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Standard Metric Prefixes
(for powers of 10)

Some Physical Constants

Spﬁ.‘d Of llght ( 1(‘) X 10' m/s
Gravitational constant G 6.67 x 10" N-m*/kg’ Power Prefix Symbol
Coulomb’s constant 1/47s, 899 x10°N-m‘/C: 10" exa E
Permittivity constant & 885 x 10 “C¥/(N-m’) 10" peta P
Permeability constant o 47 x 107 N/A? 10" tera T
Planck’s constant h 663 x 10 “Js 10° giga G
Boltzmann'’s constant ky 138 x 10 7 J/K 10° mega M
Elementary charge e 1.602 x 10 “C 10° kilo k
Electron mass m, 9.11 x10 "kg 10°° centi c
Proton mass m, 1.673 x 10 “ kg 10° milli m
Neutron mass m, 1.675 x 10 7 kg 10" micro 1
Avogadro’s number N. 6.02 x 10° 107 nano n
10" pico p
. 10" femto f
Commonly Used Physical Data 10" atto a

Gravitational field strength ¢ = | 3|
(near the earth’s surface)

9.80 N/kg = 9.80 m/s’

Mass of the earth M, 5.98 x 10°" kg

Radius of the earth R, 6380 km (equatorial)
Mass of the sun M. 1.99 x 10" kg

Radius of the sun R, 696,000 km

Mass of the moon 7.36 X 107 kg

Radius of the moon 1740 km

Distance to the moon 384 x 10°m

Distance to the sun 1.50 X 10" m

Density of water’ 1000 kg/m’ = 1 g/cm’
Density of air' 1.2kg/m’

Absolute zero 0K = —273.15°C = —459.67°F
Freezing point of water’ 273.15K = 0°C = 32°F
Boiling point of water’ 373.15K = 100°C = 212°F

101.3kPa

' At normal atmospheric pressure and 20°C.
‘At normal atmospheric pressure.

Normal atmospheric pressure

Useful Conversion Factors

1 meter =1m = 100 cm = 39.4 in = 3.28 ft

1 mile = 1 mi = 1609 m = 1.609 km = 5280 ft
linch=1in=254cm

1 light-year = 1ly = 9.46 Pm = 0.946 x 10" m

I minute =1 min=60s

1 hour = 1 h = 60 min = 3600 s
1day=1d=24h=86.4ks=86,4005 i
lyear=1y=36525d =316 Ms =3.16 X 10's
1newton = 1N = 1kgm/s"=02251b

ljoule = 1] =1N-m = 1 kg-m’/s* = 0.239 cal
lwatt=1W=1]/s

1pascal = 1Pa=1N/m’ =145 x 10" psi

1 kelvin (lemperatumdiffcmnce) =1K=1C=18F
1 radian = 1 rad = 57.3° = 0.1592 rev

1 revolution = 1 rev = 27 rad = 360"

1 cycle = 27 rad

1 hertz = 1 Hz = 1 cycle/s

Im/s=224mi/h=328ft/s

1 mi/h =161 km/h=0447 m/s = 147 ft/s

1liter =11=(10cm)' = 10" m’ = 0.0353 ft’
1ft'=1728in' = 0.0283 m’

1 gallon = 1 gal = 0.00379 m’ =3.791 = 3.8 kg H.O
Weight of 1-kg object near the earth =98N =221b

lpound =1lb=445N

1 calorie = energy needed to raise the temperature of 1 g

of HLOby 1K = 4.186 |
1 horsepower = 1 hp = 746 W
1 pound per square inch = 6895 Pa
1 food calorie = 1 Cal = 1 kcal = 1000 cal = 4186 ]
1 electron volt = 1 eV = 1.602 x 10 "]
_ (1K e
T= (Fc)m‘ |+ 273.15°C)
5K s
T= (;,f?s)(rl., + 459.67°F)

_ (5°C) o
T = (‘—)T |(Tw - 32°F)

T = 32°F + (2K |7,
5°C!



Relativistic Units, Conversion Factors, and Benchmarks

SR unit system: distance 15 measured in seconds (so thatc = 1)

1 s of distance = 299,792,458 m

1 ns of distance = 0.300 m = 0.984 ft

1 min of distance = 18 x 10° km = 18 Gm

1 hoof distance = 1.08 x 10" km = 1.08 Tm

1 day of distance = 2.59 X 10" km = 259 Tm

1 month of distance = 780 Tm

1 year of distance = 1 light-year = 11y = 0946 x 10" m = 9.46 Pm
Average distance between the earth and the moon: 1.28 s.
Average distance between the earth and the sun: 8.33 min.
Average distance between Mars and the sun: 12,69 min.

Average distance between Neptune and the sun: 4.17h

Average distance between Pluto and the sun: 5.53 h.

Distance to the nearest star: 4.3y

Distance to the galactic center: ~30,000 y

Diameter of the Milky Way galaxy ~ 100,000 y

Light travel time from the edge of the visible universe: ~ 13.75 Gy

|§] =327 x 107%™ = (0.969y) J

1 kg (energy) = 9.0 X 10"]
Energy released by a 100-kt atom bomb: 4.184 x 10" ] = 4.66 g,

1] = 1.1 x 107" kg (of energy)

Some important equations and their equivalents in SI units

—

Equation SR Version Sl Equivalent
Metric ‘= AF - AX - Ay - A7 '
" As = AF - A¥ - Ay - AF As=ap-Artar+ar
. L 15E r: -A
Proper time dr=dt ‘/' - [aF’ drzdf\/i_ Il:/—l—
= io/c
Lorentz transformations (f and x) 1=1/V1-§ 1/V1= 3/
j =1/ V1=(8/cy
r=(t- ;
, 7t = Bx) t'=(t-px/A)
X=9(-8t+x) X'=9(=5t+x)
Lorent: i Vi-|3
rentz contraction L=Ley1=|3f L=L.\/li;—|t"/c|"
Transformation for x-velocity v'=u %-8
¢ = p'z__;_
| l m’n I "3(‘./(—‘
Energy in terms of speed E=—-1__ —_
== E= "
1-|? : Vv I- s
s gany f l— P/;‘F
Relativistic momentum magnitude |pl= ml3| (7] ml3|
" p =——-_‘:-
Mass in terms of E and |p . \/l—'f‘/(l:
19l ' = E - |pf (méy = E = |pc|
AY = E - |jcf
Speed in terms of E and || val:l:,_! |3]_ 17|
E Saar o
Photon energy in terms of fand A E=hf= h hie
A E =I[f=—:\‘-

°-
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Preface

E Introduction

This volume is one of six that together comprise the text materials for ¢
Ideas That Shaped Physics, a unique approach to the two- or three-se =
calculus-based introductory physics course. | have designed this curr
(for which these volumes only serve as the text component) to sup
introductory course that combines two elements that rarely appear together-
(1) a thoroughly 21st-century perspective on physics (including a great 4. ’
of 20th-century physics), and (2) strong support for a student-cen tered (l,;\;.
room that emphasizes active learning both in and outside of class, even in
situations where large-enrollment sections are unavoidable.

This course is based on the premises that innovative metaphors fo,
teaching basic concepts, explicitly instructing students in the Processes of
constructing physical models, and active learning can hel p students learn :tll
subject much more effectively. In the course of executing this project, | b, .
completely rethought (from scratch) the presentation of every topic, taking

Mester
iculum
p‘ ot an

advantage of research into physics education wherever possible. [ have
nothing in this text just because “that is the way it has always been don
Moreover, because physics education research has consistently underlined
the importance of active learning, I have sought to provide tools for pro-
fessors (both in the text and online) to make creating a coherent and <oli.
consistent course structure based on a student-centered classroom as v,
and practical as possible. All of the materials have been tested, evaluaiod
and rewritten multiple times. The result is the culmination of more thn
25 years of continual testing and revision.

I have not sought to “dumb down” the course to make it more accessibi.
Rather, my goal has been to help students become smarfer. I have intention-
ally set higher-than-usual standards for sophistication in physical thinkine
but I have also deployed a wide range of tools and structures that help even
average students reach this standard. | don't believe that the mathemati-
cal level required by these books is significantly different than that in most
university physics texts, but I do ask students to step beyond rote think-
ing patterns to develop flexible, powerful, conceptual reasoning and model-
building skills. My experience and that of other users is that normal students
in a wide range of institutional settings can (with appropriate support and
practice) meet these standards.

Each of six volumes in the text portion of this course is focused on
single core concept that has been crucial in making physics what it is today.
The six volumes and their corresponding ideas are as follows:

UnitC:  Conservation laws constrain interactions

Unit N:  The laws of physics are universal (Newtonian mechanics)
UnitR:  The laws of physics are frame-independent (Relativity)
Unit E:  Electric and Magnetic Fields are Unified

UnitQ: Particles behave like waves (Quantum physics)

Unit T:  Some processes are irreversible (Thermal physics)

viii




I ha\f‘ histed fhf units in lh}' order that I recommend they be taught, but | have
also constructed units R, E, Q, and T to be sufficiently independent so they
can be taught in any order after units C and N. (This is why the units are
lettered as opposed to numbered.) There are sy units (as nbpuwd to five
or seven) to make it possible to easily divide the course into two semesters,
three quarters, or three semesters. This unit organization therefore not only
makes it possible to dole out the text in small, easily-handled pieces and
provide a great Adcal of flexibility in fitting the course to a given schedule,
but also carries its own important pedagogical message: Physics is organized
hierarchically, structured around only a handful of core ideas and mut.llphor&

Another unusual feature of all of the texts is that they have been designed
so that each chapter corresponds to what one might handle in a single 50-minute
class session at the maxmmum possible pace (as guided by vears of experience).
Therefore, while one might design a syllabus that goes at a slower rate, one should
not try to go through more than one chapter per 50-minute session (or three chap-
ters in two 70-minute sessions). A few units provide more chapters than you may
have time to cover. The preface to such units will tell you what might be cut.

Finally, let me emphasize again that the text materials are just one part of
the comprehensive Six Ideas curriculum. On the Six Ideas website, at

www.physics.pomonaedu/sixideas/

you will find a wealth of supporting resources. The most important of these
is a detailed instructor’s manual that provides guidance (based on Six Ideas
users” experiences over more than two decades) about how to construct a
course at your institution that most effectively teaches students physics. This
manual does not provide a one-size-fits-all course plan, but rather exposes
the important issues and raises the questions that a professor needs to con-
sider in creating an effective Six Ideas course at their particular institution.
The site also provides software that allows professors to post selected prob-
lem solutions online where their students alone can see them and for a time
period that they choose. A number of other computer applets provide expe-
riences that support student learning in important ways. You will also find
there example lesson plans, class videos, information about the course phi-
losophy, evidence for its success, and many other resources.

There is a preface for students appearing just before the first chapter of
each unit that explains some important features of the text and assumptions
behind the course. | recommend that everyone read it.

E Comments about the Current Edition

My general goals for the current edition have been to correct errors, improve
the presentation in some key areas, make the book more flexible, and espe-
cially to improve the quality and range of the homework problems, as well as
significantly increase their number. Users of previous editions will note that
I have split the old “Synthetic” homework problem category into “Modeling”
and “Derivations” categories. “Modeling” problems now more specifically
focus on the process of building physical models, making appropriate
approximations, and binding together disparate concepts. “Derivation”
problems focus more on supporting or extending derivations presented in
the text. I thought it valuable to more clearly separate these categories.

The “Basic Skills” category now includes a number of multipart prob-
lems specifically designed for use in the classroom to help students practice
basic issues. The instructor’s manual discusses how to use such problems.

006 9. 909 .0 08 5.9 0000 99 ¢'9 .69 0909 9 8.0.9'9 0 :a:;,i............'....'
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[ have also been more careful to give instructors more choice aboyg what
to cover, making it possible for inblanl\)rs to omit chapters without oo o
continuity. See the unit-specific part of this preface for more details,

Users of previous editions will also note that | h.\\'t’ dropped the theng.
like chapter location diagrams, as well as the p,lussance.‘. and symbol liss, g, at
appeared at the end of each \'olgnw. Thcrc'w.\'s no evidence that these e
actually helpful to students. Units C and N still instruct students Very care.
fully on how to construct problem solutions that involve translating, mog.
elin'g' solving, and checking, but cx'amplcs and prubh.-m solutions for the
remaining units have been written in a more flexible format that incly lee
these elements implicitly but not so rigidly and explicitly. Students are rathr
guided in Unit N to start recognizing these elements in more generally for.
matted solutions, something that I think is an important skill. '

The only general notation change is that now 1 use | 7] exclusively i
universally for the magnitude of a vector 0. I still think it is very lmp(}rmnt
to have notation that clearly distinguishes vector magnitudes from other sca.
lars, but the old mag(©) notation is too cumbersome to use exclusively, and
mixing it with using just the simple letter has proved confusing. Unit C cop.
tains some specific instruction about the standard notation that most other
texts use (as well as discussing its problems).

Finally, at the request of many students, I now include short answers to
selected homework problems at the end of each unit. This will make students
happier without (I think) significantly impinging on professors’ freedom.

l Specific Comments About Unit R

Unit R is a relatively short unit that focuses on developing the theory of spe-
cial relativity as a logical consequence of the principle of relativity. Typically,
one spends little time in a traditional introductory physics course exploring
relativity, and as a result, few students understand or appreciate the beauties
it has to offer. The experience of those of us who have used this text is that if
two to three weeks of class time are devoted to the study of relativity using
the approach outlined in this unit, students at almost any level can develop
a robust and satisfying understanding of the logic and meaning of relativity,
and many will become genuinely excited about really being able to under-
stand such a well-known but counterintuitive topic in physics (the intensity
of this excitement actually surprised some of our early users).

Special relativity is probably the best and most accessible example in all
of physics for illustrating how carefully thinking through the consequences
of an idea can uncover unexpected truths beyond the realm of daily experi-
ence. Therefore, studying relativity can provide students with a glimpse of
both the process and the rewards of theoretical physics, as well as help them
take an important first step into the world of contemporary physics, where
reaching beyond the level of our daily experience requires an increasing reli-
ance on logical reasoning and abstract models.

This text therefore emphasizes the logical structure of relativity, clearly
showing how well-known and bizarre relativistic effects such as length con-
traction and time dilation are the inevitable consequences of the principle of
relativity. If students come away from this unit feeling that the universe not
only is consistent with relativity, but indeed almost lias to be, then this unit
has been successful. I urge instructors to tailor their efforts toward this goal.

This unit should follow a treatment of Newtonian mechanics that
includes nonrelativistic kinematics, Newton's second law, conservation of
momentum and energy, and some study of reference frames. This book an
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be used as a supplement to a traditional introductory text any time after these
topics are covered. In a Six Ideas ¢

A ourse, this unit should definitely follow
units C and N.

On the other hand, I think it is
unit R before unit E for several rea
make certain aspects of electricity

good to go against history and schedule
sons. First, knowing some relativity can
and magnetism simpler, and unit F takes
some advantage of the relativistic perspective in general and Lorentz con-
traction and the cosmic speed limit in particular (see the preface to unit E
for more details). Second, 1 think it is good for students to get a taste of some
exciting contemporary physics between the many weeks of classical physics
represented by units C, N, and E. This is especially true if this is the last unit
discussed in the first semester: ending the first semester with unit R means
that many students will leave the course excited and intrigued about physics
and (perhaps) more eager to continue with the second semester.

Unit Q uses relativity quite sparingly. The ch
do draw on the idea that mass can be converted to
otherwise, references to relativity are m
does not use relativity at all.

This unit has been only lightly revised for this edition compared to some
of the other units. The most significant change is that | have compressed the
material in the second edition’s chapters R1-R3 into the third edition’s chap-
ters R1 and R2. Chapter R3 of the second edition was particularly under-
weight, and in recent years I have been successfully able to teach the three
old chapters in two class sessions. | hope that compressing the text this way
will give you more flexibility in allotting time to other topics.

In previous editions, I required that the Other Frame must move in the
+x direction with respect to the Home Frame (meaning that 3 was always
positive). This was a bit artificial, and the restriction proved tricky for some
students. In this edition, I have relaxed this restriction, allow ing 3 to become
negative (though I almost always take it to be positive).

I'have also used hyperbola graph paper more extensively in this edition,
and have spent a bit more time showing students how to use such paper. |
have included some graph paper at the end of chapter R5 that students can
xerox (one can also download graph paper from the Six Ideas website).

Otherwise, | have made the notation for vector magnitudes consistent
with the other revised units, corrected errors, added some new homework
problems, and cleaned up the writing.

As a result of the compression, the unit now has nine chapters. The short-
est possible treatment of relativity using this book would be to omit chapters
R4 and R7 through R9. This would vield a five-session introduction to basic
relativistic kinematics (with no dynamics or E = mc’). Adding chapter R4
and/or R7 would provide a richer introduction to pure kinematics.

The shortest introduction that includes dynamics would be to omit chap-
ters R4, R6, and R7 and add a single class session devoted to sections R4.1
through R4.4 and section R7.4 (and possibly section R7.1). This would 2o
over everything that is useful for units E and Q within seven class sessions.

However, students find the material in chapters R4 and R6 some of the
most interesting in the book, and chapter R6 is also where they really test
their understanding of relativistic kinematics in the context of tough para-
doxes. Therefore, I really recommend doing the whole unit if you have time.
I'hope that by shortening it by one chapter, I have made this a bit easier.

If you want to assign appendix RB on the Doppler shift, you can go over
it any time after section R4.2. It can displace some of the latter sections of
chapter R4, displace some of the middle sections of chapter R7, or supple-
ment chapter R6 (which involves fewer new ideas than the other chapters).

apters on nuclear physics
energy and vice versa, but
ostly confined to problems. Unit T

xi
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3 2 SMARTBOOK'

SmartBook is the first and only adaptive reading experience designed to
change the way students read and learn. It creates a personalized reading
experience by highlighting the most impactful concepts a student needs to
learn at that moment in time. As a student engages with SmartBook, the read-
ing experience continuously adapts by highlighting content based on what
the student knows and doesn’t know. This ensures that the focus is on the
content he or she needs to learn, while simultaneously promoting long-term
retention of material. Use SmartBook’s real-time reports to quickly identify
the concepts that require more attention from individual students-or the
entire class. The end result? Students are more engaged with course content,
can better prioritize their time, and come to class ready to participate.
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Learn Without Limits
Continually evolving, McGraw-Hill Connect” has been redesigned to pro-

vide the only true adaptive learning experience delivered within a simple
and easy-to-navigate environment, placing students at the very center.

Performance Analytics - Now available for both instructors and stu-
dents, easy-to-decipher data illuminates course performance. Students
always know how they're doing in class, while instructors can view stu-
dent and section performance at-a-glance.

Mobile - Available on tablets, students can now access assignments,
quizzes, and results on-the-go, while instructors can assess student and
section performance anytime, anywhere.

Personalized Learning - Squeezing the most out of study time, the adap-
tive engine in Connect creates a highly personalized learning path for
each student by identifving areas of weakness, and surfacing learning
resources to assist in the moment of need. This seamless integration of
reading, practice, and assessment, ensures that the focus is on the most
important content for that individual student at that specific time, while
promoting long-term retention of the material.
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Introduction for Students

! Introduction

Welcome to Six Ideas That Shaped Physics! This text has a number of features
that may be different from science texts you may have encountered prey i

ously. This section describes those features and how to use them effect;y ely

k Why Is This Text Different?

Why active learning is crucial Research into physics cduca!inn consistently shows that people learn physics
most effectively through activities where they practice applying physical rea
soning and model-building skills in realistic situations. This is becayse )
ics is not a body of facts to absorb, but rather a set of thinking skills acquired
through practice. You cannot learn such skills by listening to factyal lectures
any more than you can learn to play the piano by listening to concerts!

This text, therefore, has been designed to support active learning both
inside and outside the classroom. It does this by providing (1) l’l‘.\uur.q-\ for
various kinds of learning activities, (2) features that encourage active re
and (3) features that make it as easy as possible to use the text (
to lectures) as the primary source of information, so that you can
time doing activities that will actually help you learn.

phys-

ading,
das ()pp(N.d
spend class

¢ The Text as Primary Source
Features that help you use the To serve the last goal, | have adopted a conversational style that I hope you
text as the primary source of will find easy to read, and have tried to be concise without being too feree
information Certain text features help you keep track of the big picture. One of the

key aspects of physics is that the concepts are organized hierarch ally: some
are more fundamental than others. This text is organized into < units, cach
of which explores the implications of a single deep idea that has shaped
physics. Each unit’s front cover states this core idea as part of the unit’s title.

A two-page chapter overview provides a compact summary of that
chapter’s contents to give you the big picture before vou get into the details
and later when you review. Sidebars in the margins help claniy the purpose
of sections of the main text at the subpage level and can help you quickly
locate items later. I have highlighted technical terms in bold type (like this)
when they first appear: their definitions usually appear nearby

A physics formula consists of both a mathematical equation and a con-
ceptual frame that gives the equation physical meaning. The most important
formulas in this book (typically, those that might be relevant outside the cur-
rent chapter) appear in formula boxes, which state the equation. its purpose
(which describes the formula’s meaning), a description of any limitations on
the formula’s applicability, and (optionally) some other useful notes. Treat
everything in a box as a unit to be remembered and used together.

What is active reading? i Active Reading

Just as passively listening to a lecture does not help you really learn what
you need to know about physics, you will not learn what you need by simply

...."".'.".COOOQZ'O:OOOoooo.00oo.oo.ocooo00000000000000000""".
\“
xiv ‘;

4



....O....".'....O..oc.o'OQ.Q..OO...O...O..0.0 (8 e s sssevssen

scanning your eyes over the page. Active reading is a crucial study skill for
all kinds of technical literature An active reader stops to pose internal ques-
tions such as these: Does this make sense? Is this consistent with my experi-
ence? Do [ see how I might be able to use this idea? This text provides two
important tools to make this process easier

Use the wide margins to (1) record questions that arise as you read (so you  Features that support develop-
can be sure to get them answered) and the answers you c\"cntually receive,  ing the habit of active reading
(2) flag important passages, (3) fill in missing mathematical steps, and
(#) record insights. Wniting in the margins will help keep you actively
engaged as you read and supplement the sidebars when VOU review

Each chapter contains three or four in-text exercises, which prompt you
to develop the habit of thinking as vou read (and also give you a break!).
These exercises sometimes prompt you to fill in a crucial mathematical detail
but often test whether vou can apply what vou are reading to realistic situ-
ations. When you encounter such an exercise, stop and try to work it out.
When you are done (or after about 5 minutes or sa), look at the answers at
the end of the chapter for some immediate feedback. Doing these exercises is
one of the more important things you can do to become an active reader

SmartBook (TM) further supports active reading by continuously mea-
suring what a student knows and presenting questions to help keep students
engaged while acquiring new knowledge and reinforcing prior learning

- Class Activities and Homework

This book’s entire purpose is to give you the background you need to do the  Read the text BEFORE class!
kinds of practice activities (both in class and as homework) that you need
to genuinely learn the material. It is therefore ESSENTIAL that you read every
assignment BEFORE you come to class. This is crucial in a course based on this
text (and probably more so than in previous science classes you have taken).

The homework problems at the end of each chapter provide for differ- Types of practice activities
ent kinds of practice experiences. Two-minute problems are short concep-  provided in the text
tual problems that provide practice in extracting the implications of what you
have read. Basic Skills problems offer practice in straightforward appli-
cations of important formulas. Both can serve as the basis for classroom
activities: the letters on the book’s back cover help you communicate the
answer to a two-minute problem to your professor (simply point to the let-
ter!). Modeling problems give you practice in constructing coherent mental
models of physical situations, and usually require combining several formu-
las to get an answer. Derivation problems give you practice in mathemati-
cally extracting useful consequences of formulas. Rich-context problems
are like modeling problems, but with elements that make them more like
realistic questions that you might actually encounter in life or work. They
are especially suitable for collaborative work. Advanced problems chal-
lenge advanced students with questions that involve more subtle reasoning
and/or difficult math.

Note that this text contains perhaps fewer examples than you would
like. This is because the goal is to teach you to flexibly reason from basic prin-
ciples, not slavishly copy examples. You may find this hard at first, but real
life does not present its puzzles neatly wrapped up as textbook examples.
With practice, you will find your power to deal successfully with realistic,
practical problems will grow until you yourself are astonished at how what
had seemed impossible is now easy. But it does take practice, so work hard and
be hopeful!

s,
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The Principle
of Relativity

Chapter Overview

Introduction
In units C and N, we have explored the Newtonian model of mechanics. In this

unit, we will explore a different model, called the special theory of relatvity, that better
explains the behavior of objects, especially objects moving at close to the speed of
light. This chapter lays the foundations for that exploration by describing the core
idea of the theory and linking it to Newtoruan mechanics.

Section R1.1: Introduction to the Principle
We can informally state this unit’s great idea, the principle of relativity, as follows

The laws of physics are the same inside a laboratory moving at a constant
velocity as they are inside a laboratory at rest.

The theory of special relativity simply spells out the logical consequences of this idea

This unit is divided into four subsections. The first (this chapter) discusses the
prinaiple itself. The second (chapters R2 through R4) explores the relativistic con-
cept of time. The third (chapters R5 through R7) discusses how observers in different
reference frames view a sequence of events. Finally, the fourth (chapters RS and RY)
examines the consequences for the laws of mechanics.

Section R1.2: Events, Coordinates, and Reference Framas
What exactly does the principle mean by a “laboratory”? The first step to under-
standing this better is to describe operationally how we measure a particie’s mouon
An event is something that happens at a well-defined place and time. An cvent's
spacetime coordinates are a set of four numbers that locate the event in space and
time. A particle’s motion is a series of events

A reference frame is a tool for assigning spacetime coordinates to events We can
visualize a reference frame as being a cubical lattice with a clock at every intersection
This ensures that there is a clock present at every event, but it also implies that we
must synchronize the clocks somehow. An observer is a person who mterprets results
obtained in a reference frame to reconstruct the motions of particles. A real reference
frame does not actually consist of a cubical lattice of clocks, but must be functionally
equivalent.

Section R1.3: Inertial Reference Frames

An inertial reference frame is a frame in which an isolated object is always and
everywhere observed to move at a constant velocity. We can check whether a frame is
inertial by distributing first-law detectors around the frame to test for violations of
Newton’s first law.

A consequence of this definition is that two inertial frames in the same region of
space must move at a constant velocity relative to each other. Conversely, if a given
frame moves at a constant velocity relative to another inertial frame in the same
region of space, the first must be inertial also

2




Section R1.4: The Final Principle of Relativity

Note that in our onginal statement of the principle of relativity, the “laboratory
moving at a constant velocity” and the “laboratory at rest” are both inertial frames.
Moreover, the principle itself implies that there is no physical way to distinguish a
frame in motion from one at rest: only the relative velocity between two inertial ref-
erence frames is measurable. Our final, polished statement of the principle therefore
expresses the core issue without referring to “moving” or being at “rest”

The laws of physics are the same in all inertial reference frames.

Section R1.5: Newtonian Relativity

What does the phrase “the laws of physics are the same” mean? We can examine
this issue in the context of Newtonian physics if we temporarily embrace Newton’s
hypothesis about time, which is that time is universal and absolute and thus independent
of reference frame. Consider two inertial frames that have constant relative velocity 3
and which are in standard orientation relative to each other; that is, the axes of both
point in the same directions in space and the Other (primed) Frame moves along the
x axis relative to the Home (unprimed) Frame. The concept of universal time implies
that time measured in both frames is the same (¢ = 1), This, together with some simple
vector addition and a little bit of calculus, implies that

)y =7 -5 (R1.1)
()= -3 (R13)
a'(ty=aq) (R1.4)

¢ Purpose: These equations describe how to compute an object’s position 7/,
velocity 7°and acceleration d” at any given time !’ in the Other Frame, given
the object’s position, position 7, velocity 7, and acceleration d at the same time ¢
in the Home Frame, where 3 is the velocity of the Other Frame relative to the
Home Frame.

* Limitations: These equations assume that ! = t’, which is not true unless both
0 << cand 3 << ¢, for reasons we are about to discover.

* Note: Equation R1.1 and the equation t = ¢’ together comprise the Galilean
transformation equations; equation R1.3 represents the Galilean velocity
transformation equations.

Equation R1.3 implies that Newton's second law is frame-independent: the vector
sum of the physical forces acting on an object will be equal to the object’s mass times
its acceleration in all inertial frames. This is an example of the laws of physics being
the same in two frames (the problems explore some others).

Section R1.6: The Problem of Electromagnetic Waves
Maxwell’s equations of electromagnetism predict that light (electromagnetic waves)
must move with a certain specific speed ¢. In the 19th century, people assumed that
electromagnetic waves moved through a hypothetical medium called the ether and
that Maxwell’s equations only really applied in the ether’s rest frame. In other frames,
then, the speed of light would be more or less than ¢ according to the Galilean velocity
transformation equation. However, 19th-century experiments seeking to check this
showed that the speed of light seemed to have the same numerical value in all refer-
ence frames and failed to find any evidence supporting the ether hypothesis.
Einstein asserted that the simplest way to explain the evidence was to reject the
ether hypothesis and instead assume that Maxwell’s equations satisfy the principle
of relativity. This means that the speed ¢ of light in a vacuum must be the same in all
inertial reference frames. But this contradicts the Galilean transformation equations.

3



Everyday experience with the
principle of relativity

An informal statement of the
principle of relativity

Historical notes

Chapter R1  The Principle of Relativity

B‘! Introduction to the Principle

If vou have ever traveled on a jet airplane, you I‘mo.w that while the plane
be flying through the air at 550 mi/h, thmga: |p.~‘|d0 the plang cabin b"hd\f\_
pmtt'\‘ much as they would if the plane were sitting at the loa;hng dock A u :
dnvpbcd from rest in the cabin, for example, will fall straight to ¢, o
(even though the plane moves forward many hundreds of feet with respecy
to the earth in the time that it takes the cup to reach the ﬂ(x‘»r). A ball khm“h
up in the air by a child in the seat in front of you falls straight back into the
child’s lap (instead of being swept back toward you at hundreds of mjje. &
hour). Your watch, the attendants’ microwave oven, and the plane’
ments behave just as they would if they were at rest on the ground.

Indeed, suppose you were confined to a small, \.\'induwlcs.s, and soypg.
proofed room in the plane during a stretch of cxccptmqall_v smooth flying 1
there any physical experiment you could perform entirely within the r«x),;,
(that is, an experiment that would not depend on any information comin
from beyond the room’s walls) that would indicate whether or how fa4 the
plane was moving?

The answer to this question appears to be “no.” No one has ever foung
a convincing physical experiment that yields a different result in 3 labor,.
tory moving at a constant velocity than it does when the laboratory js at
rest. The designers of the plane’s electronic instruments do not have 1, use
different laws of electromagnetism to predict the behavior of those instr,.
ments when the plane is in flight than they do when the plane is at req
Scientists working to improve the performance of the Voyager 2 space probe
tested out various techniques on an identical model of the probe at rest o
earth, confident that if the techniques worked for the earth-based mode),
they would work for the actual probe, even though the actual probe y 56
moving relative to the earth at nearly 72,000 km /h. Astrophysicists are abje
to explain and understand the behavior of distant galaxies and quacars by
using physical laws developed in earth-based laboratories, even though
such objects move with respect to the earth at substantial fractions of the
speed of light.

In short, all available evidence suggests that we can make the ol wing
general statement about the way the universe is constructed: )

S Instpy,.

The laws of physics are the same inside a laboratory moving at 4
constant velocity as they are in a laboratory at rest.

This is an unpolished statement of what we will call the principle of relativity.
This simple idea, based on common, everyday experience, is the fourndation
of Einstein’s special theory of relativity. All of that theory’s mind-bonding
predictions about space and time follow as logical consequences of this <im-
ple principle! The remainder of this book is little more than a step-oystep
unfolding of this statement’s rich implications.

The principle of relativity is both a very new and a very old ides 1t was
not first stated by Einstein but rather by Galileo Galilei in his book Dilog
Concerning the Two Chief World Systems (1632). (Galileo's vivid and entertain-
ing description of the principle of relativity is a wonderful example of 2 style
of discourse that has, unfortunately, become archaic.) In the nearly three cen-
turies that passed between Galileo's statement and Finstein's first paper on
special relativity in 1905, the principle of relativity as it applied to the laws of
mechanics was widely understood and used (in fact, it was generally consid-
ered to be a consequence of the particular nature of Newton's laws)

What Einstein did was to assert the applicability of the principle of
relativity to all the laws of physics, and most particularly to the laws of
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electromagnetism (which had just been developed and thus were completely
unknown to Galileo). Thus, Einstein did not inoent the principle of relativ-
ity, rather, his main contribution was to reinterpret it as being fundamental,
more fundamental than Newton's laws or even than ideas about time that up
to that point had been considered obvious and inescapable, and to explore
insightfully its implications regarding the nature of light, time, and space.

Our task in this text is to work out the rich and unexpected consequences
of this principle. Figure R1.1 illustrates how we will proceed to do this in the

remaining chapters of this unit.

This unit is divided into four subsections, as shown in figure R1.1. The
first (this chapter) deals with the foundation of relativity theory, the principle
of relativity itself. The second subsection (chapters R2 through R4) explores
the implications of the principle of relativity regarding the nature of time,
with special emphasis on the metric equation, an equation that links space
and time into a geometric unity that we call spacetime. The third subsection
(chapters R5 through R7) examines how the metric equation and the prin-
ciple of relativity together determine how observers in different reference
frames will interpret the same sequence of physical events; how disagreements
between such observers lead to the phenomenon of length contraction; and
how the fact that all observers must agree about cause and effect implies that
nothing can go faster than light. The final subsection (chapters RS and R9)
explores why and how we must redefine energy and momentum somewhat
to make conservation of energy and conservation of momentum consistent
with the principle of relativity.

Our focus in this chapter is on the principle of relativity itself, and on
developing an understanding of its meaning in the context of Newtonian
physics, before we proceed to explore the changes that Einstein proposes.
It is important before we proceed , however, to understand two important
things about the principle of relativity: (1) it is a postulate and (2) we must
state it more precisely before we can extract any of its logical implications.

The principle of relativity is one of those core physical assumptions (like
Newton’s second law or the law of conservation of energy) that must be
accepted on faith: it cannot be proved experimentally (it is not possible even
in principle to test every physical law in every laboratory moving at a con-
stant velocity) or logically derived from more basic ideas. The value of such
a postulate rests entirely on its ability to provide the foundation for a model
of physics that successfully explains and illuminates experimental results.

The principle of relativity has weathered nearly a century of intense criti-
cal examination. No contradiction of the principle or its consequences has
ever been conclusively demonstrated. Moreover, the principle of relativity
has a variety of unusual and unexpected implications that have been verified
(to an extraordinary degree of accuracy) to occur exactly as predicted. There-
fore, while it cannot be proved, it has not yet been disproved, and physicists
find it to be something in which one can confidently believe. The principle
of relativity, simple as it is, is a very rich and powerful idea, and one that the
physics community has found to be not only helpful but crucial in the under-
standing of much of modern physics.

Turning to the other problem, we see that the principle of relativity, as
we have just stated it, suffers from certain problems of both abstraction and
ambiguity. For example, what do we mean by “the laws of physics are the
same”? What exactly do we mean by “a laboratory at rest”? How can we
tell if a laboratory is “at rest” or not? If we intend to explore the logical con-

sequences of any idea, it is essential to state that idea in such a way that its
meaning is clear and unambiguous. Our task in the remaining sections of this
chapter is to address this problem.

An overview of the unit

Foundations

¢ The Principle of Relativity

Time

¢ Coordinate Time

¢ The Spacetime Interval
e Proper Time

Comparing Frames

¢ Coordinate Transformations
¢ Lorentz Contraction

¢ The Cosmic Speed Limit

Relativistic Dynamics

e Four-Momentum

¢ Conservation of Four-
Momentum

-

Figure R1.1
An outline illustrating the four
subsections of unit R

The principle of relativity is a
postulate

Our informal statement of the
principle needs clarification



Our task is to specify what we
really mean by “laboratory”

Definition of even!

We can describe motion in
terms of events

" i

Figure R1.2

We can sketch out a graph of an
object’s motion (position vs. time)
by plotting the “blink events” that
occur along the object’s path.

Chapter R1  The Principle of Relativity

Ez Events, Coordinates, and Reference Frames

The principle of relativity, as we have stated it so far, asserts that (he laws of
physics are the same in a laboratory moving at a constant v elocity as they a“-
in a laboratory at rest. A laboratory in this context is presumably a'pl ace whe N
one performs experiments that test the laws of physics. How can we
carefully state what we mean by this term?

The most fundamental physical laws describe how particles interact with
one another and how they move in response to such interactions, S, perha
what a physicist seeking to specify and test the laws of physics needs mnsaf:
a means of mathematically describing the motion of a particle in space

As we develop the theory of relativity, we need to be very careful aboyy
describing exactly how we will measure the motion of particles (hidden
assumptions about the measurement process have plagued thinkers both
before and after Einstein). In what follows, | will describe how WE can mea-
sure the motion of a particle in terms of simple and well-defined concepts
that are based on a minimum of supporting assumptions.

The first of these concepts is described by the technical term eveny An
cvent is any physical occurrence that we can consider to happen at a def;.
nite place in space and at a definite instant in time. The explosion of a smal)
firecracker at a particular location in space and at a definite instant in time
is a vivid example of an event. The collision of two particles or the decay of
a single particle at a certain place and time also defines an event. Fyen the
simple passage of a particle through a given mathematical point in space can
be treated as an event (simply imagine that the particle sets off a firecracker
at that point as it passes by).

Because an event occurs at a specific point in space and at 3 specific
instant of time, four numbers quantify when and where the event occyre
three numbers that specify the event’s location in some three-dimensiona
spatial coordinate system and one number that specifies what time the event
happened. We call these four numbers the event’s spacetime coordinates

Note that the exact values of an event’s spacetime coordinates depend
on certain arbitrary choices, such as the origin and orientation of the spatial
coordinate axes and what time we define to be f = 0. Once these choices a0
made and consistently used, however, specifying the coordinates of physical
events provides a useful method of mathematically describing motion.

Specifically, we can quantify a particle’s motion by treating it as 4 <«
of events. For example, imagine an airplane moving along the x axis of sor-
coordinate system. The airplane carries a blinking light. Each blink of 1.
light is an event in the sense that we are using the word here: it occure o1 5
definite place in space and at a definite instant of time. We can describe 1)
plane’s motion by plotting a graph of the position coordinate of each "Bl
event” versus the time coordinate of the same, as illustrated in figure |1 2
If we decrease the time between blink events, we get an even more detailed
picture of the plane’s motion. We can in fact describe the plane’s motion to
whatever accuracy we need by listing the spacetime coordinates of a suth;
ciently large number of blink events distributed along its path.

The preceding is a specific illustration of a general idea: the motion o1
any particle can be mathematically described to arbitrary accuracy by speci-
fying the spacetime coordinates of a sufficiently large number of events suit-
ably distributed along its path. Studying the motion of particles is the most
basic way to discover and test the laws of physics. Therefore, the most funda-
mental task of a “laboratory” (as a place in which the laws of physics are to be
tested) is to provide a means of measuring the spacetime coordinates of events.

re
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Figure R1.3

A reference frame visualized as a cubical

lattice with a clock at every lattice intersection

This figure (and indeed the whole approach
in this section) is adapted from E. F. Taylor

@ Q and J. A Wheeler, Spacetime Physics, San

Francisco: Freeman, 1966, pp. 17-18

Now, we have already discussed in chapter C3 how we can quantify the
spatial coordinates of an object (and thus presumably an event) using a cubi-
cal lattice of measuring sticks (or something equivalent). In our past discus-
sions of reference frames, however, we did not really face the issue of how
one might measure the time of an event: we simply assumed this could be
done in some simple and obvious way. To proceed with our discussion of
relativity, we now need to face this issue squarely. In what follows, we will
extend the cubical lattice model of a reference frame to include a mecha-
nism for measuring time in such a way that we can clearly distinguish the
approaches to time implicit in Newtonian mechanics and special relativity.

The trick is to imagine that we attach a clock to every lattice intersection  The operational definition of
(see figure R1.3). We can then define the time coordinate of an event (suchas  spacetime coordinates
a firecracker explosion) to be the time displayed on the lattice clock nearest
the event (relative to some specified time f = 0) and the event’s three spatial
coordinates to be the lattice coordinates of that nearest clock, specified in the
usual way by stating the distances along the lattice directions that one has
to travel (from some specified spatial origin) to the clock. We can determine
these four numbers to whatever precision we want by suff iciently decreasing
the lattice spacing and the time between clock ticks.

Why must we have a clock at every lattice intersection? The point is to
ensure that there is a clock essentially at the location of any event we wish to
measure. If we attempt to read the the event’s time by using a clock located
a substantial distance away, we need to make assumptions about how long
it took the information that the event has occurred to reach that clock. For
example, if we read the time when the sound from an event reaches the distant
clock, then we should correct that value by subtracting the time it takes sound
to travel from the event to the clock. However, to do this, we have to know the
speed of sound in our lattice. We can avoid this problem if we require that an
event’s time coordinate be measured by a clock present at that event.

Note the clocks must all be synchronized in some meaningful and self-
consistent manner if we are to get meaningful results. If these clocks are not
synchronized, adjacent clocks might differ wildly, thus giving one a totally
incoherent picture of when a particle moving through the lattice passes
various lattice points. What exactly we mean when we say that our “lattice
clocks are synchronized” is precisely where Newton's and Einstein’s models
diverge. We will discuss this issue later: for now, it is sufficient to recognize
that we must synchronize the clocks somehow.



Technical terms involving
reference frames

We can in principle attach a
frame to any object

Chapter R1  The Principle of Relativity

Once we have specitied a sync hronization method, the image of 4 lock
lattice completely defines a procedure that we can use (in principle) 1o dekes.
mine an event's spacetime coordinates. This amounts 10 an operationa)
definition of spacetime coordinates: An operational definition of a physica)
quantity defines that quantity by describing how we measure it. Operational
definitions provide a useful way of anch(}f_'"ﬂ slippery human words 1,
physical reality by linking the words to specific, repeatable procedures rather
than to vague comparisons or analogies.

The procedure just described represents an admittedly idealized method
for determining an event’s spacehime coordinates. The actual methods
employed by physicists may well differ from this description, but these
methods should be equivalent to what is described above: the clock lattice
method defines a standard against which actual methods can be compared.
It is such a simple and direct method that it is inconceivable that any actual
technique could yield different results and still be considered correct and
meaningful.

With this in mind, we define the following technical words to aid us in
future discussions:

A reference frame is defined to be a rigid cubical lattice of appropri-
ately synchronized clocks or its functional equivalent.

An event's spacetime coordinates in a given reference frame are an
ordered set of four numbers, the first specifying the time of the event
as registered by the nearest clock in the lattice, followed by three that
specify the spatial coordinates of that clock in the lattice.

(For example, in a frame oriented in the usual way on the earth’s surface, a
firecracker explosion whose spacetime coordinates are [3s, =3 m, 6 m, ~1 m|
thus happened 3 meters west, 6 meters north, and 1 meters below the frame’s
spatial origin, and 3 seconds after whatever event defines t = (.)

An observer is defined to be a (possibly hypothetical) person who
interprets measurements made in a reference frame (for example, a
person who interprets the spacetime coordinates collected by a cen-
tral computer receiving information from all the lattice clocks).

Note that the act of “observing” in the last definition is an act of interpretarion
of measurements generated by the frame apparatus, and that act may have
little or nothing to do with what that observer sees with his or her own eyes

When we say that “an observer in such-and-such reference frame observes
such-and-such,” we are actually referring to conclusions that the observer
draws from measurements performed using the reference frame lattice
Figure R1.4 illustrates a computer’s “observation” of particle tracks from 4
collision between two protons in the Large Hadron Collider. The computer
has reconstructed the particle tracks by collecting data from the functional
equivalent of a clock-lattice in the particle detector.

&13 Inertial Reference Frames

While exploring relativity theory, we will often speak of a reference frame in
connection with some object. For example, one might refer to “the reference
frame of the surface of the earth” or “the reference frame of the cabin of the
plane” or “the reference frame of the particle.” In these cases, we are being
asked to imagine a clock lattice (or equivalent) fixed to the object in question.
Sometimes the actual frame is referred to only obliquely, as in the phrase
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Figure R1.4

f a collision between two protons in the Large

structs the particle tracks

1g data about particle detection

vents in the detector. This represents an act of "observa

tion ” (Credit CERN/Science Source)
“an observer in the plane cabin finds " Since observer in this text refers to

someone using a reference frame to determine event coordinates, the phrase
presumes the existence of a reference frame attached to the plane’s cabin.
A reference frame may be moving or at rest, accelerating, or even rotat
ing about some axis. The beauty of the definition of spacetime coordinates
given earlier is that we can measure the coordinates of events (and thus mea-
sure the motion of objects) in a reference frame no matter how it is moving
(provided only that the clocks in the frame can be synchronized in some
meaningful manner).
However, not all reference frames are equally useful for doing physics Distinguishing inertial from
We saw in chapter N8 that we can divide reference frames into two general noninertial frames
classes: inertial frames and noninertial frames. An inertial frame is one in
which an isolated object is always and everywhere observed to move at a
constant velocity (as required by Newton'’s first law); in a noninertial frame,
such an object moves with a nonconstant velocity in at least some situations
We can operationally distinguish inertial from noninertial frames using
a first-law detector. Figure R1.5 shows a simple first-law detector. Electri-
cally actuated “fingers” hold an electrically uncharged and nonmagnetic ball
at rest in the center of an evacuated spherical container. When the ball is
released, it should remain at rest according to Newton’s first law. If it does
not, the frame to which the detector container is attached is noninertial.

Container (Fingers retracted)
Figure R1.5
(a) A cross-sectional view of a
floating-ball first-law detector
Electrically actuated "fingers'
hold the ball initially at rest in
Electrically
actuated
“finger”

the spherical container. (b) After
the fingers are retracted, the ball
should continue to float at rest

In the container, as long as the

Touch-sensative frame to which the conta ner is

(a) surface

attached is inertial
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Inertial frames move with
constant velocities relative to
each other

Home frame Other frame
v v

© object
/%
Figure R1.6
An isolated object at rest in the

Other Frame must move at a
constant velocity with respect to
the Home Frame, so the whole
Other Frame must move at the
same constant velocity relative to
the Home Frame.
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(1f we want to operate this detector in a gravitational field, we need 1o figure
out a way to cancel the gravitational force on the ball without inhibiting ity
freedom to move, but principle, this can be done.) If we attach such a firsy.
law detector to the clock at each lattice location in our reference frame and
none of these detectors registers a violation of Newton’s first law, then we can
say with confidence that our frame is inertial.

This definition of an inertial frame is simple enough to apply to realistic
examples. For example, while a gravity-compensated detector, as shown in
figure R1.5, would register no violation of the first law if it were attached 1o
a plane at rest, we know without actually trying it that if the plane began to
accelerate for takeoff, the detector’s floating ball would be deflected toward
the rear of the plane by the same (fictitious) force that presses us back into
our chairs. Similarly, we might expect that detectors in a reference frame
floating in deep space (far from any massive objects) would register no viola-
tion of Newton'’s first law; vet we know that detector balls in a similar frame
that is rotating around its center will be deflected outward by the (fictitious)
centrifugal force in that noninertial frame.

The following statement is an important and useful consequence of the
definition of an inertial reference frame:

Any inertial reference frame will be observed to move at a constant
velocity relative to any other inertial reference frame. Conversely, a
rigid, nonrotating reference frame that moves at a constant veloc-
ity with respect to any other inertial reference frame must itself be
inertial.

We first discussed this issue in chapter N8, but the methods we used there
unfortunately employ certain assumptions about the nature of time that tum
out to be inconsistent with the principle of relativity (as we will see). We can,
however, prove that the statement above follows directly from the definition
of an inertial reference frame without having to make any assumptions about
the nature of time. Here is an argument for the first part of the statement
above; | have left proof of the converse statement an exercise.

Consider two inertial reference frames (see figure R1.6), which we
will call the Home Frame and Other Frame, respectively. (Home Frame and
Other Frame are phrases | will use in this text as names of inertial reference
frames, which I will emphasize by the capitalization.) Since these are mertio!
reference frames, observers will measure an isolated object to move with 4
constant velocity in either frame by definition. Now suppose that a specitic
isolated object happens to be at rest relative to the Other Frame. Becouse
such an object must move at a constant velocity in the Other Frame if the
frame is inertial, if that object is initially at rest, it must remain at rest in that
frame. Now let us observe the same object from the Home Frame. Since the
object is isolated and the Home Frame is inertial, the object must move at a
constant velocity relative to that frame as well. Because that object is at rest
with respect to the Other Frame, we must therefore observe the entire Other
Frame to move relative to the Home Frame with a constant velocity (the
same constant velocity as the object), consistent with the statement above

Exercise R1X.1

Using a similar approach, prove the converse part of the statement above
(that is, a rigid reference frame that moves at a constant velocity with respect
to any other inertial reference frame must itself be inertial).
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'81,4 The Final Principle of Relativity

Our fisstinformal statement of the principle of relativity stated that “the laws
of physics are the same in a laboratory moving at a constant velocity as they
are in a laboratory at rest.” We have subsequently developed the idea of a
reference frame to express the essence of what we mean by a “laboratory.”
However, how can we physically distinguish a reference frame “moving ata
constant velocity” from one “at rest”?

The short answer is that we cannot! The principle of relativity specifi-
cally states that a reference frame moving at a constant velocity is physically
equivalent to a frame at rest. Therefore, there can be no ph\:sical basis for
distinguishing a laboratory at rest from another frame moving at a constant
velocity. Imagine you and I are in spaceships coasting at a constant velocity
in deep space. You will consider yourself to be at rest, while | am moving by
you at a constant velocity. I, on the other hand, will consider myself to be
at rest, while you are moving by me at a constant velocity. According to the
principle of relativity, there is no physical experiment that can resolve our
argument about who is “really” at rest. We could, of course, agree to choose
one or the other of us to be at rest, but this choice is completely arbitrary.
Therefore, if the principle of relativity is true, there is no basis for assign-
ing an absolute velocity to any reference frame: only the relative velocity
between two frames is a physically meaningful concept.

On the other hand, it is plausible that what we really mean by a reference
frame “at rest” is an inertial frame. Moreover, we have just seen that a refer-
ence frame moving at a constant velocity relative to it must also be an inertial
frame. Therefore, we can remove both the vague word “laboratory” and the
ambiguity of the concepts “at rest” and “moving at a constant velocity” in
our original statement of the principle of relativity by restating it as follows.

The Principle of Relativity
The laws of physics are the same in all inertial reference frames.

This is our final polished statement of the principle of relativity. It replaces
the fuzzy and ambiguous ideas in our original statement with the sharply
and operationally defined idea of an inertial reference frame. What this prin-
ciple essentially claims is that if Newton’s first law (which describes what
happens to an isolated object) is the same in two given reference frames,
then all the laws of physics are the same in both frames. (Note that the unit’s
“great idea” on the front cover is a compressed version of this statement.)

§»1 .5  Newtonian Relativity

But what exactly do we mean when we say that “the laws of physics are the
same” in two frames? In this section, we will discuss the Newtonian assump-
tion about how we can synchronize clocks in an inertial reference frame. We
then use this as a framework to explore what the principle of relativity means
in Newtonian mechanics.

Suppose we have an inertial frame floating in deep space, ready to use.
We would like to use this frame to measure the coordinates of events happen-
ing in it so as to test the laws of physics. But an important problem remains to
be solved: how do we synchronize its clocks?

“The solution is casy,” says a Newtonian physicist. “Everyone knows, as
Newton himself asserted, that ‘time is absolute and flows equably without
regard to anything external.” Any good clock will therefore measure the flow

n

Rest has no physical meaning
in relativity

Our final statement of the
principle of relativity

The Newtonian to clock
svnchronization
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Figure R1.7

A schematic drawing of two
reference frames in standard
onentation. The spatial origins of
the frames concided at t = t' =0
just a little while ago. (You

should imagine the frame lattices
intermeshing so that events can
be recorded in both frames.)

Standard orientation for
inertial reference frames

Consequences of the
Newtonian view of time
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O

Spatial origin
ot Home Frame

Spatial origin
of Other Frame

of this absolute time. So we can simply designate
clock, carry it around to each of the lattice cloc
to the master. Since both the master and lattice clocks measure the
immutable absolute time, the master clock’s motion as wecarry it from p|
to place in the lattice is irrelevant. Once a lattice clock is set to :lgn:c witﬂ a;c
master clock, it will certainly remain in agreement with it, since both | tkt_.
measure the flow of absolute time. Indeed, if the master clocks in two dl(f:: » :
ent reference frames are in agreement at any given event, then all the ¢| t}:
in the two frames will always agree. It doesn’t matter whether the t'rame:c \
in motion with respect to each other; it doesn’t even matter if they are im:r;l'nl
or not. This follows from the self-evident absolute nature of time.” -
This picture of time is straightforward, credible
ideas about time that most of us already hold. But wh
Again consider two inertial frames that we call the Home Frame and the
Other Frame. We will often (but not always!) imagine ourselves to be in the

Home Frame (so that this frame appears to us to be

A - atrest). The Other Frame
moves at a constant velocity 3 with respect to the Home Frame according to

the proof given in section R1.4 (3 is the “boost” in velocity that one needs to
80 from being at rest in the Home Frame to being at rest in the Other Frame)

These frames might in principle have any relative orientation, but it is
c.onventional in special relativity to use our freedom to choose the orienta-
tions to put the two frames in standard orientation, where the Home
X, ¥, and z axes point in the same directions as the cor
the Other Frame. We conventionally distinguish the Ho
Frame axes by referring to the Home Frame axes as X, ¥, and z and the Other
Frame axes as x’, v, and 2’ (the mark is called a prime). It also is conventional
to define the origin event (the event that defines f = 0 in both frames) to be the
instant at which the spatial origin of one frame passes the origin of the other
We conventionally choose the common x axis so that the frames move rela.
tive to each other along this axis. Finally, we always choose 3 to be the veloc.
ity of the Other Frame relative to the Home Frame (the velocity of the Home
Frame relative to the Other frame is thus —3). Signs in many equations in this
text depend on this convention, so it is wise to memorize this. Figure R17
illustrates two frames in standard orientation.

Now consider an object moving in space that periodically emits blinks of
light. Let the spatial position of a certain blink event as measured in the Home
Frame be represented by the vector 7 (f) and the same measured in the Other
Frame by 7'(t) (we conventionally write symbols for quantities observed in
the Other Frame with an attached prime). According to our assu mption that
time is universal and absolute, observers in both frames should agree at what
time this blink event occurs: ¢ = 1. The position of the spatial origin O of the
Other Frame in the Home Frame at that time is simply 3!, since the Other
Frame moves at a constant velocity 3 with respect to the Home Frame, and

one clock to be 3 Master
ks, and synchronize that clock

flow of

. and consistent with
atare its consequences?

Frame's
responding axes in
me Frame and Other
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we conventionally take both frames’ origins to coincide at t = 0. The relation-
ship between the object’s position vectors in the two frames at the time of the
blink is (as shown in figure R1.8) given by 7(t) = 7'(t") + 3, or

Py =7(t) -3t (R1.1)

For frames in standard orientation, 3 points along the x axis, meaning that
we can write equation R1.1 in component form as follows:

t'=t (reminding us that time is absolute) (R1.2a)
X'=x-pt (R1.2b)
y'=y (R1.20)
2'=2z (R1.24)

where we define 3 without the arrow to be the x component of 3. 1t is there-
fore positive if the Other Frame moves in the +x direction relative to the
Home Frame and negative if it moves in the -x direction.

Physicists call these four equations the Galilean transformation
equations. These equations allow us to find the position of the object at a
given time ¢’ in the Other Frame if we know its position at time ¢ = #"in the
Home Frame (assuming, of course, that time is universal and absolute).

Taking the time derivative of both sides of the last three equations yields

vi=v, =0 (R1.3a)
V.=70, (R1.3b)
vi=0. (R1.3¢)

(Note that since ¢ = {, it really doesn’t matter that we are taking a derivative
with respect to ¢’ on the left side and a derivative with respect to f on the
right.) These equations tell us how to find an object’s velocity in the Other
Frame, given that object’s velocity in the Home Frame: We call these equa-
tions the Galilean velocity transformation equations.

If we take the time derivative again, we get

a,=a, (R1.4a)
a,=a, (R1.4b)
a.=a. (R1.4¢)

Equations R1.4 tell us that observers in both inertial frames agree about an object’s
acceleration at a given time, even though they may well disagree about the
object’s position and velocity components at that time!
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Figure R1.8

The relationship between 7 and 7’
for two inertial reference frames
(assuming that time 15 universal
and absolute)

The Galilean transformation
equations

The meaning of 3 without the
arrow

The Galilean velocity
transformation equations

An object’s acceleration is the
same in all inertial reference
frames
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A child throws a ball vertically
upward and downward in the
cabin of a plane flying at a large
(a) | constant horizontal velocity

From your vantage point on a nearby mountaintop, the ball
seems to follow a shallow parabolic trajectory because
of its large initial horizontal velocity (the same as the plane’s)

Figure R1.9
An example illustrating the application of the principle of relativity in Newtonian physics. Newton’s second law describes
the motion of the ball in both frames.

An illustration of how the laws Now we are in a position to discuss more fully what we might mean by
of physics can be the same in “the laws of physics are the same” in every inertial reference frame in the
different frames Newtonian context at least. Consider the following example. A child on an

airplane throws a ball vertically into the air and catches it again. As mea-
sured in the plane cabin (which we will take to be the Other Frame), the
ball appears to travel vertically along the vertical z axis. Now imagine that
you watch this process from a nearby mountaintop as the plane passes by
Instead of observing the ball travel vertically up and down, you will instead
observe the ball to follow a shallow parabolic trajectory, because in vour
frame (which we will take to be the Home Frame), the ball, plane, and child
all have a considerable horizontal velocity (see figure R1.9).

The ball’s motion in these two reference frames looks quite different it 15
vertical in the plane’s cabin but parabolic (almost horizontal!) in your trane
Even so, you and an observer on the plane would agree that (1) the ball has o
certain mass m (which you and the observer could each measure with vour
own balances) and thus should experience a gravitational force of magnitude
m|§| acting on it, (2) this force must be the net force on the object while it 15 in
flight (since nothing else is in contact with the ball, ignoring air friction), and
(3) the ball has the same acceleration in your respective reference frames (see
equations R1.4). Since you agree on the value of m, the magnitude and direc-
tion of the net force on the ball, and the acceleration that the ball experiences,
vou will both agree that Newton's second law
f’,.,. =mi (withF_ = mg here) (R1.5)
accurately predicts the ball’s motion, even if you disagree about the ball’s
initial velocity and thus the exact character of its subsequent motion (that is,
whether it is vertical or parabolic).
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g o o g s gt

intop and your friend on the plane will
totally disagree about the initial and final velocities of the balls in any given
collision (since you will observe them to have a large horizontal conﬁxmvnl
of velocity that vour friend does not observe). Even so, vou both will find
that the total momentum of the balls just before a given collision is equal to
th‘enr total momentum just afterward, consistent with the law of conservation
of momentum (see problems R1IM.7 and R1D.2).

: This i..s what it means to say that the “laws of phvsics are the same” in
different inertial frames. Observers in different inertial frames mav disagree
about the values of various quantities (particularly positions and velocities),
but cf'lch observer will agree that if one takes the mathematical equation
describing a physical law (such as Newton’s second law) and substitutes in
the values measured in that observer’s frame, one will always find that the
equation is satisfied. In other words, the same basic equatim{s will be found
to describe the laws of physics in all inertial reference frames.

i§1.6 The Problem of Electromagnetic Waves

In 1864, James Clerk Maxwell published a set of equations (now called Maxwell’s
equations) that summarized the laws of electromagnetism in a compact and
elegant form. These equations (which are the focus of the latter part of unit E)
were the culmination of decades of intensive work by many physicists, and
represent one of the greatest achievements of 19th-century physics.

Among the many fascinating consequences of these equations was the
prediction that one could set up fraveling waves in an electromagnetic field,
much as one can create ripples on the surface of a lake. The speed at which
such electromagnetic waves travel is completely determined by various uni-
versal constants appearing in Maxwell’s equations, constants whose values
were fixed by experiments involving electrical and magnetic phenomena
and were fairly well known in 1864. The predicted speed of such electromag-
netic waves turns out to be about 3.00 x 10° m/s. Light was already known
to have wavelike properties (as demonstrated by experiments performed
by Thomas Young and Augustin-Jean Fresnel) and to travel at roughly this
speed (as measured by Ole Romer in 1675 and Jean-Bernard Leon Foucault
in 1846). On the basis of this information, Maxwell concluded that light con-
sisted of such electromagnetic waves. Later experiments confirmed Max-
well’s bold assertion by showing that the value of the speed of light was
indeed indistinguishable from the value predicted on the basis of the con-
stants in Maxwell’s equations. The work of Heinrich Hertz, who was able to
directly generate low-frequency electromagnetic waves (that is, radio waves)
and demonstrate that they had the properties predicted by Maxwell’s equa-
tions, was particularly compelling.

In short, Maxwell’s equations predicted that light waves must travel at
a specific speed ¢ = 3.00 x 10" m/s. The question is, relative to what? The
consensus in the physics community at the time (one that Maxwell shared)
was that electromagnetic waves were oscillations of a hypothetical medium
called the ether, just as sound waves are oscillations in air, and water waves
are oscillations in the surface of a body of water. Physicists therefore gener-
ally assumed that light waves would travel at the predicted speed ¢ relative
to this ether, and thus have this speed in a frame in which the ether is at rest.

In all other inertial reference frames, however, light waves must travel at
a speed different from c. To see this, imaginc a spaceship flying away from a
space station at a velocity 3. A blinker on the space station emits a pulse of

Review of Newtonian
approach to relativity

The ether hypothesis
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Figure R1.10
A light flash chasing a departing
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light waves toward the departing spaceship (see figure R1.10). Suppose the
space station is at rest with respect to the ether and treat this as the Home
Frame. Observers on the space station will then measure the u.mlltcd pulse of
light to move away from the blinker at a speed of ¢. How rapidly 'wuuld this
flash of light be observed to travel in a frame fixed to the hdeL‘Shlp?

By construction, both the flash and the spaceship move in 'ih(' +x direc-
tion. The x component of the Galilean velocity transformation equation
(equation R1.3a) in this case implies that

t';..;m g . vh‘hl- e ‘-’ ped Toog /’ (R].(’,

So the speed of the light flash, as measured in the frame of the spaceship (that
is, the Other Frame), is ¢ — /3. This makes sense: if the spaceship happened to
travel at the speed of light (so that 3 = ¢), the flash should intuitively appear
to be motionless in the frame of the spaceship and thus never catch up with
it, in agreement with equation R1.2. In any frame moving with respect to the
ether, then, light waves should be measured to have a speed # c.

But this means that Maxwell’s equations strictly apply only in a certain
inertial reference frame (the frame at rest with respect to the ether), since they
do specify that light waves move with a specific speed ¢. Presumably some
small modifications would have to be made to these equations to make them
work in frames that are not at rest with respect to the ether.

Physicists fail to detect the Now, even its proponents admitted that this ether was peculiar stuff. It
ether had to fill all space and permeate all objects, and yet be virtually undetect-
able. It had to have virtually zero density and viscosity, because it did not
significantly impede anything’s motion. But it also had to be extraordinarily
“stiff” with regard to oscillations because the speed of waves in a medium
increases with that medium’s stiffness, and ¢ is very large (for comparison,
mechanical waves traveling through solid rock have speeds of only 6000 m/+)

In 1887, U.S. physicists Albert Michelson and Edward Morley performed
a sensitive experiment designed to prove the existence of this problematic
stuff. If this ether filled all space, the earth must (as a result of its orbital
motion around the sun) be moving through the ether at a speed comparable
to its orbital speed of about 30 km/s. This “ether wind” would make the
speed of light depend on direction: a light wave traveling against the cther
wind would move more slowly than a wave moving across it. So Michelson
and Morley constructed a very sensitive experiment that compared the speed
of two beams of light sent in perpendicular directions in a very clever way.

To the surprise of everyone involved, there was no discernible difference
in the speeds of the two light waves. Michelson and Morely repeated the
experiment with different orientations of the apparatus, at different times of
the year (just in case the earth happened to be at rest with respect to the ether
at the time of the first experiment), as did other physicists. In all cases, the
result was that the speed of light seemed independent of the earth’s motion.
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In a modem version of the Michelson-Morley experiment performed in
1978, A. Brillet and J. L. Hall (see Physical Review Letters, vol. 42, p- 549, 1979)
set up a laser that fed light into a Fabry-Perot cavity, which is essentially a
region of space bounded by two mirrors. The laser’s frequency was continu-
ally adjusted so that a specific integer number of waves fit between the mir-
rors. Any variation in the speed of light would cause the number of waves
of a given frequency that fit between the mirrors to increase or decrease,
requiring the electronics to adjust the laser’s frequency to keep the number
of waves fixed. The laser and cavity were mounted on a granite turntable
s0 its orientation relative to any ether wind could be varied. While the table
was rotated, Brillet and Hall observed that the fractional change in the laser
frequency was (1.5 £ 2.5) x 10"". If an ether wind comparable in speed to the
earth’s orbital speed | 7| existed, it should cause a variation in the fractional
frequency on the order of magnitude of |#]°/c, or about 10, more than
10 million times any possible variation consistent with experiment!

The Michelson-Morley result (and other corroborating results) caused a
ruckus in the physics community, as physicists strove to explain away these
results while saving the basic ether concept. Many explanations were offered
but none provided a satisfactory explanation of all known experimental data.

In 1905, Albert Einstein published a short paper in the European jour-
nal Annalen der Physik that changed the direction of physics. In that paper,
Einstein proposed that since it seemed to be impossible to demonstrate the
existence of the ether, the whole concept should be rejected: we should sim-
ply accept that light can move in a vacuum. But the vacuum of empty space
provides no anchor for defining a special frame where the speed of light is c.
(What would such a frame be attached to?) So if we accept that the speed of
lightin a vacuum is ¢, then we must accept that this speed is ¢ in every inertial
reference frame, in direct contradiction to equation R1.6! The assumption that
the speed of light is a frame-independent quantity is necessary, Einstein argued, to
make Maxwell’s equations consistent with the principle of relativity, as they
are laws of physics that predict a specific value for the speed of light.

But how can one measure a pulse of light to move at the same speed ¢ in
two different frames when those frames are not at rest with respect to each
other? Einstein’s bold idea, while neatly sidestepping the difficulties with the
ether concept, seemed impossible to most of his contemporaries.

However, we only have three choices: either the principle of relativity is
wrong, Maxwell’s equations are wrong, or the Galilean velocity transforma-
tion equations are wrong. By accepting the ether concept, physicists before
Einstein had opted to accept the idea that Maxwell’s equations would have
to be modified in frames moving with respect to the ether, thus keeping the
Galilean velocity transformation but implicitly rejecting the full principle of
relativity. Even as evidence against the ether hypothesis became firm and
incontrovertible, rejection of the Galilean velocity transformation, so solidly
based on simple and obvious ideas, seemed absurd.

On the other hand, Einstein’s suggestion was elegant in its simplicity.
Throw away the ether, he said. It is an unhelpful hypothesis with no experi-
mental support. Throw away the awkward and bizarre theories that arose to
explain our inability to detect the ether. Embrace instead the beautiful sim-
plicity of the principle of relativity and Maxwell’s equations. The speed of
light is then the same in all inertial frames automatically, and the null results
of experiments like the Michelson-Morely experiment are trivially explained.

The cost? The Galilean transformation equations must be wrong. But what
could possibly be wrong with their derivation? It is the idea of universal and
absolute time that is wrong, argued Einstein. In the next chapter, we will look
at what the principle of relativity implies about the nature of time.
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' TWO-MINUTE PROBLEMS
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RIT.1  Which of the following are (at least nearly) inertial
reference frames and which are not? (Respond T if the
frame is inertial, F if it is noninertial, and C if it is inertial
for everyday purposes. The classification could be debatable,
creating an opportunity to discuss the issues involved.)

(a) A nonrotating frame floating in deep space

(b) A frame floating in deep space that rotates at 1 rev/h
(c) A nonrotating frame attached to the sun

(d) A frame attached to the surface of the carth

(e) Aframe attached to a car moving at a constant velocity
() A frame attached to a roller-coaster car

RIT.2  Which of the following physical occurrences fit the
physical definition of an event?

The collision of two point particles

A point particle passing a given point in space

A firecracker explosion

A party at your dorm

A hurricane

A,B,and C

Any of the above could be an event, depending on the
reference frame’s scale and/or how precise the mea-
surments need to be.

HmmoN®»

RIT3  Since the laws of physics are the same in every iner-
tial reference frame, there is no meaningful physical dis-
tinction between an inertial frame at rest and one moving
at a constant velocity. True (T) or false (F)?

RIT4 Since the laws of physics are the same in every ref-
erence frame, an object must have the same kinetic energy
in all inertial reference frames. T or F?

RIT.5 Since the laws of physics are the same in every iner-
tial reference frame, an interaction between objects must
be observed to conserve energy in every inertial reference
frame. T or F?

R1T.6  Since the laws of physics are the same in every iner-
tial reference frame, if you perform identical experiments
in two different inertial frames, you should get exactly the
same results. T or F?

R1T.7 Imagine two boats. One travels 5.0 m/s eastward
relative to the earth and the other 3.4 m/s eastward rela-
tive to the earth. We set up a reference frame on each boat
with the x axis pointing eastward, and choose the first boat
(arbitrarily) to be the Home Frame. The second boat is thus
the Other Frame. What is the sign of 3, according to the
convention established in this chapter?

A. Positive

B. Negative

C. We are free to choose either sign.

RI1TS

You are in a spaceship traveling away from earth,
You and Mission Control on carth agree that the +x direc-
tion is the direction in which your ship is traveling relative
to the earth. If you choose your own frame to be the Home
Frame (so that the earth is the Other Frame), what is the
sign of 3, according to the convention established in this
chapter?

A. Positive

B. Negative

C. We are free to choose 3 to have either sign.

R1T.9 Suppose you observe a collision of an isolated

system of two particles. A friend observes the same coll;-
sion in a reference frame moving in the +x direction with
respect to yours. According to the Galilean transformation
equations, on which aspects of the collision will you agree
with your friend? (Answer T or F)

(a) On the value of the system’s total x-momentum

(b) On the value of the system's total y-momentum

(c) On the value of the system’s total z-momentum

(d) On the force F that one particle exerts on the other

(e) That the system’s total momentum is conserved

RIT.10 Suppose you are in a train traveling at one-half of

the speed of light relative to the earth. Assuming that pho-
tons emitted by the train’s headlight travel at the speed of
light relative to you, they would (according to the Galilean
velocity transformation) travel at 1.5 times the speed of
light relative to the earth. T or F?

RIT11 Suppose you are in a spaceship traveling at twice

the speed of light relative to the earth. Assuming that the
Galilean transformation equations are true and the earth
is approximately at rest relative to the ether, light from the
ship’s taillight will never reach the ship’s bridge at its front
end. Tor F?

RIT.12 Suppose the Galilean transformation equations are

true and your spaceship is moving at twice the speed of

light relative to the ether. What odd things will you observe

in your spaceship? Select all that apply. (If vou are using

the back of the book to communicate your answers, vou can

point to multiple letters with several fingers.)

A. You won't be able to see anything behind you

B. You won’t be able to see anything in front of you

C. The beam from a laser pointer facing forward and a bit
to your right will get curved toward the ship's stern

D. Light from stars in front of vou will become infinitely
blue-shifted.

E. Stars a bit to the right or left of the forward direction

will have their apparent positions shifted dramatically

toward the ship’s stern.

You will see none of these effects.

T. You will see all of these effects,

be s
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" HOMEWORK PROBLEMS

Basic Skills

R1B.1 A train moving with a speed of 55 m/s passes
through a railway station at time ¢ = ¢’ = 0, Fifteen sec-
onds later a firecracker explodes on the track 1.0 km away
from the train station in the direction the train is moving;.
Find the coordinates of this event in both the station frame
(consider this to be the Home Frame) and the train frame.
Assume the train’s direction of motion relative to the sta-
tion defines the +x direction in both frames, and assume
the Galilean transformation equations are true.

R1B.2  Suppose we select the rear end of a 120-m-long train
to define the origin x” = 0 in the train frame, and we define
a certain track signal light to define the origin x = 0 in the
track frame. Suppose the train’s rear end passes this light
att = t'= 0 as the train moves in the +x direction at a con-
stant speed of 25 m/s. Twelve seconds later, the engineer
turns on the train’s headlight. Assume the galilean trans-
formation equations are true.

(a) Where does this event occur in the train frame?
(b) Where does this event occur in the track frame?
(Please explain your response in both cases.)

R1B.3  Suppose that boat A is moving relative to the water
with a velocity of 6 m/s due east and boat B is moving with
a velocity of 12 m/s due west. Assume that observers on
both boats use reference frames in which the x direction
points east. According to the Galilean velocity transfor-
mation equations, what is the velocity of boat A relative
to boat B? (Hint: Draw a picture! Be sure to define which
object corresponds to which frame.)

R1B4  Suppose that spaceship A is moving relative to the
earth at a speed of 0.5¢ (where ¢ is the speed of light) in a
direction we define to be the +x direction. Ship B is mov-
ing at a speed of 0.9¢ in the same direction. What is the
velocity of ship A relative to ship B, according to the Gali-
lean velocity transformation equations? (Hint: Draw a pic-
ture! Be sure to define which object corresponds to which
frame.)

R1B.5 Suppose that in an effort to attract more passen-
gers, Amtrak trains now offer free bowling in a specially
constructed “bowling alley” car. Imagine that such a train
is traveling at a constant speed of 35 m/s relative to the
ground. A bowling ball is hurled by a passenger on the
train in the same direction as the train is traveling. Assume
the Galilean transformation equations are true.

(a) The ball is measured in the ground frame to have a
speed of 42 m/s. What is its speed in the frame of the
train according to the Galilean velocity transformation?

(b) Suppose the ball’s velocity is 8 m/s in the train frame.
What is its speed relative to the ground?

(Hints: Draw a picture and be sure to define a +x direction

and specify which frame is the Home Frame.)

R1B.6 Consider a floating-ball first-law detector like the

one shown in figure R1.4. If the ball is 10 cm in diame-
ter and is placed at ¢ = 0 in the center of a spherical shell
whose inside diameter is 12 cm, about how long will it ullw
the ball to hit the shell if the shell accelerates at 0.1 m/s?

Modeling

RIM.1 Read Galileo’s 1632 presentation of the principle of

relativity, as summarized on one of these websites:

en.wikipedia.org/wiki/Galileo's_ship
www.relativity.li/en/epstein2/read /a0_en/a2_en/

{or in E. F. Taylor and J. A. Wheeler, Spacetime Physics, 2nd

ed., San Francisco: Freeman, 1992, pp. 53-55, or elsewhere

online: search for “Galileo” and “Shut yourself up.”) In a

short paragraph, compare and contrast his presentation of

the principle with the presentation in section R1.1.

(a) What for Galileo corresponds to a “laboratory moving
at a constant velocity”?

(b) What for Galileo corresponds to the phrase “the laws
of physics are the same” in such laboratories?

R1M.2 Imagine that Frames R Us, Inc., is constructing an

economy reference frame whose price will be below every
other frame on the market. Placing a clock at every pointin
the frame lattice is too expensive, so the company decides
to place one clock at the origin. At all other positions, the
company simply places a flag that springs up when an
object goes by. The flag has the lattice location printed on
it, so an observer sitting at the origin can assign spacetime
coordinates to every event by noting when he or she sees
the flag spring up (according to the clock at the origin) and
noting the spatial coordinates indicated by the flag. Why
doesn’t this method yield the same spacetime coordinates
as having a clock at every location would? Pinpoint the
assumption that the engineers at Frames R Us are making
that is incorrect. (See problem RIR.2 for a further explora-
tion of the problems with this reference frame.)

RIM.3 Two firecrackers explode simultaneously 125 m

apart along a railroad track, which we can take to define

the x axis of an inertial reference frame (the Home Frame).

A train (the Other Frame) moves at a constant 25 m/s in

the +x direction relative to the track frame. Assume the

Galilean transformation equations are true.

(@) Do the firecrackers explode simultaneously in the train
frame?

(b) How far apart are the explosions as measured in the
train frame? (Hint: If x, = x, = 125 m, what is x: — x!?)

(c) Suppose that instead of the explosions being simulta-
neous, the firecracker farther ahead in the +x direction
explodes 3.0 s before the other in the ground frame.
How far apart would the explosions be in the train
frame if this were true?
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Figure R1.11
A collision between two blobs, as ol

RIM.4 Suppose that construction crews have set up a pair
of blinking lights 60 m apart to mark a construction zone
along a road. A car moves along the road with a speed of
30 m/s toward the lights. Let us take the road to be the
Home Frame and the car to be the Other Frame. In the
Home Frame, the light farther from the car (light 2) blinks
0.66 s before the other (light 1) blinks as the car approaches
(a) What is the time interval 15 = ] between the blink

events in the car’s frame? (Hint: Think about the sign.)
(b) What is the ¥ displacement x/ — x{ between the events
in the car frame?

RIM.5 In a certain particle accelerator experiment, two
subatomic particles A and B are observed to fly away in
opposite directions from a particle decay. Particle A is
observed to travel with a speed of 0.6 ¢ relative to the labo-
ratory, and particle B is observed to travel with a speed of
0.9 ¢, where ¢ is the speed of light (3.0 x 10" m/s). For sim-
plicity’s sake, let’s agree to take the direction of motion of
particle B to define the +x direction in both the laboratory
frame and particle A’s frame. We would like to calculate
the relative velocity of particles A and B.

(a) What object should we choose to be the Home Frame
in this problem, according to the conventions estab-
lished in this chapter? What object defines the Other
Frame? What object is the object whose velocity we
want to determine in both frames? Please explain.

(b) Use the Galilean velocity transformation equations to
calculate the relative velocity of the two particles as a
fraction or multiple of ¢. Please explain your work.

RIM.6 A highway patrol officer on the ground uses a radar
gun to measure a suspect’s car’s speed to be 50 m/s. A
patrol car is traveling at 40 m/s relative to the ground, but
is moving in the opposite direction as it approaches the car.
Let the direction in which the patrol car is traveling define
the +x direction for everyone. We would like to calculate
the relative velocity of the suspect and the patrol car.

(a) Suppose we choose the patrol car to be the Home
Frame. What is the sign of 3 in this case, according
to the conventions established in this chapter? Please
explain your reasoning,

(b) Use the Galilean velocity transformation equations to
calculate the velocity of the suspect’s car relative to the
patrol car. Please explain your work.

The Principle of Relativity
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bserved in two different reference frames

RIM.7 Figure R1.11 above shows an inelastic collision
between two blobs as observed in two different inertia) ref
erence frames. Assume the Galilean transformation equa
tions are true
(a) Which frame is the Home Frame, ac ording to the con-

vention established in this chapter? What is the sign
of 3? Explain your reasorung,

(b) What is v, in terms of | 5,[?

(c) What is v, in terms of | 5,7

(d) What is the system’s total x-momentum in the Home
Frame, both initially and finally, in terms of mrl 6, | ?

(e) What is the system’s total x-momentum in the Other
frame, both initially and finally, in terms of m| 7, | ?

(f) Is momentum conserved in the Home Frame?

(g) Is momentum conserved in the Other Frame?

(h) Assuming that energy i1s conserved in the Home Frame,
show that it is also conserved in the Other Frame
(Ignore gravity. Note that sonte kinetic energy is con
verted to thermal energy U in this collision, but also
that AU must be the same in both frames, because all
observers will agree about how much hotter the final
blob is compared to the initial blobs, and thus on how
much the system’s internal energy has increased )

RIM.8 Some people are playing a game of shuffleboard on
an ocean cruiser moving down the Hudson River at a con
stant speed of 17 m/s in the +x direction relative to the
shore. During one shot, a puck (which has a mass of 750 ¢
and is traveling at 10 m/s in the —x" direction in the boat
frame) hits a puck having the same mass at rest. After the
collision, the first puck comes to rest, and the other puck
travels at 10 m/s in the —x direction in the boat frame
(Assume that the ground frame’s x axis points in the same
direction as the boat frame's x" axis.)

(a) Show that the total x-momentum of the two-puck sy«
tem is conserved in the boat frame. Explain carefully

(b) Imagine that someone sitting on a bridge under which
the boat is passing takes a video of this important
game. What x-velocity will each puck be measured to
have relative to the shore? Explain carefully

(c) Show that in spite of the fact that the pu\'k'.s- x-velocities
have signs and magnitudes that are different from those
measured on the boat, the total momentum of the
two-puck system is still conserved in the shore frame
Explain your work.



Answers to Exercises

RIMS  The engines on a 4000-kg jet plane accelerating for
take-off exert a constant thrust of magnitude | F, | = 20,000 N
on the jet as it accelerates from rest a distance D = 1000 meters
down the runway before taking off Thus take-off is observed
by someone nding in a train with a constant speed of 30m/s
alongside the runway. Assume that the train and et move
in the same direction relative to the ground (which we will
take to be the +x direction), and assume that both the pas-
senger and the plane are at 1 = 0in the ground frame when
the plane starts its run at ¢ = ()

(@) In unit C, we saw that if the net external force F._, on
an object is constant, the change in the object’s kinetic
energy dunng a given interval of ime should be equal
to Fou » Afiy, where A7, is the displacement of the
object’s center of mass during that time. Use this to
show that the jet’s speed relative to the ground at take-
off is 100 m/s. Explain your reasoning

(b) Assuming that the jet’s acceleration is constant, show
that it takes it 20 s to reach this speed. Explain

() What are the plane’s initial and final x-velocities in the
train frame? Explain

(d) Assume that the passenger’s position defines the ori-
gin X" = 01in the train’s frame. What is the jet’s initial
x-position in the train frame?

(e) What is its x-position at take-off in the train frame?
Explain,

(f) Show that the change in the jet's kinetic energy K'in the
train frame is equal to F . « Ay, in that frame. (Thus,
this law of physics, the momentum requirement, is the
same in both frames, even though the numerical values
of K=F, . +Afcyand K = F__ « AF( are not.)

RIM.10 A person in an elevator drops a ball of mass m from
rest from a height i above the elevator floor. The elevator
is moving at a constant speed | 3| downward with respect
to its enclosing building.

(a) How far will the ball fall in the building frame before it
hits the floor? (Hint: >h!)

(b) What is the ball’s initial vertical velocity in the build-
ing frame? (Hint: Not 0!)

(c) Use the law of conservation of energy in the bulding
frame to compute the ball’s final speed (as measured
in that frame) just before it hits the elevator floor.

(d) Use the Galilean velocity transformation equations
and the result of part (¢) to find the ball’s final speed in
the elevator frame,

(e) Assume that conservation of energy applies in the
building’s frame. Use the result of part (d) and the fact
that the ball’s acceleration is |3 | to show that energy is
also conserved in the elevator frame,

R1D.J

RIR.1
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Derivation

A totally symmetric way to orient a pair of reference
frames is so that their +x directions point in the direction
that the other frame is moving. How is this difterent from
the “standard” onentation (draw a picture)? How would the
Galilean position and velocity transformation equations be
different if we were to use this convention?

RID.2  Imagine two inertial reference frames in standard

orientation, where the Other Frame moves in the +x direc-
tion with r-velocity 3 relative to the Home Frame. Suppose
an observer in the Home Frame observes the following col-
lision: an object with mass m, and veloaty @, hits an object
with mass m. traveling with velocity 0. After the collision,
the objects move off with veloaties &, and 7, respectiv ely
Do not assume that all or even any of these velocities are in
the © direction. Assume, though, that total momentum is
measured to be conserved in the Home Frame, that is, that

m,0, + my0, =m0, + m,o,  (assume this!) (R1.7)
Using this equation and the Galilean transformation equa-
tions, show that if the Newtonian view of time 1s correct,
then the total momentum of the two objects will also be

conserved in the Other Frame

mo; + myos=md, + mo,  (prove this!) (R1.8)
even though the velocities measured in the two frames are

very different. Please show vour work in detail

Rich-Context

Design a first-law detector that does no! use a float-
ing ball as the basic active element. Your detector should
primarily test Newton'’s first law and not some other law
of physics (although it is fine if other laws of physics are
involved in addition to the first law). Preferably, your
detector should be reasonably practical and (if at all pos-
sible) usable in a gravitational field. (Note: There are many
possible solutions to this problem. Be creative!)

RIR.2  Consider the economy reference frame described in

problem RIM.2. Prove that an object that actually moves at
a constant velocity close to that of light will be observed in
the economy frame to move faster as it approaches the ori-
gin and slower as it departs. Also describe what happens if
the object moves faster than light.

ANSWERS TO EXERCISES

R1X.1  Imagine that the Home Frame is an inertial frame.
Consider a set of isolated objects arrayed around the Home
Frame that happen to be initially at rest in that frame. Since
their velocity with respect to the inertial Home Frame has
to be constant, these objects will remain at rest relative to
the Home Frame. Now, if the Home Frame moves ata con-
stant velocity relative to the Other Frame (and the latter is

rigid and nonrotating so that all parts of the Other Frame
move with a constant velocity relative to the Home Frame,
and vice versa), then our set of isolated objects must also
move with a constant velocity relative to the Other Frame.
Since these isolated objects are observed to move with a
constant velocity everywhere in the Other Frame, it must
be an inertial frame as well.



Coordinate Time

Chapter Overview

Introduction v _
In this chapter, we take the first steps toward developing a conception of time that

solves the problem raised by Maxwell’s equations. We also start developing crucial

tools for our exploration of relativity: the spacetinie diagram and the geometic analogy.

Section R2.1: Relativistic Clock Synchronization

It Maxwell's equations are true laws of physics, then the speed of light ¢ in a vacuum
must be the same in all inertial reference frames. This in turn implies, as Einstein
noted, that any method for synchronizing an inertial frame’s clocks, if the method
is to be consistent with the principle of relativity, should be equivalent to using light
flashes to synchronize the clocks assumung that the speed of those flashes is ¢,

Section R2.2: SR Units

The speed of light in this approach is a frame-independent universal constant that
connects time and space units. (Indeed, physicists currently define the meter to be the
distance that light moves in exactly 1/ 299,792,458 5.)

In Systéme Relativistique (SR) units, we avoid the conversion factor entirely by
mc.nauriﬁg distances in seconds, where 1 s of distance is the distance that light moves
in 15 of time. The speed of light in this unit system is 1s/1 s = 1; all other speeds are
similarly unitless; and energy, momentum, and mass all have units of kilograms. To
converta quantity from SI to SR units, you multiply it by whatever power of the unit
operator 1 = (3 x 10"m/1s) makes the units of meters go away; to convert from SR to
Sl units, you multiply by whatever power gives you the appropriate power of meters

Section R2.3: Spacetime Diagrams

A spacetime diagram is an important visual aid for displaying the relationship
between events. Such a diagram is simply a graph with a vertical time axis and hori-
zontal spatial axes. Events in spacetime correspond to points on such a diagram. The
connected sequence of events that describe a particle’s motion in spacetime is repre-
sented by a curve on the diagram called a worldline, which displays how the par-
ticle’s position varies with time. If the axes on the diagram have the same scale and
the object moves only along the 1 axis, then the slope Af/Ax of its diagram worldline
at any instant of time is 1/0,, where v, is the particle’s x-velocity at that instant. Note
that the slope of any light-flash worldline will be 1.

Section R2.4: Spacetime Diagrams as Movies

If you view a spacetime diagram through a horizontal slit moving upward at a con-
stant rate, you see a one-dimensional movie that displays the events and moving
particles depicted on the diagram (see figure R2.5).

Section R2.5: The Radar Method

We can determine an event’s spacetime coordinates using a method that is completely
equivalent to that described in section R2.1 but requires only one clock at the frame's

......0.....................O............I..'................'
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origin. Suppose a light flash emitted by the master clock at time ¢, is reflected by an
event E and returns to the master clock at time ¢,. Since light moves at speed 1 in all
inertial frames, event £'s coordinates must be

{ =it + 0) X =ity =1,) (R24)

‘e Purpose: This equation expresses an event E's spacetime coordinates t, and x;

' in terms of the time ¢, that a light flash leaves a given frame’s origin and the
time !, when it returns after being reflected by the event. (Both times are mea-
sured by a master clock at the frame’s origin.) |

o Limitations: These equations assume that the event is located on the x axis,
that the master clock is in an inertial reference frame, and that we are using
SR units.

This approach to determining coordinates is called the radar method, because radar
tracking of airplane positions is essentially done in this way:

Section R2.6: Coordinate Time Is Frame-Dependent

The coordinate time Af between two events is the time measured in the context of
an inertial reference frame. Usually, the two events will occur at different places in
a given frame, and in such a case the coordinate time is the difference between the
event times as recorded by two synchronized clocks in the frame, one present at each
event. If the events happen to occur at the same place in the frame, then a single clock
present at that position suffices to measure Al

The coordinate time between a given pair of events is a frame-dependent number,
because although the method of clock synchronization described in section R2.1 is
self-consistent within a given inertial frame, an observer in another inertial reference
frame will not observe these clocks to be synchronized when comparing them to syn-
chronized clocks in her or his own frame! This can cause, for example, an observer in
one frame to think that two events are simultaneous, while an observer in a different
frame concludes they are not.

This is not due to problems with the process of synchronizing multiple clocks.
One can show that the radar method of defining coordinates leads to exactly the same
results. The disagreement is a simple consequence of defining time so that the speed
of light is the same in all inertial reference frames.

Section R2.7: A Geometric Analogy

We have no trouble with analogous frame-dependent quantities in a related but more
familiar guise. Imagine superimposing two xy Cartesian coordinate systems on a town,
one rotated with respect to the other. We know that surveyors using properly estab-
lished but different coordinate systems will disagree about both the north-south dis-
placement Ay and the east-west displacement Ax between two given locations in the
town. The way that different inertial reference frames define spacetime coordinates
for events is directly analogous to the way different coordinate axes define x and y
coordinates for points on the two-dimensional plane, so we should expect observers
in different reference frames to disagree about the value of the coordinate At between
events (as well as about their spatial separation |Ad|).

Note that we can use a tape measure to directly measure the separation of two points
on a plane, either by measuring the pathilength along some arbitrary path between the
points or by measuring the distance between them along the unique straight line con-
necting those points. Since we can measure these quantities directly without setting upa
coordinate system, any person who calculates these quantities using coordinate-based
quantities must get the same result as any other: the pathlength along a path and the
distance between two points are thus coordinate-independent. We will define analo-
gous frame-independent time quantities in chapter R3.

(
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Einstein’s method of clock
synchronization

Note that we are assuming that
Maxwell’s equations obey the
principle of relativity

Chapter R2  Coordinate Time

R2.1  Relativistic Clock Synchronization

At the end of chapter R1, we saw that experiments show that light has the
same speed in all inertial reference frames Einstein proposed that this was
because Maxwell's equations are true laws of physics and, since they predict
that electromagnetic waves must move at a certain speed ¢, that speed (by the
principle of relativity) must be the same in all reference frames. The problem
is that the concept of universal and absolute time (and the Galilean transfor-
mation equations that follow from it) contradicts this proposal. But if time 15
not universal and absolute, how can we even define what it means?

The solution, as Einstein was the first to see, is that we must define
what we mean by “time” operationally within each inertial frame by speci-
fying a concrete and specific procedure for synchronizing that frame's
clocks that is consistent with both the principle of relativity and the laws of
electromagnetism. But how can we synchronize clocks in such a manner?

Here is one method. Maxwell’s equations imply that light moves through
a vacuum at a certain fixed speed ¢. The principle of relativity requires that
this speed be the same in every inertial reference frame. Therefore, any syn-
chronization method consistent with the principle of relativity will lead to
light being found to have speed ¢ in any inertial reference frame.

Since the speed of ight must be ¢ in every inertial frame anyway, let us in
fact synchronize the clocks in our inertial reference frame by assuming this
is true! How do we do this? Suppose we have a master clock at the spatial
origin of our reference frame. At exactly t = 0, we send a light flash from that
clock that ripples out to the other clocks in the frame. Since we are assio-
ing that light travels at a speed of ¢ = 299,792,458 m/s, this light flash will
reach a lattice clock exactly 1.0 meter from the master clock at exactly time

= (1.0 m)/(299,792,458 m/s) = 3.33564095 x 10 " s = 3.33564095 ns. There-
fore, if we set that clock to read 3.33564095 ns exactly as the flash passes, then
we know it is synchronized with the master clock. The process is similar for
all the other clocks in the lattice.

So here is a first draft of a description of Einstein’s method for synchro-
nizing the clocks in an inertial reference frame:

A light flash is emitted by clock A in an inertial frame at time !, (as
read on clock A) and received by clock B in the same frame at time
ts (as read on clock B). These clocks are defined to be synchronized
if c(ty — t,) is equal to the distance between the clocks. That is, the
clocks are synchronized if they measure the speed of a light signa!
traveling between them to be c.

Exercise R2X.1

Imagine we have a clock on the earth and a clock on the moon. How can we
tell if these clocks are synchronized according to this definition? Suppose we
send a flash of light from the earth’s clock toward the moon at exactly noon,
as registered by the earth’s clock. What time will the clock on the moon read
when it receives the flash if the two clocks are synchronized? (The distance
between the earth and the moon is 384,000,000 m.)

“Now, wait just a minute!”  hear you cry. “Isn’t all this a bit circular? You
claim that Maxwell’s equations predict that light will be measured to have
the same speed ¢ in every inertial reference frame. But then you go and set up
the clocks so this result is ensured. Is this fair?”



R2.2 SR Units

This s fair. We are not trying here to prove that Maxwell's equations
obey the principle of relativity—we are assuming they do, so we can deter-
mine the consequences of this assumption. To make this clear in his original
paper, Einstein actually stated the frame independence of the speed of light
as a separate postulate, emphasizing that it is an assumption. However, this 1s
not really a separate assumption: it is a consequence of the assumption that
the principlc of relativity applies to all laws of physics, including Maxwell’s
equations. The point is that if the principle of relativity is true, the speed of
light will be measured to have speed ¢ no matter what valid synchronization
method we use, so why not use a method based on that fact?

Moreover, there are other valid ways of synchronizing the clocks in a
given inertial reference frame, ways that make no assumptions whatsoever
about the frame independence of the speed of light.* If such a method were
used to synchronize clocks in an inertial frame, such a frame could be used
to verify independently that the speed of light is indeed frame-independent.
These alternative methods yield the same consequences as one gets assum-
ing the frame-independence of the speed of light. These methods are, how-
ever, also more complex and abstract: the definition of synchronization in
terms of light is much more vivid and easy to use in practice.

R22 SR Units

In ordinary SI units, the speed of light ¢ is equal to 299,792,458 m /s, a some-
what ungainly quantity. The definition of clock synchronization given in sec-
tion R2.1 means that we will often need to calculate how long it would take
light to cover a certain distance or how far light would travel in a certain
time. You can perhaps see how messy such calculations will be.

For this reason (and many others), it will be convenient when we study rela-
tivity theory to measure distance not in the conventional unit of meters but in a
new unit, called a light-second or just second for short. A light-second or second
of distance is defined to be the distance light travels in 1 second of time. Since
1983, the meter has in fact been officially defined by international agreement
as the distance light travels in 1/299,792,458 s. Therefore, 299,792,458 meter
is equal to 1 light-second by definition.

We can, of course, measure distance in any units we please: there is
nothing magical about the meter. Choosing to measure distance in light-
seconds has some important advantages. First, light travels exactly 1 second
of distance in 1 second of time by definition. This allows us to talk about
clock synchronization much more easily. For example, if clock A and clock
B are 7.3 light-seconds apart in an inertial reference frame and a light flash
leaves clock A when it reads t, = 4.3 s, the flash should arrive at clock B at
ty = (4.3 + 7.3) s = 116 5 if the two clocks are correctly synchronized, since

*One of the simplest is described by Alan Macdonald (Am. ]. Phys., vol. 51, no. 9,
1983). Macdonald’s method is as follows. Assume that clocks A and B emit flashes of
light toward each other at (as read on each clock’s own face). If the readings of the two
clocks also agree when they receive the light signal from the other clock, they are
synchronized. This method only assumes that the light flashes take the same time to
travel between the clocks in each direction (that is, there is no preferred direction for
light travel): it does not assume light has any frame-independent speed. Achin Sen
(Am. |. Phys., vol. 62, no. 2, 1994) presents a particularly nice example of an approach
that sidesteps the synchronization issue, showing mathematically that the results of
relativity follow directly from the principle of relativity. Sen’s article also contains an
excellent list of references.
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light travels exactly 1 light-second in 1 second of time by definition. So we avoud
performing ungainly unit conversions if we measure distance in this way.

Indeed, agreeing to measure distance in seconds allows us to state the
definition of clock synchronization in an inertial frame in a particularly nice
and concise manner (this will be our final draft of this description):

We define two clocks in an inertial reference frame to be synchro-

nized if the time interval (in seconds) registered by those clocks for a

light flash to travel between them is equal to their spatial separation

(in light-seconds).

In spite of the tangible advantages that measuring distance in seconds
yields when it comes to talking about synchronization, this is not the most
important reason for choosing to do so. In the course of working with rela-
tivity, we will uncover a deep relationship between time intervals and dis-
tance intervals, akin to the relationship between distances measured north
and distances measured east on a plane. We would not think of measuring
northward distances in feet and eastward distances in meters: that would
obscure the fundamental similarity and relationship of these quantities. Simi-
larly, measuring time intervals in seconds while measuring distance intervals
in meters obscures the fundamental similarity in these measurements that
will be illuminated by relativity theory. Choosing to measure time in the same
units as distance will make this beautiful symmetry of nature more apparent.

The standard unit system used by scientists studying ordinary phe-
nomena comprises the Systéme International, or SI, units. In this system, the
units for mechanical quantities (such as velocity, momentum, force, energy,
angular momentum, and pressure) are based on three fundamental units: the
meter, the second, and the kilogram. In this text, however, we will use a slightly
modified version of SI units (let’s call it Systeme Relativistique, or SR, units)
where distance is measured in seconds (that is, light-seconds) instead of in
meters (with the other basic units being the same).

As discussed in chapter C1, we can use unit operators to convert a quan-
tity from one kind of unit to another. We first write down an equation stat-
ing the basic relationship between the units in question: 1 mi = 1.609 km,
for example. We then rewrite this in the form of a ratio equal to 1: either
1=1mi/1.609 km or 1 = 1.609 km/1 mi. Since multiplying by 1 doesn’t
change a quantity, you can multiply the original quantity by whichever ratio
leads you to the correct final units upon cancellation of any units that appear
in both the numerator and denominator. For example, to determine what a
distance of 25 km is in miles, you simply multiply 25 km by the first of the
two ratios described above, as follows:

1 mi 25: ... .
= mi=l6m R2.1
1609k |  1.609 : St
The factors used to convert from SI distance units to SR distance units are
based on the fundamental definition of the light-second: 299,792 458 m = 1 s.
Thus, the basic conversion factors we need are 1 = (1 5/299,792,458 m), or
1 = (299,792,458 m/1 s). For example, a distance of 25 km can be converted

to a distance in light-seconds as follows:

25km =25km 11 = ZSW‘%WNF%J;I&&)

=83x10"s=83ps (R2.2)

25km =25km - 1 =25k

meaning that 25 km is equivalent to the distance that light travels in
83 millionths of a second.
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The light-second is a rather large unit of distance (the moon is only about
1 3 light-seconds away from the carth!) A mun-.q\pmpn.nlvumlun the human
wale is the light-nanosecond, where 1 light-nanosecond = 10 * light-second
(= 02998 m = 1 1t). On the astronomical scale, the light-year (where 1 light-
year = 316 X 10°s = 095 x 10" m) is an appropriate (and commonly used)
distance unit. The dimensions of the solar system are conveniently measured
in light-hours (itis about 10 hight-hours in diameter). All these units represent
extensions of the basic unit of the light-second.

In SR units, we consider the light-second to be equivalent to the second of
time, and both units are simply referred to as seconds. This means these units
can be canceled if one appears in the numerator of an expression and the
other in the denominator. For example, in Shunits, velocity has units of meters
per second, but in SR units it has units of seconds per second = unitless(!).
Thus, an object that travels 05 light-second in 1.0s has a speed in SR units of
0.5s/1.0s = 05 (no units!). This bare number for a speed actually represents
a comparison of the object’s speed to the speed of light, since light covers 1.0s
of distance in 1.0 s of time by defimition. Thus, an object traveling at a speed
of 0.5 (in SR units) is traveling at one-half the speed of light

In a similar manner, one can find the natural units for any physical quan-
tity in SR units. For example, a particle’s Kinetic energy has the same units as
mass times speed squared. In S1 units, these units would be kg-m’/s”. Thus,
the natural Sl energy unit is the joule, where 1] = 1 kg'm™/s”. In SR units, mass
times speed squared has units of kgs’/s” = kg, Thus, the natural SR unit for
eneryy is the Kilogram (the same as the unit of mass!). How much energy is
represented by an SR Kilogram of energy? We can determine this by using the
standard conversion factor to convert the SR distance unit of seconds to the
Sl distance unit of meters:

1 kg(energy) = 1kg = 8988 x 10" ] (R2.3)

*%xw‘m)(

s’t kg m’/s’

This unit is roughly equal to the yearly energy output of 10 full-size electric
power plants!

In general, what we need to do to convert from SR units to SI units is
to multiply the SR quantity by whatever power of the conversion factor
1 = (299,792,458 m/1 s) yields the correct power of meters in the units of
the final result. Similarly, to convert from SI units to SR units, we simply
multiply the SI quantity by whatever power of this factor causes the units of
meters to disappear. (See appendix RA for a complete discussion of how to
convert units and equations from one system to the other.)

_§2.3 Spacetime Diagrams

The clock synchronization method described in section R2.1 provides the last
bit we needed to know to build and operate an inertial reference frame. We
now know how to assign spacetime coordinates to any event occurring within
that inertial frame in a manner consistent with the principle of relativity.

Problems in relativity theory often involve studying how physical events
relate to one another. We can conveniently depict the coordinates of events
by using a special kind of graph called a spacetime diagram. Throughout
this unit, we will find spacetime diagrams to be indispensable in helping us
express and visualize the relationships between events.

Consider an event A whose spacetime coordinates are measured in
some inertial frame to be £y, x4, y,, 2. To simplify our discussion somewhat,
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Figure R2.1

(a) How to plot an event A on a
spacetime diagram. In this par-
ticular case, event A has a time
coordinate t, = 54 s and an x
coordinate x, = 4.5 s. (b) Plotting
an event A that has nonzero x
and y coordinates (but a zero z
coordinate)

Worldlines

A worldline’s slope is the
inverse of its particle’s
x-velocity
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z, = 0 (that is, the event occurs som,:whem along the x axis
of the frame). Now imagine drawing a pair of m(_)rdmatc a.)cf.'s (."'\‘0 Sht'l"l 9[
paper. Label the vertical axis with a f and th.e horlzm.\lal axis wit .an x (it is
conventional to take the f axis to be vertical in spacetime diagrams). Choose
an appropriate scale for each of these axes. Now you can mpmﬁe"t “’h('f\ and
where event A occurs by plotting the event as a point on the dlagltam (in lhc
usual manner you would use in plotting a point on a graph): as shown in
figure R2.1a. We can plot any event that occurs along the x axis in space on
such a diagram in a similar manner.

Note that the point marked O in figure R2.1a also represents an event,
This event occurs at time = 0 and at position x = 0. We call this event the
diagram’s origin event.

If we need to draw a spacetime diagram of an event A that occurs
in space somewhere in the xy plane (that is, which has z, = 0 bu_t nonzero t,
X4, ¥4), we must add another axis to the spacetime diagram (see figure R2.1b).
The resulting diagram is less satisfactory and more difficult to dra.w because
we are trying to represent a three-dimensional graph on a two-dimensional
sheet of paper. We can’t draw a spacetime diagram showing events with
three nonzero spatial components at all, as this would involve trying to rep-
resent a four-dimensional graph on a two-dimensional sheet of paper. A four-
dimensional diagram is hard to visualize at all, much less draw! Fortunately,
one or two spatial dimensions will be sufficient for most purposes.

In chapter R1, we visualized describing an object’s motion by imagin-
ing the object to carry a strobe light that blinks at regular intervals. If we can
specify when and where each of these blink events occurs (by specifying its
spacetime coordinates), we can get a pretty good idea of how the object is
moving. If the time interval between these blink events is reduced, we get
an even clearer picture of the object’s motion. In the limit that the interval
between blink events goes to zero, the object’s motion can be described in
unlimited detail by a list of such events. Thus, we can describe any object's
motion in terms of a connected sequence of events. We call the set of all events
occurring along the path of an object that object’s worldline.

On a spacetime diagram, an event is represented by a point. There-
fore, a worldline is represented on a spacetime diagram by an infinite set of
infinitesimally separated points, which is a curve. This curve is nothing more
than a graph of the object’s position versus time (except that the time axis
is conventionally taken to be vertical on a spacetime diagram). Figure R22
illustrates worldlines for several example objects moving in the x direction.

Note that because the time axis is taken to be vertical, the slope of the
curve on a spacetime diagram representing the worldline of an object tray-
eling at a constant velocity in the x direction is not its x-velocity v, (as one
might expect) but rise/run = At/Ax = 1/v,! Thus, the slope of the curve

assume thaty, =
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Figure R2.2

A sequence of spacetime diagrams illustrating various important things to know
about worldlines,

representing the worldline of an object at rest is infinity and decreases as v,
increases. The worldline of an object traveling at a constant x-velocity has a
constant slope.

Occasionally, we need to draw a spacetime diagram of an object moving
in two spatial dimensions. The spacetime diagram in such a case is neces-
sarily three-dimensional, which is hard to draw on two-dimensional paper.
Figure R2.3 shows an example of such a spacetime diagram.

In drawing spacetime diagrams, we also conventionally use the same-size
scale on both axes. If we do this, then the worldline of a flash (that is, a very
brief pulse) of light always has a slope of either 1 (if the flash is moving in
the +x direction) or —1 (if the flash is moving in the —x direction), since light
travels 1.0 second of distance in 1.0 second of time by definition in every
inertial reference frame. We also conventionally draw the worldline of a flash
of light with a dashed line instead of a solid line (see figure R2.4).

Exercise R2X.2

On figure R2.4, draw the worldline of a particle moving in the —x direction
through the origin event with a speed of 0.2 (1 light-second per 5 s).

R2.4
One can easily get confused about what a spacetime diagram really repre-
sents. For example, in the spacetime diagram shown in figure R2.4, one can
easily forget that the light flashes shown are moving in only one dimension
(along the x axis), not in two. Their velocity vectors therefore point opposite
to each other, not perpendicular to each other.

Here is a technique you can use to make the meaning of any spacetime
diagram clear and vivid: turn it into a movie! Here's how. Take a 3 x 5 index
card and cut a slit about  inch wide and about 4 inches long, using a knife
or a razor blade. This slit represents the spatial x axis at a given instant of
time. Now place the slit over the x axis of the spacetime diagram. What you
see through the slit is what is happening along the spatial x axis at time ¢ = 0.
Now slowly move the slit up the diagram, keeping it horizontal. You will see

Spacetime Diagrams as Movies

Figure R2.3

The worldline of a partide traveling

in 3 circular path in the xy plane
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Light-flash worldlines on a

spacetime diagram. World-
line A represents 3 light flash

moving in the +x direction

Worldline B represents a flash

traveling in the opposite

direction.

Making a movie viewer for a

spacetime diagram
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READ THIS FIGURE FROM THI
BOTTOM U

Figure R2.5d

Now the light flashes have passed
each other and are moving away
from each other. You can also see
through the shit the momentary

flash representing the firecracker
explosion (event E)

Figure R2.5¢
At this instant, the light flashes pass
through each other at a position of

about x = +!s o

Figure R2.5b

As time passes (and you move
the slit up the diagram), the dots
representing the light flashes

approach each other.

Figure R2.5a

The spacetime diagram is basically
the same as figure R2.4 with a
firecracker explosion (event E)
thrown in to make things more
interesting. At time t = 0, the light
flashes are represented by black dots

that you can see through the slit at
x==3sandx = +4s.

through the slit what is happening along the spatial x axis at succeasiely
later times. You can watch the objects whose worldlines are shown i the
diagram move to the left or right as the slit exposes different parts of their
worldlines. Events drawn as dots on the diagram will show up as flashes as
you move the slit past them. What you see through the slit as you move it up
the diagram is essentially a movie of what happens along the x axis as time

passes. Figure R2.5 illustrates the process.

If you employ this technique, you cannot fail to interpret a spacetime
diagram correctly. After a bit of practice with the card, vou will be able to

convert diagrams to movies in your head.



p,s The Radar Method

If we are willing to confine our attention to events occurring only along the
y axis (and thus to objects moving only along that axis), we can determine the
spacetime coordinates of an event with a single master clock and some light
flashes: we don’t need to construct a lattice at all' The method is analogous
to locating an airplane by using radar.

Suppose that at the spatial origin of our reference frame (that is, at x = 0),
we have a master clock that periodically sends flashes of light in the £x
directions. Imagine a certain flash emitted by the master clock at t, happens
to illuminate an event E of interest that occurs somewhere down the ¥ axis.
The reflected light from the event travels back along the x axis to the master
clock, which registers the reception of the reflected flash at time ¢, (see the
spacetime diagram of figure R2.6).

The values of the emission and reception times (, and t, are sufficient
to determine both the location and the time that event F occurred! Consider
first how we can determine the location. The light flash’s round-trip time is
t, — t4. Since in this time the light covered the distance from 1 = 0 to event
E and back, and since the light flash travels 1 second of distance in 1 second
of time by definition, the distance to event E (in seconds) must be one-half
of the round-trip time (in seconds). The x coordinate of event E is therefore
x; = 23ty — ). We can determine the sign of x, by noting whether the
reflected flash comes from the —x or 4 x direction. (In this case, the reflected
flash comes from the +x direction, so we select the plus sign.)

We can determine the event’s time coordinate as follows. Since the light
flash traveled the same distance to the event as back from the event, and
since the speed of light is a constant, the event must have occurred exactly
halfway between times !, and t,. The midpoint in time between times ¢, and
t; can be found by computing the average, so t, = 1(t, + 1,).

In summary, therefore, the spacetime coordinates of event F are

=3+ b)) xe=i(ts—ta) (R2.4)

* Purpose: This equation expresses an event E’s spacetime coordinates
t; and x; in terms of the time t, at which a light flash leaves a given
frame’s origin and the time f, when it returns after being reflected by
the event. (Both times are measured by a master clock at the frame’s
origin.)

¢ Limitations: This equation assumes that the event is located on the
x axis, that the master clock is in an inertial reference frame, and that
we are using SR units.

J

Equations R2.4 represent a method of determining the spacetime coor-
dinates of an event that does nof require the use of a complete lattice of syn-
chronized clocks. But you should be able to convince yourself that this method
produces exactly the same coordinate values as you would get from a clock lattice. For
example, imagine you actually had a lattice clock at x, (the location of event
E). The distance between that clock and the master clock at the origin must be
equal to one-half the time it would take a flash of light to go from one clock
to the other and back, since light travels 1 second of distance in 1 second of
time by definition. The lattice clock at x; at the time of event E must read ¢, +
(the light travel time between the two clocks) = t, + $(te = 1) = 3(ts + 1),
since we are assuming that the lattice clocks are synchronized, which means
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Figure R2.6

At time t,, the master clock at

n

rest at x = 0 in the Home Frame
sends out a flash of light, which

reflects from something at event
E and returns 1o the master clock

atume t,

This method yields the same

result as the clock lattice

method
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Adapting the method for three
spatial directions

The definition of coordinate
time between events

The coordinate time between
events depends on your choice
of frame
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(by definition) that they measure a light flash to travel between them at the
speed of light (1 second of distance in 1 second of time). .

Using this method to determine spacetime coordinates is therefore equiv-
alent to using a lattice of synchronized clocks. In some cases in this text, we
will find it clearer or more convenient to use one method, and in some cases
the other The important thing to realize is that esther the radar method or the
clock lattice method provides specific and well-defined method for assigning
time coordinates to events, and they are equivalent because both express the
assumption that the speed of light is a frame-independent constant. These
methods essentially define what time means in special relativity, and thus
will provide the foundation for most of the arguments in the remainder of
the text. Make sure vou thoroughly understand both methods.

We call this section’s method the radar method because radar instal-
lations actually use a three-dimensional generalization of this approach to
track the lm;&lnncs of aircraft (the impracticality of using a clock lattice to
do the same is obvious!). We can precisely locate an object in three spatial
dimensions if we record not only the time that the outgoing pulse was sent
and the time that the reflected pulse was received but also the direction from
which the reflected pulse was received. The analysis is a bit more compli-
cated (see problems R2M.7 and R2M.8), but the basic idea is the same.

R26  Coordinate Time Is Frame-Dependent

Once we have satisfactorily synchronized the clocks in an inertial refer-
ence frame, we can use them to measure the time coordinates of various
events that occur in that frame. In particular, we can measure the time
between two events A and B in our reference frame by subtracting the time
read by the clock nearest event A when it happened from the time read by
the clock nearest event B when it happened: Aty = t, — t,. Note that this
method of measuring the time difference between two events requires the
use of a pair of synchronized clocks in an established inertial reference
frame. Such a measurement therefore cannot be performed in the absence of
an inertial frame.
So define the coordinate time between two events as follows:

The coordinate time Af between two events either by a pair of syn-
chronized clocks at rest in a given inertial reference frame (one clock
present at each event) or by a single clock at rest i that inertial frame
(if both events happen to occur at that clock in that frame).

Now;, suppose the observer in some inertial reference frame (let's call
this frame the Other Frame: we’ll talk about a Home Frame in a bit) sets
out to synchronize its clocks. In particular, let us focus on two clocks in that
frame that lie on the x axis an equal distance to the left and right of the
master clock at x” = 0. At t' = 0, the observer causes the center clock to emit
two flashes of light, one traveling in the +x” direction and the other in the
—x"direction. Let’s call the emission of these flashes from x = 0 att = 0 the
origin event O.

As both of the other clocks are the same distance from the center clock and
since the speed of light is 1 (light-)second /second in every inertial reference
frame, the left-hand clock will receive the left-going light flash (call the event
of reception event A) at the same time as the right-hand clock receives the
right-going flash (event B). By the definition of synchronization, both clocks
should therefore be set to read the same time at events A and B (a time in
seconds equal to their common distance from the center clock).
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The spacetime diagram in figure R2.7 illustrates this process. Note that
since all three clocks are at rest in this frame, their worldlines on the space-
time diagram are vertical. Moreover, since the speed of light is 1 s/s in this
(and every other inertial) frame, the worldlines of the light flashes will have
slopes of £1 on the spacetime diagram (that is, they make a 45° angle with
cach axis) as long as the axes have the same scale. On this diagram, it is clear
that events A and B really do occur at the same time in the Other Frame.

Now consider a different inertial reference frame (the Home Frame),
within which the Other Frame moves in the +x direction at an x-velocity
3. How will an observer in this frame interpret these same events? For con-
venience, let us take the event of the emission of the flashes to be the origin
event in this frame also (so event O occurs at | = x = () in the Home Frame).

The observer in the Home Frame will agree that the right and left clocks
in the Other Frame are always equidistant from the center clock in the Other
Frame. Moreover, at t = 0, when the center clock passes the point x = 0 in
the Home Frame as it emits its flashes, the right and left clocks are equidis-
tant from the emission event. But as the light flashes are moving to the outer
clocks, the Home Frame observer observes the left clock to move up the
x axis foward the flash coming toward it, and the right clock to move up the
x axis away from the flash coming toward it. The left-going light flash there-
fore has less distance to travel to meet the left clock than the right-going flash
does to meet the right clock. Since the speed of light is 1 in the Home Frame
as well as in the Other Frame, this means that the left clock receives its flash
first. Therefore, the Home Frame observer observes event A to occur before cvent B.

Figure R2.8 shows a spacetime diagram of the process as observed in
the Home Frame. Note that the clocks are 1ot at rest in the Home Frame, so
their worldlines on a Home Frame spacetime diagram will be equally spaced
lines with slopes of 1/ indicating that the clocks are moving to the right at
aspeed 3. The light flashes have a speed of 1 s/s in the Home Frame (as they
do in any inertial frame), so we must draw their worldlines with a slope of
+1 on the spacetime diagram.

Right-going
L7 X light flash

Left-going

light flash v Worldline of

center clock

---------- Figure R2.8
o{\:{;;;g]‘:,; \\ Worldline The same events as observed in
R of right clock the Home Frame. In this frame,
/ (; > event B is measured to occur after
event A,
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In summary, the coordinate time between events A and B as measured
in the Other Frame is At’ = 0 (by construction here), but the coordinate time
between these events as measured in the Home Frame is At # ().. We see thay
the coordinate times between the same two events measured in 'dlffcr.ml refer-
ence frames are not generally equal. We say that the c-vorqmatv time differences
are relative (that is, they depend on one’s choice of inertial reference frame).

Why? If each observer synchronizes the clocks in his or her own ref.
erence frame according to our definition, each will conclude ffxal the clocks in
the other’s frame are not synchronized. Notice that the Other Frame observer
has set the right and left clocks to read the same time at events A and B. Yet
these events do not occur at the same time in the Home Frame. Therefore, the
Home Frame observer will claim that the clocks in the Other Frame are not
synchronized. (Of course, the Other Frame observer will say the same thing
about the clocks in the Home Frame.) The definition of synchronization that
we are using makes perfect sense within any inertial reference frame, but it
does not allow us to synchronize clocks in different inertial frames. In fact, the
definition requires that observers in different inertial frames measure different
time intervals between the same two events, as we have just seen.

In general, two observers in different frames will also disagree about the
spatial coordinate separation between the events. Consider events C and D
that both occur at the center clock in the Other Frame, but at different times,
Since the center clock defines the location x* = 0 in the Other Frame, the
events have the same x’ coordinate in that frame, so Ax’ = 0. But in the Home
Frame, the center clock is measured to move in the time between the events,
and so the two events do nof occur at the same place: Ax # 0 (see figure R2.9),

Exercise R2X.3

Note that the frame dependence of the spatial coordinate difference between
two events has nothing to do with clock synchronization or relativity: this
would be true even if time were universal and absolute. Show, using the
Galilean transformation equations, that if the separation between two events
in the Other Frame is Ax’ = 0 but At # 0, then the separation between these
events in the Home Frame is nof zero (Ax # 0).

The reason why observers in different inertial frames disagree about
whether the clocks in a given frame are synchronized is that synchronization is
defined so that light flashes are measured to have a speed of 1 in every inertial frame:
the frame-dependence of coordinate time differences is a logical consequence
of this. This can be illustrated by considering the radar method of assigning
spacetime coordinates. Although the radar method does not involve the use
of synchronized clocks, it does depend on the assumption that the speed of
light is the same in every inertial frame. Does the radar method also imply
that the coordinate time difference between two events is frame-dependent?

Figure R2.10 shows that it does. Figure R2.10a shows the observer in the
Other Frame using the radar method to determine the spacetime coordinates
of event C. The observer in that frame will conclude that event C and event D
occur at the same time, where D is the event of the master clock at 1" = 0 regis-
tering t/, = §(t 4+ 1), that is, at the instant of time halfway between the emis-
sion of the radar pulse at t; and the reflection’s reception at 1. According to the
radar method, then, the coordinate time between events C and D is A" = 0.
[Radar and visible light are both electromagnetic waves (with different fre-
quencies), so both will move at a speed of 1 light-second /second = 1.]
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Figure R2.10

(a) In the Other Frame, events C and D are
defined 1o be simultaneous if D occurs at
the master clock at a ime halfway between
the emission event A and the reception
event B. The coordinate time difference
between events C and D in the Other Frame
is thus At’ = 0. (b) In the Home Frame,

the Other Frame's master clock moves to
the right as time passes, so its worldline

s slanted. On the other hand, radar pulse
worldlines still have slope +1, as shown
This means that an observer in the Home
Frame will conclude that event C happens
after event D, so the coordinate time

.
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When the same sequence of events is viewed from the Home Frame,
though, a different conclusion emerges (see figure R2.10b). According to
observers in the Home Frame, the Other Frame’s master clock is moving
along the x axis with some speed f3, so in a spacetime diagram based on
Home-Frame measurements, that clock’s worldline will appear as a slanted
line (with slope 1//3) instead of being vertical. Radar pulse worldlines, on
the other hand, still have slopes of *1, just as they did in the Other Frame
spacetime diagram. The inevitable result (as you can see from the diagram) is
that observers in the Home Frame are forced to conclude that event C occurs
after event D does, and thus that the time difference between events C and D
in the Home Frame is Al # 0.

The point is that the relativity of the coordinate time interval between
events is a direct consequence of the fact that we are defining coordinate time
by assuming that the speed of light is 1 in every inertial reference frame.
Remember, though, that we must make this assumption if the laws of electro-
magnetism are to be consistent with the principle of relativity!

'82.7 A Geometric Analogy

You may find it troubling that coordinate differences between events are not
absolute but are instead frame-dependent. This is particularly true of the
time coordinate separation: it is not easy to let go of the Newtonian notion of
absolute time! The fact is, though, we have no trouble at all with these ideas when
they appear in a related but more familiar guise.

Consider Askew, a hypothetical town somewhere in the western
United States (its embarrassed residents wish its precise location to remain
secret). Most towns in the rural United States have streets that run directly
north/south or east/west. The surveyor who laid out the streets of Askew in
1882, however, Iried to calibrate his compass against the North Star the night
before, but in fact had forgotten exactly where it was (it was a long time since
he had this stuff in high school, after all) and ended up choosing a star that
turned out to be 28° east of the true North Star. Therefore, all the streets of
Askew are twisted 28° from the standard directions.

Now, if we would like to assign x and y coordinates to points of interest in
this town (or any town), we need to set up a Cartesian coordinate system. We
conventionally to orient coordinate axes on a plot of land so that the x and v

difference between the events is At # 0.

Frame dependence of
coordinate time follows from
principle of relativity

An illustration of alternative
coordinate systems in plane
geometry
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(a) A standard northward-oriented Cartesian coordinate system superimposed on the town of Askew.
(b) A more convenient coordinate system oriented 28" clockwise.

We are not surprised by frame
dependence of coordinates in
this case!

axes point north and east, respectively (see figure R2.11a). This is usually alsy
convenient, since the streets in most towns are parallel to those axes. There is ng
reason why this nust be done, though, and in Askew’s case, it is actually more
convenient to use a coordinate system tilted 28" clockwise (figure R2.11b),
Note that City Hall is the origin of both coordinate systems.

We can (bf course) use any coordinate system we like to quantify the
positions of points of interest in the town, since coordinate systems are
arbitrary human artifacts that we impose for our convenience on the physica
world. However, the coordinates we actually obtain for various points
certainly do depend on the coordinate system used. For example, the coordi-
nate differences between City Hall and the Statue of the Unknown Physicist
in Memorial Park might be Ay =0, Ax =852.0m in the standard coordi-
nate system, but Ay’ = 3999 m, Ax'= 752.3 m in the conveniently oriented
coordinate system.

Is it surprising that the results are different? Do the differences in the
results cause us to suspect that one or the other coordinate system has been set
up incorrectly? Hardly! We already know and expect that differently oriented
coordinate systems on a plane will yield different coordinate measurements,
This causes no discomfort, because we understand this is the way things are,

In an entirely analogous way, we have carefully and unambiguously
defined a procedure for setting up an inertial reference frame and synchro-
nizing its clocks. This definition happens to imply that spacetime coordinate
measurements in different frames yield different results. This should be no
more troubling to us than the fact that Askew residents who use different sets
of coordinate axes will assign different coordinates to various points in town.
Coordinates have meaning only in the context of the coordinate system or inertial

frame we use to observe them.

The only reason that the relativity of time coordinate differences is a dif-
ficult idea is because we don’t have common experience with inertial reference
frames moving with high enough relative speeds to display the difference.
The frames that we typically experience in daily life have relative speeds
below 300 m/s, or about one-millionth of the speed of light. If for some rea-
son we could only construct Cartesian coordinate systems on the surface
of the earth that differed in orientation by no more than one-millionth of
a radian, then we might also consider Cartesian coordinate differences as
being “universal and absolute” as well!
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So, to sumn\a‘mc. the w:wdm.m- differences between points on a plane
(or events '_“ spacetime) are “relative” because coordinate systems (or iner-
tal reterence frames) are human artifacts that we mipose on the land (or on
spacetime) to help us quantify that physical reality by assigning coordinate
pumbers to points on the plane (or events in spacetime). Because we are free
toset up qmnim.m- systems (or reference frames) in different ways, the coor-
dinate differences between two points (or events) reflect not only something
about their real physical separation, but also something about the artificial
choice of coordinate system (or reference frame) we have made.

So, is it true, then, that everything is relative? Is there nothing we can mea-
sure about the physical separation of the points (or events) that is absolute
(that is, independent of reference frame)?

The distance between two points is such a quantity. For example, the dis-
tance between Askew’s City Hall and the Statue of the Unknown Physicist is
|ad|=(Ax + Ay')" = [(8520 m)’ + 0]'* = 852.0 m in the north-oriented coor-
dinate system and |Ad’| = [(Ax') + (Av')] = (399 m) + (7523 m)] * =
$52.0 m in the convenient coordinate system. It doesn’t matter what coordinate
system one uses to calculate |Ad|: you always get the same answer.

The distance between two points on a plot of ground thus reflects some-
thing deeply real about the nature of the plot of ground itself, independent of
the human coordinate systems we impose on it. This distance is independent
of coordinate systems because we can, in fact, determine it directly without
using a coordinate system at all simply by laying a tape measure between the

ints! Since this method yields an unambiguous distance, valid calculations
of this distance in any coordinate system should yield the same value.

Of course, there are many ways that one could lay a tape measure between
City Hall and the Statue of the Unknown Physicist. One could lay the tape
measure along a straight path between the two points: this would measure
the distance “as the crow flies,” which is what is usually meant by the phrase
“the distance between two points.” But there are other possibilities. One
might, for example, lay the tape measure two blocks down Elm Street from
City Hall, then one block over along Grove Avenue, then up Maple Street,
and so on. This would measure a different kind of distance between the two

ints that we might call a pathlength.

Both the straight-line distance and the more general pathlength between
two points can be measured directly with a tape measure, and thus are quan-
tities independent of any coordinate system. But the distance and the path-
length between two points may not be the same. In general, the pathlength
between two points will depend on the path chosen, and will always be
greater than (or at best equal to) the straight-line distance.

To summarize, we can quantify the separation of two points on a plane
three totally different ways. We can measure the coordinate separations between
the points, using a coordinate system. (The results will depend on our choice
of coordinate system.) We can measure the pathlength between them with a
tape measure laid along a specified path. (The result here will depend on the
path chosen, but is independent of coordinate system.) Or we can measure
the distance between the points with a tape measure laid along the unique
path that is the straight line between the points. Because in this last case the
tape’s path is unique, the distance between two points is a unique number
that quantifies in a basic way the separation of those points in space.

Analogously, we can measure the time between two events in spacetime
in three different ways. The coordinate time between events is analogous to the
coordinate separation of points and so depends on one’s choice of reference
frame. In the next chapter, we will see how we can define frame-independent
times analogous to pathlength and distance.

Distance and pathlength,
on the other hand, are
coordinate-mdependent

The three kinds of spatial
separation
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. TWO-MINUTE PROBLEMS

R2T1  Imagine that in the distant future you (on earth)
are watching a transmission from Pluto, which at the time
i 5.0 light-hours from earth. You notice that a clock on
the wall behind the person speaking in the video reads
12:10 p.m. You note that your watch reads exactly the same
time. Is the station clock synchronized with your watch?
A Yes, itis. )

B. No, itisn't,
C. The problem doesn't give enough information to tell.

R2T.2  Suppose you receive a message from a starbase that
is 13.0 light-years from earth. The message is dated July
15,2127. What year does your calendar indicate at the time
of reception if your calendar and the station’s calendar are
correctly synchronized?

A. 2127
B. 2114
C. 2140
D. Other (specify)

R2T.3  The speed of a typical car on the freeway expressed
in SR units is most nearly
A. 107

lo~l¢‘

10°°

10°

107

Other (specify)

None of these answers is right: we must state units!

SmMmoN®

R2TA4  Suppose you are sitting at the origin of an inertial
reference frame. You see (that is, you receive the light from)
an event E occurring near a clock at x = =30 ns at a time
t = 80 ns. When do you observe that event to occur?

- ’( = 0

! = 30ns

= 50 ns

.t = 80 ns, of course

’l = 110 ns

Some other time (specify)

mmOoN®E e

R2T.5 The spacetime diagram in figure R2.12 shows the
worldlines of various objects. Which object has the largest
speed attime f = 1s?

R2T.6  The spacetime diagram in figure R2.12 shows the
worldlines of various objects. Which object has the largest
speed at time | = 4s?

R2T.7 The spacetime diagram in figure R2.12 shows the
worldlines of various objects. Which worldline cannot
possibly be correct? (Explain why.)

R2T8  In figure R2.12, the object whose worldline is labeled B
is moving along the x axis. T or F?

R2T.9

D

R | |

Figure R2.12
Worldlines of various objects.

A light flash leaves a master clock at x = 0 at time
t = —12 s, is reflected from an object a certain distance in
the —x direction from the origin, and then returns to the
origin at t = +8s. From this information, we can infer that
the spacetime coordinates of the reflection eventare [f, 1] =
A. [45,20s]

B. [—4s,-205s]
C. [10s,=25]

D. [2s,~105s]

E. [-2s,—105s]

F. Other (specify)

R2T.10 Coordinate time would be frame-independent if the

Newtonian concept of time were valid. T or F?

R2T.11 Consider a Home Frame and an Other Frame that

moves in the +x direction with respect to the Home Frame

(a) Observers in the Home Frame will conclude that the
clocks in an Other Frame will be out of synchroniza-
tion, even if the observers in the Other Frame have
carefully synchronized clocks using the Einstein pre-
scription. T or F?

(b) Specifically, Home Frame observers will see that for

events farther and farther up the common +x axis, the

times registered by Other Frame clocks at the events

Become further and further ahead.

Become further and further behind.

Remain the same.

Have no clear relationship to the values that Hoawe

Frame clocks register for the same events.

oSN=E>

R2T.12 In the geometric analogy, the coordinate time ditter-

ence At between two events in spacetime corresponds (o
The north=south separation between points on a plane
The distance between points on a plane.

A certain pathlength between points on a plane.

. The separation between the events in spacetime.
Something else (specify).

moONw>



Homework Problems
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' HOMEWORK PROBLEMS

- Py

Reiialad

Basic Skills

R2B.1  (Practice with SR units.)
(a) What is the earth’s diameter in seconds?
(b) A highway sign reads “Speed Limit6 x 10" meaning
speed in SR units. What is this in miles per hour?
(¢) Argue that the SR unit of acceleration is s ', What is
1s ' expressed as a multiple of [ g |2

R2B.2  (Practice with SR units.)

(@) A sign on a hiking trail reads “Viewpoint: 5.5 ps.”
About how long would it take you to walk to this
viewpoint at a typical walking speed of 1 m/s?

(b) Section R1.2 mentions that the Voyager 2 spacecraft
achieved speeds in excess of 72,000 km/h. What is this
speed in SR units?

(¢) In SI units, power is measured in watts (where 1 W =
1)/s = 1 kgm®/s’). Argue that the natural SR units
of power are kg/s. Let’s define 1 SR-watt = | SRW =
1 kg/s. Alarge electric power plant produces energy at
a rate of about 10° W. What is this in SRW? )

R2B.3  (Practice with SR units.)
(a) Argue that the SR units of mass, momentum, and
kinetic energy are simply kilograms.
(b) Imagine that a truck with a mass of 25 metric tons (that
is, 25,000 kg) is barreling down a highway at a speed of
59 mi/h. What is the truck’s momentum in kilograms?
(¢) What is the truck’s kinetic energy in kilograms?

R2B.4  (Practice with SR units.)
(a) Argue that force has SR units of kg /s.
(b) What is 1 kg/s in newtons?
(¢) What are the SR units of pressure?
(d) What are the SR units of density?

R2B.5 For each of the worldlines shown in figure R2.13,
describe in words what the particles are doing, giving
numerical values for velocities when possible. For exam-
ple, you might say, “Particle A is traveling in the +x direc-
tion with a constant speed of .

R2B.6 Suppose you send out a light flash at t = 3.0 s, as
registered by your clock, and you receive a return reflec-
tion showing your kid brother making a silly face at
t = 115, as registered by your clock.

(a) Atwhat time did your brother actually make this face?

(b) How far is your brother away from you (express your
result in seconds and kilometers)?

() Is this far enough away that he can’t really be a

nuisance?

R2B.7 Suppose you send outa radar pulse atf = =22 h, as
registered by your clock, and receive a reflection from an
alien spacecraft at t = +12 h as registered by your clock.
(a) Is the spaceship inside or outside the solar system?

(b) When did the spaceship reflect the radar pulse?

:
T

4
-
~4s

Figure R2.13
Wordlines of various objects.

R2BS A firecracker explodes 30 km away from an
observer sitting next to a certain clock A. The light from the
firecracker explosion reaches the observer at exactly t = 0
according to clock A. Suppose the firecracker’s flash illu-
minates the face of another clock B that is sitting next
to the firecracker. What time will clock B register at the
moment of illumination if it is correctly synchronized with
clock A? Express your answer in milliseconds.

R2B9 Suppose you are in an inertial frame in emply
space with a clock, a telescope, and a powerful strobe
light. A friend is sitting in the same frame at a very large
(unknown) distance from your clock. At precisely 12:00:00
noon according to your clock, you set off the strobe lamp.
Precisely 30.0 s later, you see in your telescope the face of
your friend’s clock illuminated by your strobe flash.

(a) How far away is your friend from you (in seconds)?

(b) What should you see on the face of your friend’s clock
if that clock is synchronized with yours?

Describe your reasoning in a few short sentences.

R2B.10 Draw a spacetime diagram that displays worldlines

for the following particles.

(a) Particle A travels at a constant speed of | in the 42
direction and passes the point x = 0 at time ! = 25

(b) Particle B, which at time I = 0 is at position x = +2 <15
traveling at a speed of : in the —x direction, is slowing
down as time passes, and eventually comes to rest at
x=0attimet=8s.

(¢) Light flash C passes the position x = O at time [ = -2 5
as it travels in the +x direction.

R2B.11 Draw a spacetime diagram that shows the follow-

ing worldlines.

(a) Particle A travels at a constant speed of ; in the —x
direction and passes the point x = O attime t = =25,

(b) Particle B, which at time ¢ = 0 is at rest at position
x = (), accelerates in the +x direction asymptotically
toward the speed of light as time passes. -

(¢) Light flash C passes the position v = Oattime t = +3s
as it travels in the —x direction.
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RIB.II Two firecrackers A and B are placed at x" =0 and
¥ = 100 ns, respectively, on a train that is moving in the
+x direction relative to the ground frame According to
synchronized clocks on the train, both firecrackers explode
simultaneously. Which firecracker explodes first according
to synchronized clocks on the ground? Explain carefully
(Hmt: Study figure R28 carefully.)

R2B.13 Figure R28 implies that an observer in the Home
Frame concludes that clocks that have been pmpcrly syn-
chronized in the Other Frame are not synchmnil.cd in the
Home Frame. Would an observer in the Other Frame con-
clude that clocks that have been carefully .synchmmlt'd in
the Home Frame are not synchronized in the Other Frame?

Draw a spacetime diagram from the point of view of the

Other Frame to justify your response.

R2B.14 Redraw figure R28, assuming that the Newtonian
concept of time is true. How does your redrawn diagram
differ from the original, and how is this difference related
to the behavior of light according to the Newtonian and
relativistic models?

Modeling
R2M.1 The spacetime diagram below shows the worlc?-
line of a rocket as it leaves the earth, travels for a certain

amount of time, comes to rest, and then explodes.

NS
T ——/' ;— I-.xploswn
e | Worldline
4 of rocket
Worldline —__|
of earth 1
300s T
3005 ¥

(a) The rocket leaves the earth; the rocket comes to rest in
deep space; the rocket explodes. What are the coordi-
nates of each of these three events?

(b) What is the rocket’s constant speed relative to the earth
before it comes to rest?

(c) A light signal from the earth reaches the rocket just as
it explodes. Indicate on the diagram exactly where and
when this light signal was emitted.

R2M.2 Suppose a spaceship leaves the earth at event A and
travels in the +x direction, accelerating at a constant rate
from rest at time ! = 0 to a final speed of ! at time t = 1 h.
It remains at that speed thereafter. Just as the spaceship
reaches that speed, it emits a laser signal back toward the
earth (call this event B), which reaches the earth at event C.

Coordinate Time

Draw a qmnnwnvly accurate spacetime diagram of thy,
situation (as observed in a frame attached to the carth,
with the carth at x = 0) that shows the worldlines of th,
earth, the spaceship, the returning laser signal, and even
A, B,and C

R2M.3  An alien spaceship trav cling at a constant velocity
of ! in the +x direction passes the earth (call this event 4,
at time t = 0. Just as the spaceship passes, people on the
earth launch a probe, which accelerates from rest toward
the spaceship at such a rate that it catches up to and passes
the alien spaceship (call this event B) when both are 10 min
of distance from the earth. As it passes the alien spaceship,
the probe takes a photo and sends it back to the earth as an
encoded radio message that travels at the speed of light
The message reaches the earth at event C. Draw a quan.
titatively accurate spacetime diagram of this situation (as
observed in a frame attached to the earth, with the carth
at x = 0) that clearly shows the worldlines of the earth, the
alien spaceship, the probe, the returning radio message,
and events A, B, and C. In particular, clearly indicate when
the people on earth receive the photo.

R2M.A4 A rocket launched from the moon travels away

from it at a speed of i Call the event of the rocket’s launch-
ing event A. After 1255, as measured in the reference frame
of the moon, the rocket explodes: call this event B. The
light from the explosion travels back to the moon: call its
reception event C. Let the moon be located at x = 0 in its
own reference frame, and let event A define t = 0. Assume
that the rocket moves along the +x direction.

(a) Draw a spacetime diagram of the situation, drawing
and labeling the worldlines of the moon, the rocket,
and the light flash emitted by the explosion and
received on the moon.

(b) Draw and label events A, B, and C as points at the
appropriate places on the diagram. Write down the !
and x coordinates of these events.

R2M.5 A spaceship in deep space is approaching a space

station at a constant speed of || = 3. Let the space staton

define the position x = 0 in its own reference frame. At time

t = 0, the spaceship is 10.0 light-hours away. At that tme

and place (call this event A), the spaceship sends a laser pulse

of light toward the station, signaling its intention to dock. The
station receives the signal at its position (call this event £
and after a pause of 100 min (everyone was at lunch), enuts
another laser pulse signaling permission to dock (call this
event C). The spaceship receives this pulse (call this event

D) and immediately begins to decelerate at a constant rate

It arrives at rest at the space station (call this event E) 4.0 h

after event D, according to station clocks.

(a) Carefully construct a spacetime diagram that shows
the worldlines of the space station, the approaching
spaceship, and the two light pulses. Also indicate the
time and place (in the station’s frame) of events A
tlfrough E by labeling the corresponding points on the
diagram. Scale your axes using the hour as the basic
time and distance unit (you might subdivide each hour
into units of | h).
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(b) In particular, exactly when and where does event [
occur? Event E? Write down the coordinates of these
events in the station frame, and explain how vou calcu-
lated them (reading them from the diagram is a useful
check, but is not enough).

(¢) Compute the magnitude of the spaceship’s average
acceleration between events D and £ in SR units (s ')
and as a multiple of |g|. Note that a shockproof watch
can typically tolerate an acceleration of about 50| §|.

R2M.6 Suppose a spaceship is docked at a space station
floating in deep space. Assume the space station defines
the origin in its own frame. At t =0 (call this event A)
the spaceship starts accelerating in the +x direction away
from the space station at a constant rate (as measured in
the station frame). The spaceship reaches a cruising speed
of 0.5 after 8 h as measured in the station frame (call this
event B). [Hint: You will find it helpful to construct a space-
time diagram as you go through the parts of this problem:
such a diagram is required in part (e) anyway.|
(a) Where does event B occur? Explain your reasoning.

(b) Find the magnitude of the ship’s acceleration in SR
units (s ') and as a multiple of rél. Note that a shock-
proof watch can tolerate an acceleration of =50 Igl.

(c) At event B, the spaceship sends a radio signal to the
station, reporting it has reached cruising speed. This
signal reaches the station at event C. When and where
does this event occur? (Hint: Radio signals are electro-
magnetic waves that travel at the speed of light.)

(d) The technician responds to this message 0.5 h later
after returning from a coffee break: call this event D.
When and where does the ship receive this acknowl-
edgment (event £)?

(e) Draw a careful spacetime diagram of this situation,
showing the worldlines of the space station, the space-
ship, the radio signals, and events A through E. Be sure
to label all these items appropriately.

R2M.7 An air traffic control radar installation receives a
radar pulse reflected from a certain jet plane 280 ps after
the pulse was sent. The signal comes from a direction that
is 35" north of west and 5.5° up from horizontal. If the
sending of the outgoing pulse defines t =0, in a frame
fixed to the earth’s surface and oriented in the usual way
with the installation at the spatial origin of the frame, then
what are the spacetime coordinates [t, x, v, z] of the plane
at the instant it reflects the pulse? (Hint: Radar pulses are
electromagnetic waves, so they travel at the speed of light.)

R2M.8 Imagine you are in a spaceship prospecting for
asteroids. Your radar installation receives a pulse reflected
from a nice large asteroid 1.24 s after it was sent, and the
returning signal comes from a direction 25 to the right
and 18" up from the direction your ship is facing. Assum-
ing that the direction your ship is facing defines the +x
direction, and the up direction is the +z direction, and that
we define t = 0 to be when the pulse is sent, what are the
spacetime coordinates of the asteroid at the time the
pulse is reflected? (Hint: Radar pulses are electromagnetic
waves, so they travel at the speed of light.)

a1

R2M.9  (Seeing is not the same as observing!) Suppose at time

t = 0 you (on earth) simultaneously recerve a message (sent
via a laser transmission) emitted (event A) by the outpost
on Venus (which is 180 Gm away at the time) and a mes-
sage emitted (event B) by the outpost on Mars (which is
270 Gm away). Each message requires an urgent response
that must be received no more than 40 min after it was
sent. Which message do you respond to first?

R2M.10 (Secing is not the same as observing!) Imagine that a

bullet-train running at a very high speed passes two track-
side signs (A and B), as shown in the aerial view below.

Train

- — —
Sign B 80 ns 45ns Sign A
60 ns
JL()

Let event A be the passing of the front end of the train by

sign A, and let event B be the passing of the rear end of the

train by sign B. An observer is located at the cross marked
by an O in the diagram.

(a) This observer sees (that is, receives light with her eyes)
event A to occur at time t = 0 and sees event B to occur
at time ! = 25 ns. When does she observe these events
to occur? That is, what would a clock present at sign A
read at event A, and what would a clock present at sign
B read at event B if these clocks were correctly synchro-
nized with the clock at O?

(b) In what way is the diagram misleading about the
implied time relationship between events A and B?
(Hint: Remember that the clocks at signs A and B must be
synchronized with the clock at O in such a way that they
would read the speed of a light signal traveling between
them and O to be 1s/s. Given this, the distance between O
and A, and the time that light from event A reached O, can

you infer when event A must have happened?)

R2M.11 After reading this chapter, your roommate exclaims,

“Relativity cannot be right! This chapter claims that events
that are simultaneous in one inertial reference frame are not
simultaneous in another. Yet it is clear that two events are
really simultaneous or really not simultaneous! This is not
something that different observers could disagree about;
or if they do, one has to be right and the other wrong!”
Carefully and politely argue to your roommate that rela-
tivity could be right even so, and pinpoint the assumption
that your roommate makes that could be debated. (Hint:
You might be able to use the geometric analogy to good
effect. Two different surveyors set up differently oriented
coordinate systems on a plot of land. In one system, two
rocks both lie along the x axis; in the other, they do not. Is
this a problem?) :
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Rich-Context

R2R.1  Imagine that an advanced alien race, bent on keep
ing humans from escaping into the galaxy, places an
opaque spherical force field around the solar system. The
force field is 6 light-hours in radius, is centered on the sun,
and is formed in a single instant of ime as measured by
synchronized clocks in an inertial frame attached to the
sun. That instant corresponds to 9 p.m. on a certain night
in your ime zone. When does the opaque sphere appear
to start blocking light from the stars from your vantage
point on earth (8.33 light-minutes from the sun)? Does the
opaque sphere appear all at once? If not, how long does it
take for the sphere to appear, and what does it look like as
it appears? Describe things as completely as you can. (This
is inspired by the novel Quarantine by Greg Egan.)

R2R.2 Two radar pulses sent from the earth at 6:00 a.m.
and 8:00 a.m. one day bounce off an alien spaceship and are
detected on earth at 3:00 p.m. and 4:00 p.m. (but you aren’t

R2R.A

Chapter R2  Coordinate Time

u do not observe them to blink simultan,.
ght blinks first, and how much in advance o4
k? Explain carefully

Explain. If yo
ously, which li
the center light does it blin

A train is moving due cast at a large constant spesd
on a straight track. Suppose that Harry is riding on
train exactly halfway between its ends. Sally is sitting by
the tracks only a few fect from the train. Let the eveny o4
Harry passing Sally be the origin event O in both frames,

At this same instant, both Harry and Sally receive the lighy
from lightning flashes that have struck both ends of the
train, leaving scorch marks on both the train and the track

Harry concludes that since he is in the middle of the tra,
and he received the light from the strikes at the same time,
the lightning strikes must have occurred at the same time
in his reference frame. Is he right? If not, which strike (the
one at the front of the train or the one at the rear) reaily
happened first? Can Sally conclude from her seeing the
flashes at the same time that the strikes happened at the
same time in the ground frame? Why or why not? If not,
which strike happened first in her frame? (This problem

sure which reflected pulse corresponds to which emitted
pulse). Is the spaceship moving toward earth or away? If
its speed is constant (but less than ¢), when will it (or did it)
pass by the earth? (Hint: Draw a spacetime diagram.)

is adapted from one of Einstein’s own illustrations of the
implications of the frame-independent speed of light )

R2R3  (Seeing is not the same as observing!) Imagine you Advanced

are sitting immediately adjacent to a set of train tracks. A
certain bullet-train running at a speed of 0.5 (in SR units)
on these tracks has three blinking lights, one at each end,
and one in the middle. The end lights are 200 ns of distance
from the middle light according to measurements in your
ground frame. As the train’s center passcs you (a negli-
gible distance away), you see all three lights blink simul-
taneously. Do you observe them to blink simultaneously?

R2A.1 A meter stick moves at a speed of 0.5 (in SR units)
along a line parallel to its length that passes within 1 m of
a camera. The camera shutter opens for an incredibly brief
instant just as the meter stick’s center passes closest to the
camera. Explain why the marks on the meter stick do not
look equally spaced in the resulting picture, and describe
what they look like. (Ignore length contraction.)

ANSWERS TO EXERCISES
R2X.1 The distance between the earth and the moon in
seconds is
1000 pr 1's
384,000 =128 R2.5
w‘llpﬂ 3.0 x 10" o - %)
So the clock on the moon should read 1.28 s after noon if it
is synchronized with the earth clock.

R2.6  With the new worldline (shown in color), figure
R2.4 becomes figure R2.14. Note that the particle world-
line has a slope of =5 on the diagram, since it moves 1 s of
distance in the —x direction per 5 s of time.

Figure R2.14
Figure R2.4 with the new worldline.

R2X.3 Consider events C and D with x coordinates x. and
xp, respectively, in the Home Frame and x{ and x7, respec-
tively, in the Other Frame. According to the Galilean trans-
formation equations (equations CA), we have

xp = x¢= (xp = Bly) — (xc = Bic)
= (xp = xc) = Bltp — ko)

If Ax* = xj, — x( = 0, then
0==-x)=Bllo=t) = xp-x=p(to~1) (R27)

(R2.6) Soif At'= At =1, ~ tc # 0, then Ax = x;, — x. # 0 as well
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The Spacetime
Interval

Chapter Overview

Introduction - o
Chapter R2 provided conceptual foundations for our discussion of time in the theory
of relativity. In this chapter, we begin building quantitative links bctwom various
methods of measuring time by introducing the metric equation, an equation that is
essentially the Pythagorean theorem for spacetime.

Section R3.1: The Three Kinds of Time

The analogy to a tape measure in spacetime is a single clock that moves in such 3
way as to be present at both events. Any clock that is present at both of two events
measures a frame-independent proper time AT (short for proprictary time) along its
particular worldline. If the worldline happens to be the unique conslanl-vvlmny
worldline between the events (so that the clock is inertial), the clock also measures
the frame-independent spacetime interval As between the events. Proper time along
a worldline is analogous to the pathlength along a path on a plane, and the spacetime
interval between events to the distance between points on a plane. Table R3.1 in the
chapter summarizes the definitions of the three kinds of time and table R3.2 summa-
rizes the geometric analogy between spacetime and plane geometry.

Note that the spacetime interval As between two events is always also a coord;-
nate time At between those events (as measured in the particular inertial frame where
the events happen at the same place) as well as a particular proper time A7 (measured
between the events along a worldline that happens to be straight).

If the analogy is true, it should not be any more surprising that Atf, A7, and As
between two given events have different values than that Ay, the pathlength, and the di.-
tance |Ad | have different values between two given points. Experimentally, these times
are in fact different.

Section R3.2: The Metric Equation

Given the coordinate-dependent coordinate differences Ax and Ay between two
points on a plane, we can use the Pythagorean theorem to compute the coordinat -
independent distance |Ad| = (AxX" + Ay’)'” between those points. Our goal in this
section is to find the analogous equation that links the frame-dependent coordinate
differences At and |Ad | between two events in a given inertial reference frame with
the frame-independent spacetime interval between those events,

A light clock measures time by counting round trips of a flash of light bouncing
between two mirrors a given distance L apart. In the clock’s rest frame, a round trip
takes a time 2L. Now imagine a light clock that moves at a constant velocity in the
Home Frame with its beam path perpendicular to its velocity. Let event A be the event
of the flash bouncing off one of the mirrors, and let event B be the event when the flach
hits the same mirror again. The light clock itself is present at both events and is inertial,
so the time 2L it measures between the events is the spacetime interval As between
these events. In the qu'cq Frame, however, the light flash follows a zigzag path of
length 2IL" + (1 ad| l] ", where |Ad| is the distance between the events in that
frame. Since the speed of light is 1 in the Home Frame, this is equal to the coordinate

..'..............,'...................................Q......
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s .\!.bvtwum d,wﬂmb in that frame, so At = 2|L: +1! fAJ”:] "> As. If we rear-
range terms in this equation, we arrive at the metric equ lon Lo spacetime

—_— A P S s S e

; A>‘=AF-|A3|:=AF—AE—Ay:-A:: (R35)

o Purpose: This equation specifies the frame-independent spacetime interval As
between two events, given their coordinate separations At, Ax, Ay, and Az in
' any given inertial frame. '
. l,umlahon.s: Thisleqt.t_ation applies only in an inertial reference frame.
« Notes: This equation is to spacetime what the Pythagorean theorem is to space.

We havc proved this equation only for cases where At > |Ad], but in fact it yields
a frame-independent value of As” for all pairs of events, as we will see in chapter R7.

Section R3.3: About Perpendicular Displacements

The proof of the metric equation assumes that the distance between the light clock
mirrors is L in both the clock frame and the Home Frame. An argument by contradic-
tion presented in this section shows that the principle of relativity requires that the
magnitude of any displacement measured in two different inertial reference frames
have the same value in both frames as long as the displacement is perpendicular to
the direction of the frames’ relative motion.

Section R3.4: Evidence Supporting the Metric Equation
Muons are subatomic particles that decay with a characteristic half-life of 1.52 ps as
measured in their rest frame, as if they had an internal clock telling them when to
decay. We can measure the time that the internal clocks of a batch of muons mea-
sure as they move between two detectors by observing the fraction of muons that
decay. Since these muons are present at both detection events, their clocks measure
the spacetime interval As between the events. Observers in the detector frame can
measure the coordinate time At and distance |Ad | between the detection events. This
section describes a muon experiment of this type that unambiguously supports the
predictions of the metric equation.

Section R3.5: Spacetime Is Not Euclidean

The most important difference between the metric equation and the Pythagorean
equation is that the former has minus signs between terms, while the latter has only
plus signs. This implies, for example, that As = 0 if At = |ad| for a given pair of
events, even though the events might look like two distinct points on a spacetime
diagram. This is analogous to two points at 90° north latitude that look distinct on a
flat map of the earth, but are in fact a single point (the north pole) on the real earth. Just
as a flat map cannot accurately represent the non-Euclidian geometry of the earth, so
a flat spacetime diagram cannot accurately represent the non-Euclidian geometry of
spacetime: a pair of events whose separation on a spacetime diagram may look larger
than that of another pair may in fact have a smaller spacetime interval between them.

Section R3.6: More About the Geometric Analogy

In two-dimensional plane geometry, the set of all points equidistant from a given
point is a circle. But the minus signs in the metric equation mean that the set of all
events that are the same spacetime interval from a given event is a hyperbola.

Section R3.7: Some Examples

This section presents examples that illustrate applications of the metric equation.

1900000 06080 0009 006006060 0600000 0060006000000 060000¢0 IR RGeS 8600600680060 04009000
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Proper time depends on the
clock worldline

Chapter R3  The Spacetime Interval

R3.1  The Three Kinds of Time

In chapter R2, we saw that we can measure the separation between two points
on a plane in three different ways: (1) We can measure ‘_ht‘ north-south
coordinate separation Ay between those points in a suitable Cartesian coord;.
nate system; (2) we can measure the pathlength Af between those points along
some defined path connecting them; or (3) we can measure the distance
|Ad| between those points along the unique straight-line path between
them. That these completely different methods of measuring the separation
between the points vield numerically different results should not be, and is
not, surprising: it is part of our common experience.

In this chapter, we will see that, analogously, we can measure the time
separation between two events in spacetime in three fundamentally differeny
ways. We have already seen that the coordinate time At between two events in
spacetime, as registered by synchronized clocks in a given inertial reference
frame, is analogous to the north-south coordinate separation Ay between
two points, In particular, Ay and At are both frame-dependent quantities whose
numerical values depend on our free choice of coordinate-axis orientation in
the case of Ay or inertial reference frame in the case of At. On the plane, in
contrast, the pathlength and distance are coordinate-mdependent quantitics
because we can measure them directly (using a tape measure) without refer-
ring to any particular coordinate system. How might we measure the time
separation between two events in spacetime in an analogous way?

A tape measure stretched between two points marks off the distance
between those points and presents a scale that can be laid right next to the
two points for easy and unambiguous reading. Every observer, no matter
what coordinate system they prefer, will look at the tape measure and see
the same result as every other observer. The analogy for time is a clock that
travels between the two events in such a way so as to be physically present at
each event. Like the tape measure, this clock marks off the time between those
events, and since the clock’s face is right there at each event, everyone looking
at that clock will agree as to the value it displays as each event happens, and
thus will agree as to what this particular clock has registered as the time
interval between those events: this quantity is therefore frame-independent
We call a time interval measured in this manner a proper time:

Any time between two events measured by a clock present at both
events is a proper time AT between those events. The numerical
value of a proper time measured by a given clock between two given
events is a frame-independent quantity.

(Note that the adjective “proper” can be misleading here. In English, ths
word has fairly recently come almost exclusively to mean “appropriate,” or
“correct in manners.” But the word used to mean “proprietary,” and th11
is the meaning intended here: proper time is the time between the events
measured specifically by the particular clock in question. Path time might be a
more appropriate phrase in current English.)

There is, however, one thing that the proper time between two events
might well depend on other than the events themselves. It might depend
on the worldline that the clock follows in traveling from one event to the
other, just as a pathlength measured by a tape measure depends on the path
along which it is laid (see figure R3.1). We will see in chapter R4 that the
worldline-dependence of proper time is a straightforward consequence of
the principle of relativity and is indeed an experimental fuct. For now, it 1s
enough to see that this path dependence is a possibility suggested by the
geometric analogy.



R3.1 The Three Kinds of Time
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Now, when measuring distances on a plane, we distinguish the path-
length between two points measured along a certain path and the distance
between those points as follows. “Distance” is the pathlength measured
along a special path: the unique straight-line path between the two points.
Because the straight-line path is unique, the distance between two points
along a straight line is a unique number reflecting something definite about
the separation of those points in space. With this in mind, consider a clock
present at two events in spacetime that is inertial (that is, an attached first-law
detector registers no violation of Newton'’s first law). Such a clock follows
a unique worldline through spacetime between the events: observed in any
inertial frame, the clock travels between the events in a straight line, and
since there is only one value of a constant velocity that will be just right to
get the clock from one event to the other, the clock’s velocity along that line
is also uniquely determined.

The spacetime interval As between two events is the proper time
measured by an inertial clock present at both events. This quantity
is a unique, frame-independent number that depends on the separa-
tion of the events in space and time and nothing else.

It is important to note that the definitions of coordinate time, proper time,
and the spacetime interval between two events overlap in certain special cases.
The spacetime interval between two events is a special case of a proper time
between two events, just as the distance between two points is a special
case of the pathlength between two points. An inertial clock present at both
events also measures the coordinate time between those events in the clock’s
own reference frame, since the time interval measured between two events
by a clock or clocks at rest in any inertial reference frame is a coordinate time
by definition. So the spacetime interval between two events is a special case
of a proper time and a special case of a coordinate time (see figure R3.2).

All coordinate Figure R3.2

times At

Asm

All proper
times A7

5 é is the unique
time measured in gmper time measured
that unique frame vy a clock traveling at

where a single lat-
tice clock is present
at both events

just the right constant
velocity to be present
at both events
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Figure R3.1
(a) A clock traveling along a
given path in such a way that it is
present at both events measures
the proper time between them
(b) The value of this proper

time may depend on the clock’s
worldline through spacetime,
just as the analogous pathlength
between two points depends

on the path along which it is
measured

What is the spacetime
analogue of distance?

Definition of the spacetime
mterval between events

Spacetime interval is a proper
time and also a coordinate
time

Let points in the left circle represent the set of all possible
coordinate times At that observers in inertial frames

moving at various different relative velocities might measure
between two given events. Let points in the right circle
represent the set of all possible proper times AT measured
between the same events by clocks present at both

events but moving between them along various different
worldlines. The single point in common between these sets
is the spacetime interval As between those two events.
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Chapter R3

[WableR3.1  Three kinds of time

The Spacetime Interval

Coordinate Time

Proper Time

Spacetime Interval

Definition

The time between two
events measured in an
inertial reference frame
by a pair of synchromized
clocks, one present at
each event. (If both
events happen to occur
at the same place, a
single clock suffices.)'

The time between two
events as measured
by a single clock
present at both events.
(Its value depends on
the worldline that the
clock follows in
getting from one
event to the other.)

The time between two events
as measured by an inertial
clock present at both events
(Because an inertial clock
follows a unique worldline
between the events, the space-
time interval’s value is unigue
for a given pair of events.)

Conventional symbol At
Frame-independent?  No

Geometric analogy

Spatial coordinate
differences

AT As
Yes Yes
Pathlength Distance

. . . .
Note: Alternatively, the coordinate time difference between two events might be inferred from measurements of the
spacetime coordinates of these events using the radar method

[TableR3.2  The geometric analogy

Plane Geometry

Spacetime Geometry

Map «+  Spacetime diagram

Points +~+ Events

Paths or curves «  Worldlines

Coordinate systems «+  Inertial reference frames

Relative rotation of coordinate systems «  Relative velocity of inertial reference frames
Differences between spatial coordinate values  «=  Differences between spacetime coordinate values
Pathlength along a path «+  Proper time along a worldline

Distance between two points «+  Spacetime interval between two events

L

Tables R3.1 and R3.2 summarize the three kinds of time and the now-
complete geometric analogy, respectively.

R3.2
Even though we can measure the distance between two points on a plane
using a tape measure, we can also use the Pythagorean theorem to calculate

the distance |Ad | between two points on the plane given the coordinate dis-
placements Ax and Ay between the points in any given coordinate system:

lad| = A¥ + Ay’ (R3.1)

The Metric Equation

Note that while the values Ax and Ay between two points depend on
one’s choice of coordinate system, the calculated distance |Ad | does not.

An analogous formula links the coordinate time At and spatial coordi-
nate displacements Ax, Ay, and Az between two events measured in any
inertial reference frame with the frame-independent spacetime interval As



R3.2 The Metric Equation

between those events. This equation, which we call the metri equation,
enables us to escape the “relativity” of inertial reference frames and quantify
the separation of the events in absolute (frame-independent) terms. Our gua’l
in this section is to derioe this equation from the principle of relativity.

The following derivation is the very heart of the special theory of rela-
tivity. The metric equation is the key to understanding all the unusual and
interesting consequences of the theory of relativity. You should make a spe-
cial effort to understand this argument lhuruughl\"v

To make the argument casier, consider a SPV\.'I'-\' kind of clock we call a
light clock (figure R3.3 shows an idealized version). A light clock consists of
two mirrors a tixed distance L apart and a flash of light that bounces back
and forth between the mirrors. As the light flash bounces off the bottom mir-
ror, a detector in that mirror sends a signal to an electronic counter. The clock
dial thus essentially registers the number of round trips that the light flash
has completed. Since the speed of light is defined to be 1 second of distance
per second of time in any inertial frame, we should calibrate the clock’s face
to register a time interval of 21 (where L is expressed in seconds) for each
“tick” of the clock (that is, cach time the light flash bounces off the bottom
mirror): the clock will then read the correct time as long as it is inertial.

Now consider an arbitrary pair of events A and B. Let the coordinate
time interval and spatial distance between these events (as measured in the
Home Frame) be At and |Ad| = (Ax" + Ay’ + AZ')'"7, respectively. Suppose
we have a light clock moving between these events (with its beam path
oriented perpendicular to its direction of motion) at just the right constant
velocity to be present at both events. To simplify our argument, let us also
suppose that the length L between the light clock mirrors has just the right
value so that events A and B happen to coincide with successive ticks of the
light clock (in principle, we could always adjust L to make this true for the
two given events). The situation is illustrated in figure R3.4 below (the figure
is repeated on the next page for your convenience).

In the inertial frame of the light clock, both events occur at the clock face,
and the clock’s light flash completes exactly one round trip. The time inter-
val recorded by this clock between events A and B is thus exactly 2L. Since
this inertial clock is present at both events, it registers the spacetime interval
between these events, so As = 2L.

Path of light flash
[total length = 3|

2/12+ (21 Ad|F)

Light clock
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r - Upper mirror

|7 e Flash of hight

R S——

2L Lower mirror
- Counter
and dial
mechanism
Figure R3.3

Schematic diagram of a light
clock. Each “tick” of the light clock
represents the passage of a time
interval equal to 2L (in SR units)

Derivation of the metric
equation

[ ————— -

-

Synchronized clocks ® ’
in the Home Frame
Event A .o = : EventB = =
Figure R3.4

As the light clock moves from event A to event B in the Home Frame, its internal light flash will be

observed to follow the zigzag path shown.
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Event A ":‘
p———— lad| —
Figure R3.4

Synchronized clocks
in the Home Frame

Chapter R3  The Spacetime Interval

Path of light flash |

ltot;l_l length = H 3

2/ + (Hadlf) ,

o

EventB — -~

N

0 o

|ad|

(Repeated here for the reader’s convenience.) As the light clock moves from event A to event B in the
Home Frame, its internal light flash will be observed to follow the zigzag path shown.

The metric equation

On the other hand, in the Home Frame, each event’s time is registered
by the clock nearest the event. Since the events occur at different places, we
determine the coordinate time interval At between the events by comparing
readings from a puir_of clocks. In this frame, the light clock is observed to
move a distance |Ad| in the time interval At. An observer in the Home
Frame observes the light flash follow the zigzag path shown in figure R3.4.
As you can see from the figure, the total distance that the light flash travels
in the Home Frame is (according to the Pythagorean theorem)

2/ + (3]adlf = Varr + |adf = VeLy + adf (R32)

Since the synchronized clocks in the Home Frame must (by definition of
synchronization) measure the speed of light to be 1, the coordinate time inter-
val At registered on the pair of synchronized clocks in the Home Frame must
be equal to the distance that the light flash traveled between the events:

At=v/@Ly + |adl (R33)

But we saw on the previous page that the light clock registers the space-
time interval between the two events to be As = 2L. Substituting this into
equation R3.3 and squaring both sides yields

AP =AS+|Ad] or As=af-|adl (R3.4)

As |Ad]'= Ax' + Ay + AZ (where Ax, Ay, and Az are the coordinate dif-
ferences measured between the events in the Home Frame), we have finally

Ast = AF - |Ad|' = AF - A¥ - Ay - A (R35)

* Purpose: This equation specifies the frame-independent spacetime
interval As between two events, given their coordinate separations Af,
Ax, Ay, and Az in any given inertial frame.

¢ Limitations: This equation applies only in an inertial reference frame.

nid




R3.3 About Perpendicular Displacements

This extremely important equation links the trame-mdependent spacetime
interval As between any two events to the frame-dependent coordinate sepa-
rations Af, Ay, s_\v. and Az measured between those events i any arbitrary
mertial reference frame! Note that we have not sacrificed anything by using a
light clock in this argument: since the speed of light is defined to be 1 in any
inertial frame, any decent clock that we construct must agree with what the
light clock says. The only real limitation to our argument is that A must
be greater than [Ad | for the two events in question, so that it is possible for
alight flash to travel between the events. (Note that if At < IA.I [, then equation
R3.5 yields an imaginary value for As, an absurd result indicating that the con-
ditions of the proof have been violated. )

Since the spacetime interval As between two events in spacetime 1s
analogous to the distance [Ad|" between two points on a plane, the formula
As' = AF = Av — Ay’ - Az is directly analogous to the Pythagorean
theorem |Ad | = Ax* + Ay’. Note that the Pythagorean theorem also relates
a coordinate-independent guantity (the distance |Ad | between two points)
with quantities whose values depend on the choice of coordinate system (the
coordinate differences Av and Ay). Indeed, the formula for the spacetime
interval would be just like a four-dimensional version of the Pythagorean
theorem if it were not for the minus signs that appear. We will see that these
minus signs have a variety of interesting and unusual consequences.

We call equation R3.5 the metric equation. It is the link between our
human-constructed reference frames and the absolute physical reality of the
separation between two events in space and time. It is difficult to overem-
phasize this equation’s importance: virtually all the rest of our study of the
theory of relativity will be devoted to exploring its implications!

B3.3 About Perpendicular Displacements

The previous argument assumes that the vertical separation L between the
light clock’s mirrors is the same in both the light clock frame (where we
used it to compute the spacetime interval) and the Home Frame (where
we used it to compute the coordinate time). But how do we know this is
true? Since coordinate differences between events are generally frame-
dependent, what gives us the right to assume that mirror’s separation
has the same value in both frames? This is not a trivial issue, because in
chapter R6 we will see that observers in two different frames will disagree
about the length of displacements measured parallel to the line of the
frames’ relative motion.

In this section, however, I will argue that the principle of relativity directly
implies that if we have two inertial reference frames in relative motion along
a given line, any displacement measured perpendicular to that direction of
motion must have the same value in both reference frames.

The proof presented here will be a proof by contradiction. This kind of
argument is a bit tricky to follow, so pay attention. Here’s how it works. We
will assume that there is a contraction (or expansion) effect that applies to
perpendicular lengths and then show that the existence of such an effect con-
tradicts the principle of relativity. Turned around, this argument then implies
that if the principle of relativity is true, no such effect can exist.

Consider two inertial reference frames (a Home Frame and an Other
Frame) in standard orientation, so that the line of relative motion is along
the frames’ common x and x” axes. In each frame, we set up a measuring
stick along the y or v’ direction with spray-paint nozzles set 1.00 meter apart

51

What if L is not the same in
both frames?

Proof that distances measured
perpendicular to the line of
relative motion of two frames
is the same in both frames
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Figure R3.5

(a) The spray paint nozzles on the
Home Frame measunng stick are
1.00 meter apart in the y direction
as measured in that frame. They
point directly at their counterparts
in the Other Frame so that stripes
are painted on the Other Frame's
measunng stick as it moves by
The x axis points directly into

the plane of the paper here

(b) Similarly, the paint nozzles

on the Other Frame stick are

1.00 meter apart in that frame and
are pointed to paint stripes on the
Home Frame measuring stick as it
moves by.

Figure R3.6

If a contraction effect exists, then
the principle of relativity implies
that observers in each frame must
observe the other’s stick to be
contracted. (a) So an observer in
the Home Frame observes the
Home Frame stick to paint stripes
outside the Other Frame's nozzles
as the latter moves by (into

the plane of the drawing here).
(b) Similarly, an observer in the
Other Frame observes her or his
stick to paint stripes outside the
nozzles on the Home Frame’s stick
as the latter moves by (out of the
plane of the paper here).
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Home Frame view Other Frame view
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\
\
\
\
\
Im Paint .
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(a) (b)

(as shown in figure R3.5). Note that the common x and x"axes (which lie along
the line of the frames’ relative motion) are perpendicular to the plane of the
diagram: as the frames move relative to each other, one measuring stick
moves into the paper and the other out. The paint nozzles in each frame are
pointed toward the other frame’s measuring stick, so as the two measuring
sticks pass, they will spray-paint stripes on each other. '

Now suppose that some kind of frame-dependent contraction occurs so
that an observer in the Home Frame observes the Other Frame’s measuring
stick (which is moving relative to the Home Frame) to be vertically contracted,
meaning that an observer in the Home Frame measures the spray-paint
nozzles on that stick to be less than 1.00 meter apart. This in turn means that
the stripes painted by these nozzles will be less than 1.00 meter apart in the
Home Frame: they will be painted inside the nozzles on the Home Frame's
measuring stick. This also means that the nozzles on the measuring stick at
rest in the Home Frame must paint stripes on the stick in the Other Frame
which are outside the latter stick’s nozzles (see figure R3.6a).

Now, the principle of relativity requires that the laws of physics be
exactly the same in any inertial reference frame. This specifically means that
if you perform exactly the same experiment in two inertial reference frames,
you should get exactly the same result. There should be no way of experi-
mentally distinguishing the two frames. How does this principle apply here?

Home Frame view Other Frame view

|
Im <lm <lm Im
lf{ome 1 Other Home - Other
Frame Frame Frame _y Frame
stick stick stick - stick
(a) (b)



R3.4 Evidence Supporting the Metric Equation

In the Other Frame, it is the Home Frame stick that is moving, There-
fore, the 'prmcxple of relativity requires that if a frame-dependent contraction
effect exists, an observer in the Other Frame must measure the Home Frame
stick to be contracted, just as the Home Frame observer measured the Other
Frame stick to be contracted. This in turn means that the stripes painted by
the Other Frame stick will be outside the Home Frame stick’s nozzles, and
the stripes painted by the Home Frame stick will be inside the Other Frame
stick’s nozzles, as shown in figure R3.6b.

Now,.figum R3.6a and R3.6b describe a logical contradiction. In figure
R3.6a, stripes get painted on the Home Frame stick inside its nozzles. In
figure R3.6b, stripes get painted on the Home Frame stick oufside its nozzles.
These cannot be simultaneously true! The paint marks on the Home Frame
stick are permanent and unambiguously visible to all observers in every ref-
erence frame. They cannot be “inside” the nozzles according to some observ-
ers and “outside” to others. So ¢ither figure R3.6a or figure R3.6b can be true,
but not both. But the principle of relativity requires that both be true!

How can we resolve this conundrum? The only way is to reject the
hypothesis that got us into this trouble in the first place—that is, the hypoth-
esis that distances measured perpendicular to the line of relative motion of
the frames have different values in the two frames. If we assume that there is
no contraction (or expansion) effect operating between the frames, then there
is no problem with the principle of relativity. As shown in figure R3.7, both
sticks will paint stripes across each other’s nozzles. The situation is exactly
the same in both frames, and the contradiction disappears.

This argument forces us to conclude that

Any displacement measured perpendicular to the line of relative motion of
two inertial frames must have the same value in both frames.

This means that the distance L between the mirrors used in the deriva-
tion of the metric equation does in fact have the same value in the light clock
frame as it does in the Home Frame, so our derivation should be correct.

Exercise R3X.1

We will see in chapter R6 that a measuring stick is observed in a given refer-
ence frame to be contracted parallel to its direction of motion in that frame.
Explain why the argument above cannot exclude contractions or expansions
parallel to the line of motion. (Hint: What kind of stripes would the sticks
paint on each other if they moved relative to each other in a direction parallel

to their lengths?)

:83.4 Evidence Supporting the Metric Equation

Careful and compelling as the derivation of the metric equation in section
R3.2 may be, we as physicists should not simply accept such an equation
without some experimental confirmation. One of the classic experiments
testing the validity of the metric equation involves muons. A muon is an ele-
mentary particle that is a more massive version of the electron (see appendix
CA). Muons are continually generated in the upper atmosphere (at heights of
approximately 60 km) by the interaction of cosmic rays with atmospheric gas
molecules. Some of these muons stream downward toward the earth with
speeds in excess of 0.99 (that is, 99% of ¢).
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If we assume that no contraction
effect exists, then the contradic-
tion in figure R3.6 disappears

Implication: L is the same in
both frames in the proof of the
metric equation
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Description of muon
experiment that tests the
metric equation

Actual results support the
metric equation
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Now, muons are unstable, decaying after a short time into lighter par.
ticles. Muons at rest in a laboratory have a half-life of about 1.52 ps, which
means that if vou have N muons ata certain time, .lf ter 1.52 ps you will have
IN left; after another 1.52 pis, you will have IN left, and so on. A batch of
muons moving together can thus serve as a clock: to. determine how much
time has passed in the muon frame, all we need to do is measure the nUI.!lbq__-r
of remaining muons in the bunch. Imagine that each muon con@ms a built-in
clock, and that each time the clock “ticks,” the muon has a u'-rtmn small prob-
ability of decaying, a probability such that after 1.52 ps of ticks have passed,
one-half of the muons in a bunch will have decayed.

One can build a muon detector that counts the number of muons reach-
ing it from a particular direction and traveling ata parliclular qu-d. Suppose
we set up two detectors that register only muons lravelmg; vertically down-
ward at a speed of roughly 0.994 as measured in the earth’s reference fram}-,
We place one at the top of a mountain, another at the foot of the mountain
1907 meter (=6.36 ps of distance) lower, and in each case we count the num-
ber of muons the detector sees per unit time.

Let's follow a single muon that happens to go through both detectors,
Let event A be the event of this muon passing through the upper detector,
and event B be this muon passing through the bottom detector. The distance

IAJI between these events in the earth’s frame of reference is 6.36 ps in
SR units. The coordinate time interval At between these events measured in
the earth’s frame is simply the time required for a muon traveling at a speed
of 0.994 to traverse this distance: At = | Ad | /]| = 6.36 ps/0.994 = 6.40 ps.

Since our muon is present at each of these events by definition and moves
between them at a constant velocity of 0.994 downward, the clock inside this
muon measures the spacetime interval As between the events. If the Newto-
nian conception of time were true, the muon clock and earth clocks would
agree: As = At = 640 ps. This is 6.40 ps/1.52 ps = 4.21 muon half-lives, so
most of the muon’s co-moving siblings that make it through the top detector
would decay before reaching the bottom detector. Specifically, if N muons zo
through the top detector, then we expect to see N times ()'*' = N/18.5 make
it to the bottom detector (if the Newtonian assumption about time is true .

But if the metric equation is true, the spacetime interval between the two
events is As = (AF = |Ad[))* =[(6.40 ps)* = (6.36 ps)]'* = 0.714 ps. This
time, which is the time that our muon and its siblings measure between the
events, is only 0.714 ps/1.52 ps = 0.47 of a muon half-life, so most of the
muons’ internal clocks will nof signal that it is time to decay before they reach
the bottom detector. Specifically, if N muons pass through the upper detector
you can show that about N/1.38 should make it to the bottom detector.

Exercise R3X.2
Verify that (1" = 1/185and (£)'" = 1/1.38.

So the Newtonian conception of time predicts that the ratio of the number
of muons passing through the upper detector to the number passing through
the lower detector should be 18.5, while the metric equation predicts that it
should be 1.38. This is a substantial difference that can be casily measured.

This experiment was done in the early 1960s by D. H. Frisch and J. B. Smith
(Am. ]. Phys., vol. 31, p. 342, 1963). They reported observing the ratio to be
1.38 (within experimental uncertainties), thus confirming the metric equation
(and clearly excluding the Newtonian conception of time)



R3.5 Spacetime Is Not Euclidean

R3.5 Spacetime Is Not Euclidean

We have found the analogy between ordinary Euclidean plane geometry and
spacetime geometry to be illuminating, and this basic analogy will remain
quite helptul. Nevertheless, it is important at this point to describe some of the
important differences between Euclidean geometry and spacetime geometry due
to the minus signs in the metric equation As* = AF — Av' — Ay’ — Az’ that do
not appear in the corresponding Pythagorean theorem |Ad|* = A¥ + Av'.

One important difference concerns the representation of distances on a
map and spacetime intervals on a spacetime diagram. If one prepares a scale
drawing (for example, a map) of a town, the distance between points on the
map is proportional to the actual distance between those points in space. That
is, distances on the drawing directly correspond to distances in the physical
reality being represented. In figure R3.8a, for example, to determine the dis-
tance between City Hall and the Statue of the Unknown Physicist, one need
merely measure the distance (in inches) between the two sites on the map
shown there and multiply by the conversion factor (1000 m = 1 in.). It doesn’t
matter how the line between the two sites is oriented or where the sites are
located on the drawing;: the distance in the physical space being represented
by the map is always proportional to the distance measured on that map.

However, it is not true that the displacement between two points on a
spacetime diagram is proportional to the spacetime interval between the cor-
responding events. In fact, the spacetime interval between two events sepa-
rated in space can even be zero (see figure R3.8b)!

A spacetime diagram thus may accurately display the spacetime coor-
dinates of various events, but the distances between the points representing
those events on the diagram are not proportional to the actual spacetime
intervals between those events in spacetime.

This is very strange, and it may seem particularly strange that two events
(such as A and C in figure R3.8b) can occur at different places and times and
yvet have zero spacetime interval between them. Nonetheless, there's a useful
analogy with something you may have seen before. Consider a map of the
world where the lines of longitude and latitude are drawn as equally spaced
straight lines (see figure R3.9). Have you ever noticed how the continents’
shapes and sizes appear very warped near the north and south poles on such
maps? For example, look at Antarctica. It looks huge and seems to be shaped
like a strip. But in fact it is not so large, and it has a nearly circular shape.
Its size and shape are quite distorted by the the map. The shapes of Green-
land and northern Canada are quite distorted as well. Indeed, the two points
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The distance between two
points on a map ot a flat space
is proportional to the actual
distance in space

The distance between events
on a spacetime diagram is not
proportional to As

Analogy: distances on a flat
map of curved earth

Figure R3.8

(a) A map of Askew (1 in = 1 km),
The actual distance between

City Hall and the Statue of the
Unknown Physicist is 852 m. The
lengths of both colored arrows on
the map is thus 0.852 in.

(b) Both events B and C are the
same distance from event A on
the spacetime diagram, but the
spacetime interval between A
and B is actually 4 s, while the
spacetime interval between A and
Cis zero (since At = Ad here).
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Figure R3.9

A Platte Carre projection map
of the world, where the lines of
longitude are represented as
equally spaced straight lines.

The problem is that the
geometry of the earth is not
the same as that of the map

Similarly, the geometries of
spacetime and a spacetime
diagram are different

Chapter R3  The Spacetime Interval

marked @ and b on the map are both at 90° north latitude—that is, at the norih
pole. Though these points are separated by a large distance on the map, the
physical distance between these points on the carth’s surface is actually zero!

Why does this map not accurately represent the distances between points
on the earth’s surface? The problem is that the earth’s surface as a whole
is that of a sphere, which has a very different geometry from the Euclidean
geometry of a flat sheet of paper. For example, on a sheet of paper the inte-
rior angles of a triangle always add to 180" and parallel lines never intersect.
But on the earth’s surface, the interior angles of a triangle add to more than
180" (consider a triangle with one vertex at the north pole and two vertices
at the equator), and initially parallel lines may converge or diverge (consider
lines of longitude, which are parallel at the equator!). Because of these tunda-
mental geometric differences between the surface of the earth and the sheet
of paper, any flat map of the earth will necessarily be distorted: one cannot
make a map of the surface of the earth on a flat sheet of paper such that dis-
tances on the sheet correspond to actual distances on the earth.

Similarly, one cannot draw a spacetime diagram so distances between
points on the drawing are proportional to the spacetime intervals between
the corresponding events. Like the earth’s surface, spacetime’s geometry dif-
fers from that of the flat paper on which a spacetime diagram is drawn. The
minus signs in the metric equation are symptomatic of this difference

Just as you would not expect a flat map of the earth to accurately rep-
resent distances on the earth’s surface, don’t expect a spacetime diagram to
accurately represent the spacetime intervals between events. A spacetime
diagram displays the coordinates of events and the worldlines of particles,
nothing more. You can always calculate the spacetime interval between two
events from their coordinates if necessary.

R3.6  More About the Geometric Analogy

In spite of this, we can further extend the analogy between the geometry of a
plane and the geometry of spacetime by exploring the similarities (as well as
differences) in how the metric equation describes the geometry of spacetime
and how the Pythagorean theorem describes the geometry of a plane.

The most important thing about both equations is that they enable
us to calculate an absolute quantity (As or [Ad]) in terms of franu-dép-ndmt
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5m)

Circle ¥* + y*

) We can find a coordinate system in
and B happen to have coordinate which A and B lie along the vertical
@ separations Av = +4m, Ax = 43 m. axis (that is, AX = 0). In this unique
system, the coordinate separation
AY is equal to the distance between

In this coordinate system, points A

1
,m we twist the axes further clockwise
| relative to the underlying space, we
| can find a coordinate system where
Ay =2mand AX = =46m.In
any system, B will lie somewhere
along the circle shown
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We can find an inertial frame in
which A and B occur at the same
place (that is, AX = 0). In this
unique system, the coordinate time
AT is equal to the space-time

In this inertial frame, the events A
and B happen to have coordinate
separations Af = 455, Av = +3 5.

(a)

interval As between the points, ©

If we check frames moving even faster
to the right relative to the onginal {
frame, we can find an inertial reference |
frame where AT = +64sand AX =

-5 5. In any frame, B will lie somewhere
along the hyperbola shown

Figure R3.11 b)

coordinate differences measured in an arbitrary inertial frame or coordinate
system. This similarity is illustrated in figures R3.10 and R3.11. Figure R3.10
shows the same pair of points on the plane (A and B) that are 5 meters apart,
plotted in various coordinate systems having different orientations with
respect to “north.” Note that if we set up the coordinate systems so that point
A is at the origin, then point B in each coordinate system lies somewhere on
the circle defined by the equation x* + i = constant | Ad |, where | Ad | is the
squared distance between the points (since |Ad | is the distance between the
points in all coordinate systems). In these drawings, I have kept the axes of
each coordinate system vertical and horizontal, and rotated the space con-
taining the points A and B “underneath” these coordinate axes: the points A
and B are meant to be the same physical points in all the diagrams.

Similarly, figure R3.11 shows a pair of events (A and B) separated by a
spacetime interval of 4 s, plotted on spacetime diagrams drawn by observ-
ers in different inertial frames. If we choose A to be the origin event in these
frames, then event B lies somewhere on the curve defined by £ — x* = con-
stant = As’, where As’ is the frame-independent squared spacetime interval
between the events. Such a curve is a liyperbola, as shown. (Note that we are
assuming Ay = Az = 0 for these two events.) Again, remember, that these
spacetime diagrams are meant to show how different observers would plot
the same physical events A and B on their various diagrams.

When viewed in different
coordinate systems, point B
always lies somewhere on a
circle around point A

When viewed in different
reference frames, event B lies
somewhere on a hyperbola
about event A



Companing the magnitudes
of the distance and spacetime
mterval with coordinate
separations
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The point is that the set of all points a given dist.ancc from t?u: Origin on
form a circle, but the set of all events a given spacetime interva)
from the origin event in spacetime form a h_\'p(frbolnT The nfa.»un but,h Curves
aren’t circles is that the metric equation has minus signs th.lt.docsn t appear
in the Pythagorean relation. But there is a nice unc-tu-ofw correspondence
between circles in plane geometry and hyperbolas in spacetime geometry.

Note that one consequence of the difference between the metric equa-
tion and the Pythagorean relation is that in figqn‘ R310 we see that the
north-south coordinate separation between a pair of fmlnts is dl\\"'.l)'s less
than or equal to the distance between the points (the “hypotenuse on the
diagram): Ay = |Ad|. In figure R3.11, though, we see that the coordmatc time
At between a pair of events is always greater than or equal to the spacetime
interval As between them: At = As even though the “hypotenuse” that rep-
resents As on the diagram looks larger.

the plane

33.7 Some Examples

The following examples illustrate some applications of the metric equation

o

Example R3.1

Problem: A firecracker explodes. A second firecracker explodes 25 ns away
and 52 ns later, as measured in the Home Frame. In another inertial frame
(the Other Frame), the two explosions are measured to occur 42 ns apart in
space. How long a time passes between the explosions in the Other Frame?

Solution The key in this problem is to recognize that the spacetime interval
between the two explosion events is frame-independent. That is, if we calcu-
late it using the metric equation in the Home Frame, we must get the same
answer we would get if we calculated it in the Other Frame. That is,

AP -|adl = as' = (ary - |ad'f (R36)
Solving this equation for the unknown At’ yields
(Ary = Af - |adl’ + |ad’[ = (52ns)’ - (25 ns)’ + (42 ns)* = 3800 ns’
At = V3800 ns’ = 62 ns (R3.7)

Exercise R3X.3

Suppose two events that are separated by 30 ns of distance in the Home
Frame are also simultaneous in that frame. If in the Other Frame, the events
are separated by 10 ns of time, what is their spatial separation in the Other
Frame according to the metric equation?

Example R3.2

Sta -

& oo

Problem: A certain physics professor flecing the wrath of a set of irate stu-
dents covers the length of the physics department hallway (a distance of
about 120 ns) in a miraculous time of 150 ns as measured in the frame of
the carth. Assuming the professor moves at a constant velocity, how much
time does the professor’s watch measure during the trip from one end of the
hallway to the other?
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Solution Part of the trick in many relativity problems is to rephrase a
word problem in terms of events. In this case, let event A be the pm[c.msur
entering the hallway and event B be the professor’s expeditious departure
from the otherend. In the reference f rameof the earth, these events occura time
At =150 ns apart and a distance |Ad | = 120 ns apart. The professor’s watch,
however, is present at each of the events, so that watch registers the spacetine
interval between these two events. Therefore, by the metric equation, the pro-
fessor’s watch reads s

As* = AP = |Ad[* = (150 ns) — (120 ns)’ = 8100 ns?

As = /8100 ns’ = 90 ns (R3.8)
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Problem: (A first glance at the “twin paradox”.) A spaceship departs from the
solar system and travels ata constant speed to the star Alpha Centauri 4.3 light-
years away, then instantaneously turns around (never mind about the impos-
sible acceleration!) and returns at the same constant speed. Assume the trip
takes 13 years as measured by clocks here on earth. How long does the trip take
as measured by clocks on the spaceship?

Solution Again, we need to translate the word problem into a problem
about measuring the time between events. Let event A represent the ship’s
departure from the solar system, event B its arrival at Alpha Centauri, and
event C its return to the solar system (see figure R3.12). A clock in the space-
ship does nof measure the spacetime interval between events A (departure
from the solar system) and C (return to the solar system) even though the
clock is present at both events. This is because the clock is accelerated when
the spaceship turns around, and so the clock is not inertial. To find the total
elapsed time registered on the ship clock, we can, however, consider each leg
of the trip separately. The ship’s clock does measure the spacetime interval
between events A and B, and it also measures the spacetime interval between
events B and C, as it is inertial during each leg of the trip and is present at the
events in question. The total time registered by the ship’s clock is thus the
sum of the spacetime intervals between A and B and between B and C.

We can use the metric equation to compute these spacetime intervals from
the coordinate differences for these events measured in the earth’s frame.
Events A and B occur At = 6.5 y apart in time and a distance [Ad|= 4.3 y
apart in space. The spacetime interval between these events is

Asy=1/(65y) —(43y) =49y (R3.9)
The spacetime interval between events B and C is the same. The total elapsed
time for the trip as measured by a clock on the ship is thus 2(49y) =98 y,
which is somewhat shorter than the time of 13 y measured by clocks on earth.

Note that the line on the diagram connecting points A and B looks lon-
ger than 6.5 y, but the spacetime interval that this line represents is actually
shorter than 6.5 y. This 's an illustration of the issue discussed in section R3.6.

Example R3.3
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solar system

Figure R3.12

Alpha Centauri

Spacetime diagram of a trip to
Alpha Centauri and back
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v VIl Woe T,
D_V!O-MINUTE PROBLEMS _-,_-;*,g{ o
R3T1 A person nding a merry go-round passes very A. B0s
close o a person standing on the ground once (event A) B. 58s
and then again (event B). Assume the ground isan inertial C. 50s
frame and that the nder moves at a constant speed. D. 40s
E. 20s

(@) Which person’s watch measures a proper time AT
between events A and B?

(b) Which person’s watch measures the spacetime interval
As between those events?

(¢) Which person’s watch (if any) measures the coordinate
time Af between those events in some inertial frame?

A. The rider in the merry-go-round

B. The person standing on the ground

C. Both

D. Neither

R3T2  Aspaceship departs from the solar system (event A)
and travels at a constant velocity to a distant star. It then
returns at a constant velocity, finally returning to the solar
system (event B). A clock on the spaceship registers which
of the following kinds of time between these events?

A. Proper time
B. Coordinate time
C. Spacetime interval

D. Proper time and spacetime interval

E. Coordinate time and spacetime interval

F. All three

R3T3  Alice bungee-jumps from a bridge above a deep
gorge. Bob watches from the bridge. Let event D be Alice's
departure from Bob's location on the bridge, and event R be
her return to Bob's location on the bridge. Carol observes
these events from a a train passing over the bridge, and
uses synchronized clocks on the train to measure the time
between Alice’s departure and return.

(a) Which person’s watch or clocks register(s) a proper
time between events D and R?

(b) Which person’s watch or clocks register(s) the space-
time interval between those events?

(¢) Which person’s watch or clocks register(s) a coordinate
time between those events in some inertial frame?

A. Alice

B. Bob

C. Carol

D. Alice and Bob

E. Bob and Carol

F. Alice and Carol

T. Al three observers

R3T.4 The spacetime interval As between two events
can never be larger than the coordinate time At between
those events as measured in any inertial reference frame.

TorkF?

R3T5 Two events occur 5.0 s apart in time and 3.0 s apart
in space. A clock traveling at a speed of 0.60 can be present
at both these events. What time interval will such a clock
measure between the events?

F. Other (specity)

R3T6 Consider the events A, B, C, and D shown in the

spacetime diagram below.
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(a) What is the spacetime interval between events A and B?
(b) Between A and C?

(¢) Between Aand D?

Os

25

3s

4s

5s

Other (specify)
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R3T.7 Consider the spacetime diagram below. Let the

spacetime interval between events O and A be As., and
let the spacetime interval between events O and B be -
Which of these two spacetime intervals is larger? (Assume
that the v and = coordinates of all these events are zero |

t 1
Al .l‘()‘,‘ > A.\" " l
|

B B. Aspp < Aspy
C. Qspp = Bspy

D. There is no way
to tell from this
diagram.

o’ x

R3T.8  Aninertial clock present at two events always mea-
sures a shorter time than a pair of synchronized clocks in
any inertial reference frame would register between the
same two events (as long as the events don’t occur at the
same place in that frame). T or F?

R3T9  Consider a train moving at a speed of 0.5 relative
to the ground. A light in one of its windows blinks repeat-
edly. An observer on the ground will necessarily see (not
observe) those blinks to be separated by a larger time inter-
val than a person on the train would. T or I?
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' HOMEWORK PROBLEMS

]

Basic Skills

R3B.1  Clock Pis at rest alongside a racetrack. A jockey on
horseback checks her watch against clock P as she [:\l'%‘&t‘s
it during the first lap (event A) and then checks her w.:nfch
again as she passes clock P the second time (event B).

(@) Which clock (clock P or the watch) measures the space-
time interval between events A and B?

(b) Which measures proper time? (Be careful!)

(c) Do either of the clocks measure coordinate time
between the events in the ground frame? Discuss.

R3B.2  Alyssa is a passenger on a train moving at a con-
stant velocity relative to the ground. She synchronizes her
watch with the station clock as she passes !i1mugh the Ban-
ning town station, and then compares her watch with the
station clock as she passes through the Centerville town
station farther down the line. Assume the ground is an
inertial frame, and assume the Banning and Centerville
clocks are synchronized in that frame.

(a) Is the time she measures between the events of passing
through these towns a proper time? Is it a coordinate
time in some inertial reference frame? Is it the space-
time interval between the events?

(b) If one subtracts the Centerville station clock reading
from the Banning station clock reading, what kind
of time interval between the events does one obtain?
Defend your answers carefully.

R3B3  Alice is driving a race car around an essentially cir-
cular track. Brian, who is sitting at a fixed position at the
edge of the track, measures the time Alice takes to complete
a lap by starting his watch when Alice passes by his posi-
tion (call this event E) and stopping it when Alice passes
his position again (call this event F). Figure R3.13 illustrates
these events. Cara and Dave, who are passengers in a train
that passes very close to Brian, also observe these events.
Cara happens to be passing Brian just as Alice passes Brian
the first time, and Dave happens to pass Brian just as Alice
passes Brian the second time. Assume that the clocks used

Event £

- — 3 \
={(Ef= -7

- ® Brian

3
m Il | e Cara I
) Train
Figure R3.13

by Alice, Brian, and Cara are close enough together that we

can consider them all to be “present” at event £, and simi-

larly that those used by Alice, Brian, and Dave are “present”

atevent F. Assume the ground frame is an inertial reference

frame, and the train travels at a constant velocity.

(a) Who measures a proper time between events F and F?

(b) Who (if anyone) measures a coordinate time between
events E and F?

(¢) Who (if anyone) measures the spacetime interval
between events [ and F?

Carefully explain your reasoning in each case.

R3B4 In a certain inertial reference frame, two events
are separated in time by At = 25 ns and by |Ad|= 15ns
in space. What is the spacetime interval between these
events?

R3B.5 In the reference frame of the solar system, two
events are separated by 5.0 h of time and 4.0 h of distance.
What is the spacetime interval between these events?

R3B.6 In the Home Frame, two events are observed to
occur with a spatial separation of 12 ns and a time coordi-
nate separation of 24 ns.

(a) An inertial clock travels between these events in such
a manner as to be present at both events. What time
interval does this clock read between the events?

(b) What is the speed of this clock, as measured in the
Home Frame?

R3B.7 An alien spaceship moving at a constant velocity
goes from one end of the solar system to the other (a dis-
tance of 10.5 h) in 13.2 h as measured by clocks on earth.
What time does a clock on the spaceship read for the pas-
sage? (Hint: Rephrase in terms of events.)

R3B.8 A space probe journeys at a constant velocity from
earth to Tau Ceti (a distance of 11.9 y) in a time of 1.0y as
measured by the probe’s internal clock. How long did the
trip take according to clocks on earth?

Event F

® Brian

| Davee W

(b) Train

(a) Event E in the situation described in problem R3B.1. (b) Event F in that situation.
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R3IBY  In the Home Frame, we observe two events to occur
500 ns apart in time and 300 ns apart in space. In an Other
Frame, these events occur 400 ns apart in time. What is the
spatial separation of these events in the Other Frame?

RIB.I0 In the solar system frame, two events are mea-
sured to occur 3.0 h apart in ime and 1.5 h apart in space
Observers in an alien spaceship measure the two events to
be separated by only 0.5 h in space. What is the time sepa-
ration between the events in the alien’s frame?

Modeling

R3M.1 Imagine that in the year 2065, you are watching a
live broadcast from the space station at the planet Neptune,
which is 4.0 light-hours from earth at the time. (Assume
that the TV signal from Neptune is sent to earth via a laser
light communication system.) At exactly 6:17 p m. (as reg-
istered by the clock on your desk), you see a technician on
the TV screen suddenly exclaim, “Hey! We've just detected
an alien spacecraft passing by here.” Let this be event A.
Exactly 1 h later, the alien spaceship is detected passing
by earth: let this be event B. Assume that the earth and
Neptune stations can be considered parts of the inertial
reference frame of the solar system, and assume that the
spaceship travels at a constant velocity.

(a) During the broadcast, you can see on your TV screen
the face of a clock sitting on the technician’s desk. What
time should you see on this clock face at 6:17 p.m. your
time if that clock is synchronized with yours?

(b) What is the coordinate time between events A and B in
the solar system frame? Carefully explain.

(¢) What is the speed of the alien spaceship, as measured
in the solar system frame?

(d) What kind(s) of time would the spaceship’s clock mea-
sure between events A and B?

R3M.2 A particle accelerator is a device that boosts subatomic
particles to speeds close to that of light. Such an accelera-
tor is typically shaped like a ring (which may be several
kilometers in diameter): the particles are constrained by
magnetic fields to travel inside the ring. Imagine such an
accelerator having a radius of 2.998 km. Assume there are
two synchronized clocks (P and Q) located on opposite
sides of the ring. A certain particle in the ring is measured
to travel from clock P to clock Q in 34.9 pis, as registered by
those clocks. Let event A be the particle’s departure from
clock P and event B be the particle’s arrival at clock Q.
Assume the particle contains an internal clock that mea-
sures the time between these events, and that the particle
travels at a constant speed.

(a) What is the particle’s speed in the laboratory frame?

(b) Does the synchronized pair of laboratory clocks mea-
sure the proper time, the coordinate time, or the space-
time interval between events A and B?

(c) Does the particle’s internal clock measure the proper
time, the coordinate time, or the spacetime interval
between events A and B?

(d) What is the spacetime interval between these events?

R3M.3

The Spacetime Interval

At t = 0, an alien spaceship passes by the carth |
this be event A. At f = 13 min (according 1o synchronize
clocks on earth and Mars), the spaceship passes by Mgy
which is 3 light-minutes from carth at the time: let thy,
be event B. Radar tracking indicates that the spacesh,
moves at a constant velocity between carth and Mars. [y
after the ship passes earth, people on carth launch a proby
whose purpose 1s to catch up with and investigate e
spaceship. This probe accelerates away from carth, mq,.
ing slowly at first, but moving faster and faster as time
passes, eventually catching up with and passing the alien
ship just as it passes Mars. In all parts of this problem, y,
can ignore the effects of gravity and the relative motion
earth and Mars (which are small) and treat earth and Mary
as if they were both at rest in the inertial reterence frame of
the solar system. Also assume that both the probe and the
alien spacecraft carry clocks.

(a) Draw a qu.mm.mu-ly accurate spacetime diagram
of the situation, including labeled worldlines for the
earth, Mars, the alien spacecraft, and the probe. Al
label events A and B.

(b) Whose clocks measure coordinate  times  between
events A and B? Explain carefully.

(¢) Whose clocks measure proper times between these
events? Explain

(d) Does any clock in this problem measure the spacetime
interval between the events? If so, which one and why?
If not, why not? ‘

R3M.4 Suppose you and a friend are riding in trains thay

are moving relative to each other at relativistic speeds. Ag
you pass each other, you both measure the time separation
and spatial separation of two firecracker explosions that
occur on the tracks between you. (You can measure the lat-
ter by measuring the distance between the scorch marks
that the explosions leave on the side of your tramn ) You
find the firecracker explosions to be separated by 1.0 jis of
time and 0.40 ps of distance in vour frame. By radio, your
friend reports that the explosions were separated by only
0.60 ps of time in your friend’s frame? Is this possible? If it
is, find the spatial separation of the events in your [riend's
frame. If not, explain why not.

R3M.5 A muon is created by a cosmic-ray interacon atan

altitude of 60 km. Imagine that, after its creation, {1 muon

hurtles downward at a speed of 0,998, as measured by a

ground-based observer. After the muon’s “interna! clock”

registers 2.0 ps (which is a bit longer than the oy crage life
of a muon), this particular muon decays.

(a) If clocks on the ground were to measure the same time
between the muon’s birth and death as the muon's
clock does (that is, special relativity is not true and
time is universal and absolute), about how tar would
this muon have traveled before it decaved?

(b) As relativity is true, how far does this muon actually
travel (in the ground frame) before it decays?

R3M.6 A spaceship travels from one end of the Milky Way

galaxy to the other (a distance of about 100,000 v) ata cot
stant velocity of magnitude || = 0,999, as measured it



Homework Problems

the frame of the galaxy. How much time does a clock in the

spaceship register for this trip? (Hint: Rephrase thi
lem in terms of events.) Rephrase this prob-

R3M.7  Inoneinertial frame (the Home Frame), we observe
two events to occur at the same place but Af = 32 ns apart
in time. In another inertial frame (the Other Frame), the
same two events are observed to occur 45 ns apart in space.
(@) What is the coordinate time interval between the

events in the Other Frame?

(b) Compute the speed of the Home Frame as measured
by observers in the Other Frame. (Hmt: The events
occur at the same place in the Home Frame, So how far
does the Home Frame move in the time between the
events as seen in the Other Frame? What is the time
between the events in the Other Frame?)

R3M.8 The new earth-Pluto shuttle line boasts that it can
take you between the two planets (which are about 5.0 h
of distance apart) in 2.5 h (according to a rider’s watch).
Assume that acceleration and deceleration periods are
very brief so that you spend essentially all the trip travel-
ing at a constant velocity.

(@) What time interval must synchronized clocks in the
solar system’s reference frame register between the
shuttle’s departure from earth and its arrival at Pluto if
the advertisement is true?

(b) What is the shuttle’s cruising speed?

R3M.9 Suppose a round trip to Alpha Centauri takes 2.0 y
as measured by clocks on the spaceship making that trip.
Assuming the ship accelerates and decelerates essentially
instantly when necessary, how long does the trip take in
the frame of the earth? (See example R3.3.)

R3M.10 The following spacetime diagram shows the world-
line of a rocket as it leaves the earth, travels for a certain
time, comes to a stop, and then explodes.

ta il
j Nz ;
f i Explosion
600s 1+ :
Worldline
+ of rocket
Worldline
of earth i 2
300s +
v v M'x’s LS T ;

(a) How much time elapses between the rocket’s depar-
ture and its unfortunately explosive demise as mea-
sured by that rocket’s flight recorder?

(b) What is the spacetime interval between these two
events?
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R3M.11 Suppose a certain kind of unstable subatomic par-
ticle decays with a half-life at rest of about 2.0 ps (that is,
if at a certain time you have N such particles at rest, then
2.0 ps later you will have ! N remaining). We can consider
a batch of such particles as being a clock whose decreas-
ing numbers register the passage of time. Now suppose
that with the help of a particle accelerator, we manage to
produce in the laboratory a beam of these particles travel-
ing at a speed || = 0.866 in SR units (as measured in the
laboratory frame). This beam passes through a detector
A, which counts the number of particles passing through
it each second. The beam then travels a distance of about
2.08 km to detector B, which also counts the number of
particles passing through it, as shown below.

p————208 km ————={
Yarticle
! a:.u le =
accelerator I om 0=L.S«a
[ |
I ‘
Detector A Particle beam Detector B

(a) Let event A be the passing of a given particle through
detector A, and let event B be the passing of the same
particle through detector B. How much time will a lab-
oratory observer measure between these events? (Hint:
You don’t need to know anything about relativity to
answer this question!)

(b) How much time passes between these events as mea-
sured by the clock inside the particle, according to rela-
tivity theory? If relativity is true, about what fraction
of the particles that pass through detector A survive to
pass through detector B?

(c) According to the Newtonian concept of ime, the time
measured by a particle clock between the events would
be the same as the time measured by laboratory clocks
If this were so, what fraction of the particles passing
through detector A survive to detector B?

Rich-Context

R3R.1  In 2095, a message arrives at earth from the growing
colony at Tau Ceti (11.9 y from earth). The message asks
for help in combating a virus that is making people sen-
ously ill (the message includes a complete description of
the viral genome). Using advanced technology available
on earth, scientists are quickly able to construct a drug that
prevents the virus from reproducing. You have to decide
how much of the drug can be sent to Tau Ceti. The space
probes available on short notice could either boost 200 g
of the drug (in a standard enclosure) to a speed of 095,
1 kg to a speed of 0.90, 5 kg to a speed of 0.80, or 20 kg to a
speed of 0.60 relative to the earth. The only problem is that
a sample of the drug in a standard enclosure at rest in the
laboratory is observed to degrade due to internal chemical
processes at a rate that will make it useless after 5.0 y.

(@) Explain why it is possible to send the drug to Tau Ceti,
even though the ship must travel for more than 119 y.
(b) How much can you send?
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Circle i A
v+ =ad)?
\ B
/ i Aj \
Ad cos 0 ‘,‘
!’ ” b‘
‘ \
' - : X
(a) A'ladlsing v
Figure R3.14
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(a) Plane trigonometry. (b) Spacetime trigonometry. (Note that As cosh8 > As,
even though the "hypotenuse” representing As looks bigger on the diagram.)

R3R.2 Your boss is on the earth-Pluto shuttle, which trav-
elsata constant velocity of 0.60 straight from earth to Pluto,
a distance of 5.0 h in an inertial frame attached to the sun.
An hour into the flight (according to your boss's watch)
your boss sends a laser message to you on earth, asking
you to send a wake-up call appropriately timed so that
your boss can catch a 1-h nap (as measured on your boss’s
watch). You immediately reply with the wake-up call and an
apology that the call is late, claiming in your defense that
the laws of physics prevented a timely response.

(@) Why was your boss’s request impossible?

(b) How long did your boss sleep (according to your
boss’s watch) before your message was received at the
shuttle? Explain carcfully.

(Hint: Draw a spacetime diagram of the situation.)

Advanced

R3A.1  Just as we can describe the relationship between the
hypotenuse of a triangle and the coordinate lengths of its sides
by using the sine and cosine functions, it turns out that we can
describe the relationship between the spacetime interval As
between two events in terms of the coordinate separations At
and Ax between those events in terms of the hyperbolic sine
and cosine functions, The hyperbolic sime and hyperbolic cosine
functions of a quantity # are defined as follows:

sinhf=i(c"~¢")

coshf=4("+¢*)  (R3.10)

(a) Prove that cosh’@ — sinh’@ = 1. This means that j
the spacetime interval between two events occyy.
ring along the spatial x axis is As, then the coord;.
nate separations At and Ax between these eveng
can be written At = Ascoshf and Ax = Assinhyg
for some appropriately chosen value of 6, just as ip
plane geometry Ax = Ad cosf and Ay = Ad sin @ (se,.
figure R3.14).

(b) Argue that #in the hyperbolic case is nof the angle thyy
line AB makes with the t axis in the spacetime diagran,
of figure R3.14b. Argue in fact that as 6 — =, the angje
that AB makes with the ! axis approaches 45°.

(c) Argue thatif | 7| is the speed of an object that goes from
event A to event B at a constant velocity, the “angle” g
is in fact tanh ' 3],

(d) When | 3| = 0.80, # = 1.10 (if your calculator cap
do inverse hyperbolic functions, verify this). What
are the values of cosh® and sinh@ for this valye
of 82 (Use the definitions of these functions given
above if your calculator cannot evaluate hyperbolic
functions).

(e) When |3] =099, we have 8= 265 (again, verify if you
can). What are the values of cosh# and sinh ¢ for this
value of 6?

(f) Argue that as 8 — 0, sinh 8 — 0, while cosh# — |, just
like the corresponding trigonometric functions. This
also means that tanh# — 0 in this limit. Use this 1o
argue that as | 7| — 0, As — At and Ax —0.

| ANSWERS TO EXERCISES

3

R3X.1  Measuring sticks placed parallel to the line of relative
motion will simply paint stripes down each other’s length.
There is no way to extract information about the length of
a given stick from such stripes. One could paint very brief
pulses, but one would need to use synchronized clocks to
do this, which involves that whole issue.

R3X.2  (Just type it into your calculator.)

R3X.3  In this situation, we have At = 0 and |Ad| = 30 ns.

Since we must have (Al'Y - |Ad’| = AF- A7 and
since we are given that At’ = 10 ns, we can find the spatial
separation | Ad’| between the events in the Other Frame by
solving the equation above for | Ad|:

lad’| = Vary - af + |adl

=v(10ns) =0+ (30ns)’ =316ns  (R3.11)



Proper Time

Chapter Overview

Introduction
In chapter R3, we derived the metric equation, which links the coordinate difference

between two events measured in a given reference frame to the framc-indcpcndcm
spacetime interval between those events. In this chapter, we will learn how to use the
metric equation to calculate the proper time along any worldline.

Section R4.1: A Curved Footpath

Suppose we know the function x(y) that describes a certain path on a two-dimensiong)
plane. We can calculate the pathlength A€, between any two points A and B along
that path as follows. First, we divide the path into tiny segments whose endpoints are
coordinate displacements of dx and dy apart. Second, we use the Pythagorean theq.
rem dé = (dx* + dy’)'* = [(dx/du)’ + 1]"" dy to find each segment’s length df. Finally,
we sum over all segments to find the total pathlength. In the limit that the segmens
become infinitesimally short, the sum becomes an integral.

Section R4.2: Curved Worldlines in Spacetime

We can perform an exactly analogous calculation to calculate the proper time
between two events A and B as measured by a clock following an arbitrary world-
line. Suppose we know the functions x(t), y(f), and z(f) that describe the clock’s
position as a function of time as it moves along the worldline. (1) We divide the
worldline into segments so short that the worldline is essentially straight betveen
any segment’s endpoints. (2) The proper time along each segment is then essentally
equal to the spacetime interval along that segment: d7 = ds = (dt* —dx’ —dy’ — d=) =
[1 = (dx/dty — (d_l//dl)2 = (dz/dty’]"* dt = (1— |57y *dt. (3) The total proper time
along the worldline is the sum of these infinitesimal proper times. In the limit that
the segments become infinitesimally short, the sum becomes an integral

ATJM':‘]’".“"If’I:)":t“ (R4 6)

 Purpose: This equation describes how we can use measurements performed in
an inertial frame to compute the proper time A7, measured by a clock travel-
ing between any two events A and B along an arbitrary worldline, where !
is the time of event A, 1, is the time of event B, dt is the coordinate time dit-
ferential, and | 7| is the clock’s speed (as a function of time), all measured in a
specific inertial reference frame.

¢ Limitations: This equation works only in an inertial reference frame.

¢ Note: If the clock’s speed (not necessarily its velocity) is constant, then this
equation reduces to

Aty =(1-|3F)"" Aty onlyif || = constant (R4.7)
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Section R4.3: The Binomial Approximation

The binomial approximation asserts that

(M+xf=l+ax ifrxe<i (R4.17)

o Purpose: This equation is a useful trick for simplifying calculations when we
w.m't to compute an arbitrary power a of a very small quantity x added to 1.

o Limitations: You will not get very good results if | ax| is much larger than 0.1.

e Note: In this chapter, we will most often use this approximation to get

A=1ER"72=n+ (-l5P)= =1 -5 (R4.18)

This approximation usually works best when the problem is phrased (or the
answer can be phrased) so that the 1 cancels out, but in the worst case, one can calcu-
late 1 — ax by hand, something that is usually impossible for (1 + x)".

Section R4.4: Ranking the Three Kinds of Time
This section presents a proof of the following statement: The proper time measured by
a clock traveling between two events A and B is longest if the clock follows a straight
(constant-velocity) worldline.

Since the metric equation implies that At = As* + |Ad|* = As” in any arbitrary
reference frame, we have in general

At = As 2 AT (R4.22)

o Purpose: This equation describes the hierarchical relationship between the
coordinate time At between two events (measured in any arbitrary inertial
frame), the spacetime interval As between those events, and the proper time
AT between those events (measured along any arbitrary worldline going
between them).

o Limitation: This equation applies only if As* = 0.

« Note: The equality At = As applies if At is measured where the events occur
at the same place; the equality As = AT applies if A7 is measured along aJ

straight worldline.

Section R4.5: Experimental Evidence
This section discusses two relatively recent experiments that have tested the validity
of equation R4.6.

Section R4.6: The Twin Paradox

Consider a pair of twins. One leaves earth, travels to a distant star at a speed close
to that of light, and then returns. A naive use of equation R4.6 might lead each twin
to conclude that the other is younger (since each considers him- or herself to be
at rest while the other is moving). This is the twin paradox. However, the twin’s
situations are not really symmetric: the traveling twin is not in an inertial refer-
ence frame, but the twin on earth is (at least approximately). Therefore, the earth-
based twin can legally use equation R4.6 (at least approximately), whereas the
traveling twin cannot. The traveling twin really ends up being younger than the
carth-based twin.

i
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We compute the length of a
curved path by breaking it up
into tiny straight pieces

Formula for computing the
length of a path x(y)

Chapter R4 Proper Time

-;1 A Curved Footpath

The metric equation As™ = Af = A¥ — Ay’ — Az connects the spacey
coordinate differences between two events measured in some inertial . -Ipm‘.
ence frame to the spacetime interval As between the same events mva\:: 5
by an inertial clock present at both events. In this section and the nexg o
will use the metric equation to connect coordinate time in a given ,m.',:w
frame to the proper time AT measured by any clock present at both ey cn’t"l
inertial or not. N

One might think that we must use the theory of general relativity ¢
properly analyze the behavior of accelerating (noninertial) clocks. In § ‘“‘;‘
we can quite adequately analyze the behavior of such clocks with the mey.
ric equation alone if we remember the analogy between proper time ang
pathlength.

Consider a footpath around a small pond. Figure R4.1a shows a scale
drawing of the path with a superimposed coordinate system. We could
measure the path’s length from point A to point B with a long, flexible tape
measure. But once we have set up a coordinate system, we can also com-
pute the path’s length as follows. Suppose we divide up the path into 3
large number of infinitesimally small sections, as shown in figure R4.1b.* |f
we make these sections small enough, cach will be approximately straight.
In this limit, the pathlength df of a given segment as measured by a flex-
measure will be almost equal to the straight length cn'mputcd

ible tape
(using the Pythagorean theorem) from the coordinate differences of the seg-
ment’s endpoints:

de = dx + dll: or df = \/(il’: + d_lf (R4.1)

The path’s total length A€, from A to Bis the sum of all the segment lengths,
which in the limit where the segments are truly infinitesimal becomes the

integral
Al = Lﬂ: Lm‘/dr’ +dy (R4.2)

Note that since each segment’s length d( is greater than its northward exten-
sion dy, the total pathlength between points A and B will be greater than the
straight-line northward distance of 225 meters between A and B. We can say
quite generally, therefore, that Al = | Ads . '

We can describe the path mathematically by using the function x(v)- this
function specifies the path’s x coordinate at each possible v coordinate. 11 we
know this function, we can write the integral above as a single-variable inte-
gral over x by pulling a factor of dy out of the square root:

Aly = [ "1+ (dx/dyy dy (R43)

[Note that we are considering v to be the independent variable and x to be the
dependent variable in equation R4.3. This reversal of convention is necessary
because y(x) is not well defined for the path shown in figure R4.1.]

As we have discussed before, although this equation uses the coordi-
nates x and y measured in a given coordinate system, the pathlength itself is
an invariant quantity: we'll get the same answer (the answer that a flexible
tape measure would give) no matter what coordinate system we use.

*The analogy with pathlength presented here follows E. F Taylor and J. A. Wheeler,
Spacetime Physics, San Francisco; Freeman, 1963, pp. 32-34.



R4.2 Curved Worldlines in Spacetime
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The analogy to events in spacetime is direct. Consider the worldline of a
particle that in a certain inertial reference frame travels out from the origin a
certain distance along the x axis and then returns. Such a worldline is shown
on the spacetime diagram in figure R4.2a with the coordinate axes of that
frame superimposed. Such a worldline describes an accelerating particle: we
can see from the graph that the particle’s x-velocity v, = dx/dt (which is the
inverse slope of its worldline on the diagram) changes as time progresses.

A clock traveling with the particle measures the proper time AT,
between events A and B along this worldline (by the definition of proper
time). But once we have measured the particle’s worldline in an inertial ref-
erence frame (any inertial frame), we can calculate what this clock will read
between events A and B by using the metric equation in a manner analogous
to our calculation of the pathlength between points A and B in section R4.1.

Suppose we divide the particle’s worldline up into many infinitesimal
segments, each of which is nearly a straight line on the spacetime diagram
(figure R4.2b). We choose each segment to be short enough that the par-
ticle’s velocity is approximately constant as it traverses that segment. If this
is true, then the proper time d7 that a clock would measure along each seg-
ment will be almost equal to the spacetime interval ds between the events

Curved Worldlines in Spacetime
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Figure R4.1

(a) Map of a footpath around a
small pond, with a superimposed
xy coordinate system. (b) We can
calculate the path’s length by
subdividing it into many segments
(each small enough to be nearly
straight), calculating the length df
of each segment, and summing to
find the total length AL

The situation in spacetime is
directly analogous

We compute A7 along a
worldline by dividing the
worldline into many tinv
straight segments

Figure R4.2

(a) A spacetime diagram of the
motion of a particle’s worldline
based on measurements obtained
in some inertial reference frame.
(b) We can find the proper time
along the worldline by subdi-
viding the worldline into many
segments (each small enough
to be nearly straight), finding
the proper time d along each
segment, and then summing to
find the total proper time. Note
that because of the minus sign
in the metric equation, dr < dt
here, even though it looks like
dr = dton the diagram.



70

The general formula for
computing the proper time
along a worldline

The formula for the special
case where the object’s speed is
constant

Chapter R4  Proper Time

that mark the ends of the segment, since the clock is present at both these

events and travels between them with an almost constant velocity. Therefore,

by the metric equation
dri =ds’ = dt* — dx* — dy’ = d7’ (R4.4)

Taking the square root and pulling out a factor of the coordinate time dt yields
dxy¢  [dy) dz
— — =] === == dt
i ‘/1 () ~\zl ~\@)

1 - ;n': — ps - :-1-:— df = \/i- II.": dt (R4.S)

This equation expresses the infinitesimal proper time d7 measured by a clock
traveling between two infinitesimally separated events in terms of the coor-
dinate time d! between those events measured in some inertial frame and
the clock’s instantaneous speed | #| measured in that frame. The clock may be
moving along any smooth worldline ( | #| does not have to be constant).

To find the fotal proper time measured between events A and B by a clock
traveling along the worldline, we sum the proper times measured for each
nearly straight worldline segment, which in the limit of truly infinitesimal
segments amounts to integrating equation R4.5:

ATy = f (=5} at (R4.6)

¢ Purpose: This equation tells us how we can use measurements per-
formed in an inertial frame to compute the proper time A7, measured
by a clock traveling between any two events A and B along an arbitrary
worldline, where t, is the time of event A, ¢, is the time of event B, d!
is the coordinate time differential, and | 3(1)|is the clock’s speed (as a
function of time) all measured in a given inertial reference frame.

e Limitations: This equation works only in an inertial reference frame.

If we know the clock’s speed | #(t)| as a function of time, then the integral
is simply an ordinary one-variable integral with respect to f, which we can
evaluate (at least in principle). This equation links the total proper time A7
between two events (measured by a clock traveling between events A and )
to the events’ coordinate times ¢, and f, and to the clock’s speed | #(1) as o
function of coordinate time (as measured in some given but arbitrary inerti|
reference frame. Though we use an inertial frame to measure |7/, the 1o
of equation R4.6 is frame-independent, since the clock in question measure
AT, directly without using any reference frame.

If the clock’s speed | 7| happens to be constant, then we can evaluate the
integral in equation R4.6 very easily:

- 1y " -
AT =V I—l""j" dt = V]—II‘!‘ (s — 1)
=1-|3) Aty if | 7] = constant (R4.7)

Please note that constant speed here does not necessarily imply constant velociiy
as the direction of a particle’s velocity may change without changing its specd
Thus, equation R4.7 can be applied to any clock traveling along straight or
curved worldlines, as long as the clock’s speed remains fixed. Equation Rio
must be used whenever the speed changes.
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Iote Since = 12v1/2

AMm lha'l '\"'1“ (‘l -7l <1 always, the proper time that any clock
pn»,scr"n .\,t hf lo events mms'urcs between those events will be smaller than (or
R =ty

B 3 » always. However, if the clock’s speed is small
.:‘ompared to that of light (| 7| << 1), that clock will register almost the same
time between thc‘c\:c.fnt.s as measured in the inertial frame: A7,; = At . (This
is true whether | 7| is constant or not.)

Wl'wn applylng either equation R4.6 or R4.7, it is important to remember
two things. First, the coordinate time Af and the proper time A7 represent
the time in'terval between two events measured in two fundamentally differ-
ent ways (just as the northward displacement Ay and the pathlength'Al rep-
resent two fundamentally different ways of measuring the spatial separation
of two points on the earth’s surface). The coordinate time between events is
measured with a pair of synchronized clocks in an inertial frame, while the
proper time is measured by a clock present at both events. One cannot use these
equations to link readings on just any old clocks.

Second, the quantities A7 and At that appear on both sides of equation
R4.7 always refer to the time between the same pair of events, measured in
these two different ways. Perhaps the most common error made by begin-
ners in applying that equation lies in implicitly using different pairs of events
to delimit the time intervals A7 and Al. To avoid this, be sure to think care-
fully about the events involved!

Note also that equations R4.6 and R4.7 break down if | 7| > 1: in such
a case, they predict that the time registered by the traveling clock is an
imaginary number (which is even worse than being a negative number!).
Remember that these equations are all based on the metric equation, whose
derivation (see section R3.2) is only valid for pairs of events for which
At> |Ad|, that is, events between which we can send a clock traveling
with | 3| < 1. Therefore, the equations presented so far do not specify what
a clock traveling faster than the speed of light would read between two
events. We will see in chapter R7 that the principle of relativity in fact implies
that it is impossible for a clock to travel faster than the speed of light in any
reference frame. The failure of these equations for the case where |3]>1
is our first indication of this.
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Any proper ime between two
events is smaller than the coor-
dinate time between the same

events

Two things to remember

The equations for proper ime
fail when |7] >1

Problem: Suppose you are at rest in an inertial frame (the Home Frame)
and are whirling a clock around your head at a constant rate on the end ofa
string 3.0 m long. A friend compares the reading of the whirling clock as it
speeds by with readings from a stationary clock. Find out how long it takes
the whirling clock to go once around its circular path if its reading for one
cycle is 0.01 percent smaller than the period read by your friend’s clock.

Solution The first step is to rephrase the problem in terms of events. Let event
A be the whirling clock passing by the stationary clock. Let event B be the
next such passage event. The whirling clock measures a proper time between
these events. The stationary clock measures a different proper time between
the events (because it is also present at both events). Since the stationary
clock is at rest in the Home Frame, the time it registers is the same as the coor-
dinate time between the events in the Home Frame. The whirling clock, on
the other hand, is noninertial (its velocity is constantly changing direction as
it goes around the circle). But since its speed is constant, we can use equation
R4.7 to find the proper time it measures between events Aand B.

Example R4.1
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We are given that the result is 99.99% of the time measured by the st,.
tionary clock, so

AT anwtn = \/l-:li_'ls Al = 0.9999AL 4 (R-'&)
implying that V1-5[ =09999,0r 1|5 = 0‘:’999' implying that
157 =1-0999" = |3]=v1-09999 =0014 (R4.9)

The radius of the circle in seconds is (3.0 m)(1 s/3.00x10°'m)=10%10%s =
10 ns. The coordinate time that a clock traveling at | 7| = 0.014 would take to
go once around this circle is

Aty =23R - 2A0XT07S) 4 45 105 (R4.10)

|51 0.014

This implies a frequency of revolution of 1/At,; = 225,000 Hz. This answer
makes it clear that the scenario presented in this problem is completely unre-
alistic. Yet this speed is what would be necessary to get even a 0.01% differ-
ence in the rate of the whirling clock relative to a stationary clock. It is no
wonder that we think of time as being universal and absolute!

“Example R4.2

Problem: Suppose the speed of a certain spaceship relative to an inertial
frame fixed to the sun is given by |5()| =|dlt, where |@| =10 m/s". How
long does it take the ship to accelerate from rest to a speed of 0.5 (in SR units)
relative to the sun, as measured by clocks on the ship?

Solution Again, the first step is to rephrase the problem in terms of events.
Let event A be the event of the ship starting to accelerate and event B the
event of its passing |3, =05 (in SR units). Since the ship is present at both
events, its clock measures the proper time between them. Since the speed of
the ship is 1ot constant in this case, we must use equation R4.6 to compute
this proper time:

ArAB=I"JI—|5I2dl=£" 1-|al’Fat (R4.11)

In spite of the simple form of the equation || =|a|t, this is not a simple
integral to evaluate. We can put it in a somewhat simpler form by doing the
following. First, note that t, = 0, because if | 7| = |i|t, then t = 0 when the ship
is at rest but beginning to accelerate. Second, note that d || = || dt i this
case, so we can change the variable in the integral from ¢ to | #] as follow «

Y =133 (= 8BS S TT=l L=

Ans=|+|j: \/l—lal‘t‘|a|dt=T1—|f Vi-15ldls| (R4.12)
a ( a (4

This integral now has a simple enough form that we can try to look it up ina

table of integrals. My table of integrals says that

fﬂda : u\/lz— woyosin'u (R4.13)

2
Therefore,
AT, = z_ll‘_l 05vV1=05 4 sin" 0.5 - 0V1= 0" — sin"' 0)
a
=1 (0433 + 0524 — 0 - () = 0478 (RA.14)
2|al al

To finish the calculation, we need to know what |d| is in SR units (since equa-
tion R4.6 and everything we have done presumes that we are working in
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R unlt}‘L To Changg‘ la| - 10 m/s to SR units, we must convert the meters
appearing in this expression to seconds:

lil=102—1s __|___ 1
— | = — 15
s"3.0x IO‘mv' 30x10°s R
Substituting this into equation R4.14 yields
ATy =04783.0x 10s) =143 x 107 ¢ __l)’_ . ’_-: 0454y (R4.16)
3.16 x 107s L ‘

Note that the units come out right, and the answer seems reasonable.
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Because integrals in cases where | 7| # constant are so difficult, we will

enerally stick to cases where | | = constant in this course. I included this

example to illustrate how one can do a calculation where | 7| # constant, but
I will rarely ask you to do anything nearly as difficult.

R4.3  The Binomial Approximation

The square root that appears in equations R4.6 and R4.7 is rather difficult to
evaluate for very small speeds (| 7| << 1). The speeds of objects we encoun-
ter on an everyday basis are on the order of | #| = 10 " in SR units, meaning
that |#]° = 107", When one tries to evaluate the square root (1-|7/")'* in
such a case, one’s calculator usually simply returns just 1.0, since few cal-
culators keep track of enough decimal places to accurately register the sub-
traction of 107" from 1. Such an answer is not really helpful. In such cases,
however, there is an approximation we can use to help us convert the square
root to a more usable form.
One can show (see problems R4D.2, R4D.3, and R4A.1) that

M+xyY=1+ax ifx<<] (R4.17)

o Purpose: This equation is a useful trick for simplifying calculations
when we are trying to find an arbitrary power a of a very small quan-
tity x added to 1.

* Limitations: You will not get very good results if | ax|is much larger
than 0.1.

Equation R4.17, which we call the binomial approximation, has many
applications in physics (memorize it!). In relativity, we will most often use it
to calculate (1 |3[%)"”* for very small | #|. To do this, we identify x = —| 5]’
and a = 1, yielding

Vi-15F =1+ }-|5P)=1-33] (R4.18)

Exercise R4X.1

Using your calculator, check the accuracy of the approximation in equation
R4.18 for | 3| = 0.1, 0.01, and 0.001. In particular, what is the fractional error
in 1= 1|3 |* as an approximation for (1= |]*)'” in each case?

Motivation for the binomial
approximation

General statement of the
binomial approximation
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Q‘if. RS el s i o réa ———
p Example R4.3 Problem: You and a friend stand at a street corner and synchronize your
] watches. You leave your friend (call this event A) and walk around the block,
' traveling at a constant speed of 2 m/s (about 4.5 mi/h). After a time Af,, =
550 s as measured by your friend’s watch, you return (call this event B). How

much less than 550 s does your watch register between events A and B?

Solution Take your friend’s frame to be inertial; your friend’s watch thus
measures the coordinate time between A and B in that frame (also the space-
time interval!). Since you are not moving at a constant velocity, you measure
a proper time A7, between those events. In your friend’s frame, you have
a constant speed of | 7| = 2 m/s (or in SR units, |3] = 6.7 x 107%), so we can
use equation R4.6 to calculate your proper time. Your speed is also extremely
small compared to 1, so we can employ the binomial approximation to evalu-
ate the square root. The proper time that you measure between events A and

B is therefore
AT =V1- 0] Aty=(1-315]%) Al (R4.19)

Now, if we were to plug At = 550 s into this equation, we would still find
that AT, = 550 s to the accuracy of a typical calculator, in spite of our use of
the binomial approximation. The entire point of the binomial approximation,
however, is that it makes it much easier to calculate the difference between
your time AT, and your friend’s time Al which is what the problem
requests. This difference is

ATy = Atyp z(] s %Iﬁlz’A'/m = Aty = “ -~ ils'I‘ e ”Atuj
=15 Aty = - 167 X 107F (550 5) = ~1.2 X 1075 (R4.20)

meaning that the time is smaller than your friend’s time by about 12 fs.

Note that if you really want to evaluate A7, you can subtract 12 x10"s
from 550 s by hand to get 549.999999999999988 s. However, since we probably
don’t know At to 15 decimal places to begin with, the difference between
AT, and At is not even remotely measurable. Again, it is no wonder that
we all intuitively have the idea that time is universal and absolute!

Example R4.3 illustrates that the binomial approximation is most use-
ful when we want to calculate the difference between the coordinate time
in some frame and a slowly moving clock’s proper time. While we cannot cas-
ily calculate an expression like AT, — Aty = [( 1-13]%)"* = 1]At,, when |7]is
small, we can quite easily calculate AT, — Aty = (1 = 1|3]* = 1) At because
the 1s cancel. Try to make the 1s cancel similarly in any problems in which
you use the binomial approximation.

If you really do need to calculate A7y, = (1 | 7%)" At directly, though,
the binomial approximation is still useful because it is much easier to calcu-
late a simple difference by hand than it is to calculate a square root by hand
(and a hand calculation is going to be necessary either way if vour calculator
yields one when you try to compute the square root).

84.4 Ranking the Three Kinds of Time

Note that equation R4.6 implies that generally the proper time measured by a
clock between two events will indeed depend on the worldline that the clock
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follows between the events: specifically, the proper time depends on the par-
ticular way that the clock’s speed | 7| varies with time. This is analogous to
the way that the pathlength between two points on a plane depends on the
curvature of the path along which it is measured.

In Euclidean geometry, the straight-line distance between two points
is the shortest possible pathlength between the two points. In this section,
we will prove that an inertial clock that travels between two events (which
thus measures the spacetime interval As between them) measures the lon-
gest ;mssibh' proper time between those events, longer than any noninertial
clock: As = AT for all possible worldlines between the events. )

How might we prove such a theorem? Consider an arbitrary pair of
events, A and B. Suppose we measure the time between these events by
using two clocks that are present at both events. Clock I follows an inertial
worldline between the events, while clock N follows a noninertial worldline.
Since clock is inertial, its proper time A7, will be equal (by definition) to the
spacetime interval As,; between the events. We will take advantage of the
fact that we can calculate the proper time for any given worldline by using any
inertial reference frame that we please, since the result is frame-independent.
With this in mind, we can most conveniently evaluate the proper times for
clocks I and N in that particular inertial frame where clock [ is at rest. Since
that clock is inertial, the frame in which it is at rest will also be inertial: let’s
call this the Home Frame.

Calculating the proper time along any worldline from event A to event
B in this reference frame involves evaluating the integral ["(1—[3[%)"* dt,
where the function | 3(t)| and the endpoints f; and 1, are all determined in
the Home Frame. Now, for clock I, (1= |#]%)'* =1, since that clock is at rest
in the Home Frame by construction. Since clock N travels along a different
worldline, it must at least sometimes have || # 0 in the Home Frame, so the
integrand (1— | 7|%)'”* must be less than 1 for at least part of the range of inte-
gration. So we must have

AsA,,=Ar,=‘["1d: >["(1—|5|=)"'=dr=Ar\ (R4.21)

(note that both integrals have the same endpoints). Since the proper times
A7 and AT, are frame-independent, this inequality must be true no matter
what inertial frame we use to actually calculate A7 and A7,. QE.D.

Note that in a spacetime diagram based on measurements made in an
inertial reference frame, an inertial clock will have a straight worldline (since
it moves with constant velocity with respect to any inertial frame) whereas
a noninertial clock will have a curved worldline. The theorem we have just
proved thus says that a straight worldline between any two events on a spacetime
diagram is the worldline of greatest proper time between the events.

That the spacetime interval between two events in spacetime represents
the longest proper time between those events while the distance between
two points on a plane represents the shortest pathlength between those
points is a direct consequence of the minus signs that appear in the metric
equation where plus signs appear in the corresponding Pythagorean rela-
tion. This is another of the basic differences between spacetime geometry
and the Euclidean geometry of points on a plane. Even so, a straight world-
line (or path) in both cases leads to an extreme value for the proper time
(or pathlength). 2

The metric equation As = (AF = |Ad |*)'# implies that the coordinate time
At between two events measured in any inertial reference frame is greater than
(or at minimum equal to) the spacetime interval As between those events).
The three kinds of time interval you can measure between two events must
therefore stand in the strict relation:
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AT along a straight worldline
between two events is the
longest possible proper time
between those events

Proof of this theorem

Analogy to a straight line
being the shortest distance
between two points
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An important inequahity
involving At, As, and AT

A muon decay experiment

Laboratory Laboratory
clock clock
ta '
!

1 P i
AN ’ v
~ P %
~ - -~
e Batch
of muons

Figure R4.3

The worldlines of two laboratory
clocks and a batch of orbiting
muons, as drawn by an observer
in the laboratory frame. A clock
traveling with the muons would
register less time between events
A and B than the laboratory
clock does. (In the experiment
described, the muons actually
circled the ring more than 300
times between events A and B))

Chapter R4 Proper Time

Atz As2 AT (Ri22,

where the first inequality Af = As becomes an equality if the events ocey,
at the same place (|Ad| = 0) in the inertial reference frame where At is Mea-
sured (so that a single clock in that frame is present at both events) and th,.
second inequality As = AT becomes an equality if the clock measuring the
proper time follows the one and only inertial path that connects the eveng
(so that the proper time it measures between the events is the spacetime
interval between them as well).

R4.5  Experimental Evidence

Equation R4.6 implies that if two clocks are synchronized at event A and thep
travel to event B along different worldlines, the clocks will generally not be
synchronized when they arrive at event B, since their speeds (as measured in
some inertial frame) will not generally be the same as they follow their differ-
ent worldlines. This prediction severely conflicts with our Newtonian inty-
ition about time but is a testable consequence of the principle of relativity.

In one well-known experiment,* a particle accelerator generated muons
which then traveled around a circular storage ring at a constant speed of
about | 7| = 0.99942. Although the muons’ speed was constant, their velocity
was not, because they were traveling in uniform circular motion. In fact,
the worldline of such a muon is quite curved and looks something like that
shown in the spacetime diagram in figure R4.3. Figure R4.4 shows a muon
storage ring almost exactly like the one used in this experiment.

Imagine that a pulse of muons is injected into the ring: call this event A,
The muons subsequently travel around the ring. Let event B be the time and
place where one-half of the bunch has decayed. The bunch of muons, since
it is present at both events, measures a proper time AT, between events A
and B. The laboratory clocks measure coordinate time Af,; between those
events. The muons travel along a curved worldline of constant speed but
with ever-changing velocity. Because the bunch’s speed is constant, though,
we can use equation R4.7 to relate the proper time to the coordinate time

ATM; =V 1 "Tl.’lz A!Ma

As we have discussed before, the fact that muons decay with a certam
fixed half-life makes them effectively little clocks, and measuring the decay
rate of a batch of muons amounts to reading those clocks. Since the hals life
of a muon at rest was known from other experiments to be 1.52 jis v hen
muons are at rest, A7, = 1.52 ps in this experiment. All that remains to
be done is to measure the half-life Aty of the muons in the storage ring
according to the laboratory clock and their exact speed in that storage g,
In this particular experiment, muons were observed to have a hali-lie of
(44.623 £ 0.18) ps in the laboratory frame (about 30 times longer than por-
mal, in stark contrast to the Newtonian prediction), and their speed was
found to be such that 1/(1— |3 ))'* = 29.327 + 0.004. Equation R4.7 predicts
that AT, — Aty (1= |3]%)"* = 0. This experiment showed that

ATy — Aty (1- If'|‘)‘_'
ATy

(same as equation R4.7) (R423)

=418 x10™* (95% confidence)

meaning that this experiment shows that equation R4.7 is good to at least
three significant figures. As a point of interest, these muons are accelerating

*J. Bailey et al., Nature, vol, 268, 1977,
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in the laboratory frame at a rate of about 10| ¢[! Therefore, equation R4.7
(at least) is seen to apply even in cases of extreme acceleration.

Exercise R4X.2

Check that the muon’s laboratory-frame acceleration in this experiment
really is about 10" ]§ | (the radius of the muons’ circular path was 7.01 m).

In 1971, ]. C. Hafele and R. E. Keating* performed a test of the more gen-
eral equation R4.6 on a more human scale. They synchronized a pair of very
accurate atomic clocks, and then one was put on a jet plane and sent around
the world while the other remained in the laboratory (see figure R4.5). Upon
its return, the jet clock (which followed a noninertial worldline in its trip
around the earth) was compared with the inertial clock that remained at rest
in the frame of the earth. With suitable corrections for the effects of gravity
(predicted by general relativity), the results (a difference of a few hundred
nanoseconds) were found to be in complete agreement with equation R4.6.

The Global Positioning System also essentially performs a continuously
running test of equation R4.6. Each orbiting GPS satellite carries an atomic
clock whose rate is compared to atomic clocks on the earth’s surface, and the
rate of each orbiting clock is continually corrected for the effect of equation
R4.6, as well as for gravitational effects predicted by general relativity. If these
corrections were not continually applied (or if equation R4.6 did not supply
the right correction), the GPS would deliver inconsistent position results.
That the GPS works is therefore testimony to the validity of equation R4.6.

Many other experiments have been performed to check this prediction
of the theory of relativity, and all have been in complete agreement with the
predictions of equation R4.6. Outrageous as it may seem, the idea that two
clocks present at the same two events do not register the same time between
those events is a well-established experimental fact.

*J. C. Hafele and R. E. Keating, Science, vol. 117, p. 168, July 14, 1972,
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Figure R4.4

The muon storage ring at Brook-
haven National Laboratory before
its 2013 move to Fermilab. This
ring has almost exactly the same
dimensions and features as the
storage ring at the CERN labora-
tory in Switzerland that was used
for the experiment described in
this section. (Credit: © Brookhaven
National Laboratory)

An experiment involving a
clock flown around the world

Figure R4.5

Hafele and Keating carry one

of their atomic clocks out of an
airplane in the process of per-
forming their 1971 experiment
(Credit: © Israel Sun/AP Images)
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Bernard expects Andrea to be
younger

Andrea expects Bernard to be
younger

Doesn't the principle of
relativity imply that they
should have the same age?

Solution to the paradox

Chapter R4 Proper Time

R4.6 The Twin Paradox

As a result of misinterpreting the meaning of equation R4.7, many peo.
ple (including competent professors of physics) have been unnecessarily,
perplexed by apparent paradoxes in the theory of relativity. Physicig,
call one of the most famous of these the twin paradox (or sometimes (),
clock paradox). This problem generated reams ol journal articles (as lage
as the 1960s) before the inadequacy of the language and concepts copy,.
monly used to describe relativity at that time became sufficiently wej)
understood.

Here is a statement of the apparent paradox. Andrea and Bernard o,
twins. When they are both 25 years old, Andrea accepls a commission o he
an exobiologist on an expedition to Sirius, which is about 8.6 light-years from,
earth. So she flies away on a ship that is capable of near-light speeds, leaving
her brother Bernard on earth. The years roll by and the world waits, Finally,
hurtling out of the emptiness of space, the spacecraft returns, g

As he waits for his sister to emerge from the newly arrived spacecraft,
Bernard (now a distinguished man of 50) muses on the bit of relativity thay
he remembers from college. He recalls that “A7, = [(1- [71%)" dt.” Since
Andrea has been moving with a large speed | ] for much of the trip, Andrea’s
clocks should measure much less time for the trip than his clocks register.
This includes biological as well as mechanical clocks, and so Bernard expects
to see a substantially younger sister emerge from the hatch, still displaying
their once common youthful vitality. Bernard chews his lip, wondering wha
it will be like to have a younger “twin” sister.

Similar thoughts run through Andrea’s mind as she prepares to dis-
embark. In Andrea’s frame, however, she and the spacecraft were motion-
less, and the earth (and thus Bernard) has moved backward 8 light-vears
and returned. Andrea (who had the same course in college) thinks that
since it is Bernard whose speed has been nonzero, it will be Bernard who is
younger.

The paradox is clear: each expects the other to be younger from their
partial recollection of relativity theory. To this confusion, we can add a third
perspective. The principle of relativity states that the laws of physics are
the same in every inertial frame. This means we cannot physically distin-
guish two inertial frames: if you perform identical experiments within cach
reference frame, you must get the same results. But isn’t the aging process
essentially a physical experiment that each person performs in his or her ref-
erence frame? If either twin is younger than the other, won't that distinguish
between the frame of the earth and the frame of the spaceship, contrary o the
principle? So shouldn’t they have the same age?

We have in fact already resolved this paradox in this chapter: we <imply
need to rephrase it in more appropriate language. The first task is to - nity
what events we are talking about. Let us define event A to be the ship™s copar-
ture from earth. Let its arrival back on earth be event B. The twins arc pres-
ent at both events A and B, so their clocks (including their biological ¢ ocks)
measure (different) proper times between the events. The question = v hich
of these twins measures the longer proper time between these event? To
find out, we need to sketch their worldlines as measured in some inertial
reference frame,

For our master inertial reference frame, let us choose a frame at rest
with respect to the sun. Since the sun is freely falling around a very dis-
tant galactic center of mass, this will be an excellent approximation to an
inertial frame.
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Figure R4.6 ook C
The worldline of Andrea’s spaceship as drawn by f
an observer in the frame of reference of the sun. ;
A: Andrea’s departure from earth 10y + Bt
C: ship reaches cruising speed .
D: ship begins decelerating ;
E: ship arrives at Sinus Syt i
F: ship departs from Sirius G :
G: ship reaches cruising speed :
H: ship begins decelerating } S Leprid

A Sy 10y X

B: ship arrives at earth

Now let us sketch the twins’ worldlines as observed in this frame. Andrea
takes off from the earth at event A, which we can take to be the origin event
(i.e., the event that defines t = x = 0 in the sun frame). Her spacecraft travels
slowly at first, but gradually picks up speed as it strains toward the speed
of light. After a year or so, it reaches a cruising speed. But before it reaches
Sirius, it must begin to slow down. Finally, it coasts into the star system and
lands. The process of acceleration and deceleration repeats on the way home.
Event B is the event of her return to earth. Figure R4.6 shows a spacetime
diagram of the resulting worldline.

On this diagram, the earth’s (and thus Bernard’s) worldline is a tiny helix
winding around the ! axis, twisting around it about 25 times in the roughly
25-y duration of the flight. So Bernard does not measure coordinate time
between events A and B, as his vague argument seems to suggest: rather, he
measures a proper time between those events that is somewhat different from
coordinate time. But since Bernard is never more than about 8 light-minutes
(%15 x 10"* y) from the sun, the squiggles of his little helix are far too tiny to
show up on the diagram. Thus, his worldline is essentially a straight line up
the ¢ axis. Moreover, since Bernard’s speed in his worldline (roughly equal
to the earth’s orbital speed) is about 30 km/s = 10" in SR units, the proper
time measured by his clock only differs from that measured by coordinate
clocks in the sun’s frame by about [1 — (1=[3])'7] Aty = +i oA =
(5 % 10 )25 y) = 4 s over the time period between events A and B. We see for
Bernard that the proper time he measures between events A and B is essen-
tially the same as the time measured in the sun’s frame between those events.

But for Andrea, the situation is different. In the sun’s frame, Andrea
spends quite a bit of time traveling at nearly the speed of light: her average
speed in this frame is 17.21y/ 25y = 0.69. Therefore, the factor (1= | #])" * that
appears in the formula for her proper time will be quite a bit smaller than 1 for
major portions of the trip. As a result, Andrea’s clocks (including her body’s
biological clock) register much less time between A and B than Bernard’s
clocks do. Even though 25 y passes on earth, clocks traveling with Andrea
will measure a proper time of (approximately) (1 — 0.69°)°(25y) = 18 y
between her departure and arrival (we would need to do the integral of

79



80

The core issue: Andrea’s frame
is not inertial

A footpath analogy

Chapter R4  Proper Time

equation R4.6 more carefully to get a more accurate answer). So it is i"dl'uj
a younger Andrea of about age 43 that bounds out of the spacecraft to gr,,,
her substantially older twin, Bernard. o

But Andrea’s reasoning seems perfectly logical. Why is it wrong? A,
what of the principle of relativity? The answer to both questions is the Same:
Andrea is in a noninertial reference frame. Every time the spacecraft engines fire
first-law detectors in Andrea’s frame register a violation of that law (t‘qun.'
alent detectors in the sun’s frame would read nothing). It is Andrea wh is
pressed into her chair as the engines accelerate and dccelcr.'ltc the Spacecrafy,
not Bernard who is sitting at home. Since Andrea’s frame is not inertial, th,
principle of relativity does not apply to her. This exposes the error in the argy.
ment favoring the equality of the twins.

Andrea’s mistake is to apply the proper time formula as if her oy
reference frame were inertial (and thus as if her clocks measure coordinate
time At ;). She should compute proper times between events A and B using
speeds and times measured in a real inertial reference frame, which her frame
is clearly not.

Bernard’s reasoning is no better than Andrea’s, since he is not in an iner.
tial frame either! But since Bernard’s frame is nearly inertial, when he applies
the proper time formula to the times measured between events A and B, he
gets an answer that is at least approximately correct. Andrea really is about 7 y
younger than Bernard. There is no ambiguity and no paradox.

This situation should not seem any more paradoxical than the follow-
ing (more familiar) situation. Imagine that Alex and Brin both set off from 3
given point A on the surface of the earth. Brin (analogous to Bernard here)
takes an approximately straight path from point A to the destination point B,
while Alex takes a curved path. Should they be shocked when they arrive at
B and find that Alex has walked more miles than Brin? Hardly! Alex might
try to claim it was Brin who departed and then returned and so must have
taken the curved path, but this is misleading. The curvature of Alex’s pathis
an absolute physical property of that path, a property that can be displayed
in any fixed coordinate system. Alex’s personal coordinate system, whose
axes change direction every time Alex takes a new turn, is not an appropriate
coordinate system for displaying a path’s curvature. We don’t have trouble
accepting the nonequivalence of the distance measured along Alex's curved
and Brin’s straight footpaths in this case, so we should not have trouble
accepting the nonequivalence of the proper times measured along Andrea’s
and Bernard’s worldlines in the first case.

Part of the problem is people sometimes say that A7, = [(1— 7 ) “d
(equation R4.6) means that “moving clocks run slow.” This is a completely
misleading statement that can lead to all kinds of misconceptions and errors,
You should not focus on which clocks are “moving,” because that is frame-
dependent. Instead focus on which clocks are measuring what ki of time.
Coordinate times are always greater than or equal to the spacetime interval,
which in turn is greater than or equal to any proper time. Focusing on the
kind of time being measured, therefore, gives you certain and unambiguous
information about who measures the greater or smaller time.

Exercise R4X.3

Why is the statement that Andrea’s proper time is equal to (1 = 0.69°) (25
an approximation? Do you think it is likely to be a bit too high or a bit too
low as an estimate?
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ReT1 Consider the spacetime diagram below, which B. Both clocks must be accurate to the nearest 10 ps.

shows events A and B and the worldlines of clocks that
one might use to measure the time between those events

e .

-

-~
e csassss OvL

y

1

The clock(s) following which worldline(s) measure(s)
(a) the spacetime interval between events A and B?
(b) a proper time between events A and B?

(¢) acoordinate time between events A and B?

(d) the shortest time interval between events A and B?
(e) the longest time interval between events A and B?

Al

Bias

Coifedn

[ R | | [
Rty 5o
F. and __ __

T. None of these choices

R4T2 Suppose we carefully synchronize two identical
atomic clocks initially standing next to each other (call
them A and B). We put clock B on a jet plane, which then
flies around the world at an essentially constant speed
of 300 m/s, returning 134,000 s (37.1 h) later. We then
again compare the two clocks. Assume the earth’s surface
defines an inertial reference frame, and ignore the possible
effects of gravity.

(a) Which clock measures the spacetime interval between
the synchronization and comparison events?

(b) Which clock measures a coordinate time between the
synchronization and comparison events?

() Which clock measures the shorter time interval between

the synchronization and comparison events (or do both

measure the same time)?

. Clock A

Clock B

Both

. Neither

TN=E»

R4T3 In the round-the-world experiment described in
problem R4T.2, what is the minimum accuracy over the
experiment’s duration that the clocks must have to clearly
display the relativistic effect?

A. Both clocks must be accurate to the nearest 10 ms.

RATA

R4T.S5

C. Both clocks must be accurate to the nearest 10 ns
D. Both clocks must be accurate to the nearest 10 ps

Jennifer bungee-jumps from a bridge (event A)
perfectly elastic, so she bounces
exactly back up to the bridge and lands on her feet
(event B). The time between these events is measured by
Jennifer's watch, a stopwatch held by Jennifer’s friend,
Rob, who is standing on the bridge, and by two passen-
gers (one present at event A and one present at event B)
who are riding on a train traveling at a constant velocity
across the bridge at the ime (the passengers have synchro-
nized watches and compare readings later). Assuming the
carth’s frame 1s inertial, who measures

(a) the longest time interval between these events?

(b) the shortest time interval between these events?

(c) the spacetime interval between the events?

A. Jennifer

B. Rob

C. The train passengers

Jennifer’s bungee cord is

In the situation described in problem RAT4, the
train passengers are moving, but Rob is at rest. Therefore,
the train passengers measure less time between the events
than Rob does. T or F?

R4T.6 Suppose we synchronize two atomic clocks at

a point at 45" south latitude, and then move one clock
directly north to the earth’s equator and the other directly
south to the south pole, where they remain for some years
in climate-controlled enclosures that keep them at the same
temperature and humidity. We then reunite the clocks at
the origin point and compare them again. Which (if either)
has registered a shorter time between the synchronization
and comparison events?

A. The clock at the equator

B. The clock at the south pole

C. Both clocks read the same time.

R4T.7  GPS satellites go around the earth in orbits that

have a common radius of 26,600 km and a period of 12 h
Roughly how much less time would an atomic clock on
a GPS satellite register between two events separated
by exactly 24 h than clocks in the reference frame of the
carth (ignoring gravitational effects on the satellite’s
clock rate)?

About 10 ms

About 1 ms

About 100 ps

About 10 s

About 1 ps

About 10 ns

mmoN® >

R4T.8  The coordinate time between two given events is

shortest in the inertial frame where their spatial separation
is the smallest. T or F?
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' HOMEWORK PROBLEMS

R4B.1 A spaceship leaves earth (event A), travels to Pluto
(which is 5.0 h of distance away at the time), and then
returns (event B) exactly 11.0 h later. If the spaceship’s
acceleration time is very short, so that it spends \'irtuTl".V
all its time traveling at a constant speed, estimate the ime
measured between events A and B by the ship’s clock.

R4B.2  Aspaceship leaves earth (event A), travels to Alpha
Centauri (which is 4.3 y of distance away), and then returns
(event B) exactly 9.0 y later. If the spaceship’s acceleration
time is very short, so that it spends virtually all its time
traveling at a constant speed, estimate the time measured
between events A and B by the ship’s clock.

R4B3 The designers of particle accelerators use electro-
magnetic fields to boost particles to relativistic .spa-fis
while at the same time constraining them to move in a cir-
cular path inside a donut-shaped evacuated cavity..lmag—
ine a particle traveling in such an accelerator in a circular

th of radius 7.01 m at a constant speed of 0.9994 (as mea-
sured by laboratory observers). Let events A be the particle
passing a certain point on its circular path, and let event B
be the particle passing the point of the circle directly oppo-
site that point, as shown below.

R=70lm

=

_.ﬁ [Tal = [T = 0.9994 lB
Ug

(a) What are the coordinate time At and the distance | Ad|
between these events in the laboratory frame? [Hint:
|Ad| # 7 (7.01 m)! Think about it more carefully!]

(b) What is the spacetime interval As between the events?

(c) What is the proper time AT between the events, as
measured by a clock traveling with the particle? About
how many times greater than AT is Af?

R4B4 Suppose a new bullet train can go all the way
around the world in 6.235 s as measured by clocks at the
station. Assuming the train cruises at a constant speed,
how long do the passengers” watches register for a com-
plete circumnavigation of the globe? The radius of the
earth is about 6380 km.

R4B.5 We synchronize two atomic clocks, and then put
one in a high-speed train car that subsequently goes
50 times around a circular track (radius 10.0 km) at a con-
stant speed of 300 m/s. We then again compare the two
clocks. By how much do the clocks now differ?

R4B.6 We synchronize two atomic clocks, and then py,

one in a race car that subsequently goes 50 times around ,
circular track (radius 5.0 km) at a constant speed of 60 m /¢
By how much do the clocks differ afterward?

R4B.7 A jogger runs 22 times around a 0.50-km track in

48 min, as measured by a friend sitting at rest on the side,

(a) If the jogger and friend synchronize watches before the
run, by how much do they differ afterward?

(b) Is this the reason why many people expect joggers to
live longer than people who don’t jog? Explain.

Modeling

R4M.1 Suppose a person commutes 50 mi each way 5

work and back 250 days per year for 35 y. During the

commute, the person drives almost entirely on the freeway

at an approximately constant speed of 65 mi/h.

(a) How much less time has this person’s watch registered
in 35 y than that of someone who has stayed at home?

(b) Is it true that commuters live significantly longer, or
does it just seem longer?

R4M.2 Allison, Brad, Chris, and Dylan are enjoying a trip

to the amusement park. Allison goes to ride the gigantic

Ferris wheel (which is 47.75 m in diameter), but Brad (who

doesn't like heights) elects simply to watch. Chris and

Dylan are riding the monorail that passes along a straight

track just below the Ferris wheel’s bottom. The monorail

moves at a constant speed of 9 m/s. The first time Allison
passes Brad (who is standing right next to Allison but on
the ground), Allison and Brad look at their watches, and

Chris (who happens to be passing under Allison’s seat on

the Ferris wheel at that instant) looks at the clock on her

seat’s fancy electronic display. Call this event A. When

Allison passes Brad the next time (call this event B}, Alli-

son and Brad again look at their watches, and Dylan, who

happens to be passing under Allison’s position at just that
instant, looks at his display (which we will assume 1s syn-
chronized with Chris’s display). Everyone determines the
time interval that they measure between these momentous
events (Chris and Dylan by subtracting Chris’s value for
event A from Dylan’s value for event B). Brad measures

exactly 50 s between events A and B.

(a) Who measures the shortest time between these events?
Who measures the longest? Explain. [Hint: What Lind
or kinds of time does each person measure?|

(b) How much larger or smaller is the time that Allison
measures than the time that Brad measures?

(c) How much larger or smaller is the time that Chris and
Dylan measure than Brad's time? Explain. (Hint: Note
that their time will be very close to Brad's time.)

(d) Chris and Dylan are moving in the ground frame.
Shouldn’t they therefore measure less time between the
events than Bob? Explain why the “moving clocks run
slow” idea is very misleading here.
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Event F

Car driven by Alice

3 L] Bqn.\n
® Cara
(a) Train
Figure R4.7
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Event |

Car driven by Alce

® Brian

I Davee w

Train

(a) Event E and (b) event F in the situation described in problem R4M.3.

R4M.3  Alice is driving a race car around an essentially cir-
cular track at a constant speed of 60 m/s. Brian, who is
sitting at a fixed position at the edge of the track, measures
the time that Alice takes to complete a lap by starting his
watch when Alice passes by his position (call this event F)
and stopping it when Alice passes his position again (call
this event F). This situation is also observed by Cara and
Dave, who are passengers in a train that passes very close
to Brian. Cara happens to be passing Brian just as Alice
passes Brian the first time, and Dave happens to pass Brian
just as Alice passes Brian the second time (see figure R4.7).
Assume the clocks used by Alice, Brian, and Cara are close
enough together that we can consider them all to be “pres-
ent” at event E; similarly, that those used by Alice, Brian
and Dave are “present” at event F. Assume the ground
frame is an inertial reference frame.

(a) Who measures the shortest time between these events?
Who measures the longest? Explain.

(b) If Brian measures 100 s between the events, how much
less time does Alice measure between the events?

(¢) If Cara’s and Dave’s train moves at a speed of 30 m/s,
how much larger or smaller is the time that they mea-
sure compared to Brian’s time? Explain carefully.

(d) Chris and Dylan are moving in the ground frame.
Shouldn't they therefore measure less time between the
events than Bob? Explain why the “moving clocks run
slow idea” is very misleading here.

R4M.4 The half-life of a muon at rest is 1.52 ps. One can
store muons for a much longer time (as measured in the
laboratory) by accelerating them to a speed very close
to that of light and then keeping them circulating at that
speed in an evacuated ring. Assume you want to design a
ring that can keep muons moving so fast that they have a
laboratory half-life of 0.25 s (about an eye-blink).

(a) How fast must the muons be moving? (Hint: Define
u = AT/At, write an equation that links « to | 7], then
solve for | 7| and use the binomial approximation. You
may need to do the final calculation of | | by hand.)

(b) If the ring is 7.01 m in diameter, how long will it take a
muon to go once around the ring in the lab frame?

RIM.5 Suppose some astronauts travel in a near-earth
orbit at an altitude of 200 km for 225 orbits.

(a) In unit N, we saw that the speed of an object in a
circular orbit of radius R around an object with mass
Mis | #] = VGM/R, where G is the universal gravita-
tional constant. Argue that in SR units, G = Gisa/C =
2475 x 10 s/kg.

(b) About how much less time passed between the depar-
ture and arrival of the spaceship according to the
astronauts’ clocks than passed on the ground? Assume
for the sake of simplicity that the surface of the carth
defines an inertial reference frame.

R4M.6 The satellites used in the Global Positioning Sys-

tem go around the earth in circular orbits whose radius 1s

26,600 km and period is 12 h exactly. Assume for the sake

of simplicity that the earth is not rotating, so that a clock on

its surface is in an inertial frame.

(a) In unit N, we saw that the speed of an object in a cir-
cular orbit of radius R around an object with mass M
is |#]| =GM/R, where G is the universal gravita-
tional constant. Argue that in SR units, G = G,.,/c’ =
2475 % 10 * s/kg.

(b) Let event A be a certain GPS satellite passing a given
position in space and event B be it passing that point
again after one complete orbit. At each event, this sat-
ellite sends a radio signal to a clock directly below it
on the (nonrotating) earth, which receives the signals
at events C and D, respectively. What is the ditference
between the time an atomic clock on board the satel-
lite registers between events A and B and the time a
clock on the earth’s surface registers between events
C and D? Express your result symbolically in terms of G,
M, and R (don’t crunch numbers yet), though you can
assume that GM/R << 1. (Hint: Argue that the signal’s
travel time is the same in both cases.)

(c) Now calculate numerically how much less time a clock
on the GPS satellite measures for a complete orbit than
the clock on the ground does.

(See problem R4A.3 for a discussion of how the earth’s

gravity affects GPS satellite clock rates.)

R4M.7 Integrating equation R4.6 is a lot less tricky if | 7] is

always small enough that we can use the binomial approx-
imation. Suppose a spaceship starts from rest from Space
Station Alpha floating in deep space and accelerates at a
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RAM.7 (continued) constant rate of || = 10 m/s’ (relative
to the station) for 1.0 Ms (=12 days), decelerates for the
same amount of time to arrive at rest at Space Station Beta
(which floats at rest relative to Alpha), and then repeats the
same acceleration and deceleration processes in the oppo-
site direction to get back to space station Alpha.

(a) Find the spaceship’s top speed. Is it small compared to
the speed of hight?

(b) About how much less time has elapsed on the spaceship
compared to clocks on Station Alpha? (Hmt: Divide the
trip into four pieces, and use the binomial approxima-
tion to convert the integral in equation R4.6 to two sim-
pler integrals for each piece.)

Derivations

R4D.1  Compare (1- /)" “and 1- L[5 for the follow-
ing values of |#]:05,0.2,0.1,0.05,001, 0.002. Which is the
largest of these values for which the difference between the
two expressions is smaller than 1%? Smaller than 0.01%?

R4D.2 Here is a simple way to gndersland the binomial
approximation. Consider (1 + )" = (1 + x)(1 + x).If you
multiply this out, you get (I + f=1+2v+x. Now, if
| x| << 1, then ¥’ << x,sowe have (1 +2)° = 1 + 2y, just as
the binomial approximation states. Apply the same kind
of reasoning to (1 + x)' and (1 + x)', and show that the
binomial approximation works in these cases, too, when
v is small enough that we can ignore +* (and higher powers
of x) compared to x. (While this is not a proof, it may help
you understand the basic issues involved.)

R4D.3  One can prove the binomial approximation more
generally as follows. According to the definition of the
derivative, we have for any function f{x)

f) - f0) _ [ df
X dx Jiso
where |df/dx ] ., tells us to evaluate the derivative at x = 0.

Now consider the function f(x) = (1 + x). Apply equation
R4.24 and the chain rule to this function to get f(x) = 1 +ax.

if x is very small (R4.24)

R4D.4 In section R4.4, we proved that the coordinate time,
the spacetime interval, and the proper time between a given
pair of events stand in the relationship At = As = AT,
no matter what inertial frame is used to measure At
and no matter what worldline is followed by the clock
measuring AT, It was asserted there that At = As if and
only if At is measured in a frame where the distance | Ad |
between these events is zero. It was also asserted that
As = At if and only if the clock measuring AT is inertial.
Write a short argument supporting each of these statements
(for both directions of the “if and only if”).

Rich-Context

R4R.1  Consider the Hafele-Keating experiment discussed
in section R4.5. In this experiment, two atomic clocks were
synchronized (event A), one was put on a jet and flown

Proper Time

around the world, and then the clocks were comparey
(event B). Our task in this problem is to make a reasop.
ably realistic prediction of the discrepancy that we woy)g
expect between the clocks. Suppose the plane starts a ,
point on the equator and flies around the world at a spegy
of 290 m/s relative to the ground. Assume the plang

cruises at an altitude of about 35,000 ft = 10.7 km aboye

the earth’s surface.
(a) Make a prediction (accurate to about *1%) of how

much the clocks will disagree when they are com.
pared at the end of the experiment if the plane flies
cast around the equator (do not ignore the earth’s rota-
tion). Describe any assumptions Or approximations
vou are compelled to make. (Hint: Do your analysis i
an inertial reference frame fixed to the earth’s center
but which does not rotate with the earth. You can use
the coordinate time At measured in this frame between
the initial synchronization and the final comparison
events as a reference to compare earth clocks and plane
clocks. It is tricky to calculate an exact number for this
coordinate time, but in your final calculation, note that
this time will be equal to the time measured on the
carth’s surface to much better than £1%.)

(b) Repeat your calculation, assuming the plane flies west,
Why is your answer different from the one you found
for part (a)?

(¢) General relativity predicts that a clock that is a distance
ithigherina gravitational field than a second clock will
run faster than the lower clock by the factor 1+ ||/
(in ST units), where | | is the earth’s gravitational field
strength (9.8 m/s7). How does including this informa-
tion changc your answer to part (a)?

R4R.2 Because the earth is freely falling around the sun, its

center defines a pretty good inertial reference frame. With
this in mind, consider the fates of two identical twins, one
living since infancy at the North Pole and the other living
since infancy on the equator. Imagine that both twins die
after exactly the same biological time has passed (as deter-
mined by their own bodies). If this is so, about how much
longer will the equatorial twin live than the northern twin
if both live for normal time spans? Describe any approxi-
mations or assumptions you have to make.

R4R.3  The Spacer’s Challenge is a vearly spaceship race

between Starbase Delta and Starbase Epsilon, which
float at rest with respect to each other a distance I apart.
Participants may travel between the two along any world-
line they like, as long as they arrive at Starbase Epsilon at
a time T within £0.1% of 1.60D after departing from Star-
base Delta (as measured by official synchronized clocks on
the two starbases). The winner is the spaceship having the
smallest value of the distance (in SR units) traveled .ﬂung
its worldline plus the ship’s proper time measured along
that worldline. (These quantities have the same SR units.)
Now, traveling faster between the arrival and depar-
ture events will reduce vour proper time, but will also
require that you travel a greater distance along a curved
.worldlinc to ensure your total trip time remains the same
in the starbase frame, so one must consider the trade-
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offs. The simplest curved worldline between the starbas

is a circle in space with radius 1 D. If you follow su I:t .
worldline, will you beat a spaceship that simply tr;\'elz
directly at a constant velocity between the slarbds)es?

Advanced

R4A.1  1f you know about Taylor series, vou can prove the
binomial approximation quite generally, Any continuous
and differentiable function f(x) can be t"xprv.&wd in terms
of a Taylor series expansion as follows:

df O df | df
=f0)+x|=| +=|"2 —|&Z
f(t) 'f( ) dl’].-u 2![6‘.1'1 ..-§+ 3t dx! ,.p+“’ (R!LZS)

Apply this to the function f(x) = (1 + x) and show that if
you drop terms in this power series involving x* or higher,
you end up with the binomial approximation. Also show
how you would write the approximation if you were to
keep terms involving x* but drop highcr-ordc} terms.

R4A.2 Consider an inertial frame at rest with respect to the
earth. We observe an alien spaceship to move along the x
axis of this frame in such a way that

x(t) = Lisin(wt + {m) - b] (R4.26)

where both x and t are measured in the inertial reference

frame, w = /2 rad/h, and b = sin(7/4). Assume also that

the earth is located at the origin (x = 0) in this frame.

(a) Argue that the ship passes the earth at t = 0 and again
att = 1.0 h. (Hint: The value of wt is /2 at this time.)

(b) Draw a quantitatively accurate spacetime diagram of
the spaceship’s worldline, labeling the events where
and when it passes the earth as events A and B.

(¢) Show that the ship’s x-velocity is v, = cos(wt + 7/4) as
measured in the inertial frame attached to the earth.
(Hint: You don't need to use any relativity!)
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(d) Find the proper time measured by clocks on the alien
ship between the events where it passes carth the first
and second times. (Hint: 1 = cos’x = sin‘x.)

R4A3 Consider the Global Positioning System satel-
lites described in problem R4M.6. Again, for simplicity’s
sake, suppose the earth is not rotating, Let At, be the time
between two events that bracket one complete satellite
orbit as measured by a clock at rest with respect to the
earth but so far away that the effect of the earth’s grav-
ity on its rate is negligible. (We'll call this “the clock at
infinity.”) o
(a) The satellite’s speed is | 7| = VGM/R, where G is the

universal gravitational constant (2475 x 10 “s/kgin
SR units), M is the carth’s mass, and R = 26,600 km
is the orbit’s radius. Assuming that GM/R << 1, use the
binomial approximation to find an expression (in terms
of G, M, and R) for the discrepancy 8t = At — AT
between what the clock at infinity and the satellite’s
clock measure for a full orbit due to the satellite’s
motion.

(b) General relativity states that a clock at rest a distance R
from the center of a planet of mass M runs more slowly
than the clock at infinity by the factor v/1 = 2GM/R (in
SR units) due to the planet’s gravitational field. Find a
symbolic expression for the gravity-induced discrep-
ancy 8t, between what the clock at infinity and the sta-
tionary clock at R measure for a full orbit.

(c) Similarly find the gravity-induced discrepancy 6L,
between what the clock at infinity and a clock on the
earth’s surface at radius R, measure for a full orbit.

(d) Find a symbolic expression for the total discrepancy
Jt between what the satellite’s clock and the clock on
the earth’s surface measure for a full orbit, taking into
account all of these effects.

(e) Evaluate & numerically and interpret its sign.

' ANSWERS TO EXERCISES ]
R4X.1 See the table below. All results are rounded to nine  R4X.3  Andrea is not moving at a constant speed, so the
decimal places. use of the constant-speed formula for proper time is not
appropriate, even when one uses the average speed. On

15| m 1-43) the other hand, she spends most of her time traveling at a

= constant speed, so this will be a reasonable approximation.

0.1 0.994987437 0.995000000 To see whether this is likely to yield an answer too high or
0.01 0.999949999 0.999950000 too low, let us consider a specific and fairly extreme case,
0.001 0.999999500 0.999999500 Suppose Andrea travels at a speed of 0.86 for four-fifths of

We see that the approximation is accurate to four deci-
mal places even when | 7| is as large as 0.1.

R4X.2  The ratio of a muon’s acceleration || in the labora-
tory frame to | § | is

lal _ 18P _ 099942 "3.0 x 10° m|
gl 13IR @8m/sH701m)! 1s

=13 x 10" (R4.27)

the time and is at rest for the remaining time, as measured
in the sun-based frame: this vields the desired average
of £(0.86) = 0.69. In this case, though, we can compute the
proper time more accurately by breaking cach half of the
path into two segments, one where she is moving at a con-
stant speed of 0.86 and one where she is at rest. Andrea’s

total elapsed proper time in this particular case is
(1-086)'"74(25y) +(1)'*1(25y) =15y  (R4.28)

instead of 18 y. If this example is any indication, using the
average speed yields an estimate that is too high.
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Chapter Overview

Introduction

To delve further into the implications of the principle of relativity, we need 1o 4
a way of linking an event’s coordinates 1, X, ¥, and z in one inertial frame wip,
coordinates 1, ¥', v, and z’ in another. This chapter develops tools for doing this, an4

chapters R6 and R7 use these tools to explore applications.

Section R5.1: Overview of Two-Observer Diagrams

A two-observer spacetime diagram is a spacetime diagram where the coordinate
axes of two different observers are superimposed on events in spacetime.

Section R5.2: Conventions

We will assume in this and future chapters that the two observers are using inertia|
reference frames in standard orientation (that is, whose frame axes point in the same
directions in space) with the Other Frame moving along the x axis relative to the
Home Frame, and that spatial origins of both frames coincide atf = "= 0

Section R5.3: Drawing the Diagram t’ Axis
The ¢’ axis is the set of all events that happen at x’ = 0 (the Other Frame's origin

Since that origin moves along the x axis with x-velocity 4 relative to the Home Frame,
the t axis is simply a worldline with a slope of 1//3. The section argues that we should
calibrate this axis either by using hyperbolas or by drawing marks whose tertial sep-

aration is 7 = (1 — 3°)"? larger than the marks on the ! axis.

Section R5.4: Drawing the Diagram x’ Axis

The diagram x’ axis is the set of all events that happen at t" = 0 (this is 10 be distin-
guished from the Other Frame’s spatial x” axis, which is one of the frame’s three coor
dinate axes in space). The radar method implies that the diagram x " axis slops
with a slope of 3. We calibrate this axis just as we did the " axis.

Section R5.5: Reading the Two-Observer Diagram
Since all events that lie on a line parallel to the ¢ axis occur at the same | !
Other Frame, and all events that lie on a line parallel to the x" axis occur at the same
time, to find the Other Frame coordinates of a given event, we draw lines para!
t"and v’ axes from this event until each intersects the other axis

Figure R5.1 summarizes the process of constructing a two-observer diagram

Section R5.6: The Lorentz Transformation
Using a two-observer spacetime diagram, we can argue that the coordinate separd-
tions between any two events in the Home Frame and Other Frame are related b

000000 CON VO ED I ONEINGOGOO 0600000 0000600006060 00600060060600000e00cass
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—
At =17(at - 54x) (R5.11a)
Av'=7(-84t + Ax) (R5.11b)
Av'=Ay (R5.11¢)
Az'= Az (R5.11d)

o Pu

At =9(At'+ BAY’)  (R5.120)
Ax=9(+3A1" + Ax')  (R5.12b)
Ay = Ay’ (R5.12¢)
Az = Az (R5.124)

rpose: These equations allow us to calculate the coordinate differences

At', Ax’, Ay’, and Az’ in the Other Frame from the co. i i

¢ rresponding differences
At, Ax, &y, and Az in the Home Frame or vice versa, \\smoere [i);s the Other
Frame's x-velocity relative to the Home Frame and y=(1-89""

o Limitations: The two frames must be inertial and in standard orientation.
« Notes: Equations R5.11 are called the Lorentz transformation equations, and

equations R5.12 the inverse Lorentz transformation equations.

‘(s)ﬂ
o+
'.-
2=
o Y é T ‘; T ;x(:)

Choose one frame to be the Home
Frame. Draw its axes in the usual
manner, and indicate the position of
the origin event O. Calibrate the axes

(This and subsequent
figures are drawn
assuming 3 = 1/2.)

o

i PR

i
K 6 x(s)

-
N d=cohecegeceran
-+

ol

Draw the ¢’ axis of the Other Frame
from the origin event O with a slope
1/3 (where 3 is the x-velocity of the
Other Frame with respect to the Home

with some convenient scale. Frame). Draw the diagram x” axis of
@ (b) the Other Frame with slope 3.
P-x?=(4s)
t(s)4 t'(s)
6+
4 P £
4+ == 7
1’ x'(s)
. ’I
2 ’ /
2T I’ 4
/,
T 2
o 2 = t ‘.’ o
Calibrate the t' axis by using hyperbolas Read the coordinates (in either frame)
or by drawing marks that are vertically of any event E by dropping parallels
separated by At = yAt’, where At'is the from the event to the appropriate axes.
intended mark separation in the Other (In this case, E has the coordinates
Frame (1 s in this case). Calibrate the t=5s, v =4sinthe Home Frame and
diagram 1’ axis with marks having the "= 345 x = L7 s in the Other Frame.)
(o) | 33me spacing. (When 3 =1/2,7= 1.15) «
Figure RS5.1

A summary of the steps in drawing and interpreting a two-observer diagram.
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What is a two-observer
spacetime diagram?

Figure R5.2

A drawing showing two sets

of Cartesian coordinate axes
superimposed on the same
plane. We can easily read the
coordinates of point A in both
coordinate systems from such a
diagram.

Chapter R5  Coordinate Transformations

F5.1 Overview of Two-Observer Diagrams

In chapters R3 and R4, we learned how to use the metric cquatiop to calculage
the frame-independent spacetime interval As and the framc-ln(_iepcndem
proper time AT along a worldline, using frame-dependent co.urdmatcA mea.
surements performed in some inertial frame. To delve further into the imp;.
cations of the principle of relativity, we need to go a step f'ur ther. We need
know how to link the coordinates t, x, v, and z in one inertial reference frame
to the same event’s coordinates £, x’, ¥, and z" in another inertial reference
frame. We need to understand such coordinate transformations to under.
stand length contraction (see chapter R6) and generalize the Galilean veloc.
ity transformation equations (see chapter R7). This chapter therefore openg
a three-chapter subdivision on such coordinate transformations and thejy
implications.

Our specific task in this chapter is to understand how, given an event’s
spacetime coordinates 1, x, y, and z in one inertial reference frame, we cap
find the same event's coordinates t/, x’, ¥, and z" in another inertial reference
frame. Physicists call the equations that mathematically describe this coord;-
nate transformation process the Lorentz transformation equations.

Deriving the Lorentz transformation equations is straightforward by
somewhat abstract, and that abstraction can blunt one’s intuition aboyt
what is really going on. Therefore, in this text we will address the same task
by using a more visual and intuitive tool called a two-observer spacetime
diagram. In a two-observer spacetime diagram, we superimpose the coor-
dinate axes for two different observers on the same spacetime diagram. The
result will be analogous to the drawing in figure R5.2, which shows two
ordinary Cartesian coordinate systems (one rotated with respect to the other)
superimposed upon the plane. Once we have set up such a Cartesian two-
observer diagram, if we know the coordinates of a given point A in the xy
coordinate system (x, = 7 m, y, = 4 m in the case shown), we can plot poi;{t
A relative to point O. Then, we can simply read the coordinates of A in the vy’
coordinate system from the diagram (the coordinates are x| = 8 m, vi=1m in
this case). We do not have to use any equations or do any calculations at all!

Setting up such a diagram is straightforward for plane Cartesian coordi-
nate systems: it merely involves drawing two sets of perpendicular axes (one
rotated with respect to the other), scaling the axes, and drawing coordinate
grid lines for each set of axes. Setting up the two sets of coordinate axes
representing different inertial frames on a spacetime diagram is a sini/ 1 pro-
cess, but the peculiarities of spacetime geometry relative to plane geometry
lead to some surprising dissimilarities as well. Therefore, we need to do. elop
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R5.2 Conventions

the procedure in a careful, step-by-step manner so we are sure to catch all
these dissimilarities.

This is well worth the effort, though, because two-observer diagrams
vividly display how different observers view the same events differently in a
way that the abstract Lorentz transformation equations cannot. Those equa-
tions help us calculate how events in one frame are viewed in another, but

pwo-observer diagrams help us really understand what is going on.

[;5,2 Conventions

To make the task of constructing two-observer spacetime diagrams easier,
it is convenient to make several assumptions. First, we assume that the two
inertial reference frames are in standard orientation with respect to each other, as
defined in section R1.7. That is, we assume that our frames’ corresponding
spatial axes point in the same directions in space and that the frames’ relative
motion is directed along the common x direction. Since we can choose what-
ever orientation we desire for the axes of a spatial coordinate system, we do
not really lose anything by choosing the frames to have this orientation, and
we gain much in simplicity.

Second, we will work with only those events that occur along the common X
and axes of these frames (that is, those having coordinatesy =y’ =z =2"= 0).
This is a substantial concession to convenience. We would really like to be
able to handle any event, but plotting an event with arbitrary coordinates on
a spacetime diagram would require that the diagram have four dimensions,
which is impossible to represent on a sheet of paper. We choose therefore to
Jimit our attention to events that can be easily plotted on a two-dimensional
spacetime diagram. We will see that many interesting problems can still be
treated within this restriction. So until you are told otherwise, you should
assume that ¥’ = y = 2’ = z = 0 for all events under discussion.

The first step in actually drawing a two-observer spacetime diagram is
to (arbitrarily) pick one of the two frames to be the Home Frame and to call
the other frame the Other Frame. Remember that | am capitalizing the terms
Home Erame and Other Frame in this text to emphasize that these phrases are
actually names for inertial frames. By convention, spacetime coordinates in
the Home Frame 1, x, v, z and coordinates in the Other Frame are t’, x', v', 2',
as shown in figure R5.3. The other crucial distinction is that we always
choose /3 to be the velocity of the Other Frame relative to the Home Frame
(the Home Frame’s velocity relative to the Other Frame is therefore —=3). The
symbol 3 without the arrow refers to the x component of the Other Frame’s
velocity relative to the Home Frame, so it is negative if the Other Frame
moves in the =x direction relative to the Home Frame.

v4 y'a

(&) »

Spatial origin

89

A two-observer diagrams is a
powerful tool for displaying
how different observers view
events

Standard orientation

In two-observer diagrams, we
can only display events that
occur on the x axis

The distinctions between the
Home Frame and the Other
Frame

Figure R5.3

Two inertial reference frames in
standard orientation. The frames
are represented schematically here
by bare orthogonal axes. Note

that 3 always represents the Other
Frame's velocity relative to the
Home Frame, and 3 without the
arrow represents that velocity's

X component.



The slope of the " axis

Drawing an appropriate scale
on the " axis

Chapter RS  Coordinate Transformations

Now, our choice of a Home Frame does not necessarily mean we are cop,.
sidering that frame to be at rest and the O}her Frame to be‘movmg: we st
want to reserve the freedom to consider either frame as being at‘ rest. Why
this choice does imply is simply that we will represent the.Home f-'mm(. tand
1 axes in the usual manner in a spacetime diagram (.that is, we will draw ji
t axis as a vertical line and its Y axis as a horizontal line).

R5.3  Drawing the Diagram t’ Axis

The time axis for any frame on a spacetime diagram is by definition the lipe
connecting all events having x coordinate = 0 in that frame. This means thy
the time axis is the worldline of the clock at the reference frame’s spatial origin
(all events happening at a frame’s spatial origin have spatfal coordinate x =
by definition). We draw the Home Frame’s t axis as a vertical line by conven.
tion. How should we draw the 1" axis of the Other Frame?

The Other Frame moves with x-velocity 3 along the x axis with respect
to the Home Frame by hypothesis. This means (if we assume for the sake
of argument that 3 is positive) that the Other Frame’s spatial origin moves
/3 units in the +x direction relative to the Home Frame every unit of time. The
worldline of the Other Frame’s origin as plotted on the spacetime diagram
is thus a straight line of slope 1/, as shown in figure R5.4a. Note that this
line goes through the origin event O since the spatial origins of both frames
coincide at t = ¢’ = 0 if the frames are in standard orientation.

The next step is to put an appropriate scale on the Other Frame’s " axis,
It is (unfortunately) not correct to simply mark this axis using the same scale
as used for the t and x axes. How can we correctly scale the {" axis?

Assume that the marks on the t and ¢’ axes are to be separated by some
specific time difference din their respective frames (in figure R3.4b, for exam-
ple, this difference is & = 1 ). The nth mark on the " axis is actually an event
that occurs at t’ = nd and x’ = 0. The spacetime interval between this mark
event and the origin event O (where t = x = t'=x"=0) is

AS.:. o ("): - (X'): = ("6)2 -0F= ("6): = As,=nd (R5.1)

The nth mark on the Home Frame ¢ axis is at t = nd and x = 0, so this mark
is also separated from the origin event by a spacetime interval of As. = nd
Now, we saw in chapter R3 that all events on a spacetime diagram that are
the same spacetime interval As from the origin event lie on the hyperbola
P — x* = As”. So, to locate the nth mark on the t" axis, we can simply draw the
hyperbola £ — x* = As] = (nd)’ and draw the mark where the ¢ axis inter-
sects that hyperbola. (This hyperbola also goes through the corresponding
nth mark on the f axis.) We can repeat this for different values of 1 to draw as
many marks as we need. This process is illustrated in figure R5.4b.
Hyperbola graph paper with pre-drawn hyperbolas makes this process
easy. You can xerox the graph paper at the end of this chapter (or download
graph-paper PDFs from the Six Ideas website). However, even if we lack such
graph paper, we can also easily calculate where the marks should be.
Because the t' axis is a line going through the origin event O with a slope
of 1/13, the equation describing that line in terms of Home Frame coordinates
ist=x/8, orx = At. We can find the place where this line intersects the
hyperbola t — x* = (1)’ by plugging x = 3t into the equation for the hyper-
bola and solving for the remaining variable t: -

oy =F -y =P - BO=01=-89 = t=- nd (R52)

Vi-p



R5.3 Drawing the Diagram t' Axis
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Figure R5.4

Steps in constructing the t" axis on a two-observer spacetime diagram

Note that this specifies the Home Frame f coordinate (vertical coordinate) of the
nth mark on the taxis. Now, the quantity 1//1— 3" occurs so often in relativity
theory that it is given its own special symbol:

= ’l—i (R5.3)
1-9°

where 7 is the Greek letter “gamma.” (Note that 7 is a number that is always

larger than 1.) Using this symbol, equation R5.2 becomes

t = n(yd) = the t coordinate of the nth mark on the " axis (R5.4)

This completely and correctly locates all the marks on the t"axis. Equivalently,
we could say that since adjacent marks correspond to An = 1, the vertical
coordinate difference At between adjacent marks on the " axis as projected on
the Home Frame f axis is

At = An(yd) = yd =y Al'

where At” = dis the time between marks in the Other Frame.

To give a concrete example, suppose our Other Frame moves at an
x-velocity of 3 = } relative to the Home Frame, and we want to draw marks
on the Other Frame t' axis that correspond to events that are 6 = A" = 1 s
apart as measured in the Other Frame. In this case, ¥ = [1 = (3] " = 1.09,
so we should draw these marks so the vertical coordinate of the nth mark
as projected onto the Home Frame taxis is [ = ny At"= n(1L.09)(1 s) = n(1.09 ).
Equivalently, we could draw the marks so the vertical separation (as pro-
jected onto the Home Frame  axis) between adjacent marks is

Al =y A= (1.09)(1s) = 1.09s

for events along the " axis (R5.5)

(R5.6)

Figure R5.4c illustrates the process. This alternative process will prove very
useful to us in section R5.6.
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An analysis based on figure
R5.4b implies that to calibrate
the 1 axis of an Other Frame
moving at 3 = 2/5 relative to
the Home Frame, we draw
marks to be separated by a
time At’ = 1 s in the Other
Frame a vertical distance
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Definition of the diagram x’
axis

The distinction between the
diagram x axis and the spatial
X axis

The diagram x’ axis must tilt
upward

The angle between the dia-
gram x and x” axes is equal to
that between the f and 1" axes

Chapter RS~ Coordinate Transformations

Note that At = 4 At' (equation R5.5) describes the vertical Separati,
between the marks on the ¢ axis, not their spacing along the 1 axis, whicy, i
even larger than 7 At (see problem R5D.1 if you are curious).

EA Drawing the Diagram x’ Axis

In section R5.3, we defined the t axis for a given frame to be the line g X
spacetime diagram connecting all events that occur at the spatial origin y =,
of that frame (that is, at the same place as the origin event). Analogously,
define the diagram x axis for a given inertial reference frame to be the line on
a spacetime diagram connecting all events that occur at = 0 in that frame
(that is, at the same time as the origin event). We conventionally draw the
Home Frame's diagram x axis as a horizontal line on a spacetime diagram,
How should we draw the diagram x” axis for the Other Frame?

(Note: In this text, the phrases “diagram x'axis” and “diagram x axis” refey
to a line drawn on a spacetime diagram that connects all events occurring o
t = 0, which we should sharply distinguish from the line in physical space thay
goes through the spatial origin and connects all points with ¥ = z = 0. Whep,
talking about the latter, I will speak of the x direction or the .spatial X axis.)

We might expect to draw the diagram x’ axis perpenc!lcular to the ¢ axis,
Unfortunately, drawing the 1’ axis in this way is nof consistent with the def;.
nition of the diagram v axis just stated. To figure out the right way to draw
this axis, we have to consider carefully the implications of the idea that the
diagram x' axis connects events that are simultaneous in the Other Frame.

We begin by considering a set of events that illustrates the use of the radar
method to determine coordinates in the Other Frame. Suppose that at some
time t’ = —T (where T is some arbitrary number) we send a light flash from
the master clock (located at the spatial origin of the Other Frame) in the +x
direction (let’s call the emission of the flash event A). This flash reflects from
some event B and returns to the Other Frame’s master clock at time ¢ = +T
(let's call the reception of the flash by the master clock event C). Since the light
flash must take the same time to return to the origin from event B as it took to
get there, observers in the Other Frame will conclude that event B mist have
happened at a time halfway between t{ = =T and t; = +T and so at time
ti = 0. This implies that event B is simultancous with the origin event O.

Now let’s draw this set of events on a spacetime diagram based on the
Home Frame (see figure R5.5a). Events A, O, and C all occur at x" = 0, <o they
all lie on the 1 axis of the spacetime diagram. Since events A and C occurat
t'= ~Tand t' = +T, they must be symmetrically spaced along the 1 axis
on opposite sides of the origin event, as shown. Note that since the speed of
light is 1 in every reference frame, these light-flash worldlines must hove a
slope of £1 on this diagram.

Now, the definition of clock synchronization in the Other Frame requires
that events O and B both occur at time t* = 0. If we define the diagram 1+ avs
to be the line connecting all events that occur at 1” = 0, then it must connect
events O and B. Thus, the diagram x” axis must angle upward, as shown

In fact, by considering the geometric relationships implicit in figure R5 33,
we can see that the diagram x" axis makes the same angle with the diagram x
axis that the t" axis makes with the t axis. The argument is easier if we imagine
that the master clock also emits a right-going light flash at the origin event
O: let event E be this flash meeting the incoming reflected flash. This new
light flash is shown in figure R5.5b. (This new light flash has no physical
importance: it just makes the following argument simpler.) Since light flash
worldlines always have a slope of £1, they all make a 45° angle with respect



R5.4 Drawing the Diagram x’ Axis

) !
A ¢
Master clock
worldline
. gacyo These
GRS mT tnangles C :
N are identical o New light
Reflected _| N > /7 flash
light flash N {5'[
‘\ X ,/ \\ Y
6,
,’ B "n’/
yid 2% o s A
2 ey ol
7 - A
// ¥ P X
. 4
/'\ Original s
’ light flash v
/ ’
4 ’
A /s
’ p
/ 4
’ ’
I, Il
A V=-T A 4
(@ (b)

to the vertical or horizontal directions. This means that if light-flash world-
lines cross at all, they always cross at right angles.

Now, I claim that triangles ABC and OEC in figure R5.5b are similar tri-
angles: they are right triangles that share the common angle ¢. Moreover,
the hypotenuse of ABC is fwice as long as that of OEC, since A and C are sym-
metrically placed about event O. This means that the sides of triangle ABC
must be exactly twice as large as those of the triangle OEC, implying that line
BC must also be twice as large as line EC (remember that if two triangles are
similar, the lengths of their corresponding sides are proportional).

But if line BC is twice as large as EC, then lines BE and EC have equal
lengths. This means that triangles OEC and OEB are identical, since they are
both right triangles and their corresponding legs are equal in length. There-
fore, a; = a,, which in turn means that 8, = 45° - a, is equal to 6, = 45° - a,.
Thus, the diagram x' axis makes the same angle with the diagram x axis that the t'
axis makes with the t axis, as previously asserted.

Another important consequence is that the length of line OC (which rep-
resents the coordinate time interval Af” = +T) is the same as that of line OB
(which represents the coordinate displacement Ax’ = T, the distance in the
Other Frame that the light signal had to travel to get to event B). This means
that the scale of both axes must be the same; that is, the spacing of marks on the
diagram x” axis is exactly the same as the spacing of marks on the ¢ axis!

Exercise RSX.1
Explain why Ax" = T between events O and B.

Note that tan @, = run/rise for the 1" axis = 1/(slope of I" axis) = /3. Note
also that tan @, = rise/run for the diagram x’ axis = slope of diagram x"axis.
Since we have just seen that tan 6, = tan #,, we have

Slope of x"axis = 3 (R5.7)

So to be consistent with the principle of relativity, we must draw the

Other Frame diagram 1’ and x’ axes with slopes 1//3 and 3, respectively.
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Figure R5.5

(a) This diagram shows that the

x’ axis on a two-observer diagram
must tilt upward at an angle. If

a flash emitted from x’= 0 ata
certain time T before the origin
event O is reflected from event B
and returns to x’ = 0 at the same
time T after O, then event B must
have occurred at t' = 0, and thus
should lie on the x” axis, as shown.
(b) This diagram shows that the

x’ axis must make the same angle
with the x axis as the t’ axis makes
with the t axis. Triangles OEC and
OEB are identical, so a; = a; =
6, =4,

The slope of the
diagram x” axis
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Summary of how to construct
a two-observer spacetime
diagram

Why we must draw lines paral-
lel to the axes to find an event’s
coordinates?

Figure RS5.6

An event Eoccursatt=45s
and x = 3.5 s in the Home Frame.
Events P and E occur at the same
place in the Other Frame, since
all events that occur at the same
place in that frame lie along a line
parallel to the t” axis. Similarly,
events Q and E occur at the
same time in the Other Frame.
Therefore, the time coordinate

of E is the same as that of

Q in the Other Frame (that is,

t; = t, = 3.4 s in this case), and
the position of E is the same

as that of P(thatis, x; = x,=1.8s
in this case). This diagram also
illustrates how to use hyperbola
graph paper to calibrate the
Other Frame axes. The frames’
relative speed is 3 = 2/5.

Chapter RS~ Coordinate Transformations

R5.5 Reading the Two-Observer Diagram

So, what have we discovered? We can construct a two-observer spacetime
diagram as follows: (1) We draw the Home Frame ! axis diagram x axjs ;
vertical and horizontal lines, respectively. (2) We draw the Other Franu-':
t' axis with slope 1/ and the Other Frame's diagram x” axis with slope “.
(3) We calibrate the Other Frame's time axis either by using hyperbola Efﬂpl;
paper or (if necessary) by drawing marks that are separated vertically by
At =y At’, where At’ = dis the time interval between the marks in the Othe,
Frameand y= (1 — 37) 12 (4) We calibrate the Other Frame’s diagram x " i
with marks separated by the same distance as marks on the t" axis. )

We can now find the ¢’ and v" coordinates of any event on the diagram
as follows. The ¢’ axis is by definition the line on the spacetime diagram cop.
necting all events that occur at v’ = 0. The line connecting all events that haye
coordinate x’ = 1 s (or any given value # 0) will be a line parallel to the t* axjs,
the Other Frame's lattice clock at x”= 1 s moves at the same velocity
as the master clock atx” =0, and the latter's worldline defines the t* axis, ’

Similarly, the line on the diagram connecting all events that have the
same 1 coordinate must be a line parallel to the diagram x"axis (the line con.
necting all events having t* = 0). Suppose, for example, that the line connect.
ing all events that occur at t' = 1s were not parallel to the line connecting al|
events that occur at t* = 0. Then, these lines would intersect at some point on
the diagram. An event located at the point of intersection would thus occur
atboth t’ = 1sand t’ = 0, which is absurd. A line connecting events having
the same ¢’ coordinate therefore nust be parallel to any other such line.

So if the line connecting all events occurring at the same time in the Other
Frame is parallel to the diagram x’ axis, and the line connecting all events
occurring at the same place in that frame is parallel to the " axis, we find the
coordinates of an event in the Other Frame by drawing lines through the event
that are parallel to the diagram ¢ and x’ axes (and not perpendicular to them),
The places where these lines of constant x" and t’ cross the coordinate axes
indicate the coordinates of the event in the Other Frame (see figure R5.6)
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R5.6 The Lorentz Transformation

Finding the coordinate values by dropping parallels instead of perpendic-
ulars may seem strange to you, and will probably take some getting used to.
Nonetheless, I hope you see from the argument earlier that dropping paral-
lels is the only way to read the coordinates that makes any sense in this case.

i!5-6 The Lorentz Transformation

A two-observer spacetime diagram provides a very powerful visual and
intuitive tool for linking the coordinates of an event measured in one inertial
reference frame with the coordinates of the same event measured in another
inertial frame. Because it is visual in nature, it is much more immediate and
Jess abstract than. \?'orking with equations. But this tool does not give us the
quanﬁtali\’e precision that only equations can provide.

In this section, we will develop a set of equations that link the coordinates
of an event measured in the Home Frame with the coordinates of the same
event measured in the Other Frame. These equations do mathematically exactly
what the two-observer diagram does visually. Together, these two tools will
enable us to discuss relativity problems with both clarity and precision.

Consider an arbitrary event £, as illustrated in figure R5.7. Suppose we
know the coordinates t; and x| of this event in the Other Frame. This means
we can locate an event P which occurs at {” = 0 (that is, on the diagram x’
axis) and at the same place as E in the Other Frame (that is, x; = x}). Let
the time coordinate separation between events P and E be Af,, and the spa-
tial coordinate separation between O and P be Ax,, in the Home Frame.
Proper calibration of the Other Frame axes requires that At,, = 7t; and
Axop = 7YX . Also, since the line connecting events P and E is parallel to the
t" axis, its slope must be 1/, implying that the bottom leg of the triangle
involving points P and E must have length 3At,, . Similarly, the slope of the
diagram x'axis is 3, so the vertical leg of the triangle involving points O and
P must have length 3 Ax,,,.. Figure R5.7 illustrates these relationships.

Now, you can see from the diagram that

te = Alpe + BAxor = Yt; + Y03} (R5.8q)
xe = Axop + BALy = X + 61, (R5.8b)

Make sure you understand this derivation before you go on.
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Derivation of the Lorentz
transformation equations

Figure RS5.7

Pick an arbitrary event E. Then,
choose event Pto occuratt’ =0
(that 1s, on the x" axis) and at the
same place as E in the Other
Frame. Note that since the line
connecting events Pand E is
parallel to the t’ axis, its slope
must be equal to 1/3. Note also
that the x” axis has a slope of 3.
These slopes, along with the
procedure for calibrating axes that
we developed in section R5.2,
imply the relationships displayed
on the diagram.
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The inverse Lorentz
transformation equations

The (direct) Lorentz
transformation equations

Transformations of the y and z
coordinates

The Lorentz transformation
equations for coordinate
d{[ﬂ’mu‘es

Chapter RS Coordinate Transformations

Since the event E is arbitrary, we can drop the subscript and simply, %
that the Home Frame coordinates f and x of any event can be expresseg ‘:‘
terms of the Other Frame coordinates t"and x” of the same event as folloys.

t=(t"+ Bx’) (R5.9;
x=7(8t"+x') (R5.95)

We call these equations the inverse Lorentz transformation equations.

The “plain” Lorentz transformation equations (or LTEs for shop
express an event’s Other Frame coordinates in terms of its Home Frame mm_'
dinates. You can find them by solving equations R5.9 for !" and x’, whic,
yields

V=t - pBx) (R."L](\,)
x'=7(=pt +x) (R5.10p)

Exercise R5X.2

Verify equations R5.10a and b.

—

Note that these equations are the same as those in equation R5.9 except that
the sign of 3 is changed. This makes complete sense if you recall that the
only difference between the Other Frame and the Home Frame is that g
is the x component of the Other Frame’s velocity relative to the Home Frame,
Therefore, the Home Frame’s x-velocity relative to the Other Frame is -3,
Thus, equations R5.9 and R5.10 are the same once we account for this sign
difference. This is indeed required by the principle of relativity the transfor-
mation is a law of physics that should apply to both inertial reference frames.
Indeed, we might have derived the Lorentz transformation equations from
the principle of relativity by insisting that the transformation equations be
reflexive this way (see problem R5D.4).

We can easily generalize these equations to handle events having non-
zero coordinates v and z. We saw in section R3.3 that if two inertial frames
are in relative motion along a given line, a displacement perpendicular to
that line has the same length in both frames. Since frames in standard ori-
entation move relative to each other along their common x axis, this means
that observers in the Home and Other frames will agree on an event < v and
z coordinates, which are perpendicular to this line of relative motion.

y' (R5.10¢)
z’ (R5.10d)

]
=

L}
18]

Together, all four equations R5.10 represent the relativistic generalizalion of
the Galilean transformation equations R1.2.

Often, we are not so much interested in an event’s raw coordinates aswe
are in the coordinate differences between two events. Consider a pair of events
A and B separated by coordinate differences Af = f; — f, and Av = v, — %
in the Home Frame. What are the corresponding coordinate differences
At' =t -t and Ax’ = x} — x, measured in the Other Frame? Applying
equation R5.10a to t, and 1 separately, we get

A=ty =ty = ¥(ts = Bxa) = Y(ta — Bra)
= ‘7('3 — ﬁ.\'” - t" + H.\',1) = 7[(’" on; '\) b {j(.\'g s .\'\)I
S Ar=9(Al-BAY) (Ro.114)



g5.6 The Lorentz Transformation

gimilarly, you can show that

Ax'=5(-BAt + Ay)

(R5.11b)

Ay’ =
y'=Aay (R5.11¢)
A=Az (R5.11d)

These are the Lorentz transformation equations for coordinate differences.
Note that they hf’"" the same form as the ordinary Lorentz transformation
equations (equations R5.10): one simply replaces the coordinate quantities
with the corr‘fSP(’“dln); coordinate differences. The inverse Lorentz transfor-
mation equations for coordinate differences are completely analogous.

To summarize, then, the transformation equations (LTEs) that allow us to

compute cogrdmato differences in one inertial frame from the corresponding
differences in the other are

P b

At'=(At - BAx) (R5.11a)
Ax'=y(—BAl + Ax) (R5.11h)
Ay’ = Ay

2’=Az

Al =9(A' + BAx) (R5.124)
Ax = y(+BAl + Ax’) (R5.12b)
Ay = Ay’ (R5.12¢)
(R5.11d)  Az=Az (R5.124)

o Purpose: These equations allow us to calculate the coordinate separa-
tions At’, Ax’, Ay’, and Az’ in the Other Frame from the correspond-
ing differences Af, Ax, Ay, and Az in the Home Frame, or vice versa, ‘
where 3 is the cher Frame’s x-velocity relative to the Home Frame and
v=(1-6)"2

o Limitations: These equations apply only to inertial frames in standard
orientation.

¢ Notes: Equations R5.11 are called the Lorentz transformation equa-
tions (LTEs), and equations R5.12 the inverse Lorentz transformation
equations (for coordinate differences in both cases).

(R5.11¢)

I hope you can see that the derivation outlined in this section means that
the inverse Lorentz transformation equations (or the “plain” Lorentz transfor-
mation equations) simply quantify more precisely what you could read from
a two-observer spacetime diagram. | chose this particular method of deriving
the Lorentz transformation equations deliberately to drive home the point
that the equations simply express mathematically exactly the same thing that
a two-observer spacetime diagram expresses visually. Two-observer space-
time diagrams are most useful for visually displaying and thinking about
how different observers will interpret events; the Lorentz transformation
equations are best for doing accurate calculations once the thinking is done.
Example R5.1 illustrates how these tools complement each other.
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The Lorentz transformation
equations and two-observer
diagrams are equivalant

Problem: Consider an event that is observed in the Home Frame to occur at
time t = 6.0 s and position x = 10 s. When and where does this event occur
according to observers in an Other Frame that is moving with speed 3 = {
in the +x direction with respect to the Home Frame? Determine this both
graphically (using a spacetime diagram) and analytically (using the Lorentz
transformation equations).

23,53 «'aaa:m
Example R5.1



Figure R5.8

| The two-observer diagram
© solving the question posed
" in this example. Event E has
L coordinates t = 6.0 and

?‘ x = 10 s in the Home Frame,

| andaboutt’ =1 5sand
| x'=65.7sinthe Other Frame.

Chapter RS Coordinate Transformations
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Solution Figure R5.8 displays the graphical solution. I first constructed and
scaled the Home Frame axes. | then plotted the event (here marked with an
E)sothatt = 6.0 s and x = 10.0 5. I then drew the Other Frame’s {" axis with
slope ; and the diagram x”axis with slope Z, and calibrated those axes using
the hyperbola graph paper. Finally, I dropped parallels from event E to the
t axis and the diagram x’ axis, and read E’s Other Frame coordinates from
their intersection with those axes. | find that '~ 22sand x"= 83 s.

Now let’s calculate these coordinates, using the Lorentz transforma-
tion equations. If 3 = 2 theny=(1-08)"= l/\/l - % = 1.09,s0

t'=y(t — Bx) = 1.09[6.0 s — :(10.05)] = 2.18 s (R5.13a)
x'= (=Bt + x) = 1.09[-(6.05) + 10s] =8.29s (R5.13h)

which are in substantial agreement with the results read from the diagram.
(One should expect an uncertainty of about 3% to 5% in results read from
even the most carefully constructed spacetime diagram.)

Note that we use the hyper-
bolas only for calibrating the
Other Frame axes

Important! Note that we use the hyperbolas only to calibrate the * and «
axes: after that, we completely ignore them. In particular, we do not use
them to read an event’s coordinates in either frame.

Exercise R5X.3

(a) Determine (both graphically and analytically) the Other Frame coordi-
nates of an event with Home Frame coordinates t = 3.0s, x = 10.0s.

(b) Determine (both graphically and analytically) the Home Frame coordi-
nates of an event with Other Frame coordinates t'= 8.0sand x" = 4.0s.
Assume in both cases that the frames are as described in example R5.1. You
may use figure R5.8 to do the graphical solution.




Two-Minute Problems
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TWO-MINUTE PROBLEMS
t

a t

+—F ' )
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Figure R5.9

R5T.1  The Other Frame is moving in the +x direction with
y-velocity 8 = 0.25 with respect to the Home Frame. The
two-observer spacetime diagram in figure R5.9 shows the
diagram f and x axes of the Home Frame and the diagram
¢’ axis of the Other Frame. Which of the choices in that
figure best corresponds to the diagram x” axis?

R5T.2  The Other Frame is moving in the +x direction with
x-velocity 3 = 0.25 with respect to the Home Frame. The
two-observer spacetime diagram in figure R5.9 shows the
diagram ! and x axes of the Home Frame and the diagram
t" axis of the Other Frame. Which of the choices in that
figure would best correspond to the diagram x” axis if the
Newtonian concept of time were true?

R5T.3  Suppose the marks on the Home Frame ! axis in
figure R5.9 are 1.0 cm apart. What should be the vertical
separation of the corresponding marks on the t" axis?

A. 094cm
B. 0.97 cm
C. 1.0cm
D. 1.03cm
E. 1.07cm
F. Other

R5T4  Figure R5.10 shows a two-observer spacetime dia-

gram for an Other Frame that moves at a speed of 0.5 rela-
tive to the Home Frame. What are the coordinates of event
P in the Other Frame?
A. 1'=34s,x'=26s
B. t'=52s,x'=26s
C t'=29s,x'=12s
D. t'=37s,x"=34s
E. Other (specify)

R5T5  Figure R5.10 shows a two-observer spacetime dia-
gram for an Other Frame that moves at a speed of 0.5

R5T.6
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Figure R5.10

relative to the Home Frame. What are the coordinates of
event Q in the Other Frame?

t'=x'=52s

'=x'=32s

t'=x"=26s

t'=x'=17s

Other (specify)

moN®>

Figure R5.10 shows a two-observer spacetime dia-
gram for an Other Frame that moves at a speed of 0.5 rela-
tive to the Home Frame. What are the coordinates of event
R in the Other Frame?

A. t'==1.155,x"=40s

B. t'=09s,x'=34s

C. '=65sx'=17s

D. '=22s,x"=32s

E. Other (specify)

R5T.7 Consider two blinking warning lights 3000 m

apart along a railroad track. These lights flash simulta-
neously in the ground frame. Let W be the event of the
west light blinking, and let E be the event of the east
light blinking. A train moves eastward along the track
at a relativistic speed 3. Suppose an observer in the train
passes the west light just as event W happens. By care-
fully measuring when the light from event E arnives
and calculating the distance between the two lights
(by observing how long it takes to travel between the
lights at the known speed /3), the observer is able to infer
when event E actually happened in the train frame. The
observer concludes that
A. Event W happened before event E in the train frame.
B. Events Wand E were simultaneous in the train frame.
C. Event E happened before event W in the train frame.
D. One cannot determine unambiguously which event
occurs first in the train frame.
(Hint: Draw a qualitative spacetime diagram.)
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R5TS A bullet train moving in the +x direction with
r-velocity 4 relative to the ground has lights on the roof
of the head and tail cars that blink simultancously in the
train frame. The head car’s light happens to be passing by
an observer on the ground just as it blinks. The observer
sees the light from the tail car at a different time, but after
correcting for the light travel time from the tail car, the
observer concludes that in the ground frame
A. The tail car’s light blinked before the head car's light.
B The head car’s light blinked before the tail car’s light.
C. Both lights blinked simultancously.

D. One cannot determine unambiguously which event
occurs first in the ground frame.
(Hint: Draw a qualitative spacetime diagram.)

Chapter RS Coordinate Transformations

R5T.9  Two hights are 1000 ns apart along a stretch of tail

way track. In the ground frame, the west light flag,.,

600 ns before the cast light flashes. Could these flaghe,

be simultancous in the frame of & train moving along, 1y,

track at a certain speed (that is less than the speed of lighiy

A Yes, if the train is moving cast at the correct speed

B, Yes, if the train is moving west at the corect speed,

C. Yes, it the train observer happens to be at the right (s,
tances from the lights when receiving their tlashes

D. No, the flashes cannot be simultaneous i any frame

(Hint: Draw a qualitative spacetime diagram,)

R5T.10 According to our conventional frame names, the
. |

Home Frame is the frame ot rest. T or 17

HOMEWORK PROBLEMS

Basic Skills

R5B.1 Thespacetime diagram below shows the worldline
of an alien spaceship fleeing at a speed of 3 = | in the +x
direction from space station DS9 after stealing some
potentially destructive trilithium crystals. The departure
of the ship from DS9 is event A. At event B, DS9 fires a
phaser blast (which travels at the speed of light), hoping
to disable the vessel. At event C, the fleeing spaceship
drops a fuel tank behind, setting the tank at rest relative
to DS9 while the spaceship continues on ahead of it (the
tank now shields the ship from the point of view of DS9).
At event D, the phaser blast hits and destroys the tank,
leaving the ship unharmed.

Y

Spaceship
worldline

Tank
+ worldline

. Phaser blast
worldline

DS9
worldline

>
.
4
9
<4
+
-+
R
~JP

5s

R58.2

’ir t %

(a) The spaceship frame’s t“ axis is labeled on the diagran,
(this is just the worldline of the spaceship itself). This
axis has also been calibrated. Check that the calibration
1s correct (explain how you checked this)

(b) On the diagram (or a copy), draw and calibrate the dis.-
gram x”axis for the spaceship frame.

(€) When does the spaceship drop the tank according
to its own clock? Explain how you arrived at your
answer.

(d) What is the approximate time of event D in the space-
ship frame? (Do not use the Lorentz transtormation
equations. Instead, read the result from the diagram
and explain how you arrived at your result)

(e) Calculate the time of event D in the spaceship's
frame, using an appropriate Lorentz transformation
equation,

(f) Which event, B or C, occurs first in DS9Y's frame (or an
these events simultaneous)? Which occurs first i the
spaceship frame?

(g) Use the appropriate Lorentz transformation equation
to compute the x’ coordinate of event D. Explain why
the sign of your result makes sense.

(h) Event Q is the explosion of a meteor as it collides with
DS9's protective shield. According to measurements
in the ship’s frame, this event occurs at ' = 310«
2" =205, Draw and label this event on the diagram

(i) Use the appropriate inverse Lorentz transformaton
equations to compute the Home Frame coordinates of
event Q.

A Rigellian spaceship fleeing from battle passes
Space Station Delta at an essentially constant velocity of
3/5 in the +x direction: let this be the origin event O At
event B, 80 s after event O as measured in its own frame
Space Station Delta fires a photon torpedo (which travels
at the speed of light) toward the fleeing ship. At event ©
100 s after event O in the space station frame, the Rigel
lians fire a laser flash (which also travels at the specd of
light) back towand Space Station Delta. This laser flash
destroys the torpedo at event D.



Homework Problems

(a) On a sheet of hyperbola graph pape tha
lines of Space Station Delta andpth?r' i
(b) Locate events O, B, and C on the
(¢) Draw and label the torpedo and
and locate event D. What are its coordj
: . Inates?
(d) Draw the t"and x’ axes for the Rigellian frame and
the hyperbolas to calibrate those axes. T
(e) Which occurs first in the Rigellian frame, ey b
€ s event B ?
(f) Use the Loreptz transformation equations to c::c(u.-
late the coordinates of events B and ¢ in the Rigelli
frame and check that y il

our results are consi A
results read from the diagram. S

' world-
. Rigellian ship.
diagram,

laser flash worldlines

R5B.3  Use a qualitative spacetime diagram to answ.
; ; er the
question posed in problem R5T.7 and explain your logic. )

R5B4  Use a qualitative spacetime diagram to answe
¢ : r the
question posed in problem R5T.8 and explain your logic.

R5B.5> Anevent occurs at t = 6.0 s and x = 4.0 s in the

Home Frame. The Other Frame is moving in the +x direc-

tion with x-velocity 3 = 0.5 relative to the Home Frame.

(a) Use a two-observer spacetime diagram to determine
when and where this event occurs in the Other Frame.

(b) Check your work by applying the appropriate Lorentz
transformation equation.

R5B.6 An eventoccurs att = 15s and x = 5.0 s in the

Home Frame. The Other Frame is moving in the +x direc-

tion with x-velocity 3 = 3/5 relative to the Home Frame.

(a) Use a two-observer spacetime diagram to determine
when and where this event occurs in the Other Frame.
(Hint: You should find that t"is negative.)

(b) Check your work by applying the appropriate Lorentz
transformation equation.

(¢) Is the time order of this event and the origin event the
same in both frames?

R5B.7 An Other Frame moves in the +x direction with

x-velocity B8 = 0.60 =  with respect to the Home Frame.

Other Frame observers observe an event at time 1= 3.0 s

and position x" = 1.0s.

(a) Use a two-observer spacetime diagram to determine
when and where this event occurs in the Home Frame.

(b) Check your work by applying the appropriate Lorentz
transformation equation.

R5B8 An Other Frame moves in the +x direction with

x-velocity 3 = { relative to the Home Frame. Other Frame

observers observe an event att’ = 30sand x" = 1.0s.

(a) Use a two-observer spacetime diagram (o determine
when and where this event occurs in the Home Frame.

(b) Check your work by applying the appropriate Lorentz
transformation equation.

Modeling

RSM.1 Star A and star B float essentially at rest 500 light-
years apart in an inertial reference frame we will take to be
the Home Frame. Suppose star A (whose position is x, = 0
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in the Home Frame) explodes (goes supernova) ata time we
define tobe I, = 0. Star B explodes at time £, = 400 y, both as
measured in the Home Frame. A spaceship is moving from
star A directly toward star B at a constant speed |3, pass-
ing star A just as it explodes. Define the +x direction to be
the direction the ship is moving,.

(@) What is the value of 3 if the explosions are simultane-
ous in the spaceship’s frame? Answer by constructing
a two-observer spacetime diagram, and explain your
reasoning,.

(b) Where does the explosion of star B occur in the space-
ship’s reference frame? Answer using the two-observer
diagram and explain your reasoning. (You may check
your work using a Lorentz transformation equation.)

(&) When does light from star B's explosion reach the
ship? Answer using your two-observer diagram.

(d) Does the answer to part (c) make sense considering
your answer for part (b)? Explain.

R5M.2 Consider the question posed in problem R5T.9.

(a) Use a quantitatively accurate spacetime diagram to
answer the question and explain your reasoning.

(b) If such a frame is possible, determine its speed relative
to the ground frame.

R5M.3 The Federation space cruiser Execrable is floating in

Federation territory at rest relative to the border of Klingon
space, which is 6.0 min away in the +x direction. Suddenly,
a Klingon warship flies past the cruiser in the direction
of the border at a speed of ;. Call this event A, and let it
define time zero in both the Klingon and cruiser refer-
ence frames. At t, = 5.0 min according to cruiser clocks,
the Klingons emit a parting disrupter blast (event B) that
travels at the speed of light back to the cruiser. The dis-
rupter blast hits the cruiser and disables it (event C), and
a bit later (according to cruiser radar measurements) the
Klingons cross the border into Klingon territory (event D).
(a) Draw a two-observer spacetime diagram where the
cruiser and the Klingon warship are the Home and
Other Frames, respectively. Draw and label the world-
lines of the cruiser, the Klingon territory boundary, the
Klingon warship, and the disrupter blast. Draw and
label events A, B, C, and D as points on your diagram
(b) When does the disrupter blast hit, and when do the
Klingons pass into their own territory, according to
clocks in the cruiser’s frame? Answer by reading the
times of these events directly trom the diagram
(¢) The Klingon-Federation Treaty states that it is illegal
for a Klingon ship in Federation territory to damage
Federation property. When the case comes up in inter-
stellar court, the Klingons claim that they are within
the letter of the law: according to measurements made
in their reference frame, the damage to the Execrable
occurred after they had crossed back into Klingon ter-
ritory, so they were not in Federation terntory at the
time. Did event C (disrupter blast hits the Execrable)
really happen after event 2 (Klingons cross the border)
in the Klingons” frame? Answer this question by using
your two-observer diagram, and check vour work
with the Lorentz transformation equations.
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RSM.4 Space station DSY floats in deep space. Let DS9
define the Home Frame's spatial origin. A Ferengi freighter
Moving at a constant speed of 3/5 in the +x direction
Passes DSY (call this event A) at time ¢ = 0 in both the
treighter frame (the Other Frame) and the DSY frame. At
! = 4 h (according to DS9's clocks), Quark (a resident of
DS9) sends an encrypted laser message to the freighter
(let this be event B). At event C, workers on the Ferengi
ship destroy what turns out to be crucial physical evidence
in a later investigation. Light from this destruction event
reaches DSY at t = 8 h (according to DS9's clocks): let this
be event D.

(@) Construct a two-observer spacetime diagram of this
situation displaying DS9's worldline, the freighter’s
worldline, the worldline of Quark’s signal, the world-
line of the light from the destruction event, and the
spacetime locations of events A, B, C, and D.

(b) When and where does event B occur in the Ferengis’
frame? Answer by reading the result from vour dia-
gram. Check your work by applying the appropriate
Lorentz transformation equations.

(¢) When and where does event C occur in DSY's frame?
Explain your reasoning,

(d) Odo, the DS9 constable, accuses Quark of colluding
with the Ferengi and specifically that his encoded mes-
sage led the Ferengi to destroy the evidence. Is Odo’s
accusation justified?

R5M.5 Fred sits 65 ns west of the east end (and thus 35 ns
east of the west end) of a 100-ns-long train station. Sally
operates a reference frame in a train racing east across the
countryside at a speed of 0.5. At a certain time (call it t* = 0),
Sally passes Fred. At that same instant, Fred flashes a
strobe lamp (call this event F), which sends bursts of light
both east and west. Alan, who is standing at the west end
of the station, receives the west-going part of the flash (call
this event A), and a bit later (according to clocks in the sta-
tion) Ellen, who is standing at the cast end of the station,
receives the east-going flash (call this event E).

(a) When do events A and E occur in the station frame?
Who sees the flash first (according to clocks in the sta-
tion frame), Alan or Ellen?

(b) Draw a two-observer spacetime diagram that displays
and labels the worldlines of Sally, Fred, Alan, Ellen, and
the two light flashes. Locate and label events F, A, and
E as points on the diagram. Carefully draw and cali-
brate the ¢ and x" axes for Sally’s train frame.

(¢) When and where do events A and E occur in Sally’s
frame? Sally claims that Ellen sees the flash first in her
frame. Is this true? Verify your assertions with calcula-
tions based on the Lorentz transformation equations.

R5M.6  ATirillian spaceship fleeing from battle passes space
station D57 at an essentially constant velocity of { in the +x
direction as measured in DS7’s frame. Let the event of the
ship passing DS7 be the origin event A in both frames. The
Tirillians have a cloaking device that they think makes
them invisible to DS7°s sensors. However, 40 s after pass-
ing D57 (as measured by the Tirillian clocks) the spaceship

Chapter RS  Coordinate Transformations

passes through a dust cloud that emits a pulse of eleggy,,

magnetic radiation when disturbed: let this be eveny g

The instant this pulse (which travels at the speed of lighy)

is received by DS7, the DS7 crew fires a photon torpeg,,

(which also travels at the speed of light) toward the fleeip,,

Tirillians: call this event C. The Tirillians decide 80 5 af,.,

passing DS7 that they have likely been detected, so the,

put up their defensive shields (which involves turning off

the cloaking device): call this event D.

(a) Usea ruler to draw a complete and carefully constructeq
two-observer spacetime diagram of the situation, drayy.
ing the worldlines of DS7 and the Tirillian Spaceship
and locating and labeling events A, B, C, and D.

(b) When and where did event B occur in the Home
Frame? Use an appropriate Lorentz transformatiop
equation to check what you read from your diagram,

(¢) When does event C occur in the Home Frame? Explain
how you located this event on the diagram.

(d) When does event C occur in the Tirillian frame?
Explain how you can read ¢ from the diagram, ang
use an appropriate Lorentz transformation equation to
verify your result.

(e) Which event, C or D, occurs first in the DS7 frame?
Which occurs first in the Tirillian frame? Explain.

(H Could the Tirillians have made their decision to raise
shields as a consequence of observing (somehow) that
DS7 had fired a torpedo? Why or why not?

Derivation

R5D.1 Imagine that the physical distance between adja-
cent marks on the Home Frame t and x axes is some quan-
tity q (for example, g might be 1 cm or 0.25 in.). Argue that
the physical distance ¢ between adjacent marks on the t'
and x' axes, as measured along those axes, is

‘= 1+ 3
q 1\/1_3,

R5D.2 Use the Lorentz transformation equations (equa-
tions R5.11) to show that the squared spacetime interval
As” has the same value in all inertial reference frames

(R5.14)

R5D.3 In all of the examples in this chapter, the Other
Frame has been moving in the +x direction relative 1o the
Home Frame so that 3 is positive. What if the Other Frame
moves in the =x direction, so that 3 is negative?

(a) Go through the arguments presented in sections K53
through R5.5 with this change in mind, and then con-
struct a complete and calibrated two-observer space-
time diagram for the situation where the Other Frame
moves with a speed of | 8] = ¥ in the —x direction with
respect to the Home Frame. Describe why vou chose o
draw and calibrate the diagram as you did.

(b) Event F happens at f = 6 s and x = 2 s in the Home
Frame. Read from vour diagram when and where this
event occurs in the Other Frame.

(¢) Check that the Lorentz transformation equations (with
a negative value of 3) yield the same result.



Homework Problems

D4 Here is one way to derive the
Rstjon equations from scratch. For m?::’:‘::;‘; transforma-
will consider events that occur only along the :"“:“:w. we
we will also assume that the "'_mbfommm; .l:t‘ 1al x axis,
must be linear; that is, they have the form equations

t'=At+Bx and x'=Ct+ Dy (R5.15)

where A, B, C, and D are unknown constants that do not

depend on the coordinates but only on 3. (One can shire

that only linear equations like this transform a constant
velocity worldline in the Home Frame to another constant:
velocity worldline in the Other Frame. Since a free particl
must follow a constant-velocity worldline in any Fi‘r‘:c.-rti.:;
frame, this linearity is required of any reasonable transfor-
mation equations linking the frames.')

(a) The Home Frame coordinates of a light flash /i
in the +x direction from the origin ctent will E"l&fﬁ
that x/t = 1 at all times. Because the speed of lig.ht is
the same in all frames, the coordinates of this flash
in the Other Frame must be such that x'/t’ = 1 in this
case (thatis, whenever x/t = 1). Argue that the transfor-
mation equations R5.15 will deliver the correct result in
this special case ifand only if A + B = C + D,

(b) The Home Frame coordinates of a light flash moving
in the —x direction from the origin event will be such
that x/t = =1. Argue that the transformation equations
will deliver the correct result x'/t" = —1 in this special
caseifandonlyif B-A =C-D.

() The spatial origin of the Other Frame is at x" = 0. In
the Home Frame, the coordinates of this point are such
that x/t = 3, because this point moves with x-velocity
3 (along with the whole Other Frame). Show that the
transformation equations will yield ¥’ = 0 whenever
x = gtif and only if C = =3D.

(d) These three equations allow us to eliminate B, C, and D
in favor of A. Do this and show that the result is

t'=A(t—-p8x) and x'=A(-8l+x) (R5.16)

(e) The squared spacetime interval As” between any event
and the origin event must be the same. Show that this
requires that A = 7, making equations R5.16 the same
as the Lorentz transformation equations. Q.E.D.

(f) Alternatively, one can prove that A = 7 directly from
the principle of relativity as follows. The principle
requires that the transformation law be the same in
both frames (after switching 3 to =3, which is the only
difference between the frames), we must have

t=A%t'+Bx) and x=A*(pt'+ 1) (R5.17)
where A* is the same function of =3 that A is of 3. Now,
we'll see in a moment that the principle also requires
that A* = A. Assume this for right now. Transforming
a coordinate from the Home Frame to the Other Frame
and then back must yield the same thing, so

x = AlBt + x’] = AlBA( — Bx) + A=t + x)] (R5.18)
Show that this requires that A = 7.

() But how do we know that we must have A= A"?Con-
sider performing the following experiment in both

R5R.1
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frames. Look at the master clock at rest at the spatial
origin of the frame that is not your frame. How far has
it traveled in your frame when its face registers exactly
1 s after the origin event? If you do this expenment
in the Home Frame, then (since the clock in question
is at x’ = 0) the transformation equation says that the
distance traveled is x = A*(1° + 3x") = A*(1 5). If you do
this experiment in the Other Frame, then the distance
traveled is ¥ = At — fBx) = A(1 s). Explain why the
principle of relativity is violated if A # A

Rich-Context

Each Global Positioning System (GPS) satellite con-
stantly broadcasts a signal that specifics what time the sig-
nal is sent (according to an atomic clock on the satellite)
as well as information about that satellite’s location when
the signal is sent. A GPS receiver uses the information sent
from multiple satellites to find its location by doing a com-
plicated calculation that accounts for the signal travel time
from the satellites, the rotation of the earth, and a variety
of effects predicted by both special and general relativity
To see just some of the effects of special relativity that

are involved, consider a starkly simplified GPS system
where the satellites fly at a constant speed of 3 a negligible
distance above the r axis on a flat earth. Assume the satel-
lites’ atomic clocks are synchronized in the satellites’ frame,
and that you are standing somewhere along the x axis. Ata
certain instant, your GPS receiver simultancously receives
a signal from somewhere along the —x direction relative to
you from a satellite A and another signal from somewhere
along the +x direction from a satellite B. The signals both
state the same signal departure time (1, = f; = 0 in the sat-
ellite’s frame) and specify that the satellites are at locations
x4 and xj, respectively, at that time.

(@) Assume that the Galilean transformation equations are
true and that both signals have the same speed in the
earth frame. Show that your position is x = J{xi + x%)

(b) Assume that 8 = and let x}, = 1 ms and x; = 5ms (to
pick something arbitrary). Carefully construct a space-
time diagram of the situation, and argue from the dia-
gram that x # $(x} + 1),

(¢) Using this diagram to guide your thinking, develop a
general equation that calculates your position along
the x axis in the flat earth’s frame in terms of 3 and
the reported values of ' and xj, taking account of
special relativity. Check that your proposed equation
yields results consistent with your diagram for specific
values of 3, x, and x i given in part (b). (Hint: Let event
C be the event of your receiver obtaining both signals
Can you find the coordinates of event C in erther the
spaceship frame or the earth frame? If the former, you
can transform to get the coordinates in the carth frame.)

(d) Suppose the satellites” common speed 15 3.9 km/s

(which is roughly the real GPS satellites” orbital speed)

and that their reported positions are v, = =3000 km

and x; = 49000 km. By how much would the naive
calculation of part (a) be in error, according to vour
relativistic formula? Is this significant?
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Chapter RS Coordinate Transformations

ANSWERS TO EXERCISES

R5X.1  In the Other Frame, the light flash is measured to
have a round-trip time of 27 by hypothesis and thus must
have t.\k'cn a time T for each leg of the trip. Since light has
speed 1 in all frames, and the light-flash in this case travels Rsx.3 (a) The graphical solution is shown in figure R5 3
up and down the spatial x” axis, the reflection event must  (ovent A), where it looks like "= ~11sand x'= 965 The
have occurred along the spatial ¥’ axis at a distance T from Lorentz t;ansformation equations imply that

the origin, implying that v = T for the reflection event. 5
Bx] =1.09[30s — {(100s)] = —1.09s (R5214)

which is equation R5.10a. The proof of equation R5.105 jg
entirely analogous.

t'=qlt-
R5X.2  Toisolate ', multiply equation R5.9b by 3, and then 2
subtract this equation fm':nyRe;l.‘)a. yielding i x'=q[-t + 2] =1.09[-:(30s) + 10.0s] =965 (R521p)
L= Bx=4(t'+Bx' — B’ - fx') = y(1 - B} (R5.19) (b) The graphical solution is shown in figure R5.]]
smber now that y = (1 - )", s01 B =1/7".Sub fevent ) where R locls [45 2 e e
Rm_ . =(1-8)"s0l=p"= - Sub- inv Lorentz transformation equations tell us
stituting in for the above and multiplying both sides by 7, 2ol i 5 = i
we get t=7t"+Bx'] = 1.09[8.0s + 1(4.09)) = 10465 (R52%)

2t =By ===t ®520)  x=18t"+x]=109[;(805) + 405] =7.855 (R5.22)
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Lorentz Contraction

Chapter Overview

Introduction
Because two-observer spacetime diagrams concisely and vividly display the relats
ships between events in various inertial reference frames, problem solutions that :'"
such diagrams often prove clearer and more compelling than mathematica] | %
even when we need to back up the diagram with mathematical calculations In th
chapter and chapter R7, we will use two-observer diagrams to explore some o hk:
more peculiar and startling predictions of special relativity. In this chapte '
focus on the phenomenon of Lorentz contraction.

Utiong

T, we wij)

Section R6.1: The Length of a Moving Object

We can precisely and operationally define an object’s length in a given inertia) frame
in which it is moving to be the distance between simultaneous events occurring af gh
object’s ends in that frame.

Section R6.2: A Two-Observer Diagram of a Stick

An object’s world-region is the set of worldlines for all particles in the object O A
spacetime diagram, the world-region of a one-dimensional object lying along the +,
direction looks like a two-dimensional plane whose edges are the worldlines of g,
object’s ends. We can use a two-observer diagram to determine an object's length
in any given frame by locating two events that occur (1) along the worldlines of the
object’s ends and (2) simultaneously in the frame in question. The distance between
those events in that frame is the object’s length in that frame, by definition

When we do this, we find that the length determined this way is alwavs e
than the object’s length in its own rest frame: this is the phenomenon of Lorentz
contraction.

We can calculate this contraction exactly as follows. Consider simulianeous
events that mark the object’s ends in the frame (call it the Other Frame) in which it
moves with x-velocity 3. We know that At’ = 0 between the events in that (rime, and
we know that these events must be separated in the object’s rest frame (1he Home
Frame) by a distance Ax equal to the object’s rest length L,. We can then —olve the
Lorentz transformation equation R5.12b for the object’s length L = Ax'in the Other
Frame in terms of At"and Ax between these events. The result is

L=L/1-§ R62)

* Purpose: This equation allows us to calculate a moving object’s length [ 2long
the direction of its motion in some inertial reference frame, where | 3/ = | 1 is
the object’s speed in that frame and Ly is its length in the same direction as
measured in the inertial frame where it is at rest.

¢ Limitations: The object must have a well-defined length in the direction of
motion, and it must be at rest in an inertial frame.




gection R6.3: What Causes the Contraction?
This contraction effect is entirely due to the fac '
i shout d‘f‘k synchronization. Since different obsery
ofeventsm arking out the object’s ends to be simultaneo
object’s length. LBl

There is an analogy for this in plane i
The road’s east-west width depell::ds or% x?::z;\f;?smer ;
— though the road’s physical reality is unchanged
on a frame’s spatial axis (which is what its length nea.l
though its four-dimensional reality is unchanged,

ers will see different pairs
us, they cannot agree on the

road with parallel sides.
on of one’s coordinate system,
Similarly, an object’s projection
ly is) is frame-dependent, even

Section R6.4: Thg Contraction Is Frame-Symmetric

An object is oont'ra.cted in one frame but not in another. Doesn’t this contradict the

principle of 'Nhll\'lt.y? NO! The principle only requires that the same experiment per-

formed in different inertial frames yield the same result. Therefore, if an object at rest

in frame A is observed to be contracted in frame B, the principle only requires that an
ject at rest in frame B be similarly contracted when observed in frame A. It is easy

to show this is true.

Section R6.5: The Barn and Pole Paradox
Consider a runner who carries a pole (whose rest length is 10 ns) through a barn
(whose rest length is 8 ns) at a speed of | 3| = ! relative to the barn. In the ground
frame, the pole is 8 ns long, so there is an instant when the pole fits entirely inside the
barn. In the runner’s frame, though, the barn is 6.4 ns long and the pole is 10 ns long.
How can a 10-ns pole fit in a 6.4-ns barn?

The solution of this “paradox” is as follows. The phrase “fits inside” really means
the event B of the pole’s back end entering the barn is simultaneous with the event F
of the pole’s front end leaving the barn. But events B and F are not simultaneous in
the runner’s frame: event B happens only after enough time has passed after event F
for the 10-ns pole to move 3.6 ns beyond the front end of the barn. So the runner
never sees the barn enclose the pole. The trick with this “paradox” (and many similar
ones) is to recognize that events that are simultaneous in one frame are not generally
simultaneous in another.

Section R6.6: Other Ways to Define Length

We do not have to define length as we did in section R6.1. This section, however, argues
that several reasonable and well-defined alternative definitions display exactly the
same Lorentz contraction effect.
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How can we operationally
define the length of something
that is moving?

One way to define a moving
object’s length

An object’s “world region”

Demonstrating Lorentz
contraction using a two-
observer diagram

Chapter R6  Lorentz Contraction

R6.1  The Length of a Moving Object

The basic question that will concern us in this chapter can be stated simp),,
follows: what exactly do we mean by the length of a moving object?

As always, we need an operational definition of this word if it is tq Mean
anything—that is, we need to describe exactly how we can measure an objegy,
length in a given inertial frame. In the particular inertial frame where
object is at rest, it is simple to compare the object to a stationary ruler. But
the determination of an object’s length in a frame in which it is obseryeg o
be moving presents difficulties that need to be handled carefully.

We have defined a reference frame to be an apparatus that measures the
spacetime coordinates of events. Our first task in the problem of measurin,
lengths (and indeed most problems in relativity theory) is to rephrase the
problem in terms of events. In a given reference frame, how might we char-
acterize the length of an object in terms of events?

Let us consider a concrete example. Suppose we are trying to measure
the length of a moving train in the reference frame of the ground. A clock
lattice at rest on the ground records the passage of the train through it py
describing the motion in terms of events. To be specific, imagine that a cer.
tain clock in the lattice records that the back end of the train passed at exactly
1:00:00 p.m. (call this event O). Another clock elsewhere in the lattice records
that the front end of the train passed at exactly 1:00:00 p.m. (call this event A),
Therefore, we can say that at exactly 1:00:00 p.m., the train lies between the
location of the clock registering event O and that of the clock registeri
event A. It therefore makes sense to define the train’s length to be equal to
the distance between those events, as measured in the lattice.

With this image in mind, we operationally define an object’s length in any
inertial reference frame as follows: b

An object’s length in a given inertial frame is defined to be the distance
between any two simultaneous events that occur at its ends.

This expresses the definition of length in the language of events, enabling
us to use the tools we have been developing to describe the relationships
between events to talk about the process of measuring an object’s length,

R6.2  ATwo-Observer Diagram of a Stick

Consider a measuring stick oriented along the spatial x direction and at rest
in the Home Frame. How can we represent such an object on a spacetime dia-
gram? To present the full reality of a measuring stick in spacetime, or¢ must
plot the worldline of each particle in the stick. Just as a point particle is rep-
resented on a spacetime diagram by a curve called a worldline, so 4 fick is
represented by an infinite number of associated worldlines, which one might
call a world-region. An example of a world-region is shown in figure R6.1.

The definition of length given in section Ré.1 vields the expected result
when the object in question is at rest. Consider the 4-ns measuring stick of
figure R6.2, which is at rest in the Home Frame of the diagram. Events O and
A lie at the ends of the measuring stick and are simultancous in the Home
Frame (both occur at f = 0 in that frame

). According to our definition, then,
the length of the measuring stick in the Home Frame is the distance between
these two events, which, according to figure R6.2, is simply 4 ns.

Now consider determining the length of this same measuring stick in an
Other Frame that is moving with speed /3 in the +x direction with respect to
the Home Frame. An observer in that frame will observe the stick to move



R62 A Two-Observer Diagram of a Stick

Worldline of

r(m"://— stick left end
5+ Worldline
of stick
T right end
r Stick /
world
T region
—t—t +—» 1 (ns)
5
Figure R6.1

part of the world-region of a 4-ns
measuring stick at rest in the
Home Frame with one end at

x = 0 and the other end at

x = 4 ns. Because it is at rest in
the Home Frame, the worldlines
of its endpoints are vertical lines,
and the worldlines of all the

tins) lr
+
5+
T Stick
4 world
region
.
0 r—t—t A i » 1(ns)
Figure R6.2

The two events O and A lie along
the worldlines of the measuring
stick’s ends and also happen

to occur at the same time in

the Home Frame. The distance
between these events (which is

4 ns in this case) is the measuring
stick’s length in the Home Frame,
by definition.

ints in between fill in the region
of spacetime shown in gray.

in the —x direction with speed | 3|. Figure R6.3 is a two-observer spacetime
diagram showing the Home Frame and Other Frame axes superimposed on
the measuring-stick’s world-region. (For the sake of concreteness, [ have con-
structed the diagram assuming that 3 = £.) In the Other Frame, it is not event
A but B (as shown on the diagram) that is simultaneous with O and lies at
the other end of the measuring stick (both O and B lie on the diagram x' axis,
so both occur at t” = 0 in the Other Frame). This means that the measuring
stick’s length in the Other Frame is defined to be the distance between events 0
and B as measured in that frame.

But as the calibrated axes of the Other Frame show, the distance between
Oand B in that frame is less than 4 ns! We can see that this must be so as fol-
lows. Consider the 4-ns mark on the diagram x’ axis (the event labeled C) on
the spacetime diagram. This mark must be connected with a hyperbola to
the 4-ns mark on the diagram x axis (event A). It is easy to see that the mark
on the x’ axis is farther along that axis at 1’ = 0 than the stick’s right end is
at that instant (event B). Therefore, the stick’s length in the Other Frame (the
distance between events O and B by definition) must be smaller than 4 ns.

We can use the other method of axis calibration to see the same thing.
The 4-ns mark on the x’ axis (event C) must be separated from the origin
event by a horizontal displacement Axoe = 7 Ax/ = (1.09)(4 ns) = 4.36 ns.
This means that event B must be closer to the origin event than the mark
event C at ¥’ = 4.0 ns, which in turn implies that Axps < 4ns!

Either way we look at it, the measuring stick’s right end, which is always
exactly 4 ns from the spatial origin of the Home Frame, intersects the diagram
x'axis at an event B that is closer to the origin event than the 4-ns mark on the
diagram x’ axis, implying that the stick is measured in the Other Frame to
have a length of less than 4 ns. In fact, you can see that in the particular case
shown, the stick has a length of about 3.7 ns in the Other Frame.

We can also easily check this result with the help of the Lorentz trans-
formation equations. In the Other Frame, the measuring stick’s length L is
defined to be the distance Ax” between two simultaneous events that occur

m

fimns)
tins)4 .

O
‘l' 4 + > X (NS)
| All s
S k-‘_‘hn&
1.0Yns
Figure R6.3

Events O and B lie along the
worldlines of the measuring stick’s
ends and occur simultaneously

(at t' = 0) in an Other Frame
moving with 3 = ; with respect to
the Home Frame. According

to the diagram, the distance
between these events (which is
the stick’s length in the Other
Frame) is =3.7 ns < 4 ns
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A general formula for an
object’s length in a frame in
which it is moving

The definition of an object’s
“rest length”

Lorentz contraction has its
origin in problems of clock
synchronization

Chapter R6  Lorentz Contraction

at the ends of the stick—that is, events for which At”= 0. Assuming we knoy
that the measuring stick’s length in the Home Frame is Ly = 4.0 ns ang y, at
it is at rest in that frame, then the Home-Frame distance between any Pair
of events that occur at the opposite ends of the measuring stick mys be
Ax = L, = 4.0 ns (see figure R6.3). One of the inverse Lorentz lmnsfnnnam,n
equations for coordinate differences (equation R5.12b) says that

Ax = 7({’.’3" + A\") ‘Rﬁ])

In the case at hand, we are looking for L = Ax’, knowing that Ax = [, 34
At’ = 0 for events that simultaneously mark out the ends of the measurip
stick in the Other Frame. Dropping the At'term and solving for Ay’ vields

—

S

L=A.r’=%5=l.m/l—ﬁ’ (R6.2)

* Purpose: Thisequationallows us to calculate a moving object’s length |

along the direction of its motion in some inertial reference frame,

where | 3] = | 3| is the object’s speed in that frame and Ly is its length in

the same direction as measured in the inertial frame where it is at rest,

* Limitations: The object must have a well-defined length along its
direction of motion, and it must be at rest in some inertial frame.

Plugging in the relevant numbers in this case, we find that

L=(40ns)y/1-(if =37ns (R6.3)

in agreement with the result displayed in figure R6.3.

We see that if we accept the quite sensible definition of length given in
section R6.1, we are confronted with the fact that an object’s length is a frane-
dependent quantity: its value depends on which inertial frame one chooses to
make the measurement. Equation R6.2 implies that an object’s length mea-
sured in a frame in which the object is moving will always be smaller than
the value of its length in the frame in which it is at rest. This phenomenon is
called Lorentz contraction.

We can use equation R6.2 quite generally to compute the contraction’s
magnitude, as long as we note that L (which we call the object’s rest length)
stands for the object’s length measured in the frame in which it is at rest, and
L stands for the object’s contracted length measured in an inertial frame that
moves with speed | 3| with respect to the object’s rest frame.

Exercise R6X.1

Using‘hypcrbola graph paper, estimate the length of a 5-ns measuring stick
when itis observed in a frame that is moving with x-velocity 3 = ! relative to
the Home Frame. Use equation R6.2 to check your result.

§63 What Causes the Contraction?

T}_\e previous discu:%sion shows that this contraction effect has nothing to do
with some effect of motion that physically compresses a moving object (as,
for example, an elastic object such as a balloon would be compressed if it were
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fo sreed 10 move rapidly through w ater). The
stick (a8 represented by its world-region on
> ins the same, no matter what refere

physical reality of the measuring
o ttr}:;\:r;‘:‘:“mf diagram) ac_tuqll)'
,-und.xmemall reason “'h)'_f‘b&'n'g~rs i1 diffetent ice : l:-\t to dcsc_nbc it. The
, came object to have different lengths is that h‘ e Hos Al Iieaice
dock synchronization, and therefore disagree L"' observers disagree about
¥ cnds of the object “at the same time.~ Fh) e evealy ok oot
Frame of figure R6.3 use events O and ;1 ‘:"l"}]xam?k., Obs'.?wm in the Home
0 ots O and B. We see then that the., lle observers in the Other Frame
use even's < at the phenomenon of Lorent tracti
< its origin in the problem of clock synchronization! ot
Nonetheless, the idea that the same object on!
.+ lengths in different inerti ject can be measured to have
Jifferent leng _ rent inertial frames may be hard t p
are not at all surprised by the analogous behavior of ,(:,mf; gcci;:t. tYu e
two-dimensipﬂal plane. Let me illustrate. Suppose wcﬁvishtk: lcgo;t:::l:\: :\h:
cast-west width of a road running in a roughly northerly direction on the
carth’s surface. Two dlfft‘l"(‘m surveyors set upldifl'crcntl;/ oriented coordi-
nate systems and make this measurement. Is it surprising' that they get dif-
ferent results (see figure R6.4)? '8
The road’s east-west width shown in figure R6.4 is greater in the primed
coordinate system than in the unprimed system. Has the road magically
expanded for the surveyor who laid out the primed coordinate system?
Of course not! Th.e road’s physical reality does not change just because we
change the coordinate system in which we measure it. But because the two
surveyors cannot agree on which two points that lie along the road’s edges
also lie on an east-west line, they will measure the road’s east-west width to
have different values.

We do not find this problematic or even unexpected. Now, we should say
that if you are going to measure the road’s “true” width, you should measure
it by using a coordinate system in which the road runs parallel to the y axis,
so that the x axis is perpendicular to the road. In that special coordinate sys-
tem, the width of the road will have its “true” value (which is shorter than the
value of the same measured in any secondary coordinate system).

Similarly, we might say that to measure an object’s “true” length in

etime, we should measure its length in the inertial frame in which it is
at rest. This “true length” (more correctly, the object’s proper length) will be
longer than the value measured in any other inertial frame. For clarity’s sake,
let us always refer to this length as the object’s rest length.

Hereis another way tolook at the issue. Areal physical object exists in four-
dimensional spacetime. Its “length” is its projection on a three-dimensional

N(m)4 N'(m) Figure R6.4
Points O and A span the east-west
5T 5 width of the road in the Home Frame

i coordinate system, while points O and
B span the same in the Other Frame

coordinate system. The circle shown

connects all points that lie 4 meters

T from the origin. From the picture, it
+ B is clear that the road has a greater
east-west width in the Other Frame
Ay TR U :
o= +— £ (m) coordinate system than in the Home
5 Frame system. Does this mean the

road has magically expanded for the
\ surveyors in the Other Frame coordi-
s E'(m) nate system?

13

A geometric analogy

The analogy between a road’s
“true width” and an object’s

rest length



114

Does the Lorentz
contraction provide a way of
distinguishing a rest frame
from a moving frame?

The principle requires that
identical experiments vield
identical results
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slice of that spacetime that we call “now.” An object’s “length” is therefor,
analogous to the width of the shadow that a three-dimensional object ¢ sty
on a two-dimensional surface—that is, the projection of that object on the
surface. If I change the object’s orientation with respect to the surface, the
shadow may grow or shrink. This is not an illusion: the shadow really gy,
change size! But this is not because the three-dimensional object is ‘hanging;
it is simply because we are viewing it from different angles. Similarly, obser,.
ers in different inertial reference frames essentially view a four-dimensiony)
object from different “directions,” and so conclude that the object’s Projec.
tion on the three-dimensional surface that a particular observer calls “noy~
changes size. The projection really does change size, but the projection is only
one perspective on the changeless four-dimensional object.

@4 The Contraction Is Frame-Symmetric

But, vou might ask, does this Lorentz contraction effect not violate the prin.
ciple'nf relativity? We have seen that an object at rest in the Home Frame g
measured to have a shorter length in the Other Frame. Does this not imply
that there is a physically measurable distinction between the two frames,
a distinction that would violate the requirement that all inertial frames be
equivalent when it comes to the laws of physics?

The principle of relativity does not require that measurements of a spe-
cific object or of a set of events have the same values in all reference frames,
What the principle does require is that if we do exactly the same physical
experiment in two different inertial reference frames, we get exactly the same
result (otherwise, the laws of physics that predict the outcome of the experi-
ment will be seen to be different in the different frames). Now, we have seen
that if we take a 4-ns measuring stick at rest in the Home Frame and mea-
sure its length in the Other Frame, we will find it to be Lorentz-contracted to
3.7 ns in length. The principle of relativity does require that if we perform the
same experiment in the Home Frame, we get the same result—that s, if we take
a 4.0-ns measuring stick at rest in the Other Frame and measure its length in
a Home Frame moving at a speed of | 3| = £ with respect to the Other Frame,
we should find the stick to be Lorentz-contracted to 3.7 ns.

Figure R6.5 shows that this is indeed so. The worldlines of the ends of
a measuring stick at rest in the Other Frame will be parallel to the 1" axis, as
shown. Events O and D mark out the two ends of the measuring stick a1 time
¢ = 0 in the Home Frame. The distance between these events (i.¢., the length
of the measuring stick in that frame) is seen to be about 3.7 ns, as expected

t'(ns)
Figure R6.5 t(ns) ¢
This measuring stick has a rest length T /
of 4.0 ns, because events O and E, 54
which occur simultaneously (in the R
Other Frame) and at opposite ends of X region
the measuring stick, are 4.0 ns apart
in this frame. Events O and D occur X (ns)
at opposite ends of the stick and T >
simultaneously in the Home Frame, so
the distance between these events is
defined to be the length of the stick
in that frame. We can see from the
diagram that this length is about 3.7 ns. 436ns

R

4+

b=t X (N8)

e )
o
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Again we can also easily check this with the

mrmd““i“ }"1“"!‘"‘;:5-'|l\ ;hc Home Frame, lho‘
-\ is defined 10 be the distance Ax between «

:ttl;ht‘ ends of the _5“C Kk—that is, c\'vnt.\'b;(::\\t\)"l\li]c: ':::IZ':;*,:\‘S k‘\'l.‘l.\ts occuITing
that the lvngth'nt the measuring stick in the Other Fra . :s_u;nn_wg e now
thatitis at restin ti?.n frame, then the distance bctwuer: r:,u i 4'.0 3 eyl
occur at the opposite .mds of the measuring stick mus: l:./ &alr (:f events that
in that frame, On.h of the Lorentz transformation . AL site =40 18
ditferences (equation R5.11b) says that

help of the Lorentz trans-
length L of the measuring

equations for coordinate

Av'=(-BAt + Ay) (R6.4)

In the cas¢ at hand, W.t » are looking for I = Ay, knowing that Ax’ = [, and
At =0tor the events in question. Therefore, dropping the Af term in :\ ua-
tion Ro.4 and solving for Ax, we get 1

P T S o —
L=A.\‘—-."f—’-u 1-08 =(4~““$)\/1‘|2)‘=3.7ns (R6.5)

in agreement with the result displayed by figure R6.5.

In summary, we see that it doesn’t matter whether the stick is at rest in
the Home Frame or at rest in the Other Frame. If the stick is observed to have
alength Lg in the frame in which it is at rest, it has a length L = L, (1 -39
in any frame that is moving with speed | BI relative to the stick’s rest frame.
|f the stick is at rest in the Home Frame, it is observed to be contracted in the
Other Frame. If it is at rest in the Other Frame, it is observed to be contracted
in the Home Frame. Because Lorentz contraction is frame-symmetric in this
way, it means it is consistent with the principle of relativity.

§6.5 The Barn and Pole Paradox

The predictions of the theory of relativity are counterintuitive enough that it
is easy (as a result of fuzzy thinking) to invent situations that at first appear
to be paradoxical. We dealt with one of the most famous, the twin paradox, in
chapter R4. In this section, we will examine another famous apparent para-
dox, generally known as the barn and pole paradox, that is based on a natural
but mistaken understanding of the phenomenon of Lorentz contraction.
Considera pole carried by a pole-vaulter whois running along the ground
ata speed | 3] = . In the runner’s frame, the pole is at rest (of course): let us
assume that it has a rest length of 10 ns. An observer on the ground is mov-
ing with speed | 3| with respect to the pole’s rest frame and so will measure
the pole to be Lorentz-contracted to a length of only L = L, 1-p)"=
(10ns){1 = 5)'* = (10 ns)( )2 = (10 ns)({) = 8 ns. As the runner presses on,
she runs through a barn that also happens to be 8 ns long as measured in the
ground frame. Since both the pole and the barn are 8 ns in the ground frame,
there is an instant of time in that frame in which the barn entirely encloses the pole.
But now look at the situation from the runner’s perspective. In her
frame, the pole is at rest and has its normal length of 10 ns. She sees the
barn to be moving relative to her at a speed of £, and so it is the barn that
is Lorentz-contracted to ! of its ground frame length—that is, to ()(8 ns) =
(32/5) ns = 6.4 ns. Thus, the paradox: how can a barn that is 6.4 ns long ever
enclose a 10-ns pole?
) This apparent paradox results from a naive
moving objects are contracted” without really understanding why objects
are measured to be contracted and exactly how the length of a moving object

application of the idea that
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Lorentz contraction is frame-
symmetric and thus consistent
with the principle of relativity

Description of the barn and
pole problem
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Figure R6.6

A picture of the barmn and pole
problem as it would be observed
in the ground frame. Events F
(front of the pole passes through
barn's front door) and B (back of
pole passes through bamn’s back
door) are simultaneous in the
ground frame. We can define the
coordinate time of these events to
be t = 0. Note that at this instant
the pole is completely enclosed
by the barn.

Restating the problem in terms
of events

The solution to the paradox

A check using the Lorentz
transformation equations

Chapter R6  Lorentz Contraction

1
L}
Pole !
|
|
|

F = et NPT o T T VA e R
Ground

is measured. We will see that the apparent paradox is resolved if we c.m-full),
consider the precise meaning of the words we have used to describe it.

The first step in solving this problem (and virtually every other problem
in special relativity) is to rephrase the problem in terms of cvents. Let us cal|
the arrival of the front end of the pole at the front end of the barn event f,
Call the arrival of the back end of the pole at the back of the barn event B, Ty
say that there is an instant at which the barn encloses the pole is to say thay
events F and B are simultaneous in the ground frame (see figure R6.6).

Let us agree to use event B as the origin of both space and time in both
frames (that is, Boccursatx =0and 1 =0 in the ground frame and x’ = 0 and
¢ = 0 in the runner’s frame). The statement that F and B are simultancous in
the ground frame then means that event F also occurs at I = 0 in the ground
frame. But when and where does event F occur in the runner’s frame?

Figure R6.7 shows a two-observer spacetime diagram for this problem.
| have chosen the ground frame to be the Home Frame of the diagram. | have
also taken the ground observer’s description of the events to be truthiul
events B and F do occur simultaneously in the ground frame, and the poleis
enclosed by the barn at time f = 0 in the ground frame. Notice also that the
diagram supports the runner’s claim that the barn is 6.4 ns long in her frame:
events B and C are simultaneous in the runner’s frame and lie at the ends of
the barn, so the distance between them is the length of the barn in that frame
(by definition), and this distance is indeed about 6.4 ns on the diagram.

So what is the solution to the paradox? The diagram shows that te nin-
ner never observes the pole to be enclosed by the barn. Event F is not simultancous
with event B in the runner’s frame: F is simultancous with event [ (note that
the line connecting F and D is parallel to the x"axis). This means that cventf
(front of pole reaches front of barn) occurs about 6 ns before event B (back of
pole reaches back of barn) in the frame of the runner. At the same e as

event F occurs in the runner’s frame (that is, at 1" = —6ns), vou can sce from
the diagram that the pole’s back end is still sticking out behind the bam
When event B finally occurs (at t = 0), the pole’s front end is sticking outn
front of the barn. (Remember that all events occurring “at the same time™ asa
given event in the runner’s frame lie on a line parallel to the diagram v avis)

We can use the Lorentz transformation equations to confirm this picture.
In the Home Frame, the coordinate differences between events Fand Fare
Aty =0and Avy =x, —x;=8ns =0 =8ns. [The factory = 1/(1-3) =
5/4 here.] Therefore, in the runner’s frame,

Aty = (Aly ~ BAxy) = 3 |0_ :(8 nS)Iz _3(8 ns)=—-6ns  (Ro6)
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gince Aty = t; — ty and ti = 0, we have t; = —6 ns, implying that event
occurs about 6ns before B in the runner’s frame, as we read from the diagram.

Now let us think about this for a minute. If you were the runner and you
were told you were about to run a 10-ns pole through a 6.4-ns barn, what
would you expect to see? First, you would see the front end of your pole reach
the front end of the barn (event F). At this time, your 10-ns pole would stick
out 3.6 ns behind the rear of the 6.4-ns barn. After the barn moves backward
relative to you another 3.6 ns, the back end of your pole will coincide with
the back end of the barn (event B), at which time the front of the pole sticks
out 3.6 ns in front of the barn (see figure R6.8).

How long before event B should event F occur? The time between these
events should be the time required for the barn to move backward a distance

of 3.6 ns at a speed of | 3| = 2 (in the runner’s frame), or

Ax _36ns 5

At =2X =201 = (36ns)(2|=6ns
I J
which is the time between the events indicated on the spacetime diagram
in figure R6.7. In fact, you should go over that diagram very carefully and
convince yourself that the description given above is indeed exactly what the
runner will observe in her reference frame.

(R6.7)
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Figure R6.7

Graphical solution to the barn
and pole paradox. Events B and
C mark the ends of the barn at

¢’ = 0 in the runner’s frame These
events are roughly 6.4 ns apart
according to the diagram, sO the
barn is indeed about 6.4 ns long
as measured in the runner’s frame
But note that events B and F are
not simultaneous in the runner's

frame. Indeed, event F occurs

at the same time as event D, or
about 6 ns before event B (note
that the line connecting events F
and D is parallel to the x’ axs).

To the runner, everything
looks exactly as if a 10-ns pole
is being carried through a
6.4-ns barn

Figure R6.8

(a) The view from the runner’s
frame. Event F occurs first, at
which time the pole sticks out
about 3.6 ns behind the barn.
(b) Event B occurs next, at which
time the pole sticks out 3.6 ns
in front of the barn. The time
between events F and B is the
time that it takes the barn to
move a distance of 3.6 ns at its
speed of 3 = { relative to the
runner’s frame.
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Similar “paradoxes”™ hinge
on the same error about
simultaneous events

Alternative definitions of
length

An example of such an
alternative definition
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The point is that nothing strange or weird happens in either frame
the barn frame, observed events are consistent with the lnlt'l'Pn'ldtlun‘ :
an 8-ns pole is being carried through an 8-ns barn. In the runner’s lr.nn,l.'h‘
time relationship between the same events is, on the other hand, cong;,
with the interpretation that a 10-ns pole is being carried through , ¢ i
bam: we do not see anything like “a 10-ns pole enclosed by a 6.4-p¢ b‘"-nr
The apparent paradox in the problem as stated 1s based on the unstageg :
erroneous assumption that if events Fand B were simultaneous (thay is, ,nd
pole is enclosed in the barn) in the ground frame, the events will 4, h:
simultancous in the runner’s frame. However, when we recall that the C0g
dinate time measured between two events will not in general be the \’m:
in different frames, the paradox evaporates. Excepting the l»’l“"“’lm'non o
Lorentz contraction itself, nothimg unusual is seen to happen in either frame

People have invented a number of apparent paradoxes analogous t, the
barn and pole paradox (see the homework problems for examples), Such
paradoxes almost always involve a hidden assumption that two events that
are simultaneous in a given inertial reference frame are simultaneous i all
reference frames. We are taken in by the apparent paradox because our iny;.
tive belief in the absolute nature of simultaneity is so natural that we hardly
notice when it is assumed. But special relativity teaches us that this QS\Um‘;
tion is not true: because observers in different inertial frames do ot obserye
clocks in other frames to be synchronized, they will disagree about whethe
two given events are simultaneous. Moreover, because we have defined the
length of a moving object in a given frame in terms of simultaneous evenys
in that frame, it follows that different observers will disagree about thy
length as well. The frame dependence of simultaneity and the phenomenon
of Lorentz contraction are bound together, and indeed they fail to make sense
without each other (as these paradoxes show).

the
N"Y'l

Exercise R6X.2

(a) Using figure R6.7, describe how you could verify that at the time of event
F in the runner’s frame, the pole’s back end is about 3.6 ns of distance behind
the barn’s back door. (b) Use the Lorentz transformation equations to verify
that at the time of event F in the runner’s frame, the pole’s back end i« about
3.6 ns of distance behind the barn’s back door.

R6.6  Other Ways to Define Length

We have seen that if we define a moving object’s length as the distance
between simultancous events occurring at its ends, we get a frame-dependent
(Lorentz-contracted) answer. Are there other ways we might define o moving
object’s length? If so, do these yield different results?

The answers to these questions are as follows. Yes, there are other logically
reasonable ways of defining a moving object’s length, but these detinitions
if they are logically reasonable, yield the same numerical result for the objects
length as the definition involving synchronized events presented in section Rol

For example, consider again a moving train. Instead of defining its length
to be the distance between simultaneous events at its ends, we might define
its length L in our frame to be the total time At that the train takes to passd
given point in our frame times its speed | 3]in our frame:

L=|glat (RoS)
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¢ value of | 3| At should vield the dis - ; .

t?\:‘ point, wl'.uic.h. is a perfectly redsonabltg 'c‘i:-‘t;llnh;::(::f)lfr;::n] r‘novlcs LR

This definition, h()\sfe\'er, yields exactly the same (»Ltn?; l s :
cesult as our orlg}nal definition. To see this, let us apply thi(? rfo.ntz-contracted)
mine the length in the runner’s frame of the barn di';crib:do'mu'a 5 ey
Fvent B is the'cw.?nt .of the barn’s back end passing ti\e oint":"sicgo?hkb.'s'
the diagram 1" axis) |_n the runner’s frame, while event F is tl;e : > (t éf“ul:I
parn’s front en.d passing this point. You can see from figun;e R6.7 (;h;n 'l(: ' (;

ortion of which is repeated in figure R6.9) that it takes th..; barn rr:u:\ I:?

At = 10.7 ns to pass the point x* = 0 in the runner’s frame. Since the Ear;:
is traveling bift‘k“'drd ata speed of | 3| = ! in the runner’s fr.dme the barn’s
length according to our new definition must be ‘ ’

L’= (107 ns) = 6.4 ns (R6.9)

which is roughly the same (contracted) result we found before.

We can (as usual) use a Lorentz transformation equation to find the barn’s
exact length according to this definition. Events B and E occur at ¥ = 0 in the
runner’s frame by definition, so Ax’ = 0 for these events. Since these events
occur atopposite ends of the barn, they are separated by Ax = 8 ns in the barn’s
frame. One of the inverse Lorentz transformation equations says that

Ax = y(BAH + Ax’) (R6.10a)
so (since Ax" = 0)
,_Ax_ 8ns _4 ) 32
=% = S = 28 ns) = 2<ns = 10.67 ns :
v G/490 3 s) 2 ns 67 ns (R6.10b)

According to equation R6.8, the barn’s length in the runner’s frame is thus
0 PO ) (7 RN B e
L'= |Blat —§|—5-ns,--?ns=6.~lns (R6.11)

which is exactly the same as the result we found before.

This is just one example of an alternative definition of length (see prob-
lem R7A.1 for discussion of another). All known reasonable definitions of the
length of a moving object vield the same result as equation R6.2: no matter
how you compute it, the length of an object determined in a frame where it
is moving is Lorentz-contracted from its rest length by the factor (1 - B~

Exercise R6X.3

Using equation R6.8, find the length of the runner’s pole in the ground frame
(a) by reading At from figure R6.9 and (b) by computing Af with the help of
an appropriate Lorentz transformation equation.
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This definition yields the same
result as the original

8 10 x(ns)
\

Figure R6.9

Events B and E are the events
where the barn's back and front
ends respectively pass the spatial
origin of the runner’s frame. The
time this takes in the runner’s
frame is about 10.7 ns.

. as do other definitions
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| TWO-MINUTE PROBLEMS

R6T.1  Amoving object’s length in a given frame is defined
to be the distance between two events that occur at oppo-
site ends of the object and that are simultaneous in that
frame. Wiy is it crucial that the events we use to define a
moving object’s length be simudtaneous?

A. This is purely conventional: there is no other reason.

B. This choice makes it easier to use the Lorentz transfor-
mation equations to find the length.

C. If the events are not constrained to be simultaneous,
then the length is poorly defined: its value would
depend on the time interval between the events.

D. If the events are simultancous, then the length will be
a frame-independent quantity

E. Other (specify)

R6T.2  Since an object’s ends do not move in its rest frame,
the events used to mark out an object’s length in that frame
do not have to be simultaneous: the distance between them
is the object’s rest length whether they are simultaneous or

not. Tor F?

R6T.3  An object of rest length Ly moving at one-half the
speed of light will have a length equal to:

il

oL

(5)'"Le

. 0.87Lg

iLe

Other (specify)

mMmOoONS >

R6T4  An object is at rest in the Home Frame. Imagine an
Other Frame moving at a speed of | 3] = £ with respect to
the Home Frame. The object’s length in the Other Frame is

Lorentz Contraction

measured to be 15 ns. What is its length as observed jp, the
Home Frame?

A. 15ns

B. 12ns

C. 9ns

19 ns

25ns

Other (specify)

mmo

R6T5  An object’s length would be negative in a fram,
where it travels faster than the speed of light. T or F?

R6T.6 Suppose an object is in a frame where it is mgy.
ing at speed | A,] and its length is L, at that speed. If
double the speed (| 3| =213, 1), then the object’s length i
compressed by a factorof two tL; = 1 L,). Tor F?

R6T.7 The most important reason an object is observed 1o
be shorter in a frame where it is moving than in a frame
where it is at rest is that
A. The force of motion strongly compresses an object that

is moving at relativistic speeds.
B. “Simultaneity” is not a frame-independent concept.
C. The measuring sticks used by the moving observer are
Lorentz-contracted.
D. The clocks used by the moving observer run slower.

R6T8 In the pole and barn problem, the bam never
actually encloses the pole in the ground frame. T or |2

R6T.9 We can define a moving object’s length to be its
speed times the time it takes to pass a given pomt. T
or F?

 HOMEWORK PROBLEMS

.

Basic Skills

R6B.1  How fast must an object be moving in a given
frame if its measured length in that frame is one-half its
rest length?

R6B.2  How fast must an object be moving in a given frame
if its measured length in that frame is to be significantly
different from its rest length? (Assume you can measure
the object’s length to 1 part in 10,000—that is, to four
significant figures.)

R6B.3  An Other Frame moves with a speed of 0.80 relative
to the Home Frame. An object at rest in the Home Frame
has a length of 30 ns. What is the object’s length in the
Other Frame?

RoBA  An Other Frame moves with a speed of 0.80 relative
to the Home Frame. An object at rest in the Other Frame

has a length of 30 ns as measured in the Home frame.
What is the object’s length in the Other Frame?

R6B.5  Suppose an object with a rest length of 10 15 s at
rest in a frame that is moving with a speed of 0.5 rlative
to the Home Frame. Draw a two-observer spacetine dia-
gram of this situation, and use it to determine the leazthol
the object in the Home Frame. Check vour result o
equation R6.2. -

using

R6B.6  Suppose an object with a rest length of 5 ns s at
rest in the Home Frame. The Other Frame is moving with
a speed of 0.50 relative to the Home Frame. Draw o twer
observer spacetime diagram of this situation, and use it
to determine the length of the object in the Other Frame
Check your result using equation R6.2.

R6B.7  An observer at rest with respect to the sun measures
the earth’s diameter (in the direction of its motion) as !



H omework Problems

gs by inits orbit. How many centimeters shorter is thi
oter in this frame than its rest diameter of 12 7M{I\m:
Use the binomial approximation ) ; '

swin
drany
(HHH'

About how many temtometers shorter than its rest
jength is car’s !mgth measured in the ground fraﬁw ~if
{hat car is traveling at 30 m/s (66 mi/h) in that frame?
Assume the car’s rest length is 50 m. (1 fm = 10" m i;
about the size of an atomic nucleus.) .

R6BS

Modeling

geM.1 Imagine an alien spaceship traveling so rapidly that
it crosses our galaxy (whose rest diameter is 100,000 ly) in
only 100y of spaceship time. Observers at rest in the galaxy
sa\"that this is possible because the ship’s speed | 3] is S0
close to 1 that the proper time it measures between its entry
into and departure from the galaxy is much shorter than
the galaxy-frame coordinate time between those events
(about 100,000 y). But how does this look to the aliens? To
them, the galaxy moves backward relative to them at the
spead |31 = 1, and so is Lorentz-contracted to a bit less
than 100 Iy across. This is what makes it possible for the
whole galaxy to fly by them in only 100 .
@ Find the exact value of the speed [ 3] that the aliens
must achieve to cross the galaxy in 100 y.
(b) Find the galaxy’s diameter in the aliens’ frame, and
verify that a galaxy with such a diameter moving at
speed | 3| will completely pass the aliens” ship in 100 y.

ReM.2 In the experiment described in problem R3M.11,
particles travel at a speed of | 7] = 0.866 between detectors

208 km apart. This takes 8.0 ps as measured by labora-
torv clocks. Since the half-life of the particles involved is
2,00 ps, we might naively expect only about one-sixteenth
of the particles to survive the trip. But that problem’s solu-
tion shows that the particles’ clocks actually only measure
400 ps for the trip between the detectors, and thus about
one-fourth survive.

But now consider how this all looks to an observer
traveling with one of the particles. In the particle’s frame,
the laboratory and the detectors appear to be moving past
at a speed of 0.866. In 4.00 ps (as measured by the parti-
cle’s clock), the laboratory will only move by a distance of
1.04 km at that speed, so the particles will only see one-half
of the distance between the detectors go by. But laboratory
observers claim that by the time the particles” clocks read
400 ps, they have covered the full distance between the
detectors. s this not a paradox?

Resolve the apparent paradox by considering Lorentz
contraction. How far apart are the detectors in the particle
frame? How does this resolve the paradox? (Hint: Prob-
lem R6M.1 discusses a similar situation.)

R6M3  As discussed in section R34, muons created in the
upper atmosphere can sometimes reach the carth’s sur-
face. Imagine that one such muon travels the 60 km from
,'h" upper atmosphere to the ground (in the earth’s frame)
inone muon half-life of 1.52 ps (in the muon’s frame). How

121

thick is the portion of the earth’s atmosphere from the
muon'’s creation point to the ground in the muon's frame?

R6M.4 How fast would you have to be moving relative
to our Milky Way galaxy such that the galaxy (whose
rest diameter is 100,000 ly) is only 3.65 light-days across
in your reference frame (enabling you 1o cross it in about
3.65 days according to your clock)? Express your answer
in the form | 3] = 1 = 8. (Hint: See problem R6D.1.)

R6M.5 Imagine a cube 30 ¢cm on a side. About how fast
would this cube have to be moving relative to you if in
your frame it was as thin as a sheet of paper in the direc-
tion of its motion? (Hints: You may find the approximation
discussed in problem R6D.1 useful. Also, can you think of
an easy way to estimate the thickness of a sheet of paper?)

Derivation

R6D.1 A useful approximation. Consider a speed | 3| that is

very close to the speed of light: | 3] = 1 =, where 6<< 1.
Use the binomial approximation to show that under these
circumstances 1/ = (1 =3)'* = (26)"". How accurate is
this approximation when |31 =092 When |3]=099?

R6D.2 Prove mathematically that the alternative defini-
tion of length given in section R6.6 aliways vields the same
result as equation R6.2, as follows. Consider an object
of rest length Ly at rest in a frame that we can choose to
call the Other Frame. Let 3 be the x-velocity at which the
Other Frame (and thus the object) is moving relative to the
Home Frame. Let At be the Home-Frame time between
the events of the object’s frontend passing a certain pointin
the Home Frame and its rear end passing that same point.
Since these events occur at the same place in the Home
Frame, Ay = 0 between these events in that frame. But
since these events occur at opposite ends of the object, the
distance between them in the Other Frame is |Ax’| = Lg.
Use an appmpriatc Lorentz transformation equation to
determine Af in terms of Ax, Ax’, and 3, and then use the
result to prove that L = 18] At =Lg(1= 8",

R6D.3 We can use the metric equation to derive equa-
tion R6.2 as follows. An object with rest length L, moving
in the +x direction with 1-velocity 3 passes a clock at rest
in your inertial frame. Let event F be the object’s front end
passing that clock, and let event B be the object’s back end
passing that clock.

(a) Argue that in the object’s frame, the coordinate time
between these events is equal to L/ | 3].

(b) What is the distance between these events in the object's
frame?

(¢) Define the object’s length in your reference frame to be
the distance the object travels in the time it takes to
pass by your clock—thatis, L = | 3] At, where At is the
time measured between events F and B by vour clock.
Use the metric equation and the information in parts
(a) and (b) above to arrive at equation R6.2. (Hint: Your
clock is present at both events.)
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R6D.4  Transformation of angles. Consider a meterstick at rest

in a given ertial frame (make this the Other Frame) oni- i —

ented in such a way that it makes an angle of #” with respect

to the 1’ direction in that frame. In the Home Frame, the M.
: A

Other Frame is observed to move in the +x direction with p—
an x-velocity of 3.
(a) Keeping in mind that the distances measured paral- : :
lel to the line of relative motion are observed to be L ons——— ‘
Lorentz-contracted in the Home Frame while dis-
tances measured perpendicular to the line of motion
are not, show that the angle # we will observe this
meterstick to make with the x direction in the Home (3

Frame is given by

Event B

Event A (coincidence of
(cannon fires)

nose of O and tail of 0)

View from the O frame

100 ns —

(R6.12) o

_tanf’
V-8
(b) What would the meter stick’s length be as measured in
the Home Frame?
(&) Assume the meterstick makes an angle of 30° with the | —
+" direction in the Other Frame. How fast would that h -
frame have to be moving with respect to the Home | o
Frame for the meterstick to be observed in the -8 s ——
Home Frame tomakeanangle of 45 with the xd irection?

8=l.m“'

) ) Event
Event A (coincidence of : B
(cannon fires)

nose of O and tail of O)

(b View from the O frame

Rich-Context

R6R.1  The space wars paradox.* Two spacecraft of equal rest

Figure R6.10
The situation described in problem R6R.1.

length L, = 100 ns pass very close to each other as they
travel in opposite directions at a relative speed of 18l=3
The captain of ship O has a laser cannon at the tail of her
ship. She intends to fire the cannon at the instant her bow
is lined up with the tail of ship O". Since ship O"is Lorentz-
contracted to 80 ns in the frame of ship O, she expects
the laser burst to miss the other by 20 ns, as shown in
figure R6.10a (she intends the shot to be “across the bow”).
However, to the observer in ship O, itis ship O that is con-
tracted to 80 ns. Therefore, the observer on O’ concludes
that if the captain of O carries out her intention, the laser
burst will strike ship O" about 20 ns behind the bow, with
disastrous consequences (figure R6.10b).
Assume the captain of O carries out her intentions
exactly as described, according to measurements in her
own frame, and analyze what really happens as follows:
(a) Construct a carefully calibrated two-observer space-
time diagram of the situation described. Define event
A to be the coincidence of the bow of ship O and the
tail of ship O’ and event B to be the firing of the laser
cannon. Choose A to define the origin event in both
frames, and locate B according to the description of the
intention of O’ above. When and where does this event
occur as measured in the O frame, according to the
diagram? (You may assume that the ships pass each
other so closely that the travel time of the laser burst
between the ships is negligible.)

(b) Verify the coordinates of B, using the Lorentz transfor-
mation equations.

() Write a short paragraph describing whether the can-
non burst really hits or not, according to the results
you found above. Discuss the hidden assumption
in the statement of the apparent paradox, and point
out how one of the drawings in figure R6.10 is
misleading.

R6R.2  The bullet hole paradox.t Two guns are mounted a

distance of 40 ns apart on the embankment beside come

railroad tracks. The barrels of the guns project outvard

toward the track so that they almost brush o spoed-

ing express train as it passes by. The train moves with a

speed of | 3] = ? with respect to the ground. Suppose the

two guns fire simultaneously (as measured in the ground
frame), leaving two bullet holes in the train,

(a) Let event R be the firing of the rear gun and event f
the firing of the front gun. These events occur 40 ns
apart and at the same time in the ground frame
Draw a carefully constructed two-observer diagram
of the situation, taking the ground frame to be the
Home Frame and taking R to be the origin event. Be
sure to show and label the axes of the ground and
train frames, the worldlines of the guns, the world-
lines of the bullet holes that they produce, and events
Rand F.

tAdapted from B. M. Casper and R. J. Noer, Revolutions in

e W e AP
*Adapted from E. F. Taylor and ). A. Wheeler, Spacetime Phys-
Physics, New York: Norton, 1972, pp. 363-364.

ics, San Francisco: Freeman, 1966, pp. 70-71.



Homework Problems

(b) Argue, using your diagram, that the bullet hole world-
lines are about 50 ns apart as measured in the train
frame. Verify this by using the Lorentz transforma-
tion equations to show that events R and F occur 50 ns
apart in the train frame.

(¢) Intheground frame, the guns are 40 nsapart. In the train
frame, the guns are moving by at a speed of |3 = 7,
and the distance between them is Lorentz-contracted
to less than 40 ns. Use the Lorentz contraction formula
to show that the guns are in fact 32 ns apart in the train
frame. Describe how this same result can be read from
your spacetime diagram.

(d) Doesn’t this lead to a contradiction? How can two
guns that are 32 ns apart in the train frame fire simul-
tancously and yet leave bullet holes 50 ns apart in the
train frame? Write a paragraph in which vou care-
fully describe the logical flaw in the description of the
“contradiction” given in the last sentence. (Hint: Focus
on the word simultancously.) Describe what really is
observed to happen in the train frame, and thus how
it is perfectly natural for guns that are 32 ns apart to
make holes that are 50 ns apart.

R6R.3  The space cadets paradox.® A very long measuring
stick is placed in empty space at rest in an inertial frame
we'll call the “stick frame.” A spaceship of rest length
L, travels along the measuring stick in the +v direc-
tion with an x-velocity 3 =1 relative to it. Two space
cadets P and Q with knives and synchronized watches
are stationed at rest on the ship frame in the ends of the
spaceship. At a prearranged time, each cadet simultane-
ously reaches through a porthole and slices through the
measuring stick.

(a) How long is the spaceship according to the cadets?

(b) How long is the spaceship according to observers
along the measuring stick (that is, observers at rest in
the “stick frame”)?

(c) Use the Lorentz transformation equations to show that
observers along the measuring stick would conclude
that the measuring stick’s cut portion has length * L.

(d) Since the cutting events occur simultancously in the
spaceship frame, they do not occur simultaneously in
the stick frame. Use the Lorentz transformation equa-
tions to find the time separation of the two cutting
events as viewed in the stick frame.

(e) Explain in a short paragraph how it is that two cadets
who are only L, apart (as measured in the stick frame)
can cut a hunk of measuring stick L, long if they
really cut simultaneously according to their synchro-
nized watches.

R6R.4  Albert and Becky are passengers on a train that
is moving through a long straight tunnel at a velocity of
A =13/5in adirection we will call the +x direction. Albert
and Becky are 80 ns of distance apart as measured in the
tunnel (Home) frame. At a pre-arranged instant of time
in the train frame that we will call 1" = 0, Albert reaches
through his window and paints a mark on the tunnel wall

e ee—
“Thanks to W. F. Titus of Carleton College.

123

{event A) and Becky also reaches through her window and
paints a mark on the wall (event B). Let Albert’s position
define the spatal origin 1" = 0in the train frame

(a) Construct a calibrated two-observer spacetime diagram
of the situation described. Draw Albert and Becky’s
worldlines, locate events A and B, and draw the world-
lines of the marks. (Remember that the marks do not
exist before events A and B.)

(b) You should see that events A and B are 100 ns apart in
the train frame. Check this by considering the fact that
the train is Lorentz contracted in the tunnel frame.

(c) Read from your diagram the displacement Ax between
the marks in the tunnel frame, and show with hines
and labels on the diagram how you arrived at that
result.

(d) Check your work for part (b) using an appropriate
Lorentz transformation equation. (Hint: Ax > 100 ns.)

(e) How is it possible for Albert and Becky, who are 80 ns
apart in the tunnel frame, to paint their marks simul-
taneously and yet leave marks on the tunnel that are
more than 100 ns apart? Explain in quantitative detail
how everything works in the tunnel frame, assuming
that Albert and Becky really do make their marks at the
same time in the train frame.

R6R.5 Rachel and Fred are standing in the ground frame

(the Home Frame) along a train track that runs in the +x
direction. Fred is 200 ns further up the track than Rachel.
A train traveling in the +x direction at an x-velocity of
B = 3/5 is passing by. At a pre-arranged time according
to their previously synchronized watches (call this t = 0),
Rachel and Fred reach out and mark the side of the train
with a magic marker. Let the event of Rachel’s marking the
train be R, and the event of Fred marking the train be F.
(a) Construct a carefully calibrated two-observer space-
time diagram of the situation described. In addition to
the reference frame axes for both frames, draw Fred
and Rachel’s worldlines, locate events F and R, and
draw the worldlines of the marks. (Remember that the
marks do not exist before events F and R)
(b) What is the distance between the marks in the train
frame? Indicate the distance on vour diagram
(c) Check that your answer for part (b) is correct by using
an appropriate Lorentz transformation equation. (Ht
The result should be greater than 200 ns.)
(d) What is the separation between Rachel and Fred in the
train frame? Indicate this separation on the diagram
(e) Check that your answer for part (b) is correct by
using an appropriate inverse Lorentz transformation
equation. (Hint: The result should be less than 200 ns.)
() Describe clearly and quantitatively how the train’s
conductor would explain how Rachel and Fred can be
less than 200 ns apart in the train frame and yet draw
marks that are more than 200 ns apart. (Don't just state
the events’ time coordinates in the train frame: explain
exactly what the conductor observes, how far the con-
ductor sees Rachel and Fred move between the events
if that is relevant, and how everything looks com-
pletely normal in the train frame. A few well-chosen
sentences will suftfice.)
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Advanced

R6A.1  The radar method. Imagine using the radar method
to measure the length of an object moving at an x-velocity
of -3 with respect to your own frame (which is the Other
Frame). At a certain time (event A) you send forth a light
flash from the master clock at the spatial origin of your
frame. This flash bounces off a mirror at the far end of the
object (event R) and then returns to your clock (event B).
If you time this all just right so that the near end of the
object passes your clock (event O) at exactly the time
halfway between the emission event A and the reception
event B (as measured by that clock), then you know that
event O and the reflection event R are simultaneous. This
means that at that instant, the object lies exactly between
the clock and the light flash as it bounces off the mirror.
The length L of the object in your frame is thus equal (in SR
units) to the time it takes the light to come back from event
R, since light travels at a speed of 1 in all frames.

Now imagine viewing this measurement process
from a Home Frame in which your frame is moving in
the x-direction with an x-velocity 3. Because the object is

R6A.2 Light clocks.

Lorentz Contraction

at rest in that frame, the distance between its ends in g,
frameis L,. Draw a two-observer diagram of the situation 5,
viewed by observers in the Home Frame (let O be the orig,
event in both frames). Argue that the coordinate dm,,n“_'
between events O and A in the Home Frameis Av = | 3] 4,
where At is the coordinate time measured between tho\_
events in the Home Frame. Also argue (using similar tr,.
angles on the diagram) that At = L. Then, use the metri.
equation to relate the time measured between events O ang
A measured in your frame {which is equal to L) to the coqy.
dinate time At measured between the events in the Hom,
Frame, and show that you end up with the same result 5
that given by the Lorentz contraction equation R6.2,

Consider a light clock as shown i
figure R3.3, except imagine the light clock to be laid on it
side so that the light flash travels along the clock’s direc-
tion of motion. Show that the only way this sideways light
clock will measure the correct spacetime intery al between
events A and B (as any decent clock should) is if the dis-
tance between its mirrors is Lorentz-contracted by the

amount stated by equation R6.2.
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| ANSWERS TO EXERCISES

R6X.1 A redrawn version of figure R6.3 is shown below,

1'(ns)

# 1 (ns)

Z et 5

Events O and A occur simultaneously in the Other Frame
and thus mark out the length of the stick in that frame. From
the diagram, it looks as if the stick is about 3 ns long in the
Other Frame. Equation R6.2 says that L = L,(1- 39" =
(5ns)1-2)*=(5ns)(3)=3ns.

R6X.2 (a) Event P shown in the figure below (a slightly
modified version of figure R6.7) occurs at the bamn’s back
end at the same time as event F (t; = -6 ns).

| Calibration
hyperbola

To find out where this event occurs in the runner’s frame,
we draw a line parallel to the t” axis up to the x” axis, as
shown. We see from this line that the barn’s back end is
at x" = 3.6 ns when event F occurs, while the pole’s back
end is (always) at x* = 0. Therefore, the pole’s back end
is indeed about 3.6 ns behind the barn’s back end in the
runner’s frame at this time.

(b) The barn’s back end is always at x, = 0 in the Home
Frame. So, according to one of the inverse Lorentz trans-
formation equations, we have

xp =Bty + x3) (R6.13)

= x=2-a=0- ;(—6ns) =36ns  (R6.14)
Since the pole’s back end is always at x’ = 0, it is sticking
out 3.6 ns behind the barn at this time.

R6X.3 (a) The figure below (a slightly modified copy of
figure R6.9) implies that it takes about 13.4 ns (the time
between events F and E) in the Home Frame for the pole to
pass the fixed point x = 8 ns in the Home Frame

'(ns)

Since the pole’s speed is | 3| = | in this frame, this implies
that the pole hasalength L = | 3| At ={; (134 ns) = 8.0 ns
(b) Events F and E occur at the same position (x = 8 ns) in
the Home Frame, so they are separated by Ax = 0 in that
frame. Since these events occur at opposite ends of the po.
in the runner’s frame, they are separated by Ax" = 10 ns ir
that frame (negative because Ax'=x; —x/ =0ns - l0n
-10 ns). So using the Lorentz transformation equabion
Ax’' = 9(=3 At + Ax), we find that

At = Ax _Ax' _ 0 -=10ns
" 7" (;l;n
=4;?n5=l3.'¥n.s (R6.15)

This means that L = | 3] At = }(40/3 ns) = 8 ns exactly
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R7

The Cosmic Speed
Limit

Chapter Overview

Introduction
One of the most fundamental and surprising consequences of the principle of rejag;,
ity is that nothing can travel faster than the speed of light in a vacuum. In this chapt,
with the help of some two-observer diagrams, we will explore why this mustbe,
This chapter also provides an appropriate context for discussing the Finstgip
velocity transformation equations that replace the Galilean velocity lmmfurmagmn
equations (equations R1.3), since the latter do allow for faster-than-light speeds
The Einstein velocity transformation equations provide important background fo,
chapters RS and RY.

Section R7.1: Causality and Relativity

A causal influence is any effect (particle, object, wave, or message) produced by gne
event that can cause another event. For causality to make sense, the temporal order
of the events in question must be preserved (the caused event cannot precede the
event that causes it). The problem with faster-than-light travel is that it violates caus.
ity. We can see this as follows. Suppose event P causes event Q and that the causal
influence moving from P to Q moves with a speed faster than that of light. In such
a case, we can always find an inertial frame moving slower than the speed of light
where event Q occurs before event P. This is inconsistent with the principle of relativ.
ity, since it violates the concept of causality for an effect to precede its cause. The only
way to make relativity consistent with causality is to insist that nothing (not even a
message) can travel faster than light, making it a real cosmic speed limit.

The concept of causality expresses in colloquial terms what the law of increase
of entropy (the second law of thermodynamics) expresses more formally. To v that
we must preserve causality is really to say that the second law of thermod: “amics
must obey the principle of relativity.

Section R7.2: Timelike, Lightlike, and Spacelike Interval:
Because of the minus signs in the metric equation, there are three distinet co zories
of spacetime interval:

1. Timelike: when As™ > 0
2. Lightlike: when As* =0
3. Spacelike: when As* < 0

These categories are frame-independent, since the value of As” is frame-independent

How can we measure the spacetime interval between the two events? [t As'is
timelike, we can find an inertial frame where the events occur at the same ploce, and
we measure As with the frame’s clock at that location. If As™ is spacelike, we can find
a frame where the events occur at the same tine: the distance that we measure with
a ruler between the events in that frame is the spacetime separation Ao = (~As)
between the events,



Section R7.3: The Causal Structure of Spacetime
Fyvents separated by a spacelike interval cannot be causally connected, since the causal
influence would have to travel faster than the speed of light. Be .||;;q* the \.\w‘g.unm
of spacetime nterval are frame-independent, all observers will agree about (1) which
events have a timehike (or ightlike) interval with a given event P and oceur afler it in
all frames, (2) which events have a imelike (or lighthike) mterval with P and occur
before it in all frames, and (3) which events have a spacelike interval with P Fvents
in the first category may be causally influenced by P, so we say such events lie in the
future of P Events in the second category may causally influence P, so we say such
events lie in the past of P Events in the third category cannot be causally related to P
In a spacetime diagram with two spatial aes, I"s pastand future look hike cones
whose points touch at P and whose surfaces are rings of light converging on or
expanding from P this structure is I'< light cone

Section R7.4: The Einstein Velocity Transformation
We can use a two-observer spacetime diagram to determine a particle’s velocity in
one inertial frame it we know its velocity in another and the two frames’ relative
velocity. We do this by (1) setting up a calibrated two-observer spacetime diagram
showing axes for both frames; (2) drawing the particle’s worldhne with the correct
slope relative to the axes of the frame in which we know its veloaity; and (3) measur-
ing that worldline’s slope according to the other frame’s axes.

Alternatively, one can use the Lorentz transformation equations to compute the
velocity of the object in either frame, using its velocity components measured in the

other. The result is

, O=f . o /1=7 L n/1=8
=B g ST AT LY (R7.14)
1 - 8o, 1 - Bv, 1-Bv,
B+, vi/1-38 o1 -8 ‘
| D e ) U W e ’ (R7N)
| 1+ [, 1+ 3o, 1+ Pv,

o Purpose: The first set of equations describes how to calculate an object's veloc:
ity components o, ., and v/ measured in the Other Frame from its velocity
components v, 0,, and ¢, measured in the Home Frame; the second set tells you
how to do the reverse, where 3 is the v-velocity of the Other Frame relative to |
the Home Frame. ’

o Limitations: These equations assume that the two frames are inertial and that

they are in standard orientation with respect to each other. '

|

e Notes: Equations R7.14 are the (direct) Einstein velocity tranformation equa-
tions, and equations R7.8 are the inverse Einstein velocity transformation
equations. These equations replace the Galilean transformation equations

(equations R1.3). J
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What is causality?

Why faster-than-light causal
influences are absurd

Figure R7.1
Some causal connections

Chapter R7  The Cosmic Speed Limit

R7.1  Causality and Relativity

“Nothing can go faster than the speed of light.” This statement is a vg)).
known consequence of special relativity. But why must this statemeny 1,
true? Do loopholes exist that might make faster-than-light travel possibje?

In sections R3.2 and R4.2, we saw how the metric equation and the Proper
time equation fail if we apply them to a clock moving faster than light: boyy,
equations imply that the time registered between two events by such a clock
would be an imaginary number, which is absurd. In both cases, this absy,.
dity results from the violation of the Af* > | Ad|” restriction necessary for th
derivation of the metric equation. Thus, neither equation really says anything
useful about what a clock traveling faster than light would measure,

In this section, we will see that there is a deeper problem with travelin,
faster than light: it violates causality. What do I mean by causality? In phys.
ics (and more broadly, in daily life), we know that certain events cause ntf\w
events to happen (see figure R7.1). For example, even couch potatoes knoy
that if you press the appropriate button on the remote control, the TV chap.
nel will change. Causally connected events must happen in a certain order
in time: the event being caused must follow the event that causes it. Foy
example, we would be deeply disturbed if the TV channel changed just before
we pressed the remote control button!

Consider two distinct events (call them P and Q) such that event P cayse<
event Q, or more precisely, Q happens as a direct consequence of the recep.
tion of some kind of information that P has occurred. This information can be
transmitted from P to Q in any number of ways: via some mechanical effect
(such as the movement of an object or the propagation of a sound wave),
via a light flash, via an electric signal, via a radio message, etc. Basically, the
information can be carried by any object or effect that can move from place to
place and is detectable.

Let’s consider the TV remote control again as a specific example. Sup-
pose you press a button on your TV remote control handset (event I'). The
information that the button has been pressed is sent to the TV set in some
manner, and in response, the TV set changes channels (event Q). Keep this
basic example in mind as we go through the argument that follows

Now let us pretend that the causal influence that connects event P g
event Q can flow between them at a constant speed |3, | faster than the speed
of light as measured in your inertial frame, which we will call the Home
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Suppose that events P and Q are connected by a This two-observer spacetime diagram shows the same situa-
hypothetical causal influence traveling with a tion as in figure R7.2, but with added axes for an Other Frame
speed | V.| faster than the speed of light (specifically, moving with 3 =  with respect to the Home Frame. Note
5 times the speed of light for the sake of concreteness). that in the Other Frame, event Q occurs before event P

Frame. (Perhaps the TV manufacturer has found some way to convey a sig-
nal from the remote to the TV using “Z waves” that travel faster than light.)
We will show that this leads to a logical absurdity. Choose event P’ to be the
origin event in that frame, and choose the spatial x axis of the frame so that
both events P and Q lie along it. (We can always do this: it is just a matter
of choosing the origin and orientation of our reference frame. Choosing the
frame to be oriented in this way is purely a matter of convenience.)

Figure R7.2 shows a spacetime diagram (drawn by an observer in the
Home Frame) of a pair of events P and Q fitting the description above. Note
that if the causal influence flows from P to Q faster than the speed of light, its
worldline on the diagram will have a slope 1//7, | <1, which is less than the
slope of the worldline of a light flash leaving event P at the same time (which
is also shown on the diagram for reference).

Now consider figure R7.3. In this two-observer spacetime diagram,

I have drawn the ¢ and x”" axes for an Other Frame that travels with a speed
| 3] = 2 in the +x direction relative to the Home Frame. Note that according
to section R5.5, the slope of the diagram x"axis in such a diagram is 3. Note
also that since the slope of the causal influence worldline is 1/ 5.1 <1, itis
always possible to find a value of 3 such that 1/|7,| < 3 < 1, meaning that
it is always possible to find a reference frame moving slower than the speed
of light relative to the Home Frame whose x"axis lies befween the light-flash
worldline and the causal influence worldline, as shown. In such a frame,
event Q will be measured to occur before event P, as one can see by reading
the time coordinates of these events from the diagram.

Thus, in such an Other Frame, event P is observed to occur after event Q  Faster-than-light influences
does. But this is absurd: event P is supposed to cause event Q. How can an imply reversal of cause and
event be measured to occur before its cause? This is not merely a semantic  effect in some frames
issue, nor is it mere appearance. According to any and every physical mea-
surement that one might make in the Other Frame, event Q will really be
observed to occur before its “cause” P.

To vividly illustrate the absurdity, consider our TV remote example. If the
signal could go from your remote control to the TV faster than light, in cer-
tain inertial reference frames, you would observe the TV set changing chan-
nels before the button was pushed. If this were to happen in your reference
frame, you would consider this a violation of the laws of physics (presuming
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Consistency of causality and
relativity thus implies the
cosmic speed limit

Influence worldline  Light-flash
(slope = 1/]7./>1) worldline
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’ diagram x
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Figure R7.4

The slope /3 of the x" axis can
never have a magnitude large
enough to be above the causal
influence worldline if the speed of
that influence is less than 1.

Causality and the second law
of thermodynamics

Summary
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your TV set was not broken). But the laws of physics are supposed (o fy
in every inertial reference frame. Therefore, this observed inversion of g,
and effect violates the principle of relativity! € ausally connected events g,
have the same temporal order in all inertial reference frames if we are 1, pre
serve the concept’s meaning,

We have only three options at this point. We can reject the principle of g,
ativity and start over at square one. We can radically modify our conceptig,
of causality in a way that is yet unknown. Or we can reject the assumpticy,
that got us into this trouble in the first place, namely, that a causal influenc,.
can flow from P to Q faster than light (|7 |=1).

The last option is clearly the least drastic. If information can only flgy,
from P to Q with a speed |2, < 1 in the Home Frame, then the worldling of
the causal influence connecting event I’ to event Q will have aslope 1/]5 | 5
Any Other Frame must travel with | 3] <1, by this hypothesis (since the
parts of the reference frame, like any material object, could in principle be the
agent of a causal influence). The slope 3 of the Other Frame’s diagram 1" axj,
on a spacetime diagram will always be less than the slope 1/]7. | of the causa)
connection worldline connecting P and Q, and thus Q will occur after P iy
cvery other inertial reference (figure R7.4).

So, if the speed of reference frames and causal influences is limited 1,
some | 7,.| <1, then effects will occur affer their causes in every inertial refer.
ence frame, which is necessary if the idea of causality is to be consistent with
the principle of relativity.

THEOREM: The Cosmic Speed Limit: In order for causality (that
is, the idea that one event can cause another event to happen) to be
consistent with the principle of relativity, information (that is, any
effect representing a causal connection between two events) camiol
travel between two events with a speed |7, > 1.

Since anything movable and detectable can carry information (thatis, cause
things to happen), this consequence of the principle of relativity applies not
only to all physical objects (waves, particles, and macroscopic objects) but
indeed to any trick or means of conveying a message that exists or might be
imagined (for example, instantaneous changes in a gravitational or electric
field, telepathy, or magic).

Now, at the most basic physical level, the physical law that defines the
temporal order of cause and effect is the second law of thermodynamics,
which requires that the entropy of the universe always increase (or at least
remain the same) during any physical process. This law thus implics that
events in certain physical processes can occur in one temporal order butcan
1ot occur in the reverse order. Therefore, if the second law of thermodynam-
ics is to be true in all inertial frames (as required by the principle of relativity),
then the temporal order of all events that might be linked by that law must be
preserved in all inertial frames. Thus, the cosmic speed limit really follows
from the assumption that the second law of thermodynamics s consistent
with the principle of relativity. “Cause and effect” is really just an intuitive
and colloguial way to talk about the invariant temporal order imposed on
events by the second law.

So, with a straightforward argument using two-observer spacetime dia-
grams, we have proved the existence of a cosmic speed limit, an idea having
profound physical and philosophical implications. As usual, this prediction
is amply supported by experiment. No particle, object, or signal of any kind
has ever been definitely observed to travel at faster than the speed of light
in a vacuum. Science fiction fans and space travel buffs who hope for the
discovery of faster-than-light travel may hope in vain: both the argument



R7.2 Timelike, Lightlike, and Spacelike Intervals

(b.):-t;d “? ll'ls 0:; the firmly accepted and fundamental ideas of the principle
of relativity and the physical reality of causality) and the experimental evi-
dence present a pretty ironclad case for this cosmic spc\'d limit.*

Exercise R7X.1

Suppose a causal i‘nﬂuvncc moves between events P and Q at 3 times the
speed of light relative to the Home Frame. How fast would an Other Frame
have to move relative to the Home Frame for event Q to occur before event P
in the Other Frame? 7

R7.2  Timelike, Lightlike, and Spacelike Intervals

We are now in a position to understand more fully the true physical nature of
the spacetime interval between any two events in spacetime. In section R3.2, we
saw that for two events whose coordinate differences in a given inertial refer-
ence frame are At, Ax, Ay, and Az, the quantity As’ = AF - Ax' — Ay’ — A2
has a frame-independent value that is equal to the time registered by an iner-
tial clock present at both events. But to make the proof of the metric equa-
tion work, we had to assume that |Ad| = (A + Ay’ + AZ")"7 was smaller
than At so that there was more than sufficient time for a light flash to travel
from one event to the other along the length of the light clock. The purpose
of this section is to investigate the meaning of the spacetime interval when
|Ad| > At (that is, when this condition is violated).

We have exploited the analogy between spacetime geometry and Euclid-
ean plane geometry extensively in the last few chapters. We have noted,
though, that the minus signs in the metric equation (which do not appear
in the corresponding Pythagorean relation) lead to some subtle differences
between spacetime geometry and Euclidean geometry. One of these differ-
ences is the following. In Euclidean geometry, the squared distance |Ad|”
between two points on a plane is necessarily positive:

|A3|2=A1*‘+Ay32() (R7.1)

But the metric equation allows the squared spacetime interval between two
events to be positive, zero, or negative, depending on the relative sizes of the
coordinate separations |Ad| and At between those events:

As = AP —|Ad|’
Therefore,
If |Ad|>At then A&<(! (R7.2)

We see that while there is only one kind of distance between two points on a
plane, the possible spacetime intervals between two events in spacetime fall

*“This does not mean that interstellar travel is out of the question. Remember that the
ship time measured in a spaceship traveling close to the speed of light (relative to
the galaxy) is much shorter than the coordinate time we would measure (at rest in
the galaxy). Therefore, a trip to distant stars can be made as short as desired for the
passengers by simply constraining the ship’s speed to be sufficiently close to the speed
of light. But (at least if special relativity is true) there appears to be no way to make a
trip of 1000 ly in our galaxy in less than 1000 y in the frame of the galaxy, no matter how
short this might seem to the passengers. This does put some severe limits on the pos-
sibilities of interstellar commerce! We will examine other difficulties associated with
interstellar travel in chapter R9.

As” between two arbitrary
events can be positive,
negative, or zero

N
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The three categories for the
spacetime interval

Spacelike spacetime intervals
exist, but cannot be measured
with a clock

As is frame-independent even
when it is negative
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into three distinct categories depending on the sign of As". These Categorye,

are as follows:

1. If As® > 0, we say that the interval between the events ns timelike
2 1f A’ = 0, we say that the interval between the events s lightlike.
3. IfAs <0, we sav that the interval between the events is spacelike.

The reasons for these names will become clear shortly. _ .

The peculiar category here is the spacelike categorv—there is nmh.!,g o
responding to it in ordinary plane geometry (where the squared distan,
between two events is always positive). What does it mean for two evenyg
have a spacelike spacetime interval between thcn}? o

First, note that events separated by spacelike spacetime intervals ¢,
tainly do exist. For example, consider the case of two events that occyr
the same time but at different locations in a given inertial reference framy.
Since the time separation between these events is zero in that frame, we hay,
A =0-|Ad] = —|Ad| <0, 50 the interval between these events is neges,
sarily spacelike. Therefore, we do need the spacelike interval classification,

As we have already discussed, the squared spacetime interval betweey,
two events As® that appears in the metric equation As” = Al° - |Ad|" hy
been linked with the frame-independent time measured by an inertial cloc
present at both events only in the case where AF > |Ad|". For two events for
which AF < |Ad/|’, it is not clear how one can directly measure the Squared
spacetime interval between the events at all. For example, for an inertial clock
tobe present at bothevents where |Ad| > At,itwould havetotravelata Speed
|5| > 1 in that frame. We have just seen that this is impossible; thus, a space.
like spacetime interval cannot be measured by a clock or anything else thy
travels between the events. Since the proof of the metric equation given i
section R3.2 does not handle the case of spacelike intervals, itis not even oby;.
ous the squared spacetime interval As* = AF = |Ad|" is frame-independent
when it is less than zero.

In fact, the squared spacetime interval As does have a frame-independeny
value, no matter what its sign is. This can easily be demonstrated by using
the Lorentz transformation equations for coordinate differences, given by
equations R5.11. The argument goes like this. Let A, Ax, Ay, A= be the
coordinate separations of two events measured in the Home Frame, and lgt
Al', Ax', Ay’, Az' be the coordinate separations of the same two events mea-
sured in an Other Frame moving in the +x direction with v-velocity 7 with
respect to the Home Frame. Then, equations R5.11 imply that

(Ar) = (AX') - (A = (Az')
=[y(At - BAX) - [y(-B At + Ax)f - Ay’ - A
=9 (AF - 28 AtAx + 3 A¥) — ¥ (B AF = 23 At Ay + Ax) - Ay — A7
=7 (AF + B A¥ - 7 AF - AY) - A_u’ - A7
=9 (1 = FNAF - AY) - AV - A
= AP = A¥ - Ay - AZ R73)

irrelevant to this derivation, so we will find that the squared interval A< has
the same frame-independent value in every inertial reference frame, whether
As' is spacelike, timelike, or lightlike.

How can we measure the value of the spacetime interval between two
events separated by a spacelike interval? We cannot use a clock, as we have
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noted already. In fact, we measure a spacelike spacetime interval with a ruler,
as we will shortly see.
L et us define the spacetime separation Ao of two events in this way:

Ao’ =|Ad|’ - AF = -A¢ (R7.4)

The spacetime separation, so defined, is conveniently real whenever the
mterval between the events is spacelike. Now note that if we can find an
inertial reference frame where the events are simultaneous (At = (), we have

Act=|adl" = Ac=|Ad| (inaframe where At = 0) (R7.5)

Now, I claim that we can alivays find a frame in which At = 0 if the events
are separated by a spacelike interval. Suppose two events occur with coordi-
nate differences At and |Ad | (>At) as measured in the Home Frame. Reori-
ent and reposition the axes of the Home Frame so the events in question
both occur along the spatial x axis, with the later event located in the +x
direction relative to the earlier event. (This can be done without loss of gen-
erality: we are always free to choose the orientation of our coordinate sys-
tem to be whatever we find convenient.) Once this is done, |Ad| = Axin the
Home Frame.

Now, consider an Other Frame in standard orientation with respect to the
Home Frame and traveling in the +x direction with x-velocity 3 with respect
to the Home Frame. According to equation R5.11a, the time-coordinate
difference between these events in the Other Frame is then

At'=9(At - BAx) (R7.6)

These events will be simultaneous in the Other Frame (that is, At" will be
equal to zero) if and only if the relative speed of the frames is chosen to
be |3 =1At/Ax|=|At|/|Ad|. This relative speed [3|will be less than
1 since |Ad| > At for our events by hypothesis. In short, given any pair of
events that are separated by a spacelike interval in some inertial frame (which
we are calling the Home Frame), it is possible to find an inertial Other Frame
moving with positive x-velocity 3 < 1 with respect to the Home Frame in
which observers will find the two events to be simultaneous (see figure R7.5).
In short, if the spacetime interval between two events is spacelike, then

We can find an inertial frame where these events occur at the sanme timie.
The spacetime separation Ad is the distance between the events in that
special frame. We can measure this with a ruler stretched between the
events in that frame.

3. If observers in any other inertial frame use equation R7.4 to calculate Ao,
they will get the same value as measured directly in the special frame.

19

These statements are directly analogous to statements that can be made about
events separated by a timelike spacetime interval. If the spacetime interval
between two events is timelike, then

1. We can find an inertial frame in which these events occur at the sane place
(this is the frame of the inertial clock that is present at both events).

2. The time between the events in this special frame is As. We can measure
this with a clock present at both events and at rest in this frame.

3. If observers in any other inertial frame use the ordinary metric equation
to calculate As, they will get the same value as measured directly in the

special frame.

Thus, there is a fundamental symmetry between spacelike and timelike
spacetime intervals, a symmetry that arises because both reflect the same
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The spacetime separation
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Given any pair of events A and B
separated by a spacelike interval
(Ax > A1) in the Home Frame, we
can find an Other Frame where
the two events are simultaneous
The speed of this Other Frame
simply must have the right value
so that the diagram x” axis can
connect both points. Since this
axis has slope 3, this means 3
must be equal to AVAx.

How to measure a spacelike
spacetime interval
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Why the categories of
spacetime inten al have the
names they do

—

Figure R7.6

The frame-independent regions
of spacetime associated with
event P. The spacetime interval
between P and any event in the
white region is timelike, any event
in the gray region is spacelike,
and any event along the black
diagonal lines is lightlike
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underlying phy sical truth; we can describe the separation QI any two eveng,
in space and time with a frame-independent quantity As™ (which we wyy)
call the squared spacetime interval) analogous to the squared distay,,
between two points in plane geometry. It is simply a peculiarity of the geon,.
etry of spacetime that the quantity in spacetime that corresponds to ord,.
nary (unsquared) distance on the plane comes in three distinct flavors (th
spacetime imterval As if As® > 0 for the events, the spacctil‘nc separation Ag
if As* <0, and the lightlike interval As = Ao =0 when As” = 0), which are
measured in different ways using different tools. But it is important to realize
that these three quantities are only different aspects of the same basic frame.
independent concept As”.

We see that we directly measure timelike intervals with a rinu--mmsuring
device (an inertial clock present at both events), while we directly measyrp
spacelike intervals with a space-measuring device (a riler stretched between
the events in the pamcular inertial frame where the events are simultane.
ous). This is why these interval classifications have the names fimelike ang
spacelike: the names tell us whether we should measure the interval with 3
clock (because the interval is timelike) or with a ruler (because itis spacelike),
The lightlike interval classification stands between the other two. When the
interval between two events is lightlike, we have | Ad| = At, which implies
that these events could be connected by a flash of light.

Exercise R7X.2

Consider the events shown in the drawing below. Classify the spacetime in-
terval between each pair of events as being timelike, spacelike, or lightlike.
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R7.3  The Causal Structure of Spacetime

Now, because it is true that the value of the squared spacetime inferval As'is
frame-independent no matter what its sign, all inertial observers will agree
as to whether the interval between a given pair of events is timelike, hight-
like, or spacelike (since if they all agree on the value of A, they will surely all
agree on its sign). This means that the spacetime around any event P’ can be
divided up into the distinct regions shown in figure R7.6, and every observer
will agree about which events in spacetime belong, to which region.
Because we can define these regions in a frame-independent manner,
they plausibly reflect something absolute and physical about the geometry
of spacetime. In fact, these regions distinguish those cvents that can be causally
connected to P from those that camnot. Remember that in section R7.1, we found
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The causal structure of spacetime relative Figure R7.8
to event P. The light cone of P (shown on a

spacetime diagram having two spatial
dimensions)

that two events can be causally linked only if IAJI < Al between them; oth-
erwise, the causal influence would have to travel between the events faster
than the speed of light. This means that every event that can be causally
linked with P must have a timelike (or perhaps lightlike) interval with respect
to P: such events will lie in the white regions shown in figure R7.6.

We can be more specific yet. Since the temporal order of events is pre-  Understanding the causal
served in all inertial frames if |Ad | < Af (see figure R7.3 and the surround-  structure of spacetime
ing text), all events in the upper white region in figure R7.6 will occur after Pin
every frame (and thus could be caused by P), and all events in the lower white
regic;n of figure R7.6 will occur before Pin every frame (and thus could cause P).

We refer to these regions as the future and past of P, respectively.

Events whose spacetime interval with respect to P is spacelike (| Ad | > Af)
cannot influence P or be influenced by it. We say that these events (which
inhabit the shaded region of figure R7.6) are causally uncomnected to event P.

With this in mind, we can relabel the regions in figure R7.6 as shown
in figure R7.7. Because every observer agrees on the value of the space-
time interval between event P and any other event, every observer agrees
as to which event belongs in which classification. The structure illustrated
is thus an intrinsic, frame-independent characteristic of the geometry of
spacetime.

Now, the boundaries of the regions illustrated in figure R7.7 are light-  The light cone associated with
flash worldlines. If we consider two spatial dimensions instead of one, an ~ an event
omnidirectional light flash is seen as an ever-expanding ring, like the ring of
waves formed by the splash of a stone into a still pool of water. If we plot the
growth of such a ring on a spacetime diagram, we get a cone. The boundaries
between the three regions described are then two tip-to-tip cones, as shown
in figure R7.8. Physicists call this boundary surface the light cone for the
given event P.

To summarize, the point of this section is that the spacetime interval
classifications, which are basic, frame-independent features of the geom-
etry of spacetime, have in fact a deeply physical significance: the sign
of the squared spacetime interval between two events unambiguously
describes whether these events can be causally connected or not. The light
cone shown in figure R7.8 effectively illustrates this geometric feature of
spacetime.
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Transforming velocities with a
two-observer diagram

How to derive the
inverse Einstein velocity
transformation equations
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R7.4  The Einstein Velocity Transformation

In this section, we turn our attention to the relativistic generalization of the
Galilean velocity transformation equations R1.3. Imagine a particle thay i
observed in the Other Frame to move along the spatial x" axis with a gy,
stant x-velocity v,. The Other Frame, in turn, is moving with an x-velogjy,
Biin the +x direction with respect to the Home Frame. What is the particle’s
x-velocity v, as observed in the Home Frame?

Figure R7.9 shows how to construct a two-observer spacetime diagrap,
that we can use to answer this question. After drawing and calibrating bog,
sets of coordinate axes, we simply draw the particle’s worldline soits slope i,
the Other Frame is 1/2.. We can then find its x-velocity v, in the Home Fram,
by taking the inverse slope of that line in the Home Frame, which we can ¢,
by picking an arbitrary “rise” (5 ns in figure R7.9), determining the worlg.
line’s “run” for that rise, and then calculating the inverse of the rise/run =
run/rise. In the case shown in figure R7.9, where 8 = and v, = 1, we find
that the value of v, is about 0.86, and not ; + 1 = £ that the Galilean velogity
transformation equations would predict. ’

Now let us see if we can derive an exact equation that (like the diagram)
allows us to find , in terms of v; and 3. Consider two infinitesimally sepa-
rated events along the particle’s worldline (which we will assume 1s moving
along the spatial x axis). Let the coordinate differences between these events
as measured in the Home Frame be dt and dx. Let the coordinate differences
between the same two events as measured in the Other Frame be dt'and 4y
The particle’s x-velocity as it travels between these events is

' dx _ 7(Bdt’ + dx’)
Tt (d + Bdx’)

where 1 have used the infinitesimal limit of the difference version of the
inverse Lorentz transformation equations (equations R5.12). Dividing the
right side top and bottom by dt”and using dx'/dt’ = v;, we get the following
relativistically exact equation: :

L _B+u
1+,

In a similar fashion, you can derive the y and z component equations a- well
The complete set of equations for v,, v,, and ©. are

(R7.7a)

(R7.7h)

B+, v_vl\/l—lf __uV1-§ .

1480, 3 Gl

=

1480, 1+p0

* Purpose: These equations describe how to compute an object’s 1 cloc-
ity components v, v,, and v. measured in the Home Frame fror its
velocity components v}, v, and v’ measured in the Other Frame, where
B is the x-velocity of the Other Frame relative to the Home Frame

* Limitations: These equations assume that the two frames are inertial
and that they are in standard orientation with respect to each other

Exercise R7X.3
Use the method described above to derive the formula for v.
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Yo Particle

worldhine

=t i - Figure R7.9

As an example of the use of equation R7.8a, consider the particular prob-
lem illustrated by figure R7.9, where we have ! =3 = .. The final speed of
the particle in the Home Frame (according to equation R7.8a) is

3/5+3/5 _ 6/5 _30 :
), = = =—=(.88 R7.9
%=1+ 3/53/5 34/5 (&)

This is close to the result we read from figure R7.9.

We call equations R7.8 the inverse Einstein velocity transformation equa-
tions: they express algebraically what a two-observer diagram like figure R7.9
expresses graphically. Note that the result is different from what the Galilean
velocity transformation predicts: solving equation R1.3a for v, yields

v.=B+ v, from the Galilean velocity transformation (R7.10)

Note that when the velocities 3 and v/ are very small, the factor Buv! that
appears in the denominator of equation R7.8 becomes very small compared
to 1. In this limit, then, equation R7.84 reduces to the Galilean equation R7.10:

+ 0! + v, ; & e =
v, = g L= b B+ v, inlow-velocity limit (R7.11)
1+ 3o, 1

The same kind of argument applies to the other two component equations as
well. The Galilean transformation equations are therefore reasonably accu-
rate for everyday velocities, but only represent an approximation to the true
velocity transformation law expressed by equations R7.8.

Equations R7.8 never yield a Home Frame x-velocity that exceeds the

speed of light, even if both 3 and v are 1 (their maximum possible value):
N (R7.12)

Moreover, equation R7.8a (unlike the Galilean equation R1.3q) is consistent with
the idea that the speed of light is equal to 1 in all frames: if the x-velocity of a
light flash in the Other Frame is 2, = 1, its speed in the Home Frame will be
A+1 B+ 1
), = e 5 e I 1 A3
“T1eB1 148 e
independent of the value of 3.
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v We can use a two-observer diagram to find a particle’s
x-velocity in one frame, given its x-velocity in another
and the two frames' relative velocity. For example, if we
know that the particle’s Other Frame x-velocity is v. =
and that the Other Frame moves at 3 = ; relative to the
Home Frame, then we can construct an appropriate two-
observer diagram for this 3, draw the particle’s worldiine
with a slope of { relative to the Other Frame axes, and
x(ne) read the slope of this line relative to the Home Frame axes
i (about 4.3/5 = 0.86 in this case). If we knew the particle’s
Home Frame x-velocity, we could just reverse the process.

An example application

These equations reduce to
the Galilean equations at low
speed . ..

.and are consistent with the
cosmic speed limit and the
invariant speed of light
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In short, the inverse Einstein velocity transformation equations (equa.
tions R7.8) provide the answer to the question that we raised in chapter g,
about how the Galilean velocity transformation equations should be me,.
fied to be consistent with the principle of relativity. Equations R7.8 redyce 4,
the Galilean transformation equations at low velocities (where the Galile,,,
transformation is known by experiment to be very accurate), but at relay;,..
istic velocities they are consistent with both the assertion that nothing cap
be measured to go faster than light and the assertion that light itself has yh,
same speed in all inertial frames.

Equations R7.8 convert Other Frame velocity components v U, ¥l to
Home Frame components v,, v,, v.. The (direct) Einstein velocity transform,.
tion equations transform the velocity components the other way.

v;_va—ﬂ ,,_I',VI_B: _',_U:ﬁ“ﬁ:
i i T D%

* Purpose: These equations describe how to compute an object’s veloc-
ity components v}, v/, and o’ measured in the Other Frame from its
velocity components ,, v, and . measured in the Home Frame, where
A is the x-velocity of the Other Frame relative to the Home Frame.

e Limitations: These equations assume that the two frames are inertial
and they are in standard orientation with respect to each other.

(R7.14)

These equations can be derived by solving equations R7.8 for the Other
Frame components or by using the direct Lorentz transformation equations
R5.11 as we used equations R5.12 in the derivation of equations R7.8. But one
needn’t do all this work: simply note that the only difference between the
Home Frame and the Other Frame is the sign of 3. If you compare equations
R7.14 with equations R7.8, you will see they are the same, except that | have
changed 3 to —3. Again, these equations themselves are laws of physics that
satisfy the principle of relativity.
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- TWO-MINUTE PROBLEMS ]
R7T.1  Consider the events shown in the figure below: R7T6  Suppose an explosion occurs at x = 0 in the Home
I(s)8 Frame (event A). Light from the explosion is detected by a
‘ detector at position x = <100 ns (event B) and by a detector
5T at position x = +50 ns (event C). Events B and C are caus-
1 2 ally connected. T or F?
T ©f oD R7T.7 A laser beam is emitted on earth (event A), bounces
off a mirror placed on the moon by Apollo astronauts
T o (event B), and then returns to a detector on earth (event )
4 ';\ The detector is 12 ns of distance from the laser.
(a) The spacetime interval between events A and B is:
+—t—t—t—t A. Timelike

x(s)

For each of the ten event pairs in this spacetime diagram,
classify the spacetime interval between them.

A. The interval is timelike.

B. The interval is lightlike.

C. The interval is spacelike.

R7T.2  Which pairs of events shown in the spacetime dia-
gram for problem R7T.1 could in principle be causally
connected? Which could not? (For each of the ten pairs,
answer T if they could be causally connected, and F if not.)

R7T.3  Suppose thatevent A is the origin event in the Home
Frame and that event Boccursatf = I nsand x = 10 ns in
that frame. What would be the minimum x-velocity 3 that
an Other Frame would have to have relative to the Home
Frame if B occurred first in that frame?

10

1

0.60

0.40

0.10

B can’t occur first.

mMmoNwy

R7T4  Two blinking warning lights are 3000 m apart along
a railroad track. Suppose that in the ground frame the
west light blinks (event W) 5 ps before the east light blinks
(event F). Now imagine that both lights are observed by a
passenger on the train who passes the west light just as it
blinks. It is possible for the train to be moving fast enough
that the two blinks are observed (not necessarily seen) by the
passenger to be simultaneous. T or F?

R7T.5 Two blinking warning lights are 1000 ns apart
along a railroad track. A train moves from west to east
at a speed of 0.5. In the train frame, an observer registers
flashes from each light, and after correcting for light travel
time, concludes that the east light flashed 200 ns before the
west light flashed. Which light flashed first in the ground
frame? (Hint: Draw a spacetime diagram.)

A. The east light flashes before the west light.

B. The west light flashes before the east light.

C. The lights flash simultaneously.

D. One does not have enough information to say.

R7TS

R7T.9

R7T.12

B. Lightlike
C. Spacelike
(b) The spacetime interval between events A and C is:
A. Timelike
B. Lightlike
C. Spacelike
(¢) Events A and C are definitely causally connected. T or F?

If the spacetime interval between two events is
timelike, then the temporal order of the two events is the
same in every inertial reference frame. T or F?

If the spacetime interval between two events A and
B is spacelike and event A occurs before event B in some
Home Frame, then it is always possible to find an Other
Frame where the events occur in the other order. T or F?

R7T.10 An object moves with speed v, = +0.9 in the Home

Frame. In an Other Frame moving at 3 = 0.60 relative to
the Home Frame, the object’s x-velocity v, is

A v;=15
B. 1<v., <15
C. 09<v; <1
D. 03<v.<09
E. v.<03
FE v.<0
R7T.11 Harry Potter points his wand at the sun and cnies

“Spotificus!” Within 8 minutes, observers all over the earth
see a large string of sunspots form on the sun. Did Harry
create the sunspots? '
A. Yes. Harry is a very powerful wizard.

B. Yes, if magical effects travel at the speed of light.

C. No. This is not physically possible, even with magic.

An unidentified spaceship cruises past Qutpost
11, a space station floating in deep space, at a speed of ¢,
without acknowledging requests for identification. Ten
seconds after the ship passes (according to Outpost 11
clocks), Outpost 11 sends a message to the departing ship,
warning that it will commence firing if the ship does not
respond. Fifteen seconds after that, Outpost 11 sensors
indicate that the ship has raised its shields. This is clearly
a response to the warning. T or F? (Hint: Draw a spacetime
diagram.)
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 HOMEWORK PROBLEMS

The Cosmic Speed Limit

Basic Skills

R7B.1 At 11:0000 am. a boiler explodes in the basement
of the Museum of Modern Art in New York City (call this
event A). At 11:00:00.0003 am., a similar boiler explodes
(call this event B) in the basement of a soup factory in
Camden, New Jersey, a distance of 150 km from event A.
(@) Why is it impossible for the first event to have caused

the second event?

(b) An alien spaceship cruising in the direction of Camden
from New York measures the Camden event to occur
at the same time as the New York event. What is the
approximate speed of the spaceship relative to earth?

R7B.2  Two balls are simultancously ejected (event A)
from the point x = 0 in some inertial frame. One rolls
in the +x direction with speed 0.80 and eventually hits
a wall at 1 = 8.0 ns (event B). The other rolls in the —x
direction with speed 0.40, eventually hitting a wall at
v = —8.0 ns (event C). Is the spacetime interval between
B and C spacelike or timelike? Could these events be
causally connected?

R7B3 A meteor strikes the moon (event A), causing a large
and vivid explosion. Exactly 0.47 s later (as measured inan
inertial reference frame attached to the earth), a radio tele-
scope receiving signals from the moon goes on the fritz.
Could these events be causally related? Explain.

R7B4  Suppose event B happens 3.0 ns after and 5.0 ns east
of event A in the Home Frame. In the Other Frame, the
events happen at the same time.

(a) How fast is the Other Frame moving eastward with
respect to the Home Frame if this is true?
(b) What is the distance between the events in that frame?

R7B5 Do problem R7T4. Hand in your spacetime dia-
gram and explain vour reasoning.

R7B.6 Do problem R7T.12. Hand in your spacetime dia-
gram and explain your reasoning.

R7B7  An object moves with velocity o = { in an iner-
tial frame attached to a train, which in turn moves with
vevelocity 8 = { in the +x direction with respect to the
ground. What is the object’s velocity o, with respect to the
ground? Evaluate this by reading the velocity from a care-
fully constructed two-observer spacetime diagram. Check
your answer by using the appropriate Einstein velocity
transformation equation.

R7B.S  An object moves at a speed of 0.80 in the +x direc-
tion, as measured in the Home Frame. What is its x-velocity
in an Other Frame that is moving at a speed of 0.60 in the
+x direction, also as measured in the Home Frame?

R7B9  Rocket A travels to the right and rocket § ¢,

L2y

) the
left at speeds of | and !, respectively, relative 3
| s o the

sarth, What is the velocity of A measured by obsery ors |

rocket B? Answer by reading the velocity from o ""Nuuh
constructed two-observer diagram Check yvour -Nl\m.:
using an appropriate Einstein velocity transformatioy,

R7B.10 Two trains approach each other from oppg,
directions along a linear stretch of track. Each has ‘Pl’v:i
of ! relative to the ground. What is the speed of one 1y,
relative to the other? Answer this question by using an
appropriate Einstein velocity transtormation equation 5,
part of your solution, explain caretully which object y,,
are taking to be the Home Frame, which object you are 1.
ing to be the Other Frame, and which is the object whes,
speed you are measuring in both frames,

R7B.11 Two cars travel in the same direction on the fre.
way. Car A travels at a speed of 0.90, while car B can o)y,
muster a speed of 0.60. What is the relative speed of
cars? As part of your solution, explain carefully whig,
object you are taking to be the Home Frame, which objey
you are taking to be the Other Frame, and which is the
object whose speed you are measuring in both frames,

Modeling

R7M.1  Suppose we set up a laser that is spinning at a speed
of 100 rotations per second around an axis perpendicula
to the beam that the laser creates.

(@) How far away must vou place a screen so the spot of
light the laser beam produces on the screen \-.‘\wp\
along it at a speed faster than that of light?

(b) Would a spot speed greater than that of Tight violate
the cosmic speed limit? (Hint: If you stand at one edge
of the screen and a friend stands at the other
send a message to your friend using the
spot? If so, how? If not, why not?)*

n you
Sweeping

R7M.2  Youareonajury fora terrorism trial. The tacts of the
case are these. On June 12, 2047, at 2:25:06 p.m. Greenwich
Mean Time (GMT), the earth-Mars shuttle Arcs exploded
as it was being refueled in low earth orbit. (Fortunately,
no passengers were aboard, and the refueling was han-
dled by robots.) At 2:27:18 p.m., police record a holoscene
(a 3D holographic movie) of a raid on a hotel room on Mars
conducted on the basis of an unrelated anonvmous tip.
In the holo, the defendant is shown with a radio control
transmitter in hand. Forensic experts have testified that
the Ares was blown up by remote control, and that the
reconstructed receiver was consistent with the transmitter
in the defendant’s possession. Just before the explosion, 8

*Adapted from E. E Taylor and J. A. Wheeler, Spacetime Physics
San Francisco: Freeman, 1966, p. 62,
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caller predicted the blast and took responsibility on behalf
of the Arean Liberation Army, the defendant has links to
that organization. Cell-net records show that the detendant
spoke w ith someone near the earth less than 10 min before.
Hall monitors in the hotel showed that the defendant
entered the hotel room at 2:23:12 p.m. and was not carrying
the transmutter at that time. The defendant has taken the
Fifth Amendment and has offered no defense other than a
plea of not guilty. A fragment of the tnial transcript follows.

Prosecutor: Is the time shown floating at the top of the holo-
scene of the raid from a clock internal to the camera?

Police witness: No, | am told that the indicated time 1s com-
puted from signals originating from the master clock on
carth that is part of the Solar System Positioning System
(SSPS) that defines a solar-system-wide inertial frame fixed
on the sun. According to the manual (pulls out the manual),
“The signal from the earth master clock is suitably corrected
in the camera for the motions of the earth and Mars and the
light travel time from the carth, so that the time displayed 1s
exactly as if it were from the clock at the camera’s location,
at rest in the solar system frame, and synchronized with the
carth-based master clock.” We do this deliberately so as to
be able to correlate events on a solar-system-wide basis,

Prosecutor: There is no chance that this time (freezes holo-
scene), which shows the police yanking the device from the
defendant here at exactly 2:27:20 p.m. GMT, is in error?
Police witness: No, the camera was checked two days previ-
ously as part of a normal maintenance program.
Prosecutor: We have been told that the Ares blew up at
exactly 2:25:06 p.m. GMT. Was that time determined using
the SSPS also?

Police witness: Yes.

Prosecutor: You have testified that the hall monitors show

the defendant entering the room at exactly 2:23:12 p.m.
This time was also determined using the SSPS?

Police witness: Yes.

Prosecutor: So the defendant was alone in the room at the
time that the Ares exploded?

Police witness: Yes, in the SSPS frame.

Prosecutor: So this holoscene shows you capturing the
defendant red-handed just after the destruction of the
Ares, with the incriminating transmitter still in hand . ...
Defense: Objection, your Honor!

Judge, sighing: Sustained.

Guilty or not guilty? Write a paragraph justifying your rea-
soning very carefully.

R7M.3 Starbase Alpha coasts through deep space at a veloc-
ity of 0.60 in the +x direction with respect to earth. Let the
event of the starbase traveling by the earth define the ori-
gin event in both frames. Suppose that at f = 8.0 h a giant
accelerator on earth launches you toward the starbase at
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W, relative to carth. After you get

10 times the speed of high
rator to launch you

to the starbase, you use a similar ac cele
back toward u-J;lh at 10 times the speed of hight, relative
to the starbase. Using a carefully construc ted (full-page)
two-observer diagram, show that in su h a case you will
return to the earth before you left. (This is yet anc sther way
to illustrate the absurdity of faster-than-light travel.)
R7M.4 A flash of laser light is emitted by the carth (event A)
and hits a mirror on the moon (event B) The reflected flash
returns to earth, where it is absorbed (event C)
(a) Is the spacetime interval between events A and B
spacelike, lightlike, or timelike?
(b) What about the spacetime interv al between B and C?
(c) What about the interval between events A and C?
Support your answers by describing your reasoning

R7M.5 A solar flare (see the picture of an actual flare
below) bursts through the sun’s surface at 12:05 p.m. GMT,
as measured by an observer in an inertial frame attac hed to
the sun. At 12:11 p.m., as measured by the same observer,
the Macdonald family’s home computer fries a circuit
board. Could these events be causally connected? Explain

R7M.6 The first stage of a multistage rocket boosts the
rocket to a speed of 0.1 relative to the ground before being
jettisoned. The next stage boosts the rocket to a speed of 0.1
relative to the final speed of the first stage, and so on. How
many stages does it take to boost the payload to a speed in
excess of 0.957 (Credit: NASA)
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R7M.7 Suppose that in the Home Frame, two particles
of equal mass m are observed to move along the x axis
with equal and opposite speeds | 7] = {. The particles col-
lide and stick together, becoming one big particle which
remains at rest in the Home Frame. Now imagine obsery -
ing the same situation from the vantage point of an Other
Frame that moves in the +x direction with an x-velocity of
3 = ! with respect to the Home Frame.

(@) Find the velocities of all the particles as observed in the
Other Frame, using the appropriate Einstein velocity
transformation equations,

(b) We have defined the momentum of a particle with
mass m and velocity  to be p = m@. Is the system’s total
momentum conserved in the Home Frame?

(c) Is the system’s total momentum conserved in the
Other Frame? Is this a problem? (We'll talk more about
momentum in chapter RS.)

R7M.8  Suppose that in a particle physics experiment in the
Home Frame, a particle of mass m, moving at a velocity
@i, = { in the +x direction suddenly decays into a particle of
mass n, moving at a speed of &, = ! in the +x direction and
a particle of m; at rest.

(a) We have defined the momentum of a particle with
mass m and velocity @ to be p = md. Assuming that the
system’s total momentum (defined this way) is con-
served in this decay process in the Home Frame, what
must the masses m, and m; be?

(b) Now let’s look at this decay process in an Other Frame
moving along with the initial particle. According to
the Einstein velocity transformation, what are the final
x-velocities of the decay products in this frame?

() Is the system'’s total momentum conserved in this frame?
Is this a problem? (We'll talk more about momentum in
chapter RS.)

R7M.9  Atrain travels in the +x direction with an x-velocity
of ¢ relative to the ground. At a certain time, two balls are
ejected, one traveling in the +x direction with an x-velocity
of 2 relative to the train, and the other traveling in the —x
direction with an x-velocity of ~ relative to the train.

(a) What are the balls’ x-velocities relative to the ground?
(b) What is the x-velocity of the first ball relative to the
second?

R7M.10 A particle moves with a speed of { in a direction 60°
away from the spatial +x"axis toward the spatial v’ axis,
as measured in a frame (the Other Frame) that is moving in
the +x direction with an x-velocity of 3 = { relative to the
Home Frame. What are the magnitude and direction of the
particle’s velocity in the Home Frame?

R7M.11 A train travels in the +x direction with a speed
of { relative to the ground. At a certain time, two balls are
ejected so that they travel with a speed of ! (as measured in
the train frame) in opposite directions perpendicular to the
train’s direction of motion.

(a) What are the balls’ speeds relative to the ground?
(b) What is the angle that the path of each ball makes with
the x axis in the ground frame?

The Cosmic Speed Limit

Derivation

R7D.1  Derive the first of equations R7.14 by solving equa.
tion R7.7b for v’

R7D.2 Show that when | 3l << 1, the Lorentz transformg.
tion equations R3.114 and R5.11F reduce to the Galilean
transformation equations R1.24 and RI.Z!'-U)N-,NMI:
The problem 1s trivial except for equation K5 114, In that
equation, how can we justify dr_nppmg _thc ,i\- term when
we need to keep the =3t term in equation R5.115? Think
about typical magnitudes of quantities in an everyday
experiment.)

R7D.3 Hereis a quick argument lhal.nu material object can
gofaster than thespeed oflight. Consideran nbm tHraveling
in the +x direction with respect to some inertial frame (ca)
this the Home Frame) ataspeed | 7] > 1 inthat frame. Show,
using a two-observer spacetime diagram, that it is possible
to find an Other Frame moving in the +x dircction at an
r-velocity 3 < 1 with respect to the Home Frame in which
the objcc'l's worldline lies along the diagram x" axis; and
find the value of 3 (in terms of [T]) that makes this
happen. Why is it absurd for the worldline of any object 1o
coincide with the diagram x” axis?

R7D.4  Show, using the Einstein velocity transformation
equations R7.8, that a particle traveling in any arbitrary
direction at the speed of light will be measured to have the
speed of light in all other inertial frames.

Rich-Context

R7R.1  You are the captain of a spaceship that is moving
through an asteroid belt on impulse power at & speed
of { relative to the asteroids. Suddenly vou sce an aster-
oid dead ahead a distance of only 24 s away, according to
sensor measurements in your ship’s reference frame. You
immediately shoot off a missile, which travels forward ata
speed of { relative to your ship. The missile hits the aster-
oid and detonates, pulverizing the asteroid into gravel.
However, you learned in Starfleet Academy that it is not
safe to pass through such a debris field (even with shields
on full) sooner than 8 s (measured in the asteroid frame)
after the detonation. Are you safe?

R7R.2 A spaceship travels at a speed of 090 along a
straight-line path that passes 300 km from a smail asteroid.
Exactly 1.0 ms (in the asteroid frame) in time betore reach-
ing the point of closest approach, the ship fires a photon
torpedo which travels at the speed of light. This torpedo
is fired perpendicular to the ship’s direction of travel (as
measured in the ship’s frame) on the side closest to the
asteroid. Will this torpedo hit the asteroid” If not, does it
pass the asteroid on the near side or far side (relative to the
ship)? Carefully explain your reasoning.

R7R.3  Your school gets a letter from one Kent C. M. Tuga-
dett, a wealthy alumnus who will give a large gift to the




Answers to Exercises

Physics Department if someone can successfully explain to
him how to resolve the fol lowing paradox, which has both-
ered him since his college physics class. “A train is moving
along a straight railroad track at a speed || close to the
speed of light. Since moving clocks run slow, the train’s
clocks all run slow compared to ground-frame clocks.
Now, a runner runs inside the train at the same speed |7
relative to the train but in the opposite direction. Since the
runner is moving relative to the train, the runner’s watch
must run more slowly than the train clocks and so doubly
slowly compared to clocks on the ground. But even the
Einstein velocity transformation (check this) savs that the
runner will be at rest relative to the ground. So the run-
ner’s watch must run at the same rate as the ground clocks.
How can this be, since the runner’s watch is slower than
the train clocks which are slower than the ground clocks?”

It falls to you to answer this question. Carefully and
diplomatically explain to Mr. Tugadett how to resolve the
apparent paradox, and so earn the gift for your school.*
(Hint: This is yet another situation where the “moving
clocks run slow” idea is misleading.)

Advanced

R7A.1 Imagine that in its own reference frame, an object
emits light uniformly in all directions. Suppose this object
moves in the +x direction with respect to the Home Frame
at an x-velocity of 3.

(a) Show that the portion of the light that is emitted in
the forward hemisphere in the object’s own frame is

*Adapted from a problem in Taylor and Wheeler, Spacetime Physics,
2nd edition, Freeman, 1992.

143

observed in the Home Frame to be concentrated in a
cone that makes an angle of
1

¢ = sin (R7.15)

1

5
with respect to the x axis.

(b) Show that if B = 0.99, the angle within which this por-
tion (which amounts to one-half of the object’s light) is
concentrated is only 8.1°.

(This forward concentration of the radiation emitted by a

moving object is called the headlight effect.)

R7A.2  Consider a very long pair of scissors. If you close
the scissor blades fast enough, you might imagine that you
could cause the intersection of the scissor blades (that is,
the point where they cut the paper) to travel from the near
end of the scissors to the far end at a speed faster than that
of light, without causing any material part of the scissors to
exceed the speed of light. Argue that (1) this intersection
can indeed travel faster than the speed of light in principle,
but that (2) if the scissors blades are originally open and
at rest and you decide to send a message to a person at the
other end of your scissors by suddenly closing them, you
will find that the intersection (and thus the message) can-
not travel faster than the speed of light. (Hint: The infor-
mation that the handles have begun to close must travel
through the metal from the handles to the blades and then
down the blades to cause the intersection to move forward
What carries this information?)’

1See M. A. Rothman, “Things that Go Faster than Light,” Sci. Am
vol. 203, p. 142, July 1960.

' ANSWERS TO EXERCISES

R7X.1  Let us take event P to be the origin event in the
Home Frame. Now, consider figure R7.3. For event Q to
occur below the x” axis in the Other Frame, the x” axis
must have a slope greater than that of the worldline of the
causal influence connecting events P and Q. If the causal
influence moves at a speed of 3, then its slope on a two-
observer diagram like figure R7.3 will be §. The slope of
the Other Frame x” axis must be therefore greater than 5.
Since the slope of this axis is equal to 3, the speed at which
the Other Frame moves with respect to the Home Frame,
the speed of the Other Frame must be greater than |

R7X2  The spacetime interval between A and B is time-
like, between A and C is lightlike, and between A and D

is spacelike. The interval between B and C is spacelike.
The interval between D and B is spacelike, but the interval
between D and C is timelike.

R7X.3  According to the inverse Lorentz transformation
equations, we have
_dz _ dz’

4 e A2/t
dt ("4 3dx’) |1 + B(dx'/dt"))

y

(R7.16)
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Four-Momentum

Chapter Overview

Introduction

QOur goal in this final subdivision of the
momentum and energy cnmp.niblc with the
duces a redefinition of the concept of mome
as an integral part), and chapter R9 explores t

Section R8.1: A Plan of Action

In this chapter, we will see that

unit is to make the laws of conservatign ;
1 1 Iy LU
principle of relativity. This chapter jp,
\ S
ntum (which turns out to include

4 > S (-nc'R\
he implications of this idea.

om’s total Newtonian momentum R = mi is not consisten

1. Conservation of a syst Yoo
slash notation indicates an outmoded defi;

with the principle of relativity. (The

tion of momentum.) S .
definition of momentum.

2. Four-momentunt is a natural relativistic re : nen
3. Conservation of four-momentum is consistent with the principle of relativigy
4. The conserved fourth component of four-momentum 1s energy.

Section R8.2: Newtonian Momentum Isn‘t Conserved

Consider a collision that conserves Newtonian momentum in the Home Frame, I we

use the Einstein velocity transformation equations to calculate the velocities of the
colliding objects in another inertial frame, we find that Newtonian momentum is
conserved in the second frame. Conservation of Newtonian momentum i therefore
incompatible with the principle of relativity.

Section R8.3: The Four-Momentum Vector
An object’s four-momentum p is a four-dimensional vector quantity (a four-vector)
whose four components in a given inertial reference frame are

dt dx dy dz

e Do Por s =Im—, m-—, m—, m—
b po bl dr’ dr’ dr’ o dr

(RS.8)

* Purpose: This equation defines (ina given inertial reference frame) the compo-
nents [p,, .. p.. p-l of a particle’s four-momentum p in terms of its mass m and
the rate of change of its spacetime coordinates [t, x. v, z] (in that frame) with
respect to the particle’s own proper time 7.

b Limitations: This equation is a definition and so has no limitations

' Notes: The four-momentum treats time and space coordinates ey enhandedly

1 and points tangent to the particle’s worldline in spacetime.

Because dt = (1=|3])"“dt, the spatial components of p are indistinguishable
from the components of Newtonian momentum jj when the particle’s speed 7] «<1
(Equation R8.10 in figure R84 shows how to calculate [p,, p,, p,, p.] from m and )
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Section R8.4: Properties of Four-Momentum

The components of the four-momentum transform as follows

"
I
Py
P

e Purpose: This equation describes how we can calculate a particle’s four-
momentum components [pl, plpl, p' ] in the Other Frame, given its ¢ ompo-
nents | po py )i the Home Frame, where 3 is the Other Frame's x-velocity
relative to the Home Frame and y = (1 - g7 V7

¢ Limitations: This equation assumes that both frames are inertial and that the
are in standard orientation,

e Note: These equations are very similar to the
for coordinate differences,

e, = Apl)
= | Y0P+ p)

Py
'!

—

(RB.13)

Y

Lorentz transformation equations

The particle’s mass m is the frame-independent four-magnitude of its four-
momentum: m = | pl = (p! = pl = pl = p')'" (see equation R8.31 in figure R8.4),

Section R8.5: Four-Momentum and Relativity

Equation R8. 13 implies quite generally that if a system'’s total four-momentum is con-
served inany inertial frame, it will be conserved in all inertial frames. Therefore, a
law of conservation of four-momentum is compatible with the principle of relativity.

Section R8.6: Relativistic Energy
This conservation law only works, however, if p, is conserved along with p,, p,, and
p.. In the limit that | 5] << 1, p, = m + im|5 ], so conservation of p.in that limit implies
that a system’s total mass plus its total kinetic energy is conserved. We call p. the
particle’s relativistic energy £. Note that even a particle at rest has a rest energy
Eoo = m (= mc? in Shunits), and that conservation of relativistic energy allows conver-
sion of this form of energy into other forms. We define a particle’s relativistic kinetic
energy K tobe K = £ — nx: this is approximately equal to Lm |7 when | 5] << 1.
Wedefine a particle’s relativistic momentum | | 1o be the magnitude of the spa-
tial components of its four-momentum: || = (p! + p? + p)'"*. Note that a particle’s
speed in a given frame is | 3] = || /E. Figure R9.5 summarizes virtually everything
you need to know about doing calculations with four-momentum components.

Four-momentum

l (R8.10) [[(r825) P K=E-m | (R826)
[ P i mif1=ToF | » L= e “m‘i: P

cenes Perreeeieseiirieaas vyi-=jlor

mo. /Y1 - |of p -

i P ) . - M =|3| (R8.32)

Py mu,/y 1 - lopP Magnitude > P = > "lll'l|-F
3 vi=|v

2 mv./ 1~ |of
oo e y (RB.30)

l_ Four-magnitude > mf == |52 | (R831)

Figure R8.4

Virtually everything you need to know about four-momentum.
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The laws of Newtonian
physics are not consistent
with relativity

To find the laws of relativistic
dynamics, we start with
conservation of momentum

An overview of the argument
to be found in this chapter

Chapter R8  Four-Momentum

EJ A Plan of Action

Up to this point, we have been studying relativistic Kinematics — how
describe and measure the motion of objects in spt‘l'idl relativity. But physi-
cists are also interested in dynamics, which comprises the :slu_d,\' of how inter.
actions between objects defermine the objects” motions. !n_th_us volume's fing)
subsection, we will explore the basic princ iples of “"",W's"c,dym"‘i‘-"'
The basic principles of Newtonian dynamics are Newton's three laws of
motion, which in turn are based on the laws of conservation of momentum,
and energy. In section R1.5, we saw that various laws _of Nc\Qvulmi.m dynam.
ics were consistent with the principle of relativity if the Galilean veloci
transformation equations (equations R1.2) are true. But in chapter R7 we
saw that these equations are not true: they only represent llu-' low-velocity
limit of the relativistically correct Einstein velocity transformation equations
(equations R7.14). This means that the laws of Newtomiarn dynamics are NOT gen-
erally consistent with the principle of relativity. Those laws likewise represent
only low-velocity approximations to the laws of relativistic d:\'l.mmlcs, laws
that are the same in all inertial frames (as the principll' of relativity requires),

Well, what are these laws of relativistic dynamics, and how can we find

them? We could address this question by searching for a relalivistic general-
ization of Newton’s second law, then Newton’s third law, then the law of unj-
versal gravitation, and so on. But it turns out that trying to do this is trickier
than it looks, and leads to ugly equations that are not really illuminating.

Things work much better if we instead start with the more basic law of
conservation of momentum and make this law consistent with the principle of
relativity first. Not only is the correct adaptation of this law fairly easy to
find, but it also proves to be very illuminating and rich in implications and
applications. Indeed, just as we found for Newtonian dynamics in unit C,
we can learn virtually everything that is useful to know about relativistic
dynamics by closely examining the law of conservation of momentum.

The basic argument in this chapter can be outlined as follows.

tion of Newtonian momentum 3 = m is

1. I will show you that conserva
ated system’s total

not consistent with the principle of relativity: if an isol
Newtonian momentum is conserved in one inertial frame, 1t 1s 2ot con-
served in other frames. This means that we need to redefine momentum
so that its conservation law is consistent with the principle of relativity.

Jativistic generalization of the idea of momen-

2. 1 will propose a natural re
ctor having a

tum called four-momentum, which is a four-component ve
time component as well as the usual v, v, and z components.

3. 1 will show you that the law of conservation of four-momentum is con-
sistent with the principle of relativity, and thus represents a reasonable
relativistic realization of the law of conservation of momentum. But for
this to be true, the f component of a system’s total four-momentunt must
also be conserved along with its x, y, and z components. So the law of
conservation of four-momentum not only makes the idea of conserva-
tion of momentum consistent with the principle of relativity, but it tells
us that something else is conserved as well.

4. This fourth conserved quantity turns out to be a relativistic version of the
concept of energy. Thus, the law of conservation of four-momentum actu-
ally unifies two of the three great conservation laws discussed in unit C.

I mean for the slash notation in the equation '} = m? to indicate that from this
point on, this Newtonian definition of momentum is now obsolete. From
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View in the Home Frame

v
2m
e @ [——‘

Before:
.I>o‘!/§ ‘-‘_U
m : 2m
After: S S
- 1N\
vy, =~-1/5 Dy, = +2/5

now on (and essentially in units E and Q as well), p will refer to the relativis-
tic momentum we are about to define.

R8.2 Newtonian Momentum Isn’t Conserved
In this section, 1 will argue that the law of conservation of Newtonian
momentum is 1ot consistent with the principle of relativity and thus cannot
be a valid law of physics as stated. To illustrate the problem, it is sufficient to
demonstrate a single instance of the inconsistency. For the sake of simplicity,
[ will illustrate the problem using a simple one-dimensional collision,

Figure R8.1 shows such a collision as observed in the Home Frame. In this
frame, an object with mass 71 is moving in the +x direction with an x-velocity
v,, = +1. It then strikes an object of mass 2m at rest (v,, = 0). Let’s assume
the objects are isolated and the collision is elastic. If so, the Newtonian equa-
tions for one-dimensional elastic collisions (see section C14.2) imply that the
lighter mass will rebound from the collision with an x-velocity of oy = -1,
while the heavier object will rebound with an x-velocity of v, = 4

We can easily verify that the system’s total Newtonian r-momentum is
conserved in the Home Frame for the collision as described:

Total ). before:
Total . after:

Now consider how this collision looks when observed in an Other Frame
that is moving in the +x direction with an x-velocity 3 = : . Since this frame
essentially moves along with the lightweight object, ‘that ob;ect appears to be
at rest in the Other Frame: v}, = 0. Because the larger object is at rest in the
Home Frame, and the Home Frame is observed to be moving backward with
respect to the Other Frame ata speed of , the x-velocity of the more massive
object must also be v/, = —3. The objects’ final x-v elocities are not so easy to
intuit, so we need to use the Emslem velocity transformation equation R7.14a

to compute these velocities:

(RS.1a)
(R8.1b)

mv,, + 2mo,, = ni +%) +2m(0) = +:m

Moy, + 2mvg, = m{—1) + 2m(+3) = +im

PO et R i e s (- YR
T 1-po, 1-(3- 28 7
Similarly, you can show that

vl = —% (R8.25)

(R8.2q)

B

Exercise R8X.1
Verify equation R8.2b.
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Figure R8.1

A hypothetical collision of two
particles as observed in the Home
Frame. The total Newtonian
momentum of this isolated system
is conserved in this frame.

A hypothetical collision

Newtonian momentum is
conserved in the Home Frame

for this colhision

How the collision looks in the

Other Frame
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Figure R8.2

The same collision as observed
in the Other Frame. Newtonian
momentum s not conserved In
this frame

Newtonian momentum is nof
conserved in the Other Frame

Review of the definition of
Newtonian momentum

Chapter R8  Four-Momentum

View in the Other Frame
T3

2m
m
Before ° —@ y X
=0 :_:—?‘
2m

/

34 |

”

Y - 4

Note that these must be the objects’ final velocities if the Einstein \'clodt_y
transformation equations are true and figure RS.1 is a:"_curaft;islrl the Other
Frame, then, the collision process must go as s_hown in xgun. =

In this frame, though, the system’s total Newtonian x-momentum is ng

conserved:
Total . before:  muoj, + 2mv:, = m(0) + Zm(-§)=—3m (R8.3g)
Total g, after: mol, + 2mol, = m(—3) + 2m(=5) = -mm  (R83%

(Note that 165/133 = 1.24 > 6/5 = 1.20.) The law of conservation of Newto.
nian momentum therefore does not hold in the Other Frame, even though it
did hold in the Home Frame. (Note that the law of conservation of momen.
tum requires that each component of the system'’s total momentum be con-
served separately, so if even one component, the x component in this case, is
not conserved, then momentum as a whole is not conserved.)

The principle of relativity requires that the laws of physics be the same
in all inertial reference frames. The conclusion is inescapable: if the Einstein
velocity transformation equations are true, then the law of conservation of
Newtonian momentum is #ot consistent with the principle of relativity

1 hope you can see that the root of the problem is the Einstein velocity
transformation equations. If the Galilean velocity lmnsformqlion equations
were true, the final velocities would be v, = =% and v}, = —¢, and momen-
tum would be conserved in the Other frame as well as the Home Frame,

’ ’ 1 5
because mvs, + 2mvl, = m(=%) + 2m(—3) = —zm.

R8.3 The Four-Momentum Vector

In unit C, we defined an object’s Newtonian momentum § as follows:
- = _ o dr R
=Emv=m RS4)
R " (

This is the Newtonian definition of momentum, which we need to modity to
make the law of conservation of momentum consistent with the principle
of relativity. But how might we modify this definition? It helps to look at the
Newtonian definition very closely to try to understand its meaning.

The vector dF in equation R8.4 represents an infinitesimal displacement in
space, which we divide by an infinitesimal time interval d! to get the object’s
velocity vector &. The components of the infinitesimal displacement vector dr
are [dx, dy, dz], so the components of the Newtonian momentum are

Yo =mo, = m‘;—': %= mﬂ R: = m“% (R8.5)
Notice that the i vector is parallel to the infinitesimal displacement d7, and so
will be tangent to the object’s path through space (see figure R8.3a).
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A Particle’s trajectory tA Particle’s worldline
\ \

(b) » 1

@)

How can we arrive at a relativistic generalization of this process? In spe-
cial relativity, space and time are considered to be equal parts of the unitary
whole we call spacetime, so we describe the motion of an object not merely
by describing its path through space but rather by describing its worldline
through spacetime. The appropriate relativistic generalization of an “infinitesi-
mal displacement in space” dr between two infinitesimally separated points
on an object’s path in space is a displacement ds in spacetime between two
infinitesimally separated events on the object’s worldline (see figure R8.3b).
Note that in any given inertial reference frame, the displacement ds in space-
time between two events is specified by four numbers:

dt

dx ( RS. 6)
dy

dz

Including the time displacement df on an equal footing with the spatial dis-
placements dx, dy, and dz makes the displacement ds a four-component vec-
tor that physicists call a four-vector.

Given the components [dt, dx, dy, dz] of the displacement four-vector ds
between two infinitesimally separated events on the worldline of our object,
how do we define its relativistic momentum? By analogy with the Newto-
nian momentum, we want to divide ds by a quantity that expresses the time
between the events, and then multiply by the object’s mass. In Newtonian
mechanics, time is universal and absolute, so the time between the events
does not depend on how it is measured. The most important flaw in the defi-
nition of Newtonian momentum from the relativistic viewpoint, however, is
that time is not universal and absolute. The time df measured between the
events in the frame where we measure dx, dy, and dz is not the same as the
time dt’ measured in some other inertial frame, which in turn is not generally
the same as the proper time d7 between the events measured by a clock trav-
eling with the particle. Which of these times should we choose?

Dividing by dt makes the spatial components of mds/dt the same as the
spatial components of ordinary momentum, which we know doesn’t work.
Using the object’s own proper time (which is uniquely and unambiguously
linked to its motion) makes much more sense. Moreover, d7 has the advan-
tage of being frame-independent. So our proposed relativistic redefinition of
an object’s Newtonian momentum Ji is the four-momentum p:

ds =

pP=m ‘-:—5 (R8.7)

aT

Note that when drawn as an arrow in a spacetime diagram, p is tangent to
the particle’s worldline, just as i was tangent to its spatial trajectory.
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Figure R8.3

(a) A graph showing a particle’s
trajectory through space The )
particle’s Newtonian momentum |
at a point A is a vector parallel to
the displacement dr that connects
two infinitesimally separated
points surrounding A. (b) A
spacetime diagram showing a
particle’s worldline in spacetime.
The object’s four-momentum p

at event A is an arrow paraliel

to the four-displacement ds

that connects two infinitesimally
separated events surrounding A

How can we revise this
definition to make it more

“relativistic”?

Definition of a particle’s four-
momentum vector
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The four-momentum is a fou r-dimensional vector having componeng,

m(dt/dT)

P |

< |Ps] = | m@x/dT) (R88) |
p*= P, = | m(dy/dT) ) !
p. m(dz/dT) i

& Purpose: This equation defines (in a given inertial reference frame) the
" components [p,, p., p,, p.] of a particle’s four-momentum p in terms of
" its mass m and the rate of change of its spacetime coordm.alcs [t x v,z
" (in that frame) with respect to the particle’s own proper time 7.
o Limitations: This is a definition, so it has no limitations.
o Notes: The four-momentum is defined to have four components so that
. the time and space coordinates are treated evenhandcdly_' anfi so that the
resulting four-vector always points tangent to the particle’s worldline
In spacetime.

e —— e ———

I should note that physicists doing relativity research commonly yse
boldface sans-serif letters to represent four-vectors such as p and (s
I will follow that convention here. However, | recognize that this is difficult
to distinguish p from p in handwriting. | suggest the follo.wing notations
for handwriting symbols for four-vectors: either put a squiggle under the
four-vector’s letter (for example, p)or putabox around it (for example, P
The squiggle is a traditional proofreader’s mark for “make this letter bold-
face.” You can think of the box as saying “this quantity has four compo-
nents,” just as the box has four sides. Use whichever works for you and your
instructor.

We can express the components of the four-momentum in a given iner-
tial frame in terms of the object’s ordinary velocity measured in that {;ame,
As we saw in chapter R4, the proper time between two infinitesimally se
arated events measured by a clock traveling between them at a spe. I3)
in a given inertial frame is related to the coordinate time dt measured ir that
frame between those events by

dr=+\1-|5] dt (R89)

Expressing the particle’s four-
momentum in terms of its
mass and velocity

This means that
dt mdt n :
pEm== == = (K5.10a)
ar V1-|5Fat V1-=|5F
dx m dx mov, s
pEm—= —|= — (R8.10b)
dr  V1-=|3)\dt 1-|3f
d n d no,
p=m = B b T (RS.100)
dr 1-|3) \at! 1-1|3)
dz m dz mo.
pEm—= === : (RS.104)
dar  V1-15] ar 1-|of

These equations tell us how to calculate the components of the four-
momentum of an object in a given frame, given the object’s velocity vector @ in
that frame.

When an object’s speed | 5| becomes very small compared to the speed
of light (|3| << 1), the square roots in the denominators in equations R8.10
become almost equal to 1, and we have

The low-velocity limit of the
four-momentum components
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p=m (R8.11a)
p. = mo, (R8.110)
py = mo, (R8.11¢)
p. = muv, (R8.114)

Thus, in the limit where the velocity of an object is very small, the spatial
components of the four-momentum reduce to being the same as the corre-
sponding components of the object’s Newtonian momentum. Therefore, in
everyday circumstances, we are unable to tell whether it is really Newtonian
momentum or four-momentum that is the conserved quantity.

Note also that since velocity in SR units is unitless, all four'compunenm of
an object’s four-momentum have units of mass in SR units. An object exactly
at rest has four-momentum components p, = m, p, = p, = p, = 0.
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Problem: Suppose an object with mass m = 1.0 kg moves with a velocity
such that o, =0, 0, = £, and v. = 0 in some inertial reference frame. What are
the components of its four-momentum in that frame?

Solution Note that this object’s speed is |3| = !, so /1 — |3 = V1-5=
~ = 1. The object’s four-momentum is therefore

1 1 Tkg 1.67
m o, 1.0 kg 0 0 kg 0
PE T = ' = = kg (R8.12)
Vi-aF|%| 375 [4/° iikg 1.33
% 0 0kg 0

Example R8.1

R8.4  Properties of Four-Momentum

Why define an object’s relativistic four-momentum in this way? The defini-
tion has several attractive features. One feature has already been mentioned:
on a spacetime diagram, the four-momentum is represented by an arrow tangent fo
the object’s worldline through spacetime, just as the ordinary momentum vector
is an arrow tangent to the object’s trajectory through space.

It is also nice that the definition of the four-momentum treats the time
coordinate in the same manner as the spatial coordinates: all four coordinate
displacements dt, dx, dy, dz appear on an equal footing in the definition of
the four-momentum given by equations R8.8. We have already seen how it is
important in relativity theory to treat time and space as being equal partici-
pants in the larger geometric whole that we call spacetime. The definition of
four-momentum given earlier maintains this symmetry.

All this symmetry has a certain beauty about it which an intuitive physi-
cist like Einstein might take as corroborating evidence that we are on the right
track with this definition. But we will see that the most important feature
of how the four-momentum vector is defined is that given its components
in one inertial frame, we can calculate its components in any other inertial
frame, using a very straightforward (and already familiar) set of equations.

The components of an object’s four-momentum are frame-dependent
quantities, because the values of the coordinate differences d!, dx, dy, dz

A particle’s four-momentum
vector is tangent to its
worldline in spacetime

It puts space and time on an
equal footing

It has a very straightforward
transtormation law



152

The transformation has the
same form as the Lorentz
transformation equations

Formal definition of a four-
vector quantity

Chapter R8 Four-Momentum

uations R88 are frame-dependeny Ihe
differential proper time dT appeanng in the dmu'mm.nnr, on the other hand,
is frame-independent. In this text, we will also consider the mass m of the objey
to be a frame-independent measure of the amount of “stuft lI.\ the Uh]u' te

Suppose we know the components [pi, Po P P Jofa ey object’s foy.
momentum p in the Home Frame, and \_\'c want to hnti.lht‘ corresponding
components in an Other Frame moving in the +¥ d_"“l.“'“ with x-y elocity
3 relative to the Home Frame. We can calculate the time component p! of thy,
object’s four-momentum in the Other Frame as follows:

that appear in the numerators of eq

’ dt’ "'(A“ - [3dx) dt Im ‘!‘ - 7(’, il fjl’ ) (R8 |

= — 2 . - = 2l ' ' SR"
p,=m = m o 7de Y o )
where | have used the Lorentz tra
to express dt’ as measured in the

measured in the Home Frame. Simila

nsformation (specifically equation R5.12,,
Other Frame in terms of dt and dx 4
rlv, vou can show that the transformg.

tion equation for the four-momentum X component is
p.=(=Bp +p) (R8.13p)
We also have i d
v ]
= = —-—= Py (Rsll
p,=m ir T / )
P -y - (R8.13,
p: de m = p: 3d)

Exercise R8X.2

Verify that equation R8.13b is correct.

Compare these equations to Lorentz transformation equations:
Al = 7(At — BAx), Ax'=9(=BAt+ Ax), Ay’ = Ay, A=Az (Rs14)

Equations R8.13 are the same as these equations except that the [our-
momentum components p,, P, Pus and p. have been substituted for the coor-
dinate displacement components At, Ax, Ay, and Az, respectively. Tl the
components of the four-momentum transform from frame to frame according to the
Lorent= transformation equations, just as coordinate differences do!

The transformation equations for the four-momentum come out so 1i.cely
because (1) the time coordinate appears on an equal footing with the /bl
components in the definition of the four-momentum, (2) we have dividod the
displacement by the frame-independent differential proper time 7 in-tead
of the frame-dependent differential coordinate time dt, and (3) we define the
object’s mass 1 to be a frame-independent quantity.

In fact, the technical definition of a four-vector requires this Kind of trans-
formation law. Physicists define a four-vector to be a physical quantity rep-
resented by a vector whose four components transform according {0 the
Lorentz transformation equations (that is, just as the coordinate diffcrences
At, Ax, Ay, Az do) when we go from one inertial reference frame to another.

“You may have heard in another context that special relativity implies that the mass
of an object depends on its velocity. This is an old-fashioned way of looking ot mass
that obscures some of the simplicity and beauty of relativity theory. See C. G Adler,
“Does Mass Really Depend on Velocity, Dad?” Am. |. Phys., vol. 55, no. 8, pp 739743,
August 1987, for a careful and entertaining look at the problems with the old way of
thinking about mass in relativity theory. Most modern treatments of relativity treatan
object’s mass as being frame-independent.
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Now we know that although the coordinate differences Af, Ax, Ay, Az
between two events are frame-dependent quantities, the spacetime interval As
between the events given by

As' = AF - AX - Ay - AZ (R8.15)

has a frame-independent value. Similarly, we can define the frame-independent
four-magnitude of a four-vector as follows: if a four-vector A has compo-
nents A, A, A,, and A, then we define its squared four-magnitude to be

AP =A - A2-A2-A? (R8.16)
This is the relativistic analog to the definition (based on the Pythagorean
theorem) of the magnitude of an ordinary vector.

You can easily show that the frame-independent four-magnitude of an
object’s four-momentum vector is simply its frame-independent mass:

m=|p| =\/pi-pi-pi-p (R8.17)

Exercise R8X.3

Verify that equation R8.17 is correct, using the fact that for infinitesimally
separated events, there is no distinction between proper time and the space-
time interval, so dT = ds = (dt° — dx* — dy* — dz*)'".

R8.5 Four-Momentum and Relativity

We now have a suitable candidate for a relativistic generalization of the con-
cept of momentum. The final step is to verify that a law of conservation of
four-momentum is in fact consistent with the principle of relativity.

Consider an arbitrary collision of two objects moving along the x axis.
The law of conservation of four-momentum says that

P+ p.=p:+ Py (R8.18)

where p, and p, are the objects’ four-momenta before the collision and p,
and p, are their four-momenta after. We can usefully rewrite this as follows:
ptp.—pi—pi=0 (R8.19)

which essentially says that the difference between the system’s initial and
final total momenta is zero. In component form, this last equation tells us that

Pu P Py Pu 0 Putpu=py=ps =0
Pu g |Poc| = |Pu]|=|Pu|= 0 or PutpPu—pu—pu=0 (RS.20)
plv pb P\. p41 0 plv + p.’v = p‘u o P‘v = O
pi:] P2] LPx) P 0 PitPu—pu—p. =0

When expressed in component form, we see that the single equation R8.19 is
really a set of four equations, one for each of the four-momentum’s four compo-
nents. Each must be ndependently satisfied for four-momentum to be conserved.

Suppose we have observed a collision in the Home Frame and determined
that it satisfies the law of conservation of four-momentum in that frame. The
principle of relativity requires that the same law apply in every other inertial
reference frame, that is,

If P +p.—p,—p,=0 inthe Home Frame
Then  pl+p.~p.=p,=0 inany Other Frame (R8.21)
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The frame-independent four-
magnitude of a four-vector

Proof that four-momentum i
conserved in all inerhial fromes
if 1t is in anv one frame
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Thus, conservation of four-
momentum is consistent with
the principle of relativity, but
is it true?

Abundant experimental
evidence suggests it is

Chapter R8  Four-Momentum

If this statement is not true, our proposed relativistic generalization of morner,.
tum is not any better than Newtonian momentum. [f the statement 4, true,
then the law of conservation of four-momentum represents at least a pos e,
relativistic expression of the law of conservation of momentum

We can in fact easily show that this is true for any collision as viewed i
any inertial Other Frame. Consider the x component of the conservation Lay,
in the Other Frame. According to the transformation law for the componensg
of the four-momentum given by equation R8.13h,

Pl A Po = P = Ph = 1(=Bpu + pu) + 1(=Bpu + Pu)
—3(=Bpy + pu) = 7(=Bpu + Pus) (RS 224)

Collecting the terms on the right side of this equation that are multiplied by
7 and those multiplied by 73, we get

Pt Po= P Pl = =YB(pu+ pu = pu— pu) + Y (Put P2 = Py = Pu) (R322h

But if both the t and x components of the four-momentum are conserved in
the Home Frame, then equations R8.20 tell us that the quantities in parenthe.
ses are equal to zero: p|, + pi, = p., = pi. = =18(0) + 7(0) = 0.50 if both the
t and x components of the system’s total four-momentum are conserved in
the Home Frame, then the x component of the system’s total four-momentum
will also be conserved in the Other Frame, as hoped.

Exercise R8X.4

In the same way, verify that the t and y components of the four-momerium
are conserved in the Other Frame if all components are conserved in the
Home Frame.

What we have shown is that the law of conservation of four-momr tum
expressed by equation R8.19 is consistent with the principle of relar g
the sense that if it holds in one frame, it holds in all frames. That & - not
make the law true: it simply makes it possible. But now let me arzue ¢ the

law’s fruth. (1) We know from a multitude of experiments at low « = ties
that some quantity that reduces to Newtonian momentum at such «' ites
is conserved. (2) But conservation of Newtonian momentum is inco - tent
with the principle of relativity. (3) The hypothetical law of conserioion

four-momentum is compatible with the principle of relativity. (4) T ‘ree
spatial components of the four-momentum do reduce to the compon s of

Newtonian momentum at low velocities. (5) Therefore, if the law of - rnser-
vation of four-momentum were true, it would both explain the low - ooty
experimental data and maintain compatibility with the principle of reloovity.
(6) Moreover, there must be some relativistically valid expression of tho deep
symmetry principle that gives rise to the law of conservation of momontum.
In the absence of compelling alternatives, it makes sense to believe s the
total four-momentum of a system that is conserved.

Of course, no matter how suggestive a theoretical argument mizht be,
experimental evidence is the final arbiter. Since the 1950s, physicists have
been using particle accelerators to create beams of subatomic pa.rtichx\ travel
ing at relativistic speeds that collide with stationary targets or other particle
beams. At such speeds, the distinction between Newtonian momentum and
four-momentum is very clear, and analysis of a typical experiment involves
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applying conservation of four-momentum to anywhere from thousands to
even billions of particle collisions. Conservation of four-momentum is there-
jore implhiaitly tested thousands of imes daily in the course of such research.
In spite of this enormous wealth of data, no one has ever seen compelling
evidence of a violation of the law of conservation of four-momentum.

R8.6  Relativistic Energy

Equation R8.22b makes it clear that conservation of four-momentum is only How should we interpret the
consistent with the principle of relativity if all four components of the four-  fourth conserved quantity p”
momentum (p, as well as p,, p,, and p.) are independently conserved. The

three spatial components of an object’s four-momentum correspond (at low

velocities) to the three components of its Newtonian momentum. What is the

physical interpretation of the additional conserved quantity p.?

According to equation R8.10q, in a frame where an object with mass m Examining the value of p, at
is moving with speed | 7], the object’s four-momentum has a f component low veloaities suggests that |
is related to energy

p= (R8.23)
V1= sl
We know this reduces to the object’s mass m at low velocities, but is not
exactly equal to the mass. The binomial approximation says that

p= — M =m(1 - |5 = mll = (=307 = m + jmp? (R8.24)
Vi-Tof

The first term here is the particle’s mass, and when | 7| = 0, that is what

p, becomes. But when || is nonzero but still very small, we have an addi-

tional term in p, that corresponds to the particle’s kinetic energy. If p, is con-

served in a collision at low velocities, what we are saying is that the sum of
the particles’ masses plus the sum of their kinetic energies is conserved.

So in a collision that preserves the particles’ masses, conservation of p, is

(at low velocities) basically the same as conservation of Newtonian (kinetic)

energy! As we have already generalized the concept of momentum, so now

we generalize the concept of energy. We define the time component p, of a

particle’s four-momentum to be that particle’s relativistic energy £, and we

assert that it is this relativistic energy that is the fourth quantity that is con-

served in an isolated system. So the relativistic energy E of an object moving

ata speed | 7| as measured in a given inertial frame is

: (R8.25) The definition of

,/1 N |l-,|: relativistic energy

Note that if the object’s speed || is an appreciable fraction of the speed
of light, equation R8.24 does not hold. We define an object’s relativistic
kinetic energy K (for all |7]) to be the difference between the object’s total
relativistic energy E and its mass energy m:

n 1 - 1}

vi-|af vi-[3f |

The value of K = 1 m|5|* only for | 3] << 1: in general, K > 1 m| 3|,
Newtonian mechanics treats conservation of energy and momentum as

separate concepts. But just as special relativity binds space and time into  Conservation of four-

a single geometry, so here it binds the laws of conservation of momentum  momentum thus unifies

and energy into a single statement: an isolated systemt’s total four-momentum  Newtonian conservation of

is conserved. Conservation of energy is impossible without conservation of  energy and momentum

E=p =

K=E-m= -m= m( (R8.26) Iht qcﬁmtion of relativistic
inetic energy
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Processes that convert rest
energy (mass) to kinetic energy
are possible

Converting SR units for energy
to SI units

(The most famous equation
of special relativity)

It is often helpful to split four-
momentum into space and
time components

Definition of relativistic
momentum

Chapter R8  Four-Momentum

momentum, and vice versa: in the theory of relativity, energy and momer,
tum are indissolubly bound together as parts of the same whole!

Note, however, that an object’s relativistic eneTgy involves a particie’y
mass as well as its kinetic energy. The fact that F = p, 18 conserved .).'.-~‘ not
imply that a system’s total mass and its total kinetic energy are separately con.
served, only that the whole (that is, the relativistic eneTgy) IS CONSEry ed. Thes
implies that processes that convert mass 10 kinetic energy, and vice versa, do nop
necessarily violate the law of conservation of four-momentum and therefore mighy
exist. We will explore this subject more fully in chapter RY

Equation RA.24 is expressed in SR units, where velocity is unitless and
both kinetic energy and mass are measured in kilograms If we want 1o
express a particle’s relativistic energy in the S unitof joules (1] = 1 kg-m'/4}),
we must multiply the energy in kilograms by two powers of the spacctime
conversion factor ¢ = 2.998 10" m/s to get the units to come out right There.
fore, equation R8.24 in SI units would read

Eyoy = mc* + f,mh'-l" when |o)' << (R%.27)
When the particle is at rest, its relativistic rest energy in Sl units 1s
Eisy = mC (R%.28)

This is the famous equation that has served as an icon representing both the
essence of special relativity and Einstein’s achievement. This equation really
is just a special case of the more general equation RB.25. Even so, it does focus
our attention on the startling new idea implicit in equation R8.25: an object at
rest has relativistic energy simply by virtue of its mass, and this mass encryy is a
part of the total energy conserved by interactions inside an isolated system.
Conservation of four-momentum does not require that a system’s total mass
and its total kinetic energy be separately conserved, only that their <um be
conserved. Therefore, conservation of four-momentum opens the pos«ibility
that there may be processes that convert mass energy to kinetic energy, and
vice versa. We will see in chapter RY that such processes do indeed exint!

Note that a 1.0-kg object has a rest energy of (1.0 kg)c = 9.0 » 107,
which an enormous amount of energy (larger than what most nuclear bombs
release). Our safety therefore depends on the fact that everyday physical pro-
cesses do not convert much mass energy into other forms of energy!

So, just as special relativity teaches us that time and space are but dif-
ferent aspects of spacetime, we now see that energy and momentum are but
different aspects of four-momentum. The fact remains, however, that just as
we experience time and space very differently, so we experience enery and
momentum differently. It is often convenient, therefore, to split o particle’s
four-momentum into time and space components,

We have seen (see equation R8.11) that at low velocities the spatial com-
ponents of an object’s four-momentum vector p,, p,, and p. become approx-
imately equal to the components of that object’s Newtonian momentum
vector fi. Thus, they represent as close a relativistic analog to Ji as we have.
We therefore call the three-dimensional vector p = [p,, p., p.| the object's
relativistic three-momentum (to distinguish it from its four-momentum).
More often, we are interested in the simple magnitude of these three
components:

|f.'| = \/]73.—'0' pi + pf (R8.29)

which we will c.\ll.lhc “magnitude of the object’s relativistic momentum” as
opposed tom, which is the magnitude | p| of the object’s four-momentum.
The relativistic momentum magnitude | p| is thus the

: p . relativistic generaliza-
tion of the magnitude [}i| of an object’s &

Newtonian momentum vector.




RB.6 Relativistic Energy

With the help of equations R8.10, we can express an object’s relativistic
momentum magnitude in terms of its mass m and speed | 7] as follows:

\

“"' ‘/‘ ,mi".: ’.‘ +-[ _—71’? "f_‘r +>'7 ',-:"_‘;i‘_:_ .
Vi-[ell Wa=Tsp]  WAa=T1sF

_m \/x' + 0} +oi _ m|d]

JI=GF VAT

Note that || does indeed become approximately equal to the magnitude
m|&| of the object’s Newtonian momentum ji when |6 ] << 1.

We can write equation R8.17, which shows how an object’s frame-
independent mass can be computed by using the frame-dependent compo-
nents of its four-momentum, in terms of £ and || as follows:

(R8.30)

m'=pl = (p;+pi+p)=E~|p (R8.31)
We can also use an object’s relativistic energy and relativistic momentum
magnitude in a given frame to determine the object’s speed in that frame:
pl w1 =6 .
l!.l. = _.!_‘.J_/_J_T—_—.L;;l- o= !p' (R"}Z)
E m/v1=[af

This relationship applies to each individual spatial component as well:

P - ‘/l i L =uv,, similarly %’= v, ’; =, (R8.33)
E V1-=|3P m .
Indeed, we can think of the spatial components of an object’s four-momentum
as expressing the rate at which relativistic energy is transported through
space:

n| [mesv1=15f

p-| |[mo./V1=|5f

Equations R8.25, R8.26, R8.30, R8.31,and R8.32 express relationships
between the quantities E, |j|, m, K, and |3] that are really helpful when
one is working with the four-momentum. Figure R8.4 gathers them in one
convenient and memorable diagram.

P m/\/l - |8 E
Pl = fmo/V1 4 - Ei’- (R8.34)
Ev.

Four-momentum
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Usetul relationships between

E;

"

!

and m

={ K=E - 2,
T T T "
(Pr ’- m/y 1 =[5 > E’JI—IFF
2 mo /1 = 5P o
Py mv,/v1 = [oF Magnitude ——»||f| = -lmlrll' B
- vl
), /1= |oP
i | =
L Four-magnitude (R8.31)
Figure R8.4

Virtually everything you need to know about four-momentum.
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- TWO-MINUTE PROBLEMS

Four-Momentum

RST.1 A particle’s Newtonian yv-momentum Riis always
cither equal to or smaller than the x component of the par-
ticle’s four-momentum p,. T or F?

RST.2 Aparticle’s mass is always either equal to or smaller
than the time-component of its four-momentum. T or F?

RSL3  The absolute value of the x component of a parti-
cle’s four-momentum vector is always either equal to or
smaller than its t component. T or F?

RST4  (a) The squared magnitude of a four-vector could
be negative. T or F? (b) The squared magnitude of a par-
ticle’s four-momentum could be negative. T or F?

RST5  How does a particle’s relativistic kinetic energy K
compare to its Newtonian kinetic energy when the particle’s
speed | 8] = {2
A. K<im|d|
B. K>!m|d|
C. K=!m|3®

R8T.6  Consider a particle with mass m. As its speed
approaches the speed of light, its relativistic momentum
magnitude | ji| approaches:

A. infinity
B. mc
C.m

D. zero

RST.7 A particle’s mass is the same in all inertial reference
frames (even though its speed is not). T or F?

RSTS The components of a particle’s four-momenty
the same in all inertial reference frames. T or F?

™m are

RST9 Suppose a particle’s four-momentum vector
components [p,, P, Pu P:] = [5 kg, 3 kg, 0, 0]. What is e
particle’s mass?

5kg

8kg

kg

::/I%s-ikg

Other (specify)

mmoN®>

RST.10 A dust particle has a rest energy (mass) of 1.0 ug
joules, this rest energy is closer to:

]01,']

loll]

10°]

107°)

10

Other (specify)

RST.11 As a particle’s speed approaches that of light, the
difference between its relativistic momentum magnitude
| 7] and its relativistic energy E becomes small (compared
to E). Tor F?

mECN®E>

RST.12 Particle A has mass m and speed |7 ]. Particle B hag
mass :m and speed 3|7|. How do the magnitudes of their
relativistic momenta compare?

Al I}"n | > If’sl
B. lfhl < Ii’lll
C l}-’4l - |}.’n|

HOMEWORK PROBLEMS

Basic Skills

RSB.1 How fast must a particle move so that its total
energy is 1% larger than its rest energy?

RSB.2  Two freight trains approach each other on the same
track. Each has a mass of 10,000 metric tons (1 metric
ton = 1000 kg) and is traveling at 30 m/s. How much total
kinetic energy does each bring into the horrific train wreck
that follows? Express your answer in milligrams.

R8B.3 A 2.0-kg object moves with v, = 1, v, = 0. = 0. Find
the components of the object’s four-momentum.

RSB.A  An alien spaceship with a mass of 12,000 kg is trav-
eling in the solar system frame at a speed of Lin the =z
direction. Find the components of the spaceship’s four-
momentum vector.

R8B.5 A 12-kg rock moves with a velocity whose compe-
nents are v, = ﬁ v, = —=, and v. = 0 in a certain frame.
Find the components of its four-momentum in that frame.

R8B.6  Suppose thatina certain reference frame we observe
an object of mass 5.0 kg to have velocity components of
v, = =0.866 and v, = v. = 0. Evaluate the following in that
reference frame:

(a) the object’s total energy E,

(b) its relativistic momentum magnitude |7,

() the spatial components of its four-momentum, and
(d) its relativistic kinetic energy K.

R8B.7 In a certain frame, an object has a four-momentum
whose components are p, = 50 kg, p, = 4.0 kg p, =p. =0
(@) Calculate the object’s x-velocity (in this frame).

(b) Calculate the object’s mass.
(¢) Calculate its Kinetic energy.
(d) Calculate its relativistic momentum magnitude.

N aherhie s
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Homework Problems

RsBS In a certain frame, an object has 2 four-momentum
whose components arep, = 13kg. p, = -12 kg, p, =p, = 0,
(a) Calculate the object’s x-velocity in this frame.

(b) Calculate the object’s mass.
(¢) Calculate its kinetic energy.

RSB9 In a certain inertial frame, an object has a four-
momentum whose components arep, = 18 kg, p, = 9.0 kg,
p,=15kg p.=10kg.

(a) Find the object’s velocity (vector) in this frame.

(b) Find the object’s speed.

(¢c) Find the object’s mass.

(d) Find the object’s relativistic momentum magnitude.
(e) Find the object’s kinetic energy.

R8B.10 In a given frame, an object’s four-momentum has
components p, = 5.0 kg, p, = 3.0kg, p, = p, = 0. What is its
four-momentum in an inertial frame that moves in the +x
direction at a speed of ; relative to the given frame?

RSB.11 In a given frame, an object’s four-momentum has
components p, = 5.0 kg, p, = —3.0kg, p, = p, = 0. What is
its four-momentum in an inertial frame that moves in the
+x direction at a speed of ! relative to the given frame?

Modeling

RS8M.1 While solving a problem, a classmates claims that
a particle’s four-momentum vector has components p, =
-0.10kg, p. = i, p, = —; and p. = 0. Even without know-
ing the problem’s particulars, there are at least three things
wrong with this four-vector as stated. What are they?

RS8M.2 Suppose a dust particle of mass 2.0 pg is traveling
at a speed of  in the xy plane at an angle of 30" clockwise
from the x axis in a certain inertial reference frame. Evalu-
ate the following in that frame:

(a) the particle’s relativistic energy E,

(b) its relativistic momentum magnitude |5/,

(c) its three spatial four-momentum components, and
(d) its kinetic energy K (in joules).

R8M.3 A particle of mass m is moving in the +z direction
with a kinetic energy equal to $m. What are the compo-
nents of its four-momentum, in terms of m?

R8M.4 A particle of mass m has a kinetic energy equal to § .
Its x-momentum is positive and is — ; times the value of its
y-momentum, and its z-momentum is zero. What are the
components of its four-momentum in terms of m?

RBM.5  If electrical energy can be sold at about $0.06 per
10° J (the approximate current price in southern Califor-
nia), compute how much your rest energy is worth in dol-
lars. That is, find the amount of money your survivors
could put in your memorial fund if there was a way to
convert your mass entirely to electrical energy. (It is prob-
ably a good thing that this is not easy to do.)
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RSM.6 If electrical energy costs about $0.06 per 10" ] (the
approximate current price in southern California) and you
have $1.5 million at your disposal to spend on energy to
convert to kinetic energy, about how fast can you make a

1.0-g object travel?

RSM.7 In a number of problems in this text, we have
blithely spoken about trains traveling at significant frac-
tions of the speed of light. If electrical energy costs about
$0.06 per 10" | (the approximate current price in southern
California), what would it cost to accelerate an electric
train with a mass of about 100,000 kg to a speed of 3?

RSM.8 Consider again the one-dimensional elastic colli-
sion discussed in section R8.2. In this collision, an object
of mass m moving at ! in the +x direction hits an object
of mass 2m at rest. It turns out that conservation of
four-momentum for this elastic collision implies that the
r-velocities of the objects after the collision are v, = =9/41
and v,, = +39/89 (instead of the Newtonian predictions of
—1and +3, respectively) in the laboratory frame.

(a) Show that if the objects have these final x-velocities,
both the total -momentum and the total x-momentum
are indeed conserved in the laboratory frame.

(b) Use the Einstein velocity transformation equation to
find the velocities in the frame in which the lighter
object is initially at rest, and show that the t" and x’
components of the system’s four-momentum are con-
served in this frame also.

R8M.9 Suppose that in a certain particle physics experi-
ment, a particle of mass n, moving with speed |5| = Zin
the +x direction in the laboratory frame is observed to
decay into two particles, one with mass n, moving with
speed 1] = ;m the +x direction and another with mass
m; that is essentially at rest.

(a) Show that if total particle mass and Newtonian
momentum are conserved in the laboratory frame,
then we must have m; = ; m,and m, =} m

(b) Show that if four-momentum is to be conserved in
the laboratory frame, we must have m, = -m, and
m; = Zm, (note that this decay converts some mass
energy to kinetic energy if conservation of four-
momentum is true).

(c) Consider now an inertial reference frame (the Other
Frame) that moves with the same speed in the +x
direction as the initial particle. Use the Einstein veloc-
ity transformation equations to show that the particles’
x:\-'clocitic-s in this frame must be v}, = 0, v, = 5, and
Uy =3

(d) Show that if we use the outgoing particle masses that
ensure that Newtonian momentum and particle mass
are conserved in the laboratory frame [see part (a)),
then Newtonian momentum is not conserved in the
Other Frame.

(e) Show that if we use the masses that ensure that four-
momentum is conserved in the laboratory frame [see
part (b)], we find that four-momentum is conserved in
the Other Frame.



" Chapter R8  Four-Momentum

RSM 10 Note that in SR units, energy, momentum, and mass
all have the same units. When working with subatomic
particles, physicists commonly use units of MeV (where
I MeV = L6 ¢ 10 ]) instead of kilograms for all of these
quantities. Suppose that a pion (a subatomic partic Ic'mlh
mass m, = 140 MeV) and an initial momentum magnitude
of | ph | = 900 MeV hits a proton (with mass m, = 938 MeV)
at rest. The colored arrows below show the proton’s and
pion’s momentum vectors that (my source imphied) were
actually measured after such an interaction in a certain
experiment. All momentum magnitudes are accurate to
within about £40 MeV and the angles to within about £1°,

AV
| Pol =900 MeV
[ Pyl = 390 MeV
[ Pal = 1090 MeV P2 proton
fo = g > 1
pion
pifo s
¢=19
pion

(@) Show that in this situation, we have p,, = =127 MeV,
i, = =369 MeV, p,, = 1024 MeV, and p,, = 373 MeV.
(b) Is spatial momentum conserved (considering the

uncertainties in the numbers)?

(¢) Note that according to quantum mechanics, a sub-
atomic particle can have no internal energy, so in this
collision, kinetic energy should be conserved. If we
assume that the momenta measured here are New-
tonian momenta, then is Newtonian Kinetic energy
K = [}/?/2m conserved within our uncertainties?

(d) Assume that the momenta being measured here are
actually relativistic momenta. If this is so, is relativis-
tic energy E = \/|p|* + nr' conserved in this collision
(within our uncertainties)?

Derivations

R8D.1  Verify equation R8.17 by squaring the definitions of
the four-momentum components given in equations RS8.10
and combining as required.

RSD.2  Angue thatas [5| =1, |ji| — E. What speed is required
for these quantities to be equal to within 1% of E?

R8D.3  One can use the four-momentum transformation
law to do a correct relativistic transformation of velocities.
Consider an object of mass m moving at a speed of |3 |in
the +x direction in the Home Frame. Using the Lorentz
transformation equations, find the components of this
object’s four-momentum in an Other Frame moving in the
+x direction with an x-velocity of /3 relative to the Home
Frame. Then, use equation R8.32 to find the object’s speed
in that Other Frame. Compare your result with the Ein-
stein velocity transformation equations.

RSD.4 At nonrelativistic speeds ([l’|<<|). 4 parntjg,,
kinetic energy is K = .'\m|.-'v|f=(m|f'|)'/2mz |,‘.|f/2m'“"
have | il = (2mK)"*. Show that the exact relativisgc xpr, e
sion for the particle’s relativistic momentum "“‘ﬂnnw\
| ,‘;l in terms of its relativistic kinetic energy K is ¢

Ipl = VKK + 2m) (R8 35
3
and argue that at low speeds, this reduces to [ 5| = ¢ 2mk'

5

R8D.5 Prove that the four-magnitude of any foyy.
is a frame-independent number. (Hint: What is the
definition of a four-vector?)

Vectyy
form al

Rich-Context

RSR.1 In this text, we have blithely described People ryp,.
ning at substantial fractions of the speed of light. Cong; i
a runner who has somehow managed to accelerate to a
speed of 1. Even assuming that this highly trained athlete
uses food energy very efficiently, describe the meal thay the
runner must have eaten before the race. (Hint: Remempe,
that one food calorie = 1 Cal = 1000 cal = 4186 ] )

RSR.2 A typical household might use about 2 x 10"
electrical energy per year. About 1in every 5000 hydrogen
atoms in a quantity of water is actually deuterium, and th,
fusion of two deuterium nuclei converts about 0.5%, of the
rest energy of the deuterium nuclei to other forms of energy,
Avogadro’s number of hydrogen atoms has a mass of 1 g, the
same number of deuterium atoms has a mass of 2 g, and the
same number of oxygen atoms has a mass of 16 & Aboy
how long could you run a typical household on the energy
that would be produced by the fusion of the deuterium in
1 gal of water?

RSR.3  Cosmic rays are subatomic particles that have been
accelerated (by obscure astrophysical processes) o large
energies. Physicists have detected individual Cocmicray
protons with energies as high as several joules Surposea
certain cosmic-ray proton has an energy of 1.5 ]

(@) How long would it take such a proton to trave! across
the diameter of our galaxy (about 100,000 1y} .. ording
to a clock traveling with the proton?

(b) Suppose a photon begins the journey at onc cid of the
galaxy alongside such a proton. How far is it ahead of
the proton at the end (in the galaxy’s frame)?

[Hint: For [3] =1, 1= |5 = (1 + |a )1 — [5]) = 201~ 7))

Advanced

RSA.1 Prove conclusively that a particle’s relativistic
kinetic energy K = E — m is always larger than (mio/
(although the values are close for | #] << 1), (Hint: Both
80 to zero as |§ goes to zero, but you can show that
the derivative of K with respect to |5]is always greater
than the derivative of {m|5|* with respect to|#]. How
does this help?)



Answers to Exercises

e _

| ANSWERS TO EXERCISES
SR R RSX.4
palnefy M=bo L. 8 e

1eBe -0 #W

R8X.2  Using the same basic approach outlined in equa-
tion R8.13a, we get

Y= m!.\f = m‘,_(..—adit..d_')
e dr dr

dt dx
< 7dma-’-_ + 7""‘_?
= =y8p,+ . =2(=8p +p) (R8.37)

RSX.3  Substituting the definition of the four-momentum
components into the definition of the four-magnitude of
the four-momentum, we see that

lpl=/p = pi=ps-pi
[ 2 o 2] — 2 (]

dF=de -ay —-d2  dr
- i ——— = Y ——
dr dr

(where in the next-to-last step, I used the provided hint).

(R8.38)

We can prove conservation of p/as follows:
PutPa=Py=Po
=90 = Opu) + 1 (ps = Bpu)
“y(py = Ops) = Y+ Bpa)
= (P + Pa = Pu = Po) = WL+ Po = P Pad
=9(0) =~ 38(0) =0 (R839)

sincep, 4+ py = py = pu = Oandp,, + P = Pu = Po = 0if
four-momentum is conserved in the Home Frame. Proving
conservation of p_ is even casier:

PL APy =Py =Pu =Pyt Py =Py~ Po=0 (R8A0)
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- Conservation of
- Four-Momentum

Chapter Overview

Introduction

Chapter RS introduced the concept of conservation of four-momentum and showeg
that such a law could be fully consistent with the principle of relativity while oy,
ing to the Newtonian form of the law at low speeds. In this Fhaplt'r. we explore sop,
of the surprising consequences and experimental tests of this law.

Section R9.1: Energy-Momentum Diagrams

An energy-momentum diagram represents the four-momenta Of particles or system,
as arrows on a diagram whose vertical and horizontal axes are E dnd. P respectively
Such a diagram displays these four-momenta in the same way an ordinary spacetim,
diagram displays the coordinates of events.

A given object’s four-momentum arrow on such a diagram has a slope of 1/,
where o, is the object’s x-velocity. We will use a flag attached to the shaft of the arp,
to indicate the arrow’s four-magnitude (that is, its mass). We can qualitatively esti.
mate the magnitude corresponding to a given four-momentum vector by following
a hyperbola from the vector’s tip back to the vertical axis. See figure RY.5 for a sym.
mary of how to read such a diagram.

Section R9.2: Solving Conservation Problems

One can qualitatively solve a conservation of four-momentum problem by using an
energy-momentum diagram, or quanlimli\‘cl_\‘ by using four-dimensional columy
vectors. As an example of the latter, consider a collision between incoming particles

H,\'p\'thvh E - fv,: = m'

Figure R9.5
Virtually eve ything you need
to know about four-momentum
diagrams. No matter what the

x-velocity of an object of mass m \ !

might be, the tip of the arrow rep- N A e B

resenting its four-momentum lies | ) .

on the hyperbola £ — | p* = m’

The inverse slope of the arrow S

u,*pu-son!vng the 4ouv-momnn!um l | v i ‘

is equal to v,, which always has a )] | ] P W — T 5] r

magnitude less than 1
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with four-momenta p, and p. that produces final particles with four-momenta p: and
p.. Conservation of four-momentum requires that

E, E; E, E,
Pu Pu|_|Pn Pu
Y el N R (R9.3)
P P Px Pa

As usual, each row of this column-vector equation must be satisfied independently.

This section discusses an example that illustrates both approaches. The diagrams
can be easier than doing the algebra (especially if you use hyperbola graph paper),
and often provide a useful visual check on algebraic solutions.

Section R9.3: The Mass of a System of Particles
In chapter RS, we defined an object’s mass to be the frame-independent magnitude
of its four-momentum. This definition implies, however, that mass is not additive: the
mass of a system is not equal to the sum of the masses of its particles. The total mass
of a system at rest is in fact equal to the sum of the energies of all its particles, which
(for noninteracting particles at least) is usually larger than the sum of the particle
masses. The extra mass does not really reside anywhere that we can locate: it is rather
a property of the system as a whole.

In a collision between two balls of putty of mass m that stick together afterward,
for example, the mass of the final putty glob is M > 2m. However, the systen’s mass is
M both before and after the putty balls collide!

Section R9.4: The Four-Momentum of Light

Asufficiently short and spatially confined flash of light is the approximate equivalent
of a particle. Such a light flash carries energy and so must have a four-momentum vec-
tor. Its four-momentum arrow must be parallel to the light flash’s worldline, so (1) the
slope of the four-momentum arrow must be +1 on an energy-momentum diagram,
which means that (2) the relativistic momentum | 5| of a flash must be |p| = E,
which means that (3) the flash’s mass nris m = (E° = [5[9)'* = 0! To put it another
way, a flash of light has all its energy in the form of Kinetic energy and none in the
form of mass energy.

An antimatter-matter rocket would convert the mass of its fuel entirely to light
that travels out the engine’s nozzle with speed ¢. Such an engine would be the best
possible rocket engine. Example R9.3 discusses such a rocket as an illustration of
doing a conservation of four-momentum problem involving light.

Section R9.5: Applications to Particle Physics

Most real applications and tests of relativity involve subatomic particles, because
such particles are about the only things that are light enough to be accelerated to
near-light speeds without a prohibitively high energy budget. Particle physicists typi-
cally use the electronvolt (eV) as the unit of mass, energy, and momentum, where
leV = 1602 x 107" | = 1782 x 10" kg. This section discusses the decay of a particle
called a kaon as an example of a realistic application of relativity.

Section R9.6: Parting Comments

This section discusses a few places where interested readers can go to learn more
about relativity.

i
|
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Fi=p)

¥ of objent

o [
7, of obpext

Figure R9.1

An energy-momentum diagram
displaying the four-momentum
of an object moving in the +x
direction, The object’s four-
momentum is shown on the
dragram as an arrow whose
projections on the vertical and
honzontal axes represent the
values of the object’s relativistic
energy £ = p, and its relativistic
x-momentum p,, respectively
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-;1 Energy-Momentum Diagrams

We can visually represent an object’s four-momentum as an arrow o
special kind of spacetime dragram called an energy-momentum diage, .
(see figure RY.1). We can do this conveniently m)l_}" if the object s mon iy
the spatial ¥ direction (so that p, = p. = 0and |pl=p.D). In the rest o 4,
chapter, we will assume that this is true (unless otherwise specified)

Just as the direction of the arrow representing an object’s ordingy,
momentum is tangent to its path through space, the direction of the arp,.
representing an object’s four-momentum is tangent to its worldiine in spac,.
time (because the object’s four-momentum vector p = 1 ds/dT atany giver
point along its worldline is proportional to the object’s differential displace.
ment in spacetime ds along that worldline around that point; see figure RY 2,

Since the inverse slope of an object’s worldline at any instant is equaj v,
its x-velocity at that instant, the inverse slope of the object’s four-momenty g,
arrow at a given time (e, run/nse = p,/E) should also be equal to
x-velocity at that time if the two vectors are to be parallel. Equation k8 13
says essentially the same thing;:

v, (RY l,

The four-magnitude of an object’s four-momentum is its mass n (e
equation R8.17): this value is frame-independent and independent of the
object’s motion. But the length of the arrow that represents the object's four.
momentum on an energy-momentum diagram does depend on the object's

“r 011 14
ds
ds
ds
7 SR = : ry :
Es I s 4
Object’s x-momentum /w- Object’s x-momentum
n < ) m+ m 4 ‘
]
p/ 1 Object’s Object’s en Object’s
: y » WORE S SNeTRY r energy
| ENCTEY = Objoct’s mass T8)
- 2 '
@ Py (b) P ) P'.
Figure R9.2

(3) At any given time, the arrow that represents an object’s four-momentum on an energy-
momentum diagram points in a direction tangent to the object’s worldline, because p is
proportional to ds. {b) When an object is at rest (even at just an instant), its four-momentum
arrow is vertical and its energy is equal to its mass (see equation R8.10a). (c) When the
object moves in the —x direction, its x-momentum is negative (see equation R8.10b), but
its energy remains positive. :
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N

velocity: it is not proportional to the four-magnitude of the correspond-
ing four-momentum. (This is similar to the problem with the spacetime inter-
val discussed in section R3.6.) According to equation R8 31, we in fact have

m'=E=|p|=E - (p) (R9.2)
This means that the tips of the four-momentum arrows for objects of identi-
cal mass m traveling at different x-velocities (or the four-momentum arrows
for a single accelerating object observed at different times) lie along the
hyperbola on the diagram defined by the equation m' = E' — |p|’ as shown
in figure R9.3.

If vou know an object’s x-velocity and its mass nr, you can casily draw an
cnerg)"—momcmum diagram showing its four-momentum vector as follows:

Set up E and p, axes (with the E axis vertical).

Draw a line from the origin of those axes having the slope 1/,
Compute the value of £ = m/(1 - [3)"2 = m/(1 = v})'" for the object.
Draw a horizontal line from this value on the E axis until it intersects the
line you drew in step 2.

5. The arrow representing the object’s four-momentum lies along the line
drawn in step 2, with its tip at the intersection found in step 4.

Alternatively, if you have access to hyperbola graph paper (which you
can copy from the end of chapter R5 or download from the Six ldeas website),
then you can replace the middle steps in the list above with the following:

DD

3. Find the hyperbola corresponding to the object’s mass.
4. The object’s four-momentum arrow along the line drawn in step 2, with
its tip where that line intersects the hyperbola identified in step 3.

We can easily read an object’s relativistic kinetic energy K = E — m directly
from an energy-momentum diagram. For example, K for an object of
mass m moving at a speed |#| =  is | m, as shown in figure R9.4. (Note
that K # { m(})’ = [ m, which is substantially smaller!) Figures R9.3 and R9.4
together clearly show that as an object’s speed |#| approaches 1, both the
object’s total relativistic energy E and its kinetic energy K go to infinity.
This means you would have to supply an infinite amount of energy to accelerate
an object of nonzero mass to the speed of light. (This is the most practical rea-
son that no object can go faster than the speed of light: all the energy in the
universe could not accelerate even a mote of dust to that speed!)

Virtually all you need to know to construct and interpret an energy-
momentum diagram is summarized in figure R9.5 on the next page.
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Figure R9.3

An energy - momentum chagram
showing four momentum srows
for a set of identical objects

of mass m moving at dtferent
x-velocities in the Home Frame
The tips of all these arrows lie on
a hyperbola whose equation is

m = E’ - |pl° Note that as the
object’s x-velocity approaches %1
(and thus | p I/E approaches 1).
both | 5| and E must become
very large if the difference of their
squares 1s 10 remain fixod

'lur.'. to draw the four
momentum for an object with

Llu"-'-ll mass and -;'I1-|

Hy “-'qu-!,!

: I
m T g P

- ; ety
m

Py

Figure R9.4

An energy-momentum diagram
of an object of mass m traveling
with an x-velocity v, = ;. The
arrow representing the object’s
four-momentum has a slope of
5/3 and [since (1 - |¥]))* = {in
this case] an energy of £ =

m(1 = |v]*) '* = ;m. For the arrow
to have the correct slope, we
must have p, = ;m. We can see
thatK=E~m=im,
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Figure R9.5

Virtually everything you need

to know about four-momentum
diagrams. No matter what the
x-velocity of an object of mass m
might be, the tip of the arrow rep-
resenting its four-momentum lies
on the hyperbola E* = | pli=m
The inverse slope of the arrow
representing the four-momentum
is equal to v,, which always has a
magnitude less than 1

Solving conservation problems
algebraically

Chapter R Conservation of Four-Momentum

Hyperbola £ [pf = m’

Exercise R9X.1

On the hyperbola graph paper to the left, draw an energy-momentum
diagram of an object whose mass is 1.0 kg and which moves in_ the —x direc-
tion at a speed of {. Read its relativistic energy E, its relativistic kinetic
energy K, and the x component of its four-momentum p, from the diagram.

R9.2  Solving Conservation Problems

The law of conservation of four-momentum (like the law of conservation of
ordinary momentum) is most useful when applied to an isolated system of
objects undergoing some type of collision process (that is, a kind of sudden
interaction between the objects in the system that may be strong and com-
plicated but limited in time). In such a case, the system has a clearly defined
state “before” and “after” the collision, making it easy to compute the sys-
tem’s total four-momentum both before and after the collision. The law of
conservation of four-momentum states that the system should have the <ame
total four-momentum after the collision process as it had before.

What does this really mean mathematically? Since four-momentum isa
(four-dimensional) vector quantity, conservation of four-momentum means
that each component of the system’s total four-momentum is separately conserved.
For example, consider a system consisting of two objects, and let the objects’
four-momenta before the collision be p, and p., and after the collision be p,
and p,. Conservation of four-momentum then requires that

El E'.‘ E\ El
p" p:‘ P\- P
po | os | s | T s (R9.3)
Pi: P Px Pa:

remembering that the time component of a four-momentum vector (that is,
the relativistic energy) is usually given the more evocative symbol I instead
of p,. As usual, each row of this equation must be scpamrc}v true for four-
momentum to be conserved. E
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I

Problem: Suppose that somewhere in dee p spacea rock with mass m, = 12 kg
is moving in the + v direction with o, = + ! ! in some inertial frame. This rock
then strikes another rock of mass m;, = 2H kg at rest (v, = 0). Pretend that
the first rock, instead of instantly vaporizing into a cloud of gas (as any real
rocks colliding at this speed would), simply bounces off the more massive
rock and is subsequently observed to have an x-velocity v, = = . What is
the larger rock’s x-velocity o, after the collision?

solution  The first step in solving this problem is to calculate the energy £,
and the x-momentum p,, of the smaller rock before the collision. Using the
definitions of these four-momentum components, we find that

E, = — m_ o mmy “2 kgg) = 20 kg (RY.4a)
3

Vicu Vi-k Vi

' (+
P ‘\‘/mf'l ../ "- = +4(|2 kg) = +16 kg (R9.4b)
] - "|, x

Similarly, the larger rock’s energy and x-momentum before the collision are

= — == 28kg (R9.5a)

Vi-vi Vi-

M0y o MO0 Lokg (R9.5b)

\/l -0 V1=0

The smaller rock’s energy and x-momentum after the collision are

m, - L"] o my ]‘; i
e Vi-uh Ji-(3F VB 12“2 kg) = 13 kg (R9.6a)
- m\/': =" ml(" e 112'“2 kgh= ke (R9.6b)
. l’\. n

Conservation of four-momentum requires that the four-momentum vectors
before the collision add up to the same value after the collision, meaning that

P+ p.=ps+ por

16k -Sk Zlk
P=p+p—p=| " 6 §

0

20 kg 28 kg 13 kg 35 kg
(R9.7)

Knowing the energy and x-momentum of an object is sufficient to determine
both its energy and x-velocity. Using equation R8.31, we see that the larger
rock’s mass is still

=VE = pi, =/(35kg) — 21 kg)' = (Tkg)V5 — 3" =28kg  (R9.84)
after the collision. (Since energy is not being transformed to other forms, this
is an elastic collision.) According to cquation R8.33, its final x-velocity is

Pa +21kg

+
E, 3kg 5

This completes the solution.

(R9.8h)

Example R9.1
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(a) The four-momenta of the rocks before the collisio
represented by the arrow p;. Since the four-magnitudes of t
equal the masses of the corresponding rocks) cannot be rea
the expedient of attaching a “flag” to each four-momentum arrow t
momenta of the rocks after the collision. The vector sum of these four-mo
of four-momentum. Since we know p,, we can construct the unknown four-
its components from the diagram as shown, and use these to compute the ¢

x-velocity.

n. The vector sum of these four-momenta is

he individual four-momentum arrows (which

d directly from the diagram, | have adopted
hat states its magnitude. (b) The four-
menta is still p: by conservation
momentum arrow for p., read
orresponding rock’s mass and

—

Example R9.2

Problem: Solve the rock collision problem discussed in example K1, using
an energy-momentum diagram. (Remember that a rock with mass m. = 12kg
moving with v, = { hita rock with mass 28 kg at rest. After the coli'sion, the
first rock, whose mass is unchanged, moves with x-velocity vy, = =)

Solution Since the sum of four-momentum arrows is defined as the sum of
ordinary vectors (we simply add the components), we can add four- momenta
arrows on an energy-momentum diagram just as we would ordinary vector
arrows (by putting the tail of one vector on the tip of the other while preserv-
ing their directions). Using this technique, we see in figure RY.6a that in the
rock example, the system's total four-momentum before the collision has com-
ponents E; = 48 kg and P;, = 16 kg. The two rocks’ four-momentum arrows
after the collision have to add up to the same total four-momentum arrow;
and since we know the smaller rock’s four-momentum after the collision, we
can construct the larger rock’s final four-momentum arrow p, (figure R9.6b).
We can then read the components of this arrow right off the diagram, getting
the same results as in equations R9.7. One can then use these results (aswe
did before) to compute that rock’s mass and x-velocity.

Advantages and disadvan-
tages of the graphical method

This graphical approach to the problem can be somewhat easier than
the algebraic approach if one has access to hyperbola graph paper (which
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makes calculating the object’s energies unnecessary). However, even if one
lacks hyperbola graph paper, drawing such a diagram does have some
advantages: (1) It provides a more visual and concrete way of dealing with
the problem, and may be helpful to you if you find the algebraic approach
rather abstract. (2) When used in conjunction with the algebraic method, it
serves as a useful check on the algebraic results: it is harder to make errors
while using the graphical method. (3) In some cases, as we will see, simply
looking at the diagram can yield qualitative information that is very difficult
to get from the algebraic equations alone.

In short, the graphical method represents an alternative method for solv-
ing problems involving conservation of four-momentum that often comple-
ments the algebraic approach. Armed with both of these techniques, we are
now ready to explore some of the strange and interesting consequences of
the law of conservation of four-momentum.

R9.3  The Mass of a System of Particles

As we have seen, an object’s relativistic energy is not simply equal to its Kinetic
energy (even at low velocities) but involves the object’s mass as well. The fact
that E = p, is conserved by an isolated system’s internal interactions does not
imply that the object’s mass and its kinetic energy are separately conserved—
only that their sum is conserved. In special relativity, mass and kinetic energy
are'simply two aspects of the same whole (the relativistic energy). We have
no reason to presuppose a barrier between these two aspects of relativistic
energy that would preclude the conversion of one to the other.

In much of the remainder of this chapter, we consider examples of pro-
cesses that do just that. We will begin with a simple example that illustrates
something we must understand about “mass” before we can go on: a system’s
mass is not the same as the sum of the masses of its parts.

Consider the collision of two identical balls of putty with mass m = 4 kg
which in some inertial frame are observed to have x-velocities of v, = +: and
., = —1; that is, these putty balls are approaching each other with equal
speeds. Imagine that when these putty balls collide, they stick together, as
shown in figure R9.7.

Note that before the collision, the x component of the system’s total four-

momentum is zero:
m(+: m(—3 m(:—3
Pu+pu= ‘1," ==
VI-GF V1-GF V1-GF
so conservation of four-momentum implies that the x component of the final
mass’s four-momentum is zero as well, meaning that it must be at rest.
What of relativistic energy conservation in this case? A Newtonian anal-
ysis of this collision would speak of the kinetic energy being converted to
thermal energy in this inelastic collision. Such an analysis would also assert
that the mass of the coalesced particle is M = m + m = 2m. But we have more

constraints to consider in a relativistic solution to this problem. If the spatial
components of the four-momentum are conserved in this collision, the time

(R9.9)

Before Alter

, +3/5 =-3/5
U = +3/5 g g oN / M@ (At rest)
—p X A
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Conversion of rest energy
(mass) into other kinds of
energy (or vice versa) is
possible

An example showing conver-
sion of kinetic energy to mas:

Figure R9.7

The inelastic collision of two balls
of putty (each having mass

m = 4 kg) as seen in the frame
where they initially have equal
speeds but opposite directions.
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The mass of a system is not the
same as the sum of the masses
of its parts

Figure R9.8

(a) Putty balls before the collision,
considered as two individual
objects. Each has its own mass,
energy, and x-momentum.

(b) Putty balls before the collision,
considered as a single system.
The system'’s x-momentum is
zero, meaning that its total
energy of 10 kg is the same as
the system’s mass.

Chapter R  Conservation of Four-Momentum

component must also be conserved, whether thc'cullihi(’“ is elastic or noy

But how can we think of the relativistic energy being (‘(‘"N'r\'t'_d in this Case,

since no mention has been made of thermal energy in the definition of g,
relativistic energy given in chapter RS?

The answer is direct and surprising.

its relativistic energy is simply equal to i

the time component of four-momentum, we

M=E+E=—2—+— mn___ = Z'—'lL =10, =10 kg (RY.10)

s - VE
= 8 kg' Conservation of four-momentum thy,

which is not equal to 2m = h p
N > 9 ~C > 5 » »
requires that the final object have a greafer mass than the sum of the masses

that collided to form it!
We know from experience

Gince the final object is motion]esg
ts mass M. But by conservation (,,'

have

3

with collisions at low s seds that when twg
objects collide and stick together, their energy of motion gets converted to
thermal energy, making the final object a lmlq.j warmer than the origing|
objects. (In this case, actually, the final object will be a _I«){ warmer than the
original objects, so much so that any real putty balls co.llldl“g.at such speeds
would vaporize instantly!) What equation R9.10 is telling us is that the fina]
object must be more massive than the original objects, and that the increased
thermal energy is somehow correlated with this.

But where does this extra mass actually reside? The final object has the
same number of atoms as the original objects did. Does each atom somehow
gain some mass? This seems absurd. The final object’s larger thermal energy
means that its atoms will jostle around more vigorously. Can the motion of
these atoms “have mass” in some sense? This seems crazy. Individual parti-
cles have the same mass no matter how they move. So where is this extra mass?

There is only one fully self-consistent answer to this question: the extrg
mass belongs fo the systent as a whole; it does not reside in any of its parts.

We can see this more vividly as follows. Consider the system consisting
of the two balls of putty before they collide. If we consider them as scparate
objects, the putty balls eaclt have a mass m of 4 kg and a relativistic energy
of 5 kg, and one has an x-momentum of =3 kg and the other +3 kg But if
we consider the balls as a single system, the sysfer has a total x-momentum
of zero and a total energy of 10 kg, so the system’s mass M = (E3 = 1p: 12
is equal to 10 kg (see figure R9.8). So we see that the thermal energy produced
by the collision is not the source of this extra mass: the extra mass was present
in the “system” before the collision and remains the same after the collision.

E(kg) E(kg4
10 10+

——f—-H—+—t—+——’ P, (kg
4k dkg ‘
s s
0,=3/5  vy=-3/5 : M=10kg '

(EY)
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S0 mass is not “created” by the collision process at all: the collision sim-
ply mantfests the system’s mass in the mass of a single final object. If we focus
on the masses of the individual objects in the system before and after the
collision, we think of mass being created. But if we focus on the system before
and after the collision, we see that its mass remains the same.

One can get unnecessarily hung up on the difference between the mass
of a system and the masses of its parts. The reason this seems screwy is
that we are used to treating mass as if it were additive: the mass of a jar
of beans is the sum of the individual beans’ masses plus the jar’s mass,
right? This is close enough if the beans travel at low velocities. But if we
had common experience with a jar full of beans that bang around inside
the jar with speeds close to that of light, then we would be used to the idea
that such a jar would have a different mass than the sum of the individ-
ual beans” masses. Mass is simply not additive in the way that energy and
-momentum are.

There are actually many examples of things in the world where the whole
is greater than the sum of its parts. The meaning of a poem is not the same
as the sum of the meaning of the individual letters in its words. The “life” of
an organism cannot be localized in any of its parts. We simply need to start
thinking about mass in the same way that we think about such things.

The best way to look at this is to think of the mass of a system of particles
asa property of the system as a whole (that is, the magnitude of the system’s total
four-momentum vector) and something that simply doesn’t have very much
to do with the masses of its parts. The only self-consistent way to define the
mass of a system is as the magnitude of the system’s total four-momentum;
and if this definition leads to the mass of a system being greater or less than
the masses of its parts, well, that's the way it is!

Exercise R9X.2

Let’s look at the system described in figure R9.8 in a frame moving
with the left-hand ball. Use the Einstein velocity transformation to show that
the other ball’s x-velocity is v, = — .. Find the system's four-momentum com-

nents E; and p}, in this frame, and show that the system’s mass [found
using M’ = (E7 = [551)') is still 10 kg. (A system’s mass may not be equal
to the sum of the masses of its parts, but it is frame-independent.)

R9.4  The Four-Momentum of Light

We all have experienced the fact that light carries energy: we have felt sun-
light warm our skin, or seen an electric motor powered by solar cells. Since
we have seen that energy is the time component of four-momentum, it fol-
lows that light should have an associated four-momentum vector. What does
the four-momentum of light look like?

Previously, we have explored the four-momenta of objects (rocks or
putty balls or the like) that could be considered to be particles that have a
well-defined position in space and thus a well-defined worldline through
spacetime. The analogous thing in the case of light would be a “flash” or
“burst” of light energy that is similarly localized in space. We can consider
a continuous beam of light to be composed of a sequence of closely spaced
flashes, much as we might imagine a stream of water to be a sequence of
closely spaced drops. Quantum physics indeed teaches us that light actually
is comprised of particles called photons, which we can consider to be tiny

7

A system’s mass can’t be
localized: it is a property of the
system as a whole

A light flash as a “particle” of
light
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Figure R9.9

Energy-momentum diagrams
showing the fourmomentum
arrows for hight flashes mowving in
the (a) +x and (b) -x directions,
respectively. In each case, for the
four-momentum to be parallel to
that flash's worldline, it must have
slope +1 on the diagram. This
implies that a hght flash’s relativistic
momentum magnitude | p| must
have the same value (in SR units) as

its energy “3| = E,

Alight-flash’s four-momentum
vector has slope +1

A light flash’s relativistic
momentum is equal to its
energy

Alight flash’s mass is zero
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flashes of light. Alternatively, we might model a flash of light as being one
gigantic photon, :

So what might the four-momentum of a photon or a flash of ll};h_‘ look
like? Arguably, the most basic feature of any object’s four-momentum is thay
it is parallel to that object’s worldline. If this is true for a light flash, then jt
follows that the flash’s four-momentum vector must have a :Iupg of +1 on
an energy-momentum diagram. The four-momentum ofa ﬂ.\§h f}'llh agiven
energy E moving in the +x direction will thus look as shown in figure R9.95,
If a light flash is moving in the —x direction instead of the +x ‘.ilrcclmn, the
slope of its four-momentum arrow on an oncrg)'-m"ml‘““"“_d'-‘Km'“ is ~]
instead of +1, and its x-momentum is negative, as shown in figure RY.9b

You can see from figure R9.9 that if either flash’s four-momentum vector
is to have such a slope, it must have a relativistic momentum ma‘gnitudv 15
that is equal to its relativistic energy E. This is in fact consistent with equation
R8.32, which in the case of light tells us that

Bl ojpjmy =
E

One immediate implication of this important formula is that it st
carry momentum (as well as energy). Light bouncing off a mirror will thus
transfer momentum to the mirror (causing it to recoil) in much the same way
as a ball bouncing off an object transfers momentum to the object and - suses
it to recoil. This has been experimentally verified,* and it is now knowr that
the pressure exerted by light due to its momentum plays an important part
in the evolution of stars, the physics of the early universe, and a number of
other astrophysical processes.

Another immediate consequence is that a flash of light has zero mass. We
have defined the mass of an object in special relativity to be the magnitude of
its four-momentum. According to equation R9.11, the flash’s mass is

|pl=E (R9.11)

' =E-|p|= (R9.12)

This is actually good. If a flash of light were to have some nonzero mass i,
then its relativistic energy E = m/(1—|3/*)"* and relativistic momentum
p = m|3|/(1-13*)""* would both be infinite, since | #| =1 for light, which
makes the denominator zero in each expression. But since m = 0, these equa-
tions actually read E = 0/0and || = 0/0,and as 0/0 is technically wdefined
instead of being infinite, these equations simply don't say an_\'tliing useful
about the four-momentum of light instead of yielding absurditics.

*Maxwell’s theory of electromagnetic waves also predicted (before relativity did) that
light should carry momentum of this magnitude. Experiments performed in 1903 by
Nichols and Hull in the United States and Lebedev in Russia confirmed this predic-
tion. See G. E. Henry, “Radiation Pressure,” Sci. A, June 1957, p- 9.
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Problem: When a particle collides with its corresponding antiparticle, they
annihilate each other, converting their rest energy entirely to light (phntnns‘)A
A perfect rocket engine might mix antimatter with an cqu'dl amount of matter
of the same type, and direct the resulting light in a tight beam out of the engine
nozzle. No other kind of exhaust could possibly carry more momentum out
the rear of the rocket per unit energy expended than li;,-;ht can. Imagine a rocket
of original mass M = 90,000 kg sitting at rest in some frame in deep space
(M includes the mass of the matter-antimatter fuel). Imagine that it fires its
engines, emitting a burst of light having a total (unknown) energy E,. If
after this the ship’s final speed is | 7] = {, what is its final mass m? '

Solution Here are initial and final drawings for the situation:

Initial: Final: 5=t
D, - E
D\ M U,=0 l’ = -
T . — ¢ D—
- V _———— Y
Full ship Burst of light Partially empty ship

The system here is the ship and the flash. This system’s initial four-momentum
vector is that of a mass M at rest, which has components [M, 0, 0, 0]. After
the engines fire, the system consists of a light flash and the somewhat
lighter ship. According to equation R9.11, the flash’s relativistic momen-
tum magnitude [P, | is equal to its energy E,, and since the flash is mov-
ing in the —x direction, the light’s spatial four-momentum components are
P = -Ifr, | ==E and p,, = p;. = 0. Wedon't know the final ship mass m, but
we do know that it is moving with || = { in the +x direction, so by equa-
tions R8.10, we know that the ship’s final four-momentum vector has a time
component of E = m/(1 = |3]%)"* = m/(1 = £)"* = m/(%)"* = 5 mand an
x component of Ev, = (3m)$ = { m. Conservation of four-momentum there-

fore implies that

M E, im M=E +3im
- 4 =4
0 2 E, + +:m % E,=5m (R9.13)
0 0 0 0=0
0 0 0 0=0

The top two component equations represent two equations in the unknowns
m and E, . Substituting the second into the first yields

L S A [— =lM=
M—3m+3m 3m 3m = n 3M 30,000 kg (R9.14)

So even this ideal rocket must use 60,000 kg of matter-antimatter fuel to
boost the remaining 30,000 kg to a speed of 4/5.

Example R9.3

Exercise R9X.3

Solve example R9.3 by using an energy-momentum diagram. (Hint: We know
that the slope of the light flash’s four-momentum is —1, and that the slope of
the rocket’s final four-momentum vector has slope +£.) Where do these lines
intersect on the diagram? Choose your scale so that one mark = M.
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Particle physics as the most
important practic al application
of relativaty

Appropriate units for doing
particle physics

Chapter R9  Conservation of Four-Momentum

R9.5  Applications to Particle Physics

talk in this book about relativistic trains, spac,.
ships, runners, and so on, special relativ ity has few genuinely practical app;.
cations other than in the realm of subatomic p.\rticlc Ph_\'-"'c-" (the ( J'-“’ System
and some astrophysical processes being the main exceptions). Subatom;,
particles (such as electrons, protons, and ncutrpnbs)‘ have small enough
masses that common processes can give them rl'lclll\'lstl(: speeds. Most of the
experimental tests of relativity theory involve suc'h particles.

The kilogram is an inappropriately large unit of mass or energy when
one deals with elementary particles. Elementary particle ph'\'sIClht?\ Mmore
commonly express the mass, energy, and momentum of such particles in
terms of the energy unit of electronvolts, where 1 eV is the energy an elec.
tron gains by going through a 1-V battery. In terms of more common units,

leV = 1.602 x 1077 = 1.782 x 10" kg (R9.15)

In spite of our imaginative

So, for example, an electron (whose mass is 0511 MeV) mt'J\‘il\g at || = ¢
has anenergy E = m/(1 - |5)%)"? =3m=0852 MeV, a kln(‘tlf energy of K =
E — m = 0.341 MeV, and a momentum magnitude of|pl=E |3] = 0.682 MeV.

Example R9.4 shows how we can apply conservation of four-momentum
to a very real problem in subatomic physics.

Example R9.4

—

Problem: The most stable version of the subatomic particle called the K°
meson or kaon (which has a mass M = 498 MeV) decays with a half-life of
about 36 ns to two identical 7 pions (which have a mass m = 135 McV),
If the original kaon is at rest, what are the speeds of the pions after the
decay?

Solution Let's number the pions 1 and 2, and choose the orientation of our
reference frame so that the first pion moves in the +x direction. Conseryation
of four-momentum then implies that

M E, E:
0 +pil Pz
0= O |+ |Px (R9.16)
0 0 Pa

(kaon) (pion1) (pion2)

(Note that since the kaon is at rest, its spatial four-momentum components
are zero and its energy is just its rest energy, which is its mass.) This equation’s
bottom two components tell us that p,, = p.. = 0, so the second pion also
moves along the x axis. The x component line tells us that p.. = —|p,,
which says that the second pion moves in the —x direction with the same
relativistic momentum magnitude as the first. Since the pions have the same
mass m, this means that the pions’ relativistic energies are the same:

Ex=\/m +|pf = /m* +|p ] = E, (R9.17)

where the first step here follows from m* = E* = | 5 |* (equation R8.31). Equa-
tion R9.16’s first component then tells us that M = 2E,, or E, = | M = 249 Me\.
" we plug thlS intom = Tt lf). '2’ we can 50]\'(‘ f(“' |”,| l .

[, | = VE] = m’ = /(249 MeV)' = (135 MeV)’ = 209 MeV (R9.18)



R9.6 Parting Comments

Finally, we can find the pions’ speeds by using equation R8.32:

) 209 MeV 5 151
17| 2 = 0839 |, = |5 _ 1P = |5

[

£, 249MeV I R

|| = = (R9.19)
These speeds end up being unitless and smaller than that of light, which are
both good signs. (Note that this process “converts” kaon mass energy to pion

kinetic energy.)
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—

Figure RY.10 shows the aftermath of a collision between two protons
recorded by the CMS detector associated with the Large Hadron Collider
at CERN in Switzerland. The particle tracks are curved because the detector
is placed in a magnetic field which causes each charged particle to follow a
circular path whose radius of curvature is equal to the particle’s relativis-
tic momentum magnitude. These particle tracks are registered electronically
and computers do the measuring and calculating. This allows experimenters
to sift through billions of collision events to look for evidence of rare parti-
cles. The computer analysis of trillions of events like this led to the discovery
of the Higgs boson, the last missing piece of the Standard Model of particle
physics, in July of 2012.

The particles involved in such collisions are extremely relativistic, so their
.m.\l\ sis involves conservation of four-momentum and would make no sense
without it. E. F. Taylor and J. A. Wheeler estimated in 1963 that the annual
work of physicists analyzing particle collisions at that time was already testing
the law of conservation of four-momentum more often than the annual work
of surveyors in the United States was testing the laws of Euclidean geometry.*
Since then, the number of particle collisions per year that have been analyzed
by computers has enormously increased. Any one of these tests could have
spom'd a violation of this law, but none have. As a result, the law of conserva-
tion of four-momentum is one of the best-tested laws in all physics.

R9.6 Parting Comments

The principle of relativity is rich with fascinating implications, and this book
has touched on just the most basic of these implications. I close with some
suggestions as to where an interested reader can go from here.

An excellent and somewhat more advanced and detailed exploration
of special relativity is found in E. F. Taylor and J. A. Wheeler’s Spacetine
Physics, 2nd ed., New York: Freeman, 1992. The American Journal of Physics
(which is found in many college libraries and electronic journal collections
and is written primarilv for college physics professors) is a great place to look
for articles on current issues in relativity theory. Search for special relativity in
a physical or online index. (Many of these articles are accessible to students.)

The next step beyond spcual relativity is general relativity. A book that
one can use when beginning a study of general relativity is Taylor, Wheeler,
and Bertschiger, Exploring Black Holes (Addison Wesley Longman). Look for
the second edition, which (at this writing) is due to be published shortly.

Higher-level textbooks that are still accessible to undergraduates are
Hartle’s Gravity (Addison-Wesley, 2003), and my own book A General Relativ-
ity Workbook (University Science Books, 2012).

More delights await: | encourage evervone to continue the exploration!

*E-F Taylor and ). A. Wheeler, Spacetime Physics, New York: Freeman, 1963, p. 123,

Figure R9.10
The aftermath of a collision

recorded

between two protons as
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TWO-MINUTE PROBLEMS
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T

RIT1 A particle moves along the ¥ axis. The slope of the
Aarrow representing an object’s four-momentum on an
energy-momentum diagram is equal to
A The particle’s speed
B. The particle’s v-velocity
C. The inverse of the particle’s speed.

D. The inverse of the particle’s x-velocity.
E. The particle’s energy. .

R9T2  The length of the arrow representing an object’s four-
momentum on an energy-momentum diagram is directly
proportional to '

The four-momentum’s four-magnitude | p/.

The relativistic momentum’s magnitude | /.

The object’s mass.

The object’s speed.

The object’s inverse speed.

None of the above.

mmonNgE»

RIT3  Suppose we know a particle’s four-momentum p, and
P, components. If we draw the particle’s four-momentum
arrow on an energv-momentum diagram, we can use a
hyperbola to determine

. The particle’s energy.

The particle’s speed.

The particle’s x-velocity.

The particle’s momentum magnitude |p|.

The particle’s mass.

The scaling on the ¢ axis.

Something else (specify).

HmmOoN®»

R9T4 A particle with a mass of 3.0 kg is accelerated to a
speed of 0.80. The mass of this particle is now:
A. Greater than 3.0 kg
B. Lessthan3.0kg
C. Still3.0kg

RIT.53 A sealed cup of water is placed in a microwave
oven. The water absorbs microwave energy, which causes
its atoms to vibrate more vigorously, making the water
warmer. In this process, the mass of the water in the cup:
A. Increases
B. Decreases
C. Does not change

R9T.6 In example R9.3, the spaceship engines convert
60,000 kg of matter-antimatter fuel to massless light. The
mass of the total system (empty spaceship plus flash of
light, considered as a unit) thus decreases. TorF?

RIT.7 In example R9.4, a kaon (whose mass is 498 MeV)
decays to two pions (each with a mass of 135 MeV).
(a) Mass is converted to energy in this process. T or F?
(b) The total system’s mass decreases in this process.
TorF?

RIT.S  Special relativity teaches us that energy is the same
asmass. Tor F?

different systems. Each consists of

two particles that have equal mass ™ and equal energy 3,
In svstem A, both particles move in the 41 direction. In
system B, the particles have opposite velocities. In system
C, the particle’s velocities are at night .mgh-.s,lo each other
(a) Which system has the Jangest total mass? !

(b) Which system has the smallest total mass’

System A

System B

System C

Systems A and B (which have equal total masses)
Systems A and C (which have equal total masses)
Systems B and C (which have equal total masses)

All three systems have the same total mass.

R9T9 Consider three

AmmoN®>

RYT.10 A system consists of two photons moving in oppo-
site directions. One photon has energy E and the other has
energy 4E. The total system’s mass Mis

Zero, of course.

3E.

iE.

5E.

Something else (speafy).

monN®y»

R9T.11 A photon hitting an electron (mass ) at rest can cre-
ate an electron-antielectron pair in addition to the oripinal
electron. Assume that the two electrons and the positron
move away from the collision at rest with respect to cach
other afterward. What was the photon’s initial encryy
A. Zero
B. m
C. 2m
D. 3m
E. 4m

R9T.12 Which of the following processes is consistent
with the law of conservation of four-momentum? (Answer
C if it is consistent with the law; F if it violates it.)

(a) A particle moving eastward collides with and sticks to
an identical particle at rest. The resulting single par-
ticle remains at rest but is more massive than the sum
of the original particles’ masses.

(b) Two identical particles with equal speeds, one moving
east and one moving west, collide. After the collision,
the same particles move north and south, respectively,
with the same speeds that they had originally.

(¢) Two electrons with equal speeds, one moving east and
one moving west, collide. After the collision, the elec-
trons move north and south with smaller speeds than
they had originally. Nothing else is emitted.

(d) A spaceship of mass 2m originally at rest burns some
matter-antimatter fuel until the ship’s mass is m, The
light energy ejected from the ship in this process has
total energy m as well.

(e) A particle of mass 2m at rest decays to two identical
particles each of mass m that move in opposite direc-
tions away from the decay position at a speed of 05.
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HOMEWORK PROBLEMS
Basic Skills Modeling
R9B.1 Draw an energy-momentum diagram for an object  RIM.1 A particle of mass m decays into two identical par-

with a mass of 12 kg moving in the +x direction at a speed
of {. Estimate its relativistic kinetic energy from the graph.

R9B.2 Draw an energy-momentum diagram for an object
with a mass of 5 kg moving in the —x direction at a speed
of .. Estimate its relativistic kinetic energy from the graph.

R9B.3 A particle of mass m at rest decays into two identi-
cal particles, each with mass |m. Conservation of spatial
momentum means that the product particles must move
off in opposite directions with the same speed. What is the
relativistic kinetic energy of each particle?

R9B4 A flash of light moves in the +x direction. The flash
has a total energy of 2.0 x 10 " kg.
(a) What is this in joules?
(b) What is the x component of the flash’s four-momentum
vector (in kilograms)?
(c) What is this in kg-m/s?

R9B.5  Two balls of putty, each of mass m, move in opposite
directions toward each other with speeds of 0.95. The balls
stick together, forming a single motionless ball of putty at
rest. What is the mass of this final ball of putty? (Express
your answer as a multiple of m.)

R9B.6  Aball of putty with mass m moves in the +x direction
with speed | 3] = {. It hits another ball of putty of mass m at
rest. The balls stick together after the collision, forming a
single ball.

(a) What is this final ball’s final x-momentum (as a mul-
tiple of m)?

(b) What is its relativistic energy (as a multiple of m)?

(c) What is its x-velocity?

R9B.7 A spaceship with a mass m originally at rest burns
matter-antimatter fuel, radiating light with a total energy
of E, = 'm in the —x direction.

(a) What is the total relativistic energy of the partially
empty spaceship now (as a multiple of m)?

(b) What is its x-momentum (as a multiple of m)?

(c) What is the ship’s final speed?

(d) What is its final mass (as a fraction of m)?

R9BS  Calculate the total mass of each of the systems
described in problem RIT.9.

R9B.9  Answer problem RYT.10 and show your work.

R9B.10 Do problem R9T.12. Explain your reasoning for
your answer for each part.

R9B.11 The sun radiates energy at a rate of 3.9 x 10™ W.
Atabout what rate is the sun’s mass decreasing per year?

ticles that move in opposite directions, each with a speed
of :. What is the mass of cach of the product particles
(expressed as a fraction of m)?

R9M.2 Consider problem R9IT.11.
(a) Solve it graphically using hyperbola graph paper
(b) Solve it algebraically

RIM.3 An object with a mass m sits at rest. A light flash
moving in the +x direction with a total energy of 4m hits
this object and is completely absorbed. Find the final
object’s mass and x-velocity
(a) Do this graphically using hyperbola graph paper
(b) Do this algebraically.

R9M.4 An object with mass m, = 8 kg traveling with an
x-velocity of v, =1 collides with an object with mass
m, = 12 kg traveling with an x-velocity of v,, = — ;. After
this elastic collision, the 8-kg object is measured to have
an x-velocity of v, = — . Find the other object’s x-velocity,
and show that it has the same mass as it started with.

(@) Do this graphically using hyperbola graph paper.

(b) Do this algebraically.

RIM.5 A ball of putty with mass m = 8 kg traveling with
an x-velocity of v,, = 15 collides with an identical ball of
putty at rest and sticks to it, forming one glob. Find the
final glob’s mass and final x-velocity.

(a) Do this graphically using hyperbola graph paper.
(b) Do this algebraically.

R9IM.6 A photon with energy 2nr hits a particle of mass m at
rest. The photon “back-scatters” from this interaction (that
is, it moves in the opposite direction) while the particle
moves forward to conserve momentum. Find the back-
scattered photon’s energy E and the particle’s speed | 7.
(@ Do this graphically using hyperbola graph paper.

(Hint: Mark your E and p, axes in units of 0.2m.)
(b) Do this algebraically.

RIM.7 A spaceship of mass M is traveling through an
uncharted region of deep space. Suddenly its sensors
detect a black hole dead ahead. In a desperate attempt
to stop the spaceship, the pilot fires the forward matter-
antimatter engines. These engines convert the mass energy
of matter-antimatter fuel entirely to light, which is emitted
in a tight beam in the direction of the ship’s motion. The
spaceship’s initial speed toward the black hole is [#] = .
Find the fraction of its mass M that must be converted to
energy to bring the spaceship to rest with respect to the
black hole. (Hint: Treat the emitted light as one big flash.)
(a) Do this graphically by using hyperbola graph paper.

(Hint: Mark your E and p, axes in units of | M.)
(b) Do this algebraically.
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RIMS  Starfleet Academy cadets are taking practice shots
at some beat-up old freighters. One cadet hits a freighter of
mass m (initially at rest) with a phasor blast that delivers
a total energy E = [ m, which the freighter’s shields suc-
cessfully absorb. (Model a phasor blast as a burst of light.)
(a) What is the freighter’s final velocity?

(b) What is its final mass?

RIM.9  Suppose a subatomic particle with mass M decays
into a photon with energy ; M and a second particle. What
is this second particle’s velocity (magnitude and direction)
and its mass (as a fraction of m)?

RIM.10 A spaceship with rest mass m, is traveling with an
x-velocity v, = +1 in the frame of the earth, It collides
with a photon torpedo (an intense burst of light) moving
in the —x direction relative to the earth. Assume that the
ship’s shields totally absorb the photon torpedo.

(a) The oncoming torpedo is measured by terrified observ-
ers on the ship to have an energy of 0.75m,. What is
the photon torpedo’s energy in the frame of the earth?
(Hut: How do the components of four-momentum
transform when we go from one inertial frame to
another?)

(b) Use hyperbola graph paper to find the damaged ship’s
final x-velocity (in the earth frame) and mass (in terms
of m,) after it absorbs the torpedo.

(c) Find the ship’s final mass and x-velocity algebraically
using four-dimensional column vectors.

RIM.11 Starship Design I. Suppose you want to design
a starship using the best possible rocket engine (the
matter-antimatter engine discussed in example R9.4) that
can boost a payload of mass m = 25 metric tons (25,000 kg)
to a final cruising speed of 0.95. Show that the ship’s initial
mass must be M = 6.24m. (Hint: The ship can essentially be
considered to be a particle of mass M at rest that decays into
a big flash of light and a smaller particle (the payload) of
known mass m traveling at the known speed |7]. Use con-
servation of four-momentum to determine M.)

RIM.I2 A 7 pion (mass 140 MeV) normally decays to a
# muon (mass 106 MeV) and a neutrino. The neutrino
is a particle that is so light you can treat its mass as being
essentially zero (like a flash of light). If the pion is at rest,
find the speed of the emitted muon.

R9M.13 Suppose a photon with energy E, is traveling in the
4 direction and hits an electron of mass m at rest. The
photon scatters from the electron and travels in the —x
direction after the collision. Find a formula for the final
energy of the photon E in terms of E, and m. (Physicists call
this process Compton scattering. The fact that the formula
correctly describes the behavior of light scattering from
electrons is one of the most important pieces of evidence
supporting the photon model of light.)

RIM.14 A sufficiently energetic electron colliding with an
electron at rest can create an additional electron/anti-
electron pair out of energy. All these particles have the

same mass . How much energy must the INCOMINg ele,.
tron have to make this pugsiblc.’ [Hints: It turns out thyy the
process ruquin'\ the least energy if the four final Particle,
move off together, so treat them as a single particle iy,
mass 4m. On hyperbola graph paper, one can solve gy,
problem fairly easily by finding where a certain pajr
hyperbolas have a certain vertical separation: think abgy,
it. To solve mathematically, | mcun}rpvnd writing the finy|
“particle’s” energy in the form \/ [ + (4m), where 15l is
that particle’s momentum magnitude.]

Rich-Context

R9R.1  Starship Design 11. Consider the starship discussed
in problem RIM.11 (which I recommend doing first)

(a) Suppose you can find astronauts who are willing 1,
travel for up to 50 years (as measured by their watches)
on a round trip to the stars. About how many light.
vears could the ship go out and return (assuming that
the ship spends a negligible time accelerating)? Is this
very far compared to the galaxy as a whole?

(b) The take-off mass calculated in problem RYM.11 only
included enough fuel to boost the payload to the ¢ Tuis-
ing speed. For a complete round trip, one must boost
the payload (mass m) to the cruising speed, decelerate
it to rest at the destination, boost it to cruising speed
again for the return trip, and decelerate it upon reach-
ing earth. How much fuel (as a multiple of n) do we
need for a complete round trip? (Hint: The answer i
1ot 4 times the fuel calculated in problem ROM.11)

(¢) Comment on the practicality of visiting distant strs by
using a rocket that must carry its own fuel. '

R9R.2 One way to get around the difficulties discussed

in problems RIM.11 and RIR.1 is to use light pressure 1o
accelerate a payload. Suppose you attach a perfect nurior
to the back of your payload, and then you accelerate the
payload by bouncing a powerful laser beam off the mirror
{This has the big advantage that you don’t have to carry
the mass of the fuel or the rocket engine!) The lasers pro-
ducing the beam could be massive things powered by
solar energy, so neither the size nor mass nor power of
these driving lasers is a limitation (at least in principle).
Suppose we wish to accelerate a 2000-kg scientific payload
outward from the earth’s orbit around the sun at a rate of
1 m/s* (at this rate, it would take about a year to reach
10% of the speed of light). Assume the payload has already
been delivered at rest to a point far enough from the carth
that the carth’s gravity is negligible (but don't ignore the
sun’s gravity). How many watts of light power must the
driving laser produce?

(The next two problems are adapted from ones in Tavlor
and Wheeler, Spacetime Physics, 2/¢, Freeman, 1992.)

R9R.3  Suppose you mount an electric motor on one end

of a platform. The motor is connected via a belt to a pad-
dlewheel on the other end of the platform that stirs an
enclosed container of water, causing the water’s tempera-
ture to increase. The motor is powered by a battery placed
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directhy on top of the motor. The center-to-center distance

between the battery and the water s 10 m. The battery

contains about S000 | ot electrical encrgy. The platform is

mounted on completely fnctionless wheels and is initially

at rest The entire system has a mass of 10 kg

(@) Explain why the plattorm must move in a certain
direction when the motor is turned on

() Calculate how far the system's conter of mass will have
moved by the ime the battery dies.

ROR4  Anelectron (mass m) moving with a Kinetic energy of
K = m huts an anticlectron (of mass m) at rest. The particles
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annihulate, producing two photons. One photon Wravels
perpendicular 1o the electron’s onginal direction of mtion,
while the other travels at an angle of # with respect W that
direction. Find the photons” energies and the angle ¢

Advanced

R9A.1  Rework the Compton scattering problem (problem
ROM.13) to find the energy of the scattered photon if its
trajectory after scattening from the clectron makes an angle
of B with its original direction. (This is not casy')

" ANSWERS TO EXERCISES
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ROX.1  The graph appears below.
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The trick is to draw a line with slope 1/v, = ~5/3 (colored
dashed lines) and see where that line intersects the hyper-
bola corresponding to 1.0 kg (colored solid curve). We can
see from the diagram that the object's energy is E = | kg, its
kinetic energy is K = | kg, and p, = —| kg. One can easily
check this with a calculation.

R9X.2 Let the Home Frame be the frame where the col-
lision looks as shown in figure R9.8. The Other Frame in
question then moves relative to the Home Frame in the +x
direction at 3 = {. According to equation R7.14a, then,

lm vw—=B _ _=3/5-3/5 _-6/5__15

1-8ey, 1-(3/5)(=3/5) 34/25 17

Becouse VI=7E = Vi = (-3 = Vi - B =B =&

E;= m =17

V1=uvi, ;

g = ()=

(R9.20)

m (R9.21)

(R9.22)

The first ball is at rest in this frame, so E{ = m and p{, = 0.
So the system’s total four-momentum components are

17 25

E}=E{+£§=m+-s—m=—8-m (R9.23a)
P;."P:."’pé,zo-%ma —%m (R9.23h)

(@)
Figure R9.11

and its total mass is

M= JEF = pit = MV25 15 = I /65 - 205
=’£\/MJ=2’:,nv= l'—;'m (R9.24)

Sincem = 4 kg, M = 10 kg = M, as claimed

RIX.3  Since we don’t know either the light flash’s or the
ship’s final relativistic energy, we cannot immediately
draw their four-momentum vectors on the diagram But
we do know that the slopes of these vectors are
respectively, and that the two vectors have to add up o
the ship’s original four-momentum vector, which fsince
the ship is initially at rest) is vertical. So sketch a line with
slope { from the origin and another with slope —1 down
from the tip of the ship’s onginal four-momentum vector,
(see figure RY.11a). Since the flash’s and ship’s final vectors
have to add to the ship’s onginal four-momentum, the vec-
tors have to lie on these lines and stretch to their intersec-
tion (sec figure R9.11b below). From the diagram, then, we
can see that E and | p| for the ship after the engines fire are
about } M and ! M, respectively, and using m = (£° = | p[*)"”
(or a hyperbola if one uses hyperbola graph paper), one
can show that m = ! M.

1and |,

Ship’s initial
four-momentum
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'
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'
'
'
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.
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Converting quations
to Sl Units

RA.1  Why Use SR Units?

SR units make relativistic

atly simplified when one uses SR
R'lﬂ(itm>hip5 clearer \

The equations of special relativity are gres RO

units to measure distance, as we have seen. But the purpose of using SR units
1s not merely to simplify a few equations: using such lll\lll§ also vividly draws
one’s attention to the connections that special relativity makes l‘i'l\\.t'un
quantities that were previously considered to be fundamentally distinct
For l‘\-\"'lpll', _\P‘-(-m] relativity teaches us that energy, momentum, and mass
are in fact different aspects of the same basic quantity: thc}uur-monu-nlmn It
is not merely convenient to measure the time component E, the spatial compo-
nents p,, I’....md 1., and the magnitude m of this four-vector in the same units,
itis fundamentally appropriate as well. Similarly, the basic metaphor “’l Space-
time geometry that lies at the root of both special and general relativity is
obscured if one insists on using different units to measure time and distance
But physicists use SI units in Nonetheless, this choice of units does lead to complications when one
most practical applications tries to apply the ideas presented in this book to practical situations, since
practicing physicists in their daily work use SI units to describe quantities. It
is important to be able to use the simple and beautiful equations in this book
in situations where the quantities in question are expressed in traditional
units. Fortunately, it is straightforward to convert equations appearing in
this text to equivalent equations involving quantities measured in SI units
The purpose of this appendix is to describe an easy method for doing this

RA.Z Conversion of Basic Quantities

How to convert basic quanti- SR units, as defined in chapter R2, differ from Sl units only in the substitution

ties between SR and SI units of the second for the meter as the basic unit of distance. Mass and time thus
have the same units in both unit systems and need no conversion. The most
important quantities that are affected by the shift in units as one changes
systems are distance, velocity, energy, and momentum. We also should consider
what happens to values of universal constants such as ¢ and Planck’s con-
stant /1. (Indeed, we will treat /t in what follows as an example of how we can
handle such constants in general.)

To help keep things straight in what follows, let me denote quantities
measured in SR units with an “(SR)” subscript; for example, (in this appendix
only!) I will write an object’s speed in SR units as | 7, |, an object’s energy in
the SR unit of kilograms as E,.,, and so on. You should assume that quanti-
ties without this subscript are expressed in S units.

In chapter R2, we saw that the general rule for converting SI quantities to
SR quantities was to multiply the SI quantity by the appropriate power of ¢
that leads to the correct SR units. Let us apply this rule to the quantities of
interest listed above.




Distance in SR units is measured in seconds. Distance in SI units is mea-
sured in meters. To convert an SI distance x to an SR distance v, we must
divide x by one factor of ¢ (in meters per second). The SR unit of energy is
the kilogram, but the SI unit is the joule, where 1] = 1 kg-m*/s’. To convert
from £ (in joules) to E ., (in kilograms), we must divide E by two powers
of ¢ Eiw = E/¢% Planck’s constant /i has units of energy multiplied by time.
In SR units, energy is measured in kilograms instead of joules, so again we
have to divide the SI version of Planck’s constant by two powers of ¢ to get
the correct SR units: that is, i, = hi/c’. Conversion equations involving
velocity and momentum can be derived in a similar manner. The results are
summarized in table RA.1.

RA.3  Converting SR Unit Equations to Sl Unit Equations

To convert equations, substi-
tute SI quantities from table
RA.T into the SR equation

The trick for converting equations from SR to SI units is now very simple:
you simply replace the SR quantities in an equation by the SI equivalents
given in table RA.1. For example, consider the metric equation

A‘ 5K At:\}.l = A mn Aunk; A:(:M\'; (RAI)

. Both As o, and At ¢, have units of seconds and so have the same value in both
systems. But the Sl units of Ax, Ay, and Az are meters; therefore, Ax,,, = Ax/c,
Allm = Ay/c, and Az, = Az/c. The metric equation in SI units is thus

As’= AF - ——’ —(AII. ."[-_:): (RA.2)

As another example, in unit Q we will study equations that give the
energy of a light, photon in terms of the frequencv f or the wavelength A of
the light involved. In SR units, these equatlons are EM, = Iy frsm = Misry/ Aisire
Both energy and Planck’s constant gain a factor of 1/c* when we switch from
SR to SI units, so this factor divides out in these equations above. The wave-
length, on the other hand, has SI units of meters but SR units of seconds, so
Assy = A/c. The second equation thus becomes E = /ic/A in S units, while the

first equation becomes simply E = hif.

Ele RA.1 Sl equivalents for SR quantities

Quantity SR Symbol S| Equivalent
Time coordinate besgy t
Spatial coordinate Xis) v/c
Speed (of an object) | Besso| l5/¢l
Frame x-velocity By B/e
Mass Mysg, m
Momentum | P | [p/el
Energy Esm E/E
Speed of light I c
Planck’s constant Miap h/e
F

181



182

In some cases, we can make
equations prettier by multiply-
g through by powers of ¢

In energy-based SR units, we
express E, p, and m in energy
units instead of mass units

Planck’s constant is the same
in SI units and ESR units

Appendix RA  Converting Equations to Sl Units

Table RA 2 lists some of the important equations in this unit énd.lljt'lr Sl
equivalents. In many of the cases described there, the SI N"*‘;‘;"“"l‘;'f :ll(m Ply
found by substituting the SI unit equivalents from table RA or “* s unit
quantities in the equation from the text. However, In many td»“*} ‘tt 2l unit
equations have been further simplified by di\'l'dmg 'm_n cnm.mon' .1.;( u;\, ()‘»L
For example, the SR unit version of the equation gving 'h“ magnitude of a
particle’s relativistic momentum in terms of its speed reads

_ e || (RA3)
V1-ldsel’

If we simply perform the substitutions called for in table

l f’--.x:
RA.1, we get

lpl _ _mlokl (RA4)

¢ Vi-lorF

The equation can be made prettier, however, by multiplying through by ¢:
l5]= -l (RAS)
\/ 1-|o/l
This is the simplified equation given in table RA.2. I have simplified many of
the equations in the table’s right-hand column in this manner.

RA.4  Energy-Based SR Units

Most of the practical applications of special relativity are in nuclear and par-
ticle physics. Physicists in these fields typically focus on energy as the most
important dynamic quantity, so they usually modify SR units so that the
preferred unit for energy, momentum, and mass is an energy unit (typicaily
the electronvolt) instead of the kilogram (see section R9.5). Let us call a unit
system where four-momentum quantities are measured in units of enerpy
energy-based SR units (ESR). Note that in the SR equations dealing with four-
momentum quantities (the last five equations in table RA.2), it doesn’t really
matter what units one uses to express the quantities n1, [pl, and E as long as
one uses the same units for these quantities. Note also that mc, | pel, and E
all have SI units of energy, and thus are the SI quantities that most directly
correspond to the quantities 1<, | Piess |, and Eiese

In regard to the last equation in the table, if you use energy units instead
of mass units to express quantities related to four-momentum, you should
note that Planck’s constant /i (which has SI units of ]-s or eV:s) has the same
value in ESR units: /s, = I, whereas hg, = It/ in ordinary SR units. Other
constants involving mass or energy will also (of course) be different in
energy-based and ordinary SR units.

RA5  Exercises for Practice

Here are some exercises that will help you practice equation conversions.
Answers appear upside-down at the bottom of the next page.

Exercise RAX.1
Check that | p, | = |p/cl, as claimed in table RA.1.
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y RA.1  Some important equations and their SI equivalents
Equation SR Version S| Equivalent
Metnc A_,':_—_Ar'_.l‘_'_-ly;_-\:‘ Ad=A —'A!"A;{o_\:
Proper time dr=aty1-[sf dr=dty1- /el
Lorentz transformations (¢ and x) 4= 1/\/17. F y=1 ,\,r] ~@/r
t'=(t - Bx) t'=4(t - Bx/c)
x'=9(-5t +x) x'= (=5t + x)
Lorentz contraction L=Lv/1-[F L=L,V1-[5/cF
Transformation for x-velocity v = 1‘:'__," i 3 :
- P, 1-80v,/c
Energy in terms of speed = - E=—-
\/l-h‘! V/I-?;-.,
s ol |
Relativistic momentum magnitude Ipl= 7'_"‘II¥ 3= —2
1-15) Vvi=ld/cl
Mass in terms of E and | | m=E - |pl (mc) = E* = |pcl’
: y — I5]  |pel
spm:lmtennsoffandlpl |.l=~E— - =
Photon energy in terms of fand A E=hf=:-: E=hf= "'\' 5
.__
Exercise RAX.2
Convert the equation Kisg = Ess, = Muss, (Where K is an object’s Kinetic
energy) into its equivalent in SI units.
Exercise RAX.3
The spacetime separation Ao between two events is given by the equation
Ao’ =|Ad, | - At} . Because Acis actually directly measured by a ruler
as opposed to a clock, it makes more sense to express its value in meters
rather than in seconds. With this in mind, what would be the equivalent of
this equation in SI units?
Exercise RAX.4
What are the SR units of the universal gravitational constant Gs? Derive an
equation expressing G, in terms of G in SI units.
Short Answers for the Exercises:
Ju—=3=N TXVY

"2/ =0 By s e o josiun YS L FXVY

Liv2) —;|gv| =0y €XVi

a/d = "dos ‘s /wedy jo sjun sey i ajoN XV



The Relativistic
Doppler Effect

RB.1 Introduction to the Doppler Effect

metric equation is computing the
ativistic moving source. You
mitted by something mov-

A basic description of the An important practical application of the

Doppler effect shift in the wavelength of light emitted by a rel
may already know that the wavelength of light ¢ n
ing with respect to an observer is measured by that observer to be red-shifted
or blue-shifted if the emitting object is moving away from or lowa‘rd the
observer, respectively. This shift in wavelength is called Doppler shift and
the general effect the Doppler effect (after Christian Johann ~Dlopp‘ler, the
19th-century physicist who first described the effect for light). This cftcct_ lm_\_
many important applications in all areas of science, and it forms the basis of
such technologies as Doppler weather radars (that can detect severe weather)
and the radar guns that police use to detect speeders.

Overview of the appendix This appendix examines this effect in some detail, using t
ideas we have developed through chapter R4. Section RB.2 uses a basic mode!
of the emission/ detection process and a spacetime diagram to find a formula
for the shift in wavelength. Section RB.3 looks atan example application, and
section RB.4 explores the nonrelativistic limit of our formula. Finally, secti
RB.5 looks at the slightly different situation involved in Doppler-shift rada;

he tools and

RB.2  Deriving the Doppler Shift Formula

Some basic assumptions To simplify matters, let’s consider a source that moves directly toward
away from the observer in question, and let’s take the x axis of the observ
frame (the Home Frame) to be the line connecting the source and observer
Let us also assume that the observer is located at x = 0 in that frame.

A simplified light-flash model First consider a clock that emits brief flashes of light (we will general-
ize this to continuous light waves shortly). Let the event of the emission
of any one flash be event A, and the emission of the next flash be event B
Since the clock is present at both events, it measures a proper time between
these flashes. If the time between flashes happens also to be so short that the
clock follows an essentially straight worldline between the events, then the
relationship between the proper time d7,; measured in the emitting clock’s
frame and the coordinate time df ,, measured in the observer’s frame is

dTas = \/]- “‘_l l-‘I: dtys = \/1 "”Z:f dt s (RB.1)

(see equation R4.5), where || is the emitting clock’s speed in the observer's
frame. (The last step follows because a clock moving directly toward or away
from the observer is moving along the x axis, so |3| = v,.) Therefore,

Implication of the it
} dirs = AL (RB2)

proper ime formula —
' 1-v;

......Oll...l...............'.'...............................

184



Now, df 15 the ime our observer would measure between the emission
of the flashes. But how much time dfe passes between the observer receiving
those flashes? These imes are not necessanily the same! As l‘olh’ﬂa.\hcs travel
ata 5;\\\1 of 1 back to the observer, the time (in the observer’s trame) that
it takes a tlash to get from its emission event to ;hc observer s l‘\]u-l.l to the
emission event's distance trom the ongin (in that frame). If the source is mov-
ing relative to the observer, then the two events w il not h.lppcn at the same -
slace in the observer’s frame, meaning that the light travel times for the two t g C :\;IL s
flashes will not be the same, implying that dt, # dt . N Workilme

Exactly how should we correct for this effect? We can answer this ques- \
tion fairly easily with the help of a spacetime diagram. Figure RB.1 shows the dtg ;
worldlines of the light flashes in question as they travel back to the observer e v
from a clock that happens to be moving in the +x direction. In the time dt
petween the emission events (as measured in the observer’s frame), the emit- &4 .
ting clock movesa distance vt away tfum the ubg-rvcr. This means (u_ncc s
the speed of light 1s 1 in the observer’s frame) that it takes v, d! s more t!me — cr_; e
for the second flash to make it back to the observer than it took for the first worldline i
flash. The time between the observer’s reception of the flashes is simply the 7/ — X
time between their emission (as measured in the observer’s frame) plus the
extra light travel time required for the second flash to reach the observer:

- Light-flash
worldlines

Figure RB.1
dtx = dlag + v,dts = (1 + 0l (RB.3) How to calculate the time dt;

between the flash receptions
Combining this with the result given in equation RB.2, we get

s (1 4.0) = dry LB VIFE \/' L (RB.4)

dte = — —— — "dT\ﬁ
\/]-pf N\/l—l‘. X ¢/

Now what has all this to do with the wavelength of a continuous beam  Connecting the light-flash
of light waves? Consider! Each crest of a light wave moves at the speed of  model to continuous waves
light, just as a flash would. Therefore, for the purposes of this calculation, a
wave crest is analogous to a light flash, and there is a direct analogy between a
sequence of light flashes and a continuous series of light wave crests. Therefore,
equation RB.4 should also apply to light waves if we interpret d 7, as the time
between the emission of light wave crests in the emitter’s frame and d!, as the
time between the reception of light wave crests in the observer’s frame.

Moreover, we define a light wave’s wavelength A to be the distance
between successive crests in the wave. Since the crests move at a speed of 1,
this means the distance A between adjacent crests is equal to the time df it takes
two successive crests to pass a given point in space (or emerge from the emit-
ter): A = dt. Substituting this into equation RB.4 vields

As_ [1+7, The relativistic Doppler
A Vi-o, (RB.5) shift formula

where Ay is the wavelength of the light measured in the observer’s frame and
Acis its wavelength as measured in the emitter’s frame.

Equation RB.5 is the relativistic Doppler shift formula. Although
figure RB.1 (and certain phrases in the argument above) assume that the
emitter is moving away from the observer (v, > 0), the formula also applies
if the emitter is moving toward the observer (v, < 0).

Exercise RBX.1

Review the argument and argue that equation RB.5 is valid even if v, < 0.
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Note also that if o, > 0, then A, = AV 1 + /Y1 = Vs > Ar, meaning
that the recetved light has a longer (red shifted) wavelength than its wav clength
observed in the emitter frame. On the other hand, if v, <0, then A, < A. the
received light has a shorter (blue-shifted) wavelength than that observed in the
emitter frame. This coincides with what you have probably heard before

Exercise RBX.2

We have assumed in this derivation that the time between emission events
(or successive crests of the light wave) is small compared with the time
required for significant changes in the emitter’s motion (50 that it can be as-
sumed to follow an approximately straight worldline during thc.lntcr\ al in
question). Is this approximation likely to be valid in the case of light waves
(which have a wavelength A = 600 nm)? Justify your answer.

RB.3 Astrophysical Applications

Applications in astrophysics Since excited atoms emit light having a characteristic set of wavelengths
(in their own frame), equation RB.5 is commonly used by astrophysicists
to compute the radial velocity of astronomical objects relative to the earth
This equation technically only applies to an emitter that we know is moving
directly toward or away from an observer (a somewhat more complicated
formula applies when the emitter has a tangential velocity as well), but it
a useful approximation in most cases (since tangential velocities are rarcl,
large enough to matter much). Here is an example application.

Example RB.1 Problem: Light from excited atoms in a certain quasar is received by obser
ers on earth. The wavelength of a certain spectral line of this light is mea-
sured by those observers to be 1.12 times longer than it would be if the atoms

' were at rest in the laboratory (that is, the light has been red-shifted by about
L 12%). What is the quasar’s speed relative to earth (assuming it is moving
directly away from earth)?

3 Solution We are told that Az/A; = 1.12. Equation RB.5 then implies that

-'; AR_ 1+0 .
| A —vl_vl-l.n (RB.6)

To solve this for v,, let us define u = Ag/A¢c = 1.12 and square both sides ot
equation RB.6. Doing this yields

& , "
w= 1+, wil=-v)=1+v,
1-10,

s » b > -
= w-wro,=1+v, = w¥=1=v,+wo,=v(l+w)

25 2
ksl L2 =1_
W+l (L1228 +1

(RB.7)

AL+ 5o 0F S
f ST A

The quasar’s speed relative to the earth is thus 11% of the speed of light.
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RB.5 Doppler Radar

RB.4  The Nonrelativistic Limit

The derivation of the relativistic Doppler shift formula given by equation
RB.5 actually combines two effects: (1) the relativistic distinction between the
emitter’s proper time and the observer’s coordinate time between successive
pulses (see equation RB.2) and (2) the delay of successive received pulses due
to the changing separation between emitter and observer (see equation RB.3).
The latter effect would apply even if time were absolute (as long as light
moves with a speed of roughly 1 in the observer’s frame), but the first effect
arises only in the theory of relativity. Indeed, when v, << 1, /1 - 0! = 1 + 1o}
by the binomial approximation, and equation RB.5 becomes

dig= (14 )dty = (1 +0)(1 = 30)d7 = (1 + v,)dT,, (RB.8)

where 1 have dropped terms of order v} and smaller in favor of the much
larger terms 1 and v.. So the nonrelativistic effect dominates, and
Ar

281+,
A

wheno, << 1 (RB.9)

This is the nonrelativistic Doppler formula you will see in many textbooks.

RB.5 Doppler Radar

Doppler radar (used by weather observers and police) involves a somewhat
different situation. In this case, the emitter and observer are typically in the
same frame, and the emitted waves are reflected by an object moving relative
to both. You can use the spacetime diagram shown in figure RB.2 (and an ar-
gument analogous to that given in section RB.2) to show that in this situation

ﬂ____l+v,

s T (RB.10)
£ =ty

Exercise RBX.3

Use figure RB.2 to verify equation RB.10. (Hint: Note that all the times shown
on the diagram are coordinate times measured in the observer’s frame. The
time measured by a clock traveling with the reflector is irrelevant in this case.)

Note that because the time measured by a clock traveling with the reflec-
tor is not involved, this formula does not employ any relativity except for the
fact that the speed of light is 1 in the observer’s frame (whatever frame that
might be).
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The Doppler shift formula in
the nonrelativistic limit

M

dtg

'
dt g

dty

Observer's
worldline

Reflector’s

\ worldline

Light-flash
worldlines

Figure RB.2
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A spacetime diagram showing
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of successive wave
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Newtonian momentum
conservation of, 147
collision, 147
vs. conservation of four-
momentum, 155-156
and principle of
relativity, 146
Newtonian momentum
(Continued)
definition of, 148
relativistic redefinition of,
148-151
Newtonian relativity, 11-15
time in, 12-13
noninertial reference frames
vs. inertial frames, 9-10
principle of relativity in, 80
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observation, charactenstics of, 8
observer, definition of, 8
operational definition
definition of, 8
of length of moving object, 110
of spacetime coordinates, 8
origin event, in spacetime
diagrams, 28
Other Frame
coordinate transformations to.
Sev Lorentz
transformation
equations

defintion of, 10

finding ! and 1’ coordinates in,
94-95, 94f

in standard onentation, 12

in two-observer diagrams,
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diagram ¥ axis in,
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time axis in, %0-92, 91f
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particle physics

special relativity in, 174-175
units for, 174
past, causal structure of spacetime
and, 135, 135f
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independence of, 37
perpendicular displacement,
measurement of, 531-53
principle of relativity. Ser
relativity, principle of
proper length, definition of, 113
proper time
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characteristics of, 47-48,
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definition of, 46, 45¢
frame-independence of, 46
path dependence of, 46-47, 46/
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symbol for, 45¢
formula for, 69-73, 69¢
binomial
approximation
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in constant speed, 70
experimental evidence
for, 76-77
twin paradox and,
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radar method
in frame-dependence of
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for spacetime coordinates
determination, 31-32, 31f
reference frames ‘
definition of, 8
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standard orientation
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symmetry of, and Lorentz
contraction,
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noninertial
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principle of relativity in, 80
overview of, 7-8
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relativistic dynamics, 146
conservation of energy in,
146150
inding laws of, 146
relativistic energy
consenvation of, 155-15%
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definition of, 155
SR and SI versions
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mass energy as, 156
relativistic kinematics, 146
relativistic Kinetic energy
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momentum, 155-156
conversion to/ from mass
energy
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possibility of, 156, 169
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momentum diagram,
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relativistic momentum
definition of, 156
SR and SI versions of, 183¢
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relativistic three-momentum, 156
relativity
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final statement of, 11
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as relativistic energy, 156
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second, definition of, 25-27
second law of thermodynamics,
and causality, 130-131
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equations in, with SR
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definition of, 132
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determination of
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units, 25-27
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Taylor, E.E, 175
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three-momentum,
relativistic, 1560
time. See al<o clock(s); coordinate
time; proper time;
spacetime interval
os. distance, SR units and,

25-27
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measurement of, 7-8
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velocity. Sev also speed
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dernivation ol 13 |
SR and S versions of, |
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wavelength, 185
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worldlines, 28-29, 2%/
four-momentum vector on
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1657, oo
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proper time formula for,
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4
~ Short Answers 1O

'

=
Ted
=

[Note that most of the derivation (D) problems as well as a
number of other problems have answers given in the prob-
lem statement. These problems are also useful for practice,
but their answers are not reiterated here.)

Chapter R1

Bl1t'=15s,x =175 m. B3 v, = +18 m/s. BS (@) 7 m/s,
(b) 43 m/s. M3 (a) Yes. (b) 125 m, (c) 200 m. M5b 1.5c. M7
(b) =2|3, |, (€) =15, ]. M9 (c) =30 m/s, +70 m/s, (¢) 400 m.

Chapter R2

B1 (a) 43 ms, (b) 40 mi/h, (c) 30,600,000|F|. B3b 2.2 g.
B7 (a) Yes. (b) =5 h. B9b 12:00:15. B12 Rear firecracker,
Mic { = 400 5. M3 Photo received at t = 40 min. M5c¢ 14203 |
M7t = 140 ps, x = =115 ps, y = 80 ps, z = 13 ps. M9 Mars.
R2 Ship arrives at midnight. R3 Rear light blinks first,

Chapter R3

B1 (a) P, (b) both, (¢) P. B3 (a) Alice and Brian, (b) Brian and
Cara/Dave, (c) Brian. B5 3 h. B7 8 h. B9 No separation. M1
(a) 2:17 pm, (c) 0.80. M2a 0.90. M5b 9500 m. M7b 0.815.
M9 4.41 y M11b 1/4 of the particles. R1b 0.2 kg,

Chapter R4

B1 4.6 h. B3b 56.7 ns. B5 5.2 ns. B7a 0.23 ps. M1a 230 ns. M3
(b) 2.0 ps, () 0.5 ps longer. (d) No. M5b 403 ps. M7b 1.4 min.
R1 (a) 269 ns, (b) —143 ns, (c) 107 ns, =304 ns. R3 Yes.

Chapter RS
B3 E before W.B5t = 4.6s,x" = 1.15s. B7t'=4.55,1" =355,
M1c 300 y. M3c t; = 10 min, t}, = 8 min. M5a Alan. R1d 78 m

Chapter R6

B1 0.866. B3 18 ns. B5 8.66 ns. B7 6.3 cm. M1a 0.99999950.
M3 460 m. M5 for paper 86 pm thick, speed = 1 =4 x 10",
R3d iL,. R5 (b) 250 ns, (d) 160 ns.

Chapter R7

B1b 3/5. B3 No. B5 True. B7 30/33. B9 35/37. B11 (.65 M1
(a) 477 km, (b) no violation. M5 No. M7 (a) v}, = 0,
vh, = —0.882, v}, = =0.60. (c) Not conserved, yes. M9a 0.95,
0.59. M11b 24" R1 Yes

194

. Selected Pro

blems

Chapter R8 =p.=0.B5p = 13 kg,

,=25kg p =15k A =P C 8 T o
?‘ 2"4"&’{,’ B f; p. = 0. B7 (a) 4/5, (b) 3 kg, f:' :-kf"{
{4 kg, B9c 4.1 kg, BI1p, = 37/3 ke p. = ’3’./”“""1’; b e
M2d 120 MJ. M3 p. = {m. M5 $(300~500) billion. M7 5135 tril-

lion. R23.8 y. R3b 47 pm.

Chapter R9 ) . |
B1 2()pkg. B3 [ m. B5 6.4m. B7 (a) sm, (b) -, (k:) 3/ (-dl :‘;A Ao
M1 Zm. M3 3m, 4/5. M5 20 kg, 3/5. M7 M converte
M9 3/5, M/2. M12 0.27. R1b 1520m. R3 10 fm.

v 3

Appendix RB =
Blplei'}. B3 (a) away, (b) 0.385, (¢) 0.5. M15130,000. M25 4 h,
7.3d.
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