normalization is

	 ψ ψ ψ= 〉 + 〉 + 〉 +1
2 2 2

I II III 	 (17.13)

Since 3n = , there is a need to introduce Hamilton’s quaternions (Hamilton, 1866) 
(see Appendix G) to satisfy the odd normalization conditions such as

	 ψ ψ ψ= 〉 + 〉 + 〉1
2 2 2

I II III 	 (17.14)

Hence, the superposition probability amplitudes become

	 C C i C
I

ψ ( )= + +−3 1/2
1 2 3 	 (17.15)

	 C C i C
II

ψ ( )= − +−3 1/2
1 2 3 	 (17.16)

	 i C j C k C
III

ψ ( )= + +−3 1/2
1 2 3 	 (17.17)

Substituting Equations (17.8)–(17.10) into Equations (17.15)–(17.17), the explicit prob-
ability amplitudes become (Duarte, 2016, 2022)

	 i
I

ψ α β χ χ α β β χ α( )= + +−3 1/2
1 2 3 1 2 3 1 2 3 	 (17.18)

	 i
II

ψ α β χ χ α β β χ α( )= + −−3 1/2
1 2 3 1 2 3 1 2 3 	 (17.19)

	 i j k
III

ψ α β χ χ α β β χ α( )= + +−3 1/2
1 2 3 1 2 3 1 2 3 	 (17.20)

17.3 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE FOR n = N = 6

The quantum entanglement experimental configuration applicable to 3n N= =  is 
depicted in Figure 17.2. Here, s is the photon source of three quanta emitted in three 
directions at a relative angle of /3π .
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For 6n =  indistinguishable quanta, 1 2 3 4 5 6d d d d d d d= = = = = = , and j pj→ , 
the Dirac–Feynman interferometric principle (Equation (17.1) leads to

	 6 6 3 3 2 2 1 1d s d p p s d p p s d p p s d p p s= + + + + 	 (17.21)

so that

	 s D D D D D D( )= + + + + +6 5 4 3 2 1 	 (17.22)

Using the Dirac identity 1 2 3X a b c g
n

=  for 6n =  while observing the 
mechanics applied in the previous section leads to

	 C α α β β χ χ= ′ ′ ′1 1 2 3 4 5 6
	 (17.23)

	 C α α β β χ χ= ′ ′ ′2 1 2 3 4 5 6
	 (17.24)

FIGURE 17.2  Experimental diagram applicable to quantum entanglement for the 6= =n N  
configuration (Duarte, F. J., Fundamentals of Quantum Entanglement, 2nd ed. Institute of 
Physics, Bristol, U.K., 2022, © IOP Publishing. Reproduced with permission. All rights 
reserved).
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	 C χ χ α α β β= ′ ′ ′3 1 2 3 4 5 6
	 (17.25)

	 C χ χ α α β β= ′ ′ ′4 1 2 3 4 5 6
	 (17.26)

	 C β β χ χ α α= ′ ′ ′5 1 2 3 4 5 6	 (17.27)

	 C β β χ χ α α= ′ ′ ′6 1 2 3 4 5 6	 (17.28)

where the polarization alternatives ( , )α α′ , ( , )β β′ , and ( , )χ χ′  are indicated in 
Figure 17.2.

The generalized superposition probability amplitude is

	 N q C
R N j

j

N

∑ψ = ±−
+ −

=

( )1/2
1

1

where q represents either 1 or a quaternion i, j, k needed to satisfy the normalization 
condition

	 ψ ψ ψ ψ ψ ψ= 〉 + 〉 + 〉 + 〉 + 〉 + 〉1
2 2 2 2 2 2

I II III IV V VI 	 (17.29)

Thus, the individual superposition probability amplitudes become

	 C C C C i C i C
I

ψ ( )= + + + + +−6 1/2
1 2 3 4 5 6 	 (17.30)

	 C C C C i C i C
II

ψ ( )= + + + − −−6 1/2
1 2 3 4 5 6 	 (17.31)

	 C C C C i C i C
III

ψ ( )= + − − + +−6 1/2
1 2 3 4 5 6 	 (17.32)

	 C C C C i C i C
IV

ψ ( )= + − − − −−6 1/2
1 2 3 4 5 6 	 (17.33)

	 i C i C j C j C k C k C
V

ψ ( )= + + + + +−6 1/2
1 2 3 4 5 6 	 (17.34)

	 i C i C j C j C k C k C
VI

ψ ( )= − − − − − −−6 1/2
1 2 3 4 5 6 	 (17.35)

Substitution of the states (19.23)–(19.28) into Equations (19.30)–(19.35) yields the 
explicit probability amplitudes as a function for ( , )α α′ , ( , )β β′ , and ( , )χ χ′ .
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17.4  DISCUSSION

The teaching of this chapter on the quantum entanglement physics applying to 
3, 6n N= =  situations can be summarized as follows:

	 1.	The generalized quantum entanglement equations for the 3, 6n N= =  con-
figurations are (Duarte 2016, 2022)

	 N q C
R N j

j

N

∑ψ = ±−
+ −

=

( )1/2
1

1

	 C a bN j m m

m

n

∏=+ − +

=

1 1

1, 3, 5...

	 1
2 2 2

I II III
ψ ψ ψ= + + +

	 2.	Each individual probability amplitude includes n N=  terms.
	 3.	The normalization factor for a quantum entanglement configuration includ-

ing N propagation channels is 1/2N − .
	 4.	To satisfy the normalization condition the use of Hamilton’s quaternions is 

necessary.
	 5.	For a given n N=  entanglement configuration, there are n N=  probability 

amplitudes.

By applying the mechanics utilized to derive Equations (17.15)–(17.17) and (17.30)–
(17.35), the equations applicable to 9n N= =  can also be obtained. Again, it can be 
observed that the interferometric derivation à la Dirac for quantum entanglement 
situations, in this case 3, 6n N= = , is beautifully transparent, completely free of 
paradoxes (Duarte, 2023), and entirely decoupled from Bell’s theorem.

PROBLEMS

	 17.1	� Show that the generalized equations for the quantum entanglement 
probability amplitudes, Equations (17.11)–(17.13), lead to Equations 
(17.18)–(17.20) for 3n N= = .

	 17.2	� Verify that the normalization condition given in Equation (17. 29) is satis-
fied via the use of quaternions for the 6n N= =  quantum entanglement 
situation.

	 17.3	� Use the generalized quantum entanglement Equations (19.11)–(19.13) to 
derive explicit superposition probability amplitudes for the case 9n N= = .
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Quantum Entanglement 
in Matrix Form

18.1  INTRODUCTION

Here, the complete set of probability amplitudes for 2n N= =  quantum entanglement 
is expressed in matrix form. These are 2 2×  matrices that describe the polarization 
of the quanta in the states x  and y . This is very useful from an optical-engineering 
perspective given that a number of crucial optical components are also represented 
in 2 2×  matrix form.

The mathematical link between the probability amplitudes for quantum entangle-
ment, also known as Bell states, and Pauli matrices is explored in detail. The same 
is done regarding the nexus between these probability amplitudes and the Hadamard 
matrix. This chapter is a handbook-type review version of the work disclosed by 
Duarte et al. (2020), Duarte and Taylor (2021), and Duarte (2022).

18.2  QUANTUM ENTANGLEMENT PROBABILITY AMPLITUDES

The superposition probability amplitudes for the 2n N= =  quantum entanglement 
situation, involving entangled orthogonal polarizations x  and y , is given by (Pryce 
and Ward, 1947; Duarte, 2013, 2014, 2019)

	 x y y xψ ( )= ++
−2 1/2 	 (18.1)

	 x y y xψ ( )= −−
−2 1/2 	 (18.2)

	 x x y yψ ( )= ++ −2 1/2 	 (18.3)

	 x x y yψ ( )= −− −2 1/2 	 (18.4)

Using the definitions x = 1  and y = 0 , the complete set of probability amplitudes 
for quantum entanglement can be expressed as (Duarte, 2019)

	 ψ ( )= ++
−2 1 0 0 11/2 	 (18.5)

	 ψ ( )= −−
−2 1 0 0 11/2 	 (18.6)

18
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	 ψ ( )= ++ −2 1 1 0 01/2 	 (18.7)

	 ψ ( )〉 = 〉 〉 − 〉 〉− −2 1 1 0 01/2
	 (18.8)

Equations (18.5)–(18.8) are to be expressed in matrix 2 2×  form in this chapter.

18.3  QUANTUM ENTANGLEMENT VIA PAULI MATRICES

As taught by Duarte (2019, 2022) and Duarte et al. (2020), a useful mathematical 
transformation, applicable to quantum notation, is the vector direct product defined 
as (Ayres, 1965)

	 x y x y T= ⋅ 	 (18.9)

	 x y
x

x

y

y

x y x y

x y x y
T

T

⋅ =


















 =











1

2

1

2

1 1 1 2

2 1 2 2
	 (18.10)

by which Dirac’s ket vectors can be multiplied to yield 2 2×  matrices.
Defining the ket vectors x  and y  as

	 x = =






1
1
0

	 (18.11)

	 y = =






0
0
1

	 (18.12)

the quantum entanglement equations for ψ +, ψ −, ψ +, and ψ − can be expressed in 
matrix form via

	ψ =






⋅






+






⋅














 =







+














+

− −2
1
0

0
1

0
1

1
0

2
0 1
0 0

0 0
1 0

1/2 1/2

� (18.13)

ψ =






⋅






−






⋅














 =







−














−

− −2
1
0

0
1

0
1

1
0

2
0 1
0 0

0 0
1 0

1/2 1/2

� (18.14)
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ψ =






⋅






+






⋅














 =







+
















+ − −2
1
0

1
0

0
1

0
1

2
1 0
0 0

0 0
0 1

1/2 1/2

� (18.15)

ψ =






⋅






−






⋅














 =







−
















− − −2
1
0

1
0

0
1

0
1

2
1 0
0 0

0 0
0 1

1/2 1/2

� (18.16)

Matrix Equations (18.13)–(18.16) are expressed as (Duarte, 2022)

	 ψ =




+

−2
0 1
1 0

1/2 	 (18.17)

	 i
i

i
ψ = −



−

−2
0

0
1/2 	 (18.18)

	 ψ =






+ −2
1 0
0 1

1/2 	 (18.19)

	 ψ =
−







− −2
1 0
0 1

1/2 	 (18.20)

and Equations (18.17)–(18.20) are directly equivalent to (Duarte et al., 2020)

	 xψ σ=+
−2 1/2 	 (18.21)

	 i yψ σ=−
−2 1/2 	 (18.22)

	 Iψ =+ −2 1/2 	 (18.23)

	 zψ σ=− −2 1/2 	 (18.24)

where

	
0 1
1 0xσ =







	 (18.25)

	
0

0
i

i
yσ = −




	 (18.26)
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1 0
0 1zσ =

−






	 (18.27)

	
1 0
0 1

I =





	 (18.28)

are the xσ , yσ , zσ  Pauli matrices and I is the identity matrix (Dirac, 1958).

18.3.1  Example

The conjugate of yσ  is given by

	
0

0
0

0

*
i

i
i

i
yσ = −

+






= +
−







∗ 	 (18.29)

and the transpose (rows → column) of yσ ∗ is denoted by ( )y
Tσ ∗

	 ( )
0

0
0

0
i

i
i

i
y

T

T

yσ σ= +
−







= −
+







=∗ 	 (18.30)

so that

	 ( )y
T

yσ σ=∗ 	 (18.31)

The identity exhibited in Equation (18.31) is also expressed as

	 H
y yσ σ= 	 (18.32)

where the symbol H  represents the combined conjugate transpose operation also 
known as the Hermitian property. All three Pauli matrices are Hermitian.

18.3.2 P auli Matrices Identities

Additional properties of Pauli matrices are (Dirac, 1958; Jordan, 1986)

	 2 2 2 Ix y zσ σ σ= = = 	 (18.31)

	 ix y zσ σ σ= 	 (18.32)

	 iy x zσ σ σ= − 	 (18.33)

	 iy z xσ σ σ= 	 (18.34)
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	 iz y xσ σ σ= − 	 (18.35)

	 iz x yσ σ σ= 	 (18.36)

	 ix z yσ σ σ= − 	 (18.37)

	 iIx y zσ σ σ = 	 (18.38)

18.4  QUANTUM ENTANGLEMENT VIA THE HADAMARD GATE

The widely used Hadamard matrix

	 1 1
1 1

H =
−







	 (18.39)

can be written as the sum of two matrices

	 H =






+
−







0 1
1 0

1 0
0 1

	 (18.40)

which, by inspection, can also be expressed as (Duarte, 2019)

	 H x zσ σ= + 	 (18.41)

Considering the quantum entanglement states ψ + and ψ −, that is

	 x y y xψ ( )= ++
−2 1/2

1 2 1 2

	 x y y xψ = −−
−2 ( )1/2

1 2 1 2

one can write (Dirac, 1958; Duarte, 2013)

	 x yα = 1 2
	 (18.42)

	 y xβ =
1 2	 (18.43)
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which leads directly to the equations describing beam splitter-based interferometers 
such as the Mach–Zehnder interferometer (Duarte, 2003, 2014, 2019)

	 α β( )Ψ = ++
−2 1/2 	 (18.44)

	 α β( )Ψ = −−
−2 1/2 	 (18.45)

Equations (18.44) and (18.45) can be expressed in matrix form as

	
α
β

Ψ
Ψ











=
−



















+

−

−2 1 1
1 1

1/2 	 (18.46)

where

	 2 1 1
1 1

1/2 HG−






=− 	 (18.47)

is known as the Hadamard gate HG  widely used in the literature in the absence of 
a transparent derivation. Furthermore, this is precisely the physics behind the HOM 
interferometer (see Chapter 7).

The Hadamard gate HG  can also be defined via the multiplication of the Hadamard 
matrix by the normalization factor 2 1/2− , so that

	 2 1 1
1 1

21/2 1/2H HG =
−







=− − 	 (18.48)

which can be expressed in terms of the probability amplitudes for quantum entangle-
ment as done by Duarte et al. (2020)

	 HG ψ ψ( )= ++
− 	 (18.49)

	 2 ( )1/2HG x zσ σ= +− 	 (18.50)

18.5 � QUANTUM ENTANGLEMENT PROBABILITY 
AMPLITUDE MATRICES

Certainly, new matrices become immediately apparent via the combination, in vari-
ous permutations, of ψ ψ ψ ψ〉 〉 〉 〉+ −

+ −
, , , and  (Duarte and Taylor, 2021; Duarte 

2022)

	 J ψ ψ( )= −+
− 	 (18.51)
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	 K ψ ψ( )= ++
− 	 (18.52)

	 L ψ ψ( )= −+
− 	 (18.53)

	 M ψ ψ( )= ++
+ 	 (18.54)

	 N ψ ψ( )= −+
+ 	 (18.55)

	 O ψ ψ( )= +−
− 	 (18.56)

	 P ψ ψ( )= −−
− 	 (18.57)

where

	 2 1 1
1 1

1/2J = −





− 	 (18.58)

	 2 1 1
1 1

1/2K =
−







− 	 (18.59)

	 2 1 1
1 1

1/2L = −





− 	 (18.60)

	 2 1 1
1 1

1/2M =






− 	 (18.61)

	 2 1 1
1 1

1/2N = −
−







− 	 (18.62)

	 2 1 1
1 1

1/2O =
− −







− 	 (18.63)

	 2 1 1
1 1

1/2P = −
−







− 	 (18.64)
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It should be noted that M ψ ψ( )= ++
+  can be configured with a combination of an 

ordinary beam splitter and a polarization rotator (Duarte and Taylor, 2021).

18.6 � QUANTUM ENTANGLEMENT POLARIZATION 
ROTATOR MATHEMATICS

Polarization rotators can be used to perform quantum operations for quantum com-
puting applications. If the entangled photons are made to be incident on a generalized 

/2θ = π  polarization rotator (Duarte, 2003) represented by the matrix

	
0 1
1 0

R =





	 (18.65)

then it can be shown that (Duarte et al., 2020)

	 2 1/2R xψ ψ σ= =+
+

− 	 (18.66)

	 2 1/2R i yψ ψ σ= − = −−
−

− 	 (18.67)

	 2 1/2R Iψ ψ= =+
+ − 	 (18.68)

	 2 1/2R zψ ψ σ= − = −−
− − 	 (18.69)

This demonstrates the inherent capability for mathematical operations utilizing 
polarization rotators and entangled states. This simple concept means that beams of 
entangled photons interacting with optical apparata configured with optical elements 
capable of transforming the entangled polarization states can be used to perform 
optical quantum computations.

18.7  QUANTUM MATHEMATICS VIA HADAMARD’S GATE

The Hadamard matrix operation on the probability amplitudes for quantum entan-
glement yields the following mathematical identities (Duarte et al., 2020)

	 2 1/2HG ψ ψ ψ( )= ++
− +

− 	 (18.70)

	 2 1/2HG ψ ψ ψ( )= −−
−

+
− 	 (18.71)

	 2 1/2HG ψ ψ ψ( )= ++ −
+

− 	 (18.72)

	 2 1/2HG ψ ψ ψ( )= −− − +
− 	 (18.73)
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which are equivalent to (Duarte et al., 2020)

	 2 ( )1H I iG yψ σ= ++
− 	 (18.74)

	 2 ( )1HG x zψ σ σ= −−
− 	 (18.75)

	 2 ( )1HG x zψ σ σ= ++ − 	 (18.76)

	 2 ( )1H I iG yψ σ= −− − 	 (18.77)

18.8  REVERSIBILITY IN QUANTUM MECHANICS

Duarte (2013, 2014, 2016, 2022) has shown that the Dirac–Feynman interferometric 
principle leads to the superposition probability amplitudes for quantum entanglement

	 2
1

1/2
1 2 1 2d s d j j s x y y x

j

N

∑ ψ ( )= → = ±
=

− 	 (18.78)

Consequently, the Pauli matrices also have a Diracian interferometric origin (Duarte 
et al., 2020; Duarte, 2022)

	 , , , , , ,
1

d s d j j s I
j

N

x y z∑ ψ ψ ψ ψ σ σ σ= → →
=

+ −
+ − 	 (18.79)

Further understanding of this physics also allows for the reverse mathematical flow 
(Duarte, 2019, 2022; Duarte and Taylor, 2021)

	 , , , , , ,
1

d j j s I
j

N

x y z∑ ψ ψ ψ ψ σ σ σ← ←
=

+ −
+ − 	 (18.80)

or

	 , , , , , ,
1

I d j j sx y z

j

N

∑σ σ σ ψ ψ ψ ψ→ →+ −
+ −

=

	 (18.81)

and it ultimately points toward an interferometric origin of Pauli matrices (Duarte, 
2022)

	  , , ,
1

d j j s I
j

N

x y z∑ σ σ σ→ →
=

	 (18.82)
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The mathematical flow depicted in (18.79) indicates that the Dirac–Feynman prin-
ciple neatly and transparently leads to the superposition probability amplitudes of 
quantum entanglement ψ ψ ψ ψ〉 〉 〉 〉+ −

+ −
, , , and .

However, from a first-principle perspective, the complete mathematical flow cul-
minating in the Dirac–Feynman interferometric principle is (Duarte and Taylor, 
2021)

	 , , , , , ,
1

H C I d j j sij j

j

x y z

j

N

∑ ∑σ σ σ ψ ψ ψ ψ→ → →+ −
+ −

=

	 (18.83)

which indicates that to go in reverse, from foundational principles, it is necessary 
first to derive the Pauli matrices, which needs to differentiate Ci with respect to time 
(Feynman et al., 1965)

	 

2

i
dC
dt

H Ci
ij j

j

∑= 	 (18.84)

where the Ci amplitude originates directly from the Dirac–Feynman interferometric 
principle. This appears to indicate that quantum interference is a more fundamental 
principle than quantum entanglement with both, quantum interference and quan-
tum entanglement, linked at a most fundamental level at the foundations of quantum 
mechanics.

PROBLEMS

	 18.1	 Starting from Equation (18.14), verify that 2 1/2i yψ σ=−
− .

	 18.2	 Starting from Equation (18.16), verify that 2 1/2
zψ σ=− − .

	 18.3	 Show that ( )HG ψ ψ= ++
− .

	 18.4	 Show that J ψ ψ( )= −+
− .

	 18.5	 Show that O ψ ψ( )= +−
− .

	 18.6	 Show that 2 1/2R xψ ψ σ= =+
−

− .

	 18.7	 Show that 2 1/2R Iψ ψ= =+
+ − .

	 18.8	 Show that 2 1/2HG ψ ψ ψ( )= ++
− +

− .

	 18.9	 Show that 2 1/2HG ψ ψ ψ( )= −− − +
− .
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Quantum Computing 
in Matrix Notation

19.1 � INTRODUCTION

The first discussion of quantum logic was due to von Neumann in 1932. In this 
regard, von Neumann associates a quantum quantity with the values of 1 and 0. 
If verified, the value of this quantity is 1. If not, the value of this quantity is 0  
(von Neumann, 1932).

Quantum computing is an extremely active field producing an enormous number 
of publications. Following the initial introduction à la Feynman, and revision of basic 
concepts, attention is focused on the matrices already developed in previous chapters 
and their application to quantum computing.

In the discussion that follows, the term universal computer is applied to traditional 
transistor-based computers using Boolean algebra executed by logical gates such as 
AND, OR, NOT, NAND, and NOR. The beauty of universal computers is that by 
using mathematical equations, expressed in the logical language of the computer, it 
can accurately simulate scientific processes of interest. Their scope of applications is 
extremely wide. A disadvantage of the universal computer is that, for certain classes 
of calculations, they can consume large amounts of energy, and they can be slower 
than desired. From a practical perspective, the issue of computational speed is very 
important.

There is a cost and efficiency motivation to replace universal computers that take 
too much time to perform computationally intensive calculations. This stimulates the 
interest in quantum computing.

Physical computers, such as optical computers, can be extremely fast to perform 
certain computational tasks that demand very long computational times in universal 
computers; however, the range of applications that physical computers offer is lim-
ited. An example of this class of computer, an interferometric computer, is described 
in the next section.

A quantum computer, as the name suggests, is a computer that can operate at the 
quantum level, thus offering enormous improvements in energy consumption and 
size reductions (Bennett, 1982; Feynman, 1985, 1986). Significant size reductions 
and the use of photons should also lead to vast improvements in computational 
speed. The concept of a quantum computer goes beyond physical computers and 
seeks to offer an alternative universal computer. It does so by utilizing analogs to 
bits known as qbits.

These qbits can take a physical representation at the quantum level and allow 
the performance of Boolean logic operations. Here an introduction to this fascinat-
ing subject is provided while using the mathematical tools and quantum concepts 
already introduced in this book.

19
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This chapter is based on a revision of the original chapter (Duarte, 2014) and intro-
duces new material as disclosed in subsequent publications (Duarte, 2019, 2022).

19.2 � INTERFEROMETRIC COMPUTER

The N-slit laser interferometer (NSLI), as an example of a physical, or optical, computer 
is discussed by Duarte (2003). This interferometric computer utilizes either single pho-
ton illumination or illumination via ensembles of indistinguishable photons as available 
from narrow-linewidth lasers. A simplified diagram of the NSLI is shown in Figure 19.1.

Interferograms recorded with the NSLI have been compared for numerous geo-
metrical and wavelength parameters with interferograms calculated via the quantum 
interferometric equation, which is a quantum probability equation (Duarte, 1993)

	 ( ) ( )
1 1

( )d s d s r r ej

j

N

m

m

N
i m j∑ ∑= Ψ Ψ∗

= =

Ω −Ω 	 (19.1)

	 ( ) 2 ( ) ( )cos( )2

111

d s d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












∗

= +==

	 (19.2)

One such case is considered in Figure 19.2. The measured interferogram is displayed at 
the top of Figure 19.2, and the corresponding theoretical interferogram is included in 
the lower trace of Figure 19.2. In this regard, it should be mentioned that good agree-
ment, between theory and experiment, exists from the near to the far field. Observed 
differences, especially at the baseline, are due to thermal noise in the digital detector 
that is used at room temperature. The original program was written in Fortran 77.

Subsequent software versions have utilized Visual Fortran and MATLAB 
(Duarte, 1993, 2014). For calculations involving a large number of slits, especially 
for 2000N =  or more, Fortran is preferred, given its superior computational speed. 
Further comparative aspects have been discussed in Chapter 4.

FIGURE 19.1  N-slit laser interferometer (NSLI) configuration. Critical parameters are the 
laser wavelength λ , the number of slits N, the dimension of the slits w, and the intra-interfer-
ometric distance 〈D d j . 
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The interferometric calculations, using the interferometric probability equation to 
program a universal computer, require the following input information:

	 1.	Slit dimensions: w
	 2.	Standard of deviation of the slit dimensions: w∆
	 3.	 Interslit dimensions
	 4.	Standard of deviation of interslit dimensions
	 5.	Wavelength: λ
	 6.	N-slit array-, or grating-, screen distance: 〈D d j

	 7.	Number of slits: N

FIGURE 19.2  (a) Measured near field interferogram using the NSLI for 23N = , 632.8λ =  
nm, =〈 1.5D d j  cm. Slits are 100 μm wide separated by 100 μm. (b) Calculated near field 
interferogram using the NSLI for 23N = , 632.8λ =  nm, =〈 1.5D d j  cm. Slits are 100 μm wide 
separated by 100 μm (Reproduced from Duarte, F. J., Opt. Commun. 103, 8–14, 1993, with 
permission from Elsevier).
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The Boolean algebra program, based on the quantum probability interferometric 
equation, also provides options for the illumination profile and allows for multiple-
stage calculations. That is, it allows for the propagation through several sequential 
N-slit arrays prior to arrival at d as considered in Chapter 4.

An interesting aspect of comparisons, between theory and experiment, is that for 
a given wavelength, set of slit dimensions, and distance from j to d, the time taken 
to calculate in a conventional universal computer increases with an increase in the 
number of slits N. In fact, the computational time t(N) behaves in a nonlinear fashion 
as N increases. This is clearly illustrated in Figure 19.3, where t = 0.96 s for N = 2 and 
t = 3111.2 for N = 1500 s (Duarte, 1996). By contrast, all of these calculations can be 
performed in the NSLI at a constant time of ~30 ms which is a time mainly imposed 
by the electronic integration time of the digital detector. Certainly, the generation 
and propagation of the interferogram are performed at a speed that is approximate to 
that of the speed of light c.

In this regard, following the criteria outlined by Deutsch (1992), the NSLI can 
be classified as a physical, or quantum interferometric, computer that can perform 
certain specific computations at times orders of magnitude below the computational 
time required by a universal computer. Among the computations that the quantum 
interferometric computer can perform are

	 1.	N-slit array interference calculations
	 2.	Near- or far-field diffraction calculations

FIGURE 19.3  Computational time in a mainframe universal computer as a function of num-
ber of slits. The first four points are 0.96 s for 2N = , 1.14 s for 10N = , 7.03 s for 50N = , and 
14.33 s for 100N = . For these calculations 632.8λ =  nm, =〈 75D d j  cm. Slits are 30 μm wide 
separated by 30 μm.
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	 3.	Beam divergence calculations
	 4.	Wavelength calculations

For this limited set of tasks, the interferometric computer based on the NSLI out-
performs, by some 5 orders of magnitude, universal computers. Hence, it can be 
classified as a very fast, albeit limited in scope, quantum optical computer. The 
advantage of the universal computer remains its versatility. Moreover, in the univer-
sal computer, there is access to intermediate results at all stages of the computation. 
This is not allowed in the NSLI where access is strictly limited to the input stage and 
the final stage of the computation. Attempts to acquire information about intermedi-
ate stages of the computation can destroy the final answer (see Chapter 21).

The interferometric computer is a macroscopic apparatus that allows the con-
trol of photon propagation via the probabilistic laws of quantum mechanics. Since it 
can function either via single photon illumination or illumination via ensembles of 
indistinguishable photons, while following the laws of quantum mechanics, it can be 
classified as a quantum optics computer.

19.3 � CLASSICAL LOGIC GATES

Classical universal computers function based on logical operations performed by a series 
of gates such as the OR, AND gates, and the negation gates NOT, NOR, and NAND.

Feynman, in his article, focuses, in particular, on the primitive elements NOT, 
AND, FAN OUT, and EXCHANGE. To this list, he also adds the reversible primi-
tives NOT, CONTROLLED NOT, and CONTROLED CONTROLLED NOT.

Figure 19.4 illustrates the NOT gate, Figure 19.5 the NAND, and Figure 19.6 the 
NOR gates with their corresponding transistor circuitry.

FIGURE 19.4  Symbol for NOT gate and transistor circuit of NOT gate using NMOS tech-
nology. NMOS technology refers to field effect transistors fabricated with n-type metal-
oxide-semiconductors (MOS). 
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For an input a and an output a′, the truth table for the NOT gate is

	 0 1
1 0

a a′

FIGURE 19.5  Symbol for NAND gate and transistor circuit of NAND gate using NMOS 
technology.

FIGURE 19.6  Symbol for NOR gate and transistor circuit of NOR gate using NMOS 
technology.
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For inputs a and b and output c′, the truth table for the AND gate is

	
0 0 0
0 1 0
1 0 0
1 1 1

a b c′

For inputs a and b and output c′, the truth table for the NAND gate is

	
0 0 1
0 1 1
1 0 1
1 1 0

a b c′

For inputs a and b and output c′, the truth table for the OR gate is

	
0 0 0
0 1 1
1 0 1
1 1 1

a b c′

For inputs a and b and output c′, the truth table for the NOR gate is

	
0 0 1
0 1 0
1 0 0
1 1 0

a b c′

19.4  �von NEUMANN ENTROPY

Entropy can be defined as the change, as a function of time, from an orderly state 
to a disorderly state. Duarte (2022) discusses entropy from an interferometric per-
spective where the initial state consists of a well-defined interferometric pattern in 
space, at ti . At a subsequent state, at t t ti= + ∆ , the interferometric pattern loses its 
initial well-defined structure and becomes a uniform near-Gaussian distribution. 
The well-defined interferometric pattern in space, at ti , is indicative of low entropy, 
while the near-Gaussian distribution, at t t ti= + ∆ , is indicative of high, or higher, 
entropy.

Relevant to quantum computing is the von Neumann entropy

	 ( ) [ ln ]S Trρ ρ ρ= − 	 (19.3)
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where ρ is the density matrix describing an ensemble of states of a relevant quantum 
system and Tr is the trace of the matrix [ ln ]ρ ρ  (von Neumann, 1932). This means 
that the larger the number of states involved, the larger the entropy. This is an impor-
tant caveat given that for effective practical quantum computing, a large number of 
states are needed.

19.5 � QBITS

Richard Feynman (1985, 1986) introduced the nexus between the concept of the bit 
and the quantum states 1  and 0 . He then went on to propose that one bit can be 
represented by a single atom being either in the 1  state or the 0  state.

From the Dirac–Feynman principle (Dirac, 1958; Feynman et al., 1965)

	
1

j j
j

N

∑φ ψ φ ψ=
=

	 (19.4)

for 1, 2j =

	 2 2 1 1φ ψ φ ψ φ ψ= + 	 (19.5)

and abstracting φ

	 2 2 1 1ψ ψ ψ= + 	 (19.6)

leads to

	 2 12 1C Cψ = + 	 (19.7)

where

	 11C ψ= 	 (19.8)

	 22C ψ= 	 (19.9)

Equation (19.7) is a general principle that means that a single state, or probability 
amplitude, can be expressed as a linear combination of two other states (Feynman 
et al., 1965).

In the case of the 1  and 0  states, the combined probability amplitude is

	 1 01 2C Cψ = + 	 (19.10)

where 1C  and 2C  are themselves probability amplitudes and therefore complex 
numbers.
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This is an example of a superposition. Once normalized, this probability ampli-
tude becomes

	 ψ ( )= −−2 1 01/2
1 2C C 	 (19.11)

The 1  and 0  states are known in the literature as qbits for ‘quantum bits’ 
(Schumacher, 1995).

The 1  and 0  states can also be entangled. The four possible probability ampli-
tudes related to qbits 1  and 0  are

	 2 1 0 0 11/2ψ ( )= ±− 	 (19.12)

	 2 1 1 0 01/2ψ ( )= ±− 	 (19.13)

For spin −½ particles, the individual states are also abbreviated as ↑  and ↓  so that 
the four probability amplitudes are written as

	 2 1/2ψ ( )= ↑ ↓ ± ↓ ↑− 	 (19.14)

	 2 1/2ψ ( )= ↑ ↑ ± ↓ ↓− 	 (19.15)

States written in this fashion are known in the literature as ‘Bell states’ or ‘EPR 
pairs,’ even though neither Bell nor EPR had a hand in their development.

19.6  QUANTUM ENTANGLEMENT VIA PAULI MATRICES

The probability amplitudes of quantum entanglement can be re-expressed individu-
ally as (Duarte, 2019, 2022)

	 2 1 0 0 11/2ψ ( )= ++
− 	 (19.16)

	 2 1 0 0 11/2ψ ( )= −−
− 	 (19.17)

	 2 1 1 0 01/2ψ ( )= ++ − 	 (19.18)

	 2 1 1 0 01/2ψ ( )= −− − 	 (19.19)

where

	 1
1
0

=





	 (19.20)

and

	 0
0
1

=






	 (19.21)
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As seen previously, the quantum entanglement probability amplitudes can also be 
expressed in matrix form using the direct vector product defined as (Ayres, 1965)

	 x y x y T= ⋅ 	 (19.22)

or

	 1

2

1

2

1 1 1 2

2 1 2 2
x y

x

x

y

y

x y x y

x y x y
T

T

⋅ =


















 =









	 (19.23)

In general, this means that any optical component associated with a 2 2×  matrix 
operator operating on one of the entangled vector states can yield a new transformed 
state. For instance, if an optical component is represented by the matrix operator B, 
then

	 B ψ ξ→+ 	 (19.24)

where ξ  is a new or transformed state. More specifically, Equations (19.16)–(19.19) 
can be expressed in matrix form as (Duarte et al., 2020; Duarte and Taylor, 2021)

	 2 1/2
xψ σ=+

− 	 (19.25)

	 2 1/2i yψ σ=−
− 	 (19.26)

	 2 1/2 Iψ =+ − 	 (19.27)

	 2 1/2
zψ σ=− − 	 (19.28)

which are equivalent to

	 21/2
xσ ψ= + 	 (19.29)

	 21/2i yσ ψ= − 	 (19.30)

	 21/2I ψ= +	 (19.31)

	 21/2
zσ ψ= −	 (19.32)

where

	
0 1
1 0xσ =







	 (19.33)

	
0

0
i

i
yσ = −




	 (19.34)
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1 0
0 1zσ =

−






	 (19.35)

	
1 0
0 1

I =





	 (19.36)

are the xσ , yσ , and zσ  Pauli matrices and I is the identity matrix.
These identities show yet an additional avenue to derive the quantum entangle-

ment probability amplitudes provided that the Pauli matrices are arrived at indepen-
dently and from first principles (Duarte et al., 2020; Duarte, 2022).

19.7 � ROTATION OF QUANTUM ENTANGLEMENT STATES

A /2π  polarization rotator can be realized experimentally using a half-wave plate, a 
wavelength-specific double Fresnel rhomb, or a broadband collinear prismatic rotator 
(Duarte, 1989, 2014). These /2π  polarization rotators, illustrated in Figures 19.7–19.9, 
are mathematically represented by the matrix

	
0 1
1 0

R =





	 (19.37)

Using this matrix, it can be shown that (Duarte et al., 2020; Duarte, 2022)

	 R ψ ψ=+
+	 (19.38)

FIGURE 19.8  Schematics for a wavelength-specific double Fresnel rhomb /2π  polarization 
rotator.

FIGURE 19.7  Schematics for a wavelength-specific half-wave plate /2π  polarization rotator.
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	 R ψ ψ= −−
−	 (19.39)

	 R ψ ψ=+
+ 	 (19.40)

	 R ψ ψ= −−
− 	 (19.41)

which are equivalent to

	 2 1/2R Iψ =+
− 	 (19.42)

	 2 1/2R zψ σ= −−
− 	 (19.43)

	 2 1/2R xψ σ=+ − 	 (19.44)

	 2 1/2R i yψ σ= −− − 	 (19.45)

thus demonstrating an inherent capability for mathematical operations. This sim-
ple concept has significant practical implications. It means that beams of entangled 
photons interacting with optical apparata configured with optical elements that are 
capable of transforming the entangled states can be used to perform optical quantum 
computations.

In addition to the polarization rotator, other optical components of interest in 
optical computers are the beam splitter and the Mach–Zehnder interferometer.

19.8 � QUANTUM GATES

In this section, the characteristics of some basic quantum gates linked to the prob-
ability amplitude of quantum entanglement are introduced.

In the previous section, the reader should have noticed that the matrix R for the 
/2π  polarization rotator

	
0 1
1 0

R xσ= =






	 (19.46)

FIGURE 19.9  Multiple-prism broadband /2π  polarization rotator (Duarte, 1989).
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In other words, a polarization rotator behaves mathematically exactly as the xσ  Pauli 
matrix. Indeed, the Pauli xσ  matrix is the mathematical realization of a quantum 
NOT gate whose truth table is given below:

	 0 1
1 0

a a′

Using the Feynman approach, the quantum NOT gate is illustrated pictorially in 
Figure 19.10. Furthermore, the observation summarized in Equation (19.54) implies 
that any optical element that can be related to one of Pauli’s matrices is capable of 
implementing a gate for a quantum computer. A quantum NOT gate was demon-
strated by Pelliccia et al. (2003) via polarization methods.

In classical universal computers, logical gates such as AND, NAND, OR, NOR, 
and NOT form the bases for logical operations. In quantum computing, a gate that 
was of particular interest to Feynman (1985) was the controlled NOT gate or CNOT 
gate. The truth table for the CNOT gate is given by (Feynman, 1985)

	
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

a b a b′ ′

In the truth table of the CNOT gate, the value of b′ is changed, with respect to b, if 
and only if the value of 1a = . The pictorial representation of the CNOT gate is illus-
trated in Figure 19.11.

The interest in the CNOT gate emerges from the fact that this is a fundamen-
tal gate for the generation of quantum entanglement states. The first realization 
of a quantum CNOT gate was reported by Wineland et al. (Monroe et al., 1995). 

FIGURE 19.10  Generic schematics of the quantum NOT gate.

FIGURE 19.11  Generic schematics of the quantum CNOT gate.
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A quantum computer with 127 qbits has been demonstrated by Kim et al. (2023) 
based on CNOT gates and Pauli gates.

19.8.1 �P auli Gates

Each Pauli matrix ( xσ , yσ , zσ ) is related to a corresponding gate, and they are 
depicted as illustrated in Figure 19.12. Each of the Pauli gates act on a single qbit. 
The Pauli-X gate is equivalent to the NOT gate and physically, as already indicated 
in Equation (19.54), it induces a polarization rotation of /2π  radians. In other words, 
it converts x  to y , or y  to x . Specifically,

	
0 1
1 0

1
0

0
1













=






	 (19.47)

	
0 1
1 0

0
1

1
0













=






	 (19.48)

which can be summarized as

	 1 0xσ → 	 (19.49)

	 0 1xσ → 	 (19.50)

FIGURE 19.12  Generic representation of the Pauli xσ , yσ , and zσ  gates. The Hadamard gate 
is represented by H. 
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The Pauli-Y gate performs the following transformations:

	
0

0
1
0

0i
i i

−











=





	 (19.51)

	
0

0
0
1 0

i
i

i−











= −




	 (19.52)

that can be summarized as

	 1 0iyσ → 	 (19.53)

	 0 1iyσ → − 	 (19.54)

The Pauli-Z gate conducts the transformations

	
1 0
0 1

1
0

1
0−













=





	 (19.55)

	
1 0
0 1

0
1

0
1−













=
−







	 (19.56)

which can be summarized as

	 1 1zσ → 	 (19.57)

	 0 0zσ → − 	 (19.58)

19.8.2 �T he Hadamard Gate

The Hadamard gate HG  is related to the matrices of the same name which are desig-
nated after the mathematician J. Hadamard. The matrix of interest is

	 2 1 1
1 1

1/2HG =
−







− 	 (19.59)

which can be derived from the following operation involving Pauli matrices:

	 2 ( )1/2HG x zσ σ= +− 	 (19.60)

This gate performs the following transformations:

      2 1 1
1 1

1
0

2 1
1

2
1
0

0
1

1/2 1/2 1/2

−












=






=






+
















− − − 	 (19.61)
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    2 1 1
1 1

0
1

2 1
1

2
1
0

0
1

1/2 1/2 1/2

−












=
−







=






−
















− − − 	 (19.62)

which can be summarized as

	 1 2 1 01/2HG ( )→ +− 	 (19.63)

	 0 2 1 01/2HG ( )→ −− 	 (19.64)

The Hadamard gate can be configured experimentally via a HOM interferometer 
(Duarte, 2022). The HOM interferometer has been described in Chapter 7.

19.8.3 �T he CNOT Gate

The truth table for the CNOT gate can be written as a sum of states

	 C ab a bNOT j j

j

∑= ′ ′ 	 (19.65)

	 00 00 01 01 10 11 11 10CNOT = + + + 	 (19.66)

which, using the tensor products 00 0 0= ⊗ , 01 0 1= ⊗ , 10 1 0= ⊗ , 
11 1 1= ⊗  (see Chapter 11), can be expressed as

	

0
0
0
1

0 0 0 1

0
0
1
0

0 0 1 0

0
1
0
0

1 0 0 0

1
0
0
0

0 1 0 0

CNOT ( ) ( )

( ) ( )

=



















+



















+



















+



















	 (19.67)

Utilizing the direct vector product, this becomes the sum of four matrices

 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

CNOT =





















+





















+





















+





















	 (19.68)
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0 1 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

CNOT =





















	 (19.69)

as given by Aradhyamath et al. (2017).

19.9 � QUANTUM ENTANGLEMENT MATHEMATICS 
VIA THE HADAMARD GATE

It can also be shown that the Hadamard matrix operation on the probability 
amplitudes for quantum entanglement yields the following mathematical identities 
(Duarte, 2019, 2022; Duarte et al., 2020; Duarte and Taylor, 2021):

	 2 1/2HG ψ ψ ψ( )= ++
− + − 	 (19.70)

	 2 1/2HG ψ ψ ψ( )= −−
−

+
− 	 (19.71)

	 2 1/2HG ψ ψ ψ( )= ++ −
+

− 	 (19.72)

	 2 1/2HG ψ ψ ψ( )= −− − +
− 	 (19.73)

19.9.1 � Example

It can be shown that Equations (19.70)–(19.83) are equivalent to (Duarte, 2019; 
Duarte and Taylor, 2021)

	 2 ( )1H I iG yψ σ= ++
− 	 (19.74)

	 2 ( )1HG x zψ σ σ= −−
− 	 (19.75)

	 2 ( )1HG x zψ σ σ= ++ − 	 (19.76)

	 2 ( )1H I iG yψ σ= −− − 	 (19.77)

Moreover, it can be shown that (Duarte et al., 2020)

	 ψ ψ( )= ++
−HG 	 (19.78)
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19.10 � MULTIPLE ENTANGLED STATES

Binary quantum computing should be based on 2 , 2 , 2 ...21 2 3n N r= = . For the case 
22n N= = , the states 0〉 and 1〉 can form a series of combined states such as (Duarte, 

2019)

1 1 1 1 ,   1 1 0 1 ,   1 1 1 0 ,   1 1 0 0 ,   1 0 1 1 ,   1 0 0 1 ,  
1 0 1 0 ,  1 0 0 0 , 0 1 1 1 ,    0 1 1 0 ,   0 1 0 1 ,  0 1 0 0 ,  
0 0 1 1 ,  0 0 1 0 , 0 0 0 1 ,   0 0 0 0

Four of these combined states observe inter-pair orthogonality:

	 1 0 0 01C = 	 (19.79)

	 1 0 1 02C = 	 (19.80)

	 0 1 0 13C = 	 (19.81)

	 0 1 1 04C = 	 (19.82)

and the corresponding combined and normalized probability amplitudes become 
(Duarte, 2015, 2016)

	 4 1/2
1 2 3 4C C C C

I
ψ ( )= + + +− 	 (19.83)

	 4 1/2
1 2 3 4C C C C

II
ψ ( )= + − −− 	 (19.84)

	 4 1/2
1 2 3 4C C C C

III
ψ ( )= − + −− 	 (19.85)

	 4 1/2
1 2 3 4C C C C

IV
ψ ( )= − − +− 	 (19.86)

The principles of 2 , 23 4n N= =  quantum entanglement, which are applicable 
to binary quantum computing, are described in Chapter 16 and also discussed by 
Duarte and Taylor (2017). The principles applicable to 3n N= =  and 6n N= =  are 
outlined in Chapter 17.

This is the path forward toward quantum computing with a large number of qbits 
at room temperature.

19.11 � DISCUSSION

Quantum optics computing, based on interferometric configurations, can perform 
interferometric calculations at least 105×  times faster than the same calculations car-
ried out in optimally-programmed conventional universal computers (Duarte 1993, 
2003). From the temporal vantage point alone, the promise of quantum computing 
is very bright.
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Principal areas of development concern the generation and handling of a large 
number of qbits, in the 10 103 6Nqbit≤ ≤  let’s say, with high fidelity (Duarte, 2019).

This is a fast-moving field and, at present, it is difficult to gauge which technologi-
cal approach to quantum computing has the upper hand. Pauli gates and CNOT gates 
appear to become the workhorses of circuit design.

The beauty of the optical approach to quantum computing is that it can be per-
formed without cooling and, at least in principle, it is apt to generate and handle large 
number of qbits. In other words, quantum computing with 2 , 2 22 3

n N r= =  and 
3, 6, 9n N= = , at room temperature, is wide open using photon qbits.

The material presented in this chapter adheres exclusively to quantum boson prin-
ciples. It demonstrates the kind of quantum mathematics that can be performed by 
utilizing known optical elements such as the /2π  polarization rotators. The Hadamard 
gate can be configured via a HOM interferometer.

PROBLEMS

	19.1	 Use the direct vector product mechanics to show that 2 1/2
xψ σ=+

− .
	19.2	 Use the direct vector product mechanics to show that 2 1/2

zψ σ=− − .
	19.3	 Use the direct vector product mechanics to show that R ψ ψ= −−

− .
	19.4	 Use the direct vector product mechanics to show that 2 1/2R xψ σ=+ − .
	19.5	 Verify that Equation (19.66) can be expressed as Equation (19.67)
	19.6	 Verify the identity 2 1/2HG ψ ψ ψ( )= −−

−
+

− .
	19.7	 Verify the identity 2 ( )1H I iG yψ σ= −− − .
	19.8	 Verify the identity HG ψ ψ( )= ++

− .
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Quantum Cryptography 
and Quantum 
Teleportation

20.1  INTRODUCTION

Cryptography is a word derived from the Greek that is approximately translated as 
hidden writing. There are various forms and styles of cryptography; however, since 
ancient times, the aim of cryptography has been the same: secure the transmission of 
information from an emitter to a receiver. A classical form of cryptography involves 
the sharing of a code between the emitter and the receiver. The emitter writes a mes-
sage, using the shared code, and sends it to the intended receiver who uses the code 
to decipher the message. The integrity of the message is secured if and only if the 
code remains in the knowledge of the emitter and the intended receiver. If the code 
is acquired, or broken, by a third party, then the message is no longer secured. An 
example of a simple classical numerical code is illustrated in Figure 20.1 and used to 
write the number π to ten decimal places.

Albeit still in use, paper-based code systems have been largely replaced by vari-
ous computerized mathematical methods that enable the electronic transmission of 
encrypted messages. The message is encrypted before transmission, transmitted 
via an unsecured channel in encrypted form, and decoded, once received. A widely 
used system of encryption, of this class, is known as symmetric key algorithm. This 
approach utilizes the same cryptographic key, or classical algorithm, for encryption 
and decryption, see Figure 20.2.

20
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FIGURE 20.1  Classical code representation for the truncated value of π, to ten decimal 
places. The key is included as a third item.

https://doi.org/10.1201/9781003398707-20
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A different algorithmic approach allows the use of a public key and is known as 
public key cryptography. This approach uses a public key and a secured key, both of 
which are mathematically connected. One key encrypts the plaintext, and the other 
unlocks the ciphertext (see Figure 20.3). The algorithmic methods just described 
enjoy compatibility with the vast array of existing computer networks and are thus 
widely used.

There are many extensions and variations of these classical algorithmic methods. 
Against this background, optical methods of communication offer alternatives that 
include some inherent advantages. In Chapter 8, we described a method of secure 
optical communications known as interferometric communications that involve the 
transmission of interferometric characters at luminal speeds. This method does not 
require a key, although one might be introduced for added security, and is based on 
the fact that the interferometric character is catastrophically distorted or destroyed 
by attempts of interception. Thus, any external intrusion is immediately detected by 
the receiver (Duarte, 2002).

An alternative method, which has received widespread attention in the open lit-
erature, is quantum cryptography. That method is described here in addition to a 
closely related discipline called quantum teleportation.

FIGURE 20.3  Classical public key cryptography. This approach uses a public key and a 
secured key, both of which are mathematically related.

FIGURE 20.2  Classical symmetric key distribution. The same cryptographic key, or classi-
cal algorithm, is used for encryption and decryption, 
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20.2  QUANTUM CRYPTOGRAPHY

Quantum cryptography was first introduced by Weisner in 1983 and then by Bennett 
and Brassard (BB) (1984). A refined protocol was introduced by Bennett et al. 
(1992a). The BB approach relies on the straightforward polarization property of 
single photons. An alternative method, based on the quantum entanglement of pairs 
of photons, was introduced by Ekert (1991). Here, these two approaches to quantum 
cryptography are described.

20.2.1  Bennett and Brassard Cryptography

In the BB approach, we have a single photon emitter and a receiver. There is also 
an adversary intruder, or eavesdropper, whose function is to optically intercept the 
transmission.

The BB approach relies on the quantum polarization properties of single photons: 
the polarization states of the photon are referred to as base states and two bases are said 
to be conjugated in the sense that an attempt to measure one base randomizes the other.

Bennett et al. (1992a) refer to these conjugate bases as canonical bases. The 
canonical bases for polarized photons are

	 H x= 	 (20.1)

	 =V y 	 (20.2)

	 ( )= −−2 1/2L x i y 	 (20.3)

	 ( )= +−2 1/2R x i y 	 (20.4)

which correspond to horizontally ( H  or ↔), vertically ( V  or ), left-circularly  
( L ), and right-circularly ( R ), polarized photons.

Bennett et al. (1992a) describe a quantum key distribution protocol that involves 
the emitter sending a random series of photons polarized in the canonical bases, 
the receiver choosing independently how to measure the polarizations (either rec-
tilinearly ( )+  or circularly ( )Ο ), the receiver publicly announcing his measuring 
sequence (but not the results), the emitter publishing which of the receiver’s bases 
were correct, then both parties agree to discard the data from incorrect measure-
ments and null measurements, and finally, the measurements are in bit form accord-
ing to their polarization.

20.2.2  Quantum Entanglement Cryptography Using Bell’s Theorem

As mentioned in the previous section, an alternative approach, in quantum cryptog-
raphy, involves the use of pairs of photons with entangled polarizations. Interest in 
this methodology was triggered by a paper by Ekert (1991) that described a crypto-
graphic approach using spin one-half particles and Bell’s theorem to ensure security.
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The complete set of probability amplitudes for 2n N= =  quantum entanglement 
is (see Chapter 15)

	 ψ ( )= ++
−2 1/2

1 2 1 2x y y x 	 (20.5)

	 ψ ( )= −−
−2 1/2

1 2 1 2x y y x 	 (20.6)

	 ψ ( )= ++ −2 1/2
1 2 1 2

x x y y 	 (20.7)

	 ψ ( )= −− −2 1/2
1 2 1 2

x x y y 	 (20.8)

From this set of probability amplitudes, Equations (20.5) and (20.6) were implicitly 
used by Ekert (1991). The transmission security of this technique is tested via Bell’s 
theorem (Bell, 1964).

The quantum entanglement probability applicable to two quanta propagating in 
opposite directions, while exhibiting orthogonal polarizations, is calculated from the 
superposition probability amplitude (20.6) and is given by Pryce and Ward (1947).

	 ψ ψ ϕ ϕ ϕ ϕ= = − −∗
( , ) cos2( )1 2 1 2P 	 (20.9)

In Bell’s inequality, the ordinary probabilities originally related to hidden variables 
ultimately are, in an ad-hoc manner, replaced by quantum probabilities (Bell 1964).

More specifically, for 01ϕ = , /32ϕ = π , /61ϕ′ = π , 02ϕ′ = , the probabilities in Bell’s 
expression become quantum superposition probabilities ( , )1 2P ϕ ϕ , ( , )1 2P ϕ ϕ′ , ( , )1 2P ϕ ϕ′ ′ ,  
and ( , )1 2P ϕ ϕ′  (see Chapter 14) and

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = − ′ + ′ ′ + ′( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P PP 	 (20.10)

with a numerical value of

	 Σ = + + + − −0.5 1.0 0.5 0.5P 	 (20.11)

so that 2.5PΣ = . A result of 2PΣ ≥ indicates that Bell’s inequality is violated 
when using probabilities calculated from the probability amplitudes for quantum 
entanglement.

A generic depiction of a quantum entanglement cryptography experiment is 
given in Figure 20.4. Some notable free-space quantum cryptography experiments 
include the following: Ursin et al. (2007) communicated at a distance of over 144 km 
while reporting a clear violation of Bell’s inequality with 2.508 0.037PΣ = ± ; Yin 
et al. (2017) communicated in an Earth–satellite–Earth scheme over distances up 
to 1700 km while reporting 2.37 0.09PΣ = ± ; Villar et al. (2020) have demonstrated 
polarization quantum entanglement experiments on board a ‘nanosatellite’ launched 
from the International Space Station at an altitude of 408 km, while reporting 

2.63 0.067PΣ = ± .
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20.2.3 A ll-Quantum Quantum Entanglement Cryptography

The Pryce-Ward superposition probability, in its four alternative forms for 1ϕ , 2ϕ , 1ϕ′ ,  
and 2ϕ′ , is given by

	 ( , ) cos2( )1 2 1 2P ϕ ϕ ϕ ϕ= − − 	 (20.12)

	 ( , ) cos2( )1 2 1 2P ϕ ϕ ϕ ϕ′ = − − ′ 	 (20.13)

	 ( , ) cos2( )1 2 1 2P ϕ ϕ ϕ ϕ′ ′ = − ′ − ′ 	 (20.14)

	 ( , ) cos2( )1 2 1 2P ϕ ϕ ϕ ϕ′ = − ′ − 	 (20.15)

FIGURE 20.4  (a) Generic experimental configuration for cryptography via quantum 
entanglement based on the original Pryce–Ward γ-ray configuration (Pryce and Ward, 1947). 
(b) Generic quantum entanglement configuration for cryptographic applications based on a 
photon pair source. These experimental alternatives use polarizers (p) and polarizing beam 
splitters (PBS).
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Duarte and Taylor (2021) introduced a simple all-quantum approach to quantum 
cryptography independent of Bell’s theorem. In this approach, the overall quantum 
probability of the experiment is given by the straight-forward addition of the absolute 
value of each of the four quantum superposition probabilities (Duarte and Taylor 
2021; Duarte, 2022)

	 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΣ = + ′ + ′ ′ + ′ψ ψ〉 〉− −
∗ ( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2P P P P 	 (20.16)

which is clearly distinct from the probability equation given by Bell (1964) and 
included previously as Equation (20.10). The use of Equations (20.12)–(20.15) and 
the overall superposition probability, Equation (20.16), is completely free of the 
assumptions used to arrive at Bell’s theorem.

As an example, consider the following angular settings: /201ϕ = π , 9 /202ϕ = π , 
/31ϕ′ = π , /62ϕ′ = π . This leads directly to

	 Σ = + − + − + − =ψ ψ〉 〉− −
∗ 0.8090 0.7431 0.5000 0.7431 2.7952 	 (20.17)

The all-quantum measurement protocol for secure quantum entanglement commu-
nications as developed by Duarte and Taylor (2021) consists of three steps:

	 1.	Via a series of measurements, in free space, while ensuring that no third-
party intruders are present, arrive at a measurement determined intrinsic 
quantum superposition probability (IQSP)

	 | | | |Σ ± ∆Σψ ψ ψ ψ〉 〉 〉 〉− −
∗

− −
∗ 	 (20.18)

	 2.	Once the IQSP has been determined, only polarization data giving rise to 
measured probabilities within the Σ ± ∆Σψ ψ ψ ψ〉 〉 〉 〉− −

∗
− −

∗  range are to be con-

sidered as secure. Polarization data, leading to probabilities outside the 
intrinsic measured range (20.18), is to be discarded.

	 3.	Determining Σ ± ∆Σψ ψ ψ ψ〉 〉 〉 〉− −
∗

− −
∗  also yields a set of completely corre-

lated measurements that can be used as the key. However, this key is not 
necessary.

It should be reemphasized that the crucial IQSP, or Σ ± ∆Σψ ψ ψ ψ〉 〉 〉 〉− −
∗

− −
∗ , is an experi-

mental quantity to be determined by measurements exclusively. This approach is in 
total agreement with Born’s quantum experimental doctrine (Born, 1949).

20.3  QUANTUM TELEPORTATION

Quantum teleportation, as described by Bennett et al. (1993), consists in the disinte-
gration of one quantum state, at the emitter’s site, and in the subsequent reintegration 
of that quantum state at the receiver’s site.

In this section, the mechanics of quantum teleportation is described. This descrip-
tion is based on the descriptions previously given by Duarte and Taylor (2021) and 
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Duarte (2022). The style and notation of previous reviews on the subject by Duarte 
(2014, 2019) are preserved.

As a first step, Pauli’s matrices and the identity matrix I and are restated

	
0 1
1 0xσ =







	 (20.19)

	
0

0
i

i
yσ = −




	 (20.20)

	
1 0
0 1zσ =

−






	 (20.21)

	
1 0
0 1

I =





	 (20.22)

The complete set of Pryce-Ward probability amplitudes are expressed in vector nota-
tion (Duarte, 2019)

	 s ( )= ++
−2 1 0 0 11/2

1 2 1 2 	 (20.23)

	 s ( )= −−
−2 1 0 0 11/2

1 2 1 2 	 (20.24)

	 r ( )= ++
−2 1 1 0 01/2

1 2 1 2 	 (20.25)

	 r ( )= −−
−2 1 1 0 01/2

1 2 1 2 	 (20.26)

Addition and subtraction of these superposition probability amplitudes yield the fol-
lowing combined states:

	 + =−
+ −2 ( ) 1 01/2

1 2s s 	 (20.27)

	 − =−
+ −2 ( ) 0 11/2

1 2s s 	 (20.28)

	 + =−
+ −2 ( ) 1 11/2

1 2r r 	 (20.29)

	 − =−
+ −2 ( ) 0 01/2

1 2r r 	 (20.30)
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Now, assume that the following quantum state is to be teleported

	 φ α β= +( 1 0 )
1 1 1 	 (20.31)

In explicit vector notation, this state is equivalent to

	 φ α
β

α
β=







+




















=








0

0
1

1 1 1

	 (20.32)

Here, the α and β factors are related by α β+ = 12 2
. This probability amplitude, 

φ α β= +( 1 0 )
1 1 1 , is the state to be disassembled at the emitter’s site and reas-

sembled at the receiver’s site. This is what is known as quantum teleportation.
Next, select one of the quantum entanglement states given in Equations (20.23)–

(20.26). Assuming that Equation (20.23) is selected, then replacing s + by s +23  leads 
to

	 s ( )= ++
−2 1 0 0 123

1/2
2 3 2 3 	 (20.33)

Now, a three quanta state φ
123

 is created by the emitter via the multiplication of φ
1 

and s +23

	 φ α α β β( )= + + +−2 1 1 0 1 0 1 0 1 0 0 0 1
123

1/2
1 2 3 1 2 3 1 2 3 1 2 3

� (20.34)

this step disassembles the original state φ
1
.

Using Equations (20.27)–(20.30) while noting that s s=+ +12 , s s=− −12 , 
r r=+ +12 , r r=− −12 , Equation (20.34) can be rewritten as

	 s s r rφ φ ϕ ϑ ϑ( )= + + +−
+ + − − + + − −2

123
1

12 3 12 3 12 3 12 3 	 (20.35)

meaning that each of the internal states of this probability amplitude has an equal 
chance of existing. Thus, attention is now given to φ +3

, φ −3
, ϑ +3 , and ϑ −3 .

Via Equation (20.31), photon 3 is projected into the following states:

	 φ α β( )= ++ 1 0
3 3 3 	 (20.36)

	 φ α β( )= ++ 1 0
3 3 3 	 (20.37)

	 ϑ α β( )= ++ 0 13 3 3 	 (20.38)

	 ϑ α β( )= −− 0 13 3 3 	 (20.39)
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which in direct vector notation become

	 φ
α
β=









+3

3

	 (20.40)

	 φ
α
β= −









−3

3

	 (20.41)

	 ϑ β
α

=








+3

3

	 (20.42)

	 ϑ β
α

= −







−3

3

	 (20.43)

In summary: the emitter measures the probability corresponding to s +12  and the 
qbit communicated to the receiver is φ +3

. For this case, the unitary transformation 
needed is the identity matrix I which is communicated classically to the receiver 
(Kim et al., 2001).

In the nomenclature s φ→+ +12 3
, → stands for ‘quantum communicate to 

receiver’. The mechanics for the four cases s φ→+ +12 3
, s φ→− −12 3

, r ϑ→+ +12 3 ,  
and r ϑ→− −12 3  is explicitly described in the following equations.

For s φ→+ +12 3
:

	 φ α β( )= ++ 1 0
3 3 3I 	 (20.44)

	 φ
α
β

α
β=















 =









+

1 0
0 13

3 3

I 	 (20.45)

	 φ φ=+ +3 3
I 	 (20.46)

For s φ→− −12 3
:

	 σ φ σ α β= −− ( 1 0 )
3 3 3z z 	 (20.47)

	
α
β

α
β−





 −









 =











1 0
0 1

3 3

	 (20.48)

	 σ φ φ=− +3 3z 	 (20.49)
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For r ϑ→+ +12 3 :

	 σ ϑ σ α β( )= ++ 0 13 3 3x x 	 (20.50)

	
0 1
1 0

3 3

β
α

α
β















 =









 	 (20.51)

	 σ ϑ φ=+ +3 3x 	 (20.52)

For r ϑ→− −12 3 :

	 σ ϑ σ α β( )= −− 0 13 3 3i iy y 	 (20.53)

	
0

0
3 3

i
i

i
β

α
α
β

−





−







 =









 	 (20.54)

	 σ ϑ φ=− +3 3
i y 	 (20.55)

A simplified schematic of the quantum state teleportation scheme is outlined in 
Figure 20.5.

PROBLEMS

	20.1	 Show that σ =0 1x  and σ =1 0x .
	20.2	 Evaluate σ 0i y  and σ 1i y .
	20.3	 Using the Pryce-Ward probabilities given in Equations (20.12) to (20.15) 

and Bell’s Equation (20.10) calculate PΣ  for /201ϕ = π , 9 /202ϕ = π , 
/31ϕ′ = π , /62ϕ′ = π .

20.4	 Using the Pryce-Ward probabilities given in Equations (20.12)–(20.15) 
and Equation (20.16) calculate Σψ ψ〉 〉− −

∗  for /201ϕ = π , 9 /202ϕ = π , 
/31ϕ′ = π , /62ϕ′ = π .

FIGURE 20.5  Simplified generic overview of quantum teleportation. At the emitter’s site, 
a single photon source creates φ1 , the state to be teleported. In addition, entangled photon 
pairs are produced. This emission is used in the creation, for example, of the r −12  and ϑ −3  
states by mixing the φ1  state with the entangled photon pair, thus φ1  is disassembled. 
Synchronized emission via free-space enables the ϑ −3  state to reach the receiver where ϑ −3  
undergoes the i yσ  transformation to reassemble φ1 .
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	20.5	 If the state to be quantum teleported is φ α β( )= +0 1
1 1 1  derive equa-

tions, in vector notation, for φ +3
, φ −3

, ϑ +3 , and ϑ −3 .

	20.6	 Using the vector states for φ +3
, ϕ −3

, ϑ +3 , and ϑ −3 , found in the previ-
ous problem, derive the matrix equations for φ +3

I , σ φ −3z , σ ϑ +3x , and 
σ ϑ −3i y .
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Quantum Measurements

21.1  INTRODUCTION

Classically, the process of a measurement is relatively straight forward. The objects 
measured are macroscopic, and they can be measured repeatedly without being dis-
turbed in a non-destructive process. For example, using a meter rule or a metric 
caliper, one can measure repeatedly the length of an object, thus obtaining a series of 
measurements that can lead to an average dimension and a corresponding standard 
of deviation. In other words, the experimental physicist obtains the measurement and 
the error associated with that measurement ( )± ∆x x . Thus, classically speaking, the 
measurement issue is settled.

All experimental measurements include an error. Measurements without an error, 
or without uncertainty, are not physically possible.

Quantum mechanically speaking, the measurement problem is not as straight-
forward, as in the classical domain, since we are using relatively massive macro-
scopic classical instruments to obtain measurements on minute quantum objects such 
as photons and electrons. Therefore, the issue of uncertainties becomes even more 
important.

Going back to basics, we find that Dirac (1958) refers to the measurement process 
in a fairly abstract manner indicating that a succession of measurements should give 
identical results, thus implying that the measurement should be non-destructive. von 
Neumann (1932) introduced the reduction of the wave function hypothesis. Lamb 
(1989) is of the opinion that the Dirac and the von Neumann approaches are ‘essen-
tially equivalent.’ Lamb (1989) further states that ‘neither Dirac nor von Neumann 
discussed his measurements in physical terms.’

Furthermore, according to Lamb (1989), Pauli introduced a concept to use 
Stern–Gerlach type measurements to determine probability distributions which 
were fine in principle but in practice ‘always destroyed the system of interest’ 
(Lamb, 1989). Here, we should also add that one of van Kampen’s theorems states 
explicitly that the measuring apparatus in quantum mechanics is macroscopic (van 
Kampen, 1988).

Thus, it is not surprising to read articles by noted physicists entitled Against mea-
surement (Bell, 1990) where the concepts of Dirac, von Neumann, and van Kampen 
are criticized. In this chapter, we attempt to describe practical approaches to the 
measurement of physical parameters associated with quantum entities such as the 
photons and ensembles of indistinguishable photons.

21.1.1 T he Two Realms of Quantum Mechanics

In quantum mechanics, as articulated by Dyson (2007), there are two realms – the first 
realm is the beautiful mathematical realm of probability amplitudes, wave functions, 

21
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and complex numbers. The second realm is the measurement realm of probabilities, 
intensity measurements, and polarization measurements. The transition from the first 
realm to the second realm is performed via Born’s rule (Born, 1926)

	 〈 〉〈 〉 = 〈 〉∗ 2
d s d s d s 	 (21.1)

That is how we transition from purely mathematical probability amplitudes to mea-
surable probabilities. That’s it. Nothing else is needed. There is no need to concep-
tualize a ‘collapse of the wave function’ or a ‘collapse of the probability amplitude’ 
(Duarte, 2022). In this regard, the ‘measurement problem’ becomes an unnecessary 
conceptual problem to be discarded (Duarte, 2022).

Also important, from our perspective, is that we are dealing almost exclusively 
with photons and indistinguishable quanta. Photons and/or indistinguishable quanta 
are not particles (Lamb, 1995).

21.2  THE INTERFEROMETRIC IRREVERSIBLE MEASUREMENTS

The interferometric measurements described in Chapter 8 are macroscopic physical 
permanent records of interferometric photon distributions. As such, these recordings 
represent an inherently irreversible transformation of the event to be recorded. In 
other words, these measurements are destructive and they illustrate what happens 
when a massive macroscopic classical system interacts with a quantum entity such as 
a photon or an indistinguishable quanta interferometric distribution.

Photon intensities are proportional to quantum mechanical probabilities (see 
Appendix A). Thus, when we measure an intensity distribution or an interferometric 
intensity distribution, we are recording the spatial information originally contained 
in the interferometric distribution which is a quantum probability distribution such 
as the generalized one-dimensional N-slit interferometric distribution (Duarte, 1991, 
1993)

	 ∑ ∑〈 〉 〈 〉 = Ψ Ψ∗

=

Ω −Ω

=

( ) ( )
1

( )

1

d s d s r r ej

j

N

m
i

m

N

m j 	 (21.2)

	 d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












= +==

( ) 2 ( ) ( )cos( )
2 2

111

	 (21.3)

where ( )r jΨ  are wave functions (Dirac, 1958; Duarte, 2004), and the term in paren-
theses represents the phase that describes the exact geometry of the N-slit interfer-
ometer (Duarte, 1991, 1993). Again, the measured intensity is proportional to the 
probability 

2
〈 〉d s , and it is this probability that gives origin to the spatial distribu-

tion of the observed intensity. These equations were originally derived for single-
photon propagation (Duarte, 1993, 2004) albeit in practice, they also apply to the 
propagation of an ensemble of indistinguishable photons, as in the case of narrow-
linewidth laser emission.
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Note: the quantum probability is expressed in Equations (21.2) and (21.3) are 
entirely equivalent. This is restated here to dissipate any doubts on the quantumness 
of Equation (21.3) which does not explicitly include imaginary exponents due to the 
use of the identity

	 2cos( ) ( ) ( )e em j
i im j m jΩ − Ω = +− Ω −Ω Ω −Ω 	 (21.4)

21.2.1 T he Quantum Measurement Mechanics

In the interferometric measuring process, a photon distributed in the interferometric 
distribution described by Equations (21.2) or (21.3) arrives at the interference plane 
or detection surface d. Here, the photon is considered as a nonlocal form of coherent 
energy.

The arrival of each individual photon, with an energy E hν= , means that the 
quantum intensity distribution

	 λ νΩ = 〈 〉 〈 〉∗( , , )I N K h d s d s 	 (21.5)

interacts with the pixels at the detector’s surface. This single-photon interaction with 
the detector might or might not lead to the creation of a charge within the spatial 
boundaries of the 〈 〉 〈 〉∗d s d s  distribution. Repeated interactions of ( , , )I Nλ Ω  with 
the detector surface eventually lead to the creation of a charge at any of the individual 
pixel sites within the 〈 〉 〈 〉∗d s d s  distribution.

For light associated with the emission of large numbers of r indistinguishable 
photons, as in the case of narrow-linewidth laser emission, the intensity distribution 
becomes

	 λ νΩ = 〈 〉 〈 〉∗( , , )I N rK h d s d sr 	 (21.6)

and the energy associated with this distribution becomes E rhν= . In this case, a 
cumulative spatial charge distribution closely resembling 〈 〉 〈 〉∗d s d s  is registered 
at the detector (Duarte, 2004). Once the single photon, or the ensemble of indistin-
guishable photons, interacts with the detection surface, the process becomes irre-
versible, thus representing a destructive measurement.

If the interferometric plane is comprised of a photographic plate, then the incident 
photon energy develops a charge in one of the grains within the 〈 〉 〈 〉∗d s d s  distribu-
tion. If the interferometric plane is comprised of a photo-electric surface, the incident 
photon generates a charge, within the 〈 〉 〈 〉∗d s d s  distribution, that is amplified in a 
cascade process until it produces a classical manifestation.

In the case of illumination via ensembles of indistinguishable photons, this 
process is highly reproducible and repeatable with nearly identical ensembles of 
indistinguishable photons, giving rise to nearly identical 〈 〉 〈 〉∗d s d s  probability 
distributions.

The intensity distributions represented by Equations (21.5) and (21.6) follow 
from the observation that ν ∝ 〈 〉 〈 〉∗( )I d s d s  (see Appendix A). We also know, from 
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comparisons from measurements and theory (Duarte, 1993) that this intensity dis-
tribution, ( , , )I Nr λ Ω , closely reproduces the calculated quantum probability dis-
tribution 〈 〉 〈 〉∗d s d s . In turn, 〈 〉 〈 〉∗d s d s  originates from the multiplication of the 
superposition probability amplitude series.

Note: in this section, the original material, was expanded and revised in light of 
the review by Duarte (2022).

21.2.2 A dditional Irreversible Quantum Measurements

In addition to the interferometric measurements just described, other irreversible 
quantum measurements in optics include the following:

	 1.	The original quantum polarization entanglement measurements made by 
Wu and Shaknov (1950).

	 2.	Quantum polarization measurements to test Bell’s inequalities (see, for 
example, Aspect et al., 1982).

	 3.	Quantum cryptography measurements (see, for example, Gobby et al., 
2004).

	 4.	Measurements of quantum teleported states (see, for example, Ma et al., 
2012).

In all these cases, quantum entities, namely the photon, interact with massive macro-
scopic detectors in an irreversible manner.

21.3  QUANTUM NON-DEMOLITION MEASUREMENTS

Lamb wrote several papers on measurements in quantum mechanics. The first paper 
(Lamb, 1986) considers a sequence of quantum mechanical measurements on an iso-
lated large macroscopic system, such as a gravity wave detector. In the second paper, 
Lamb (1989) is still interested in a large macroscopic system where ‘only the detector 
is treated quantum mechanically.’ He then discloses his idea of ‘making purely clas-
sical measurements on a quantum system’ (Lamb, 1989). This approach appears to 
be consistent with van Kampen’s fifth theorem which states that a measuring instru-
ment in quantum mechanics ‘consists of a macroscopic system’ (van Kampen, 1988). 
Lamb’s work is mainly mentioned here to highlight the interplay between quantum 
mechanics and macroscopic measurement apparata.

21.3.1 S oft Probing of Quantum States

Soft, non-destructive, optical probing of propagating quanta in superposition polar-
ization states of the form

	 x yψ ( )〉 = 〉 + 〉−2 1/2 	 (21.7)

can be performed via the insertion of microscopic means that alter the polarization 
state as described by the density matrix
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If quanta are involved in an interferometric situation, then insertion of microscopic 
means causes the interferometric pattern to be slightly altered. The fact that the 
interference pattern is altered, indicates that the soft probing conducted does indeed 
modify the interference pattern, as would be expected from Feynman’s teachings 
(Feynman et al., 1965). The insertion of macroscopic means, such as beam splitters, 
to probe propagating quanta in a given superposition state, causes catastrophic altera-
tions to the propagating state (Duarte, 2002).

21.4  SOFT INTERSECTION OF INTERFEROMETRIC CHARACTERS

In Chapter 8, we saw that beam path proving via conventional high-surface quality 
beam splitters can be immediately detected due to the catastrophic collapse induced 
by the spatial disruption caused by the beam splitter. This is the case even if the clas-
sical beam splitter is highly transparent and only a fraction of a millimeter in thick-
ness, since the observed phenomenon is a diffractive edge effect brought about by an 
abrupt change in the spatial distribution of the refractive index.

The question then becomes: can we probe in the intra-interferometric path D d j  
ever so gently as to avoid a violent disruption of the homogeneous refractive index 
serving as propagation medium between the N-slit array and the interference plane? 
The answer to this question is in the affirmative: soft intersection of propagating 
N-slit interferometric characters, microscopic spider web silk fibers, was demon-
strated by Duarte et al. (2011) using an experimental configuration described in 
Figure 21.1. The fibers used in these experiments are ultra-thin semi-transparent and 
ultra-thin transparent natural fibers.

Two such fibers are fine human blond hair and spider web fibers. The fibers have 
a diameter of 50d ≈  μm in the case of blond human hair and 25 30d≤ ≤  μm in the 
case of transparent spider web fibers which were collected in Western New York, 
near Lake Ontario (Duarte et al., 2011).

The interferometric character ( 2)a N = , for an intra-interferometric distance of 
= 7.235D d j  m, is illustrated in Figure 21.2. For the same interferometric character 

( 2)N =  with the spider web fiber, positioned 15 cm from the interferometric plane 
at d ( 3D ), and displaced laterally, a diffraction pattern is superimposed over one of 
the outer wings of the interferogram (see Figure 21.3). The important and interesting 
effect here is that the propagating interferogram is physically intercepted but it is 
not destroyed. It is modified, or altered, in a suave orderly and controllable manner.

21.4.1 �C omparison between Theoretical and 
Measured N-Slit Interferograms

Next, we describe in detail a series of additional soft probing experiments, conducted 
by Duarte et al. (2013), that involve the gentle and controlled insertion of the spider 
silk web fiber into the optical path D d j  of the propagating interferometric character. 
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FIGURE 21.1  Top view schematics of the intra-interferometric path of the N-slit interfer-
ometer indicating (approximately) the three positions D1, D2, and D3, in the D d j  propaga-
tion path, where the spider web fiber is inserted perpendicular to the plane of incidence (i.e., 
orthogonal to the plane of the figure). 

FIGURE 21.2  Interferometric distribution registered at x, for = 7.235D d j  m, 632.82λ =  
nm, and 2=N  (570 μm slits separated by 570 μm). This interferogram corresponds to the 
interferometric character a. This measurement was performed at a temperature of 22 C≈ °T . 
Each pixel on the CCD screen is 20 μm wide (Duarte, F. J. et al., J. Opt. 13, 035710, 2011, © 
IOP Publishing. Reproduced with permission. All rights reserved).
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The silk fiber is inserted into the intra-interferometric propagation path, under ten-
sion, perpendicular to the plane of incidence at 1D , 2D , and 3D  (see Figure 21.1). That 
is, the spider web fiber is inserted orthogonal to the beam expansion defined by the 
multiple-prism expander. As illustrated in Figure 21.1, the N-slit array, or grating, is 
also deployed with the direction of the slits perpendicular to the plane of incidence.

The intra-interferometric distances of silk fiber insertion are (Duarte et al., 2013):

	 1.	 = − 0.1501D D d j  m (15 cm from the detector).
	 2.	 = / 22D D d j  (midway).
	 3.	 = − 7.0853D D d j  m (15 cm from the grating).

while the overall intra-interferometric distance is maintained at = 7.235D d j  m.
First, a control interferogram is generated from the illumination of 3N =  slits of 

the grating comprised with 570 μm slits separated by 570 μm, at 632.82λ =  nm, for 
an intra-interferometric distance of = 7.235D d j  m, as illustrated in Figure 21.4. 
This interferometric character b, is recorded at room temperature ( 22 CT ≈ ° ) which 
becomes the standard measurement temperature.

An interferogram under identical propagation conditions, for 3N = , with the spi-
der web silk fiber deployed orthogonally to the propagation plane, at 1D , is shown in 

FIGURE 21.3  Photograph of the interferometric distribution registered at x, for = 7.235D d j  
m, 632.82λ =  nm, and 2=N  (570 μm slits separated by 570 μm) showing a superimposed dif-
fractive pattern over the outer right wing of the interferogram. The superimposed diffractive 
distribution is caused by a spider web fiber deployed orthogonally to the propagation plane 
(that is, perpendicular to the plane of Figure 21.1) at the distance of = − 0.1501D D d j  m, or 
15 cm from d (Duarte, F. J. et al., J. Opt. 13, 035710, 2011, © IOP Publishing. Reproduced 
with permission. All rights reserved).
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Figure 21.5. The interferometric distribution thus obtained demonstrates a diffraction 
pattern superimposed over the outer right wing of the interferogram in Figure 21.5.

An interferogram under identical propagation conditions, for 3N = , but now 
with the spider web silk fiber deployed orthogonally to the propagation plane, at 

= /22D D d j , is shown in Figure 21.6.
An interferogram under identical propagation conditions, for 3N = , but now with 

the spider web silk fiber deployed orthogonally to the propagation plane, at 3D , is 
shown in Figure 21.7. For this experiment, the fiber is positioned 15 cm from the slits 
near the first (right) slit relative to the configuration of Figure 21.1.

A theoretical control interferogram, equivalent to the measured interferogram of 
Figure 21.4, is generated using the interferometric equation

	 ( ) 2 ( ) ( ) cos( )
2 2

111

∑∑∑〈 = Ψ + Ψ Ψ Ω − Ω

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
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m j
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and displayed in Figure 21.8. Reproduction, or prediction, of the interferograms with 
superimposed diffraction patterns is performed by adopting the interferometric cas-
cade approach (Duarte, 1993; Duarte et al., 2011). This cascade approach consists in 
using the interferometric equation, that is Equation (21.1), to create an interferometric 
distribution that becomes the illumination field of the next N-slit array (Duarte, 1993) 

FIGURE 21.4  Control intensity profile of interferogram registered at d, for = 7.235D d j  
m, 632.8λ =  nm, and 3=N  (570 μm slits separated by 570 μm). The interferogram generated 
with 3=N  corresponds to the interferometric character b. This measurement was performed 
at a temperature of 22≈T C. Each pixel on the CCD screen is 20 μm wide. These parameters 
apply to all the measurements considered in the next set of figures (Reproduced from Duarte, 
F. J. et al., J. Mod. Opt. 56, 1780–1784, 2013, with permission). 
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FIGURE 21.5  Measured intensity profile of interferogram registered at d, for = 7.235D d j  
m, 632.82λ =  nm, and 3=N  showing a superimposed diffractive intensity distribution over 
the outer right wing of the interferogram. The superimposed diffractive pattern is caused by 
a spider web fiber deployed orthogonally to the propagation plane (i.e., perpendicular to the 
plane of Figure 21.1) at the distance of = − 0.1501D D d j  m, or 15 cm from d (Reproduced 
from Duarte, F. J. et al., J. Mod. Opt. 56, 1780–1784, 2013, with permission). 

FIGURE 21.6  Measured intensity profile of interferogram registered at x, for = 7.235D d j  
m, 632.8λ =  nm, and 3=N  with a spider web fiber deployed orthogonally to the propagation 
plane at an intra-interferometric distance of = /22D D d j  (Reproduced from Duarte, F. J. 
et al., J. Mod. Opt. 56, 1780–1784, 2013, with permission). 
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FIGURE 21.7  Measured intensity profile of interferogram registered at d, for = 7.235D d j  
m, 632.82λ =  nm, and 3=N  with a spider web fiber deployed orthogonally to the propaga-
tion plane at an intra-interferometric distance of = − 7.0853D D d j  m (15 cm from the slits) 
(Reproduced from Duarte, F. J. et al., J. Mod. Opt. 56, 1780–1784, 2013, with permission). 

FIGURE 21.8  Calculated control interferogram at d, using Equation (21.1), for = 7.235D d j  
m, 632.82λ =  nm, and 3=N . This calculated interferogram corresponds to the measured 
interferogram displayed in Figure 21.4 (Reproduced from Duarte, F. J. et al., J. Mod. Opt. 56, 
1780–1784, 2013, with permission). 
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(see Chapter 22 for further details). Using this approach, the spider web silk fiber is 
represented by two wide slits separated by the diameter of the fiber. Thus, we can 
predict or replicate the diffraction effect induced by the spider web fiber at various 
intra-interferometric distances.

The calculations representing insertion of a 25 μm fiber in the intra-interfero-
metric path D d j  at 1D , 2D , and 3D  are displayed in Figures 21.9, 21.10, and 21.11, 
respectively. At D1, the superposition of the diffraction signal over the interferomet-
ric distribution is beautifully predicted as illustrated in Figure 21.9. At D2, the silk 
fiber induces only a minor effect as shown in Figure 21.10. Furthermore, at D3, the 
silk fiber produces almost no disturbance when placed between slits and tends to 
only very slightly modify the whole interferometric distribution when positioned at 
the center of one of the slits (Figure 21.11). Either in the case of the beautiful super-
imposed diffraction distribution (Figure 21.9) or in the other two more subtle interac-
tions, the theoretical interferograms nicely reproduce the corresponding measured 
interferograms.

Previously, it was demonstrated that insertion of a conventional thin and highly 
transparent beam splitter into the intra-interferometric path led, as expected (see 
Chapter 8), immediately to a catastrophic collapse of the interferometric charac-
ter or signal (Duarte, 2002, 2005; Duarte et al., 2010). However, the experiments 
described by Duarte et al. (2013) demonstrate a remarkable suave and controlled way 
to alter the propagating interferograms in a soft and non-demolition manner. Thus, 
we have transitioned from a regime of total signal collapse, using classical beam 

FIGURE 21.9  Calculated interferogram at d, for = 7.235D d j  m, 632.82λ =  nm, and 3=N  
with a 30 μm diameter fiber deployed orthogonally to the propagation plane at a distance of 
15 cm from d, or = − 0.1501D D d j  m. The fiber is positioned 4 mm from the center. This cal-
culated interferogram corresponds to the measured interferogram displayed in Figure (21.5) 
(Reproduced from Duarte, F. J. et al., J. Mod. Opt. 56, 1780–1784, 2013, with permission). 
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splitters, to a soft regime of non-destructive gentle detection with the use of spider 
silk threads. This appears to be allowed by the unusual geometry of the N-slit inter-
ferometer where the dimensions and separation of the slits (570 μm) are relatively 
enormous to the dimensions of the fiber diameter (25–30 μm).

21.4.2 S oft Interferometric Probing

As indicated earlier, Equation (21.2) is a quantum probability expression that was 
originally derived for single-photon propagation that also describes accurately the 
interferometric propagation generated by ensembles of indistinguishable photons 
as available from narrow-linewidth lasers. Thus, as previously observed (Duarte, 
2002, 2005), and according to Feynman’s teachings, we have expected and observed 
the catastrophic collapse of interferometric characters at any macroscopic attempt 
to extract information. These attempts involved the insertion of very thin highly 
transparent beam splitters. In this regard, the orderly non-destructive diffractive 
effects reported by Duarte et al. (2011, 2013), following soft interrogation via the 
insertion of a microscopic spider web fiber, are extremely relevant given that the 
information contained in the interferometric character is largely preserved albeit 
the presence of the fiber is nicely detected. Even more interesting are the results 
obtained at = /22D D d j  and 3D .

FIGURE 21.10  Calculated interferogram at d, for = 7.235D d j  m, 632.82λ =  nm, and 
3=N  with a 30 μm web fiber deployed orthogonally to the propagation plane at an intra-

interferometric distance of = /22D D d j  (that is, 3.6175 m). The fiber is positioned 2.227 mm 
from the center. This calculated interferogram corresponds to the measured interferogram 
displayed in Figure 21.6 (Reproduced from Duarte, F. J. et al., J. Mod. Opt. 56, 1780–1784, 
2013, with permission).
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Probing with the fiber at those positions causes a nearly indistinguishable effect. 
These results demonstrate the capability of interacting with the propagating interfer-
ograms non-destructively causing only slight alterations to the information relative 
to the pristine interferograms.

21.4.3 T he Mechanics of Soft Interferometric Probing

According to Willis Lamb, quantum mechanics can be extended to measurements 
on a ‘rather large and otherwise macroscopic system’ (Lamb, 1989). He goes on to 
explain that the detector is treated quantum mechanically; in other words, the process 
of the measurement that in our case refers directly to the interferometric probability 
distribution, that is Equations (21.2) or (21.3), arising either from the propagation of 
single photons or an ensemble of indistinguishable photons (Duarte, 2004).

Albeit the measured interferograms are neatly reproduced using the cascade inter-
ferometric approach, where the interferometric distribution at one plane becomes the 
input for the next plane, as described by Duarte (1993), next we use an alternative 
approach to describe the physics of the fiber intersection with the propagating inter-
ferogram (Duarte et al., 2013).

In a straight forward interferometric propagation, as outlined in Figure 21.1, and 
in the absence of the probing fibers, the interferograms generated are the correspond-
ing control interferogram as shown in Figure 21.4 (measured) and Figure 21.8 (cal-
culated), the probability amplitudes from the grating to the interferometric plane are 

FIGURE 21.11  Calculated interferogram at d, for = 7.235D d j  m, 632.82λ =  nm, and 
3=N  with a 30 μm web fiber deployed orthogonally to the propagation plane at an intra-

interferometric distance of = − 7.0853D D d j  m. The fiber is positioned at the center-right 
slit. This calculated interferogram corresponds to the measured interferogram displayed in 
Figure 21.7 (Reproduced from Duarte, F. J. et al., J. Mod. Opt. 56, 1780–1784, 2013, with 
permission).
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simply given by 〈 〉d j ; however, with the insertion of the spider web fiber, the prob-
ability amplitudes are altered, so that

	 〈 〉 → 〈 ′〉 〈 ′ 〉d j d j j j 	 (21.9)

Indeed, as soon as the spider web fiber is introduced, the original probability 
amplitude

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
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N

	 (21.10)

is replaced by a probability amplitude relevant to the experimental configuration of 
Figure 21.1, that is,
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where the 〈 ′ 〉j j  term represents the probability amplitude of transmission via the 
fiber’s plane. In reality, this is an undetermined spatially un-symmetric transmis-
sion that results in the alteration of the original interferometric pattern. Under those 
circumstances, and using the wave function notation of Chapter 4, the probability 
amplitude has the form of
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An alternative and complementary description is to think of 〈 ′ 〉j j  as representing 
the propagation from the grating to the new plane established by two narrowly sepa-
rated large slits. The width of the separation corresponds to the diameter of the spider 
web fiber. Toward the sides, away from the fiber,

	 〈 ′ 〉 ≈ 1j j 	 (21.13)

and Equation (21.10) reduces to

	 ∑〈 ′〉 ≈ 〈 〉 〈 〉
=1

d s x j j s
j

N

	 (21.14)

so that the interferometric probability distribution is very close to Equation (21.2) or
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as shown in Figures 21.10 and 21.11.
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However, in the strong interferometric regime and immediately around the spi-
der web fiber 〈 ′ 〉j j  alters the overall probability amplitude in a subtle but measur-
able manner leading to the beautiful effect illustrated in Figure 21.5 (measured) and 
Figure 21.9 (calculated). In that case, the probability amplitude given in Equation 
(21.11) applies.

From a dimensional perspective, the experiments described here document the 
unusual opportunity to softly prove, non-destructively, the intra-interferometric 
propagation using natural fibers with diameters 11–22 times smaller than the width 
of the grating slits.

21.5  ON THE QUANTUM MEASURER

Physics experiments are performed by experimental physicists or experimentalists. 
These experimentalists play a critical role in the quality of the measurements and the 
overall outcome of the experiment. The reasons for this dependence on the experi-
mentalist, or the measurer, have been roughly enumerated as follows (Duarte, 2022):

	 1.	The measurer decides what experiment to perform.
	 2.	The measurer decides on what optics to select and on the quality of the 

optics. The measurer also decides on coherent sources, the measurement 
electronics, and its quality.

	 3.	The experiment then depends on the skill of the measurer to optimally 
configure the experiment and to align the optics. As the experimental con-
figuration is improved, the measurer performs fine and minute adjustments 
to optimize and thus reduce experimental errors. In a somewhat ineffable 
manner, it is as if a good experimenter gets in tune with the experiment 
almost intuitively knowing what optical element to adjust to compensate for 
a given temperature change, for instance.

	 4.	Once the experiment is in progress, the measurer must ensure that the 
experiment is free of external intrusions that might alter the measurements. 
This is particularly so in the quantum situation since external intrusions 
catastrophically demolish the superposition states. This is entirely com-
patible with van Kampen’s second theorem that emphasizes that quantum 
measurements must ‘not be perturbed by observation’ (van Kampen, 1998).

	 5.	 It is the implicit ‘freedom of thought’†, or ‘free will’ of the experimentalist 
that leads to innovations, inventions, and discoveries.

In this brief exposition the words experimentalist, measurer, and observer, are equiv-
alent. † Explicitly Feynman refers in his writing to ‘freedom to doubt’ (Feynman, 
1998).

21.5.1  External Intrusions

The effect of external intrusions or ‘observations’ on a quantum experiment in prog-
ress can be illustrated via the superposition probability amplitude for the double-slit 
experiment. Expanding Equation (21.10) for 2N =
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	 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉2 2 1 1d s d s d s 	 (21.16)

will lead to an interferometric probability distribution as shown in Figure 21.2. This 
superposition depends on a single unified detection plane d. Introducing a second 
‘observation’ detector 2d , in the intra-interferometric space D d j , nearby slit 2, as 
illustrated in Figure 21.12, and labeling the original unified detector d as 1d  leads to 
the following superposition probability amplitude

	 〈 〉 = 〈 〉 〈 〉 〈 〉 + 〈 〉 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉2 2 1 1 2 2 1 11 1 2 2 1 2 2 1 1d s d d d s d d d s d s d s

� (21.17)

The probability amplitude for a photon arriving at 2d  to reach 1d  is close to zero since 
any photon reaching 2d  is absorbed by this detector. Thus 〈 〉 ≈ 01 2d d  and

	 〈 〉 ≈ 〈 〉 〈 〉 + 〈 〉 〈 〉2 2 1 11 1 1d s d s d s 	 (21.18)

It can also be argued that the weight of 〈 〉 〈 〉2 21d s  will be diminished, given the 
proximity of 2d  to slit 2, leading to a distorted interferogram, thus informing the 
measurer of the presence 2d . In the extreme case of 〈 〉 〈 〉 >> 〈 〉 〈 〉1 1 2 21 1d s d s

	 〈 〉 ≈ 〈 〉 〈 〉1 11 1d s d s 	 (21.19)

FIGURE 21.12  Double-slit experiment incorporating additional 2d  detector in the 
1

D d j  
intra-interferometric space.
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which is a non-interferometric probability. In other words, the interference distribu-
tion of Equation (21.18) tends to disappear.

Positioning 2d  symmetrically above or below the slits leads to interferometric dis-
tributions at both 1d  and 2d .

21.6  QUANTUM ENTROPY

The generalized interferometric quantum probability Equations (21.2) and (21.3) 
intrinsically incorporate information about time (Duarte and Taylor 2021). For an 
infinitesimally short intra interferometric propagation distance D d j  the propagation 
time t d j can be very short. For instance for = 1D d j  μm the propagation time is 

3.33|t d j ≈ ×10〈 〉
−15 s. For = 1D d j  mm the propagation time is ≈ ×10−123.33t d j  s and 

for = 10D d j  m the propagation time is ≈ ×10−83.33t d j  s, and so on. Then it can 
be easily envisioned that the interferometric quantum probability equation can be 
used to characterize the arrow of time in the interferometric regime. Consequently, 
a highly structured interferogram measured at = 1D d j  mm, let us say, represents a 
lower entropy regime than a smoother interferogram measured at = 10D d j  m.

Furthermore, it is possible to use the information provided by a measured interfer-
ogram at = 10D d j  m, let us say, plus the preexisting parameters of the interferometer 
N, λ, slit width, and slit separation, to go back in time and reconstruct an interfero-
gram at = 1D d j  mm, let us say. Thus the transition in time is from ≈ ×10−83.33t d j  

s to ≈ ×10−123.33t d j  s. This reconstruction of interferograms at earlier times was 
first suggested for interferometric measurements applied to imaging (Duarte, 1995).

21.7  DISCUSSION

The soft proving technique described here illustrates that an interferogram can be 
delicately contacted in a non-destructive manner by a microscopic semi-transparent 
fiber.

Illumination of the N-slit array by a single photon means that a single photon illu-
minates the N-slit array and that probability amplitudes 〈 〉d j  are generated at each 
slit. In this case, insertion of a detecting micro-fiber, or a detecting nanofiber, results 
in the alteration of the superposition probability amplitude and the transformation of 
the interferogram.

Illumination of the N-slit array by an ensemble of indistinguishable photons means 
that the ensemble generates indistinguishable probability amplitudes at each slit.

Insertion of a detecting micro-fiber, or a detecting nanofiber, results in the genera-
tion of new superposition probability amplitudes, such as 〈 ′〉d s .

Once the idea that a single photon illuminates the whole N-slit array is accepted, 
the questions of ‘which hole’ or ‘which slit’ the photon went through does not apply –  
it does not arise. Similarly, once the idea that an ensemble of indistinguishable photons 
illuminates the whole N-slit array simultaneously, the question of ‘which hole’ or ‘which 
slit’ the photon went through is irrelevant. What is relevant are the 〈 〉d j  probability 
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amplitudes that contribute to the final 〈 〉d s  superposition probability amplitude that 
provide the measurable 〈 〉 〈 〉∗d s d s .

The laws of quantum mechanics, á la Dirac, perfectly predict and/or reproduce 
the measurements at hand be it in straightforward interferometric propagation, via 
an N-slit array, or via propagation through an N-slit array followed by a soft probing 
optics as characterized by a transparent microscopic fiber.

Key to the correct interpretation of the interplay between superposition quantum 
probability amplitudes, á la Dirac, and measurements is the description of the photon 
as a nonlocal coherent energy entity.

PROBLEMS

	 21.1	 Show that Equation (21.2) can be expressed as Equation (21.3).
	 21.2	� In addition to the list provided in Section 21.2, provide three further 

examples, from the open literature, of photon-based, irreversible quan-
tum measurements.

	 21.3	� Rewrite the probability amplitude given in Equation (21.7) in density 
matrix notation. That is, as ψ ψ〉 〈 .

	 21.4	� Rewrite the density matrix given in Equation (21.8) in the usual prob-
ability amplitude notation. That is, simply as ψ ′〉.

	 21.5	� For 2N = , expand Equation (21.11) and multiply it by its complex conju-
gate to obtain the corresponding probability.

	 21.6	 Extend the equations of Section 21.5.1 to the generalized case of N slits.
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Quantum Principles and 
the Probability Amplitude

22.1  INTRODUCTION

In this chapter, we summarize the fundamental principles of quantum mechanics from 
an interferometric perspective. The approach followed here provides a compendium 
of principles most of which are mathematical. The material in this chapter is based on 
discussions on this subject matter published previously by Duarte (2014, 2019, 2022).

22.2  FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS

From a quantum interference and quantum entanglement perspective, where the 
nonlocality of the photon takes center stage, the fundamental principles of quantum 
mechanics can be listed as follows:

	 1.	The probability amplitude for a single quantum, or an ensemble of r 
indistinguishable quanta, is given by the Dirac–Feynman interferometric 
superposition probability amplitude (Feynman et al., 1965)

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

	 (22.1)

The sum from 1j =  to j N=  in this superposition series means that every 
propagation path must be incorporated in the calculation.

	 2.	The principle of superposition: ‘Any state may be considered as the result 
of a superposition of two or more other states… conversely any two or more 
states may be superposed to give a new state’ (Dirac, 1958). Feynman refers 
to the j states as base states… ‘any state in the world can be expressed as a 
superposition… of base states’ (Feynman et al., 1965). The Dirac–Feynman 
interferometric principle, expressed in Equation (22.1), is the essence of 
superposition.

	 3.	Theorem: The interferometric probability amplitude for a single quantum 
is mathematically identical to the interferometric probability amplitude for 
an ensemble of indistinguishable quanta.

	 4.	The probability amplitudes are represented by complex wave functions of 
the form (Dirac, 1958)

	 ( , ) 0
( )x t e i t kxΨ = Ψ ω− − 	 (22.2)
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or

	 〈 〉 = Ψ θ
←

−( )j s r ej s
i 	 (22.3)

	 〈 〉 = Ψ ϕ
←

−( )d j r ed j
i 	 (22.4)

These complex wave functions assume a fundamental role in the theory. 
Note that since we are dealing here only with non-local quanta the use of 
the Schrödinger equation does not arise.

	 5.	Additional Dirac principles as outlined by Feynman et al. (1965)

	 〈 〉 = 〈 〉∗
d s s d 	 (22.5)

	 δ〈 〉 =j i ji 	 (22.6)

	 6.	Reversibility: The physics of quantum mechanics is reversible. The prob-
ability amplitude for quantum entanglement can be derived from the Dirac–
Feynman principle (Duarte, 2013a, 2019)

	 ∑ ψ ( )〈 〉 = 〈 〉 〈 〉 → 〉 = 〉 〉 ± 〉 〉
=

−2
1

1/2
1 2 1 2

d s d j j s x y y x
j

N

	 (22.7)

or vice versa (Duarte 2019)

	 ∑ψ ( )〉 = 〉 〉 ± 〉 〉 → 〈 〉 = 〈 〉 〈 〉−

=

x y y x d s d j j s
j

N

2 1/2
1 2 1 2

1

	 (22.8)

	 7.	Dirac’s identity for indistinguishable quanta in different states (Dirac, 1958)

	 〉 = 〉 〉 〉 〉X a b c g
n1 2 3
	 (22.9)

	 8.	Nonlocality of the photon: ‘Photons cannot be localized… and they do not 
behave at all like particles’ (Lamb, 1995). This is totally compatible with 
Heisenberg’s uncertainty principle.

	 9.	Heisenberg’s uncertainty principle (Heisenberg, 1927)

	 p x h∆ ∆ ≈ 	 (22.10)

	 10.	Born’s rule: The probability is given by multiplying the probability ampli-
tude with its complex conjugate (Born, 1926)

	
2

〈 〉 = 〈 〉 〈 〉∗d s d s d s 	 (22.11)

Quantum probabilities are measurable quantities. It is Born’s rule that 
allows the probability amplitudes to become measurable probabilities.



290 Quantum Optics for Engineers

	 11.	Measurables: the measured intensity I , at a given frequency ν, is propor-
tional to the quantum probability

	 I ∝ 〈 〉 〈 〉∗d s d s 	 (22.12)

Intensity is given in units of energy per square meter per second (J/m2/s1). 
Besides intensities and quantum probabilities, polarizations are also mea-
surable quantities.

	 12.	The energy of a single photon is given by Planck’s quantum energy equation 
(Planck, 1901)

	 E hν= 	 (22.13)

For an ensemble or population of r indistinguishable photons, the energy is given by

	 E rhν= 	 (22.14)

These straightforward principles of quantum mechanics provide the foundations of 
the knowledge needed to quantify generalized quantum interference and generalized 
quantum entanglement.

In summary, from our perspective, the absolute essentials of quantum mechan-
ics are the Dirac–Feynman principle, probability amplitudes represented by complex 
wave functions, Dirac’s identity for indistinguishable quanta, Born’s rule, Heisenberg’s 
uncertainty principle, Planck’s energy, and the nonlocality of the photon.

22.3  PROBABILITY AMPLITUDES

Probability amplitudes, à la Dirac, exist in a mathematical realm described by imag-
inary numbers and complex numbers, and yet they intrinsically contain information 
about space and time. For instance, the probability amplitude 〈 〉d j  describes the 
propagation, of a photon, in space from plane j to plane d. Since the photon propa-
gates at a speed c then, information about time is also encoded in 〈 〉d j .

Expansion of the Dirac–Feynman interferometric principle equation, Equation 
(22.1), leads to

	 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉1 1 2 2 3 3d s d s d s d s d N N s � (22.15)

For instance, for a transmission grating including two thousand slits, that is 2000N = ,  
the interaction of every slit, with every other slit, must be included in the calcula-
tion of 〈 〉 〈 〉∗d s d s  to obtain the correct intensity distribution as judged by the mea-
surement. In other words, the probability amplitude description must accurately and 
faithfully represent the physical configuration at hand (Duarte, 1993).

If the physics is modified even in the most minute manner, let’s say via the inser-
tion of a single strand of a transparent microscopic fiber, then the probability ampli-
tude is immediately transformed and becomes (Duarte et al., 2013, Duarte 2019)

	 ∑〈 〉 = 〈 〉 〈 〉 〈 〉
=1

d s d k k j j s
j

N

	 (22.16)
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This probability amplitude introduces three intra-interferometric propagation 
distances D j s , D k j , and D d k  rather than the two original intra-interferomet-
ric distances D j s  and D d j . The microscopic transparent fiber allows informa-
tion to be extracted from the propagating interferogram. Thus, the original 
propagating interferogram described by Equation (22.1) ceases to exist and 
immediately a new interferogram, described by Equation (22.16), is observed 
(Duarte et al., 2013; Duarte 2019, 2022).

Here, there is a profound observation to be made: albeit probability amplitudes 
exist in the mathematical realm dominated by imaginary numbers and complex num-
bers, experimental measurements demand an accurate and detailed description of 
the physics configuration via probability amplitudes. For a relevant description of 
imaginary and complex numbers, see Appendix G.

22.3.1 P robability Amplitude Refinement

In 1975, Dirac, while on a visit to Australia, did refer to a possible improvement to 
quantum mechanics without further elaboration. In 1949, Born hinted that the ‘inde-
terministic foundations will be permanent’ (Born, 1949).

From our perspective, an ‘improvement’ to quantum mechanics means further 
revelation of physical details… a refined spatial accuracy. As suggested by Duarte 
(2022), this can already be achieved indeterministically via the Dirac–Feynman 
interferometric principle since

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

can be applied to further diminishing spatial dimensions or to provide greater and 
greater spatial detail. In the case of the N-slit coherent interferometer, for instance, 
a single slit in the j array can be further finessed as being comprised of 200 subslits, 
400 subslits, or 800 subslits (Duarte, 1993, 2022). It is found, however, that depend-
ing on the wavelength λ, there is an optimum correspondence between theory and 
experiment beyond which no further improvements in the spatial information of the 
interferometric distribution are gained. The experiment reigns, Nature reigns.

The Dirac–Feynman interferometric principle has been successfully applied to 
N-slit interferometers with intra-interferometric distances in the ≤ ≤0.1 527D d j  m 
range with slit widths in the 50 1000w≤ ∆ ≤  μm range for wavelengths in the visible.

This range of applicability has been extended via the design of nanometer N-slit 
interferometers, for the assessment of fibers with diameters in the femtometer (fm) 
regime. In these nano interferometers, = 7.5D d j  nm and 0.01w∆ =  nm, for γ-ray 
illumination at 100λ ≈  fm (Duarte and Olivares, 2023). Indeed, the only ‘limitation’ to 
the applicability of the Dirac–Feynman superposition probability amplitude appears to 
be provided by Nature itself via the availability of photon wavelengths. Any observa-
tion of wavelengths shorter than γ-rays will open up further refinements and further 
application regimes. In principle, the only wavelength limit appears to be provided by 
Planck’s length. This brings into attention Feynman’s sentence ‘there is plenty of room 
at the bottom’ (Feynman, 1960).
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22.4  FROM PROBABILITY AMPLITUDES TO PROBABILITIES

Born’s rule is crucial to quantum mechanics: 
2

〈 〉 = 〈 〉 〈 〉∗d s d s d s  is the key that 
takes us from the mathematical realm of superposition probability amplitudes to the 
measurable physical realm of probabilities, intensities, and polarizations.

The superposition probability amplitude

	 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉1 1 2 2 3 3d s d s d s d s d N N s

evolves unperturbed until the measurement is performed. At that precise instant, 
〈 〉d s  is multiplied with its complex conjugate, thus giving rise to the probability 
〈 〉 〈 〉∗d s d s  which in turn allows the intensity measurement via

	 I ν ν= Κ 〈 〉 〈 〉∗( ) h d s d s 	 (22.17)

	 I( ) ( ) ( )
1

( )

1

h r r ej

j

N

m
i

m

N

m j∑ ∑ν ν= Κ Ψ Ψ
=

Ω −Ω

=

	 (22.18)

For a population of indistinguishable photons, or an ensemble of r indistinguishable 
photons, the intensity is simply modified to

	 I ν ν= Κ 〈 〉 〈 〉∗( ) r h d s d sr 	 (22.19)

	 I( ) ( ) ( )
1

( )

1

r h r r er j

j

N

m
i

m

N

m j∑ ∑ν ν= Κ Ψ Ψ
=

Ω −Ω

=

	 (22.20)

For 2n N= =  quantum entanglement, as described in Figure 22.1, the superposition 
probability amplitude is

	 ψ ( )〉 = 〉 〉 − 〉 〉−
− x y y x2 1/2

1 2 1 2 	 (22.21)

The superposition probability ( , )1 2P ϕ ϕ  is calculated by multiplying the superposi-

tion ψ 〉 with its complex conjugate ψ 〉∗
, according to Born’s rule, so that (Pryce and 

Ward, 1947)

FIGURE 22.1  Generic two-photon entanglement experimental configuration. 1ϕ  and ϕ2 
refer to the orientation of the polarizers.
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	 ϕ ϕ ψ ψ= 〉 〉∗
( , )1 2P 	 (22.22)

	 ( , ) cos2( )1 2 1 2P ϕ ϕ ϕ ϕ= − − 	 (22.23)

It should be emphasized that at no time, it is necessary to invoke a ‘collapse of the 
wave function’ or a ‘collapse of the probability amplitude’ to obtain the correct phys-
ics in agreement with the measurement. Furthermore, neither Dirac nor Feynman 
devotes space to ‘the collapse of the wave function’ in their iconic books (Dirac, 
1958; Feynman et al., 1965).

22.4.1  Interferometric Cascade

It is useful to consider an interferometric cascade approach when propagating from 
one interferometric plane to another interferometric plane and so on (Duarte, 1993). 
Thus, the quantum interferometric probability distribution generated at the initial 
plane becomes the input at the subsequent plane. Assuming that the input interfero-
metric probability is

	 ( , , ) ( ) ( )
1

( )

1

P N r r ej

j

N

m
i

m

N

m j∑ ∑λ ϑ ϑΩ =
=

Ω −Ω

=

	 (22.24)

the corresponding intensity is given by

	 ( , ) ( , , )I P h P Nν ν λ= Κ Ω 	 (22.25)

If the undisturbed propagating interferogram, described by Equation (22.25), is 
allowed to illuminate a new interferometric plane ( )j , composed of N slits, a whole 
new array of probability amplitudes is generated (see Figure 22.2). Once this inter-
action occurs, the original ( , )I P ν  distribution gives origin to a whole new array of 
probability amplitudes represented by 〈 〉 〈 〉d j j s , where s is the source and d the new 
interferometric plane.

The new series of probability amplitudes is described by the Dirac–Feynman 
principle

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

and the corresponding probability becomes

	 ∑ ∑= Ψ Ψ
=

Ω −Ω

=

d s r r ej

j

N

m
i

m

N

m j( ) ( )
2

1

( )

1

	 (22.26)

Thus, the new probability distribution at d is given

	 λ Ω =P ( , , )
2

N d s 	 (22.27)
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and the new intensity distribution is given by

	 P P( ) ( , , )Nλ= Κ ΩI 	 (22.28)

In summary, a measurable interferometric distribution ( )I P  interacts with a new 
interferometric array ( 1, 2, 3, )j N= , thus creating a whole new series of probabil-
ity amplitudes. This new series of probability amplitudes are represented by a cor-
responding series of complex wave functions

	 ( ), ( ), ( ), ( )|1 2 3r r r rNΨ Ψ Ψ Ψ

Immediately following passage of the N-slit array, and due to diffraction, these wave 
functions become entangled and give rise to a new measurable interferometric inten-
sity distribution as described by Equations (22.26)–(22.28).

22.5  NONLOCALITY OF THE PHOTON

The nonlocality of the photon is crucial to the correct understanding of quantum 
interferometry and quantum entanglement. Heisenberg’s uncertainty principle

	 p x h∆ ∆ ≈ 	 (22.29)

FIGURE 22.2  Interferometric intensity distribution ( )I P interacts with an N-slit array thus 
producing a new interferometric intensity distribution P( )I . Wave function Ψ r( )1  is associ-
ated with slit 1j =  , ( )2rΨ with 2j = , ( )3rΨ  is with 3j = , and so on.
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leads directly to the space–frequency identity

	 x cν∆ ∆ ≈ 	 (22.30)

This is quite real to any observant experimental physicist who has made linewidth 
measurements using a Mach–Zehnder interferometer, for instance. If this interferom-
eter is configured to measure the ν∆  from a narrow-linewidth laser, then the overall 
linear space of intra-interferometric distance for which interference will be observed 
is /x c ν∆ ≈ ∆ . If the length of the arms of the interferometer is less than /x c ν∆ ≈ ∆ ,  
then interference will not be observed.

Single photons exhibit extremely narrow linewidths and correspondingly can 
exhibit enormous coherence lengths. In a 2n N= =  quantum entanglement con-
figuration, two indistinguishable, extremely narrow-linewidth photons, are emitted 
in opposite directions. This extremely narrow linewidth allows an extremely large 
coherence length determined by /x c ν∆ ≈ ∆ . Hence, the emitted quanta will continue 
to interact after emission from their common source. Photon nonlocality has yet to 
be fully explored experimentally.

Following Lamb’s lead on the nonlocality of the photon (Lamb, 1995), the state-
ment ‘All the indistinguishable photons illuminate the array of N slits, or grating, 
simultaneously. If only one photon propagates, at any given time, then that individual 
photon illuminates the whole array of N slits simultaneously’ (Duarte, 2003) comes 
into focus. Nonlocality of the photon is a unique quantum feature completely at odds 
with traditional ‘classical expectations’ (Duarte, 2022).

It should be added that in quantum interferometric surroundings, not even the 
electron behaves like a particle.

22.6  INDISTINGUISHABILITY AND DIRAC’S IDENTITIES

As described in Chapter 15, crucial to the interferometric derivation of the quantum 
entanglement probability amplitude (Duarte, 2013a, 2013b, 2014) is the Dirac iden-
tity (Dirac, 1958)

	 〉 = 〉 〉 〉 〉X a b c g
n1 2 3
	 (22.31)

which refers to quanta of the ‘absolutely indistinguishable from one another’ (Dirac, 
1958). At the same time, he is also contemplating arrays of identical quanta in differ-
ent states such as 〉 〉 〉a b c, ,

1 1 1
 and 〉 〉 〉a b c, ,

2 2 2
. Extension of these ideas leads 

to the expression of identities of the form (Duarte, 2022)

	 =Y a b c g1 1 1 1
	 (22.32)

and

	 =Z a b c g2 2 2 2
	 (22.33)
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that describe indistinguishable, quanta in different states. In turn, this allows the 
description of a series of indistinguishable quanta in identical states such as

	 α 〉 = 〉 〉 〉 〉x x x x
n1 2 3
	 (22.34)

and

	 β〉 = 〉 〉 〉 〉y y y y
n1 2 3
	 (22.35)

These Diracian identities are directly applicable to the description of single- 
transverse-mode single-longitudinal-mode laser beams comprised by ensembles of 
indistinguishable quanta. The state α 〉 describes an ensemble of indistinguishable 
quanta in the 〉x  state of polarization while the state β〉 describes an ensemble of indis-
tinguishable quanta in the 〉y  state of polarization. These concepts have been applied to 
describe highly coherent directional emission from electrically-pumped organic semi-
conductors within an interferometric configuration (Duarte and Taylor, 2022).

22.7 � QUANTUM ENTANGLEMENT AND THE FOUNDATIONS 
OF QUANTUM MECHANICS

The generalized equations for quantum entanglement can be expressed as (Duarte, 
2016, 2019; Duarte and Taylor, 2017)

	 ∑ψ 〉 = ± 〉−
+ −

=

N C
R N j

j

N

( )1/2
1

1

	 (22.36)

	 ψ ψ ψ ψ= + + + +1
2 2 2 2

I II III IV 	 (22.37)

	


∏〉 = 〉 〉+ − +
=

C a b
N j m m

m

n

1 1
1, 3, 5

	 (22.38)

For 2n N= = , these equations reduce to

	 ψ ( )〉 = 〉 〉 ± 〉 〉− x y y x2 1/2
1 2 1 2 	 (22.39)

In Chapter 15, it was shown that

	 ∑ ( )〈 〉 〈 〉 → 〉 〉 ± 〉 〉
=

−2
1

1/2
1 2 1 2d j j s x y y x

j

N

	 (22.40)

flows naturally while utilizing the Dirac identities 〉 = 〉 〉C y x
2 1 2

 and 〉 = 〉 〉C x y
1 1 2

 
(Duarte, 2013a, 2013b, 2014, 2016).
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Given the reversibility of quantum mechanical equations,

	 ∑( )〉 〉 ± 〉 〉 → 〈 〉 〈 〉−

=

2 1/2
1 2 1 2

1

x y y x d j j s
j

N

	 (22.41)

is also clear and transparent. However, the derivation of the superposition probability 
amplitude for quantum entanglement, via non-interferometric physics, involves extra 
mathematical steps so that (Duarte, 2019, 2022)

	 ∑ ∑σ σ→ → 〉 〉 ± 〉 〉 → 〈 〉 〈 〉−

=

, 2 ( )1/2
1 2 1 2

1

H C x y y x d j j sij j x y

j j

N

� (22.42)

This observation implies that quantum interference is a slightly more fundamental 
principle.

Assuming that

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

and

	 ψ ( )〉 = 〉 〉 ± 〉 〉− x y y x2 1/2
1 2 1 2

are both intrinsic foundational principles of quantum mechanics, then these two 
principles are inextricably and profoundly interconnected

	 ∑ ψ ψ ψ ψ σ σ σ〈 〉 = 〈 〉 〈 〉 ↔ 〉 〉 〉 〉 ↔
=

+ −
+ −

, , , , , ,
1

d s d j j s I
j

N

x y z 	 (22.43)

at the most fundamental level.

22.8  THE DIRAC–FEYNMAN INTERFEROMETRIC PRINCIPLE

Feynman did not provide any mathematical derivation of the Dirac–Feynman 
principle

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

The Dirac–Feynman principle describes how Nature works at its most fundamental 
level; thus, it is worth discussing its origin albeit briefly.

Duarte (2013a, 2014) shows that

	 ∑ ( )〈 〉 〈 〉 → 〉 〉 ± 〉 〉
=

−2
1

1/2
1 2 1 2d j j s y y y x

j

N
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Furthermore (Duarte 2019; Duarte et al., 2020)

	 σ σ σ ψ ψ ψ ψ→ 〉 〉 〉 〉+ −
+ −

, , , , , ,Ix y z 	 (22.44)

and (Duarte, 2022)

	 ∑ψ ψ ψ ψ〉 〉 〉 〉 → 〈 〉 〈 〉+ −
+ −

=

d j j s
j

N

, , ,
1

	 (22.45)

Hence, there is a transparent mathematical path to arrive at the Dirac–Feynman prin-
ciple, assuming that the quantum entanglement probability amplitude is the most fun-
damental mathematical–physical statement in quantum mechanics (Duarte, 2022).

PROBLEMS

	 22.1	 Verify that 〈 〉 = 〈 〉∗d s s d .
	 22.2	 Show that p x h∆ ∆ ≈  is equivalent to 1tν∆ ∆ ≈ .
	 22.3	� Expand Equation (22.1) for 2N =  and provide an explicit expression for 

〈 〉 〈 〉∗d s d s .
	 22.4	� Nonlocality of the photon: what other interferometer, besides the Mach–

Zehnder, can be used to determine the coherence length x∆  of a narrow-
linewidth laser?

	 22.5	� Show that the generalized quantum entanglement Equation (22.36) 
reduces, for 2n N= = , to the probability amplitude for quantum entan-
glement given in Equation (22.39).
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On the Interpretation of 
Quantum Mechanics

23.1  INTRODUCTION

The first edition of this book closed with the sentence: ‘the most efficient and prac-
tical interpretation of quantum mechanics, is… no interpretation at all’ (Duarte, 
2014). Here, the issue of interpretation in quantum mechanics is revisited.

There is a large plethora of interpretations of quantum mechanics (Freire, 2022), 
and albeit this is a fascinating area of discussion, it is not our intention to enter this 
vast arena.

In this chapter, we adopt a pragmatic perspective of physics. Our approach to 
quantum mechanics is to use the Dirac principles, as presented by Dirac (1958) and 
further elucidated by Feynman et al. (1965), while being perfectly aware that it is the 
experiment that has the final say.

23.2  EINSTEIN PODOLSKY AND ROSEN (EPR)

In 1935, Einstein, Podolsky, and Rosen (1935) wrote a famous paper entitled Can 
quantum mechanical description of physical reality considered complete? This 
is a cleverly crafted document that argues, in essence, that in quantum mechanics 
‘when the momentum of a particle is known, its coordinate has no physical reality’ 
(Einstein et al., 1935). Subsequently, the authors go on to conclude that ‘the quan-
tum mechanical description of reality given by the wave function is not complete’ 
(Einstein et al., 1935).

In a reply, under the same title, Bohr (1935) uses Heisenberg’s uncertainty prin-
ciple and the principle of complementarity in an attempt to refute the argument of 
Einstein Podolsky and Rosen (EPR).

Although the matter was considered by many quantum physicists to have been 
resolved, Bohr’s reply, in six-plus pages, was somewhat non-transparent and convo-
luted. Thus, it was not surprising that clever critics, such as Bell (1990), persisted in 
their criticism.

The central argument from Einstein et al., from now on referred to as EPR, is that 
‘when the momentum of a particle is known, its coordinate has no physical real-
ity’ (Einstein et al., 1935). This is the essence of the EPR argument. It should also 
be added that EPR concluded their paper stating that ‘we believe’ that a ‘complete 
description of physical reality’ is possible (Einstein et al., 1935). It is that expressed 
belief that subsequently provided impetus to the development of hidden variable 
theories (HVTs).

23
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As a historical note, it should be mentioned that it was Schrödinger (1935) who 
first related the EPR criticism toward quantum mechanics with the concept of 
entanglement.

Later on, it was Bohm and Aharanov (1957) who made the connection between 
the EPR argument and the polarization-based annihilation experiments of Wu and 
Shaknov (1950): ‘we have essentially the same puzzling kind of correlations in the 
properties of distant particles, in which the property of anyone photon that is definite 
is determined by a measurement of a far away photon. Thus, the paradox of EPR 
can equally well be tested by polarization properties of pairs of photons’ (Bohm and 
Aharanov, 1957).

However, Bohm and Aharanov did not cite Pryce and Ward (1947), who intro-
duced the experimental schematics and calculated the correct quantum probability 
for polarization entanglement (Duarte, 2012).

23.3  HEISENBERG’S UNCERTAINTY PRINCIPLE AND EPR

‘When the momentum of a particle is known, its coordinate has no physical reality’ 
(Einstein et al., 1935) is the crucial component of the EPR argument. As mentioned 
previously, Bohr (1935) used both the principle of complementarity and Heisenberg’s 
uncertainty principle in response to the EPR argument. However, Bohr did not 
develop a transparent direct response based on the uncertainty principle.

Here, a simple and direct approach to this issue is taken making explicit use of 
the uncertainty principle itself (Duarte, 2014). Heisenberg’s uncertainty principle is 
given by (Dirac, 1958)

	 ∆ ∆ ≈x p h	 (23.1)

and one of its alternative forms is (Feynman et al., 1965)

	 ∆ ≈
∆

x
h

p
	 (23.2)

Now, if we measure the momentum p of a particle, we can only measure

	 ± ∆p p	 (23.3)

An absolutely exact measurement of momentum p with 0∆ =p  is physically impos-
sible (Duarte, 2014). The presence of uncertainties and errors in measurements has 
been known to physicists since the dawn of physics and optics (Newton, 1687, 1704). 
The EPR sentence ‘when the momentum of a particle is known, its coordinate has 
no physical reality’ (Einstein et al., 1935) implies an idealized exact measurement 
of momentum p with 0∆ =p . Once a real physical measurement of momentum is 
made with a non-zero estimate of the error in the measurement, that is ± ∆p p, then 
the coordinate can be determined according to Heisenberg’s uncertainty principle

	 ∆ ≈
∆

x
h

p
	 (23.4)
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and the ‘all values’ spread in the coordinate, as feared by Einstein et al. (1935), is 
not allowed. Once the ‘all values’ spread in the coordinate is found physically unten-
able, the claim of ‘no physical reality’ is neutralized. Hence, the EPR conclusion that 
‘the quantum mechanical description of physical reality … is not complete’ can be 
negated.

In summary, the EPR claim of an ‘all values’ spread in the coordinate depends on 
an idealized absolute and exact measurement of p with 0∆ =p . Since this is physi-
cally impossible, the claim of ‘no physical reality’ can be nullified.

While writing the first edition of this book (Duarte, 2014), we came across a para-
graph in Dirac’s book which very succinctly reinforces the argument made here: ‘it 
is evident physically that a state for which all values of q are equally probable, or one 
for which all values of p are equally probable, cannot be attained in practice’ (Dirac, 
1958). Notice that the book we are using is a revised printing of the 1947 edition. This 
means that observant physicists such as Feynman, Lamb, and Ward might have been 
very much aware of the existence of this little-known Dirac dictum.

23.4 � QUANTUM PHYSICISTS ON THE INTERPRETATION 
OF QUANTUM MECHANICS

Here we present the orthodox–pragmatic perspective on quantum mechanics followed 
by criticisms of orthodox quantum mechanics as articulated by EPR, Schrödinger, 
and Bell.

23.4.1 T he Pragmatic Practitioners

Quantum mechanics is a wondrous branch of physics. As such, this section should 
begin by stating the thoughts John Clive Ward on quantum mechanics (Ward, 2004): 
‘The inner mysteries of quantum mechanics require a willingness to extend one’s 
mental processes into a strange world of phantom possibilities, endlessly branching 
into more and more abstruse chains of coupled logical networks, endlessly extend-
ing themselves forward and even backwards in time.’ John Ward was one of those 
prominent quantum physicists who never expressed doubts about the correctness or 
effectiveness of quantum mechanics. Nor did he bother with issues of interpretation 
(Ward, 2004).

The interpretation of quantum mechanics has been the subject of many publi-
cations and books (Bell, 1988; Selleri, 1988; Wallace, 1996; Freire, 2022). In this 
section, a pragmatic perspective on this topic is presented that is mainly derived 
from Feynman’s school of thought: ‘unless a thing can be defined by measurement, 
it has no place in the theory’ and ‘already in classical mechanics there was inde-
terminability’ (Feynman et al., 1965). In this regard, Feynman was keenly aware 
of the crucial role of Heisenberg’s uncertainty principle in the formulation of quan-
tum mechanics: ‘the uncertainty principle protects quantum mechanics’ (Feynman  
et al., 1965).

Dirac was famously not impressed by discussions on the interpretation of quantum 
mechanics, and in one of his last papers he wrote, ‘The interpretation of quantum 
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mechanics has been dealt with by many authors, and I do not want to discuss it here. 
I want to deal with more fundamental things’ (Dirac, 1987). Nevertheless, in a visit 
to Sydney, in August 1975, Dirac briefly did refer to the interpretation of quantum 
mechanics and did refer to the Bohr–Einstein controversy. In this regard, he went on 
to say that according to standard atomic physics, ‘Bohr was right.’ In this regard, he 
left open the possibility of some kind of improved quantum mechanics of the future 
(Duarte, 2012b). Born was of the opinion that for quantum mechanics ‘its indeter-
ministic foundations will be permanent’ and added ‘there remains now only to show 
how the ordinary, apparently deterministic laws of physics can be obtained from 
these foundations’ (Born, 1949).

Willis Lamb, yet another noted quantum physicist, assigned the interpretational 
problems of quantum mechanics to ‘historical misunderstandings’ (Lamb, 2001). 
In his broad critique, Lamb included the EPR argument in a list associated to these 
misunderstandings and went as far as describing Bell’s inequalities as ‘unnecessary’ 
(Lamb, 2001). Certainly, Bell’s theorem is not a factor in the derivation of the prob-
ability amplitude of quantum entanglement as described in Chapters 15–17 and pre-
vious publications (Duarte, 2013a, 2014).

For a while, many people criticized Dirac’s description of interference due to the 
sentence: ‘Each photon then interferes only with itself’ (Dirac, 1958). This sentence 
is the conclusion of an argument that begins by considering a beam of monochro-
matic light ‘with a large number of photons’ (Dirac, 1958). The beam is made to split 
into two components of equal intensity and then made to interfere (as in a Mach-
Zehnder interferometer). Dirac then explains that each photon goes partially into 
each component and ‘each photon then interferes with itself’ (Dirac, 1958). That 
is, each photon has a probability amplitude to propagate via each of the paths, and 
it is the addition of these probability amplitudes, multiplied with its corresponding 
complex conjugate, that accurately and correctly describes the observed interference 
patterns (Duarte, 1998, 2003). That is, Dirac writes about a beam of monochromatic 
light, with a large number of photons, which is equivalent to a single narrow-line-
width high-power laser beam.

This is equivalent to a laser beam comprised of a population of indistinguish-
able photons. The key principle here is that photon interference is a phenomenon 
that involves either single photons or ensembles of indistinguishable photons. In this 
regard, Dirac outlined the principles of laser interference back in 1947, and thus he 
should be considered the father of laser optics and quantum optics (Duarte, 2003).

Dirac’s statement does not exclude interference between two different lasers as 
long as the emission from these two sources is indistinguishable. In other words, 
interference from two separate narrow-linewidth lasers at the same central wave-
length will register with sharp high-contrast interferograms with high visibility 
approaching unity (V 1≈ ).

Going back to Dirac’s observation about a possible future improved quantum 
mechanics: that might well be possible. However, that should not be necessary since, 
as discussed in Chapter 22, the Dirac–Feynman principle can be readily applied to 
yield unprecedented improvements in spatial finesse as demonstrated in the design 
of N-slit interferometers with dimensions in the nanometer regime using γ-ray quanta 
for metrology in the femtometer domain. It all depends on the availability of shorter 
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and shorter wavelengths (Duarte, 2022; Duarte and Olivares, 2023). van Kampen 
(1988) published a paper entitled Ten theorems about quantum mechanical measure-
ments. Theorem I of van Kampen simply states, ‘Quantum mechanics works.’ From 
the teaching of Born, Dirac, Feynman, Lamb, and Ward, two salient conclusions are 
provided: first, these luminaries were not concerned with the ‘incompleteness’ of 
quantum mechanics, and when they did refer to interpretational matters, they did so 
to reaffirm indeterminism, as in the case of Born, and to criticize alternative inter-
pretations, as in the case of Lamb.

Note: the main pitfall incurred by critics of quantum mechanics while describ-
ing N-slit interference, which they mainly describe as ‘two-slit interference,’ is to 
erroneously think of the photon as a ‘particle.’ Via this basic error, they depart from 
Dirac’s lucid description (Duarte, 2013b) and enter a path fraught with conceptual 
difficulties.

23.4.2  Bell’s Criticisms

Criticisms toward orthodox quantum mechanics are nothing new. The original cri-
tique by EPR concluded that quantum mechanics ‘is not complete’ and was imme-
diately seconded by Schrödinger in the context of quantum entanglement using the 
word ‘disconcerting’ to describe the fact that there is no independence between sepa-
rated systems that were originally entangled (Schrödinger, 1935). These criticisms 
were expanded in a second paper where he reaffirms his displeasure with ‘the present 
theory’ (Schrödinger, 1936).

In a subsequent scenario, it was J. S. Bell himself – a key figure in cementing 
the concept that HVTs were incompatible with the predictions of quantum mechan-
ics (Bell, 1964), who paradoxically became a clever and eloquent critic of orthodox 
quantum mechanics (Bell and Nauenberg, 1966; Bell, 1990).

This subject is considered in detail by Duarte (2022), and here, only the more 
salient aspects are brought into context. Bell’s first critical work was entitled The 
moral aspects of quantum mechanics in which he concluded that the theory is ‘at 
best, incomplete’ and that ‘it carries in itself the seeds of its own destruction’ (Bell 
and Nauenberg, 1966). In that paper, Bell discusses the double-slit, or Young’s, inter-
ference experiment while invoking the ‘de Broglie-Bohm pilot wave’ or ‘hidden 
parameter’ interpretation of quantum mechanics (Bell and Nauenberg, 1966). From 
our perspective, Bell’s interpretation of the two-slit experiment is not only unneces-
sary but it is also at odds with the lucid-transparent description given by Dirac (1958), 
and with the non-local nature of the photon. Furthermore, in an extension to the 
N-slit interferometer, Duarte (2003) explains that ‘all the indistinguishable photons 
illuminate the array of N slits, or grating, simultaneously. If only one photon propa-
gates at any given time, then that individual photon illuminates the whole array of 
N slits simultaneously.’ Also relevant is the existence of experimental evidence that 
points directly against the ‘pilot wave’ interpretation (Andersen et al., 2015).

Bell and Nauenberg (1966) arrive at the conclusion that quantum mechanics is ‘at 
best incomplete.’ This argument has already been neutralized here, via ∆ ∆ ≈x p h. In 
conclusion, from a pragmatic perspective, quantum mechanics does not carry ‘the 
seeds of its own destruction.’
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Bell’s second paper on this subject was entitled Against ‘measurement’ (Bell 
1990).

Very sharp and cleverly written, it was Bell’s last paper. In it, Bell criticizes all 
books on quantum mechanics and Dirac for having a ‘why bother’ attitude toward 
the possibility of an ‘exact’ formulation of the theory. In this paper, Bell suggests to 
replace the word measurement by the word experiment: ‘A serious formulation will 
not exclude the big world outside the laboratory’ (Bell, 1990). In this regard, experi-
ments with very large N-slit interferometers, utilizing ensembles of indistinguishable 
photons and measurement predictions based on Diracian probability amplitudes have 
taken place within the laboratory at an intra-interferometric distance of = 35D d j  m 
and outside the laboratory at D d j = 527 m (Duarte et al., 2010, 2011). Furthermore, 
space-to-Earth quantum entanglement experiments, utilizing the quantum entangle-
ment probability amplitudes, have been reported over a propagation distance of 
1200 km (Yin et al., 2017).

Bell also criticizes Landau and Lifshitz (1977) mainly due to their ambiguity in 
regard to ‘what is microscopic, what is macroscopic, what [is] quantum, what [is] 
classical’ (Bell, 1990). In principle, quantum mechanics applies both to the micro-
scopic and the macroscopic: the first description of quantum interference was pro-
vided by Dirac, while discussing macroscopic two-beam interference (Dirac, 1958).

Indeed, from the perspectives of Lamb and van Kampen, quantum mechanics 
does apply to large-scale phenomena. Moreover, Feynman and Hibbs (1965) applied 
quantum path integrals to the description of macroscopic diffraction and Duarte 
(1997, 2003) derived the physics of diffraction, refraction, and reflection from quan-
tum interferometric principles.

Finally, it should be indicated that Bell’s criticisms were mainly of a philosophical 
nature and he abstained from introducing his own description, or interpretation, of 
quantum mechanics and relied mainly on ‘pilot wave’ concepts.

23.5  ON HIDDEN VARIABLE THEORIES

HVTs apparently were first mentioned, as the ‘hidden parameter’, by von Neumann 
(1932) who was aware of their existence and dismissed them. At least two HVTs have 
been proposed: those of Bohm (1952a, 1952b) and Bohm and Bub (1966). The HVT 
introduced by Bohm (1952a) concludes that ‘the probability density of particles will 
cease to be equal to Ψ x( ) 2’ (Bohm 1952a).

It also introduces the concept of precise measurements of position and momen-
tum, thus violating ∆ ∆ ≈p x h (Bohm, 1952b). The second HTV introduces an irre-
versible set of equations (Bohm and Bub 1966). The concept of HTVs was highly 
influential in a section of the physics community. Optical experiments designed to 
test for HVTs were proposed and performed by Clauser et al. (1969), Freedman and 
Clauser (1972), and Clauser and Horne (1974). The first Aspect experiments were 
also inspired by HVTs (Aspect et al., 1981), while the emphasis shifted toward Bell’s 
theorem in the subsequent experiments (Aspect et al., 1982a, 1982b). These experi-
ments reaffirmed the correctness of quantum mechanics.
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Since Born’s rule (Born, 1926), stated as Ψ = Ψ Ψ ∗x t x t x t( , ) ( , ) ( , )2
 or 

= 〈 〉 〈 〉∗d s d s d s
2

, is a crucial principle of quantum mechanics, it can be con-

cluded that a theory that does not observe Born’s rule is not a quantum mechanical 
theory (Duarte, 2022). Similarly with a theory that violates ∆ ∆ ≈p x h. Hence, it fol-
lows that the HVT introduced by Bohn (1952a, 1952b) is not a quantum mechanical 
theory. A similar conclusion can be reached in regard to the HVT of Bohm and Bub 
(1966) (Duarte and Taylor, 2021) given that reversibility is a key feature in the flow 
of quantum mechanical equations (von Neumann, 1932; Duarte, 2019).

HVTs have not led to any practical physics and their only application appears to 
have been their use as a platform to project doubts toward early quantum entangle-
ment experiments, inspired on Dirac’s pair theory (Dirac, 1930), utilizing positron–
electron annihilation sources 1 2γ γ→+ −e e  (Bleuler and Bradt, 1948; Hanna, 1948; 
Wu and Shaknov, 1950). Here, it is relevant to mention that Feynman also dismissed 
the concept of HTVs (Feynman et al., 1965) and Willis Lamb (2001) cataloged  
HVTs as ‘unnecessary.’

From a historical perspective and beyond the original dismissal from von 
Neumann (1932), it was Bell’s theorem (Bell, 1964) (see Chapter 14) that precipitated 
the widespread acceptance of the concept that HVTs were indeed incompatible with 
quantum mechanics. Nevertheless, ‘The two photons are entangled and according to 
local realism, their polarizations planes should become independent… a typical EPR 
situation. Already in 1948, observations agreed with quantum mechanics… not with 
local realism’ (Dalitz and Duarte, 2000; Duarte, 2012).

23.6  ON THE ABSENCE OF ‘THE MEASUREMENT PROBLEM’

‘Quantum mechanics works’ as stated by van Kampen’s first theorem (van Kampen, 
1988). Quantum mechanics gave us the transistor, the laser, and laser cooling.

Furthermore, quantum mechanics predicts quite accurately N-slit interferomet-
ric measurements using ensembles of indistinguishable quanta (see Chapter 4).  
In quantum electrodynamics, the electron magnetic moment is measured to be 
( /2) 1.00115965218073=g  in Bohr magnetons (Hanneke et al., 2008) while pre-
dicted to be ( /2) 1.0011596=g  (Petermann, 1956). An agreement to the seventh 
decimal place between theory and experiment is not indicative of a ‘measurement 
problem’ especially for a theory based on ‘indeterminacy’ (Duarte, 2022). Of course, 
we know that the agreement is even better since Petermann, in 1956, used only two 
Feynman diagrams, while today large numbers of Feynman diagrams are employed 
in computerized calculations.

The measurement problem in quantum mechanics is not a practical existing prob-
lem. It is a conceptual problem. Contemporaneous critics of quantum mechanics 
often link the measurement problem to ‘the collapse of the wave function’ (Albert 
and Vaidman, 1989; Namiki and Pascazio, 1992; Penrose, 1996). However, as indi-
cated by Duarte and Taylor (2021), the collapse of the wave function is absent from 
the discussion on quantum superposition in Dirac’s book (Dirac 1958) and it is absent 
in Feynman’s lectures on quantum mechanics (Feynman et al., 1965). In the next 
sections, it becomes quite transparent that the concept of the collapse of the wave 
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function is absent and unnecessary in the measurement methodology of quantum 
interference and quantum entanglement.

23.7  THE PHYSICAL BASES OF QUANTUM ENTANGLEMENT

Derivational methods for the probability amplitude of quantum entanglement include 
Ward’s heuristic conservational approach (Ward, 1949), the use of Feynman’s 
Hamiltonian method (Duarte, 2014), the quantum interferometric method (Duarte, 
2013a, 2014), and the use of Pauli matrices (Duarte, 2019, Duarte et al., 2020). The 
quantum interferometric approach is summarized by

	 ∑ ψ ψ ψ ψ〈 〉 〈 〉 → 〉 〉 〉 〉
=

+ −
+ −

, , ,
1

d j j s
j

N

	 (23.5)

while the Pauli matrix approach can be described by

	 ∑ σ σ σ ψ ψ ψ ψ→ → 〉 〉 〉 〉+ −
+ −

, , , , , ,H C Iij j

j

x y z 	 (23.6)

These methodologies are direct and mathematically transparent. They are free of 
mysteries and free of paradoxes (Duarte, 2023).

23.8  THE MECHANISMS OF QUANTUM MECHANICS

Here we describe, succinctly and directly, the workings of quantum mechanics from 
interferometric and quantum entanglement perspectives.

23.8.1 T he Quantum Interference Mechanics

The Dirac–Feynman interferometric probability amplitude (Dirac, 1958; Feynman 
et al., 1965)

	 ∑〈 〉 = 〈 〉 〈 〉
=

d s d j j s
j

N

1

	 (23.7)

is a superposition probability amplitude involving all the base states related to the 
physics of the experimental configuration

	 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉d s d s d s d s d N N s1 1 2 2 3 3 	 (23.8)

This superposition probability amplitude, or state, becomes a probability via Born’s 
rule

	 〈 〉 = 〈 〉 〈 〉∗d s d s d s
2

	 (23.9)
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as the measurement is performed. This interferometric probability distribution

	 λ Ω = 〈 〉( , , )
2

P N d s 	 (23.10)

immediately gives rise to a measurable intensity

	 ( , ) ( , , )ν ν λ= Κ ΩP h P NI 	 (23.11)

This is an intensity spatial distribution which, at a frequency ν, is entirely dependent 
on the spatial distribution of the dimensionless quantum probability distribution.

If only a single photon is involved in the measurement process, this means that, at 
the detector surface, this single quantum can generate an electron charge anywhere 
within the boundaries of the 〈 〉 〈 〉∗d s d s  distribution.

If an ensemble of r indistinguishable photons is involved in the measurement pro-
cess, the physics is again correctly described by the superposition probability ampli-
tude 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉1 1 2 2 3 3d s d s d s d s d N N s , but the intensity 
becomes

	 I ν ν= Κ 〈 〉 〈 〉∗( ) r h d s d s 	 (23.12)

This ‘ensemble intensity’ is now sufficient to generate electron charges throughout 
the entire the 〈 〉 〈 〉∗d s d s  spatial distribution.

It is the correct superposition probability amplitude 〈 〉d s , describing the physics 
of the experimental configuration that provides us the measurable via 〈 〉 〈 〉∗d s d s .

Nowhere in this description, it is necessary to invoke a ‘collapse of the wave 
function.’

23.8.2 T he Quantum Entanglement Mechanics

From the Dirac–Feynman interferometric probability amplitude

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s d j j s
j

N

emerges the superposition probability amplitude for quantum entanglement

	 ψ ( )〉 = 〉 〉 − 〉 〉−
− x y y x2 1/2

1 2 1 2 	 (23.13)

Once two polarized entangled, and indistinguishable, quanta are emitted in oppo-
site directions, the polarizations are orthogonal to each other. For example, if the 
polarization of the photon toward the detector in the +z direction is in the x〉 state, 
then the polarization of the photon emitted in the −z direction is in the y〉 state. 
Once the photons are emitted, their superposition probability amplitude evolves 
according to ψ 〉−.
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Immediately as the polarization measurement is performed, the superposition 
probability is given by

	 ϕ ϕ ψ ψ= 〉 〉− −
∗

( , )1 2P 	 (23.14)

	 ( , ) cos 2( )1 2 1 2ϕ ϕ ϕ ϕ= − −P 	 (23.15)

and it is this superposition probability that determines whether the experimentalist 
will measure a photon in the 〉x  state or a photon in the 〉y  state.

It is the correct superposition probability amplitude ψ 〉− that provides the measur-

able via ψ ψ〉 〉− −
∗
. Nowhere in this description it is necessary to invoke a ‘collapse of 

the wave function’ and, furthermore, the description is entirely independent of Bell’s 
theorem.

23.9  PHILOSOPHY

Quantum mechanics, via quantum entanglement, has generated intense interest in 
the philosophical world (see, for instance, Godoy, 2018; Trotter, 2021; Silva, 2022) 
and even garnered serious attention in literature (Dark, 2023). In this regard, the 
uncertainty of Heisenberg, the indeterminacy of Born, the doubts of Feynman, and 
the nonlocality of the photon should serve as the foundations for a philosophical 
approach based on an indeterminism free from preestablished notions and prejudices. 
Inspired by Born (1949) and Feynman (1998), this indeterministic, and pragmatic, 
school of thought accepts with humility our ignorance and leaves the experiment, the 
measurement, and their uncertainties, as the main conduits toward Nature. Indeed, 
Nature is the supreme judge.

In this regard, no theory is final and all good theories should be able to adapt to 
integrate new experimental evidence.

23.10  DISCUSSION

Here, we very humbly assume that Nature is far subtler than our philosophical abili-
ties and accept, as Born, Dirac, Feynman, Lamb, Ward and others have done, the 
physics of quantum entanglement and the intricacy of the machinery of quantum 
interference, as Nature’s way.

In this pragmatic approach to quantum mechanics, the physics, or experimental 
configuration, is faithfully and transparently described by the superposition prob-
ability amplitude. It is this superposition probability amplitude, 〈 〉d s  or ψ 〉−, that 
must correctly relate to the experimental configuration. The transition from the 
mathematical realm of probability amplitudes to the measurable realm of probabili-
ties, intensities, and polarizations is naturally and effortlessly provided via Born’s 
rule. This transition occurs continuously and spontaneously throughout the course 
of the experiment, and it is up to the experimenter to decide when to observe. At the 
instant, the experimenter decides to perform the measurement 〈 〉 → 〈 〉 〈 〉∗d s d s d s  
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or ψ ψ ψ〉 → 〉 〉− − −
∗
 occur. Once in the measurements realm, we can express 

I ν〈 〉 〈 〉 →∗ ( )d s d s  or ψ ψ ϕ ϕ〉 〉 →− −
∗

P( , )1 2 .
As far as a possible, ‘improved’ quantum mechanics is concerned: we agree with 

Born’s suggestion that the bases of quantum mechanics will remain indeterministic. 
In this regard, as already suggested in Chapter 22, the Dirac–Feynman interferomet-
ric principle

	 ∑〈 〉 = 〈 〉 〈 〉
=1

d s s j j s
j

N

already contains the mechanics for further and further spatial and temporal refine-
ments (Duarte, 2022; Duarte and Olivares, 2023).

Indeterminism plays a crucial role in quantum mechanics and a real, yet unrecog-
nized, role in classical physics given that no measurement – no matter how classical 
– is free from experimental error (Duarte, 2014, 2022). Indeed, the stochastic nature 
of classical physics has been observed for a while now (Newton, 1687; Feynman et 
al., 1965). In this regard, it is clear that indeterminism and uncertainty are intrinsic 
features of Nature itself.

It should be reemphasized that crucial to this pragmatic approach to quantum 
mechanics is the awesome nonlocality of the photon, a unique quantum feature. It 
is this wonderful nonlocality of the photon, itself a physical reality confirmed by 
experiments, that reaffirms quantum mechanics… and not ‘local realism’ (Dalitz 
and Duarte, 2000)

PROBLEMS

	 23.1	� How would the argument in Section 23.3 change if the general form of 
the uncertainty principle, as given in Chapter 3, were used rather than 
∆ ∆ ≈x p h? Would the conclusion remain unchanged?

	 23.2	� Besides the transistor, the laser, and laser cooling, name one or more 
unique technologies made possible by quantum mechanics.

	 23.3	� Besides the approaches to derive the probability amplitudes of quan-
tum entanglement identified in Section 23.7, identify or describe any 
other transparent approach to arrive at ψ ψ ψ ψ〉 〉 〉 〉+ −

+ −
, , , , from first 

principles.
	 23.4	� In reference to Equation (23.11): Comment on the possible components 

that might comprise the constant Κ.
	 23.5	� Provide a physical argument to justify that Equation (23.11) follows from 

Equation (23.10).
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Appendix A
Laser Excitation

A.1 � INTRODUCTION

Lasers are quantum devices. The process of stimulated emission is a quantum phe-
nomenon. Stimulated emission is essential to the generation of spatially and spec-
trally coherent radiation, which are also quantum phenomena. Thus, albeit initially a 
macroscopic device, the laser emits radiation that is intrinsically quantum in charac-
ter. In this chapter, we consider the first and essential step in the creation of a laser: 
laser excitation.

Here, we consider the process of laser excitation and emission, in a gain medium, 
from a semi-classical and quantum perspective. In Appendices B and C, we exam-
ine the optics phenomena applicable to generate spatially and spectrally coherent 
radiation.

A.2 � BRIEF LASER OVERVIEW

The word laser has its origin in an acronym of the words light amplification by 
stimulated emission of radiation. However, the laser is readily associated with the 
spatial and spectral coherence characteristics of its emission.

A laser is a device that transforms electrical energy, chemical energy, or incoher-
ent optical energy, into coherent optical emission. This coherence is both spatial and 
spectral. Spatial coherence means a highly directional light beam, with little diver-
gence, and, spectral coherence means an extremely pure color of emission. These 
concepts of spatial and spectral coherence are intimately related to Heisenberg’s 
uncertainty principle p x h∆ ∆ ≈  (see Chapter 3).

An alternative way to cast this idea is to think of the laser as a device that trans-
forms ordinary incoherent energy into an extremely well-defined form of energy, 
both in the spatial and the spectral domains.

Physically, the laser consists of an atomic or molecular gain medium optically 
aligned within an optical resonator, or optical cavity, as depicted in Figure A.1. When 
excited by electrical energy, or optical energy, the atoms or molecules in the gain 
medium oscillate at optical frequencies. This oscillation is maintained and sustained 
by the optical resonator or optical cavity. In this regard, the laser is analogous to a 
mechanical or radio oscillator but oscillating at extremely high frequencies. For the 
green color of 500λ ≈  nm, the equivalent frequency is 5.99 1014ν ≈ ×  Hz. A direct 
comparison between a laser oscillator and an old radio oscillator makes the atomic, 
or molecular gain medium, equivalent to the vacuum tube, and the elements of the 
optical cavity, equivalent to the resistances, capacitances, and inductances.
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The spectral purity of the emission of a laser is related to how narrow its line-
width ( ν∆ ) is. High-power broadband tunable lasers can exhibit a linewidth in the 
4.5 10λ≤ ∆ ≤  nm range (see, for example, Schäfer et al., 1966). High-power pulsed 
narrow-linewidth lasers can have single-longitudinal-mode linewidths of 350ν∆ ≈  
MHz (i.e., 0.0004λ∆ ≈  nm, at 590 nm) near the limit allowed by Heisenberg’s uncer-
tainty principle (Duarte, 1999). Single longitudinal mode means that all the emission 
radiation is contained in a single electromagnetic mode.

Low power CW narrow-linewidth lasers can offer much narrower linewidths 
approaching the kHz regime. Cooled-stabilized CW lasers can yield 1ν∆ ≈  Hz or 
even less (Kessler et al., 2012).

In the language of the laser literature, a laser emitting narrow-linewidth radiation 
is referred to as a laser oscillator or master oscillator (MO). High-power narrow-
linewidth emission is attained when an MO is used to inject a laser amplifier, or 
power amplifiers (PA). Large high-power systems include several MOPA chains with 
each chain including several amplifiers. The difference between an oscillator and an 
amplifier is that the amplifier simply stores energy to be released up on the arrival of 
the narrow-linewidth oscillator signal. In some cases, the amplifiers are configured 
within unstable resonator cavities in what is referred to as a forced oscillator (FO). 
When that is the case the amplifier is called a FO and the integrated configuration is 
referred to as a MOFO system.

A.2.1 �L aser Optics

Laser optics, as defined in Duarte (2003), refers to the individual optics elements that 
comprise laser cavities, to the optics ensembles that comprise laser cavities, and to 
the physics that results from the propagation of laser radiation. In addition, the sub-
ject of laser optics includes instrumentation employed to characterize laser radiation 
and instrumentation that incorporates lasers. A broad survey of laser cavities is given 
in Appendix B, while the physics and architecture of tunable narrow-linewidth laser 
oscillators are presented in Appendix C.

A.3 � LASER EXCITATION

As already mentioned, lasers can be excited via several forms of energy, including 
electrical, optical, chemical, and even nuclear. Electrical excitation for lasers can be 

FIGURE A.1  Basic laser resonator. It is comprised of an atomic, or molecular, gain medium, 
and two mirrors aligned along the optical axis. The length of the cavity is L and the diameter 
of the beam is 2w. The gain medium can be excited either optically or electrically.
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either in the gaseous or the solid state. Electrical excitation in the gaseous state give 
origin to gas lasers while in the solid state gives origin mainly to semiconductor 
lasers. Optical excitation can be used in gaseous, liquid, or solid state gain media. 
Here we provide a brief survey of examples of laser gain media in the gaseous, liquid, 
and solid states.

A.3.1 � Electrically Excited Gas Lasers

Electrically excited gas lasers are a very broad class of lasers that includes high-
power excimer lasers, metal-vapor lasers, and CO2 lasers. It also includes an array of 
continuous wave (CW) metal ion lasers.

To illustrate how some of these lasers are excited, we’ll refer to metal ion lasers 
such as the He–Zn laser, and in particular to a subclass of lasers known as the He–Zn 
halogen lasers, that is, He–ZnBr2, He–ZnCl2, and He–ZnI2.

These lasers need a buffer gas which is rare. In this case, that rare gas is helium. 
Very briefly, the rare-gas metal hollow-cathode discharge is excited electrically as 
the impedance of an electrical circuit as depicted in Figure A.2. The metal, in this 
case zinc, is evaporated into the discharge, thus creating an He–Zn discharge. The 
metal species are excited via Duffendack reactions, that is,

	 He M He (M ) E*+ → + + ∆+ + 	 (A.1)

This means that electrons ionize helium atoms, thus creating He+  which in turn 
collide with metal atoms, thus yielding excited metal ions (M )*+ . The energy defect 
of the reaction is E∆ . These lasers need very energetic electrons to ionize helium and 
thus utilize hollow-cathode discharges (Piper and Gill, 1975).

An additional excitation mechanism is known as Penning ionization in which 
electrons excite helium atoms to a metastable state He (2 S )* 3

1 , so that

	 He (2 S ) M He (M ) E3
1

*+ → + + ∆∗ + 	 (A.2)

FIGURE A.2  Transmission line excitation circuit of rare-gas metal-vapor laser discharge. 
An LC circuit of up to ten sections serves as a pulsed forming network and the pulse is 
switched via a high-voltage thyristor (From Duarte, F. J., Excitation Processes in Continuous 
Wave Rare Gas-Metal Halide Vapour Lasers, Macquarie University, Sydney, 1977.)
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An energy level diagram illustrating the zinc transitions due to both Duffendack 
reactions and Penning ionization is illustrated in Figure A.3. Notice that since the 
laser transitions occur between specific atomic levels, these transitions are specific in 
wavelength and intrinsically narrow-linewidth.

In lasers such as He–CdI2, in addition to the metal transitions, iodine transitions 
are added to the emission, thus giving rise to white-light lasing (Piper, 1976). An 
advantage of the metal-halide vapor lasers over the pure metal-vapor lasers is that 
they need lower operational temperatures. However, this complicates the excitation 
cycle since the metal-halide molecule needs to be dissociated prior to excitation and 
needs to recombine following laser emission. Chemical recombination is critical 
to the successful continuation of the excitation cycle. A time-resolved study in the 

FIGURE A.3  Partial energy level diagram of the He–Zn laser. Upper transitions are excited 
via Duffendack reactions in hollow-cathode discharge lasers while the lower transitions 
originate from Penning ionization. The energies corresponding to helium ionization and the 
relevant helium metastable are indicated. Transition wavelengths are given in nm.



319Appendix A

He–ZnX2 systems, where X2 refers to the halogen, led to the conclusion that second-
order reactions of the form

	 M X MX2

1

m

k
+ → 	 (A.3)

is the likely process of recombination. The solution is (Duarte, 1977)

	 ( )= − −





τ
−

M( ) [X ] [M]
[X ]
[M]

10 0
0

0

1

1t em
m t 	 (A.4)

where the initial concentrations are [X ] [M]0 0m > . Here, the decay rate (in s−1) is 
given by

	 τ ( )= −[ ] [ ]1 0 0 1X M km 	 (A.5)

For hollow-cathode rare-gas metal-vapor lasers, the measured neutral metal decay 
rates are (1.6 2.0) 101

4τ≤ ≤ ×  s−1 for ZnBr2 and(0.8 1.0) 101
4τ≤ ≤ ×  s–1 for ZnI2 

(Duarte, 1977; Duarte and Piper, 1985).
In summary, for rare-gas metal-halide vapor lasers, the excitation cycle begins 

with the dissociation of the MX2 molecules, followed by either Duffendack or 
Penning excitation of the metal atom. Following excitation and emission, the metal 
atom decays to its neutral state and undergoes chemical recombination with the halo-
gen, and the cycle continues.

The population dynamics of this type of laser can be analyzed using rate equa-
tions while the transition cross sections can either be measured or estimated using 
quantum methods (Willett, 1974).

A.3.2 � Optically Pumped Gas and Liquid Lasers

Optical excitation of lasers can be accomplished either by using incoherent means, 
such as flashlamps, or by using direct laser excitation (see, e.g., Duarte, 2003). Here, 
we consider two examples of laser excitation of two types of distinct molecular lasers.

First, we briefly consider the laser-pumped molecular iodine dimer laser, I2. This 
molecule has sufficient vapor pressure at room temperature and can be excited lon-
gitudinally using a laser compatible with its absorption characteristics. Excitation 
lasers include pulsed copper vapor lasers (Kaslin et al., 1980), frequency-doubled 
Nd:YAG lasers (Byer et al., 1972), and narrow-linewidth tunable dye lasers (Duarte 
and Piper, 1986). Laser excitation of molecular dimer lasers has also been accom-
plished in the CW regime (see, e.g., Wellegehausen, 1979).

The transitions for molecular iodine belong to the 3 1B Xou gΠ − Σ+ + electronic sys-
tem. Specific narrow-linewidth excitation of lower lying vibrational–rotational 
levels in the lower electronic state 1X gΣ+ results in the population of higher lying 
vibrational–rotational levels in the 3B ouΠ+  state. Subsequently, transitions from 
those higher lying  vibrational–rotational levels, in the 3B ouΠ+  state, are observed 
toward higher lying vibrational–rotational levels, in the 1X gΣ+ state. This type of 
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selective narrow-linewidth excitation leads to a series of specific, and discrete, 
narrow-linewidth vibrational–rotational transitions. For instance, narrow-linewidth 
excitation at 510.55pλ ≈  yields a series of discrete lines in the red to near infrared 
(Duarte and Piper, 1986).

A different class of optically pumped molecular laser is the liquid organic dye 
laser. Organic laser dyes are enormous molecules with very large molecular weights 
(in the 175–1000 mu range, see Duarte, 2003). A consequence of this extraordinary 
characteristic is that each electronic state of a laser dye molecule includes multi-
tudes of closely lying, and overlapping, vibrational–rotational levels. This is the 
feature that provides the continuous tunability of the dye laser. Figure A.4 shows 
the molecular structure of the coumarin 545 tetramethyl laser dye that exhibits an 
approximate tuning range of 500 570λ≤ ≤  nm (Duarte et al., 2006). The tuning 
curve of a simple grating resonator using this green laser dye is shown in Figure A.5. 
The emission available from laser dyes spans the spectrum continuously from ~ 330 
to ~ 900 nm (Duarte, 2003). The excitation dynamics of dye lasers is described later 
in this chapter.

Liquid organic dye lasers are enormously versatile and lase either in the CW 
regime (see, e.g., Hollberg, 1990) or in the pulsed regime (Duarte, 2003). Their liquid 
gain media is particularly apt for the removal of excess heat. Hence, dye lasers are 
very suitable for the generation of high average powers and very large pulsed energy.

Transverse laser excitation of a narrow-linewidth tunable dye laser oscillator is 
illustrated in Figure A.6 (Duarte et al., 1998). As will be discussed later, the popula-
tion dynamics of dye lasers can be analyzed using rate equations, and the transition 
cross section is mainly obtained from measurements (Duarte, 2003).

A.3.3  Optically Pumped Solid-State Lasers

The first visible laser was a flashlamp-pumped crystalline laser: the ruby laser 
(Maiman, 1960). Cr3+:Al3O2 lases at 694.3λ =  nm via the ( )2 4

2E E A−  transition in a 
three-level energy excitation scheme as illustrated in Figure A.7. On the other hand, 
the widely tunable Ti:sapphire laser emits in the 660 986λ≤ ≤  nm range in a two-
level energy system that operates like a four-level laser, thus allowing its wide tuning 
range (Barnes, 1995a).

FIGURE A.4  Molecular structure of Coumarin 545 T laser dye. A laser dye molecule, such 
as this, in an ethanol solution becomes the gain medium for a dye laser (Duarte, F. J. et al.,  
J. Opt. A: Pure Appl. Opt. 8, 172–174, 2006, © IOP Publishing. Reproduced with permission. 
All rights reserved).
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There is a large variety of optically pumped solid-state lasers that include tran-
sition metal solid-state lasers (Barnes, 1995a) and optical parametric oscillators 
(Barnes, 1995b; Orr et al., 2016). More recently, fiber lasers have become highly 
developed and widely used in many applications (Popov, 2016).

Diode-laser excitation has become widely applied in the excitation of solid-state 
lasers. Figure A.8 shows the simplified energy level diagram for diode-laser excita-
tion of an Nd:YAG laser and a schematics of a longitudinal excitation scheme.

The population dynamics of optically-excited solid-state lasers can be analyzed 
using rate equations, while the transition cross sections can be derived from spectral 
measurements (Barnes, 1995a). Emission characteristics of the lasers mentioned here 
are given in Duarte (2014, 2015).

A.3.4 � Electrically Excited Semiconductor Lasers

The excitation and emission process in semiconductor lasers can be described via 
Schrödinger’s equation as discussed in Chapter 9. The beauty of semiconductor 
lasers is that they can be directly excited using basic electric circuitry as illustrated 
in Figure A.9.

In semiconductor laser materials, emission occurs between a conduction band and 
a lower valence band as illustrated in Figure A.10. This is intrinsically a quantum 
effect. The emission wavelength in these lasers depends on the energy difference 
between the conduction and the valence band, the band gap (E hG ν= ), and is inher-
ently tunable.

FIGURE A.5  Tuning curve of the emission from the Coumarin 545 T dye laser (Duarte, 
F. J. et al., J. Opt. A: Pure Appl. Opt. 8, 172–174, 2006, © IOP Publishing. Reproduced with 
permission. All rights reserved).
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Most semiconductor lasers emit in the visible and near infrared. An interesting 
semiconductor laser is the quantum cascade laser (QCL) that covers an impressive 
segment of the infrared spectrum 3 24λ≤ ≤  μm (Silfvast, 2008). These lasers oper-
ate on transitions between quantized conduction-band states of multiple quantum 
well structures. The only carries are electrons. A single stage consists of an injector 
and an active region. An electron is injected at 3n =  of the quantum well, and as a 
photon is emitted, the electron transitions to 2n = . This is a multiple process so that 
one electron can emit a large number of photons. The emission wavelength is given 
by (see Chapter 9)

	 (3 2 )
82 2 1

2mcL
h

xλ = − − 	 (A.6)

FIGURE A.6  Transverse excitation of narrow-linewidth dye laser oscillator. The gain 
medium here is a laser dye-doped polymer (Reproduced from Duarte, F. J. et al., Appl. Opt. 
37, 3987–3989, 1998, with permission from Optica).
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FIGURE A.7  Three-level energy diagram for the ruby laser. Optical pumping to either 4F1 
or 4F2 results in rapid nonradiative decay to 2E from where laser action takes place to the 
ground level 4A2. The wavelength corresponding to the transition ( )2 4

2E E A−  is 694.3λ =  nm.

FIGURE A.8  Diode-pumped Nd:YAG laser, using longitudinal pumping with a near IR 
diode-laser array, and corresponding four-level energy diagram. Optical pumping leads to 
rapid nonradiative decay to 4F3/2 from where laser action takes place to the 4I11/2 level. The 
wavelength corresponding to the transition 4 3/ 2

4
11/ 2F I−  is 1064λ =  nm.
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FIGURE A.9  Simple excitation circuit of generic semiconductor laser.

FIGURE A.10  Conduction and valence bands in a semiconductor emitter.
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where Lx is the thickness of the quantum well. For emission characteristics of QCLs, 
the reader may refer to Duarte (2014).

A.4 � EXCITATION AND EMISSION DYNAMICS

There are various methods and approaches to describe the dynamics of excitation 
in the gain media of lasers. Approaches range from complete quantum mechanical 
treatments to rate equation descriptions (Haken, 1970). A complete survey of energy 
level diagrams corresponding to gain media in the gaseous, liquid, and solid-state is 
given by Silfvast (2008). Here, a basic description of laser excitation mechanisms is 
given using energy levels and classical rate equations applicable to tunable organic 
molecular gain media. This description is based on the standard approach to the sub-
ject (see, e.g., Peterson, 1979) and follows a review given by Duarte (2003).

A.4.1 �R ate Equations for a Two-Level System

A simplified two-level molecular system is depicted in Figure A.11. The pump laser 
intensity ( )I tp  populates the upper energy level 1N  from the ground state 0N . The 
emission from the upper state is designated as ( , , )I x tl λ . Thus, the time evolution of 
the upper-, or excited-state-, population is written as

	 ( ) ( , , )1
0 0,1 1

N
t

N I t N I x tp e lσ σ λ∂
∂

= − 	 (A.7)

Here, 01σ  is the absorption cross section and eσ  is the emission cross section. Cross 
sections have units of cm2, time has units of seconds (s), the populations have units of 
molecules cm−3, and the intensities have units of photons cm−2/s1. The transition cross 
sections are quantum mechanical in origin and are described later in this chapter.

FIGURE A.11  Simplified two-level energy diagram used to describe a basic rate equation 
system.
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The dynamics of the pump intensity ( )I tp  is described by

	
( )

( )1
0 0,1c

I t

t
N I tp

pσ∂
∂

= −− 	 (A.8)

where c is the speed of light. In reference to Figure A.11, the dynamics of the emis-
sion intensity ( , , )I x tl λ  depends on the difference between the upper level population 
and lower level population so that

	
( , , ) ( , , )

( , , )1
1 0 0,1c

I x t

t

I x t

x
N N I x tl l

e
l

l
λ λ

σ σ λ( )∂
∂

+
∂

∂
= −− 	 (A.9)

In the steady state, this equation reduces to

	
( , )

( , )1 0 0,1
I x

x
N N I xl

e
l

l
λ

σ σ λ( )∂
∂

≈ − 	 (A.10)

and integration yields

	 ( , ) (0, )
( )1 0 0,1I x I el l
N N Le

l

λ λ= σ σ−
	 (A.11)

The exponential terms in Equation (A.11) are referred to as the gain. It can be eas-
ily seen that the laser threshold is reached for 1 0 0,1N Ne

lσ σ≥  and that for strong laser 
action, we need 1 0 0,1N Ne

lσ σ>> .

A.4.2 �D ynamics of Multiple-Level System

The literature on rate equations includes the works of Ganiel et al. (1975), Teschke 
et al. (1976), Penzkofer and Falkenstein (1978), Dujardin and Flamant (1978), Peterson 
(1979), Munz and Haag (1980), Haag et al. (1983), Nair and Dasgupta (1985), and 
Jensen (1991). The rate equation approach given here incorporates several of the ele-
ments common in the published literature and emphasizes the frequency-selective 
aspects of the dynamics as outlined by Duarte (2003). This approach applies to laser 
dye gain media either in the liquid or the solid state.

An energy level diagram for a laser dye molecule is included in Figure A.12. 0S ,  
1S , and 1S  are the electronic states of the molecule while 1T  and 2T  represent the triplet 

states, which are detrimental to laser emission. Laser emission occurs via 1 0S S→  
transitions.

An important feature of laser dyes is that each electronic state contains a large 
number of overlapping vibrational–rotational levels. This multitude of closely lying 
vibrational–rotational levels is the origin of the broadband gain and tunability in dye 
lasers.

In reference to the energy level diagram of Figure A.12, and considering only 
vibrational manifolds at each electronic state, a set of rate equations for transverse 
excitations can be written as (Duarte, 2003)
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FIGURE A.12  Energy level diagram corresponding to a laser dye molecule. The electronic 
singlet states are It includes the electronic states S0, S1, and S2 plus the triplet levels T1 and T2. 
Notice that each electronic level includes a multitude of closely lying vibrational–rotational 
levels. Laser emission takes place from the lowest vibro-rotational level in S1 to S0. The pres-
ence of a manifold of closely lying vibro-rotational levels at S0, allowing a range of ener-
gies, is what gives rise to wavelength tunability. Using cavity design techniques described in 
Appendix B, and Appendix C, tunable narrow-linewidth oscillation can be achieved.
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	 ( , , ) ( , , )
0

I x t I x tl l

m

∑λ λ=
=

v

v

	 (A.17)

	 ( , , ) ( , , ) ( , , )I x t I x t I x tl l lλ λ λ= ++ − 	 (A.18)

In this set of equations, frequency dependence is incorporated via the summation 
terms, and variables, depending on the vibrational assignment v. The equations 
parameters are as follows (see Figure A.12):

	 1.	 ( )I tp  is the intensity of the pump laser beam. Units are photons cm−2 s−1.
	 2.	 ( , , )I x tl λ  is the laser emission from the gain medium. Units are photons 

cm−2 s−1.
	 3.	 ,NS v refers to the population of the S electronic state at the v vibrational 

level. It is given as a number per unit volume (cm−3).
	 4.	 ,NT v refers to the population of the T triplet state at the v vibrational level. 

It is given as a number per unit volume (cm−3).
	 5.	The absorption cross sections, such as 00,1σ ,v , are identified by a subscript 

, ,S S′′ ′′′ ′v v  that refers the electronic S S′′ → ′ transition and the vibrational 
transition ′′ → ′v v .

The same convention applies to the triplet levels. Units are cm2.
	 6.	The emission cross sections, 0,eσ v, are identified by the subscript e ′ ′′v v, . Units 

are cm2.
	 7.	Radiationless decay times, such as 1, 0τ , are identified by subscripts that 

denote the corresponding S S′ → ′′ transition. Units are s.
	 8.	 ,kS T  is a radiationless decay rate from the singlet to the triplet. Units are s−1. 

Ignoring the vibrational manifolds and other finer details, Equations 
(A.12)–(A.16) can be expressed in reduced form as

	 0 1N N N NT= + + 	 (A.19)
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    ( ) ( , , )1
0 0,1 0 0,1 1 1 1, 2 1 , 1, 0

1N
t

N I t N N N I x t N kp
l

e
l

l S Tσ σ σ σ λ τ( ) ( )∂
∂

≈ + − − − + − 	 (A.20)

	 ( , , )1 , ,
1

1,2
N
t

N k N N I x tT
S T T T S T

Tl
lτ σ λ∂

∂
= − −− 	 (A.21)

	
( )

( )1
0 0,1 1 1,2c

I t

t
N N I tp

pσ σ( )∂
∂

= − +− 	 (A.22)

 
( , , ) ( , , )

( , , )1
1 0 0,1 1 1, 2 1, 2c

I x t

t

I x t

x
N N N N I x tl l

e
l l

T
Tl

l
λ λ

σ σ σ σ λ( )∂
∂

+
∂

∂
= − − −− 	 (A.23)

This simplified set of equations is similar to the equations disclosed by Teschke et al. 
(1976). This type of rate equations can be effectively applied to simulate numerically 
the dynamics of dye laser intensity as a function of the laser-pump intensity and dye 
molecular concentration. Relevant cross sections and excitation rates are given in 
Table A.1.

It should be noted that since organic dye gain media exhibits homogeneous broaden-
ing, the introduction of intracavity frequency-selective optics (see Appendix B) enables 
all the molecules to contribute efficiently to tunable narrow-linewidth emission.

A.4.3 �L ong-Pulse Approximation

For long pulse, or CW emission, a simplified set of equations is possible, thus opening 
the alternative to closed-form solutions. Assuming that the time derivatives vanish, 
Equations (A.20)–(A.23) reduce to

TABLE A.1
Laser Excitation Parameters for the Rhodamine 6G Molecule 

Symbol Measured Value  λ (nm)  References

0, 1σ  1.66 10 16× −  cm2  510  Hargrove and Kan (1980)

0, 1σ  4.50 10 16× −  cm2  530  Everett (1991)

1, 2σ  0.40 10 16× −  cm2 510 Hammond (1979)

eσ  1.86 10 16× −  cm2 572 Hargrove and Kan (1980)

eσ  1.30 10 16× −   cm2 600 Everett (1991)

0, 1
lσ  1.0 10 19× −  cm2 600 Everett (1991)

1, 2
lσ  1.0 10 17× −  cm2 600 Everett (1991)

1, 2
Tσ  1.0 10 17× −  cm2  530 Everett (1991)

1, 2
Tlσ 4.0 10 17× −  cm2 600 Everett (1991)

1, 0τ 4.8 10 9× −  s Tuccio and Strome (1972)

2, 1τ  1.0 10 12× −  s Hargrove and Kan (1980) 

,T Sτ 1.1 10 7× −  s Tuccio and Strome (1972)

,kS T 8.2 106×  s−1 Tuccio and Strome (1972)



330 Appendix A

	 ( , )0 0,1 0 0,1 1 1 1, 2 1 , 1, 0
1N I N N N I x N kp

l
e

l
l S Tσ σ σ σ λ τ( ) ( )+ − − = + − 	 (A.24)

	 ( , )1 , ,
1

1, 2N k N N I xS T T T S T
Tl

lτ σ λ= +− 	 (A.25)

	 0 0,1 1 1, 2N Nσ σ= − 	 (A.26)

	
( , )

( , )1 0 0,1 1 1, 2 1, 2
I x

x
N N N N I xl

e
l l

T
Tl

l
λ

σ σ σ σ λ( )∂
∂

= − − − 	 (A.27)

Using a triplet level quenchers such as O2 or C8H8 (see, e.g., Duarte (1990)), it is pos-
sible to neutralize the effect of triplets so that the intensity given in Equation (A.27) 
simplifies to

	
( , )

( , )1 0 0,1 1 1, 2
I x

x
N N N I xl

e
l l

l
λ

σ σ σ λ( )∂
∂

= − − 	 (A.28)

from which it follows that

	 ( , ) (0, )
( )1 1, 2 0 0, 1I x I el

N N Le
l l

λ λ=
σ σ σ( )− −

	 (A.29)

Thus, the gain can be expressed as

	 ( )1 1, 2 0 0,1g N N Le
l lσ σ σ( )= − − 	 (A.30)

A.4.4 � Example

From Equation (A.30), it can be deduced that, in the absence of triplet losses, gain 
can be achieved when

	 1 1, 2 0 0,1N Ne
l lσ σ σ( )− > 	 (A.31)

or

	 1

0

0,1

1, 2

N
N

l

e
l

σ
σ σ

>
−

	 (A.32)

For rhodamine 6G, this ratio can be estimated using the cross sections given in 
Table A.1.

A.5 � QUANTUM TRANSMISSION PROBABILITIES 
AND CROSS SECTIONS

Albeit the dynamics of laser excitation can be described using classical rate equa-
tions, an examination of transition probabilities, and transition cross sections, require 
a quantum treatment. Here, this is done via Dirac’s notation (Dirac, 1958) while 
adopting Feynman’s approach (Feynman et al., 1965). An introduction to Dirac’s 
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notation is given in Chapter 4 and a summary of useful identities is available in 
Chapter 6. The following description is based on a review given by Duarte (2003).

Here, we begin with the basic Dirac principles

	 j j
j

∑φ ψ φ ψ= 	 (A.33)

	
*

φ ψ ψ φ= 	 (A.34)

	 δ=i j ij	 (A.35)

For 1, 2j = , Equation (A.33) can be expanded into

	 2 2 1 1φ ψ φ ψ φ ψ= + 	 (A.36)

or

	 2 12 1C Cφ ψ φ φ= + 	 (A.37)

where

	 11 ψ=C 	 (A.38)

and

	 22 ψ=C 	 (A.39)

Following Feynman, we express the derivative of the C j amplitudes, with respect to 
time, as (Dirac, 1958; Feynman et al., 1965)

	 

2

i
dC

dt
H Cj

jk k

k

∑= 	 (A.40)

where H jk  is the Hamiltonian.
Next, using Feynman’s notation, new amplitudes CI and CII are defined as linear 

combinations of C1 and C2. Furthermore, since

	 1 1 2 2 1II II II II II II= + = 	 (A.41)

the normalization factor 2 1/2−  is introduced, so that

	 2 ( )1/2
1 2C C CII = +− 	 (A.42)

	 2 ( )1/2
1 2C C CI = −− 	 (A.43)
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Next, the Hamiltonian of the molecule under the effect of an electrical field is 
allowed to be perturbed so that the matrix elements of the Hamiltonian become

	 E11 0H E µ= + 	 (A.44)

	 12H A= − 	 (A.45)

	 21H A= − 	 (A.46)

	 E22 0H E µ= − 	 (A.47)

where

	 E E ( )0 e ei t i t= +ω ω− 	 (A.48)

and μ corresponds to the electric dipole moment. The term Eµ  is known as the per-
turbation term. Expanding Equation (A.40), followed by subtraction and addition, 
leads to

	  E( )0i
dC
dt

E A C CI
I IIµ= + + 	 (A.49)

	  E( )0i
dC
dt

E A C CII
II Iµ= − + 	 (A.50)

Assuming a small electric field, solutions are of the form

	 = − ( / )C D eI I
i E tI 	 (A.51)

	 = − ( / )C D eII II
i E tII 	 (A.52)

where

	 0E E AI = + 	 (A.53)

and

	 0E E AII = − 	 (A.54)

Assuming that ( )0ω ω+  oscillates too rapidly to contribute to the rate of change of 
DI and DII, we can write

	  E 0
( )0i

dD
dt

D eI
II

i tµ= ω ω− − 	 (A.55)

	  E 0
( )0i

dD
dt

D eII
I

i tµ= ω ω− 	 (A.56)



333Appendix A

If at 0t = , 1DI ≈ , then integration of Equation (A.56) leads to

	
µ

ω ω
= −

−






ω ω−E


1

( )
0

( )

0

0

D
e

II

i T

	 (A.57)

and following multiplication with its complex conjugate

	
µ ω ω

ω ω
= 





− −
−





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E


2 2cos( )

( )
2 0

2
0

0
2D

T
II 	 (A.58)

which can be written as (Feynman et al., 1965)

	
µ ω ω

ω ω
( )

( )
= 



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−

−
E


sin ( )

( )

2 0
2 2 1

2 0

1
2 0

2D
T T

T
II 	 (A.59)

This is the probability for the transition I II→  during the time segment T. This result 
is central to the theory of absorption and radiation of light by atoms and molecules. 
It can be further shown that

	 2 2D DI II= 	 (A.60)

which means that the physics for the stimulated emission probability is the same as 
the physics for the absorption probability.

Using I E2 0 0
2cε= , the transition probability can be written as

	


D
T
c

T

T
II

µ
ε

ω
ω ω

ω ω
( )

( )
= π

π




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−
−

I2
4

( )
sin ( )

( )
2

2 2

0
2

2 1
2 0

1
2 0

2 	 (A.61)

where, μ is the dipole moment in units of Cm, (1/4 )0επ  is in units of Nm2 C−2, and 
I( )ω  is the intensity in units of Js−1 m−2. There are two approaches to further evaluate 
this probability. The first alternative consists in evaluating 2DII  at ( ) /21

2 0 Tω ω− = π  
which yields

	 I8
4

( )2
2

0
2

2
0D

c
TII



µ
ε

ω=
π π







	 (A.62)

	 I8
( )2 2

0D TII


σ ω=
π





 	 (A.63)

	 I8
( )2 1 2

0D TII κ ω=
π

− 	 (A.64)



334 Appendix A

where

	
4

2

0c
σ µ

ε
=

π





	 (A.65)

is the cross section in units of m2 and the constant

	
κ
σ

= 	 (A.66)

is in units of Js/m2. The intensity can then be written as

	 ( )
8

0
2 2ω κ= π −T DIII 	 (A.67)

An additional alternative is outlined by Feynman et al. (1965) and consists in 
evaluating the integral of the sine function in Equation (A.61) in which case

	 I2 ( )2 2 2
0D TII



σ ω= π 



 	 (A.68)

From both approaches, it can be learned that the intensity, in units of Js−1 m−2 or  
W m−2, becomes

	 I( )0
2 2T DIIω η κ= − 	 (A.69)

where η  is a numerical weight that depends on the approach selected to evaluate the 
sinusoidal function in (A.61). It should be noted that the probability equation given 
by Feynman et al. (1965) is dimensionally incorrect. Sargent et al. (1974) provide a 
slightly different approach to this transition probability.

A direct application of the quantum cross section σ  evaluated here is in calculat-
ing the gain of molecular vibrational–rotational transitions, which can be expressed 
in the form (Chutjian and James, 1969; Byer et al., 1972)

	 g NLσ= 	 (A.70)

A.5.1 �L ong-Pulse Approximation

For a very long pulse, or a CW situation, ( )1
2 0 Tω ω−  dominates and Equation (A.61) 

can be approximated as

	 I8 ( ) ( )2
0

2
0DII



σ ω ω ω≈ π 



 − − 	 (A.71)

so that the intensity becomes

	 I( )
8

( )0
2 2DIIω κ ω≈

π
∆ 	 (A.72)
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This approximation indicates that the intensity is proportional to the square of the 
frequency linewidth multiplied by the probability of the transition, or ( )2 2DIIω∆ .

PROBLEMS

	 A.1	 Show that in the steady state Equation (A.20) becomes Equation (A.24).
	 A.2	 Show that in the steady state Equation (A.23) becomes Equation (A.27).
	 A.3	� In the absence of triplets, that is 0,kS T ≈ , set ( , ) 0I xl λ ≈  in Equation (A.24) 

to arrive at an equation for I p to estimate the necessary pump intensity to 
overcome the threshold.

	 A.4	� Show that by neglecting the triplet state Equation (A.27) can be expressed 
as Equation (A.29).

	 A.5	� Starting from Equations (A.49) and (A.50) derive an expression for 2DI  
and show that it is equal to 2DII .

	 A.6	 Show that Equation (A.58) can be written as Equation (A.59).
	 A.7	� Verify that for a very long pulse, or a CW situation, Equation (A.61) 

becomes Equation (A.72).
	 A.8	� Show that the dimensions of the intensity given in Equation (A.72) are in  

W m−2.
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Appendix B
Laser Oscillators and Laser 
Cavities via Dirac’s Notation

B.1 � INTRODUCTION

Here we derive the classical linewidth cavity equation

	
1

λ θ θ
λ

∆ ≈ ∆ ∂
∂





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−

	 (B.1)

using the Dirac’s notation approach. First, we notice that in this equation, θ∆  is the 
beam divergence previously related to the uncertainty principle (see Chapter 3)

	 p x h∆ ∆ ≈ 	 (B.2)

and /
1θ λ( )∂ ∂ −
 is the overall cavity angular dispersion (Duarte, 2003).

We should also mention that Equation (B.1) is the single-pass version of the  
multiple-pass linewidth cavity equation (Duarte and Piper, 1984; Duarte 1990, 2001)

	
1

MR RR G Pλ θ ( )∆ = ∆ ∇ Θ + ∇ Φλ λ
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	 (B.3)

where the multiple return-pass beam divergence is given by (Duarte, 1989, 1990)
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In Equations (B.3) and (B.4), R is the number of return-cavity passes necessary to 
reach laser threshold, R ( / )2L w λ= π  is the Rayleigh length (Duarte, 1990), and w 
is the beam waist. RA  and BR are the corresponding multi-return-pass matrix ele-
ments (Duarte, 2003) as indicated in Appendix F. For high-power, high-gain, tunable 
narrow-linewidth oscillators (as depicted in Figures B.1 and B.2), this factor has been 
measured to be 3R ≈  (Duarte, 2001). Equation (B.3) has been found to be fairly suc-
cessful to predict, and account for, measured laser linewidths in high-gain, pulsed 
tunable lasers (Duarte, 2001).

In this chapter, we shall see that equations and concepts previously developed in a 
classical context can also be outlined and derived from a quantum perspective. Here, 
it should be mentioned that these laser-linewidth concepts have been successfully 
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applied to lasers with gain media the gaseous (Duarte, 1985), the liquid (Duarte and 
Piper, 1984), and the solid state (Duarte, 1994).

B.2 � TRANSVERSE AND LONGITUDINAL MODES

The unrestricted initial emission from laser gain media is both spatially and spec-
trally broad, in other words, it lacks spectral purity. This is the essence of broadband 
emission. Spatially, this broad emission contains many spatial modes, and each of 
those spatial modes includes a multitude of longitudinal modes. Albeit exhibiting a 

FIGURE B.2  Hybrid multiple-prism near grazing incidence (HMPGI) grating oscilla-
tor (Duarte and Piper, 1981; Duarte, 1990). For the organic solid-state HMPGIG oscilla-
tor, the measured laser linewidth is 375ν∆ ≈  MHz (Duarte, 1997a). This is a closed cavity 
configuration.

FIGURE B.1  Optimized multiple-prism grating solid-state dye laser oscillator using a 3000 
lines/mm diffraction grating deployed in Littrow configuration. The measured laser linewidth 
is 350ν∆ ≈  MHz (Duarte, 1999). This is a closed cavity configuration, where the laser output 
is coupled via a partially reflective mirror rather than from the reflection loss of a diffractive 
element (Reproduced from Duarte, F. J., Appl. Opt. 38, 6347–6349, 1999, with permission 
from Optica).
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directional beam, this type of broadband emission is essentially chaotic and exhibits 
a high degree of entropy.

To achieve highly selective, controllable, narrow-linewidth, spectrally pure emis-
sion, it is imperative to:

	 1.	Restrict the spatial emission to a single transverse electromagnetic mode, 
that is TEM00.

	 2.	Restrict the longitudinal modes, within that single transverse mode (TEM00), 
to a single-longitudinal mode (SLM).

In other words, highly coherent, spectrally pure, low entropy laser emission requires 
the selection of a single transverse electromagnetic mode, followed by the selection 
of a single longitudinal mode within that single transverse mode. The discussion that 
follows next includes concepts and elements from a review given by Duarte (2003).

B.2.1 �T ransverse-Mode Structure

A fundamental laser cavity is comprised of a gain medium and two mirrors, as illus-
trated in Figure B.3. The physical dimension of the intracavity aperture (2 )w relative 
to the separation of mirrors, or cavity length ( )L , determines the number of trans-
verse electromagnetic modes. A typical broadband laser cavity, under optical excita-
tion, has an aperture in the few mm range and a cavity length of about 10 cm. For the 
same cavity length, the aperture size in a narrow-linewidth cavity is reduced to the 
100 2 200w≤ ≤  μm range.

The narrower the width of the intracavity aperture and the longer the cavity 
length, the lower the number of transverse modes (Duarte, 2003). The single-pass 

FIGURE B.3  Mirror-mirror laser cavity. The physical dimensions of the intracavity aper-
ture relative to the cavity length determine the number of transverse modes. Parameters that 
enter the calculation are laser wavelength (λ), cavity length (L), and number of subslits (N).
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transverse mode structure in one dimension can be characterized using the general-
ized interferometric equation introduced in Chapter 4 (Duarte, 1991, 1993a)
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and in two dimensions by (Duarte, 1995a)
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The single-pass approximation to estimate the transverse mode structure assumes 
that in a laser with a given cavity length, most of the emission generated next to 
the output-coupler mirror is in the form of spontaneous emission and thus highly 
divergent. Thus, only the emission generated at the opposite end of the cavity and 
that propagates via an intracavity length L contributes to the initial transverse mode 
structure.

To illustrate the use of these equations, let us consider a hypothetical laser with 
a 10 cm cavity emitting at 590λ =  nm incorporating a one-dimensional aperture 
(2 ) 2w =  mm wide. Using Equation (B.5), the intensity distribution of the emission 
is calculated as shown in Figure B.4. Each ripple represents a transverse mode. An 
estimate of this number can be obtained by counting the ripples in Figure B.4 which 
yields an approximate number of 17. The Fresnel number (Siegman, 1986) for the 
given dimensions is

	 16.95
2

N
w
L

F λ
=





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= 	 (B.7)

FIGURE B.4  Cross-section of diffraction distribution corresponding to a large number of 
transverse modes. Here, 590λ =  nm, 2 2w =  mm, 10L =  cm, and 17NF ≈ . The wide aperture 
is assumed to be composed of 1000N =  ‘imaginary’ subslits.
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For the same wavelength at 590λ =  nm and cavity length ( 10L =  cm), if the aper-
ture is reduced to 2 250w =  μm, the calculated intensity distribution, using Equation 
(B.5), is given in Figure B.5. In this case, the Fresnel number becomes 0.26NF ≈ .

The distribution in Figure B.5 indicates that most of the emission intensity is con-
tained in a central near-Gaussian distribution. A measured single-transverse-mode 
beam, with an ovaloid profile, from a narrow-linewidth tunable solid-state dye laser 
(Duarte, 1995b), is displayed in Figure B.6.

FIGURE B.5  Cross-section of diffraction distribution corresponding to a near single-Trans-
verse-mode corresponding to 590λ =  nm, 2 250w =  μm, 10L =  cm, and 0.26NF ≈ . In prac-
tice, the lower intensity higher-order maxima are not observed due to cavity losses and often 
only the central mode remains.

FIGURE B.6  Single-transverse mode beam originating from a single-longitudinal-mode  
( 420ν∆ ≈  MHz) multiple-prism grating solid-state dye laser (Reproduced from Duarte, F. J., 
Opt. Commun. 117, 480–484, 1995b, with permission from Elsevier).
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In summary: reducing the transverse mode distribution to TEM00 emission is the 
first step in the design of narrow-linewidth tunable lasers. The task of the designer 
consists in achieving TEM00 emission within desirable geometrical parameters that 
include the shortest possible cavity length.

B.2.2 D ouble- and Single-Longitudinal-Mode Emission

Successful discrimination toward a single-transverse-mode is the first step toward 
the attainment of tunable narrow-linewidth emission. The next task consists in con-
trolling the number of longitudinal modes in the cavity. In a laser resonator with cav-
ity length L, the longitudinal-mode spacing ( )δν , in the frequency domain, is given 
by an alternative form of the uncertainty principle (see Chapter 3)

	
2

v
c
L

δ = 	 (B.8)

and the number of longitudinal modes NLM  is given

	 NLM
ν

δν
= ∆

	 (B.9)

where Δν is the measured laser linewidth (Duarte, 2003). From Equations (B.8) and 
(B.9), it is clear that the number of allowed longitudinal modes ( )NLM  decreases as the 
cavity length decreases. Thus, the importance of cavity compactness is highlighted.

An additional, and complementary, approach to achieve SLM emission is to opti-
mize the beam divergence and increase the intracavity dispersion to yield a narrower 
cavity linewidth that would restrict oscillation to the SLM regime. In this context, 
the linewidth
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−

	 (B.10)

is converted to ν∆  units (Hz) using the identity

	 2

cν λ
λ

∆ = ∆ 



 	 (B.11)

and applying the criterion

	 ν δν∆ ≤ 	 (B.12)

to guide the design of the dispersive oscillator.
Multiple-longitudinal-mode emission is complex and chaotic, both in the fre-

quency and temporal domains. Double-longitudinal-mode (DLM) and SLM emis-
sion can be characterized in the frequency domain using Fabry–Perot interferometry 
or in the temporal domain by observing the shape of the temporal pulsed. In the case 
of DLM-emission, the interferometric rings appear to be double. In the temporal 
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domain, mode beating is still observed when the intensity ratio of the primary to the 
secondary mode is 100:1 or even higher. Mode-beating of two longitudinal modes, 
as illustrated in Figure B.7, can be characterized using a wave function representa-
tion where the modes of frequencies 1ω  and ω 2, combine to produce a resulting field 
of the form

	 ( ) ( ) 2 ( ) ( )cos( )
2

1
2

2
2

1 2 2 1d s r r r r= Ψ + Ψ + Ψ Ψ Ω − Ω 	 (B.13)

Setting 2 2tωΩ =  and 1 1tωΩ = , this probability becomes

	 ( ) ( ) 2 ( ) ( )cos( )
2

1
2

2
2

1 2 2 1d s r r r r tω ω= Ψ + Ψ + Ψ Ψ − 	 (B.14)

The reader should have observed that Equation (B.13) is the generalized interferomet-
ric probability for 2N = . Also relevant is that the quantum intensity is ∝ ∗

I d s d s  
as described in Appendix A. It should also be mentioned that the original description 
of this phenomenon was done classically using the concept of electric fields (Pacala 
et al., 1984).

Using this approximation and a non-Gaussian temporal representation, derived 
from experimental data, for the amplitudes of the form

	 ( ) ( )( )1 2
2

1 0 1 0
1E t a t a t a b t b= + + + − 	 (B.15)

a calculated version of the experimental waveform exhibiting mode beating can 
be obtained as shown in Figure B.8 (Duarte et al., 1988). For the oscillator under 
consideration, which was lasing in the double-longitudinal mode regime, the ratio 
of frequency jitter δω  to cavity mode spacing ( )2 1ω ω ω∆ ≈ −  was represented by a 

FIGURE B.7  Measured mode beating resulting from double-longitudinal-mode oscillation. 
Temporal scale is 20 ns/div (Reproduced from Duarte, F. J. et al., Appl. Opt. 27, 843–846, 
1988, with permission from Optica).
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sinusoidal function at 20 MHz. The initial mode intensity ratio is 200:1 (Duarte et al., 
1988; Duarte, 1990).

In the case of SLM emission, the Fabry–Perot interferometric rings appear singu-
lar and well defined (see Figure B.9). Mode beating in the temporal domain is absent 
and the pulses assume a near Gaussian distribution (see Figure B.10). These results 
were obtained in an optimized solid-state multiple-prism grating dye laser oscillator 

FIGURE B.8  Calculated temporal pulse assuming interference between the two longitudi-
nal modes (Reproduced from Duarte, F. J. et al., Appl. Opt. 27, 843–846, 1988, with permis-
sion from Optica).

FIGURE B.9  Fabry–Perot interferogram corresponding to single-longitudinal-mode emis-
sion at Δν ≈ 350 MHz (Reproduced from Duarte, F. J., Appl. Opt. 38, 6347–6349, 1999, with 
permission from Optica).
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for which 1tν∆ ∆ ≈ , which is near the limit allowed by Heisenberg’s uncertainty 
principle (Duarte, 1999).

B.2.3 � Example

For a laser with a 15 cm cavity length ( 1δν ≈  GHz, using Equation (B.8), and a mea-
sured linewidth of 3ν∆ =  GHz, the number of longitudinal modes becomes 3NLM ≈  
(using Equation (B.9). If the cavity length is reduced to 10 cm ( 1.5δν ≈  GHz), then 
the number of longitudinal modes is reduced to 2NLM ≈  and the emission would 
be called DLM emission. Furthermore, if the cavity length is reduced to 5 cm, then 

1NLM ≈ , and the laser is said to be undergoing SLM oscillation. This example high-
light the advantages of compact cavity designs.

B.3 � THE LASER CAVITY EQUATION: AN INTUITIVE APPROACH

We now describe an intuitive approach to the laser cavity equation using Dirac’s 
notation as applied to a multiple-prism grating cavity as illustrated in Figures B.1 
and B.2 (Duarte, 1992). A close-up view of the frequency selective assembly, in an 
unfolded configuration, is shown in Figure B.11.

In reference to this figure, the probability amplitude describing the propagation 
from the active region emitter s to the entrance of the multiple-prism array at an inci-
dence angle 1,mφ  can be expressed as

	 1, smφ 	 (B.16)

while the probability amplitude to propagate, through the dispersive multiple-prism 
grating assembly D, from an incidence angle 1,mφ  to a return angle 1,mφ′  can be 
written as

	 φ φ′1, 1,Dm m 	 (B.17)

Similarly, the probability amplitude to exit the multiple-prism array at an angle 1,mφ′  
back to the gain medium is

	 1,s mφ′ ′ 	 (B.18)

FIGURE B.10  Near-Gaussian temporal pulse corresponding to single-longitudinal-mode 
emission. The temporal scale is 1 ns/div (Reproduced from Duarte, F. J., Appl. Opt. 38, 6347–
6349, 1999, with permission from Optica).
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Thus, the overall probability amplitude for a photon to propagate from the active 
medium s, through the dispersive multiple-prism grating assembly, and back to the 
gain medium, is

	 1, 1, 1, 1,

1,1,

s D s s D sm m m m

mm

∑∑ φ φ φ φ′ = ′ ′ ′
φφ′

	 (B.19)

Since 1, mφ  is a unique angle of incidence on the gain axis, at the multiple-prism 
expander, that is necessary to induce diffraction at the grating followed by an exact 
return passage to the gain medium, the probability amplitude can be reduced to 
(Duarte, 1992)

	 1, 1, 1, 1,s D s s D sm m m mφ φ φ φ〈 ′ 〉 = 〈 ′ ′ ′ 	 (B.20)

so that the probability for the intracavity photon propagation just described becomes

	
2

1,

2

1, 1,
2

1,
2

s D s s D sm m m mφ φ φ φ〈 ′ 〉 = 〈 ′ ′ ′ 〈 	 (B.21)

FIGURE B.11  Unfolded optical path of a dispersive multiple-prism grating configuration 
showing the emission source S followed by the entrance of the multiple-prism grating assem-
bly ( 1, mφ  with m = 1), the dispersive assembly D, and the corresponding quantities to the return 
path back to the gain region (Adapted from Duarte, F. J., Appl. Opt. 31, 6979–6982, 1992, 
with permission from Optica).
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The different components of this probability can be identified by describing the 
propagation at each segment. Immediately, at the exit of the gain region, in the first 
segment, the probability of narrow linewidth emission propagation is inversely pro-
portional to the beam divergence θ∆  of the emission, so that

	 smφ κ
θ

〈 =
∆





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1
1,

2
1 	 (B.22)

Once the photon flux arrives at the dispersive multiple-prism grating assembly, the 
return of resonant narrow linewidth emission is proportional to the dispersion of the 
configuration. The higher the dispersion, the narrower the linewidth

	 Dm mφ φ κ θ
λ

〈 ′ 〉 = ∂
∂





1, 1,

2
2 	 (B.23)

For highly selective resonant emission that returns precisely at 1,mφ′ , the probability to 
return to the gain region for further amplification is high so that

	 s mφ′ ′ ≈ 11,

2

	 (B.24)

Now, since the overall probability for resonant narrow-linewidth amplification is 
inversely proportional to the wavelength spread of the emission

	 s D s κ
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Combining Equations (B.22)–(B.25) into (B.21), we get
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which, for ( )3 1 2κ κ κ≈ , takes the form
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Albeit fairly intuitive, this approach lends itself to illustrate the refinement process 
that occurs with multiple intra-cavity passes.

B.4 � THE LASER CAVITY EQUATION VIA THE 
INTERFEROMETRIC EQUATION

By now, the reader should be getting the message that interference is at the heart 
of many phenomena in laser optics. We just saw how the interferometric equation 
applied to a single aperture can be used to describe the transverse mode structure of 
a laser cavity. In other words, we saw how the geometrical ratio of aperture width to 
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cavity length affects the transverse-mode distribution of the emission. Now, we apply 
the generalized, one-dimensional, interferometric equation

	 d s r r rj j m m j
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to describe the origin of the cavity linewidth equation. We do this by focusing atten-
tion on the phase term of the N-slit interferometric equation (Duarte, 1997b)

	 θ θ φ φ ( )( )− ± − = − ± −− −cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m m 	 (B.28)

from which the well-known grating equation can be derived (see Chapter 5)

	 (sin sin )d mm m m λΘ ± Φ = 	 (B.29)

where 0, 1, 2, 3,m = ± ± ±  For a grating deployed in the reflection domain, and at 
Littrow configuration, m mΘ = Φ = Θ (that is, the diffracted light goes back at the 
same angle of the incident beam) so that the grating equation reduces to

	 2 sinm dmλ = Θ	 (B.30)

where 0,1, 2, 3,m =  are the various diffraction orders.
Considering two slightly different wavelengths, an expression for the wavelength 

difference can be written as
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for ( )1 2Θ ≈ Θ = Θ  this equation can be restated as
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Differentiation of the grating equation leads to
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and substitution into Equation (B.33) yields
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which reduces to the well-known cavity linewidth equation (Duarte, 1992)
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or

	 ( ) 1λ θ θ∆ ≈ ∆ ∇λ
− 	 (B.36)

where ( / )θ θ λ∇ = ∂ ∂λ . This equation has been used extensively to determine the 
emission linewidth in pulsed narrow-linewidth dispersive laser oscillators (Duarte, 
1990). It originates in the generalized N-slit interference equation and incorporates 

θ∆  whose value can be determined either from Heisenberg’s uncertainty principle 
or from the interferometric equation itself. This equation is also well known in the 
field of classical spectrometers where it has been introduced using geometrical argu-
ments (Robertson, 1955). In addition to its technical and computational usefulness, 
Equations (B.35) and/or (B.36) illustrate the inherent interdependence between spec-
tral and spatial coherence.

PROBLEMS

	 B.1	� Show that for R = 1, and in the absence of a grating, Equation (B.3) 
reduces to an equation of the form of Equation (B.1) where the dispersion 
is provided by the multiple-prism assembly.

	 B.2	� For an optimized multiple-prism grating oscillator, as shown in Figure 
B.1, the measured laser linewidth is 350ν∆ ≈  MHz. Given that the free 
spectral range of the cavity is 1.6FSR ≈  GHz, determine (a) the approxi-
mate length of the cavity and (b) the value of the overall intracavity dis-
persion given that the measured beam divergence is 2.2θ∆ ≈  m rad.

	 B.3	� For the case of laser radiation in the visible spectrum, show that Equation 
(B.14) reduces to Equation (B.15) for detectors with a time response in the 
nanosecond regime.

	 B.4	� Show in detail how Equation (B.32) reduces to the cavity linewidth equa-
tion: Equation (B.35).
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Appendix C
Generalized Multiple-Prism  
Dispersion

C.1  INTRODUCTION

Now that we have dealt with the fundamentals, we’ll focus on the derived phenomenon of 
angular dispersion. Angular dispersion is an important quantity in optics which describes 
the ability of an optical element, such as a diffraction grating or prism, to geometrically 
spread a beam of light as a function of wavelength. Mathematically, it is expressed by the 
differential (∂Θ/∂λ). For spectrophotometers and wavelength meters based on dispersive 
elements, such as diffraction gratings and prism arrays, the dispersion should be as large 
as possible since that enables a higher wavelength spatial resolution. Further, in the case 
of dispersive laser oscillators, a high dispersion leads to the achievement of narrow line-
width emission since the dispersive cavity linewidth is given by

	
1

λ θ θ
λ

∆ ≈ ∆ ∂
∂





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−

	 (C.1)

where ( / )θ λ∂ ∂  is the overall intracavity dispersion (Duarte, 1992). In Appendix B, 
the cavity linewidth equation is derived from Dirac’s quantum principles (Dirac, 
1958) via the interferometric equation (Duarte, 1991, 1993)
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In this chapter, however, we concentrate on the dispersive term ( / )θ λ∂ ∂  of general-
ized multiple-prism arrays since these arrays are widely used in optics in a variety of 
optics and quantum optics applications such as

	 1.	Laser intracavity beam expanders, in narrow-linewidth tunable laser 
oscillators.

	 2.	Extracavity beam expanders.
	 3.	Laser pulse compressors, in femtosecond and ultrafast pulse lasers.
	 4.	Dispersive elements in a variety of optical instruments such as spectrometers.

Albeit multiple-prism arrays were first introduced by Newton (1704), a mathematical 
description of their dispersion had to wait, a long time, until their application as intra-
cavity beam expanders in narrow-linewidth tunable lasers (Duarte and Piper, 1982).
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C.2  GENERALIZED MULTIPLE-PRISM DISPERSION

Generalized multiple-prism arrays are illustrated in Figure C.1. The aim here is to obtain 
generalized angular dispersion equations based on the basic prismatic geometry and the 
generalized refraction equations obtained in Chapter 5 (Duarte and Piper, 1982; Duarte, 
2006). Considering the mth prism, of the arrangements, the angular relations are given by

	 1, 2,m m m mφ φ ε α+ = ± 	 (C.3)

	 1, 2,m m mψ ψ α+ = 	 (C.4)

FIGURE C.1  Generalized multiple-prism sequences: (a) positive configuration and (b) com-
pensating configuration (Reproduced from Duarte, F. J., and Piper, J. A., Am. J. Phys. 51, 
1132–1134, 1983, with permission of the American Association of Physics Teachers).
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	 sin sin1, 1,nm m mφ ψ= ± 	 (C.5)

	 sin sin2, 2,nm m mφ ψ= ± 	 (C.6)

As illustrated in Figure C.1, 1,mφ  and 2,mφ  are the angles of incidence and emer-
gence and 1,mψ  and 2,mψ  are the corresponding angles of refraction, at the mth prism.  
The sign alternative ± allows for either positive refraction or negative refraction.

Differentiating Equations (C.5) and (C.6), and using

	 1, 2,d

dn

d

dn
m mψ ψ

= − 	 (C.7)

the single-pass dispersion following the mth prism is given by (Duarte and Piper, 
1982; Duarte, 2006)

	 H H( ) ( )2, 2, 1, 2,
1

1, 2,( 1)n k k nm m m m m m m mφ φ( )∇ = ± ∇ ± ∇ ± ∇λ λ λ λ
−

− 	 (C.8)

where / λ∇ = ∂ ∂λ  and the following geometrical identities apply
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The 1,k m  and 2,k m factors represent the physical beam expansion experienced, at the 
mth prism, by the incidence and the emergence beams, respectively. In Equation 
(C.8), the sign ± alternative refers to either positive( )+  or negative ( )−  refraction, 
while the same sign alternative in parenthesis ( )±  indicates whether the prismatic 
configuration is positive ( )+  or compensating ( )− . For positive refraction alone, 
Equation (C.8) becomes

	 H H( )2, 2, 1, 2,
1

1, 2,( 1)n k k nm m m m m m m mφ φ( )∇ = ∇ + ∇ ± ∇λ λ λ λ
−

− 	 (C.13)

The generalized single-pass dispersion equation indicates that the cumulative 
dispersion at the mth prism, namely 2,mφ∇λ , is a function of the geometry of the mth 
prism, the position of the light beam relative to this prism, the material of this prism, 
and the cumulative dispersion up to the previous prism, 2,( 1)mφ∇λ −  (Duarte and Piper, 
1982, 1983).
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For the special case of orthogonal beam exit, that is 02,mφ =  and 02,mψ = , we have 
H 02,m = , 12,k m = , and Equation (C.13) reduces to

	 H( )2, 1,
1

1, 2,( 1)k nm m m m mφ φ( )∇ = ∇ ± ∇λ λ λ
−

− 	 (C.14)

For an array of r identical isosceles, or equilateral, prisms deployed symmetrically, 
in an additive configuration, for positive refraction, so that 1, 2,m mφ φ= , the cumulative 
dispersion reduces to (Duarte, 1990a)

	 2, 2,1rrφ φ∇ = ∇λ λ 	 (C.15)

This is a simple dispersion equation that applies to the design of multiple-prism 
spectrometers incorporating identical, isosceles, or equilateral prisms arranged in 
symmetrical additive configurations.

The generalized single-pass dispersion equation for positive refraction (Equation 
6.13) can be restated in a more practical and explicit notation (Duarte, 1989, 1990a)
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where
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are the respective beam expansion factors. For the important practical case of r 
right angle prism, designed for orthogonal beam exit (i.e., 02, 2,m mφ ψ= = ), Equation 
(C.16) reduces to
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If in addition, the prism have identical apex angle ( 1 2 3 mα α α α= = = = ) and are 
configured to have the same angle of incidence ( 1,1 1,2 1,3 1,mφ φ φ φ= = = = ), then 
Equation (C.19) can be written as (Duarte, 1985a)
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Further, if the angle of incidence for all prisms is Brewster’s angle, then the single-pass 
dispersion reduces to the elegant expression

	 ( 1) 1/2,

1

n nr m

m

r
m

m∑φ ( )∇ = ± ∇λ λ

=

	 (C.21)

Alternative forms of expressing the generalized multiple-prism dispersion equation 
in series are given in Appendix D.

C.2.1  Example: Generalized Single-Prism Dispersion

For a single generalized prism, it is easy to show that the elegant generalized multi-
ple-prism dispersion, Equation (C.13), reduces to
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as given in well-known textbooks (Duarte, 1990a; Born and Wolf, 1999). Further, 
for the case of orthogonal beam exit ( 02, 2,m mφ ψ≈ ≈ ), Equation (C.22) reduces to 
(Wyatt, 1978)

	 tan2,1 1,1 1nφ ψ∇ ≈ ∇λ λ 	 (C.23)

The above-given examples are included to show that albeit general and elegant in its 
complete form, Equation (C.13) quickly leads to concrete results of practical interest 
to designers, laser practitioners, and optical engineers.

C.3  DOUBLE-PASS GENERALIZED MULTIPLE-PRISM DISPERSION

The evaluation of intracavity dispersion in tunable laser oscillators incorporat-
ing multiple-prism beam expanders requires the assessment of the double-pass, or 
return-pass, dispersion (Duarte and Piper, 1984; Duarte, 1990a). The double-pass 
dispersion of multiple-prism beam expanders was derived by thinking of the return 
pass as a mirror image of the first light passage as illustrated in Figure C.2. The 
return-pass dispersion corresponds to the dispersion experienced by the return light 
beam at the first prism.

Thus, it is given by /1, 1,m mφ λ φ∂ ′ ∂ = ∇ ′λ  where the prime character indicates a return 
pass (Duarte and Piper, 1982, 1984)

	 ( )1, 1, 1, 2, 2, 1, ( 1)n k k nm m m m m m m mH Hφ φ( )∇ ′ = ′ ∇ + ′ ′ ′ ∇ ± ∇ ′λ λ λ λ + 	 (C.24)
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Here, 1, ( 1)mφ∇ ′λ +  provides the cumulative single-pass multiple-prism dispersion plus 
the dispersion of the diffraction grating, that is,

	 1,( 1) 2,m G rφ φ( )∇ ′ = ∇ Θ ± ∇λ λ λ+ 	 (C.29)

where G∇ Θλ  is the grating dispersion. If the grating is replaced by a mirror, then we 
simply have the prismatic contribution and

	 1,( 1) 2,m rφ φ∇ ′ = ∇λ λ+ 	 (C.30)

Defining 1,m Pφ∇ ′ = ∇Φλ , where the capital ϕ stands for return pass and P for multiple 
prism, the explicit version of the generalized double-pass dispersion for a multiple-
prism mirror system is given by (Duarte, 1985a, 1989)

FIGURE C.2  Multiple-prism grating assembly incorporating a three-prism beam expander 
designed for orthogonal beam exit.
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For the case of r right angle prism, designed for orthogonal beam exit (i.e., 
02, 2,m mφ ψ= = ), Equation (C.31) reduces to
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which can also be expressed as (Duarte, 1985a)
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If the angle of incidence for all prisms in the array is made equal to the Brewster 
angle, this equation simplifies further to (Duarte, 1990a)
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The equations given here are quite highly applicable to the design of multiple-prism 
beam expanders for narrow-linewidth tunable lasers (see Figure C.3).

C.3.1 D esign of Zero-Dispersion Multiple-Prism Beam Expanders

In practice, the dispersion of the grating, multiplied by the beam expansion, that is 
( )M G∇ Θλ , amply dominates the overall intracavity dispersion. Thus, it is sometimes 

advantageous to remove the dispersion component originating from the multiple-
prism beam expander so that

	
1

MRR Gλ θ ( )∆ ≈ ∆ ∇ Θλ
−

	 (C.35)

In such designs, the tuning characteristics of the laser are those of the grating alone, 
around a specific wavelength.

The design of zero dispersion, or quasi-achromatic, multiple-prism beam expand-
ers exhibiting orthogonal beam exit ( 02, 2,m mφ ψ≈ ≈ ), and made of identical material, 
involves the direct application of Equation (C.33) while setting 0P∇ Φ =λ . Thus, for 
a double-prism expander yielding zero dispersion, we obtain
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 	  ( ) tan ( ) tan1,1 1,1 1,1 1,2 1,2k k kψ ψ= 	 (C.36)

For a three-prism expander yielding zero dispersion, we obtain

	 ( ) tan ( ) tan1,1 1,1 1,2 1,1 1,1 1,2 1,3 1,3k k k k k kψ ψ+ = 	 (C.37)

For a four-prism expander yielding zero dispersion, we obtain

	 ( ) tan ( ) tan1,1 1,1 1,2 1,1 1,2 1,3 1,1 1,1 1,2 1,3 1,4 1,4k k k k k k k k k kψ ψ+ + = 	 (C.38)

FIGURE C.3  Dispersive long-pulse solid-state tunable laser oscillator incorporating a mul-
tiple-prism grating assembly (Reproduced from Duarte, F. J. et al., Appl. Opt. 37, 3987–3989, 
1998, with permission from Optica).
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For a five-prism expander yielding zero dispersion, we obtain

  ( ) tan ( ) tan1,1 1,1 1,2 1,1 1,2 1,3 1,1 1,2 1,3 1,4 1,1 1,1 1,2 1,3 1,4 1,5 1,5k k k k k k k k k k k k k k kψ ψ+ + + = 	 (C.39)

and so on. Here we should just re-emphasize that all these configurations yield zero 
dispersion at the design wavelength, thus the use of the term quasi-achromatic.

Optimized compact high-power solid-state multiple-prism laser oscillators have 
been demonstrated to yield single-longitudinal-mode oscillation at 350ν∆ ≈  MHz, at 
pulses 3t∆ ≈  ns, near the limit allowed by Heisenberg’s uncertainty principle (Duarte, 
1999). The oscillator, illustrated in Figure C.4, requires the use of a small fused silica 
double-prism beam expander with 42M ≈ , and 02, 2,m mφ ψ≈ ≈ , at 590λ =  nm. Thus, 
we use Equation (C.33) to obtain Equation (C.36), which reduces to

	 tan tan1,1 1,2 1,2kψ ψ= 	 (C.40)

For 1.4583n =  and 88.601,1φ = °, we get 43.281,1ψ ≈ °, and 29.801,1k ≈ . With these 
initial parameters, Equation (C.40) yields for the second prism 53.931,2φ ≈ °,  

33.661,2ψ ≈ °, and 1.411,2k ≈ . Therefore, the overall intracavity beam expansion 
becomes

	 42.131,1 1,2M k k= ≈

For a beam waist of w = 100 μm this implies 2 8.43wM ≈  mm. These dimensions 
require the first prism to have a hypotenuse of ~ 8 mm and the second prism a hypot-
enuse of ~10 mm. In this particular oscillator, this intracavity beam expansion is 
used to illuminate a 3300 lines/mm grating deployed at an angle of incidence ~ 77° 
in Littrow configuration (Duarte, 1999).

Duarte (2003) describes in detail the design of a zero dispersion four-prism beam 
expander for 103.48M = , at 590λ =  nm. Shay and Duarte (2009) describe the design 
of a zero dispersion five-prism beam expander for fused silica, at 1550λ =  nm  
( 1.44402n = ), yielding an overall beam expansion of 987M ≈ .

FIGURE C.4  Optimized multiple-prism ( 2)m =  grating solid-state tunable laser oscillator 
delivering a linewidth ( 350ν∆ ≈  MHz) near the limit allowed by Heisenberg’s uncertainty 
principle (Reproduced from Duarte, F. J., Appl. Opt. 38, 6347–6349, 1999, with permission 
from Optica).
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C.4 � MULTIPLE RETURN-PASS GENERALIZED 
MULTIPLE-PRISM DISPERSION

Here we consider a multiple-prism grating or multiple-prism mirror assembly, for 
positive refraction, as illustrated in Figure C.5. The light beam enters the first prism 
of the array, it is then expanded, and it is either diffracted back or reflected back 
into the multiple-prism array. In a dispersive laser oscillator, this process goes forth 
and back multiple times, thus giving rise to the concept of intracavity double pass or 
intracavity multiple return pass. For the first return pass, toward the first prism in the 
array, the dispersion is given by

	 H H( )2, 2, 1, 2,
1

1, 2,( 1)n k k nm m m m m m m mφ φ( )∇ = ∇ + ∇ ± ∇λ λ λ λ
−

−

If N denotes the number of passes toward the grating, or reflecting element, and 2N, 
the number of return passes, toward the first prism in the sequence, we have (Duarte 
and Piper, 1984)

	 ( ) ( ) ( )2, 2, 1, 2, 1, 2,( 1)n k k nm N m m m m m m m NH Hφ φ( )∇ = ∇ + ∇ ± ∇λ λ λ λ − 	 (C.41)

and

	 φ φ( )∇ ′ = ′ ∇ + ′ ′ ′ ∇ ± ∇ ′λ λ λ λ +H H( ) ( ) ( )1, 2 1, 1, 2, 2, 1,( 1) 2n k k nm N m m m m m m m N 	 (C.42)

For the first prism of the array (next to the gain medium), ( )2,( 1)m Nφ∇λ −  (with 
3, 5, 7N = ) in Equation (C.41) is replaced by ( )1,1 2Nφ∇ ′λ  (with 1, 2, 3N = ). 

Likewise, for the last prism of the assembly (next to the grating), ( )1, ( 1) 2m Nφ∇ ′λ +  (with 

1, 2, 3N = ) in Equation (C.42) is replaced by ( )2,G r Nφ( )∇ Θ + ∇λ λ  (with 1, 3, 5N = ).  

FIGURE C.5  Multiple-prism grating assembly in its unfolded depiction (Adapted from 
Duarte, F. J., and Piper, J. A., Opt. Commun. 43, 303–307, 1982, with permission from Elsevier).
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Thus, the multiple return-pass dispersion for a multiple-prism grating assembly is 
given by (Duarte and Piper, 1984)

	 ( ) RM RR G Pθ ( )∇ = ∇ Θ + ∇ Φλ λ λ 	 (C.43)

where 2R N=  is the number of return passes. This equation illustrates the very 
important fact that in the return-pass dispersion of a multiple-prism grating assem-
bly, the dispersion of a grating is multiplied by the factor RM, where M is the overall 
beam magnification of the multiple-prism beam expander. Subsequently, the multiple 
return-pass linewidth equation becomes (Duarte, 2001)

	
1

RM RR G Pλ θ ( )∆ = ∆ ∇ Θ + ∇ Φλ λ
−

	 (C.44)

where Rθ∆  is the multiple return-pass beam divergence (Duarte, 2001, 2003) 
described in Appendix B. Once again, if the grating is replaced by a mirror, that is 

0G∇ Θ =λ , the dispersion reduces to

	 ( ) RR Pθ∇ = ∇ Φλ λ 	 (C.45)

which implies that the multiple-prism intracavity dispersion increases linearly as 
a function of R. The finite number R can be determined experimentally from the 
time delay observed between the leading edge of the excitation pulse and the leading 
edge of the narrow-linewidth emission pulse (Duarte and Piper, 1984). For narrow-
linewidth high-power dispersive dye-laser oscillators, this number is typically 3R ≈  
(Duarte, 2001).

One further insight from Equation (C.44) is that the laser linewidth is a function of 
the intracavity beam expansion M. Hence, varying M allows control of λ∆ . This led 
to the introduction of high-power variable-linewidth lasers (Duarte, 1985b).

C.4.1 M ultiple-Prism Beam Compressors

Observing Figure C.5, it becomes immediately apparent that, in a multiple-prism 
array, propagation from left to right leads to beam expansion while propagation from 
right lo left leads to beam compression as described by Duarte (2006). This is a 
geometrical beam compression effect different from temporal pulse compression as 
described in the next section.

Beam expansion and beam compression, in a given multiple-prism configuration, are 
symmetric phenomena. If beam expansion occurs in one direction, then beam compres-
sion occurs in the opposite direction as illustrated in Figure C.5. Certainly, the equations 
of multiple-prism dispersion given here equally apply to both beam compressors and 
beam expanders. An explicit beam compressor is depicted in Figure C.6 showing propa-
gation from right to left. Numerous further examples of geometrical beam compressors 
are given by Duarte (2006). The beauty of multiple-prism beam compressors is that, ide-
ally, they reduce the cross section of the propagating beam without inducing traditional 
focusing that leads to divergence of the beam beyond the focal point.
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C.5 � MULTIPLE-PRISM DISPERSION AND 
LASER PULSE COMPRESSION

The generation of femtosecond, attosecond, or ultrashort laser pulses is of funda-
mental interest to optics, quantum optics, and laser science in general (Diels and 
Rudolph, 2006).

From the uncertainty relation

	 1tν∆ ∆ ≈ 	 (C.46)

it is immediately apparent that the generation of ultrashort time pulses ( )t∆  require 
the simultaneous generation of a very wide spectral distribution ( )ν∆ . From the cav-
ity linewidth equation

	
1

λ θ θ
λ

∆ ≈ ∆ ∂
∂







−

FIGURE C.6  Multiple-prism geometrical beam compressor. In this configuration, the inci-
dent beam enters orthogonally to the first larger prism. The arrows indicate the direction of 
the propagation. If the direction of the beam is reversed then the compressor becomes an 
expander.
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it also clear that the generation of very wide spectral emission requires the least 
amount of intracavity dispersion. Thus, it is necessary to understand and control all 
aspects of intracavity dispersion.

Pulse compression in ultrashort pulse, or femtosecond, lasers requires control of 
the first, second, and third derivatives of the intracavity dispersion. Using the identity

	 ( )2, 2,
1nn m m mφ φ∇ = ∇ ∇λ λ

− 	 (C.47)

Equation (C.13) can be restated as (Duarte, 2009)

	 H M H( )2, 2,
1

1, 2,( 1)n m m m n mφ φ( )∇ = + ± ∇−
− 	 (C.48)

where the identity

	 M( )1,
1

2,
1 1k km m =− − − 	 (C.49)

applies. Hence, the complete second derivative of the refraction angle, or first deriva-
tive of the dispersion 2,mφ∇λ , is given by (Duarte, 1987)
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M H

M H
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n m n m

φ

φ

φ
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+ ∇ ± ∇
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−
−

−
−
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The second derivative of the dispersion 2,mφ∇λ  is given by (Duarte, 2009)
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the third derivative of the dispersion 2,mφ∇λ  is given by (Duarte, 2009)

	

H

M H

M H

M H

M H

( )( )

3( )( )

3( )( )

( )( )

4
2,

3
2,

3 1
1, 2,( 1)

2 1
1,

2
2,( 1)

1 2
1,

3
2,( 1)

1 3
1,

4
2,( 1)

n m n m

n m n m

n n m n m

n n m n m

n m n m

φ

φ

φ

φ

φ

∇ = ∇

+ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ± ∇

−
−

−
−

−
−

−
−

	 (C.52)



365Appendix C

and the fourth derivative of the dispersion 2,mφ∇λ  is given by (Duarte, 2009)
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and so on, for higher derivatives. By inspection, as stated by Duarte (2009), it can be 
seen that from the second term on the numerical factors can be predetermined from 
Pascal’s triangle relative to N where ( 1)N +  is the order of the derivative.

Albeit the preceding exposition might appear a little bit abstract these equations 
lead to specific numerical results (Duarte, 1987, 1990b). Osvay et al. (2004, 2005) 
have used the lower order derivatives, given here, in practical femtosecond lasers to 
determine dispersions and laser pulse durations, for double-prism compressors, with 
excellent agreement between theory and experiments. The equations described here 
represent the complete description of the generalized multiple-prism dispersion the-
ory applicable to pulse compression prismatic arrays in femtosecond, or ultrashort, 
pulse lasers and nonlinear optics.

Exact numerical calculations to determine 2,n mφ∇  and 2
2,n mφ∇ , for 1, 2, 3, 4m =  

were performed by Duarte (1990). In these calculations the angle of incidence was 
deviated by minute amounts from the Brewster angle of incidence. Duarte (2009) 
provides exact values, as a function of the refractive index n, for 2,n mφ∇ , 2

2,n mφ∇ , and 
3

2,n mφ∇ . Simplifying assumptions include incidence at the Brewster angle of inci-
dence, prisms of identical isosceles geometry, and made of the same material with 
refractive index n nm = .

C.5.1  Example: Single-Prism Pulse Compressor

For the single-prism laser pulse compressor (Dietel et al., 1983) ( 1)m =  of isosce-
les geometry, made of material with refractive index n nm = , and deployed at the 
Brewster angle of incidence (see Figure C.7) we find

	 22,1nφ∇ = 	 (C.54)

	 4 22
2,1

3n nnφ ( )∇ = − − 	 (C.55)

	 24 8 12 6 63
2,1

2 0 2 4 6n n n n nnφ ( )∇ = + − + +− − − 	 (C.56)
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C.5.2  Example: Double-Prism Pulse Compressor

A prism pulse compressor integrated by 2m =  prisms of identical isosceles geometry, 
made of the same material with refractive index n nm = , and deployed at the Brewster 
angle of incidence in compensating configuration is depicted in Figure C.8 (Diels  
et al., 1985). The compensating configuration requires the subtraction of the previous 
dispersive derivatives and the use of 1,2 2,1n nφ φ∇ = ∇  as a geometrical nexus between 
stages. Careful evaluation of all relevant identities and their correct substitution yield

	 02,2nφ∇ = 	 (C.57)

	 02
2,2nφ∇ = 	 (C.58)

	 03
2,2nφ∇ = 	 (C.59)

as would be expected from geometrical and symmetrical arguments. However, the 
correct mathematical evaluation of ( )3

2,2nφ∇  requires considerable attention to detail 
given the numerous identities involved.

C.5.3  Example: Four-Prism Pulse Compressor

A four-prism compressor (Fork et al., 1984) is formed by unfolding the double-prism 
configuration about a symmetry axis perpendicular to the exit beam depicted in 

FIGURE C.7  Single-prism pulse compressor.

FIGURE C.8  Double-prism pulse compressor.
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Figure C.7, as illustrated in Figure C.9. For exactly-balanced compensating prism 
arrays composed of two pairs of compensating prisms, it can be shown that

	 22,1 2,3n nφ φ∇ = ∇ = 	 (C.60)

	 4 22
2,1

2
2,3

3n nn nφ φ ( )∇ = ∇ = − − 	 (C.61)

	 24 8 12 6 63
2,1

3
2,3

2 0 2 4 6n n n n nn nφ φ ( )∇ = ∇ = + − + +− − − 	 (C.62)

	 02,2 2,4n nφ φ∇ = ∇ = 	 (C.63)

	 02
2,2

2
2,4n nφ φ∇ = ∇ = 	 (C.64)

	 03
2,2

3
2,4n nφ φ∇ = ∇ = 	 (C.65)

A six-prism pulse compressor has been used in semiconductor laser pulse compres-
sion by Pang et al. (1992).

PROBLEMS

	 C.1	 Use Equation (C.4) to obtain the identity given in Equation (C.7).
	 C.2	 Derive Equation (C.14) from Equation (C.13) using for 02, 2,m mφ ψ≈ ≈ .
	 C.3	 Derive Equation (C.15).
	 C.4	 Derive Equation (C.20) from Equation (C.19).
	 C.5	 Use Equation (C.13) to obtain the single-prism Equation (C.22).
	 C.6	� Use Equation (C.33), set 0P∇ Φ =λ , to derive Equation (C.39), for a five-

prism zero-dispersion beam expander.
	 C.7	� For a single-prism laser pulse compressor, derive Equations (C.54)–(C.56) 

[Hint: see Duarte (2009)].
	 C.8	� Using the methodology described in the three prism pulse-compressor 

examples given, develop a set of equations applicable to a symmetrical 
six-prism pulse compressor [Hint: the dispersions of the first three prisms, 
deployed in additive configuration, is compensated by the second set of 
three prisms].

FIGURE C.9  Four-prism pulse compressor.
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Appendix D
Multiple-Prism Dispersion 
Power Series

D.1 � MULTIPLE-PRISM DISPERSION SERIES

In Appendix C, the generalized multiple-prism dispersion equation, applicable 
to multiple-prism arrays of any geometry, configuration, or materials, is given as 
(Duarte, 2009)

	 H H( ) ( )2, 2, 1, 2,
1

1, 2,( 1)n k k nm m m m m m m mφ φ( )∇ = ± ∇ ± ∇ ± ∇λ λ λ λ
−

− 	 (D.1)

For positive refraction only, this equation becomes (Duarte and Piper, 1982, 1983)

	 H H( )2, 2, 1, 2,
1

1, 2,( 1)n k k nm m m m m m m mφ φ( )∇ = ∇ + ∇ ± ∇λ λ λ λ
−

− 	 (D.2)

where the ± sign refers to either a positive ( )+  or compensating configuration ( )− .
In Appendix C, Equation (D.2) is expressed in a series format directly appli-

cable to the geometry at hand. Duarte and Piper (1982) also provide further 
examples of simple special cases leading to explicit engineering type equations. 
For instance, for increasing values of m, for the very special case of r identical 
prisms deployed at the same angle of incidence (i.e., 1,1 1,2 1, mφ φ φ= = = , and 

1,1 1,2 1, mψ ψ ψ= = = ) and orthogonal beam exit (i.e., 02,1 2,2 2, mφ φ φ= = = =  
and 02,1 2,2 2, mψ ψ ψ= = = = ), Equation (D.2) reduces to a simple power series 
(Duarte and Piper, 1982; Duarte, 1990)

	 tan 12, 1,1 1 1,1
1

1,1
2

1,1
3

1,1
( 1)

n k k k kr
rφ ψ )(∇ = ∇ ± ± ± ± ±λ

− − − − − 	 (D.3)

Moreover, as shown in Appendix C, for orthogonal beam exit, Equation (D.2) reduces 
to the explicit series

	 H( 1)2, 1, 1,

1

1

k nr m j

j m

r

m

r

m∏∑φ∇ = ±












∇λ λ

==

−

	 (D.4)

which was disclosed in print, in its double-pass version by Duarte (1985). This simple 
explicit equation obviously can be expressed in its long-hand version (Duarte, 2012)

	   H H H( ) ( ) ( )2, 1,1 1,1 1, 2 1,
1

1 1, 2 1, 2 1,
1

2 1, 1,
1k k k n k k n k nr r r r r rφ∇ = ± ∇ ± ∇ ± ± ∇λ λ λ λ

− − −

� (D.5)
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These examples are included here to illustrate that the generalized dispersion 
Equation (D.1) leads directly to practical and explicit series.

PROBLEMS

	 D.1	� Show that the generalized multiple-prism dispersion given in Equation 
(D.2) can be expressed as the series in (D.3).

	 D.1	� Show that the multiple-prism dispersion given in Equation (D.4) can be 
expressed as the series in (D.5).
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Appendix E
N-Slit Interferometric Calculations

E.1  INTRODUCTION

In this appendix, we further explain, in plain language, how to proceed with 
numerical calculations based on the generalized one-dimensional interferometric 
equation (Duarte, 1991, 1993). This explanation, provided in addition to the descrip-
tion given in Chapter 4, is intended to help in the construction of logical pathways 
and flowcharts for computer-based numerical calculations.

E.2  THE INTERFEROMETRIC EQUATION

The physics is described by the probability amplitude equation

	 ∑=
=1

d s d j j s
j

N

	 (E.1)

where

	 = Ψ θ−( ),j s r ej s
i j 	 (E.2)

	 = Ψ φ−( ),d j r ex j
i j 	 (E.3)

Multiplying by the complex conjugate and rearranging yields the interferometric 
quantum probability equation (Duarte, 1993)

	 ( ) 2 ( ) ( )cos( )
2 2

111

d s r r rj j m m j

m j

N

j

N

j

N

∑∑∑= Ψ + Ψ Ψ Ω − Ω












= +==

	 (E.4)

Key in these calculations is the phase angle

	 θ φΩ = +j j j( )	 (E.5)

which is related to the wavelength and the exact geometry of the interferometer.
A good simplifying assumption is to set

	 ( ),j s r ej s
i j= Ψ θ−

 = 1	 (E.6)

which represents uniform illumination of the grating. In a more advanced version of 
the program, this assumption is not used and the illumination can be varied at will. 
Hence the only wave function needed is
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	 = Ψ φ−( ),d j r ex j
i j 	 (E.7)

where the amplitude can take the form of a Gaussian or a similar mathematical 
representation.

E.3  GEOMETRY

In these calculations, it is very important to get the geometry represented in measurable 
spatial quantities. The usual geometrical and angular approximations are not allowed.

The geometrical configuration, illustrated in Figure E.1, includes

	 1.	w is the slit width.
	 2.	 jφ  is the jth phase angle.
	 3.	 1d  is the center to center slit distance.
	 4.	D d j  is the distance from the N-slit array ( j) to the interference plane (d).

	 5.	 mδ∆  is the distance from the center of the mth slit to the reference position 
at the interference plane.

As seen in Chapter 4, the phase difference term in the interferometric quantum 
probability equation can be expressed as (Duarte, 1997)

	 θ θ φ φ( ) ( )− ± − = − ± −− −cos ( ) ( ) cos 1 1 1 2l l k L L km j m j m m m m 	 (E.8)

where λ= πk n(2 / )1 1  and π λ=k n(2 / )2 2  so that

	 ( )
2 2

1
n

L Lm j m mφ φ
λ

− = π − − 	 (E.9)

	 ( )
2 1 2 2

1/2d
Dm j m d j mφ φ

λ
δ δ( )− = π ∆ + ∆

−
	 (E.10)

Using these equations and the geometry depicted in Figure E.1, the phase angles are 
given by
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and so on, where λ is the wavelength of the narrow-linewidth laser.
Note that in this example, both the slit width (w) and the separation of the slits  

( 1d ) are assumed to be constant. As shown in Duarte (1993), this is a special case as 
these parameters can be numerically varied (allowing for dimensional errors), thus 
introducing an element of variability in the calculations. Also note that in Chapter 
2 of Tunable Laser Optics (Duarte, 2003), an alternative and equivalent description 
(also included in Chapter 4) of the geometry is given.
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FIGURE E.1  Detailed view of the N-slit array ( j) and the interferometric plane (d). See the 
text for a description of the quantities involved.
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Appendix F
Ray Transfer Matrices

F.1  INTRODUCTION

A practical method to characterize and design laser optics systems is the use of beam 
propagation matrices also known as ray transfer matrices. This method applies to 
the propagation of laser beams with a Gaussian profile. In other words, it applies to 
the propagation of single-transverse-mode beams or spatially coherent beams which 
is a crucial characteristic of the concept of laser emission.

From our perspective, the main interest in ray transfer matrices arises from their 
usability in the determination of beam divergence from narrow-linewidth multiple-
prism grating laser oscillators.

In this appendix, the basic principles of propagation matrices are outlined and 
a survey of matrices for various widely applicable optical elements is given. This 
appendix follows the style of a review on the subject by Duarte (2003, 2015). For early 
references on the subject, the reader is referred to Brouwer (1964), Kogelnik (1979), 
Siegman (1986), and Wollnik (1987).

F.2  ABCD PROPAGATION MATRICES

The basic idea with propagation matrices is that one vector, at a given plane, is related 
to a second vector, at a different plane, via a linear transformation. This transforma-
tion is represented by a propagation matrix. This concept is applicable to the charac-
terization of the deviation of a ray, or beam, of light through either free space or any 
linear optical media. The rays of light are assumed to be paraxial rays that propagate 
in proximity and almost parallel to the optical axis (Kogelnik, 1979).

Consider the propagation of a paraxial ray of light from an original plane to a sec-
ondary plane, in free space, as depicted in Figure F.1. Here it is noted that, in moving 
from the original plane to the secondary plane, the ray of light experiences a linear 
displacement in the x direction and a small angular deviation, that is,

	 2 1 1x x lθ= + 	 (F.1)

	 2 1θ θ= 	 (F.2)

which in matrix form becomes

 	
1
0 1

2

2

1

1

x l x

θ θ








 =















 	 (F.3)
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the resulting 2 × 2 matrix is known as a ray transfer matrix. Here, it should be noted 
that some authors use derivatives instead of the angular quantities, that is, dx1/dz = θ1 
and dx2/dz = θ2.

For a thin lens, the geometry of propagation is illustrated in Figure F.2. In this 
case, there is no displacement in the x direction and the ray is concentrated, or 
focused, toward the optical axis so that

	 2 1x x= 	 (F.4)

	 θ θ= − +f x(1/ )2 1 1	 (F.5)

which can be expressed as

	
1

1
2

2
1

1

1

x l

f

x

θ θ








 =



















− 	 (F.6)

In more general terms, the X2 vector is related to the X1 vector by a transfer matrix T 
known as the ABCD matrix so that

	 2 1=X T X 	 (F.7)

FIGURE F.2  Geometry depicting a thin convex lens with a focal length f.

FIGURE F.1  Geometry for propagation through distance l in vacuum-free space.
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where

 	
A B
C D

=






T 	 (F.8)

Dimensions: by inspection, it is found that

	
θ

θ
θ θ θ θ









 =

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂





















x x x x

x

x/ /

/ /
2

2

2 1 2 1

2 1 2 1

1

1
	 (F.9)

This implies that A is a ratio of spatial dimensions and B is an optical length, while C 
is the reciprocal of an optical length. Consideration of various imaging systems leads 
to the conclusion that the spatial ratio represented by A is a beam magnification factor 
( )M , while D is the reciprocal of such magnification ( )1M − . These observations are 
very useful to verify the physical validity of newly derived matrices.

F.2.1 P roperties of ABCD Matrices

ABCD matrices can be cascaded, via matrix multiplication, to produce a single over-
all matrix describing the propagation properties of an optical system. For example, if 
a linear optical system is composed of N optical elements deployed from left to right, 
as depicted in Figure F.3, then the overall transfer matrix is given by the multiplica-
tion of the individual matrices in the reverse order, that is (Duarte, 2003)

	 

1

3 2 1m

m

N

N∏ =
=

T T T T T 	 (F.10)

It is easy to see that the complexity in the form of these product matrices can increase 
rather rapidly. Thus, it is always useful to remember that any resulting matrix must 
have the dimensions of Equation (F.9) and a determinant equal to unity, that is

	 1AD BC− = 	 (F.11)

FIGURE F.3  N optical elements in series (Reproduced from Duarte, F. J., Tunable Laser 
Optics, 2nd ed. CRC, Boca Raton, FL, 2015).
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F.2.2 S urvey of ABCD Matrices

Here, a number of representative and widely used optical components are represented 
in ray transfer matrix form. This is done without derivation and using the published 
literature as reference:

Distance l in free space (Kogelnik, 1979):

	
1
0 1

A B
C D

l





=






	 (F.12)

Distance l in a medium with refractive index n (Kogelnik, 1979):

	






=






A B
C D

l n1 /
0 1

	 (F.13)

Slab of material with refractive index n where φ  is the angle of incidence and ψ  is the 
angle of refraction (Duarte, 1991):

	
φ ψ





=










A B
C D

l n1 ( / )(cos / cos )

0 1

2

	 (F.14)

Thin convex (positive) lens of focal length f (Kogelnik, 1979):

	






= −










A B
C D f

1 0
1/ 1

	 (F.15)

Thin concave (negative) lens (Siegman, 1986):

	
1 0

1/ | | 1
A B
C D f







=








 	 (F.16)

Galilean telescope (Siegman, 1986):

 	
/ | | | |

0 | | /
2 1 2 1

1 2

A B
C D

f f f f

f f







=
−







 	 (F.17)

Astronomical telescope (Siegman, 1986):

	






=
− +

−











A B
C D

f f f f

f f

/

0 /
2 1 2 1

1 2
	 (F.18)

Curved mirror with curvature radius R (Siegman, 1986):

	






=
−







A B
C D R

1 0
2/ 1

	 (F.19)
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Double-pass in Cassegrain telescope with beam magnification M (Siegman, 1986):

	






=
+







−

A B
C D

M M L M

M

( 1) /

0 1
	 (F.20)

Flat grating where Θ is the angle of incidence and Φ is the angle of diffraction 
(Siegman, 1986):

	






= Θ Φ
Φ Θ







A B
C D

cos / cos 0
0 cos / cos

	 (F.21)

Flat grating in Littrow configuration1 ( )Θ = Φ  (Duarte, 1991):

	
1 0
0 1

A B
C D







=






	 (F.22)

Single right-angle prism where φ  is the angle of incidence and ψ  is the angle of 
refraction (Duarte, 1989):

	
ψ φ φ ψ

φ ψ






=










A B
C D

l ncos / cos ( / )cos / cos

0 cos / cos
	 (F.23)

F.2.3 T he Astronomical Refractive Telescope

The astronomical refractive telescope (Figure F.4) is composed of an input lens 
with focal length f1, an intra-lens distance L, and an output lens with focal lens f2. 
Following Equation (F.10), the matrix multiplication proceeds as

	
1 0

1
1
0 1

1 0

12
1

1
1

A B
C D f

L
f







=
























− − 	 (F.24)

1	  Also applies to a flat mirror.

FIGURE F.4  Schematics of an astronomical refractive telescope comprised of two convex 
lenses.
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For a well-adjusted telescope, where

	 2 1L f f= + 	 (F.25)

the transfer matrix becomes

	
0

2 1
1

1 2
1

A B
C D

f f L

f f







=
−

−













−

−
	 (F.26)

which is the corresponding matrix given by Siegman (1986). Defining

	 2 1
1M f f− = − − 	 (F.27)

this matrix can be restated as

	
0 1

A B
C D

M L

M







=
−

−









− 	 (F.28)

For this matrix it can be easily verified that the condition 1AD BC− =  holds.

F.2.4  Multiple-Prism Beam Expanders

For a generalized multiple-prism array, as illustrated in Figure F.5, the ray transfer 
matrix is given by (Duarte, 1989, 1991)

FIGURE F.5  Multiple-prism beam expander.
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0 ( )

1 2

1 2
1

A B
C D

M M B

M M







=








− 	 (F.29)

where

	 1 1,

1

M k m

m

r

∏=
=

	 (F.30)

	 2 2,

1

M k m

m

r

∏=
=

	 (F.31)

and

∑ ∏∏ ∏ ∏∑=












+
























=

−

==

−

=

−

==

B M M L k k M M l n k km

m

r

j j

j

m

j

m

m m j

j

m

j

j m

r

m

r

( / ) ( / )1 2

1

1

1, 2,

11

2

1 2 1,

1

2

2,

2

1

� (F.32)

For a straightforward multiple-prism beam expander with orthogonal beam exit, 
cos 02, jψ =  and 12,k j = , so that the equations reduce to

	
0

1

1
1

A B
C D

M B

M







=








− 	 (F.33)

where

	 ∑ ∏ ∏∑=












+












=

−

=

−

=

−

=

B M L k M l n km

m

r

j

j

m

m m j

j

m

m

r

( / )1

1

1

1,

1

2

1 1,

1

2

1

	 (F.34)

For a single prism, these equations reduce further to

	 1 1,1M k= 	 (F.35)

	 ( )1,1
1B l nk= − 	 (F.36)

Thus the matrix for a single prism can be expressed as

	
( )

0

1,1 1,1
1

1,1
1

A B
C D

k l nk

k







=












−

−
	 (F.37)

which is an alternative version of the single-prism matrix given in Equation (F.23) 
where

	 cos / cos1,1 1,1 1,1k φ ψ= 	 (F.38)
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F.2.5 T elescopes in Series

For some applications, it is necessary to propagate TEM00 laser beams through opti-
cal systems, including telescopes in series. For a series comprised of a telescope 
followed by a free-space distance, followed by a second telescope, and so on, the 
single-pass cumulative matrix is given by (Duarte, 2003)

	 A M r= 	 (F.39)

	 2 2 2 1

1

B M L M Br m
m

r m
T

m

r

m∑= +− + − +

=

	 (F.40)

	 0C = 	 (F.41)

	 D M r= − 	 (F.42)

where r is the total number of telescopes and BTm is the B term of the mth telescope.
This result applies to a series of well-adjusted Galilean or astronomical telescopes 

or a series of prismatic telescopes.

F.3 � MULTIPLE-RETURN PASS LASER LINEWIDTH 
AND BEAM DIVERGENCE

The ABCD matrices considered so far are entirely classical. Previously, however, we 
have seen that both the cavity laser linewidth equation ( ) 1λ θ θ∆ = ∆ ∇λ

−  and the laser 
beam divergence θ λ∆ ≈ ∆x/  are quantum in origin (see Chapter 3 and Appendix B).

Here, we describe the interaction of these essential laser emission parameters with 
ray transfer matrices.

The multiple-return pass laser linewidth in a multiple-prism grating tunable laser 
oscillator is given by (Duarte, 2001)

	
1

RM RR G Pλ θ ( )∆ = ∆ ∇ Θ + ∇ Φλ λ
−

	 (F.43)

where M is the overall intracavity beam magnification, R is the number of return 
passes, G∇ Θλ  is the grating dispersion, P∇ Φλ  is the return-pass multiple-prism dis-
persion, and the multiple return-pass beam divergence is given by (Duarte, 2001)

	 R R1
2 2 1/2

w
L
B

A L
B

R
R

R

R

θ λ∆ =
π

+ 





+ 













 	 (F.44)

where R ( / )2L w λ= π  while AR  and BR are the cumulative multiple-return pass-ray 
transfer matrix coefficients given by (Duarte, 2001)

 	
L L( ) ( ) ( )

( )

1 1 2 1 2

1 2

A A L L

A L

R R R R

R

α χ α χ χ χ δ

χ α β

( )= + + Ξ − + +

+ +

− − −

−

	 (F.45)
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L

L

( ) ( )

( ) ( )

1 1 2

1 2 1 2

B A A L

L A L

R R R R

R R

α χ β δ

δ χ δ δ α β

( )= Λ + + + Ξ −

+ + + +

− −

− −

	 (F.46)

where

	 1
L
n

LP

P

Λ = + 	 (F.47)

	 L 1 1 1A BR R R= Λ +− − − 	 (F.48)

	 2
2 2

2
3
2L

B
M

L
M

MPΞ = + + 	 (F.49)

and α, β, χ, and δ are the corresponding matrix elements for the gain medium. 
Moreover, LP is the thickness of the output-couple polarizer and nP its refractive index.

By definition 10A =  and 00B = , thus for an ideal gain medium, with little or no ther-
mal lensing, with 1α δ≈ ≈ , 0χ ≈ , and β β≈ , Equations (F.45) and (F.46) reduce to

	 1AR ≈ 	 (F.50)

	 2 2BR β≈ Λ + + Ξ	 (F.51)

A discussion on the application of these equations to the design and evaluation of 
single-transverse-mode low-divergence narrow-linewidth tunable lasers has been 
given by Duarte (2001).

In addition to providing the parameters of interest to perform beam divergence 
calculations, the ABCD matrix also gives information about the stability of a cavity 
or resonator. The condition for lasing in the unstable regime is determined by the 
inequality (Siegman, 1986)

	 2 ( ) 11 A D+ >− 	 (F.52)

It should be noted that narrow-linewidth multiple-prism grating tunable laser oscil-
lators can also meet the conditions for unstable resonators when incorporating a gain 
medium that exhibits some thermal lensing (Figure F.6) (Duarte et al., 1997).

FIGURE F.6  Unfolded multiple-prism grating laser oscillator.
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The description of optical systems using 3 3× , 4 4× , and 6 6×  matrices has been 
considered by several authors (Brouwer, 1964; Siegman, 1986; Wollnik, 1987). 
Multiple-prism expanders have been described in 4 4×  matrices by Duarte (1992, 
2003). These matrices are also applicable to multiple-prism laser pulse compression.

PROBLEMS

	 F.1	 For the matrix in Equation (F.24), verify that 1AD BC− =  holds.
	 F.2	 For the matrix in Equation (F.30), verify that 1AD BC− =  holds.
	 F.3	� Verify that performing the matrix multiplication in (F.24) leads to 

Equation (F.26).
	 F.4	� Verify that for a series comprised of a telescope followed by a free-space 

distance, followed by a second telescope, and so on the single-pass cumula-
tive ABCD matrix is given by the components in Equations (F.39)–(F.42).

	 F.5	� Verify that for 1α δ≈ ≈ , 0χ ≈ , and β β≈  Equation (F.46) reduces to 
Equation (F.51).
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Appendix G
Complex Numbers 
and Quaternions

G.1  COMPLEX NUMBERS

Imaginary and complex numbers are crucial to a complete and functional description 
of Nature. Imaginary and complex numbers are essential to the mathematics of quan-
tum mechanics. Without complex numbers, there would be no lasers, no transistors, 
and no computers.

Here we offer a brief and pragmatic introduction to complex numbers and some 
well-known trigonometric identities based on complex numbers.

The imaginary part of a complex number is represented by i. The number i has 
the basic property

	 12i = − 	 (G.1)

so that

	 1i i⋅ = − 	 (G.2)

and

	 ( ) 1i i⋅ − = + 	 (G.3)

A complex number has a real and an imaginary part denoted by i. A complex number 
c is defined as

	 c a ib= + 	 (G.4)

where a and b are real. This complex number is depicted in Figure G.1. The complex 
conjugate of this number c is denoted by *c

	 *c a ib= − 	 (G.5)

These two numbers can be multiplied as

	 ( )( )* 2 2cc a ib a ib a b= + − = + 	 (G.6)

and the magnitude of c a ib= +  is denoted by c

	 2 2 1/2
c a b( )= + 	 (G.7)
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and it represents the length of the vector ( )a ib+  (see Figure G.1). Moreover,

	 2 *c cc= 	 (G.8)

Useful complex trigonometric identities include the Euler formulae

	 cos sine ii θ θ= +θ 	 (G.9)

	 cos sine ii θ θ= −θ− 	 (G.10)

which means that

	 1ei = −π 	 (G.11)

	 1e i = +− π 	 (G.12)

	 /2e ii = +π 	 (G.13)

	 /2e ii = −− π 	 (G.14)

Also

	 2cos e ei iθ ( )= +θ θ− 	 (G.15)

FIGURE G.1  Geometrical representation of a complex number.
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	 2 sini e ei iθ ( )= −θ θ− 	 (G.16)

	 2cosh e eθ ( )= +θ θ− 	 (G.17)

	 2sinh e eθ ( )= −θ θ− 	 (G.18)

The beautiful expression 1ei = −π  was discovered by Euler (1748) and has been clas-
sified as ‘the most remarkable formula in mathematics… our jewel’ (Feynman et al., 
1963). Indeed, complex numbers should be celebrated!

G.2  QUATERNION IDENTITIES

Hamilton’s quaternions (Hamilton, 1866) apply to quantum entanglement for the 
configurations of 3, 6, 9n N= =  (Duarte, 2015, 2016). Quaternions extend beyond 
the realm of complex numbers and obey the main relation

	 12 2 2i j k ijk= = = = − 	 (G.19)

and the elements i, j, and k obey the commutative law when multiplied by 1

	 1 1i i i× = × = 	 (G.20)

	 1 1j j j× = × = 	 (G.21)

	 1 1k k k× = × = 	 (G.22)

The self-consistency of the main relation given in Equation (G.19) also implies that

	 ij k= 	 (G.23)

	 ji k= − 	 (G.24)

	 jk i= 	 (G.25)

	 kj i= − 	 (G.26)

	 ki j= 	 (G.27)

	 ik j= − 	 (G.28)

PROBLEMS

	 G.1	 Use Equations (G.4) and (G.5) to verify Equation (G.6).
	 G.2	 Verify that 2cos ( )e ei iθ = +θ θ− .
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	 G.3	 Verify that 2 sin ( )i e ei iθ = −θ θ− .
	 G.4	 Use Equation (G.19) to show that jk i= .
	 G.5	 Use Equation (G.19) to show that ki j= .
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Appendix H
Trigonometric Identities

H.1  TRIGONOMETRIC IDENTITIES

Here we list a number of trigonometric identities applied in various places 
throughout this book:

	 ϕ ϕ+ =sin cos 12 2 	 (H.1)

	 ϕ ϕ− = −sin( ) sin 	 (H.2)

	 ϕ ϕ− =cos( ) cos 	 (H.3)

	 ϕ θ ϕ θ ϕ θ+ = +sin( ) sin cos cos sin 	 (H.4)

	 ϕ θ ϕ θ φ θ− = −sin( ) sin cos cos sin 	 (H.5)

	 ϕ θ ϕ θ ϕ θ+ = −cos( ) cos cos sin sin 	 (H.6)

	 ϕ θ ϕ θ ϕ θ− = +cos( ) cos cos sin sin 	 (H.7)

	 ϕ ϕ ϕ=sin 2 2sin cos 	 (H.8)

	 ϕ ϕ ϕ= −cos2 cos sin2 2 	 (H.9)

	 ϕ ϕ= −cos2 1 2sin2 	 (H.10)

	 ϕ ϕ= −cos2 2cos 12 	 (H.11)

	 ϕ ϕ= −2sin 1 cos22 	 (H.12)

	 ϕ ϕ= +2cos 1 cos22 	 (H.13)

	 ϕ ϕ ϕ θ ϕ θ+ = − +cos cos 2cos 1
2 ( )cos 1

2 ( )	 (H.14)

	 ϕ θ ϕ θ ϕ θ− = − − +cos cos 2sin 1
2 ( )sin 1

2 ( )	 (H.15)
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	 ϕ θ ϕ θ ϕ θ− − = − − +cos cos 2cos 1
2 ( )cos 1

2 ( )	 (H.16)

	 ϕ θ ϕ θ ϕ θ+ = − +sin sin 2cos 1
2 ( )sin 1

2 ( )	 (H.17)

	 ϕ θ ϕ θ ϕ θ− = − +sin sin 2sin 1
2 ( )cos 1

2 ( )	 (H.18)

	 ϕ θ ϕ θ ϕ θ− − = − − +sin sin 2cos 1
2 ( )sin 1

2 ( )	 (H.19)

	 ϕ θ ϕ θ ϕ θ( )= − − +sin sin 1
2 cos( ) cos( ) 	 (H.20)

	 ϕ θ ϕ θ ϕ θ( )= − + +cos cos 1
2 cos( ) cos( ) 	 (H.21)

	 ϕ θ ϕ θ ϕ θ( )= + + −sin cos 1
2 sin( ) sin ( ) 	 (H.22)

	 ϕ θ ϕ θ ϕ θ( )= + − −cos sin 1
2 sin( ) sin ( ) 	 (H.23)

References used in this compilation of trigonometric identities include Crawford 
(1968) and Flanders et al. (1970).

PROBLEMS

	 H.1	 Show that ϕ θ ϕ θ ϕ θ+ = +sin ( ) sin cos cos sin .

	 H.2	 show that ϕ ϕ= −cos2 1 2sin2 .

	 H.3	 Show that ϕ ϕ= −2sin 1 cos22 .

	 H.4	 Show that ϕ θ ϕ θ ϕ θ− = − − +cos cos 2sin 1
2 ( )sin 1

2 ( )

	 H.5	 Show that ϕ θ ϕ θ ϕ θ( )= − − +sin sin 1
2 cos( ) cos( )

REFERENCES

Crawford, F. S. (1968). Waves, McGraw-Hill, New York.
Flanders, H., Korfhage, R. R., and Price, J. J. (1970). Calculus, Academic, New York. 
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Appendix I
Calculus Basics

I.1  CALCULUS BASICS

In this appendix, we provide a brief and pragmatic survey of some useful well-known 
calculus mechanics and rules. A good reference on calculus is Flanders et al. (1971).

I.1.1  DIFFERENTIATION PRODUCT RULE

	
( )d fg
dx

f
dg
dx

g
df
dx

= + 	 (I.1)

Example: differentiate the product xeikx

	
( )

( ) (1 )
d xe

dx
x ik e e e ikx

ikx
ikx ikx ikx= + = +

I.1.2 D ifferentiation Quotient Rule

	
( / ) 2d f g
dx

g g
df
dx

f
dg
dx

= −





− 	 (I.2)

I.1.3 D ifferentiation Power Rule

If n is an integer

	
( ) 1d f
dx

nf
df
dx

n
n= − 	 (I.3)

Example: differentiate ( 1)2 2x +

	
( 1)

4 ( 1)
2 2

2d x

dx
x x

+
= +

I.1.4  Differentiation via the Chain Rule

If y and x are functions of t

	
dy
dt

dy
dx

dx
dt

= 	 (I.4)
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Example: differentiate the function 2 12

y et t= + + . Set y ex=  and 2 12x t t= + + . Then 
apply the chain rule

	 (2 2) (2 2)2 12dy
dt

e t e tx t t= + = ++ +

I.1.5 I ntegration by Parts

	 f dg fg g df∫∫ = − 	 (I.5)

Example: integrate by parts xe dxikx∫ . Set f x= , df dx= , dg e dxikx= , and /g e ikikx= .

Then apply Equation (I.5)

	
1

xe dx
x
ik

e
e
ik

dx
e
ik

x
ik

Cikx ikx
ikx ikx

∫∫ = − = −



 +

where C is a constant. Differentiation of ( ) ( / ) (1/ )F x e ik x ik Cikx ( )= − + , using the 
product rule, leads back to xeikx.

REFERENCE

Flanders, H., Korfhage, R. R., and Price, J. J. (1970). Calculus, Academic, New York. 



393

Appendix J
Poincare’s Space

J.1  POINCARÉ’S SPACE

A useful tool in polarization notation is derived from Poicarés sphere (Poicaré, 1892).
This sphere, depicted in Figure J.1, has three axes 1, 2, and 3. Axis 2 is analogous 

to the usual Cartesian axis x, axis 3 is analogous to the usual Cartesian axis y, and 
axis 1 is analogous to the usual Cartesian axis z, that is

	 1 z→

	 2 x→

	 3 y→

Adopting the notation of Robson (1974), the radius of the sphere is denoted by I. The 
angular displacement in the 1 2−  plane is 2ψ  and the angular displacement between 

FIGURE J.1  Poicare’s sphere.
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the 1 2−  plane and the 3 axis is denoted by 2χ . In this system, the points 1P , 2P , 3P  
are given by

	 cos2 cos21P I χ ψ= 	 (J.1)

	 cos2 sin 22P I χ ψ= 	 (J.2)

	 sin 23P I χ= 	 (J.3)

These are known as the Stoke’s parameters. In addition to Poicarés sphere, the 
polarization space described here is also known as Bloch’s sphere (Pelliccia  
et al., 2003).

REFERENCES

Pelliccia, D., Schettini, V., Sciarrino, F., Sias, C., and De Martini, F. (2003). Contextual real-
ization of the universal quantum cloning machine and of the universal-NOT gate by 
quantum-injected optical parametric amplification. Phys. Rev. A. 68, 042306.

Poicaré, H. (1892). Théorie Mathematique de la Lumiere, Vol. 2, Corré, Paris.
Robson, B. A. (1974). The Theory of Polarization Phenomena, Clarendon, Oxford, U.K. 
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Appendix K
Physical Constants and 
Optical Quantities

K.1  FUNDAMENTAL PHYSICAL CONSTANTS

Physical constants useful in optics are listed in Table K.1. The values of these con-
stants are those listed by the National Institute of Science and Technology (NIST) 
available at the time of publication.

The format and context of the tables included here are adapted from Duarte (2003).

TABLE K.1
Fundamental Physical Constants

Name Symbol Value Units

Boltzmann’s constant kB 1.3806488 ×  10−23 JK–1

Elementary charge  e 1.602176634 ×  10–19 C

Newtonian constant of gravitation G 6.67384 ×  10−11 m3kg–1s–2

Magnetic constanta,b 0µ  4π ×  10−7 Hm–1

Electric constantc 
0ε  8.854187817 ×  10−12 Fm–1

Planck’s constant h 6.62607015 ×  10−34 Js

Speed of light in vacuum c 2.99792458 ×  108 ms–1

a	 Also known as permeability of vacuum.
b	 π = 3.14159265.
c	 Also known as permittivity of vacuum.
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K.2  CONVERSION QUANTITIES

Conversion quantities often used in optics are listed in Table K.2. The conversion 
values for the electron volt and the atomic mass unit are listed by NIST at the time 
of publication.

K.3  UNITS OF OPTICAL QUANTITIES

Units of optical quantities used throughout this book are listed in Table K.3.

TABLE K.2
Conversion Quantities

Name Symbol Value Units

Electron volt eV 1.602176565 ×  10−19 J

Atomic mass unit u 1.660538921 ×  10−27 kg

Frequency ν  Hz = s−1

Light year ly 9.45425496 ×  1015 m

Linewidth /c xν∆ = ∆  Hz

Linewidth /2 xλ λ∆ = ∆  m

Wavelength /cλ ν=  m

Wavenumber 2 /k λ= π  m–1

1 reciprocal cm 1 cm−1 2.99792458 ×  101 GHz

TABLE K.3
Units of Optical Quantities

Name Symbol Unitsa

Angular dispersion φ∇λ  m−1

Angular frequency 2ω ν= π  Hz

Beam divergence θ∆  rad

Beam magnification m Dimensionless

Beam waist w m

Cross section σ  m2 

Diffraction limited θ∆ / wθ λ∆ = π  rad

Energy E J

Frequency ν Hz

Intensity I Js–1m–2

Laser linewidth ν∆  Hz

Laser linewidth λ∆  m

Probability amplitude ψ Dimensionless

Probability ψ ψ ∗ Dimensionless

(Continued)
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REFERENCE

Duarte, F. J. (2003). Tunable Laser Optics, Elsevier-Academic, New York.

TABLE K.3 (Continued)
Units of Optical Quantities

Name Symbol Unitsa

Power P W = Js–1

Rayleigh length R ( / )2L w λ= π m

Refractive index n Dimensionless

Time t s

Wavelength λ m

Wavenumber 2 / /k cλ ω= π = m−1

a	 Quantities like I and σ are also used in cgs units.
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