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Preface

These lecture notes grew out of a course on quantum key distribution taught at
Leibniz Universität Hannover during the summer term of 2020 as part of the
physics master’s programme. When preparing the course, I discovered that there
are very few textbooks that introduce quantum cryptography and quantum key
distribution from the ground up, especially with regard to recent developments both
on the theoretical and on the experimental front. Therefore, although the course was
originally intended as a master’s course, I decided to prepare these notes for a wider
audience, including PhD students and postdocs who are new to the field of quantum
key distribution.

This book is intended to serve as an introduction to the fast-developing field of
quantum key distribution. It requires only basic knowledge of quantum mechanics
and linear algebra but no prior knowledge of quantum information theory. The
mathematical tools needed are presented in the first part of the book, using a
variety of worked-out examples and exercises. In particular, the topic of classical
and quantum entropies is presented in detail since it is a crucial ingredient of
security proofs of quantum key distribution protocols but usually not part of
theoretical physics courses. The book furthermore presents a variety of quantum key
distribution protocols and different techniques to prove their security. In addition,
we discuss the advances and challenges that occur when abstract quantum key
distribution protocols are turned into technological prototypes, demonstrating its
value to state-of-the-art cryptography and communication.
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1Introduction

Abstract

Quantum key distribution addresses one of the society’s most pressing concerns
for secret and authenticated communication. This is achieved by exploiting the
principles of quantum theory to establish a secret key between two distant parties
whose security is guaranteed by the laws of physics. In the past years, there
has been tremendous progress with regard to the design of novel protocols, the
development of sophisticated techniques for security proofs, and even in-field
implementations of technological prototypes.

1.1 Classical Cryptography

The concept of private key cryptography is as old as the desire to exchange secret
messages with others. The first descriptions of secret codes can already be found
in chronicles of the war between the Persians and the Greeks in the fifth century
BC. Throughout history, especially in times of war, secret writing has often decided
life and death, victory or defeat. Codes and ciphers have evolved through history,
there have always been attempts to crack ciphers and attempts to come up with new
and more secure ones. What all these codes have in common is that they can, in
principle, be cracked. It might take an exponentially long time (which is the case
for codes based on factoring prime numbers) but it is not impossible. A famous
example of how cryptography has had an influence on the outcome of a war is how
the British (most famously, Alan Turing) have cracked the Enigma code used by the
Germans to communicate during World War II.

A very simple example of an encryption scheme is the Caesar cipher, which
is named after Julius Caesar who used it in correspondence that was of military
significance. The idea is simple: every letter of the alphabet is shifted by a certain
number of letters. In its original form every letter was shifted three letters. The

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Introduction

plain alphabet, which is used to write the original message, is then encrypted in the
following way by the cipher alphabet:

Plain alphabet a b c d e f g h i j k l m n o p q r s t u v w x y z

Cipher alphabet D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Suppose, for example, that we want to send the message “meet me at the apple
tree” to someone, but we do not want anyone else to be able to read the message.
We can use the Caesar cipher to encrypt the message:

Plain text m e e t m e a t t h e a p p l e t r e e

Cipher text P H H W P H D W W K H D S S O H E U H H

At first glance, the ciphertext does not make any sense. But can we be completely
sure that an adversary is unable to get the original message? Certainly not! For
instance, if he knows about the Caesar cipher, he can just reverse the encryption
process. But even if he does not know about this encryption scheme, there is a
way to recover the original message, which works by exploiting the structure of
the English language (or any language, for that matter). More precisely, one can
analyse the frequency with which certain letters appear in a typical English sentence
which is reflected in the frequency of certain letters in the ciphertext. In the English
language, the letter “E” is the most frequent one. The message above is a very good
example for this: The letter “E” appears seven times in a message of 20 letters,
which corresponds to a frequency of 35%. This is even above the typical frequency
of 12.7% for the letter “E” [6] in the English language, but this is due to the short
nature of the message. Hence, an adversary can easily determine that the letter “H”
in the ciphertext corresponds to the letter “E” in the plain text.

There are of course more complicated encryption schemes than the Caesar
cipher: for instance, one could shuffle the letters of the alphabet randomly instead of
just shifting them by a certain number. However, this scheme can be cracked in the
same way as the Caesar cipher, simply by applying frequency analysis. Even more
sophisticated schemes such as the Vigenère cipher, which could not be cracked for
over three centuries, turned out to be not secure in the end: although the scheme to
crack this cipher was more sophisticated than a simple frequency analysis, it was
finally found. This shows an important point: people who use certain cryptographic
schemes always have to be vigilant in case someone found a way to crack their
scheme. We do not want to go into too much detail here,1 but one point should have
become clear: there is a great desire for a cryptographic scheme that is unbreakable
(or, in more technical terms, information-theoretically secure), even if an adversary
had all the computational power in the universe.

1If you are interested in the history of cryptography, great references are [4] and [6].
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1.2 Provably Secure Cryptography

Surprisingly, it was not until the 1920s that someone came up with an encryption
scheme that was indeed provably secure: the Vernam cipher [7], also called one-
time pad. Before we explain how this encryption scheme works, let us have a closer
look at what it is that we actually want and fix some technical terms. Consider the
following setting: two parties, traditionally called Alice and Bob, want to exchange
messages over a distance and they want to be sure that no one is able to read these
messages. Usually, we call this hypothetical adversary Eve. Hence, Alice and Bob
need a key to encrypt and decrypt messages in a way that Eve cannot gain any
information about the messages.

First of all, we have to define what we actually mean when we use the word
key. In principle, a key can be anything that encrypts a message: some set of rules
that tells you how to replace the letters of the message for encryption (e.g., the
Caesar cipher we have seen above or the so-called four-square which encrypts pairs
of letters), an artificial set of symbols, or even some sort of mechanical device that
encrypts your message (e.g., a scytale). Basically, we mean any kind of mechanism
that can be used to hide the message we want to send. However, when we use the
word key in these notes from now on, we always refer to a string of bits, i.e., a
sequence of 0s and 1s. In the same fashion, whenever we say “message”, we mean
a message which is in the form of a bit string.

Suppose Alice and Bob both hold a key, i.e., they share identical bit strings. How
can they use this key to safely encrypt, send, and decrypt messages? Here, the one-
time pad encryption scheme comes into play. Consider the following scenario (see
Fig. 1.1): Alice and Bob have successfully created a pair of keys SA, SB , each of
length n, and want to use it to send a message M = (M1,M2, . . . ,Mn) of length n

from Alice and Bob. M1,M2, . . . ,Mn represent the individual bits of the message
given as a bit string. The protocol for this is as follows:

1. Alice encrypts the message M with the key SA by doing binary addition, which
means that each bit of the ciphertext is produced by binary adding a bit from the
key to a bit from the message:

Ci = Mi ⊕ (SA)i . (1.1)

Fig. 1.1 One-time pad encryption. Alice encrypts a message M ∈ {0, 1}n of length n using the
key SA ∈ {0, 1}n by doing binary addition (

⊕
). This results in the ciphertext C ∈ {0, 1}n. Bob

receives the ciphertext and decrypts it using his key SB ∈ {0, 1}n performing binary addition. As a
result, he gets the original message M (in the ideal case)
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2. The ciphertext C = (C1, C2, . . . , Cn) is sent to Bob. This is done over a public
channel, i.e., an adversary has full access to the ciphertext (but cannot change the
message).

3. Bob decodes the message by doing binary addition of the ciphertext and his key
SB :

Mi = Ci ⊕ (SB)i . (1.2)

If the keys are equal, i.e., SA = SB , the message Bob holds after decoding is
exactly the same as the one Alice sent2 since

Mi = Ci ⊕ (SB)i (1.3)

= (Mi ⊕ (SA)i) ⊕ (SB)i (1.4)

= Mi ⊕ ((SA)i ⊕ (SB)i) (1.5)

= Mi ⊕ ((SA)i ⊕ (SA)i) (1.6)

= Mi. (1.7)

This encryption scheme is indeed information-theoretically secure, which means
that the encrypted message (i.e., the ciphertext) provides no information about the
original message (except the maximum possible length of the message), even though
the adversary has complete access to the ciphertext. This was proved by Claude
Shannon in 1949 [5], but the key has to fulfil certain properties:

1. It has to be truly random, which means that the individual key bits are not
correlated in any way. Later, we will explicitly see why this is a crucial
requirement.

2. It has to be at least as long as the original message, which follows directly from
the encryption process described above.

3. It can never be reused in whole or partly. Otherwise, an adversary is able to get
information about the messages that are sent, as can be seen in the following:
suppose two messages M and N are encrypted using the same key S. If Eve has
access to both resulting ciphertexts C1 and C2, she can simply compute

(C1 ⊕ C2)i = Mi ⊕ Si ⊕ Ni ⊕ Si (1.8)

= Mi ⊕ Ni. (1.9)

This does not directly reveal the messages that have been sent, but Eve certainly
has some information about the messages now.

2Of course, we assume an ideal world without practical limitations as noise and losses here.
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Fig. 1.2 Ideal key generator
setting. An ideal device
outputs two identical, random
keys SA = SB for Alice and
Bob, while Eve cannot
interact with it (i.e., nothing
can be input our output to
Eve’s part of the system,
which is denoted by the
symbol ⊥)

EveAlice Bob

Ideal key
generator

4. It has to be kept completely secret, i.e., the adversary has zero knowledge about
the key.3

Although the one-time pad encryption scheme is provably information-
theoretically secure, it obviously has some drawbacks with regard to practical
usability. Generating a key that is truly random (i.e., building a device as depicted
in Fig. 1.2) is a highly non-trivial task. Furthermore, Alice and Bob have to find a
way to generate the exact same key in two distant places at once. If they had to meet
to agree on the key, they could directly exchange the message they want to send.

Hence, what Alice and Bob want is a device that uses some sort of protocol (we
do not care which one exactly) to generate keys for Alice and Bob. The scheme of
such a device is depicted in Fig. 1.2. Since we cannot be a hundred percent certain
that Eve does not have any access to this box, we also have to include her in the
equation. What are the properties that we require of such an ideal device?

1. First of all, the key has to be correct, i.e., Alice and Bob should receive a
matching set of keys in order to be able to communicate with each other:

SA = SB ≡ S, (1.10)

where S can be thought of as a random variable (i.e., it has a probability
distribution over all possible key values). The values that S can take are bit strings
of length l (= the length of the key).

2. The key should be random, i.e., every possible bit string of length l appears
with the same probability. Since there are 2l such strings, we require that the
probability that the key S takes a certain value s (i.e., a specific bit string) is

Pr[S = s] = 2−l (1.11)

for any value s that the key S can take.

3This requirement is not always true. If Alice and Bob use the one-time pad encryption scheme and
Eve learns about the key because she knew part of the message beforehand, this does not change
the security of the scheme since the key is not reused.
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3. Eve cannot interact with the device: she neither can input anything to it nor get
any output.

If Alice and Bob would have access to such a device, they would be able to use the
resulting keys to safely communicate, for example, via the one-time pad scheme.

Unfortunately, in practice we will never be able to construct such an ideal key
generating device. For instance, we cannot completely prevent Eve from interacting
with the box. There will probably be some information leaked to Eve, and in a
practical setting she is also able to interact with the box, for instance, by simply
cutting the fibres of the communication channels that Alice and Bob use. What can
we do? We can weaken the requirements in a way that the resulting device is not
perfect any more but its failure probability is small. The requirements for such a
realistic device are then changed in the following way:

1. We do not require that the keys the device outputs are always equal, but that the
probability for the protocol not to abort and Alice’s key differs from Bob’s key
is very small:

Pr[SA �= SB ] ≤ ε. (1.12)

As usual in mathematics and physics, we take ε to be a very small number.
2. We now require that the generated key is close to a perfect key, which means that

it is close to a uniformly random key. Furthermore, we require that the individual
key bits do not have any correlation with each other,4 i.e., knowing the first n key
bits does not reveal any information about the n + 1-th key bit. Later, we will
see why this latter condition is important to be able to safely use the key in any
application. With regard to Eve’s system, being close to a perfect key means that
even though some information is leaked to Eve, the resulting key is independent
of the state of Eve’s system.

3. Although we cannot prevent Eve from attacking the device, for example, by
cutting the fibre, we can detect such attacks. In these cases the device will abort
the protocol and not output a key. In this way, we lose the property that the device
always outputs a secure key, but we can be sure that if a key is produced, this key
is secure.

Hence, the main goal of quantum key distribution is to build a device where,
whenever a key is generated, we can be sure that it is secure according to the above
(weakened) requirements, so that Alice and Bob never use a corrupted key. This is
where quantum mechanics comes in: In the theory of quantum mechanics there are
several phenomena that can be helpful to attack these problems: first of all, there is
an inherent randomness to quantum states and measurements that one can exploit.
Furthermore, quantum theory provides an amazingly practical result with respect to

4These statements will be made precise later.
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Fig. 1.3 Basic setting of the BB84 protocol. Two parties, Alice (A) and Bob (B), want to establish
a secret key by using a quantum channel (Q) where an adversary, Eve (E), can tap into without
restrictions and a classical channel (C) where Eve can only listen to the communication but cannot
alter it

cryptography: the no-cloning theorem. Unlike classical physics, where states can be
perfectly cloned arbitrarily often (at least, in principle), this is completely forbidden
for quantum states due to the linearity of quantum theory.

To get an idea of how well the principles of quantum mechanics suit our needs in
order to create a key that is usable for applications like one-time pad encryption, we
study the first example of a quantum key distribution protocol: The BB84 protocol.

1.3 The BB84 Protocol

In 1984, Charles Bennett and Gilles Brassard developed the first quantum key
distribution protocol [1, 2], called the BB84 protocol, which uses the encoding of
classical bits into qubits, i.e., two-level quantum systems. In this example we will
focus on the realization of qubits by using the polarization degree of photons.

The setting is the following: two authorized parties, called Alice and Bob, want
to establish a secret key over a distance. To accomplish this task, they have access to
two channels (see Fig. 1.3): The first one is a classical channel that Alice and Bob
can use to send classical messages back and forth. It needs to be authenticated,
which means that Alice and Bob identify themselves.5 An adversary (Eve) can
listen to the conversation but cannot change the messages that are sent. The second
channel is a quantum channel that allows Alice and Bob to send quantum signals,
which is completely insecure (i.e., the adversary can perform any operation on the
information that is sent that is allowed by the rules of quantum mechanics).

The protocol can be divided into two parts: First, there is a quantum transmission
part, where Alice and Bob prepare, send, and measure quantum states. The second
part is the classical post-processing part which is purely classical. Alice and Bob
only communicate over the classical channel to transform the bit strings they have
obtained in the first phase into secure keys. Before we explain how the protocol
works, we need to make a short detour to understand how we can use the polarization
of photons for the encryption of information.

5Alice must be able to rely on the fact that it is really Bob she is communicating with (and vice
versa). If the adversary just murders Bob in his lab and pretends to be him, there is no point in
trying to generate a secret key.
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Table 1.1 Polarization of photons. In the
rectilinear basis, the photon is either hor-
izontally or vertically polarized. In the
diagonal basis, the polarization is +45◦
or −45◦. A bit can be encoded into the
polarization of a photon in either basis by
assigning one polarization orientation to
each of the respective values

Bit value: 0 1

Rectilinear basis:

Diagonal basis:

50%
50%

Fig. 1.4 Polarization filters. When a vertically (horizontally) polarized photon passes through
a rectilinear polarization filter, it is deflected to the right (left), as depicted in the left and
middle picture. When a photon that is polarized in the diagonal basis passes through a rectilinear
polarization filter, it will be deflected to the left 50% of the time and to the right 50% of the time,
see the picture on the right

1.3.1 Polarization of Photons

The polarization of light specifies the geometrical orientation of the oscillation of
the electromagnetic field associated with its wave. It is perpendicular to the direction
of the propagation of the light. We focus here on linear polarization, which means
that the field only oscillates in one direction (in contrast to, e.g., circular polarization
where the field rotates in a plane as the wave propagates).

We distinguish two kinds of bases of linear polarization states: the rectilinear
basis, which includes horizontal and vertical orientations, and the diagonal basis,
which includes orientations rotated by +45◦ and −45◦. A classical bit (i.e., the
values 0 and 1) can be encoded into the polarization of a photon as depicted in
Table 1.1.

There exist filters to distinguish between horizontally and vertically polarized
photons (and, analogously, between +45◦ and −45◦ rotated photons), as depicted in
Fig. 1.4: when a vertically polarized photon passes through the filter, it is deflected
to the right, while a horizontally polarized one is deflected to the left. Measuring
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a photon in one of these bases effectively means that the photon first passes the
corresponding polarization filter and is detected by a photon detector afterwards
(you need one detector for each orientation). But what happens when a diagonally
polarized photon passes through the rectilinear filter? The photon then will be
randomly deflected in one of the two directions. In this process, the polarization
state of the photon is changed so that it is impossible to determine its orientation
before passing the filter. Note that when measuring a diagonally polarized photon
in the rectilinear basis you get a completely random result (and vice versa), which
means that you do not gain any information. This means that the two bases are
mutually unbiased.

1.3.2 Quantum Transmission

The quantum transmission phase includes all operations that are done on quantum
states, which includes encoding and decoding of classical bits into quantum states
and communication over a quantum channel.

1. Alice chooses a string of N random classical bits X1, . . . , XN .
2. Alice chooses a random sequence of polarization bases, where she can either

choose the rectilinear basis (R) or the diagonal basis (D) These two
bases are mutually unbiased, i.e., a measurement in one of the bases reveals no
information on a bit that is encoded in the other basis.

3. Alice encodes her bit string into a collection of photons with polarization
according to the chosen bases, where the encoding works as shown in Table 1.1.

4. When Bob receives the photons he randomly (and independently of Alice!)
decides for each photon whether to measure it in the rectilinear or the diagonal
basis to obtain classical bits. After this step, Alice and Bob both hold a classical
bit string, denoted X = (X1, . . . , XN) for Alice and Y = (Y1, . . . , YN ) for Bob.
This is called the raw key pair.

1.3.3 Classical Post-Processing

The rest of the protocol is purely classical. Alice and Bob exchange a sequence of
classical information to transform the bit strings they hold into a shared secret key.

5. Bob publicly announces the bases he has chosen to measure the photons Alice
has sent. Alice compares Bob’s bases to the ones she used and says which bases
Bob has chosen correctly, i.e., in which cases their choices coincide. Alice and
Bob discard all bits for which the encoding and measurement bases are not the
same. This is called the sifting step.

6. The next step is the parameter estimation step, where Alice and Bob want to
compute a guess for the error rate in the quantum channel, i.e., the fraction of
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positions i where Xi and Yi disagree. To achieve this, Bob reveals some bits of
his key at random. In case of no eavesdropping, these bits should be the same
as Alice’s bits and she confirms them. If the error rate is too high, this indicates
that there has been some eavesdropping and Alice and Bob abort the protocol.
The bits that have been revealed during this step are discarded afterwards as their
information is now public to an eavesdropper.

7. To compute the final key, Alice and Bob perform certain steps to correct errors
in their keys and increase the secrecy of their key. These steps are called error
correction (sometimes also referred to as information reconciliation), where they
erase all errors in their bit strings, i.e., after this step Alice and Bob hold identical
strings. The second step is privacy amplification, which is a procedure that
minimizes Eve’s knowledge of the key. These steps have not been discussed in
the original proposal of the protocol and first appeared a few years later in [3].
We will go into more detail about these steps later.

After carrying out the steps of this protocol, Alice and Bob hold a pair of identical
secure keys, which can then be used for tasks such as encrypting messages. In
Table 1.2, an example of an implementation of the BB84 protocol is depicted.

Table 1.2 The BB84 protocol. The table shows an example for an implementation of the BB84
protocol using the polarization of photons to encode qubits, assuming that no eavesdropping takes
place

Quantum transmission
Alice’s random bits 0 1 1 1 0 1 0 1 1 0 0 1 1

Random sending bases D R D D R D R R D D D R D

Photons Alice sends ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
Random receiving bases D R R D R D D D R D R R D

Bits as received by Bob 0 1 0 1 0 1 1 1 0 0 0 1 1

Classical post-processing

Bob reports bases
of received bits

D R R D R D D D R D R R D

Alice says which bases
are correct

OK OK OK OK OK OK OK OK

Presumably shared
information (without
eavesdropper)

0 1 1 0 1 0 1 1

Bob reveals some
key bits

1 1 1

Alice confirms them OK OK OK

Outcome

Remaining shared
secret bits

0 1 0 0 1
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1.3.4 Security of the BB84 Protocol

The security of the BB84 protocol relies on the fact that in quantum mechanics
it is not possible to gain information about a quantum system without disturbing
it. Hence, every interaction the eavesdropper has with a quantum state that is sent
alters the state in some way. How can Alice and Bob recognize that an adversary is
listening to their communication while performing the steps of the BB84 protocol?
Let us have a look at what happens if Eve tries to gain information about the
quantum state that Alice sends to Bob. Consider the first bit in the example of
Table 1.2, but now Eve interacts with the quantum state:

Alice’s bit: 0

Alice’s basis: D

State that is sent: ↔
Eve’s measurement basis: R

State after the measurement: ↔
Bob’s measurement basis: D

Bob’s bit: 1

In this case, Bob and Alice have used the same bases, hence after the sifting step
they believe that they are holding the same bit value. Eve’s interaction, however, has
changed the quantum state in a way that Bob’s measurement has yielded a different
bit than the one Alice encoded. In the parameter estimation step, where Bob and
Alice compare parts of the actual bit strings they hold, they will find that these bits
do not match and reveal that an eavesdropper has tried to get some information.

1.4 Structure of the Book

Throughout the whole book, exercises help to consolidate the material presented
and to become more proficient in using the mathematical tools. The content of the
book is organized as follows:

In Chap. 2 we give an introduction to the tools of quantum information theory
that are needed to understand the remainder of the book. We discuss how quantum
systems are described, how quantum measurements work and encounter quantum
mechanical phenomena such as entanglement and the no-cloning theorem, which
play an important role for the security of quantum key distribution (QKD).

In Chap. 3 we describe how information and the lack thereof can be quantified in
terms of entropies. After presenting classical entropies and their properties we turn
to their quantum counterparts, where we discuss both similarities and differences
between the two. Furthermore, we study the uncertainty principle in terms of
entropic quantities.

After having set the theoretical framework we describe QKD protocols in
Chap. 4. Here, we discuss all stages of a typical QKD protocol: first, the quantum
transmission phase, which can be done either with a prepare-and-measure scheme or
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with an entanglement-based one. We present several examples of protocols, such as
the BB84 protocol, the SARG04 protocol, and the Ekert protocol. We then continue
with the classical post-processing and the kind of techniques that are used to turn
the raw bit strings into a secure key.

In Chap. 5 we focus on the security of QKD protocols. The first task here is
to find a suitable definition of security for a QKD protocol and be clear about the
kind of attacks an eavesdropper can perform. Afterwards, we present one of the first
security proofs of the BB84 protocol by Shor and Preskill before we discuss modern
techniques for security proofs such as the secret key rate and entropic uncertainty
relations.

While QKD protocols suffer from the fact that practical devices never work
exactly as specified in the theoretic protocol, device-independent QKD (DIQKD)
circumvents this problem by not making any assumptions on the devices, which
is presented in Chap. 6. We discuss device-independent concepts for quantum
communication and how a QKD protocol that is based on these concepts can be
proven to be secure. We also discuss loopholes that can be exploited to corrupt the
security of a DIQKD scheme even though it makes no assumptions on the devices
that are used.

In Chap. 7 we present recent developments in QKD with the focus on protocols
that aim at overcoming practical challenges such as imperfect devices and losses
in noisy channels as well as attacks tailored to exploit certain characteristics
of detectors, for instance. We first present the concept of measurement device-
independent QKD, which removes the need of trusting the measurement devices.
We then introduce a version of QKD based on continuous variables (in contrast to
discrete variables used in most protocols such as BB84). We end the chapter by
giving an overview of the state-of-the-art experiments for all the different kind of
protocols presented in this book.
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Abstract

To describe the systems and processes involved in a quantum key distribution
protocol, we use the language of quantum mechanics. Therefore, we briefly
recap the definitions and concepts that will be needed later, which includes the
description of quantum systems, quantum phenomena such as entanglement, and
measures of distance between quantum states.

For a more in-depth introduction to the mathematical methods of quantum infor-
mation theory, we refer to a lecture series held by Reinhard Werner in 2017 [4]
and the well-written and comprehensive textbook on quantum information theory
by Mark Wilde [5]. Another great resource which also includes the field of quantum
computation is the book by Nielsen and Chuang [3].

2.1 Basics in Linear Algebra

Before we discuss how to describe quantum mechanical systems, we recall some
basic concepts of linear algebra such as Hilbert spaces and tensor products. This
will form the mathematical framework for the description of quantum systems.

2.1.1 The Hilbert Space

When describing a quantum mechanical system, the starting point is usually
the Hilbert space H , which, according to the postulates of quantum mechanics,
determines the state space of the system. We begin by recalling the basic definition
and some important properties.
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Definition 2.1 A Hilbert space is a vector space over the complex numbers C
1

equipped with a scalar product

(·, ·) : H × H → C (2.1)

such that the following conditions are fulfilled:

1. (ϕ,ψ) = (ψ, ϕ) for all ϕ,ψ ∈ H , where the bar denotes the complex conjugate.
2. (ϕ, λψ + η) = λ (ϕ,ψ) + (ϕ, η) for all ϕ,ψ, η ∈ H and λ ∈ C.2

3. (ϕ, ϕ) ≤ 0 for all ϕ ∈ H , and (ϕ, ϕ) = 0 if and only if ϕ = 0.

In these notes we will use the Dirac notation or bra-ket notation to denote vectors
in a Hilbert space, which means that a vector (a ket) in a Hilbert space H is denoted
|ϕ〉 ∈ H . There exists a dual vector (a bra) 〈ϕ| ∈ H∗ to every vector |ϕ〉 ∈ H , where
H∗ is the dual Hilbert space of H . The scalar product of two vectors |ϕ〉, |ψ〉 ∈ H
is then denoted 〈ϕ|ψ〉 ≡ (ϕ,ψ).

Exercise 2.2 Show that 〈λϕ|ψ〉 = λ〈ϕ|ψ〉.

The scalar product induces a norm on the Hilbert space which is defined as

√〈ϕ|ϕ〉 = ‖ϕ‖. (2.2)

From the properties of the scalar product it directly follows that this norm is non-
negative and only zero whenever the vector itself is zero. The Hilbert space H is
complete with respect to this norm.

Definition 2.3 An orthonormal basis of a Hilbert space H is a set of labelled
vectors {|ei〉}i such that

〈ei |ej 〉 = δij (2.3)

for all i, j and every vector |ϕ〉 ∈ H can be written as a linear combination of the
basis vectors in the following way:

|ϕ〉 =
∑

i

〈ei |ϕ〉|ei〉. (2.4)

1It is also possible to define a Hilbert space over the real numbers R, but we do not care about this
case in these lecture notes.
2Note that it is a convention to extract the complex conjugate out of the first factor and extract
the factor linearly out of the second one. This convention is usually used by physicists, while the
universal convention in mathematics is exactly the opposite.
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Throughout these notes, we usually consider finite-dimensional Hilbert space, in
which case the basis contains only finitely many elements.

2.1.2 Operators on Hilbert Spaces

Apart from the scalar product of two vectors, we can also calculate the outer product
|ϕ〉〈ψ|, which yields a linear operator on the Hilbert space H and acts on a vector
|η〉 ∈ H in the following way:

(|ϕ〉〈ψ|)|η〉 = |ϕ〉〈ψ|η〉 = 〈ψ|η〉|ϕ〉. (2.5)

We can make use of the outer product to derive the completeness relation for
orthonormal vectors. Suppose we have an orthonormal basis {|ei〉}i of a Hilbert
space H . We can then write a vector |ϕ〉 ∈ H as |ϕ〉 = ∑

i ϕi |ei〉 for some set of
complex numbers ϕi . Note that ϕi = 〈ei |ϕ〉, and hence

(
∑

i

|ei〉〈ei |
)

|ϕ〉 =
∑

i

|ei〉〈ei |ϕ〉 =
∑

i

ϕi |ei〉 = |ϕ〉. (2.6)

Since this is true for all vectors |ϕ〉 ∈ H , is follows that

∑

i

|ei〉〈ei | = I, (2.7)

which is known as the completeness relation.
In general, a linear operator is defined as follows:

Definition 2.4 A linear operator between Hilbert spaces H and H ′ is a function
A : H → H ′ which is linear in its inputs, i.e.,

A

(
∑

i

ai |ϕi〉
)

=
∑

i

aiA
(|ϕi〉

)
. (2.8)

An operator A on a Hilbert space H , i.e., an operator A : H → H , is said to be
bounded if

‖A|ϕ〉‖ ≤ ‖A‖ ‖|ϕ〉‖ (2.9)
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for all |ϕ〉 ∈ H and the smallest possible constant ||A|| that fulfils this equation
is called the norm of the operator. We denote B(H) the set of all bounded linear
operators acting on H .3

Exercise 2.5 Prove the Cauchy–Schwarz inequality: |〈ϕ|ψ〉|2 ≤ 〈ϕ|ϕ〉〈ψ|ψ〉.
Hint: Make use of the completeness relation.

Example 2.6 (Pauli Matrices) An important example of operators, which will play
a big role in our discussion of quantum systems, is the Pauli matrices. They are
operators on a two-dimensional Hilbert space and can therefore be written as 2 × 2
matrices:

X =
(

0 1
1 0

)

, Y =
(

0 −i

i 0

)

, Z =
(

1 0
0 −1

)

. (2.10)

Together with the identity matrix I they form a basis for the 2 × 2 matrices.

An important function of operators is the trace. Let A ∈ B(H) and {|ei〉} be a
basis of H . The trace of A is defined as the sum of the diagonal matrix elements
of A:

Tr (A) =
∑

i

〈ei |A|ei〉. (2.11)

It is independent of the chosen basis of the Hilbert space and satisfies some
important properties:

1. It is linear: For A,B ∈ B(H), it holds that Tr (A + B) = Tr (A) + Tr (B) and
Tr (λA) = λTr (A) for λ ∈ C.

2. It fulfils the cyclic property: For A,B,C ∈ B(H), it holds that Tr (ABC) =
Tr (BCA) = Tr (CAB).

Exercise 2.7 Show that each of the Pauli matrices has trace zero.

Adjoints
For an operator A ∈ B(H), the adjoint (or Hermitian conjugate) A† of A is defined
by

(
A†|ϕ〉, |ψ〉) = (|ϕ〉, A|ψ〉). (2.12)

3If H is finite-dimensional, every linear operator is automatically bounded and it can be expressed
as multiplication by some fixed matrix.
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An operator A is said to be Hermitian (or self-adjoint) if A† = A. It is called
unitary if AA† = A†A = I, where I is the identity matrix. It is called normal if
AA† = A†A. Clearly, any operator that is Hermitian or unitary is also normal.

Exercise 2.8 Use the definition of the adjoint operator to show that for two
operators A,B ∈ B(H), it holds that (AB)† = B†A†.

Exercise 2.9 For a vector |ϕ〉 ∈ H , we define |ϕ〉† = 〈ϕ|. Use this to show that
(A|ϕ〉)† = 〈ϕ|A†.

Exercise 2.10 Show that the Pauli matrices are both Hermitian and unitary.

Projectors
An important class of Hermitian operators is the projectors:

Definition 2.11 Let H be a Hilbert space andH ′ a subspace ofH with orthonormal
basis {|ei〉}i . The projector of H onto the subspace H ′ is defined as

PH ′ =
∑

i

|ei〉〈ei |. (2.13)

Exercise 2.12 Show that any projector squares to itself, i.e., P 2 = P and that each
eigenvalue of P is either 0 or 1.

Any self-adjoint operator A admits a spectral decomposition. Since the eigenval-
ues of a self-adjoint operator are real and eigenvectors that correspond to different
eigenvalues are orthogonal, A can be written as

A =
∑

i

λiPi , (2.14)

where the λi are the different eigenvalues and Pi is the orthogonal projection onto
the subspace spanned by the eigenvectors that correspond to the eigenvalue λi .

Furthermore, every linear operator A admits a singular value decomposition.
There exist unitary matrices U and V and a diagonal matrix D with non-negative,
real entries such that

A = UDV. (2.15)

The diagonal entries of D are called the singular values of A.
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2.1.3 Composite Systems

The composite system of two Hilbert systems HA and HB is described by the tensor
product Hilbert space HA ⊗ HB . States in HA ⊗ HB are linear combinations of
tensor products |ϕ〉 ⊗ |ψ〉 of elements |ϕ〉 ∈ HA and |ψ〉 ∈ HB . In particular, if
{|ei〉}i is a basis for HA and

{|fj 〉
}
j

is a basis for HB , the Hilbert space of the

composite system, HA ⊗HB , has a basis
{|ei〉 ⊗ |fj 〉

}
i,j

. Therefore, the dimension
of the composite Hilbert space is the product of the dimensions of the subsystem
Hilbert spaces:

dim (HA ⊗ HB) = dim (HA) dim (HB) . (2.16)

The tensor product fulfils the following properties for an arbitrary scalar λ ∈ C and
vectors |ϕ〉, |ϕ1〉, |ϕ2〉 ∈ HA and |ψ〉, |ψ1〉, |ψ2〉 ∈ HB :

1. λ
(|ϕ〉 ⊗ |ψ〉) = (

λ|ϕ〉)⊗ |ψ〉 = |ϕ〉 ⊗ (
λ|ψ〉),

2.
(|ϕ1〉 + |ϕ2〉

)⊗ |ψ〉 = |ϕ1〉 ⊗ |ψ〉 + |ϕ2〉 ⊗ |ψ〉,
3. |ϕ〉 ⊗ (|ψ1〉 + |ψ2〉

) = |ϕ〉 ⊗ |ψ1〉 + |ϕ〉 ⊗ |ψ2〉.

To get a vector representation of states in a composite system, we use the
definition of the tensor product from linear algebra. Suppose we have the two two-
dimensional vectors

(
a1

b1

)

,

(
a2

b2

)

. (2.17)

The tensor product of these two vectors is given by

(
a1

b1

)

⊗
(

a2

b2

)

=

⎛

⎜
⎜
⎝

a1

(
a2

b2

)

b1

(
a2

b2

)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a1a2

a1b2

b1a2

b1b2

⎞

⎟
⎟
⎠ . (2.18)

A short remark on the notation: Since tensor products of states occur very often,
people have developed various shorthands for this. For a composite system of two
states, the following notations are equivalent:

|e〉 ⊗ |f 〉 = |e〉|f 〉 = |ef 〉. (2.19)

These notations are used when there is only one party involved. When there are two
or more parties, e.g., A and B, we can indicate that the first state is local to the
Hilbert space HA and the second is local to the Hilbert space HB by adding the
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respective subscripts to the states:

|e〉A ⊗ |f 〉B = |e〉A|f 〉B = |ef 〉AB. (2.20)

We will use any of these notations throughout these notes.

2.2 Description of Quantum Systems

The usual setting of a quantum mechanical experiment can be divided into three
parts as depicted in Fig. 2.1: A preparation step, where the initial state ρ of the
system is prepared, an evolution part that is described by a quantum channel E,
and a measurement step, where some observable M is measured, which yields an
outcome x. In the following, we describe each of these steps in detail and give all
the definitions that are needed in the following chapters.

2.2.1 States in Hilbert Space

We begin the description of quantum mechanical systems with the preparation step,
the left (red) box in Fig. 2.1. The state space of the system of interest is given
by a Hilbert space H . The state of the system is then a vector |ψ〉 ∈ H in this
Hilbert space. The simplest example of a quantum state is a two-state system,
a qubit. The two states of the qubit are denoted by |0〉 and |1〉. These can, for
example, correspond to the rectilinear basis in the BB84 protocol, i.e., vertically
and horizontally polarized photons. Moreover, the system can be in an arbitrary
superposition of the two states:

|ψ〉 = α|0〉 + β|1〉, (2.21)

where α and β are arbitrary complex numbers that fulfil |α|2 + |β|2 = 1. The states
|0〉 and |1〉 have a vector representation of the form

|0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

. (2.22)

Preparation Channel Measurement

Fig. 2.1 General setting of a quantum mechanical experiment. This can be split into three parts:
the preparation part, where the state of the system is prepared, the evolution that the system
undergoes, and the measurement part, where some observable is measured
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This makes it easy to see that they form an orthonormal basis for the space of states
of a qubit. This basis is called the computational basis. In this basis, the state |ψ〉 is
given by

|ψ〉 =
(

α

β

)

. (2.23)

Another important basis for qubit states in quantum information theory is the
Hadamard basis, which is defined as follows:

|+〉 = 1√
2

(
1
1

)

, |−〉 = 1√
2

(
1

−1

)

. (2.24)

In the example of the BB84 protocol, the Hadamard basis corresponds to the
diagonal basis. The relationship to the computational basis is the following:

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

. (2.25)

There is an operation that maps from the computational basis to the Hadamard
basis, and vice versa, which is called the Hadamard transformation H :

H |0〉 = |0〉 + |1〉√
2

= |+〉 (2.26)

H |1〉 = |0〉 − |1〉√
2

= |−〉. (2.27)

Its matrix representation is

H = 1√
2

(
1 1
1 −1

)

. (2.28)

It is easy to check that H 2 = I, which implies that H−1 = H , hence H also maps
the Hadamard basis to the computational basis.

A helpful visualization of the state of a qubit is given by the Bloch sphere,
depicted in Fig. 2.2. Here, every quantum state |ψ〉 is represented by a point on
the unit sphere. Suppose the amplitudes α and β in (2.21) have the following
representation as complex numbers:

α = r0e
iϕ0 (2.29)

β = r1e
iϕ1 . (2.30)
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Fig. 2.2 Bloch sphere. Any
qubit state |ψ〉 has a
representation in terms of two
angles 0 ≤ ϕ ≤ 2π and
0 ≤ θ ≤ n given by |ψ〉 =
cos(θ/2)|0〉 + sin(θ/2)eiϕ |1〉.
The angles ϕ and θ determine
a point on the unit sphere

We can thus write the state |ψ〉 as

|ψ〉 =
(

r0e
iϕ0

r1e
iϕ1

)

= eiϕ0

(
r0

r1e
i(ϕ1−ϕ0)

)

. (2.31)

The states of two qubits are physically equivalent if they only differ by a global
phase since this phase cannot be observed in a measurement (this will become clear
when we discuss measurements of quantum systems). Hence, we can neglect the
global phase eiφ0 and the state |ψ〉 can be written

|ψ〉 = r0|0〉 + r1e
i(ϕ1−ϕ0)|1〉. (2.32)

We now set ϕ ≡ ϕ1 − ϕ0, where 0 ≤ ϕ ≤ 2π . Recall that since |ψ〉 is a quantum
state, it has unit trace 〈ψ|ψ〉, which implies that |r0|2 + |r1|2 = 1. Therefore, the
coefficients r0 and r1 can be parametrized by a single parameter θ :

r0 = cos(θ/2) (2.33)

r1 = sin(θ/2), (2.34)

with 0 ≤ θ ≤ π . As a result, we have rewritten the qubit state |ψ〉 in terms of the
two angles ϕ and θ , which gives the Bloch sphere representation of the state:

|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiϕ|1〉. (2.35)

The angles ϕ and θ determine a point on the unit sphere (see Fig. 2.2). In Cartesian
coordinates, this point is given by (cos ϕ sin θ, sin ϕ sin θ, cos θ). This vector is also
called the Bloch vector.

Exercise 2.13 Find the angles θ+, ϕ+ and θ−, ϕ− that determine the location on
the Bloch sphere of the states |+〉 and |−〉.
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In general, we may not have perfect knowledge of the prepared quantum
state but instead have an ensemble of states, where each state occurs with a
certain probability: Consider a quantum system which is described by a statistical
mixture of state vectors |ψ1〉, |ψ2〉, . . . , |ψd 〉 ∈ H . The states have probabilities
p1, p2, . . . , pd , respectively, which fulfil pi ≥ 0 and

∑
i pi = 1. The state of the

system is hence characterized by the ensemble {pi, |ψi〉}i=1,...,d . The corresponding
density matrix ρ of this system is defined as

ρ =
d∑

i=1

pi |ψi〉〈ψi |, (2.36)

which can also be interpreted as the expectation of the states |ψi〉 with respect to
the probability distribution given by the pi . The state vectors |ψi〉 are normalized
but they are not necessarily pairwise orthogonal. The formal definition of a density
matrix is as follows:

Definition 2.14 A density matrix (or density operator) ρ is an operator on the
Hilbert space H that satisfies the following properties:

1. It is normalized: Tr (ρ) = 1.
2. It is Hermitian: ρ† = ρ.
3. It is positive semi-definite: 〈ϕ|ρ|ϕ〉 ≥ 0 for all |ϕ〉. We usually write ρ ≥ 0 to

indicate that an operator is positive semi-definite.

Note that although every ensemble has a unique density operator, the opposite does
not necessarily hold. A given density operator can correspond to more than one
ensemble. It is sometimes useful to work with states that are not normalized, i.e.,
Tr (ρ) ≤ 1. The set of subnormalized states on a Hilbert space H is denoted S≤(H).
Even though these states are not physical states, they can be renormalized to a
physical state: If ρ ∈ S≤(H), then ρ/Tr (ρ) is a valid density operator.

Example 2.15 A simple example for an ensemble is the following:

{{1

5
, |0〉

}
,
{4

5
, |1〉

}}

. (2.37)

This can be interpreted as the system is in the state |0〉 with probability 1
5 and in the

state |1〉 with probability 4
5 . The resulting density matrix is

ρ = 1

5
|0〉〈0| + 4

5
|1〉〈1|. (2.38)

Exercise 2.16 Given an ensemble {pi, |ψi〉}, show that the resulting density oper-
ator ρ fulfils the properties 1.–3. stated in Definition 2.14.
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Exercise 2.17 Consider the two ensembles
{
{ 1

2 , |0〉}, { 1
2 , |1〉}

}
and

{
{ 1

2 , |+〉},
{ 1

2 , |−〉}
}

. Show that they yield the same density matrix by applying the formula

in (2.36).

Example 2.18 An important state, which will appear often throughout these notes,
is the maximally mixed state π . It is a density operator corresponding to a uniform

ensemble of orthogonal states
{

1
d
, |x〉

}

x=1,...,d
, where d is the dimension of the

Hilbert space. The maximally mixed state then corresponds to the density operator

π = 1

d

∑

x

|x〉〈x| = I

d
. (2.39)

For a single qubit, the maximally mixed state is a mixture of the two possible states
|0〉 and |1〉 weighted with equal probability:

πqubit = 1

2
(|0〉〈0| + |1〉〈1|) = I

2
. (2.40)

If we know the state of the quantum system precisely, we say the system is in a
pure state. In this case, the sum in (2.36) has only one term and the density matrix ρ

is a one-dimensional projector. For instance, suppose the system is in the state |ψ3〉.
We then have p3 = 1 and pi = 0 ∀ i �= 3. Hence, the resulting density matrix is

ρ = |ψ3〉〈ψ3|. (2.41)

If there is more than one term in the sum, the system is said to be in a mixed state.
Equivalently, we can use the purity to distinguish pure and mixed states.

Definition 2.19 The purity P(ρ) of a density matrix ρ is given by

P(ρ) = Tr
(
ρ†ρ

)
= Tr

(
ρ2
)

. (2.42)

A density matrix ρ is pure if P(ρ) = 1 and it is mixed if P(ρ) < 1. Subsequently,
we will use the word state to refer to a general density matrix and the word pure
state to refer to both the state vector |ψ〉 as well as the corresponding density matrix
ρ = |ψ〉〈ψ|.

By the spectral theorem it is possible to choose vectors {|ϕi〉}i=1,...,d that are
pairwise orthogonal eigenvectors of ρ with corresponding eigenvalues λi such that

ρ =
d∑

i=1

λi |ϕi〉〈ϕi |. (2.43)
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Thus, given a density operator ρ we can define its corresponding canonical ensemble
{λi, |ϕi〉}. Note that this decomposition is not unique: If two eigenvalues are the
same, i.e., λi = λj for some i �= j , then the choice of eigenvectors corresponding
to these eigenvalues is not unique.

Exercise 2.20 Let ρ = ∑
x λi |ϕi〉〈ϕi | be the spectral decomposition of a density

matrix ρ ∈ H . Show that P(ρ) = 1 if and only if ρ is a pure state, i.e., the spectral
decomposition of ρ consists of only one term, and P(ρ) < 1 otherwise.

Bloch Sphere for Mixed States
The Bloch sphere representation of pure single qubit states can be generalized to
mixed qubit states. To recall the definition of the Pauli matrices:

X =
(

0 1
1 0

)

, Y =
(

0 −i

i 0

)

, Z =
(

1 0
0 −1

)

. (2.44)

Using these, we can write any density operator as

ρ = 1

2

(
I + rxX + ryY + rzZ

)
. (2.45)

The vector r = (rx, ry, rz) determines the point that corresponds to ρ. These points
now do not only live on the unit sphere, but also in the interior of the sphere, called
the Bloch ball.

Exercise 2.21

1. Show that the matrix representation of the state in (2.45) is

ρ = 1

2

(
1 + rz rx − iry

rx + iry 1 − rz

)

. (2.46)

2. Show that this state fulfils the properties of a density matrix stated in Defini-
tion 2.14.

3. Show that a state ρ is pure if and only if ||r|| = 1.
4. Calculate the Bloch vector for the maximally mixed state.

2.2.2 Quantum Channels

The dynamics of a quantum mechanical system is described by a quantum channel,
which is an operator that maps quantum states in a Hilbert space HA to quantum
states in a Hilbert space HB . In Fig. 2.1, this is depicted as the middle (green) box
and the notation we usually use to denote a quantum channel is E. In the following,
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we will follow an axiomatic approach to determine the properties of a quantum
channel. The properties we request are the following:

1. Linearity. The first requirement we impose on a quantum channel is that it
should be a linear map:

Definition 2.22 Let HA and HB be Hilbert spaces. A map E : B(HA) →
B(HB) is said to be linear if

E (αρA + βσA) = αE(ρA) + βE(σA) (2.47)

for density operators ρA, σA ∈ B(HA) and α, β ∈ C.

2. Complete positivity. First, it is clear that a quantum channel should preserve
the class of positive semi-definite operators in order to take density matrices to
density matrices. This means that it should be a positive map, which is defined
as follows:

Definition 2.23 A linear map E : B(HA) → B(HB) is positive if E(ρA) is
positive semi-definite for all positive semi-definite ρA ∈ B(HA).

However, positivity is not sufficient for our purposes. Consider a variation of
Fig. 2.1, where an additional “bystander”, modelled by the Hilbert space Hby, is
involved in the experiment which is not affected by the channel (as depicted in
Fig. 2.3). This situation can arise, for example, within an experiment where only
a part of the prepared state undergoes a certain evolution. Although this differs
from the original scenario, this way of operating on a subsystem should still be
well-defined. In particular, we still require that the initial state ρ ∈ HA ⊗ Hby is
mapped to a density operator by the map E⊗idby, where idby denotes the identity

by

Fig. 2.3 A quantum mechanical system with a bystander. Here, we include an additional party,
modelled by the Hilbert space Hby, which is left unaffected by the quantum channel E. The
resulting quantum evolution E ⊗ idHby still has to be positive
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operator on the space Hby. Hence, we require not only positivity, but complete
positivity:

Definition 2.24 A linear map E : B(HA) → B(HB) is completely positive if
the map E⊗ idn : B(HA)⊗B(Cn) → B(HB)⊗B(Cn) is positive for all n ∈ N,
where idn denotes the identity map in Cn.

3. Trace Preserving. The last requirement that we impose for quantum evolutions
is trace preservation, which is again necessary to ensure that a quantum channel
maps density operators to density operators. This means that the trace of the state
does not change under the channel:

Tr (ρA) = Tr (E(ρA)) (2.48)

for all ρA ∈ B(HA).

Summing up the above discussion, we can define a quantum channel in the following
way:

Definition 2.25 A quantum channelE : HA → HB is a linear, completely positive,
trace-preserving map.

Why is complete positivity an important requirement for quantum operations? An
example of an operation on density matrices which is positive, but not completely
positive, is the transpose operation on a single qubit. In the computational basis, this
map is given by

T : ρ → ρT (2.49)
(

a b

c d

)

→
(

a c

b d

)

(2.50)

and it preserves the positivity of the single qubit density matrix. What happens if
the qubit is part of a larger system, for example, in the state

|�+〉 = |00〉 + |11〉√
2

? (2.51)

In terms of density matrices, applying the transpose operation on the first qubit of
the above state has the following effect on the density operator ρ�+ = |�+〉〈�+|:

1

2

⎛

⎜
⎜
⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟
⎟
⎠

T⊗id−−−→ 1

2

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ . (2.52)
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The eigenvalues of the matrix after applying the map are 1
2 , 1

2 , 1
2 , and − 1

2 , hence
it is not a positive matrix anymore and therefore not a valid density operator. This
example shows that an operation which is positive, but not completely positive, can
transform valid density operators into matrices that do not fulfil the properties of a
density operator.

A quantum channel can equivalently be described by its Kraus decomposition
due to the Choi-Kraus theorem:

Theorem 2.26 A map E : HA → HB is linear, completely positive, and trace-
preserving if and only if it has a Kraus decomposition as follows:

E(ρA) =
d∑

j=1

KjρAK
†
j , (2.53)

where ρA ∈ B(HA), Kj : HA → HB for all j ∈ {1, . . . , d} and
d∑

j=1

K
†
j Kj = IA, (2.54)

and d need not by any larger than dim(HA) dim(HB).

The full proof of this theorem can be found in [5, Theorem 4.4.1].
In a closed quantum system, the dynamics are described by a unitary operator

U : H → H , i.e., if ρ is the initial state of the system, then the state ρ′ after the
evolution is given by

ρ′ = UρU† ≡ U(ρ). (2.55)

This kind of quantum evolution has only one Kraus operator, which is the unitary
operator U . It is easy to reverse such a channel: the adjoint map U† is a unitary
channel, and it can easily be shown that it is the inverse of U:

(U† ◦ U)(ρ) = U†UρU†U = ρ. (2.56)

A more general form is the isometric channelV(ρ) = VρV †, where V : HA →
HB is an isometry and dim(HA) ≤ dim(HB). Since it is an isometry, it satisfies
V †V = IHA

but not, in general, V V † = IHB
. It generalizes the unitary channel in

the sense that it maps between spaces of different dimensions. This channel can also
be reversed.
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Exercise 2.27 In case of the isometric channel V : HA → HB given by V(ρA) =
VρAV † with V being an isometry, the reverse channel is not given by the adjoint
map V†. However, this channel can still be reversed.

1. Show that V† is not a quantum channel in the sense of Definition 2.25.
2. Show that the map R defined as

R(ρB) = V†(ρB) + Tr
((

idHB
− V V †)ρB

)
σA (2.57)

with ρB ∈ HB and σA ∈ HA is completely positive and trace-preserving.
3. Show that the map R is the inverse of the isometric channel V, i.e., that

(R ◦ V) (ρA) = ρA.

Example 2.28 An example of a quantum channel that describes an irreversible
evolution is the amplitude damping channel. To give it a physical interpretation,
consider a two-level atom whose states are described in the computational basis:
The ground state is described by |0〉 and the excited state is described by |1〉. The
amplitude damping channel, depicted in Fig. 2.4, then describes the spontaneous
decay of the atom from its excited state to the ground state, which occurs with
a probability γ , where 0 ≤ γ ≤ 1. This is even applicable if the atom is in
superposition of the ground state and the excited state.

How can we find the Kraus operators for this channel? The operator that captures
the decaying behaviour is the following:

K1 = √
γ |0〉〈1|, (2.58)

since it decays the excited state to the ground state:

K1|1〉〈1|K†
1 = γ |0〉〈1|1〉〈1|1〉〈0| = γ |0〉〈0|. (2.59)

This operator is not sufficient for the Kraus decomposition since it does not fulfil
(2.54):

K
†
1K1 = γ |1〉〈1| �= I. (2.60)

Fig. 2.4 The amplitude
damping channel. With a
probability γ , the atom
decays from its excited state
|1〉〈1| to its ground state
|0〉〈0|
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However, we can find the second Kraus operator by simply choosing an operator
that, together with K1, fulfils (2.54):

K
†
2K2 = I − K

†
1K1 (2.61)

= |0〉〈0| + |1〉〈1| − γ |1〉〈1| (2.62)

= |0〉〈0| + (1 − γ )|1〉〈1|. (2.63)

This condition is fulfilled by the operator

K2 = |0〉〈0| +√
1 − γ |1〉〈1|. (2.64)

Hence, the amplitude damping channel can be represented by two Kraus operators.

Exercise 2.29 Show that applying the amplitude damping channel to a general
quantum state ρ is equivalent to the following transformation of the Bloch vector:

(
rx, ry, rz

) →
(
rx
√

1 − γ , ry
√

1 − γ , γ + rz(1 − γ )
)

. (2.65)

Exercise 2.30 The depolarizing channel is a qubit channel that describes a scenario
where we completely lose the input qubit with some probability p. In this case, the
input state is replaced by the maximally mixed state. The channel is defined as

E(ρ) = (1 − p)ρ + pπ, (2.66)

where π = I/2 is the maximally mixed state of a qubit system.

1. Show that for an arbitrary qubit state ρ, the identity I can be written as

I = 1

2
(ρ + XρX + YρY + ZρZ) , (2.67)

where the X,Y,Z are the Pauli matrices.
2. Use the formula in (2.67) to show that the Kraus operators of the depolarizing

channel are given by

K1 =
√

1 − 3p

4
I, K2 =

√
p

2
X,

K3 =
√

p

2
Y, K4 =

√
p

2
Z.
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2.2.3 Measurements

At the end of an experiment, one usually makes an observation or a measurement
of the system to gain some sort of information about it, which is represented by the
right (blue) box in Fig. 2.1.

Definition 2.31 In general, a measurement is described by a collection {Mx} of
operators, where Mx : B(H) → B(H). The index x refers to the possible mea-
surement outcomes, which are given by a finite outcome set X. The measurement
operators satisfy the completeness relation

∑

x∈X
M†

xMx = I. (2.68)

If the system is in a pure state |ψ〉 when the measurement takes place, the
probability to obtain an outcome x ∈ X is given by

Pψ(x) = 〈ψ|M†
xMx |ψ〉, (2.69)

and the state |ψ ′〉 of the system after the measurement is

|ψ ′〉 = Mx |ψ〉
√

〈ψ|M†
xMx |ψ〉

. (2.70)

A simple yet important example of a measurement is the measurement of a single
qubit in the computational basis. This measurement has two possible outcomes, 0
and 1, and the corresponding measurement operators are given by

M0 = |0〉〈0|, M1 = |1〉〈1|. (2.71)

Exercise 2.32 Show that the measurement operators defined in (2.71) fulfil the
completeness relation (2.68).

Exercise 2.33 Show that the measurement operators defined in (2.71) fulfil the
following relations:

M
†
0 M0 = M2

0 = M0 (2.72)

M
†
1 M1 = M2

1 = M1. (2.73)
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Suppose we have a single qubit in the state |ψ〉 = α|0〉 + β|1〉. According to
(2.69), the probability of obtaining the outcome 0 is given by

Pψ(0) = 〈ψ|M†
0 M0|ψ〉 (2.74)

= 〈ψ|M0|ψ〉 (2.75)

= (α∗〈0| + β∗〈1|)|0〉〈0|(α|0〉 + β|1〉) (2.76)

= |α|2. (2.77)

In the same way, we find that the probability of obtaining the outcome 1 is Pψ(1) =
|β|2. For instance, if the system is in state |ψ〉 = |0〉+|1〉√

2
, we have that Pψ(0) =

Pψ(1) = 1
2 , i.e., both outcomes occur with probability 1

2 . After the measurement,
the system is in one of two states, depending on the measurement outcome:

|ψ ′
0〉 = M0|ψ〉

√
〈ψ|M†

0 M0|ψ〉
= α

|α| |0〉, (2.78)

|ψ ′
1〉 = M1|ψ〉

√
〈ψ|M†

1 M1|ψ〉
= β

|β| |1〉. (2.79)

We can ignore factors of the form α/|α|, which have modulus one, since they
yield the same measurement statistics. More generally, we say that two states |ψ〉
and eiθ |ψ〉, where θ is a real number, are equal up to the global phase factor eiθ .
This factor cannot be observed in a measurement: Given a measurement operator
Mx , the respective probabilities of obtaining an outcome x for the two states are
〈ψ|M†

xMx |ψ〉 and 〈ψ|e−iθM
†
xMxeiθ |ψ〉 = 〈ψ|M†

x Mx |ψ〉. Hence, there is no
measurement that can distinguish between these two states, which is the reason why
we regard global phase factors as irrelevant to the observed properties of the system.

The description of measurements can easily be extended to the density matrix
formalism. Suppose the system is described by the ensemble {pi, |ψi〉}, hence the
corresponding density operator is given by

ρ =
∑

i

pi |ψi〉〈ψi |. (2.80)

We now want to perform a measurement given by the collection of operators {Mx}.
If the system is in the state |ψi〉, we can rewrite the formula for the probability of
obtaining the outcome x given in (2.69) as

Pψi (x) = 〈ψi |M†
xMx |ψi〉 = Tr

(
M†

xMx |ψi〉〈ψi |
)

, (2.81)
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where we have used the cyclic property of the trace in the last step. The probability
of obtaining the measurement outcome x, considering the complete ensemble is then
(according to the law of total probability, see Appendix A) given by

Pρ(x) =
∑

i

piPψi (x) (2.82)

=
∑

i

piTr
(
M†

xMx |ψi〉〈ψi |
)

(2.83)

= Tr
(
M†

xMxρ
)

. (2.84)

The state of the system after obtaining the measurement outcome x is given by

ρ′
x = MxρM

†
x

Tr
(
M

†
xMxρ

) . (2.85)

A special case of a measurement is the projective measurement defined as
follows:

Definition 2.34 A projective measurement is a Hermitian operator M : B(H) →
B(H) with spectral decomposition

M =
∑

x

xPx, (2.86)

where the x are the eigenvalues of M and the Px form a set of orthogonal projectors
satisfying

∑
x Px = I and PxPx ′ = δxx ′Px .

Projective measurements can be understood as a special case of the previously
described measurements in the following way: Suppose we have a set of measure-
ment operators {Mx} which, in addition to the completeness relation, also satisfy the
condition that they are orthogonal projectors, which means that they are Hermitian
and fulfil MxMx ′ = δxx ′Mx . In this case, the Mx define a projective measurement
M via M = ∑

x xMx .
Instead of giving the observable M , one can also give the complete set of

projective measurements {Px} to describe the measurement. The probability of
obtaining an outcome x then simplifies to

Pψ(x) = 〈ψ|Px |ψ〉 (2.87)

and the state after the measurement is

|ψ ′〉 = Px |ψ〉√〈ψ|Px |ψ〉 . (2.88)
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Exercise 2.35 Suppose the observable we want to measure is the Pauli-Z operator
as defined in (2.44), which has eigenvalues +1 and −1 and eigenvectors |0〉 and |1〉.

1. What is the set of projection operators that corresponds to the Z measurement?
2. Suppose the initial state of the qubit is |ψ〉 = |0〉−|1〉√

2
. What is the probability of

obtaining the outcomes +1 and −1, respectively?
3. Suppose the state of the system is given by the density matrix

ρ =
(

1/2 1/6
1/6 1/2

)

. (2.89)

What is the probability of obtaining the outcome +1 when measuring the Z

operator?

Exercise 2.36 Consider the following scenario, which typically appears in the
BB84 protocol: Suppose Alice prepares a 0-bit in the computational basis, i.e., she
sends the state ρ = |0〉〈0| to Bob.

1. Suppose Bob chooses to measure the state also in the computational basis. What
is the probability of getting the outcome 0 or 1, respectively?

2. Instead of measuring in the computational basis, Bob can also choose to measure
the state in the Hadamard basis {|+〉, |−〉}, where the measurement operators are
given by

E+ = |+〉〈+|, E− = |−〉〈−|. (2.90)

Show that the probabilities of getting the outcome + and getting the outcome −
are the same when measuring the state ρ = |0〉〈0|, and hence Bob does not gain
any information about the bit that Alice sent when measuring in the Hadamard
basis.

An important problem in quantum information theory is distinguishing quantum
states via measurements. If we have a set of orthogonal quantum states, we can
always define a projective measurement that enables us to distinguish the states.
Consider a set {|ψi〉} of orthonormal states. Define measurement operators Mi via

Mi = |ψi〉〈ψi |, (2.91)

one for each possible index i, and one additional measurement operator

M0 = I −
∑

i �=0

|ψi〉〈ψi |. (2.92)
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These operators satisfy the completeness relation and, if the state |ψi〉 is prepared,
then the probability of getting outcome i is

Pψi (i) = 〈ψi |Mi |ψi〉 = 1. (2.93)

If the states are not orthonormal, the situation is different. In this case, there
is no quantum measurement that can reliably distinguish the states. This can be
seen by the following argument: Suppose we want to determine which state |ψi〉
from a set of non-orthogonal states {|ψi〉} was given to us. For this purpose, we
use a measurement defined by operators Mj with outcomes j . Depending on the
measurement outcome we try to guess the index i of the quantum state we have
measured, using some rule f (·), i.e., i = f (j). For simplicity, consider the case
where we only want to distinguish two states, |ψ1〉 and |ψ2〉. Suppose now that j is
some measurement outcome such that f (j) = 1, hence we guess that the state that
was given to us is |ψ1〉 when observing the outcome j . However, because the states
are non-orthogonal, the state |ψ2〉 has a component parallel to |ψ1〉, hence there is
a finite probability that we obtain the outcome j when |ψ2〉 is prepared. Therefore,
we sometimes make an error when trying to identify the state that was prepared.

Sometimes when performing a quantum mechanical experiment, we are not
interested in the state of the system after the measurement but only in the
measurement outcome. If this is the case, the mathematical formalism of a positive
operator-valuedmeasure (POVM) is especially helpful. It can be derived as follows:
Suppose we have a measurement described by a set of measurement operators {Mx}.
If the system is in the state |ψ〉, the probability of measuring the outcome x is given
by Pψ(x) = 〈ψ|M†

xMx |ψ〉. We can define a new operator Ex via

Ex = M†
xMx. (2.94)

This is a positive operator that fulfils the condition
∑

x Ex = I. From the definition
it follows that

Pψ(x) = 〈ψ|Ex |ψ〉, (2.95)

hence the set of operators {Ex} is sufficient to describe the measurement statistics
of the system. The formal definition of a POVM is the following:

Definition 2.37 A POVM with finite outcome set X is a collection E of operators
Ex , indexed by x ∈ X, that satisfy the following properties:

∀x ∈ X : Ex ≥ 0,
∑

x∈X
Ex = I. (2.96)
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If the state of the system is given by a density operator ρ, the probability of
obtaining an outcome x is given by

Pρ(x) = Tr (ρEx) . (2.97)

The expectation value of the outcomes is given by

∑

x∈X
x Tr (ρEx) ≡ Tr (ρE) , (2.98)

where E = ∑
x xEx . This can also be interpreted as the expectation value of the

observable E:

〈E〉ρ = Tr (ρE) . (2.99)

To illustrate that POVMs are a more general concept than projective measure-
ments, let us have a look at the following situation. We have seen above that two
non-orthogonal states cannot be distinguished with certainty. Using a projective
measurement, there is a certain probability to misidentify the state. However, we
can construct a POVM with three measurements that distinguishes the two states
some of the time, but never makes a wrong identification. Consider a scenario where
Alice chooses between two states, |ψ0〉 = |0〉 and |ψ1〉 = |0〉+|1〉√

2
. The POVM

elements are

E0 =
√

2

1 + √
2
|1〉〈1| (2.100)

E1 =
√

2

1 + √
2

(|0〉 − |1〉) (〈0| − 〈1|)
2

(2.101)

E2 = I − E0 − E1. (2.102)

One can quickly verify that these are positive operators with
∑

i Ei = I. If the
measurement outcome is 0, the state that was measured can only be |ψ1〉 since
〈ψ0|E0|ψ0〉 = 0. If the measurement outcome is 1, the state must have been |ψ0〉
since 〈ψ1|E1|ψ1〉 = 0. However, if the measurement outcome is 2, one cannot make
a statement about the state since

〈ψ0|E2|ψ0〉 = 〈ψ1|E2|ψ1〉 = 1

2
. (2.103)

Hence, this POVM correctly identifies the state if the outcome is 0 or 1, but if the
outcome is 2 we do not gain any information about the state.

Exercise 2.38 Verify Eq. (2.103).
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2.3 Composite Systems and Entanglement

In our study of quantum key distribution protocols, we will often have to deal with
composite systems, for example, the composite system that is composed of Alice’s
system and Bob’s system, or the one composed of Alice’s system and Eve’s system.
To talk about these kinds of systems we use the tensor product.

The simplest case is to consider two independent quantum systems, A and B

(for example, Alice’s lab and Bob’s lab), where we run completely independent
experiments and view them as parts of a combined system. The state of the
combined system is then simply the tensor product of the local states: ρAB =
ρA ⊗ρB (and similar for the quantum channels and measurements). This is depicted
in Fig. 2.5. Of course, these are not the only possible composite systems. In this
section we describe the mathematical language of composite systems and study
phenomena that arise within these kinds of systems such as entanglement.

2.3.1 States in Composite Systems

As described above, we always associate a Hilbert space to a quantum mechanical
system. Suppose we have a composite system that consists of two subsystems, A and
B (for example, Alice’s and Bob’s system). Then, the Hilbert space of the composite
system is given by HA ⊗ HB .

As an example, consider a composite system of two qubits. As we have seen in
Sect. 2.2.1, each system can be described by a Hilbert space which has as a basis the
computational basis, i.e., {|0〉, |1〉}. The basis of the composite system is then given
by {|00〉, |01〉, |10〉, |11〉}. Hence, every possible linear combination of states from
this set is a possible two-qubit state:

|ψ〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉. (2.104)

Analogously to the single qubit case, the unit-norm condition |α|2 + |β|2 + |γ |2 +
|δ|2 = 1 must hold for the two-qubit state to represent a physical quantum state.

Fig. 2.5 Simple composite
system. We can combine a
product preparation with a
product quantum channel and
a product measurement,
which yields a simple
example of a composite
system
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Since the single qubit Hilbert spaces have dimension two, the composite Hilbert
space has dimension four (according to (2.16)). Hence, a vector representation of the
two-qubit basis can be obtained by taking the tensor product (2.18) of the single-
qubit bases given in (2.22). This yields

|00〉 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , |01〉 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , |10〉 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , |11〉 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ . (2.105)

The vector representation of the state in (2.104) is then

|ψ〉 =

⎛

⎜
⎜
⎝

α

β

γ

δ

⎞

⎟
⎟
⎠ . (2.106)

Another basis for the two-qubit state space which is often used in quantum key
distribution settings is the so-called Bell basis, which consists of the four Bell states:

|�+〉 = |00〉 + |11〉√
2

, |�−〉 = |00〉 − |11〉√
2

(2.107)

|�+〉 = |10〉 + |01〉√
2

, |�−〉 = |10〉 − |01〉√
2

. (2.108)

Exercise 2.39 Verify that the four Bell states form an orthonormal basis of a two-
qubit system.

Measuring one of the bits of a Bell state automatically determines the second bit.
Consider the state |�+〉AB ∈ HA ⊗ HB and suppose we make a measurement of
the first qubit in the computational basis while leaving the second qubit unchanged.
The corresponding measurement operators are

M0 = |0〉A〈0| ⊗ IB, M1 = |1〉A〈1| ⊗ IB. (2.109)

The probability of getting the outcome 0 is

P�+(0) = AB〈�+|M0|�+〉AB (2.110)

= 1

2

(

A〈0|B〈0| + A〈1|B〈1|
)
|0〉A〈0| ⊗ IB

(
|0〉A|0〉B + |1〉A|1〉B

)

(2.111)

= 1

2
, (2.112)
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and the probability of getting outcome 1 is P�+(1) = 1
2 . The state after the

measurement, depending on the measurement outcome, is given by

|ψ ′
0〉 = √

2
(|0〉A〈0| ⊗ IB

)|�+〉AB = |0〉A|0〉B (2.113)

|ψ ′
1〉 = √

2
(|1〉A〈1| ⊗ IB

)|�+〉AB = |1〉A|1〉B. (2.114)

Therefore, the state of the second qubit is determined even though the measurement
has only taken place locally on system A.

Mixed states, which are represented by density matrices, can be composed in
an analogous way to pure states. Suppose we have states ρA ∈ B(HA) and ρB ∈
B(HB). The composite state is then simply ρA ⊗ ρB ∈ B(HA ⊗ HB). This is
also consistent with the interpretation of the density matrix as a description of a
system whose state is not precisely know. Suppose we have an ensemble {pi, |φi〉}i
for system A and {qj , |ψj 〉}j for system B. Then, the ensemble for the composite
system is {piqj , |φi〉 ⊗ |ψj 〉}i,j and the corresponding density operator is given by

ρAB =
∑

i,j

pipj

(|φi〉 ⊗ |ψj 〉
) (〈φi | ⊗ 〈ψj |

)
(2.115)

=
∑

i,j

piqj |φi〉〈φi | ⊗ |ψj 〉〈ψj | (2.116)

=
∑

i

pi |φi〉〈φi |
∑

j

qj |ψj 〉〈ψj | (2.117)

= ρA ⊗ ρB. (2.118)

2.3.2 Entanglement

Of course, product states are not the only possible states in the composite Hilbert
space. There are other states that do not exhibit such a product form, and they
have astounding properties. If two (or more) spatially separated parties share a
quantum state, the state can exhibit quantum correlations. This phenomenon, called
entanglement, is unique to quantum theory and is used as a resource in quantum
cryptography and quantum computing, for example.

Let us first study this phenomenon for pure states: Suppose two parties, Alice
and Bob, share the two-qubit quantum state

|0〉A|0〉B, (2.119)

where Alice holds the qubit in system A and Bob the one in system B. Alice knows
exactly that her qubit is in the state |0〉A and Bob can also definitely say that his
qubit is in the state |0〉A, so there is no strange correlation happening here.
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In contrast to this, consider the composite quantum state

|�+〉AB = 1√
2

(|0〉A|0〉B + |1〉A|1〉B
)
. (2.120)

As before, Alice possesses the qubit in system A and Bob the one in system B.
But in contrast to the previous case, Alice cannot determine the individual state of
her qubit from the description in (2.120), and neither can Bob. The above state is a
superposition of the two-qubit states |0〉A|0〉B and |1〉A|1〉B , and it is not possible to
determine the individual states that Alice and Bob hold, in the sense that we cannot
describe the state |�+〉 as a product state of the form |φ〉A ⊗ |ψ〉B . We say that the
state is entangled. This yields the following definition of entangled states:

Definition 2.40 A pure bipartite state |ψ〉AB is entangled if it cannot be written as
a product state |φ〉A ⊗ |η〉B for any choice of states |φ〉A and |η〉B . Otherwise, it is
called separable.

Definition 2.41 Consider a bipartite system HA ⊗ HB with dim(HA) =
dim(HB) = d and orthonormal bases {|i〉A} and {|i〉B}. The maximally entangled
state is then defined as

|�〉 = 1√
d

d∑

i=1

|ii〉. (2.121)

Exercise 2.42 Decide for each of the following states whether it is separable or
entangled:

1. |ψ1〉 = |11〉.
2. |ψ2〉 = 1

2

(|00〉 − |01〉 + |10〉 − |11〉).
3. |ψ3〉 = 1√

2

(|10〉 + |01〉).

For mixed states, we define entanglement in a similar way:

Definition 2.43 A bipartite state ρAB ∈ B(HA ⊗ HB) is called separable if and
only if it can be written as a linear convex combination of tensor products of density
matrices

ρAB =
∑

x

pxσ
x
A ⊗ ηx

B, (2.122)

for some probability distribution px and states σx
A ∈ B(HA) and ηx

B ∈ B(HB).
Otherwise, ρAB is called entangled.
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Deciding whether a given state is entangled or not is not always obvious.
Fortunately, we have a powerful tool to analyse bipartite pure states, namely the
Schmidt decomposition:

Theorem 2.44 (Schmidt Decomposition) Let |ψ〉 be a pure state in the Hilbert
spaceHA ⊗ HB . Then,

|ψ〉 =
d∑

i=1

λi |i〉A|i〉B, (2.123)

where the amplitudes λi are real, strictly positive, and
∑

i λ2
i = 1. The states

{|i〉A}i form an orthonormal basis for the system A and the states {|i〉B}i form
an orthonormal basis for the system B. The amplitudes λi are called Schmidt
coefficients and the Schmidt rank d is equal to the number of Schmidt coefficients λi

and satisfies

d ≤ min{dim(HA), dim(HB)}. (2.124)

Proof The key ingredient for the proof of the Schmidt decomposition is the singular
value decomposition. We first give the proof for the case that the Hilbert spaces have
the same dimension, i.e., d = dim(HA) = dim(HB). Consider an arbitrary bipartite
pure state |ψ〉, which can be written as

|ψ〉 =
∑

j,k

cjk|j 〉A|k〉B, (2.125)

with orthonormal bases {|j 〉A} and {|k〉B} on system A and B, respectively, and
some amplitudes cjk . The amplitudes cjk form a matrix C = (cjk), which admits a
singular value decomposition

C = U�V, (2.126)

where U and V are d × d unitaries and � is a diagonal matrix with non-negative,
real numbers λi on the diagonal. Writing the matrix elements of U as uji and the
matrix elements of V as vik , the above matrix equation is equivalent to the following
set of equations:

cjk =
∑

i

ujiλivik . (2.127)
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Note that we only need one index for the elements of the matrix � since it only has
entries on the diagonal. The state |ψ〉 can then be written as

|ψ〉 =
∑

j,k

(
∑

i

ujiλivik

)

|j 〉A|k〉B (2.128)

=
∑

i

λi

⎛

⎝
∑

j

uji |j 〉A
⎞

⎠

︸ ︷︷ ︸
≡|i〉A

⊗
(
∑

k

vik |k〉B
)

︸ ︷︷ ︸
≡|i〉B

(2.129)

=
∑

i

λi |i〉A|i〉B, (2.130)

where the sets {|i〉A} and {|i〉B} form orthonormal bases for system A and B,
respectively. If dim(HA) �= dim(HB) the proof works analogously. ��

Exercise 2.45 Verify that the set of states {|i〉A} with |i〉A = ∑
j uji |j 〉A is an

orthonormal basis of system A. Hint: Use that U is a unitary matrix.

Note that the Schmidt decomposition not only applies to bipartite systems, but to
any multipartite system where we can make a bipartite cut of the systems.

The statement of Theorem 2.44 is practical for several reasons: Firstly, once we
know the Schmidt decomposition of a state, we can immediately say whether it is
entangled or not. If a state |ψ〉 is entangled, then its Schmidt decomposition has
more than one term. Differently stated, a state is entangled if and only if its Schmidt
rank is strictly greater than one. The second reason is the following: Suppose the
Hilbert space of Alice HA is a qubit Hilbert space, i.e., it is two-dimensional, while
Bob’s Hilbert space HB is of dimension ten million (or some other very large
number). The statement of the theorem is then that, although Bob’s Hilbert space
is extremely large, it is always possible to find a two-dimensional subspace of HB

which, along with HA, suffices to represent a pure state in the composite system
HA ⊗ HB . There is another important consequence of the Schmidt decomposition,
but to understand it we first need to introduce the partial trace operation.

We have seen above that the tensor product provides a mathematical tool to
prepare the state of a composite system given the states of the individual subsystems.
Suppose we are given the density operator ρAB of the composite system A ⊗ B.
Can we make a statement about the individual density operators ρA and ρB of the
subsystems A and B, i.e., a local density operator? Recall that the density operator
description provides a mathematical representation of the state of the system that
allows us to compute the probabilities resulting from a physical measurement. The
general method to determine a local density operator which describes the state of
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Alice’s system if Bob’s system is inaccessible to her is to take the partial trace of
the composite state:

Definition 2.46 Let ρAB be a density operator acting on the bipartite Hilbert space
HA ⊗HB and let {|i〉B}i be an orthonormal basis for HB . The partial trace over the
Hilbert space HB is then defined as follows:

TrB (ρAB) =
∑

i

(IA ⊗ B〈i|) ρAB (IA ⊗ |i〉B) . (2.131)

For simplicity, we usually suppress the identity operator IA and write (2.131) as

TrB (ρAB) =
∑

i

B〈i| ρAB |i〉B. (2.132)

The state ρA = TrB (ρAB) is also called the reduced state or marginal of system A.

Exercise 2.47 Suppose we have a bipartite system in the state ρAB ∈ B(HA⊗HB).
Show that the reduced state ρA = TrB (ρAB) is a valid density operator, i.e., that it
is positive semi-definite and has trace equal to one.

Exercise 2.48 Show that applying the two partial traces in any order on a bipartite
system is equivalent to taking the full trace:

Tr (ρAB) = TrA (TrB (ρAB)) = TrB (TrA (ρAB)) . (2.133)

Given the definition of the partial trace, we can now understand another important
consequence of the Schmidt decomposition: Consider a pure state of a composite
system, |ψ〉AB . Using the Schmidt decomposition of the state, it is easy to see that
the marginal states of ρAB = |ψ〉AB 〈ψ| are

ρA = TrB (|ψ〉AB〈ψ|) =
∑

i

λ2
i |i〉A〈i|, (2.134)

ρB = TrA (|ψ〉AB 〈ψ|) =
∑

i

λ2
i |i〉B〈i|, (2.135)

so the eigenvalues of ρA and ρB are identical, namely λ2
i for both density operators.

Since many properties of quantum systems (especially when it comes to entropies)
are determined by the eigenvalues of the density operator, this is extremely practical.
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Recall the state |�+〉AB we have introduced above. Using the Schmidt decom-
position, we now see the reason why it is difficult to say which states the individual
qubits are in. Since {|0〉, |1〉} is an orthonormal basis for the qubit state space, it is
straightforward to write down the Schmidt decomposition of |�+〉AB :

|�+〉AB = 1√
2

(|0〉A|0〉B) + 1√
2

(|1〉A|1〉B) . (2.136)

The formula above shows that we have two Schmidt coefficients, namely λ1 = λ2 =
1√
2

, which fulfil the requirement that λ2
1 + λ2

2 = 1. Hence, the Schmidt rank of the

state is d = 2 and therefore, |�+〉AB is an entangled state. This is the reason why
we cannot easily assign local states to the involved qubits.

Even though the state |�+〉AB cannot be written as a product of local states, we
can still describe the state of Alice’s system given that Bob’s system is inaccessible
to her using the partial trace operation. To take the partial trace over Bob’s system
we need an orthonormal basis for his Hilbert space. Since we are considering a
two-qubit state that Alice and Bob share, a suitable orthonormal basis is {|0〉, |1〉}.
Hence, we can calculate the reduced state for Alice’s system in the following way:

ρA = TrB
(|�+〉AB〈�+|)

= 1

2

((
IA ⊗ B〈0|)(|0〉A|0〉B + |1〉A|1〉B

)(
A〈0|B〈0| + A〈1|B〈1|)(IA ⊗ |0〉B

)

+ (
IA ⊗ B〈1|)(|0〉A|0〉B + |1〉A|1〉B

)(
A〈0|B〈0| + A〈1|B〈1|)(IA ⊗ |1〉B

))

= 1

2

(
|0〉A〈0| + |1〉A〈1|

)

= πA,

where πA is the maximally mixed state introduced in Example 2.18. With a similar
calculation we find that Bob’s reduced density operator is ρB = πB . Can we
conclude from this calculation that ρAB = πA ⊗ πB? Certainly not! It is easy to
see that |�+〉AB〈�+| �= πA ⊗πB by simply writing down the vector representation
of the states.

Exercise 2.49 On an even more fundamental level, the global state |�+〉AB〈�+|
and the state πA ⊗ πB give different predictions for global measurements, i.e.,
measurements on the composite system A ⊗ B. Consider the so-called parity
measurement which is given by the operators

�even = |00〉AB〈00| + |11〉AB〈11|, (2.137)

�odd = |01〉AB〈01| + |10〉AB〈10|. (2.138)
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1. Show that the probability of getting an even parity as a result of the parity
measurement for the state |�+〉AB〈�+| is 1, i.e., P�+(even) = 1.

2. Show that the probability of getting an even parity as a result of the parity
measurement for the state πA ⊗ πB is 1

2 , i.e., PπA⊗πB (even) = 1
2 .

3. Verify that P�+(odd) = 0 and PπA⊗πB (odd) = 1
2 .

This shows that the states give different predictions for the outcome of a measure-
ment and therefore cannot describe the same quantum system. Hence, it really is
impossible to find local states of the state |�+〉AB〈�+| for Alice’s system and
Bob’s system, respectively, that describe the probabilities of outcomes of global
measurements correctly. Still, it is possible to find local states that describe Alice’s
knowledge of her local system if she does not have access to Bob’s system.

Exercise 2.50 Show that all of the Bell states are entangled by calculating the
Schmidt rank for the remaining three Bell states.

2.3.3 Quantum–Classical Ensemble

With the tools that we have developed we can describe not only multipartite systems
where each subsystem is quantum but also hybrid systems that consist of both
classical and quantum subsystems.

For the description of a quantum–classical hybrid state, we first have to define an
ensemble of a purely classical system. Since the density operator formalism holds
for general states, this should also include classical states. In the same way that the
density matrix of a quantum state can be interpreted as the description of a system
whose precise state is not known, we now need a notion of classical randomness.
This is provided by a random variable Z: Suppose we have a set of classical values
Z whose entries z ∈ Z (also called realizations of the random variable Z) are
distributed according to the probability distribution pZ(z). We can represent these
classical values by orthonormal states4 |z〉 in some Hilbert space HZ. The density
operator ρZ that corresponds to the classical ensemble {pZ(z), |z〉〈z|} is then

ρZ =
∑

z∈Z
pZ(z)|z〉〈z|. (2.139)

We can now extend this consideration to quantum–classical hybrid systems.
Consider the tensor product Hilbert space HA ⊗HZ, where HZ is a Hilbert system
of states that represent classical values distributed by the probability distribution
pZ(z) and HA is the Hilbert space of a quantum system whose states ρz

A depend on

4It is crucial that the states are orthonormal, because it ensures that they are perfectly distinguish-
able, which is always the case for classical values.
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the classical value z. The corresponding ensemble is

{
pZ(z), ρz

A ⊗ |z〉Z〈z|}
z∈Z . (2.140)

The density operator that corresponds to this quantum–classical ensemble is then

ρAZ =
∑

z∈Z
pZ(z)ρz

A ⊗ |z〉Z〈z|. (2.141)

This is a special kind of separable state of the systems A and Z, where the individual
states of the system Z are perfectly distinguishable and therefore classical.

2.3.4 Evolution of Composite Systems

If you have a state on a composite system of two individual systems, e.g., the tensor
product Hilbert space HA ⊗ HB , the quantum evolution is a linear, completely
positive, trace-preserving map, according to Definition 2.25. The only difference to
the previous case is that the map now goes between tensor product Hilbert spaces,
i.e., we have a map EAB : B(HA ⊗ HB) → B(H ′

A ⊗ H ′
B). In a bipartite quantum

system, there are basically three kinds of evolution the state can undergo (as depicted
in Fig. 2.6): The evolution only affects system A while system B is left unchanged,
it only affects system B while system A is left unchanged, or it affects both systems.

Let us have a look at the special cases depicted in Fig. 2.6a and b. Here, the
quantum channel acts on one of the subsystems and leaves the other subsystem
unchanged, i.e., it acts as the identity on this subsystem. Suppose we have a state
ρAB ∈ B(HA ⊗HB) and a quantum channel EA that only acts on system A (which
corresponds to Fig. 2.6a). The complete evolution is then given by

ρ′
AB = (EA ⊗ IB) (ρAB) . (2.142)

This can be analogously defined for a quantum channel that only acts on Bob’s
subsystem (as depicted in Fig. 2.6b).

(a) (b) (c)

Fig. 2.6 The possible evolutions of a bipartite system. (a) The evolution happens only on
subsystem A and leaves subsystem B unchanged. (b) The evolution happens only on subsystem B

and leaves subsystem A unchanged. (c) The whole composite system A⊗B undergoes an evolution
(the identity evolution, where nothing happens to the whole system, is a special case of all three
cases)
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By using such a local quantum evolution, it is possible to change between any of
the four Bell states. Suppose Alice and Bob share one of the Bell states. Applying
the Pauli-X or the Pauli-Z operator locally to Alice’s part of the system has the
following effect:

(
XA ⊗ IB

)|�±〉AB = |�±〉AB, (2.143)
(
XA ⊗ IB

)|�±〉AB = |�±〉AB, (2.144)
(
ZA ⊗ IB

)|�±〉AB = |�∓〉AB, (2.145)
(
ZA ⊗ IB

)|�±〉AB = |�∓〉AB. (2.146)

Exercise 2.51 Verify Eqs. (2.143)–(2.146).

Exercise 2.52 What is the effect of applying the Pauli-Y operator to the first qubit
of the four Bell states?

As a second example, one can view the partial trace operation from Defini-
tion 2.46 as a quantum channel that only acts on one of the subsystems. Suppose we
have a state ρAB ∈ B(HA ⊗ HB) and want to take the partial trace over subsystem
B, i.e., EB = TrB :

TrB (ρAB) = (IA ⊗ TrB) (ρAB) =
∑

i

(IA ⊗ B〈ei |) ρAB (IA ⊗ |ei〉B) .

(2.147)

This channel is called the discarding channel. The Kraus operators of the channel
EAB = IA ⊗ TrB are given by the set {IA ⊗ B〈ei |}i , where {|ei〉}i is an orthonormal
basis of the Hilbert space HB .

2.4 The No-Cloning Theorem

The no-cloning theorem, which was originally formulated in 1982 [6], states that
it is impossible to build a universal copier of quantum states, i.e., a machine that
can perfectly clone an unknown quantum state as depicted in Fig. 2.7. This is a
consequence of the linearity of quantum theory and it lies at the heart of the security
of quantum cryptography: It prevents the adversary from simply cloning all the

Fig. 2.7 A universal copier.
This device, described by a
unitary operator U , copies an
arbitrary, unknown quantum
state |ψ〉, such that we get
two perfect copies of the state
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states Alice sends to Bob, which would allow her to gain information without being
detected.

The theorem can be proved via contradiction: Suppose we have a unitary operator
U that acts on two qubits as a universal copier of quantum information. More
precisely, if we input an arbitrary qubit state |ψ〉 = α|0〉+β|1〉 as the first qubit and
an ancilla qubit in the state |0〉5 as the second qubit, the operator U should write the
state of the first qubit to the second qubit slot:

U |ψ〉|0〉 = |ψ〉|ψ〉 (2.148)

= (α|0〉 + β|1〉) (α|0〉 + β|1〉) (2.149)

= α2|0〉|0〉 + αβ|0〉|1〉 + βα|1〉|0〉 + β2|1〉|1〉. (2.150)

Since the copier is universal, it can copy an arbitrary state. In particular, it can copy
the states |0〉 and |1〉:

U |0〉|0〉 = |0〉|0〉, U |1〉|0〉 = |1〉|1〉. (2.151)

We now use the fact that quantum theory is linear: This implies that the unitary
operator U acts on a superposition of the two states as follows:

U
(
α|0〉 + β|1〉)|0〉 = αU |0〉|0〉 + βU |1〉|0〉 = α|0〉|0〉 + β|1〉|1〉. (2.152)

Comparing the result of (2.152) with (2.150) yields a contradiction: The two
expressions do not have to be equal for all α and β. There exist choices of α and β

for which

α2|0〉|0〉 + αβ|0〉|1〉 + βα|1〉|0〉 + β2|1〉|1〉 �= α|0〉|0〉 + β|1〉|1〉. (2.153)

Hence, the linearity of quantum theory makes it impossible to build a universal
copier of quantum states. Note that although the expressions in (2.153) are different
in general, there exist special cases for which they are equal, namely if α = 1, β = 0
or α = 0, β = 1. These cases correspond to classical states, i.e., we are able to copy
unknown classical states in the basis {|0〉, |1〉} (or any other orthonormal basis, for
that matter).

The no-cloning theorem reveals a fundamental difference between classical
and quantum information theory. This is crucial for the security of quantum
cryptography, since it prevents the adversary from perfectly copying the states that
are send without being detected.

5The initial state of the ancilla qubit does not actually matter. We could write any state as a
placeholder.
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2.5 Purification

In this section, we introduce the concept of purification, which allows us to view
noise in quantum systems as the result of the system being entangled with another
system which we do not have access to.

Consider a density operator ρA ∈ B(HA) with spectral decomposition

ρA =
∑

i

pi |ϕi〉A〈ϕi |. (2.154)

From the spectral decomposition we can deduce the corresponding ensemble
{pi, |ϕi〉A}. We can now associate a pure state on a larger Hilbert space to this,
in general, mixed state:

Definition 2.53 A purification of ρA ∈ B(HA) is a pure bipartite state |ψ〉RA ∈
HR ⊗ HA on a reference system R and on the original system A. If we trace out
reference system R, the reduced state on system A is equal to ρA:

ρA = TrR
(|ψ〉RA〈ψ|). (2.155)

Any density operator ρA has a purification |ψ〉RA given by

|ψ〉RA =
∑

i

√
pi |ϕi〉R|ϕi〉A, (2.156)

where {|ϕi〉R} is a set of orthonormal vectors on the reference system R.6 It can
quickly be checked that this state indeed is a purification of ρA by tracing out the
reference system:

TrR
(|ψ〉RA〈ψ|) = TrR

(∑

i,j

√
pipj |ϕi〉R|ϕi〉A R〈ϕj |A〈ϕj |

)
(2.157)

=
∑

i,j

√
pipj TrR

(|ϕi〉R〈ϕj |
)

︸ ︷︷ ︸
=δij

|ϕi〉A〈ϕj | (2.158)

=
∑

i

pi |ϕi〉A〈ϕi | = ρA. (2.159)

Exercise 2.54 Show that any of the four Bell states is a purification of the
maximally mixed state on Alice’s system πA = IA

2 .

6Note that there are, in general, infinitely many possible purifications for a given quantum state ρ.
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We can also define the notion of an extension of a quantum state ρA, which is
some (not necessarily pure) quantum state σRA ∈ B(HR ⊗ HA) such that

ρA = TrR (σRA) . (2.160)

This definition is useful in some cases. However, it is always possible to find a
purification of an extension.

2.6 DistanceMeasures

Throughout our analysis of quantum key distribution protocols, a crucial point is to
estimate how much the actual key differs from the optimal one. For this purpose, we
need a measure of distance between quantum states. One possible measure can be
defined via the trace norm (also called L1-norm or Schatten 1-norm):

Definition 2.55 The trace norm of a state ρ ∈ B(H) is defined as

||ρ||1 = Tr (|ρ|) , (2.161)

where we define |ρ| = √
ρ†ρ to be the positive square root of ρ†ρ.

This norm induces a natural distance measure for quantum states, called the trace
distance: The trace distance of two quantum states ρ, σ ∈ B(H) is defined to be
1
2 ||ρ − σ ||1. The factor of 1

2 in front of the norm is chosen because

0 ≤ ‖ρ − σ‖1 ≤ 2 (2.162)

for any two density operators ρ and σ . Hence, dividing this expression by 2
normalizes the trace distance and we have 1

2‖ρ − σ‖1 ∈ [0, 1].
The trace norm has some important properties: First, it fulfils the triangle

inequality: For two operators ρ, σ ∈ B(H) it holds that

‖ρ + σ‖1 ≤ ‖ρ‖1 + ‖σ‖1. (2.163)

Another property of the trace distance is that no quantum operation can ever increase
the distance between two quantum states, which is depicted in Fig. 2.8 and formally
expressed in the following theorem, whose proof can be found in [3, Thm. 9.2]:

Theorem 2.56 Suppose E : B(HA) → B(HB) is a completely positive, trace-
preserving map. Let ρ, σ ∈ B(HA) be density operators. Then

||E(ρ) − E(σ )||1 ≤ ||ρ − σ ||1. (2.164)
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Fig. 2.8 CPTP maps cause a
contraction. A quantum
operation E can never
increase the distance between
two quantum states
ρ, σ ∈ B(H). The circle
represents the space of
density operators B(H)

A second important tool to compare two quantum states is the fidelity, which
measures the closeness of two quantum states:

Definition 2.57 For two quantum states ρ, σ ∈ B(H), the fidelity is defined as

F(ρ, σ ) =
(

Tr

(√

ρ
1
2 σρ

1
2

))2

. (2.165)

If one of the quantum states is a pure state, the above formula simplifies to

F(|ψ〉, ρ) =
(

Tr
(√|ψ〉〈ψ|ρ|ψ〉〈ψ|

))2
(2.166)

= 〈ψ|ρ|ψ〉〈ψ|ψ〉 (2.167)

= 〈ψ|ρ|ψ〉, (2.168)

i.e., the fidelity is equal to the overlap between ρ and |ψ〉. If both states are pure
states, the fidelity takes an even simpler form:

F(|ψ〉, |φ〉) = |〈ψ|φ〉|2. (2.169)

The term on the right hand side can also be interpreted as the probability that the
state |ψ〉 would pass a test for being the same as |φ〉.

The fidelity is sometimes also presented in a slightly different form, namely as
the square root of the right hand side in (2.165):

F ′(ρ, σ ) = Tr

(√

ρ
1
2 σρ

1
2

)

= √
F(ρ, σ ). (2.170)

This definition of fidelity is less common, and to avoid confusion it could be called
square root fidelity. In some applications the square root fidelity has an easier form
than the original definition. However, in these notes we stick to the definition of
fidelity given in Definition 2.57.
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Strictly speaking, the fidelity is not a metric on the space of density operators
since it measures closeness rather than distance. However, it can be used to define
a metric: one possibility of turning the fidelity into a proper distance measure is the
purified distance7 (see [1]), which we will need later in these notes. It is defined as
follows:

Definition 2.58 For two quantum states ρ, σ ∈ B(H), the purified distance
between ρ and σ is defined as

P(ρ, σ ) = √
1 − F(ρ, σ ). (2.171)

Even though the fidelity is not a metric itself, it has many properties that still
make it a useful quantity to estimate how close two quantum states are:

1. It is symmetric in its arguments: F(ρ, σ ) = F(σ, ρ).
2. The fidelity is bounded by 0 ≤ F(ρ, σ ) ≤ 1. The lower bound applies in case ρ

and σ have orthogonal supports and the upper bound applies if the two states are
equal.

3. For a completely positive, trace-preserving map E and quantum states ρ and σ ,

F(E(ρ),E(σ )) ≥ F(ρ, σ ). (2.172)

Since the fidelity measures how close two quantum states are, one would
intuitively think that a high fidelity of two quantum states implies a small trace
distance and vice versa. This intuition is made precise in the following theorem,
which establishes several relationships between the fidelity and the trace distance
(for a proof of this theorem, see for example [5, Thm. 9.3.1]):

Theorem 2.59 The following relationship holds for the fidelity and the trace
distance between two quantum states ρ, σ ∈ B(H):

1 −√
F(ρ, σ ) ≤ 1

2
‖ρ − σ‖1 ≤ √

1 − F(ρ, σ ). (2.173)

Exercise 2.60 Using Theorem 2.59, show the following statements for two quan-
tum states ρ, σ ∈ B(H):

1. If ‖ρ − σ‖1 ≤ ε, then F(ρ, σ ) ≥ 1 − ε.
2. If F(ρ, σ ) ≥ 1 − ε, then ‖ρ − σ‖1 ≤ 2

√
ε.

7Other ways to define a metric in terms of the fidelity are the following: One is the so-called Bures
distance, which is defined as DB(ρ, σ ) = √

2 − 2F(ρ, σ ), and the other is the angle, which is
defined as DA(ρ, σ ) = arccos

√
F(ρ, σ ).
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It is also possible to define the fidelity in a different way using the concept
of purification that was introduced in the previous section (see Definition 2.53).
The fidelity can then be characterized in terms of the pure-state fidelity as given in
(2.169) (for a proof see [3, Thm. 9.4]):

Theorem 2.61 (Uhlmann’s Theorem) Suppose ρA, σA ∈ B(HA) are states of a
quantum system A and letR be a second quantum system which is a copy ofA. Then

F(ρA, σA) = max|ψρ 〉,|ϕσ 〉 |〈ψρ |ϕσ 〉|2, (2.174)

where the maximization is over all purifications |ψρ〉 of ρA and |ϕσ 〉 of σA into
A ⊗ R.

Moreover, it can be shown (for example, in [2]) that for any fixed purification |ψρ〉
of ρ, there is a purification |ϕσ 〉 of σ that realizes the above maximum.
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3Information and Entropies

Abstract

Entropies are an important tool to quantify information and uncertainty and, as
such, a crucial part of security proofs of quantum key distribution protocols.
In general, the quantum entropy quantifies the amount of uncertainty we have
of the state of a quantum mechanical system. In the context of a quantum key
distribution protocol, the entropy can be used, for instance, to estimate how much
information an adversary has about the key that Alice and Bob try to establish.
However, entropies do not only appear in the context of quantum information
theory. They also appear in the study of classical information theory, and studying
the classical counterparts helps developing an intuition for the language and the
way of thinking we need when working with entropies. Therefore, in the first
part of this chapter we concentrate on classical entropies and tasks in classical
information theory. In the second part, we discuss quantum entropies and the
similarities and differences to their classical counterparts. We also present an
entropic version of uncertainty relations, which will later turn out to be a valuable
tool for proving the security of quantum communication protocols.

3.1 Classical Entropies

For a moment, we will leave the quantum world behind and consider a purely
classical world. More precisely, we want to study classical entropies and information
theory. If you are interested in a more detailed treatment of this topic, great
introductory books are [6] and [2]. It already became clear in the previous chapter
that we are interested in information, usually encoded into bits. Since we are in a
purely classical world for the moment, we only mean classical bits here. The issue
of how to store and transmit classical information was first addressed by Claude
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Shannon in 1948 [12]. In his seminal work, he studied the two key questions of
information theory:

(Q1) How many bits are required to reliably compress a given amount of infor-
mation, that is, compress it in a way such that it can be later recovered with
arbitrarily low probability of error?

(Q2) How much information can be reliably transmitted through a given communi-
cation channel?

By answering these questions Shannon laid the foundation of classical information
theory. However, to be able to do so, the first question that has to be addressed is an
even more fundamental one: How do we quantify information?1

In the following, a lot of the arguments use notions and rules from probability
theory, which are summarized in Appendix A. Consider a random variable X,
where each realization x belongs to an alphabet X. The probability that a specific
realization x ∈ X occurs is denoted as pX(x). The information content of a specific
realization x2 is then given by the function

i(x) = − log (pX(x)) , (3.1)

where the logarithm is taken to base two (as usually in information theory), which
indicates that we measure information in units of bits. The function (3.1) is plotted
in Fig. 3.1. Why did we choose this function to quantify information? The reason is
that it has several nice features that fit our needs very well:

1. The information content (or surprise) only depends on the probability of the event
that a specific realization x occurs, and not on the label itself. For instance, a
random variable that takes the values 0 and 1 with respective probabilities 1

3 and
2
3 should contain the same amount of information as a random variable that takes
the values + and − with respective probabilities 1

3 and 2
3 .

2. The function is continuous in the variable p.
3. As shown in Fig. 3.1, the function behaves exactly as we would expect from a

measure of surprise: It is high for unlikely events and low for those with a higher
probability. Also, the function is non-negative for every realization x.

4. The function is additive (which is due to the choice of the logarithm): Suppose
that the information source produces two realizations x1 and x2 of the random
variable X independently of each other. Intuitively, learning about both of these
realizations at once should have the same amount of information as the summing

1There are two complementary ways of phrasing this question: We can ask how much uncertainty
we have about a random variable X before learning about it, or, from a different point of view, we
can ask how much information we have gained after learning about X.
2In other words, (3.1) quantifies how surprised we are to see a particular realization x to appear.
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Fig. 3.1 Information content as a function of the probability p. Lower-probability events have a
higher information content (or, stated differently, are more surprising), while more likely events
have a lower information content

up the individual information contents of the two realizations:

i(x1, x2) = − log (pX(x1, x2))

= − log (pX(x1)pX(x2))

= − log (pX(x1)) − log (pX(x2))

= i(x1) + i(x2).

The joint probability distribution pX(x1, x2) factors as pX(x1)pX(x2) because
we assume that the two instances of the random variable X are independent of
each other (which is the case if the information source is memoryless).

While the function in (3.1) is a suitable measure of information for a particular
realization x of a random variable X, it does not capture the general amount
of information that the random variable X possesses. To obtain a notion for the
latter case, we consider the expectation value of the function i(x) taken over all
realizations x of X. This is referred to as the entropy or the Shannon entropy of the
random variable X.

Definition 3.1 The entropy of a discrete random variable X with probability
distribution pX(x) is defined as

H(X) = −
∑

x

pX(x) log
(
pX(x)

)
. (3.2)
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Here, we use the convention that 0 · log(0) = 0, which is supported by the
intuition that an event that can never occur should not contribute to the entropy.
It is furthermore justified by the fact that limε→0 ε · log(ε) = 0.

Exercise 3.2 Suppose the random variable X describes the toss of a fair coin, i.e.,
heads and tails both appear with probability 1

2 . What is H(X)?

With the definition of the Shannon entropy at hand, we can now answer one of the
questions that originally motivated the study of information theory: To answer (Q1),
consider an information source that is described by a random variable X. Shannon’s
noiseless coding theorem [12] then tells us that there exists a compression scheme
such that the information being produced by the source can be stored using H(X)

bits per source symbol. Furthermore, the theorem states that this is the optimal case:
if the information is compressed any further, then there is a high probability of error
when retrieving the original message.3

Example 3.3 For a concrete example of data compression and Shannon’s noiseless
coding theorem, consider an information source X whose outputs are chosen
randomly from a set of four symbols {A,B,C,D} with respective probabilities
1
2 , 1

4 , 1
8 , 1

8 . Without any data compression, one needs 2 bits for each use of the source
to encode the output symbol produced by the source:

symbol: A B C D

codeword: 00 01 10 11

In this case, the expected length of an individual codeword is two (since every
codeword in this encoding scheme is of length two).

Is it possible to improve this scheme in a way that, on average, we need fewer bits
per codeword? A common strategy is to take advantage of the skewed nature of the
probability distribution: One encodes more likely symbols with short codewords,
while encoding less likely symbols with longer codewords,4 for example, the
scheme

symbol: A B C D

codeword: 0 10 110 111

3The original theorem is a bit more technical, but we do not need it in all its details here to
understand the idea.
4This strategy is, for example, employed in the famous Morse code, where the very common
English letter “E” is encrypted with a single dot, while the less common letter “J” is encoded
with a dot and three dashes.
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gives an advantage over the previous scheme, which can be seen when we calculate
the average length of a codeword:

1

2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

8
· 3 = 7

4
. (3.3)

This value actually matches the entropy of the information source:

H(X) = −1

2
· log

(
1

2

)

− 1

4
· log

(
1

4

)

− 1

8
· log

(
1

8

)

− 1

8
· log

(
1

8

)

= 7

4
. (3.4)

Note that we could have employed a scheme that uses even fewer bits on average,
e.g., a → 0, b → 1, c → 01, d → 10. However, this scheme has the disadvantage
that a coded sequence like 00110100 is not uniquely decodable: It can, for example,
be divided into codewords as 0 01 10 10 0 or 0 0 1 10 1 0 0 (and these are just two
of the possibilities). On the other hand, the scheme described above provides only
one way of dividing the sequence into individual codewords, namely 0 0 110 10 0.
This is an important property for the compressed data to be reliably decodable.

Example 3.4 A special case of the entropy occurs when we consider a random
variable X that has a two-outcome set {0, 1}. The probabilities are then given by
the distribution pX(0) = p, pX(1) = 1 − p with p ∈ [0, 1]. The entropy in this
case is called the binary entropy, usually denoted as h2, which is a function of the
parameter p (depicted in Fig. 3.2):

h2(p) = −p log(p) − (1 − p) log(1 − p). (3.5)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 3.2 Binary entropy. The binary entropy h2 given in (3.5) as a function of the parameter p.
The plot shows that it reaches its maximum at p = 0.5
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Note that h2(p) = h2(1 − p). The binary entropy quantifies, for example, the
number of bits we learn from the outcome of a coin flip. If the coin is unbiased,
i.e., p = 1

2 , then h2(p) reaches its maximum at one bit (which can be seen in the
plot in Fig. 3.2). The other extreme is a deterministic coin (p = 0 or p = 1), where
h2(p) = 0, so we do not learn anything from the outcome of the coin flip.

Exercise 3.5 Consider an eight-sided die where every outcome i has the same
probability, i.e., p(i) = 1

8 for every i ∈ {1, . . . , 8}.

1. What is the entropy of the die?
2. Suppose you want to send the outcome of rolling the die. What is the most

efficient way to encode the outcomes? Hint: Use that the entropy can be
interpreted as average number of bits required to transmit the outcome of the
die.

3.1.1 Mathematical Properties

The entropy function defined in Definition 3.1 has several important properties:

1. The entropy function is non-negative for any random variable X with probability
distribution pX(x):

H(X) ≥ 0. (3.6)

Intuitively, this makes sense because the entropy represents the number of bits we
learn upon learning a random variable X. Hence, the least amount of bits we can
learn is zero since we can never learn a negative amount of bits. This intuition is
supported mathematically by the fact that the entropy is the expected information
content of i(X), which itself is a non-negative quantity.

2. The entropy function is concave in the probability distribution pX(x), which
means that

H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2). (3.7)

Intuitively, this implies that the entropy increases under averaging. From the plot
in Fig. 3.2 it is easy to see that the binary entropy function has this property.

3. The entropy is invariant under permutations of the realizations of the random
variable X. This directly follows from the fact that the entropy only depends
on the probabilities of the realizations, not on the values of the realizations
themselves.
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4. The entropy vanishes if and only if X is a deterministic variable. Since we do not
have any uncertainty about a deterministic variable, we cannot gain any infor-
mation by learning about it. It is also easy to show this property mathematically:
If X is a deterministic random variable, the probability distribution is given by
pX(x) = δx,x0 , where x0 is the specific value that occurs with probability one.
The entropy is then

H(X) = −
∑

x

δx,x0 log(δx,x0) = − log(1) = 0.

On the other hand, if H(X) = 0, this implies that for each x ∈ X, we have that
pX(x) log

(
pX(x)

) = 0. This in turn implies that pX(x) is either equal to one or
equal to zero for all x ∈ X. Because of the requirement that

∑
x pX(x) = 1, the

only possible choice is that pX(x) = 1 for exactly one x ∈ X and pX(x) = 0 for
all the other x ∈ X.

5. Given a random variable X that takes values in the alphabet X, the maximum
value the entropy can take is given by

H(X) ≤ log |X|, (3.8)

where |X| is the cardinality of the alphabet. Equality holds if and only if X is
a uniform random variable, i.e., a random variable with a uniform probability
distribution.5

Exercise 3.6 Proof that the binary entropy h2(p) defined in (3.5) is a concave
function, i.e., show that

h2(λp1 + (1 − λ)p2) ≥ λh2(p1)(1 + λ)h2(p2), (3.9)

where 0 ≤ λ, p1, p2 ≤ 1.

3.1.2 Conditional Entropy

Suppose that we have two random variables, X and Y . How can we relate the
information content of X to the information content of Y ? Consider the scenario
depicted in Fig. 3.3: Alice possesses a random variable X that Bob wants to learn
about. In the beginning, his uncertainty of X is modelled by the entropy H(X).
Alice then starts to send realizations x of X over a (possibly noisy) channel to Bob.

5For a proof of this statement we first have to introduce the relative entropy; therefore, it will be
given later in this chapter.
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Alice Bob

Fig. 3.3 Bob learns about Alice’s random variable X. By sending over realizations x of the
random variable X that Alice possesses, Bob learns about it in the form of side information,
modelled by another random variable Y

Bob receives some information y that belongs to another random variable Y (since
the output of a noisy channel cannot always be predicted with certainty), i.e., he
has some “side information” about X. Using this information, he would now like
to estimate his uncertainty about X. The entropy of the random variable X given a
particular realization y ∈ Y as side information is

H(X|Y = y) = −
∑

x

pX|Y (x|y) log
(
pX|Y (x|y)

)
, (3.10)

where pX|Y (x|y) describes the probability that the event x occurs when we already
know that the event y has occurred or will occur.

Before we can define the conditional entropy, we need to introduce another
notion of probability, namely the joint probability pX,Y (x, y). It describes the
probability that both events x and y occur, where x is a realization of the random
variable X and y is a realization of the random variable Y . It is clear that if X and
Y are independent of each other, the probability distribution just factors:

pX,Y (x, y) = pX(x)pY (y). (3.11)

The joint probability is connected to the conditional probability in the following
way:

pX|Y (x|y) = pX,Y (x, y)

pY (y)
(3.12)

for all x ∈ X.
We can now answer the question we raised above: Suppose that Bob has access

not only to one particular realization y ∈ Y, but to the random variable Y .
His uncertainty about Alice’s random variable X is then given by the conditional
entropy:
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Definition 3.7 Let X and Y be discrete random variables with the joint probability
distribution pX,Y (x, y). The conditional entropy H(X|Y ) is given by

H(X|Y ) =
∑

y

pY (y)H(X|Y = y) (3.13)

= −
∑

y

pY (y)
∑

x

pX|Y (x|y) log
(
pX|Y (x|y)

)
(3.14)

= −
∑

x,y

pX,Y log
(
pX|Y (x|y)

)
. (3.15)

An application of the conditional entropy is presented in Example 3.8. Here, the
entropy of a source that outputs a periodic string of bits is evaluated, conditioned on
previously received bits.

Example 3.8 Suppose we have a source that outputs a periodic string of bits:
. . . 01001001001 . . . . We want to calculate the entropy of the source while taking
into account the bits we have received previously. In other words, we want to
estimate how much information we gain by receiving a bit from the source,
conditioned on the number of bits we have already received. There are three cases
that can appear:

1. No known symbols. When no previous symbol is known, the probability
distribution of the symbols is given by the frequency of the respective symbol
in the sequence:

pX(x = 0) = 2

3
, pX(x = 1) = 1

3
.

Using the definition of the Shannon entropy, we find that

H(X) = −2

3
log

(
2

3

)

− 1

3
log

(
1

3

)

≈ 0.918 bit.

2. One known symbol. In this case we have some side information Y (given by the
known symbol); therefore, we need to calculate the conditional entropy

H(X|Y ) =
∑

y

pY (y)H(X|Y = y).

The probability distribution pY (y) is simply the probability that the respective
symbol appears in the sequence, i.e., it is given by the one we listed above. To
calculate the conditional entropy H(X|Y = y), we need to know the probability
that a symbol appears given that we know the value of the previous symbol,
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which is the conditional probability distribution:

pX|Y (x|y) x = 0 x = 1

y = 0 1/2 1/2

y = 1 1 0

If the previous symbol is one, we know that the next symbol must be zero since
there are never two ones in a row in the sequence given above. We can then
calculate the conditional entropy:

H(X|Y ) = −2

3
· H(X|Y = 0) − 1

3
· H(X|Y = 1)

= 2

3
· 1 + 1

3
· 0 = 2

3
bit.

As expected, after having received some information from the source the entropy
is decreased. In other words, receiving a bit of information has decreased our
uncertainty of the source X.

3. Two known symbols. If we already know two symbols, we should be certain
about which symbol comes next. This is indeed reflected in the conditional
entropy. The conditional probability distribution is now given by

pX|Y (x|y) x = 0x = 1

y = 00 0 1

y = 01 1 0

y = 10 1 0

y = 11 − −

There can never be two ones in a row; therefore, there are no probabilities for
the last row. The table includes now only ones and zeros; therefore, there is no
uncertainty left and H(X|Y = y) = 0 for all y.

There is an obvious relation between the conditional entropy H(X|Y ) and
the margin entropy H(X): Suppose H(X) is the uncertainty that Bob has about
Alice’s random variable X before he receives any information and H(X|Y ) is
the uncertainty he has after getting some side information Y . Intuitively, his
uncertainty after getting some side information should not increase. At worst, the
side information does not have any effect on the uncertainty. This is formalized by
the following theorem:
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Theorem 3.9 Conditioning does not increase the entropy of a random variable:
Consider two random variables X and Y . Then

H(X) ≥ H(X|Y ) (3.16)

with equality if and only if X and Y are independent random variables.

Proof First, note that the following equality of probabilities holds (see
Appendix A):

∑

y∈Y
pX,Y (x, y) = pX(x). (3.17)

We can then prove the theorem by the following sequence of equalities:

H(X) − H(X|Y ) = −
∑

x

pX log
(
pX(x)

)+
∑

x,y

pX,Y log
(
pX|Y (x|y)

)
(3.18)

= −
∑

x,y

pX,Y (x, y) log
(
pX(x)

)− pX,Y (x, y) log
(
pX|Y (x|y)

)

(3.19)

=
∑

x,y

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)

(3.20)

=
∑

x,y

pX(x)pY (y)
pX,Y (x, y)

pX(x)pY (y)
︸ ︷︷ ︸

≡z

log

(
pX,Y (x, y)

pX(x)pY (y)
︸ ︷︷ ︸

≡z

)

.

(3.21)

The function ϕ(z) = z log(z) is a convex function; hence, we can use Jensen’s
inequality. This states that for a convex function f (x) and a discrete random variable
X, it holds that f (E[X]) ≤ E[f (X)]. Applied to the above expression, this yields

H(X) − H(X|Y ) =
∑

x,y

pX(x)pY (y) ϕ

(
pX,Y (x, y)

pX(x)pY (y)

)

(3.22)

≥ ϕ

(
∑

x,y

pX(x)pY (y)
pX,Y (x, y)

pX(x)pY (y)

)

(3.23)

= ϕ(1) (3.24)

= 0. (3.25)
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Note that the only inequality appears in the second line. When does this become an
equality, i.e., when is H(X)−H(X|Y ) = 0? If X and Y are statistically independent,
pX,Y (x, y) = pX(x)pY (y) and the argument of ϕ in (3.22) directly becomes 1. On
the other hand, if H(X) = H(Y |X), then (3.20) has to be zero. The log function
is only zero if its argument equals one; hence, pX,Y (x, y) = pX(x)pY (y) and
therefore, X and Y are statistically independent. ��

3.1.3 Joint Entropy

The definition of entropy can be extended to the case where we have two random
variables X and Y and have no knowledge about either of them. The quantity that
describes our uncertainty about the pair (X, Y ) is the joint entropy:

Definition 3.10 Let X and Y be discrete random variables with the joint probability
distribution pX,Y (x, y). The joint entropy H(X, Y ) is then given by

H(X, Y ) = −
∑

x,y

pX,Y (x, y) log
(
pX,Y (x, y)

)
. (3.26)

We can now establish several useful inequalities regarding the relation between
the joint entropy H(X, Y ), the conditional entropies H(X|Y ) and H(Y |X), and the
margin entropies H(X) and H(Y):

Theorem 3.11 Given two discrete random variablesX and Y with joint probability
distribution pX,Y (x, y), the following relations hold:

H(X, Y ) = H(X) + H(Y |X) = H(Y) + H(X|Y ). (3.27)

Proof We can easily prove these relations by considering the multiplicative relation
between probabilities pX,Y (x, y) = pY |X(y|x)pX(x):

H(X, Y ) = −
∑

x,y

pX,Y (x, y) log
(
pX,Y (x, y)

)

= −
∑

x,y

pX,Y (x, y) log
(
pY |X(y|x)pX(x)

)

= −
∑

x

pX(x) log
(
pX(x)

)−
∑

x,y

pX,Y (x, y) log
(
pY |X(y|x)

)

= H(X) + H(Y |X).

An analogous calculation shows the second relation. ��
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The result of the above theorem allows us to formulate some practical chain rules
for entropies:

Corollary 3.12 (Chain Rule for Conditional Entropies) For discrete random
variables X1,X2, . . . , Xn and Y , the following chain rule for the conditional
entropy holds:

H(X1,X2, . . . , Xn|Y ) =
n∑

i=1

H(Xi|Y,X1, . . . , Xi−1). (3.28)

Proof We will prove this statement by induction over n. For n = 2 we can simply
follow from the definitions that

H(X1,X2|Y ) = H(X1,X2, Y ) − H(Y) (3.29)

= H(X1,X2, Y ) − H(X1, Y ) + H(X1, Y ) − H(Y) (3.30)

= H(X2|Y,X1) + H(X1, Y ). (3.31)

Now assume that the result holds for general n, and show that it holds for n+ 1. We
can use the result from the calculation above for n = 2 to write

H(X1, . . . , Xn+1|Y ) = H(X2, . . . , Xn+1|Y,X1) + H(X1|Y ). (3.32)

Apply the induction hypothesis, namely that the result holds for general n, to the
right hand side:

H(X1, . . . , Xn+1|Y ) =
n+1∑

i=2

H(Xi|Y,X1, . . . , Xi−1) + H(X1|Y ) (3.33)

=
n+1∑

i=1

H(Xi|Y,X1, . . . , Xi−1), (3.34)

so the statement also holds for n + 1. ��

Corollary 3.13 (Chain Rule for Joint Entropies) For discrete random variables
X1, X2, . . . , Xn, the following chain rule for the joint entropy holds

H(X1,X2, . . . , Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|Xn−1, . . . , X1).

(3.35)
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Proof Combining the result of Theorem 3.11 with the result of Corollary 3.12 yields

H(X1, . . . , Xn) = H(X1) + H(X2, . . . , Xn|X1) (3.36)

= H(X1) +
n∑

i=2

H(Xi |X1,X2, . . . , Xi−1), (3.37)

which is the statement of the corollary. ��

Note that Theorem 3.11 implies that H(X, Y ) ≥ H(X) and H(X, Y ) ≥ H(Y)

since the conditional entropy is always non-negative (this will be different in the
quantum case!). Theorem 3.11 also implies that H(X, Y ) = H(X) + H(Y |X) ≤
H(X)+H(Y), where the inequality follows directly from Theorem 3.9, i.e., the fact
that conditioning cannot increase the entropy. It can be generalized to an arbitrary
number of random variables:

Theorem 3.14 For discrete random variables X1, . . . , Xn, the joint entropy is
subadditive, which means that

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi). (3.38)

Equality holds if and only if the X1, . . . , Xn are independent random variables.

Proof This statement is a direct application of the chain rule for joint entropies
(Corollary 3.13) and the fact that conditioning does not increase the entropy
(Theorem 3.9):

H(X1, . . . , Xn) = H(X1) +
n∑

i=1

H(Xi |X1, . . . , Xi−1)︸ ︷︷ ︸
≤H(Xi)

(3.39)

≤
n∑

i=1

H(Xi). (3.40)

Equality is achieved if and only if H(Xi |X1, . . . , Xi−1) = H(Xi) for all i, which,
according to Theorem 3.9, holds if and only if Xi are independent random variables.

��
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3.1.4 Mutual Information

With the entropies we have defined above, we can now define an entropic measure
that quantifies the mutual information that two parties posses. Consider a scenario
where Alice holds a random variable X and Bob has a random variable Y .

Definition 3.15 For two discrete random variables X and Y with joint probability
distribution pX,Y (x, y), the mutual information I (X : Y ) is defined as

I (X : Y ) = H(X) − H(X|Y ). (3.41)

The interpretation of the formula above is the following: H(X) represents the
uncertainty we have about the random variable X. Since H(X|Y ) tells us how much
uncertainty there is left about X after we have learned about Y , their difference
gives the information that X and Y share. An equivalent formula for the mutual
information is

I (X : Y ) = H(Y) − H(Y |X). (3.42)

The definition of the mutual information directly implies that if the two random
variables X and Y are statistically independent of each other, they do not have
any mutual information, i.e., learning about Y does not reduce the uncertainty
we have about X (and vice versa). This directly follows from the fact that, for
two independent random variables X and Y , H(X|Y ) = H(X) and therefore
I (X : Y ) = 0. This, along with the non-negativity of the mutual information (which
is a direct consequence of Theorem 3.9), is summed up by the following theorem:

Theorem 3.16 For two random variables X and Y , the mutual information is non-
negative:

I (X : Y ) ≥ 0 (3.43)

with equality if and only if X and Y are independent random variables.

Exercise 3.17 Consider a random variable X with alphabet X. For a subset S ⊆ X,
let Y be the random variable that represents the answer to the question whether or
not X lies in S, i.e.,

Y =
{

1 if X ∈ S
0 if X /∈ S.

(3.44)

Calculate the decrease in uncertainty about X, which is I (X : Y ) = H(X) −
H(X|Y ), in terms of the probability α = P [X ∈ S].
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We can also consider the case where we want to know the mutual information of
two random variables X and Y , given that we have some side information in the form
of another random variable Z. This is called the conditional mutual information and
is given by

I (X : Y |Z) = H(Y |Z) − H(Y |X,Z) (3.45)

= H(X|Z) − H(X|Y,Z) (3.46)

= H(X|Z) + H(Y |Z) − H(X, Y |Z). (3.47)

Exercise 3.18 Show that the conditional mutual information is non-negative:

I (X : Y |Z) ≥ 0. (3.48)

Exercise 3.19 Show the following chain rule for mutual information:

I (X1,X2, . . . , Xn : Y ) =
n∑

i=1

I (Xi : Y |Xi−1, . . . , X1), (3.49)

where for i = 1 the term in the sum is defined to be I (X1 : Y ).

In Fig. 3.4, the relationship between the entropies that we have introduced so
far is depicted: The lighter, green circle represents the marginal entropy H(X) and
therefore represents the uncertainty we have about a random variable X. The darker,
blue circle represents the entropy of another random variable Y . Their intersection
is the mutual information of these two random variables (note that, if X and Y are
independent, the two circles would be disjoint sets). The green circle without the

Fig. 3.4 Relationship
between different entropies.
The green (left) and blue
(right) circles represent the
entropy of the random
variables X and Y ,
respectively. Their overlap is
the mutual information of X

and Y , and the green (blue)
circle without the overlap is
the entropy of X (Y )
conditioned on Y (X). Both
circles together represent the
joint entropy of X and Y
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overlap represents the conditional entropy H(X|Y ), which is the uncertainty that is
left after we have learned about the random variable Y (analogously for the blue
circle without the overlap). The area that includes both circles is the joint entropy
H(X, Y ).

We can now give the answer to the second of Shannon’s questions (Q2), which
asked how much information can be reliably transmitted through a communication
channel, which is covered by Shannon’s noisy coding theorem (also called Shan-
non’s channel coding theorem). Consider the following scenario, which is similar to
the one we have seen in Fig. 3.3: Alice possesses a random variable X. She sends
information about the random variable (i.e., realizations of X) over to Bob, using a
noisy classical communication channel N . The information that Bob has, i.e., the
output of the noisy channel N , is represented by a random variable, denoted as Y ,
because it is not possible to always predict the output of the channel with certainty.
The number of bits that can be reliably transmitted per use of the channel is then
given by the capacity C(N) of the channel N:

C(N) = max
pX(x)

I (X : Y ),

where pX(x) is the probability distribution according to which Alice chooses
realizations of her random variable X. Depending on which probability distribution
she chooses, the mutual information between X and Y varies. However, the capacity
of the channel should not depend on Alice’s choice of pX(x); therefore, we take the
maximum over all possible probability distributions.6

Exercise 3.20 The binary erasure channel is a classical channel where the input
bit is erased with a certain probability p and transmitted correctly with probability
1 − p, as depicted below. Calculate the capacity of this channel.

0

1

0

1

?

1 −

1 −

6Note that, when the probability distribution pX|Y (x|y) is fixed, I (X : Y) is concave in pX(x);
hence, there always exists a distribution p∗

X(x) that maximizes I (X : Y).
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3.1.5 Relative Entropy

The last classical entropy we want to introduce here is the relative entropy,
also known as Kullback–Leibler divergence. It quantifies how far one probability
distribution p(x) is from another probability distribution q(x).

Definition 3.21 Suppose X is a finite set and p(x) and q(x) are two probability
distributions over the set X. The relative entropy of p(x) to q(x) is

D
(
p(x)‖q(x)

) =
∑

x

p(x) log

(
p(x)

q(x)

)

= −H(X) −
∑

x

p(x) log(q(x)).

(3.50)

We define −p(x) log(0) = +∞ if p(x) > 0.

Although the relative entropy is not a distance measure in the strict mathematical
sense (because it is not symmetric in its arguments), the following theorem gives
some motivation for why it can still be useful in order to estimate the difference
between two probability densities:

Theorem 3.22 Given two probability distributions p(x) and q(x) over some
alphabetX, the relative entropy of p(x) to q(x) is non-negative:

D
(
p(x)‖q(x)

) ≥ 0. (3.51)

Equality holds if and only if p(x) = q(x) for all x ∈ X.

Proof Note that log x ln 2 = ln x ≤ x −1 for all positive x with equality if and only
if x = 1.7 We do not prove this formula here, but the plot in Fig. 3.5 suggests that it
holds for all positive x, and also indicates that they are equal if and only if x = 1.
Reformulating this formula slightly yields

− log x ≥ 1 − x

ln 2
. (3.52)

We can then consider the following relations:

D
(
p(x)‖q(x)

) = −
∑

x

p(x) log

(
q(x)

p(x)

)

≥ 1

ln 2

∑

x

p(x)

(

1 − q(x)

p(x)

)

7Here, ln denotes the natural logarithm, i.e., the logarithm to base e.
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Fig. 3.5 Comparing the functions ln(x) and x − 1. The plot shows that ln(x) ≤ x − 1 for all
positive x, and equality holds if and only if x = 1

= 1

ln 2

(
∑

x

p(x) −
∑

x

q(x)

)

= 0.

Equality only depends on the operation in the second line. As we have seen above,
equality here holds if and only if q(x)

p(x)
= 1 for all x, which implies that the two

distributions are identical. ��

Using Theorem 3.22, we can now give a proof of the fifth mathematical property
of the entropy, which states that for a random variable X,

H(X) ≤ log |X|, (3.53)

where |X| is the cardinality of the alphabet and equality holds if and only if X

is a uniform random variable. The proof works as follows: Suppose pX(x) is the
probability distribution for the random variable X over d ≡ |X| outcomes and
q(x) = 1

d
denotes a uniform distribution over these outcomes. Then

D
(
p(x)‖ 1

d

) = −H(X) −
∑

x

p(x) log

(
1

d

)

= log(d) − H(X). (3.54)
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Non-negativity of the relative entropy implies

H(X) ≤ log(d), (3.55)

with equality if and only if p(x) = 1
d

, i.e., X is a uniform random variable.

Exercise 3.23 Show that I (X : Y ) = D
(
pX,Y (x, y)‖pX(x)pY (y)

)
.

3.2 Quantum Entropies

Classical entropies provide a tool to estimate the amount of information of a
classical random variable and, moreover, to determine how much information two
(or more) random variables share. Since our goal in these notes is to analyse
quantum information, we would like to have similar tools to estimate the amount
of information that is present in a quantum system. The mathematical quantity we
are looking for is the von Neumann entropy (which we also simply call quantum
entropy), which is the generalization of the Shannon entropy to quantum systems.
The unit of information that we now use to determine the amount of quantum
information in a system is that of quantum bits.

Recall that the classical entropy is a direct function of the probability distribution
of the random variable, since it captures the classical uncertainty we have about
a system. In the quantum world, classical uncertainty about a system as well as
quantum uncertainty (that arises from the uncertainty principle) is captured by
the notion of a density operator. Therefore, we expect a quantum analogue of the
Shannon entropy to be a direct function of the density operator:

Definition 3.24 Let A be a quantum system that is prepared in a state ρA ∈ B(HA).
The von Neumann entropy H(A)ρ of the state ρA is then defined as follows:

H(A)ρ = −Tr (ρA log(ρA)) . (3.56)

We use the same notation H for the quantum entropy of a state as for the Shannon
entropy of a classical random variable. Usually, it should be clear from the context,
to which kind of entropy we are referring. We sometimes also use the notation
H(A)ρ = H(ρA).

The quantum entropy has a useful relation to the eigenvalues of the density
operator: Suppose we know the spectral decomposition of the state ρA, namely

ρA =
∑

j

λj |ψj 〉A〈ψj |, (3.57)
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where λj are the eigenvalues of ρA and
{|ψj 〉A

}
is the set of the corresponding

pairwise orthogonal eigenvectors. The entropy of ρA is then

H(A)ρ = −
∑

j

λj log(λj ). (3.58)

Exercise 3.25 Show that the entropy H(A)ρ of the state ρA with spectral decom-
position (3.57) is given by (3.58).

Exercise 3.26 Calculate the entropy of the state that corresponds to the ensemble{{ 1
4 , |0〉}, { 1

4 , |1〉}, { 1
4 , |+〉}, { 1

4 , |−〉}}. Compare it to the classical entropy of the
uniform distribution 1

4 .

As in the classical case, we define 0 · log(0) = 0 and logarithms are usually taken
to base two. The formula in (3.58) is the one that is usually used in calculations
if we know the eigenvalues of the density matrix. Since the eigenvalues λj can be
interpreted as a probability distribution (they fulfil the conditions

∑
j λj = 1 and

λj ≥ 0 for all j ), this directly shows that the quantum entropy of a quantum state
ρ is the same as the Shannon entropy for the probability distribution given by the
eigenvalues λj .

The interpretation of quantum entropy is qualitatively very similar to the
interpretation we gave for the classical entropy: Suppose that Alice prepares a
quantum state |ψx〉 in her lab according to a probability distribution pX(x) that
corresponds to a random variable X. Before she sends it to Bob, he does not know
which state Alice will send, and therefore, from Bob’s point of view, the expected
density operator is

ρ =
∑

x

pX(x)|ψx〉〈ψx |. (3.59)

The entropy of the state H(A)ρ then quantifies Bob’s uncertainty about the state
that Alice will send, or, from a different point of view, the amount of information
that Bob gains when learning about the state.

3.2.1 Mathematical Properties of Quantum Entropy

The quantum entropy has several interesting mathematical properties that we discuss
below. Some of the properties directly follow from the analogous properties in the
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classical case and the dependence of the entropy on the eigenvalues of the density
operator:

1. The quantum entropy H(ρ) is non-negative for any density operator ρ:

H(ρ) ≥ 0. (3.60)

This follows directly from the non-negativity of the Shannon entropy.
2. The entropy vanishes if and only if the density operator is a pure state. The proof

works similar to the one we gave to show that the Shannon entropy vanishes if
and only if X is a deterministic variable:
⇒ We can argue that if the entropy vanishes, then λj log(λj ) = 0 for all j , which

is fulfilled either if λj = 0 or λj = 1. Since
∑

j λj = 1, there is exactly one
j∗ for which λj∗ = 1, so we have a pure state ρ = |ψj∗ 〉〈ψj∗ |.

⇐ On the other hand, if the system is in a pure state ρ = |ψ〉〈ψ|, then H(ρ) =
− log(1) = 0.

3. The maximum value of the quantum entropy of a state ρ is

H(ρ) ≤ log(d), (3.61)

where d is the dimension of the quantum system. This value is attained if ρ is the
maximally mixed state. The proof is the same as the one we gave at the end of the
previous section for the classical case (note that the eigenvalues of the maximally
mixed state form a uniform probability distribution).

4. Consider a density operator ρx ∈ B(H) and a probability distribution pX(x).
The quantum entropy is concave in the density operator:

H

(
∑

x

pX(x)ρx

)

≥
∑

x

pX(x)H(ρx). (3.62)

Here, the physical intuition is the same as in the classical case: The entropy (i.e.,
the uncertainty about a state) cannot decrease under mixing.

5. The entropy of a quantum state ρ ∈ B(H) is invariant under the action of an
isometry V : H → H ′, i.e.,

H(ρ) = H(VρV †). (3.63)

This can be seen by doing a simple calculation: Suppose ρ has spectral
decomposition ρ = ∑

j λj |ψj 〉〈ψj |. Then

VρV † =
∑

j

λjV |ψj 〉〈ψj |V † (3.64)

=
∑

j

λj |ψ ′
j 〉〈ψ ′

j |, (3.65)
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where {|ψ ′
j 〉} is an orthonormal basis such that |ψ ′

j 〉 = V |ψj 〉. Since the quantum
entropy is only a function of the eigenvalues λj , it does not change when applying
an isometry V .

In the following, we discuss quantum generalizations of the variants of the
Shannon entropy that we have introduced in the previous section, such as conditional
entropy, joint entropy, mutual information, and relative entropy. Although the
definitions are quantum analogues of the classical quantities, we will see some
surprising properties that clearly distinguish the quantum entropies from their
classical counterparts.

3.2.2 Joint Quantum Entropy

We follow a slightly different order here than we did in the classical case. While
in the previous section we first introduced the conditional entropy, here we have to
begin with the joint quantum entropy since the definition of the conditional quantum
entropy relies on it.

To formulate a quantum analogue of the classical joint entropy, we consider a
composite system of the form HA ⊗ HB . For a bipartite quantum state ρAB ∈
B(HA ⊗HB), we can then define the notion of the joint quantum entropy H(AB)ρ
as a natural extension of the definition of quantum entropy:

Definition 3.27 Let ρAB ∈ B(HA ⊗ HB) be the density operator for a bipartite
system. The joint entropy H(AB)ρ is defined as

H(AB)ρ = −Tr
(
ρAB log(ρAB)

)
. (3.66)

This definition can analogously be defined for a composite system of three or
more systems. Furthermore, there is also a notion of the joint entropy of a bipartite
system H(AB)ρ if we have a tripartite (or multipartite) state ρABC ∈ B(HA⊗HB⊗
HC). The formula is the same as above, with the state being ρAB = TrC (ρABC).
We will use this convention throughout these notes.

We will now encounter the first radical difference between classical and quantum
entropies by studying the properties of the joint quantum entropy. Recall that in the
classical case, the joint entropy is always greater or equal to the marginal entropies:

H(X, Y ) ≥ H(X), H(X, Y ) ≥ H(Y), (3.67)

which follows from Theorem 3.11. In the quantum world, however, these inequali-
ties do not always hold. In fact, for any pure bipartite state with Schmidt rank greater
than one, the joint entropy vanishes, while the marginal entropies are equal, which
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represents one of the most fundamental differences between classical and quantum
information:

Theorem 3.28 Let |ψ〉AB ∈ HA ⊗HB be a pure bipartite state. Then the marginal
entropies are equal:8

H(A)ψ = H(B)ψ (3.68)

and the joint entropy vanishes

H(AB)ψ = 0. (3.69)

Proof The most important ingredient in the proof is the Schmidt decomposition.
Recall from Theorem 2.44 and the discussion afterwards that a pure bipartite state
admits a representation of the form

|ψ〉AB =
∑

i

λi |ei〉A|fi〉B, (3.70)

with λi > 0 for all i and
∑

i λi = 1 and {|ei〉A} is an orthonormal set of vectors on
system A and {|fi〉B} is an orthonormal set of vectors on B. The marginal states are
then given by

ρA =
∑

i

λ2
i |ei〉A〈ei |, ρB =

∑

i

λ2
i |fi〉B〈fi |. (3.71)

Hence, both marginal states have the same eigenvalue, namely λ2
i . Since the entropy

is only a function of the eigenvalues, it follows that H(A)ψ = H(B)ψ . The joint
entropy of the state |ψ〉AB vanishes by the same argument that we gave for the von
Neumann entropy (see Item 2 of the mathematical properties). ��

In the classical case, the joint entropy of two independent random variables
is simply the sum of the margin entropies: H(X, Y ) = H(X) + H(Y) (see
Theorem 3.14). The quantum analogue of this is the entropy of a product state
ρA ⊗ σB , where ρA ∈ B(HA) and σB ∈ B(HB). The quantum entropy is additive
in this case:

H(ρA ⊗ σB) = H(ρA) + H(σB). (3.72)

Exercise 3.29 Prove the formula in (3.72).

8Recall that this notation means that we calculate the entropy of the states ρA = TrB (|ψ〉AB〈ψ |)
and ρB = TrA (|ψ〉AB 〈ψ |), respectively.
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Another interesting quantity arises when we consider states in quantum–classical
hybrid systems. Recall from Eq. (2.141) that the density operator of a quantum–
classical system A ⊗ Z is

ρAZ =
∑

z

pZ(z)ρz
A ⊗ |z〉Z〈z|. (3.73)

The joint entropy of this state then takes a specific form (the proof of this theorem
can be found in [17, Thm. 11.2.2]):

Theorem 3.30 The joint entropy H(AZ)ρ of a classical–quantum state ρAZ as
given in (3.73) takes the form

H(AZ)ρ = H(Z) +
∑

z

pZ(z)H(ρz
A). (3.74)

3.2.3 Conditional Quantum Entropy

After having defined the joint quantum entropy, we can use it to give a definition
that generalizes the conditional entropy to quantum states. The formula for the con-
ditional quantum entropy is inspired by the relation between classical conditional
and joint entropy we have seen in Theorem 3.11:

Definition 3.31 Let ρAB ∈ B(HA ⊗ HB) be a bipartite quantum state. The
conditional quantum entropy H(A|B)ρ of ρAB is defined as

H(A|B)ρ = H(AB)ρ − H(B)ρ. (3.75)

As in the classical case, conditioning does not increase the quantum entropy, even
if the conditioning system is quantum:

Theorem 3.32 For a bipartite quantum state ρAB , the following holds for the
marginal entropy H(A)ρ and the conditional quantum entropy H(A|B)ρ:

H(A)ρ ≥ H(A|B)ρ. (3.76)
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Using the result of Theorem 3.30, we can directly give an expression for the
conditional entropy H(A|Z)ρ of a classical–quantum state ρAZ if the conditioning
is on the classical system Z: for a classical–quantum state ρAZ as given in (3.73),

H(A|Z)ρ = H(AZ)ρ − H(Z) (3.77)

= H(Z) +
∑

z

pZ(z)H(ρz
A) − H(Z) (3.78)

=
∑

z

pZ(z)H(ρz
A). (3.79)

This formula is analogous to the classical formula given in (3.13).
We are now ready to encounter a fascinating phenomenon that clearly distin-

guishes quantum information theory from its classical counterpart that is even less
intuitive than the one we studied in Theorem 3.28. We are talking about the fact that
the conditional entropy can be negative! Recall the bipartite entangled state

|�+〉AB = 1√
2

(|0〉A|0〉B + |1〉A|1〉B) , (3.80)

which is one of the Bell states that we introduced in the previous section. To compute
the conditional entropy H(A|B)�+ we need to calculate the joint entropy H(AB)�+
as well as the marginal entropy H(B)�+ . Since |�+〉AB is a pure state, we know
from Theorem 3.28 that the joint entropy vanishes

H(AB)�+ = 0. (3.81)

To evaluate the marginal entropy H(B)�+ , we have to calculate the entropy of the
marginal state on system B, which is the maximally mixed state πB . From Item 3
of the mathematical properties of the quantum entropy, we know that the entropy of
the maximally mixed state is given by

H(B)�+ = log(d). (3.82)

In our case, which is the qubit case, the dimension of the system is two; hence,
H(B)�+ = log(2) = 1. Combining these two results yields the conditional entropy:

H(A|B)�+ = H(AB)�+ − H(B)�+ = −1. (3.83)

What do we make of such a result? What does it mean that the conditional
entropy of a quantum state is negative? We can interpret it in the following way:
Although we know precisely in which state the composite system is (since it is
described by a pure state), it is possible to have less knowledge about the individual
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parts, which results in a negative conditional quantum entropy.9 This is clearly a
property of the quantum world that is impossible in the classical world.

We can actually show that the conditional entropy is not only negative in this
specific example, but for all pure entangled states:

Theorem 3.33 Let |ψ〉AB ∈ HA⊗HB be a pure bipartite state. |ψ〉AB is entangled
if and only if H(A|B)ψ < 0.

Proof First, note that H(AB)ψ = 0 because |ψ〉AB is a pure state. This reduces
the problem to the following statement: Show that a pure state |ψ〉AB is entangled
if and only if H(B)ψ = H(TrA (|ψ〉AB 〈ψ|)) > 0.

⇒ Suppose |ψ〉AB is entangled. This implies that its Schmidt rank d is strictly
greater than one. Hence, according to (2.135), the marginal state of system B is

ρB = TrA (|ψ〉AB 〈ψ|) =
d∑

i=1

λ2
i |i〉B〈i| (3.84)

with d > 1 and eigenvalues λ2
i . Since the sum consists of at least two terms, ρB

cannot be a pure state and, therefore, H(ρB) > 0.
⇐ Suppose H(B)ψ > 0. Consider the marginal state ρB as given in (3.84), but this

time we do not know anything about the Schmidt rank d . By using the fact that
the entropy is only a formula of the eigenvalues of ρB , i.e., the λ2

i , we find that

H(ρB) = −Tr (ρB log(ρB)) = −
d∑

i=1

λ2
i log(λ2

i ). (3.85)

If d = 1, there is only one eigenvalue λ2 = 1 (because
∑

i λ2
i = 1), but this

implies that H(ρB) = 0, which contradicts our assumption. Therefore, d > 1
and |ψ〉AB is entangled.

��

Since the negativity of the conditional quantum entropy is such an important phe-
nomenon in quantum information theory, there is a separate notion for the negativity
of the conditional quantum entropy, which is called the coherent information:

9This is similar to the observation that Erwin Schrödinger made on entangled states in 1935 in his
paper [11]: “The best possible knowledge of a whole does not necessarily include the best possible
knowledge of all its parts, even though they may be entirely separated and therefore virtually
capable of being ‘best possibly known’, i.e. of possessing, each of them, a representative of its
own”.
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Definition 3.34 For a bipartite state ρAB ∈ B(HA ⊗HB) the coherent information
I (A〉B)ρ is defined as

I (A〉B)ρ = H(B)ρ − H(AB)ρ. (3.86)

The coherent information can be interpreted as a measure of quantum correla-
tions that are present in a bipartite state ρAB shared by Alice and Bob. Although
the coherent information is simply the negativity of the conditional entropy stated
in Definition 3.31, it is useful in several areas of quantum information theory and
therefore is treated as an information quantity in its own right. For example, it
satisfies the following data processing inequality, which states that processing one
system by some quantum channel E reduces quantum correlations:

Theorem 3.35 (Data Processing for Coherent Information) Let ρAB ∈ B(HA ⊗
HB) be a bipartite quantum state and E : B(HB) → B(HB ′) be a quantum channel
on Bob’s system. Set σAB ′ = EB→B ′ (ρAB). Then the following inequality holds

I (A〉B)ρ ≥ I (A〉B ′)σ . (3.87)

The proof of this theorem can be found in [17, Thm. 11.9.3]. It directly implies
the following relation for the conditional entropy:

H(A|B)ρ ≤ H(A|B ′)σ . (3.88)

In the case that EB→B ′ is a channel that represents a measurement on Bob’s system
and B ′ is the system after the measurement, this inequality states that measurements
cannot decrease the conditional entropy.

Exercise 3.36 Calculate the coherent information of the maximally entangled state
|�+〉AB = 1√

2

(|00〉 + |11〉).

3.2.4 QuantumMutual Information

The quantum generalization of the classical mutual information is straightforward:

Definition 3.37 For a bipartite state ρAB ∈ B(HA ⊗ HB), the quantum mutual
information I (A :B)ρ is defined as

I (A :B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ (3.89)

= H(A)ρ − H(A|B)ρ (3.90)

= H(B)ρ − H(B|A)ρ. (3.91)



3.2 Quantum Entropies 81

Exercise 3.38 Show that the quantum mutual information is non-negative: I (A :
B) ≥ 0. Hint: Use the fact that conditioning does not increase the entropy.

Exercise 3.39 Calculate the mutual information of the maximally entangled state
|�+〉AB = 1√

2

(|01〉 + |10〉).

Exercise 3.40 Show the following upper bound on the mutual information of a
classical–quantum system XB: I (X :B) ≤ log(dX), where dX is the dimension of
the classical system X.

3.2.5 Quantum Relative Entropy

Analogous to the classical case, we can formulate a quantum version of the relative
entropy:

Definition 3.41 For two density operators ρ, σ ∈ B(HA ⊗ HB), the quantum
relative entropy D(ρ‖σ) is defined as

D(ρ‖σ) = Tr (ρ log(ρ) − ρ log(σ )) . (3.92)

As in the classical case, this quantity can be infinite. This is the case if the kernel of σ

has non-trivial intersection with the support of ρ. The above definition can actually
be generalized to the case where σ is not a density matrix but only a positive semi-
definite operator, but this case is not of any interest to us and therefore we neglect it
here.

Similar to the classical case (see Theorem 3.22), the quantum relative entropy is
non-negative (which is also known as Klein’s inequality):

Theorem 3.42 For two density operators ρ, σ ∈ B(HA ⊗ HB), the quantum
relative entropy D(ρ‖σ) is non-negative:

D(ρ‖σ) ≥ 0, (3.93)

with equality if and only if ρ = σ .

The proof of the above theorem uses the respective spectral decompositions to
reduce the quantum relative entropy to its classical counterpart and exploits the fact
that the classical relative entropy is non-negative. The full proof can, for example,
be found in [7, Thm. 11.7].
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We can now derive a relation between the quantum mutual information and the
quantum relative entropy:

Corollary 3.43 For a bipartite state ρAB ∈ B(HA ⊗ HB) with marginal states
ρA = TrB (ρAB) and ρB = TrA (ρAB), the following relation holds

I (A :B) = D(ρAB‖ρA ⊗ ρB). (3.94)

Proof First, note that log(ρA ⊗ ρB) = log(ρA) ⊗ IB + IA ⊗ log(ρB). Using this
relation, we can perform the following manipulations:

Tr
(
ρAB log(ρA ⊗ ρB)

) = Tr
(
ρAB

(
log(ρA) ⊗ IB + IA ⊗ log(ρB)

))
(3.95)

= Tr
(
ρAB log(ρA) ⊗ IB

)+ Tr
(
ρAB log(ρB) ⊗ IA

)

(3.96)

= TrA
(
TrB

(
ρAB log(ρA) ⊗ IB

))
(3.97)

+ TrB
(
TrA

(
ρAB log(ρB) ⊗ IA

))
(3.98)

= TrA
(
ρA log(ρA)

)+ TrB
(
ρB log(ρB)

)
(3.99)

= −H(A)ρ − H(B)ρ. (3.100)

This directly implies the following identities for the relative entropy:

D(ρAB‖ρA ⊗ ρA) = Tr (ρAB log(ρAB)) − Tr (ρAB log(ρA ⊗ ρB)) (3.101)

= −H(AB)ρ + H(A)ρ + H(B)ρ (3.102)

= I (A :B)ρ, (3.103)

which is the statement of the corollary. ��

Exercise 3.44 Show that D(ρAB‖IA ⊗ ρB) = −H(A|B)ρ .

Exercise 3.45 Use the non-negativity of the quantum relative entropy to show that
for a quantum system A of dimension dA, it holds that H(A)ρ ≤ log dA.

A very important inequality in quantum information theory is the fact that the
relative entropy decreases when applying a quantum channel to it, which was shown
in [5]:

Theorem 3.46 For two quantum states ρ, σ , the quantum relative entropy can only
decrease under the action of a quantum channel, i.e., a completely positive, trace-
preserving map E:

D(E(ρ)‖E(σ )) ≤ D(ρ‖σ). (3.104)
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By using the fact that the partial trace operation is a quantum channel (as
discussed in Sect. 2.3), it directly follows that taking the partial trace of a bipartite
system decreases the relative entropy, which is known as the monotonicity of the
quantum relative entropy:

Theorem 3.47 For two bipartite quantum states ρAB and σAB it holds that

D(ρA‖σA) ≤ D(ρAB‖σAB), (3.105)

where ρA = TrB (ρAB) and σA = TrB (σAB).

3.2.6 One-Shot Entropies

The classical and quantum entropies we have discussed so far only apply in the so-
called i.i.d. scenario, which stands for independently and identically distributed.
This is because we need to repeat the corresponding experiment independently
and infinitely many times in order to know the exact probabilities pX(x) of the
outcomes. For the scenario where we only repeat the experiment a finite number of
times (which is every practical implementation of a QKD experiment), we can use
the so-called one-shot entropies, more precisely, the min- and max-entropies. These
come from a family of entropies that is called Rényi entropies [10]. The classical
counterparts to these entropies have not been discussed in this chapter since they
are not of interest for these notes. An in-depth discussion of one-shot entropies can,
for example, be found in [13].

We begin by introducing the quantum min-entropy as presented in [9]. We will
encounter this entropy, for example, when we talk about privacy amplification
in Sect. 4.2.3: Here, we need to transform Alice’s classical bit string, which is
correlated with Eve’s quantum system, into a uniformly random string that is
independent of Eve’s knowledge.

As a motivation for the definition of the quantum min-entropy we consider
an alternative derivation of the conditional quantum entropy H(A|B), which was
defined in Definition 3.31. First, we define

H(ρAB |σB) := −Tr (ρAB (log ρAB − log IA ⊗ σB)) (3.106)

for some state σB ∈ B(HB). It can be rewritten as

H(ρAB |σB) = H(ρAB) − H(ρB) − D(ρB ||σB), (3.107)

where ρB = TrA (ρAB) and D(ρB ||σB) as defined in Definition 3.41. Since the
relative entropy cannot be negative (see Theorem 3.42), this expression takes its
maximum for ρB = σB , for which D(ρB ||σB) is zero. In this case, the above
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expression is equal to H(A|B); hence, we can write

H(A|B) = sup
σB

H(ρAB |σB), (3.108)

where the supremum ranges over all quantum states σB ∈ B(HB).
To define the quantum conditional min-entropy we use a similar approach: First,

we define the min-entropy of ρAB ∈ B(HA ⊗ HB) relative to a state σB ∈ B(HB)

as

Hmin(ρAB |σB) = − log min{λ : ρAB ≤ λ · IA ⊗ σB}. (3.109)

Similar to the above construction, the quantum conditional min-entropy is then
defined as the supremum over all states σB ∈ B(HB), which is formalized in the
following definition:

Definition 3.48 The quantum conditional min-entropy of a state ρAB ∈ B(HA ⊗
HB), conditioned on HB , is defined as

Hmin(A|B) = sup
σB

Hmin(ρAB |σB) (3.110)

= − log min
σB

min{λ : ρAB ≤ λ · IA ⊗ σB}, (3.111)

where the minimum is over all states σB ∈ B(HB).

Although the definition is rather technical, the operational interpretation of the
min-entropy exactly matches our needs for an application in privacy amplification:
For classical–quantum states, the conditional min-entropy characterizes the amount
of uniform randomness that we can extract from a classical random variable that is
correlated with a quantum system such that the result is independent of the quantum
system (see [9] and [4]).

The second one-shot entropy that we will need in our analysis of QKD protocols
is the max-entropy:

Definition 3.49 The quantum conditional max-entropy of a state ρAB ∈ B(HA ⊗
HB), conditioned on HB , is defined as

Hmax(A|B) = max
σB

log ‖√ρAB

√
IA ⊗ σB‖2

1. (3.112)

A possible interpretation of the max-entropy is the following: Given a classical–
quantum state ρXB , the max-entropy quantifies the size of the system that X can be
compressed to, such that the original system can be recovered given access to the
quantum system B (see [8]).
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It is possible to modify the min- and max-entropies in order to account for errors
and imperfections in the tasks that they characterize. The resulting entropies are
called smooth min- and max-entropies. For these definitions, we first need to specify
a region of states close to a fixed state, which is called an ε-ball.

Definition 3.50 For a subnormalized state ρ ∈ S≤(H) an ε-ball around the state ρ

is defined as the set

Bε(ρ) = {
ρ̃ : ρ̃ ∈ S≤(H), P (ρ, ρ̃) ≤ ε

}
, (3.113)

where P(ρ, ρ̃) is the purified distance that was defined in Definition 2.58.

Definition 3.51 For a quantum state ρAB ∈ B(HA ⊗ HB) the smooth conditional
min- and max-entropies are defined as

Hε
min(A|B) = max

ρ′∈Bε (ρ)
Hmin(A|B)ρ′ (3.114)

Hε
max(A|B) = min

ρ′∈Bε (ρ)
Hmax(A|B)ρ′ . (3.115)

The smooth min- and max-entropies fulfil a variety of interesting properties (see
[13]). However, in these notes we only need two of them: The first one is a duality
relation between min- and max-entropies, which was shown in [16]:

Theorem 3.52 Given a pure state ρABC ∈ B(H) and ε ≥ 0, then

Hε
min(A|B) = −Hε

max(A|C). (3.116)

The second important property of one-shot entropies is the quantum asymptotic
equipartition property, which was shown in [15]:

Theorem 3.53 Given a quantum state ρAB ∈ B(Ha ⊗ HB), then

lim
ε→0

lim
n→∞

1

n
Hε

min(A
n|Bn)ρ⊗n = H(A|B) (3.117)

lim
ε→0

lim
n→∞

1

n
Hε

max(A
n|Bn)ρ⊗n = H(A|B). (3.118)

This theorem shows that in the limit of having an i.i.d. quantum state the min- and
max-entropies both approach the conditional von Neumann entropy, which makes
them generalizations of the von Neumann entropy to the one-shot scenario.
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3.3 The Entropic Uncertainty Principle

Heisenberg’s uncertainty relation for the momentum uncertainty and the position
uncertainty of a particle is without doubt one of the most famous formulas in
physics. However, from an information-theoretic view, it is not directly clear
how to interpret the involved quantities: For instance, the uncertainty of position
and momentum is formulated in terms of the standard deviation, which lacks an
operational interpretation similar to the one we gave for the entropy. This makes
it difficult to directly apply these kinds of uncertainty relations to information-
theoretic tasks like the transmission of data over a noisy channel.

Additionally, and this is probably the most confusing point, the uncertainty
principle seems to be defied if two parties share a maximally entangled state.10 We
can see this if we consider the maximally entangled bipartite state |�+〉AB , which
can be written in two different ways using either the computational or Hadamard
basis:

|�+〉AB = 1√
2

(|0〉A|0〉B + |1〉A|1〉B) (3.119)

= 1√
2

(|+〉A|+〉B + |−〉A|−〉B) . (3.120)

Suppose Alice measures the Z operator, that is, the operator Z = |0〉A〈0| − |1〉A〈1|
on her system. According to the formula in (3.119), Bob can then say with certainty
which outcome Alice obtained by only accessing his part of the quantum state.
Additionally, if Alice measures the operator X = |+〉A〈+|−|−〉A〈−| on her system,
according to (3.120) Bob can again guess her outcome with certainty. Bob has no
uncertainty about the outcome of Alice’s measurements, in spite of the fact that X

and Z are incompatible observables.
The above phenomenon motivates a reformulation of the uncertainty principle

that takes into account the possibility that Bob has access to a quantum memory
correlated with Alice’s system, where uncertainty is measured in terms of quantum
entropy instead of the standard deviation. Suppose Alice and Bob’s respective
systems A and B are in the state ρAB ∈ B(HA ⊗ HB). Alice then performs a
measurement on her system that is modelled by the POVM

{
Mx

A

}
. After she has

performed the measurement, the state of Alice and Bob’s system is

σXB =
∑

x

|x〉A〈x| ⊗ TrA
((

Mx
A ⊗ IB

)
ρAB

)
, (3.121)

10This problem was already addressed by Einstein, Podolsky, and Rosen in their paper “Can
Quantum-Mechanical Description of Physical Reality be Considered Complete?” [3] in 1935,
shortly after quantum mechanics was established. From this observation, they concluded that
quantum mechanics could not be complete.
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where the measurement outcomes x are encoded into orthonormal states {|x〉A} of
a classical register X. Bob’s uncertainty about the outcome of the measurement can
then be quantified by the conditional entropy H(X|B)σ . In the same fashion, Alice
can decide to perform a different measurement given by the POVM

{
N

y
A

}
. The state

after the measurement is then given by

τYB =
∑

y

|y〉A〈y| ⊗ TrA
((

N
y
A ⊗ IB

)
ρAB

)
. (3.122)

Similar to the first case, Bob’s uncertainty about the measurement outcome is given
by H(Y |B)τ . We define Bob’s total uncertainty about the measurement outcome to
be the sum of the individual uncertainties: H(X|B)σ + H(Y |B)τ . We also need a
quantity that measures the incompatibility of the two POVMs

{
Mx

A

}
and

{
N

y
A

}
. One

way to quantify this is via the parameter

c = max
x,y

||
√

Mx
A

√
N

y
A||2∞, (3.123)

where || · ||∞ is the infinity norm of an operator (which is simply the largest
eigenvalue in the finite-dimensional case). This quantity is equal to one if the
two measurements are maximally compatible. We can now state the uncertainty
principle in the presence of quantum memory:

Theorem 3.54 Suppose that Alice and Bob share a state ρAB ∈ B(HA ⊗HB) and
Alice performs one of the POVMs

{
Mx

A

}
and

{
N

y
A

}
. Then Bob’s uncertainty of the

measurement outcome can be lower bounded in the following way:

H(X|B)σ + H(Y |B)τ ≥ log
1

c
+ H(A|B)ρ, (3.124)

with states σXB and τYB defined in (3.121) and (3.122), respectively, and the
constant c as given in (3.123).

Proof The proof of this theorem can be found in [17, Thm. 11.9.5] or in [1], where
it was originally introduced. ��

The lower bound given above consists of two terms, one term that takes into
account the incompatibility of the two measurements (which is independent of the
state) and the other that relies only on the quantum state of the system. Since the
conditional entropy H(A|B)ρ can become negative, as we have already seen, the
bound can actually be lower than log(1/c). It might even be possible to reduce
Bob’s uncertainty about the measurement to zero by picking the right state!

Recall the scenario we have studied above: The system is in state |�+〉AB

and Alice can perform either the Z or X measurement on her system. The
POVM elements that correspond to the Z measurement are {|0〉〈0|, |1〉〈1|}, and the
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Fig. 3.6 Entropic uncertainty relation as a guessing game. Bob prepares the bipartite state ρAB

and sends system A to Alice. Alice performs one of two measurements, X or Z, and sends her
measurement choice � back to Bob. Bob then tries to guess Alice’s measurement outcome ϑ using
the side information he gets from his system B

POVM elements that correspond to the X measurement are {|+〉〈+|, |−〉〈−|}. The
incompatibility of the two POVMs is then c = 1

2 , which implies log(1/c) = 1. We
have already seen in (3.83) that H(A|B)�+ = −1; hence,

H(X|B)σ + H(Z|B)τ ≥ 0, (3.125)

which is consistent with the observation that Bob knows Alice’s measurement
outcome with certainty.

The above theorem can be reformulated as a guessing game (depicted in Fig. 3.6):
Suppose Bob prepares a bipartite quantum state ρAB . He sends system A to Alice
and keeps system B. Alice then performs either the X measurement or the Z

measurement and sends the information about which measurement she performs
back to Bob. Bob’s task is then, by using his quantum system B, to guess Alice’s
measurement outcome. If Bob has prepared the maximally entangled state |�+〉AB ,
he is able to predict Alice’s measurement outcome with certainty. However, in
general, he has some uncertainty about the outcome, which is lower bounded by
the quantity in Theorem 3.54.

It is furthermore possible to formulate an entropic uncertainty relation in the one-
shot setting using the min- and max-entropies introduced in the previous section. In
[14], the authors show the following:

Theorem 3.55 Let ρABE ∈ B(HA ⊗ HB ⊗ HE) and ε ≥ 0. Define two POVMs
with elements

{
Mx

A

}
and

{
N

y

A

}
that are acting on system A, resulting in outcomes

X and Z. Then

Hε
min(X|E) + Hε

max(Z|B) ≥ log
1

c
, (3.126)

with c = maxx,y ||√Mx
A

√
N

y
A||2∞.
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This uncertainty relation is useful for quantum cryptography, since it lower bounds
the amount of information an adversary E has on the outcome of Alice’s measure-
ment X. We go into more detail about the use of entropic uncertainty relations in
quantum key distribution in Sect. 5.5.1.
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4Quantum Key Distribution Protocols

Abstract

The goal of any quantum key distribution (QKD) protocol is to generate a shared
secret key between two distant parties over a public communication channel. The
crucial point here is that the key generating protocol is provably secure against
any possible attack that an eavesdropper can perform. It is the law of physics
(or, in fact, quantum mechanics) that guarantees the security of the protocol, not
only the technical limitations that exist in practical implementations. Therefore,
one can be sure that the protocol will be secure until eternity, and not only
until someone invents a crazily powerful decryption machine (or, to be precise,
the protocol will be secure as long as quantum mechanics is not disproved). In
general, a quantum key distribution protocol can be divided into two parts: The
first part is the quantum transmission phase, in which Alice and Bob send and/or
measure quantum states. The second part is the classical post-processing phase,
where they turn the bit strings generated in the quantum phase into a pair of
secure keys.

Accessible introductions to the area of quantum cryptography can be found in [5]
and [8]. Both of these books also include some chapters about implementations
of quantum communication protocols, which is a topic we do not cover here.
Furthermore, [24] contain a section about quantum cryptography that discusses the
BB84 protocol and its security in detail. An overview of the concepts of quantum
cryptography can be found in [17] and a review of the more recent developments in
this area is given in [25].
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4.1 Quantum Transmission

We begin by discussing the quantum phase of a QKD protocol. So far, we have
only seen a single protocol, the BB84 protocol in Sect. 1.3. This is an example
of a prepare-and-measure protocol, where quantum states are prepared, sent via a
quantum channel, and measured afterwards. There is a second class of protocols,
the so-called entanglement-based protocols, where Alice and Bob hold pairs of
entangled states and perform measurements on their respective subsystems to
generate the raw key. In contrast to the first type of protocol, these kinds of protocols
do not require the sending of quantum states, i.e., no quantum channels are involved.
They do, however, require a source that provides entangled states for Alice and Bob.

We will first explain the individual steps in each of these protocol types (mostly
by looking at examples) and then show how every prepare-and-measure protocol is
equivalent to an entanglement-based protocol. This equivalence is extremely helpful
when it comes to security proofs, since entanglement-based protocols are in general
easier to analyse because they do not involve quantum channels.

4.1.1 Prepare-and-Measure Protocols

We again return to the BB84 protocol to study how prepare-and-measure protocols
work. When we met the protocol the first time in Sect. 1.3 we simply considered the
polarization of photons as a way to implement qubits. After we have introduced
the necessary tools in the previous sections we can now actually analyse it
mathematically.

In Fig. 4.1, the general schematic of a prepare-and-measure protocol is depicted.
Similar to the depiction of the BB84 setting in Fig. 1.3, the two parties Alice and
Bob have access to two channels: First, they have access to a quantum channel
that Alice can use to send the quantum states she has prepared over to Bob. We
assume that there are no restrictions (other than the laws of physics) on how Eve can
interact with the messages sent over the quantum channel. The second channel is an
authenticated classical channel where Alice and Bob can send classical messages

Fig. 4.1 The setting of a prepare-and-measure protocol. Alice (A) and Bob (B) have access to
a quantum channel (Q), where Alice can send quantum states to Bob. Eve (E) can tap into this
channel and interact with the quantum states without restrictions. They also have access to an
authenticated classical channel (C), where they can send classical messages back and forth. Here,
Eve can listen to the classical messages, but she cannot change them
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back and forth. The fact that the channel is authenticated means that Alice and Bob
can be sure they are communicating with each other. This excludes scenarios where
Eve, for example, has broken into Bob’s lab and simply replaced him. In this case, it
would be pointless to try to produce a secret key. Furthermore, while Eve can listen
to all the communication that is sent over the classical channel, she cannot change
the classical messages.

In the following, we discuss the steps of a prepare-and-measure protocol by
studying some examples. We focus here on the quantum transmission phase and
do not go into any detail about the classical post-processing steps. These will be
discussed later in Sect. 4.2.

4.1.1.1 The BB84 Protocol
In the BB84 protocol, Alice starts by choosing two random classical bit strings
a = (a1, a2, . . . , a4n) and b = (b1, b2, . . . , b4n), both of length 4n. The first string
determines the bit value she wants to send (0 or 1), and the second string determines
the basis she uses to encode the bit: 0 represents computational basis (also called
the Z-basis) and 1 represents the Hadamard basis (or X-basis). The measurement
bases are also depicted on the left side of Fig. 4.2. According to the strings a and b,
Alice prepares a block of 4n qubits

|ψ〉A =
4n⊗

i=1

|ψaibi 〉A, (4.1)

where ai is the i-th bit of string a and bi is the i-th bit of string b: Hence, each of
the individual qubits is in one of the four states

|ψ00〉A = |0〉A (4.2)

|ψ10〉A = |1〉A (4.3)

Fig. 4.2 Measurement directions for the BB84 and six-state protocols. On the left side, the two
measurement bases (Z and X) for the BB84 protocol are depicted. It shows that they span the x-z-
plane of the Bloch sphere. On the right side, the measurement directions for the six-state protocol
(X, Y , and Z) are depicted. They span the whole Bloch sphere
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|ψ01〉A = 1√
2

(|0〉A + |1〉A) (4.4)

|ψ11〉A = 1√
2

(|0〉A − |1〉A) . (4.5)

Note that the four states are not all mutually orthogonal: For instance,
A〈ψ00|ψ01〉A = 1√

2
. This property ensures that there is no measurement that

can perfectly distinguish between all of the states with certainty (which would make
Eve’s job pretty easy). Alice then sends the state |ψ〉A to Bob over the quantum
channel, which we denote E.

Bob receives a state E (|ψ〉A〈ψ|) and publicly announces this fact. E describes
both the effect of applying the channel and Eve’s interaction with the state. Since
Eve has no knowledge about string b, which determines the basis that was used
for encryption, she can only guess. If her guess was wrong, she would not gain
any information about the bit Alice encoded (i.e., about the corresponding bit from
string a). Moreover, she would disturb the state Bob receives.

Bob also does not have any knowledge about b, so he, as well, has to guess in
which basis he should measure the state he has received. Hence, for each qubit he
decides randomly if he measures it in the computational basis or in the Hadamard
basis. As a result, he then holds a string a′ that represents the decoded bit values and
a string b′ where his choice of basis is stored, both of length 4n.

After this step, the sifting step follows. Alice publicly announces her choice of
basis, i.e., the string b, via the classical communication channel. Bob compares his
string b′ to Alice’s string b and tells Alice at which positions i their strings differ.
They then discard all the pairs {ai, a

′
i} for which bi �= b′

i . The remaining bits in
the strings a and a′ satisfy ai = a′

i (in the ideal case), since for these bits Bob
has measured in the same basis that Alice has prepared the qubits in. Note that the
announcement of string b does not reveal any information about a or a′. However, it
is important that Alice does not publish b before Bob has announced the reception
of the state E (|ψ〉A〈ψ|). Since Eve also gets the information about b, she otherwise
would have known exactly in which basis to measure the qubits in order to not
change the states Bob receives. After this step, Alice and Bob hold strings a and a′
each of length about 2n, since the probability that Bob chooses the wrong basis is 1

2 .
The quantum transmission phase is now over. The remaining steps are part

of the classical post-processing: First, Alice and Bob first estimate how much
noise or eavesdropping has happened during their communication, which is called
parameter estimation. Suppose they use half of their bits, i.e., after the parameter
estimation step, n key bits remain. They then perform error correction and privacy
amplification to turn their partially secret, correlated strings a and a′, each of length
n, into a pair of identical, secure keys of length m < n. The details of these steps
are studied in Sect. 4.2.
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The steps of the BB84 protocol are summarized in the following:

BB84 Protocol

1. Alice chooses two random classical bit strings a = (a1, . . . a4n) and b =
(b1, . . . b4n).

2. She encodes the bits in a into the computational basis if the corresponding
bit in b is 0, and into the Hadamard basis if the bit in b is 1, which results
in a 4n block of qubits as given in (4.1).

3. Bob receives the 4n qubits and publicly announces this fact.
4. Bob measures each qubit in the computational or Hadamard basis at

random that yields strings a′ and b′.
5. Alice announces b.
6. Alice and Bob discard any bits ai, a

′
i for which bi �= b′

i . After this step,
there are about 2n bits left.

7. Alice and Bob use n bits to estimate the amount of errors (and therefore
the information that Eve has on the bit strings).

8. They perform error correction and privacy amplification on the remaining
strings of n bits to obtain a shared secret key of m bits.

Exercise 4.1 Consider a setting where Alice and Bob use a noiseless quantum
channel to perform the BB84 protocol and no eavesdropping is happening. Suppose
a′
i is Bob’s measurement result of measuring the qubit |ψaibi 〉. Show that if b′

i �= bi ,
i.e., in the case that Bob has chosen a different measurement basis than Alice, his
result a′

i is random and completely unrelated with Alice’s value ai . On the other
hand, show that if b′

i = bi , then a′
i = ai .

A Simple Eavesdropping Strategy for the BB84 Protocol
Let us have a closer look at how eavesdropping interferes with the states and how
Alice and Bob can detect it. We will sketch a very simple strategy that Eve can
pursue, which is the intercept-and-resend strategy. Here, Eve intercepts all 4n qubits
that Alice sends to Bob. Since cloning the states is forbidden by the no-cloning
theorem (see Sect. 2.4), the simplest way to get information about the states is
to measure them. At this point of the protocol, Alice has not yet announced her
choice of basis, so Eve has to guess in which basis she has to measure the states,
thereby randomly choosing the basis she measures in (either the computational (C)
or Hadamard (H) basis). In about half of the cases, i.e., for 2n of the qubits, her
basis will be the same as the one that Alice chose for encoding the bit and Eve gets
completely correlated bit values. In the other 2n cases, however, her guess will be
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Table 4.1 Simple eavesdropping strategy for the BB84 protocol. Eve intercepts, measures, and
resends every qubit that Alice sends. This introduces errors (highlighted in grey) to Alice and
Bob’s key bits that they can exploit to detect the eavesdropping during the parameter estimation
(P.E.) step

Key bit 0 1 1 1 0 0 1 1 1 0

Alice’s basis C C H C C H H C H H
Alice’s state |ψ00〉 |ψ10〉 |ψ11〉 |ψ10〉 |ψ00〉 |ψ01〉 |ψ11〉 |ψ10〉 |ψ11〉 |ψ01〉
Eve’s basis H C C H C H C H C H
Eve’s state |ψ01〉 |ψ10〉 |ψ10〉 |ψ01〉 |ψ00〉 |ψ11〉 |ψ10〉 |ψ11〉 |ψ10〉 |ψ01〉
Bob’s basis H C H H C C H C H C
Bob’s result 0 1 0 0 0 0 1 1 0 0

Sifting ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗

Key bit 1 0 0 1 1 0

P.E. ✗ ✓ ✓

wrong and she gets a random result.1 Of course, as long as Alice has not revealed
her choice of basis, Eve does not know which states she has measured in the correct
basis.

Since Bob is expecting to receive the qubits from Alice, Eve has to send states to
Bob. Because she does not know which are the correct bases, she simply prepares
each qubit in the same basis that she has used for the measurement. Hence, 2n of
the qubits will be prepared in the wrong basis. Bob then receives the qubits and
measures them, again by randomly choosing the measurement basis. In n cases Bob
and Alice have chosen the same basis, but Eve’s basis is different. Since in these
cases Bob gets a random result, there will be n

2 errors in the sifted key. Since the
length of the sifted key is 2n, this corresponds to an error rate of 25%. Hence, if
Alice and Bob observe such a high error rate during parameter estimation they abort
the protocol.

We have depicted an example of this eavesdropping attack using ten qubits in
Table 4.1. After the sifting step, Alice and Bob are left with six of the initially ten
qubits. Next, Alice and Bob use half of the remaining bits to estimate the knowledge
that Eve has. They find that one of those three bits is wrong; hence, they have an
estimated error of 1

3 in their key bit string. Since this error is above 25%, they know
that Eve has intercepted the communication and abort the protocol.

What about Eve’s knowledge? How much information on the raw key (i.e., the
key string after the parameter estimation step) did she get? Since she guesses the
correct basis in 1

2 of the cases, she knows 50% of the key bits. Let us check how

1For instance, suppose Alice has prepared the state |ψ00〉, which is in the computational basis. If
Eve measures this state in the Hadamard basis, she gets the result 0 50% of the time and the result
1 also 50% of the time.
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much knowledge of the key bits she has in the example discussed in Table 4.1. After
she has measured the qubits, her bit string is

0 1 1 0 0 1 1 1 1 0

After Alice announces her choice of basis, Eve discards those bits where she has
measured in a different basis than Alice, so she is left with

1 0 1 0

She also has to discard those bits that Alice and Bob discard during their sifting
procedure:

1 0

At last, she has to discard the bits that were used for parameter estimation, which
leaves her with

0

Therefore, in the end she knows one of the three bits of the raw key. Of course,
since we have only used 10 qubits in this example, the numbers we get for the error
fraction and the amount of Eve’s knowledge are not very meaningful, but still you
get the idea.

Exercise 4.2 A QKD protocol that is even simpler than the BB84 protocol is the
B92 protocol, which was presented by Charles Bennett in 1992 [4]. Here, Alice
prepares her qubits in one of the two different states (instead of four). She first
generates a bit string a and for each bit ai she then prepares the i-th qubit in the
state

|ψ〉 =
{

|0〉 if ai = 0

|+〉 = |0〉+|1〉√
2

if ai = 1.
(4.6)

Alice sends her qubits to Bob, who generates a random bit string a′, which
determines the basis in which he measures the qubits: If a′

i = 0, he measures them
in the Z-basis, and if ai = 1, he chooses the X-basis. The measurement results form
a second bit string b: if Bob obtains the result −1 then i-th bit of b is bi = 0, and
if he obtains +1, then bi = 1. Bob then announces the bit string b (but keeps a′
secret), and they keep only those pairs {ai, a

′
i} for which bi = 1.

1. Show that bi = 0 when ai = a′
i . Hence, bi = 1 only if ai = a′

i ⊕ 1 (where ⊕
denotes addition modulo 2).
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2. For the i-th qubit, what is the probability that Bob will obtain bi = 1? Hint: Note
that Alice and Bob choose the strings a and a′ at random, hence here each bit
has probability 1/2 to be 0 and probability 1/2 to be 1.

3. After discarding those bits for which bi = 0, how can Alice and Bob form their
private keys?

The B92 protocol shows that the impossibility of perfectly distinguishing two non-
orthogonal quantum states lies at the heart of quantum key distribution. Similar to
the BB84 protocol, it enables Alice and Bob to establish a secret key because it is
impossible for an eavesdropper to distinguish between states without disturbing the
correlation between Alice’s and Bob’s bits.

4.1.1.2 The Six-State Protocol
The six-state protocol is a variation of the BB84 protocol that was proposed in [7]
and [2]. It uses three pairs of orthogonal states (i.e., six states in total) instead of two.
Additionally to the states that are used in the BB84 protocol, here we also include
the eigenstates of the Y measurement operator, which are

|ψy+〉 = 1√
2

(
1
i

)

, |ψy−〉 = 1√
2

(
1
−i

)

. (4.7)

Therefore, we now have three mutually unbiased bases. The protocol follows the
same steps as the BB84 protocol with only minor adjustments: Alice now chooses
randomly between three different encoding bases. This has the effect that in the
sifting phase, where Alice and Bob compare their respective bases and discard the
bits when encoding and measurement basis do not match, now approximately 2/3
of the bits are discarded instead of 1/2.

Although the fraction of discarded bits is higher in this protocol, it has the
advantage that the eavesdropper has less knowledge, since he now also has to guess
between three different bases. Intuitively speaking, this is due to the fact that the six
states now span the whole Bloch sphere instead of only the circle that is spanned by
the four states used in the BB84 protocol. The two settings are compared in Fig. 4.2.
For a given disturbance of the eavesdropper, one can show that the six-state protocol
achieves a higher secret key rate than the BB84 protocol.

4.1.1.3 The SARG04 Protocol
The SARG04 protocol is a variation of the BB84 protocol introduced in [28]2

that is tailored to be robust against the so-called photon-number-splitting (PNS)
attacks. This is an attack that exploits weaknesses in a common experimental
implementation of QKD protocols. It is convenient to implement qubits using the
polarization degree of freedom of photons, as we have seen in Sect. 1.3. In the ideal
case each qubit is represented by one photon. However, in practice, ideal single-

2There is also an entanglement-based version of this protocol [6].
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photon sources do not exist. Therefore, one often uses weak laser pulses to encode
the bits. In this implementation, it is possible that photons are produced in multi-
photon bunches, so Eve can perform an attack where she keeps one of the photons
and lets the rest pass to Bob. She then just needs to wait until Alice announces her
choice of basis, so she can measure the stored photons in the correct basis, hence
receiving perfect knowledge about the key. We discuss this attack in more detail in
Sect. 5.3.

The SARG04 protocol addresses this problem by using a different sifting
procedure. The sifting step is the only step that differs in the SARG04 protocol
compared to the BB84 protocol. Instead of publicly announcing the bases Alice
uses to encode the bits, Alice and Bob pursue the following strategy: For every
qubit she has sent, Alice chooses one state from the computational basis and one
from the Hadamard basis in a way that the actual state of the qubit is one of these
states. She then publicly announces the two states and notes (privately) which of
the two states is the right one. For example, she notes 0 if the actual qubit state was
the computational basis state and 1 if it was the Hadamard basis state. This piece of
information is the secret key bit she wishes to communicate to Bob.

In order to obtain the secret bit, Bob must be able to distinguish between the
two candidate states. He knows that the qubit state he received was one of the two
candidate states that Alice has announced. On the basis of his measurement, he
checks which test state his result is consistent with. If it is consistent with both of
the states, he announces the bit to be invalid, since he is unable to determine which
of the states was the one that was transmitted from his measurement outcome. If, on
the other hand, one of the test states is inconsistent with his observed measurement
outcome, Bob can retrieve the secret key bit and announces the bit to be valid.

Let us illustrate this scheme with an example. Recall that the state Alice sends is
one of the four Bell states |ψ00〉, |ψ10〉, |ψ01〉, |ψ11〉 defined in (4.2)–(4.5). Suppose
the state she has sent is |ψ00〉. In the sifting step, she chooses to announce the states
|ψ00〉 and |ψ01〉 and notes 0 as the secret bit. Depending on the basis Bob chose for
his measurement, this can either be a valid or an invalid bit:

1. Suppose Bob chose to measure the state in the computational basis. The only
possible outcome for this measurement is |ψ00〉. This outcome is clearly consis-
tent with the candidate state |ψ00〉. However, this outcome is also possible if the
transmitted state had been |ψ01〉, since measuring this state in the computational
basis yields |ψ00〉 and |ψ10〉 each with probability 1

2 . Therefore, Bob announces
the bit to be invalid.

2. Suppose Bob has measured the state in the Hadamard basis. In this case, he
obtains either |ψ01〉 or |ψ11〉, each with a probability of 1

2 . If his outcome is
|ψ01〉, this is again consistent with both of the candidate states. On the other
hand, if his outcome is |ψ11〉, then he can be certain that the state Alice has sent
is |ψ00〉, since this outcome can never be obtained from the state |ψ01〉. Thus, in
this case Bob is able to retrieve the secret bit, namely 0, and he announces that
the bit is valid.
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After the sifting step, Alice and Bob are left with roughly 1
4 of the initial bits

instead of the 1
2 in the BB84 protocol. However, it is shown that the SARG04

protocol is provably better against PNS attacks than the BB84 protocol. The
advantage of this protocol is that Alice never reveals her encoding bases. As a result,
Eve has to store more photons to get reliable information about the secret bits, which
raises the chances that her attack is detected.

4.1.2 Entanglement-Based Protocols

In order to establish a secret key between Alice and Bob, we can also make use of
entanglement. For instance, with regard to the PNS attack it might be beneficial
to use entangled photons since the likelihood of simultaneously producing two
entangled photon pairs is very low; hence, the PNS attack is much less effective. In
general, the setting of an entanglement-based protocol, which is depicted in Fig. 4.3,
includes a source that distributes entangled states between Alice and Bob. There
are no conditions on where this source is or who controls it. It can be in Alice’s
lab and she distributes the entangled qubit pairs before performing the steps of the
protocol, or some third party (which is usually called Charlie) distributes the pairs
between Alice and Bob. It is even possible that Eve is in control of the source.
Therefore, we regard the source as a completely untrusted device and, to account
for the worst case, we usually assume that it is Eve who has perfect control of the
source. As in the previous scenario, Alice and Bob have access to an authenticated
classical channel where Eve can listen to the communication but cannot change
the messages. Entanglement-based protocols can be easier to analyse in terms of
security, since there is no quantum channel between Alice and Bob that has to be
taken into account.

Fig. 4.3 The setting of an entanglement-based protocol. Alice (A) and Bob (B) have access to an
authenticated classical channel (C) that they can use to send classical messages back and forth.
Eve (E) can listen to (but not change) all communication over the classical channel. The scheme
furthermore includes a source (S) that provides entangled states for Alice and Bob via quantum
channels (Q). We assume that Eve has total control over this source to account for the worst case
scenario
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Fig. 4.4 Measurement directions for the Ekert protocol. The measurements are depicted in the
x-z-plane of the Bloch sphere. On the left side are the three different measurements that Alice can
choose between, and on the right side Bob’s possible measurement directions are shown

4.1.2.1 The Ekert Protocol
In 1991, Arthur Ekert developed a scheme that exploits entanglement to generate
a secret key [16]. Here, we follow the description of the protocol given in [9]. The
protocol works as follows: Alice and Bob have access to a source that distributes
maximally entangled pairs of qubits among them, for instance, states of the form

|�−〉AB = 1√
2

(|01〉AB − |10〉AB) . (4.8)

For each of these bipartite states |�−〉AB Alice and Bob measure an observable
that is randomly chosen from the sets {Ai} and {Bi}, respectively. These observables
are spin components lying in the x-z-plane of the Bloch sphere and are depicted in
Fig. 4.4. In general, these operators are defined as

Ai = cos ϕA
i + sin ϕA

i ,

Bi = cos ϕB
i + sin ϕB

i

with ϕA
1 = 0, ϕA

2 = π
2 , and ϕA

3 = π
4 for Alice and ϕB

1 = 0, ϕB
2 = −π

4 , and
ϕB

3 = π
4 for Bob. In terms of the measurement operators Z = |0〉〈0| − |1〉〈1| and

X = |+〉〈+| − |−〉〈−|, the measurements can also be written as

A1 = Z, B1 = Z,

A2 = X, B2 = 1√
2

(Z − X) ,

A3 = 1√
2

(Z + X) , B3 = 1√
2

(Z + X) .



102 4 Quantum Key Distribution Protocols

Note that the measurements A1 and B1 as well as A3 and B3, respectively, are those
where Alice and Bob measure in the same direction.

In the next step, Alice and Bob announce the directions they chose for each
measurement. For those pairs where the directions match, i.e., the pairs (A1, B1)

and (A3, B3), they get completely anti-correlated results. Therefore, by inverting all
bits for one party, the outcomes of these measurements form the sifted key.

The results from the measurement pairs (A1, B3), (A1, B2), (A2, B3), and
(A2, B2) are used to estimate how much information an eavesdropper has about the
key. This is done by checking a so-called CHSH inequality. The CHSH inequality,
named after the initials of its four discoverers [13], is a bound on the expectation
values of certain classical correlations. It is part of a larger set of inequalities known
as Bell inequalities (because the first one was found by John Bell [3]). Suppose
you have four classical random variables, A1, A2, B2, B3. Suppose each of them
can take one of two values, +1 or −1. One can easily verify that A1(B3 + B2) +
A2(B3 − B2) = ±2, simply by checking all possibilities. By taking the expectation
value of these quantities over N assignments of the random variables, we get

|〈A1(B3 + B2) + A2(B3 − B2)〉| ≤ 2.

Since taking the expectation of a random variable is a linear operation, we can
rewrite this and obtain the CHSH inequality:

S := |〈A1B3〉 + 〈A1B2〉 + 〈A2B3〉 − 〈A2B2〉| ≤ 2,

where 〈AiBj 〉 = 1
N

∑
Aν

i B
ν
j , and Aν

i and Bν
j represent the assigned values ν to the

random variables Ai and Bi .
We can now consider A1, A2, B2, B3 to be quantum observables as described in

the Ekert protocol. The expectation value for their products is then given by

〈AiBj 〉 = Tr
(
Ai ⊗ Bjρ

)
.

Using the measurement directions defined in the Ekert protocol, we can evaluate
their expectation values with respect to the state ρ = |�−〉〈�−|. For instance, the
expectation value of A1 and B3 is

〈A1B3〉 = 〈�−|
(

Z ⊗ 1√
2

(Z + X)

)

|�−〉 = − 1√
2
.

In this way we can evaluate all terms in the sum of expectation values S and find
that

S = 2
√

2.

This is a violation of the CHSH inequality that we have derived above and tells
Alice and Bob that they share a maximally entangled state. In this case, Eve has
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no information about the key, since a maximally entangled bipartite state cannot be
entangled with a third party.

This is actually the highest value for S that can be achieved. In general, it is
possible to obtain lower values for S that still violate the CHSH inequality. In this
case, Eve can have some knowledge about the key. However, it is still possible to
extract a secret key from this data as long as there is some violation of the CHSH
inequality. If S ≤ 2, this indicates that Alice and Bob share a pair of separable states,
i.e., it is impossible to generate a secret key (which was shown in [14]).

If their measurement results pass the test, Alice and Bob can proceed to the next
step of the protocol and obtain the final secret key by doing error correction and
privacy amplification. The steps of the protocol are summarized below:

Ekert91

1. Alice and Bob distribute a number of |�−〉AB states (4.8) between them,
where the first subsystem belongs to Alice and the second one to Bob.

2. For each state, Alice and Bob randomly choose a measurement from the
sets {Ai} and {Bi}, respectively.

3. Alice and Bob announce the bases they chose for each measurement. In the
cases where the directions match, (A1, B1) and (A3, B3), the results form
the sifted key.

4. The results where Alice and Bob chose the directions (A1, B3), (A1, B2),
(A2, B3), and (A2, B2) are used to check a CHSH inequality.

5. Alice and Bob perform error correction and privacy amplification to turn
the sifted key into a shared secret key.

Exercise 4.3 Consider the Ekert protocol described above where instead of the state
|�−〉, the state

|�+〉 = 1√
2

(|00〉AB + |11〉AB) (4.9)

is distributed, but the same measurement operators Ai , Bi are used.

1. Show that the measurement outcomes for the pairs (A1, B1) and (A3, B3),
respectively, are completely correlated, i.e., show that whenever Alice obtains
the result +1 (respectively, −1), Bob always obtains the result +1 (respectively,
−1).

2. Show that the CHSH violation calculated from the pairs (A1, B3), (A1, B2),
(A2, B3), (A2, B2) using the state |�+〉 is S = 2

√
2.

3. What is the value of S if Bob instead uses the measurement operators B2 = Z

and B3 = X?
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Exercise 4.4 (Tsirelson’s Bound) In this exercise, we want to show that

Tr
(
ρ (A1 (B1 + B2) + A2 (B1 − B2))

) ≤ 2
√

2 (4.10)

for any quantum state ρ and any set of self-adjoint operators A1, A2, B1, B2 with
norm ≤ 1 that fulfil [Ai,Bj ] = 0 for i, j = 1, 2. This is known as Tsirelson’s bound
[12]. Consider the operator

X = A1 (B1 + B2) + A2 (B1 − B2) . (4.11)

1. First, show that the statement ‖X‖ ≤ 2
√

2 is equivalent to ‖X2‖ ≤ 8.
2. Show that X2 = 4−[A1, A2][B1, B2]. Use this result to compute an upper bound

on ‖X2‖.
3. Use this approach to find a bound on the CHSH formula in (4.10) in case that

Alice’s observables commute.

4.1.2.2 Entanglement-Based Version of BB84
The entanglement-based version of the BB84 protocol3 exploits the same ideas
as the Ekert protocol, namely that a maximally entangled state leads to perfect
correlations when the parties measure in the same basis. Suppose that Alice and
Bob share the maximally entangled state

|�+〉AB = 1√
2

(|00〉AB + |11〉AB) . (4.12)

Since this is a pure state, it cannot be entangled with anything else. In particular, this
means that an eavesdropper does not have any information about the measurement
results that are obtained from this state. Therefore, Alice and Bob’s main goal is to
distribute a sequence of m of these states, i.e.,

|�+〉⊗m
AB = |�+〉AB ⊗ · · · ⊗ |�+〉AB, (4.13)

and measure them in order to obtain a secret key that Eve cannot have any
knowledge on (by the laws of quantum mechanics). However, in practice, they have
to use an insecure quantum channel because of Eve’s interactions with the quantum
states and noise in general. Hence, they will not end up with the exact state given in
(4.13), but rather with a mixed state ρ. Their task is then to correct the errors that
were induced by transmitting the state over the quantum channel.

3This protocol is also referred to as the modified Lo–Chau protocol, since it exploits ideas
introduced by Lo and Chau in [22].
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To understand the details of this procedure, it is necessary to go into some
detail about error correction codes, especially the so-called Calderbank–Shor–
Steane codes (or simply CSS codes), which are quantum error correction codes
that exploit the error-correcting properties of classical codes to detect and correct
quantum errors. These codes are explained in more detail in Appendix B. We will
also need these codes to show that the BB84 protocol is secure, but this is deferred
to a later section. For now, it suffices to assume that Alice and Bob can use two
classical error correction codes C1 and C2 to construct a CSS code that encodes
m qubits into n qubits and that corrects arbitrary quantum errors (i.e., bit flips and
phase errors and their combination) on up to t qubits. The protocol then works as
follows:

Entanglement-Based BB84

1. Alice creates 2n qubit pairs in the state |�+〉⊗2n with |�+〉 as given in
(4.12).

2. She randomly selects n of these qubits that will later be used to estimate
the errors in the qubit pairs.

3. Alice selects a random classical bit string b = (b1, b2, . . . , b2n) of length
2n. Whenever the bit bi is 1, she applies a Hadamard transformation
(2.28) to her half of the corresponding qubit pair.

4. She sends the other half of all qubit pairs to Bob.
5. Bob receives the qubits and publicly announces this fact.
6. Alice announces the string b and the positions of the check qubits.
7. Bob applies a Hadamard transformation to those qubits for which bi = 1.
8. Alice and Bob measure the check qubits in the computational basis

{|0〉, |1〉} to estimate the error rate. If more than t errors occur, they abort
the protocol.

9. If the number of errors is below t , Alice and Bob use the error correction
codes C1 and C2 to correct the errors in the n remaining bits and obtain
|�+〉⊗m.

10. They measure the state |�+〉⊗m in the computational basis to obtain the
shared secret key.

Note that applying the Hadamard transformation to the qubits before and after
they are sent through the quantum channel has the same effect as preparing and
measuring them in the Hadamard basis. We will show how exactly this protocol can
be transformed into the original BB84 protocol as part of the security proof of the
BB84 protocol, since this requires to discuss error correction codes in more detail.
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4.1.3 From Prepare-and-Measure to Entanglement-Based
Protocols

We have now discussed several prepare-and-measure protocols as well as
entanglement-based protocols and already seen indications (for instance, the BB84
protocol) that these two types of protocols are connected. It can be useful to translate
a prepare-and-measure protocol into an entanglement-based one since some security
proof techniques require the latter type of protocol. In the entanglement-based
version, Eve has more power because she controls both Alice’s and Bob’s part
of the state, while in the prepare-and-measure version she cannot interact with
Alice’s state since it is never sent over a quantum channel. Therefore, security of
the entanglement-based protocol automatically implies the security of the prepare-
and-measure protocol.

Although transforming a prepare-and-measure protocol into an entanglement-
based one is usually a non-trivial task since different protocols require making
different assumptions, we can say that, in general, the connection is based on the
following observations:

In a prepare-and-measure protocol, Alice’s role is to choose a sequence of N

symbols x1, x2, . . . , xN that are realizations of a classical random variable X with
probability distribution pX(x). She then encodes these symbols into a quantum state
of the form

|φx1〉 ⊗ · · · ⊗ |φxN 〉. (4.14)

In all cases, it is crucial that non-orthogonal states are used for the encoding;
otherwise, Eve is able to decode the sequence without introducing errors by
measuring in the appropriate basis. Bob’s role in the prepare-and-measure scheme
is then to measure the quantum states that are sent by Alice.

This situation can equivalently be achieved by using entangled states in the
following way: Instead of encoding a sequence of symbols into a quantum state
that is sent to Bob, Alice prepares the bipartite entangled state

|�〉AB =
∑

x

√
pX(x)|x〉A ⊗ |φx〉B, (4.15)

where {|x〉A} is an orthonormal basis of the subsystem A, i.e., Alice’s system. Alice
then keeps the first half of the state in (4.15) and sends the other half to Bob. Alice
measures the quantum system she kept with respect to the basis {|x〉}A to get the
classical value X (which corresponds to the encoded bit, i.e., usually 0 or 1). It is
easy to verify that the outcomes are distributed according to pX(x). The probability
of obtaining an outcome y when measuring system A in the basis {|x〉A} while doing
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nothing on system B is given by

P(y) = AB〈�| (|y〉A〈y| ⊗ IB

) |�〉AB (4.16)

=
∑

x,x ′

√
pX(x)

√
pX(x ′)A 〈x|y〉

︸ ︷︷ ︸
≡δx,y

A 〈y|x ′〉
︸ ︷︷ ︸
≡δy,x′

A B〈φx |φx ′〉B (4.17)

= pX(y). (4.18)

The remaining quantum system, namely Bob’s system, contains the correct encod-
ing of X: If Alice obtains an outcome y after measuring her part of the state, then
the state of Bob’s system should be |φy〉. The state of the system after Alice’s
measurement is given by
(|y〉A〈y| ⊗ IB

) |�〉AB

P(y)
= 1√

pX(y)

∑

x

√
pX(x) |y〉A 〈y|x〉

︸ ︷︷ ︸
≡δy,x

A ⊗ |φx〉B (4.19)

= 1√
pX(y)

√
pX(y) |y〉A ⊗ |φy〉B (4.20)

= |y〉A ⊗ |φy〉B, (4.21)

which is exactly what we expect.
The fact that a prepare-and-measure scheme can be translated into an

entanglement-based scheme does not mean that both schemes are equally practical
or feasible with current technology. Rather, it implies that the security proof for
the entanglement-based scheme automatically translates to a security proof for the
prepare-and-measure protocol. This is very convenient, since the entanglement-
based scheme only involves quantum states (and no quantum channels), which are
usually easier to analyse. This is in fact the strategy that we will pursue to prove
the security of the prepare-and-measure BB84 protocol in the next chapter: We will
prove the security of the entanglement-based version of BB84 and then show that
this formulation is equivalent to the prepare-and-measure scheme.

4.2 Classical Post-Processing

After the quantum transmission phase Alice and Bob hold a pair of bit strings
that are, in general, partially correlated and partially secure. In the classical post-
processing, they turn these bit strings into secure keys. The first step is the parameter
estimation step: Alice and Bob have to estimate how many errors are there in their
respective bit strings and with this the amount of information that was leaked to
Eve during the quantum phase. If the error rate is above a certain threshold, they
abort the protocol. Otherwise, they continue with the classical post-processing (see
Fig. 4.5): First, they perform error correction, where their, in general, partly different
bit strings are turned into identical ones. The second part is privacy amplification,
where any residual information that Eve may have about the key is removed.
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Fig. 4.5 Classical post-processing. If the output of the quantum phase of the protocol passes
parameter estimation, classical post-processing turns the, in general, partially secret and partially
correlated bit strings that Alice and Bob hold into secure keys. Error correction (EC) ensures that
they hold identical bit strings, while privacy amplification (PA) minimizes Eve’s knowledge on the
key, hence making it secure

In all of these tasks, Alice and Bob use some part of their bit strings to achieve the
respective goal. Here, it is important to find efficient methods such that only a small
amount of bits has to be discarded for this purpose. In the remaining part of this
section we will present some of the standard techniques that have been developed
for these problems.

4.2.1 Parameter Estimation

After Alice and Bob have completed the quantum phase of the protocol, they want
to make an estimate of the error rate in order to decide whether to abort the protocol
because too much information was leaked to Eve or to proceed with transforming
their bit strings into a secure key. For this purpose, they use a small sample of their
bit strings to estimate a global property, namely the error rate, of those strings. The
standard procedure here is that Alice sends a small sample of her string to Bob that
he compares to his string. He then tells Alice the error rate he sees. If it is beyond a
certain threshold, they abort the protocol, otherwise, they continue.

Although Alice and Bob only know the error rate for a small sample of their
strings, this information enables them to make statements about the whole strings,
which is due to the so-called Chernoff–Hoeffding type bounds [11, 19, 29]. These
are statistical inequalities that state that given a random subset of data, a statistical
property of the sample must be close to the statistical property of the whole data.
This means that if Alice and Bob see an error rate of 7% in their sample, then the
error rate of the whole strings is, with high probability, close to 7%.

We want to talk about these kinds of bounds and how to make use of them in the
parameter estimation step in more detail. In our discussion we make use of a bound
originally shown by Serfling [29], in a slightly different form presented in [1]:

Theorem 4.5 (Serfling’s Inequality) For a set of N random variables Ki with
values ki ∈ {0, 1}, where i ∈ {1, . . . , N}, the average is defined as

K = 1

N

N∑

i=1

Ki. (4.22)
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Suppose we draw a sample (without replacement) of size n out of the set {Ki}i with
values xj ∈ {0, 1}, where j ∈ {1, . . . , n}. Then its average is defined as

X = 1

n

n∑

j=1

Xj . (4.23)

Now let k = N − n and 0 ≤ β ≤ 1. Then

Pr[X ≥ K + β] ≤ e− 2β2nN
k+1 . (4.24)

In brief, the above theorem states that the probability that the sample average X

is bigger than the total average K is exponentially small in the sample size n.
Therefore, we can make this probability smaller by enlarging the sample size.

How can we use this to find suitable bounds for parameter estimation? The
quantity we are interested in is the probability that the error rate in the remaining n

bits, denoted as �n, is larger than the error rate that Alice and Bob observed in the
k sampled bits, denoted as �k . This probability is conditioned on the event that the
error rate of the sampled bits, �k , is below a certain threshold λmax, since otherwise
the protocol is simply aborted. Hence, the quantity we are interested in is

Pr[�n ≥ �k + γ |�k ≤ λmax], (4.25)

where γ is some small constant. The error rates are defined as follows. Alice and
Bob’s respective key strings split into a set of k bits that is used as the sample and a
set of the remaining n bits. Therefore, their keys KA and KB can be written as

KA = Kk
AKn

A, KB = Kk
BKn

B. (4.26)

Furthermore, Kk
A ⊕ Kk

B denotes the binary addition of the two sample bit strings.
Note that the resulting string has 0s at those positions where Alice’s and Bob’s bits
coincide and 1s at positions where their respective bits differ. The Hamming weight
|Kk

A ⊕ Kk
B | of this string is the number of 1s, i.e., the number of errors in their

sample bit strings (the same considerations can be done for Kn
A and Kn

B). The error
rates are then defined as

�n = 1

n
|Kn

A ⊕ Kn
B |, (4.27)

�k = 1

k
|Kk

A ⊕ Kk
B |. (4.28)
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Furthermore, using the notation ν = k
N

, the total error rate � (i.e., the one that
includes both the sample bits and the remaining bits) can be written as

� = 1

N
|KA ⊕ KB | = ν�k + (1 − ν)�n. (4.29)

Since the k bits are randomly chosen by Alice and communicated to Bob all at once,
they are sampled without replacement, which coincides with the requirement of the
theorem.

We can now start to derive a bound on the quantity of interest. The first step is to
conclude from Bayes’ theorem (see Appendix A) that

Pr[�n ≥ �k + γ |�k ≤ λmax] ≤ Pr[�n ≥ �k + γ ]
Pr[�k ≤ λmax] . (4.30)

The term in the denominator on the right hand side is simply the probability that the
protocol passes the check; hence, we will use the notation ppass = Pr[�k ≤ λmax].
The term in the nominator can be bounded as follows:

Pr[�n ≥ �k + γ ] = Pr[ν�n ≥ ν�k + νγ ] (4.31)

= Pr[�n ≥ ν�k + (1 − ν)�n + νγ ] (4.32)

= Pr[�n ≥ � + νγ ] (4.33)

≤ e
− 2k2nγ 2

(k+1)N , (4.34)

where in the last step we have applied Theorem 4.5. We can now write (4.30) as

Pr[�n ≥ �k + γ |�k ≤ λmax] ≤ e
− 2k2nγ 2

(k+1)N

ppass
. (4.35)

This inequality now states that the probability that the error rate on the remaining n

bits is larger than the error rate on the k sample bits plus a small constant γ , given
that the error rate is below the threshold λmax, is exponentially small in the sample
size k. It quantifies the intuition that if the error rate in the sample is small, then the
error rate in the remaining bits should be small too.

4.2.2 Error Correction

If Alice’s and Bob’s respective bit strings have passed the parameter estimation
step, they proceed to correcting the errors. This step is also called information
reconciliation because, in general, the objective is to turn two possibly different
strings into two strings that are the same by possibly changing both of them.
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However, in practice it is usually easier to consider the special case of error
correction, where Bob changes his string in order to coincide with Alice’s string.

In the last step, the parameter estimation step, Alice and Bob have estimated the
error rate in their strings. Therefore, they now need to locate these errors in order
to be able to correct them. A very simple error correction strategy is the following:
Alice randomly chooses two bits from the sifted key and computes their XOR (i.e.,
exclusive OR) value. This is 0 if the two bits are the same and 1 if the two bits
differ. She sends this value to Bob and tells him the positions of the corresponding
bits. He compares this value with the XOR value he computes from his bits at the
corresponding positions. If the values differ, Alice and Bob discard both bits. If the
values are the same, they keep the first bit and discard the second. In this way, Eve
does not gain any information on the actual key bit values. Although this strategy is
easy to carry out, it is not very efficient. In case there are no errors in the bit strings,
Alice and Bob still discard half of their bits, even more if there are errors in the
strings.

Fortunately, there are more efficient error correction protocols. This is a well-
studied research area that was investigated even before people came up with
quantum cryptography. Therefore, there are explicit classical error correction codes
that define how much communication is necessary for Bob to find and correct the
errors. A variety of examples can be found in the books [23] and [18], for example.

Independent of the chosen error correction protocol, Alice and Bob have to
make sure that the procedure was successful. Since Alice does not have access to
Bob’s system and Bob does not have access to Alice’s system, neither of them can
directly check if error correction was successful. One method they can use instead
is applying a two-universal hash function.

Definition 4.6 Let F be a family of functions from an alphabet X to an alphabet
Z and let pF be a probability distribution on F . The pair (F , pF ) is called two-
universal if

Pr
f ∈F

[f (x) = f (x ′)] ≤ 1

|Z| (4.36)

for any x, x ′ ∈ X with x �= x ′ and f chosen randomly from F according to pF .

Exercise 4.7 Show that the number |F | of functions in a family F of two-universal
hash functions f : X → Z must, in general, be larger than the number |Z| of keys
they can generate.

For simplicity, we assume that pF is the uniform distribution on F . For alphabets
{0, 1}n and {0, 1}l with 0 ≤ l ≤ n, such a family of two-universal hash functions
always exists. This is proven in [10] and [31], where explicit constructions for such
families are given.

To check whether the error correction procedure was successful, Alice chooses at
random a function from a family of two-universal hash functions and applies it to her
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bit string. She then sends both the function fEC she chose and the output fEC(KA)

to Bob. Bob evaluates the function on his key and obtains fEC(KB). He compares
his result to Alice’s output. If their hashes are equal, then with high probability their
keys are the same. If their hashes differ, they abort the protocol.

We can show that the procedure that uses two-universal hash functions to check
whether error correction was successful guarantees that the protocol is εcor-correct
when using the right dimension of the output space of the hash functions. A protocol
is εcor-correct if the probability that the two resulting keys of Alice and Bob
differ is at most εcor (this is explained in more detail in Sect. 5.1). According to

Definition 4.6, if the cardinality of the output space is |Z| = 2�log 1
εcor

�, we can
show that the keys are equal except with probability εcor: First, note that it follows
directly from the definition that

Pr[fEC(KA) = fEC(KB)|KA �= KB] ≤ 2−�log 1
εcor

� ≤ εcor. (4.37)

This, together with Bayes’ theorem (see Appendix A), implies that

Pr[fEC(KA) = fEC(KB)|KA �= KB ]
︸ ︷︷ ︸

≤εcor

Pr[KA �= KB ]
︸ ︷︷ ︸

≤1

(4.38)

= Pr[KA �= KB |fEC(KA) = fEC(KB)] Pr[fEC(KA) = fEC(KB)]
︸ ︷︷ ︸

=1

, (4.39)

where Pr[fEC(KA) = fEC(KB)] = 1 follows from the fact that the protocol aborts
if the hashes differ. In summary, the probability that the keys differ even though the
hashes are the same is

Pr[KA �= KB |fEC(KA) = fEC(KB)] ≤ εcor. (4.40)

Note that this checking procedure is independent of the error rate that Alice and Bob
have observed in the parameter estimation step and also independent of the chosen
error correction code. In the next section we will see that the privacy amplification
procedure does not affect the correctness of the key, and show that if the checking
procedure succeeds except with probability εcor, then the whole protocol is εcor-
correct.

4.2.3 Privacy Amplification

The final task that Alice and Bob have to complete is to remove any knowledge
that Eve has of the key after all the other steps in the protocol. This can be
achieved by using the so-called randomness extractors. These are functions that
take a source of randomness as input, for example, a string with a lower bound
on its entropy, as well as a small uniformly random string (the seed), and output
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an almost uniformly random output that is longer than the seed. There are two
additional requirements that we have: First, we want the seed and the output string
to be independent of each other, since Alice has to communicate the seed publicly
to Bob. This is guaranteed if we use a strong randomness extractor. Furthermore,
we are not only interested in extracting randomness, but in extracting randomness
with respect to a quantum adversary. Altogether, what we need is a quantum-proof
strong randomness extractor [21].

To understand the definition of a quantum-proof strong randomness extractor we
first need to clarify what systems and states are involved in this procedure. Alice’s
bit string is described by a classical random variable X, while Eve’s information
is represented by a quantum system E that is correlated with Alice’s system. This
situation can be described by the classical–quantum state4

ρXE =
∑

x∈X
pX(x)|x〉〈x| ⊗ ρx

E, (4.41)

where {|x〉} is an orthonormal basis. This state is an element of B(HX ⊗ HE).
Furthermore, we need a state ρY ∈ B(HY ) that describes the seed Y that is used to
pick a function at random.

Finally, we have to specify the information that the adversary has on Alice’s
string. It is crucial that this information is limited, and the measure we use here
is the conditional min-entropy we introduced in Definition 3.48. For a classical–
quantum state as the one that describes Alice’s and Eve’s system, Hmin(X|E) tells
us how much uniform randomness Z = f (X) we can extract from Alice’s random
variable X such that Z is independent of Eve’s system E. If this quantity is bounded
from below, we know that it is possible to extract some randomness. Z then forms
the resulting secure key.

Definition 4.8 A (k, ε)-strong quantum-proof randomness extractor is a function
Ext : {0, 1}n × {0, 1}d → {0, 1}m if for all classical–quantum states ρXE with a
classical random variable X ∈ {0, 1}n with min-entropy Hmin(X|E) ≥ k and a
uniform random seed Y ∈ {0, 1}d we have

1

2
‖ρExt(X,Y )YE − I

2m
⊗ ρY ⊗ ρE‖1 ≤ ε. (4.42)

It is clear that the state I

2m ⊗ ρY ⊗ ρE represents the ideal situation: The key,
represented by the maximally mixed state I

2m , is uniformly random, i.e., each
possible m-bit sequence has the same probability. Furthermore, it is independent
of the seed Y and the state of Eve’s system E, exactly as we required.

4Remember that we discussed these states in (2.141).
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One example of a quantum-proof strong randomness extractor are two-universal
hash functions as defined in Definition 4.6.5 The strategy is similar to the application
of two-universal hash functions described above: Alice and Bob publicly choose
a function fPA from a family of two-universal hash functions F at random (this
is what they need the random seed Y for) and apply it to their key strings.6

More precisely, let Alice’s raw key after the error correction step be KA, and
then her resulting final key after the privacy amplification step is fPA(KA). Since
two-universal hash functions fulfil all the properties of a quantum-proof strong
randomness extractor (see, for example, [27]), the resulting key is close to a perfect
key, i.e., a uniformly random bit string that is independent of the seed and Eve’s
system. We can formulate an upper bound on the length of the resulting key in terms
of the min-entropy by making use of the Quantum Leftover Hash Lemma [26, 30]:

Lemma 4.9 (Quantum Leftover Hash Lemma) Let ρfPA(KA)YE be the state after
applying a random two-universal hash function fPA to Alice’s raw key KA. Then for
every ε′ > 0 it holds that

D
(
ρfPA(KA)YE, ρU ⊗ ρYE

) ≤ 2ε′ + 1

2

√

2l−Hε′
min(KA|E), (4.43)

where ρU = ∑
u∈Z

1
|Z| |u〉〈u| is the maximally mixed state over the space of possible

keysZ.

Note that, in contrast to Definition 4.8, the above lemma uses the smooth
min-entropy rather than the min-entropy because it gives a tight bound on the
maximum amount of uniform randomness that can be extracted from KA while
being independent of E (see [20]). This gives rise to an additional smoothing
parameter ε′. Together with the requirement that the protocol is εsec-secure, the
above lemma gives an upper bound on the length l of the secure key:

l ≤ Hε
min(KA|E) + 2 − log

1

εsec − 2ε′ . (4.44)

As a last point, since the correctness of the protocol is ensured by the error
correction procedure, it is important that privacy amplification does not corrupt this
correctness. If the keys KA and KB after the error correction step are the same
(which is the case with probability at least εcor, as we just showed), then the outputs
of the privacy amplification step are guaranteed to be the same. Let fPA be the

5Another example is Trevisan’s extractor, which is discussed in [15], for example.
6Since after the error correction step Alice and Bob’s keys are identical with high probability, they
can do the exact same steps on their bit strings to produce a pair of identical secure keys. Therefore,
we only describe Alice’s part in the following while keeping in mind that Bob performs the exact
same actions on his raw key.
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function used in the privacy amplification step. Then

Pr[fPA(KA) �= fPA(KB)] ≤ Pr[KA �= KB ] ≤ εcor. (4.45)

Hence, for a suitable choice of the output space of the hash functions used in the
error correction step, the whole protocol is εcor-correct.

This concludes our discussion of the classical post-processing phase. After Alice
and Bob have performed the privacy amplification step and assuming that all steps
have been carried out successfully, they hold two identical bit strings that are close
to being uniformly random. Furthermore, Eve has almost no knowledge about the
key. These are the requirements for a secure key that can be safely used in any
cryptographic application.
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5Security Analysis

Abstract

Proving the security of a quantum key distribution protocol is crucial with regard
to using the protocol in any practical application. Without a security proof one
cannot be sure that the created key can safely be used for communication tasks.
The security analysis of a quantum key distribution protocol involves several
steps: the final goal is to make a security claim about the protocol. For this
purpose, it is necessary to first give a precise definition of what we mean by
“security”. To arrive at the security claim, we first clarify the assumptions that
we make for the protocol in question. There are some assumptions we have to
make independent of the protocol (e.g., that quantum mechanics is correct), but
others are very specific, such as a claim about the efficiencies of the included
detectors. Furthermore, we need to clarify what kind of attacks Eve can perform.
A general security proof should take into account the most powerful attacks that
she can do. Starting from these assumptions we can formulate the security proof.
This proof can take different forms, depending on the assumptions we make, the
protocol we use, and what kind of techniques are applicable.

5.1 Definition of Security

Before we can formulate a security proof for an actual protocol based on assump-
tions we make (see Fig. 5.1), we need to define what we actually mean by security.
Intuitively, for a QKD protocol to be secure we need to ensure that the information
that Eve has on the resulting key is negligible. One measure of Eve’s information
is the mutual information between the key K that Alice and Bob share after the
protocol and a random variable W that describes the outcome of a measurement
that Eve applies to her system after the protocol. A possible security criterion is
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Fig. 5.1 Security proof of a
QKD protocol. Any security
proof of a QKD protocol is
based on the assumptions we
make about the systems,
states, and measurements that
are involved. The goal of the
proof is to make a claim about
the security of the protocol
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then the maximum of this quantity over all possible measurements with output W

that Eve can apply:

max
W

I (K : W) ≤ ε. (5.1)

At first sight, this definition looks reasonable: since the mutual information between
two random variables quantifies the correlation between the two systems, it seems
that it captures the intuitive meaning of security. Although this definition looks
reasonable at first sight, it does not guarantee universal security in the way we
demand it. More precisely, this criterion does not guarantee that the key can safely
be used in any application. This is because Eve can, in principle, wait with her
measurement until she learns parts of the key. A more detailed discussion of this
concern with respect to existing security definitions can be found in [3] and [28].

To illustrate the kind of problems that can appear, consider the following
scenario: Assume that Alice has a key K = (K1,K2, . . .Kn) of length n that
she uses to encode an n-bit message M = (M1,M2, . . . ,Mn) by one-time pad
encryption (see Fig. 1.1). Recall that the resulting ciphertext C = (C1, C2, . . . , Cn)

that Alice sends to Bob is the bitwise XOR of K and M , i.e.,

Ci = Ki ⊕ Mi, (5.2)

where ⊕ is the binary addition. Suppose Eve is interested in the n-th bit of the
message, Mn, and she already knows the first n− 1 bits M1,M2, . . . ,Mn−1.1 Using
this knowledge, she can easily determine the first n− 1 bits of the key K , simply by
doing binary addition:

Ki = Mi ⊕ Ci. (5.3)

1This situation is not as artificial as it may seem at first sight. The first bits can be some redundant
header information before the actual message. In fact, correlations between parts of the key are the
reason why many encrypted messages have been decrypted in history. It played an important role,
for instance, in the decryption of the Enigma during the Second World War.
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In order to guarantee the security of the n-th bit of the message, it is crucial that
Eve still does not have any knowledge of the n-th key bit Kn, even though she
already knows the first n − 1 bits, i.e., the individual bits of the key are completely
uncorrelated. This requirement, however, is not covered by the definition of security
in (5.1). For an arbitrary ε and an n that depends on ε, it is possible to construct
scenarios where the security criterion (5.1) is fulfilled, but Eve can determine the
n-th bit of the key, Kn, with certainty once she knows the first n − 1 bits of the key
(see [17] for more details).

Therefore, we need a stronger definition of security that ensures the safe use
of the key in all applications. In particular, we need to make sure that the key is
still secure when it is used as a component within a bigger system. This is called
universal security: a key is said to be universally secure if it is secure in any arbitrary
context. This especially implies that any bit of the key K remains secret even if some
other part of K is revealed.

A Universal Security Definition
The idea behind universal security definitions is usually to characterize the real
cryptographic protocol by its distance to an ideal one (which is perfectly secure
by definition). We can divide the criterion for a secure QKD protocol into two parts:
the correctness of the key and the secrecy.

Defining correctness is straightforward: we simply require that the probability
that Alice and Bob do not abort the protocol and the generated keys are different is
small. However, there is one point where we have to be careful: for the definition
to also be applicable to the case where the protocol aborts, we have to add a new
symbol to the key space S (i.e., the space that is made of all possible sequences the
key bit string can take): If the protocol aborts, we write KA =⊥ and KB =⊥ to
denote that Alice and Bob know that the protocol aborted.

Definition 5.1 (ε-Correctness) Let KA and KB be the random variables that
describe Alice’s and Bob’s respective key bit strings (i.e., random variables over
the alphabet S∪ ⊥) at the end of the protocol. The protocol is said to be ε-correct
if

Pr[KA �= KB ] ≤ ε. (5.4)

For the secrecy part, we compare the real key to a perfect key, where perfect
means that the key is uniformly distributed and independent of the adversary’s
information: consider Alice’s key KA,2 which is distributed according to the
probability distribution pKA . Furthermore, let ρ

kA

E be the state of Eve’s system given
that the key takes the value kA, for any element kA ∈ S, where S is the key space.
The joint state of the (classical) key KA and Eve’s system can be written as the

2Note that the same considerations can be done for Bob’s key since the keys are the same except
with probability εcor.
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classical–quantum state

ρKAE =
∑

kA∈S
pKA(kA)|kA〉〈kA| ⊗ ρ

kA

E , (5.5)

where {|kA〉}kA∈S is an orthonormal basis of some Hilbert space HKA . It is now
helpful to consider the distance between the state of the real scenario and the state
of the ideal scenario individually for the two possible cases (abort and pass): first,
notice that Eve’s state is the same in both cases since aborting the protocol does not
affect her system. If the protocol aborts, then Alice’s state is trivial and since Eve’s
state is the same for both the real and ideal protocols, the distance is zero. In the
case where the protocol does not abort, the ideal scenario is the one where Eve has
no information on Alice’s system and Alice’s state is uniformly random:

ρ̃
pass
KAE = ρU ⊗ ρE, (5.6)

where ρU = ∑
u∈S 1

|S| |u〉〈u| is the fully mixed state on HU . Furthermore, let p⊥
be the probability that the protocol aborts. We can now use the triangle inequality of
the trace distance to estimate the distance between the real state ρKAE and the ideal
state ρ̃KAE :

‖ρKAE − ρ̃KAE‖1 ≤ p⊥ · 0 + (1 − p⊥) ‖ρpass
KAE − ρU ⊗ ρE‖1. (5.7)

The secrecy of the key KA with respect to the adversary E is then defined as follows:

Definition 5.2 (ε-Secrecy) A key KA is said to be ε-secret if for any state ρ
pass
KAE the

state of the composite system of Alice and Eve after a QKD protocol, conditioned
on the event that the protocol does not abort, satisfies

(1 − p⊥)
1

2
||ρpass

KAE − ρU ⊗ ρE ||1 ≤ ε, (5.8)

where ρU = ∑
u∈S 1

|S| |u〉〈u|.

As we argued above, the security of a QKD protocol comprises both correctness
and secrecy.3 Combining these two criteria then yields the following definition of
security:

Definition 5.3 (ε-Security) Let ρ
pass
KAKBE be the state of the system shared between

Alice, Bob, and Eve after a QKD protocol, conditioned on the event that the protocol

3Throughout the literature, there is a variety of different definitions of security. Sometimes it is
defined only as secrecy, and sometimes it is a combination of correctness, secrecy, and robustness.
In these notes we choose to define security as correctness and secrecy, while robustness is given as
an additional criterion.
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does not abort, i.e.,

ρ
pass
KAKBE = 1

1 − p⊥
∑

kA,kB∈S
pKA,KB (kA, kB)|kAkB〉〈kAkB | ⊗ ρ

kA,kB

E , (5.9)

where p⊥ is the probability that the protocol aborts. Then the protocol is said to be
ε-secure under any attack performed by Eve if the state satisfies

(1 − p⊥) · 1

2
||ρpass

KAKBE − ρUU ⊗ ρE ||1 ≤ ε, (5.10)

where ρUU = ∑
u∈S 1

|S| |u〉〈u| ⊗ |u〉〈u| for some family {|u〉}u∈S of orthonormal
vectors that represent the values of the key space S.

This definition ensures that the key is universally secure in the following way:
(5.10) guarantees that the actual situation, which is represented by the state ρ

pass
KAE ,

is ε-close to an ideal situation. The ideal situation is thereby described by the state
ρUU ⊗ ρE , where ρU represents the perfect key that is independent of the state ρE

of Eve’s system. In particular, the perfect key U is uniformly distributed, which
implies that each sequence is equally probable. To illustrate this definition and the
role of the parameter ε in the above definition, we compare the perfect key and the
real key in Fig. 5.2.

Some further remarks on the definition of security: note that we do not need
to define security conditioned on not aborting by the same argument we have made
above when defining ε-secrecy. Also, note that the fact that the trace distance cannot
increase when applying a quantum operation (as we have seen in Theorem 2.56)
ensures that an ε-secure key will remain secure for any possible evolution. Since the

Fig. 5.2 ε-security. A perfect key is one where every possible key sequence is equally probable:
for a key of length l, there are 2l possibilities; hence, the probability that a specific sequence u

occurs is 2−l . A real key that is ε-close to a perfect key contains some sequences whose probability
deviates from the uniform distribution. The parameter ε describes how much weight has to be
moved to transform the real distribution to the uniform distribution
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above definition of security does not make any assumptions about the state that is
shared by Alice, Bob, and Eve, it applies to any attack that Eve can perform.

There is a practical relationship between correctness, secrecy, and the above
definition of security that makes it easy to define security directly from the
definitions of correctness and secrecy. It is summarized by the following theorem:

Theorem 5.4 If a protocol is εcor-correct and εsec-secret, then it is ε-secure with
ε = εcor + εsec.

Proof For simplicity, we use the following notation for the trace distance:

D(ρ, σ) = 1

2
‖ρ − σ‖1. (5.11)

To show that the protocol is εcor + εsec-secure, we have to show that the following
inequality holds:

(1 − p⊥) D
(
ρ

pass
KAKBE, ρUU ⊗ ρE

)
≤ εcor + εsec. (5.12)

For this purpose, we introduce the state σABE , which is obtained from the state
ρ

pass
KAKBE by throwing away Bob’s system B and replacing it with a copy of Alice’s

system A; hence, it is of the form

σABE ≡ 1

1 − p⊥
∑

kA,kB∈S
pKAKB (kA, kB)|kAkA〉〈kAkA| ⊗ ρ

kA,kB

E . (5.13)

We then use the fact that the trace distance fulfils the triangle inequality; hence,

D
(
ρ

pass
KAKBE, ρUU ⊗ ρE

)
≤ D

(
ρ

pass
KAKBE, σABE

)
+ D (σABE, ρUU ⊗ ρE) .

(5.14)

The first term in the sum above can be bounded by

D
(
ρ

pass
KAKBE, σABE

)
(5.15)

≤
∑

kA,kB∈S

pKAKB
(kA, kB)

1 − p⊥ D
(
|kAkB〉〈kAkB | ⊗ ρ

kA,kB

E , |kAkA〉〈kAkA| ⊗ ρ
kA,kB

E

)

(5.16)

=
∑

kA �=kB

pKAKB
(kA, kB)

1 − p⊥ (5.17)

= 1

1 − p⊥ Pr[KA �= KB ]. (5.18)
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To arrive at (5.17), we have used that two cases can occur: if kA = kB , then the trace
distance in the corresponding term in (5.16) is equal to zero. If kA �= kB , then the
trace distance in (5.16) is equal to one. For the second term in (5.14) note that in
both states σABE and ρUU ⊗ ρE system B is a copy of system A; hence, it does not
have an effect on the trace distance. On the other hand, system B is the only system
that is different in the states ρ

pass
KAKBE and σABE ; therefore,

TrB
(
ρ

pass
KAKBE

)
= TrB (σABE) . (5.19)

Combining these two observations yields the following identities:

D (σABE, ρUU ⊗ ρE) = D (σAE, ρU ⊗ ρE) = D
(
ρ

pass
KAE, ρU ⊗ ρE

)
. (5.20)

We can now insert the above results into (5.14) and obtain

(1 − p⊥)D
(
ρ

pass
KAKBE, ρUU ⊗ ρE

)
≤ Pr[KA �= KB ] + (1 − p⊥)D

(
ρ

pass
KAE, ρU ⊗ ρE

)

(5.21)

≤ εcor + εsec, (5.22)

which proves the statement. ��

Robustness
As we have argued above, Definition 5.3 now matches our requirements for a
definition of security for a quantum key distribution protocol. However, although
it guarantees that the keys that are generated by the protocol are always secure, it
does not guarantee that the protocol is useful. This becomes clear when we consider
the protocol that always aborts, which is secure in the sense of the above definition.
Although this situation fits to the notion of security (because it never outputs an
insecure key), we do not regard it as a useful protocol.

Therefore, the missing ingredient here is the notion of robustness, which
guarantees that, in the absence of an eavesdropper, the protocol succeeds with high
enough probability:

Definition 5.5 (ε-Robustness) A QKD protocol is said to be ε-robust if, in the
absence of an eavesdropper, the probability that the protocol aborts is

p⊥
no Eve = ε. (5.23)

Composability
One aspect that we have not mentioned yet, but which is important for practical
applications, is composability. It is important that a protocol can be composed with
another protocol in a way that the security of the protocols is preserved. Here, we
must distinguish between two scenarios: Sequential composition is where the output
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of the first protocol is used as input for the second protocol, for example, when
we compose a one-time pad with a QKD protocol. In the second case, parallel
composition, two protocols are executed simultaneously and are combined to be
treated as one protocol.

Sequential composition can be proved by using the triangle inequality for the
trace distance: if one protocol is ε1-secure and the second is ε2-secure, then the
whole protocol is ε1 + ε2-secure. The second scenario, parallel composition, can be
proved in a similar way. We do not go into further details here but refer to [20, 21]
and [24].

5.2 Assumptions

To prove the security of a protocol, it is important to be clear about the assumptions
that one makes. Most of the assumptions account for the properties and imperfec-
tions of implementations of the protocol. So far, we have usually assumed idealized
protocols,4 where everything works exactly as described. However, there are some
foundational assumptions that apply to almost all quantum cryptographic settings:

1. Quantum theory is correct. If the underlying theory is false, there is no way to
create a scheme that is secure in actual applications. Therefore, we assume that
quantum mechanics makes accurate predictions about measurement outcomes.

2. Quantum theory is complete. It is important that the theory we use explains
all phenomena that can appear. This ensures that an adversary cannot get
more information on Alice’s and Bob’s respective keys than what is possible
with quantum mechanics. Interestingly, the correctness of quantum mechanics
together with the requirement that free randomness exists5 directly implies that
the theory is also complete, which was shown in [11].6

3. Authentic communication is possible. This means that Alice and Bob can
authenticate themselves, i.e., Eve cannot replace one of them without being
detected.

Apart from these fundamental assumptions about the underlying physical theory,
there are many assumptions one can make that apply to the implementation of
the protocol. Any deviation of the implementation of a protocol from the theoretic
model under which the security was proved may yield a leakage of information to
Eve, which may cause the entire protocol to be insecure, since Eve might attack

4One exception is the SARG04 protocol in Sect. 4.1.1 that accounts for a weakness of the
implementation of single-photon sources via weak laser pulses. Here, in contrast to the other
protocols we have described, we did not assume that Alice and Bob have access to a perfect single-
photon source.
5This requirement simply means that measurement choices (for instance, the choice of basis in the
BB84 protocol) can be made independently of the measurement device itself.
6A more accessible explanation of this connection can be found in [27].
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the implementation in a way that is not accounted for in the model. Hence, it
is not sufficient to prove security for an idealized model: it is crucial that the
model accurately describes the practical implementation. For this purpose, it is
important to be clear about all assumptions one makes on the protocol, especially
with respect to the implementation. An exhaustive treatment of assumptions in
quantum cryptography can be found in [1] and [29]. Here, we will only give a
short overview of the different ways in which ideal protocols can differ from actual
implementations:

1. Isolation of Alice’s and Bob’s labs. In the idealized protocols we usually assume
that Alice’s and Bob’s respective labs are isolated, in particular that Eve cannot
tamper with the sources and measurement devices, while on the other hand, we
assume that Eve has access to the quantum channel. However, since Alice and
Bob use the quantum channel to send and receive states they need to have some
sort of interface with the channel. Here, it might be possible that Eve can exploit
this interface to probe Alice’s and Bob’s devices and gain additional information
on the prepared states and the measurement outcomes in this way.

2. Preparation of states. In the protocols we have described in the previous chapter
we always assume that Alice is able to prepare exact states. However, in practice
it is not possible to prepare states with arbitrary precision; hence, the actual states
can differ from the specific states used in the theoretical model.

3. Measurement devices. Similar to the state sources, the measurement devices
usually do not act exactly how it is specified by the POVM elements. It is also
possible that they not only react to the states specified by the protocol, but also
to states outside the Hilbert space they are supposed to measure in. Furthermore,
the measurement device can output results that are not part of the protocol, for
example if there are losses in the device such that there is no result even though
a quantum state was prepared and sent via the quantum channel.
Another important aspect of measurement devices in practical implementations
that is not accounted for in the theoretical model is that they have to be calibrated
before they can be used in the actual protocol, which may give additional
information about the devices to Eve.

4. Timing. We have often used that Alice and Bob compare their bits at a specific
position in the string, especially in classical post-processing. To be able to talk
about their strings in this way, they need to agree on the timing of signals so that
sent states are associated with the correct measurement outcomes. Furthermore,
measurement devices usually have a dead time after a measurement process
where they do not respond to an incoming signal.

5. Classical post-processing. An important aspect of the classical post-processing
part of a protocol is to estimate how much information was leaked to Eve. If
this estimation does not include the differences between the ideal model and the
actual implementation, it is possible that more information is leaked to Eve than
the security proof accounts for.
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A way to avoid having to deal with all the intricate assumptions about labs and
devices is provided by device-independent QKD. Here, (almost) no assumptions
about the devices used by Alice and Bob are made; hence, the security proof also
applies in the case of corrupted or malfunctional devices. Instead, the security of the
protocol relies on the violation of a Bell inequality, similar to the Ekert protocol in
Sect. 4.1.2, where it is crucial that the CHSH inequality is violated. We explain the
concept of device-independent QKD in more detail in the next chapter.

5.3 Eavesdropping Strategies

Before we explain how the security of a protocol can be proven, we discuss the kind
of attacks that an eavesdropper can do. We have already seen an example of an attack
that Eve can do, namely the intercept-and-resend strategy presented in the previous
chapter. Let us now consider a slightly more general (but not the most general)
attack at the BB84 protocol that shows the trade-off between the disturbance of the
system that Eve introduces by interacting with the states that Alice sends and the
information gain she achieves by this interaction. Recall that Alice always sends
one of the four states |ψ00〉, |ψ10〉, |ψ01〉, |ψ11〉 defined in (4.2)–(4.5), which are not
all mutually orthogonal. To get information about a state, Eve attaches an ancilla
system in some predefined state |E〉7 to the qubit sent by Alice and applies a unitary
operation U to the composite system.

First, we look at how much information Eve can gain from a measurement that
does not disturb at all the states sent by Alice, which means that Eve can perform
this attack without Alice and Bob being able to detect it. Consider the action of this
attack on two states that are non-orthogonal, for instance, the states |ψ01〉 and |ψ10〉:

U |ψ01〉|E〉 = |ψ01〉|Eψ01〉 (5.24)

U |ψ10〉|E〉 = |ψ10〉|Eψ10〉, (5.25)

where |Eψ01〉 denotes the state of the ancilla system after the unitary operation in
case Alice’s state is |ψ01〉 (and analogously for the other case). Unitary operations
preserve the scalar product. We can now compare the scalar products of the left hand
sides and the right hand sides of (5.24) and (5.25) to get some information on the
state of the ancilla system after the unitary operation:

〈ψ01|ψ10〉〈E|E〉 = 〈ψ01|ψ10〉〈Eψ01 |Eψ10〉. (5.26)

Since 〈E|E〉 = 1, the above equation implies that 〈Eψ01 |Eψ10〉 = 1 and therefore
|Eψ01〉 and |Eψ10〉 are identical. Hence, the state of the ancilla system does not carry

7Note that the initial quantum state of the ancilla system is not important here. The symbol E is
simply a place holder.
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any information about Alice’s quantum state, which shows that Eve cannot gain
information by using an attack that does not disturb Alice’s and Bob’s states at all.

Therefore, Eve has to interact with Alice’s state in a way that introduces a
disturbance to the state, i.e., the unitary operation she applies has the following
effect:

U |ψ01〉|E〉 = |ψ ′
01〉|Eψ01〉 (5.27)

U |ψ10〉|E〉 = |ψ ′
10〉|Eψ10〉. (5.28)

In this case, the scalar product is

〈ψ01|ψ10〉〈E|E〉 = 〈ψ ′
01|ψ ′

10〉〈Eψ01 |Eψ10〉. (5.29)

In order to gain information about the states sent by Alice, Eve needs the states of
the ancilla system to be distinguishable. The smaller the scalar product 〈Eψ01 |Eψ10〉
is, the more distinguishable are the two states. However, if the scalar product of
the ancilla states decreases, the scalar product of Alice’s states has to increase in
order to fulfil (5.29). In other words, the more information Eve gains, the greater the
disturbance she introduces to Alice’s states. This in turn means that the attack can
be more easily detected by Alice and Bob.

5.3.1 Classification of Attacks

In general, the attacks that Eve can use to get information about the key can be
divided into three different classes: in increasing order of power given to Eve, the
attacks are individual, collective, and coherent attacks. Individual attacks are the
simplest ones with only little power given to Eve, while coherent ones are the most
powerful attacks where we assume that Eve has unlimited power and resources and
is only limited by the laws of nature. Individual and collective attacks are usually
considered in order to simplify the security analysis, although it is necessary to also
consider coherent attacks in order to prove security for a QKD protocol. However, it
might still be useful to study a protocol with respect to the two less powerful attacks
to check if it is secure at all or if there is a simple attack strategy for Eve that lets
her gain information without introducing a disturbance to the quantum states sent
by Alice.

The different types of attacks can be described by the way Eve interacts with the
quantum states sent by Alice and how Eve processes the information she gets in this
way, which is summarized in Table 5.1. The procedure of extracting information
from a quantum system can, in general, be described as follows: Eve attaches an
ancilla system in the predefined state |E〉E〈E| to the state ρA that Alice sends. Then
she performs a unitary operation U on the composite system, which leaves the state
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Table 5.1 Summary of Eve’s attacks. Eve can attack the states ρ1
A, . . . , ρn

A that Alice sends in
three different ways: Individually, where the same unitary and the same POVM are applied to each
state, collectively, where the same unitary is applied to each state but the measurement is given by
a global POVM, or coherently, where a global ancilla system is attached to the tensor product of
Alice’s states. M1 denotes a POVM that describes the measurement of a single system, and Mn

denotes the global POVM

Ancilla state Prob. dist.

Individual ρi
E = TrA

(
U†
(
ρi

A ⊗ |E〉E〈E|)U) P
ρ1

E

M1 . . . P
ρn

E

M1

Collective ρi
E = TrA

(
U†
(
ρi

A ⊗ |E〉E〈E|)U) P
ρ1

E⊗···⊗ρn
E

Mn

Coherent ρE = TrA
(
U

†
G

(
(ρ1

A ⊗ · · · ⊗ ρn
A) ⊗ |E〉E〈E|)UG

)
P

ρE

Mn

of the ancilla system in the form

ρE = TrA
(
U†ρA ⊗ |E〉E〈E|U

)
. (5.30)

Afterwards, Eve measures the ancilla system, which is given by a POVM M =
{Mj }, where outcome j is obtained with probability Tr

(
Mjρ

)
when measuring a

system in the state ρ.
We now consider the scenario where Alice sends n quantum states ρ1

A, ρ2
A, . . . ,

ρn
A to Bob. In case Eve performs an individual attack, i.e., she attacks each of the

states individually, she attaches an ancilla system |E〉E〈E| to each of the states ρi
A.

She then applies the same unitary operation U to each composite system, i.e., after
this step the ancilla system has the form

ρi
E = TrA

(
U†ρi

A ⊗ |E〉E〈E|U
)

(5.31)

for all states ρi
A that Alice sent. Eve then measures her part of all the composite

systems individually and with the same POVM M.
Collective attacks are a little more general in the sense that Eve is allowed to

measure all states collectively instead of individually, but she is still restricted to
attaching individual ancilla systems to each state.

The most general attack is the coherent attack. Here, Eve attaches one large
ancilla system to all states that Alice sends, i.e., to the state ρ1

A ⊗ ρ2
A ⊗ · · · ⊗ ρn

A,
and applies a global unitary UG to the whole composite system. This means that the
state of the ancilla system before the measurement is

ρE = TrA
(
U

†
G(ρ1

A ⊗ · · · ⊗ ρn
A) ⊗ |E〉E〈E|UG

)
. (5.32)

Similar to collective attacks, Eve then performs a global measurement on her part
of the system.
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Individual Attacks
Since individual attacks are the ones that can be analysed most easily, we want to
have a closer look at the techniques that can be employed here. When doing an
individual attack, Eve is restricted to the same interaction with each quantum state
sent by Alice, which makes it easy to characterize and analyse the possible attacks.
For this purpose we are interested in the amount of information about a single state
that Eve gains with an attack. For simplicity, we now only focus on the mutual
information between Eve and Alice, following the historical definition of security.
Although this alone is not a sufficient security criterion (as discussed above), it
already provides a lot of insights on individual attacks and, moreover, it has been
studied in detail.

The most general individual attack that Eve can perform on a qubit system (as
in the BB84 or in the six-state protocol) is the following: Since every system has
to be attacked individually and in the same way, the only degree of freedom lies in
the unitary operation that Eve applies to the composite system. The most general
unitary transformation is

U |0〉|E〉 = √
F |0〉|E00〉 + √

1 − F |1〉|E01〉 (5.33)

U |1〉|E〉 = √
F |1〉|E10〉 + √

1 − F |0〉|E11〉, (5.34)

where {|0〉, |1〉} is the computational basis for Alice’s state, the first qubit is the one
Alice sends to Bob, and the second qubit represents Eve’s ancilla system, which is
in the initial state |E〉. The states |E00〉, |E01〉, |E10〉, and |E11〉 represent the state
of Eve’s ancilla system after the unitary operation. F is the fidelity (as defined in
Definition 2.57) between the initial state |ψin〉 sent by Alice and the state ρB that
Bob receives (which is the right hand side of (5.33) and (5.34) traced over Eve’s
states), i.e.,

F = 〈ψin|ρB |ψin〉. (5.35)

We assume that Eve is clever enough to treat all employed basis in the protocol in
the same way, i.e., the fidelity is the same for all bases. Otherwise, Alice and Bob
would be able to detect the eavesdropper by comparing the fidelities for different
bases.

For the BB84 protocol, it was shown in [14] that the mutual information between
Alice and Bob, I (A : B), and the mutual information between Alice and Eve, I (A :
E), can be expressed in terms of the disturbance D = 1 − F in the following way:

I (A : B) = 1 + D log D + (1 − D) log(1 − D), (5.36)

I (A : E) = 1

2
(1 + f (D)) log(1 + f (D)) + 1

2
(1 − f (D)) log(1 − f (D)),

(5.37)
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Fig. 5.3 Comparison of mutual information. The plot shows the mutual information between
Alice and Bob (solid line), which is the same for the BB84 and the six-state protocol alongside
the mutual information between Alice and Eve (dashed for the BB84 protocol, dotted for the six-
state protocol)

where f (D) = 2
√

D(1 − D). The same analysis can be done for the six-state
protocol (see [7]), which leads to the same expression for I (A : B), but to a different
one for I (A : E):

I (A : E) = 1 + (1 − D)
(
g(D) log g(D) + (1 − g(D)) log(1 − g(D))

)
,

(5.38)

where g(D) = 1
2

(
1 + 1

1−D

√
D(2 − 3D)

)
. In Fig. 5.3, the mutual information

between Alice and Bob I (A : B) is depicted alongside the mutual information
between Alice and Eve, I (A : E), for the BB84 and six-state protocols. According
to the Csiszár-Körner theorem [12], Alice and Bob can distil a secret key whenever
they have an advantage over Eve in terms of the mutual information. To illustrate
this, the difference between the Alice’s and Bob’s mutual information and the
Alice’s and Eve’s mutual information, I (A : B)−I (A : E), is plotted in Fig. 5.4 for
the BB84 and six-state protocols. When this quantity becomes negative, no secret
key can be distilled.

Collective and Coherent Attacks
More sophisticated attacks, like collective and coherent attacks, are much harder
to analyse than individual ones. Especially in case of coherent attacks, the cor-
responding global Hilbert space dimension is very high since Eve interacts with
all the states simultaneously. In terms of security proofs, several techniques have
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Fig. 5.4 Difference of mutual informations. In this plot, the difference between Alice’s and Bob’s
mutual information and Alice’s and Eve’s mutual information is depicted, both for the BB84
protocol (solid) and the six-state protocol (dashed)

been developed to prove security against general attacks. The key ingredients here
are often theorems that reduce the security proof against coherent attacks to a
security proof against collective attacks, such as quantum de Finetti theorems or
the postselection technique. We go into more detail about techniques for security
proofs later in this chapter.

For the BB84 protocol, coherent eavesdropping attacks have been studied in [10],
and for the six-state protocol they have been studied in [2]. In brief, the authors find
that coherent eavesdropping does not help Eve to obtain more information, but it
increases the probability to correctly guess the whole message sent by Alice.

5.3.2 Photon-Number-Splitting Attack

The photon-number-splitting attack (depicted in Fig. 5.5) is an attack against a
certain implementation of a single-photon source using weak laser pulses, which
we have already briefly mentioned in Sect. 4.1.1 when we discussed the SARG04
protocol. It exploits the fact that in practical QKD schemes, qubits are usually
represented by photons, using the polarization as a degree of freedom. Ideally, one
qubit is encoded by exactly one photon. However, in practice, ideal single-photon
sources do not exist. Therefore, one often uses weak coherent laser pulses instead.
A coherent state with (complex) phase α is given by

|α〉 = e
|α|2

2

∞∑

n=0

αn

√
n! |n〉, (5.39)
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Fig. 5.5 The photon-number-splitting (PNS) attack. Whenever the signal sent by Alice contains
more than one photon, Eve splits off one of them and stores it in her quantum memory. After Alice
has announced her encoding bases, Eve measures these photons in the correct basis and gets perfect
information about these key bits

where |n〉 is a Fock state that represents the quantum state when the pulse contains
n photons. If the phase α is unknown or randomized, we get phase-randomized
coherent states:

ρ =
∫

d argα

2π
|α〉〈α| =

∞∑

n=0

P(n)|n〉〈n|, (5.40)

where P(n) is the probability distribution of the number of photons, which is given
by the Poisson distribution

P(n) = e−|α|2 |α|2n

n! . (5.41)

Here, |α|2 = μ describes the average photon number of the signals. Hence, the state
that Alice sends to Bob is given by

ρ = e−μ

∞∑

n=0

μn

n! |n〉〈n|, (5.42)

and the information is imprinted in the polarization of these photons. A typical
weak laser pulse has an average photon number of μ = 0.1. In this case, most
of the signals are vacuum signals: The probability that no photon is sent is given
by P(0) = e−μ ≈ 90.5%. The event that exactly one photon is sent happens with
probability P(1) = μe−μ ≈ 9%, and the event that more multiple photons are sent
happens with probability P(n > 1) = 1 − (1 + μ)e−μ ≈ 0.5%.

Let us now consider what happens if we use this realistic photon source instead
of an ideal single-photon source in the BB84 protocol. The cases where no photon
is sent simply reduce the signal rate, since Bob does not detect anything, but no
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information is revealed to Eve. The single-photon signals work exactly as signals
from an ideal single-photon source. The only problem are the multi-photon pulses.
Eve can exploit the existence of these signals to perform the photon-number-
splitting attack, which is especially useful if Alice and Bob use a lossy quantum
channel (which is usually the case in practical implementations).

It works as follows: suppose Alice and Bob have chosen to use weak pulses
with an average photon number μ. The quality of the channel is characterized by
its single-photon transmittance (which is the probability that a single photon is
transmitted by the channel and does not get lost), denoted as η. Hence, Bob expects
to receive states distributed by a Poisson distribution with average detected photon
number μη and therefore expects to receive non-vacuum events with probability

Pnon−vac = 1 − e−μη. (5.43)

For Eve to remain undetected, it is important that Bob receives the correct fraction of
no detection and detection events. Eve’s strategy is then the following: she replaces
the lossy channel by a perfect quantum channel. Then she performs a quantum non-
demolition measurement on each pulse, which tells her the exact number of photons
of the pulse. Such a measurement can be done without disturbing the polarization
of the photons. Eve then guides the signals depending on their number of photons
(also depicted in Fig. 5.6):

1. Vacuum events are simply forwarded to Bob, since Eve cannot learn anything
about the polarization from them.

2. From multi-photon signals she splits off one photon and forwards the remaining
photons to Bob without disturbing the polarization either in the photon she splits
off or in the photons she forwards to Bob (depicted in Fig. 5.5). Later in the
protocol, when Alice reveals the polarization bases she choses for each signal,

Vacuum

Single-photon

Multi-photon

No detection

Detection

blocked

errors

Fig. 5.6 Eve’s strategy in the PNS attack. Depending on the number of photons, Eve guides the
signals sent by Alice differently: Vacuum signals are passed to Bob, leading to no detection events.
From all multi-photon signals, Eve splits off a single photon and passes the remaining signal to
Bob, leading to detection events. Single-photon signals can either be blocked to achieve the correct
fraction of detection and no detection events that Bob expects. With remaining single-photons
events, Eve can perform any coherent eavesdropping attack that possibly induces errors
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Signal source
= 0.1

Decoy source
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Check loss
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Fig. 5.7 Example of the decoy state strategy. Alice uses a second source of weak laser pulses with
a higher average photon number (e.g., μD = 0.8 and μS = 0.1), the decoy state source. She then
randomly sends decoy states to Bob in between the signal states, for instance with a probability of
5%. After Bob has received the states, Alice announces which states have been decoy states and
Bob checks the loss in the signal states. If Eve has performed a PNS attack, he will observe a much
higher loss in those states than expected

Eve can perform the correct measurement on these photons and gain perfect
information about the encoded bits.

3. A fraction of the single-photon events is blocked in order to match Bob’s
expectation of receiving detection events with probability 1 − e−μη. On the
remaining single-photon signals, which are not blocked, Eve can perform any
coherent attack she likes, thereby possibly introducing errors to the state.

How can Alice and Bob protect themselves against this attack? We have already
seen one possibility, the SARG04 protocol. Here, they use a different sifting
technique so that Alice never has to reveal her choice of basis. Another strategy,
which was proposed in [16, 19, 33], is using the so-called decoy states. The idea
is to employ a second photon source in Alice’s lab that emits weak coherent laser
pulses with a different photon number distribution (the decoy states), see Fig. 5.7.
More precisely, the additional source has a much higher average photon number
μ than the source used to send the actual signals, but otherwise it does not differ
from the signal source in terms of other parameters like wavelength, etc. Alice
sends decoy states to Bob at random between the signal pulses. Since Eve cannot
distinguish between the signal pulses and the decoy pulses, she treats all signals
equally according to the strategy described above. However, after Bob has received
the signals, Alice reveals which of the pulses have been decoy pulses. Bob will then
find a much higher loss than expected in the signal states (i.e., the states that were
prepared with a lower mean photon number), since Eve has tried to maintain the
wrong fraction of detection and no detection events. Therefore, Alice and Bob can
detect the eavesdropper with this strategy.

5.4 Security of BB84

In the paper that originally introduced the BB84 protocol [4] the authors proved it
to be secure against certain attacks. However, it took a remarkable amount of time
until the security of the BB84 protocol against an adversary that was only limited
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by the laws of physics could be rigorously proven. At the end of the 1990s, several
proofs have been presented: in [18], the security was proven in a way that required
perfect quantum computation, which makes it infeasible with current technology.8

Two other proofs have been given in [22] and [6], which do not require quantum
computation but are somewhat complicated. In [30], Shor and Preskill presented a
simple proof of the security of the BB84 protocol that builds on ideas of the previous
proofs. In this section, we will follow ideas from this work and the presentation of
this proof in [23] and [8].

Even though the proof is very specific to the states and measurements of the
BB84 protocol and therefore difficult to apply to other protocols we present the
proof here in detail since it was the first complete security proof of a QKD protocol
and is therefore of interest for historical reasons, but it also illustrates the way
people thought about security at the beginning of the 2000s. Later in this chapter
we discuss modern security techniques that do not rely as heavily on the specifics
of the protocol and are therefore applicable to a variety of protocols.

The structure of the security proof of the BB84 protocol is as follows: first, we
prove the security of the entanglement-based version of the BB84 protocol. Then we
show how this protocol can be reduced to the original prepare-and-measure version
of BB84.

5.4.1 Security of the Entanglement-Based Version

We begin the security analysis of the BB84 protocol with the entanglement-based
version of it that was introduced in the previous chapter. Recall that the main goal
of this protocol is to establish shared maximally entangled states between Alice and
Bob, namely the Bell state |�+〉⊗m, where

|�+〉 = 1√
2

(|00〉 + |11〉). (5.44)

However, due to losses in the quantum channel and Eve’s interaction with the states,
Alice and Bob will not end up with exactly this state, but with a state ρAB that is
(hopefully) similar to |�+〉⊗m. As in the previous section, we measure the closeness
of these two states in terms of the fidelity:

F
(
ρAB, |�+〉) = 〈�+|ρAB |�+〉. (5.45)

If the fidelity is 1, the state that Alice and Bob share is equal to the maximally
entangled state |�+〉. In this case, they can be sure that Eve’s system is completely
uncorrelated to theirs, since a maximally entangled state between two parties cannot

8This work is based on a slightly different version of the entanglement-based BB84 protocol where,
instead of using CSS codes, quantum computers are used for error correction.
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have any correlation with a third party. Alice and Bob can then safely measure this
shared state in order to generate a secret key (i.e., the protocol is secure). However,
if their shared state is not equal but only close to a maximally entangled state, it is
possible that Eve’s system is correlated with that state, which means that she can
gain some information on the key. This naturally leads to the question what impact
a fidelity below 1 has on the security of the protocol. We use the following lemma
(see [17]) to connect the fidelity to the security of the protocol:

Lemma 5.6 Let ε ≥ 0 and ρAB be a bipartite quantum state such that

F
(
ρAB, |�+〉⊗m

) ≥ 1 − ε2. (5.46)

Then the two n-bit strings resulting from local measurements of ρAB in the
computational basis are ε-secure keys (with respect to an adversary who controls a
purifying system of ρAB .)

A short note before we give the proof of this lemma: the term purifying system
has the following meaning: since we do not impose any restrictions on Eve’s
attacks, we always assume the worst case. The worst case here means that the
composite system of Alice, Bob, and Eve is in a pure state |ψABE〉 such that
ρAB = TrE (|ψABE〉〈ψABE |) and ρE = TrAB (|ψABE〉〈ψABE |). This state is called
the purification9 of ρAB and it corresponds to the scenario where Eve has the most
power because every other extension ρABE of ρAB can be obtained from the pure
state |ψABE〉 by doing a quantum operation on Eve’s system.

Proof Recall that, in order to prove that a protocol is secure, we must show that

1

2
||ρABE − ρUU ⊗ ρE ||1 ≤ ε, (5.47)

where ρUU = ∑
u∈S 1

|S| |u〉〈u| ⊗ |u〉〈u|, which represents a key that is completely
random but the same for both systems. By Uhlmann’s theorem (see Theorem 2.61),
there is a quantum state σE of Eve’s system such that

F
(
ρABE, |�+〉⊗m ⊗ σE

) = F
(
ρAB, |�+〉⊗m

)
(5.48)

9Every density operator ρ has a purification on some higher-dimensional Hilbert space. Since we
do not impose any restrictions on Eve’s Hilbert space, it can be big enough to admit a purification
of any state ρAB that Alice and Bob share. A detailed treatment of this concept can be found in
[34].
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(note that the state ρABE is a purification of ρAB ). We now use the relation between
the trace distance and the fidelity given in Theorem 2.59:

1

2
||ρABE − |�+〉⊗m ⊗ σE ||1 ≤

√
1 − F

(
ρABE, |�+〉⊗m ⊗ σE

)

=
√

1 − F
(
ρAB, |�+〉⊗m

)

≤
√

1 − (1 − ε2)

= ε.

We have not quite arrived at the security condition (5.47) yet: The last ingredient
we need is the observation that Alice and Bob can transform the shared maximally
entangled state |�+〉⊗m into a state of the form ρUU by simply measuring it in
the computational basis. Since their respective qubits are perfectly correlated, their
measurement results are always the same, and because of the structure of the state
each result is obtained with probability 1

2 . ��

With the above lemma at hand, it now remains to show how Alice and Bob
can estimate the fidelity. In practice, Alice and Bob cannot estimate the fidelity
of the key bits directly since this includes measuring them, which destroys the
state. However, Alice and Bob can make statements about the statistics of the
remaining states if they choose the set of check states large enough, as we have
seen in Sect. 4.2.1 when discussing parameter estimation. Since the theorem we
used in the analysis of parameter estimation, Theorem 4.5, is an argument based on
classical probability, it is not immediately clear that we can apply it to the outcomes
of quantum measurements.10

Fortunately, quantum measurements do allow an interpretation in terms of
classical probability theory if the observables that are considered refer to only one
basis. This is indeed the case for the present situation, since we can make use of the
Bell basis, which consists of the four states

|�+〉 = |00〉 + |11〉√
2

, (5.49)

|�−〉 = |00〉 − |11〉√
2

, (5.50)

|�+〉 = |01〉 + |10〉√
2

, (5.51)

|�−〉 = |01〉 − |10〉√
2

. (5.52)

10A very good demonstration of the problems that can arise here is the CHSH inequality described
in the previous chapter, where the outcomes of a quantum measurement violate the bound that is
derived using classical probability theory.
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In the protocol, Alice holds the state |�+〉⊗m and sends the second qubit of all
the individual states to Bob. In general, there are three different errors a qubit can
undergo: a bit flip, a phase error, and a combination of the two. A bit flip changes
|0〉 to |1〉 and |1〉 to |0〉. A phase error leaves the state |0〉 unchanged but transforms
|1〉 into −|1〉. The combination of both errors corresponds to the transformation
|0〉 → −|1〉 and |1〉 → |0〉. These three errors are generated by the Pauli matrices

σx =
(

0 1
1 0

)

, σy =
(

0 −i

i 0

)

, σz =
(

1 0
0 −1

)

, (5.53)

where the bit flip error corresponds to σx , the phase error corresponds to σz, and
the combination of both to σy . Therefore, the initial state that Alice holds |�+〉 can
undergo four different evolutions when she sends the second qubit to Bob (note that
we ignore all irrelevant overall phases):

1. Nothing happens to the qubit (which corresponds to applying the identity
operator) and the state after the transmission is still |�+〉.

2. A bit flip error occurs (which corresponds to applying the σx operator to the
qubit). This will transform the state into |�+〉.

3. A phase error occurs (which corresponds to applying the σz operator), which
transforms the state into |�−〉.

4. A combination of bit flip and phase error occurs (which corresponds to applying
the σy operator), which transforms the state into |�−〉.

These errors can be detected by the following measurements: the POVM that
describes the measurement to detect a bit flip error is given by {�bf, 1 − �bf} with

�bf = |�+〉〈�+| + |�−〉〈�−|. (5.54)

Similarly, to detect a phase error, the measurement is described by the POVM
{�pe, 1 − �pe}, where

�pe = |�−〉〈�−| + |�−〉〈�−|. (5.55)

These measurements are given solely in terms of the Bell basis; hence, their
outcomes obey classical probability arguments. Although this looks promising,
there is still one caveat: The Bell states are non-local, and therefore, measurements
in this basis require, in general, non-local operations. These can be difficult to
implement since Alice and Bob do not have access to the other party’s respective lab.
Fortunately, in the present scheme the measurements can be implemented locally
since

�bf = 1

2

(
id ⊗ id − σz ⊗ σz

)
, (5.56)

�pe = 1

2

(
id ⊗ id − σx ⊗ σx

)
. (5.57)



5.4 Security of BB84 139

Therefore, Alice and Bob can perform the desired checks with only local operations
and estimate the fidelity in this way.

Exercise 5.7 Show that the measurement operators given in (5.56) and (5.57) yield
the same outcome statistics as the ones defined in (5.54) and (5.55).

5.4.2 Reduction to the Prepare-and-Measure Version

To achieve our ultimate goal, namely showing that the original version of the BB84
protocol is secure, we still need to show that the entanglement-based version of the
BB84 protocol is equivalent to its prepare-and-measure version. For this purpose,
we begin with the scheme given in the entanglement-based BB84 protocol and
systematically modify different steps to finally arrive at the original version. In this
part of the proof we use several aspects of the construction of classical linear codes
and CSS codes as well as properties of cosets; hence, it is helpful to have a look at
Appendix B first in order to follow the arguments below.

We begin the reduction by removing the need to distribute the maximally
entangled pairs |�+〉⊗2n. First, note that the measurement of the n check pairs in
step 8 is simply used to estimate the error rate. Hence, instead of using entangled
states, Alice can equivalently prepare and send n single qubit states to Bob. This
changes steps 1, 2, and 8 of the protocol to:

1′. Alice creates n random check bits and n maximally entangled states |�+〉⊗n.
She encodes n qubits as |0〉 or |1〉 according to the check bits.

2′. She randomly chooses n out of 2n positions to put in the check qubits. In the
remaining positions she puts in one half of each state |�+〉.

8′. Bob measures the n check qubits in the {|0〉, |1〉} basis and publicly shares the
result with Alice. If more than t bits disagree, they abort the protocol.

To remove the remaining n entangled pairs, recall some basics of the CSS codes
we are using:11 Given two classical linear error correction codes C1 (that encodes
k1 bits into n bits) and C2 (that encodes k2 bits into n bits), a [n,m] CSS code of
C1 over C2, denoted as CSS(C1, C2), encodes m = k1 − k2 qubits into n qubits and
corrects up to t errors. To find out the positions of bit flip errors, one has to apply
the parity check matrix H1 of the classical code C1. To get information about the
phase errors, one applies the parity check matrix H⊥

2 of the classical dual code C⊥
2 .

A codeword in this code is always of the form

|xk + C2〉 = 1√|C2|
∑

y∈C2

|xk + y〉, (5.58)

11For more details about CSS codes, see Appendix B.
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where xk is a representative of one of the 2m cosets of C2 in C1. The notation xk

implies that it is a vector x that is indexed by a string k. Furthermore, there exists
a family of [n,m] CSS codes of C1 over C2 that is equivalent to this one in the
sense that these codes can correct the same number of errors, which we denote
CSSv,w(C1, C2), where v and w are n-bit strings. The codewords in this family are
given by

|xk, v,w〉 = 1√|C2|
∑

y∈C2

(−1)v·y|xk + y + w〉. (5.59)

These states have the important property that they form an orthonormal basis of a
2n-dimensional Hilbert space. To see this, we will show that there are 2k1−k2 distinct
values of xk, 2n−k1 distinct values of w, and 2k2 distinct values of v:

i. As discussed in Appendix B, if xk −x ′
k ∈ C2, then |xk +C2〉 = |x ′

k +C2〉, which
implies that the state |xk + C2〉 only depends on the coset of C1/C2 in which xk

is contained. Since there are 2m such cosets, there are 2m distinct values of xk .
ii. Suppose that |xk, v,w〉 = |xk, v

′, w〉. This implies that v · y = v′ · Y for all
y ∈ C2, and therefore (v − v′) · y = 0 for all y ∈ C2. This in turn means that
v − v′ ∈ K , where K is the row space of the parity check matrix H2 of C2 (the
rows of H2 span the space of all vectors that are orthogonal to the codewords y

of C2). Therefore, the requirement for two states |xk, v,w〉 and |xk, v
′, w〉 to be

distinct states is v − v′ /∈ K , which directly implies v + K �= v′ + K (which
is a property of cosets). Since H2 has n − k2 linearly independent rows, v has
2n−(n−k2) = 2k2 distinct values.

iii. With a similar argument as in 1., the values of w depend on the coset of C1 in a
2n-dimensional Hilbert space in which w is contained, which implies that there
are 2n−k1 distinct values of w.

It remains to show that the states are orthonormal: Note that if xk and x ′
k belong

to different cosets of C1/C2, then there are no codewords y, y ′ ∈ C2 such that
xk + y = x ′

k + y ′; hence, the states in (5.58) are orthonormal states. A similar
argument can be applied to the current situation: Consider the cosets of C2 in F

n
2

(the set of all n-bit strings). For two distinct states |xk, v,w〉 and |x ′
k, v

′, w′〉, xk +w

and x ′
k+w belong to different cosets of Fn

2/C2 and therefore, there are no y, y ′ ∈ C2
such that xk + w + y = x ′

k + w′ + y ′; hence, the two states are orthonormal.
We can use the fact that the states defined in (5.59) form an orthonormal basis of

a 2n-dimensional Hilbert space to express the maximally entangled pairs that Alice
and Bob share in this basis:

|�+〉⊗n = 1√
2n

2n−1∑

j=0

|j 〉|j 〉 = 1√
2n

∑

xk,v,w

|xk, v,w〉|xk, v,w〉, (5.60)
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where the first state corresponds to Alice’s qubits and the second one is the qubit
she sends to Bob. When Alice measures the error syndrome corresponding to H1
and H⊥

2 on her qubits in step 9, she obtains random values for v and w. Similarly,
in step 10, the measurement in the computational basis yields a random string xk ∈
C1/C2. Therefore, Bob’s state has collapsed to |xk, v,w〉, which is the codeword
for xk in CSSv,w(C1, C2). This is the encoded counterpart of an m-qubit state |k〉
(remember that the codes in this family encode m qubits into n qubits). It follows
that instead of preparing maximally entangled states, Alice can equivalently choose
bit strings v,w and k at random, encode |k〉 in the code CSSv,w(C1, C2), and send
the corresponding n-qubit codeword to Bob. The resulting scheme, called the CSS
codes protocol, is then as follows:

CSS codes protocol

1. Alice creates n random check bits, a random m-bit key k, and two random
n-bit strings v and w. She encodes |k〉 in the code CSSv,w(C1, C2). She
also encodes n qubits as |0〉 or |1〉 according to the check bits.

2. She randomly selects n positions out of 2n and puts the check qubits at
these positions and the encoded qubits in the remaining positions.

3. Alice selects a random classical bit string b = (b1, b2, . . . , b2n) of length
2n. Whenever the bit bi is 1, she applies a Hadamard transformation
(2.28) to her half of the corresponding qubit pair.

4. She sends the other half of all qubit pairs to Bob.
5. Bob receives the qubits and publicly announces this fact.
6. Alice announces b, v and w and the positions of the check qubits.
7. Bob applies a Hadamard transformation to those qubits for which bi = 1.
8. Bob measures the n check qubits in the computational basis {|0〉, |1〉} to

estimate the error rate. If more than t errors occur, they abort the protocol.
9. If the number of errors is below t , Bob decodes the remaining n qubits

from CSSv,w(C1, C2).
10. Bob measures his qubits to obtain the shared secret key k.

The CSS codes protocol is secure because it was derived by reduction from the
entanglement-based version of BB84, which we proved to be secure in the previous
section. However, we have not yet arrived at the prepare-and-measure version of
BB84. The CSS codes protocol still requires perfect quantum computation for
the encoding and decoding and furthermore, Bob needs quantum memory for
the storage of his qubits, while he waits for Alice’s announcements. In contrast,
the prepare-and-measure version of the BB84 protocol only requires single qubit
preparation and measurements. However, the use of CSS codes makes it possible to
remove these requirements because of their property that they decouple bit flip and
phase errors.
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First, note that Bob only cares about the bit values of the encoded key and the
string v is only needed to correct the phase of the encoded qubits; hence, Bob does
not need v. Since Alice does not need to reveal v, she effectively sends a mixed state
averaged over all values of v:

ρxk,w = 1

2n

∑

v

|xk, v,w〉〈xk, v,w| (5.61)

= 1

2n|C2|
∑

v

∑

y,y ′∈C2

(−1)v·(y−y ′)|xk + y + w〉〈xk + y ′ + w| (5.62)

= 1

|C2|
∑

y∈C2

|xk + y + w〉〈xk + y + w|. (5.63)

Equivalently, this state can be prepared using only single qubit operations by
choosing a codeword. Therefore, the first step of the CSS codes protocol is modified
to:

1′. Alice creates n random check bits, a random n-bit string w, a random codeword
xk ∈ C1/C2, and a random codeword y ∈ C2. She encodes n qubits in the state
|0〉 or |1〉 according to xk + y + w, and n qubits in |0〉 or |1〉 according to the
check bits.

Bob will receive a state |xk + y + w + e〉 and he can, instead of first decoding
the state and then measuring it as described in steps 9 and 10, directly measure it
in the computational basis. Then he obtains a string xk + y + w + e and now he
can do the error correction classically since C1 and C2 are classical codes. With the
error correction w he has received from Alice, he can subtract w from his string
and obtain xk + y + e. If e does not contain too many errors, Bob can then correct
xk + y + e unambiguously to the codeword xk + y.

This scheme becomes even more simple if Alice chooses xk ∈ C1 instead of
xk ∈ C1/C2, because y is not necessary any more. Moreover, xk +w is a completely
random n-bit string, which means that Alice can equivalently choose a string x at
random and send the state |x〉 to Bob, who measures it to obtain x + e. Alice then
sends the string x − xk , so Bob can subtract this from his string to get xk + e, which
he corrects to xk . We have achieved now that the key qubits are prepared in a random
state, in the same way as the check bits! This results in the following modified steps:

1′′. Alice chooses a random xk ∈ C1 and creates a random 2n-bit string, according
to which she creates 2n qubits in the |0〉 or |1〉 state.

2′. Alice randomly chooses n out of 2n positions to be the check qubits and the
remaining n positions to define |x〉.

6′. Alice announces b, x − xk, and the positions of the n check bits.



5.4 Security of BB84 143

9′. Bob measures the remaining qubits to obtain x + e, subtracts x − xk from this,
and corrects it with the code C1 to obtain xk.

10′. Alice and Bob compute the coset to which xk belongs in order to obtain the
final key k.

We can also remove the Hadamard transformation from the protocol. Alice can
instead encode her qubits directly either in the computational basis {|0〉, |1〉} or
in the Hadamard basis {|+〉, |−〉}, depending on the values of the bits in b. Bob
then directly measures these qubits at random either in the computational or in the
Hadamard basis. When Alice announces b, they will only keep those bits for which
they have chosen the same basis. This removes the requirement for Bob to have
a quantum memory to store the qubits until he receives information from Alice.
However, since they discard with high probability about half of their bits in this
step, they have to start with 4n qubits in order to get the same amount of key in the
end.

Because of the sifting step we have added, Alice has to wait with her choice of
check qubits until after the bits have been discarded. With these last modifications,
we arrive at the final protocol, which is the same as the prepare-and-measure version
of BB84:

Secure BB84

1. Alice creates 4n random bits.
2. Alice encodes each of the bits either in the computational or in the

Hadamard basis according to another random 4n-bit string b.
3. Alice sends the resulting qubits to Bob.
4. Alice chooses a random xk ∈ C1.
5. Bob receives the qubits, publicly announces this fact, and measures each

of the qubits either in the computational or in the Hadamard basis, chosen
at random.

6. Alice announces b.
7. Alice and Bob discard those bits where they have used different bases.

After this step, there are about 2n bits left. Alice randomly chooses n of
these bits to serve as check bits and tells Bob the position of these bits.

8. Alice and Bob publicly compare the check bits. If they find more than t

errors, they abort the protocol. Otherwise, they continue and Alice is left
with the n-bit string x, and Bob with n-bit string x + e.

9. Alice announces x − xk . Bob subtracts this from his string and corrects it
with the code C1 to obtain xk .

10. Alice and Bob compute the coset to which xk belongs in order to obtain
the final key k.
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Note that step 9 serves as the error correction step since C1 is simply a classical
error correction code. Step 10 is privacy amplification: we assume that Eve has no
knowledge about the code C1 (which can be achieved by Alice choosing the code
at random); hence, even if she has some knowledge about xk , without knowing the
code C1, she does not know which coset xk belongs to.

We have now proven the security of the original BB84 protocol by first proving
the security of its entanglement-based version and then successively reducing
that scheme to the prepare-and-measure version. Since we did not make any
modifications on Eve’s quantum state, we conclude that the BB84 protocol is secure.

However, there are of course some caveats: This proof only proves the security
of the ideal protocol, where the states sent are exactly those described. This does
not guarantee security against the photon-number-splitting attack, for example.
Furthermore, the proof does not make any statements about the amount of effort
needed for the decoding: for practical applications in QKD, the code C1 must be
efficiently decodable. Another point is that the proof does not provide an upper
bound for the amount of eavesdropping that is tolerable, since CSS codes are not
optimal. In [30], it is estimated that a rate of bit flip and phase errors of up to 11%
is tolerable using a protocol similar to the BB84 protocol. However, with the aid of
quantum computation for the encoding and decoding, it might be possible to tolerate
higher error rates.

5.5 Modern Techniques

The security proof of BB84 presented above was a remarkable achievement since
it took many years from the first presentation of the protocol until its security
could be proven. However, the proof does not have a modular structure in the
sense that it mixes different steps of the protocol such as error correction and
privacy amplification. This makes it difficult to transfer the techniques used there
to other protocols since they are very specific to the states and measurements used
in the BB84 protocol. Therefore, other techniques have been developed since the
days of the first security proofs, which are more general and can be adapted to a
variety of protocols. In the following, we discuss the most important state-of-the-art
techniques in security proofs.

5.5.1 The Secret Key Rate

One of the most important quantities for modern security proofs is the Devetak–
Winter rate, which gives a lower bound on the asymptotic secret key rate r .12 The

12Asymptotic means that the bound holds for an infinite number of repetitions of the experiment.
While this is an unrealistic assumption in practice (since it does not account for any finite-size
effects), it is usually easier to analyse. We discuss the finite case later in this chapter.



5.5 Modern Techniques 145

secret key rate is the number of secure key bits that can be extracted per signal sent.
In [13], Devetak and Winter prove a lower bound on this quantity for the case of
collective attacks and in the regime of an infinite key: let KA and KB be the random
variables that describe Alice’s and Bob’s keys, respectively, and E the quantum
system that Eve holds. The asymptotic secret key rate is then lower bounded by

r ≥ I (A : B) − I (A : E). (5.64)

An intuitive interpretation of this definition is as follows: the fraction of secret bits
generated per round of using the protocol is equal to the amount of information
shared by Alice and Bob, I (A : B), minus the amount of information that Eve has
on Alice’s part of the key, I (A : E).

Even though the bound on the secret key rate in (5.69) only holds for the case of
collective attacks, it is possible to infer security against general attacks from security
against collective attacks. One tool that allows for this is the postselection technique
[9]. This can be applied to protocols where the dimension d = dim(HA ⊗ HB)

of Alice’s and Bob’s quantum system is known. The statement of the technique is
the following: If a QKD protocol of M rounds is ε-secure against collective attacks,
then it is also (M + 1)d

2−1ε-secure against coherent attacks if the length of the
secure key is shortened by 2(d2 − 1) log(M + 1) bits [15].

5.5.2 Security from Entropic Uncertainty Relations

One possibility to evaluate the right hand side of (5.69) is to exploit the explicit form
of the protocol in order to reduce the entropy that involves Eve’s system to quantities
that only depend on Alice’s and Bob’s system. Another way to find a bound on the
secret key rate is using entropic uncertainty relations, which we have already seen
in Sect. 3.3. Since they constrain the potential knowledge that one can have on a
physical system, we can use them to bound Eve’s knowledge on the key, following
the presentation in [5].

Consider the following situation as it usually occurs in an entanglement-based
protocol: The eavesdropper creates a quantum state ρABE and distributes part A

of the state to Alice and part B to Bob. Of course, in practice Alice and Bob
do not provide Eve with such power; however, a security proof that covers this
extreme situation obviously includes the case where Alice and Bob distribute the
states themselves. To generate the key, Alice and Bob measure the states they
receive choosing between two different measurements at random. We denote Alice’s
possible measurements R and S, and Bob’s possible measurements R′ and S′. After
the measurement, Alice and Bob compare their choices in order to ensure that
the generated keys are identical. This communication can entirely be overheard
by the eavesdropper who is trying to get information on the key. However, if the
measurement outcomes are sufficiently correlated, Alice and Bob can still generate
a secure key.
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To see this, first recall from Theorem 3.54 the relation

H(R|B) + H(S|B) ≥ log

(
1

c

)

+ H(A|B). (5.65)

Using this relation, we can prove the following corollary, which was first conjec-
tured by [25]:

Corollary 5.8 For any density operator ρABE ∈ B(HA ⊗ HB ⊗ HE),

H(R|E) + H(S|B) ≥ log

(
1

c

)

. (5.66)

Proof Using the definition of the conditional entropy as given in Definition 3.31,
we know that H(R|B) = H(RB) − H(B). Using this, we can rewrite (5.65) as

H(RB) + H(SB) ≥ log

(
1

c

)

+ H(AB) + H(B). (5.67)

If ρABE is a pure state, we know from Theorem 3.28 that for any bipartition,
the marginal entropies are equal, i.e., H(RB) = H(RE) and H(AB) = H(E).
Therefore, we have

H(RE) + H(SB) ≥ log

(
1

c

)

+ H(E) + H(B), (5.68)

which is equivalent to the statement of the corollary. For general states ρABE , the
result follows by the concavity of the conditional entropy. ��

With this result we can now bound the secret key rate r , using an alternative
formulation for the lower bound:

r ≥ H(R|E) − H(R|B). (5.69)

Using (5.69) and Corollary 5.8, we can lower bound the key rate by

r ≥ log

(
1

c

)

− H(R|B) − H(S|B) (5.70)

≥ log

(
1

c

)

− H(R|R′) − H(S|S′), (5.71)

where we have used that measurements cannot decrease the conditional entropy (see
Theorem 3.35) in the last step. This security argument has the advantage that Alice
and Bob only need to bound the entropies H(R|R′) and H(S|S′), which are both
directly observable quantities.
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The argumentation has the limitation that it only applies to collective attacks,
because the bound derived in [13] is only valid for these attacks. However, there are
ways to extend it to general attacks by using the postselection technique mentioned
above.

Exercise 5.9 Show that the bound on the secret key rate in (5.69) follows from the
formula in (5.64).

Security of BB84
We can also use entropic uncertainty relations to prove the security of the BB84
protocol. Recall that in the BB84 protocol, there are two different measurement
bases that Alice and Bob can use: The computational basis (or Z-basis) {|0〉, |1〉}
and the Hadamard basis (or X-basis) {|+〉, |−〉}. Furthermore, in Sect. 3.3 we have
shown that log(1/c) = 1 for the X and Z measurements. The result of Corollary 5.8
then states that

H(Z|E) + H(X|B) ≥ 1, (5.72)

where E denotes Eve’s quantum system and B denotes the one that Bob has. The
first term in the above relation is evaluated for the state ρZBE , which is the post-
measurement state after Alice has measured in the Z-basis. Analogously, the second
term is evaluated for the post-measurement state after Alice has measured in the X-
basis, ρXBE . With this relation, we can bound Eve’s information by

H(Z|E) ≥ 1 − H(X|B). (5.73)

Note that if H(Z|E) = 1, then Eve has no knowledge on Alice’s state. The fact
that measurements cannot decrease the entropy (see Theorem 3.35) implies that
H(Z|E) ≥ 1 − H(X|X′), where X′ denotes Bob’s measurement in the X-basis.

In the parameter estimation step of the protocol, Alice and Bob estimate the
amount of errors in their respective bit strings. Here, two different scenarios can
occur:

1. If Pr[X �= X′] ≥ 0, Alice and Bob will detect a certain amount of errors in their
sample and abort the protocol.

2. If Pr[X = X′] ≈ 1, Alice and Bob can generate a key.

Since in the first case Alice and Bob abort the protocol, let us assume that Pr[X �=
X′] = δ with δ ≈ 0. With this, we can find an upper bound on H(X|X′) terms of
δ: Recall that H(X|X′) = H(X,X′) − H(X′) ≤ H(X,X′). Furthermore, note that
the joint probability distribution of X and X′ is given by

pX,X′(x, x ′) =
{

δ if x �= x ′

1 − δ if x = x ′,
(5.74)
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which yields H(X,X′) = −δ log δ − (1 − δ) log(1 − δ) = h2(δ), where h2(δ) is the
binary entropy function. Also note that H(Z) = 1 since the outcomes are uniformly
distributed. With these results, we can bound the mutual information I (Z : E)

(defined in Definition 3.37) between Alice’s and Eve’s respective systems:

I (Z : E) = H(Z) − H(Z|E) (5.75)

≤ 1 − (1 − H(X|X′)) (5.76)

≤ H(X,X′) (5.77)

≤ h(δ). (5.78)

We now use an identity stated in Corollary 3.43, namely

I (Z : E) = D(ρZE ||ρZ ⊗ ρE). (5.79)

For δ → 0, h(δ) = 0 (see, e.g., the plot in Fig. 3.2) and therefore I (Z : E) = 0.
From (5.79) we can then conclude that D(ρZE ||ρZ ⊗ ρE) = 0 for δ → 0. Since the
relative entropy is zero if and only if the two states are equal (see Theorem 3.42),
it follows that ρZE = ρZ ⊗ ρE . Hence, Eve has no information on Alice’s system.
To complete the security proof, one has to do the same calculation in the X-basis
using the uncertainty relation H(X|E) + H(Z|B) ≥ 1, but since this is completely
analogous to the above derivation, we omit it here.

Using the formula given in (5.71) we can conclude that the asymptotic secure
key rate of the BB84 protocol is given by

rBB84∞ ≥ 1 − h(eZ) − h(eX), (5.80)

where eZ and eX are the error rates in the Z- and X-bases, respectively.
It is important to note that the above proof only holds when there are no

correlations between the individual rounds of the protocol, i.e., it only applies in
the case of individual attacks. However, since in general

ρA1B1E1 ⊗ ρA2B2E2 ⊗ · · · ⊗ ρAnBnEn �= ρA1A2...AnB1B2...BnE1E2...En , (5.81)

this does not imply security against general attacks. This problem can be solved by
employing the so-called de Finetti theorem, which states that the proof for collective
attacks also implies security for general attacks. Applying the de Finetti theorem
requires that the states of the protocol are invariant under permutation of the rounds.
While this seems like a strong requirement, it can be argued that this is always
fulfilled when we assume that the eavesdropper has unlimited power. A rigorous
treatment of this issue can be found in [26] and [9].
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5.6 Finite-Key Analysis

The analysis of finite-key statistics is, in general, more difficult than the analysis
of the infinite-key analysis since the Devetak–Winter rate, which provides a lower
bound on the secure key rate, is only valid in the limit of infinitely many rounds of
the protocol. However, for practical applications it is inevitable to prove the security
of a QKD protocol for keys of finite size since it is usually very costly and time-
consuming to generate large amounts of secure key bits.

Recall that the main challenge in modern security proofs of QKD protocols in the
infinite scenario lies in bounding the conditional entropy between Alice and Eve,
i.e., the information that Eve has on the key. To understand where the difficulties
are, let us recap a typical QKD protocol in the finite scenario. In a general QKD
protocol, the goal is to output an identical pair of keys kA = kB , which is completely
unknown to Eve. It is also possible that the protocol aborts, which means setting
kA = kB =⊥, but it never outputs an insecure key. The steps of such a protocol in
the entanglement-based setting are as follows:

1. The first step of the protocol is to distribute M quantum states such that the joint
state of Alice and Bob is ρM

AB and Eve holds a purification of this state (to account
for the worst case scenario).13

2. Alice and Bob perform local measurements on their respective states and collect
the classical outputs. The allowed sets of measurements depend on the protocol
that is chosen. Typically, Alice and Bob choose some round to be used for key
generation and others as test rounds.

3. Now the classical post-processing begins. The first step here is parameter
estimation, where Alice and Bob estimate the noise in the quantum channel
and, therefore, the information that Eve has. For this purpose, they reveal the
setting and outcomes of the test rounds as well as a random sample of the key-
generation rounds. At the end of this step they hold a pair of partially secret,
partially correlated bit strings of length n < M (the raw key), which we denote
Kn

A and Kn
B , respectively.

4. The next step in the classical post-processing procedure is error correction. The
goal of this step is for Bob to compute a guess K̂n

A of Alice’s raw key Kn
A,

given his raw key Kn
B and the information he receives during the error correction

procedure. This leaks leakEC bits of information to Eve. Furthermore, Alice and
Bob need to check whether the error correction procedure was successful. For
this purpose, Alice computes a hash hA of length �log(1/εcor)� from her raw key
Kn

A to apply a randomly chosen two-universal hash function.14 Bob compares
this to a hash hB he computes from his guess K̂n

A. They compare their respective
hashes and if hA �= hB , they abort the protocol setting kA = kB =⊥. The total

13Note that ρM
AB �= ρ⊗M

AB , i.e., the individual signals are not identical, in order to account for the
possibility of coherent attacks.
14See also Sect. 4.2.2, where we treated this step in more detail.
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amount of information leaked during the error correction process is

leakEC +
⌈

log
1

εcor

⌉

≤ leakEC + log
2

εcor
. (5.82)

5. In the last step, privacy amplification, Alice and Bob turn their strings into secure
keys using a randomness extractor. Alice randomly picks another two-universal
hash function and communicates it to Bob. They apply the function to Kn

A and
K̂n

A, respectively, and obtain a set of shorter secret keys kA and kB of length
l < n. The length l of the secret key is chosen such that

l ≤ Hε
min(K

n
A|E) − leakEC − log

2

εcor
− 2 log

1

2εsec
, (5.83)

for some ε, εcor, εsec ≥ 0 as explained in Sect. 4.2.3.

The key rate in the non-asymptotic scenario is then given by

r = length of secret key

number of signals exchanged
= l

M
. (5.84)

Exercise 5.10 Show that �log(1/x)� ≤ log(2/x) for all x.

Security Proof
To prove the security of the above protocol in the case of a finite key we employ
Theorem 5.4 that allows us to treat correctness and secrecy of the protocol
individually.

The correctness of the key is established in the error correction step. Recall from
Sect. 4.2.2 that when Alice and Bob use a two-universal hash function fEC to check
whether the error correction procedure has been successful, the probability that their
bit strings differ even though the hashes are equal is given by

Pr[Kn
A �= Kn

B |fEC(Kn
A) = fEC(Kn

B)] ≤ εcor. (5.85)

Furthermore, note that the privacy application procedure does not affect the
correctness of the protocol (see Sect. 4.2.3): let kA = fPA(Kn

A) be Alice’s key after
she has applied the two-universal hash function fPA in the privacy amplification step
(and similar for Bob’s key). The probability that the keys differ is then given by

Pr[kA �= KB ] ≤ Pr[Kn
A �= Kn

B ] ≤ εcor. (5.86)

Note that if the hashes differ and the protocol aborts, the keys are trivially equal
since their value is set to ⊥. Hence, we have

Pr[kA �= kB] ≤ εcor. (5.87)
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To prove the secrecy of the protocol we use the quantum leftover hash lemma
(see Lemma 4.9) and a chain rule for the conditional min-entropy: First, recall that
the quantum leftover hash lemma tells us that after applying a two-universal hash
function in the privacy amplification step it holds that

1

2
‖ρkAEtot − ρU ⊗ ρEtot‖ ≤ 2ε′ + 1

2

√

2l−Hε′
min(K

n
A|Etot), (5.88)

where Etot includes all the information that is available to Eve: the purifying system
E, the classical information C that has been publicly exchanged during the error
correction step as well as the knowledge Y of the two-universal hash function used
in the privacy amplification step. We now use the following chain rule for the min-
entropy:

Hε′
min(K

n
A|CE) ≥ Hε′

min(K
n
A|E) − log |C|, (5.89)

where log |C| = leakEC + log 2
εEC

(see the discussion of the error correction step
above). In summary, we can now show that

1

2
‖ρkAEtot − ρU ⊗ ρEtot‖ ≤ 2ε′ + 1

2

√

2
l−Hε′

min(K
n
A|E)−leakEC−log 2

εEC (5.90)

≤ 2ε′ + 1

2

√
2log(2εsec)2 (5.91)

≤ 2ε′ + εsec, (5.92)

where in the second inequality we have used the expression for the key length (5.83).
Combining the two parts of the proof, we find that the protocol described above is
ε-secure with ε = εcor + 2ε′ + εsec.

Finding a bound on the conditional min-entropy on the right hand side of (5.83)
is arguably the most difficult part of a security proof since it cannot be computed
directly due to the fact that Alice and Bob do not have access to Eve’s system
E. Hence, the main challenge for any security proof is to bound the conditional
min-entropy. In the next section, we discuss how one can use entropic uncertainty
relations to achieve this task by studying (once again) the example of the BB84
protocol.

Finite-Key Analysis of BB84
In the finite-key regime, we can also make use of entropic uncertainty relations to
bound the conditional min-entropy. We demonstrate this with the example of the
BB84 protocol as it was presented in [31]. To analyse the security of a protocol in
the finite-key regime, we can employ the entropic uncertainty relation for smooth
one-shot entropies that has been presented in Theorem 3.55. Slightly reformulating
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the uncertainty relation from Theorem 3.55 yields

Hε
min

(
KZ

A |E)+ Hε
max

(
KX

A |KX
B

) ≥ n log
1

c
, (5.93)

where KZ
A is the key string that Alice gets from measuring in the Z-basis (KX

A and
KX

B are defined analogously). Note that for the measurements that appear in the
BB84 protocol, the X and Z measurements, we have that log(1/c) = 1. Using this
and slightly rewriting the above expression yield

Hε
min

(
KZ

A |E) ≥ n − Hε
max

(
KX

A |KX
B

)
, (5.94)

which shows that we can bound the information that an eavesdropper has on the
key generated by measuring in the Z-basis by finding an upper bound on the max-
entropy.

Recall that from the parameter estimation step described in Sect. 4.2.1 we get
a probabilistic bound on the number of errors: the probability that the error rate in
the string used for key generation, �n, is larger than the error rate observed in the
sample, �k , plus a small constant γ , given that the sample error rate is below a
certain threshold λmax, is given by

Pr[�n ≥ �k + γ |�k ≤ λmax] ≤ e
− 2k2nγ 2

(k+1)N

ppass
, (5.95)

where k is the size of the sample, n is the number of bit strings that are left after the
parameter estimation step, N = n+ k, and ppass is the probability that the error rate
in the sample size is lower than the threshold λmax. We can use this probabilistic
bound to derive an upper bound on the max-entropy.

For this purpose, we first define two probability distributions: The first one is
the joint probability distribution of Alice’s and Bob’s respective keys KA and KB

conditioned on the sample passing the test:

PKAKB�k (kA, kB, λk) = Pr[KA = kA,KB = kB, λk = λk |�k ≤ λmax]. (5.96)

The second probability distribution we consider is the following:

QKAKB�k (kA, kB, λk) =
{

PKAKB�k
(kA,kB,λk)

Pr[�n<�k+γ |�k≤λmax] , if λn < λk + γ

0 otherwise.
(5.97)

We need the second distribution because in this case we know that the error rate in
the remaining bits fulfils �n < �k + γ ≤ λmax + γ with probability 1. As a result,
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the number of errors on the remaining n bits, defined as W = n�n, satisfies

W ≤ "n(λmax + γ )#. (5.98)

In order to find a bound on the max-entropy using probability distribution Q we
need that Q and P are close to each other with respect to the purified distance,
which follows directly from the definition of the max-entropy. To see this, note that
the fidelity of P and Q is given by

F(P,Q) =
⎛

⎝
∑

kA,kB ,λk

√
PKAKB�k (kA, kB, λk) QKAKB�k (kA, kB, λk)

⎞

⎠

2

(5.99)

=
⎛

⎝
∑

kA,kB ,λk,λn≤λk+γ

PKAKB�k (kA, kB, λk)√
Pr[�n ≥ �k + γ |�k ≤ λmax]

⎞

⎠

2

(5.100)

= Pr[�n < �k + γ |�k ≤ λmax] (5.101)

≥ 1 − e
− 2k2nγ 2

(k+1)N

ppass
. (5.102)

From the definition of the purified distance it now directly follows that

P(P,Q) ≤

√
√
√
√e

− 2k2nγ 2
(k+1)N

ppass
= e

− k2nγ 2

(k+1)N

√
ppass

, (5.103)

and hence, P and Q are ε-close with respect to the purified distance for ε = ε′√
ppass

and γ =
√

(k+1)N

k2n
ln 1

ε′ .
This helps us to bound the max-entropy: since the distribution P (which is the

actual distribution we are interested in) and the distribution Q are ε-close, from the
definition of the max-entropy it follows that

Hε
max

(
KA|KB

)
P

≤ Hmax
(
KA|KB

)
Q

. (5.104)

The expression on the right hand side can be further bounded by using the definition
of the max-entropy for the classical case, which is

Hmax
(
X|Y )

P
= max

y∈Y
log |suppPX|Y=y |, (5.105)

whereY is the outcome set that corresponds to the probability distribution PY . Since
the probability distribution Q has only support on strings that fulfil λn < λk + γ ≤
λmax +γ , we only need to count how many strings of length n have at most λmax +γ
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errors. This yields

Hmax
(
KA|KB

)
Q

≤ log
"n(λmax+γ )#∑

w=0

(
n

w

)

≤ nh2(λmax + γ ), (5.106)

where the last inequality was shown in [32] with h2 being the binary entropy.
Altogether, we can now bound the information an eavesdropper has on the outcomes
of the Z measurement by

Hε
min

(
KZ

A |E) ≥ n(1 − h2(λmax + γ )). (5.107)

To arrive at the secure key, Alice and Bob now perform error correction and
privacy amplification, which leaks additional information about the random variable
Z. As a result, the length l of the final key is given by

l ≥ n(1 − h2(λmax + γ )) − leakEC − log
1

εcor
− 2 log

1

2εsec
. (5.108)

Note that by bounding the smooth min-entropy Alice and Bob almost fulfil the
conditions needed to apply a randomness extractor to Z in order to generate the
final secure key (the privacy amplification step). From Definition 4.8 it directly
follows that if Hmin(Z|E) > k, applying a (k, ε)-strong quantum-proof randomness
extractor yields an ε-secure key in the sense of Definition 5.3. However, so far we
have only established a bound on the smooth min-entropy and not on the min-
entropy itself. Fortunately, we can show that if Hε̃

min

(
Z|E) ≥ k, a (k, ε)-strong

quantum-proof extractor will give a key that is (ε + 2ε̃)-secure.
Recall that by definition, Hε̃

min

(
Z|E) is the min-entropy that maximizes

Hmin
(
Z|E) in an ε̃-ball around the state ρZE . Suppose that ρ̃ZE ∈ Bε̃ (ρZE) is

the state that maximizes the min-entropy. Then

Hmin
(
Z|E)

ρ̃
= Hε̃

min

(
Z|E)

ρ
≥ k. (5.109)

Hence, by the definition of a (k, ε)-strong quantum-proof randomness extractor we
have that

D
(
ρ̃Ext(Z,Y )YE, ρU ⊗ ρY ⊗ ρE

) ≤ ε. (5.110)

We can now use the triangle inequality for the trace distance twice in order to relate
the actual distance we are interested in to quantities where we can find an upper
bound:

D
(
ρExt(Z,Y )YE, ρU ⊗ ρY ⊗ ρE

) ≤ D
(
ρExt(Z,Y )YE, ρ̃Ext(Z,Y )YE

)
(5.111)

+ D
(
ρ̃Ext(Z,Y )YE, ρU ⊗ ρY ⊗ ρ̃E

)+ D (ρU ⊗ ρY ⊗ ρ̃E, ρU ⊗ ρY ⊗ ρE) .

(5.112)
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The first element in the sum on the right hand side can be bounded by using the
fact that applying the extractor functionExt does not increase the trace distance and,
furthermore, that system Y is the same for both ρ and ρ̃:

D
(
ρExt(Z,Y )YE, ρ̃Ext(Z,Y )YE

) ≤ D (ρZE ⊗ ρY , ρ̃ZE ⊗ ρY ) (5.113)

≤ P (ρZE, ρ̃Z) = ε̃. (5.114)

In the last step we have exploited the fact that the purified distance is always greater
or equal to the trace distance, which follows directly from Theorem 2.59. This
property is also used to bound the third element in the sum:

D (ρU ⊗ ρY ⊗ ρ̃E, ρU ⊗ ρY ⊗ ρE) ≤ P ((ρ̃ZE, ρZE) = ε̃. (5.115)

Altogether, we find that

D
(
ρExt(Z,Y )YE, ρU ⊗ ρY ⊗ ρE

) ≤ ε + 2ε̃, (5.116)

which shows that by bounding the smooth min-entropy, we can still find a quantum-
proof randomness extractor that gives us a secret key.
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6Device-Independent QKD

Abstract

Device-Independent Quantum Key Distribution (DIQKD) deals with the problem
that security proofs often only apply to the ideal setting of the theoretical protocol
and do not take into account the problems that arise when implementing a
protocol, such as the photon-number-splitting attack. DIQKD circumvents this
problem by assuming that the incorporated devices are not trusted, therefore not
making any assumptions on them in the security proof. To prove the security of
the protocol, Alice and Bob instead need to verify that the input-output statistics
of the devices violates a Bell inequality.

6.1 Device-Independent Concepts

The analysis of device-independent quantum processing tasks requires different
techniques than the device-dependent analysis, since in the device-independent
scenario we cannot make any assumptions on the states and devices that occur.
In this section, we introduce the concepts needed to understand how secure key
generation in the device-independent setting works. A detailed treatment of device-
independent quantum information processing can, for example, be found in [3].

6.1.1 Black Boxes

Since in DIQKD we do not make any assumptions on the devices that are involved,
we need to treat them differently than in the device-dependent case. Our goal is to
use certain properties of the physical devices without having to make statements
about their internal workings. Hence, instead of characterizing a device by its
hardware we treat it as a black box with some buttons. The user can press these
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Fig. 6.1 Black boxes.
Without making any
assumptions about the inner
workings of the boxes, Alice
and Bob can press a button
(or one of several buttons) of
the box, which represents the
input x/y of the box. They
will get some output a/b.
This yields the input-output
statistics of the boxes

buttons and get some output. The only information the user of the box can then
deduce is the input-output statistics of the box.

The input-output behaviour of the black box is described by the conditional
probability distribution pO|I , where O is the random variable that represents the
possible output of the box and I is the corresponding random variable for the
possible inputs. For instance, if the user can press four different buttons, then I

is a random variable over the set of possible inputs {0, 1, 2, 3}. Analogously, if the
output of the box is a classical bit, then O = {0, 1}. The probability distribution
pO|I then tells you the probability of each of the possible outputs conditioned on
the input button you have pressed. For example, if the probability distribution is
uniform when you press the 0-button, then

pO|I (0|0) = 1

2
, pO|I (1|0) = 1

2
. (6.1)

Consider the case where Alice and Bob each have access to one part of a bipartite
black box (see Fig. 6.1), which is the kind of box we are interested with regard to
QKD protocols. Crucially, the two parts of the bipartite box are separated in space,
which means that Alice and Bob each have access to their part of the box but cannot
access the other party’s box. Hence, Alice can input something to her part of the box
and read the corresponding output, but she has no access to Bob’s component (and
the other way round).

Mathematically, the boxes are fully described by the conditional probability
distribution pAB|XY , where X and A are the random variables describing Alice’s
input and output, respectively, and Y and B are the random variables describing
Bob’s input and output, respectively. In general, there are no restrictions on the
possible probability distributions, i.e., pAB|XY can be any conditional probability
distribution. However, since we want to employ these boxes in the context of
quantum key distribution, we assume that the correlations that the boxes exhibit
can be explained within the framework of quantum mechanics, hence we call these
boxes quantum boxes:

Definition 6.1 A quantum box is a bipartite box described by a probability
distribution pAB|XY such that there exists a bipartite quantum state ρAB and two
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sets of POVMs for Alice and Bob {Mx
a }a∈A for all x ∈ X and {My

b }b∈B for all
y ∈ Y, respectively, for which

pAB|XY (a, b|x, y) = Tr
(
Mx

a ⊗ M
y

b ρAB

)
(6.2)

for all a, b, x, y.

Note that even though we assume that the bipartite box is quantum, we do not
make any assumptions on the internal workings of the box. The assumption that
there is a bipartite quantum state ρAB ∈ B(HA⊗HB) that gives rise to the observed
statistics is no limitation since we do not restrict the dimensions of the Hilbert
spaces.

If the conditional probability distribution that characterizes the boxes can be
explained by classical correlations (i.e., shared randomness instead of a shared
quantum state) alone, then the box is classical:

Definition 6.2 A classical box is a bipartite box with conditional probability
distribution that can be written in the form

pAB|XY (a, b|x, y) =
∫

�

dλ Pr[� = λ]pA|X�(a|x, λ)pB|Y�(b|y, λ), (6.3)

where � is the random variable that describes the randomness that is shared by the
two parts of the box.

The set of all classical boxes is a subset of the set of all quantum boxes. On
the other hand, it is possible to define a type of box that is even more general than
quantum boxes, namely non-signalling boxes. Here, the only requirement is that the
individual components of the boxes produce an output independently of the other
component. For instance, if Alice presses a button on her part of the box it will
produce an output independent of whether Bob has pressed a button on his part of
the box. Mathematically, this means that the marginal probability distributions pA|X
and pB|Y are well-defined probability distributions.

Definition 6.3 A non-signalling box is a bipartite box with conditional probability
distribution pAB|XY that fulfils the non-signalling conditions

∑

b

pAB|XY (a, b|x, y) =
∑

b

pAB|XY (a, b|x, y ′) (6.4)

∑

a

pAB|XY (a, b|x, y) =
∑

a

pAB|XY (a, b|x ′, y) (6.5)

for all a, b and x, x ′, y, y ′.
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Fig. 6.2 The different sets of
black boxes. The sets of
classical, quantum, and
non-signalling boxes denote
C, Q, and NS, respectively.
Note that the inclusions
C ⊂ Q ⊂ NS are strict. Bell
inequalities can be used to
separate classical and
quantum boxes

In particular, the no-signalling conditions ensure that in case Alice and Bob’s
boxes are space-like separated, they cannot be used for instantaneous signalling,
which prevents a direct conflict with relativity.

When using these boxes in applications in quantum key distribution, we are
interested in distinguishing classical from quantum correlations solely by analysing
the input-output statistics of the boxes. This can be achieved by employing
Bell inequalities. We have seen an example of this when introducing the CHSH
inequality in the Ekert protocol, which is a widely-used example of a Bell inequality.
In general, there are many such inequalities which separate classical from quantum
boxes, as illustrated in Fig. 6.2.

6.1.2 Bell Inequalities

To prove the security of a QKD protocol in the device-independent setting, it is
crucial that Alice and Bob are able to certify shared entanglement without having
to make assumptions on the states and measurements they use. In other words, they
have to be able to distinguish between quantum and classical boxes. Hence, they
need a device-independent entanglement witness, for example, a Bell inequality
[9]. Bell inequalities define hyperplanes that separate the set of classical boxes C
from the set of quantum boxes Q (see Fig. 6.2). The condition that classical boxes
are on one side of the hyperplane can be written as a condition on the probability
distributions of boxes on C:

∀pAB|XY ∈ C,
∑

a,b,x,y

sab
xy pAB|XY (a, b|x, y) ≤ S, (6.6)

for all a, b, x, y, where S and sab
xy are constants. Given a probability distribution

pAB|XY (a, b|x, y), it is hence easy to check if the box cannot be a classical one: If

∑

a,b,x,y

sab
xy pAB|XY (a, b|x, y) > S, (6.7)
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then pAB|XY cannot correspond to a classical box.1 In other words: All classical
boxes fulfil (6.6), while some quantum boxes violate this inequality. Hence,
whenever a Bell inequality is violated, we can be sure that the underlying boxes
are non-classical, and therefore suitable to perform device-independent quantum
information processing tasks.

We have already seen a prominent example of a Bell inequality, namely the
CHSH inequality, named after its inventors Clauser, Horne, Shimony, and Holt
[12]. Here, we consider the case where each party has two measurement choices,
x, y ∈ {0, 1}, and two possible outcomes, a, b ∈ {−1,+1}. The CHSH polynomial
is then given by

S = 〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉, (6.8)

where 〈axby〉 = ∑
a,b ab pAB|XY (a, b|x, y), and for all probability distributions

that correspond to classical boxes C it holds that

S ≤ 2. (6.9)

As shown in Sect. 4.1.2, this inequality can, for example, be violated if the input-
output statistics is produced by making certain measurements on a maximally
entangled Bell state. In fact, as shown by Tsirelson in [11], all quantum boxes fulfil

S ≤ 2
√

2. (6.10)

The violation of a Bell inequality was first shown experimentally in 1972 in [20]
and later verified in [6]. More recently, the violation of Bell inequalities was shown
taking into account possible loopholes in the experimental setups (which we will
discuss in the next chapter), see, for example, [22, 23, 40], and [34].

Non-Local Games
Bell inequalities can also be phrased as the so-called non-local games [13]. In a
non-local game, as depicted in Fig. 6.3, Alice and Bob each are asked a question
by a referee, who chooses the question according to some probability distribution.
Each player only knows about her/his question but does not see the question that is
asked the other player. Each player gives an answer and the referee either accepts or
rejects the answer according to some predetermined rule. In order to win the game,
the players can agree on a strategy before the game begins, but no communication
is allowed during the game. If the referee accepts the answers the players win the
game.

More formally, we can describe such a game as follows: There are sets of possible
questions X and possible answers A for Alice and sets of possible questions Y

1Note that the opposite is not true: If the sum on the left hand side is ≤ S, we cannot make any
statement about the underlying black box.
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Referee

Alice Bob

( )

Fig. 6.3 Communication structure of a non-local game. The referee sends questions x and y to
Alice and Bob, respectively, and decides according to their answers a and b whether they have won
the game (w(a, b, x, y) = 1) or lost the game (w(a, b, x, y) = 0)

and possible answers B for Bob. The probability distribution over the questions is
denoted qXY and the winning condition for the game is a function w : A×B×X×
Y → {0, 1}. If w(a, b, x, y) = 1, the players win the game.

A strategy for the game can be described by a box pAB|XY , which is (at least)
constraint by the no-signalling condition since Alice and Bob are not allowed to
communicate once the game has started. The winning probability for a given box
pAB|XY is then2

ω(pAB|XY ) =
∑

a,b,x,y

qXY (x, y)pAB|XY (a, b|x, y)w(a, b, x, y). (6.11)

A Bell inequality can now be phrased as such a non-local game in the following
way: For classical boxes pAB|XY , there is a maximal winning probability ωc < 1.
On the other hand, there exist quantum boxes for which the winning probability is
ωq > ωc. Hence, condition (6.6) can be rewritten as

∀pAB|XY ∈ C, ω(pAB|XY ) ≤ ωc. (6.12)

Violating a Bell inequality is then equivalent to violating condition (6.12). In other
words, if the observed winning probability ω(pAB|XY ) of a box pAB|XY is greater
than ωc, it follows that pAB|XY /∈ C and the box must be a quantum box. The
connection between the winning probability ω of a box and the Bell violation S is
given by

ω = 4 + S

8
. (6.13)

2Be careful not to confuse the notation for the winning condition, w(a, b, x, y) and the winning
probability, ω(pAB|XY ).
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An explicit example of a non-local game is the CHSH game. Here, Alice and
Bob’s respective inputs (the questions) and outputs (the answers) are bits, i.e.,
a, b, x, y ∈ {0, 1}. The questions are uniformly distributed, hence qXY (x, y) = 1

4
for all x, y. The winning condition is given by

wCHSH =
{

1 if a ⊕ b = x · y

0 otherwise,
(6.14)

where ⊕ denotes addition modulo 2. The optimal classical strategy for this game
yields a winning probability ωc = 0.75, while the optimal quantum strategy yields

a winning probability ωq = 2+√
2

4 ≈ 0.85. The latter is consistent with Tsirelson’s
bound for the maximal possible CHSH violation for quantum boxes, S ≤ 2

√
2.

Exercise 6.4 An example for an optimal classical strategy is always choosing the
outputs as (a, b) = (0, 0). Show that in this case ωc = 0.75.

Exercise 6.5 An optimal quantum strategy is given by measuring the maximally
entangled state |�+〉 = (|00〉 + |11〉)/√2 with the following measurements: If
x = 0, Alice measures the Z-operator and if x = 1, she measures the X-operator.
For Bob, y = 0 corresponds to measuring (Z + X)/

√
2, and y = 1 corresponds to

measuring (Z − X)/
√

2. Show that this yields a winning probability ωq = 2+√
2

4 .

6.1.3 Motivation for Device-Independent QKD

To understand why the protocols we have considered so far are not necessarily
secure in the device-independent setting, let us study a simple example. Suppose
Alice and Bob each have access to one part of a bipartite quantum box (as described
above). Both of them have two possible inputs, i.e., x ∈ {0, 1} and y ∈ {0, 1}, and
two possible outputs, hence a ∈ {0, 1} and b ∈ {0, 1}. By performing a number of
measurements, Alice and Bob observe the following probability distribution:

p(ab|00) = p(ab|11) = 1

2
if a = b, (6.15)

p(ab|01) = p(ab|10) = 1

4
for all a, b. (6.16)

In other words, whenever Alice and Bob choose the same input (x = y), they receive
perfectly correlated outcomes. On the other hand, when they choose different inputs
(x �= y) the output is completely random (and therefore uncorrelated).

Suppose now that Alice and Bob believe that they have implemented the
entanglement-based version of the BB84 protocol as described in Sect. 4.1.2.2.
Here, they share a two-qubit state |ψ〉 ∈ C2 ⊗ C2 and each of them can choose
between measuring in the X-basis or in the Z-basis. Let x, y = 0 denote a
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measurement in the X-basis and x, y = 1 denote a measurement in the Z-basis.
The above probability distribution can then be expressed as follows:

〈ψ|X ⊗ X|ψ〉 = 〈ψ|Z ⊗ Z|ψ〉 = 1, (6.17)

〈ψ|X ⊗ Z|ψ〉 = 〈ψ|Z ⊗ X|ψ〉 = 0, (6.18)

which means that whenever Alice and Bob choose the same measurement basis, they
get perfectly correlated results, while measuring in different bases yields completely
uncorrelated results. This correlation can only be achieved if the state that Alice and
Bob share is the maximally entangled Bell state |�+〉 = (|00〉 + |11〉)/√2. Hence,
Alice and Bob conclude that they share a maximally entangled state, which in turn
means that the measurement results can safely be used to produce a secure key.

Exercise 6.6 Show that if Alice and Bob share the state |�+〉, they get the
correlations listed in (6.17) and (6.18).

However, in the device-independent setting this is no longer true. Here, Alice
and Bob can make no assumptions about the Hilbert space dimensions and the
measurements they use. The only indication of whether the outputs can be used
to generate a secure key is the violation of a Bell inequality. A quick calculation
shows that the CHSH value of the statistics given in (6.15) and (6.16) is S = 0,
which shows that the outputs can not be used to generate a secure key! Why is the
CHSH inequality not violated, even though we have shown above that the input-
output statistics are compatible with Alice and Bob sharing a maximally entangled
state?

To arrive at the conclusion that Alice and Bob share a maximally entangled
state, we had to make an assumption on the dimension of the Hilbert space of the
shared state. However, since it is extremely difficult to verify such an assumption in
practice, we would like to avoid having to make it (which is exactly the motivation
for device-independent QKD). If we lose the assumption that the Hilbert space is a
two-qubit space, we can indeed find a separable (and therefore insecure) state that
yields the same input-output statistics as the Bell state |�+〉. Consider the following
bipartite state in the Hilbert space C4 ⊗ C4:

ρAB = 1

4

∑

z0,z1∈{0,1}
|z0z1〉A〈z0z1| ⊗ |z0z1〉B〈z0z1|. (6.19)

There is a choice of measurements that exactly produces the probability distribution
given in (6.15) and (6.16), namely choosing x, y = 0 to be the measurement Z ⊗ I

and x, y = 1 to be the measurement I⊗ Z. In fact, because the correlation between
Alice’s and Bob’s systems is completely local, it is possible that Eve has a perfect
copy of the local state, i.e., that they share the tripartite state

ρABE = 1

4

∑

z0,z1∈{0,1}
|z0z1〉A〈z0z1| ⊗ |z0z1〉B〈z0z1| ⊗ |z0z1〉E〈z0z1|. (6.20)
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This is not possible if the correlations between Alice’s and Bob’s system are non-
local correlation, i.e., those that violate the CHSH inequality. This example shows
that in the device-independent setting it is crucial that the observed input-output
statistics of the boxes violates a Bell inequality. This ensures that there are non-
local correlations, which prevents Eve from having perfect knowledge of the local
state.

Exercise 6.7 Show that the input-output statistics given in (6.15) and (6.16) yields
a CHSH value of S = 0.

Exercise 6.8 Show that using the measurements 0 = Z ⊗ I and 1 = I ⊗ Z on the
state given in (6.19) produces the input-output statistics given in (6.15) and (6.16).

6.2 DIQKD Protocols and Security

The idea of exploiting the violation of a Bell inequality to prove the security of
a QKD protocol goes back to the protocol that Ekert proposed in 1991 [19] (see
Sect. 4.1.2.1). Later, it was recognized by Mayers and Yao [25] that if the input-
output statistics of the devices exhibit a maximal violation of a Bell inequality, the
devices can be fully characterized (up to local degrees of freedom) and hence do not
need to be trusted. The first security proof of a device-independent QKD protocol
was provided by Barrett, Hardy, and Kent [7]. Although the suggested protocol was
not useful in practice (it could not tolerate any amount of noise and, furthermore, it
only produced a single bit of key during numerous rounds of the protocol), the work
showed that secure DIQKD was achievable in principle, which was the beginning
of numerous works that explored the application of the device-independent concept
in quantum cryptography (see, for example, [2, 26, 30, 32, 45]) and other fields such
as randomness expansion and amplification (see, for example, [14, 15, 21, 31, 44]).

6.2.1 Security Against Collective Attacks

We begin our discussion of DIQKD protocols with the protocol described in [2] and
[30], which builds on ideas of the Ekert protocol. The general scheme is depicted
in Fig. 6.4. The idea of the protocol is the following: A source that is controlled
by Eve (assuming the worst case) distributes possibly entangled states to Alice and
Bob. Alice and Bob then perform measurements in order to obtain a secret key and
to calculate the CHSH violation S. Alice can choose between three measurements
A0, A1, and A2, each with possible outcomes a ∈ {−1,+1}, while Bob can choose
between two measurements B1 and B2, also with possible outcomes b ∈ {−1,+1}.
The raw key (i.e., the bits that are used to generate the secure key by doing error
correction and privacy amplification) is extracted from the outcomes of the pair
{A0, B1}, which allows us to define the so-called Quantum Bit Error Rate (QBER)
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Fig. 6.4 Device-independent QKD protocol. In the DIQKD scenario, a source (usually assumed
to be controlled by Eve) distributes states to Alice and Bob. In this protocol, Alice can choose
between three different measurements Ax with x ∈ {0, 1, 2} with outcomes a ∈ {−1,+1}, while
Bob can choose between two different measurements By with y ∈ {1, 2}, also with outcomes
b ∈ {−1,+1}. Alice and Bob additionally have access to an authenticated classical communication
channel C. Note that in the DIQKD scenario, the measurement devices are untrusted, hence in the
worst case they are controlled by Eve

Q as the probability that Alice and Bob get different outcomes when measuring the
pair {A0, B1}, i.e.,

Q = pAB|XY (a �= b|01). (6.21)

From the QBER, Alice and Bob can estimate the amount of correlations between
their outcomes, which in turn yields an estimate of how much classical communica-
tion is needed for the error correction process. The measurements A1, A2, B1, and
B2 are used to evaluate the CHSH polynomial (see (6.8)). As a result, Alice and Bob
have access to two parameters, the QBER Q and the CHSH violation S, to estimate
Eve’s information.

Summing up, a general QKD protocol in the device-independent setting can be
divided into three phases:

1. Quantum transmission phase. Alice and Bob use their devices to perform
measurements and generate their respective n-bit strings a0 = a1a2 . . . an (the
outcomes of Alice measuring A0) and b1 = b1b2 . . . bn (the outcomes of Bob
measuring B1).

2. Parameter estimation phase. In the second phase, Alice and Bob exchange
classical information to estimate the important parameters of the protocol,
namely the Bell violation S and the QBER Q. If the parameters allow for the
generation of a secure key, i.e., the Bell violation is sufficiently high and the
QBER is sufficiently low, they proceed. Otherwise, they abort the protocol.

3. Classical post-processing phase. In the last phase, Alice and Bob use the
estimate they have on Eve’s potential knowledge on the key to perform error
correction in order to produce the raw keys and perform privacy amplification to
generate the final secure key.
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Here, we have marked the parameter estimation step as an extra phase and not as part
of the classical post-processing (in contrast to the device-dependent QKD scheme)
to emphasize its importance in the DI setting.

A particular implementation of the protocol described above which uses qubits
is similar to the Ekert protocol and works as follows: The state ρAB that is shared
by Alice and Bob is the Bell state |�+〉 after going through a depolarizing channel
(see Exercise 2.30):

ρAB = p|�+〉〈�+| + (1 + p)
I

4
(6.22)

and the measurements are given by

A0 = Z, B1 = Z,

A1 = 1√
2

(Z + X) , B2 = X,

A2 = 1√
2

(Z − X) .

The resulting correlations then give the following values for the two important
parameters, the CHSH violation S and the QBER Q:

S = 2
√

2p (6.23)

Q = 1

2
− p

2
, (6.24)

which in turn yields S = 2
√

2(1 − 2Q).3 It is important to stress that even
though these values of S and Q can be achieved by the implementation described
above, the security of the protocol does not rely on any of the specifications of the
implementation. It only relies on the observed values of S and Q, independent of
how they have been generated.

Exercise 6.9 Verify Eqs. (6.23) and (6.24) for the implementation described above.

Security Analysis
The greatest challenge in proving the security of a device-independent protocol
is the fact that we cannot make any assumptions on the internal workings of the
devices. We only have access to the input-output statistics they produce. One way to
prove the security of the protocol described above is finding a bound on the secret
key rate r that was introduced in the previous chapter and which is given by the

3Note that, a priori, there is no relation between the values of S and Q. They are two independent
parameters available to estimate Eve’s information.
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Devetak-Winter rate rDW [16]:4

r ≥ rDW = I (A0 : B1) − χ(B1 : E), (6.25)

where I (A0 : B1) = H(A0) + H(B1) − H(A0, B1) is the mutual information
between Alice’s measurement A0 and Bob’s measurement B1, which is the pair of
measurements used for key generation. The second quantity,5 χ(B1 : E), is the
Holevo quantity given by

χ(B1 : E) = H(ρB) − 1

2

∑

b1=±1

H(ρE|b1). (6.26)

Here, we use the notation H(ρ) to denote the von Neumann entropy in order to dis-
tinguish it from the Shannon entropy H(A). The state ρE = TrAB (|ψABE〉〈ψABE |)
represents the state of Eve’s quantum system, and ρE|b1 denotes the state of Eve’s
system conditioned on Bob obtaining the result b1 when measuring B1. The optimal
collective attack for Eve is to prepare the states such that |ψABE〉 is the purification
of ρAB . Note that since the Devetak-Winter rate only holds for collective attacks
(and not coherent attacks), this security proof only covers collective attacks.

The first term is straightforward to calculate: Without loss of generality, we
assume uniform marginals in the probability distribution, i.e., 〈ai〉 = 〈bi〉 = 0.6

Then the mutual information between Alice and Bob is given by

I (A0 : B1) = 1 − h2(Q), (6.27)

where h2 is the binary entropy.
The second term in the bound is more complicated to estimate. In [30], the

authors have found the following expression for the case of uniform marginals:

χ(B1 : E) ≤ h2

(1 +
√

(S/2)2 − 1

2

)

, (6.28)

given any violation S of the CHSH inequality. The main idea of the proof for this
bound is the fact that it is possible to reduce the problem to a two-qubit optimization
problem. The reason for this is that it is possible to decompose any pair of quantum

4This form of the Devetak-Winter-rate differs slightly from the form we have introduced in the
previous chapter, but it directly follows from the Holevo bound: I (A : B) ≤ χ(A : B) [28].
5Note that we use χ(B1 : E) here and not χ(A0 : E) since for the described protocol it holds that
χ(A0 : E) ≥ χ(B1 : E) [1]. This means that it is beneficial to use public communication from
Bob to Alice in the classical post-processing instead of communication from Alice to Bob.
6Note that this is no restriction: If the marginals are not uniform, Alice and Bob could make them
so by using public one-way communication and agreeing on randomly flipping a chosen half of
their bits. This operation does not change the values of S and Q and is known to Eve.



6.2 DIQKD Protocols and Security 171

binary measurements as the direct sum of pairs of measurements which act on two-
dimensional spaces.

In summary, the lower bound for the secret key rate in the device-independent
scenario is given by

r ≥ 1 − h2(Q) − h2

⎛

⎝
1 +

√

(S/2)2 − 1

2

⎞

⎠ . (6.29)

Exercise 6.10 Show that in case S ≤ 2 (i.e., in the classical regime) the secret key
rate given in (6.29) can never be positive.

To be able to compare the device-independent secret key rate, we can also
calculate a device-dependent bound for the implementation of the protocol that we
have described above. Here, we now assume that Alice and Bob have perfect control
over the states and measurements involved in the protocol. In this case, we have that

χ(B1 : E) ≤ h2

(

Q + S

2
√

2

)

(6.30)

as shown in [30], while the mutual information between Alice and Bob is the same
as in the device-independent case. For the case that S = 2

√
2(1 − 2Q) the two

different key rates are plotted in Fig. 6.5 as a function of the QBER. One can see
that the rate is strictly lower in the device-independent setting (as expected), but it
is still possible to extract a secret key up to a QBER of ≈ 7.1%. The plot also shows
the critical QBER of ≈ 11% for the BB84 protocol.

There is an explicit attack which saturates the bound in the device-independent
scenario which illustrates the conceptual differences between the device-

Fig. 6.5 Secret key rate. The
plot compares the secret key
rate for the Device-Dependent
(DD) scenario (solid line) and
the Device-Independent (DI)
protocol (dashed line). The
maximum value for the
QBER where a key can still
be extracted is ≈ 11% in the
DD-scenario and ≈ 7.1% for
the DI scenario
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independent and the device-dependent setting. The attack works as follows: Eve
sends the state

ρAB(S) = 1 + C

2
P�+ + 1 − C

2
P�−, (6.31)

where C = √
(S/2)2 − 1 to Alice and Bob. She furthermore defines the measure-

ments that Alice and Bob are allowed to do as

A1 = 1√
1 + C2

Z + 1√
1 + C2

X, B1 = Z, (6.32)

A2 = 1√
1 + C2

Z − 1√
1 + C2

X, B2 = X, (6.33)

and A0 is the Z-measurement with probability 1 − 2Q and a randomly chosen bit
with probability 2Q. In this way, it is possible to obtain any value of Q. One can
now show that for B1 = Z the Holevo quantity χ(B1 : E) is, in fact, equal to the
right hand side in (6.28), which means that this attack saturates the bound on the
secret key rate. In the usual (device-dependent) setting, this attack is not possible
since both the state and the measurements depend on S and Q. This violates the
assumption that Eve does not have access to Alice’s and Bob’s respective labs.

Exercise 6.11 What is the probability that Alice and Bob get different outcomes
when measuring the pair {A0, B1}, i.e., the value of Q?

Exercise 6.12 Calculate the CHSH violation S for the state and measurements
given above.

Finite-Key Analysis
When taking into accounts only a finite amount of protocol rounds (as it is in a
realistic description of an implementation), recall that the main task is to bound the
min-entropy, which determines the length of the secret key (see (5.83)).

If we limit the eavesdropper to collective attacks we can work under the IID
assumption (IID = independent and identically distributed), which allows us to use
some theorems that simplify the security analysis. In the IID scenario, each round
of the protocol is independent of the other rounds and all rounds are identical. This
means that the state ρM

AB of Alice and Bob’s system after M rounds of the protocol
is given by

ρM
AB = ρ⊗M

AB , (6.34)

i.e., they share the same state in every round of the protocol. Recall that in order to
prove the security of the protocol we need to find a bound on the information that
Eve has on the generated key, which is given by the min-entropy Hε

min(K
n
A|E) (cf.

(5.83)). In the IID scenario Alice’s raw key is given by Kn
A = K1 . . .Kn, where the
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Ki are IID random variables. Similar, Eve’s information is given by E = E1 . . . En,
where the Ei are IID quantum side information. E1 holds the side information about
K1, E2 about K2, and so on.

If we simply want to find a bound on the von Neumann entropy H(Kn
A|KE)

(instead of the smooth min-entropy), we can use the chain rule from Corollary 3.12
and write

H(K1 . . .Kn|E1 . . . En) =
∑

i

H (Ki |E1 . . . EnK1 . . .Ki−1) (6.35)

=
∑

i

H (Ki |Ei) (6.36)

= nH(K1|E1), (6.37)

where in the last line we have used that the IID assumption imposes that all
H(Ki |Ei) are the same. In this way, we have reduced the analysis of the entire
protocol to the analysis of a single round.

A similar strategy is available for bounding the smooth min-entropy. In [43],
Tomamichel et al. have proved a Quantum Asymptotic Equipartition Property ,
which states that

Hε
min(K

n
A|E) = nH(K1|E1) − cε

√
n, (6.38)

where cε is a correction term that is independent of n. This reduces the problem of
bounding the smooth min-entropy of the whole protocol to a single-round analysis.

However, these simplifications only work because we have made the rather strong
assumption that the devices are IID. In particular, this requires that the devices are
memory-less, otherwise the individual rounds would not be independent. This is a
strong assumption on the internal workings of the devices, which are exactly the
kind of assumptions we try to avoid in DIQKD. Therefore, it is inevitable to prove
the security of a protocol against the most general attacks, namely coherent attacks.

6.2.2 Security Against Coherent Attacks

Proving the security of a DIQKD protocol against coherent attacks, which are the
most general attacks an eavesdropper can perform, is more difficult than proving
security against collective attacks. The reason for this is that when performing
coherent attacks Eve can act differently in each round and so can the devices. In
the device-dependent scenario there are several techniques that reduce the security
proof for coherent attacks to a security proof for collective attacks, for example,
de Finetti-type theorems or the postselection technique. In the device-independent
scenario these techniques can no longer be applied since they require that the Hilbert
space dimension of the parties’ systems in known, which is obviously not fulfilled
in the device-independent setting.
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Fig. 6.6 DIQKD protocol with sequential interaction. Every round of the protocol is represented
by a quantum channel Mi that takes a quantum state Ri−1 as input and outputs classical data Oi

and Si as well as a quantum state Ri which is the input to the next round Mi+1 of the protocol.
The system is entangled with its purifying system E

As explained above, it is inevitable to lose the IID assumption and instead allow
for sequential interactions of the device. This means that there can be interactions
between the individual rounds of the protocol, hence the random variable Kn

A and
the quantum side information E can no longer be written in the product form used
above. Even worse, the requirements for the QAEP are now no longer fulfilled.
Therefore, we need an extended QAEP that also allows for sequential interactions.

Fortunately, a series of works [8, 27, 33, 46] has resulted in the formulation of
the Entropy Accumulation Theorem (EAT) [4, 17, 18], which fills this gap in the
DIQKD case. Similar to the QAEP, the EAT allows to reduce the analysis of the
whole protocol to that of a single round. A detailed analysis of device-independent
security using the EAT can be found in [5].

The basic idea of the EAT is the following: Consider a protocol with n rounds as
depicted in Fig. 6.6. Here, every round i of the protocol is modelled as a channel
Mi that gets a quantum state Ri−1 (which is entangled with the purifying system
E) as input and outputs two kinds of data: Some classical data Oi (which represents
the outputs Ai and Bi Alice and Bob get) and Si (Alice and Bob’s respective
inputs Xi and Yi for their devices, plus possibly additional side information) as
well as a quantum state Ri , which is the input for the subsequent channel (i.e., the
subsequent round of the protocol). From the classical data Oi and Si Alice and Bob
can determine whether they won or lost the CHSH game. From the outputs Oi they
want to generate a secret key.

The EAT then provides a bound on the entropy by relating it to the worst case
that can happen in each individual round of the protocol, roughly speaking. To
understand this concept, consider a single round i of the protocol isolated from the
remaining rounds. The global state of the system, denoted σ , consists of the input
state Ri−1 to the channel Mi and the purifying system R′ at this point. As explained
above, the output of the channel Mi consists of some classical data Oi , Si and a
quantum state Ri . The conditional von Neumann entropy is hence evaluated for the
states (Mi ⊗ IR)(σ ), abbreviated by Mi (σ ):

H(Oi|SiR
′)Mi (σ ). (6.39)



6.2 DIQKD Protocols and Security 175

Since we do not work in the IID setting, the local state σ is not accessible to us, so
we actually have to take the minimum over all possible states σ that are compatible
with the observed input-output statistics. The entropy accumulation theorem then
states that the min-entropy is bounded by7

Hε
min(O

n|SnE)ρ ≥
n∑

i=1

min
σ

H(Oi|SiR
′)σ − O(

√
n). (6.40)

The bound has a similar structure to the asymptotic equipartition theorem stated in
(6.38): the first term is linear in the number n of rounds and we have an additional
term proportional to

√
n, which vanishes in the limit of large n (since the expression

is divided by n to compute the key rate).

6.2.3 Modifications of the Protocol

Recently, some modifications of the standard protocol have been explored on the
theoretical front of DIQKD which aim at improving the secret key rate: While in the
original protocol described above only one pair of measurements {A0, B1} is used
for key generation, it is also possible to use two randomly chosen key generation
bases. This approach was studied in [38], where the authors find that this results in
higher secret key rates, especially in the regime of small Bell violation (which is
the regime that is accessible with the state-of-the-art experimental equipment, see
Sect. 7.4).

Another approach to improve the secret key rate which was studied in [48] is to
use a modified version of the CHSH inequality where different weights are given to
Alice’s measurements, resulting in a family of Bell inequalities given by

Smod = α〈A1B1〉 + α〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉, (6.41)

where α ∈ R is a free parameter (note that α = 1 corresponds to the standard
CHSH inequality). A similar approach was studied in [39]. With this modification
the robustness of the key generation protocol can be improved. For instance, for the
case where the noise is modelled by the depolarizing channel it is possible to push
the tolerable error rate (i.e., the error rate up to which we have a positive secret key
rate) from 7.15% to 7.34%.

These modified DIQKD protocols naturally require more sophisticated proof
methods. In [41], the authors present a framework to analyse the finite-key statistics
which is applicable to general DIQKD protocols, including the modifications
mentioned above.

7The actual theorem is a bit more complicated and involves some additional technical details, but
the version presented here is sufficient to understand the idea.
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6.3 Loopholes

As explained above, the security of device-independent security entirely relies on
the violation of a Bell inequality. When performing experimental tests of such a
Bell violation one has to be careful as they can be subject to one or more of several
loopholes, which would imply that they in principle admit a local description.

What is required to perform a loophole-free Bell test? In general, we need to
assure that the following two properties are fulfilled:

1. No information about the input of one party is allowed to be known to the other
party before the output is produced.

2. The detection efficiencies have to be sufficiently high.

Loopholes arise when one or both of these requirements are not fulfilled in the
experimental design or setup, which affects the validity of the results.

6.3.1 The Locality Loophole

If the first requirement is not fulfilled, we are in the situation that the premises
needed for the validity of a Bell inequality are not given. This means that it is
possible to find a classical model that accounts for the apparent non-locality of
the observed correlations. For example, some “hidden signal” can inform Bob’s
experiment about Alice’s choice of measurement basis and alter the state of
Bob’s system, hence creating quantum-like correlations. This is called the locality
loophole [10].

A way to account for this problem is by arranging the experiment in a way
such that no sub-luminal information about Alice’s choice of measurement can
reach Bob’s system until after his measurement is complete (and vice versa), as
depicted in Fig. 6.7. For this purpose, Alice and Bob have to be separated far enough
and the measurements have to be performed fast enough such that no light-speed
communication can affect the respective measurements.

To give Alice and Bob enough time to choose their respective measurement basis
and carry out the measurement, it is necessary to at least separate them by several
tens of meters. Hence, one needs to be able to send entangled states over such
distances without doing much damage to them. This is why in these experiments,
scientists often use entangled pairs of photons to close the locality loophole (see, for
example, the experiments reported in [6,36,37,42,47]). However, these experiments
suffer from insufficiencies in handling and detecting single photons, which gives rise
to another loophole: the detection loophole.
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Fig. 6.7 Space-time diagram of an experimental setup that closes the locality loophole. The
diagonal lines in the space-time diagram represent light-speed trajectories. The source sends
entangled states to Alice and Bob (thick grey arrows). The forward light cone of the measurement
choice i of Alice (j of Bob) is denoted in red (blue). The diagram shows that Bob cannot receive
any information about Alice’s choice of measurement until after his measurement is complete (and
vice versa)

6.3.2 The Detection Loophole

The detection loophole [29] stems from the fact that, in practice, the devices that
detect and measure entangled photons are imperfect. It is possible that, even though
the source has sent one half of a pair of entangled photons to each party, one of
the detectors simply does not respond. This can be exploited by an adversary to
manipulate the input-output statistics that Alice and Bob observe.

How does this loophole affect the security of a protocol? Consider the following
strategy: The four possible measurements A0, A1 and B0, B1 with possible outcome
set {−1,+1} that are used for the Bell test agree to always output the result +1. The
value of the CHSH polynomial is then

〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉 = 1 + 1 + 1 − 1 = 2, (6.42)

which reveals that this is a classical strategy and no quantum entanglement is
involved. We will call this Strategy 1. Note that the measurement pairs that
contribute to the CHSH violation are A0B0, A0B1, and A1B0, while the pair A1B1
lowers the CHSH value.
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Table 6.1 Classical strategies for a Bell test. Taken individually, the CHSH value shows the
classical nature of each strategy

A0 B0 A1 B1 CHSH value

Strategy 1 +1 +1 +1 +1 2

Strategy 2 +1 +1 +1 −1 2

Consider now a second strategy which differs to the first strategy only in the
value of the output of the B1 measurement: Whenever Bob chooses to measure B1,
the device will output −1. Here, the CHSH value is

〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉 = 1 − 1 + 1 − (−1) = 2, (6.43)

which again reveals the classical nature of this strategy. We call this one Strategy 2.
Here, the pairs A0B0, A1B0, and A1B1 contribute to the CHSH violation while the
pair A0B1 lowers the value. The two strategies are summarized in Table 6.1.

What happens if we combine the two strategies by exploiting the detection
loophole? Suppose the detectors decide whether or not to click depending on the
chosen strategy and the measurement choices made by Alice and Bob. In other
words, the detectors only click when the measurement choices are “good” for the
CHSH violation. More precisely, they pursue the following strategy:

1. When choosing Strategy 1, Alice’s detector only clicks if she chooses to measure
A0. Otherwise, there is no click.

2. When choosing Strategy 2, Alice’s detector only clicks if she chooses to measure
A1. Otherwise, there is no click.

With the statistics they obtain, Alice and Bob compute the CHSH value to be

〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉 = 1 + 1 + 1 − (−1) = 4, (6.44)

i.e., there is a Bell violation even though the underlying strategies are classical. Note
that this is only possible because Alice’s detector decides whether or not to click
depending Alice’s measurement choice. Of course, a CHSH value of 4 is suspicious
since the upper bound is given by S ≤ 2

√
2, but still you get the idea of this attack. It

is possible to combine more than two classical strategies to choose between, hence
constructing a CHSH value of 2 < S ≤ 2

√
2, such that Alice and Bob believe that

they share some entanglement even though the underlying probability distributions
are classical.

They can circumvent this problem by adding a third possible outcome, the “no
click”-event, which means that the set of possible outcomes is {−1,+1, “no click”}.
The resulting probability distribution is then in the classical region. However, this
gives rise to a new problem with regard to practical implementations: For the
resulting probability distribution to be in the quantum region, the amount of “no
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click”-events (i.e., photon losses) has to be below 5–10%, which is difficult to
achieve since in order to close the locality loophole, the devices need to be at a
certain distance.

Exercise 6.13 Show that when using the combined strategy described above, taking
into account the “no click”-outcome as a possible measurement outcome yields a
CHSH value in the classical regime.

To overcome the detection loophole, the obvious strategy is to use a different
source of entanglement than photons. For instance, entangled qubits are slower and
heavier and can be measured with success probability close to 1. This strategy was
pursued by various groups (see, for example, [35] and [24]) using trapped ions,
superconducting qubits, and other systems. However, with these kinds of systems
it is impossible to overcome long distances due to decoherence of the states. As
a consequence, the individual parts of these experiments have to be close to each
other, which in turn leaves the locality loophole open. Hence, for a long time
experimental Bell tests were able to either close the locality loophole or the detection
loophole, but not both at the same time.

A more practical way to overcome the detection loophole and the locality
loophole both at the same time is the following: Shortly before the photon arrives
at Bob’s laboratory, it undergoes a Quantum Non-Demolition (QND) measurement
where it has to decide whether it is going to click or not, as depicted in Fig. 6.8.
The QND basically asks the photon, “Photon, are you there?”, i.e., it measures the
presence of the photon without disturbing it. Why is this better than the previous
scenario? Before, the photon decided whether or not to click dependent on Bob’s
input. With the QND, the photon now has to say whether or not it is going to click
without knowing Bob’s input. Alice and Bob then only perform a Bell test in case
the photon is arriving and all the losses that happen before are irrelevant for the Bell
test statistics.

Alice Bob
long distance

QND “Yes”

“No”

Fig. 6.8 Bell test with Quantum Non-Demolition (QND) measurement. Right before the photon
arrives at Bob’s laboratory, it undergoes a QND which checks whether the photon is there or has
been lost. Only if there is a photon, Alice and Bob proceed with performing the Bell test
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7Recent Developments in Practical QKD

Abstract

Turning an abstract protocol into a practical device offers a variety of challenges.
The main problem is that the devices used in the implementation such as
optical fibres and single-photon detectors are never perfect. For instance, one
has to take into account that photons get lost when sent though an optical fibre,
especially over long distances. In this chapter, we discuss the challenges that
arise when practically implementing QKD schemes. We furthermore present
developments in QKD that aim at overcoming these practical challenges, such as
measurement device-independent QKD and continuous-variable QKD, and give
a brief overview of the state-of-the art experiments for several types of protocols.

7.1 Practical Challenges in QKD

We begin by discussing the main practical challenges that arise when implementing
a QKD protocol. From a historical point of view, considering practical issues has
often led to ground-breaking discoveries: For example, in order to find a counter-
attack to the photon-number-splitting attack the decoy state protocol was invented,
which nowadays is a standard protocol in practical QKD. With regard to the
performance of a QKD protocol and its suitability for a certain application, several
aspects have to be considered:

1. Distance. An important criterion of whether the protocol is useful for a certain
application is at what distance a secure key can be generated. Depending on the
protocol and on the kind of implementation there are different limiting factors.
For instance, in optical experiments a crucial limitation is the photon loss in
optical fibres and terrestrial free-space.

2. Key rate. Since key generation is the ultimate goal of the QKD implementation,
the secure key rate that can be generated is an important measure of performance
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that has to be taken into account. A practical implementation of a QKD protocol
over long distances is useless if it does not yield a positive secret key rate.
The long-term goal here is to close the gap between classically achievable rates
and QKD communication rates. Classically, rates of 100 Gbit/s are currently
deployed while QKD schemes can achieve rates in the Mbit/s regime. While
this is already sufficient for video transmission, for example, the long-term goal
is to be able to encrypt high volumes of classical network traffic. The obtained
key rates crucially depend on the detectors that are employed. For instance, in
schemes that use single-photon detectors high detection efficiencies and a short
dead time are essential for achieving high key rates.

3. Security proof. Apart from being able to generate keys at a high rate over great
distances, it is further important that there exists a composable security proof
for the underlying protocol that includes security against general attacks and also
takes into account finite-size effects. Further aspects of practical security include,
for example, side channel attacks against the detectors, which represent critical
weaknesses of QKD implementations that can be exploited by an eavesdropper
as discussed in the next section. On the classical side of the protocol, it is crucial
that efficient methods exist for post-processing the raw key bits since we usually
have to deal with large blocks of data.

With regard to commercial applications it is furthermore important that the
cost of the devices is not too high alongside with a high performance. Important
questions are, for instance, whether QKD systems can coexist with intense data
traffic in the same optical fibre or whether the system needs to be cooled, which are
both factors that have an influence on the cost of the system. More details on these
aspects can be found in [13].

One aspect of practical QKD that is not covered in this book, but worth
mentioning, is the scenario where secure communication between more than two
parties is required. It is of course possible to trivially achieve security in this case by
performing two-party QKD protocols between pairs of parties and use the resulting
keys to distribute the conference key. An alternative to this procedure is the so-
called multipartite QKD or quantum conference key agreement (CKA). Here, one
exploits the correlations that arise in multipartite entangled states to create a truly
multipartite QKD protocol that directly establishes a secret key between all involved
parties. These kinds of protocols are the first step towards quantum networks and
generalizations of the BB84 protocol and the Six-state protocol have already been
proposed in [27] and [14], respectively. We do not go into more detail about CKA
here, but it is covered in detail in [26] and a review of the topic can be found in [54].

7.2 Measurement Device-Independent QKD

One of the most vulnerable parts of a QKD implementation is the detectors (see, for
example, [44]). Even in a device-independent setting, where we do not make any
assumptions on the internal workings of the devices, the setting is still vulnerable
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to the so-called detector side channel attacks, as described in more detail in the
next section. To circumvent this problem, Measurement Device-Independent QKD
(MDO QKD) rules out the possibility of such attacks by removing all detectors
from the trusted part of the setting (i.e., Alice and Bob’s labs) and moves them to
an untrusted relay. Alice and Bob then both only prepare and send quantum states
instead of receiving them.

7.2.1 Detector Side Channel Attacks

There is a variety of side channel attacks that exploit the imperfectness of single-
photon detectors. To get an idea of why these detectors are especially vulnerable we
give two examples of such attacks, the time-shift attack and the detector blinding
attack.

Time-Shift Attack
Usually in QKD it is assumed that the detection efficiencies for the two bits “0”
and “1” are equal. However, this assumption is not necessarily justified as shown
in [49, 50, 59], for example. Perfectly matching detector efficiencies can only be
guaranteed if they are constant in time, with is impossible in practice, for example,
because of their intrinsic dead time.

How can Eve exploit this detection efficiency mismatch? Consider the scenario
depicted in Fig. 7.1, where the efficiencies of the detectors are shifted slightly in
time. Since Eve can manipulate the photons sent by Alice, she can shift the arrival
time of a photon randomly to either point A or point B with probability pA and
pB = 1 − pA, respectively. She chooses pA carefully such that Bob still gets an
equal number of “0” and “1” outcomes. Since Bob’s measurement result is shifted

A B
Time

Effi
ci

en
cy

Detector 0
Detector 1

Fig. 7.1 Detector efficiency mismatch. The plot shows a typical time dependence of the detection
efficiencies of a practical fibre-based QKD system. If the efficiencies for the two detectors that
correspond to the bits “0” and “1”, respectively, are not the same, an eavesdropper can perform the
time-shift attack to gain information on the key bits
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towards one of the outcomes depending on the time shift (A or B), Eve can get
information without alarming Alice and Bob.

This kind of attack can even be implemented with current technology, as shown
in [85]. Hence, one does not even have to give the eavesdropper unlimited power as
it is done in standard security proofs. A weak eavesdropper that is limited to today’s
technology is already capable of performing this attack.

Detector Blinding Attack
In experiments, often avalanche photodiodes (APDs) are used to detect single-
photon pulses. The detector blinding attack exploits the fact that if bright light is
shined onto the detectors they become insensitive to single-photon pulses and only
detect strong light pulses. In this way, Eve can effectively control which detector
produces a click by sending additional bright pulses to Bob.

To understand how this attack works, we first have to understand the internal
workings of an avalanche photodiode, which is depicted in Fig. 7.2. An APD has two
modes of operation: The Geiger mode, which is used for single-photon detection,
and the linear mode, in which the detector is insensitive to single-photon pulses
(see Fig. 7.3). When the APD is in Geiger mode, the voltage inside the APD is
above the breakdown voltage Vbr, hence it is ready to detect a single photon. An
incoming single-photon pulse will release an avalanche of photons, which yields a
large current IAPD in the APD. This eventually causes the detector to click when the
current IAPD is above the threshold Ith. After the click the voltage inside the APD is
lowered beyond Vbr to quench the avalanche. The APD is then set back into Geiger
mode, awaiting the next single-photon pulse.
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Fig. 7.2 Working principle of an avalanche photodiode (APD) in Geiger mode. In this mode the
APD is able to detect single-photon pulses: An incoming photon releases an avalanche inside
the photodiode which results in a large current IAPD. When the current in the APD is above the
threshold, i.e., IAPD > Ith, the detector clicks. Afterwards, the voltage inside the APD is lowered
beyond the breakdown voltage Vbr in order to quench the avalanche. Then the APD is set back into
Geiger mode
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th
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Fig. 7.3 APD in linear mode. If the voltage VAPD inside the APD is below the breakdown voltage
Vbr, the APD operates in linear mode, where it is unable to detect single-photon pulses: The current
IAPD in the APD is linear to the incident optical power Popt, making the current threshold Ith an
optical power threshold Pth

When the voltage in the APD is below Vbr, the photodiode is in linear mode.
This means that the current IAPD is proportional to the incident optical power Popt.
In this mode the threshold Ith becomes an optical power threshold Pth. The detector
is then unable to detect single-photon pulses. It only clicks above a certain intensity
threshold.

By shining bright light onto the detectors, Eve can make them operate in linear
mode instead of Geiger mode. Then she can perform an intercept-and-resend attack:

1. Eve detects the states sent by Alice in a random basis.
2. She resends her detection results to Bob, but instead of using single-photon

pulses she sends bright pulses with an intensity that is just above the optical
power threshold Pth.

3. Bob only gets a click if his measurement choice coincides with Eve’s choice.

After the quantum transmission phase of the protocol, Eve and Bob hold identical bit
values and basis choices. Since classical post-processing is done via open classical
communication, Eve can listen to it and apply the same operations as Bob to her key
bits, thus obtaining an identical final key.

This attack works for all implementations that use APD-based detectors, which is
the vast majority of commercial and research QKD systems, and was demonstrated
in several works, see, for example, [17, 46, 48].

The attacks explained above are just two of several possible detector side channel
attacks. For instance, one can also exploit the intrinsic dead time of single-photon
detectors (for example, the time it takes to quench and reset an APD), which was
studied in [76]. Another possibility that falls under the name Trojan horse attack
[22, 73] is based on the idea of shining bright light into Alice’s or Bob’s setup to
extract information on the internal settings. Measuring the reflection of the pulse
might allow Eve to collect information on the basis choices Alice and Bob have
done, for example.



188 7 Recent Developments in Practical QKD

7.2.2 Practical MDI QKD

To overcome the vulnerability of a QKD implementation caused by detector side
channels, Measurement Device-Independent QKD (MDI QKD) aims at replacing
detectors by transmitters, which was first studied in [43] and [6]. More precisely,
in an MDI QKD scheme Bob is sending photons instead of detecting them. The
detection procedure is then taking place within an intermediate relay that connects
Alice and Bob. The basic idea of MDI QKD is that this relay is untrusted, and since
all detectors involved are placed in the intermediate relay, none of them have to be
trusted. Hence, detector side channel attacks do not alter the security of the protocol,
in contrast to schemes where the detection process takes place at Bob’s lab.

Even though Eve can have full control of the untrusted relay, it is still possible
for Alice and Bob to establish a secret key if the outcome of the measurement,
which is publicly announced, is informative for Alice and Bob, but does not reveal
any information about the key to Eve. This is, for example, possible if a Bell
measurement is done at the untrusted relay. Before we discuss in detail how the
key generation works, we study a possible practical implementation of this scheme
using an optical setup (following [43]) as depicted in Fig. 7.4. Each round of the
protocol works as follows:

1. Alice and Bob each prepare a phase-randomized weak coherent pulse.
2. A polarization modulator prepares the pulse in one of the four polarization states

known from the BB84 protocol by randomly selecting the polarization, which
encodes a random bit in the polarization of the pulse: in the rectilinear basis,
where we have horizontal (H) and vertical (V) polarization, we use the encoding
0 → H , 1 → V , while in the diagonal basis with +45◦ (D) and −45◦ (A)
polarization the encoding is 0 → D, 1 → A.

3. An intensity modulator modifies the amplitude of the pulse, thereby generating
either signal or decoy states in order to rule out the possibility of Eve performing
the photon-number-splitting attack without being detected.

4. The two pulses are sent to an untrusted relay where they first interfere at a 50:50
beam splitter.

5. At each output port of the beam splitter is a polarization beam splitter which
projects the pulse into either horizontal or vertical polarization states.

6. Four single-photon detectors (two on each side) are employed to detect the
photons. The detection results are publicly announced.

The four detectors can discriminate two of the four Bell states, which can be
seen by carrying out a virtual qubit ansatz: suppose Alice prepares an entangled
state between the state she is sending, which is an either horizontally or vertically
polarized photon, and a virtual qubit she is holding. We denote the polarized
photon by using the Fock state formalization, for example, a single photon that
is horizontally polarized is denoted |1〉AH . The virtual qubit contains information
on the polarization of the single photon and is denoted either |H 〉 or |V 〉, which
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Fig. 7.4 Scheme of an MDI QKD experiment. Alice and Bob both have a source of phase-
randomized weak coherent pulses (WCP). These pulses are sent through a polarization modulator
(Pol-M) which encodes a random bit into the polarization of the pulse. An intensity modulator
(Decoy-IM) is used to implement the decoy state method. The two pulses are then sent to an
untrusted relay, where they first interfere at a 50 : 50 beam splitter (BS) followed by two
polarization beam splitters (PBS), one at each output port, which project the incoming pulses into
either horizontal (H) or vertical (V) polarization states. In the end, four single-photon detectors
(D1V, D1H, D2V, D2H) are used to detect the pulses, effectively doing a Bell measurement

corresponds to the computational basis as explained above. The same considerations
are made for Bob’s system; hence, the resulting states of the preparation process are

|ψA〉 = 1√
2

(|H 〉A|1〉AH + |V 〉A|1〉AV

)
(7.1)

|ψB〉 = 1√
2

(|H 〉B |1〉BH + |V 〉B |1〉BV

)
. (7.2)

Measuring the virtual qubit in either the rectilinear or the diagonal basis is
then equivalent to preparing one of the four BB84 states. However, since the
measurements commute with the detection process at the untrusted relay, they can
be delayed until after the photon detection has occurred. Note that we can write the
Fock states as |1〉AH = a

†
H |0〉 using the respective creation operator. The global
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state after the preparation phase is the given by

|ψA〉 ⊗ |ψB〉 = 1

2

(
|H 〉Aa

†
H + |V 〉Aa

†
V

) (
|H 〉Bb

†
H + |V 〉Bb

†
V

)
|0〉 (7.3)

= 1

2

(
|HH 〉ABa

†
Hb

†
H + |V V 〉ABa

†
V b

†
V + |HV 〉ABa

†
Hb

†
V + |V H 〉ABa

†
V b

†
H

)
|0〉.
(7.4)

Using the beam splitter relation [19]

(
a†

b†

)

%→ 1√
2

(
1 1
1 −1

)(
c†

d†

)

, (7.5)

we can rewrite (7.4) and, after combining suitable terms, we get the following
expression for the state after passing the beam splitter:

|ψBS〉 = 1

2

(

|HH 〉AB
|2〉1H − |2〉2H

2
+ |V V 〉AB

|2〉2V − |2〉2V

2
(7.6)

+|�+〉AB
|1〉1H|1〉1V − |1〉2H|1〉2V√

2
− |�−〉AB

|1〉1H|1〉2V − |1〉1V|1〉2H√
2

)

,

where |�+〉AB = 1√
2
(|HV 〉AB + |V H 〉AB) and |�−〉AB = 1√

2
(|HV 〉AB

−|V H 〉AB), and |1〉1H denotes a single horizontally polarized photon at the left
output port (see Fig. 7.4).

From (7.6), we can directly see that a successful Bell measurement can occur at
most 1/2 of the time, which reduces the key rate. More precisely, it occurs for four
combinations of detector clicks: the click of D1H and D2V or D1V and D2H indicates
a projection into |�−〉, while the click of D1H and D1V or D2H and D2V indicates a
projection into |�+〉.

The remaining possible outcomes cannot be used for key generation: if both
photons are detected at the same detector, the polarizations of both of them are
revealed, which in turn means that the bits Alice and Bob hold are also revealed.
Note that a third case, where the photons arrive at either D1H and D2H or D1V and
D2V does not occur in the formula (7.6). This is because of the Hong-Ou-Mandel
effect (HOM) [33], which says that if two identical photons enter the 50 : 50 beam
splitter together they will always leave at the same output. The occurrence of the
HOM effect is important to the efficiency of the MDI scheme since it reduces the
number of possible detection patterns at the relay, hence making a successful Bell
measurement more likely.

These results are publicly announced, and Alice and Bob only keep those data
that corresponds to rounds where a successful Bell measurement has taken place.
Furthermore, as in the BB84 protocol, Alice and Bob post-select those events where
they have used the same basis in the preparation step, using an authenticated public
classical channel. To successfully generate a key, Alice and Bob need perfectly
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correlated bits. If they have used the rectilinear basis for encoding, a successful
Bell measurement only happens if their bits are different (see (7.6)). They can agree
that Bob flips his bit in these cases. If they use the diagonal basis, the measurement
result |�+〉 indicates that their bits are the same, while the result |�−〉 indicates that
their bits are different, hence Bob flips his bit (see Exercise 7.2). In summary, the
measurement result only provides the information of the parity of their bits, but not
the bit values. Hence, this information is useful for Alice and Bob (since they know
the values of their individual bits), but not for Eve.

Exercise 7.1 Use the beam splitter relation (7.5) to derive the expression of the
state after passing the beam splitter (7.6) from Eq. (7.4).

Exercise 7.2 Suppose Alice and Bob have used the diagonal basis for encoding
their states instead of the rectilinear basis.

1. Suppose Alice has chosen the diagonal basis to encode a 0-bit, which means that
she sends the state |ψA〉 = |1〉AD = 1√

2

(|1〉AH + |1〉AV

)
, while Bob encodes a

1-bit into the diagonal basis:1 |ψB〉 = |1〉BA = 1√
2

(|1〉AH − |1〉AV

)
. Show that

if the Bell measurement is successful it always yields |�−〉 (and never |�+〉).
Hint: Use the beam splitter relation (7.5).

2. Show that if Alice and Bob encode the same bit in the diagonal basis, the photons
will always end up on the same side of the beam splitter (this is the HOM effect),
which means the only possible Bell measurement yields |�+〉.

These calculations show how Alice and Bob can generate perfectly correlated bits
when using the diagonal basis for encoding: if the result is |�−〉, they know that
their bits are different. They can then agree that Bob flips his bit. If the result is
|�−〉, they know that their bits are the same.

Security of MDI QKD
The security proof of the MDI QKD protocol [43] described above relies on the
security proof of the BB84 protocol with weak coherent pulses by Gottesmann, Lo,
Lütkenhaus, and Preskill [25] and combines ideas from the security proof of a time-
reversed EPR-based QKD protocol [34] and the decoy state method.

In the decoy state setting Alice and Bob use the single-photon events to estimate
the QBER and the gain (i.e., the probability that the relay outputs a successful
result). We use the notation e

n,m
rect , e

n,m
diag to denote the QBER in the rectilinear and

diagonal basis, respectively, where n and m denote the number of photons sent by
Alice and Bob and given that the relay produces a successful output. In the same
way we denote the gain by Q

n,m
rect and Q

n,m
diag.

1We have to be a bit careful with the notation here: |1〉BA
means a single photon in Bob’s system

that is polarized −45◦ (A). The A here has nothing to do with Alice.
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Using the virtual qubit setting, the protocol described above is equivalent to an
entanglement-based protocol since we can think of it as Alice and Bob getting
handed a pair of entangled qubits, which ideally is either in the state |�+〉 or in
the state |�−〉. Alice and Bob then measure their qubits either in the rectilinear or
diagonal basis. Suppose they use the results from measuring in the rectilinear basis
for key generation, while the events where they measured in the diagonal basis are
used to estimate the knowledge Eve has (i.e., for parameter estimation). For an ideal
setup and in the asymptotic limit of an infinitely long key, the secret key rate is then
simply given by the probability that a successful output is produced by the relay in
case Alice and Bob have both prepared a single photon in the rectilinear basis:

r ideal
MDI = Q

1,1
rect. (7.7)

If we take into account that in a practical implementation there are imperfections
such as basis misalignment and detector dark counts, the asymptotic key rate is
given by

rMDI = Q
1,1
rect

(
1 − h2

(
e

1,1
diag

))− Qrectf (Erect)h2(Erect), (7.8)

where Qrect = ∑
n,m Q

n,m
rect and Erect = ∑

n,m Q
n,m
rect E

n,m
rect /Qrect are the total gain

and QBER, respectively, in the rectilinear basis, and f (Erect) > 0 is an inefficiency
function for the error correction process.2 As usual, h2 denotes the binary Shannon
entropy. The quantities Q

1,1
rect and e

1,1
diag can be bounded using the decoy state method.

The finite-key analysis for this protocol was carried out in [9]. Here, the authors
showed that even though finite-size effects reduce both the achievable distance and
the secret key rate, it is possible to perform secure MDI QKD over up to 150 km
with a finite set of data, say of 1012 to 1014 signals.

Achievable Distances
Apart from being secure under all detector side channel attacks, MDI QKD has
the advantage that its long-distance performance is better than that of conventional
QKD. To see this, let us do a simple analysis of signal and noise in the respective
schemes. Consider a standard QKD protocol where Alice prepares and sends states
and Bob measures them. Let us denote the probability that a single photon sent
by Alice arrives at the detector by ηchan (also known as the transmittance of the
channel). Further, denote by ηdet the probability that Bob’s detector clicks given
that a photon has arrived at the detector and denote by pdark the probability that a
dark count occurs (i.e., the detector clicks even though no photon is present). We

2Note that the effect of the inefficiency function is usually very small. In [43], the authors used a
value of f (Erect) = 1.16 for simulation purposes but pointed out that this is a rather conservative
choice. With good error correction codes one can achieve better results.
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then define a signal S as

S = ηchanηdet, (7.9)

while the noise N is simply the probability pdark that a dark count occurs. We could
now say that generating a secure key is not possible if the noise-to-signal ratio is

N

S
� 10%, (7.10)

for example.3 Suppose now that we have a detection efficiency of ηdet = 50% and a
probability of dark counts of pdark = 10−5. From the condition (7.10) it follows that
the channel needs to have a transmittance of at least ηchan = 2×10−4. Furthermore,
we can use the following relation between the transmittance and the length of the
fibre to determine the maximum length of the fibre:

ηchan = 10−ldBL/10. (7.11)

Here, ldB denotes the transmission loss in the fibre. For standard fibres that are used
in optical experiments, a typical value is ldB = 0.2 dB/km (this means that about half
the photons are lost after 1.5 km4) [21]. From (7.11) we then get that the maximum
length of the fibre is Lmax = 185 km.

For MDI QKD, signal and noise are defined slightly different. The first difference
is that the fibre now consists of two parts, the one that connects Alice with the relay
and the one that connects Bob with the relay. To achieve the same overall distance,
the length of each of the fibres is half of the overall distance, which means the each
of the fibres has a transmittance of

√
ηchan. The second difference is that we now

have two detectors instead of one, which yields the following expression for the
signal S:

SMDI = √
ηchan

√
ηchanηdetηdet = ηchanη

2
det. (7.12)

Also, the expression for the noise is more complicated for MDI QKD: since we
have two detectors, we have to consider the probability of dark counts twice, and
also the probability that a dark count only occurs at one of the detectors while the
other one clicks (which can happen for Alice’s detector as well as for Bob’s). Hence,
the expression for the noise is given by

NMDI = p2
dark + 2pdark

√
ηchanηdet. (7.13)

3The actual number depends on the devices that are used in the experimental implementation, but
for our purposes it is not important as long as we choose the same number in the conventional
QKD setting and in the MDI QKD setting.
4The losses in dB and the losses in % are related by the formula ldB = −10 log10(1 − (l%/100)).
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Using the same conditions as above, we get that the minimum value for the
transmittance is ηchan = 1.68×10−7 and the maximum distance is Lmax = 339 km.
Even though this is just a rough analysis, it indicates that with MDI QKD it is
possible to achieve much greater distances than with conventional QKD schemes.
This is because with the intermediate relay, the noise in the channels is handled
better than if one long channel connects the two parties.

Exercise 7.3 Derive (7.11). Use the relation between the loss in dB and the loss in
% given in Footnote 4 taking into account that the total loss in the fibre is given by
ldB · L, where L is the length of the fibre. Hint: Use that the transmittance ηchan is
defined as the probability that a photon is successfully transmitted.

7.2.3 Twin-Field QKD

While MDI QKD overcomes the vulnerability to side channel attacks it is subject
to a limitation from which all point-to-point QKD schemes suffer: there is a
fundamental limitation for the secure key rate due to the losses that occur when
transmitting quantum states via a lossy channel [56, 71]. In particular, the secret
key rate of a QKD protocol over a quantum channel with transmittance η is upper
bounded by the so-called PLOB bound (named after its discoverers Pirandola,
Laurenza, Ottaviani, and Banchi) [56]:

r ≤ − log(1 − η). (7.14)

In the regime of high distances, that is, high losses η & 1, the logarithm can be
expanded and we find that

r ≈ 1.44η, (7.15)

i.e., the maximum achievable secret key rate scales linear with the transmittance of
the channel.

A lot of research has been done to explore the possibility of using quantum
repeaters to overcome this limitation, see [67]. However, this approach has the
disadvantage that it requires quantum memory and quantum error correction and
is therefore beyond the capabilities of current technology.

Another approach to overcome the rate-distance limit (7.15) was presented in
2018 by Lucamarini et al. [45] and is called Twin-Field QKD (TF QKD). The
authors propose a scheme that is based on similar principles as MDI QKD: Alice
and Bob send pulses to an untrusted relay at which the measurement takes place.
The measurement results reveal the parity of the encoded bits, but not their values.
Different to MDI QKD, TF QKD only uses single-photon detection, which results
in a higher key rate since successful events now correspond to the situation where
one photon arrives, sent either by Alice or Bob, in contrast to the requirement of
having a successful Bell measurement at the relay (where both photons are needed).
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Fig. 7.5 Phase slices for a
TF QKD protocol.
Discretization of the phase
space for M = 16 to identify
the twin fields in the public
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The protocol presented in [45] works as follows: in the encoding step (which is
exactly the same for Alice and Bob, so we only describe Alice’s part here), Alice
generates phase-randomized weak coherent pulses by picking a random phase value
ϕa ∈ [0, 2π). The phase-interval is split into M slices with �k = 2πk/M , where
k = 0, . . . ,M −1, see Fig. 7.5. The phase ϕa falls into one of these intervals, which
we denote �k(a). Alice then encodes a secret bit and a secret basis into another phase
ψa which is added to the phase of the pulse.

At the relay, the two incoming pulses (one from Alice, one from Bob) are
combined at a 50 : 50 beam splitter with single-photon detectors at the output ports.
After the detection outcome is announced, Alice and Bob reveal their respective
phase slices �k(a) and �k(b) and the encoded bases. They only keep the data that
corresponds to rounds with matching values. The optical fields whose phases are
from the same slice are “twins”, hence the name twin-field QKD. The detection
outcome together with the revealed information tells Bob whether or not he has to
flip his bit to coincide with Alice’s bit. An eavesdropper, on the other hand, only has
the information of the parity of Alice and Bob’s bits but cannot learn their absolute
value.

Note that while a high number M of slices gives a small QBER, the probability
of having matching slides scales as 1/M , hence there is an optimal value for M

with regard to the secret key rate. In [45], the authors determined this value to be
Mopt = 16 by modelling the experimental setup and optimizing the key rate.

As explained in the beginning, the goal of TF QKD is to overcome the rate-
distance limit of point-to-point QKD given in (7.15) by achieving a quadratic
improvement, i.e., a scaling of O(

√
η) instead of O(η). In the original paper [45],

the authors were able to prove such an improvement for a restricted class of attacks
by Eve. Later works by Tamaki et al. [72] and Ma et al. [47] showed the security
of modified versions of the original protocol against general attacks while also
achieving a O(

√
η) scaling. A simplified version of the original protocol, presented

by Curty et al. [10], uses pre-selection of the phases instead of postselection.
This modification simplifies the security analysis and is easier to implement
experimentally while also achieving a square root improvement over the point-to-
point rate-distance limitation.
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7.3 Continuous-Variable QKD

Historically, much of the theory (and also of the experiments) on quantum commu-
nication has originally been developed for Discrete Variables (DV), which is what
we have focussed on so far. The reason behind this is that by using discrete variables
a lot of the intuition and ideas from classical information science could be adapted
to the quantum case. However, in the 2000s it became clear that also continuous
variables of the electromagnetic field, such as the amplitude and phase of light, are
suitable candidates for quantum communication tasks, (see, e.g., [61] and [28]). In
fact, using protocols based on continuous variables can be advantageous with regard
to practical applications since the states and measurements that are involved in the
theoretical description, such as coherent states and homodyne detection, can be
directly used in an experimental implementation. In contrast to this, single-photon
sources used in discrete-variable protocols, for example, have to be approximated
by weak coherent pulses. In this section we give a basic introduction over the most
important concepts of Continuous-Variable (CV) QKD an discuss the advantages
compared to discrete-variable QKD as well as the current challenges in CV QKD.

7.3.1 Basics of Gaussian Quantum Information

The main idea of CV QKD is to encode the information into the degrees of freedom
of the quantized electromagnetic field. To understand how protocols built on this
idea work we first have to introduce some basic concepts of quantum optics. Most
of what we discuss in this section can be found in the detailed review on this topic
by Weedbrook et al. [75].

In the discrete-variable setting the fundamental building block of our protocols
was the qubit, often realized as the polarization of a single photon. Hence, the first
question that naturally comes up is what is the analogue of a qubit in the continuous
setting? In CV QKD, we do not use the notion of a qubit but rather work with
modes. The analogue quantity would then be a “qumode”, which is a quantized
mode of a bosonic system. A prominent example for this is the degrees of freedom
of the electromagnetic field. In Table 7.1, important quantities of QKD protocols are
compared for DV and CV QKD.

Description of Quantum Systems
The first and fundamental difference between DV and CV quantum systems is
that the Hilbert space is infinite. The CV quantum system can be represented
by N quantized modes of the electromagnetic field, i.e., N bosonic modes.
This corresponds to N quantized Harmonic oscillators. Each of these harmonic
oscillators can be described by quadrature field operators q̂ and p̂, which act like
the position and momentum of a harmonic oscillator. For the i-th oscillator, they are
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Table 7.1 Discrete-variable vs. continuous-variable QKD. This table shows the analogue quan-
tities in CV QKD to what we have used in the description of DV QKD protocols

DV QKD CV QKD

Light Photons (or WCS) Wave

Quantities of interest Number and coherence Amplitude and phase or
quadratures q̂, p̂

Description Density matrix ρ Wigner function W(q̂, p̂)

Measurements Counting (e.g., with an APD) Demodulating: homodyne
or heterodyne detection

“Simple” states Fock states Gaussian states

defined as

q̂i = â
†
i + âi , (7.16)

p̂i = i(â
†
i − âi), (7.17)

where âi and â
†
i are the creation and annihilation operators, respectively, of the

bosonic field. The information we want to send is encoded in the quadrature field
operators q̂ and p̂, which are continuous variables: let us write all operators q̂i , p̂i in
one vector x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T. The eigenvalues x of this vector of operators
are given by

x̂T|x〉 = xT|x〉, (7.18)

where |x〉 = (|x1〉, . . . |x2N 〉)T. The vector x of eigenvalues of the quadrature field
operators contains of 2N real numbers, hence they form continuous variables that
describe the entire bosonic system.

For a single mode, the quadrature field operators fulfil the commutation relation

[
q̂, p̂

] = 2iN0, (7.19)

where N0 is a normalization factor that is also known as shot noise and which is
sometimes set to one. This factor also appears in the uncertainty relation of the two
operators,

�q̂�p̂ ≥ N0 (7.20)

and as such it describes the minimum variance that is reachable symmetrically by
the two quadrature field operators. This naturally leads to the optical phase space
picture of states as depicted in Fig. 7.6 for a coherent state. The marginal probability
distributions can be obtained by measuring one of the two quadratures. Because of
the uncertainty relation (7.20), we cannot measure both quadratures with arbitrary
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Fig. 7.6 Optical phase space
of a coherent state. A
coherent state corresponds to
a blurred dot in the optical
phase space since, because of
Heisenberg’s uncertainty
relation, not both field
quadratures q̂ and p̂ can be
measured simultaneously
with arbitrary precision

precision, hence a coherent state cannot be represented by a sharp point in phase
space.

An equivalent description of a CV state ρ is the Wigner function W(x̂), which is
defined on the 2N-dimensional phase space. It is a quasi-probability distribution,
which means that it has all the properties of a probability distribution except
that it can take negative vales for non-classical states.5 The Wigner function is
characterized by the statistical moments of the quantum state: the first moment is
called the displacement vector or mean value

x̄ = 〈x̂〉 = Tr
(
x̂ρ
)
. (7.21)

The second moment is called the covariance matrix V whose elements are given by

Vij = 1

2

〈{
�x̂i,�x̂j

}〉
, (7.22)

where �x̂i = x̂i − 〈x̂i〉 and {·, ·} is the anti-commutator. In particular, this means
that the diagonal elements of the covariance matrix provide the variance of the
quadrature operators:

Vii = V (x̂i) =
〈
�x̂2

i

〉
= 〈x̂2

i 〉 − 〈
x̂i

〉2
. (7.23)

The covariance matrix is real, symmetric, and positive definite.

5Note that the converse is not true in general: a state can be non-classical yet have a non-negative
Wigner function.
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For a particular class of states the mean value and the covariance matrix are
sufficient to provide a complete description of the state of the system, i.e., ρ =
ρ(x̄, V). These states are the so-called Gaussian states which are defined as bosonic
states whose Wigner function is Gaussian. Why are we interested in Gaussian
states with regard to the implementation of cryptographic protocols? The reason is
twofold: first, Gaussian states are very robust with interaction of the environment
and Gaussian channels (i.e., CPTP maps that map Gaussian states to Gaussian
states) describe a lossy optical fibre, which is the standard case in practical QKD
based on photonic devices. The second reason why we are interested in Gaussian
states is that it is known how to generate them experimentally using lasers, for
instance.

The Wigner function for a Gaussian state is given by

W(x) = 1

(2π)N(det V)1/2 e− 1
2 (x−x̄)TV−1(x−x̄), (7.24)

where x is the vector of eigenvalues of the quadrature operators x̂. From the above
formula it is obvious that we do not need any higher-order moments than the mean
and the variance to determine the Wigner function.

Examples of Gaussian states are the eigenstates of the harmonic oscillator, i.e.,
Fock states, which are depicted in Fig. 7.7 in terms of the Wigner function. Further
interesting examples are coherent states:

|α〉 = e− |α|2
2
∑

n

αn

√
n! |n〉. (7.25)

They can be generated from the vacuum by applying the displacement operator
D(α), which is a Gaussian unitary operation, via |α〉 = D(α)|0〉, where

D(α) = eαâ†−α∗α̂ (7.26)

Fig. 7.7 Wigner distribution for eigenstates of the harmonic oscillator. The plots show the Wigner
distribution for the ground state |0〉 (left hand side) and the Fock state |5〉 (right hand side). On
the horizontal axes are the values of the quadratures q and p. In the plot on the right hand side it
becomes clear that the Wigner distribution can become negative and is therefore a quasi-probability
distribution
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is the displacement operator on a single mode and α is a complex number. It
transforms the mode operator â as

D†(α)âD(α) = â + α. (7.27)

Note that this operation leaves the variance of the Wigner function invariant.
Coherent states are non-orthogonal, i.e.,

|〈β|α〉|2 = e−|β−α|2 . (7.28)

This is important for the security of CV QKD since non-orthogonal quantum states
cannot be distinguished with certainty.

Another prominent example is squeezed states, which are generated from the
vacuum by a squeezing operation S(s) (which is also Gaussian unitary operation)
and a displacement operation:

|α, s〉 = D(α)S(s)|0〉. (7.29)

Here, the variance of one quadrature operator is squeezed while the variance of
the other quadrature operator is expanded. Both coherent and squeezed states can
be generated experimentally and are therefore useful for implementing CV QKD
protocols. For simplicity, we only focus on coherent state in the following.

Before we turn to the description of measurements, a remark on the use of
coherent states is necessary. We have already seen coherent states in the description
of discrete-variable protocols, for example, weak coherent states in the decoy state
method. It is important to understand that the use of coherent states in DV QKD is
fundamentally different from their use in CV QKD. In DV QKD, they are used to
approximate single photons and the information is encoded in the polarization of
the single photon. In CV QKD, the information is instead encoded in the quadrature
field operators, i.e., we use the degrees of freedom of the field itself and not of a
single photon.

Exercise 7.4 Use (7.27) to show the following identities:

D†(α)q̂D(α) = q̂ + √
2 Re(α) (7.30)

D†(α)p̂D(α) = p̂ + √
2 Im(α). (7.31)

Exercise 7.5 Calculate the mean value and the covariance matrix for the vacuum
state |0〉 of a single-mode system.

Exercise 7.6 Calculate the mean value and the covariance matrix for a coherent
state |α〉 = D(α)|0〉. Hint: Use that the displacement operator preserves variances.
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Measurements
The aim of measuring a Gaussian state is to get information about the quadrature
field operators. When measuring a Gaussian state the outcomes are distributed
according to a Gaussian probability distribution and as such they are elements of
the real numbers (in contrast to the discrete outcomes that we have in DV QKD, for
instance, whether a detector clicks or not).

Typical examples of suitable measurements are homodyne and heterodyne
detection. When doing homodyne detection only one of the quadratures (q̂ or p̂) is
measured. The measurement operators of a homodyne detection are projectors over
the quadrature basis |q〉〈q| or |p〉〈p| (depending on which quadrature is measured).
The probability of getting an outcome q (or p, respectively) is given by the marginal
integral of the Wigner function over the other quadrature:

P(q) =
∫

W(q, p)dp, P (p) =
∫

W(q, p)dq. (7.32)

Experimentally, homodyne detection is implemented by comparing the incoming
signal with a standard oscillation that corresponds to the signal if it carried null
information, as depicted in Fig. 7.8. The two signals interfere at a 50:50 beam
splitter and two detectors measure the intensity of the outgoing modes. Subtracting
the outcomes of the two detectors gives a signal which is proportional to q̂ . To
measure the p̂ quadrature, a π/2 phase shift is applied to the local oscillator [7]. This
kind of measurement is near-optimal with regard to distinguishing low-intensity
coherent states.

With heterodyne detection, on the other hand, we can measure both quadratures
at once at the cost of getting a noise penalty due to the uncertainty relation (7.20).
While in the case of homodyne detection Bob needs to have access to a random
number generator in order to randomly choose which quadrature to measure, this is
not required when using heterodyne detection. As a result, the experimental setup

Fig. 7.8 Homodyne detection. The incoming signal |α〉 interferes with a reference signal provided
by the local oscillator LO at a 50:50 beam splitter BS. Two photon detectors measure the outcomes
at the two output ports of the beam splitter and the homodyne current is then given by difference
of the detector outputs
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is simpler using heterodyne detection and it furthermore produces higher key rates
(see [74]).

7.3.2 CV QKD Protocols

We have now discussed all the basics required to understand how a CV QKD
protocol works. In general, there are two ingredients to every protocol: an encoding
of Gaussian states (i.e., a modulation) and a decoding using Gaussian measurements
(usually homodyne or heterodyne detection). Many different CV QKD protocols
have been proposed in the literature which differ in one or more of the following
aspects:

1. State preparation: One can use protocols with single-mode or two-mode
coherent or squeezed states.

2. Modulation: The encoding of information into Gaussian states can be achieved
via Gaussian modulation (where the states are distributed according to a Gaussian
distribution) or non-Gaussian modulation.

3. Detection: The measurement can be done with either homodyne or heterodyne
detection.

4. Post-processing: One can choose between direct or reverse information recon-
ciliation, which makes a big difference in CV QKD, and also between one-way
or two-way communication.

These possibilities yield a variety of protocols, where some protocols are easier to
implement while others have better security proofs.

As it is usually the case in QKD, protocols can be described in two different
ways: in the prepare-and-measure (PM) version and in the entanglement-based
(EB) version, which are equivalent for Gaussian protocols [30]. In the PM case,
Alice prepares Gaussian states and sends them to Bob, who measures them with
either homodyne or heterodyne detection. In the EB case, Alice prepares bipartite
entangled Gaussian states, measures the first half and sends the second half to
Bob, who then measures it. Given that Alice’s lab and preparation are trusted, both
versions of the protocol yield the same security.

To get familiar with the workings of CV QKD protocols we present one of
the simplest protocols, which is a one-way protocol using coherent states with
Gaussian modulation and homodyne detection known as the GG02 protocol [28] (or
its version with heterodyne detection [74]). The steps of the protocol are as follows:

1. State distribution and measurement: Alice prepares N coherent states |α1〉,
. . . , |αN 〉, where the αi are IID variables that are distributed according to a
Gaussian distribution with zero mean and variance VA. The states are then sent
to Bob. Depending on the protocol, Bob measures either one of the quadratures
(q̂ or p̂) at random for each of the states (homodyne detection) and tells Alice his
choice or he measures both quadratures (heterodyne detection). Afterwards, Bob
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holds either a list of N or 2N real-valued numbers according to the measurement
outcomes. Alice keeps only the relevant quadrature values according to Bob’s
measurement choices. Denote the resulting lists x = (x1, . . . , xn) for Alice
and y = (y1, . . . , yn) for Bob, where n = N or n = 2N according to the
measurement type.

2. Error correction: The next step in the protocol is to correct errors in Alice and
Bob’s respective bit strings. Here, it turns out that reverse reconciliation gives
better results for these types of protocols where we have high-loss channels
[29]. This means that Bob’s string corresponds to the raw key and Alice tries
to guess its value, in contrast to direct reconciliation that we have used in the
protocols previously discussed. The error correction itself is then a classical
procedure, where Alice and Bob use an error correction code they have agreed
on beforehand.

3. Parameter estimation: Before, we have usually placed the parameter estimation
step before error correction. However, it has turned out that the other order can be
more efficient. In CV QKD, this step requires estimating the covariance matrix
of the bipartite state shared by Alice and Bob to estimate the correlations they
share.

4. Privacy amplification: This step is similar to what we have discussed in the
DV setting. Alice and Bob apply a random two-universal hash function to their
respective corrected strings and get a pair of secure keys SA, SB of length l.

A simple scheme of the protocol is depicted in Fig. 7.9. We now discuss some of
the technical details of the protocol and important parameters. The state preparation
that takes place in Alice’s lab is characterized by the variance VA of the Gaussian

Gaussian modulation
variance

Alice
quantum channel

classical channel

Eve

LO

–
Bob

random quadrature measurement
el

Fig. 7.9 Implementation of the GG02 protocol. Alice prepares a large number of coherent states
according to a Gaussian distribution with variance VA (Gaussian modulation). She sends the states
over a quantum channel with transmission efficiency T and excess noise ξ . Due to the noise
in the channel the variance of the states Bob receives is smaller than VA. Bob then performs a
homodyne detection to measure one of the quadratures at random. His measurement is described
by the efficiency η and the electric noise vel
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modulation. The next step, sending the states to Bob over a quantum channel, is
characterized by two parameters of the channel: The transmission efficiency T (i.e.,
the probability that a signal is successfully transmitted) and the excess noise ξ ,
which represents all noise due to the channel that goes beyond the shot noise. The
measurement process that takes place in Bob’s lab is characterized by the parameters
of the detectors: the quantum efficiency η and the electric noise νel. In summary, the
protocol can be characterized by five parameters: VA, T , ξ , η, and vel.

These parameters allow us to study the effect on the quantum state when going
through the quantum channel. Denote XA ∈ NC(0, VA) the Gaussian variable
that describes the state Alice has prepared. After the state has gone through the
quantum channel and has been detected in Bob’s lab, the outcome is described by
the Gaussian variable

XB = √
ηT (XA + XN) , (7.33)

where XN is a noise variable with zero mean and variance VN = N0 + ηT ξ + vel.
Hence, the variance of XB is

VB = ηT (VA + ξ) + N0 + vel. (7.34)

Discrete Modulation
The first attempts of CV QKD protocols around 2000 were realized using a discrete
(hence, a non-Gaussian) encoding of Gaussian states, see [32, 60, 63]. However,
with the discovery that Gaussian modulation of coherent states provides a good
resource for continuous-variable protocol, the idea of discrete modulation had been
somewhat forgotten for a while, with only a few papers studying its feasibility.
Because discrete modulation is easier to implement experimentally and has higher
error correction efficiencies it was revived around 2009 [37, 69]. In contrast to
Gaussian modulation, for discrete modulation we only need a finite number of
different states, i.e., we have a finite alphabet of N coherent states given by

|αk〉 = |ae
i2πk
N 〉 (7.35)

with relative phase 2πk/N . Bob uses homodyne or heterodyne detection to estimate
the value of k, which encodes the secret key. While this attempt has some practical
advantages as mentioned above, its security analysis is, in general, more difficult,
which is explained in the next section.

7.3.3 Security Analysis

Similar to security proofs of DV QKD protocols, the goal of a CV QKD security
proof is to verify sufficient correlations between Alice and Bob such that we get an
upper bound on Eve’s information about the key. However, in contrast to the discrete
setting, we now have to deal with infinite Hilbert spaces and unbounded operators.
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To analyse the security of a CV QKD protocol for the case of collective attacks
and in the asymptotic limit of an infinitely long key, we employ the Devetak-Winter
rate:

rcoll∞ = I (A : B) − χ(B : E), (7.36)

where I (A : B) is the mutual information between Alice and Bob and χ(B : E)

is the Holevo information between Bob’s string and Eve’s quantum system. This
is the case if reverse reconciliation is used in the error correction step. For direct
reconciliation, it has to be replaced with χ(A : E). Since in a realistic setting Alice
and Bob usually cannot extract all of the information from their data, we multiply
the mutual information with a factor β < 1 called the reconciliation efficiency.
Hence, the formula for the secret key rate is given by

rcoll∞ = βI (A : B) − χ(B : E). (7.37)

The quantity βI (A : B) can directly be observed in an experiment.
The quantity χ(B : E), on the other hand, has to be bounded using the covariance

matrix V of the state that is shared by Alice and Bob. This is, in general, a
challenging task. In the asymptotic limit there is a useful tool to bound the Holevo
information: using optimality properties of Gaussian states [78] one can show that

χ(B : E)ρ ≤ χ(B : E)ρG, (7.38)

where ρG is the Gaussian state with the same covariance matrix as ρ (see [16, 55]).
This means that the optimal attack that Eve can perform is based on Gaussian
operations. As a consequence, the security analysis can be restricted to this case,
which makes it much easier. However, this technique is restricted to protocols with
Gaussian modulation and only applicable for collective attacks and in the asymptotic
limit.

For general attacks the situation is more complicated. There are different attempts
of proving security in this case. For instance, Furrer et al. [15] first discretise
the quadratures qδ, pδ and then use an entropic uncertainty relation to prove
security against general attacks. The drawback of this approach is that it only
works for squeezed states (which are more difficult to realize experimentally) and,
furthermore, the resulting bound on the secure key rate is believed not to be tight.

Another approach is to use a Gaussian version of the de Finetti theorem. Similar
to the discrete version, the states used in the protocol have to fulfil some symmetry
condition in order to be able to apply the de Finetti theorem. This approach was
used to show that security against collective attacks implies security against general
attacks in the asymptotic case of an infinite key by Renner and Cirac [64] and in the
finite-key regime by Leverrier et al. [38].

A third potential approach to prove security against general attacks is developing
an entropy accumulation theorem for continuous variables. However, there is a
number of challenges that need to be overcome to formulate such a theorem: for
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instance, it requires some test (like the CHSH game) to estimate the quantum
correlations between the parties. In the CV case this should be related to the
covariance matrix but it is not clear how exactly this has to look. Furthermore, this
test depends on some unbounded continuous outcome (in contrast to the CHSH
value) which complicates the analysis.

For protocols with discrete modulation proving unconditional security is even
harder. While discrete modulation has some advantages over Gaussian modula-
tion regarding its practical implementation, the underlying theory provides some
challenges which makes even the security proof against collective attacks in the
asymptotic case non-trivial. Most of the tools described above cannot be used
since the requirements are no longer fulfilled: For instance, since we no longer
use Gaussian modulation, (7.38) does not hold and the security analysis cannot be
restricted to Gaussian operations. Furthermore, the symmetry that is required for the
Gaussian de Finetti theorem is broken. Hence, the security analysis of CV protocols
with discrete modulation needs new techniques. Here, some progress has been made
recently: in [20] and [41], the authors have used semi-definite programs (SDP) to
numerically estimate bounds on the min-entropy. In another work by Matsuura et
al. [52] the CV protocol is mapped to a qubit protocol and then security proof
techniques from discrete-variable QKD are employed.

A summary of the state-of-the art of security proofs for different CV QKD
protocols can be found in [12].

7.3.4 Advantages and Challenges

As we have seen above there are some fundamental differences between QKD with
discrete variables and with continuous variables. Regarding practical implementa-
tions, using continuous quantum systems has some advantages. For instance, CV
QKD experiments employ exactly those states and measurements specified in the
theoretical formulation of the protocol, such as Gaussian states and homodyne or
heterodyne detection. In contrast, the BB84 protocol requires a single-photon source
which, in practice, can only be approximated using weak coherent states. The states
that are used in CV QKD, usually coherent or squeezed states, can be generated
in the lab, with coherent states being particularly easy to prepare. Furthermore, the
devices needed for a CV QKD implementation such as coherent measurements are
also widely used for classical communication in the telecom industry.

On the other hand, there are some drawbacks to CV QKD. On the theoretical
side there are many challenges when it comes to proving the security of a protocol
such as an infinite-dimensional Hilbert space and continuous and unbounded
measurement operators. Moreover, the quality of correlations between the two
parties is measured in terms of the covariance matrix, which is a continuous and
unbounded quantity in contrast to the CHSH violation or the QBER that we employ
in DV QKD security proofs. On the experimental side, the drawback of CV QKD
is that it is less robust to noise: for instance, in DV QKD it is possible to discard no
click events from detectors while in CV QKD all pulses are there, but noisier. This
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makes it harder to estimate the channel properties precisely and leads to a need for
very large block sizes for long distances.

7.4 Advances in Experimental QKD

Since the days of the first implementation of a QKD protocol (namely, the BB84
protocol), which was done in 1989 by Bennett, Brassard, and others [2, 3], much
progress has been made, both on the theoretical side and with regard to the
experimental components. While we have discussed recent advances regarding
protocols and their security such as device-independent and measurement-device-
independent QKD, we have not discussed the experimental implementations yet.
In this section, we give a brief overview over the state-of-the-art of current
experimental implementations of the different kinds of protocols we have presented
in this book. More detailed reviews of this topic can be found in [57, 79] and [13],
for example.

BB84 Protocol with Decoy States
Being the first QKD protocol the BB84 protocol is naturally well-understood and
many experiments have been carried out to achieve ever greater distances and ever
higher key rates. As explained earlier, an implementation with photonic devices is
vulnerable to the photon-number-splitting attack. Therefore, photonic experiments
usually implement the BB84 protocol using decoy states (see Sect. 5.3.2).

The experiment of Yuan et al. [82] concentrated on generating high key rates
over short distances and the authors have been able to achieve a secure key rate of
10 Mbit/s.6 While this experiment demonstrates that it is possible to achieve very
high secure key rates, the distance over which the key is generated is too short for
practical QKD applications.

One of the most problematical issues in long-distance QKD is the loss in
optical fibres. Unlike in classical telecommunications, signals cannot noiselessly
be amplified due to the no-cloning theorem which limits the maximum distance for
secure QKD to a few hundred kilometres [5]. Due to the exponential decrease of the
photonic signal, the detector noise will eventually become the dominant source of
error, which then makes it impossible to extract a key. In [4], Boaron et al. have been
able to achieve a distance of up to 421 km, but only with very small key rates. For
instance, over a distance 405 km the secure key rate is only 6 bit/s. This is depicted
in Fig. 7.10 together with the secure key rates for other distances (see Table 7.2),
showing how it decreases with growing distance.

One possible way to overcome this limitation is to use low-Earth-orbit satellites
as links. Compared to terrestrial channels, satellite-to-ground communication has a

6For comparison: the state-of-the-art classical communication channels transmit around 100 Gbit/s
(see, for example, [77]).
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Fig. 7.10 Secret key rates over long distances. The plot shows the secret key rate for different
distances listed in Table 7.2 which was achieved in an implementation of the BB84 protocol with
decoy states [4]

Table 7.2 Data for secret key rates. The table lists the secret key rates for different distances
achieved in an implementation of the BB84 protocol with decoy states by Boaron et al. [4],
together with the observed QBER

Distance in km QBER in % Secret key rate in bit/s

251.7 0.5 4.9 × 103

302.1 0.4 0.79 × 103

354.5 0.7 62

404.9 1.0 6.5

421.1 2.1 0.25

greatly reduced amount of losses [62], making it a promising candidate for practical
long-distance quantum communication. In 2017, two groups in China and Japan
have independently demonstrated that satellite-to ground QKD is possible [39, 70].
In particular, Liao et al. [39] have been able to establish satellite-to-ground QKD
over 1.200 km between the low-Earth-orbit satellite Micius and a ground station in
Xinglong near Beijing while achieving an average key rate of 1 kbit/s.

The same satellite has later been used as a trusted relay between three different
ground stations in Xinglong, Nanshan (both in China), and Graz (Austria) [40].
This works as follows: The satellite first establishes individual secret keys between
itself and each of the ground stations. Upon request from the ground stations
(say, Xinglong and Graz) it then performs a bitwise exclusive or-operations on the
respective keys and relays the result to one of the ground stations. In this way, it is
possible to establish a secure key between ground stations which are about 7.600 km
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apart. This demonstration included the transmission of images using a one-time pad
configuration as well as a video call between Beijing and Graz.

Entanglement-Based Protocols
There has also been some progress on the implementation of entanglement-based
protocols recently. A remarkable result that was reported in 2019 by Joshi et al. [35]
shows a fully connected graph consisting of eight parties in a city-wide network,
where entanglement-based QKD was used to establish secret keys between any
pairing of the network.

Another important result with respect to the distance over which secure quantum
communication is possible was reported in 2020: Yin et al. [81] achieved secure
key generation over a distance of 1120 km with a key rate of 0.12 bit/s without the
need for trusted relays. To generate entangled photon pairs between the two ground
stations again the satellite Micius was used.

One of the greatest challenges for experimental entanglement-based protocols is
achieving a high success rate in generating entangled photon states. Furthermore,
the implementations are susceptible to detector side channels and imperfections of
single-photon detectors.

Device-Independent QKD
The first step towards a successful implementation of device-independent protocols
is to demonstrate a loophole-free Bell test with high enough Bell violation and low
enough QBER to be in the regime where the secret key rate is positive. That a
loophole-free violation of a Bell inequality is indeed a desirable goal was argued,
for example, by Gerhardt et al. [18], who showed that it is possible to achieve a
violation of a Bell inequality in a system that manifestly lacks entanglement by
ignoring either the locality or the detection loophole.

It took until 2015 for the first loophole-free Bell test to be achieved. The first
group to report such an experiment was Hensen et al. in Delft [31], who used
a novel entanglement-swapping scheme to overcome both loopholes at the same
time. The idea of their scheme is depicted in Fig. 7.11 and goes as follows: Alice
and Bob each prepare an isolated atom, for example, in a cavity or an ion trap. To

Fig. 7.11 Implementation of
a QND via entanglement
swapping. Alice and Bob
each create atom-photon
entanglement in their
respective labs. The photons
are used to perform an
entanglement-swapping
procedure such that Alice and
Bob share entangled atoms
afterwards. These can be used
to perform a Bell test

atom

photon

“click”

atom

photon

“click”
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be precise, the Delft group has used electron spins in nitrogen vacancy centres in
diamond in laboratories that were set about 1.4 km apart from each other. To get
these electron spins to talk to each other, Alice and Bob make them communicate
via photons. A stimulated electron sometimes emits a photon, with which it is
entangled. In rare cases, the two electron spins even emit a photon at the same time.
When this happens, it is possible to send these photons through fibres to perform
a procedure called entanglement swapping, which entangles the electron spins by
measuring the photons. As a result, Alice and Bob now hold entangled electron
spins which they can use to perform a Bell test. The crucial point here is that
the Bell test is only performed if the entanglement-swapping procedure has been
successful (i.e., if both detectors have clicked when measuring the photons). In this
way, entanglement swapping is a way to implement a QND, which allows to close
both the locality loophole (because the respective labs are far enough apart) and the
detection loophole. With this technique the group was able to achieve a CHSH value
of 2.38 ± 0.14.

However, the probability that the entanglement-swapping procedure is successful
is very small (around 6.4 × 10−9 in the actual experiment, which corresponds to
slightly more than one successful procedure per hour), which in turn means that it
takes a lot of time to collect enough data for meaningful results. The main reason
for the small success probability is the high photon loss due to the long distance
between the devices. Together with a QBER of ≈ 0.06, the resulting secret key rate
for DIQKD is just at the border of the zero-key region, as depicted in Fig. 7.12.

In the same year, two experiments with entangled photons were reported that
also achieved a loophole-free Bell test, one by Giustina et al. [24] and the other by
Shalm et al. [68]. However, even though they were able to close both loopholes at
the same time, the resulting Bell violation was negligible in both experiments: The
first one achieved a CHSH value of S = 2.000030 ± 0.000002, while the second
one achieved a CHSH value of S = 2.00004 ± 0.00001. Together with a non-zero
QBER, the resulting secure key rate for DIQKD is indeed zero (see Fig. 7.12).

In 2017, another experiment achieving a loophole-free Bell test was reported by
Rosenfeld et al. [65] with a CHSH violation of S = 2.221 ± 0.033. An overview
of the estimated parameters relevant for DIQKD in experimental Bell tests in recent
years is given in Table 7.3. The parameters are plotted in Fig. 7.12 together with the
bound for secure key rates in case of collective attacks given in (6.29). This diagram
shows that even though loophole-free Bell tests have improved in the past years,
they are still not in the region where it is possible to produce a non-zero secret key.

MDI QKD
The first demonstration of a successful implementation of the MDI QKD scheme
was achieved in 2013 by Rubenok at al. in Calgary, Canada [66] and by Liu et al. in
Hefei, China [42]. The current record regarding the achievable distance with MDI
QKD is 404 km with a low-loss fibre, demonstrated in 2016 by Yin et al. [80] with
a key rate of 0.00034 bit/s.
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Fig. 7.12 Experimental Bell tests. The contour plot shows the secure key rate r as a function of
the Bell violation S and the QBER Q. The location of eight experimental Bell tests is marked (the
data can be found in Table 7.3). The dashed line marks the boundary for the zero-key-rate region
from (6.29) [1]. Only experiments (5)–(7) close both the detection and the locality loophole

Table 7.3 Summary of experimental Bell tests. The table lists the estimated parameters of interest
for a DIQKD protocol, namely the Bell violation S and the QBER Q. Experiments (1) and (2) have
used trapped ions, (3)–(6) are all-photonic experiments, (7) used NV centres, and (8) used trapped
atoms. All experiments close the detection loophole, but only (5)–(8) additionally close the locality
loophole. The data is taken from [53]

Label Experiment Year S Q

(1) Matsukevich et al. [51] 2008 2.22 ± 0.07 0.041 ± 0.003

(2) Pironio et al. [58] 2010 2.414 ± 0.058 0.041 ± 0.003

(3) Giustina et al. [23] 2013 2.02096 ± 0.00032 0.0297 ± 0.0003

(4) Christensen et al. [8] 2013 2.00022 ± 0.00003 0.0244 ± 0.0009

(5) Giustina et al. [24] 2015 2.000030 ± 0.000002 0.0379 ± 0.0002

(6) Shalm et al. [68] 2015 2.00004 ± 0.00001 0.0292 ± 0.0002

(7) Hensen et al. [31] 2015 2.38 ± 0.14 0.06 ± 0.03

(8) Rosenfeld et al. [65] 2017 2.221 ± 0.033 0.035 ± 0.003
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Continuous-Variable QKD
An experimental realization of the GG02 protocol we have presented in the previous
section is given in [36]. Here, the authors demonstrate secure key generation over a
distance of 80 km. More recently, Zhang et al. [84] demonstrated secure CV QKD
over a distance of 202.81 km of ultralow-loss optical fibre.

There has also been some progress with regard to cost-efficiency of implementa-
tions: Zhang et al. [83] have presented a photonic chip platform for CV QKD using
the GG02 protocol that realizes a stable, miniaturized and low-cost implementation
of a CV QKD system. Here, all components of the experiment (except the laser
source) are put on a silicon photonic chip. The authors then demonstrate a secret
key rate of 0.14 kbit/s under collective attacks over a simulated distance of 100 km.

As in DV QKD, there are also considerations of implementing satellite QKD with
continuous variables. A feasibility study by Dequal et al. [11] recently showed that it
is possible to achieve positive secret key rates for satellite-to-ground communication
in a low-earth orbit scenario.
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ABasic Probability Theory

In order to follow many of the arguments in these notes, especially when talking
about entropies, it is necessary to have some basic knowledge of probability theory.
Therefore, we review here the most important tools of probability theory that are
used.

One of the basic notions of probability theory that also frequently appears
throughout these notes is that of a discrete random variable. A random variable
X can take one of several values, the so-called realizations x, given by the alphabet
X. The probability that a certain realization x ∈ X occurs is given by the probability
distribution pX(x). We usually use upper case letters to denote the random variable,
lower case letters to denote realizations thereof, and calligraphic letters to denote
the alphabet.

Suppose we have two random variables X and Y , which may depend on each
other. We can then define the joint probability distribution pX,Y (x, y) of X and Y

that tells you the probability that Y = y and X = x. This notion (and the following
definition) can be expanded to n random variables, but we restrict ourselves to the
case of pairs X,Y here to keep the notation simple.

Given the joint probability distribution of the pair X,Y , we can derive the
marginal distribution PX(x) by

pX(x) =
∑

y∈Y
pX,Y (x, y) ∀ x ∈ X (A.1)

and analogously for PY (y). The two random variables X and Y are said to be
independent if

pX,Y (x, y) = pX(x)pY (y). (A.2)
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Furthermore, we can define the conditional probability that Y takes the value
y ∈ Y, given that X takes the value x ∈ X:

pY |X(y|x) = pX,Y (x, y)

pX(x)
. (A.3)

To avoid complications, we use the convention that pX,Y (x, y) = 0 if pX(x) = 0.
If X and Y are independent, pY |X(x|y) = pY (y) for all y ∈ Y. Using the definition
of the conditional probability, (A.1) can be rewritten as

pX(x) =
∑

y∈Y
pX|Y (x|y)pY (y) ∀ x ∈ X. (A.4)

In this form it is also called the law of total probability. Another important rule that
relates different conditional probabilities is Bayes’ rule:

pX|Y (x|y) = pY |X(y|x)
pX(x)

pY (y)
. (A.5)

This rule can be proved as follows: Note that (A.3) can be rewritten as

pX,Y (x, y) = pY |X(y|x)pX(x). (A.6)

It follows that

pX|Y (x|y) = pX,Y (x, y)

pY (y)
= pY |X(y|x)

pX(x)

pY (y)
. (A.7)



BCalderbank–Shor–Steane Codes

Calderbank–Shor–Steane (CSS) codes are a large class of quantum error cor-
rection codes that exploit ideas from classical linear error correction codes. In
entanglement-based QKD protocols, they can be used to correct errors that occur
during the distribution of entangled states.

B.1 Classical Linear Codes

Before we can understand CSS codes, we need to make a short detour into the theory
of classical linear codes. A linear codeC that encodes k bits into an n bit code space
(with n > k) is a set of 2k codewords, where each codeword is a binary vector of
length n. We call such a code an [n, k] code. It is specified by a n × k generator
matrix G with elements in {0, 1}. G maps messages to their equivalent in the code
space, for instance, a k bit message x (which is represented by a column vector) is
encoded as y = Gx. Note that all arithmetic operations (especially multiplications
and additions) are done modulo 2.

As a simple example, consider the [3, 1] repetition code that encodes 1 bit
messages into three copies of them: 0 is mapped to (0, 0, 0)T and 1 is mapped to
(1, 1, 1)T . Hence, the generator matrix G is

G =
⎛

⎝
1
1
1

⎞

⎠ . (B.1)

To connect this definition of classical codes to error correction, we have to
introduce a different formulation of linear codes, the parity check matrices. In this
formulation, an [n, k] code is defined as all vectors x of length n with entries from
{0, 1} such that

Hx = 0, (B.2)
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where H is an (n − k) × n matrix with entries in {0, 1} called the parity check
matrix. To construct the parity matrix H from a generator matrix G, one has to
pick out n − k linearly independent vectors orthogonal to the columns of G. The
corresponding parity check matrix for the [3, 1] repetition code with G given in
(B.1) is then

H =
(

1 1 0
0 1 1

)

. (B.3)

In the language of parity check matrices, it is quite easy to see how error detection
and correction work. Suppose we have a message x that we encode as y = Gx. If
an error e occurs, the codeword y is transformed into the corrupted codeword y ′ =
y + e. Because Hy = 0 for all codewords y, it follows that Hy ′ = Hy +He = He.
This is called the error syndrome. If the syndrome is 0, we know that no error has
occurred. Otherwise, it contains information about the error because of the way the
parity check matrix H was constructed.

In the example of the [3, 1] repetition code, every codeword has a length of 3
bits. Therefore, errors can occur at three different positions. Denote by ei an error
in the ith bit, i.e., a vector with a 1 at position i. Then for all codewords y, we have
that Hy ′ = Hei; hence, the three different syndromes are

He1 =
(

1
0

)

, He2 =
(

0
1

)

, He3 =
(

1
1

)

. (B.4)

This makes it possible to read off the position of the error from the syndromes. Note
that this procedure is only successful if we know that an error has occurred for at
most one bit. Hence, the [3, 1] repetition code can correct one error.

More general linear error correction codes can be obtained using the concepts
of Hamming distance. The Hamming distance d(x, y) between two binary vectors
x and y is defined as the number of positions in which the two bit strings differ.
For example, d((1, 1, 0, 0)T , (1, 0, 0, 1)T ) = 2, because the vectors differ in the
2nd and 4th positions. Error correction now works as follows: suppose we have a
codeword y = Gx that is corrupted such that the resulting vector is y ′ = y + e. If
the probability that an error occurs is less than 1

2 , the most likely codeword to have
been encoded is the one that minimizes the Hamming distance to y ′, i.e., d(y, y ′),
since this is the one with the least amount of bit flips.

How many errors can such a code correct? This can also be analysed in terms
of the Hamming distance: We define the distance of a code C to be the minimum
Hamming distance between any of its codewords:

d(C) = min
x,y∈C, x �=y

d(x, y). (B.5)

We use the notation d = d(C) and call C an [n, k, d] code. With a little bit of
thinking one can see that a code with distance 2t + 1 for some integer t can be used
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to correct up to t errors, simply by decoding the corrupted message y ′ as the unique
codeword y that satisfies d(y, y ′) ≤ t . If more than t errors occur, this codeword is
no longer unique and therefore, errors cannot be reliably detected and corrected.

The last concept we need from classical linear codes is duality. Suppose we have
a linear [n, k] code C with generator matrix G and parity check matrix H . We can
then construct another code, the dual code C⊥ of C, which consists of all codewords
that are orthogonal to each codeword in C. Hence, the generator matrix of the dual
code is HT and its parity check matrix is GT .

B.2 Quantum Error Correction

In the quantum case, the situation is a bit more complicated. Where in the classical
case only one type of error is possible (namely the bit flip error), a qubit can undergo
three different types of errors: a bit flip, which changes |0〉 to |1〉 and |1〉 to |0〉, a
phase error, which maps |1〉 to −|1〉 but leaves |0〉 unchanged, and a combination of
the two, which maps |0〉 → −|1〉 and |1〉 → |0〉.

The Calderbank–Shor–Steane (CSS) code is now defined as follows: Suppose we
have two classical linear error correction codes, an [n, k1] code C1 and an [n, k2]
code C2 such that C2 ⊂ C1 and C1 and C⊥

2 both correct up to t errors. Using these
two classical codes we can define a quantum error correction code, the CSS code of
C1 over C2, denoted CSS(C1, C2). It is an [n, k1 −k2] quantum code that is capable
of correcting errors on up to t qubits. The construction works as follows: for any
codeword x ∈ C1, we define the quantum state

|x + C2〉 = 1√|C2|
∑

y∈C2

|x + y〉, (B.6)

where + is the bitwise addition modulo 2 and |C2| denotes the cardinality of C2
(which is 2k2 , since this is the number of codewords of C2).

We have used coset notation here for a reason. If you are not familiar with the
concept of a coset, we briefly recap some facts here for a group G and a subgroup
H ⊂ G, then for any g ∈ G the left coset of H in G determined by g is defined as

g + H = {g + h : h ∈ H }. (B.7)

We denote G/H the set of all cosets of H in G. Cosets have some convenient
properties: Coming back to the notation for CSS codes, suppose that x ′ is an element
of C1 such that x−x ′ ∈ C2. Then it follows that |x+C2〉 = |x ′+C2〉, which implies
that the state |x + C2〉 only depends on the coset of C1/C2 in which x is contained.
In this sense, (B.6) is an equally weighted superposition of all the words in the coset
represented by x.

Another consequence of the coset formalism is that if x and x ′ belong to different
cosets of C2 in C1, then there are no codewords y, y ′ ∈ C2 such that x+y = x ′+y ′;
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hence, |x+C2〉 and |x ′+C2〉 are orthonormal states. The quantum code CSS(C1, C2)

is defined to be the vector space spanned by {|x + C1〉}x∈C1 . Since the number of
cosets of C2 in C1 is |C1|/|C2|, the dimension of this vector space is |C1|/|C2| =
2k1−k2 , and therefore CSS(C1, C2) is an [n, k1 − k2] quantum code.

It is now possible to exploit the classical error-correcting properties of the codes
C1 and C⊥

2 to detect and correct quantum errors. The crucial point here is that bit flip
errors and phase flip errors are corrected independent of each other. Bit flip errors
are described by a vector ebit of length n that has 1s at those positions where a bit
flip has occurred, and 0s otherwise. If the original state is denoted |x〉, bit flip errors
transform this state to

|x〉 → |x + ebit〉. (B.8)

Phase errors are described by a second vector ephase of length n with 1s at those
positions where a phase error has occurred. In this case, the phase errors transform
the state |x〉 as

|x〉 → (−1)x·ephase|x〉. (B.9)

A crucial observation here is that when we apply the Hadamard transformation (see
(2.28)), the phase error takes the same form as the bit flip error,1 i.e., a state |x ′〉 in
the Hadamard basis is transformed by phase errors as

|x ′〉 → |x ′ + ephase〉. (B.10)

In summary, if |x + C2〉 as defined in (B.6) is the original state, then the corrupted
state is described as

1√
2k2

∑

y∈C2

(−1)(x+y)·ephase|x + y + ebit〉. (B.11)

To detect bit flip errors, we need to compute the error syndrome for the code
C1. For this purpose it is convenient to introduce an ancilla state that consists of a
sufficient number of qubits to store the syndrome and that initially is in the all zero
state |0〉. To compute the syndrome, we apply the parity check matrix H1 of the code
C1 and store the result in the ancilla state:

|x+y+ebit〉|0〉 → |x+y+ebit〉|H1(x+y+ebit)〉 = |x+y+ebit〉|H1ebit〉. (B.12)

Hence, to detect the error one simply measures the ancilla state, discards it, and
applies NOT gates (i.e., gates that take |0〉 → |1〉 and |1〉 → |0〉) to those qubits

1One can easily verify this statement by carrying out this computation for the two basis states for
the Hadamard basis, namely |+〉 and |−〉 defined in (2.24).
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where a bit flip has occurred. This removes all the bit flip errors and the resulting
state is

1√
2k2

∑

y∈C2

(−1)(x+y)·ephase|x + y〉. (B.13)

The remaining part is to detect and correct phase errors. We can do this by applying
a Hadamard transformation to each qubit, which transforms the state to

1√
2n+k2

∑

z

∑

y∈C2

(−1)(x+y)·(ephase+z)|z〉, (B.14)

where the sum is over all possible n bit values for z. We can rewrite this state by
setting z′ = z + ephase, which yields

1√
2n+k2

∑

z′

∑

y∈C2

(−1)(x+y)·z′|z′ + ephase〉. (B.15)

One can show that if z′ ∈ C⊥, then
∑

y∈C2
(−1)y·z′ = |C2|, while if z′ /∈ C⊥, then

∑
y∈C2

(−1)y·z′ = 0, which allows us to further rewrite the state:

1√
2n−k2

∑

z′∈C⊥
2

(−1)x·z′ |z′ + ephase〉, (B.16)

which has exactly the form of a bit flip error described by the vector ephase. We can
therefore simply repeat the procedure we did before, but now with the parity check
matrix of the code C⊥

2 . Here, it becomes clear why we need C⊥
2 to be able to correct

t errors and not C2 itself. This allows us to correct all the errors and we receive the
state

1√
2n−k2

∑

z′∈C⊥
2

(−1)x·z′|z′〉. (B.17)

The last step is to apply the Hadamard transformation again to each qubit since it is
its own inverse. The resulting state is

1√
2k2

∑

y∈C2

|x + y〉, (B.18)

which is exactly the originally encoded state.
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