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Preface

Many-sorted algebra (MSA) provides a
rigorous platform for describing and unify-
ing various algebraic structures in several
branches of science, engineering, and math-
ematics. However, the most natural appli-
cation for the use of this platform is in all
areas of quantum technologies. These
include quantum physics, quantum
mechanics, quantum information theory
among the most recent, quantum comput-
ing, quantum neural nets, and quantum
deep learning. Indeed, in all quantum disci-
plines, there exists an abundance of alge-
braic underpinnings and techniques.
Several of these techniques are directly
applicable to machine learning and are pre-
sented herein. In particular, with the cur-
rent interest in quantum convolutional
neural networks, understanding of basic
quantum becomes all the more important.
Although analytical, topological, probabilis-
tic, as well as geometrical concepts are
employed in many of these disciplines,
algebra exhibits the principal thread. This
thread is exposed using the MSA.

A fundamental setting of Hilbert space
over a complex field is essential in all of
quantum, while machine learning deals
predominantly with the real field. Both a
global level and a local level of precise
specification are described in the MSA.
Indeed, characterizations at a local level
due to distinct carrier sets may appear very
different, but at a global level they may be

identical. Banach* algebras as well as
Hilbert spaces are basic to these systems.
From a local view, these algebras may dif-
fer greatly. For instance, the Banach
algebra-type bilinear multiplication opera-
tion in the neural network might involve
an affine map or it could be convolution.
However, in quantum systems, the bilinear
operation often takes additional forms.
These include point-wise multiplication,
function composition, Lie or Poisson brack-
ets, or even a concatenation of equivalence
classes of paths in homotopy.

Theoretical as well as practical results
are provided throughout this text. Hilbert
space rays acting as states, as well as an in-
depth description of qubits, are explained
and illustrated. Qubits form a center stage
in quantum computing and quantum
machine learning. Unitary operators form-
ing a group are employed in state transi-
tions and are described in the MSA as
Hilbert and Lie groups. Parameters within
unitary operators allow optimization in
quantum computing applications.
Concurrently, C* algebras described in the
MSA embrace the structure of observables.
In all cases, the MSAs are most useful in
illustrating the interplay between these and
the various other algebraic structures in
quantum and machine learning disciplines.

Charles R. Giardina
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C H A P T E R

1

Introduction to quantum many-sorted
algebras

1.1 Introduction to quantum many-sorted algebras

This chapter begins by mentioning several algebraic structures described in the later
sections of the text that will be embedded into a version of the many-sorted algebra. This
is followed by a description, as well as an illustration of the many-sorted algebra method-
ology. A global view involving the MSA is given using polyadic graphs consisting of
nodes with many tailed directed arrows. The general field structure is described in
Section 1.1.4, in terms of the MSA. This is followed by further algebraic structures in quan-
tum and machine learning. Specific quantum and machine learning fields are presented
along with general Hilbert space conditions that underly all quantum methodology. Time-
limited signals are developed under inner product space conditions. These signals are
basic constructs for convolutional neural networks. Kernel methods, useful in both quan-
tum and machine learning disciplines, are presented. In later chapters, kernel methods are
shown to be a fundamental ingredient in support vector machines. This chapter ends with
a description and application of R modules. These structures have an MSA description
almost identical to a vector space structure.

1.1.1 Algebraic structures

Throughout quantum, an extremely wide variety of algebraic structures are employed,
beginning with the most fundamental canonical commutation relations (CCR) to methods
for solving elliptic curve cryptography and building quantum convolutional neural net-
works. It is the purpose of this text to provide a unification of the underlying principles
embedded within these algebraic structures. The mechanism for this unification is the
many-sorted algebra (MSA) (Goguen and Thetcler, 1973). The MSA can be thought to be
an extension of universal algebra, as in Gratzer (1969). Here, varieties of algebraic struc-
tures are described in a most generalized sense with morphisms showing correspondence
between objects. The underlying characterization of the many-sorted or many types of
algebraic concepts in quantum disciplines is captured simultaneously through rigorous
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specification as well as polyadic graphs within the MSA. The present work is inspired by
Birkhoff and Lipson (1970) and their heterogeneous algebras, as well as (Goguen and
Meseguer, 1986) remarks on the MSA.

Both a global level and local level of precise specification are presented using the MSA.
The MSA is essential for a better understanding of quantum and its relationship with
machine learning and quantum neural network techniques. The very concept of Hilbert
space from the beginning axioms is detailed in a precise but high-level manner (Halmos,
1958), whereas underlying fields for quantum and machine learning are very specific. In
quantum, this field is almost always complex; sometimes real numbers or even quaternion
numbers are utilized. However, in machine learning, it is the field of mainly the reals that
is employed. This is particularly true with support vector machine applications.

In general, the quantum Hilbert space could be finite dimensional, it could consist of
kets and bras, and it could be a tensor product of similar Hilbert spaces or infinite dimen-
sional as is L2 or l2 (Halmos, 1957). All of these structures will precisely be explored at a
local level. This is again evident in specifying the Gelfand-Naimark-Segal (GNS) construc-
tion relating a C* algebra to a Hilbert space (Gelfand and Naimark, 1943; Segal, 1947).
From a practical viewpoint, Hilbert spaces of qubits are described for use in a quantum
computer (Feynman, 1986). Other applications include qubits in quantum neural networks
and quantum machine learning.

1.1.2 Many-sorted algebra methodology

To begin describing the MSA methodology, the set consisting of the sorts of objects
must be specified. For instance, the term scalar may be an element of this set. Although
the term scalar is generic, it might refer to elements from a field such as the real or com-
plex numbers. However, it might also represent a quaternion that is an element from a
skew or noncommutative field. Importantly, for each sort, there are carrier sets. It is these
sets that uniquely identify the precise type of elements in question. For instance, very dif-
ferent carrier sets are used for the real field, the complex field, the rational field, or a finite
field that is employed in cryptography.

Once the sorts are declared, operational symbols must also be given. They are orga-
nized as elements within specific signature sets. These sets are used in identifying com-
mon attributes among symbols such as their arity. Operational symbols denote the inter-
and intrasort mappings like symmetrization, annihilation, creation, as well as elementary
operations: addition, multiplication, inversion, and so on.

The actual operators utilized in these mappings involve specified carrier sets that corre-
spond to the sorts. This is performed at a lower view. Each operator employs elements
from designated carrier sets as operands in the domain. This is true for their codomain as
well. The operator names within signature sets are enumerated along with the algebraic
laws, rules, equational identities, or relations which they must obey. The laws or equa-
tional identities include commutation rules, associative laws, distributive laws, nilpotent
rules, and various other side conditions or relations necessary for rigorous specification.

2 1. Introduction to quantum many-sorted algebras
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A useful global view involving the MSA is given using polyadic graphs consisting of
nodes with many tailed directed arrows (Goguen and Meseguer, 1986). All entities of the
arrow are labeled. Each node is denoted by a circle inscribed with a specific sort. The
arrows have operator names attached and are as declared in their signature set. The num-
ber of tails in the arrow corresponds to the arity of the operator in question. Operators of
arity zero have no tails and are labeled using the name of special elements of the sort.
These include zero, one, and identity element, as well as top or bottom. The tails of an
arrow are emanating from the specified domain sorts coming from the appropriate signa-
ture sets. The single head of the arrow points to the sort of codomain for the operator. In
short, the polyadic diagram provides a visual description of the closure operations needed
in describing the algebraic structure.

Partial operators are included in the MSA. This is similar to what is done in partial uni-
versal algebra. However, special notations are employed for operations not defined on the
entire denoted domain sort. Much of this notation will be given later. The inclusion of
domain-dependent operators is essential in quantum since even the position and momen-
tum operators are unbounded. Infinite-dimensional Hilbert space necessities explicit
domain declaration as well as closure conditions. A more basic instance of an operator not
fully defined will be given right now. Here, the multiplicative inverse in a field is defined
for all values except for zero, and thus it is a partial operator. However, this operator
exists in the MSA. Moreover, a dashed arrow with a single tail is utilized in the polyadic
graph description in this case.

1.1.3 Global field structure

Corresponding to the field structure, only the single sort SCALAR is needed. Several
signature sets exist. They are organized by the arity. Arity refers to the number of oper-
ands or arguments for operators within the given signature set. Arity also refers to the
number of tails of a polyadic arrow. For binary operators, unless specified otherwise, they
should utilize both arguments in either order. There is no restriction to which argument
comes first.

Binary operation: ADD; MULTf g each maps SCALAR3 SCALAR-SCALAR
Unary operation: MINUS; INVf g each maps SCALAR-SCALAR
Zero2 ary operation: ZERO; ONEf g these are special elements of the sort SCALAR:

Note that even though INV is a partial function name, it is contained in the same signa-
ture set as MINUS; both are unary operator names. Fig. 1.1 provides an illustration of a
high-level interpretation of an algebraic field. This graph indicates the closure operations.
For instance, the ADD implies that two values from SCALAR are combined to give
another value of SCALAR, whereas MINUS takes a single value of SCALAR and yields
another such value. The arrow pointing from ZERO to SCALAR indicates that there has to
be an element in the field whose name is ZERO. The same is true for ONE. As in universal
algebra, the number of operational names of a specific arity is often listed by a finite

31.1 Introduction to quantum many-sorted algebras
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sequence of nonnegative integers. For a general field structure, the arity sequence is given
as follows: (2, 2, 2). Indeed, the first entry specifies the number of zero-ary operations;
here it is 2, while the next entry is for the number of unary operations5 2 and the final
entry is the number of binary operations5 2. The listing procedure is similar to the
method of recording the number of fermion or boson occupational numbers in Fock space.
This space will be described in later sections.

The equational identities or laws for a field are given below. Here, for convenience, we
denote the sort by representative symbols and all the operational names by suggestive
symbols.

SCALAR by a, b or c.
ADD by 1
MULT by �
MINUS by -
INV by /
ZERO by 0
ONE by 1

The equational identities, laws, or constraining equations for a field are as follows:

1) Associative for addition: (a1 (b1 c))5 ((a1 b)1 c)
2) Zero law: 01 a5 a1 05 a
3) Minus law: for any, a there is 2 a, where a2 a52a1 a5 0
4) Commutative law for addition of all elements: a1 b5 b1 a
5) Associative law for multiplication: (a � (b � c))5 ((a �b) � c)
6) Distributive laws: a � (b1 c)5 a �b1 a � c; (a1 b) � c5 a � c1 b � c
7) One law: 1 � a5 a � 15 a
8) Partial inverse law, exclude 0: for any a, there is 1/a where: a � 1/a5 (1/a) � a5 1
9) Commutative law for multiplication: a � b5 b � a.

An example of an abstract field F3 will be given to illustrate the closure operations,
which is the essence of Fig. 1.1. Also illustrated are the nine, equational constraints listed
earlier. The example is important in the preparation for the development of elliptic curve
cryptography and Shor’s quantum algorithm described in a later chapter.

SCALAR

MINUS

ADD

MULT

INV

ZERO

ONE

FIGURE 1.1 Polyadic graph for the field structure.
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Example 1.1:

Consider the carrier set for SCALAR to be the set X5 {0, 1, 2}. Operations correspond-
ing to those named in the signature sets are defined as modular three. The following
tables provide the binary ADD, MULT, and the unary operation MINUS, as well as the
partial unary operation INV; these are listed in order as follows:

1 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

� 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

x 2x
0 0
1 2
2 1

x 1=x
1 1
2 2:

To use the first two tables to find the elements to the left and above for which the
binary operation is to be performed, the result is located in the row and column to the
right and below, respectively. For the two tables to the right, use the first column; then
the unary operation can be read to the right of the desired element.

The equational identities all hold. To show (1) all possible values of a, b, and c must be
utilized. Here, there are 27 combinations, but only a single instance is illustrated next.

1) Associative for addition: (21 (11 2))5 (21 0)5 2; also ((21 1)1 2)5 01 25 2
2) Zero law: From the1 table, 0 on the left or above when added to x gives x
3) Minus law: From the—table, for example, 11 25 21 15 0, 225 1
4) Commutative law for addition: The1 table is symmetric about the main diagonal
5) Associative law for multiplication: (2 � (1 � 2))5 (2 � 2)5 1; also ((2 � 1) � 2)5 1

With the first four identities holding, this shows that the additive structure is an
abelian group. Additionally, it is an instance of a cyclic group with three elements.
The addition wraps around 21 15 0. As in the associative laws, the distributive laws
actually need all 27 arrangements for full validation. However, as before, only one case
is illustrated next.

6) Distributive laws: (2 � (11 2))5 (2 � 0)5 0; also (2 � 1)1 (2 � 2)5 21 15 0
7) One law: From the � table, the 1 on top or to the left multiplying x gives x
8) Partial inverse law, exclude 0, from the last table 1/15 1, and 1/25 2
9) Commutative law for multiplication: The table � is symmetric about the main

diagonal.

Since all the equational identities hold along with the closure operations, this shows
that the structure F3 is a field. The field is called a finite field or a Galois field.#

1.1.4 Global algebraic structures in quantum and in machine learning

To conserve space and take advantage of the general field structure earlier, we mention
important substructures of a field. The listing attempts to go from the most general struc-
ture, a groupoid, to the most restrictive, a field. All structures utilize as their sort SCALAR
and involve operational names from signature sets provided for the field. Moreover, most
of the following algebraic structures require some of the equational identities, (1) through
(9). These are listed earlier, providing the global description of an algebraic field. Finally,
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the polyadic graph for these structures is the same as that for a field, but possibly with
some arrows removed. Many of the forthcoming structures often appear in quantum disci-
plines and will be applied in subsequent sections. The specifics below should act as a ref-
erence to the global definition of these structures.

A groupoid is a structure with only a single signature set consisting of ADD with no
constraints. A groupoid satisfying constraint (1) is a semigroup. When there is also a
ZERO along with constraint (2), the semigroup is called a monoid. If in addition there is a
MINUS and (3) holds, then a monoid is a group. The group is called Abelian when (4)
holds. When MULT also exists and (5) and (6) hold, the Abelian group is called a ring. If
ONE also exists along with (7), the ring is called a ring with identity. A ring in which (9)
holds is said to be a commutative ring. When ONE exists and (7) and (9) hold, the ring is
a commutative ring with identity or with unity. A commutative ring with unity is said to
be an integral domain when there does not exist divisors of zero. Divisors of zero occur
when the product of two nonzero elements equals ZERO. A skew-field arises when a ring
with identity also has an INV obeying (8); this structure is also called a division ring.
When (9) also holds, the skew-field is said to be a field.

Illustrations of many of these structure are described in the subsequent chapters, for instance,
Lie groups and Lie algebras; also the quaternions provide an instance of a division ring. Below
is an important example of a unital commutative ring that is not a field. It is a structure that is
easy to understand, but this carrier set is of critical importance for use in R-modules. It will be
seen in a subsequent section that fields are to vector spaces, as rings are to R-modules.

Example 1.2:

Consider the carrier set of all the integers Z. If the usual addition, negation, and ZERO
are employed, then this structure becomes an abelian group. If the usual multiplication
and ONE are introduced, along with all the equational identities specified above for a
field, except (#8), then this structure is a unital commutative ring. Additionally, the polya-
dic graph in Fig. 1.1, modified for a ring structure, might have the dotted partial operation
INV arrow removed. However, it might not, since in the integers the numbers one and
minus one do have inverses.#

All group and group-like structures mentioned earlier are additive group or group like.
In quantum and in machine learning, many of these corresponding structures are similar
algebras. For instance, they are often multiplicative group or multiplicative group like.

Any and every field can be described in the manner specified earlier. This was the
high-level or big picture. Again, the sort SCALAR and these signature sets hold true for
the rational field, the real field, the complex field, or any Galois or finite field, as illus-
trated in the last section. Now, two additional specific fields will be identified.

1.1.5 Specific machine learning field structure

To obtain the real field (R) underlying machine learning, the carrier set relating to the
sort SCALAR are the real numbers. It provides the actual lower, in-depth view. In addi-
tion, for each operator name within a signature set, an actual operator or function of the
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same arity is defined. All the equational constraints and laws hold true using these ele-
ments. In particular, ZERO in this case is 0, and for any real number r, r1 05 01 r5 r.
Also ONE is the number 1, and 1 � r5 r � 15 r. Finally, the inverse s, of any real number
r, other than 0 can be found, s5 1/r.

1.1.6 Specific quantum field structure

To obtain the complex field (C) underlying the Hilbert space in most quantum situa-
tions, the sort SCALAR refers to the complex numbers. In addition to each operator name
within a signature set, an actual operator or function of the same arity must be defined.
The carrier set here is the complex number system. It provides the actual lower, in-depth
view. The actual carrier set for SCALAR is {x1 i � y also written as x1 iy or x1 yi, such
that x and y are now real numbers and i is a nonreal number; it is a symbol having the
property that i2521}. Moreover, the plus sign is just a character holding the two entities
together. The closure operations provided in Fig. 1.1 must be rigorously specified. For
instance, for two complex numbers, v5 a1 i � b and w5 c1 i �d, ADD (v, w)5 (a1 c)1
i � (b 1 d). There are two different plus signs in the addition formula. To make things
worse, we will write ADD (v, w)5v1 w5 (a1 c)1 i � (b1 d). Now, there are three uses
of the plus sign. However, not to go crazy with notation, we will continue with this prac-
tice. Sometimes different notations such as 1 1, 1 2, and 1 3 are used to make things
clearer. Indeed, in later chapters, Hilbert spaces of linear mappings employ all three plus
signs. One last abuse of notation is for the zero-ary element ZERO use 0 1 i � 05 0.
A quicker explanation of the complex field now follows.

All the equational constraints and laws hold true using these elements. In particular,
only the following two laws are mentioned for z5 (x1 i y):

# 3) Minus law: MINUS (x1 i y)5 (2x2 i y).
# 8) Partial inverse for non (01 0 i): INV (x1 i y)5 x/(x21 y2)2 i y/(x21 y2).

Letting z5 x1 iy, then the real part of z is denoted by Re(z), and it is x. Likewise, the
imaginary part of z is Im(z) and it is y. Note that they are both real valued. A very impor-
tant operation in the complex field is conjugation. It is an operation that cannot be derived
in terms of the other operations that are referred to in the signature sets. Conjugation has
operator symbol CON. When applied to a complex number, it negates the imaginary part.
The actual operation is *, and so the abusing notation is as follows: CON(z)5CON (x 1 i y)
5 (x2 i y). More precisely, z*5 (x1 i y)*5 (x2 i y). Moreover, the operation of conjuga-
tion is an involution; therefore two applications of conjugation result in the original value.
Two applications act like the identity operation. Thus, it follows that (z*)*5 ((x1 i y)*)*5
(x1 i y)5 z. The absolute value of a complex number z is the square root of the number
multiplied by its conjugate. Equivalently, |z|25 z*z5 z z*. Also note that the real part of
z is Re(z)5 (z1 z*)/2 and the imaginary part of z is Im(z)5 (z2 z*)/2i. Both of these
quantities are real valued. All the aforementioned properties are needed in subsequent
examples involving inner products as well as in describing adjoint operations. Finally, the
polar form for any complex value z5 x1 iy can be written as z5 r eiθ, where
r5 (x21 y2)1/2 and θ5 arctan (y/x). Mentioned previously, the square root should always
be interpreted as yielding a nonnegative result.

71.1 Introduction to quantum many-sorted algebras

Many-Sorted Algebras for Deep Learning and Quantum Technology



1.1.7 Vector space as many-sorted algebra

A vector space consists of two distinct sorts of objects. These are SCALAR, as in the field
structure, and the second sort VECTOR. Refer to Fig. 1.2; in this diagram, both sorts are
illustrated. However, only those operation names that exclusively involve the sort SCALAR
are not displayed. That is, the many-sorted polyadic graph arrows from Fig. 1.1 are not
repeated. Corresponding to a vector space structure, the signature sets are organized not
only by the arity of operations but also by their types. This is because several operations of
the same arity have mixed types of inputs or outputs. For instance, it can be seen later in
the figure that the operational names of arity two, that is, V-ADD and S-MULT, will have
two distinct signature sets. Specifically, V-ADD takes two VECTORS and returns a
VECTOR, whereas S-MULT takes a SCALAR and a VECTOR and returns a VECTOR.

This results in an arity sequence: (1, 1, 2 (1, 1)) for a vector space. For the MSA, the arity
listing is as in universal algebra. It identifies in order the number of (Zero-ary, Unary,
Binary, Trinary, . . . N-ary) operational names. However, different signature sets of the
same arity have special rules in MSA. The total quantity of that arity in the arity sequence
is followed by the number of each distinct signature set of that arity. So the two ones after
the 2 in the arity sequence show that there are two distinct operations of arity two, all
with different domains or codomains. The actual signature sets for a vector space starting
with higher arity and decreasing in order are the following:

Binary operation V2ADDf g; V2ADD maps VECTOR x VECTOR-VECTOR
S2MULTf g; S2MULT maps SCALAR x VECTOR-VECTOR

Unary operation V2MINUSf g; V2MINUS maps VECTOR-VECTOR
Zero2 ary operation V2ZEROf g; V2ZERO2 is a special element of the sort VECTOR:

As previously mentioned, the binary operators utilize their operands in either order.
For instance, for scalar a and vector v, S-MULT (a; v)5 a �v5 v � a.

Note that only three signature sets mentioned earlier have operational names that
utilize sort VECTOR exclusively. That is, these three names associate operators with
the domain and codomain of sort VECTOR. These are of arity 0, 1, and 2. The corre-
sponding operators within these sets alone describe the additive abelian vector group

VECTOR

SCALAR

V-ZERO

V-ADD

V-MINUS

S-MULT

FIGURE 1.2 Vector space described as many-sorted
algebra.
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within the vector space. Here, equational constraints (1)2 (4) mentioned must also
hold. The arity sequence for this additive group is (1, 1, 1).

The equational identities or laws for a vector space are given below. This is followed, in
the next section, by additional equational identities needed for an inner product or Hilbert
space. Again for convenience, we denote the sorts by representative symbols and all the
operational names by suggestive symbols.

SCALAR by a, b or c.
VECTOR by u, v or w
ONE by 1
V-ADD by 1
V-MINUS by 2
V-ZERO by 0
S-MULT by �

1) Associative for vector addition: (u1 (v1w))5 ((u1 v)1w)
2) Zero vector law: 01v5v1 05v
3) Minus vector law: v1 (2v)52v1v5 0
4) Commutative vector law for addition: u1v5v1u
5) One law: 1 � v5v � 15v
6) Distributive law: a � (u1 v)5 a � u1 a � v
7) Distributive law: (a1 b) �u5 a �u1 b �u
8) Associative law: (a � b) �v5 a � (b �v)

These eight laws describe any vector space in generality.
An interesting example of a structure that fails to be a vector space is given next.

Example 1.3:

Let the carrier set for SCALAR be all the real numbers R, with the usual real field struc-
ture. However, let the carrier set for VECTOR be the positive real numbers V5R1 5
{x, such that 0, x,N}, with usual multiplication and division. In this application, in
place of vector addition, multiplication of the vectors is used. That is, multiplication
of positive real numbers is employed. Since the product of two positive real numbers is a
positive real number, this binary operation is closed. The multiplication operation in this
case is valid. For the unary minus operation, the inversion operation is substituted. Again,
this operation is also closed, since for any positive real number denoting a vector the
reciprocal is also a positive real number. In place of the zero vector, the number one is
used in this structure. So V-ZERO is the number one.

Finally, the scalar multiplication involving vectors must be described. The important
criterion again is that this operation is closed; that is, it must satisfy the closure operations
inherent in the polyadic graph in Fig. 1.2 for vector space. The actual operation in this case
is performed in two steps. First, form the product of the scalar real value with the positive
real value vector. Then next, use this product as an exponent of the power of e. Upon
applying this two-step operation, again the result is always a positive real number.
Consequently, the operation is closed, and a vector is again obtained. The operations
described earlier are given again, but in a more formal manner.
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First:

Denote SCALARS by a, b, and c; these are all real numbers.
Denote VECTORS by u, v, and w; these are all positive real numbers.

Replace the operation name by the actual carrier set operation:

V-ADD (v,w) by v � w
V-MINUS (v) by 1/v
V-ZERO by 1
S-MULT (a; v)5 e(aν), so a and v are multiplied and become an exponent of e.

Identifying the operational names whose signature sets only include sort VECTOR
results in an Abelian group structure. Notice that all the equational identities hold using
the specified carrier set, where the name ADD refers to multiplication:

1) Associative for vector addition: (u � (v �w))5 ((u � v) �w).
2) Zero vector law: 1 �v5v � 15v.
3) Minus vector law: v � 1/v5 (1/v) � v5 1.
4) Commutative vector law for addition: u �v5v �u.

Thus, an Abelian group structure is verified. However, the structure does not satisfy
all the equational identities that define a vector space. In fact, it does not satisfy all the
following side conditions. So, e raised to a real power is always a positive real number
and is itself a vector in this space, and closure exists. However, all (5)2 (8) equational
identities must also hold for a vector space structure.

5) One law: e(1ν)5 e(ν1)5 e(ν), this holds.
6) Distributive law: e(a(uν)), not equal to e(au)e(aν)5 ea(u1ν) and doesn’t hold in general.

7) Distributive law: e((a1b)u)5 e(au)e(bu)5 e(au1bu), this holds.
8) Associative law: e(ab(ν)), not equal to exp(a e(bν)) and doesn’t hold in general. #

The next example utilizes carrier sets exactly the same as in the previous example, but
only a change is made in the definition of scalar multiplication.

Example 1.4:

For the same conditions as in the last example, but this time, the only change is to let
the scalar multiplication be redefined. So the carrier set for SCALAR is again R. The carrier
set for VECTOR is again R1, all the positive real numbers.

Denote SCALAR by a, b, and c, all real numbers.
Denote VECTOR by u, v, and w, all positive real numbers.
Replace the operation name by the actual carrier set operator:

V-ADD (v,w) by v �w
V-MINUS (v) by 1/v
V-ZERO by 1
S-Mult (a; v)5va.

The last operation is the change from the previous example. In the present case, the vec-
tor is raised to the scalar power. Since a positive real number when raised to any real
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power is itself positive, this verifies the closure condition. Thus, the vector space diagram,
that is, Fig. 1.2, is valid, but still all the equational identities must also hold for this struc-
ture to be classified as a vector space.

So to verify that this is a vector space, note that all the following do hold:

1) Associative for vector addition: (u � (v �w))5 ((u �v) �w).
2) Zero vector law: 1 �v5v � 15v.
3) Minus vector law: v � 1/v5 (1/v) �v5 1.
4) Commutative vector law for addition: u � v5v �u.
5) One law: v15 v.
6) Distributive law: (vw)a5 va wa.
7) Distributive law: v(a1b)5va vb.
8) Associative law: v(ab)5 (va)b.#

In terms of vector spaces, two distinct carrier sets have been defined so far for sort
SCALAR: They are the real (R) and the complex (C) number fields. For these cases, a vec-
tor space is said to be real whenever the scalar field is R. It is said to be complex whenever
the scalar field is C. Accordingly, the operation whose name is S-MULT must take a vector
and multiply it by a scalar and obtain a vector in the designated carrier set of sort
VECTOR. In a sense, the carrier set of sort SCALAR governs the nature of the vector
space.

Example 1.5:

A most simple real vector space is when the carrier sets for VECTOR and SCALAR are
both equal to the reals R. Here, vectors can be thought of as arrows on the x axis with their
tails at the origin. While scalar multiplication is used to stretch or contract these arrows, a
negative scalar will reverse the arrow by one hundred eighty degrees and scalar zero
would yield the origin.#

Example 1.6:

Another real vector space is when the carrier sets for VECTOR are the complex num-
bers C, and the SCALAR are the reals R. Here vectors can be thought of as arrows on the
x2 y plane with their tails at the origin. Again, scalar multiplication will only elongate or
shorten them. The arrows will become the origin when the scalar zero is employed. While
using negative numbers, for instance, using 21, a rotation of 180 degrees is applied to a
vector.#

Example 1.7:

A complex vector space occurs when both carrier sets for VECTOR and SCALAR are
both equal to the complex numbers. As in the previous example, vectors can be thought to
be in the x2 y plane with tails at the origin. When scalar multiply uses a complex number:
z5 x1 i y5 r eiθ, the nonzero vector will elongate or shrink by r5|z| and rotate by an
angle of θ.#
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1.1.8 Fundamental illustration of MSA in quantum

A high view involving the MSA is described later for the fundamental setting of a sepa-
rable Hilbert space over the complex field or real field. The algebraic underpinnings are
those of a vector space, along with the inner product operation and corresponding equa-
tional constraints. These define an inner product space. Specifically, equational identities
(1)2 (8) from the previous section must hold in addition to (9)2 (11) specified later.

The more topological notions such as those needed for describing tangent bundles,
other bundles, as well as Lie groups and Lie algebras will be specified in the MSA.
However, for completeness, we quickly describe the high-level topological or analytical
foundations for an inner product space to become a Hilbert space indicated earlier. To
begin, separable means there exists a countable dense subset within the Hilbert space.
This allows for the introduction of a Schauder basis, thus creating infinite dimensional
Hilbert spaces with operations similar to those with a Hamel basis. The latter basis is uti-
lized in all of finite dimension vector spaces. Expansions of vectors in terms of Schauder
basis elements become almost identical to the finite dimensional situation. Finally, basic to
a Hilbert space is that every Cauchy sequence converges in norm; this is the extra criteria
for an inner product space to become a Hilbert space. See also Appendix A.1 for an in-
depth description of convergence and completeness. Throughout the document, a separa-
ble Hilbert space is assumed, except when specifically stated otherwise. In finite dimen-
sional real and complex vector space situations, these topological and analytical properties
always hold.

The set of sorts for describing an inner product space or a Hilbert space is {SCALAR,
VECTOR}. As in a vector space, each element of the set of sorts is depicted as a circular
node within the polyadic graph. Each element within a signature set is denoted by an
arrow in the polyadic graph. The many-tailed arrow is labeled with the name of the spe-
cific element of the signature set. The MSA description begins with the underlying scalar
field global structure. As mentioned before, it is the general setting for both the real num-
bers, basic to machine learning, and the complex numbers, fundamental in Hilbert space
quantum theory. Additionally, it is the underlying structure used in finite field
cryptography.

The actual signature sets for an inner product space or Hilbert space, starting with high-
er arity and decreasing in order, are given below. They are the same as for a vector space,
but it includes an additional operator name, IN-PROD:

Binary operation V2ADDf g; V2ADD maps VECTOR x VECTOR-VECTOR
S2MULTf g; S2MULT maps SCALAR x VECTOR-VECTOR
IN2PRODf g; IN2PROD maps VECTOR x VECTOR-SCALAR

Unary operation V2MINUSf g; V2MINUS maps VECTOR-VECTOR
Zero2 ary operation V2ZEROf g; V2ZERO2 is a special element of the sort VECTOR:

These operator names are illustrated in Fig. 1.3.
The arity sequence for an inner product space or a Hilbert space is therefore (1, 1, 3(1, 1, 1)).

Note that all three binary operators have either different inputs or different outputs. As
mentioned previously when the completeness axiom holds (every Cauchy sequence
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converges in norm), the inner product space also becomes a Hilbert space. The next three
equational constraints when true make the vector space an inner product space, but first,

Use a and b as SCALAR
Use u, v, and w as VECTOR
Denote the IN-PROD by ,|. or by ,, .

9) Positive definite: , v|v . must be greater or equal to 0 and 5 0 iff v5 0.
10) Conjugate symmetric: , v|w .5, w|v .*, where * is the conjugate operation
11) Conjugate bilinear: a � u1vð Þ wj i5 a� � u wj i1 a� � v wj ihh�

u b � v1wð Þ
�� �

5 b � u vj i1 b � u wj i:hh�

The vector norm of v, denoted :v:2 and induced by the inner product, is given by the
square root of , v|v .. Equivalently, :v:2

2
5 vjvh i. Convergence of sequences and Cauchy

criteria in a Hilbert space are described with reference to this norm. It should be mentioned
that the conjugate bilinear law given in the inner product identity (11) above is the one usu-
ally used in physics and always used in this document. That is, the first argument in the inner
product is conjugate linear. In mathematics, usually the second equality in (11) employs scalar
conjugation, not the first equality. For machine learning, conjugation is of lesser importance
because the scalars are most often real numbers. In this case, the conjugate of a scalar is itself.

1.1.9 Time-limited signals as an inner product space

Consider all real-valued digital time-limited signals or functions f in a subset of RZ.
This is the carrier set corresponding to VECTOR, and RZ means that these functions have
domain equal to all the integers and result in a real value, f: Z-R. Being time-limited
means that f can have nonzero values only on some finite subset of the integers Z. These
functions have finite support, and the space of all these functions will be denoted by A.
Note that V-ZERO corresponds to the 0 vector in A. Convolutional neural nets (CNNs)
employ time-limited signals, both as raw data streams and as filtering signals.
Applications include one-dimensional sound, text, data, time series, as well as EKG and
ECG signal classification (Ribeiro et al., 2020).

VECTOR

SCALAR

V-MINUS

V-ZERO

S-MULT

V-ADD

IN-PROD
FIGURE 1.3 Inner product or Hilbert space.
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Bound vectors are convenient representations for f in A (Giardina, 1991). Any nonzero
signal in A will be nonzero at a smallest integer n. In this case, the representation for the
function f is (f(n) f(n1 1) . . . f(n1 k))n, where f(n1 k) is the final value for which f is non-
zero. A bound vector can contain all zeros, but from a practical point of view, the ZERO
element, 0, will always be employed. By definition, the convention here is that k is a non-
negative integer. The subscript n is a pointer to the location in N of the first nonzero ele-
ment in f. Usual point-wise addition for bound vectors corresponds to the name V-ADD.
The plus sign 1 , as well as V-ADD itself, will also be employed for the actual point-wise
addition. Previously mentioned, V-ZERO denotes the bound vector 0 in A. For f men-
tioned earlier, it is such that 01 f5 f1 05 f.

So, for g also in A and not identically equal to zero, then g5 (g(m) g(m1 1) . . .g
(m1 j))m and V-ADD(f,g)5 (f(p)1 g(p) f(p1 1)1 g(p1 1) . . . f(p1q)1 g(p1q))p. So,
when both f and g are not identically equal to zero, p5min(m,n). In this case, p1q is the
largest integer value for which f or g is nonzero. Also, p1q5max(n1 k,m1 j). S-MULT
in this context is just point-wise multiplication by a real number r. Thus, S-MULT(r; f)5 f� r5 r � f5 (r � f(n) r � f(n1 1) . . . r � f(n1 k))n. Referring to Section 1.7, all the equa-
tional identities for a vector space hold true for A. Again, the sum or scalar product of a
bound vector might be all zeros. In this case, use ZERO element.

For any f in A, the cozero set is defined to be the set of all points in Z for which f is
nonzero. It is the complement of the set where all zeros appear and it is abbreviated as
COZ(f). For the function 0, COZ(0) is the empty set. For all other signals f in A, COZ(f)
has finite cardinality. Time-limited digital signals f and g in A form an inner product space
with a usual ordered dot-type product on the intersection of COZ(f) and COZ(g). For the
empty set, zero should be used. The conjugate of a real number is itself; accordingly, only
positive definite criteria must be shown. Here, , f, f . is the sum of squared terms.
Therefore, the inner product is greater or equal to zero and will equal zero only for f5 0.
Thus, the inner product space criteria from the previous section hold for the class of
bound vectors.

Example 1.8:

Consider the two signals f and g in A given by bound vectors: f5 (3 2 1)0, and
g5 (2�1)0. Then COZ(f)5 {0, 1, 2} and COZ(g)5 {0, 1}. Here, the dot or inner product is
, f, g .5 6�25 4. Also, , f, f .5 14, and , g, g .5 5. Finally, V-ADD(f, g)5 f 1 g5
(5 1 1)0, V-MINUS(f)5�f5 (�3 �2 �1)0, and S-MULT(f; 1.5)5 1.5 (3 2 1)05 (4.5 3 1.5)0.#

From the aforementioned example, it is seen that the algebraic operations involving
bound vectors are somewhat identical to the usual vector space operations on real-valued
vectors. The primary difference is in the subscript at the end of the vector specifying the
location of the first nonzero element. In any case, the vector norm of f, denoted :f:2,
induced by the inner product, is given by the square root of , f|f .. The square root will
always use a radical 1/2 and will denote a nonnegative quantity, unless specified differ-
ently. Equivalently, :f:2

2
5 fjfh i. Convergence of sequences and Cauchy criteria in a Hilbert

space are described with reference to this norm. To see that this inner product space A is

14 1. Introduction to quantum many-sorted algebras

Many-Sorted Algebras for Deep Learning and Quantum Technology



not a Hilbert space, use a sequence of bound vectors: fn5 (1 1/2 1/3 . . . 1/n)0, n5 1, 2, . . . .
Notice that for n . m both are larger than some positive integer N, then, for instance,

using the two norms in l2: :fn2fm:
2

2
5 1= nð Þ2 1 . . .1 1= m11ð Þ2. Now, for N large enough,

this quantity will be arbitrarily small. This shows the sequence of bound vectors fk, forms
a CS. However, in the limit fk - (1 1/2 1/3 . . .)0, which is not a bound vector. Thus, A is
not complete, and it is only an inner product space.

1.1.10 Kernel methods in real Hilbert spaces

Kernel methods are closely related to reproducing kernel Hilbert spaces (RKHSs),
which is a topic in a later chapter. RKHSs are special Hilbert spaces where the elements
are always functions. This space can be complex, real, or even quaternion. However, in
machine learning applications, these spaces are almost always real. Kernels along with
RKHSs form a central theme for support vector machines. Additionally, kernel methods
are employed in statistical machine learning algorithms. In this case, they employ a feature
map Φ that is often used in converting data into higher or infinite dimensions. Higher
dimensions often enable simpler information retrieval and classification. Among the rea-
sons for this is that data that cannot be separated in a linear manner may become linearly
separable in a higher dimension. A typical contrived example illustrating the use of higher
dimensions to linearize data is given next. See also Fig. 1.4A and B. The former illustration
provides data in two dimensions. This is before the feature map is used. The latter dia-
gram illustrates what happens after the feature map is utilized.

Example 1.9:

Refer to Fig. 1.4A. That is, in the left portion of this diagram are data points denoted by o.
These points are within the unit circle and are close to either the x axis or the y axis in R2.
The other data points in this diagram lie on or outside of the unit circle, and each point is

X

Y

(A) (B)

1

Z

Y

Affine Plane

X

FIGURE 1.4 (A) Original
data in R2 and (B) feature
mapped data in R3.
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denoted by 3 . Moreover, all these points have their x coordinate about equal to their y coor-
dinate in absolute value. Consider the feature map Φ: R2 - R3, where Φ((x y)0)5 (x2 xy y2)0 5
(X Y Z)’. Note that the resulting vector in three dimensions has its second tuple, that is, the Y
tuple, equal to the product of the tuples in R2. Then, in Fig. 1.4B, it is seen that the feature
map transformed all the o points in an area near the plane Y5 0. Concurrently, it transformed
all the 3 points at least one unit away from the plane Y5 0. It follows that affine planes close
to, but also parallel to Y5 0, would separate the o points from the 3 points.#

Kernel methods are also useful in establishing independence and conditional depen-
dence of random variables as well as separating signals from noise (Ravi and Kumar,
2013). An in-depth treatment of RKHS is provided in sections given in a later chapter.

Before the kernel method is described, another motivating example will be illustrated. It
uses homogenous monomials of degree d, similar to the aforementioned example where
d5 2. More generally, monomials are formed from a product of all possible tuples within a
single vector v or w located in a low dimension Hilbert space, HL. Each of these monomials
is then used as the tuples for vectors in a higher dimensional Hilbert space, HH. The map-
ping that performs this operation is Φ and is again called the feature map, Φ: HL - HH. The
kernel K(v,w) is given by the inner product of feature maps in the higher dimensional
Hilbert space, K(v,w)5, Φ(v). Φ(w) ..

Example 1.10:

Consider the carrier set HL5R2 with the vectors, v5 v1 v2ð Þ0 5 2 3ð Þ0, and
w5 w1 w2ð Þ0 5 4 21ð Þ0. Let the feature map Φ: R2-HH5R4, where
Φ vð Þ5 v2

1 v2
2 v1v2 v2v1

� �0
5 4 9 6 6ð Þ0. Note that all possible monomials are formed, order

matters, and all possibilities should be utilized. Similarly, operating on
w, Φ wð Þ5 w2

1 w2
2 w1w2 w2w1

� �0
5 16 12 42 4ð Þ0. Here, all possible monomials of order

two became the tuples of vectors in R4. Then, taking the inner product in R4 of Φ(v) and Φ(w),
K(v,w)5,Φ(v), Φ wð Þ. 5 , v2

1 v2
2 v1v2 v2v1

� �0
; w2

1 w
2
2 w1w2 w2w1

� �0
. 5 , 4 9 6 6ð Þ0,

16 1 24 24ð Þ0 . 5 v2
1w

2
1 1 v2

2w
2
2 1 v1v2w1w2 1 v1v2w1w2 5 255

�
, v1 v2ð Þ0, w1 w2ð Þ0 . �2

5
, 2 3ð Þ0; 4 21ð Þ0 .� �2

.#
Thus it is seen that the inner product in the higher dimensional space is the same as the

inner product in the lower dimensional space raised to the power d5 2. This is the crux of
the matter; whenever the inner product in the higher dimension is desired, there is no need to
utilize the feature maps. The result is obtained in the lower dimension simply by raising the
inner product there to the power d, thus determining the higher dimension inner product.

More generally, the kernel method maps the dot product of two vectors in a Hilbert space
HL5Rn into the dot product of two associated vectors in another Hilbert space HH5Rm.
When n5m, a linear kernel arises. In this case, K(v,w)5,v, w., and for a in R,
,a v1u, w.5 a ,v, w.1,u, w.. Similarly, ,v, a w1u.5 a ,v, w.1
,v, u.. Because it is linear, the kernel is K(v,w)5v’w and the feature map Φ(v)5v. The
Gram matrix for this situation is an n by n matrix whose entries consist of inner products of
vectors from Rn, specifically for {v1, . . ., vn} in Rn; then entry Gij in G equals ,vi, vj..
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Example 1.11:

Again consider the carrier set HL5R2 with the vectors, v5 (v1 v2)
0 5 (2 3)0, and w5

(w1 w2)
0 5 (4 �1). Assume that HL5HH and that the feature map Φ is the identity; then

the Gram matrix for v and w is given in general and again using the actual tuple values
for v and w, G5

v; vh i v;wh ij j5 13 5j j
w;vh i w;wh ij j 5 17j j:#

When m is greater than n, m5nd; then the dot product in Rn, raised to the positive integer
power d, will equal the dot product in Rm. This is called the polynomial kernel method or
the kernel trick. Here, vectors v and w in the domain space Rn are v5 (v1 v2. . .vn)

0 and
w5 (w1 w2. . .wn)

0. The mapping function Φ: Rn - Rm takes all n tuples of a vector, for
instance, v in the domain space, and forms all possible homogeneous monomials of degree
d. When forming these monomials, tuples within the domain vector are to be repeated in
different orders. These distinct monomials then become the tuples of associated vectors in
Rm; that is, monomials formed from tuples of v become tuples in Φ(v). As far as the tuples
are concerned, this is a nonlinear mapping. If this process is carried out, then m5nd.
Moreover, the kernel k is such that k(v,w)5,Φ(v), Φ(w).5 (,v, w.)d. This result can
be seen by taking the inner product in the higher dimensional space:

Φ vð Þ; Φ wð Þ� �
5

P
j1 ?

P
jd vj1?vjd �wj1?wjd; 5

P
j1 vj1 �wj1?

P
jd vjd �wjd; 5 ½Pj vj �wj�d 5 v;wh id.

Example 1.12:

In this example, let n5 2 and d5 3. For v5 (v1 v2)
0 in R2; Φ vð Þ5

v3
1 v3

2 v2
1v2 v1v

2
2 v2v

2
1 v2v

2
1 v1v2v1 v2v1v2

� �;
is a vector in R8. If w5 (w1 w2)’, then homoge-

neous polynomials of degree three could fill the eight tuples of Φ(w), just as it did Φ(v).
Assume that this is done, then forming: Φ vð Þ; Φ wð Þ� �

5
P

j1 ?
P

jd vj1?vjd �wj1?wjd 5P
j1

P
j2

P
j3 vj1vj2vj3wj1wj2wj3 5

P
j1 vj1wj1

P
j2 vj2wj2

P
j3 vj3wj3 5 ½P2

j51 vj �wj�3 5 v;wh i3 5
v1w11v2w2½ �3 5v3

1w
3
1 1v3

2w
3
2 1 3v2

1v2w
2
1w2 1 3v1v

2
2w1w

2
2:#

The benefit of using the feature map Φ is not using it. Dimension n data can be
employed in a Hilbert space of dimension m5nd without actually transforming the data
to this dimension. This is true whenever the inner product of the higher dimensional data
is all that is desired. Here, the only calculation needed is simply to find ,v, w.d.
Applications of the feature map and kernel methods will be provided in a later chapter,
along with several feature maps and various kernels.

1.1.11 R-Modules

Again, to take advantage of the in-depth high-level definition in the MSA, a vector
space substructure will be described. It is called unit R-modules over a commutative ring
R with unity. The sorts are exactly as in the MSA vector space and field descriptions. So
the sorts are again SCALAR and VECTOR. The same is true for the signature sets, except
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that the partial operational name INV does not exist in a commutative unital ring, nor
does it exist for a ring. Accordingly, in a polyadic graph as in Fig. 1.1, the resulting graph
would be modified. In this case, the dotted arrow for INV would be removed entirely.

The actual signature sets for R-modules are as in a vector space structure. Accordingly,
the arity sequence for an R-modules is again (1, 1, 2(1, 1)). The signature sets are as
follows:

Binary operation V2ADDf g;V2ADD maps VECTOR 3 VECTOR-VECTOR
S2MULTf g; S2MULT maps SCALAR 3 VECTOR-VECTOR

Unary operation V2MINUSf g;V2MINUS maps VECTOR-VECTOR
Zero2 ary operation V2ZEROf g;V2ZERO5 0:

Referring back to the equational identities for a vector space structure: (1)�(8), they all
hold for unit R-modules.

Recall that constraints (1)�(4) imply that the structure being described, that is, a unit
R-modulus, is also an abelian group under vector addition. Moreover, sometimes, the
commutative property of a ring is left out in the definition of a module. If this is the case,
the constraints (5)2 (8) are adjusted accordingly. For instance, constraint (5) might be writ-
ten as only: 1 � v5v. The 1, is a one-sided identity. Additionally, in this case, care must
be taken in defining S-MULT. It can only be defined, taking the order of operations into
account. In the MSA polyadic diagram, slashes are used marking the tails of polyadic
arrow. In this type of diagram, a slash (/) is used for the first operand and double slash
(//) is used for the second argument of S-MULT. The symbology is important in describ-
ing left or right modules. When the ring is a field, all this does not matter.

Example 1.13:

Every abelian group G can be considered as an unit R-module over the commutative
ring with identity, namely the integer Z. In this case, SCALAR has a carrier set consisting
of all the integers. The corresponding signature sets are as in the reals, except there is no
partial inversion operator name. VECTOR has the carrier set G of all group elements.
Scalar multiplication is as in a vector space:

S-MULT maps SCALAR x VECTOR - VECTOR,

Specifically, S-MULT (n; g)5 g 1 g 1 . . . 1 g, n times where n . 0. For n521,
S-MULT (n; g)52g, for n5 0, S-MULT (n; g)5 0.

Also, the minus operation is as usual:

V-MINUS maps VECTOR - VECTOR,

However, it is defined using the scalar multiplication operation, namely V-MINUS(g)5
S-MULT(21; g)52g.

The zero-ary operation is an element of the R-module, and as with other operations, it
is defined using scalar multiplication:

So, V-ZERO5 S-MULT (0; g)5 0.

Finally, the addition operation is as before in a vector space:
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V-ADD maps VECTOR x VECTOR - VECTOR,

In particular, if h5n � g and k5m � g for n, m in Z and g in G. Then V-ADD(h, k)5
S-MULT (n1 m, g)5 (n1 m) � g5n � g1 m � g.#

Of importance in quantum disciplines is when the modules are over or not over a divi-
sion ring, for instance, the quaternions. When a division ring is used, there will always
exist a Hamel basis. When the modulus is not over a division ring, there may or may not
exist a basis. For instance, there exists a Hamel basis for vector fields over R2, but there is
no basis for vector fields on the two spheres (Eisenberg and Robert, 1979). The existence of
a Hamel basis is important in quantum disciplines since infinite dimensional vector spaces
may not have a norm and therefore a Schauder basis cannot exist. All this will be seen
subsequently after the tensor product of Hilbert spaces is described.
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C H A P T E R

2

Basics of deep learning

2.1 Machine learning and data mining

Machine learning and data mining are global concepts utilizing databases with the goal
of finding relationships, associations, and structures such as patterns within data (Wittick,
2014). What is actually learnt are algorithms and functions, or operations with appropriate
parameter settings programmed within the learning machine. The underlying philosophy
is to develop these procedures with as little human intervention as possible. The objective
is to employ the learning process to classify, categorize, detect, or estimate characteristics
pertaining to future data. Classification-type applications might be binary or have higher
arity. In any case, the common problem to be solved is to distinguish and partition data
into sets where the elements have common attributes. The estimation process might
involve smoothing, filtering, or predicting. Smoothing refers to revisiting past data and
making the best estimate of what happened in the past. Filtering refers to using data to
determine the best estimates of the present. For instance, autonomous vehicles utilize sen-
sor data as inputs to a learning machine. It filters the data and subsequently sends signals
to control surfaces. This application might involve navigation, guidance, or some other
control such as emergency alertness.

In general, future data is related to but distinct from the training data set. A training
set always exists; however, the extent to which it is employed is summarized as super-
vised versus unsupervised learning. Supervised learning utilizes the training data in refin-
ing and determining parameters in training algorithms. A common attribute of supervised
learning is labels attached to the data. These labels often partition the data by predeter-
mined features. The two principal methods for machine learning that utilize supervised
learning are neural networks and support vector machines. They are used both in detec-
tion and estimation. Support vector machines were mentioned in Section 1.10 where an
introduction to kernel functions was given. These machines are described in detail in a
later chapter. Neural networks that are often called deep learning machines are the main
subject of this chapter. Convolutional neural networks (CNNs) are also briefly introduced
in this chapter. They are described and illustrated with imaging techniques in a later chap-
ter. Other types of neural networks exist. In particular, several types of recurrent neural
nets (RNNs) are illustrated in a later section.
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Unsupervised learning is a technique wherein algorithms autonomously determine
structure from the data. These techniques are numerous in machine learning.
Unsupervised learning always employs domain knowledge and an overwhelming number
of heuristic parameter settings. They range from elementary methods for clustering such
as k-means or k-median techniques to other computationally intense source coding eigen-
value methods. Included with the eigenvalue formulations are the principal component
transformation (PCT) and the singular value decomposition (SVD). These techniques along
with quantum versions are also the topic of a later chapter. A simple procedure of unsu-
pervised learning is illustrated later using k-means. A quantum version of this algorithm
for data mining purposes is provided in a later chapter (Kavitha and Kaulgud, 2022).

The k-means methodology is a clustering technique. When applied to a finite ordered
set X of vectors in Rn the procedure forms a partition of X. The k-medians method is
almost identical wherein the median value of the data is employed instead of the mean or
average. The number of subsets, m, m. 0, within the partition, is a heuristic, known from
domain knowledge and must be specified a priori. Each ordered subset Si, i5 1, 2, . . ., m,
is nonempty and involves a subset leader Li. This value is the average value of all the
points within the subset. The value Li itself usually is not an element within Si. To start
the procedure, this average is calculated after initial conditions are employed. These initial
conditions involve preliminary guesses to determine which elements of X are members of
the subsets creating the partition.

After this, the recursive steps begin.
The recursive step starts with the actual average values being calculated for each subset.

Specifically, the mean value Li is found for each subset Si. Note that each of the Li is in
general a vector with n tuples, since the average is found and recorded in each tuple.
Then the one norm, distance di, is found between all elements in X and every subset leader
Li. Accordingly, for each located vector v in X, the distance calculation :v2Li: is per-
formed for every i5 1, 2, . . ., m. This calculation is also performed for every v in X, v5 (v1
v2 . . . vn)

0, :v2Li :15|v12Li1|1|v22Li2|1 . . .1|vn2Lin|. The value obtained from
this calculation is entered by vector location into di. Every di has the same number of
entries, namely the cardinality of X. After the one norm calculations, a tuple-by-tuple com-
parison is performed among all the distance vectors di Locations of minimum distance are
found, and from this, a clustering or regrouping is performed using the elements in X and
the same value m. Each, possibly new, subset is created by using the elements closest to a
subset leader. These steps are repeated over and over again until the stopping condition is
employed. The stopping condition is when the partition does not change after a whole
recursive step is performed.

Example 2.1:

For instance, X is a subset of R1, where X5 (1, 2, 3, 4, 7, 8, 9). This set is written this
way since data can be repeated. To begin, say m5 2, that is, only two sets will constitute
the partition. The initial guess is the partition S15 (1, 2, 3), and T15 (4, 7, 8, 9). The next,
iteration begins by calculating the subset leaders that are averages for these predetermined
groupings. These values are real scalars because set X consists of real-valued elements.
These average values are, respectively, LS1 5 2; and LT1

5 7: Next, the one norm distance
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from each point within X to both subset leaders must be found. In this case, the one norm
is just the absolute value. These distances are given as ordered tuples
dS1 5 1; 0; 1; 2; 5; 6; 7ð Þ; and dT1

5 6; 5; 4; 3; 0; 1; 2ð Þ: Note that this is exactly the
same ordering as the data in X. Tuple-by-tuple comparison to find the minimum is per-
formed between dS1 and dT1

. So, to begin, since the number one in dS1 is smaller than the
number six in dT1

, cluster S1 will employ the first element.
Additionally, the 2nd, 3rd, and 4th tuples of dS1 are also the smallest. However, the

other tuples in dT1
are the smallest. Now using this information, reclustering begins by

creating a new partition still using m5 2. Assign points within a cluster that are closest to
the subset leader. The new partition is S25 (1, 2, 3, 4) and T25 (7, 8, 9), As can be seen,
this new clustering differs from the previous partitioning.

Accordingly, another recursive step in the procedure must be performed. So again, the
corresponding leaders, that is, averages this time, are LS2 5 2:5; and LT2

5 8: Next, again
compute the distance from all points in X to each subset leader. The results
dS2 5 1:5; :5; :5; 1:5; 2:5; 3:5; 4:5ð Þ; and dT2 5 7; 6; 5; 4; 1; 0; 1ð Þ: Tuple-by-tuple
comparison is performed similarly as before; this time between dS2 and dT2

. Here it is seen
that the 1st, 2nd, 3rd, and 4th tuples of dS2 are the smallest, but the other tuples in dT2

are
the smallest. Reclustering gives the same partition in this case. Therefore, since
S35 S25 (1, 2, 3, 4) and T35T25 (7, 8, 9), the stopping condition is utilized. The result is
the k-mean partition.#

2.2 Deep learning

Deep learning is a major subset of machine learning wherein information is distributed
and acted upon in parallel. Usually neural nets are employed. They consist of layers or
columns of processors each designated to different tasks based on distinct data representa-
tions. Data entering the first layer, that is, the first column of nodes, may appear some-
what random. Algorithms in the nodes of the first layer often determine important
features and transmit these features to nodes in the second layer. A pipeline-type architec-
ture is frequently formed. Here, data is transmitted to subsequent layers usually creating
higher conceptual information content. The last layer, the output layer, yields extremely
high conceptual information such as facial recognition. Deep refers to the fact that many
layers or columns in the neural net exist. Often there is a large mix of layers such as those
used in CNNs. However, layers near the output usually consist of nodes employing affine
functions along with activation functions. These nodes are trained in the conventional
backpropagation gradient method. Supervised and semisupervised learning are employed
in the deep learning process.

2.3 Deep learning and relationship to quantum

For over a decade, deep learning neural nets and artificial neural nets have been at the
forefront of research and application. In particular, CNNs are heavily used in 2D or 3D
imaging and machine vision. As previously mentioned, they are also employed in
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one-dimensional signal applications (Wu, 2021). More recently, CNNs are being used in
conjunction with or aiding quantum computers and quantum simulators. This research
usually is directed at solving quantum many-body problems or quantum entanglement
issues (Carlo and Troyer, 2022). The current basic goal is to build quantum versions of
CNN (QCNN) (Choi and Kim, 2020). This entails the merging of quantum technologies
with machine learning and neural net (NN) techniques. In particular, the NN affine struc-
ture for nodes is largely replaced by quantum entanglement. The MSA will help the devel-
opment of applications involving both machine learning and QCNN.

2.4 Affine transformations for nodes within neural net

One of the simplest types of deep learning NN is the multilayer perceptron, which con-
sists of arrays of nodes. It has been utilized in the classification of linearly separable pat-
terns. Keeping all things mathematical, these arrays are described in the text, and in
particular, in the next few sections by using a rectangular matrix organization for all the
nodes. Neural networks utilize, at a local level, affine transformations. Perceptrons, neu-
rons, or nodes within NN most often contain affine processing devices. Processing units,
that is, each node, involves a column vector v in Rn arriving as input or coming from other
nodes. The calculation within a node is of the form u5W v1 b, where W is 1 by n real-
valued matrix of weights. For b5 0, this is a linear transformation; otherwise, in all cases
it is an affine transformation. The real-valued scalar b causes a translation for the weighted
value Wv and is called the bias value. These weights and bias terms can be considered to
be parameters that are adjusted to create some type of optimization. Once the value u is
calculated using the affine transformation, this quantity usually undergoes a nonlinear
operation T, and the results are sent to other specified nodes in the network. More details
are provided in subsequent sections.

2.5 Global structure of neural net

As mentioned earlier, in deep learning neural nets affine transforms are used in each
node or neuron, along with a nonlinear operation. The nodes are labeled Nij and should
be thought to be organized as in an n by m matrix N, n. 0, m. 0. Therefore, i denotes the
row and j denotes the column for node Nij, throughout the text. To conform to the usual
NN protocol, arbitrarily shaped arrays can be constructed from the matrix-type structure
mentioned earlier by vacating specific nodes. In any case, corresponding to each connected
node is the calculated value uij; at that node, the nonvacated, nonzero nodes are of utmost
importance in this situation.

The quantity n is referred to as the depth, that is, the number of rows. Also, m is the
number of layers or columns within the overall matrix structure. As previously men-
tioned, when the term deep learning is used, this often refers to a neural net with a large
number of layers. Each column vector or layer is labeled by Nk, k5 1, 2, . . ., m. Hidden
layers, if they exist, are denoted by all labels except N1 and Nm. Nodes in layer k are often
connected to numerous nodes in layer k1 1, k5 1 to m2 1. Once the final layer Nm
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outputs its result, this quantity is compared in some way to the input. Accordingly, a mea-
sure of the performance is created at this point. This will involve an objective or cost func-
tion. The correspondence might be an exact comparison, or it might involve important
features concerning the input and final output. Actual implementations with examples are
given in Sections 2.7 and 2.8.

The input to this device can be thought to be an nx1 column vector v. The output as
previously mentioned is assumed here to be the last mth column, Nm of N. The purpose of
this device is to input an unknown vector v and then categorize, recognize, or determine
this vector v by concluding that some function of Nm approximates v. This is performed
utilizing some metric or closeness evaluation. The affine functions within the nodes Nij

involve weights wij and biases bij, i5 1—.n, j5 1-m. The biases are real numbers, and
the weights are real-valued row vectors. Their length is equal to the number of inputs
coming into that specific node. As previously mentioned, inputs to any node are repre-
sented as tuples within a column vector. In the present section, these weights and biases
are assumed known. However, in usual NN applications, values for these quantities are
found in an iterative fashion.

The iterative procedure involves the optimization of an objective function to incremen-
tally update the weight and bias parameters. The method usually is performed by back-
propagation in a supervised training environment. Here, the predicted outputs of the NN
are compared with the desired outputs using a loss or objective function. Subsequently,
this function is optimized in an attempt to find a minimum. The procedure usually relies
on gradient descent for the optimization. Accordingly, in practice the objective function
and all activation functions must be continuously differentiable. After numerous training
cycles and iterations, the network weights and biases might converge. When it does, it is
at this point the NN is ready for use on actual data or more often on a test data set. The
entire method is described and illustrated in the following sections of this chapter.

For the first column or layer N1, each node Ni1 has values of the form ui15T(wi1 vi 1 bi1),
i5 1—.n, where T is some nonlinear function called the activation function. Just to make a
simple illustration, T might be a maximum, that is, ui15max(wi1 vi1 bi1, 0). For the second col-
umn N2, the nodes operate similar to those in N1; here ui25T(wi2(� )1 bi2). This time, the
weight wi2 multiplies whatever inputs it obtains from connecting nodes in column N1. Total
connections are not always needed; some, or even a few, nodes in column N1 will connect to a
specific node in N2. This process continues usually with the same nonlinearity until outputs
from Nm-1 enter the last column Nm. In this last column, often a different nonlinear function F
might be employed, but the argument is still an affine function. So, at node Nim, uim5 F
(wim(� )1 bim). The weights wim, that is, these row vectors, multiply tuple by tuple all the inputs
to Nim and add on bim. After this multiplication and addition, the activation function F is calcu-
lated. Again, only connecting outputs from assigned nodes in column Nm21 enter nodes Nim,
that is, the network need not be fully connected.

As mentioned previously, backpropagation algorithms are used to adjust assigned para-
meters within the affine transformations. Values for parameter updates are obtained using
a gradient-type algorithm to maximize/minimize the chosen objective function. The proce-
dure is performed in an exhaustive iterative fashion. Over and over until the NN
completely learns, the output error is minimized. Usually, controlled test data is utilized
for system validation. An in-depth description of the procedure begins in Section 2.7.
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The next example illustrates a two-by-two NN structure. It is presented to illustrate
some basic NN concepts such as affine transformations, activation functions, as well as the
array structure and connections between nodes. No learning is illustrated in this example;
moreover, the activation function utilized is not only nondifferentiable; it is not even con-
tinuous. However, this specific application shows that continuous functions can be gener-
ated using NN. By itself, this example provides a simple square pulse of height h, h. 0,
between real values a and b, a, b, and is zero elsewhere. Linear combinations of such
pulses provide a staircase-type function that can approximate any continuous function on
the real line. Again, in this example, all parameters are fixed; there is no learning for the
NN (Nielsen and Chuang, 2000).

Example 2.2:

Any continuous function f: R-R can be approximated by step functions. These func-
tions are dense in the set of all real continuous functions, C(R). The two-by-two, n5m5 2,
the neural net will provide a single step of height h with location in the interval (a, b] and
zero elsewhere. In the first layer N1, there exist affine transformations. They are followed
by activation functions, T. In short, the output from each node in the first layer is ui15 1
for (wi1 vi1 bi1) . 0 and ui15 0 otherwise, i5 1, 2. The affine functions and activation
functions producing these results are given next. All double subscript labels are exactly as
in an n by m matrix, n, m. 1.

The first layer N1 has w115 1 and b1152a. Thus, u115T(w11x1 b11)5T(x2 a)5 sgn
[max (x2 a, 0)], and so for x larger than a, this yields one; otherwise it yields zero. Here
sgn(.) is the sign function; it is one for positive input values and zero otherwise. Similarly,
w215 1 and b2152b. T(w21x1 b21)5T(x2 b) yielding 1 if x. b. In the second layer, the
activation function F5 I; it is the identity function in this case. Also, in the second layer in
N12, the bias term is zero. In the second layer, there is a matrix weighting; it is a one-by-
two row vector consisting of the pulse height, specifically, w125 (h 2h). The row vector is
employed because there are two inputs, to N12. In vector form, the input to this node is
the column vector (y1 y2)

0. In the present NN application, the node N22 is not used. Refer
to Fig. 2.1.

Layers → Input

Depth ↓

N1

U22=0U21=T(ω21 x+b21)

U11=T(ω11 x+b11)

N11 N12

N22N21

N2
Multiply (h -h)

y1

y1

y1

y1
y2

y2

y2

h - h

a b

Sgn[Max(x-b,0)]

Sgn[Max(x-a,0)]
=

U12=F(ω12 y+b12)

ω12=(h -h)
=

=

=

x

x

Here = 1 For x > a Zero Otherwise

y2 = 1 For x > b Zero Otherwise

FIGURE 2.1 Matrix structure
for NN square wave pulse crea-
tion. NN, Neural net.
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For the first layer, the input vector can be thought to be the column vector, v5 (x x)0. In
practice, values of real numbers x, in very small increments, can be inputted simulta-
neously for both tuples of v. By connecting the output, y15u11 of node 11 as input to
node 12, and the output of node 21, y25u21 also as the input of node 12 yields a rectangu-
lar pulse. This pulse is on the x-axis and is of height h with support approximately, (a,b].
Notice that Fig. 2.1 provides a block diagram. It is given in strict matrix form, illustrating
the operations needed to create a square pulse. Each node is denoted by a rectangle. Each
active node contains an affine function and an activation operation. Again, note that node
N22 is not employed in creating the square wave pulse.#

Preparing for Section 2.7, where NN is described in more detail, particularly for the
supervised learning aspect, a more pictorial presentation will be given. Here, it is conve-
nient to symbolically portray the algebraic operations within a node in greater detail. The
symbolic representation provided herein is inspired by Petri nets (Petri, 1962; Graff and
Giardina, 2005). These nets are also called place and transition nets.

In the present case, internal operations within node Nij are illustrated by using a trian-
gle representing addition. This symbol is utilized for adding the scalar bias bij to the sum
of weighted inputs as well as creating this sum. A single circle encloses each individual
scalar-valued weight within the row vector wij. The circle symbolizes a multiplication
operation. Again, the scalar weights within the row vector multiply tuple by tuple the col-
umn vector of input tuples for the node Nij. Finally, a square is employed in identifying
the activation function, T or F. In general, the activation functions are invariant during the
learning process. However, the output from the activation function T or F usually does
change because the input to these functions themselves changes. Refer to Fig. 2.2 and the
example below, Example 2.3 to see an instance of this new notation. In the referenced dia-
gram, a simple node Nij is illustrated. Here, numerous inputs are multiplied by an
encircled individual scalar weight. Each individual weight is a distinct tuple within the
row vector wij. Subsequently, all the products are added together in the three-sided
figure along with the bias bij. Lastly, a square indicates an activation function for that
node. The previous example will be repeated, this time with the new visual symbolic
operations within nodes of the NN.

Add

bij

T

Mult

Mult

Mult

Node Nij

To Nodes
N?, j+1
Or Out

FIGURE 2.2 Symbolic
schema for operations
within NN nodes. NN,
Neural net.
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Example 2.3:

As in the previous example, a rectangular pulse function is created using the NN; this
time, it is illustrated in Fig. 2.3. As mentioned, the internal structure of each node is por-
trayed with symbols. Nodes N1,1 and N2,1 are identical except that the biases are opposite
in sign. Again, the activation functions in both nodes are T(wj1x1 bj1)5 sgn [max (x2 bj1,
0)]. Note that in node N1,2 the activation function is not utilized; thus the identity function
is illustrated within the square. Also, in this node two inputs arrive. Accordingly, two dis-
tinct weights are utilized, indicative of heights h and 2h. These are each enclosed within
a circle. Together, these weights are entries or tuples within the row vector w125 (h 2h).
Finally, as before, node N2,2 is not employed in this NN.#

2.6 Activation functions and cost functions for neural net

Conventional NNs have nodes utilizing affine functions followed by an activation func-
tion F, which is almost always nonlinear. Common attributes for an activation function are
that when the output of the affine map is the input to F, then F often returns values in
[2 1, 1] or [0, 1]. In the latter situation, the output is understood as a probability value.
More importantly, when backpropagation is employed F must have a continuous deriva-
tive. When this is not the case, a noncontinuous derivative for F has the property that very
small changes in the input can cause drastic deviations in the value of the output deriva-
tive. See the example below.

Out = hy1 +(-h)y2+0,    y1 =T(1x-a) = Sgn [max(x-a,0)] = 1 for 
x > a, Zero Elsewhere, y2 = Sgn [max (x-b, 0)] = 1 for x > b, 0 Elsewhere

1

N11 N12

W11 b11= -a b12= 0

T
MULT  ADD

x

1

N21 N22

W21 b21= -b

T
MULT  ADD

x

MULT

MULT

ADD

Out
Fh

-h
h

a b

y1

y2

FIGURE 2.3 Symbolic calculations for NN square wave pulse creation. NN, Neural net.
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Example 2.4:

The function f: R-R, where f(x)5 x2 sin(1/x) for x nonzero, and f(0)5 0. This function
is differentiable with f0(x)5 2x sin(1/x)2 cos(1/x) for x nonzero, and f0(0)5 0. So, for
instance, if x15 0 and x25 1/(1000π), then f0{x1)5 0, but f0(x2) is one.#

Activation function must often be chosen such that when used in backpropagation the
gradient does not vanish or explode. When the gradient becomes too small, weights and
biases more or less stay invariant. On the other hand, exploding gradients cause instabil-
ity, which almost never results in learning. This is a large problem in RNNs due to the
feedback; however, modified RNNs described in Section 2.11 were created to overcome
some of these problems.

Several commonly used activation functions are listed below along with their range and
their derivative, when the latter exists. These functions are defined on the real line,

Sigmoid: T(x)5 1/(11 e2x); range: (0, 1); derivative: T0(x)5T(x) (12T(x))
Hyperbolic Tangent: T(x)5 2 (1�e22x)21�1, for x not zero, and 21 at zero; range:
[2 1, 1]; derivative: T0(x)5 (1�T2(x))
ReLU: T(x)5 0 for x , 0 and T(x)5 x otherwise; range: [0, N); derivative: T0(x)5 0 for
x, 0 and T0(x)5 1 for x. 0; T0(0) does not exist.
Soft log: T(x)5 log(11 ex); range: (0, N); derivative: T0(x)5 1/ (11 e2x)
ArcTan: T(x)5 tan21(x); range: (21, 1); derivative: T0(x)5 (11 x2)21.

One of the most commonly used activation-type functions for multiclass classification is
Softmax. It is almost always employed on outputs from the final layer of a NN.
Accordingly, from this perspective, Softmax can be thought to be a pseudo node. It is of
the type many inputs to many outputs. Therefore, outputs from all n nodes in the final
layer, Nm, enter Softmax. Say that these outputs are x1, . . ., xn; then

Softmax xið Þ5 exið Þ=ðPj e
xj Þ. Moreover, it is assumed that the pseudo node keeps track

of the inputs sent from all final nodes, Ni,m, and sends as outputs the Softmax calculations
in order. In this case, the output from any actual final node can itself be thought to be a
probability. Because, after the final node the output value enter the pseudo node, it gets
calculated by Softmax and takes on values in [0, 1]. And the sum of all the final node out-
puts when converted by Softmax is one.

Example 2.5:

Say that three final nodes exist in a NN. Each such node sends its output to the pseudo
node Softmax. If the actual outputs of each final node are given in order by (2, 1, 0.5),
these values enter the pseudo node. The Softmax operation is applied three times and pro-
vides in order the actual probability type vector that approximately equals (0.6, 0.25, 0.15).
From this output, the final node one results in the correct classification.#

Various objective or cost functions are employed in machine learning. Most of the time,
these functions are convex. In R1, f is convex in an interval [a, b], which means that for x
and y in this interval, x, y, and any λ in [0, 1], f (λx1 (12λ) y) is less than or equal to λ f
(x)1 (12λ) f (y). This means the chord for f in the interval [x, y] is larger or equal to the
value of f in this interval. Convex objective functions are used since in this case local
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minima are also the global minima. In later chapters, nonconvex objective functions are
employed making use of simulated annealing and in particular quantum annealing techni-
ques. Annealing-type operations often enable global minimization to occur (Laarhoven
and Aarts, 1987).

Example 2.6:

Refer to Example 2.1, where the k-means procedure is illustrated using the one norm
objective function. In this case, since data from R1 was employed, the one norm is :v:15|
v|. For λ in [0, 1] and any x and y in R1,|λ x1 (12λ)|is less than or equal to λ|x| 1
(12λ)|y|by the triangle inequality. So this objective function is convex.#

Other important convex cost functions are quadratic, for instance, least squares and
methods involving variance reduction such as square error.

2.7 Classification with a single-node neural net

Recall, from Section 2.5, that nodes Nij within an NN have addresses exactly like entries
within a matrix; the quantity (i, j) represents the ith row and jth column, respectively.

A circle is used, each enclosing an individual scalar-valued weight represented as a
tuple within the row vector wij. Moreover, the circle itself symbolizes a multiplication
operation. Also within the node, a triangle representing addition symbolizes adding the
scalar bias bij to the sum of weighted inputs to node Nij. Finally, a square is employed in
identifying the activation function, T or F, and causes the activation function to activate
and provide a scalar output. Section 2.6 provides a description of several activation func-
tions. In this section, a single-node NN is employed. For this situation, subscripts won’t be
used; moreover, the input value v will be a real number in a specified interval. It will enter
the node and then enter the circle-type figure containing the specified weight.
Multiplication by the weight occurs here. The output from the circle diagram is labeled x
and enters the triangle, wherein the bias value b is added to x. The output from the trian-
gle is y, and this value enters the square-type figure. Here, the activation function F is
evaluated, and z5 F(y) is the output value. This whole scenario is explained in Example
2.7 and is illustrated in Fig. 2.4.

Example 2.7:

The objective is to build an NN whose input could be considered to be in dollars, v in
the interval [0, N). The output z is to flag any input that is greater than 50,000; in this
case, the output z is set to one; otherwise, it is set to zero. The single node NN performing
this binary classification is illustrated in Fig. 2.4. In this case, whenever an input v enters,
it gets multiplied by w5 1, and so x5v; this quantity is added with the bias b5250,000,
resulting in the value y5v2 50,000. This quantity is used as the input of the activation
function, F(y)5 sgn [max(y, 0)]5 sgn [max(v2 50,000, 0)]. Thus, when v. 50,000, a one
appears for z. Otherwise, the value z5 0 appears. This is the exact same activation func-
tion used in Examples 2.2 and 2.3.#
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The activation function employed in the earlier example is usually not used in NN
applications. First of all, in this example, the max function is continuous, but not differen-
tiable. Worse yet, the sgn function is not even continuous. As mentioned previously, NN
applications normally need continuously differentiable functions. This is due to the back-
propagation learning aspect, which is essential in all cases.

Since the activation function utilized in Example 2.7 is almost never used, the example
will be performed again using the sigmoid function. In this case, the output z can be
understood as a probability. Again, this is a classification problem; now the value of z will
either be greater than 1/2 for the affirmative input, that is, when the input is greater than
50,000. If the input is less than or equal to 50,000, the value will be 1/2 or less.

Example 2.8:

Again, assume that the input is in dollars, v from the interval [0, N). The output z gives
a value z. 1/2 whenever any input is greater than 50,000; otherwise, it is set to 1/2 or
less. The single node NN performing this binary classification is illustrated in Fig. 2.5.
Once more, whenever an input v enters, it gets multiplied by w5 1, and so x5 v; this
quantity gets added with the bias, b5 2 50,000, resulting in the value y5v2 50,000. The
resulting value is the input to the new activation function, F(y)5 1/(11 e2y)5 1/(11 e2(v-50000)).
Thus, when v. 50,000, a number between 1/21 and one appears for z. Otherwise, z is a number
between zero and 1/2.#

2.8 Backpropagation for neural net learning

In this section, initially it is assumed that the structure of the full NN is defined, so all
biases and weights are fully known. Moreover, this includes all activation functions T or
F, as well as the chosen error criteria, C. Section 2.6 describes several well-known activa-
tion functions and error measures. The backpropagation procedure to train an NN is
supervised learning in which an exhaustive amount of computation must be performed. It
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FIGURE 2.4 Classification using NN with noncontinuous activation. NN, Neural net.
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begins by using domain knowledge of the application so that educated guesses are pro-
vided for each weight and bias value within every node. Often, when domain knowledge
is not available, weights are chosen randomly and biases are often set equal to zero. Also
needed is the training data. One by one, each piece of training data x will enter and be
executed or processed by the NN. Ultimately, an output z from the NN appears. This out-
put is also called the predicted output. The value z is used in the cost or objective function
C. It is then compared with the actual, true, or desired output, d. The desired value is
known prior to starting the NN backpropagation process. The value d depends on the
actual input v. Calculating the cost results in an error E, which, when not zero, indicates
the need for recalibration of weight and biases using backpropagation along with the gra-
dient decent method.

For each node value to be updated, the chain rule is used in describing the changes in
C. These changes ΔC are due to variations in weights ΔW or changes in bias, Δb values.
Updated values are needed in order to apply the gradient algorithm. Each result from the
chain rule becomes a value of the slope in the gradient descent algorithm. Then, the gradi-
ent algorithm is employed involving C and any weight or bias that is to be updated. In all
cases, ΔW or Δb52η grad(C), where η is a positive number called the learning rate and
is heuristically found. The minus sign is used since the gradient points in the direction of
maximum change, but here the cost is to be minimized. The gradient descent begins with
initial conditions using index k5 0. Then, for k5 0, 1, 2, . . ., the algorithm computes:
xk115 xk2 ηk f0(xk). As previously mentioned, the step size is ηk, and it is heuristically
found.

After the aforementioned calculations, the whole procedure repeats; again, substituting
in the new values of weights or biases and executing the NN again with these new values,
and then finding new predicted outputs d, calculating the cost, and so on. A sequence of
examples will be presented in order to illustrate the backpropagation and chain rule proto-
col. All these examples utilize the situation given in Example 2.8, where the actual solution
is well known beforehand. In actual NN applications, this is never the case. Deliberate
changes are made to this example, one by one, one at a time, to the weight or the bias in
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FIGURE 2.5 Classification using NN with sigmoid activation. NN, Neural net.
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the ensuing examples. By doing this, the backpropagation and the chain rule methodology
become more understandable, and the path to the solution via backpropagation becomes
more apparent. To repeat, several examples will follow wherein the exact solution is
known. However, a deliberate wrong setting is made on the bias or weighting term, and
the backpropagation and chain rule calculations will somewhat correct the wrong settings.

Example 2.9:

Refer to Example 2.8, where the input v is a value in the interval [0, N). The output z
should be a value z. 1/2 whenever any input is greater than 50,000; otherwise, it is set to
1/2 or less. But this time, the proposed output deliberately will not occur. In Fig. 2.5, the
actual NN employed in this example is modified for this example as well as the next two
examples. Observing the following figure, three distinct sets of conditions are indicated.
Each set has a single deliberate error in either the weight or the bias value. These values
are listed in order below the transmission from the circle to the triangle in the diagram.
The values should be applied to this example, followed by Examples 2.10 and then 2.11 in
that order.

In the present example, when an input v enters, the correct weight is kept, w5 1, and
so x5v. However, this time let the bias be set to b0 5251,000. Fig. 2.6 illustrates the same
NN as in the previous example, but for this problem a new value of bias is used; it is
b0 5251,000, but the weight stays the same; it is w5 1. Using the new value of bias results
in the value y5v2 51,000. So, any input value less than 51,000 will not be flagged with
this NN structure. Accordingly, this can result in misclassification. For instance, when the
value 50,999 enters, a value closer to zero than one is obtained as the predicted output.
This is arrived at by inputting y5v2 51,000521 into the activation function z5 F(y)5
1/(11 e2y)5 1/(11 e)5 0.27. So in this case, the actual observed output of the NN is
much less than 1. However, the desired output is d5 1, since the input is v. 50,000.
Employing the objective function C, gives C5 (d2 z) 25 0.535 E. The value of this
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FIGURE 2.6 Bias and weight modifications for single node NN. NN, Neural net.
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objective function is another indication of the actual error. However, after using backpro-
pagation, the new value for the error will be less than 0.53.

Beginning with the cost function and using the chain rule, the objective is to update the
bias such that the cost function decreases. So to begin, the change in the cost function due
to a change in the bias is desired; it is dC/db. Use the chain rule, go backward, and refer
to the Fig. 2.6, mentioned above. This change depends on how the cost function decreases
with respect to a change in the output z. This output arises from the sigmoid function,
specifically it is dC/dz. Remember that the output of the sigmoid function varies because
its input y has changed; this is summarized as dz/dy. Finally, the value y can change
because of a variation in the bias; thus dy/db symbolizes this change. Utilizing the chain
rule gives the desired backpropagation formula, dC/db5dC/dz dz/dy dy/db.
Substituting actual values gives dC/dz522 (d2 z)521.46 and dz/dy5 F0(y)5 F(y)
(12 F(y))5 .27 � 0.735 0.2. Finally, dy/db5 1, and so multiplying all these together gives
dC/dz520.3. The negative of this value will be utilized in the gradient algorithm. Using
a learning rate η, say η5 1000, then adding 300 to the current bias b0 5251,000 provides
the new value of bias b0*5250,700. This calculation was b0*5 b0 2 η dC/dz.

The aforementioned description presented the gradient descent algorithm in a nutshell.
The parameter setting for the learning rate η was employed; since we knew the true
answers ahead, we cheated. When the bias was set to the wrong value, that is,
b0 5251,000, then the cost or loss function was seen to be E5 0.53, The important thing to
notice is since the value of bias that was set in this example was too small, the algorithm
gave a positive increase in bias change. If another iteration of backpropagation was per-
formed, another small increase in bias would occur. Ultimately, the true value of bias,
b5250,000, should be obtained.#

The next example will again illustrate the backpropagation procedure. This time, the
bias bv is set to be too large a value. Here, it will be seen that the procedure will provide a
decrease in the bias value.

Example 2.10:

Again, referring to Example 2.8, the input v is a value in the interval [0, N). The output
z should be a value z. 1/2 whenever any input is greater than 50,000; otherwise, it is set
to 1/2 or less. Again, when an input v enters, the correct weight is kept, w5 1, and so
x5 v. Now, a value of bias greater than the optimal value will be used, so let
bv5249,000, resulting in the value y5 v2 49,000. Again see Fig. 2.6, for the actual NN
employed in this example; here w5 1 and bv5249,000. So, any input value greater than
49,000 will be flagged, with a value greater than 1/2, even though it should not. This again
results in misclassification. Here, for instance, when the value 49,001 enters, a value closer
to one than zero is obtained as the predicted output. The calculation occurs by inputting
y5v2 49,0005 1 into the activation function, z5 F(y)5 1/(11 e2y)5 1/(11 e21)5 0.73. In
the current case, the desired output is d5 0, since the input is v, 50,000. We use the objec-
tive function C5 (d2 z)25 0.5335 E. This nonzero value also indicates an error.
Accordingly, the use of the gradient algorithm along with back projection will be needed.

Again using the chain rule, exactly as in the previous example, dC/db5dC/dz dz/dy dy/
db, where dC/dz522 (d2z)5 1.46 and dz/dy5 F0(y)5 F(y) (12 F(y))5 0.733� (1�0.73)5 0.196.
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Finally, dy/db5 1, and so multiplying all these together gives 0.29. Since the negative value of
0.29 is employed in the gradient algorithm, this automatically provides a negative increase in the
bias. It is of paramount importance that the bias gets closer to the desired value. Since the true
answer is known, set the learning rate η5 1000; then the new value of bias is given by bv*5 bv
�η dC/dz5�49,000�2905�49,290.#

A final example will be given, this time keeping the bias at the correct value but slightly
changing the weighting function value. In this case, a weighting function too large is
employed. The backpropagation and gradient technique will indicate this error and correct
it somewhat. However, in general, these algorithms must be employed over and over
again to possibly obtain the optimal solution.

Example 2.11:

Again, referring to Example 2.8, the input v is a value in the interval [0, N). The output
z should be a value z. 1/2 whenever any input is greater than 50,000; otherwise, it is set
to 1/2 or less. Similar to before, the proposed output will not occur, this time because the
wrong weight w0 is utilized, but the correct bias is still employed. See Fig. 2.6 for the NN
illustrating this example. When an input v enters, an incorrect weight, w0 5 1.1, is used,
and so x5 1.1 � v. The bias is set to b5�50,000. Doing the calculations, any input value
greater than 45,454 and less than 50,000 with this NN structure will result in misclassifica-
tion. For instance, when the value 45,455 enters, a value closer to one is obtained as the
predicted output. Note that x5w � v5 1.1 � 45,4545 50,001. Furthermore, by inputting
y5 x�50,0005 50,001�50,0005 1 into the activation function, z5 F(y)5 1/(11 e2y)5 1/
(11 e21)5 0.73. In this case, the desired output is d5 0, since the input is v, 50,000. We
use the objective function C5 (d�z) 25 0.535 E. This value also indicates the need for the
gradient algorithm, with back projection given next.

By the chain rule, dC/dw5dC/dz dz/dy dy/dw, where dC/dz5 -2 (d�z)5 1.46 and
dz/dy5 F0(y)5 F(y) (1�F(y))5 0.73 � (1�0.73)5 .96. Finally, the change in y due to the
changes in weights is different from the change in y due to the changes in bias. In this
case, the input is involved, dy/dw5v5 45,454. Lastly, multiplying all these together
yields 63,709. However, the negative of this value is utilized in the gradient algorithm.
Here, say that the learning rate is set to η5 .000001. The new weight with wv*5 1.1�0.
063709, which is about 1.036, is a value closer to the true value of w.#

2.9 Many-sorted algebra description of affine space

Affine space consists of a nonempty set A with elements a and b along with a support-
ing vector space V; V is called the translation space for A. It is such that for the difference
of any two points of A, there is a corresponding vector, v in V, that is, a2 b5v. In partic-
ular, a2 a5 0. There is a sought of inverse, write b5v1 a. This equation is interpreted to
mean that a is translated along the vector v to provide the point b. When v5 0, b5 a, that
is, there is no translation. In any case, consider the mapping, 1 : A x V - A. So in this
case, the vector space acts on the set of points in A. Vectors in V move elements in A; that
is, vectors in V translate elements in A to new locations (Berger, 1964).
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An affine space A is a principal homogenous space for the vector space V; that is, A is
nonempty, and for a and b in A, there is a unique vector v in V such that a1 v5 b (Lang
and Tate, 1958). The affine space has a free and transitive action of V on A. This property
is also called a V-torsor; that is, the vector space V acts as a translation on A employing a
left or right torsor with its additive group. In the MSA approach, there are actually three
sorts: SCALAR, VECTOR, and ELEMENTS. However, in Fig. 2.7, only two sorts are
shown; that is, SCALAR is omitted. As usual, VECTOR refers to a vector space, but the
operator names solely within the signature sets in a vector space are not illustrated in this
diagram. ELEMENTS refer to the nonempty affine space, which intuitively looks like a
vector space without the zero. To make A a V-torsor, a single signature set is needed with
a single binary operational name TRANS. It is such that

TRANS: A x V - A.
Additionally, TRANS must obey three equational constraints. To see these, let v, w, and

0 denote sort VECTOR and let a be an ELEMENT. Also use1 for TRANS.

1) Null Translation: a1 05 01 a5 a
2) Associative: a1 (v1 w)5 (a1 v)1 w
3) Isomorphic Map: A x V - A x A, (a, v) - (a, a1 v)

An affine space A can be visualized as a line, plane, or hyperplane in a vector space V
that does not go through the origin. For instance, consider V5R3, elements u and v in A;
the sum u1v is most often not in A. The same holds for a scalar multiple a � u, where a
is in R. Any such affine space is parallel to a plane S going through the origin. This plane
S is a subspace of V. Choosing any fixed element w in A, the difference u2w is in S, as
well as v2w. This defines a one-to-one correspondence between A and S. From this corre-
spondence, addition and scalar multiplication can be defined on A. So, using fixed w in A
then V-ADD( u,v) in A, means u 1 v 2 2w, is in S. Similarly, S-MULT( a; v ) in A means
that a v 2 a w, is in S.

Example 2.12:

In V5R3, consider the subspace S defined by the set of points (x, y) that satisfy the
equation 2 x1 3 y5 0. Let the affine space A be defined by the set of points on the plane:
2 x1 3 y5 6. Notice that this affine space can be multiplied by any nonzero scalar. For
instance, multiplication of the last equation by 2 gives 4 x 1 6 y5 12. Thus, there exist
equivalence classes of affine spaces. Let w be the fixed point (0, 2) in A. To add u5 (3, 0)

TRANS

ELEMENT

VECTOR

FIGURE 2.7 Polyadic graph of affine space.
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and v5 (6,2 2), both in A, use u2w5 (3, 22) in S and v2w5 (6, 24) also in S. To add u
and v, referring to the aforementioned formula, take a5 b5 1; then u 1 v 21 w5 (9,
22)2 (0, 2)5 (9, 24) is in A.#

Example 2.13:

Let the carrier sets for both SCALAR and VECTOR be the real number field, R. Also,
see Example 10.5, where this structure with the usual conditions is a vector space. Even
more is true; however, it is a Hilbert space. In this case, inner products can be formed.
Vectors v in R can be thought to be arrows going horizontally right or left with their tail
located at the origin. V-ZERO is the vector 0. So, for instance, if v5 7 and w5 2 3, then
V-ADD(v, w)5u5 4. Note that dot or inner product, ,v, w.5221, and :w:2

2
5 9 are

scalars in R. Also, using the one norm, the length of w is :w:15 3. Finally, consider the
affine space with sort ELEMENT also being R. Then taking the point say P15 8, TRANS
(P1; v)5P25 15. The vector transported the point on the real line from location 8 to
location 15.#

2.10 Overview of convolutional neural networks

Convolutional neural networks are the premier example of deep learning structures.
Applications of CNNs are used for solving recognition as well as classification problems.
However, CNNs are mostly employed for data having a locally correlated structure, and
they are less useful for random-type data (LeCunn et al., 1989). Applications range from
facial recognition to their use in self-driving vehicles employing three-dimensional data. A
later chapter provides more details and examples of CNNs for these and other image-type
applications. Here, mainly single-dimensional CNNs are briefly described. One-
dimensional CNNs are applied to sound, time series, or data streams such as stock market
prices.

Forward propagation is the first step in a CNN and will be described next. The specific
architecture is application dependent, but it usually involves several layers of convolu-
tional nodes. Different filters or kernels are applied in different layers. In each layer, con-
volution involving bound vectors from input signals or output signals from previous
nodes is convolved with specified kernels. Sometimes a bias is added again creating an
affine-type operation within a node. These layers are often stacked, but are applied in a
feed-forward manner. To achieve better results, backpropagation is sometimes employed
in modifying the filters or kernels used in the convolution, as well as biases whenever
they are unemployed. Here, standard gradient techniques are utilized along with the back-
propagation process.

After convolutional layers are performed, or even sometimes in between convolutional
layers, a pooling layer is usually applied. This is a compression or source-coding operation
also called downsampling. It condenses or summarizes the information from the previous
layer. The pooling method is usually a simple averaging of a specified group of data, and
this average is used instead of the group of data itself. Often max pooling is performed,
wherein the largest value for a specified group of data is chosen to replace the group of

372.10 Overview of convolutional neural networks

Many-Sorted Algebras for Deep Learning and Quantum Technology



data. Additionally, a normalization is sometimes performed using truncating methods; for
instance, ReLU is utilized. This operation is employed to make all values nonnegative.
Stacked layers involve several convolutions, ReLU, or pooling layers all in some specified
order. In every case, a reshaping operation is needed for two or higher dimensional appli-
cations. This operator converts unordered information into a strictly ordered vector of
information to input into a conventional NN. Finally, dense layers, one or more fully con-
nected NN layers, are applied. It is trained with backpropagation to determine optimal
values in the affine transform within each node. This entails operations similar to those
described in a previous section.

Hyperparameters are heuristically determined parameter settings needed for the opera-
tion of the NN. They are found from domain knowledge as well as trial and error or from
transfer knowledge. For the overall architecture, hyperparameter decisions are the number
of convolutional layers, the number of pooling layers, and the number of ReLU layers.
Additionally, parameters are needed for the associated connecting deep NN, along with
parameters for the number of features, types of kernels or filters, as well as their size and
stride. The latter parameter deals with the number of zeros inserted in between data
values in the pooling and convolution layers. Stride in the bound vector convolution pro-
cess is mentioned again with examples in Section 3.2. Other hyperparameters are the types
of layers as well as the number of each layer and the order of application.

2.11 Brief introduction to recurrent neural networks

Recurrent neural networks (RNNs) are useful for time series data and other sequential
streams of input values. The main attribute of the RNNs is its recursive feedback feature.
It enables data predictions or filtering, using past and present data. Applications include
text classification, text generation, time series forecasting, financial applications, and medi-
cal sketching. RNNs can utilize data of different dimensions, however, they have their
own problems. Including vanishing sigmoid activation functions, and exploding gradient
property. So when backpropagation is utilized often, the method is troublesome.
Whenever the NN weights are greater than one, the gradient explodes. On the other hand,
when the weights are less than one, the gradient goes to zero. Vanishing and exploding
gradients make training very difficult. A partial solution is clipping when the gradient
gets too large and re-initializing different biases when the gradient gets too small.

A well-known solution to the exploding or vanishing gradient involves two modifica-
tions of the RNNs. The first is using long short-term memory (LSTM) machines
(Hochreiter and Schmidhuber, 1997). The other is using gated recurrent units (GRUs). All
three NN machines each consisting of a single node are illustrated in Fig. 2.8. Symbology
utilized in this diagram is described in Section 2.5 and illustrated in Fig. 2.2. Every circle
contains a weight, and the inputs to the circle are all multiplied together. A triangle adds
together all its inputs, and an arrow pointing to the triangle denotes a bias, which is added
to other inputs. A square indicates an activation function, and the input is the argument.
The sigmoid in the diagrams is denoted by σ, and the hyperbolic tangent is denoted by T.

A single node of the RNN machine is illustrated in Fig. 2.8A. In this diagram, the feedback
connection is clearly illustrated. In applications, these nodes are replicated, yielding an RNN
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of greater depth than one. In these cases, the feedback connection is voided and new connec-
tions are made from a node to another identical node one level of depth below. The output
from the weight connects to the new triangle of the underneath node with bias b1.

Long short-term memory uses two paths instead of the feedback loop utilized in the
RNNs. See Fig. 2.8B. One path on top is for long-term memory, and a different path on the
bottom is for short-term memory. Both sigmoid and hyperbolic tangent activation func-
tions are employed in LSTM nodes. See Section 2.6 for a description of these activation
functions. In the following, a single LSTM node is partitioned into five stages. Each stage
contains an activation function. Inputs when modified go through a sigmoid function, all
contained in the first stage and often called the forget stage. This stage provides the
percent of long-term memory, which should be remembered. The next stage also uses a
sigmoid function and is employed to indicate the percent of potential memory to remem-
ber. The following stage involves a hyperbolic tangent activation function and addresses
potential long-term memory. It must decide how much potential memory to remember.
The degree of remembering is controlled by the input. The input gate illustrated by the
transmission along the top of the figure refers to how the LSTM unit determines how we
should update the long-term memory. The final stage updates short-term memory, by first
using the hyperbolic tangent activation function. Here, the potential short-term memory is
used, and this stage is called the output gate. The output gate also has inputs, indicating
the percent of potential memory to remember from the previous sigmoid activation func-
tion. Inputs only go into the first four stages and are utilized in indirect ways by the final
stage. The final stage outputs both the long-term memory and the short-term memory.
LSTM avoids the exploding and vanishing gradients. However, it is still difficult to train
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FIGURE 2.8 Types of recurrent neural networks. (A) RNN, (B) LSTM, (C) GRU.
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since in applications there have to be many layers of LSTM nodes. Transfer learning is
also not useful in LSTM.

The final illustration is Fig. 2.8C. It is a diagram of a node for a GRU. This diagram pro-
vides the architecture corresponding to the equations given by Cho et al. (2014). These
equations are provided next, by letting F represent the sigmoid activation function and
using T to represent the hyperbolic tangent activation function. In this figure, the input
from the bottom is denoted by x, the previous state input is illustrated on the top, and it
is h0. Then the leftmost sigmoid output function is denoted by r, where r5 F
(w1 � x1w2 �h0 1 b1). In a similar way, the next sigmoid has output given by z, where
z5 F (w3 � x1w4 �h0 1 b2). In this diagram, after z is calculated, it is multiplied by a
weight equal to minus one. Then the triangle adds together 12 z. This quantity then is
multiplied by both weight one and h0. The value z is also multiplied by the output a of the
activation function T. Thus, the new state output h is given as a convex combination of the
old state h0 and the output of the hyperbolic tangent activation function, a. Here, a slight
difference is made between the equations described by the diagram and those in the reference.
Specifically, the output state h5 (12 z) �h0 1 z� a and a5T (w5 � x1w6 � (r �h0)1 b3). In the
referenced paper, a different convex combination was used, h5 z �h0 1 (12 z) � a.
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C H A P T E R

3

Basic algebras underlying quantum
and NN mechanisms

3.1 From a vector space to an algebra

Referring to the arbitrary vector and Hilbert space representations in the MSA will
allow generalizations of these structures to be described in a high or global view. To begin,
a vector space equipped with a bilinear operation is called an algebra, when several
equational identities hold (Gratzer, 1969). The bilinear operation is usually defined by
multiplying two vectors resulting in another vector. This multiplication can take numerous
forms depending on the carrier set corresponding to the sort of objects being manipulated.
The carrier set could result in signature sets involving the point-wise type of multiplica-
tion as in function spaces. It could be a composition of operators, that is, functions of func-
tions. It can be the concatenation of equivalence sets consisting of paths as in homotopy.
Additionally, it can be convolution or group multiplication as it is often called. The
last type of multiplication is the principal operation employed in convolutional neural
networks (CNNs). Independent of the type of multiplication, the MSA global view embel-
lishes all of these representations.

More precisely, the sorts for describing an algebra consist of VECTOR and SCALAR, as
in the vector space structure. All the corresponding signature sets for vector space and
field structures must hold in this case. However, an additional operator name is included.
It is a binary operational name and exclusively involves sort VECTOR. The element is
named BINE, indicating it is a binary operation and it is such that.

BINE maps VECTOR x VECTOR-VECTOR; as usual, the order of the operands being
multiplied together does not matter. Both operands could be on the left or right when
multiplied together.

When BINE is included within signature sets among those of a vector space structure,
an arity sequence of (1, 1, 3 (2, 1)) results for an algebra. Here, again there are three binary
operations, inner product excluded. Two of the three operations belong to the same signa-
ture set having names of arity two; they are V-ADD and BINE. The other binary operation
name is in a signature set of its own; it is S-MULT. There is a single unary operator name,
V-MINUS, and a single zero-ary name, V-ZERO.
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In an algebra, three additional constraining equations must hold, excluding those for a
vector space and a field structure. These constraints are given below. In order to describe
these constraints in a more succinct manner, denote:

SCALAR by: a, b
VECTOR by: u, v, w
V-ADD by 1
S-MULT by 3
BINE by �
These equational identities for an algebra are as follows:

1) Distributive law: (u1 v) �w5u �w1 v �w.
2) Distributive law: w � (u1 v)5w �u1 w �v.
3) Multiplicative homogeneity: ab 3 (u � v)5 (a 3 u) � (b 3 v).

An algebra is said to be associative when the additional constraint (4) holds:
4) Associative law: ((u � v) �w)5 (u � (v �w)).

Additionally, an algebra is said to be unital whenever, along with V-ZERO, there
exists V-ONE, both belonging to the zero-ary signature set for VECTOR. Moreover,
these elements must be distinct from each other, as indicated by the separate arrows in
the polyadic graph (Fig. 3.1). As a consequence, an arity sequence of (2, 1, 3 (2, 1))
exists for a unital algebra. Here, equational identities (1), (2), (3), and (5), given below,
must hold true. Again for convenience, replace V-ONE with I,

5) V-ONE law: I �v5 v � I5 v.
An associative algebra with a unital element is a unital associative algebra satisfying

all identities mentioned earlier. Moreover, when (6) holds, the algebra is also said to be
commutative or abelian.

6) Commutative law: v �w5w �v.
When all equational identities hold, a unital algebra is called an associative, commutative

unital algebra. A unital associative algebra in which all nonzero elements are invertible is
called a division algebra. Again, the polyadic graph of a unital algebra is provided in
Fig. 3.1. In this diagram, none of the many-sorted polyadic arrows solely involving

V-MINUS

S-MULT

V-ADD

V-ZERO

V-ONE
BINE

SCALAR

VECTOR

FIGURE 3.1 Polyadic graph of a unital algebra.

42 3. Basic algebras underlying quantum and NN mechanisms

Many-Sorted Algebras for Deep Learning and Quantum Technology



SCALAR are displayed. Also, as in a vector space or an R-module, the only link or
connection between a VECTOR and SCALAR is through S-MULT. Moreover, the S-MULT
operation should use a scalar and a vector in either order. Accordingly, the operation is
somewhat commutative, and the result must be the same.

Example 3.1:

Let the carrier set for sort VECTOR be the set of all complex-valued entire functions.
Among the many equivalent characterizations of entire functions is that they have a power
series representation with an infinite radius of convergence. Using the usual point-wise
complex addition and multiplication provides an example of a unital commutative asso-
ciative algebra. This algebra is important for the development of the holomorphic func-
tional calculus, which is useful in spectral theory mentioned in later sections.

Entire functions are analytic everywhere and so are the sums and products. In general,
their reciprocals are entire for nonzero scalars. The unital element, V-ONE, is the number
1. Included in this algebra are all polynomials, sin(z), cos(z), and hyperbolic sine and
cosine, along with their sums and products. Not included, for instance, are rational func-
tions having poles in C, z1/2 having a branch point at the origin in C, exp(1/z) having an
essential singularity in C, and finally any function employing the conjugate z*. However,
functions with only removable singularities are in this unital commutative algebra. For
instance, sin(z)/z has the singularity at 0, which can be removed.#

Example 3.2:

Consider the carrier set for sort VECTOR being the following: the set M of all 2 by 2
complex-valued matrices, A and B in M. By using the usual matrix addition, multiplication
by complex scalars and associated rules results in a vector space structure. The matrix
of all zeros5V-ZERO. If the usual matrix multiplication is employed for BINE, then
the result of BINE(A, B)5C is another matrix in M. V-ONE is the identity matrix. All the
equational identities (1)�(5) for a unital associative algebra hold. It is not a commutative
algebra. If S is the subset of all scalar matrices in M, that is, all matrices with zeros off
the main diagonal, then it follows that S is a unital commutative associative algebra.#

Example 3.3:

Again consider the carrier set for sort VECTOR being the following: the set M of all 2
by 2 complex-valued matrices. As before, using the usual matrix addition, multiplication
by complex scalars and associated rules results in a vector space structure. The matrix of
all zeros5V-ZERO. Now instead of the usual multiplication, that is, the usual product
C �D of two matrices C and D, let BINE (C, D)5 (C �D 1 D �C)/2. This is similar to the
Poisson bracket described in later sections. In fact, this multiplication is central to the
Jordan algebra outlined in Section 19.2. The multiplication using BINE might be referred
to as a Jordan bracket in this case.

All closure conditions illustrated by the polyadic arrows within the graph of a unital
algebra will be shown to hold. The multiplication is closed, since it is a scaled sum of two
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usual multiplications. The identity V-ONE is I. However, to prove that this is an algebra, it
must be shown that this type of multiplication satisfies the identities (1), (2), and (3) in the
definition of an algebra. These restrictions are proven next:

1) Distributive law:
Note that BINE ((E1 F), G)5 ((E1 F) �G1 G � (E1 F))/25 ((E �G1 F �G1 G �E

1 G �F))/25 (E �G1 G �E)/21 (F �G1 G �F)/25BINE (E, G)1 BINE (F, G).
2) Distributive law: Similarly holds
3) Multiplicative Homogeneity:

BINE (a 3 E, b 3 F)5 (a 3 E � b 3 F1 b 3 F � a 3 E)/25 ab 3 BINE (E, F) holds.
So this structure is an algebra.

6) Commutative law:
It is also commutative since BINE (E, F)5BINE (F, E) holds.
Moreover, it is unital because if I is the 2 by 2 identity matrix, then it too is the

identity for the algebra, that is, it satisfies the equational constraint (5), since:
5) V-ONE law:

I �v5v � I5v, and BINE (I, E)5 (I�E1 E. � I)/25BINE (E, I)5 (E� I1 I �E)/25E.
However, the associative law does not hold as seen below. With this sort of

multiplication and ignoring the vector space, the multiplicative structure is only a
groupoid and not a semigroup,
4) Associative Law:

First consider BINE (BINE (E, F), G)5BINE ((E � F1 F �E)/2, G)5 (E �F �G1 F �E �G1
G �E � F 1 G �F �E)/4. Second consider BINE (E, BINE (F, G))5BINE (E, (F � G 1 G �F)/
2)5E � F �G 1 E �G � F 1 F �G �E 1 G �F �E)/4. The realist is that the first and second
equations do not agree. Accordingly, the overall structure is a unital, commutative, nonasso-
ciative algebra.#

As previously noted, the last example will be mentioned again in reference to Jordan
algebras and reproducing kernel Hilbert spaces in Section 19.2.

3.2 An algebra of time-limited signals

The inner product space of time-limited signals A, as described in Section 1.9, will be
shown to form an algebra. For f and g in A, the point-wise convolution is defined as

BINE f;g
� �

nð Þ5 f%g
� �

nð Þ5 PN
k52N f n2 kð Þg kð Þ5 PN

k52N g n2 kð Þf kð Þ. With this type of

multiplication BINE, the vector space A becomes a unital, commutative, associative alge-
bra. The unital function is I5 (1)0, and I%f5 f%I5 f. Although the limits in the summation
mentioned earlier are infinite, there are only a finite number of nonzero terms. Next, a
more concise expression for the actual summation limits will be described.

Recall, for any f in A, the cozero set is defined to be the set of all points in Z for which f
is nonzero. This set is most important because COZ(f%g) is a subset of the dilation of the
two sets COZ(f) and COZ(g) (Giardina, 1985). The dilation is given by D(COZ(f), COZ
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(g))5 the union of all sets of integers {n1 k}, where n is in COZ(f) and k is in COZ(g). The
convolution of f and g will be zero outside this dilated set. Therefore, the convolution can
be calculated using the following:

f%g
� �

nð Þ5
X

kACOZ fð Þ; n2 kð ÞkACOZ gð Þ
f kð Þg n2 kð Þ

An example will illustrate the use of this point-wise formula.

Example 3.4:

Consider the two signals f and g in A given by bound vectors: f5 (3 2 1)0, and
g5 (2�1)0. Then, COZ(f)5 {0, 1, 2} and COZ(g)5 {0, 1}. Taking the union of all possible
sums from these sets and removing duplicates renders the dilated set: {0, 1, 2, 3}. The con-
volution of f and g will be zero outside of this dilated set. Indeed, f%g5 (6 1 0�1)0, and it
is zero outside of {0, 1, 2, 3}. A quick check to see that (f%g)(2)5 0 is given next. To verify
this, first notice that n5 2 is in the dilated set. Next, find k in COZ(f) such that
n-k5 2 - k is in COZ(g). This occurs for k5 2 and k5 1. Substitute these numbers into the
point-wise convolution formula: (f%g)(2)5 f(2) g(0)1 f(1) g(1)5 1 � 21 2 � (21)5 0.#

The convolution is more easily determined using the parallel algorithm illustrated in Fig. 3.2
(Giardina, 1988). This algorithm utilizes two operations mentioned in the MSA described in
Section 1.7 and illustrated in the polyadic graph in Fig. 1.2. These operations are V-ADD and
S-MULT. However, in this application, the operators have bound vectors as arguments. They
are not point-wise operations. An additional operation specified in this diagram is TRAN,
which is similar to an affine-type operation. The operation TRAN(f; k) translates the (whole)
bound vector k units. It translates to the right for k. 0, to the left for k, 0, and not at all for
k5 0. Thus, for f5 (a0, a1, . . . am)n, it follows that TRAN(f; k)5 (a0, a1, . . . am)n1k. Accordingly,
with this operation, values within the bound vector stay the same, but the vector is shifted to k
units. Looking at it differently, the point n in the subscript becomes the point n1 k by an addi-
tive group action on f by using elements of the cozero set COZ(g).

COZ

RAN

f

g

TRAN

TRAN

TRAN

S-MULT

S-MULT

S-MULT

V-ADD

FIGURE 3.2 Parallel
convolution algorithm.
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Momentarily, in Fig. 3.2, it is convenient to view the cozero set for g as a stack, denoted
by coz(g). Simultaneously, view the data structure, ran(g) as a stack with values of g corre-
sponding in order to those integers in coz(g). So ran(g) is like the nonzero range of g.
Because of this arrangement, when the stacks are popped in unison, the function g is
revealed. Consider the Example 3.5 as an illustration.

Example 3.5:

Let the two signals f and g in A be given by bound vectors: f5 (3 2 1)0, and g5 (2�1)0.
Th objective is to find the convolution h. In this case, coz(g) and ran(g) are, respectively,
illustrated as stacks:

j 0 j
j 1 j

j 2 j
j 21 j

22 2 22 2

When these stacks are popped, values in ran(g) provide scalar values used in S-MULT.
Simultaneously, popping coz(g) specifies the number of units f will be translated; this is
the group action mentioned previously. An application of the algorithm first gives a scalar
multiplication by two along with a zero translation. Next, this is followed by a scalar mul-
tiplication by minus one and a translation of one. Finishing with a vector addition,
V-ADD, gives h5V-ADD(2 f,2 (3 2 1)1)5 (6 4 2 0)01 (0�3 2 2�1)05 (6 1 0�1)0.#

Similar to standard convolution, dilated convolution can be employed in CNNs.
Convolution can be created point-wise as well as in parallel. Again, the algorithm
depicted in Fig. 3.2 can be applied with minor modifications to perform dilated convolu-
tion. In this type of convolution, one signal g called the filter is dilated, and the other,
the data signal f, is utilized as is. All this means that zeros are padded or placed in
between the entries within g, resulting in another bound vector, g’. The number of zeros
is usually a small positive integer r. The point-wise convolution in this case is (f,g’)
(n)5

P
f(k)g’(n2 k). As usual, the sum should be over k in COZ(f) and over n-k in COZ

(g’). Specifically, for the original bound vector, g5 (g(k) g(k1 1) . . . g(k1p))j; the bound
vector g’5 (g(k) 0 .. 0 g(k1 1) 0 . . . 0 g(k1p))j is used in the convolution formula. An
example should make this clearer.

Example 3.6:

Let f5 (2 1 0�1)0 and g5 (2�1)0; then use r5 1; that is, a single zero will be inserted
between the values of g starting with the subscript integer. In this case, g’5 (2 0�1)0, and
the convolution result is (f,g’)5 (4 2�2 23 0 1)0. To validate at a single point, say n5 3
use the pointwise convolution, at the point n5 3,,and obtain (f,g’)(3)523. To see this,
use k in COZ(f) and 3-k in COZ(g’). This holds for k5 1 and k5 3. So
(f,g’)(3)5 f(1)g’(2) 1 f(3)g’(0)5 21�2523. Additionally, the parallel algorithm can be
applied just as before. This time, using sets COZ(g’) and RAN(g’) in place of stacks, these
ordered sets are (0, 2) and (2, 21), respectively. Using elements from these sets in the
order specified gives f,g’5V-ADD [2 f, 21(2 1 0�1)2]5 (4 2 0 �2 0 0)0 1 (0 0 �2 21 0
1)05 (4 2�2 23 0 1)0.#
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In stride-type convolution often employed in CNNs, both the data signal f and the fil-
tering signal g are dilated. This means that a fixed number usually r5 1, 2, or 3 zeros is
placed in between entries for f and for g. The same value r is used for both, resulting in
new bound vectors f’ and g’. Then the convolution of f’ and g’ proceeds as before.

3.3 The commutant in an algebra

Algebras have been studied a long time in quantum mechanics, particularly on the com-
mutation rules. (McCoy, 1929). For a subset B of a noncommutative algebra A, the concept
of a commutant Bc is useful. It is defined as the subset of A that commutes with every
element of B. The subset Bc5 {a in A|a � b5 b � a for all b in B}. The concept of commutant
is illustrated in the following example.

Example 3.7:

Again, consider the carrier set for sort VECTOR being the following: the set A of all 2
by 2 complex-valued matrices. Now employ the usual matrix addition scalar multiplica-
tion as well as the usual matrix multiplication. It was seen that this structure forms a uni-
tal associative algebra, which is not commutative. To illustrate the commutant operation,
use the subset B of A consisting of 2 by 2 matrices with all zero elements except for the
first row and second column location. That is, matrix entry b12 is arbitrary. The commu-
tant Bc in this case is the set of all 2 by 2 matrices such that a115 a22 and a215 0. Also,
a12 is an arbitrary complex number. A typical matrix in Bc is

j c a j
j 0 c j:

Of more interest in this example is the fact that Bc itself is also an associative algebra,
with identity, a115 a225 1, a125 a215 0; therefore, it is unital. Moreover, this time, it is
commutative. So, if C and D are matrices in Bc, then C �D5D �C. The commutant will be
seen again in the von Neumann algebra in a later chapter.#

The commutant is currently heavily studied in relation to Hilbert space fragmentation
and ergodicity (Moudgalya, 2022). The final fact involving algebras, for now, is that
sometimes algebras are defined as bilinear maps over a module, not over a vector space.
An instance of this is the Grassmann algebra also to be described later.

3.4 Algebra homomorphism

An algebra homomorphism involves two algebras S and M, possibly unital, associative,
or commutative over a field, say C. The homomorphism is the map φ, where φ: A-B and
for any A and D in S, B in M, and c in C, the following hold:

1) Additive: φ (A1 D)5φ (A)1 φ (D).
2) Multiplicative: φ (A D)5φ (A) φ (D).
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3) Scalar: φ (c A)5 c φ (A).
4) Identity: φ (IA)5 IB, when there exist unital elements.

Example 3.8:

Consider again the carrier set for VECTOR of all 2x2 complex-valued matrices and for
SCALAR let the carrier set be C. Example 3.2 illustrates that this structure M is a unital
associative algebra using the usual matrix operations. If S is the subalgebra M, then for
every invertible matrix, B in M, and A, and D in S, φ(A)5B21A B is a unital algebra
homomorphism. This follows since:

1) Additive: φ (A1 D)5B21(A1 D) B5B21A B1 B21D B)5φ (A)1 φ (D).
2) Multiplicative: φ (A D)5B21(A D) B5B21A B B21D B5φ (A) φ (D).
3) Scalar: φ (c A)5B21c A B5 c B21A B5 c φ (A).
4) Identity: φ (I)5B21I B5B21B5 I.#

When a homomorphism is one-to-one and onto, it is called an algebra isomorphism.

3.5 Hilbert space of wraparound digital signals

Different types of digital signals give rise to carrier sets for which deeper structures
apply than for those signals in A. Recall that A consists of all digital signals of compact
support in Rz. Now, wraparound digital signals will be described with wraparound con-
volution. This structure forms a Hilbert space, as well as an associative, commutative, uni-
tal algebra. In this case, sort SCALAR again represents the real number field. While
VECTOR symbolizes bound vectors f in RZn, here f: Zn-R, where Zn is the cyclic group
consisting of {0, 1, 2, . . ., n-1}, n. 1. This set of integers can be thought to lie on a circle,
so the successor of n2 1 is 0. The successor of 0 is 1, the successor of 1 is 2, etc. The earli-
est instance of a cyclic group in this text is in Example 1.1. In this case, the additive group
in the Galois field is mod three.

A bound vector in this environment will always be written as f5 (a b c . . . d)k
Wn, where

a, b, . . . d are n real numbers. Accordingly, V-ZERO5 (0 0 . . . 0)k
Wn. For wraparound

bound vectors, the zero vector is always specified in this manner. Additionally, Wn sig-
nifies that this vector is a wraparound bound vector in RZn and k is an integer between 0
and n2 1. Using point-wise addition, as well as convolution for the multiplication of these
types of bound vectors, results in a unital, commutative, and associative algebra structure.
The unital bound vector V-ONE is (1 0 . . . 0)0

Wn in RZn. Convolution for bound vectors in
RZn is given by essentially the same algorithms as previously described for bound vectors
in RZ: As usual, convolution with the zero vector yields a zero vector. Thus, in the follow-
ing, assume that the bound vectors are nonzero.

The point-wise convolution is given by:

f%g
� �

nð Þ5
X

kACOZ fð Þ; n2 kð ÞACOZ gð Þ
f kð Þg n2 kð Þ
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Wraparound convolution is a form of full convolution, wherein the resulting convolu-
tion has the same size as the input signal. Previously described time-limited digital signal
convolution might be called extended convolution. The same parallel algorithm illustrated
in Fig. 3.2 can be used in RZn. Here, the names of the operations are the same, but since
the carrier sets differ the actual operations are distinct. An example to make this clearer is
given next. The cyclic group acts on the vector space structure using TRAN, much like
vectors act on affine elements in affine spaces. Again, since the MSA global view is the
same as in RZ, the actual lower level operations are different.

Example 3.9:

Let f5 (2�1 3 0 1)0
W5 and g5 (1�1 2 0 1)0

W5. Similarly, COZ(g)5 {0, 1, 2, 4} and RAN
(g)5 {1�1, 2, 1}. The parallel convolution algorithm yields the following: f%g5 1 � f � 1 �
(2�1 3 0 1)1

W5 1 2 � (2�1 3 0 1)2
W5 1 � (2�1 3 0 1)4

W55 f � (1 2�1 3 0)0
W5 1 2 (0 1 2�1

3)0
W5 1 (21 3 0 1 2)0

W55 (0 2 8�4 9)0
W5. Now, use the point-wise formula in order to ver-

ify that (f%g)(3)5 24. As before, employ values of k in COZ(f) while 3-k is in COZ(g).
These values are given by k5 1, k5 2, and finally k5 4. The last value applies because
3�45215 4 modulo(5). That is, the tuple number four in RZn is the same as the minus
first tuple, if such a tuple existed. Accordingly, (f%g)(3)5 f(1)g(2) 1 f(2)g(1) 1 f(4)g(4)5
(21) 3 21 3 3 (21)1 1 3 1524.#

The vector space RZn also forms an inner product space, again using a dot product on
the nonempty intersection of cozero sets. And it is zero otherwise. Section 1.9 provides the
axioms, and Fig. 1.3 illustrates a polyadic graph for the MSA representation of this struc-
ture. The inner product of f5 (a b c . . . d)k

Wn and g5 (e h . . . m)k
Wn, as usual, with all n

entries shown is5 a � e 1 b �h 1 . . . 1 d �m. The inner product is again represented by
, f, g. or , f|g.. If the complex field were employed instead of the real field, the
values a, b, . . ., d need to be conjugated when the inner product is evaluated. This is the
convention used in quantum physics and illustrated in Section 1.8. The inner product in
RZn induces the two norm mentioned earlier. This norm can be found from the formula :f
:25, f|f.. Under this norm, RZn is a complete inner-product space and therefore a
Hilbert space; see Appendix A.1 for the proof. Convergence of sequences of bound vectors
in RZn is similar to convergence in Rn.

3.6 Many-sorted algebra description of a Banach space

A Banach space is a vector space with a norm, over the complex or real field. A few
norms have already been illustrated. The two norm was induced by the inner product, see
Section 1.8. Also, the one norm was employed in the k-means unsupervised learning tech-
nique in Example 2.1 in Section 2.1. A Banach space is similar to a Hilbert space in that it
too is complete with respect to the norm. As usual, the norm is a translational invariant-
type distance function. However, unlike a Hilbert space, separability is not sufficient to
guarantee the existence of a Schauder basis (Enflo, 1973). Accordingly, a Schauder basis
will be assumed when working in an infinite dimensional Banach space. Otherwise, an
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unconditional basis needs to be employed as in general topological vector spaces. A MSA
global view will be given next for a Banach space.

In the MSA description, the Banach space entity consists of two sorts, and they are
SCALAR and VECTOR. All the signature sets associated with SCALAR are the same as
those for a real or complex field structure. The signature sets for the VECTOR sort are
exactly the same as those for a vector space, except that there exists an additional unary
operation name: NORM, within its own signature set. From this, it follows that the arity
sequence for a Banach space is (1, 2(1 1), 2(1 1)). Fig. 3.3 illustrates the NORM operational
name used in a Banach space, along with the usual vector space operational names within
signature sets. Operational names exclusively associated with SCALAR are omitted. The
NORM is such that:

NORM: VECTOR-SCALAR

The vector space operators illustrated are as follows:

V2ADD:VECTOR x VECTOR-VECTOR

S2MULT: SCALAR x VECTOR-VECTOR

V2MINUS: VECTOR-VECTOR

V2ZERO; 0 Element in VECTOR

As usual, the S-MULT operation must allow scalars on both sides of the vector in the
multiplication operation.

The NORM must satisfy three conditions. To see this, first replace:

SCALAR by a
VECTOR by u, v, w
S-MULT by �
V-ADD by 1
NORM by ::

SCALAR

VECTOR

V-MINUS
NORM

V-ADD

V-ZERO

S-MULT

FIGURE 3.3 Polyadic graph for a Banach
space.
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The conditions for NORM to satisfy are the following:

1) Positive definite: :u:. 0, and :u:5 0, iff u5 0.
2) Homogeneous: :a �u:5| a|:u:5 :u � a:.
3) Triangle inequality: :u1 v: is less than or equal to : u :1 : v :.

The norm in a Banach space B is continuous. This follows since for T and Tn in B, if
Tn-T, then by the triangle inequality, | :T:2 :Tn: | is less than or equal to :T2 Tn:.

There are numerous important examples of Banach spaces. They include sequence
spaces defined on the natural numbers, as well as spaces of continuous functions and
operators.

Example 3.10:

Consider the space of continuous functions on the closed interval zero to one: B5C([0,
1]) with norm of g, :g:5max|g|for x in [0, 1]. This is the set of all continuous functions
on a compact, which is a closed and bounded set on the real line. All the axioms associ-
ated with a Banach space hold. For instance, the sum of two continuous functions is con-
tinuous, so is the scalar product. The given norm satisfies all the conditions of a normed
vector space. So, as an illustration using f also in B, it follows that:

3) Triangle inequality: :f1 g:5max |f1 g| is less than or equal to max (|f|1 |g|),
which is less than or equal to max |f|1 max |g|5 :f:1 :g:.#

3.7 Banach algebra as a many-sorted algebra

A Banach algebra is a unital associative algebra, as well as Banach space over the real
or complex field (Larsen, 1973). The arity sequence for this structure is (2, 2(1, 1), 3(2, 1)).
Since it is a unital associative algebra, it has a V-ONE and a vector-type multiplication

VECTOR

SCALAR

NORM
V-MINUS

V-ADD

V-ZERO

V-ONE
BINE

S-MULT

FIGURE 3.4 Polyadic graph for operator
names in a Banach algebra.
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named BINE, (Fig. 3.4). However, this operation need not be commutative. When it is
commutative, the algebra is called a commutative Banach algebra.

Since a Banach algebra is also a Banach space, it satisfies all three equational identities
for a Banach space above. In addition, it has to satisfy a fourth condition mentioned below.
This condition links the NORM operational name with the binary operational name BINE.
The latter is a vector multiplication name symbolized by ( � ). The constraint is given in
equation (4) below. The triangle product inequality-type constraint makes the multiplica-
tion a continuous operation.

4) Triangle Product Inequality: :v �w: is less than or equal to :v: :w:.

As mentioned earlier, BINE is a continuous operation in a Banach algebra, B. To show
this, if Tn-T, Sn-S, and also Tn, T, Sn, and S in B, then, Tn Sn-T S. This follows since
:Tn Sn 2 T S: is less than or equal to :(Tn 2 T) S: 1 :T(Sn 2 S) :. Because S and T are
bounded, then :(Tn 2 T) S:1 :T(Sn 2 S) : is less than or equal to :(Tn 2 T): : S:1 : T :
:(Sn 2 S):-0.

A polyadic graph is given in Fig. 3.4, illustrating the names of operators in a Banach algebra.
Not shown in this diagram are the names of operators exclusively involving sort SCALAR.

Example 3.11:

The carrier sets for VECTOR, as well as SCALAR, use the field of all complex numbers.
This vector space becomes a commutative Banach algebra over the complex field with the
NORM (z)5|z|. As usual, for z5 x1 iy, |z|25 x21 y2. #

3.8 Many-sorted algebra for Banach* and C* algebra

A Banach* algebra is a Banach algebra over the real or complex field with an additional
unary operation. The resulting arity sequence is (2, 3(2, 1), 3(2, 1)). The additional opera-
tion is an involution similar to conjugation. Two applications of this unary function result
in the identity; it is an involution. Additionally, five equational identities must hold for
the Banach* algebra structure; these are described below.

For a description of the Banach* algebra structure in a MSA high view, begin with the exis-
tence of two sorts; they are SCALAR and VECTOR. The SCALAR sort has a corresponding
carrier set consisting of the complex field, and all operations are those of a complex field. The
real field is also applicable. The signature sets for VECTOR sort are exactly the same as in a
Banach algebra, except that there is an additional unary operational name: ADJ. Here,

ADJ: VECTOR-VECTOR:

In order to provide the equational identities that must hold, replace the sorts by sym-
bols and denote operator names by suggestive characters:

VECTOR by v, w
SCALAR by a
S-MULT by 3
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V-ADD by 1
V-ONE by I
BINE by �
NORM by : :
ADJ by *

The five laws that must hold are the following:

1) Involuntary: (v*)*5v.
2) Additive: (v1 w)*5v*1 w*.
3) Conjugate linear: (a 3 v)*5 a 3 v*, Here, a denotes the conjugate of a.
4) Transpose: (v �w)*5w* �v*.
5) Isometry: :v*:5 :v:.

The most important type of Banach* algebra is the C* algebra. It is a Banach* algebra
also satisfying:
6) C* Identity: :v �v*:5 :v:2.

Fig. 3.5 provides an illustration of the operations in a C* algebra using a polyadic graph.
Not shown in this diagram are operations solely involving SCALAR.

3.9 Banach* algebra of wraparound digital signals

The inner product in RZn induces the two norm mentioned earlier. Under this norm,
RZn is a complete inner-product space and therefore a Hilbert space. Since RZn is a Hilbert
space, it is also a Banach space using the two norm.

Also, using the one norm for f in RZn, it is also a Banach space. Moreover, it is a Banach
algebra as described using the MSA in Section 3.7. The illustration given in the Fig. 3.4
provides a polyadic graph for this structure. The Banach algebra structure is a result of the

VECTOR

SCALAR

NORM
V-MINUS

V-ADD

V-ZERO

V-ONE
BINE

S-MULT

ADJ FIGURE 3.5 Polyadic graph of operators in a
Banach* or C* algebra.
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equational identity #4, the triangle product inequality holding for convolution in RZn. In

this case, :f % g:15
P

n|(f % g)(n)|5
P

n|
P

k f(k)g(n-k)| is less than or equal to the

sum:
P

n

P
k|f(k)||g(n-k)|5

P
k

P
n|f(k):g(n-k)|5

P
k|f(k)|

P
n|g(n-k)|5

P
k|f(k)| :g:15

:f:1:g:1. In general, the inequality holds. As an illustration, using the one norm on the results

from a previous example, see Examples 3.9 and 3.12:

Example 3.12:

Let f5 (2�1 3 0 1)0
W5 and g5 (1�1 2 0 1)0

W5, f%g5 (0 2 8�4 9)0
W5. Now illustrate that

:f%g:1 is less than or equal to :f:1:g:1. This is the triangle product inequality dealing
with a Banach algebra. Adding the absolute values of entries within the convolution above
gives :f%g:15 23; while :f:15 7 and :g:15 5, the product :f:1:g:1 is 35.#

From the proof mentioned earlier, note that equality will hold in the triangle product
inequality whenever all values within bound vectors f and g are nonnegative.

Example 3.13:

Let f5 (2 1 3 0 1)0
W5 and g5 (1 1 2 0 1)0

W5, f%g5V-ADD(f, g)5 f1 (1 2 1 3 0)0
W51 2 (0 1

2 1 3)0
W51 (1 3 0 1 2)0

W55 (4 8 8 6 9)0
W5. Here, :f%g:15 35. As before, :f:1:g:15 35.#

Finally, applications will be made for the Banach* algebra and a C* algebra, as defined
in Section 3.8., as well as the polyadic graph for a Banach* algebra and a C* algebra, which
are provided in Fig. 3.5. The space RZn is a Banach* algebra. This trivially holds true since
the unary operator name in Fig. 3.5 is ADJ. The adjoint or conjugate of a real number
equals itself. The next example, however, shows that RZn is not a C* algebra; that is, equa-
tion (6), for the C* Identity: :v �v*:5 :v:2, does not hold. In this case, :f%f*:15 :f%f:1
does not equal :f:1

2.

Example 3.14:

Consider f5 (1�1 1)0
W3 in RZ3. Then f% f5 f 2 (1 �1 1)1

W3 1 (1 �1 1)2
W35 f 2 (1 1

�1)0
W3 1 (21 1 1)0

W35 (21 �1 3)0
W3. Therefore :f%f:15 5. On the other hand, :f:1

25 9.
So this Banach* algebra is not a C* algebra.#

It is interesting to see that there are situations where :f%f:15 :f:1
2 even when f does

not possess all nonnegative values.

Example 3.15:

If f5 (22 0 3 0�1)0
W5, f%f522 TRAN(f; 0) 1 3 TRAN(f; 2) 2 1 TRAN(f; 4)5 (4 0�6 0

2)0
W51 (0�3 26 0 9) 0

W51 (0�3 0 1 2)0
W55 (4�6 212 1 13)0

W5. So :f%f:15 365 :f:1
2.#

3.10 Complex-valued wraparound digital signals

It is instructive to illustrate the use of the complex field structure before quantum appli-
cations are provided. In this direction, consider CZn; these are bound signals with complex
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entries, and they too form a Banach* algebra, as well as a Hilbert space; for the proof, see
Appendix A.1. The conjugation operation for Banach* and C* algebras is more important
in this instance. The following example illustrates the conjugation operation in the inner
product operations. The convolution of functions is also found along with the convolution
involving conjugate functions. The results can be compared to illustrate the five equational
identities needed to describe a Banach* algebra.

Example 3.16:

Consider the two bound vectors f and g in CZn with i5
ffiffiffiffiffiffiffiffi
2 1

p
, f5 (2 0 3i 21 i 0)0

W5, and
g5 (2i 0 31 2i 0 i)0

W5. In order to find f%g, the same parallel algorithm can again be used.
Indeed, f%g5 g%f5 2TRAN(g; 0) 1 3i TRAN(g; 2) 1 (2 1 i) TRAN(g; 3)5 (4i 0 61 4i 0
2i)0

W5 1 (0�3 26 0�61 9i)0
W5 1 (41 7i 0 �11 2i 221 4i 0)0

W55 (41 11i 23 �11 6i
221 4i 261 11i)0

W5. Now the conjugate of the convolution f % g is (f % g)*5 (4�11i
23�1�6i 22�4i -6�11i)0

W5.
Next the convolution of f* and g* will be determined. First, f*5 (2 0�3i 22 i 0)0

W5 and
g*5 (22i 0 3�2i 0 2 i)0

W5; then, f*%g*522j TRAN(f*;0) 1 (3�2i) TRAN(f*;2) - i TRAN
(f*;4)5 ( 24i 0�6 22�4i 0)0

W51(4�7i 0 6�4i 0�6�9i)0
W5 1 (0�3 21�2i 0�2i)0

W55 (4�11i
23�1�6i 22�4i -6�11i)0

W5. So, (f % g)*5 f*% g*, which illustrates property #4 from a
Banach* algebra.

Next the inner product for a complex Hilbert space will be found, along with other
norm calculations. First, it follows that , f, g.5, (2 0 3i 21 i 0)0

W5, (2i 0 31 2i 0
i)0

W5.5 4i1 (23i) (31 2i)5 4i 29i1 65 6�5i. Finally, f%f*5 2 f2 3i (21 i 0 2 0 3i)0
W5 1

(22 i) (3i 21 i 0 2 0)0
W55 (4 0 6i 41 2i 0)0

W5 1 (3�6i 0�6i 0 9)0
W51 (31 6i 5 0 4�2i

0)0
W55 (10 5 0 8 9)0

W5. So, :f%f*:15 32 and :f:1
25 (5 1 51/2)2. This illustrates that the tri-

angle product inequality property number (4) for a Banach algebra holds. It also shows
that the C* algebra property number (6) does not hold.#

In CZn, the triangle product inequality for a Banach algebra holds in general, as before.
Additionally, the transpose property holds in general for a Banach* algebra. This is prop-
erty number (4), Section 3.7, accordingly: (f%g)*5 [

P
n(f%g)(n)]*5 [

P
n(g%f)(n)]*5

P
n(g*%

f*)(n)5 g*%f*. As a consequence, CZn is a Banach* algebra, but not a C* algebra.
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C H A P T E R

4

Quantum Hilbert spaces and their
creation

4.1 Explicit Hilbert spaces underlying quantum technology

In the previous chapter, digital signals and wraparound digital signals were presented
as inner product space and Hilbert space, respectively. The basic axioms of quantum are
vague in defining the type of underlying Hilbert space. Again at a lower level, a precise
specification relative to the global Hilbert space structure shall be made. Here, the actual
elements are provided; specifically, carrier sets for the two sorts, one corresponding to
SCALAR and the other for VECTOR, are given. The actual operations themselves will be
specified matching the names of operations within the signature sets.

Example 4.1:

This is perhaps the simplest example of a Hilbert space. Here, the reals form a vector
space, V, over the real number field, R. This fact was previously mentioned in Example
2.13, illustrating the effect of a vector on an element in affine space. The carrier set for
SCALAR and the carrier set for VECTOR both consist of elements from the real line. The
real numbers play a dual role with the usual operations and functions involving real num-
bers. All the axioms are upheld for an inner product space, as well as for a Hilbert space.
The space is only a single dimension. Note that IN-PROD results in just the product of
any two vectors, which in this case are two scalars. The Hilbert space equational constraint
(9) holds. See Section 1.8:

9) Positive definite: v �v is greater or equal to 0, and 5 0 iff v5 0.#

Another concrete example is provided next.

Example 4.2:

This example is very similar to the previous example. Indeed, the complex number sys-
tem forms a vector space over the complex field C. It follows that both sorts are complex
in this case. Again both carrier sets are the same; this time, they are the complex numbers.
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Also, see Example 1.7. This structure also forms a very important Hilbert space for Fock
space. It describes the vacuum space. Fock space will be presented in the many-sorted
algebra (MSA) description in a later chapter. Again, notice that IN-PROD of v with w
results in the usual complex product involving the conjugate of the first entry inner prod-
uct with the second: ,v|w.5v* �w. All the constraining equations for inner product
space hold; for instance, number (9) again refers to Section 1.8:

9) Positive definite: v* �v is greater or equal to 0 and 5 0 iff v5 0.

Also notice that the norm squared of v5 (a 1 i b) is again given by just the product:
v* �v5 (a2 i b)(a1 i b)5 a21 b25 :v:2.#

4.2 Complexification

The next method of creating a Hilbert space involves complexification of a Hilbert
space, (Halmos, 1958). For a Hilbert space, Hr over the real number field, the procedure
results in the complex Hilbert space denoted by Hc. It is of the same dimension as Hr, but
it is over the complex number field. In this case, the real scalar multiplication of a vector is
extended to the complex scalar multiplication. Among the many procedures for perform-
ing complexification, the tensor product method is utilized. The method is described next.
Later sections will utilize the complexification of tangent spaces to a fiber when consider-
ing quantization on manifolds.

In the MSA global view, sorts similar to those already mentioned for the Hilbert space
structure and field structure must be given. These sorts are suggestively defined by
C-SCALAR, R-VECTOR, and C-VECTOR. The complex field is denoted by C-SCALAR.
The real scalar field exists in complexification, but is not mentionded again. The Hilbert
space over the reals is given by R-VECTOR. Similarly, the resulting complex-valued
Hilbert space is C-VECTOR. Exactly, the same types of signature sets and corresponding
operational names are employed for both Hilbert space specifications; again refer to
Section 1.8. However, for complexification, there is an additional signature set with an
element of arity two. It contains the binary operator name TENSOR. In this case:

TENSOR maps C-SCALAR x R-VECTOR-C-VECTOR:

More details will be given about tensors in subsequent sections, but for the time being
this should be sufficient for illustrating the complexification operation. For C-SCALAR,
the corresponding carrier sets will always consist of the complex field C. In addition, the
actual operation that is named TENSOR will be denoted by �, and it is such that
Hc5C � Hr. Moreover, the operations corresponding to those of V-ADD and
S-MULT are defined in an obvious fashion given next.

For any a and b in R and u, v, w, and z in Hr, it follows that:

For V2ADD: u1 ivð Þ1 w1 izð Þ5 u1wð Þ1 i v1 zð Þ:
For S2MULT: a1 ibð Þ � u1 ivð Þ5 a �u2 b � vð Þ1 i a � v1 b �uð Þ:

Also, every vector (u1 i v) in Hc is actually a short notation for 1 � u1 i � v.
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The complexification of the inner product follows from the obvious expansion:

IN2PROD: ,u1 ivjw1 iz. 5,ujw. 1,vjz. 1 i ,ujz. 2,vjw.ð Þ
Additionally, the norm squared of u1 iv in Hc is :u1 i v:25 :u:21 :v:2.
The expression for Hc could have been written in the form Hc5Hr � C, thus obtaining

the same overall result. However, this will not be considered correct, even though they are
isomorphic representations. Moreover, most operations in quantum disciplines are non-
commutative. For this reason, the polyadic graph description is modified to represent the
actual order in which operands are used. This was mentioned earlier for left or right
R-modules. Again, for those operators for which the order of operand usage is important,
the arrow tails are modified. The corresponding arrow tails have slash (/) indicators
denoting the order. Thus, one slash (/) denotes the first operand, two slashes (//) repre-
sent the second operand, and so on. For the situation at hand, the arrow for the operator
TENSOR has one tail with a single slash emanating from C-SCALAR, and the other tail
with two slashes is connected to R-VECTOR. Fig. 4.1 illustrates this fact. In this diagram,
all arrows previously utilized in both Hilbert space descriptions and those for a field are
omitted. If the other complexification method were used, that is, Hc5Hr � C, then the
slashes in the below figure would be reversed.

Example 4.3:

In this example, we use the complexification just described with carrier set: Hr5R, the
real one-dimensional Hilbert space as in Example 4.1. In this case, Hc5C � R is just the
one-dimensional Hilbert space; the vacuum space, Hc5C, is given in Example 4.2. #

At this point, as a reminder, the type of SCALAR determines whether the vector space
is real or complex. For instance, if the VECTOR has a carrier set consisting of all complex
numbers and the carrier set for SCALAR is the reals, with the usual operations, then the
vector space is a real one.

C-SCALAR R-VECTOR

C-VECTOR

TENSOR

FIGURE 4.1 Polyadic graph for complexification.
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4.3 Dual space used in quantum

The algebraic dual space for a finite-dimensional vector space V over the field of com-
plex numbers C is a set Vd of linear maps (functionals) from V to C. This is often denoted
as Hom (V, C). This notation is for the set of multilinear maps from V to the complex field.
Besides an algebraic dual space, there is a topological dual space involving bounded linear
functionals, and it is described and used in later chapters (Adler, 2015; Mac Land and
Birkhoff, 1999).

For the MSA global view of the algebraic dual space, there are two sorts: SCALAR and
VECTOR. All the signature sets are as before for both complex field and vector space;
however, there exists one additional signature set for the vector space structure. The new sig-
nature set itself contains a single set called COVECT. The elements of COVECT are mapping
names FUNC1, FUNC2, . . . FUNCN. These represent functionals, and N is the dimension of
the vector space V. Dual spaces of infinite dimension will be described in later sections. As
just mentioned, each element of the set COVECT is a unary linear map name such that:

FUNC j: maps VECTOR-SCALAR; for all j5 1; 2; . . .;N:

So the cardinality of the set COVECT is N. When addition (1) and scalar multiplication
( � ) are defined for the vectors associated with elements within the set COVECT, it
becomes a vector space over C. It is of dimension N and is called the dual space of V, and
in this document, it is denoted by Vd. Moreover, the following equational identities must
hold. Notations to describe these constraints are given by symbols:

SCALAR denoted by a.
VECTOR denoted by v and w.
Functionals in COVECT denoted by fi and fj.

The equational identities describing basic vector space operations hold:

1) Vector addition: (fi1 fj) (v)5 fi (v)1 fj (v).
2) Scalar multiplication: (a � fj) (v)5 a � (fj (v)).
3) Linearity: fj (a � v1 w)5 a � fj (v)1 fj (w). That is, fj is in Hom (V, C).

All the axioms for a vector space follow from these equational identities. In particular,
the zero in Vd is just the zero functional. It maps every element in V to the zero element
in C. The global view presented earlier holds true regardless of the field employed; it need
not be C. So, for instance, the field could be the reals; in this case, fj is in Hom (V, R).

Because both vector spaces V and Vd have the same dimension, elements from each are
paired in a natural way called a sesquilinear form. This form will result in the inner prod-
uct and can be justified by the Riesz representation theorem (RRT). However, for finite-
dimensional Hilbert spaces like V, it is easy to see that any functional f in Vd can be repre-
sented as an inner product. More specifically, there exists a unique vector z in V such that
f (x)5, x|z.. Moreover, for every vector z in V, there is a corresponding functional,
that is, a vector f in Vd such that f (x)5, x|z..

The inner product involving elements of Vd will now be defined. Let g be in Vd and
also let the vector w be in V such that RRT is in effect. Then, the inner product in Vd is
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given by the identity: ,g|f.5,w|z.. So the inner product in Vd is inherited from the
original inner product in V. As usual, the norm on Vd is induced from the inner product,
and the norm is preserved: :f:5 :z:. The identification of norms is called an isometry,
which in general is a distance-preserving mapping. These results also hold in infinite-
dimensional Hilbert space for bounded linear functionals and are of prime importance in
quantum disciplines.

The earlier mentioned equational identities and side conditions for an inner product
hold with this definition, thus making Vd an inner product space. Because V is finite
dimensional, it is a Hilbert space. In infinite dimensions, many of these results are differ-
ent. The two spaces Vd and V are antiisomorphic; there is a conjugate 1�1, onto, isometric,
linear mapping from V to Vd (by associating the vector f with z). Additionally, V is iso-
morphic to the conjugate space Vd*. In Vd* multiplication of scalar a with vector v is given
by a* �v. Fig. 4.2 intuitively illustrates how the dual space Vd is produced by the N func-
tionals FUNC1, . . ., FUNCN. A similar procedure and corresponding diagram could be
given, showing that U5Hom (V, W)5 {f: V - W, such that |f is linear} is a vector space,
where W is also a vector space isomorphic to V.

Three distinct vector spaces were described, all of dimension N. It is interesting to relate
the basis of Vd with that of the original space V. So let E5 {e1, e2, . . ., eN} be a set of basis
vectors from V. With abuse of notation, let F5 {f1, f2, . . ., fN} be a corresponding basis of
Vd. Every covector h in Vd can be expressed in terms of elements of F. In particular, h5h
(e1) f11 h (e2) f2 1 . . .1 h (eN) fN. Now, a method will be given for finding the actual cov-
ectors in F. These vectors correspond to the vectors within the basis E of V. There are
numerous bases in a nonzero vector space and several methods for their creation.
However, the bi-orthogonality procedure is a standard technique to construct a dual basis
in a finite-dimensional vector space (Halmos, 1958).

Both E and F need not be a set of orthonormal or even an orthogonal set of vectors;
they just have to be a basis. The procedure for finding the actual covectors in F is first to

FUNC 1

FUNC 2

FUNC n
SCALARVECTOR

DUAL

FIGURE 4.2 Polyadic graph for
illustrating dual space creation.
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realize that each fj is also a functional. When it is applied to a vector in V, a complex
number results. Next, the standard method described here is to take fj*(ek), that is, use the
conjugate of fj and apply it to the basis vector ek, for all j and k in {1, 2, . . ., N}. This results
in a complex scalar. Finally, perform the bi-orthogonality condition: That is, set these com-
plex numbers to zero whenever j is different from k and set it equal to one when j5 k.
This results in N linear independent equations needed in finding the vectors in F. The
resulting basis is called the dual basis of Vd.

A lower MSA view of the dual space will be given along with simple representations of
elements from this space. The associated carrier set for COVECT is the set of all functional
mappings, and they are often called covectors or one-forms. A simple representation for
the vectors in V is to express them as N by 1 complex-valued column vectors. This is use-
ful in determining the covectors in Vd. In this procedure, the first step is to represent in
order, each basis element of V as a column vector. Next, represent in order each covector
basis element as a 1 by N row vector of conjugated unknown tuples. Simply multiply
every row vector (covector5 k) by every column vector (vector5 j). Each vector multipli-
cation provides a complex number. Doing this for all vectors and covectors results in N
equations with N unknowns. Finally, set the resulting equations to zero, except when the
order of the indices agrees. In the agreeing situation, that is, when and only when j5 k,
the result is set to one; otherwise, it is set to zero. This is the bi-orthogonality condition.
Solving ends the procedure. An illustration of the method is provided below.

The next example is usually the starting point for studying quantum disciplines. This
example involves utilizing kets and bras. These constructs are symbolized by |. and ,|,
respectively. Combining a bra with a ket, in that order, results in the inner product. This is
symbolized by ,:., and it is also referred to as a bra-ket. Furthermore, it is common to omit
one of the vertical lines in this bra-ket notation. Accordingly, the inner product is denoted by
,|., as was illustrated in the previous sections. Also seen before, a comma is sometimes
used in the inner product, again replacing these two vertical lines. Both of these notations are
standard and will be used throughout this document. In the next example, the underlying
Hilbert space is the two-dimensional complex field C2, along with its dual space. The space
C2 will be seen to be the space of qubits.

Example 4.4:

A basic Hilbert space for quantum technology is the complex Hilbert space C2, that is, the
two-dimensional complex vector space over the complex field. The elements of the carrier set
corresponding to VECTOR are called qubits. They will be represented as 2 by 1 column vec-
tors with tuples consisting of complex numbers. Each such column vector is also identified as
a ket. The carrier set for SCALAR is again the complex numbers. Specific vector space opera-
tions arise from the signature sets. They are the usual 2 by 1 column vector addition and the
usual scalar multiplication. This involves complex scalar, c multipliplying a 2 by 1 column
vector. A basis for C2 is very often given by the two qubits: |0.5 (1 0)0 and |1.5 (0 1)0;
here (0) denotes transpose, and the result is a basis of column vectors #

Linear combinations, or superposition, of the kets mentioned in the previous example
involve coefficients that when absolute squared sum to one. That is, kets of norm one are
usually employed, resulting in simple kets. These are more often called pure states as

62 4. Quantum Hilbert spaces and their creation

Many-Sorted Algebras for Deep Learning and Quantum Technology



opposed to mixed states. The convention of calling these vectors pure states will be fol-
lowed here, but it will be corrected next and again when tensor products of Hilbert spaces
are more formally introduced. For the record, states are operators on a Hilbert space rather
than vectors within the Hilbert space. Rigorously, a state ρ is a positive linear trace class
map, ρ: H - H, such that Tr (ρ)5 1. It is called pure whenever there exists a vector v in
the Hilbert space H such that ρv (u)5 [,v, u./,v, v.] v. So pure states are associated
with elements in a Hilbert space. If a state is not pure, then the state is said to be a mixed state.
Also, in terms of C* algebras, pure states are unital, positive functionals on a C* algebra. In any
case, we will continue with the conventional, operational, and formal notations and
descriptions. Concepts such as trace class and positive are made clear in subsequent chapters.

Notice that the Ket |w.5 1/((2)1/2) � (| 0. 1 i �|1.) is an example of another pure
state since it has the norm equal to one. It follows from the representation mentioned ear-
lier that |w. can be written as a column vector: |w.5 1/((2)1/2) (1 i)0. Observe that ket:
|w. has as its second tuple an imaginary scalar value. The set E5 {| 0., |w.} should
be considered as an ordered basis because reference to the location of these kets in E will
be made. However, it is not an orthogonal basis of C2. In any case, the corresponding dual
space basis F will now be found. The procedure involves using both vectors in E, one at a
time. So the Ket |0. will be used as the first element in basis E.

Recall that covectors are represented by row vectors. Their tuples are the complex
conjugated values of column vector tuples; they are row vectors. The objective is to find
a covector basis F given the basis E5 {|0., |w. } in V. In order to do this, let the
first covector be f5 (a* b*). Also, although not used right now, let the other covector be
g5 (c* d*). Multiply the first covector, that is, the row vector from F with the first column
vector from E; doing this gives (a* b*) � (1 0)0 5 a*. Using the first vector from each set E,
and F, stipulates that the result should be set to one, accordingly a*5 1. Repeat the vector
multiplication, by using the first covector from F again, but this time use the second vector
from basis E. If this is done, then multiplying the following row vector by the column vec-
tor (a* b*) � 1/((2)1/2) (1 i)0 implies 1/((2)1/2) (a* 1 i � b*)5 0. Since a*5 1, we can solve for
b* to obtain b*521/i5 i. Therefore, the first covector in the basis F for the dual space Vd
is the row vector f5 (1 i).

In a similar way, we will now find g, the second covector, (c* d*), in F. This time,
(c* d*)� (1 0)0 5 0. This implies that c*5 0. Next, to find d*, set (c* d*) � 1/((2)1/2)
(1 i)0 5 1 / ((2)1/2) i d*5 1. The number one appeared in the last expression since it involved
the second vector in space V and also in Vd. It follows that d*52i (2)1/2. Accordingly, g5 (0

2 i (2)1/2). Notice that f and g are not normalized; their two norms squared are :f:25 (1 2 i)

(1 i)0 5 2 and :g:25 2. However, they still form a basis, F5 {f, g}, for the dual space.#

Any covector, h in the dual space, is a unique linear combination of the basis elements
in F5 {f, g}. An illustration of this linear combination is given next.

Example 4.5:

Given any row vector h in Vd, for instance, say h5 (2 1). Then it follows that h has to
be represented using the basis for this space, that is, F5 {f, g}. This will be illustrated now
by using the formula given at the start of this section: h5h(e1) f1 h(e2) g. In this case, use
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e15|v.5 (1 0)0, and e25|w.5 221/2 (1 i)0, which was employed in V previously.
Substitute, f5 (1 i), g5 (0 2 i 21/2), as given earlier. Then, from the formula, h5 [(2 1) �
(1 0)0] (1 i) 1 [(2 1) � 221/2 (1 i)0] (0 2 i 21/2)5 [2] (1 i) 1 [21/21 221/2 i] (0 2 i 21/2). Now
multiplying out gives h5 (2 2i) 1 (0�221/2(2 1 i) i (2)1/2)5 (2 2i) 1 (0 2 i (2 1 i)), thus
obtaining the desired result again, h5 (2 1).#

The dual space basis just found is of interest only for illustrating its construction along
with simple calculations, for instance, using these bases for constructing linear combina-
tions as in Example 4.5. It also provides the background when proving that both spaces V
and Vd are of dimension N when this is not assumed. Moreover, it is useful in under-
standing the double dual space. Otherwise, it is of little use in quantum. This is because
the dual basis just found is not normalized. Accordingly, the corresponding bras are not of
a unit norm when using this basis. In quantum technologies, the kets and bras are of unit
norm. Thus, a more important, but simpler dual basis is given next. It is the basis needed
in quantum disciplines.

Consider the orthonormal basis {|0., |1.} of C2, that is, E5 {(1 0)0, (0 1)0}. The corre-
sponding dual space basis is F5 {f5 (1 0), g5 (0 1)}. This is the type of basis for the dual
space, which is used throughout quantum computation. Instead of writing this basis as
earlier, bras will be used instead. Abusing notation, let the cobasis F be given by {, f |5
(1 0), ,g|5 (0 1)} and E5 {|0.5 (1 0)0, |1.5 (0 1)}0. An inner product can now be per-
formed, between basis elements from V, using kets, and with those in the dual space using
bras. It is easily seen that the bi-orthogonality condition is satisfied. The inner product
using bras and kets induces an additional correspondence between the two Hilbert spaces
V and Vd.

A natural conjugate linear mapping from the Hilbert space of kets to the Hilbert space
of bras is given by K. Here, K (|v. 1 |w.)5,v| 1,w|, and K (a �|v.)5 a* �,v|,
for any complex scalar a, where a* is the conjugate of a. Also, going the other way, the
mapping B from the dual space of bras into the original Hilbert space satisfies B (,f| 1
, g|)5| f. 1 |g. and B (a ,f|)5 a* |f.. Operators B and K are the 1�1, onto, isomet-
ric conjugate mappings between V and its dual space. It is an isometric mapping, because
norms are preserved. In short, : |f.:5 :,f| :. Isometric maps also called isometries are
detailed in later chapters.

This result generalizes to any finite-dimensional Hilbert space with kets and bras and in
particular to an n quantum-level system, namely n-dimensional Hilbert space Cn.
Additionally, it is used in an operational manner with infinite-dimensional topological
dual Hilbert spaces, as well as in Banach spaces. Fig. 4.3 illustrates the conjugate linear
and isometric mappings using the operations B and K, between V and its dual space Vd.

4.4 Double dual Hilbert space

The double dual space, Vdd of V, is the dual of Vd. Consequently, Vdd5Hom (Vd, C);
it is the set of all linear maps from Vd into C. By relating Vd with V, it follows that the
two spaces Vdd and Vd are also conjugate linear, 1�1, onto, isometric mapping from Vdd
to Vd. It can be said that the double dual Hilbert space Vdd is the same as V (Halmos,
1958). Double conjugating results in the identity map. There is a canonical map from Vdd
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to V given in the following paragraph, and it is illustrated in Fig. 4.4. More details are
given later.

Let g be in Vdd, that is, g: Vd - C. This is a linear map. It will be shown that g actually
sends a vector v in V to C. In the last section, it was seen that when the set of basis vectors
E5 {e1, e2, . . ., eN} was used for V, then there corresponds a set F5 {f1, f2, . . ., fN}, which is
a basis of covectors in Vd. Of importance is that every covector h in Vd can be expressed
as a linear expression using vectors from E as well as basis elements from F. This was
illustrated in a two-dimensional vector space in Example 4.5. The general representation is
as follows:

For h in Vd; h5h e1ð Þf1 1h e2ð Þf2 1?1h eNð ÞfN :
Next, since g is in Vdd, apply g to h in Vd:

g hð Þ5 g h e1ð Þf1 1h e2ð Þf2 1?1h eNð ÞfN½ �:
Use the linearity of g and the fact that h(ej) is a scalar in C; then:

g hð Þ5 h e1ð Þg f1ð Þ1h e2ð Þg f2ð Þ1?1h eNð Þg fNð Þ� �
:

Notice that this sum is also in C; that is, it is a sum of scalars. Accordingly, replace each
g (fj) by scalar aj and write this sum as follows:

g hð Þ5h e1ð Þa1 1h e2ð Þa2 1?1h eNð ÞaN :

HILBERT
SPACE
BRAS

HILBERT
SPACE
KETS

B

K

B, K Are 1-1, Onto
Isometric Conjugate
Maps

FIGURE 4.3 Graph relating ket and bra
Hilbert spaces.

DOUBLE
DUAL
V.S.

g

DUAL
V.S

h

V.S.

v

g (h) = h (v)

FIGURE 4.4 Canonical isomorphic map for double dual.
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Since h is linear, it follows that g (h) can be written as g (h)5h (a1 e1 1 a2 e2 1 . . .1 aN
eN). However, the sum a1 e1 1 a2 e2 1 . . .1 aN eN is a unique element, v, where v is in V.
It follows that by taking any g in Vdd an evaluation of covectors yields a unique element
v in V. It is such that g (h)5h (v); this map is illustrated in Fig. 4.4. For every different g
in Vdd, there will correspond a different v in V and conversely. This is called the canoni-
cal isomorphic map between V and Vdd.

The original space V can be identified with Hom (Vd, C) because by taking any vector
v in V we can associate it with a linear evaluation map gv in Vdd. Let gv: Vd - C with
gv linear. So, for h in Vd, define gv (h)5h(v), similar to the aforementioned, where g was
used. To see that it is linear, use h1 and h2 in Vd and a in C; then it follows:

gv h1 1h2ð Þ5 ðh1 1h2Þ vð Þ5h1 vð Þ1h2 vð Þ5 gv h1ð Þ1 gv h2ð Þ
and

gv ahð Þ5 ahð Þ vð Þ5 a hð Þ vð Þ5 agv hð Þ:
To show an algebraic isomorphism, consider F: Vdd - V, where F (g1)5v1, F (g2)5v2,

and F (g)5v, using h, in Vd.
Then (g11 g2) (h)5 g1 (h)1 g2 (h)5h (v1)1 h (v2)5h (v11 v2).
Also (a g) (h)5 a (g) (h)5 a h (v)5h (a v). Natural isomorphism elements of V can be

thought of as being linear maps from Vdd into C.

4.5 Outer product

The outer product of vectors and covectors is essential in quantum studies. This opera-
tion is often referred to as a pure or simple tensor. In finite dimensions, the result will be a
matrix. It will be seen that kets and bras will be useful in describing this operation. First,
a rigorous specification for the outer product will be presented in the MSA starting at a
global level in a finite-dimensional Hilbert space.

Begin by recalling that the set of all n by n, n5 1, 2, 3, . . . matrices for fixed n, form an
associative unital algebra over the complex field. In this view, the carrier set associated
with VECTOR is the set of n by n matrices. All the usual matrix operations of scalar multi-
plication, matrix multiplication, matrix addition, minus a matrix, partial inverse of a
matrix, matrix zero, and matrix identity result from the operational names within
signature sets: Correspondingly, the names are S-MULT, BINE, V-ADD, V-MINUS,
V-INVERSE, and V-ZERO, and as implied earlier, the identity matrix is obtained from
V-ONE. Moreover, all equational identities for a unital associated algebra hold. To
describe the outer product, it is useful to define the third sort MATRIX. The associated car-
rier set is the set of all n by n matrices with all the usual matrix operations resulting from
the unital associative algebra construct. Refer to Section 3.1, Fig. 3.1.

The sorts in describing an outer product are VECTOR, SCALAR, and MATRIX. All the
signature sets that are applicable to a Hilbert space, complex field, and unital associative
algebra structure are assumed to hold along with all their side conditions. However, an
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additional signature set containing a single operator name OUTER exists. It is of arity two
and such that:

OUTER: VECTOR x VECTOR����.MATRIX:

Several equational constraints are needed besides those for Hilbert space, the complex
field, and the unital associative algebra.

Here, representations for the sorts are as follows:

VECTOR by u, v, and w.
SCALAR by c.
MATRIX by M.

And representative elements of signature sets are given as suggestive symbols:

V-ADD by 1.
S-MULT by � .
OUTER by �.

The additional constraints are as follows:

1) Linear: c � (v � u)5 (c � v) � u5v � (c �u).
2) Distributive: (v1 w) � u5 v � u1 w � u.
3) Distributive: u � (v1 w)5u � v1 u � w.
4) Antisymmetric: (u � v)0*5 (v � u), where the first term (u � v) is transposed and then

conjugated.

Fig. 4.5 depicts the outer product operation twice, once in general and then using kets
and bras. The sort SCALAR is not illustrated. No other operations are illustrated in this

VECTOR MATRIX
OUTER

MATRIX

KETS

BRAS

OUTER

FIGURE 4.5 Polyadic graphs illustrating
outer product.
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diagram. Operator names solely involving Hilbert space, the complex field, or the unital
associative algebra are not shown. In the lower illustration, the polyadic arrow has the first
tail corresponding to a ket and the second to a bra. This is the opposite order as used
when forming the inner product.

For vectors v and w in Cn, the outer product u is most easily found by forming
u5v w0*. So the dimension of v is n by one, and w0* is one by n; therefore, the outer prod-
uct is an n by n matrix.

Example 4.6:

A simple instance of the outer product can be given with the carrier set associated with
VECTOR being C2. The corresponding carrier set for MATRIX is the unital associative
algebra of all 2 by 2 matrices over the complex field. So, for instance, if v5 (a b)0 and
w5 (c d)0 are in C2, then we can use the operator �, denoting the actual operator whose
name is outer product. For chosen v and w, v � w is the 2 by 2 matrix:

j acT adT j
j bcT bdT j

As mentioned earlier, the result could have been found using v � w5v w0*, where w0*
is the conjugated transpose of w. So, w0* is a row vector, w0*5 (c* d*). However, from the
definition of bras, ,w|5 (c* d*), and kets, |v.5 (a b)0, it follows that the representation
in Fig. 4.5 holds, that is, v � w5| v., w |5 (a b)0 (c* d*).#

4.6 Multilinear forms, wedge, and interior products

Before tensors are introduced, the concept of a n linear or multilinear form will be
given. For this definition, the cartesian product Π operation is Πi (Vi) representing the
product V1 x V2 x . . . x Vn. In this case, {Vi} i5 1, . . ., n is a set of vector spaces over the
complex field, and Π represents the cartesian product of all n vector spaces in the set.
Then, the operation M: L(Vi)- C is a multilinear map when M is linear in every coordi-
nate. That is, the equational identities (1) and (2) hold:

1) M (v1, v2, . . ., a vi, . . ., vn)5 a M (v1, v2, . . ., vi, . . ., vn).
2) M (v1, . . ., vi1 v0i, . . ., vn)5M (v1, . . ., vi, . . ., vn)1 M (v1, . . ., v0i, . . .,vn).

In equation (1) mentioned earlier, vector vi is multiplied by scalar a, and the result is
M, where M is the multilinear mapping; similarly, in equation (2) vectors vi and vi0 are
added together each is in M, and the result is the sum involving M.
The set of all n multilinear maps M: P (Vi) - C themselves form a vector space V. The
multilinear form is called alternating whenever it changes sign by interchanging,
permuting, or transposing any two vectors. That is:

3) M (v1, v2, . . ., vi, . . ., vj,. . ., vn)5 2 M (v1, v2, . . ., vj,. . ., vi, . . .,vn).

The set of all alternating n forms is also a vector space and is represented by AnV*. The
dual basis for this space is denoted by {eS, such that card(S)5n; that is, there are n
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elements in S}. Furthermore, S itself is a subset of {1, 2, . . ., k}, which results in an easy
method for keeping track of the basis elements. For k greater than or equal to one, the
symbol eS is defined as eS5 ej1 X ej2 X . . . X ejn using S5 {j1 ,j2 ,. . . ,jn}. These jk
superscripts are not powers; they are superscripts denoting a dual space basis. The wedge,
X, in logic denotes the (and) symbol.

For a basis set of V, {ei1, . . ., ein}, since eS is the dual space, when eS operates on vectors
in V, scalars are obtained. In this case, eS(ei1, . . ., ein)5 1, 0, or 21. This value depends on
whether the indexing set for the basis of V, that is, T5 {i1 ,. . . ,in}, involves the same n,
corresponding basis elements as does S. Also the ordering has to be the same. When it
does, this yields 1. When the same n elements are employed, but they are permuted, then
for an even number of transpositions, 1 is again obtained. For an odd number of transposi-
tions, 21 is the result. Otherwise, the value is zero. That is, it is zero when the dual basis
eS involves different vectors from those in its argument. The argument consists of the
vectors in V, namely (ei1, . . ., ein).

Example 4.7:

Using the aforementioned notation, let k5 3, but n5 2. A basis for the set of all alternat-
ing two forms, A2V*, must have two vectors in a basis, but they can be labeled with super-
scripts from the set, {1, 2, 3}. So, assume that the dual basis in this case is the set {e1, e3},
that is, eS5 e{1,3}5 e1Xe3. Using this dual space basis, these vectors eS can operate on vec-
tors in V, and since they are in the dual space, the result is a scalar. So for the given dual
basis, the wedge operating on e2 and e3 results in (e1Xe3)(e2, e3)5 0. This is because dif-
ferent labeled vectors are employed. Next, (e1X e3)(e3, e1)521; this occurs because the
vectors have the same labels, but in different single-transposed orders. Finally, (e1X e3)
(e1, e3)5 1, because the vectors have the same labels and identical order.

Next, use linear combinations of vectors from V, with scalars ai and bj in C. The dual

operation is applied illustrating the linearity aspects. Let the sum for v5
P3

i51 ai ei and also

the sum for w5
P3

j51 bj ej; then (e1X e3)(v, w)5 a1 b3 2 a3 b1. This follows, since seven

terms among the nine terms have the value zero. For instance, (e1X e3)(a1e1, b2e2)5 a1b2
(e1Xe3)(e1, e2)5 a1b2 � 05 0; this follows first using linearity, that is factoring out a1b2. Then
notice that the superscripts are in {1, 3}, but the vectors in V are with labels in {1, 2}.#

For the vector space of alternating n forms, AnV*, its dimension is denoted by dim, and
its dimension is calculated using the combination formula of k things then n at a time:
(k/n)5 k!/(n! (k2n)!). It follows that dim(AkV*)5 1, since in this case n5 k, that is, k
things taken k at a time, and so (k/k)5 k!/(k! (k2 k)!) equals one. Moreover, AkV*5 {0}
for n. k. When n5 k, the result is often called a top form, because no larger value of n can
be used without obtaining zero. Also A1V*5V*. The degree n, of form w, is denoted by
deg(w) and is defined by the relation w is an element of AnV*. Suppose that the wedge or
exterior product for w and u are elements of AnV* and AmV*, respectively. Here, wXu is
an element of A(n1m)V* defined as follows: (wXu)(v1, . . ., vn, v(n1 1), . . ., v(n1m))5
sum over all permutations s of {1, . . ., n1m}, of the product: [sign(s) w(vs1, . . ., vsn)
u(vs(n1 1), . . ., vs(n1m)], and preserving the order: s1 ,. . . ,sn, and s(n1 1) ,. . . ,s
(n1m), but also the summation involves shuffling of arguments.
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The wedge product is the product in an exterior algebra. It has the following properties
(Spivak, 1990):

1) Associative: uX(wXv)5 (uXw)Xv.
2) Homogeneity: (cu)Xv5 c (uXv)5uX(cv), for c a scalar.
3) Distributive: (u1 v)Xw5 (uXw)1 (vXw).
4) Distributive: wX(u1 v)5 (wXu)1 (wXv).
5) Anticommutative: uXv5 (21)nm (vXu), where u is in AnV* and v is in AmV*.

Example 4.8:

For the case n5 1 and m5 2, that is, w is in the alternating A1V* space and u is in
A2V*, the wedge or exterior product wXu is in A3V*. Its arguments in V are (v1, v2, v3).
With w unitary and u binary operators, it follows that all the combinations of wXu are
(wXu)(v1, v2, v3)5w(v1)u(v2,v3)1 w(v2)u(v3,v1)1 w(v3)u(v1,v2)2 w(v1)u(v3,v2)2 w
(v2)u(v1,v3) 2 w(v3)u(v2,v1). The sign of w(v1)u(v3,v2) is negative because a single
transposition of 1, 2, 3 occurs in this element. #

Example 4.9:

For w in A1R3, dim (A1R3)5 3, since k5 3 and n5 1, that is, three things taken one at a
time are three. In this space, w5 a1e1 1 a2e2 1 a3e3 is a row vector, that is, w5 (a1 a2 a3).
More rigorously, there is an isomorphism from this space onto R3.#

Example 4.10:

This time consider A2R3; again the dimension of this space is three, because three things
taken two at a time occur in three ways. However, a typical element of this space is
w5 a1(e2Xe3)1 a2(e3Xe1)1 a3(e1Xe2). This can also be identified with (a1 a2, a3). More

importantly, when w and u are in A1R3, where w is the sum of bjej, that is, w5
P3

j51 bje
j,

and where u5
P3

j51 cje
j, then wXu5 (b2c3 2 b3c2) (e2Xe3) 1 (b3c1 2 b1c3) (e3Xe1) 1

(b1c2 2 c1b2) (e1X e2). In the last expression that is in 2 c1 b2 (e1X e2), this appears
because (b2 e2Xc1 e1)5 b2c1 (e2Xe1)5 c1b2 (e2Xe1) by linearity and since scalars commute.
Finally, c1b2 (e2Xe1)5 2 c1 b2 (e1Xe2), because (e2Xe1)5 (e1Xe2).

Let w and u be identified as vectors in R3. In the expression mentioned earlier, observe
that the scalar coefficients of the wedge products are the scalar coefficients of the cross
product of vectors w and u. This can be seen from the determinant describing the cross
product of w5 (b1 b2 b3)0 and u5 (c1 c2 c3)0:

j i j k j
j b1 b2 b3 j
j c1 c2 c3 j
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b2c32 b3c2½ �i1 b3c12 c3b1½ �j1 b1c22 c1b2½ �k:#
A final note will be given on the wedge product of two vectors is two dimensions. First

is that (wXu) is a measure of the noncommutativity of the tensor product of w and u. In
this case, wXu5w � u 1 u � w. Accordingly, the wedge product of w and u can be
represented as a square matrix with entries (wXu)ij5 (wiuj 2 wjui). In three dimensions,
the entries of the matrix of (wXu) are zeros on the main diagonal. The other six entries
are given by coefficients of the cross product of w, and u, or u and w.

The interior product is like the opposite of the exterior or wedge product. It is associ-
ated with a vector field v. The interior product of v is a linear operation; it is denoted by
lv and is such that lv: AnV* - A(n2 1)V*, where (lv w)(v2, . . ., vn)5w(v, v2, . . ., vn).
This is also called a contraction of w by v. Here, the row vector (v, . . . vn) is mapped into
the function w(v, v2, . . ., vn), involving n arguments. The convention for A21 V* is to let
A21 V*5 {0}. The interior product is nilpotent, that is, two applications yield zero. This
implies that it is antisymmetric. The interior product also satisfies a Leibniz-type rule
called a derivation. That is, lv(wXu)5 (lv w)Xu1 (21)deg(w)wX(lv u).

Example 4.11:

This is an illustration of the Leibniz rule for interior products in R3. Let a basis set be
{e1, e2, e3}, and let v5 e1; then lv(e1Xe2Xe3) will be found. Here e1, e2, and e3 are vectors
from the dual space, which is a cobasis. First, let w5 e1Xe2 and let u5 e3. Note that the
degree of w is two and consequently (21)deg(w)5 1. Then, the Leibniz rule says
lv(wXu)5 lv (e1Xe2)Xu1 1 wX(lv u)5 lv (e1Xe2)Xu. This is because different basis ele-
ments are used in (lv u)5 l e1 (e3)5 e3 (e1)5 0. Since the result is lv(wXu)5 lv (e1Xe2)X
u, another application of the Leibniz rule will be performed. This time let w0 5 e1 and
u0 5 e2. It follows that lv (e1Xe2)Xe35 [(lvw0)X u0 2 w0X (lv u0)]Xe35 1 u0Xe35 e2Xe3.
This result follows since deg(w0)5 1, and so a minus sign was used earlier. Also, lvu0 5u0

(v)5 e2(e1)5 0, and finally lvw0 5w0 (v)5 e1(e1)5 1.#

4.7 Many-sorted algebra for tensor vector spaces

Let V be a complex vector space, and now denote its algebraic dual space by V*, as
used in Section 4.6. It was symbolized by Vd in Section 4.3. As usual, V* consists of all lin-
ear maps f, also known as covectors from V into C. A (p, q) tensor T over the complex
field is a multilinear form: T: V* x. . .x V* x V x. . .x V - C, where there are p copies of V*
and q copies of V in the product space. The quantities p and q are called balances, and
their sum is the rank.

The notation given next is the renaming of the sort VECTOR. When using tensors
instead of VECTOR, the more common name for the set of all p 1 q arity tensors is given
by a very long representation, it is V � V � . . . � V x V* � V* �. . ..� V*. In any case, the
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corresponding carrier set for this sort is {T|T is a (p, q) tensor, and it is also a multilinear
form}. The aforementioned name of the set will now be denoted by Y shortened, due to its
length. In the name Y of the set, there are p copies of V and q copies of V*. The idea for
using this notation Y is that the p elements of V* are applied to the p elements of V. Also,
q elements of V are applied to the q elements of V*, resulting in a complex number.
Again, this means that when a carrier set is utilized the actual mapping to the scalar field
is T: V* x V* x . . . x V* x V x V x. . ..x V. - C. The notational difference is used in the MSA
to emphasize using x, for the tensor product name and �, as the actual operation.

If this set of tensors is equipped with point-wise addition, (1), and scalar multiplication, (.),
then the set becomes a vector space over the complex field. All the operator names and equa-
tional identities for a complex field remain as before. However, an additional signature set is
needed in this MSA description for the vector space structure. The new signature set has an
element of arity 1 and is named TEN, corresponding to the actual multilinear operator T,
representing a tensor. All other elements of the signature sets for the vector space structure
hold, with some names more suggestively defined. Elements of the signature sets that are
relevant are given next below. In the following: T-ADD denotes tensor addition; ST-MULT
denotes tensor mutiplication by a scalar; TEN denotes tensor multiplication.

T-ADD: Y x Y - Y. Note that this addition is defined for tensors of fixed balance.

ST2MULT: C2 SCALAR x Y-Y

TEN: Y-C2 SCALAR

T2MINUS: Y-Y

T2ZERO; Is in Y

The polyadic graph given in Fig. 4.6 illustrates these five operations. No operations solely
involving the complex field structure are illustrated. With these operations, the arity sequence
associated with a tensor vector space is given by (1, 2(1, 1), 2(1, 1)). This follows because there
are two different signature sets each containing unary operator names, and two distinct
signature sets each containing binary operator names, as well as a zero-ary operator name.

Y
Rank p + q

C-SCALAR

T-MINUS ST-MULT

T-ADD TEN

T-ZERO

Y = V     V    ...    V  × V ×    ...    V ×   × × × × ×

p q

FIGURE 4.6 Tensor vector
space.
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As previously mentioned in the MSA low view, the carrier set consists of all the (p, q),
tensors T. They will now correspondingly be denoted as Tpq. In addition, the vector space
itself will be denoted by Vpq.

Example 4.12:

The vector space V00 is the field of scalars; in this case, it is the complex field C.
The vector space V015V*5 {f: V - C}, so the elements of this space are covectors. #

Example 4.13:

In a finite-dimensional vector space, it follows that V10 is the vector space of all vectors,
that is, V105V. This follows from the isomorphism between V and V**. That is, this space
consists of all linear maps from V* into C, and therefore, it is V. The vector space V115
{T11: V* x V - C}5End (V*). The actual tensors are T115 {v � f, such that v is in V and f
is in V*}.#

The expression End (V*) is the set of endomorphisms on V*. In a finite-dimensional vec-
tor space, it is also true that End (V*)5End (V)0, where the prime indicates that the endo-
morphism algebras are the same except for transpose. So, column vectors in V correspond
to row vectors in V*. For matrix operators M and N, note that the quantity (M N)*5N*
M*. Also if M: V - C, such that M v5w, then v0 M0 5w0 and so M0: V* - C.

Example 4.14:

Examples of tensors, f and g with balance (0, 2), are often considered an inner product.
For f and g in V*, f � g: V x V - C. So for v and w in V, f � g (v, w)5 f(v) �g (w). The lat-
ter product is like a dot product. Additionally, this product need not be positive definite.

Also, this tensor is a metric tensor, which is defined on manifolds or surfaces. It enables
distances and angles to be defined on these structures. (Lee, 1997). Metric tensors are such
that:

1) Symmetric: g (u, v)5 g (v, u).
2) Positive semidefinite: g (u, u). 0 and g (u, u)5 0 iff u5 0.

Metric tensors are a field of tensors defined on a tangent space manifold. These tensors
form a tensor bundle.#

A tensor with balance (0, N), with a vector space of dimension N, is known as an N
form. It is also called a top form, a volume form, or a determinant. This is described in the
next section.

4.8 The determinant

The determinant is defined for endomorphisms on an N-dimensional vector space
(Lang, 2002). In order to obtain a determinant, a top form is needed and it is defined
below. First, an n form, f, is a T0N tensor that is totally antisymmetric. Here, n is an
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integer such that it is in [0, N]. If n5 0, then a T00 tensor is obtained, which is a scalar.
Otherwise, for any transposition of the elements vi and vj, the sign (plus or minus) of f
(v1, v2, . . ., vn) changes. For an even number of transpositions, a plus 1 is used to multiply
f; otherwise 21 is employed. If k forms are considered with k. N, they are zero. So non-
trivial k forms exist for k less than or equal to N. When k5N, the top-degree form is
obtained.

The top form is a T0n form, where n5N. When this holds, there are nonvanishing f
and g, both top forms; then there is a scalar c such that g5 c f. This becomes an equiva-
lence class. The choice of one such top form, f, is called the volume on V0N. A vector
space with a chosen top form is called a vector space with volume. When v1, v2, . . ., vN
are N vectors in V0N, it is said that the volume spanned by these vectors is by definition
vol (v1, . . ., vN)5 f (v1, . . ., vN).

The determinant is taken of the endomorphism, A, and results in a scalar. It utilizes a
basis of V0N, say e1, e2, . . . eN, along with some volume form f on V0N. It is defined by
det A5 f (A (e1), A (e2), . . ., A (eN))/ f (e1, e2, . . ., eN). (Lee, 1997; Sakai, 1995)

Example 4.15:

Consider the endomorphism A: C2 - C2, defined using the diagonal matrix D, with a
nonzero scalar c, followed by 1 on the main diagonal. So D5

j c 0 j
j 0 1 j

For any v5 (a b)0 and w5 (d e)0, in C2 and scalar α, then D preserves scalar multiplica-
tion and vector addition. That is,

D½αv1w�5Dðαa1d αb1 eÞ0 5 ðcαa1 cd αb1 eÞ0 5α c a bð Þ0 1 c d eð Þ0 5αDv1Dw:

So, this is a vector space endomorphism. The determinant provides a result invariant
under a change of basis. In this case, for a unitary matrix U, when it is employed and it is
such that U U*5U*U5 I, then the determinant of D5 c5det(U D U*). #

4.9 Tensor algebra

The tensor sum can be found only for tensors with the same balance. A tensor product,
on the other hand, can be applied to arbitrary tensors. There are four sorts in the MSA
description in this case, and they are SCALAR, VECTOR1, VECTOR2, and VECTOR12.
The first sort denotes the scalars in the complex field as before. The next three sorts again
denote vectors in vector spaces; in this case, vectors are actually tensors. The tensor prod-
uct will utilize tensors from tensor spaces VECTOR1 and VECTOR2, resulting in tensors
in VECTOR12.

Besides all the previous signature sets for vector spaces and fields, there is an additional
signature set. It has a single operator name, which is actually a tensor product; it is
T-MULT and is of arity two. Fig. 4.7 illustrates this operation. The carrier set for SCALAR
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consists of all the complex numbers. The carrier set for VECTOR1 is the set of all Tpq vec-
tors in Vpq, and the carrier set for VECTOR2 is the set of all tensors Trs in Vrs. The vector
space of all these tensors is an unital associated, commutative algebra. In this case, the
V-ADD operation is for the addition of two tensors both with exactly the same balance.

The actual tensor product, T-MULT, is denoted �. Here, Tpq � Trs is a (p 1 r, q 1 s)
tensor. The polyadic graph in Fig. 4.7 illustrates these operations on tensors.

(Tpq � Trs) (v1, v2,. . .,vp, . . .vp1 r, f1, f2,. . .fq, . . .fq1 s)5Tpq (v1, . . ., vp, f1, . . ., fjq) x
Trs (vp1 1, . . ., vp1 r, fq1 1, . . ., fq1 s), where the multiplication is in the complex field.
This shows that the tensor product operation is commutative. Not shown in this diagram
is the complex field structure, as well as all the vector space and tensor operations already
given in Figs. 1.2 and 4.6.

Example 4.16:

Consider the two (1, 1) tensors S and T over the complex field. Also, let f be a covector
in V* and let v be a vector in V. Also assume that c is a complex value. Then V � V*5
{T, such that T:V* x V- C}, and it follows that V � V* is a vector space:

S1Tð Þ f;vð Þ5 S f;vð Þ1T f; vð Þ;
cTð Þ f;vð Þ5 cT f;vð Þ

All the equational identities hold, in particular, T5 0 is the zero, that is, it is the T-ZERO
or the V-ZERO of the vector space.#

In Vpq, where the dimension is finite say N, then let e1, e2, . . ., eN be the basis of
V5V10 and let f1, f2, . . .., fN be the dual basis found previously on V*5V01. Recall that
this covector dual basis is obtained from the bi-orthogonality condition. So the tensor can
be written Tpq (f1, f2, . . . fp, e1, e2, . . . eq). Also, the tensor Tpq can be reconstructed from
its components, using r5 e1 � e2 � . . . �ep � f1 � f2 � . . . � fj. More details, as well as
examples of tensor operations, are given in the next section.

×T-MULT

VECTOR 1
(Tpq)

VECTOR 2
(Trs)

VECTOR 1,2
(Tp+r, q+s)

FIGURE 4.7 Operations involving
tensors.
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4.10 Many-sorted algebra for tensor product of Hilbert spaces

An MSA description for the tensor product of Hilbert space H1 and Hilbert space H2 is
given next from a high view. It is also a Hilbert space. The sorts are presented in an
obvious fashion; they are SCALAR, VECTOR1, VECTOR2, and VECTOR12. The signature
sets are exactly as in that of Hilbert space, except that an additional signature set is needed
to provide the tensor multiplication. This signature set has a binary operator name called
T-MULT. It is such that:

T-MULT: VECTOR1 x VECTOR2 - VECTOR12.
As in previous MSA high-level presentations, denote:

V-ADD by 1
S-MULT by x
T-MULT by �
SCALAR by c
VECTOR1 by v1, w1
VECTOR2 by v2, w2

Moreover, all the equational identities for Hilbert space hold true in this structure along
with the additional equational constraints:

1) Linearity: c x (v1 � v2)5 (c x v1) � v25v1 � (c x v2).
2) Distributive: (v11 w1) � w25 v1 � w21 w1 � v2.
3) Distributive: v1 � (v21 w2)5v1 � v21 v1 � w2.
4) Inner Product: ,v1 � v2, w1 � w2.5, v1, w1. ,v2, w2..

With these constraints, VECTOR12 becomes a Hilbert space designated by H12. The
polyadic graph in Fig. 4.8 illustrates the operation T-MULT in producing VECTOR12.
Again, the sort SCALAR is not shown, nor is any operational name involving Hilbert
spaces, except for T-MULT. Moreover, sorts VECTOR1 and VECTOR 2 are denoted by H1
and H2, respectively.

T-MULT

2H1H

H12

FIGURE 4.8 Tensor product of Hilbert
spaces.
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Preparing for simple examples of tensor Hilbert spaces, consider the Hilbert space
H15H25C25 {|v.}, that is, the set of all kets. So, the carrier set here is the set of all 2
by 1 complex-valued column vectors. In C2, the most general normalized single qubit in
this space is given by the ket: |v.5 eiq [cos (t/2)|0. 1 e ip sin (t/2)|1.], p, q in [0, 2 π),
t in [0, π]. In C2, the two-by-one vector, for the ket, |v. is given by|v.5 (eiq cos (t/2) eiq

e ip sin (t/2))0.
As stated earlier, note that this ket does have norm one. Using the inner product shows

that the norm squared is :|v.:25 :eiq :2 [(cos (t/2)2 1 (sin (t/2))2]5 1. All other kets in
this space are equal to the linear combination of two distinct kets|u. and|v. of this
form. For a pure element, the coefficients of the resulting ket must sum to one using abso-
lute squared values of the coefficients. For instance, let |w.5 a |u. 1 b |v. with a and
b in C; then |a |2 1 |b |25 1. These elements appear on the surface of the very important
Bloch sphere, described in the next chapter. One of the most instructive low views utiliz-
ing H1 � H2 is given in the next example.

Example 4.17:

Let the carrier set for VECTOR12 be H1 � H25C2 � C25C4, which is the space of two
qubits and of four-dimensional complex-valued column vectors. In H1, use the basis,
v15 1/21/2 (|0. 1 |1.)5 1/21/2 (1 1)0, and w15|0.5 (1 0)0. Also in H2, use the basis,
v25 3/5 |0. 24i/5 |1.5 (3/5 �4i/5)0, and w25 i |1.5 (0 i)0. The tensor product of
individual basis elements from H1 and H2 will be found. Thus, there will be four such
products. For simplity representation in C4 will be employed. In this case, if v 5 (a b )’
and w 5 ( c d )’ in C2, then the tensor product u of v and w, is u 5 ( ac* ad* bc* bd* )’ in
C4. The star is the complex conjugate.

The results become understandable when represented, in terms of C4. An easy to use
basis in C4 is |0 0.5 (1 0 0 0)0, |0 1.5 (0 1 0 0)’, |1 0.5 (0 0 1 0)’, and
|1 1.5 (0 0 0 1)’. Thus, T-MULT( v1, v2 ) 5 v1 � v25 1/21/2 (3/5 4i/5 3/5 4i/5)0. Also,
w1 � w25 (0 2 i 0 0)0. Additionally, v1 � w252i/21/2 (0 1 0 1)0 and w1 � w25 (3/5 4i/
5 0 0)0. All the previous results could have been found directly using kets. Notice that :v1
� v2:5 1/2 [(3/5)2 1 |4i/5 |2 1 (3/5)2 1 |4i/5|2]5 1. Similarly, :w1 � w2:5 1, and the
same is true for all other tensor products specified earlier. #

Example 4.18:

Let the carrier set of VECTOR be the set of all complex-valued 2 by 1 column vectors, this
is again H15C2. Tensors involving H1 � H1 can also be easily found. The tensor product of
|u.5 (1/ 21/2) (|0. 1 |1.), and |v.5 (1/ 21/2) (|0. 2 |1.), will be determined. It is
|u. � |v.5 1/2 (|0. � |0. 2 |0. � |1. 1 (|1. � |0. 2 |1. � |1.). This can be
written: w5 1/2 (|0, 0. 2 |0, 1. 1 |1, 0. 2 |1, 1.). Note that the resulting tensor prod-
uct is also of norm one. This can be seen directly by using bras and kets and observing when
they are orthogonal and normalized. So, ,w,w. 5 1/4 ,,0, 0 | 2 , 0, 1 | 1 , 1, 0 | 2
, 1, 1 |, |0, 0. 2 |0, 1. 1 |1, 0. 2 |1, 1... This could be expanded into sixteen inner
products. Each of the sixteen inner products would then be calculated using the equational
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identity number four for tensor Hilbert spaces. 4) Inner Product: ,v1 � v2, w1 � w2.5
, v1, w1. ,v2, w2..

To see this in depth by using the inner product mentioned earlier, begin with the first
tuple in the first bra and form the inner product of it with each of the four first tuples
within the kets. The results are ,0, 0.5 1, ,0, 0.5 1, ,0, 1.5 0, and finally,
,0, 1.5 0. Next form the inner product of the second tuple in the first bra with each of
the four second tuples within the kets. This gives ,0, 0.5 1, ,0, 1.5 0, ,0, 0.5 1, and
,0, 1.5 0. Keeping track of these two results and then multiplying these entries in
corresponding order gives all zeros except for one term, ,0|0. ,0|0.5 1. That is, the
other three products are zero. Repeating the process for the other bras will yield a single
value 1 in each product, when multiplying in order. So, ,w,w. 5 1/4 (,0|0., 0|0.
1 , 0|0., 1|1. 1 , 1|1., 0|0. 1 , 1|1., 1|1.)5 1.#

4.11 Hilbert space of rays

The next two examples of a Hilbert space include the concept of rays for states. This is
first described using projective Hilbert space concepts. The second example utilizes
ordered fields and convex cones. Both examples also assume that the states are pure
states.

Example 4.19:

Consider a fixed complex Hilbert space H. The projection on H results in the subset M
of H, M5 {v, w, nonzero, such that v5 a w for some nonzero constant, a in C}. This
defines a ray as an equivalence class. This structure satisfies the reflexive, symmetric, tran-
sitive (RST) equivalence relations. To see that this is a relation, assume that v, w, and z are
all nonzero in M; also, let a and b be nonzero in C. The following constraints do hold:

Reflexive: v5 1 v.
Symmetric: v5 a w, implies w5 1/a v, since a is nonzero.
Transitive: v5 a w, w5 b z, implies v5 a b z; accordingly, all RST relations hold.

Vector zero is not in this structure, and consequently, M is not a subvector space. It is
not even an additive groupoid. This follows since if both v5 a w and v52a w are added
together then the zero vector is obtained. There may be many subsets like M, and these
constitute the rays in a Hilbert space H.

Each of these rays can be thought to be comprised of two infinite segments of a straight
line. The line passes through the zero in H and does not contain it, but it does contain all
other points on the line. In particular, if H5C2 then the projection in this case is the com-
plex projection line, also known as the Bloch sphere, described in the next chapter. Hopf
fibration, also described later, provides the underlying theory for conclusions relating to
the Bloch sphere and is mentioned in Chapter 10 on Fiber bundles.#

Generalizing the result from the previous example to an n quantum-level system
results in equivalence classes and can be thought of as complex lines through, but not
including the origin in Cn. The lines form a complex projective space, CP(n21), which is
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(Cn 2 {0}) / (v B av), for a in C, nonzero. There is a one-to-one correspondence between
CP(n21) and n-dimensional quantum systems. A single qubit is in CP1. A more in-depth
presentation of projective spaces is provided in the next example. It will involve showing
that the outer product of a simple vector with itself is positive semidefinite or otherwise
called nonnegative definite.

Example 4.20:

In this example, consider Hilbert space, Hr, with the carrier set for sort SCALAR being
the real field, R. The real field is an ordered field. Moreover, for any two elements, a and
b, in R, one of the three cases holds. Either a ,b or b ,a or a5 b is true. Additionally, the
ordering involving the relation, less than or equal to, is reflexive and transitive. Moreover,
it is antisymmetric, that is, if a is less than or equal to b and b is less than or equal to a,
then a5 b. Also, the defining equational inequalities for R to be an ordered field involve
the constraints:

1) Additive: if a ,b, then a1 c ,b1 c.
2) Multiplicative: If 0 ,a and 0 ,b, then 0 ,a � b.

Recall that the outer product of two vectors results in a matrix. Now, we show the trace
class operator, density function, or pure state;|v. ,v|is a real-valued nonnegative defi-
nite matrix. This will be illustrated by showing that the associated quadratic form of the
matrix is nonnegative definite.

So consider the qubit |v.5 (a b)0 in C2 then|v. ,v |5 (a b)0 (a* b*)5M, the qua-
dratic form Q5 (x y) M (x y)0 5 (a a* x 1 b a* y a b* x 1 b b* y) (x y)0 5 a a* x2 1 2 Re
(a b*) x y1 b b* y2, which is greater or equal to zero. This shows that the matrix M is posi-
tive semidefinite. M5| v. ,v |5

j aaT abT j
j baT bbT j

Finally, M is also a ray in the convex cone in Hr. A convex set is such that the line seg-
ment containing any two points within the set is also fully contained within the set. A
cone is a subset of an ordered field, Hr. For any element P in the subset and scalar a,
where a is nonnegative in R, then a P is in the subset. A convex cone is a cone where
a P1 b Q is in the cone for any nonnegative a, b in R, and any P and Q in the cone.#

4.12 Projective space

For a Hilbert space H, over the field C, an associated projective space PH can be
defined. It is the set of all rays L, in H where PH5 {L, such that L is a complex one-
dimensional subspace of H}. Consider H 2 {0}, with its induced topology from H, and let
T: (H2 {0})- PH. Then, choosing a single nonzero point on each ray L shows that T is an
onto map. Additionally, choosing the final topology for PH with respect to T makes PH a
topological space. Here, in the final topology, open sets U in PH are those for which T21
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(U) are open in H 2 {0}. For v, w in H 2 {0}, an equivalence relation can be defined by
v B w means v5 aw for a, nonzero in C. Equivalence classes were illustrated in Example
4.19. Denote the quotient space, (H 2 {0})/B by HB, and define the quotient map TB:
(H 2 {0}) - HB. This produces a unique homeomorphism M, M: HB - PH. Elements
in H 2 {0} are often referred to as state vectors, whereas elements L of PH are called the
rays. When there exists a unit norm, they are referred to as pure states.

The projective Hilbert space inherits an inner product from H. In this case, the binary
function IN: PH x PH - [0, 1], and for v, w in H 2 {0}, then IN(v,w)5|,v,w.|/
(:v::w|)|.

Example 4.21:

When a quantum system is prepared to be in state v in PH for measurement and the
state of the observable is w in PH, then the probability of the event is interpreted to be IN
(v,w)2.#

When the dimension of H is greater than one, the PH is a complete semi-metric space
with semi-metric given by d: PH x PH- [0, infinity], where for L, K in PH, the distance d
(L,K)5 inf :v2 w:, where v is in L, w is in K, and :v:5 :w:5 1.

Example 4.22:

If H5C2, the projective space PH is the set of all straight lines in the complex plane C,
which go through the origin. In particular, if L is the y-axis and K is the x-axis, then d(L,K)5
21/2. This follows, since unit lengths are employed, and the distance from point (1, 0) to point
(0, 1) is 21/2.#

The Fubini-Study metric D is defined on a projective Hilbert space (Sakai, 1995). It is an
equivalent metric to d, in the previous example. The Fubini-Study metric is such that D:
PH x PH - [0, infinity], where D(L,K)5 arccos(|L,K|). Equivalency is shown by the
inequalities: For all L and K in PH, d(L,K) is less than or equal to D(L,K) that is less than
or equal to 21/2 d(L,K).

Isometries can be defined in projective spaces. If PH1 and PH2 are projective spaces,
then A: PH1 - PH2 is called an isometry whenever it is distance preserving, |,A(L), A
(K).|5|,L, K.|, for all L and K in PH1. An isometric automorphism is a mapping
A, where A: PH - PH when A is a 1�1, onto isometry. This is also called a Wigner auto-
morphism or symmetry of the quantum system (Chevalier, 2007). There are many types of
isometries such as translations, rotations, and reflections as well as glide reflections, which
are reflections about a line followed by translations. These symmetries form a group.
Distinct isometries are described as being linear whenever A obeys:

1) Additive: A (L1 K)5A (L)1 A (K).
2) Homogeneous: A(aL)5 a A(L), for a in C.

However, if (1) holds and

20) Conjugate Homogeneous: A(aL)5 a* A(L),
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then the isometry is said to be conjugate linear. A theorem of Wigner’s; involves isometries
in a Hilbert space of dimension greater than one. For an isometry A: PH - PH, there exists
a linear or conjugate linear isometry S such that S: H - H. Moreover, A5 S0, which is an
isometry on PH mapping the ray cv into the ray cSv, for v in H2 {0}.

It is important to mention a related topic, namely antiunitary or conjugate linear unitary
operations. In particular, for a bijection T: H - H satisfying the three conditions below,
the operator is called an antiunitary map; here a and b are in C and v and w are in H:

1) Adjoint Inverse: T T*5T* T5 I.
2) Additive: T(v1 w)5T(v)1 T(w).
3) Conjugate Homogeneous: T(a v)5 a* T(v).

In terms of inner products, this is often condensed into:
4) Inner product, ,T(v), T(w).5, v, w.*.

However, the last representation is useful, but care must be taken because all operators
in this document are assumed to be linear, unless specified otherwise.

Example 4.23:

If T is antilinear, then so also is T21. For a non-zero, T21(av) 5 w, implies that av 5 T
(w), or v 5 1/a T(w) 5 T(1/a* w). From this T21(v) 5 1/a* w, or w 5 a* T21(v), thus
showing the inverse is also antilinear. It also follows that T21 (i) T52i T21T52i.#
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C H A P T E R

5

Quantum and machine learning
applications involving matrices

5.1 Matrix operations

The polyadic graph in Fig. 5.1 provides a global view of several operational names
involving the sort MATRIX. These names are in the context of an n by n complex-valued
matrix, M. The sorts in this diagram consist of n-dimensional complex Hilbert spaces of
KETS, as well as the same or dual space of BRAS, along with the complex SCALAR field.
To keep the diagram noncluttered, all operational names previously mentioned for Hilbert
space as well as for the complex field are omitted in this diagram. Also, omitted are all the
operator names used to define the unital associative algebra structure for MATRIX as
detailed in Fig. 3.1.

The arity sequence for the MATRIX structure in the present case is (0, 7 (4, 3), 0,1) and
can be correlated with Fig. 3.1. There are seven unitary operational names and one trinary

KETS

BRAS

RALACSXIRTAM

TRAN CONJ

PERM

NORM

TRACE

DET

INV

TRI

FIGURE 5.1 Polyadic graph involving matrix operations.
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operational name. This is the first instance of a trinary operator name. The truth is that
many other operations could be given using arity three operations. For instance, even one
of the most basic structures in quantum technology can be defined this way. That is, an
abelian group can be defined utilizing a single trinary operation; in this case, it is often
called a heap (Hollings and Lawson, 2017).

For the MATRIX structure, the names of all the operators within their signature sets are
given next. We begin with:

Trinary Opertation: TRI: BRA3MATRIX3KET-SCALAR:

This is a conjugate trilinear form. In the complex case, TRI is linear in its last two argu-
ments only. Of special importance in the real case is when the bra and ket are equal. The
interpretation in this case is to use v such that ,v|5|v.T. As a result, a quadratic form
is obtained, ,v|M|v.. In any event, however, notice in the diagram that the tails of the
corresponding arrow are marked with slashes corresponding to the order of operands for
TRI. The order is as follows: first a BRA, then MATRIX, and finally KET.

The next four operational names all belong to the same signature set; they are described
in the following paragraphs.

Unary Operation: DET: MATRIX-SCALAR:

The determinant was introduced earlier involving vector space endomorphisms in
Section 4.8. It will be mentioned again in subsequent chapters. Endomorphism methods
produce component-free evaluation formulas for the determinant. However, in a less
abstract setting, the determinant is also called an (unique up to scalar multiplication) alter-
nating multilinear functional. A determinant is very important in Fock spaces. Here, the
Slater determinant is employed in providing fermion count status as well as entanglement
existence.

Next, another important matrix operation corresponds to the trace operational name; it
is such that:

Unary Operation: TRACE: MATRIX-SCALAR:

The trace will be given from a more global view in subsequent sections. It involves con-
tractions of tensor products. The trace of a matrix plays a crucial role in employing statisti-
cal and probabilistic methods in quantum areas. Averages are based on using the trace of
the density matrix. Illustrations and examples are provided in subsequent chapters.

The permanent operational name is such that:

Unary Operation: PERM: MATRIX-SCALAR:

The permanent is similar to the determinant, but it does not use the one and minus one
alternating signs in the Leibniz rule for the calculation of a determinant. It keeps all signs
equal to positive one. The permanent is also employed in Fock space for calculation of the
number of bosons.

The norm has operational name given by:

Unary Operation: NORM: MATRIX-SCALAR:
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Here, NORM stands for the norm of a matrix. It is a global term. However, among the
many distinct norms that exist for a matrix, only the Hilbert-Schmidt or Frobenius norm
will be mentioned in the following. In this case, :M: equals the square root of the sum of
all the matrix elements, each absolute value squared. This norm was chosen because it can
be used in illustrating a Banach algebra with carrier set MATRIX.

The final three operator names all are unary and all belong to the same signature set.
They are the following:

TRAN; CONJ; and INV they all map: MATRIX:-MATRIX:

TRAN is the transpose of a matrix, CONJ is the conjugate transpose, and INV is the
partial inverse whose true domain is those matrices whose determinant is nonzero. Notice
the dotted arrow in Fig. 5.1. It would be a solid arrow if the sort MATRIX denoted ele-
ments within the general linear group GL (n, C) or GL (n, R) of n by n matrices whose
determinants are nonzero.

It should be pointed out that the term transpose (TRAN) only applies to matrices. In
general, the adjoint operation takes the place of transpose for linear operators. These facts
will be mentioned again later. The adjoint will perform similarly to the transpose. For a
matrix M, where M: Cn - Cm and M is an m row by ncolumn matrix, then the inner prod-
uct is used for v in Cm and w in Cn as ,v,Mw.5vTMw5 (M0 vc)0 w5,MTv,w.. The
star (T) is the conjugate transpose. The exponent (c) is the conjugate. When the real scalar
field is used instead of the complex field, the conjugate of any real number is itself and
(T)5 (0).

The next example illustrates the use of the transpose involving complex quantities. In
this example, (c) refers to the conjugate operation.

Example 5.1:

Consider the carrier sets for VECTOR to be C2 and C3, and where, n5 3 and m5 2. Let
the carrier set for MATRIX be all 2 by 3 complex-valued matrices, and let M: C3 - C2,
where M5

j0 i 2j
j1 0 0j

For v in C2, where v5 (2i 21)0, and w in C3, w5 (3i 22i 1)0, then ,v, M w.5, (2i 21)0,
(4 3i)0.5 (22i 21) (4 3i)0 5211i5vTMw. The quantity M0vc5 (21 2 �4i)0, and accordingly,
(M0vc)0 5 (21 2�4i) and (M0vc)0w5 (21 2 �4i) (3i 22i 1)0 5211i. Finally, ,(M0vc)C,
w.5,MTv, w.5, ((21 2 4i)0, (3i 22i 1)0.5211i.#

5.2 Qubits and their matrix representations

As previously mentioned, a ket followed, and multiplied, by a bra is employed in denoting
outer products. For instance, using M, a two by two complex-valued matrix and with notational
abuse: M5|v.,w|. The following example will illustrate the use of the outer product in
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quantum. In particular, it will be observed that a normalized vector ρ in a Hilbert space is writ-
ten as |v.,v|5 ρ. This quantity is often referred to as a trace class operator, a density func-
tion, or even a pure state. More generally, the outer product is used as an orthogonal projection
operator. Here a ket |v. of norm one projects onto the subspace spanned by |v. using |
v.,v|. Illustration of this important operation is given in the MSA polyadic graph in Fig. 5.2.
A special notation is used here. A dot on each tail of an arrow indicates that the operands are
identical elements of the chosen sort or isomorphic sort. Identical elements for the situation at
hand mean a |v.5 aT,v|. The operator K in the diagram is the 1�1, onto, isometric, conju-
gate operation illustrated in Fig. 4.2. The ket followed by bra operation is motivated in the next
example. In this case, the carrier set for VECTOR corresponds to two-dimensional complex-val-
ued vectors with the usual operations. As a consequence, the carrier set for sort MATRIX is the
set of all 2 by 2 complex-valued matrices.

Example 5.2:

Refer to Example 4.6 where the fundamental Hilbert space setting is C2. That is, the car-
rier set for VECTOR is the set of all 2 by 1 complex column vectors identified with kets.
The outer product of the two kets |r.5 (a b)0 with |s.5 (c d)0 is a 2 by 2 matrix E.
Entries of E are the following: E115 acT, E125 adT, E215 bcT, and E225 bdT. The same
result could have been found by multiplying the 2 by 1 column vector

|r.5 (a b)0 by the 1 by 2 row vector ,s|5 (cT dT), corresponding to a bra representa-
tion for |s.. Again, |r., s|5

jacT adTj
jbcT bdTj:

Consider any three vectors u, v, and w in C2. The inner product ,w, v. times the ket
u equals the outer product |u. � w.)| times ket v. That is, ,w|v.|u.5 (|u. �
w.)|v.. This is the usual definition of an outer product as a rank one operator. This

KETS

BRAS

MATRIX
OUTER

First Input

Dot Indicate “The Same” Inputs
Here <V1 = K(1V>)

|V >< V| = M

FIGURE 5.2 Illustration of
identical operands in polyadic
graph.
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identity will now be illustrated: for instance, let u5 (a b)0, v5 (e f)0, and w5 (c d)0. Then
forming the left hand side gives the 2 by 1 column vector, ,w|v.|u.5 ((cTe 1dTf) a
(cTe1 dTf) b)0.

Next, forming the right hand side (|u.�|w.)|v., it is given below by the two by
two matrix (|u.�|w.), followed by the column vector (e f)0,

jacT adTj jej
jbcT bdTj jfj:

Multiplying the 2 by 2 matrix times the 2 by 1 column vector gives a new 2 by 1 vector:

j acT e1 adT fð Þj
j bcT e1 bdT fð Þj:

From this, the identity (|u.�|w.)|v.5,w|v.|u. is seen to hold.#
More generally, any column vector (n by 1) multiplying a row vector (1 by n), in that

order, corresponds to the outer product. When using bras and kets, the conjugate must be
employed in the row representation of a bra. In any case, the results of the multiplication
are an n by n matrix. Arbitrary ket-bra multiplications each of the same degree provide
outer products in an n-dimensional Hilbert space.

The following examples continue with Hilbert space C2, but this time the origin is not
included because states can never be zero, and arbitrary phase factors are ignored. In
quantum areas, overall phase differences cannot be detected. Numerous representations
and lower level views of simple (pure) states within the MSA are provided next. As far
as quantum applications are concerned, the following representation is most important;
it is that of Poincare or Bloch sphere. See Fig. 5.3. It generalizes to Lie groups. In partic-
ular, the special unitary group, SU(2,C), is a 2 by 2 matrix representation for manipulat-
ing qubits. This involves the Pauli basis as well as the commutator operation and the
antisymmetric Levi-Civita symbol. Additionally, in the orthogonal group O(3, R), the
pure state is given by a 3 x 1 column vector with an invariant unit norm. High views of
the algebraic and topological foundations of Lie groups and Lie algebras are
provided in a forthcoming chapter.

|q> = cos t/2 |0> + eip sin t/2 |1>
|1>

|0> + i|1>

q = |q>

|0>

sint sinp

sint cosp

cost

t ε [0, π]
p ε [0, 2π)√2|0>+|1>

√2

t

Z

x

p
y

FIGURE 5.3 Bloch sphere.
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Example 5.3:

With the exception of arbitrary phase, the most general single qubit is described in this
example. It is the 2 by 1 vector: |q.5 (cos (t /2) eip sin (t 2))0, where p is a real number in
[0, 2π) and t is real valued in [0, π]. Correspondingly, it can be written using a linear com-
bination of kets: |q.5 (cos (t /2)|0. 1 eip sin (t 2)|1.. Making use of the outer product
or projection operation: |q.,q|, this results in the 2 by 2 self-adjoint matrix. It is posi-
tive definite, of trace one, with the nonnegative determinant. It is a representation of |q.,
called the density matrix, ρ5

j cos2 t=2
� �

sin t=2
� �

cos t=2
� �

e2ipj
jsin t=2

� �
cos t=2

� �
eip sin2 t=2

� � j:#
The aforementioned example provided a Hilbert space representation of a pure state, a

single qubit. Previously mentioned, the most general qubit was illustrated; it is given by
eis |q., where s is a real number in [0, 2π) and |q. is given earlier. A most intuitive, as
well as a most important, representation of a single qubit is given next. It ignores the
global phase eis, but involves the Bloch sphere and is described next.

A point on the surface of the Bloch sphere is always a pure state. The point is given by
the 3 by 1 vector, q, in the Lie group O(3). It is obtained using spherical coordinates or using
normalized Stokes parameters needed in polarization identification. This representation for
the single qubit is called the spherical representation of the qubit and is the 3 by 1 column
vector: q5 (sin (t) cos (p) sin (t) sin (p) cos (t))0. Here, t denotes an (elevation, latitude
type) angle in [0, π], and p is a (longitude type) angle in [0, 2 π). Of special importance are
the north and south poles. These occur by using t5 0 and t5π, p5 0, respectively, thus
obtaining kets |0. and |1., respectively. See Fig. 5.3. So, for instance, using |q.5 (cos
(t/2) eip sin (t 2))0, with t5 0, gives |0.5 (cos (0 /2) eip sin (0 2))0 5 (1 0)0 in C2.
Additionally, the spherical representation of this qubit is q5 (sin (0) cos (p) sin (0) sin (p)
cos (0))0 5 (0 0 1)0. In three dimensions, this is x5 0, y5 0, and z5 1; it represents the north
pole. A similar representation can be given for |1.. In this case, the representation on the
Bloch sphere is (0 0�1), and this is the south pole.

The next representation involves the three Pauli matrices: s1, s2, and s3. Along with the
2 by 2 identity matrix, these four matrices form an orthogonal basis for all 2 by 2 complex
self-adjoint matrix Hilbert space. So, for any self-adjoint matrix T, that is, T5TT, it follows
that T5n1 I1 nx s11 ny s21 nz s3, where all the nj are real numbers.

The Pauli matrices are given below in order, s1, s2, and s3:

j0 1j j0 2 ij j1 0j
j1 0j ji 0j j0 2 1j

The self-adjoint matrix T mentioned earlier, when the Pauli matrices are substituted, is
given by:

jn1 1nz nx 2 inyj
jnx 1 iny n1 2nzj:

88 5. Quantum and machine learning applications involving matrices

Many-Sorted Algebras for Deep Learning and Quantum Technology



Example 5.4:

The general Pauli matrix T, given above will be used as a density matrix ρ. Since
the trace of ρ equals one, it follows that trace(ρ)5n1 1 nz1 n12nz5 2 n1; this implies
n15 1/2. Accordingly, making the substitution, ρ5 1/2 I 1 nx s1 1 ny s2 1 nz s3. Let r be
the following column vector, that is, r5 (2 nx 2 ny 2 nz)

0. Also use s1, s2, and s3 in making
the Pauli column, 3 by 1, vector, s5 (s1 s2 s3)0. This quantity is really a 6 by 2 matrix. It is
of these dimensions when the Pauli matrices are actually substituted into the column vec-
tor s. Another important representation is ρ5 (I 1, r, s.)/2; it is a condensed version of
the representation of ρ mentioned earlier. Since ρ is positive semidefinite, its eigenvalues
are nonnegative and so also is its determinant. Here, Det ρð Þ5n2

1 2n2
z 2n2

x 2n2
y is greater

than or equal to zero. Therefore, 1/4 is greater than or equal to n2
z 1n2

x 1n2
y. This implies

that |r|2 is less than or equal to one. When |r|5 1, a pure state is obtained and is a point
on the surface of the Bloch sphere. When |r|,1, this indicates a mixed state and is a point
in the interior of the Bloch sphere. Example 5.8 illustrates a maximally linear mixed state
at the center of the Bloch sphere.

Example 5.5:

This example will illustrate the effect that an application of the s2 Pauli matrix has on a
typical qubit, |q.5 (cos (t/2) eip sin (t/2))0. This qubit is located on the surface of the
Bloch sphere, because it has norm one. The first step is to form the matrix s2 times this
vector: s2 |q.5 s2 (cos (t/2) eip sin (t/2))0 5 (2 ieip sin (t/2) icos (t/2))0. Overall phase
does not matter, so factoring out 2 ieip gives s2 |q.5 (sin (t/2)2 e2ip cos (t/2))0 when
this global phase is dropped, that is, it is ignored. This quantity can be written as (cos
((t2 π)/2)2 e2ip sin ((t 1 π)/2))0 5 (cos ((t2π)/2) e2ip sin ((t 1 3π)/2))0 5 (cos ((t2π)/2)
e2ip sin ((t2π)/2))0.

The aforementioned calculation shows from an application of s2, p becomes minus
p, and t becomes t2 π. On the Bloch sphere, the original qubit|q. is transformed into
a new qubit s2|q. whose new location has a longitude change from angle p to -p;
additionally, a latitude change of 180� minus its original angle. Thus, for an applica-
tion of s2 on a given qubit, there is a change in hemisphere from the original hemi-
sphere occupied by the qubit. For instance, the north pole is transformed into s2
|0.5 (0 i)0, which is the south pole. Factoring out the imaginary number renders s2
|0.5 i (0 1). Ignoring global phase gives the new value of t5π and p5 0. As another
instance, consider the original point being the south pole. So, s2 |1.5 (-i 0)0.
Converting this to -i(1 0), and then remembering that global phase is not relevant,
gives s2|1.5|0..#

As in the aforementioned example, all the Pauli matrices act in a similar fashion involv-
ing the three spatial directions. All the Pauli matrices given earlier are both Hermitian
symmetric, that is, they are self-adjoint as well as being unitary matrices. The latter state-
ment means that multiplying one of these matrices on either side by its conjugate trans-
pose results in the identity matrix.

895.2 Qubits and their matrix representations

Many-Sorted Algebras for Deep Learning and Quantum Technology



Example 5.6:

An illustration will be provided, showing that the second Pauli matrix s2 is self-adjoint
as well as being a unitary matrix, that is, s25 s2 T and s2 � s2T0 5 I. Note that s2 is given
in order, below followed by s2T and s2T0, where T denotes conjugation and the prime indi-
cates matrix transpose.

j0 2 ij j0 ij j0 2 ij
ji 0j j2 i 0j ji 0j

A simple matrix multiplication verifies the claim that s2 � s2T0 5 s2T0 s25 I.#
The last representation for q that will be given now is the 2 by 2 matrix, M. It is an ele-

ment in the SU(2, C) Lie group. The matrix M involves the three by one, spherical vector q
and the three by one, Pauli vector s, given earlier. In this case, it is the inner product of
two vectors. So, ,q, s.5M5 sin (t) cos (p) s11 sin (t) sin (p) s21 cos (t) s3. The entries
sk in the aforementioned results are all 2 by 2 Pauli matrices; they multiply the sinusoidal.
Multiplying the sinusoids with the substituted 2 by 2, Pauli matrices, when everything is
added together, results in the 2 by 2 matrix M5

j cos tð Þ e2ipsin tð Þj
jeipsin tð Þ 2 cos tð Þ j:

Pauli matrices are often defined slightly different from the definitions given earlier. It should
be mentioned, as a first instance of this is in their corresponding Lie algebra, su(2, C). In this
case, the Pauli matrices are normalized: that is, Sj5 sj/2 for j5 1, 2, 3. Also, in this algebra, the
commutator operator is used, not regular matrix multiplication. The commutator operation is
[A B]5A B-B A. Matrix multiplication actually is not defined in the Lie algebra; it is a metao-
perator needed for obtaining the commutation operation.

Example 5.7:

As an application of the commutator operation, consider the Pauli matrices: [Si, Sj]5 Si
Sj2 Sj Si5 i Eijk Sk. Here, the structure constants, also called the antisymmetric Levi-Civita
symbol Eijk, ijk were employed. The first i in front of the i Eijk symbol is the square root of
minus one. The symbol Eijk is equal to one or minus one depending on whether the ijk pattern
undergoes an even number of transpositions or an odd number, respectively. Plus one is used
for an even number of transpositions, and minus one is used otherwise. A transposition is the
interchanging of two entries involving the ordering of the numerals: 1, 2, and 3.

For instance, [S3 S2]5 S3 S22 S2 S35 2 iS1. First of all, the minus sign occurs since there are
an odd number of transpositions: 1 2 3 say became 3 2 1; using a single transposition, inter-
change 1 and 3. The solution involves S1, since the commutator employed S2 and S3. The product
of 4 S3 S2 and 4 S2 S3, as well as 4 (S3 S2-S2 S3), is illustrated as follows, in the order specified:

j0 2 ij j0 ij j0 2 2ij
j2 i 0j ji 0j j2 2i 0j:

Multiplying the last matrix by 1/4 gives �iS1.#
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Mixed states are the convex combinations of pure states and other mixed states. The coeffi-
cients in the linear combination are always nonnegative and sum to one in this case. These
coefficients are interpreted to be probabilities. On the other hand, pure states have probabili-
ties being the absolute squared scalar coefficient. Let |u. and |v. be pure states.
Additionally, assume that c and d are greater than or equal to zero. Then |z.5 c|u. 1 d
|v., where c1 d5 1, is called a mixed state, and c and d can be considered to be probabili-
ties. The resulting mixed state ket is a convex combination of other kets in this case.
Elements like these appear inside, interior to the Bloch sphere. Recall that the Bloch sphere is
a representation of the projected space, CP15 (C22 {0})/(z B az), where a is nonzero in C.
The interior is sometimes called the Bloch ball. Thus, mixed states are in the Bloch ball. The
origin in the Bloch ball has the state corresponding to one half of the identity. It is called the
maximal linear state. The state carries no information about a qubit.

Example 5.8:

As mentioned earlier, a most simple and important example of a mixed state is the
maximal linear state, |v.5 1/2|0. 1 1/2 |1.5 1/2 I. As far as the Bloch ball is con-
cerned, it was indicated earlier that|v. is located at the center of this ball. In this case,
r5 0, because ρ5|v. ,v|5 1/2 I and ρ5 (I1 , r, s.)/2, from Example 5.4.

5.3 Complex representation for the Bloch sphere

A pure qubit can be represented with u, and v in C as |q.5u|0. 1 v|1., where
|u|2 1|v|25 1. This representation is sometimes used instead of the more popular repre-
sentation given in the previous sections: |q.5 (cos (t/2)|0. 1 eip sin (t/2) |1., p in [0,
2π), and t in [0, π]. Here, the global phase, φ in [0, 2π), is ignored, so the full description of a

qubit is eiφ |q.. In the Bloch sphere representation, eiφ |q. is mapped onto a single point
on the surface of the sphere S2 in R3. The phase φ does not show up on the Bloch sphere.
The coordinates of this point are given by the spherical coordinate vector described before.
Now it is additionally described in terms of the complex coefficients, u and v,

X5 sin tð Þcos p
� �

5 2Re uTvð Þ
Y5 sin tð Þsin p

� �
5 2Im uTvð Þ

Z5 cos tð Þ5 juj2 2 jvj2

By identifying u with cos(t/2) and v with eip sin (t/2) provides justification for the X, Y, and
Z identities. The density matrix using the kets given earlier is ρ5|q.,q|5 (u|0.1v|1.)T
(u|0.1v|1.)5|u|2|0. , 0|1|v|2|1., 1|1uTv|0., 1|1vTu|1., 0|. Accordingly,
the density matrix ρ5

jjuj2 uTvj
jvTu jvj2j:

The off diagonal entries of this matrix are often called coherences. The process of utiliz-
ing transformations to remove these entries is called de-coherence.
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Letting u5 x 1 iy and v5 z 1 it, with x, y, z, and t real-valued, then the ball S3 is
defined as follows: x2 1 y2 1 z2 1 t25 1. Equivalently, S3 can also be defined using two
complex numbers, that is, use u and v in |u|21 |v|25 1. This shows that the single qubit
Hilbert space is S3. In this space, eiφ |q. is the equation of a circle with parameter φ in [0,
2π). The Bloch sphere is identified with the projective space CP1 or S2.

Finally, using the outer product or projection operation:|q.,q|, this results in the 2
by 2 matrix representation of the pure state density matrix, ρ5

j cos2 t=2
� �

sin t=2
� �

cos t=2
� �

e2ipj
jsin t=2

� �
cos t=2

� �
eip sin2 t=2

� � j:
The bock vector can be written as a density matrix; that is, ρ can also be given again in

terms of spherical coordinates as 2 ρ5

j 11Z X2 iYj
jX1 iY 12Z j:

As before, justification amounts to substitution. For instance, for the matrix entry ρ,
using Z5 cos(t), 11 Z5 11 cos(t)5 cos2 (t/2)/2.

Example 5.9:

The eigenvalues for the Pauli matrix s1 are easily found since the characteristic equation
is λ222 λ trace (s1) 1 det (s1)5λ2215 0. Consequently, the eigenvalues are 11 and 21.
The eigenstates or eigenvectors for Pauli s1 matrix are 1=21=2 j0. 1 2 j1.ð Þ. The corre-
sponding density matrices are given by 2ρ5

j1 1 2 1j
j12 1 1j

5.4 Interior, exterior, and Lie derivatives

This section is a continuation of Section 4.6. The principal content of this section is a
description of the Lie derivative. First, however, the interior derivative will be reviewed. Not
previously mentioned, the interior derivative is always specified relative to a vector field X.
For any n form w, n. 0, (lX w) (X2, X3, . . .Xn)5w(X, X2, . . . Xn). This operation acts on a
sequence of vector fields, X2, X3, . . .Xn. This is the same as the interior product. The result is
an n2 1 form. For a function, that is a zero form, the interior derivative is zero.

Example 5.10:

Let w be a two form over the dual space of R2, where w5 e1 X e2, and let X5 e2. The
interior product (lXw) (v)5w (X, v)5 (e1 X e2) (e2, v)5 e1 (e2)e

2 (v)2 e1 (v) e2 (e2)5 02 e1

(v) 152e1 (v). So notice that the result of applying the interior derivative to a two form
resulted in a one form.#
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Notice that the exterior product, which is the wedge product described in the previous
chapter, Section 4.6, is different from the exterior derivative, which is just the d operation.
The exterior derivative d, of an n form w, increases the degree by one. For the two forms,
v and u of degrees n and m, respectively, the exterior derivative of w5v X u is dw5 (dv)
X u 1 (21)n v X d(u). However, there is a close relationship between the interior and
exterior derivative, and this relationship is described next.

The duality between the exterior and the interior derivatives is given by the Cartan
magic formula LX w, where LX w5d(lX w)1 lX dw (Zubelevich, 2012). In this formula, X
is a vector field, lX is the interior derivative, LX is the Lie derivative, and d is the exterior
derivative. Finally, for w, an n form, Cartan’s formula could be written as LX w5 {d, lX}
w. The brackets {A, B} are the Poincare brackets. Recall that these brackets are such that
{A, B}5A B 1 B A. This magic formula is often used as the definition for the Lie deriva-
tive LX w, on the space of differential forms.

For a function f with respect to a vector field X, the Lie derivative is the directional
derivative, LXf5d f � X5X [f]. The Lie derivative of vector fields, Y along X, is such that
LY X5 [X, Y], since [X, Y][f]5X [Y [f]]-Y [X [f]]. Additionally, it is the contraction of the
exterior derivative of f with X, that is, LX w5 IX dw 1 d(IX w), which again is the Cartan
formula. Note that the Lie derivative also obeys Leibnitz rule: For w5v X u and X a vec-
tor field, LX w5 (LX v) X u1 v X (LX u).

Lie derivatives do not change the degree of the forms they act on. Another way of keep-
ing the degree of the form invariant is to use both the interior and exterior operators since
the former lowers the degree, while the latter raises the degree. The order of operation
matters, and in any case, Cartan magic formula is an illustration of keeping the degree of
the form invariant (Marsden, 2003).#

For regular functions f, that is, 0 forms, both the exterior and Lie derivatives agree.
However, the meaning of derivative is somewhat different for these two operators. A Lie
derivative provides a rate of flow or change in a zero form, whereas the exterior derivative
can be viewed as the inverse operation of integration (Yano, 1957).

5.5 Spectra for matrices and Frobenius covariant matrices

In finite-dimensional Hilbert spaces H, the spectral characteristics of operators T are
realized by matrices M. In particular, the spectral decomposition will be described for
matrices with distinct eigenvalues. It involves a superposition of pairwise orthogonal pro-
jections onto the eigenspace Va, for eigenvalue a. So, Va5 {a such that T v5 a v, v nonzero
in H}.

Let Pa be an orthogonal projection onto Va. When a1, a2,. . ., an are the distinct eigenva-
lues of T, the spectral decomposition of T is T5 a1 Pa11 a2 Pa2 1. . .1 an Pn. Also,
T25 a12 Pa1 1 a22 Pa2 1. . .1 an2 Pan. This follows since Paj and Pak are orthogonal and
projections are idempotent. Moreover, for any polynomial involving T, p (T)5p (a1) Pa1
1 p(a2) Pa2 1. . .1 p(an) Pan. The functional calculus, indicated in later chapters, extends
the decomposition from polynomials to continuous functions f. One of the most important
formulas for functions of a matrix is given next.
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The Lagrange-Sylvester interpolation formula is described for a matrix A, over the com-
plex field. It is assumed that A is a k by k matrix with distinct eigenvalues. The objective

is to find the function f of a matrix A, that is, f (A). The value f (A) is the sum
Pk

i51 f aið ÞAi.
In this sum, there appears the product of f (ai), for distinct eigenvalues ai of A. This quan-
tity multiplies the Frobenius covariants Ai (Horn and Johnson, 1991). Each of the k covar-
iants Ai is found as a product j5 1 to k but j not equal to i of the quotient (A2 aj I)/
(ai2 aj).

Example 5.11:

As an instance of this formula, consider k5 2 by 2 matrix A,

j2 1j
j3 4j

The characteristic equation is (22λ) (42λ)2 35λ2�6 λ 1 55 0. Then, the distinct
eigenvalues are a15 5 and a25 1. In this order, we will find the Frobenius covariants A1
and A2. Since k5 2, the product will only have one term for each Frobenius covariant.
Thus for A1, j only will equal 2, and therefore A15 (1/4)(A2 I). In a similar fashion, for
A2, j only equals 1, and consequently, A252(1/4) (A2 5I). These Frobenius covariants
need to be calculated only once. From this, functions of A are found using f (A)5 f (5) A1
1 f (1) A2. This can be done for f (A) equal to eA, sin (A), cosh (A), and so on. As a simple
check, f (A)5A will first be found. It is 5 A1�1 A2. The corresponding Frobenius covar-
iants are 4 A1 and 4 A2 given as follows in that order:

j 1 1 j
j 3 3 j

j 23 1 j
j 3 21 j

Multiplying the first matrix above by 5/4 and the second matrix above by 21/4 and
adding them together sums to A.

As another simple example, A2 will be found. It is 25 A1�1 A25

25=4
� �j1 1j 2 1=4

� �j2 3 1j 5 j7 6j
j3 3j j3 2 1j j18 19j:#

A similar formula involving the Frobenius covariants exists for the situation where
there exists repeated eigenvalues (Horn and Johnson, 1991).

5.6 Principal component analysis

The Karhunen-Loeve transform (KLT), the Hotelling transform, and the principal compo-
nent analysis (PCA) are different names for essentially the same transform method. In
machine learning, the terminology is usually referred to as the PCA. It is a linear feature
reduction technique, and it is often called an unsupervised decomposition algorithm. Being
unsupervised, like the k means method illustrated in Example 2.1, Section 2.1, suggests that
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it needs an exhausting amount of computation in all applications. This is true. In general,
PCA is a method for finding the vectors of greatest influence and then reducing the dimen-
sion of the data set by removing data related to less influential vectors. PCA is called an
eigenproblem. The actual solution is centered about finding eigenvectors vj and their eigen-
values λj. All eigenvectors with the largest absolute value eigenvalues λj are usually
retained. Then, the method is to reduce the dimensionality of data by removing eigenvectors
possessing small absolute valued eigenvalues. Actually, this is a form of data compression,
also called source coding. From a statistical point of view, the PCA method is a method for
determining the direction that maximizes the variance or correlation of the data.

The PCA was invented by Pearson (1901). Early on, the Hotelling transform was used
in probability and statistics applications (Hotelling, 1933). Additionally, along with sto-
chastic processes, the KLT (Loeve, 1977) found applications in engineering applications.

The reason for using eigenvectors is because they provide directions of principle com-
ponents. Principal components are always orthogonal to each other, and intuitively they
form orthogonal axes. The eigenvalues represent the units of spread captured by each
principal components. The PCA does not just discard original data; it maps the data into a
new feature space. It is in this space that the reduction is performed. As mentioned before,
PCA is mainly used in dimension reduction, but it is sometimes used for data visualiza-
tion as well as feature extraction. The algorithm helps identify variables that are depen-
dent and remove them. That is, multicollinearity is identified and dealt with using PCA.
PCA reduces the dimension set, but does not reduce much of the information content
when components are discarded.

PCA is also utilized for noise reduction, as well as anomaly detection, and as an encryp-
tion device. The last application manifests itself by utilizing the eigenvector method given
herein, but retaining all the eigenvectors, that is, do not discard any eigenvectors. It acts
much like a hashing code. Additionally, as mentioned earlier, the PCA is used for remov-
ing random noise. In this situation, the PCA is performed, and then the inverse PCA is
created. When applied, the inverse result will often yield better information content than
the original data set. Anomaly detection is another useful application of the PCA. It again
involves inverting the PCA. Once this is performed, a comparison is made in determining
the difference between the original and re-constructed data. Anomalies are detected when
this difference is larger than it should be. That is, the difference is larger than the differ-
ence utilizing previous comparisons when no anomalies exist. The learning aspect here is
still unsupervised; there is no need to label the data.

Arbitrary data sets can be reduced using PCA, but prenormalization of all data within
the original data is paramount. Often data sets are converted to have mean zero. Every
column of a data set is transformed into a covariance matrix. This often occurs after the
variance is normalized. Then eigenvalues and eigenvectors are found. Many of these
eigenvectors are already orthogonal, because the covariance matrix is symmetric. Next, all
of the eigenvectors are then transformed into an ON system, that is, an orthogonal and
normalized system.

For a data vector vi, the projection onto a unit vector u is u0viu, and the average value
over all vi is calculated as a sample-type average, 1=N

PN
i51 vi 5 v2. This average is

denoted by v2. Consequently, the average of all the projections is u0 v2u, and the length of
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projection is u0 v2. To maximize the variance of projection, maximizePN
i51 1=N u0vi2u0v2ð Þ2 5 1=Nu0 PN

i51 vi 2 v2ð Þ vi 2v2ð Þ0u5u0Pu. But there are constraints: u0

u5 1. So, the Lagrangian is L5u0Pu 1 λ(12u0u); differentiating L gives the following:
2Pu2λ 2 u5 0. Solving this equation gives Pu5λ u. This shows that u is the eigenvector,
u’Pu5λ; to maximize u’Pu means to maximize the eigenvalue, λ.

PCA is most often cast in a probabilistic setting. The objective would be to find a vector
vn from an orthonormal set {v1, . . ., vr}, which maximizes the variance: C5v0P v, where v
\ fv1; . . . ;vj21g and is the covariance matrix. It is also usually approximated by the sample

matrix:
P

5 1=n
Pn

i51 vi 2 1=n
Pn

j51 vj

� 	
vi 2 1=n

Pn
j51 vj

� 	
0

h i
. Note that the vectors vi are

column vectors in this expression.
After the normalized sample covariance matrix is found, then the following steps

should be followed to estimate the PCA in this setting. Find all the eigenvalues of Σ. They
are real and may be redundant. Find the associated eigenvectors for each distinct eigen-
value. These eigenvectors are orthogonal, and they should be normalized. For repeating
eigenvalues, use Gram-Schmidt ortho-normalizing procedure on these linearly indepen-
dent vectors. Denote the n normalized eigenvectors by w1 w2, and wn. The matrix W is
comprised of rows using the transpose of all the eigenvectors, that is, w1

0 w2
0, . . ., wn

0 in
this order. Compression occurs if only m of these vectors are used as rows of the matrix
W, where m ,n. The eigenvectors should be ordered. Here, vectors associated with the
largest eigenvalues should be placed ahead of eigenvectors having smaller valued eigen-
values. So the rows of W are comprised of row vectors of transposed eigenvectors and
form a nonincreasing sequence relative to their eigenvalues. The matrix W is of dimension
m by n.

The actual PCA is to be applied to a random vector v5 (a b)0, where it is assumed that
v has underlying probability distribution function F. It is such that the mean value exists
and is zero. Additionally, the covariance matrix must exist, and it is assumed that it equals
the sampled covariance matrix. Finally, it is postulated that the random samples vj are
drawn from F. In this case, the PCA is given by V5W v2 v2ð Þ. This means that the aver-
age should be subtracted from the vectors themselves.

Example 5.12:

Say that n5 2, and sample values are given for v15 (5 9)0 and v25 (1 3)0. Then to

normalize Σ, form the empirical average: v2 5 1=n
Pn

j51 xj 5 1=2 5 9
� �0 1


1 3
� �0�5 3 6

� �0. Then the covariance matrix is approximated by the sample matrix:
P

5 1=n
Pn

i51 vi 2 1=n
Pn

j51 vj
� 	

vj 2 1=n
Pn

j51 vj
� 	

0
h i

5 1=2 5 9
� �0 2 3 6

� �0
 �
5 9

� �0 2 3 6
� �0
 �0 1 1 3

� �0 2
�

3 6
� �0� 1 3

� �0 2 3 6
� �0
 �0g5 1=2 2 3

� �0 2 3
� �

1 2 2 2 3
� �0

2 2 2 3
� �� 

5
j 4 6 j
j 6 9 j

To find the eigenvalues, take det (
P

2λI) and set it equal to zero, thus giving the char-
acteristic equation: λ2�13λ5 0. The eigenvalues are zero and 13. The eigenvector corre-
sponding to the largest eigenvalue is w15 (a b)0, where (

P
2 13 I) w15 0; doing this

results in two equations with two unknowns: 29 a 1 6 b5 0 and 6 a2 4 b5 0, but they

are dependent equations. Solving them gives b5 3/2 a, but since :w1:5 1 is desired,
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that is, a2 1 b25 1, substituting gives a2 (1 1 9/4)5 1, so a25 4/13 and b25 9/13. The
normalized eigenvector associated with eigenvalue λ15 13 is w15 (2 3)0/131/2. In a similar
manner for the eigenvalue λ25 0, the normalized eigenvector w25 (3 �2)0/131/2. The com-

plete matrix W is made up of these eigenvectors transposed, 131=2 �W5

j2 3j
j3 2 2j:

As mentioned earlier, the PCA is applied to a random vector v5 (a b)0 with distribution
function F. Also, say that the vectors v1 and v2 are sampled using F. Then, the PCA is
V5W v2v2ð Þ5 a2 3 b2 6

� �0. The 2 by 2 matrix 131=2 W is given below followed by the
2 by 1 column vector (v2 v2)/ 131/2.

j2 3j j a2 3ð Þ=131=2j
j3 2 2j j b2 6ð Þ=131=2j:

So, V5 1/131/2 (2a1 3b2 24 3a2 2b1 3)’.
If compression is desired only the first column of matrix W would be kept, and then

only the first tuple of V would exist. It would be a scalar in this case.#
The t-Distributed Stochastic Neighbor Embedding, t-SNE method is like PCA for

dimension reduction, It is better for classification. For instance, it distorts or exaggerates
clustering boundaries. It uses nonlinear operations to perform the data reduction.

5.7 Kernel principal component analysis

Direct PCA methods are not useful for random data or for nonlinear manifold type
data. This is because PCA algorithms cannot distinguish between these two types of data;
it treats them equally bad. However, PCA can be conducted using kernels. This is abbrevi-
ated KPCA, and it uses Gram matrices. KPCA is very useful when the data appears to lie
on or hug a manifold. For the linear kernel, the method is almost identical to the usual
PCA algorithm, particularly when the manifold in this case is linear. Importantly, when
using a kernel, an additional nonlinear structure can be discovered. Reasons not to use
KPCA are that, in some situations, overfitting might occur when using KPCA; addition-
ally, transparency is often lost. In this case, the method becomes nonparametric.
Moreover, reconstruction is not obvious, because replacing nonprincipal components is
almost impossible when using KPCA. Finally, hyperparameters and actual kernels needed
in KPCA are problematic. KPCA usually requires several runs in order to find useful para-
meters and kernel settings (Scholkopf et al., 1999).

KPCA techniques employ feature mappings to transform into nonlinear data. Although
the feature maps, Φ, must be known, they are not employed directly. As usual, results are
obtained by only involving the original inner product along with the kernel, K. Kernel
PCA first introduces nonlinearity by producing a mapping into a higher dimensional fea-
ture space. An overview of the basic idea behind the underlying workings of the KPCA is
outlined next. In short, it is to transform the original data using the kernel trick and then
finding the eigenvalues and eigenvectors involving the kernel K. This is followed by
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mapping these eigenvalues and eigenvectors into eigenvalues and eigenvectors of the
desired covariance matrix C. Motivation behind the procedure comes from the similarity
in the formulas for K and C. The similarity is outlined later.

The kernel matrix in essence is given by K5XX0. For instance, assume that K is an n by
n matrix, therefore having n eigenvalues. Entries in K are scalar products involving the
actual data, since X is a vector. Throughout, it is essential that all data is normalized, that
is, it has mean zero, and eigenvectors have norm one. The covariance matrix of the nor-
malized data is given by C5X0X, and it is a d by d matrix having d eigenvalues. The
usual PCA method finds eigenvalues and eigenvectors directly from the matrix C. What is
needed is some relationship between eigenvectors and eigenvalues of K and those from C.
To obtain some insight into this relationship, assume that a is an eigenvector of K,
Ka5λa, that is, XX0a5λa. Then multiplying on the left by X0 gives X0XX0a5λX0a,
Cv5λv, where v5X0a. This shows that if v is not zero, then v is an eigenvector of the
covariance matrix, C. The opposite relationship also holds.

The critical identity needed in the derivation for showing that K can replace the correla-
tion matrix C is given next. It shows the eigenvector and eigenvalue relationship. The prin-
cipal step in this derivation is to obtain the formula K2 a5λ K a. Once this formula is
obtained, divide by K, that is, multiply by the inverse of K. This can be done assuming
that K is positive definite. In general, both C and K are only positive semidefinite. On the
other hand, writing the identity above as K (K a2λ a)5 0 shows what was desired,
namely that ak is an eigenvector of K with an eigenvalue λ, because K is not zero. If com-
pression is desired, then a deletion of eigenvectors corresponding to the smallest value of
eigenvalues can be performed (Thompson, 2014).

By projecting into a higher dimensional space, nonlinear separable data can become
linear.

Example 5.13:

This is an instance of how PCA benefits from applying the kernel and the kernel trick
(Hornegger, 2021). Assume that feature vectors x1, x2, . . . xn are in Rd. Each vector corre-
sponds to an image having 10242 pixels. If PCA was performed on the feature vectors
directly, then processing would be performed in the order of 220 steps. However, using
the KPCA, the total number of computations needed is only in the order of 50x50 steps.#

5.8 Singular value decomposition

The singular value decomposition (SVD) has a long history; it is best described in
Stewart (1992). The SVD is a cornerstone procedure in much of numerical linear algebra
and is important in describing the geometry of Euclidean space. The SVD procedure is
outlined below with an example.

The SVD of a m by n matrix A is found by first expressing this matrix in the form
A5U D V0, where the prime is the transpose operation. The SCALAR field is R in this sit-
uation. Here, U is an m by m orthogonal matrix whose columns consist of the orthonormal
eigenvectors of AA0. Since the latter matrix is self-adjoint, its eigenvectors corresponding
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to distinct eigenvalues are orthogonal, so they only need to be normalized. The columns of
U are ordered from left to right using normalized eigenvectors. The ordering of the eigen-
vectors corresponds to the magnitude of the eigenvalues. Eigenvectors whose eigenvalues
are larger are to the left of those eigenvectors with smaller eigenvalues. When two or more
eigenvalues are equal, it does not matter which eigenvector occupies which column.
However, these eigenvectors need not be orthogonal, but they are always linearly indepen-
dent. Consequently, the Gram-Schmidt orthonormalization procedure will need to be
applied before entering the vectors as columns in U.

In a similar manner, the n by n orthogonal matrix V should be found. In this case, the
columns of V are made up of normalized, ordered eigenvectors of A0A. The ordering is
exactly the same as for U. However, after the orthogonal matrix V is found, the transpose
must be taken. Finally, the sparse diagonal matrix D consists of the square root of the
eigenvalues on the main diagonal. These are organized in descending order corresponding
to the placement of the eigenvectors in the columns of U or V. It does not matter which
orthogonal matrix is used. This is because the eigenvectors in both matrices occupy col-
umn positions with the same nonzero eigenvalues. This can be seen next. Say that
A0Av5λ v, for λ and v nonzero. Then, AA0Av5λ Av. As such, AA0 also has an eigen-
value λ, this time with eigenvector Av. Going the other way, if AA0v5λv, then
A0AA0v5λA0v, so an eigenvalue for AA0 is also an eigenvalue for A0A.

Example 5.14:

Consider the 2 by 3 matrix A, which is given below along with AA0 to the right:

j3 1 1j j11 1j
j2 1 3 1j j1 11j

As usual, the characteristic equation when solved will render the eigenvalues. Taking det
(AA’2 λI) and setting this quantity equal to zero gives the following characteristic equation:
λ2 �22λ 1 1205 0. Therefore, the eigenvalues are λ15 12 and λ25 10. The corresponding
eigenvectors are v15 (a b)0 and v25 (c d)0. For the larger eigenvalue, [AA0 �12 � I] v15 0;
this shows that a5 b. Using the fact that all eigenvectors must be normalized a2 1 b25 1

shows that v1 5 1=21=21=21=2
� 	

0. In a similar fashion, the second eigenvector is

v2 5 1=21=2 2 1=21=2
� 	

0. Observe that these eigenvectors are orthogonal. Since the eigenvalue

λ1 is the largest, the matrix for U is found using as columns v1 followed by v2. So, 2
1=2 U5

j1 1j
j1 2 1j :

In order to find V, the eigenvalues and the eigenvectors must be determined for A0A,
which is:

j10 0 2j
j0 10 4j
j2 4 2j
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Like before, the characteristic equation, det(A0A2λ I)5 0, has as solutions the eigenva-
lues. To find this equation, consider the determinant:

j102λ 0 2 j 102λ 0
j 0 102λ 4 j 0 102λ
j 2 4 22λj 2 4

Multiply elements on minus 45� on all three angles and add them together to obtain
sum1. Next, multiply elements on plus 45� and then add them together to obtain sum2.
Finally subtract sum2 from sum1, and this is the determinant. Evaluating the determinant
(10 2λ)(102λ) (2 2λ)2 4 (10 2λ)2 16 (102λ)5 0, Accordingly (10 2λ) [(102λ) (2
2λ)2 20]5 05 (102λ) [λ2�12 λ]5 0. It follows that the eigenvalues are λ15 12, λ25 10,
and finally, λ35 0. The corresponding eigenvectors are found as before by taking (A0A2λ
I) v)5 0. For v15 (a b c)0, set the following equal to zero:

102λ1 0 2j jaj
j0 102λ1 4j � jbj5 0
j2 4 22λ1j jcj

This gives 22 a 1 2 c5 0, 22 b 1 4 c5 0, and 2 a.1 4 b 1 2 c5 0; the solution is a5 1,
b5 2, and c5 1. Next, normalizing gives the eigenvector v151=61=2 (1 2 1)0. In a similar man-
ner, using λ25 10 in the aforementioned matrix instead of λ1 results in the corresponding nor-
malized eigenvector v2 5 1=51=2 (2 �1 0)0. Lastly, using the third eigenvalue leads to the final
eigenvector v351=301=2 (1 2 �5)0. Notice that all these eigenvectors are mutually orthogonal.
The three eigenvectors now become the columns 1, 2, and 3, in the order given to form the
orthogonal matrix V. The transpose of this matrix is needed; therefore V0 5

j1=61=2 2=61=2 1=61=2j
j2=51=2 21=51=2 0j
j1=301=2 2=301=2 25=301=2j

The only matrix left to find is D. It consists of the square root of the nonzero eigenvalues on
the main diagonal, that is, starting on the top left corner and along a minus forty-five degree
line. The square roots of these eigenvalues from largest to smallest populate this line. The only
other thing is that A5U D V0; the dimensions must agree. Since the matrix dimensions are for
A, two by three; for U, two by two; for D, two by two; and finally for V0, three by three, accord-
ingly a row or column of zeros is needed to make the dimensions hold. Thus, in this example,
an extra column of zeros is needed in the SVD, so D5

j121=2 0 0j
j0: 101=2 0j:

This is the singular value decomposition for A. The columns of U are the left singular
vectors, and the columns of V are called the right singular vectors.#

A final word on the SVD is that it provides an interesting geometric interpretation
when operating on a vector x. Let A5UDV0, an m by n vector. A major assumption will
be that U and V are in the special orthogonal Lie group SO(m, R) and SO(n, R), respec-
tively. Therefore, they represent rotation matrices; their determinants are equal to one. In
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this case, first when U is applied to x, a rotation of x occurs. Let U(x)5 y. Next, when D
operates on y, if D is a scalar matrix, then D enlarges or shrinks y and changes the dimen-
sion. Otherwise, it enlarges certain tuples within y, compresses other tuples within y, and
changes the dimension. Use D(y)5 z. Finally, VT applies a rotation to z, yielding w.
Accordingly, VT(z)5w. A most interesting case is when n5m5 2. Illustrations of the pro-
cedure can graphically be provided in this situation.
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C H A P T E R

6

Quantum annealing and adiabatic
quantum computing

6.1 Schrödinger’s characterization of quantum

The Schrödinger view of quantum is that of wave mechanics. His vision of quantum is
most useful in fabricating qubits, sensing qubits, controlling qubits, as well as transporting
them. Because of this, a little analysis is required beginning with the Schrödinger equation.
This equation is a linear partial differential equation representing the dynamics and
kinematics of the wave function in an isolated quantum system. In its simplest form, it
involves a single nonrelativistic particle in one dimension. The equation in this case is ih
@Ψ(x, t)/@t52h2/(2 m) @2Ψ(x, t)/@x@x1V(x,t) Ψðx; tÞ. The wave function Ψ: R x R-C,
where C is the field of complex numbers. In the front of the wave equation mentioned ear-
lier, the square root of minus one is multiplied by h. Here, h is the reduced Planck’s con-
stant; it is to the left of the partial derivative of Ψ with respect to time t above. The particle
mass is m, and V(x, t) is the potential in the isolated system. In the beginning of this chap-
ter, mainly the kinematics is of most importance. As such, the time-independent
Schrödinger equation will be first employed. It is h2/2 m @2Ψ(x)/@x@x5V(x) ΨðxÞ. In a
later section of this chapter, specifically Section 6.11, the adiabatic theorem is described
with time time-varying wave functions.

Additionally, throughout this chapter, the state of a quantum system is assumed to be
the qubit, or ket, |Ψ.. It is an element from a separable Hilbert space, H. Notation-wise,
depending on the context, |Ψ. and Ψ are used interchangeably. Moreover, this vector is
always normalized, that is, :Ψ :25,Ψ, Ψ.5 1. The equation, h2/2 m @2Ψ(x)/@x@x5V(x)
ΨðxÞ, is often written as an eigenfunction equation, that is, H |Ψ.5E |Ψ.. In this case, E
is energy of the system, and H is the Hamiltonian operator. The Hamiltonian converts
state information into energy information. Accordingly, for this equation, E is understood
as an eigenvalue and |Ψ. is the eigenvector; it is never equal to zero. The eigenvector Ψ
is frequently called the stationary state. An example of the Hamiltonian and a solution
involving a very special case of the time-independent Schrödinger equation is given later.
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Example 6.1:

The harmonic oscillator describes the eigenfunction equation for photons; it involves the
Hamiltonian H and the energy eigenvalues En, n5 0, 1, 2, . . .. The equation is as follows:

H Ψn(x)5 1/2 (2h2/m d2/dxdx1 m(w0 x)
2) Ψn(x)5EnΨn(x), where Ψn(x) is the eigen-

function and w0 is the frequency of the oscillator. The objective is to solve this equation
for Ψn, involving all nonnegative integers n. These solutions will be derived in a later
chapter in this document. The solutions Ψn involve the Hermite polynomials. Hermite
polynomials are described in Appendix A7, in terms of the Sturm-Liouville
differential equation. Most importantly, solutions only exist for discrete energy levels,
En, which are equally spaced. Specifically, En5hw0 (2 n1 1)/2, n5 0, 1, 2, . . .. These
solutions are found by making substitutions and using the ladder operators along
with commutation relations. The operators involve an algebra using the creation and
annihilation functions. However, these algebraic details will be described in the MSA
framework, also in a later chapter.

Only the solution for the simplest and the most important state, the ground state Ψ0,
will be illustrated. That is, the solution for n5 0 is detailed here. The differential equation
for the ground state is x Ψ0 1 h/(m w0) dΨ0/dx5 0. This is a linear first-order differential
equation, and it is separable. Therefore, cross-multiplying and writing, dΨ0/Ψ05 [2 x
(m w0)/h] dx. Then integrating both sides of this equation gives ln (Ψ0)5 2 m w0 x

2/(2 h)
1 c. Consequently, Ψ05A e2mw0x

2=ð2hÞ. The constant A will be found since, as mentioned
earlier, all states must be normalized. Therefore, :Ψ0 :

2 has to equal one.
Not previously mentioned is that the Hilbert space employed in most analysis settings

is a subspace of the Lebesgue square-integrable functions, L2. These spaces appear as car-
rier sets in the lower view of the MSA, and are described in subsequent chapters. In short,
however, since the ground state solution is trivial, the computation to normalize Ψ0 is eas-

ily obtained: :Ψ0:
2
5 ,Ψ0;Ψ0 . 5

Ð
Ψ�
0Ψ0dx5

Ð
Ψ0Ψ0dx5A2

Ð
e2mw0x2= hð Þdx. Notice that

this is a Gaussian kernel. As such, it can be normalized, and thus, the area of a Gaussian
kernel must be set to one. The variance for this kernel involves m, h, and w0. After nor-
malizing, then by substitution, the value A is easily found. Thus, the final result is that the

ground state solution is Ψ05 (m w0/(π h))1/4 e2mw0x2=ð2hÞ:#

Example 6.2:

This example will reinforce the fact that state vectors must have norm one. Again the
Hilbert space is L2, and the carrier set for SCALAR is the complex field. Let the wave func-
tion be Ψ xð Þ5 aðx1 1Þ χ 21;1½ �ðxÞ, where a is in C. Accordingly, the wave function ΨðxÞ is of

compact support in the interval [-1, 1]. The adjoint Ψ*(x)5 a* (x11) χ 21;1½ �ðxÞ, to find a, set

a
Ð 1
21 jaj2 x11ð Þ2dx5 jaj2 x3=31x21x

� �j121 5 jaj28=3. Setting this quantity equal to one gives

jaj5 3=8
� �1=2

.#
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6.2 Quantum basics of annealing and adiabatic quantum computing

Adiabatic quantum computing (AQC) is used in solving optimization problems. It uses
a prepared state and a Hamiltonian, which is slowly evolved such that the system remains
in the ground state. Most importantly, it is required that the problem to be solved is for-
mulated as an energy minimization equation. In this case, the quantum annealer will try
to minimize the objective function by a searching technique and actually minimize the
energy. AQC inspects the problem space, or more precisely, it traverses the energy land-
scape searching for an energy minima. The process often avoids being stuck at a local min-
ima by moving to other parts of the problem space. Actions occur by conventional
methods as well as employing the tunneling process. When qubits tunnel together, the
process is called correlation length tunneling. Changes in energy cause movement in the
problem space, and quantum fluctuation refers to the process of reaching the lowest
energy state. This often corresponds to the optimal desired solution. A slightly more
descriptive presentation of AQC follows.

As mentioned earlier, starting in an easy-to-prepare ground state with Hamiltonian H0,
this state is adiabatically evolved. Accordingly, it is very slowly transformed into a new
desired optimal state with Hamiltonian H1. Mathematically, this might be represented as a
convex combination of the two Hamiltonians. For values of s in the interval [0, 1], then the
convex combination results in H5 s H01 (12 s) H1. As the parameter s slowly and mono-
tonically increases, from 0 to 1, H0 goes to the desired optimal Hamiltonian H1. Actually,
the Hamiltonian H1 corresponds to the lowest energy solution. Again it is the ground
state. This is a result of the quantum adiabatic postulate. AQC exploits the quantum envi-
ronment. Specifically, AQC takes advantage of quantum interference, quantum superposi-
tion, multiple qubit entanglement, and tunneling. The first three quantum effects are
described next, along with examples. An account of quantum tunneling is provided in the
next section, Section 6.3.

Quantum interference has to do with the possibility that wave functions of particles can
reinforce or annihilate each other. Interference also has to do with the superposition of qubits
and the premature collapse of this effect. Because the particles are often represented as waves,
like sine and cosine waves, interference can be understood as waves overlapping each other.
Waves have different frequencies; they add and subtract possibly at random. They can rein-
force or cancel desired effects. Additionally, noise from the environment very often can cause
quantum interference. An example of quantum interference is given below.

Example 6.3:

Quantum interference will be illustrated for a single qubit in C2. Begin with a simple
state, for instance, |0.. After exposing the qubit to the environment, the probability of
starting with |0. and winding up again in the state |0. will be found. A well-known
method to model the environment is to employ operators to the qubit. Here, this state
undergoes various unitary transformations to mimic the effects of interference. For
instance, a well-known sequence of operations is performed to convert |0. into a linear
combination of |0. and |1..
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The state |0., in this application, is often called the ground state. Also, |1. in this
case is referred to as the excited state. The sequence of operators is the Hadamard trans-
form, H, the T or phi transform, and then the Hadamard transform one last time. When
applied in that order, the sequence of operators maps the qubit, in state |0., into the
state, |q.. Chapters 16 and 17 are dedicated to describing the theoretical and applied
operations in a quantum gate computer. These include the H and T operators. In any case,
after applying the H-T-H transformation, the result is |q.5 1/2 [:0.1|1. 1 eiφ (|0. 2
|1.)]5 cos(φ/2) |0. 2 isin(φ/2) |1..

Of most importance in the aforementioned analysis is that the environment being mod-
eled caused superposition to occur. The probability amplitude for |0>, which was initially
equal to one, is transformed and now becomes cos(ϕ/2). The probability density of obtain-
ing |0. is P(|0. ) = cos2(ϕ/2). Therefore, the probability of |0. now can vary anywhere
from zero to one, as given by the cosine squared function. As mentioned previously, this
is a simulated effect of the environment possibly causing interference and making the
probability of observation variable.#

A single quantum qubit, in C2, |q.5 a |0. 1 b |1., |a|21 |b|25 1, is in both states
|0. and |1. at the same time. This is called quantum superposition. An illustration of
superposition was provided in the previous example. There, it was seen that a single qubit
in C2, |q.5 cos(φ/2) |0. 2 isin(φ/2) |1.. Accordingly, this qubit is in both states at the
same time, with proportions provided by the squares of the sinusoids.

Superposition of qubits occurs when there is more than one qubit. Two bits in the quantum
world correspond to two simple qubits, |p. and |q., in a tensor representation in C4. That
is, |w.5|p. � |q.5|p q.. For instance, in C4, using the zero one basis, |w.5 a |0 0.
1 b |0 1. 1 c |1 0. 1 d |1 1.. Similar to before, |a|2 1 |b|21 |c|2 1 |d|25 1.
Superposition now means that |w. is in all four states simultaneously. Likewise, a three-
tensored qubit in C8 is in each of the eight states at the same time. In all these situations, Born’s
rule applies. That is, when any of these qubits are observed, only a single state appears along
with an associated probability. This artifact is attributed to the wave nature of the particle. Due
to the wave interference, there is an increase in the chances of obtaining a single desired state.
Simultaneously, wave interference decreases the chances of obtaining other states.

Entanglement is an attribute associated with two qubits or more than two qubits. It
always implies a very high correlation among the qubits. By observing a single entangled
qubit, the other qubits’ attributes are also known. From a slightly more rigorous point of
view, assume that there are two qubits, |v. and |w. each in C2. The qubit |q., made
up of |v., and |w. are said to be entangled if in C45C2� C2, |q.; however, the qubit
itself cannot be written as the simple tensor product, |v. � |w.. In a subsequent chap-
ter, a deeper interpretation is provided in terms of the density operator.

Example 6.4:

An example of two vectors in C2, which are entangled in C4, involves |0. and |1.. In

C4, consider |q.5 1/2 (|0. � |1.) 1 31=2/2 (|1. � |0.)5 1/2 (|0 1. 1 31=2=2 |1
0.). As mentioned earlier, a subsequent chapter will illustrate that an entangled tensor
has the property that the product a11 a22 does not equal the product a12 a21, where

|q.5 a11 |0 0. 1 a12 |0 1. 1 a21 |1 0. 1 a22 |1 1.5 1/2 (|0 1. 1 31=2=2 |1 0.).
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This criteria is described in Section 7.4. In the present situation, for |q., a115 0, a125 1/

2, a215 31=2=2, and finally a225 0. So a11 a225 0, but a12 a215 31=2=4, and so there exists
entanglement.#

Adiabatic quantum computing can perform quantum annealing (QA), as well as provide an
alternative method for quantum computing utilizing unitary gates. AQC was shown to be
equivalent to the standard unitary gate model of quantum computing (Aharonov et al., 2014).
However, the methods are very different. The objective in AQC methods is to find a global
minimum (Krauss, 2013), under adiabatic conditions. Beginning with initial conditions for the
state |ψ., a continuous time evolution of the Schrödinger equation is employed in finding the
final observed value. This is what AQC is all about. By not controlling the environment prop-
erly, the final state may only be a local minimum. As usual, the Schrödinger equation is ih
@|ψ./@t5H (t) |ψ.. It is evolved under adiabatic conditions for the Hamiltonian H, for t in
[0, T], where T is the total evolution time.

As previously mentioned, the adiabatic condition guarantees invariant eigenstates for the
Hamiltonian. Here, it is assumed that there is slow time evolution. Additionally, it is assumed
that there is not too small of a gap of energy between the populated eigenstates and all other
excited energy states. This gap governs the computational complexity of AQC. Smaller gaps
induce longer computation times. AQC is known to provide a quadratic speed up in finding an
optimum solution, over conventional algorithms. Moreover, it keeps qubit coherency and pro-
vides noise immunity better than other quantum computation models (Childs et al., 2001a,b).

Basically, there are two types of methods for controlling the annealing process: quasi-
static control and coherent control. Quasistatic control has an annealing time larger than
thermal relaxation time, resulting in a thermal equilibrium for most of the evolution. In
coherent control, the annealing time is less than relaxation or de-coherence time; in this
case, Schrödinger equation prevails.

Superconducting electronics is one of the methods for AQC and QA implementation
(Wendin, 2017); in this case, the Josephson junction is utilized. It employs tunneling
effects. Trapped ion technology is also used for AQC (Zhang et al., 2018).

These inputs are converted into electrical currents, electrical voltages, and magnetic
fields. The electromagnetic sources control the qubits, which always begin in a superposi-
tion type state. As the annealing process proceeds, the qubit spins evolve trying to deter-
mine the lowest energy state. This process utilizes quantum interference, superposition,
and entanglement as outlined earlier. Additionally, these qubits employ the tunneling
methodology described in Section 6.3.

For an arbitrary particle, qubit, or wave function Ψ, the probability amplitude is the
value, Ψ. Additionally, when Ψ is observed, the Born rule is utilized in defining the actual
probability density; it is P (ψ)5 :Ψ :2.

6.3 Delta function potential well and tunneling

The main content of this section is the tunneling effect. In short, a particle can take a
shortcut and burrow through barriers instead of climbing over a barrier. Thickness does
not matter; a particle can pass through a substance faster than light can travel through a
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vacuum. Two situations exist in this section. If E , V states, bound states will arise for a
delta function potential, and when the inequality is reversed, tunneling occurs. In the lat-
ter case, free particles are said to exist. They are not normalizable since they are not square
integrable in general. Moreover, the spectrum is usually continuous since the states are
not bound. This section is based on the excellent source (Carson, 2014).

Bound states go to zero as |x| goes to infinity, and they are normalizable. Additionally, they
have energy levels that are usually quantized and discrete. This is a result of boundary condi-
tions using the time-independent Schrödinger equation. In a sense, the concept of bound state is
the opposite of a scattering state in which tunneling occurs. In a bound state, the energy of a
particle in that state is less than that of the potential energy at infinity. Moreover, bound state
functions are standing waves. The spectrum of a bounded state is always discrete. Moreover,
the corresponding eigenfunction decreases exponentially for large values of |x|. These concepts
are described later involving examples of bound states as well as scattering of states.

Solutions of time-independent Schrödinger equations must match up at boundaries for piece-
wise solutions. In general, the wave function ψ must be continuous. When there is no delta func-
tion, the derivative dψ=dx must also be continuous. However, if at some discrete point x0 the
derivative does not exist, then if V(x0)-N, integrating will lead to a solution (Zwiebach, 2017).

The infinite potential well is illustrated in Fig. 6.1A and B. At the origin, there exists a
delta function of value 2 a., V(x)5 2 aδ(x). There are two cases, depending on whether
the energy E is negative or positive. In the former case, illustrated in Fig. 6.1A and
described in the next example is the bound state situation. Correspondingly, the energy E
is less than zero. The second example illustrates the free particle solution and demon-
strates the tunneling process.

Example 6.5:

The bound state solution is found by solving the time-independent Schrödinger equa-
tion: 2h2/(2 m)d2ψ/dx25E ψ. Here, V5 0 to the left and right of the origin. Also E , 0.
Make a substitution d2ψ/dx25 k2 ψ, where k5ð22mEÞ1=2=h, and do not forget that E , 0.

v=0

v=0

v=0
0

0
x x

E

x

E

E

–aδ(x) = v

–aδ(x) = v
–aδ(x) = v

–aδ(x) = v

)B()A(

)D()C(

BOUND STATE

B
A

E
x

D TUNNELED
WAVE

FIGURE 6.1 Bound state and scattering state tunneling effect. (A) Bound state, (B) Scattering state, (C)
Normalized bound state solution, (D) Tunneling effect.
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In this case, two negatives make a positive. Solving in general, ψ(x)5A e2kx 1 B ekx. The
delta function exists at the origin; to the left of the origin, the solution is ψ1; and to the
right, the solution is ψ2. The delta function at the origin is 2 aδ(x). The quantity B must
be zero for x.0, since it provides an unbounded solution. For x,0, the scalar A must
be zero.

Since the waveform must be continuous, boundary matching is applied. So, for continu-
ity ψ1(x)5B ekx must be equal to ψ2.(x)5A e2kx for x5 0; this implies that the two con-
stants A and B are equal, that is, A5B.

Derivative matching fails because of the delta function infinite potential. Instead,
integrate the time-independent Schrödinger equation from minus epsilon to epsilon. And

let epsilon go to zero. Using V(x)52a δ(x), then
Ð E
2E 2h2/(2m) d2ψ/dx2dx2

Ð E
2E aδ(x)ψ(x)

dx5
Ð E
2EEψ(x)dx. Integrating and preparing to substitute limits of integration gives

2h2= 2mð ÞdΨ=dxjε2ε2aψ 0ð Þ1Eψ xð Þjε2ε 52h2= 2mð ÞdΨ=dxjε2ε 2 aΨ 0ð Þ1 0. The last zero occurs

from the integral mean value theorem. So dψ=dxjE2E 522ma/h2 ψ(0). Considering the left

and the right solutions and differentiating gives dψ1ðxÞ=dx j2E 5B k e2kE and dψ2:ðxÞ=dxjE
52Bk e2kE. Subtracting the lower limit from the upper limit and letting E- 0 yields2 2B
k522 ma/h2 ψ(0). Let ψ(0)5B and then cancel out B, so k5ma/h2, but k2522 mE/h,

and this shows quantization and allows solving for the quantized energy E52ma2/(2h2).
Finally, normalize the wave function

ÐN
2N ψTψ dx5 1, using the fact that this is a

Gaussian-type kernel and the area under the curve is one. This determines B5ðmaÞ1=2. The
normalized bound state solution is described by ψðxÞ5ðmaÞ1=2e2majxj=h1=2 ;E52ma2=ð2h2Þ.
This solution is illustrated in Fig. 6.1C.#

The next example below illustrates the free particle solution and demonstrates the
tunneling process. In this situation, the energy E is greater than zero.

Example 6.6:

Scatter the free particle wave solution for the case E. 0. The value V is zero everywhere
except at the origin. The time-independent Schrödinger equation is �h2/(2 m)d2ψ/
dx25Eψ. This time, since the energy is positive, let k25 2 mE/h2; then d2ψ/dx252k2ψ.
Again, there are two separate solutions one to the left of the delta function and one to the

right. To the left of the origin, the solution is ψ1(x)5A eikx 1 B e2ikx, and to the right of the

origin, the solution is ψ2(x)5D eikx 1 F e2ikx. Using continuity of the wave function
solutions amounts to setting the left-hand solution equal to the right-hand solutions at the
origin. This shows that A1 B5D1 F.

As mentioned in the previous example, the derivative need not be continuous at the ori-
gin since there exists a delta function potential. So as before, integrate the Schrödinger
equation. As in the case of a bound state, the limits form a small neighborhood about the

origin. Thus, the integral is
Ð E
2E 2h2/(2m)d2ψ/dx2dx 2

Ð E
2E aδ(x) ψdx5

Ð E
2EEψdx. Applying

limits gives 2h2/(2 m)dψ/dx jE2E 2 aψ(0) 1 E ψ(x) jE2E 52h2/(2m)dψ/dx jE2E 2 aψ(0) 1 0.
Again, the last zero results from the mean value theorem for integrals. Differentiating and
substituting in for the left- and right-hand solutions shows that ik (D 2 F) 2 ik (A 2 B)5
22 ma/h2 (A1 B), where ψ(0) was arbitrarily chosen to be equal to ψ1(0)5A1 B. Define
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a constant to compress the solution, where β5ma/(kh2). So, D 2 F5A (1 1 2iβ) 2B
(1�2iβ).

Now, heuristics can be applied. Say that scattering occurs only from the left. Assume
that a wave ψ is transmitted from left to right. Therefore, it can be assumed that the con-
stant A is known. So all solutions will involve A. Also, in this case, B can be thought of as
being a coefficient for a reflected wave. Since the wave is going from left to right, F should
be set to zero because it cannot be reflected. However, D can be considered as the coeffi-
cient for a tunneled wave. Therefore, the overall solution will be given in terms of A.
Solving for B and D results in B5 Iβ/(12 iβ) A and D5 1/(12 iβ) A.

The reflection coefficients are defined using R5|B|2/|A|25β2/(11β2). Similarly the
transmission coefficient, that is, the tunneling coefficient, is T5|D|2/|A|2 1/(11β2).
Replacing β by ma/(kh2) results in R5 1/(1 12 h2E/(ma2)) and T5 1/(1 1 ma2/(2h2E)).
Moreover, F 1 T5 1. To illustrate quantum tunneling, as E-N, T-1, that is, the greater
the energy the more likely the particle will tunnel through. On the other hand, the closer
the energy is to zero, the more likely that the particle will be reflected. In the nonquantum
situation, that is, classically, these values are equal to T5 1 and R5 0 for the potential
well. Also these values are T5 0 and R5 1 for the potential barrier. However, in quantum
theory, for the delta function situation, they have the same value. That is, if a barrier was
used in this problem instead of a quantum well, the solutions would be the same. That is,
T5 1/(11 β2), and R5β2/(11 β2). Again, these quantities sum to one when added
together, and they are interpreted as being probabilities. Fig. 6.1D illustrates the original
wave, the reflected wave, as well as the tunneled wave.#

6.4 Quantum memory and the no-cloning theorem

Storage of qubits is difficult due to its coherence time. This is the amount of time that it
takes for quantum memory to sustain the superposition before collapsing.

In quantum computing, several qubits correspond to a large number of states. For
instance, n qubits represent 2n states. Storing these qubits is another story due to interfer-
ence from the environment including temperature, as well as interference from other
qubits. In short, the quantum bit has a tendency to collapse or de-cohere. The entangle-
ment of qubits is also lost in this case. Most critically, during observation or measurement
more often than not, information about the qubits disappears. A single state with an asso-
ciated probability is always the outcome, as mentioned previously. The Holevo’s theorem
also shows that even though there might be 2n states, only n data bits can be utilized.
Finally, reproducing qubits already existing in memory is not possible, due to the
no-cloning theorem detailed later.

The no-cloning theorem specifies no replication of states in a finite-dimensional Hilbert
space H of rank greater than one. Specifically, there is no linear map T: H-H � H, such that
T |ψ. produces the multiple, |ψ. |ψ. for all ψ in H. This result can easily be shown using
contradiction. So, here it is assumed that the qubit |ψ. can be replicated using T, as the linear
replication operator. Consider a scalar a in C 2 {0}, and say that T |ψ.5 a21jψ. |ψ.. Use
two linear independent vectors |u. and |v. in H, and scalars b and c in C. Consider the
superposition of these two states |ψ.5 b |u. 1 c|v..
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Then, by the assumed replicating property of T and linearity, the following expressions
are equal, a [T (b |u. 1 c |v.)]5 (b |u. 1 c |v.) (b |u. 1 c |v.)5 b2 |u. |u. 1
b c |u. |v. b c |v. |u. 1 c2 |v. |v.. But, also due to the linearity of T, the follow-
ing holds: a [T (b |u. 1 c|v.)]5 a b T |u. 1 a c T |v.5 b |u. |u. 1 c |v. |v..
Next, equate this expression with the previous expression. Then equating scalars gives
b25 b, c25 c, and bc5 0. So at least one, c or b, equals zero. Consequently, this implies
that |ψ. is a multiple of |u., or it is a multiple of |v.. In any case, the result is that
|ψ. is one dimensional, that is, a single dimension only exists.

Example 6.7:

If the Hilbert space is H5C, over the complex field, then linear map T: H-H @ H,
such that T |ψ. is a multiple of |ψ. |ψ. for all ψ in H. That is, the no-cloning theorem
does not hold in H. So the vectors or the complex number in C can be reproduced. This
follows since for b in C, b T |ψ.5T b |ψ., so that b |ψ. |ψ.5 b2 |ψ. |ψ., implying
that, for instance, b5 1 holds true. That is, for any vector, v or actually a scalar v, in C, the
operator T duplicates this value, namely T (v)5 (v v)0 in C2.#

Although the no-cloning theorem holds, numerous companies invest in creating quantum
memory devices. Several recent approaches in memory development are described next.

The Qunnect Company reported on demand electromagnetically induced transparency
quantum-type memory (Finke, 2021). The impact of this quantum memory will also help
solve other problems besides new device development and applications in machine
learning.

Single light particles, photons, are often used as qubits, particularly when employed in
networks. They are utilized in the transmission of qubits mainly by fiber optics. Impurities
within the fiber cause qubit loss and errors. Additionally, loss is a function of the length of
the fiber. Quantum memory sometimes utilizes photons. Here, quantum bits encoded in
photons are stored without observation or measurement. In this case, at temperatures of
four degrees kelvin, photonic information stored on an electron was stored on a silicon
nucleus (Stas, 2022).

Different approaches for creating quantum memory include dilute atomic gases and
rare earth ions embedded in glass. Also silicon-vacancy centers (SiVs), which are quantum
bits made up of electrons around single silicon atoms, are embedded in diamond crystals
(Stas, 2022). Crystals are used in storing photonic qubits. In this case, a duration of 20
milliseconds record was achieved for solid-state quantum storage, without nonentangle-
ment of the atoms (Ortu et al., 2022).

6.5 Basic structure of atoms and ions

Before the Bohr model of an atom is described, it should be mentioned that the location
of atoms within an atom is not exact; they are described in terms of probabilities. This is
the Schrödinger interpretation; the location of quantum particles forms an electron cloud.
Electrons do not travel in fixed paths; they travel instead in regions called electron clouds.
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The revolution about the nucleus is wave-like and are three dimensional and are called
orbitals.

Energy levels inside atoms are of uneven levels. However, they are roughly described
using the Bohr model. This model explains how electrons can jump orbits only by absorb-
ing or emitting energy. Bohr had a probabilistic interpretation, but it is conditional.
Namely, there are probabilities associated with particles, but only if the particles were not
observed. The Bohr model indicates that the amount of energy within an orbit is propor-
tional to its size. Electrons revolve around neutrons and protons; together they constitute
the nucleus. In general, they rotate without emitting or absorbing energy. Energy shells
correspond to energy levels having different orbit energy levels. Orbits are labeled K, L,
M, and N. Stationary orbits consist of electrons within stable orbits. They do not radiate
energy; the energy in the orbit is fixed. Only certain orbits are stable; the ones that are not
produce radiation. Electrons are never stationary within an atom; otherwise, the electron
would fall into the nucleus. The farther away the electron is from the nucleus is an indica-
tion of a lesser attraction force. The electron potential energy goes like 1/r, where r is the
distance to the proton.

Photons of energy are emitted when an electron drops to a lower energy level. The
energy of the photon equals the difference in the energy levels before and after the jump.
The Bohr model could not explain the details of the hydrogen and helium spectrum. The
energy is classified as having sharp, principal, diffuse, fundamental (SPDF) electrons. This
is a method of characterizing spectral lines in accordance with the Pauli exclusion princi-
ple. The Pauli exclusion principle specifies that fermions such as electrons can only exist
with no more than one particle within a state. However, two particles can exist, but with
distinct spins. For SPDF electrons, subshells have orbitals that occupy different energy
levels. The maximum number allowed in S is two electrons, in P six electrons, D has ten
electrons, and F has 14 electrons. Orbitals are labeled in order as 1, 3, 5, and 7. Multiplying
by 2 gives the maximum number of electrons per shell.

Quantum numbers allow the unique identification of a particular electron. These are given
in order, n, L, mL, and ms, the energy, angular momentum, magnetic momentum, and angu-
lar momentum, respectively. The principal quantum number is n; it identifies the distance
from the nucleus to the electron as well as the energy. The orbital angular momentum quan-
tum number is L; it identifies the shape of the orbital. The magnetic quantum number is mL,
which describes the orientation of the orbital. The electron spin quantum number is ms; it
indicates a clockwise, or a counterclockwise rotation. The corresponding spins are denoted as
1/2 or 21/2, also called spin down or spin up, respectively. Previously mentioned, a
maximum of two electrons can occupy the same orbital; in this case, one has spin up and
the other has spin down. This is a consequence of the Pauli exclusion principle, which is a
fundamental concept in Section 15.3, on Fermion Fock space.

The electronic configuration also uses subshell labels. It specifies the principal quan-
tum number n, which identifies the electron shell. This is followed by a letter S, P, D,
or F, which tells the type of orbitals within the subshell. Finally, there is a superscript
indicating the number of electrons within the subshell. Electrons fill lower shells before
they fill higher ones. This is called the Aufbau principle or the building-up principle
(Scerri, 2013).
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Atoms that gain or lose electrons are called ions. When atoms lose an electron on its
outer shell, the atom becomes positively charged and is called a cation or just a positively
charged ion. When an atom gains an electron, it becomes a negatively charged ion or also
called an anion.

Examples of ions utilized in trapped ion qubit fabrication are given next. It must be
mentioned, however, that in ion trap quantum manufacturing it is difficult to scale up the
number of qubits.

Example 6.8:

The Ca1 ion is the calcium ion. It arises from the calcium atom by losing one or two
electrons from its fourth shell, the valence shell. There exist 20 protons within the nucleus
indicative of the atomic number. This ion is used in trapped ion qubit fabrication. The
electronic configuration for this ion is 1s2 2s2 2p6 3s2 3p6. The exponent indicates the num-
ber of electrons per subshell. In short, it is 2, 8, 8, because 1s2 indicates two electrons, 2s2

2p6 shows eight electrons, and 3s2 3p6 again shows eight electrons. So this ion is positively
charged since only 18 electrons exist within Ca21 . If only one electron is lost in the
valence orbit, then the electron configuration is 1s2 2s2 2p6 3s2 3p6 4s1, that is, 2, 8, 8, 1.#

Example 6.9:

Ytterbium, Yb, ions are also used in trapped ion qubit fabrication. There it is called Yb
171, due to its mass number, and it is an isotope with 101 neutrons. Yb has 70 protons and
103 neutrons. Yb itself has an orbit structure, 2, 3, 28, 32, 8, 2. The Yb ion loses one or two
valence electrons and becomes positively charged.#

Since qubits were fabricated using trapped ions, long ago in the 1990s the main idea
was to use them to make general-purpose computers. In this direction, numerous com-
panies followed DiVincenzo’s criteria on how to construct a quantum computer
(DiVincenzo, 2013). These computers are usually not for specialized purposes such as
QAC, which are employed mostly for optimization purposes. They are for general-
purpose computers, here called gate-oriented computers. There are seven DiVincenzo’s
criteria, five dealing with computers and two having to do with transmitting informa-
tion and the need for a quantum channel. The criteria were often called the gold stan-
dard for constructing a quantum computer. The first of DiVincenzo’s criteria is to
obtain a scalable system with well-defined qubits. The next benchmark is to make sure
the device can initialize into a beginning fiducial state, for instance, |0000000.. Of par-
amount importance is to have a long de-coherence time for the qubits. That is the need
to stay in a state long enough for completing computation. Having a universal set of
quantum gates for performing computations is also a must, along with basis gates.
Finally, for a computer, there has to be measurement capability. The other criteria deal
with communication.

A similar set of guidelines was employed for semiconductor-type qubits for use in
quantum gate computers. Early on Ga and As were employed for quantum dot qubits.
Subsequently, Si and Ge took their place in quantum dot-type qubit creation.
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Example 6.10:

The electron structure of some of the most prominent semiconductor materials is given
below:

Silicon, Si, is a neutral atom of atomic number 14. Its electron configuration is 1s2 2s2

2p6 3s2 3p2.
Germanium, Ge, is a chemical element and has an atomic number of 32. Its electron

configuration is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2. In short, the electron distribution is 2, 8,
18, 4.

Gallium, Ga, has an atomic number of 31. The electron configuration is given by 1s2 2s2

2p6 3s2 3p6 3d10 4s2 4p1. It can exist as an ion; in this case, it is Ga1 with electron configu-
ration 1s2 2s2 2p6 3s2 3p6 3d10 4s2. Also it can be configured as the ion Ga13 with electron
configuration 1s2 2s2 2p6 3s2 3p6 3d10.

Arsenic, As, has an atomic number of 33. Its electronic configuration is 1s2 2s2 2p6 3s2

3p6 3d10 4s2 4p3. #

6.6 Overview of qubit fabrication

Qubits are built essentially in two distinct ways: There are nonsolid-state platforms
such as trapped ions and photonic methods. The second way is by using solid-state
devices. In the solid state situation, the most important method is superconductors. The
next most important is the quantum dot methodology. Lastly, there are methods for
exploiting defects within an atom, for instance, NV centers in diamonds.

• Trapped ions are one of the original methods of creating qubits. These qubits are used
to produce general-purpose, gate-oriented quantum computers. As previously
mentioned, an ion is a charged particle; usually it, is an atom that lost one or more of its
electrons. The first qubit in the mid-nineties was fabricated out of a single beryllium
trapped ion. Lasers control the discrete energy levels of the remaining electrons.
Normally, these levels are denoted by 0 or 1. Electromagnetic fields make sure that
electrons remain in order, so that they can be identified. Lasers and radio waves are
utilized in toggling the 0 or 1 attribute of the qubit. De-coherence is not a serious
problem for trapped ion since they are not exposed to the environment. These qubits
are sheltered by being kept in a dark vacuum. The problem with trapped ion qubits is
that it is hard to fabricate large amounts, as also mentioned in the previous section.
However, in Section 6.7, a more informative description of this type of qubit fabrication
is provided. A gate-oriented 40 qubit computer was recently reported (IonQ Staff, 2023).

• Neutral atoms are atoms for which the positive and negative charges are equal. These
entities are similar to trapped ions, but use light to trap atoms and hold them in
position. As usual, the qubits are created and entered into the superposition states.
Using neutral atoms also allows more versatile two-dimensional configurations, by not
limiting the possible connections among atoms. This results in simpler methods for
creating entanglement among qubits.
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• Many companies employ a superconductor as their primary method for creating,
controlling, and transmitting qubits. When cooled, a superconductor converts from a
normal state of having electrical resistance to a state in which just about all electrical
resistance disappears. Beginning with an oscillating electrical current, and then cooled,
the circuit acts like a qubit. These qubits must be kept cold; otherwise, they will de-
cohere. Qubits are mapped into one of the two states, 0 and 1, corresponding to distinct
energy levels. State selection is controlled by radio waves. By pulsing the radio waves,
quantum superposition is created. An important attribute is that the actual circuit often
exists on a small microchip.

Superconducting materials are made by sandwiching a very thin insulator in-between
two metals, referred to as a Josephson junction (JJ). It acts like a nonlinear inductor
shunted with a capacitor. From an electrical point of view, this is similar to the harmonic
oscillator briefly discussed in Section 6.1. In this device, de-coherence is problematic due
to the oxidation of metal electrodes that typically cause loss of information. Another short-
coming for superconducting qubits is the need for strict control of the zero point tempera-
ture. A more in-depth description of superconducting qubits is described in Section 6.8,
where an emphasis is on Andreev reflections producing tunneling of pairs of electrons.

• Quantum dots (QDs) use a semiconducting material to fabricate qubits but are very
different from JJ qubits. Quantum dot qubits are created when electrons or holes are
enclosed in a static potential well within a semiconductor. Qubits have states
corresponding to the spin of an electron. For instance, |0. denotes spin up and |1.
indicates spin down. Superposition of these states |v. is described as usual |v.5 a |
0. 1 b |1., where a and b are complex numbers. Fabrication most recently involves a
silicon, Si, substrate. A quantum well is also constructed using Si. A large advantage of
these types of qubits is the compatibility with a complementary metal oxide
semiconductor (CMOS). The main advantage of using this type of semiconductor is that
it utilizes much less power.

• Some companies exploit defects or spaces within atoms in the material lattice structure.
Defects such as these may change the electron movement within materials. These
defects may be a foreign atom present or missing atoms within a substance. Defects
also may attract and consequently trap elections. This process enables the control of
electron spin. Spin, which is rotational momentum, is employed in encoding the
electron using 1 or 0 in accordance with being spin up or spin down. A consequence of
using quantum defects is the little need of low temperature control, resulting in longer
coherence times. One of the most prominent defect type qubits is the spin-based qubits
involving NV centers, that is, NV centers in diamond qubits. In this case, a nitrogen
atom is substituted for a carbon atom. This results in a NV center. Stencils were created
to implement these defect patterns. With their use, coherence times have increased. An
additional benefit is a greater ease in establishing qubit entanglement.

Less expensive materials are being utilized in the NV methodology in place of
diamonds. Nitrogen vacancies occur in aluminum nitride. Here, it was found that control
of the electron spin is possible. Additionally, silicon carbide has defects and can be used
similarly to diamonds.

1156.6 Overview of qubit fabrication

Many-Sorted Algebras for Deep Learning and Quantum Technology



• Photon-type qubits usually involve polarization |0. and |1.. They are distinguished
by the types of rotations. These are H, V, D, A, R, and L, abbreviated for horizontal,
vertical, diagonal, antidiagonal, clockwise rotating, R, and lastly, L for anticlockwise
rotating, respectively. Orientations are controlled by the use of electric fields vertical or
horizontal. Lasers are used by sending signals to certain crystals, resulting in two qubit
photons being emitted as a maximally entangled pair.

• Topological qubits and topological computing utilizing Majorana qubits are also being
considered. Two Majorana particles are considered a fermion. The particle itself is
classified as a Bogoliubov quasiparticle-an electron void that carries charges of a hole
and an electron. The Majorana particles exist at a relatively large distance apart
resulting in a long de-coherence time, thus making topological computing very
promising. Majorana qubits are mentioned again in Section 6.8, in reference to the
Andreev effect for electron and hole tunneling.

Different companies employ distinct methods for qubit fabrication. Intel fabricated
silicon quantum dots. Here, an all optical lithography was used to transfer a pattern on a
substrate involving a photosensitive material. IBM mainly employs semiconducting mate-
rials such as niobium and aluminum used on a silicon substrate. This particular qubit is
called a superconducting transmon qubit.

Ion trap fabrication compares to other qubit creation methods in distinct ways. Ion traps
have long life, and usually superconducting qubits have a shorter life. However, silicon
superconducting are easier to fabricate, whereas ion trap has long coherence time. Ion trap
gate fabrication is a long process, but it might not be subject to external noise or leakage as
other methods (Blinov et al., 2004; DiVincenzo, 2013).

6.7 Trapped ions

The procedure for making qubits out of ions is described slightly in more detail in this
section. First an atom is chosen, for instance, calcium, Ca (Hui, 2019). Then the atoms are
heated to form a vapor. For Ca, a gas state is formed at about 900 degrees c. Valence
electrons are stripped out of the substance by bombarding it with photons. Next, an radio
frequency (RF) or Paul trap is used to keep the atoms at a single location. At this time,
doppler cooling is utilized to reduce the kinetic energy of the ions. These ions are close to
a stationary state. Microwaves, lasers, and RF fields are used to control the ions.
Observation of qubit states is arrived at by employing lasers of a predetermined fre-
quency. These ions cannot be kept in stable stationary equilibrium state using static
charge. This is Earnshaw’s theorem (Simon et al., 1995). Accordingly, ions are trapped
between electrodes, using oscillating RF along with a direct current potential.

Trapped ion technology uses the assumption that there is one electron left in the
valence shell of the calcium ion. Then in the process, to construct an optical qubit, an arbi-
trary choice is made. Here, the preference for the ground qubit state |0. is to correspond
to the 4s1 state, using the Bohr model. It might spin up or spin down, each with equal
probability. Next, an excited state must be chosen corresponding to |1.. By referring to
the specs on the calcium atom, the distances from 4s1 to the closest subshells or orbitals
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are listed and identified. For instance, the distance of 397 nm from 4s1 locates an orbit for
an electron on the 4p orbital. Other orbital distances are also listed in this specification.
Taking the distances into consideration along with coherent times, a choice will be made
in defining the |1. qubit. Photon energy is induced or released in the electron transition
process. So a laser of frequency corresponding to the optical wavelength might be used in
choosing an electron, for instance, in 3D orbital. The resulting qubit is designated as |1..
Superposition is created using Ramon transmission. It employs two laser beams resulting
in the superposition of the two qubits, a |0. 1 b |1..

In general, these qubits have long coherent times. They are used in large-scale quantum
computers.

Ion trap qubits exist in three distinct types; there is the Zeeman ion-trapped qubit, the
optical ion-trapped qubit described earlier, and the hyperfine qubit. They are also fabri-
cated using different types of ions. Different atoms have different attributes that not only
affect the manufacturing but also determine the control, susceptibility to noise, as well as
the observation ability. In any case, the Zeeman trapped ion qubit has a long lifetime for
an electron spin superposition state of a trapped Ca1 ion. More information can be found
in Ruster et al. (2016).

Optical qubits and hyperfine qubits, both, are easy to measure and are made using the
electronic states of an ion. They are distinguished by the qubit energy splitting level as
well as couplings. The former uses two ground-state levels. The latter uses an electronic
ground state and an excited level separated by microwave frequency. An optical qubit has
a shorter lifetime compared to the hyperfine qubit.

Hyperfine qubits were created using two distinct energy levels: hyperfine S and F levels
of the Yb 171 ion. The use of two distinct qubit types enables quantum error prevention.
This minimizes cross talk error. This error has to do with scatter photons creating errors in
a qubit’s information content (Mattel, 2021).

6.8 Super-conductance and the Josephson junction

The concept of Cooper pairs is explained in detail. After this, super-conductance and
the JJ as well as the principal cause of tunneling are described. It is called the Andreev
reflection. Cooper pairs are basic for the existence of super-conductance. These pairs also
called Bardeen-Cooper-Schrieffer (BCS) pairs. They consist of two electrons or other fer-
mions that temporarily bind together at low temperatures. Attractions between electrons
in standard metals cause paired states of electrons or fermions. These paired electrons are
entangled and condense at very low temperatures into the ground state. Accordingly, they
flow with zero electrical resistance with no scattering within superconductors; this is the
BCS theory. When the entangled particles de-cohere through interaction with the environ-
ment, entanglement is broken. Broken Cooper pairs are called Bogoliubov quasiparticles.
Mentioned later is the principal cause of tunneling and is called the Andreev reflection.
Tunneling of a Cooper pair can be explained as a result of a negatively charged electron
entering a superconductor and a simultaneous exiting of a positively charged hole.

Cooper pairs have zero sum spin and have mass and charge twice that of a single elec-
tron. The momentum in each electron within a Cooper pair is equal and opposite in sign.
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They have power energy less than the Fermi energy, and as such, thermal energy can
break the bonding. Large groupings of Cooper pairs are therefore found at low tempera-
tures. Accordingly, the pair is said to be bound in conventional super-conductance caused
by electron-photon interaction. The quantum effect creates super-conductance. This bunch-
ing or pairing is the Cooper or BCS pairing, but the binding is weak. Accordingly, only at
low temperatures are there numerous BCS pairs (Frolov, 2014).

The Josephson junction is described following the reference: Frolov (2014). The presen-
tation is based on phase difference between superconducting materials sandwiching a
nonsuperconducting barrier. The barrier is composed of a metal N, or a dielectric D, or
even a vacuum V. This substance is sandwiched between two superconductors S1 and S2.
The resulting superconducting device is denoted as S1 N S2, S1 D S2, or S1 V S2, respec-
tively. Additionally, it is assumed that the separation between S1 and S2 forms a narrow
junction. This is illustrated in Fig. 6.2A, as presented and derived in Frolov (2014). Here,
the superconducting device to the left is labeled by the wave function ψ1 5n eiφ1 , and to
the right, the wave function is designated as ψ2 5n eiφ2 . The superconducting material can
be thought to be a catalyst for creating a scattering wave function with the tunneling
effect, as illustrated in Fig. 6.1D of Section 6.3. In the S1 N S2 illustration, the wave func-
tions decrease in the barrier region, N, but not so much so that Cooper pairs cannot tunnel
through the barrier region. The phase difference is given by Δ5φ2 2φ1 and might not
equal zero. The difference in the phase of the superconductors will be the principal
quantity governing the physical properties involving super-conductance. Throughout, the
process phase coherence must be maintained. A superconducting current is established;
this is called the Josephson super-conductance effect. It could be considered as a result of
the tunneling of Cooper pairs.

A simple illustration of the JJ effect involving the non-AC current versus voltage V is pro-
vided in the graph of Fig. 6.2B. The illustration presents a time averaged description; in this
diagram, the voltage V versus the supercurrent I. It has a voltage value of zero when the
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current is swept from minus the critical current 2Ic to plus the critical current Ic. The phase
is called the supercurrent state. After the critical current is achieved, the voltage jumps and
eventually becomes the normal state where it acts like a resistor. The first JJ equation involves
the supercurrent I. It is created by the phase difference between the two superconductors,
I5Ic sin ðΔÞ. When Δ changes from zero to π/2, the supercurrent phase exists.

Andreev bound state gives rise to super-conductance. Andreev reflection occurs when an
electron is transmitted from the first superconductor to the second superconductor. In this
case, the electron will be reflected as a hole and have energy minus its original energy. Its path
will overlap its original path. Concurrently, a Cooper pair enters the semiconductor. Fig. 6.2C
illustrates the Andreev reflection process of an electron traveling from S1 to S2 and a hole trav-
eling the opposite way. The hole in this case will reach the first superconductor and will also
be reflected. However, now it becomes an electron with energy E0. When there is no bias, these
energies are equivalent, E5E0. The reflection process can go on for a long duration, creating
an infinite loop. This is sometimes called cross-Andreev reflection (CAR). The process is sym-
metric in that incoming holes are also reflected as outgoing electrons. There is symmetry for
the positively charged hole Andreev reflection and the electron Andreev reflection. Particles
are in a bound state in between semiconductors similar to quantum dots. The states form a dis-
crete spectrum due to the confinement between the two semiconductors. These energy levels
are the Fermi levels of energies of respective semiconductors.

The conditions for the formation of a bound state include the total phase in the one full
transition to be a multiple of 2π. This means that an integral number of wavelengths must
exist. Therefore, the phase difference is modeled as a combination of several phase differ-
ences. In particular, 2π5φ2 � φ1 1 L (k � k0) � 2 arcos(E/Δ0), where Δ5φ2 � φ1 and
| arcos(E/Δ0) |,,L (k � k0). Here, L is the length of the junction and k and k0 have to do
with phase difference between electrons and holes. Also arcos(E/Δ0) is due to confinement
energy gap. The gap is a region where there is a lack of density of states near the Fermi
energy. This is also called a pseudogap. If there is symmetry between the hole and elec-
tron, then k5 k0, Ek512 c cos(Δ/2). When this happens, this results in an energy spec-
trum of bound states. When there is a long junction L and k differs from k0, then this is
the case where energy grows linearly, En5hvL/2 (2π (n 1 1/2) 1 2 Δ). Previously
implied, there are hole-like and electron-like Andreev bound states. For a hole-like bound
state, a minus sign is used. However, the overall energy is zero.

The energy during Andreev reflection for the S1 N S2 transition, that is, for the semicon-
ductor, metal, semiconductor transition, is given by E512 c cos(Δ/2). For an S1 D S2 con-
figuration, a value τ is needed in the energy. It is a transmission value describing the
tunneling effect, and E512 c (1 2 τ sin2(Δ/2))1/2. There exists higher order Cooper pair
tunneling, I(Δ)5 Ic sin(Δ)1 Ic

0 sin(2Δ)1 . . .. The first term is for Cooper tunneling, the next
term is for two Cooper pair tunneling, etc. There is also a Majorana fractional JJ effect; it pro-
vides energy E512 c0 cos(Δ/2). This results in a 4π period in the JJ effect (Frolov, 2014).
Also see Frolov (2019).

The second JJ equation is given by 2 eV5h @ (Δ)/@t. It involves the time dependency of
JJ and shows the normal state of JJ. Above the critical current, there is still a changing phase.
Using both JJ effects shows there is AC current, and therefore radiation is created. To see
the radiation, microwaves are used to drive Shapiro steps (Kopnin, 2009). These steps
appear in superconducting quantum interference and can be seen in a current versus
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voltage graph similar to the one illustrated previously. The Josephson frequency is 2 e V/h.
For any JJ, there is a Josephson energy; it is a free energy W stored within the junction.
W5

Ð
I V dt5h/(2e)

Ð
I dΔ. The supercurrent I5 2e/h @ (W)/@ (Δ), where W5E (1 � cos

(Δ)).
By referring to Fig. 6.3A, there are three currents, one in each branch of the parallel circuit:

The JJ supercurrent I5 Ic sin (Δ), which is nonlinear. The normal current Inc5h/(2eR)dΔ/dt,
and the charge current Icc5C dV/dt5hC/(2e) d2Δ/dt2. The total current flowing through
the circuit is often referred as an RSCJ model; it is I (d2Δ/dt2, dΔ/dt, Δ), and RSCJ stands
for resistive superconductive capacitative junction. In any case, I (d2Δ/dt2, dΔ/dt, Δ)5 Icc 1
Inc 1 I5hC/(2e) d2Δ/dt2 1 h/(2eR)dΔ/dt 1 Ic sin (Δ). This equation is similar to the har-
monic oscillator equation. However, as previously mentioned, the harmonic oscillator has
energy levels all with equally distant energy levels. The energy levels for the RSCJ model
given earlier have energy levels nonequally spaced. See Fig. 6.3B. In this diagram, the bottom
two levels are indicated with kets, |0. and |1.. In most quantum applications, the lowest
two energy levels are most important. The bottom-most energy level is |0., and it is referred
to as the ground state. Above this state is the excited state, |1.. In this application, a cosine
wave contains these energy levels.

For just a conventional LC circuit, the energy versus flux diagram has an energy-level
separation always of equal distance. The distance between energy levels in this case is
equal to ðLCÞ21=2. Additionally, for linear equation of a typical LC circuit, the energy levels
are described within a parabola-type boundary. In the RSCJ model illustrated in the figure,
as previously mentioned, the nonequally distant energy levels lie within a cosine wave.
Moreover, the energy levels have differences that become closer and closer for higher and
higher energy levels. The reason for the nonequal distance between energy levels is to
solve the problem of controlling qubits. With equal-distant energy levels, the states cannot
be manipulated with precision using microwaves or lasers. Qubits tend to jump to higher
and higher energy levels. To create a qubit, usually only the two bottom energy levels are
employed. To obtain nonequally distant energy levels is the reason for the utilization of
nonlinear elements, such as the JJ.

Use of a new material sandwiched between super-conductors leading to topological
qubits is described in Zhu et al. (2022). Also, a rigorous account of the Andreev effect is
described in Dolcini (2009).
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There are three types of Josephson qubits: charge qubits, flux qubits, and phase qubits,
besides hybrid qubits. These qubits can be thought to be formed using a nonlinear resona-
tor produced by Josephson inductance and the junction capacitance. The basic difference
between these JJ qubits is the distinct circuitry needed for creation. In the charge qubits,
two JJs are utilized. In the others, only a single JJ is employed. The energy levels, as usual,
are not equally spaced and are described as parallel levels in a nonlinear potential curve,
like the one illustrated in Fig. 6.3B. The nonlinear potential curve providing the border to
the discrete energy levels is given in order for the charge qubits, the flux qubits, and the
phase qubits. They are cubic, quartic, and cosine shaped, respectively. The latter shape is
illustrated in Fig. 6.3B. Charge qubits are also known as a Cooper-pair box.

Single transmon qubits consist of two energy levels; these qubits are housed on a sub-
strate that is a dialectic and also with a readout resonator. A laser usually controls an
atom on the lowest two energy levels. As previously mentioned, there are several techni-
ques for making a qubit. Transmon qubit is a superconducting charge qubit that is not
sensitive to charge noise. TRANSMON stands for TRANSmissiON line shunted plasma
oscillator qubit. One substrate with two plates with a nonlinear inductor JJ-type bridge in
between. There is a positive charge on one and a negative charge on the other. The dimen-
sions are in microns. The basic concept again is the transfer of Cooper pairs (Blais et al.,
2020; Gambetta et al., 2017).

6.9 Quantum dots

Quantum dots (QDs) are nanocrystals of a semiconducting material. These are semicon-
ductor qubits, but very different from JJ qubits. Quantum dot qubits are created when
electrons or holes are enclosed in a static potential well within a semiconductor. This
creates a quantized energy spectrum. Qubits have states corresponding to the spin of an
electron. For instance, |0. denotes spin up and |1. indicates spin down. Superposition
of these states |v. is described as usual |v.5 a |0. 1 b |1., where a and b are com-
plex numbers. Fabrication most recently involves a silicon, Si, substrate. A quantum well
is also constructed using Si. On both sides of Si, a silicon geranium substrate is employed.
Electric fields control the qubits consistent with scalable nanotechnology. QDs are also
called artificial atoms.

In the beginning of QD fabrication, 1998, other materials were used in sandwiching dif-
ferent types of semiconductors, early on Ga and As were used. Two main problems exist
with Ga and As atoms. They have finite nuclear spin, and there is hyperfine stochastic
interaction, thus resulting in the qubit intrinsically de-cohere within 20 ns. This means, for
instance, that the state in superposition |v. might collapse to |1. or |0., on the aver-
age of 20 ns. Another problem is creating the precise localized oscillating fields to control
a single qubit is difficult in these materials. A remedy is to use Si and Ge instead of Ga
and As, even though the new substances have a more complex band structure. Again
from the beginning, the objective of QD technology was to use the qubits in a gate-
oriented quantum computer. This involves the Loss and DiVincenzo proposal for making
a computer using a semiconducting material. Also see Section 6.5. Using Si and Ge results
in compact high coherence and CMOS-compatible electric gates.
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Originally also, the charge was used to determine the state, but as previously men-
tioned, again the de-coherence was problematic. De-coherence occurred due to a change in
energy resulting in a phase change, leading to de-coherence. The result is that spin qubits
are presently used in QDs. However, spin is converted to charge and charge is measured.
In short, charge is indicative of the spin. Measuring charge is simple, but measuring spin
directly is difficult. Spins are only weakly coupled to the environment (Loss, 1998). Two
criteria for measuring the rate at which the environment interferes with qubits are the
relaxation rate and the de-coherence rate. The reciprocal of the relaxation rate is the relaxa-
tion time T1. It is the average time it takes for a spin qubit to keep its state, without a
deliberate action to change the state. A spin up qubit should not convert to spin down or
vice versa. In present-day devices, T15 1 minute. Coherence time, T25 100 microseconds,
is the average time to keep superposition (Danon, 2021).

6.10 D-wave adiabatic quantum computers and computing

The actual D-wave AQC is highly shielded and is kept close to vacuum as well as near
absolute zero, 0.015 K. The overall power needed is mainly for refrigeration. There exist
grids of flux-type qubits within the low temperature region. Voltages and magnetic fields
are used to control the qubits. Additionally, these sources have the capability to read the
flux qubits. There is a lattice of superconducting loops, with each loop acting like a spin
up or down particle. The programming parameters, described later, are converted to elec-
trical currents, voltages, and magnetic fields. The electrical energies engage qubits in a
superposition state. Controlled energies create tensor products of qubits employing the
addition and scalar multiplication described within the Hilbert space structure. As such,
the qubit spins are entangled.

Since the D-wave computer is an AQC; it only solves optimization-type problems.
Accordingly, during the annealing process, the qubits search the feasible regions of the
problem space. At the end of the annealing cycle, a ground state is obtained. After observ-
ing spin states, postprocessing may be performed. The process may be repeated thousands
of times. The end product cannot tell if there is no solution or even if it is the global best
solution. It only provides a solution.

Problem formulation is most often done using the quadratic unconstrained binary opti-
mization (QUBO) model. Although other less mathematical models are also employed, the
QUBO model either maximizes or minimizes an objective function of the affine form,
w5 v0Qv1d. Here, v is an n by 1 real-valued vector. The quantity Q is an n by n upper
triangular matrix with real entries. The optimization does not involve d; it only involves
v0Qv. In this representation, all tuples within v are idempotent, that is, v2

j 5vj. The anneal-
ing process results in an adiabatic search instead of brute force calculations on standard
computers. The result might not be the optimal solution using AQC. It might be a subopti-
mal solution, but it will not take a week or more to acquire the solution.

Using quantum annealing, qubits tunnel through barriers trying to find the lowest
energy state. The annealing cycle is about a microsecond in solving optimization-type pro-
blems. The objective function could be written as a minimization problem, namely as to
minimize w5

P
aivi 1

P
i, j bj;k vj vk. The quantities ai are located on the main diagonal
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of Q and are called weights. The values bj;k are called strengths and lie on off diagonal
entries of Q. The qubit ultimately settles into one of two final states: {0, 1}. The pair vj vk is
called a coupler; it allows one qubit to influence another qubit in an entanglement. The
values ai and bj;k get mapped into voltages, currents, and magnetic fields in order to
manipulate the qubits in discovering a global minimum.

Quantum tunneling D-wave chips start out with Hamiltonian in a ground state. The
state has a minimum gap between it and other excited states. The gap is such that there is
just enough energy so that it will not jump to a higher state. The process is performed
very slowly. D-wave built a chip to do optimization with a nearest neighbor model. On
the chip, the QUBO problem will map to a quadratic optimization problem. The architec-
ture uses crossbar technology with integrated circuits. Next, an example is given to illus-
trate the affine objective function used by D-wave. It also emphasizes the idempotent
operation used in the QUBO software (O’Malley et al., 2017).

Example 6.11:

For a two-dimensional example, using the notation involving the affine representation,
w5v0Qv 1 d, where v5 (x y)0, and Q is the upper triangular 2 by 2 matrix, given below,
and followed by the 2 by 1 vector, Qv,

ja cj
j0 bj

jax1 cyj
j by j:

The quantity w 5 v0Qv5 a x2 1 c x y 1 b y21d. But, since in QUBO power operations
are idempotent, this means that x25 x and y25 y. Therefore, it follows that w5 a x1 b y1 c
x y1 d, and this is called the spectrum in QUBO.#

Example 6.12:

Here is a simple example for values x and y in {0, 1}. The objective is to find z5 (x 1
y)5 0 mod 2. This is the situation where x and y are equal, and is the equivalence opera-
tion in logic. A truth table will be constructed. In the Spectrum column, when the logical
operation is true, a zero is placed in this column. Zero is indicative of the objective to
obtain the lowest energy, 0 , 1.

x y Spectrum5w
0 0 0 Lowest energy
0 1 1
1 0 1
1 1 0 Lowest energy

A glance at the truth table above renders the solution y5 x. Utilizing the results from
the previous example, the affine mapping can be constructed.

The spectrum value in this case is found from the previous example, w5 a x 1 b y1 c
x y 1 d. The quantities Q and d must be found. To do this, go row by row in the truth
table. Substitute the values of x and y and also use the value of the spectrum w. For the
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top row, all values, x, y, and w, are zero. Accordingly, 05w5 a 01 b 01 c 0 yields d5 0.
From the second row, 15w5 a 01 b 11 c 0 shows b5 1. Using the third row 15w5 a 1
1 c 0 implies that a5 1. Finally, the bottom row 05w5 a 1 1 b 1 1 c 1 1 results in
c522. Accordingly, w5 x1 y2 2 x y. As a consequence, d5 0 and Q5

j1 2 2j
j0 1j:#

When using an AQC, an objective function must be specified, which provides the
energy level for some variables. When these variables attain that energy level, then a
solution occurs. It corresponds to a low energy state or the lowest energy state with high
probability. The final state of the qubits represents the solution.

Programming model for D-wave:

Quantum bit, vi: This value takes part in the annealing process and reaches a final state
in {0, 1}. The quantum bit usually undergoes interference using quantum superposition.
A coupler, vi, vj: This pair allows a single qubit to influence another qubit and thereby
produces entanglement.
A weight ai: The weight is a real scalar assigned to each qubit. It influences a qubit to
collapse into a final state. These quantities are diagonal elements in the matrix Q.
Strength, bij: This is a real scalar assigned to each coupler. It influences the control of
one qubit over another. These are off-diagonal elements of Q.
Objective, Obj cost function, is minimized during annealing cycle. This is w.

6.11 Adiabatic theorem

An adiabatic process is a slow and gradual changing event in which quantum systems
avoid jumping states or changing quantum numbers. The adiabatic invariant I is the quo-
tient of the energy divided by the frequency, E/w. As an instance of the adiabatic process,
consider the harmonic oscillator. In Example 6.1, the energy levels were stated to be
En5hw (2n 1 1)/2. Because the adiabatic invariant in the harmonic oscillator situation
involves integers, a continuous change is impossible. The process must take discrete or
quantum jumps in changing. A large number of other quantum systems have a discrete
spectrum, and they have corresponding energy levels that jump in value. In these cases,
there is an avoidance to change particularly under slow varying conditions. Another pri-
mary example is the Bohr-Sommerfield (Hall, 2013) quantum model of a miniaturized
solar system. In this case, quantization conditions exist for which quantum numbers do
not want to change under slow varying conditions. A most readable explanation of the
adiabatic process and its relationship with the Berry’s phase, introduced later, are pro-
vided in Zwanziger et al. (1990).

The adiabatic theorem described herein is given formally. It follows the excellent pre-
sentation of Zwiebach (2018). Specifically, it is shown that the error in the difference
between the true Schrödinger solution rendering the state, Ψ(t), and an instantaneous
eigenstate, ψ(t), is of order O (1/T). This relationship holds during the adiabatic process,
having duration T. Symbolically, :Ψ(t)2ψ(t): is of order O (1/T), for t in [0, T]. The length
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of time T is the duration of the adiabatic process. An instantaneous eigenstate ψ(t) of the
Hamiltonian is a wave function ψ(t), having the property that H(t) |ψ(t).5E(t) |ψ(t)..
Here, H is the Hamiltonian, and E(t) is the energy eigenvalue. As previously mentioned, it
is difficult to make quantum transitions in slowly varying processes since energy levels
are usually discrete. A formal account of the adiabatic theorem follows.

Inspired by the time-independent Schrödinger equation, H(t) |ψk(t).5Ek(t) |ψk(t).,
k5 1, 2, . . .. The adiabatic condition provides an approximate solution to the time-
dependent Schrödinger equation. This solution involves the instantaneous eigenvalue and
the eigenstate equation involving the Hamiltonian. In this situation, it has to be that dur-
ing the process the energy changes slowly. It is also assumed that all energy levels are far
apart, that is, Ek(t) is well separated from all other discrete energy levels. Moreover, say
that the following inequalities hold between adjacent energy levels, Ek21 (t) ,Ek(t)
,Ek11(t). The adiabatic theorem provides an approximation for the true state |Ψk(t).. It
says that |Ψk(t). is about equal to eiθkeiγk |ψk(t).. Another required condition is the
equality of initial conditions, that is, |Ψk(0).5|ψk(0).. Here, the approximate solution to
Schrödinger equation at time zero equals the instantaneous energy eigenstate solution at
time zero. The exponentials in the approximation are described in the next paragraph, and
the following analysis is only formal.

The real-valued quantity, θk is the dynamical phase for energy eigenstates. The dynamic
phase is given by θk(t)521/h

Ð t
0 Ek(t

0)dt0. The other real-valued quantity is the Berry phase
vk; it too is real valued. The Berry phase is given by the inner product of the approximate
wave function, and it’s derivative. This inner product is vk5 i,ψk(t), dψk(t)/dt.. Also, let
γk(t)5

Ð t
0 vk(t

0)dt0. Next, a quantity similar to the Berry phase will be investigated. It is
called the coupling term, and it involves distinct energy states. The objective is to see how
the coupling term relates to the Hamiltonian, as well as to determine to what extent the
coupling term influences the adiabatic process.

To see how the coupling term ,ψn(t), dψk(t)/dt. relates to the Hamiltonian, first
consider the time instantaneous eigenfunction condition for k different from n, H(t)
|ψk(t).5Ek(t) |ψk(t).. Differentiating this eigenfunction equation results in dH/dt
|ψk. 1 H |dψk/dt.5dEk/dt |ψk. 1 Ek|dψk/dt.. Here, the last identity just uses the
eigenfunction equation twice. Next, apply the bra operation, ,ψn(t)|, on the left of both
sides of the last identity. This operation sandwiches the entries in the previous equation.
Doing this gives ,ψn(t) |dH/dt |ψk. 1 ,ψn(t) |H |dψk/dt.5,ψn(t) |dEk/dt|ψk.
1 ,ψn(t) |Ek|dψk/dt.. Employ the eigenfunction equation, H |ψn(t).5En |ψn(t),
again and convert it into an equation involving bras. In order to do this, use conjugating
and remember that the scalar field is real; as a result, ,ψn(t) |H5En ,ψn(t) |. Also,
note that , ψn(t) |dEk/dt5 0, when k and n differ. Putting this all together gives ,ψn(t)
|dH/dt |ψk.1 En , ψ(t) |dψk/dt.5Ek , ψn(t) |dψk/dt.. Notice that the last two
terms have an inner product in common, which is exactly the coupling term. Solving for
this term shows that ,ψn(t) |dψk/dt.5,ψn(t) |dH/dt |ψk./(Ek 2 En). The final
result is ,ψn(t) |dψk/dt.5 (dH/dt)n,k/(Ek 2 En), where as mentioned before that Ek

and En are different. The quantity, (dH/dt)n,k, is the n,k entry in the derivative of the
Hamiltonian matrix. The conclusion is that the coupling term can ruin the adiabatic
approximation. This is the case whenever the n,k term in the derivative of the
Hamiltonian is small. The following sequence of examples follows (Zwiebach, 2018).
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Example 6.13:

This is an example illustrating the error in the adiabatic approximation. It shows for
time T increasing, the error decreases as 1/T. Consider a Hamiltonian H(t)5H0 for t , 0,
H0 1 H1 t/T, for t in [0, T], and H0 1 H1, for t. T. Here, 0 , T and 0 , H0 , H1. See
Fig. 6.4A. For t in [0, T], dH/dt5H1/T. All errors in the approximation vanish like 1/T.#

The Landau-Zener transitions describe adiabatic as well as possible nonadiabatic
changes of eigenfunctions, ψ1(x,R) and ψ2(x,R). They represent two distinct electronic
arrangements of a molecule with a fixed nuclei such that they are separated at a distance
R apart. In Fig. 6.4B, there is an illustration of the energies associated with the correspond-
ing eigenfunctions. For instance, in this diagram, E1(R) might be the energy of an eigen-
state wave in ground state and E2(R) the energy of an excited state. In this diagram, both
energy functions with nonpolar and polar regions appear as a function of R on the
abscissa. Here, it assumed that the states change characteristics at R5R0. For the eigen-
function ψ1(x,R), it transitions from polar to nonpolar at R0. For the second eigenfunction
Ψ2(x,R), the opposite occurs. If R increases quickly, then ψ1(x,R)-ψ2(x,R). This is nonadia-
batic change occures, but if R changes slowly then the eigenfunctions will remain on their
original trajectories.

The Hamiltonian equations are H(R) ψi(x,R)5Ei(R) ψi(x,R), i5 1, 2. If this is solved for
all R, then the instantaneous energy eigenstates are found as described in the adiabatic
theorem. Assume that R is a function of time t, then so is the Hamiltonian, H(R(t)). The
corresponding eigenfunction equations become H(R(t)) ψi(x,R(t))5Ei(R(t)) ψi(x,R(t)), i5 1,
2. If the top equation is solved for all R, then the time-dependent equation also holds for
all t. So the instantaneous energy eigenstates and eigenvalues are known from the top
equation given above.
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FIGURE 6.4 Adiabatic process following Zwiebach, (A) Hamiltonian, (B) Energy Separation, (C) Path
Crossing Hamiltonian, (D) Non Crossing Paths.
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Example 6.14:

This example illustrates a Hamiltonian H, for which the states will stay on their trajectory
even though their paths cross. Fig. 6.4C illustrates a plot of the instantaneous eigenvectors
in a time vs. energy diagram. Let H5

jct=2 0j
j0 2 ct=2j;

where c is a nonnegative scalar with eigenvectors (1 0)0 and (0 1)0. In the Fig. 6.4C,
these eigenvectors lie on 45 degree lines. The corresponding energy values

are E15 ct/2 and E25 2 ct/2. Notice that Ψ1(t)5 e
2i=h

Ð t

0
E1ðt0 Þdt0|1.5 e2ict2=ð4hÞ |1. and

Ψ2ðtÞ5 e
i=h

Ð t

0
E2ðt0 Þdt0|2.5 eict

2=ð4hÞ |2.. These are the instantaneous eigenfunction solutions.
However, in this case they also are the exact solution to the Schrödinger equations. That
is, ih@Ψ1(t)/@t5H ψ1(t) and ihψ2(t)/@t5H ψ2(t); direct substitution illustrates this. For

instance, for the first eigen vector, ih@e2ict2=ð4hÞ=@t5 ih (22ict/(4 h))5 ct/2.#
In the example mentioned earlier, the trajectories for ψ1 stay on (1 0)0 forever. There is

no influence at the origin even though the paths cross. The same is true for ψ2. A different
story occurs in the next example.

Example 6.15:

This time, assume that the diagonal terms of the Hamiltonian matrix are the same, but
there is correlation in the form of complex-valued off-diagonal entries. Notice, however,
that the matrix is still self-adjoint. So, H5H*5

jct=2 H12j
jHT

12 2 ct=2j
The trajectories are again illustrated in a time vs. energy diagram, this time in Fig. 6.4D. In

this case, the paths do not cross; however, they can get arbitrarily close to each. This would be
the case for H12 to go to zero. The interesting cases are if there exists a gap, and how large it is.
To analyze this situation, refer to Fig. 5.4D. There are four points of interest. These are where
the rectangle intersects the abscissa and the ordinate. At the ordinate, the rectangle is tangent to
the parabola-type figure. The height is 1 2 |H12 |; these are also the energy eigenvalues at
time 0. On the abscissa, the rectangle intersects at 122τd. The shape of this rectangle governs
the adiabatic or nonadiabatic process. That is, these two parameters |H12 |and τd determine
the conditions of whether the instantaneous energy eigenstates change, polar to nonpolar,
namely (0 1)-(1 0), or vice versa. When the gap is large, the adiabatic process prevails and
there is no change of trajectories. When the gap is small, say near zero, then the Rabi frequency
w125|H12 |/h occurs in the rectangle, and a nonadiabatic process happens. The probability of
a nonadiabatic transition is calculated to be P5 e22πw12τd 5 e22πH2

12= hcð Þ. The solution involves
hypergeometric functions (Lahiri, 2006). Appendix A.7 describes the hypergeometric functions
in terms of Sturm-Liouville differential equation.#
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Berry phase, vk, is understood as a geometrical phase, whereas θk is as usual a time-
varying function. It is understood that the Berry phase describes a geometric path and
only depends on evolution of space, but not on time. As a consequence, this leads to the
Berry connection Ak(R)5 i,Ψk(R) |ΔR |Ψk(R).. Here, R is a vector in configuration space
with N components, namely R is a vector in RN and Δ is the gradient operation.
Eigenvectors are not unique; any nonzero scalar times an eigenvector is also an eigenvec-
tor. However, states are of norm one. This implies that Ψk(R)

0 5 e2ibðRÞΨk(R) is also an
eigenvector provided that the quantity b(R) is real valued. Use the Berry connection with
respect to the new eigenstate. Substituting in and using the gradient operation results in
Ak(R)

0 5 i,Ψk(R)e
ibðRÞ |ΔR |e2ibðRÞ Ψk(R).5Ak(R) 1 ΔRb(R). This is the gauge transform

under gauge connections. Intuitively, a gauge transform changes the scale, and it is the
gauge connection, which provides the compensation between the original and new scale.
Gauge transformation applied to the Berry phase is not gauge invariant. Because
γk(t)5

Ð t
0 vk(t

0)dt0,it can also be written only involving the geometric path in RN . In this
case, 5

Ð
ΓAk(R)dR. Using the Berry connection with the new eigenvector gives

γk(t)0 5
Ð
ΓAk(R)

0dR5
Ð
ΓAk(R)dR 1

Ð
ΓΔRd(R). This shows that the Berry phase cannot be

observed unless the motion in the configuration space is a loop. Consequently, only at
multiples of 2π, the Berry connection is gauge invariant (Zwanziger et al., 1990).
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C H A P T E R

7

Operators on Hilbert space

7.1 Linear operators, a MSA view

Among the most fundamental operators employed in quantum technologies are the lin-
ear maps. All operators in this document will be linear unless specified otherwise. They
satisfy the linearity condition mentioned later. Numerous examples of these maps have
been seen before; they include linear maps that are linear in both arguments. Also
included are multilinear operations and tensor maps. Both of which are linear in all their
operands. However, conjugation is not linear, and so the inner product is also nonlinear; it
is only linear in the second argument. This type of nonlinearity, being conjugate linear
only in the first argument and linear in the second argument, is called sesquilinear. The
set of all linear maps involving vector spaces V and W over the complex field C or R itself
forms a vector space. In this description utilizing the MSA, it follows that there are four
sorts: V-VECTOR, W-VECTOR, C-SCALAR, and L-VECTOR all using suggestive notation.
In particular, the last sort denotes the sort of all linear maps, L (V, W) from vector space V
into vector space W.

All the signature sets for the vector space structures and field structure are as before
and will not be repeated. However, a new signature set containing a unary operator name
LIN exists and is such that:

LIN : V2VECTOR-W2VECTOR

Additionally, to be linear, there is a single constraint that must be satisfied. It involves
vector spaces with sorts V-VECTOR and W-VECTOR along with corresponding scalar
multiplication and vector addition operational names. To see this, first, replace all names
with suggestive symbols, that is,

LIN by T
V-VECTOR by u, v
Vv-ADD by 1
Sv-MULT by �
W-VECTOR by w
Vw-ADD by 1 2

Sw-MULT by � 2
C-SCALAR by a
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The linearity condition is as follows:

1) Linear: T (a � u1 v)5 a � 2 T (u) 1 2 T (v)

As previously mentioned, the set of all linear maps from V to W is denoted by the
name L (V, W). It itself becomes a vector space when point-wise addition and scalar multi-
plication are defined in L (V, W). Additionally, for this fourth sort, that is, L-VECTOR also
needed is the corresponding equational identity to ensure that L (V, W) is a true vector
space. As before, the signature sets associated with L-VECTOR involve scalar multiplica-
tion, SL-MULT, and vector addition VL-ADD.

So represent as follows:

L-VECTOR by S, T
VL-ADD by 1 3

SL-MULT by � 3
Actually, S and T mentioned earlier are themselves linear mappings from vector space

V into vector space W.
The vector space condition needed for maps in L (V, W) is as follows:

2) Linearity: ((a � 3 S) 1 3 T) (v)5 a � 2 (S (v)) 1 2 T (v)

This vector space L (V, W) is often also denoted by Hom (V, W), which is the space of
all homomorphisms from V To W. Carrier sets could be defined, for instance, when bases
are chosen. In this case, the linear maps can be represented by matrices in finite dimen-
sions. Here, the usual matrix and vector operations relate to the operator names within
signature sets.

Use vector spaces V and W and the operator T in L (V, W). If the condition that u and v
are not equal in V implies that T (u) is not equal to T(v), then the mapping from V into W is
said to be one-to-one or injective. Also when the codomain of T is all of W, then the mapping
is called onto or surjective. When both of these are true, there exists an inverse map: T21: W
- V, and it too is linear. The spaces W and V are also isomorphic under this mapping.

If V5W, the vector space of all linear maps becomes an algebra when the composition
of linear maps is defined. The resulting structure is denoted by End (V) and is called the
set of endomorphisms. These transformations have a domain equal to their codomain,
thus allowing the composition operation to be performed. Here S and T have the same
domain, with a domain equal to its codomain, that is, they map V into V. The composition
operation C[S] is itself a linear operator defined by C[S] (T)5 S (T(.)). That is, it creates a
composition of maps for S and T, which becomes a closure, multiplication-type operation,
but not necessarily a commutative operation. However, when identities (1), (2), (3), and (4)
of Section 3.1 hold, then End (V) becomes a unital associative algebra. The polyadic graph
for a unital associative algebra is illustrated in Fig. 3.1. It is assumed that all the operators
in End (V) satisfy the closure operations illustrated in this figure. In particular, V-ONE cor-
responds to the identity operator I. In terms of End(V), the equational identities that hold
for a unital associative algebra involve the following elements:

In End(V) are S, T, and P, as well as the identity map, I.
In C are scalars a and b
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Also, instead of first using the operator T and then using S on vectors in V, as described
earlier, C[S] (T)5 S (T(.)), use instead the notation, S �T. This notation is employed in the
equational identities:

1) Associative: P � (S �T)5 (P � S) �T
2) Distributive: (a P1 b S) �T5 a P �T1 b S �T
3) Distributive: T � (a P1 b S)5 a T �P1 b T � S
4) Identity: I �T5T � I5T

Example 7.1:

The multiplicative notation applied in place of composition could be very misleading,
particularly in infinite-dimensional vector spaces. For instance, for S and T in End(V), the
quantity S5T �T2 4 T2 55T2�4 T2 5 � I, when factoring, or when using the FOIL rule,
there needs to be proper justification. From an operational calculus point of view,
S5 (T 11) (T 2 5). However, it is not known how the last expression is rigorously
obtained. To understand the factoring procedures, write S5T �T2 4 T2 5 � I5T �T2 5 T
1 T 2 5. This results in just using vector space operations. Then by using the left-hand
distributive law, number (3), it follows that S5T � (T 2 5) 1 1 (T 2 5). Finally, using the
right-hand distributive law, number (2) mentioned earlier, results in S5 (T 11) (T2 5).#

A single element T in End(V) is called an automorphism of V if it is one-to-one and
onto, that is, it is invertible. So, T21 � T5T �T215 I. The set of all automorphisms of V
constitutes an instance of the general linear group and is symbolized by GL. This group
will be described in a later chapter involving Lie groups. In finite dimensions, End (V) is
isomorphic to the space of n by n complex invertible matrices.

An important application of linearity in the transform T applies to some Hilbert spaces.
This property has to do with the sesquilinear inner product. A most fundamental result in
any complex Hilbert space H is that whenever ,v, Tv.5 0 for all v in H, then T5 0. This
follows because for any u in H then ,(u 1 v), T (u 1 v).5 0 and so ,v, Tu.1,u,
Tv.5 0. Implying that ,v, Tu.52 ,u, Tv.. Repeating the process this time using
imaginary values also gives ,(u1 iv), T (u1iv).5 0, and ,iv, Tu.1,u, Tiv.5 0. This
means that 2,v, Tu.1,u, Tv.5 0 or ,v, Tu.5,u, Tv., and so ,u, Tv.5 0 for
all u, v in H, which implies T5 0. For a real Hilbert space, the result is not true, as the
following example will illustrate.

Example 7.2:

Let the carrier set for the Hilbert space H be H5R2, and use the linear operator T,
given by the matrix:

j0 2 1j
j1 0j :

Then, for any vector v5 (a b)0, in H it follows that T (v)5 (2b a)0, and the inner product
in H is the usual dot product, (2b a) (a b)0 5,v, T(v).5 0, but T is not zero. #
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Another illustration of the utility of a linear operator A in a Hilbert space involves the
numerical range W. The numerical range is very important in characterizing the spectrum
of operators. It is used in quantum computing to find rough estimates of eigenvalues. The
numerical range is defined as W (A)5 {,v, A v., such that :v:5 1, v in the domain of A}.
The Toeplitz-Hausdorff theorem shows that the subset W(A) of the complex plane is always
convex (Gustafson, 1970).

Example 7.3:

Consider H5C2; the objective is to obtain information about the numerical range of a
linear operator given as a 2 by 2 matrix, A5

j2 ij
j2 i 1j :

A unit vector in H will first be substituted into W (A)5,v, A v., just to get an idea
of what the numerical range provides. So using v5 (i 0)0, then A v5 (2i 1)0 and W (A)5
,|q. , A||q. . 5 (22i 1) (i 0)0 5 2. Similarly, if w5 (0 1)0, then A w5 (i 1)0 and
,w, A w.5 (0 1 ) (i 1)0 5 1.

To obtain a more general idea of the numerical range, consider the normalized qubit |
q., given as a 2 by 1 column vector, |q.5 (cos (t/2) e ip sin (t/2))0 with t in [0, π] and p
in [0, 2π). Then, the 2 by 1 vector A | q .5 (2 cos (t/2)1 i e ip sin (t/2) 2 i cos (t/2)1 e ip

sin (t/2))0. The inner product ,A | q., |q.. 5 2 cos2 (t/2)2 i e2ip sin (t/2) cos (t/2)1 i
cos (t/2) e ip sin (t/2) 1 sin2 (t/2). This quantity could be simplified as W (|q.)5 2 cos2

(t/2)1 sin2 (t/2)1 2 sin (t/2) cos (t/2) sin (p). W (|q.)5 11 cos2 (t/2)1 sin (t) sin (p).
The subset of the complex plane can be found corresponding to W (A) by plotting the

locus of points for ,A|q., |q. as t and p vary throughout their domains. Recall that |
q. given earlier is the most general qubit in H except for arbitrary phase. However, if
used, the global phase would cancel out when using the formula for W (A).

For any complex n by n matrix A, W (A)5 {v* A v/(v * v), v nonzero in C}, where v* is
the conjugate transpose of v. This is the same formula as mentioned earlier. Additionally,
an important attribute of the numerical range is the inner numerical radius, r (A). This
quantity is the shortest distance from the origin to the boundary of W (A). That is, r (A)5
min {|z|, such that z is on the boundary of W (A)}. Using math lab simulation, for this
example, r (A)5 0.382. The actual numerical radius is the farthest distance a point z in W
(A) is from the origin. That is, R (A)5max {|z| such that z is in W (A)}. Again by simula-
tion, R (A)5 2.618. In the example mentioned earlier, since the numerical range is real, it
follows that W (A)5 [0.382, 2.618]. These values are found again in a subsequent chapter.#

Two important linear operators in Hilbert space H follow. An accretive operator A is
such that the real part of its numerical range is nonnegative. That is, Re (,v, A v.) is
greater than or equal to zero, for all v in the domain of A. As an instance of an accretive
operation, see the previous example, since W (A) itself is nonnegative. An operator A is
said to be dissipative when -A is accretive. These operators are important in the deriva-
tion of Stone’s theorem and again in the Lumer-Phillips theorem, described in later
chapters.
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7.2 Closed operators in Hilbert spaces

Consider the operator T, which is always linear, unless specified otherwise. Say that T
is in L (D, H2). So T: D - H2, where D is a subspace of H1 and H2, which are both
Hilbert spaces. The operator T is said to be a closed operator, which means that if vn in D
converges to v and given Tvn converges to w in H2, then v is in D and Tv5w. The sub-
space D is the domain of the operator and is referred to as dom(T). So, for instance, in a
field structure such as all the complex numbers C, dom(1/z)5C2 {01 0i}. An equivalent
definition for an operator to be closed invokes the graph of T. Here, the column vector is a
two tuple; (vn Tvn)0 - (v w)0 implies that (v w)0 is in the graph of T.

A stronger condition for an operator to be closed means that it is sequentially continuous.
That is, for every vn in H1 converging to v, Tvn converges to w in H2 and Tv5w. That is,
the operator T is very often only defined on a subspace of a subset of H1. When it is defined
on all of H1 and it is closed, then it is also sequentially continuous. This is a consequence of
the closed graph theorem, which actually holds in Banach spaces (Rudin, 1991), also see
Appendix A.6. In Euclidean space Rn and f : D - Rn, where D is a subset of Rn, then f is con-
tinuous at a point v in D iff f(vn) - f(v) for all sequences vn in D such that vn - v. So
sequential continuity does imply continuity under these conditions.

Example 7.4:

Let T: R - R, where T (0)5T05 0 and elsewhere T (t)5 1/t, T is not continuous on R.
However, it is a closed operator. This follows by taking any sequence vn in R, which does
converge to v in R. Surely, 1 2N are not the limits of any such converging sequence.
Any point v, in R other than zero, could be such that vn - v. Accordingly, it follows that
automatically Tvn - w5 1/v. This implies sequential continuity at all points in R 2 {0}.
Since the origin is an isolated point in the graph, this implies that T is a closed operator.
Note that T is not sequentially continuous at the origin. The sequence of all zeros does
converge to zero. So does the sequence T0, T0, . . .; it also converges to zero. However, the
sequence 1, 1/2, 1/3 converges to zero, but T1, T1/2, T1/3, . . .5 1, 2, 3, . . . goes to N.#

Additionally, since the convergence only involves the induced norm from the Hilbert
space, T is usually defined on a normed vector space such as a Banach space. These exten-
sions to the definition mentioned earlier are important in infinite-dimensional vector
spaces and will be presented in a later chapter. Finally, the sequentially continuous condi-
tion mentioned earlier implies continuity and therefore boundedness. These relationships
are described in the next section along with several proofs.

7.3 Bounded operators

Perhaps, the most important linear operators in quantum are the bounded operators
from a Hilbert space into another Hilbert space. This is true even though position and
momentum operators are unbounded. Let T be in L (H1, H2), where H1 and H2 are
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Hilbert spaces and T: H1 - H2. Then T is said to be bounded that means that there exists
M . 0, such that for all v in H1 the norm inequality or Lipschitz condition holds:

1) Lipschitz Condition: :T (v): is less than or equal to M :v:.
Recall that ,T (v), T (v).5 :T (v): 2. The infimum of all such values of M is called

the operator norm of T and is denoted by :T:. An equivalent condition to be bounded
is that the linear operator is sequentially continuous; in this case:

2) Sequential Continuity: For every sequence, let v, vn in H1, n5 0, 1, . . . if vn - v, then T
(vn) - T(v).

Another formula for finding :T: whenever T is bounded is to take the supremum of
:T (v):/:v: for v nonzero. Equivalently, the supremum could be taken of :T (v)| for

:v:5 1. To see this, using sup:T (v):/:v:5 c, for v nonzero, then when :v:5 1, this
sup :T (v): also equals c. Going the other way, if sup :T (v):/:v:, for :v:5 1, equals c,
then choose any nonzero vector w. Since v is of norm one, let v5 a w. Substituting v into
the norm expression, sup :T (v):/:v:5|a| sup :T (w):/(|a| :w:)5|a|/|a| sup
:T (w):/: w :5 sup:T (w):/:w:5 c.

The norm is called the operator norm, and it is useful in proving the triangle inequality.
This inequality is the key result in showing that the vector space of all bounded operators
is a normed vector space. To see this, let :v:5 1, where v is in H1, and S and T are
bounded operators from H1 to H2. Then, :S 1 T:5 sup :(S 1 T) (v):5 sup :S (v) 1 T
(v):; this follows from linearity. Now the latter supremum is the norm of a sum of vectors
in the Hilbert space H2, and the triangle inequality holds there, from the definition of the
inner product. So, :S 1 T: is less than or equal to sup [:S (v): 1 :T (v):], which is less
than or equal to sup :S (v):1 sup :T (v):5 :S:1 :T|, since :v:5 1|.

In a trivial vector space consisting only of V-ZERO, the norm of any operator is zero. All
the following vector spaces in the text will be assumed to not be V-ZERO. The set of all
bounded operators from H1 to H2 is denoted by B (H1, H2); moreover, it is a Banach space.
This means every Cauchy sequence of operators converges, that is, this normed vector space
is complete. Whenever the Hilbert spaces are of finite dimension, all linear operators are
bounded. Additionally, matrix operations can be employed in manipulating elements from
the corresponding carrier sets. An example is provided below.

Example 7.5:

Let the Hilbert space be H5C2, and consider the operator T: H - H where T is given
by the 2 x 2 complex matrix:

j2 ij
j0 1j :

The objective is to find the norm :T: using sup :T (v): for :v:5 1. The vector of the
unit norm is, as given before, defined by the 2 by 1 column vector describing the qubit,
v5|q.5 (cos (t/2) e ip sin (t/2))0. Here the prime is the transpose. Additionally, the
value t is in [0, π], and p is in [0, 2π). Then forming the matrix, vector product T |q.5
(2 cos (t/2) 1 i eip sin (t/2) eip sin (t/2))0. Use the one by two row vector to multiply the
two by one column vector, thereby forming the inner product, resulting in the norm squared.
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This gives :T|q.:25 (2cos(t/2)2 i e2ip sin (t/2) e2ipsin (t/2)) � (2cos (t/2)1 i eipsin (t/2)
eipsin (t/2))0 5 4 (cos (t/2))2 1 2i ð2e2ipsin (t / 2) cos (t/2) 1 eipsin (t/2) cos (t/2)) 1 (sin
(t/2))2 1 (sin (t/2)) 25 21 2 (cos (t/2))2 1 4 sin (p) sin (t/2) cos (t/2)5 21 2ðcosðt=2ÞÞ2 1
sin (p) sin (t)/2. Accordingly, when p5π/2 and t is not too far from zero, the maximum
of :T(v):2 is obtained, thus giving :T: about equal to 2.25.#

Example 7.6:

The operator norm will again be found for the operator T: H - H where H5C2; T is
again given by the 2 x 2 complex matrix:

j2 ij
j0 1j :

This time, the SVD described in Section 5.8, in a modified form will be applied. An
important use of the SVD with the complex scalar field is in finding the operational norm
of a matrix operator. Here, :T: is the square root of the largest eigenvalue of T*T.
Calculating T*T, for the matrix above, yields:

j4 2ij
j2 2i 2j :

The characteristic equation is λ2�6 λ 1 45 0. The eigenvalues are about λ15 5.2 and
λ25 0.76. So :T:5 ð5:2Þ1=2, which is (31 51/2)1/2, and it is about 2.25 again.#

Example 7.7:

Consider the momentum-type differential operator D in H5L2 [0, 2π]. This is the set
of all complex-valued square-integrable functions on [0, 2π]. D is defined on the set C1

of continuously differentiable functions, which is dense in H since all polynomials are
in this set. The sequence, etni, n5 0, 1, 2, . . ., are in C1 along with their derivatives with
respect to t. These derivatives are D(etni)5ni etni. The values for the norms squared, in
this case, are integrals of absolute value squared quantities. Therefore, using the inner
product and conjugating the first entry in the integral whose limits are 0 to 2π gives :D
(entni) :25

Ð
[2ni e2tni ni etni dt], which equals 2π n2. Also, :etni:25

Ð
[e2tni etni dt]5 2π

and :D (entni):/:entni:5n. This shows that the momentum operator is not bounded
in H.#.

Bounded operators T and continuous operators are one and the same. In fact, bounded
or continuous operators are Lipschitz continuous, which is even stronger than uniform
continuity. To see this, let T be bounded, so that :T (v): is less than or equal to M :v: for
all v in the Hilbert space H. Letting v5w 2 z gives the desired Lipschitz condition:
:T (w2 z): is less than or equal to M :w2 z:. Going the other way, using the contraposi-
tive, if T is not bounded, then it will be shown that T is not continuous. For every positive
integer n, since T is assumed not bounded, there is a unit vector vn in H with :T(vn):
greater than or equal to n. Taking the sequence wn5 (vn / n), which goes to zero as n goes
to infinity, shows that T is not continuous at zero. This follows since :T(wn):5 :T(vn):/n
is greater than or equal to one, as n goes to infinity.
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More often then not, bounded operators do not commute. An important related concept
is intertwining, a concept needed when spectral theory is described. Let P and S be
bounded and have the same domain, with domain equal to their codomain. A bounded
operator T, in the same space, is said to intertwine P and S, which means that for all v and
w in H, it follows that: If P (v)5w, then S (T (v))5T (w)5T (P (v)). When inverse opera-
tors exist for P and S, then T intertwines them also.

An additional property follows, namely that if S is in B (H1, H2) and T is in B (H2, H3),
where H3 is also a Hilbert space, then T S5T (S (.)) is in B (H1, H3). Additionally, :T (S
(v)):3 is the norm involving H3. It is less than or equal to :T: :S (v):2, where the latter
norm is in H2. This quantity is less than or equal to :T: :S: :v:1, with the last norm in
H1. Accordingly, :T S: is less than or equal to :T: :S:.

The next section provides a pragmatic view for the definition of states in a Hilbert
space, but first, a precise definition is the following: A state is a positive linear functional f, on
a C* algebra, A, where f: A - C, and C is the complex field of scalars. Moreover, for all T in
A, f (T*T) must be greater than or equal to zero, and most importantly, this functional
operating on the C* identity element must equal one, f(I)5 1. In a later chapter, the most rigor-
ous specifications such as these along with applications of states will be provided.

7.4 Pure tensors versus pure state operators

Recall that a state ρ on the Hilbert space H is a positive linear trace class map: H - H,
such that Tr (ρ)5 one. It is pure when there exists a vector v in H such that ρ (u)5 [,v,
u./,v,v.] v. Pure states are denoted here by ρv.

An element z of Hilbert space H1 � H2 is said to be simple or called a pure tensor,
which means that there exist vectors v in H1 and w in H2 such that z5 v � w. This is
wrongly called a pure state or sometimes a separable state in quantum computing. Fig. 7.1

H1

H1 H2

H2
V W

Rv

Rz

Rz

Rw

×

×

Z

Is A Pure State

Rz Is Nonentangled Iff

Rz

Rz

= (< z, . >/ < z, z >) z

= Rv    × Rw Iff z Is Simple

Z = V    W Is A Simple Element ×

FIGURE 7.1 Simple elements
in H1 � H2 and pure states.
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shows the formation of a simple element. The density operator is defined as a pure state.
An operator ρz; which maps a Hilbert space H into itself, is said to be a density operator,
which means that ρz is a linear trace class operator, ρz (2)5 (,2 , z./,z, z.)z. In short,
a trace class operator is T, such that the sum of the series of inner products of the form
,ek, T ek. converges to the same value for any ON basis {ek} of H. The next section
describes trace class operators in more detail.

A general element z of H1 � H2 involves some basis from H1 and H2, say
z5 a11 e1 � f11 a12 e1 � f21 a21 e2 � f11 a22 e2 � f2, where {e1, e2} and {f1, f2} are

bases for H1 and H2, respectively. The tensor is called pure if the designated products of
coefficients are equal, namely a11 a225 a12 a21. Here, | a11 |2 1 | a12 |2 1 | a21 |2 1 |
a22 |25 1, and aij are in C.

Example 7.8:

The tensor z5 221/2 (|0 1. 1 |1 1.)5 221/2 (|0 .� |1. 1 |1. � |1.). In this case,
a115 0, a125 221/2, a215 0, and a225 221/2; therefore, this is a pure tensor.#

Example 7.9:

Next, for instance, one of the Bell states (Nelson, 2010), z5 1/21/2 (|0. � |0. 1 |1.
� |1.), is a nonpure tensor or a nonsimple element of Hilbert space H1 � H2. This fol-
lows since a115 221/2, a125 0, a215 0, and a225 221/2.#

Additionally, any other basis utilized for describing this Bell state will again not satisfy
the identity, a11 a225 a12 a21. The next example illustrates the construction of a pure state
and the map, ρz: H - H.

Example 7.10:

Let H5C2, and consider the ket |z.5 1/(2 1/2) � (|0. 1i �|1.); the objective is to
find the pure state map ρz corresponding to this simple element in H. Using the bra:
,z|5 1/(2 1/2) � (,0| 1 2 i � ,1|), then ,z, z.5 1, and ρz is a pure state. Now,
another simple element of H will be chosen, and we will see what the image of | u . is
under ρz. Let |u.5 1/(2 1/2) � (|0. 1 2 1 � |1.) since the inner product is ,z, u.5
(11 i)/2; it follows that ρz (u)5 ((11 i)/2) � |z.5 ((11 i)/((2)3/2)) � (|0. 1 i � |
1.)5 (2 1/2 eiπ=4/((2)3/2)) � (|0. 1 i � |1.)5 1/2 � (|0. 1 i � |1.).

The following are equational identities from Section 4.10. They are needed in describing
entanglement and nonentanglement as explained below.

Equational identities for the tensor product of Hilbert space:

1) Linearity: c x (v1 � v2)5 (c x v1) � v25v1 � (c x v2).
2) Distributive: (v11 w1) � w25v1 � w21 w1 � v2.
3) Distributive: v1 � (v21 w2)5v1 � v21 v1 � w2.
4) Inner Product: , v1 � v2, w1 � w2 .5,v1, w1. ,v2, w2..
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A pure state ρz is said to be nonentangled in Hilbert space H1 � H2, which means there
exist pure states ρv operating in H1 and ρw operating in H2, such that the tensor product:
ρv� ρw 5 ρz. A most important fact is that the pure state ρz is nonentangled iff for v in H1
and w in H2, it follows that z5v � w, that is, when z is a simple element of (or pure ten-
sor in) H1 � H2. This can be seen by referring to the definition of tensor product of
Hilbert spaces. Use the equational identity: (4) Inner product with v1 and w1 in H1, v2,
and w2 in H2; then this identity is ,v1 � v2, w1 � w2.5,v1, w1. ,v2, w2., so
applying it to the pure state: ρz5 (,z, -./,z, z.) z5 (,v � w, -/, v � w, v � w.) v
� w5 (,v, -./,v, v.) (,w, -./,w, w.) v � w. Then rearrange by using (1) Linearity
in the definition of Hilbert space tensor: (,v, -./,v, v.) v � (,w, 2./,w, w.)
w5 ρv � ρw.

It was seen that a pure state ρz is said to be entangled in Hilbert space H1 � H2, which
means there do not exist pure states ρv operating in H1 and ρw operating in H2, such that
the tensor product ρv� ρw 5 ρz holds. A mixed state is entangled when and only when it
cannot be written as a convex combination of pure states of the form ρz 5 ρv� ρw. In the
next example, we will show how tensor products of elements in a Hilbert space produce
nonentangled states on a Hilbert space.

Example 7.11:

As an illustration of nonentangled pure state ρz in H1 � H2, consider ρu and ρv both
pure states in H15H25C2, respectively. Assume that ρz 5 ρu � ρv and that |u.5 (1/
(1.414)) � (|0. 1 |1.), and |v.5 (0.8 x |0. 20.6 x |1.), with |u. in H1 and |v. in
H2. Both elements are simple and the tensor product |z.5 |u. � |v.5 (1/(1.414)) �
(0.8 � |0, 0. 10.8 � |1, 0. 20.6 � |0, 1. 20.6 � |1, 1.) is also simple in H1 � H2.
This shows that the pure state ρz is nonentangled. Recall that the tensor is called pure iff
a11 a225 a12 a21; otherwise, it is entangled. Note that when this is represented as vectors
in C2, it follows that |z.5|u. � |v.5 (1/(1.41)) � (0.8 � (1 0 0 0)0 10.8 � (0 0 1 0)0

20.6 � (0 1 0 0)0 20.6 � (0 0 0 1)0)5

1=1:41
� �

j :8 j
j2 :6j
j :8 j
j2 :6j :

The norm of | z . is 1.#
For the z in the Hilbert space H1 � H2, with normalized coefficients, |a11|2 1 |a12|2

1 |a21|2 1 | a22 |25 1, replacing ajk entries by real plus i times its imaginary part gives
the equation of a seven sphere S7. From a previous section, it was seen that a single qubit
Hilbert space is S3 and so the two qubit Hilbert space is S7. Hopf fibrations describe these
spheres in greater detail. Next, trace class operators are described in more generality.
Subsequently, these operators are seen to be closely related to the Hilbert-Schmidt
operators.
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7.5 Trace class operators

Trace class operators generalize to infinite dimensions from the trace operation on
square matrices. These operators are defined on Hilbert spaces, and the set of all trace
class operators form a Banach space. They are closely related to the space of compact
operators as well as the bounded operators. In fact, the dual space of trace class operators
is the space of bounded operators. Additionally, the dual space of compact operators is
the space of trace class operators (Argerami, 2014).

For a linear operator T, on a Hilbert space H, the trace of T is the sum of the series of
inner products of the form ,ek, T ek., where {ek} is an ON basis of H. For an infinite-
dimensional Hilbert space, the series must converge. As usual, it is the limit of the
sequence of partial sums. In this case, it is denoted by Tr (T), and the result must be the
same regardless of the basis. Again, to be a trace class, the trace must be finite no matter
what basis is employed, and all the limits of the defining sum must be equal.

Example 7.12:

Let H be a finite, n-dimensional Hilbert space. For any n by n matrix M, the trace
defined earlier agrees with the usual trace operation on matrices. No matter which ON
basis is employed, it must follow that Tr (T) always yields Trace (M). For instance, use the
carrier set H5C2. Let the basis set be {i|0., 21 |1.}5 {(i 0)0, (0 �1)0}; then using these 2
by 1 vectors along with M5

j42 i 2 2j
j3 2 2j

gives Tr (M)5, (i 0)0, M (i 0)0. 1 , (0 21)0, M (0 21)0 .. So: Tr (M)5, (i 0)0, (4i1 1 3i)0.
1 , (0 �1)0, (2 2)0.. Now recall that the inner product is conjugate linear and so the left
operand should be conjugated. Therefore, Tr (M)5 4 2 i 2 25 2 2 i. By inspection, the sum
of the diagonal elements of M is the trace of M. The result agrees with 22 i. #

A generalization of this example is that any bounded linear operator with a finite-
dimensional range, that is, whose codomain is of finite cardinality, is of trace class.
However, in general, infinite-dimensional situations can be different. The next example
is for an infinite-dimensional Hilbert space, H. The operator in this example is not of
trace class even though it gives a finite trace for a single ON basis, but not for all ON
bases for H.

Example 7.13:

Let B5 {e0, e1, e2, . . ..} be an ON basis for H. It will be shown that an operator T has
trace equal to zero with respect to the basis B, but it has infinite value with respect to basis
F. Let F5 {(1/ 21/2) (e1 2 e0), (e2 2 e1), (e3 2 e2), . . ..}; it is also an ON basis. This can be
seen by forming the inner product: ,fi, fj.5 (1/ 2) ,ei1 1 2 ei, ej 11 2 ej.5 1 when
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i5 j and 0 otherwise. Next, let T: H - H, where T sends the basis B into itself by transpos-
ing adjacent elements. It exchanges even entries for odd ones next to each other and vice
versa, that is, T(e2n)5 e2n1 1, T (e2n1 1)5 e2n, n5 0, 1, 3, . . .. Note that the infinite sumP

i ,(ei), T ei.5 0. But the infinite sum employing basis F is
P

n ,((1/ 2)1/2)(e2n1 1 2
e2n), (1/ 2)1/2T(e2n1 1 2 e2n).5 the infinite sum (1/ 2)

P
n ,e2n1 1 2 e2n, e2n -

e2n1 1.5 infinite sum 1/ 2
P

n 2 (:e2n:21 :e2n1 1:2)5 2N.#
Trace class operators are similar to Hilbert-Schmidt operators defined in the next

section.

7.6 Hilbert-Schmidt operators

This section begins with one of the most important inequalities in Hilbert spaces. It is
the Cauchy-Bunyakovsky-Schwarz inequality, and throughout the document, it is abbrevi-
ated as CBS inequality. This inequality holds for any vectors v and w in a Hilbert space.
However, a similar inequality exists for positive sesquilinear forms in any vector space.

The CBS inequality is |,v, w.|, which is always less than or equal to the product :v:
:w:. This result follows by considering the nonnegative inner product: N5,v 1 a t w, v
1 a t w.. Here, a is in C and t is in R. To see that this inequality holds, expand the inner
product yielding N5 :v:2 1 a* t ,w, v. 1 a t ,v, w. 1 |a|2 t2 :w:2. Next, by expres-
sing the complex constant a, as a5,w, v., then if this value is substituted in the afore-
mentioned expression for N, it follows that N5 :v:2 1 2 t | ,v, w.|2 1 |,v, w.|2 t2

:w:2. Observe that N is a quadratic polynomial; it is a parabola in t. Because it is nonnega-
tive, it touches the x-axis at most once. Accordingly, its discriminant is negative or zero.
So, the discriminant, 4 | ,v, w. |4�4 :v:2 | ,v, w.|2 :w:2, is negative or zero. Notice
that if ,v, w.5 0, there is nothing to do. Otherwise, factoring out |,v, w.|2 shows
that the CBS inequality holds. Moreover, from the initial representation of N, the equality
sign holds if and only if v and w are linearly dependent. An application of the CBS
inequality follows.

Example 7.14:

Let v and w be vectors in the Hilbert space H. Using the operator norm type of nota-
tion, it will be shown that :v:5 sup |,v, w.| where :w:5 1. If v is zero, the result fol-
lows immediately. Otherwise, let b5 sup |,v, w.| where :w:5 1. By the CBS
inequality, it is seen that |,v, w.| is less than or equal to :v:, and so b is less than or
equal to :v:. Next, it will be shown that b is greater than or equal to :v:. Letting w5 av,
then |,av, v. |5| a | :v:2. Since b is found utilizing the supremum of |, v, w.|,
the result is that b is greater than or equal to |a| :v:2. Finally, since w5 av, |a|5 :w:/
:v:5 1/:v:, and :v: is not zero, it is found that b is greater than or equal to :v:, and so
b5 :v:.#

The following operators are similar to the trace class operators mentioned previously.
Here, the Hilbert-Schmidt bounded operators T are defined in the Hilbert space H when n is
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any integer and vn is an ON basis. In this case, A5
PN

n52N :Tvn:2 converges. Let wk and

vk be the same ON set, and notice that the Hilbert-Schmidt norm for bounded T is given by

:T:5
PN

n52N :Tvn:2
h i1=2

. This norm was used for matrix norms earlier and is also called

the Frobenius norm. See Section 5.1. When T is only a linear operator, the defining sum could
be positive infinity. Including the point at infinity with [0, N) results in a pointing set.

Additionally, the identity holds, :T:5 :T*:. This can be seen by first expressing the norm
:T v: for the operator T involving the inner product using an ON set of vectors wn, in H.
Accordingly, this results in :T v:2 equaling the sum over all the integers of

P
n j,wn;Tv. j2.

In the following, the sum will always be from -N to N, unless otherwise specified, :T:25
P

nP
k | , vk, T wn. |25

P
n

P
k | , T* vk, wn . |25

P
k

P
n | ,T* vk, wn . |2.5

P
k :

T*vk :25 :T*:2. Thus, it follows that :T:5 :T*:.
Notice also that from the CBS inequality, it can be seen that :T v :2 is less than or equal

to :T:2 :v:25 :T*:2 :v:2.
Again, employing the CBS inequality will show that a bounded Hilbert-Schmidt opera-

tor is also compact. Let Tn be a sequence of finite rank operators. As such, each Tvn is
represented for any v in H as a finite sum: k5 1, 2, 3, . . ., N of ,wk, Tn v. wk, with wk,
as before being an ON basis in H. Form the quantity :(T 2 TN)v:2, notice that from it is
the truncated infinite sum k5N1 1, N1 2, . . ., of |, wk, T v.|2. Then, using the CBS
inequality, :(T 2TN) v:2 is less than or equal to the tail of the series of :T* wk:2 :v:2,
but for k5N1 1, N1 2, . . ., the sum of :T* wk:2 goes to zero.

The set of all Hilbert-Schmidt operators, S and T, form a vector space, a subspace of the
bounded operators. Moreover, the following inner product can be used and is substanti-
ated using CBS inequality: ,S, T.5

P
n ,S vn, T vn., where vn is an ON basis in H.

Additionally, the vector space of all Hilbert-Schmidt operators forms a Hilbert space
(Conway, 1990).

7.7 Compact operators

The notion of a relatively compact set S, in a complex Hilbert space H, must be given. It is
such that for any sequence vn with values in S, there must exist a subsequence of vn, which
converges to a value in S. A linear operator T, T: H1 - H2 with H1 and H2 Hilbert spaces,
is said to be a compact operator when T (B (0, 1)) is relatively compact in H2. Here, B (0, 1) is
an open ball centered at 0 and radius 1 in H1. This result could be defined in a more general
setting; for instance, the result holds for a Banach space that was introduced in a previous
chapter. It was previously seen that the MSA provides a platform to globally abstract proper-
ties of the Banach spaces, Banach algebras, and C* algebras. These algebras form a founda-
tion for bounded operators used in quantum disciplines. A simple example of a closed set S,
which is not relatively compact in a Hilbert space, is provided next.
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Example 7.15:

Consider the closed and bounded unit ball, BC (0, 1), in the Hilbert space H. Let e1, e2,
. . . be an ON sequence for H, since :ei :5 1; this is a sequence of points on the boundary
of this ball. However, the inner product using distinct ON vectors gives , ei 2 ek, ei 2 ek
.5, ei, ei . 1 , ek, ek .5 2. So these points are 21/2 apart, and therefore, there is no
convergent subsequence. As such BC (0, 1) is not compact.#

In a bounded linear transformation, T is of finite rank whenever the range space is of
finite dimensions. For this type of operation, T (B) is a bounded subset in Cn. Its closure is
closed and bounded, and therefore it is compact. It follows that finite rank operators are
compact operators. Additional results are provided involving compact operators in
the forthcoming chapters. In particular, the spectral theorems involving these operators
are easiest to prove.
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C H A P T E R

8

Spaces and algebras for quantum
operators

8.1 Banach and Hilbert space rank, boundedness, and Schauder bases

This section begins by again showing that partial operators on a Banach space, for
instance, the momentum operation in quantum studies, are unbounded. In Chapter 7,
Example 7.7, it was seen that the differential operator is unbounded in the Hilbert
space, L2 [0, 2π]. Now it will be shown that it is also unbounded in the Banach space of
continuous functions.

Example 8.1:

Consider the space: B5C([0, 1]) with norm of g, :g:5max|g(t)|for t in [0, 1]. A sub-
space of B will be employed for a partial operator in B. So, let the differential operator be
T5d/dt. The differential operator is not defined in this Banach space; instead, it is
defined in the linear subspace of continuously differentiable functions, C1 ([0, 1]), a subset
of B. However, T is a closed operator since if fn-f and f0n-g, then Tf5 g5 f0. This follows
assuming that the convergence above is both uniform convergence on [0, 1] and f is in C1.
To see this, write fn(t)5 fn(0)1

Ð t
0 fn

0 (x) dx and take the limit as n goes to infinity. Also
interchange the integral with the limits. This follows since uniform continuity
prevails. The result is f(t)5 f(0)1

Ð t
0 g(x) dx. Taking the derivative of the last equation gives

f0 (t)5 g(t), which shows that the operator d/dt is a closed operator.
It should be pointed out that the assumption of uniform convergence is crucial. See

what happens when f0n-g, only point-wise. Consider fn(t)5 t/(11n t2)-f5 0, for all t in
[0, 1], and so f is in C1[0, 1] with Tf5 f0 5 0. On the other hand, T fn5 f0n5 (1 - n t2)/(11n
t2)2-g, where g(t)5 05T f(t), for all t in (0, 1], but T fn (0)5 f0n (0)5 1 and is not equal to
T f (0).

Next, it will be shown that T is not bounded.
The operator T is linear, but is not a continuous operator since it is not bounded. This

can be seen by letting f (x)5 xn. Then the norm of the derivative :T xn:5 :(xn)0:5
n:xn21:. Taking the maximum for x in [0, 1] shows that :T :is of order n, as n goes to
infinity.#
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A Schauder basis in a Banach or Hilbert space V is a sequence of vectors: v1, v2,. . ..,
such that for any v in V, there are unique scalars a1, a2,. . ., which depend on v, and where
v5 a0 � v01a1 �v11a2 � v21 . . ., such that this series converges in norm.

A Banach space can become a Hilbert space iff the parallelogram identity holds, that is,
:u1v:21:u2v:25 :u:21:v:2. The parallelogram law alone is not a sufficient condition to
obtain an inner product; consequently, more is needed. Specifically, the polarization iden-
tity provides the extra criteria and is defined next. It enables an inner product to be con-
structed such that the resulting space is an inner product space. The polarization identity
for the complex field is ,u, v.5 1/4 (:v1u:22:v2u:21i � :v1i �u:22i � :v2i �u:2). For
the real field, only the first two entries appear, that is, ,u, v.5 1/4 (:v1u:22:v2u:2).

An example of a Banach space that is not a Hilbert space is given next. This example
also uses the fundamental position operator in quantum settings.

Example 8.2:

Consider the space B5C([0, 1]) with norm of g in B given by :g:5max |g(x)| for x in
[0, 1], as used in Example 8.1. This time, we show that this norm vector space is not an
inner product space. Therefore, it is also an illustration of a Banach space, which cannot
become a Hilbert space. The principle tool employed is the parallelogram law. To begin,
let f also be a vector in B. The parallelogram law does not hold because the identity,
:f1g:21:f2g:25 :f:21:g:2, does not hold. By using f5 g5 x, then :g:5max |g|5
:f:5max|f|for x in [0, 1] is one, but :f1g:25 4.#

An operator T from a Banach space B1 into a Banach space B2 is said to be of finite
rank means that the image of T is a finite-dimensional subspace of B2. Any operator in B
(B1, B2) means that T is a linear bounded operator from B1 to B2. If it is also of finite rank,
then T is compact. Here, the image of T is in the open ball of radius :T: centered at 0 in
B2. More generally, the set of all compact operators from B1 into B2 is itself a vector space
subspace of B (B1, B2). Additionally, if the sequence T0, T1, T2,. . . in B (B1, B2) of finite
rank operators converges to T, then T is a compact operator (Conway, 1990).

In particular, when T in B (B1, B2) is of rank one, then there exists a vector v of norm
one in B1 such that a unique functional f (w) exists where T w5 f (w) v for all w in B1.
The linearity of T shows that f is linear and that|f (w) |5 :T w :is less than or equal to
:T: :w:, showing that f is bounded. If this is also a Hilbert space H, then by RRT, that is,
by the Riesz representation theorem, this bounded linear functional is also an inner prod-
uct; thus, f (w)5,u, w. for some u in H and so T w5,u, w. v. In general, for a finite
operator T of rank n, the ON set {v1, v2,. . ., vn} can be used, and the corresponding func-
tionals to obtain T w5

Pn
k51 ,uk;w.vk. A very interesting example follows. It shows

that in a Banach space there exists unbounded operators of finite rank (Lacey, 1973).

Example 8.3:

Let B1 be an infinite-dimensional Banach space over C. An example of an unbounded
operator T, which has finite rank, will be given. Say that M is a Hamel basis of B1. This
basis always exists by application of the axiom of choice, and it is uncountable. Let L be
a countably infinite subset {en, n5 1, 2,. . .} of M. Let T: L-C, where T(en)5n � en, and
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T(v)5 0 for all v in M2L. The dimension of (M2vL) is at least equal to the continuum.
T has range dimension 1 and therefore is of finite rank but is not a bounded operator.#

8.2 Commutative and noncommutative Banach algebras

Although all Banach algebras have the same global MSA structure, a great difference
appears in the carrier sets for these algebras. Among the largest distinguishing factors is
whether they are commutative or not. This is illustrated by numerous examples.

Example 8.4:

Let the carrier set for VECTOR be all n by n complex matrices, A. It is a noncommuta-
tive Banach algebra over the complex field. Let NORM utilize this carrier set along with
the corresponding carrier set consisting of complex numbers, as well as all usual complex
matrix operations. Here, let the operation for NORM be the square root of the sum of all
absolute squared entries of A. This is the Frobenious or Hilbert-Schmidt norm. See also
Section 7.6. The Frobenious norm satisfies the four constraining equations for a norm. To
see this, first replace:

MATRIX by A, B
SCALAR by a
C-MULT by x
V-ONE by: I
BINE by �
NORM by : :

1) Positive Definite: :A :. 0, and :A:5 0, iff A5 0.
2) Homogeneous: :a A:5|a|:A:
3) Triangle Inequality: :A1B :is less than or equal to :A:1:B:
4) Triangle Product Inequality: :A �B :is less than or equal to :A : :B:.

When (4) holds, the norm is said to be submultiplicative.
To see that (4) holds, using the Frobenius norm, say that D5A �B in Cn.

Then a typical element in D is dij 5
Pn

k51 aik �bkj. Also, jdijj2 5 jPn
k51 aik �bkjj2 by the CBS

inequality; the result is that|dij|
2 is less than or equal to

Pn
k51 jaikj2

� � � Pn
k51 jbkjj2

� �
 �
.

Therefore, :D:25 :A �B:2 is less than or equal to
Pn

i51

Pn
j51

P
m51

n
Pn

k51 jaimj2 � jbkjj2Þ5 Pn
i51

Pn
m51 jaimj2

� � � Pn
j51

Pn
k51 jbkjj2

� 	
5 :A:2 � :B:2.#

Example 8.5:

An important result is that for T in B(H) and for v and u unit vectors in H, then
:T:5 sup |,Tu, v.|. The result follows from a previous example, that is, Example 7.14
will be employed. There, it is shown that :w:5 sup |,w, v.| where :v:5 1.
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So employ the referenced example by noticing that Tu is a vector in H. Accordingly, let
w5Tu; then, from the previously mentioned example, :Tu:5 sup|,Tu, v.|, because
:v:5 1. Use the operator norm :T:5 sup|Tu|, when :u:5 1. Consequently, by back-
tracking substitution, :T:5 sup|sup|,Tu, v.||5 sup|,Tu, v.|, as desired.#

Example 8.6:

A simple example of a commutative Banach algebra involves a carrier set of all bounded
functions in a nonempty subset S of the complex plane. It is denoted by A. For any functions
f and g in A, it follows that the point-wise operations of addition, (f1g) (z)5 f (z)1g (z), are
closed. The same is true for scalar multiplication, where the scalar a is in C, a (f (z))5 af (z).
Moreover, all the equational identities hold for a vector space structure. Additionally, it is a
unital associative algebra, that is, f �g is in A. This follows since (f g) (z)5 f (z) g(z), the
V-ONE is 1, and|1|5 1. Finally, it is a Banach algebra using the norm :f:5 sup|f (z)|for z
in S and observing that the triangle product inequality trivially holds. In fact, it is an equal-
ity,|f � g|5|f| �|g|. Additionally as in a C* algebra,|f� g*|5|f| �|g*|.#
Example 8.7:

The position P, and momentum M, operators do not commute. The following will only be
a formal presentation of the results. See the reference mentioned later. Noncommuting of P
and M can be seen using the commutator operation that is [P, M|5P M 2M P], which is
basic to Lie algebras. To commute means that this Lie bracket is zero. However, it equals i
multiplied by Plank’s constant h times the identity I, operation. This result follows by taking
any continuously differentiable f, and xf in the Hilbert space of absolute square integrable
functions, L2. Then employing the momentum operator P and multiplication operator M.
Here, P is defined using Pf52ihd(f(x))/dx, and the multiplication operator is Mf5 xf(x). So
by the product rule for differentiating, PMf(x)52ihd(x f(x))/dx52ih(f(x))1x d(f(x))/
dx52hif1MPf(x), and therefore the identity [P, M]5 2 ihI or [M, P]5 ihI holds. This iden-
tity is often called the canonical commutation relations (CCRs) (McCoy, 1929).#

This CCR identity can be used in showing that either P or M is an unbounded operator.
Standard induction techniques are employed in showing unboundedness. Begin with
[Mn, P]5Mn P2P Mn5 ih n Mn21. This is true for n5 1, [M, P]5 ihI holds, and if it is
assumed true for n, then by induction it must be shown true for n1 1. That is, it must be
shown that the following expression holds: Mn11P2P Mn115 ih(n1 1)Mn. The left hand side
can be written as follows: Mn (M P2P M)1(Mn P2P Mn) M5Mn ih1ih n Mn21 M5 the right
hand side, ih(n1 1) Mn. Now bounding the right hand side: for [Mn, P] gives the bound:
n :(Mn21) :is less than or equal to :Mn : :P:1:P : :Mn:, and so factoring out :Mn21:gives
n is less than or equal to 2 :M : :P:. Therefore at least one M or P is not bounded.

An interesting example of a real Banach algebra is given next involving an important
subset of continuous real-valued functions. They are the almost periodic functions, a gen-
eralization of periodic functions. Among the most famous is the Bohr-type uniformly
almost periodic continuous function f. This means that for every a greater than zero, there
exists a relatively dense subset Da of R, such that sup|f(x1t)2f(x)|,a, for all t in Da. The
value t is called an a translation number. Intuitively, this means that even though there
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may not exist a value t such that f(x1t)5 f(x) for all real values x, there may be numbers
that make this relation an approximate equality. The concept is best illustrated by the fol-
lowing example (Gelbaum and Olmsted, 2003).

Example 8.8:

For f: R-R, consider f (x)5 sin (2πx)1sin (21/2 2π x); this function is not periodic.
However, for any E. 0, it can be shown that there are an infinite number of integer values
t, such that 21/2 � t, differs from another integer by less than or equal to E/(2π). Moreover,
the difference between two consecutive such integers is bounded, by δ. Using one such
integer value, t, then f (x1t)5 sin (2πx12π t)1sin (21/2 (2π x12π t))5 sin (2πx)1sin (21/2

2π x1δE)5 f (x)1δ0E, where δ0 is a bounded quantity. The basic idea is that f comes close to
being periodic, but it is not periodic.#

Almost periodic functions are well behaved. They are uniformly bounded and uni-
formly continuous. Additionally, if fn is a sequence of almost periodic functions that con-
verges uniformly to f, then f is also almost periodic. The space of all almost periodic
functions is a closed subspace of all bounded and continuous functions. Under the sup
norm, it is a Banach space. Using point-wise multiplication of functions shows that it is a
Banach algebra. An instance of a space of almost periodic functions is all the trigonometric
polynomials. These are finite sums over k an integer, involving linear combinations of
sinusoids, (bk cos(dk x)1ck sin(dk x)), with bk, ck, and dk in R.

The space of almost periodic functions forms a pre-Hilbert space using the inner product:
,f, g.5 limit as T goes to infinity of [1/2 T

Ð T
2T f(x)*g(x) dx].

This space is completed to the class B2 often called the class of Besicovitch almost
periodic functions (Besicovitch, 1954).

8.3 Subgroup in a Banach algebra

An important subset of a Banach algebra A is the group G of invertible elements from
A. Here, from the MSA perspective, there is a single sort, SUBG. Concentrating on the
algebraic properties of A, there are three signature sets each containing a single
operational name. The arity sequence therefore is (1, 1, 1). The operational names in each
signature set agree with those from the superset, namely the Banach algebra. Additionally,
however, there is the new operator name INV. It is given in a suggestive fashion. There
are no partial operators in this case. The arities with corresponding operational names are
the following:

Arity 2:BINE:SUBG x SUBG-SUBG

Arity 1:INV:SUBG-SUBG

Arity 0:V2ONE

Three equational identities must hold because this is a similar algebra to the additive
group structure within a vector space. Before these identities are given again, several
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symbols are assigned representing the specified sort. Additionally, suggestive symbols are
provided for the operational names. These are given for

SUBG by u, v, w
BINE by �
INV by /
V-ONE by I

The equational identities are as follows:

1) Associative for multiplication: (u � (v �w))5 ((u � v) �w).
2) One law: I �v5v � I5v, I is V-ONE.
3) Inverse law: using 1/v, then v � 1/v5 1/v �v5 I.

In the Fig. 8.1, the names of operations in a subgroup of a Banach algebra are illus-
trated. An important topological property of the group G of invertible elements from the
Banach algebra A is that G is an open set within A. This means that for every point within
G, this point is an interior point. There exists a sphere or ball of radius E about that point
such that the sphere lies wholly within G.

The next few examples illustrate the interplay between the (sub) group G, within the
Banach Algebra A, and A itself. The next example is particularly important in spectral
analysis. It involves the identity function I, as well as many of the inherited properties that
the group G obtains from the Banach algebra A. For instance, the norm and convergence
properties from A carry throughout the subgroup G.

Example 8.9:

Let v be in the Banach algebra and A be such that :v :is less than one, and set r5 I �v.
Then r has an inverse. This result follows from a power series argument. The series involved is
often called the Neumann series. Let wn5 v1v21. . .1vn; then, the sequence of partial sums is a
Cauchy sequence, and therefore, it converges to some vector in A. Note that (I 2v) wn5wn

(I �v)5 (I � vn11), and this quantity converges to I as n goes to infinity. Likewise, as n goes to
infinity, the sequence of partial sums converges to say w. Additionally, (I �v) w5w (I �v)5 I,
that is, r w5w r5 I, by continuity of multiplication. Also, w5 I=r5 1= 12 vð ÞPN

n50 v
n will be

the standard notation for the inverse when it exists.#
An instance of criteria for vectors within A to have an inverse is illustrated in the fol-

lowing example.

SUBG

BINE

INV

V-ONE

FIGURE 8.1 Polyadic graph for subgroup in Banach algebra.
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Example 8.10:

Let v be in G and w be in the Banach algebra A. Assume that :v�w:is less than 1/:v 21:;
then w is also in G, that is, it is invertible. To see this, consider the vector z in A, where

z5 I� v21 w. Then, :z:5 :I � v21 w:5 :v21 (v2w):is less than or equal to :v21: :(v2w):,
which is less than :v21:/:v21:5 1. Because, :zn :is less than or equal to :z :n for nonnegative
integers, it will be shown that the summation

PN
n50 z

n converges to say y in A. That is, the

sequence of partial sums
PN

n50 z
n 5 I2 zN11

� �
=ðI2 zÞ5 I2 I2v21w

� �N11
� 	

= v21w
� �

con-

verges to y5 1/(12z). Accordingly, y5 1/(v21 w).
To validate the convergence, absolute convergence will be illustrated. Note that :I� y :is

less than or equal to
PN

n51 jjzjjn 5
PN

n51 jjv21 v2wð Þjjn, which is less than or equal toPN
n51 :v21::v2w:

� �n
5 1= 12 :v21::v2w:

� �
 �
2 I5 :v21::v2w:Þ= 12 :v21::v2w:Þ
 �

.

Multiplying, y (I2z)5 (12z) y, and then substituting in for z, z5 I � v21w, gives y
v21w5v21 w y5 I. So, y (I2z)5 (12z) y5 I; this shows that y and (12z) are invertible.
Moreover, it follows that v21 w is invertible, and v21 w y5 y v21 w5 I. Thus, w5v y21

and w215 y v21, so w is in G.#
A final fact for the Banach algebra A is that if every nonzero element in A is invertible

then A is isometrically isomorphic to C. The only complex Banach algebra that is also a
division algebra is the complex field. This is the Gelfand-Mazur theorem (Bonsall and
Duncan, 1973).

8.4 Bounded operators on a Hilbert space

Consider the set B(H) of all complex-valued bounded operators mapping the Hilbert
space H into itself. The space of all these operators B(H)5B (H, H) is a C* algebra. It is
illustrated step by step:

A) It is a vector space;
B) It is a unital, associative algebra;
C) It is a Banach space;
D) B (H, H) is a Banach algebra;
E) It is a Banach* algebra;
F) Finally, it is a C* algebra.

Here, T has the operator norm: :T:5 sup {:T w:/:w :|w in H, w nonzero}. It was

seen that :T:5 sup:w:51 :T w :and that the involution is the usual adjoint, ,T*v,

w.5,v, T w.. This is the set of all endomorphisms B(H) on H.
Fig. 3.5 in Chapter 3 illustrates all of the eight operational names in a C* algebra. These

are actually the closure operations for B(H, H): V-ADD, 1 ; S-MULT, � ; V-MINUS, -;
BINE, � ; NORM, : :; ADJ, *; V-ZERO, 0; V-ONE, 1. Recall that BINE in this algebra is
function composition. For S and T in B(H, H), BINE(T, S)5T � S5T(S (.)), so for v in H,
BINE(T, S)(v)5T(S(v)). All the operations mentioned earlier are continuous. The continu-
ity for the NORM is proved in Section 3.6, and the continuity of BINE is proved in
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Section 3.7. That the operations in the referenced figure hold true, that is, the closure
requirements are met, is a result of the Lipschitz condition: :T (v) :is less than or equal to
M :v:. Recall that ,T (v), T (v).5 :T (v) :2. The infimum of all such values of M is
called the operator norm of T and is denoted by :T:. For instance, the V-ADD and the
S-MULT operations are closed, as a result of the triangle inequality. That is, for a in C
and v and w in H, notice that :a v1w :is less than or equal to|a|:v:1:w:. Thus,
V-ADD[S-MULT(a; v), w] is in B(H, H).

The following list of 23 equational identities hold for B(H, H). This listing presents the
required laws for the algebraic structures (A) through (F). These are the equational identi-
ties that must hold true and are detailed below. In this list, let R, S, and T be operators in
B(H, H), and also let a and b be scalars in C. After the listing of all the equational con-
straints, several proofs are provided, which were not proven previously.

A) The equational identities that hold for B (H, H) since it is a vector space are as follows:
1) Associative for vector addition: (S1 (T1R))5 ((S1T)1R).
2) Zero vector law: 01T5T1 05T.
3) Minus vector law: T2T52T1T5 0.
4) Commutative vector law for addition: S1T5T1 S.
5) One law: 1 �T5T � 15T.
6) Distributive law: a � (S1T)5 a � S1a �T.
7) Distributive law: (a1b) �T5 a �T1b �T.
8) Associative law: (a �b) �T5 a � (b �T).

B) The equational identities that hold for B (H, H) because it is an associative unital
algebra are as follows:
1) Distributive law: (S1T) �R5 S �R1T �R.
2) Distributive law: R � (S1T)5R � S1R �T.
3) Multiplicative homogeneity: ab (S �T)5 (a S) � (b T).
4) Associative law: ((R � S) �T)5 (R � (S �T)).
5) V-ONE law: I �T5T � I5T.

C) B (H, H) satisfies the following conditions for a NORM since it is a Banach space:
1) Positive definite: :T :. 0, and :T:5 0, iff T5 0.
2) Homogeneous: :a T:5|a|:u:.
3) Triangle inequality: :S1T :is less than or equal to :S:1:T:.

D) The additional condition it satisfies because it is a Banach Algebra is as follows:
4) Triangle product inequality: :S �T :is less than or equal to :S : :T:.

E) Additionally B (H, H) is a Banach* algebra since the following laws are obeyed:
1) Involuntary: (T*)*5T.
2) Additive: (S1T)*5 S*1T*.
3) Conjugate linear: (a T)*5 a T*. Here, a denotes the conjugate of a.
4) Transpose: (S �T)*5T* � S*.
5) Isometry: :T*:5 :T:.

F) B (H, H) is C* algebra since it is a Banach* algebra also satisfying:
6) C* Identity: :T �T*:5 :T:2.
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Proofs of some these equational identities:

C 3) The triangle inequality is shown in Section 7.3.
D 4) The triangle product inequality :S�T :is less than or equal to :S : :T :followed by the
function composition :S (T) (v):. Since :T (v) :is less than or equal to :T : :v:, for all v in
H. Using w5T (v), then :S (w) : is less than or equal to :S : :w:, this holds for all w in H.
E 5) To see that the Banach* algebra isometry identity holds, use the result from
Example 8.5 in Section 8.2. From this example, note that the operator norm can be
written as:T:5 sup|,Tv, w.|for v and w in H each of unit norm. So,:T*:5 sup|,
T*v, w.|5 sup|, v, Tw.|5 sup|,Tw, v.*|5 sup|,Tw, v.|5 :T:.
F 6) To prove the C* identity, again use the result from previous examples. Begin with
:T* T :is less than or equal to :T* : :T:5 :T:2. Next the inequality will be reversed.
As in equation, E 5). For v and w in H, each of unit norm :T* T:5 sup|,T*T w,

v.|5 sup|,T w, Tv.|is greater than or equal to sup|,T v, Tv.|5 :T:2. Thus,
:T* T:5 :T:2.

8.5 Invertible operator algebra criteria on a Hilbert space

Consider bounded operators T in A such that T: H-H, that is, T is in B (H, H). The concept
of inverse is extremely important in an operator algebra A, because the spectrum of T depends
on the inverse existing or not. In particular, this spectrum is denoted by spT and is defined to be
the set of all complex numbers c, such that (c� I �T) is not invertible; here I is the identity element
in A. To be clear, an operator S in A is invertible iff its image or range {Sv, such that v in H} is
dense in H, and there is a constant a. 0, such that for all vectors v in H, :Sv: is greater than or
equal to a :v: (Halmos, 1957). The last criterion is coined: T is bounded from below (Rubin,).

Verification showing that these two criteria hold when S is invertible follows since in this
case, it is one-to-one and it is onto. As a consequence, note that the image of S is all of H, and it
is therefore dense. Next, using a5 :S21:21, then for all v in H,:v:5 :S21Sv: is less than or
equal to :S21: :Sv:. So :Sv: is greater than or equal to :v:/:S21:5 a � :v:.

Going the other way, to show that S is invertible given that the two properties hold, it
must be shown that the following all hold. The first thing to show is that S is onto. Next, it
must be shown that S is one-to-one. This is followed by showing that S21 is linear. Finally,
it must be proved that S21 is bounded. It will be shown first that the range of S equals the
codomain H, and so S is onto. Since S is dense, all that needs to be shown for being onto is
that it is closed. So let wn be a Cauchy sequence in the range of S. Let vn be in the domain
of S, such that Svn5wn. It follows that since :wn2wm:5 :Svn2Svm : is greater or equal
to a :vn2vm:, that vn is also a Cauchy sequence in H. Consequently, vn converges to v in
H. Since the norm is continuous, it follows that wn-Sv, and so the range is closed. To
show that S is 1�1, let Sv15 Sv2, since :Sv1 � Sv2:5 0 and this quantity is greater than or
equal to a :v1 � v2:. As a result, this shows that v15 v2; accordingly, S is 1�1, and so S
has an inverse. That S21 is linear can be seen by using S21(b 1w11w2)5 S21(b Sv11Sv2)5
S21 [S (b v11v2)]5 S21 S (b v11v2)5 I (b v11v2)5 b v11v25 b S21w11S21w2. Finally, it
will be shown that S21 is a bounded operator. Use, :S v:5 :w: is greater or equal to, a
:v:5 a :S21 w:, and so :S21 w :is less than or equal to 1/a :w:.
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Example 8.11:

The necessary and sufficient condition provided earlier for an operator T, on the Hilbert space
H, to be invertible will be illustrated. If S and T are invertible, then S�T is invertible where the
product is really function composition. For v in H, (S�T)(v)5 S(T(v)). It will be shown that S�T
is bounded below and the range of S�T is dense in H. First note that T is bounded below means
that :Tv: is greater than or equal to a :v:. So, let T(v)5w in H then since S is bounded from
below, then :S(T(v)):5 :S(w): is greater than or equal to b :w:5 b :T v:, which is greater
than or equal to a b :v:. Therefore, S�T is bounded from below. Next, show that S�T has
dense range. This follows from basic definitions, S has dense range means that every point h in
H is also in the range of S5 {S(v)|v in H}, or it is a limit point for points in this range. So there
exist different cases. For instance, h is in the range of S; then since T also has dense range, it fol-
lows that S�T has dense range. On the other hand, let h be a limit point of the range of S. This
means that every neighborhood of h contains a point wn from the range of S. However, each of
these points wn lies in H. And because T also has dense range, every point wn lies in its range or
is itself a limit point. This means that h is also in the range of S�T5 {S(T(v))|v in H}, or it is a
limit point of this range. As a result, S�T is invertible. Moreover, (S�T)215T21� S21 since
(S�T)� (S�T)215 S�T�T21� S215 S� I� S215 S� S215 I.#

Example 8.12:

The set of all invertible operators T: H-H, where H is a Hilbert space, form a nonabe-
lian multiplicative group. Here, the multiplicative binary operation is function composi-
tion, so (S �T)(v)5 S(T(v)). The proof that S �T is invertible is given in Example 8.11. The
unary operation is the inversion operation, and for T it is T21. The zero-ary element is the
identity, I. The following equational identities hold:

1) Associative Law: R � (S �T)5 (R � S) �T.
2) One Law: I � S5 S � I5 S.
3) Inverse Law: S21 � S5 S � S215 I.

The associative law holds. Let v be a vector in H, and then T(v)5w is also in H; finally
S(w)5u is again in H as well as R(u)5 z in H. (S �T)(v)5 S(T(v))5 S(w)5u, and so (R �
(S �T))(v)5R(u)5 z. Going the other way, T(v)5w, (R � S) (w)5R(S(w))5R(u)5 z5
((R � S) �T)(v).#
Example 8.13: (Halmos, 1957)

Suppose that :T �I: ,1, it will be shown that T is invertible by illustrating that it is
bounded below and the range of T is dense in H. Letting a5 12:I �T:, this shows that
a. 0. If v is in H, then :T v:5 :v� (v �T v): that is greater than or equal to :v:2:v �T v:,
which is greater than or equal to (12:I2T:):v:5 a:v:. So T is bounded below by a. Also,
notice that 12a5 :I�T:.

Next, by using the second sufficient condition for invertibility, it must be shown that
the image of T, call it M, is dense in H. Consider any vector w in H. It will be shown that
if δ5 inf { :w2v:, where v is in M}, then δ5 0. Use contradiction, and assume that δ. 0.
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In this case, there is a vector z in M such that (12a) :z2v:,δ. Both z and T (w2z), as well
as z1T (w � z), are elements of M. As a consequence, δ is less than or equal to :w2[(z1T
(w2z))]:, because δ is the infimum. However, :w2[(z1T (w2z))]:5 :(w2z)2T (w2z): is
less than or equal to :I2T: :w2z:5 (12a):w2z:,δ. Resulting in a contradiction.#

Example 8.14:

Suppose that :S: ,1; it will be shown that S2I is invertible by using the result from
Example 8.13. Indeed, in the mentioned example, replace T by I2S. Substituting in that
example for T shows that :(I2S)2I:,1, that is, :S:,1; this implies that I2S is invertible.#

Example 8.15:

For the bounded operator T, if it is bounded below, then its range is closed. This result fol-
lows by setting wn5T(vn), n5 1, 2,. . . Letting wn converge to w creates a Cauchy sequence
(CS) in the image. If it is shown that w is also in the image of T, this means the image is
closed. Using the bounded below criteria along with CS criteria, :T(vn)2T(vm): is greater
than or equal to a:vn2vm:, showing that vn is also a CS. This sequence converges to v.
Using the continuity of T shows that T(v)5w, and so w is in the image of T.#

8.6 Spectrum in a Banach algebra

For an operator T in B (H, H), the spectrum of T is compact, that is, spT is compact. First spT
will be shown to be closed, and then it will be shown to be bounded. As previously mentioned,
the concept of inverse is extremely important in a Banach algebra A. This follows since the spec-
trum of an element T in A depends on the inverse existing or not. In particular, this spectrum is
denoted by spT and is defined to be the set of all complex numbers c, such that (c I� T) is not
invertible; here I is the identity element in A. It will be shown that for every element of A, the
spectrum is never the empty set, and it is in fact a compact set in C. Since this is the field of
complex numbers C, this means spT is always closed and bounded. The proof will utilize the
complement of the spectrum C2spT.

The compliment of spT in C is called the resolvent set. The resolvent set, RsT, is defined
to be the set of all complex numbers c, such that (c I� T) is invertible. Accordingly, the
quantity (c I2T)21 will often be written as follows: 1/(c I2T). By showing RsT is open
proves that spT is closed. Choose a point z in RsT, so (T2z I) is invertible. For λ in C, note
that :I2(T2z)21(T2λ):5 :(T2z)21 [(T2z)2(T2λ)]:, which is less than or equal to
:(T2z)21:|λ2z|. The quantity :(T2z)21: is bounded; therefore, making|λ2z|small
ensures that :I2(T2z)21(T2λ): can be made less than one. In this case, it is seen that
(T2z)21(T2λ) is invertible, see Example 8.13. So, for|λ2z|small, it implies that (T2λ) is
also invertible. This means that RsT is open, because for all points λ within an arbitrary
small radius about z in RsT, (T2λ) is invertible. Consequently the spectrum of T, spT, is
closed. To see that it is bounded, it will be shown that for λ in spT |λ|is less than or equal
to :T:. And since T is bounded, it follows that spT is compact. Now using proof by
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contradiction, if |λ|.:T:, then :T/λ:,1, and this implies that (I2T/λ)5 (λ2T)/λ is
invertible, which is a contradiction.

The spectrum and resolvent sets are illustrated by simple examples and are examined
in more depth in subsequent chapters.

Example 8.16:

Consider T5 I, the identity element in A. Then, the only time (c I2I) is not invertible is
when c5 1, that is, the single point 1. This is actually the point (1, 0) in the complex plane.
So spI5 {1}, which is a closed set in C. The point is called point spectrum and will be
described subsequently. Also, in this case, the resolvent set is RsT, and it is the whole com-
plex plane with the single point 1 missing.#

Example 8.17:

Consider the Banach algebra A, with carrier set consisting of all complex-valued continuous
functions f, on the real interval [0, 1]. Now, c I2f is not invertible when the quantity c2f (z)5 0,
for all z in [0,1]. Accordingly, the spectrum is spf5 f ([0, 1]); it is the range of f. This is called a
continuous spectrum; it is comprised of a continuous interval. The corresponding resolvent set
Rsf5 the whole complex plane with f ([0, 1]) removed. For instance, if f (z)5 eizπ, where z is in
[0, 1], then Rsf5 the whole complex plane with the upper semicircle centered at the origin of
radius one removed along with the end points: that is, (1, 0), (21, 0) are also removed. See
Fig. 8.2 for an illustration of this continuous spectrum.#

Example 8.18:

This is an additional example of a continuous spectrum. It will also illustrate the con-
cept of approximate eigenvalue, described rigorously later. Additionally, it involves the
position operation. Indeed, in CL2 [0, 1], the Hilbert space of complex-valued absolutely
square integrable functions, M (f) (x)5 x f (x). There is no point spectrum; however, the
continuous spectrum is the closed interval [0, 1].

This will be shown first for points p in (0, 1) by considering a rectangular pulse h cen-
tered at the point p of width 2d and of height the square root of 1/(2d). In this case,
h5 1/(2d)1/2χ[p2d,p1d]. So squaring the height results in a rectangle whose area is one.

Now consider :ðM2pÞðhÞ:2. Then, for small values of d so that the rectangle pulse lies

(–1,0) (1,0)

(0,1)

Y

X

Spectrum of f(z) =eπiz

For z In [0,1]

FIGURE 8.2 Continuous spectrum.
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totally in (0, 1), this becomes the integral
Ð p1d
p2d ððx2pÞ2Þ=ð2dÞdx. The result from the integral

is :(M2p) (h):25 (d2)/3. As d-0, it will be seen in a subsequent chapter that p is an
example of an approximate eigenvalue. This result holds true for every point p in the
open interval (0, 1).

At zero and one, the same conclusion also holds by modifying h. That is, both zero and
one are also in the spectrum of M. For instance, at zero, use p5 0, and a rectangle h of

width d and height one over the square root of d, d. 0. In this case, h51=ðdÞ1=2χ½0;01d�.
Then:(M20)(h):25d2, as before letting d-0 shows that 0 is also an approximate eigen-

value. Accordingly, the close interval [0, 1] consists of the continuous spectrum for M.#
There exist three distinct types of spectrum. Two of them are illustrated earlier: the

point spectrum and the continuous spectrum. The third is the residual spectrum. It is illus-
trated later even though it is of little importance in quantum.

To conclude this section, an additional example is provided illustrating the use of
power series in Banach algebras.

Example 8.19:

Let v be in the Banach algebra A. The carrier set now consists of polynomials and for-
mal power series expansions. Define w equal to the infinite sum representation of:

ev5 I1v1v2/21v3/3!1v4/4!1. . .. Since the series is absolutely convergent in this
Banach algebra, w is also in A. Moreover, if u is also in A and the product commutes, that
is, if uv5vu, then eu1v5euev. (Muger, 2020).#

8.7 Ideals in a Banach algebra

For a Banach algebra A, the concept of an ideal in A involves a subset B. Whenever this
subset is such that for v in A and w in B the product v �w is in B, then B is called a left
ideal of A. The subset B is called a right ideal when w �v is in B, for all v in A. It is called
a two-sided, or just an ideal when it is both a left ideal and also a right ideal. Fig. 8.3
illustrates a left and right ideal using a Venn-type diagram. When B differs from A and it
differs from zero, the ideal is called proper. B is called maximal when it is proper, and B is
not contained in another different proper ideal.

The importance of a closed and maximal ideal B, in a commutative Banach algebra A, is
described next. In this case, B is a vector space, and the quotient space A/B is itself a
Banach algebra. The resulting elements within A/B are equivalence classes of the form
[v]5v �B5 {v �w, such that w in B} (Palmer, 1994). The norm in this Banach algebra is

Left Ideal Right Ideal

V�A V�A

W�B
V.W�B

W�B
WV�B

FIGURE 8.3 Left and right ideals.
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given by :[v]:5 inf:v �w:, for w in B. It follows from the CBS inequality that :[u] [v]: is
less than or equal to :[u]: :[v]:.

A special type of Banach algebra, namely a Banach* algebra, was described in
Section 3.8. An illustration for the use of the star operation is given in the next example.

Example 8.20:

Let u and v be in A, where A is a Banach* algebra. Assume that v5 v*. For t in R, consider
w5 eivt where w5 eivt5 I1ivt1((ivt)2)/2 1 . . .. This quantity is also located in A, since the
series is absolutely convergent. Extend the properties of the * operation (1) and (2):

1) Involuntary: (T*)*5T
2) Additive: (S1T)*5 S*1T*

of a Banach* algebra in the limit, that is using the summation above; it follows that
(eivt)*5 e2ivt. This implies that:(eivt) e2ivt:5 1, and therefore:w:5 1.#

A * homomorphism between two C* algebras, C1* and C2*, is a linear map L, such that:
L: C1*-C2* obeying the three equational identities:

1) Identity: L (I)5 I.
2) Product: L (S T)5L (S) L (T), for S and T in C1*.
3) Involution: L (T*)5L (T)*.

Besides preserving the involution, the mapping is also contractive. That is, the mapping
is continuous of norm less than or equal to one. So the norm of T in C1 is greater or equal
to the norm of L (T) in C2. When L is one-to-one, the mapping is an isometry. Fig. 8.4 illus-
trates a homomorphism between two C* algebras.

8.8 Gelfand-Naimark-Segal construction

A representation for a C* algebra A consists of a star homomorphism and a Hilbert
space H, that is, (L, H), where L: A-B (H), the set of all bounded operators on H. The
representation (L, H) is said to be faith-full whenever L is 1�1; since L is linear, this is
equivalent to the following: if L(f)5 0, then f5 0. A representation is called cyclic when-
ever there is a cyclic vector v, in H. This means the closure of (L(H) v)5H. It is equiva-
lently said that the vector v is cyclic for B (H). Intuitively, a cyclic vector is such that the

L

Linear Map

C1* C2*

1) Identity L(I) =I

3) Involution L(T*) = L(T)*
2) Product L(S.T) = L(S) L(T)

FIGURE 8.4 Graph for homomorphisms
involving C* algebra.
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repeated operator-type applications successively applied to this vector result in the whole
space. An additional definition for a vector v is that it is separating. Here, v is separating
whenever Tv5 0, for T in B (H) implies that v5 0. An important relationship between the
concepts of cyclic and separating is due to the Gelfand-Naimark-Segal and is called the
GNS construction. The relationship is in a C* algebra. In this case, a vector v is cyclic for B
(H) when and only when v is separating for the commutant A0. The commutant was
described earlier in Section 3.3. It is a subset of elements that commute with all other ele-
ments of A. Existence of cyclic vectors is one of the principal contributions in the GNS
construction.

To say that v is separating for the commutant A0 means that for every element w of A0

commutes with v, that is, w v5v w. Here, A0 is the von Neumann algebra. In this section,
the algebra should be thought as being a C* algebra just consisting of all bounded opera-
tors from H. Additional facts pertaining to the von Neumann algebra are described in the
next chapter.

For v cyclic, the set of all such u v are dense in H. So, w u v5 0, and therefore, u5 0,
on a dense subset of H. By continuity, it follows that u5 0 everywhere, and consequently,
v is separating. Whenever A is also a von Neumann algebra, then a vector that is both
cyclic and separating in A is also cyclic and separating in A0 (Sakai, 1971). An interesting
example of a cyclic vector is given next.

Example 8.21:

As an example of a cyclic vector v, consider the carrier set H5Rn, for sort VECTOR.
Use the usual inner product and matrix operations in this Hilbert space (He’lein, 2014).
Let L be in B (H), and assume that L is self-adjoint. Then L can be diagonalized using a
self-adjoint ON basis. Let the set of eigenvectors be {e1, e2,. . ., en}, along with the set of all
real eigenvalues {c1, c2,. . ., cn}. Each eigenvalue ck is in the point spectrum of L, that is, it
is in sppL. So it follows that L ek5 ck ek, for all k above. In short, ck is an eigenvalue and
ek is an eigenvector. Moreover, when all the eigenvalues are distinct, then v is cyclic; oth-
erwise, it is not. To see this, represent L as a matrix; then by the Cayley-Hamilton theorem,
L satisfies its characteristic equation: Ln5 tr(L) Ln211. . .1 (21)n det(L).

Since H is finite dimensional, v is cyclic when and only when {v, Lv,. . ., Ln21 v} is a
basis set for H. Using the eigenvectors mentioned earlier, v5d1e11d2e21. . .1dnen. Now,
let powers of L operate on the vector v, Lk v5d1Lk e11d2Lk e21. . .1dnLk en. Substituting
into this equation with the eigenvalues results in Lk v5d1c1k e11d2c2k e2 1 . . .1 dncnk

en, for k5 0, 1, 2,. . ., n2 1. These equations can be written as n by n matrix consisting of
eigenvalues from L, multiplying an n by one column vector. This matrix multiplying the n
by 1 column vector has tuples, dj ej, and is given below. It is followed by resulting n by 1
column vector with tuples, Lj v:

j1 1 . . . 1j jd1 e1j jL0vj
jc1 c2 . . . cnj jd2 e2j 5 jL1vj

. . . . . . . . .
jc1n21 c2n21 . . . cnn21j jdn enj jLn21vj:
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The n by n matrix above is a Vandermonde matrix, and it equals zero when and only
when two columns are equal. So v is cyclic when and only when the eigenvalues are dis-
tinct. (Horn et al., 1957).#

The norm in a C* algebra is unique and is determined solely from its algebraic struc-
ture. Another GNS result is that every C* algebra is isometrically and involutionary iso-
morphic to a closed subinvolutionary algebra of bounded linear operators B (H), on a
Hilbert space H. This is illustrated in Fig. 8.5. Moreover, when the C* algebra is separable,
B (H) also can be separable. Additionally, for a commutative C* algebra, it is isomorphic
to the algebra of complex-valued continuous functions vanishing at infinity. These func-
tions are defined on a compact Hausdorff space. The GNS results specify representations
of a C* algebra A, on a Hilbert space H, of bounded functions B (H). This is a star homo-
morphism h, h: A-B (H). Also h (I)5 I. Moreover, for a state w in C*, there is a represen-
tation of A on a Hilbert space H with a unit vector v in H such that for all x in A it
follows that w(x)5,v, h(x) v.. In general, the GNS construction using a pure state pro-
vides an irreducible representation; it cannot split into a direct sum of simpler representa-
tions. A mixed state usually leads to direct sums of independent representations.

When a C* algebra A is of finite dimension, it is isomorphic to a C* algebra involving a
direct sum of nk by nk complex-valued matrices Mnk, k5 1, 2,. . ., N. The GNS construc-
tion shows that in quantum areas the C* algebra is generated by the observable.
Additionally, when L is a representation of A on a Hilbert space H and v is a normalized
cyclic vector, then f-,L(f)v, v. is a state in A. Recall that a state is a positive functional
f on A, f: A-C; for all T in A, f (T*T) is greater than or equal to zero; and f(I)5 1. The
operator T in A is also called a measurement operator; it is always self-adjoint.
Additionally, the functional f often is an expectation operator. A subset J of A is a left ideal
for A using J5 {B in A|f (B*B)5 0}. The quotient space V5A/J can be made into an inner
product space by using for B, D in A: ,[B], [D].5 f (B*D). With completion, V becomes a
Hilbert space (Sakai, 1971).

The GNS construction illustrates a strong connection between C* algebras and bounded
functions on a Hilbert space. An example will show this relationship.

Example 8.22:

Consider the unital associative algebra A of all two by two matrices over the complex
numbers. It is also a Banach algebra, and so with the adjoint operation for matrices in A,
A becomes a C* algebra. The GNS construction provided below involves a pure state and

*Isomorphism

C* Algebra

A

Subalgebra

B(H) Bounded
Functions For
Some Hilbert

Space

FIGURE 8.5 GNS construction between A C* algebra and a Hilbert space. GNS, Gelfand-Naimark-Segal.
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will yield an isomorphism between A and a subalgebra of bounded functions for the
Hilbert space C2. To see this, use any element, that is, any complex-valued matrix M of A.
Then a state f will be defined, f: A-C, where f (M) is the one, one entry within the matrix,
for the matrix below, f (M)5 a,

ja bj
jc dj :

This is a state since it is linear, nonnegative, and f, evaluated at the identity matrix, is f
(I)5 1. Nonnegativity follows since f (M*M)5 a*a1c*c5|a|21|c|2. For a GNS construc-
tion, a sesquilinear form on A can be defined for matrices M and N in A, where N5

jm nj
jp qj :

So let the pseudo inner product of these two matrices ,M, N.5 f (M*N)5ma*1pc*. This
yields a sesquilinear form on A. Next, a subspace J of A will be found such that it is a left ideal
of A. Use for J, J5 {M in A, such that f (M* M)5 0}. Here, from the above, it follows that
a5 c5 0, and :M:25,M, M.5 0. Accordingly, J is the subspace of A with the first column
of M being zero. A quick multiplication of a matrix N from A times a matrix from J winds up
with another matrix in J, thereby showing that J is a left ideal of A. In other words, for any N in
A, the product of N and any matrix j from J results in another matrix j0 in J.

A Hilbert space arises for the GNS construction by setting H5A/J, the quotient space. An
in-depth MSA development of the quotient space is provided in Section 10.1. Only basic facts
from the quotient space are needed below. In any case, the associated inner product for equiva-
lence classes within H is induced from the sesquilinear form above. So the inner product of two
equivalence classes [M] and [N] is given by ,[M], [N]. in H, which is equal to ,M, N.5 f
(M*N). Note that for [M] in H, the coset [M] equals the sum of a matrix from A, plus a matrix
with the first column equal to zero from J. These matrices are given below in order:

ja bj
jc dj

j0 nj
j0 qj :

As a representative for the equivalence class [M], we will use the following matrix as
the coset leader:

ja 0j
jc 0j :

Notice that f (M*N)5ma*1pc*. This follows since M* and N are given in order:

ja� c � j
j0 0j

jm nj
jp qj :

Next let L be a representation of A on the Hilbert space H, that is, let L: A-End(H)
where L(N): [M]-[N M], so using N and [M] above L(N) (M)5

jma1nc 0j
jpa1qc 0j :
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This follows since N, [M], and N � [M] are given below in order,

jm nj ja 0j jma1nc 0j
jp qj jc 0j jpa1 qc 0j:

Moreover, note that the identity vector I in A corresponds in H to v5 [I]5

j1 0j
j0 0j

The vector v is a normalized cyclic vector in H. The vector v generates H. For any N in
A, f (N)5,v, L (N) v.. This follows since f (N)5m, and L (N) v5

jm 0j
jp 0j

and so f (v* L (N) v)5m. Accordingly, the Hilbert space H is isomorphic to C2 with vec-
tors in this space being acted upon by matrices such as N from the representation L (N).
The GNS construction produced a Hilbert space, C2 starting from a C* algebra, A of all
complex-valued two by two matrices.#

8.9 Generating a C* algebra

For any subset S of a C* algebra A, which contains the identity, the smallest C* algebra
containing S is called the C* algebra generated by S. It is denoted by B and is found by
taking the intersection of all C* algebras that contain S. Moreover, for any element T in B,
the spectrum of T in B equals the spectrum of T in A.

Example 8.23:

The criteria for generating a C* algebra B, using elements of a set of vectors S, from A,
sound easy to do. However, noticing that the spectrum of T in B must also be in the spec-
trum of T in C* indicates there might be a difficulty in finding B. That indeed is the case.
The C* algebra B has to be built up from vectors in the set S. All the closure operations for
a C* algebra must hold for elements T in B. This means that all the vector space closure
operations have to hold. So, linear combinations of vectors from S are in B. This means
scalar multiplying vectors in S by all complex numbers, then adding them together in all
possible ways must be in B.

Since a C* structure is an algebra, multiplication must also be closed. So, linear combi-
nations of vectors from S as well as multiples of all these linear combinations must belong
in B. Moreover, it is a Banach space, the norm of all these multiples must exist, and it has
to be norm closed. Finally, the adjoint of these elements must also belong in B. In sum-
mary, elements of B are of the form,

Pn
j51 cjTj;1 �Tj;2 �Tj;3?Tj;k

� �
, for all nonnegative n and

cj in C, as well as limits as n-N. Here, Tj,i are in S or in S*. The summation mentioned

earlier is often abbreviated using {Tj,i, Tj,i*}
n, n5 0, 1, 2,. . . and Tj,i are in S. Moreover, for

n5 0, this means the identity operator is also in the algebra generated by S.
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One of the most trivial examples is for two by two complex-valued matrices over the
complex field. If S5 {I}, then B5 {I}n; it consists of only {c I}, for all values of c complex
valued. In this case, the result is all the diagonal matrices with the same scalar at each
entry, that is, all scalar matrices.#

8.10 The Gelfand formula

Spectral radius formulas are given for bounded operators T, in Banach algebra: Here, r
(T) is defined for T in B. It is r (T)5 sup {|c|, such that c is in the spectrum of T}. It can
also be found using Gelfand formula: Take inf:Tn:1/n for n5 1, 2, 3,. . ., or by taking the
limit as n goes to infinity of:Tn:1/n5m, nonzero. In any case, the series

PN
n50 Tnzn½ � con-

verges absolutely for|z|,1/m (Murphy, 1990).

Example 8.24:

As an illustration of the Gelfand formula, consider the carrier set consisting of all 2 by 2
matrices with the usual operations within the matrix Banach algebra. The matrix M is
given below along with M5 and M7. The eigenvalues for M are 21 and 5; this constitutes
the point spectrum of M.

M5 j1 2j
j4 3j

M5 5 j1041 1042j
j2084 2083j

M7 5 j26041 26042j
j52084 52083j

For the three matrices above, the corresponding roots of their norms are given along with

two other instances. The spectral radius of M is 5, and for larger values of n in :Mn:1/n, the

value 5 is being approached: :M:5 5.391, :M5:1/55 5.053, :M7:1/75 5.037, :M15:1/155 5.017,

and :M25:1/255 5.010.#

For any C* algebra, if T is self-adjoint then the spectral radius rðTÞ5limn-N:T2n:2
2n

. This

follows using the self-adjoint property, :T2:5 :T* T:5 :T:2. Then by mathematical induction,

for any positive integer n, it follows that :T2n:5:T:2
n

, and so :T2n :2
2n

5ð:T:2
n

Þ22n

5 :T:.
This result can be used in showing that a norm in a C* algebra must be unique
(Arveson, 1976).

The concluding structure is a Banach algebra. As mentioned previously, Banach alge-
bras are understood to be unital and associative, in this document, unless specified other-
wise. This is a famous example where the Banach algebra has no unit element.

Example 8.25:

This is an illustration of a Banach algebra that is commutative, but has no unital ele-
ment. Consider all the complex valued, absolutely integrable functions in L1. In this case,
let BINE (f, g)5 convolution of f and g. So, conv(f, g)(t)5

ÐN
0 f(s) g (t2s) ds. There is no

function in L1 that is an identity. However, for generalized functions in the operational cal-
culus, the delta function acts as an identity. Use of the delta function is illustrated in
Section 6.3 for the tunneling effect.#
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C H A P T E R

9

Von Neumann algebra

9.1 Operator topologies

Weak operator topology (WOT): For all v, w in H, Tk - T, k5 1, 2, . . . WOT means
that the convergence is defined with respect to the inner product, that is, as k goes to
infinity, ,v, Tk w. - ,v, T w.. On the other hand, strong operator topology (SOT), SOT:
Tk - T, means for all v in H, that is, k goes to infinity, the norm :Tk v 2 T v: - 0. This
type of convergence is likened to point-wise convergence in function spaces. The strongest
convergence is in the norm topology: Tk - T, which means that for k going to infinity the
operator norm :Tk2 T: - 0. This type of convergence is likened to uniform convergence in
function spaces. Norm convergence implies strong operator convergence, which itself implies
weak operator convergence. For T and Tn in B (H), for n5 0, 1, 2, . . ., the sequence of
inequalities prevail; |,v, (Tn 2 T) w.| is less than or equal to :(Tn 2 T) w: :v:, which is
less than or equal to :Tn2 T: :w: :v:. This shows that the norm convergence implies SOT,
which in turn implies WOT convergence. The converse of these statements is false, and they
are illustrated in the next few examples.

Example 9.1:

Consider the Hilbert space, H5 l2. Let the isometry Tn map a sequence (v0, v1, v2, . . .)
into a new sequence with zeros in the first n tuples, and right shifts the original tuples
starting at the n1 1st tuple. That is, Tn(v0, v1, v2, . . .)5 (0, 0, . . . 0, v0, v1, v2, . . .). Also con-
sider the projection operator Pn, which just replaces the first n tuples of any vector w in l2,
with zeros. That is, Pn(w0, w1, w2, . . .)5 (0, 0, . . . 0, wn, wn11, . . .). Then using any vectors
w and v in l2, the absolute inner product |,w, Tnv.|5|,Pn w, Tnv.|. But this quan-

tity is less than or equal to :Pn w: :Tnv:5 :Pn w: :v: - 0, as n - N, because

:Pnw:2 5
PN

k5n jwkj2-0 as k - N. So Tn converges to zero in the WOT. However, as

mentioned earlier the operator T is an isometry, :Tnv:5 :v:, for all n and any v in H, so

it does not converge in the SOT. In general, weak convergence does not imply strong
convergence.#
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Example 9.2:

Strong convergence does not imply norm convergence. To see this, let the carrier set
again be the Hilbert space, H5 l2. Also use the projection operator Pn, which just replaces
the first n tuples of any vector w in l2, with zeros. That is, Pn (w0, w1, w2, . . .)5 (0, 0, . . . 0,
wn, wn11, . . .). :Pn w:2 - 0, as n - N, since

PN
k5n w

2
k-0. This shows SOT. In this case,

there is no norm convergence. For any m . n, consider (Pn 2 Pm) (w0, w1, w2, . . .)5 (0, 0,
. . . 0, wn, wn11, . . . wm, 0, 0, . . .). Then, there is a vector u in l2, such that (Pn 2 Pm) u5u.

As a consequence, :Pn 2 Pm:5 1, and therefore Pn is not a CS and so it does not converge

in the norm.#

9.2 Two basic von Neumann algebras

A von Neumann algebra is often denoted as a W* algebra. It is a star algebra of
bounded operators on a Hilbert space, which is closed under the WOT and contains the
identity operator. Two famous examples of a W* algebra are the ring of essentially
bounded measurable functions, LN(R). It is a commutative von Neumann algebra consist-
ing of elements acting as point-wise multiplication on the Hilbert space of L2 functions.
The second example consists of all bounded operators on a Hilbert space of dimension
greater than one. This algebra is noncommutative. Proofs of these can be found in
Jones (2010), also, see Nelson (2017).

Brief remarks will be given only to illustrate some concepts needed in the proof of the
first result mentioned earlier. This proof shows that the structure is a von Neumann space.
First, a sigma finite measure (X, Ω, μ) is assumed in the proof. This structure is defined in
Appendix A.2. Also needed is the set M5LN(R), which is the normed vector space of

essentially bounded measurable functions on R, with essential supremum norm :f:N.

This norm is equal to inf {N, nonnegative N, such that | f(x) | is less than or equal to N,
everywhere except on a set A in X, such that A has measure zero, that is, μ(A) is zero}. An
example of this norm follows.

Example 9.3:

As an instance of :f:N norm, consider the function f, where f: R - R, and f(t)5 zero
except that f(t)5 1/ t in the open interval (2, 4), along with the assumption that f(4)5 5.
Then :f:N5 1/2, because point four is of measure zero and does not matter using
this norm.#

Also indicated in the proof of the von Neumann algebra involving multiplication on
the L2 space is the use of bounded functions in L2. Here, an embedding of LN(R) -
B (L2 (X, μ)) is established with an image of a von Neumann algebra in B (L2 (X, μ)). In
this case, μ is the Lebesgue measure. This space consists of all functions that are bounded
and also absolute square integrable. Not all functions in L2 are bounded, as the following
example illustrates.
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Example 9.4:

Use the sequence of functions, on the real line, fn(t)5n1/2, for t in the interval,
(n, n1 1/n), n5 1, 2, 3,. . ., and zero elsewhere in R. The functions fn(t), are in
B (L2 (X, μ)). However, the limit of this sequence as n goes to infinity is not in
B (L2 (X, μ)), even though it is in L2 (X, μ), with value one.#

9.3 Commutant in a von Neumann algebra

The von Neumann algebra A consists of a unital star subalgebra of the bounded opera-
tors in a Hilbert space. So, I is always in A along with the adjoint of any element of A. The
von Neumann algebra is closed in the weak operator topology. This differs from a C* alge-
bra. A C* algebra is closed in the norm topology. The commutant A’ is also a von
Neumann algebra. The commutant A’ was described and illustrated in an earlier section
involving matrices. Here, A’5 {v in B (H), such that v w5w v for all w in A}.
Additionally, the intersection of A and A’, Z(A), is a von Neumann algebra called the cen-
ter of A. Whenever Z(A)5A, A is said to be abelian. The double commutant is A’’5 (A’)’.
For T, a bounded operator in Hilbert space H, a double commutant can be found from the
generating set, {T, T*}n, n5 0, 1, 2,. . . . This is a subset S of the C* algebra A, which con-
tains the identity T05 I. It is the smallest C* algebra containing S and is found by taking
the scalar products, sums and products as well as sums of products involving T and T*.
See Section 8.9 for an example of generating sets. The von Neumann double commutant
theorem states that when A is a subset of B (H), which is unital and a star subalgebra of B
(H), then A is strongly dense in Av (Dixmier, 1981).

Example 9.5:

Consider the double commutant of T in the Hilbert space H5C2 given below. It results
in all two by two complex-valued matrices over the complex field C. Here, T is given
along with T*.

j0 1j j0 0j
j0 0j j1 0j :

Together with the identity I, the quantity {T, T*}n represents all scalar multiples, sums,
products, and linear combinations of these quantities, as well as the strong operator
closure of all these entries. This results in the algebra of two by two matrices over the
complex numbers.#

The trace Tr, in the von Neumann algebra V, is a subalgebra of B(H) for positive self-
adjoint operators. It involves V1 5 {A, such that A in V and ,v, Av. is greater than or
equal to zero for all v in H.}. The trace on V (Nelson, 2017) is Tr: M1 - [0, N], such
that:

1) Additive: Tr(A1 B)5Tr(A)1 Tr (B), for A and B in V1 .
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2) Homogeneous:: Tr (c A)5 c Tr (A) for A in V1 , c greater than or equal to zero.
3) Faithful: Tr (A)5 0 implies A5 0.
4) Normal: For a monotonic increasing sequence Ak in V1 converging in operator norm

to A also in V1 , then Tr (Ak) converges to Tr (A).
5) Semifinite: Tr (A)5 sup {Tr (B), such that B is in V1 , Tr (B) is finite, A2 B is greater

than or equal to zero} for all A in V1 .
More generally, for A not necessarily positive

6) Tracial: Tr(A A*)5Tr (A* A) for A in V.

Example 9.6:

Let the von Neumann algebra be V5B(H) and A in V1 , then a trace function for V uti-
lizes an ON basis for H, {en}, n5 1, 2,. . . . Tr (A)5 sum

PN
n51 , en;Aen. . Any other trace

is of the form c Tr (A) for c . 0.#

Example 9.7:

Consider the Hilbert space H5Cn, and let Mn(C) be the set of all nxn complex matrices
constituting the von Neumann algebra B(H). The trace Tr: Mn(C) - C, where for A in Mn

(C), then Tr(A)5 sum
Pn

j51 Ajj, where the Ajj are diagonal elements in A. Using the stan-

dard basis {e1, e2n, . . ., en} in Mn(C), the Tr(A)5 sum,
Pn

j51 , ej;Aej. . For any ON basis,

{f1, f2, . . ., fn} in Mn(C), the Tr(A)5, fj, Afj .. Let U be a unitary matrix sending column

vectors ej to fj, that is, Uej5 fj, j5 1, 2,. . ., n. Then Tr(A)5 sum,
Pn

j51 , fj;Afj. 5 sumPn
j51 ,Uej;AUej. 5Tr Að Þ5 sum

Pn
j51 , ej;U �AUej. 5Tr U �AUð Þ5Tr AUU�ð Þ5Tr Að Þ.#

9.4 The Gelfand transform

For any Banach algebra A, over C, let Δ be the space of all multiplicative linear functionals
on A. These are also called the characters of A. The meaning is that the linear functional T is a
nontrivial algebra homomorphism, T: A - C. It has the property that T(v � w)5T (v) T (w),
for all v and w in A. The set of all these multiplicative linear functionals on A form a locally
compact Hausdorff space in the weak * topology. Additionally, this set is compact, because it
is assumed that the identity element I is in A. The compact Hausdorff space Δ(A) is called
character space. Let C(Δ(A)) be the algebra of all complex-valued continuous functions in Δ.
The Gelfand transform is G: A - C(Δ), where v - G (v), G (v) is in C(Δ) and is defined as
G vð Þ5 v̂, where x̂ Tð Þ5T vð Þ, for all T in Δ.

The algebra of complex-valued continuous functions in Δ that vanish at infinity is a
subalgebra of C (Δ) and is denoted by C0 (Δ). The range of the Gelfand transform is con-
tained in C0 (Δ). The GNS construction is introduced in Section 8.8. It is extended to all
commutative C* algebras A, over C with the help of the Gelfand formula. In this case, A is
* isomorphism to C0 (X) for some compact Hausdorff space X. Additionally, the Gelfand
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transform G is a * isomorphism between A and C0 (Δ). When there is no identity in the C*
algebra, the Hausdorff space need to be only locally compact. This is a result of the
Banach-Alaoglu theorem (Narici and Beckenstein, 2011). The Gelfand transform is the
backbone of numerous transform methods involving absolutely integrable functions. A
couple of examples follow.

Example 9.8:

Consider, the set A consisting of all absolutely integrable functions on the real line.
Integration is with respect to the Lebesgue measure. This space is denoted by L1(R). Using
point-wise addition and multiplication involving the convolutional operation, A becomes
a C* algebra without an identity function. In any case, it is also called a group algebra.
The convolution operation is quite similar to the ones defined using bound matrices; how-
ever, an integral replaces the summation signs in the present situation. For f and g in

L1(R), the multiplication is f , g (t)5
ÐN
x52N f (x) g (t 2 x) dx. The Gelfand transform in

this case is the Fourier transform. For f in L1(R), this transform results in a function F (ω)
with complex values, namely, F (ω)5

ÐN
x52N f (x) e2ixω dx It is uniformly continuous and

has the Riemann Legesgue property, which is F (ω) - 0 as |ω| - N. This is consistent
with the Gelfand transform resulting in a function in C0 (X). That is a continuous function
that goes to zero as the argument tends to plus or minus infinity.

A more in-depth treatment of the Fourier transform and its properties are provided in
Example 19.10, in the context of reproducing kernel Hilbert spaces.#

Example 9.9:

Let A consist of all absolutely integrable functions on the nonnegative real line. Again,
integration is with respect to the Lebesgue measure. This space is denoted by L1(R1 ).
Using point-wise addition and multiplication being the convolutional operation, A again
becomes a C* algebra without an identity function. The convolution of two functions in
this space is f , g (t)5

ÐN
x50 f (x) g (t 2 x) dx. The Gelfand transform in this situation is

the Laplace transform involving the variable s. This scalar is complex-valued with real
part greater than or equal to zero. Here, L (s)5

ÐN
t50 f (x) e2st dx. The result is an analytic

function in the region of absolute convergence.#
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C H A P T E R

10

Fiber bundles

10.1 MSA for the algebraic quotient spaces

In the MSA description of an algebraic quotient space, there exist four sorts; these are
VECT, SUBV, SCALAR, and COSET. As usual, SCALAR refers to the field, for instance, the
real or complex numbers, as well as the quaternion skew field. VECT refers to a vector space,
and SUBV indicates a fixed subspace within VECT. Finally, COSET is the name of all vectors
within the quotient space. Actually, the vectors v in COSET will consist of equivalence classes
and are indicated by [v]. The quantity v within the brackets can be considered as a coset leader
and will be described more thoroughly later. The actual signature sets are exactly as before
when describing vector spaces and scalars. Additionally, all the equational identities for a
vector space also have to hold. In order to compress notation, represent the sorts:

VECTOR by V
SCALAR by S
SUBV by N

Utilize symbols representing operator names:

V-ADD by 1
V-MINUS by 2 , In the following, 2 is used as a binary operation instead of writing1 (2 ).

An equivalence relation as described in previous chapters is an RST relation. Here it is
defined on V by saying v is related to w whenever v2w is in the subspace N of V. The
subspace N is arbitrary and not empty. The relation can also be described as follows: v is
equivalent to w whenever v5w 1 n, where n is in N. It is denoted by the equivalence
sign, vBw. This motivates the notation for a coset, [v]5 {v 1 n where n is in N}, and in
this case, from above, [v]5 [w]. Moreover, [0]5 {n is in N}. So, all vectors in N act like
ZERO. The quotient space V/N is defined as the set of all equivalence classes caused by
the relation B on V. It is also the space consisting of all the cosets, that is, V/B. The quo-
tient space is itself a vector space when addition and scalar multiplication is defined as
given below (Halmos, 1974). However, first make an abuse of notation by letting:

For COSET, use [v], [w].
For SCALAR, use a in S.
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For V-ADD, use 1 , for elements or vectors in V.
For S-MULT in V, use � ; this multiplication involves scalars in S and elements in V.
For V-ADD, use 1 0, for elements in COSET.
For S-MULT, use � 0, for scalars in S and elements in COSET.

Two closure operations are provided next. Also, see the polyadic graph in Fig. 10.1A.
Here, all four sorts appear; however, only some polyadic arrows are shown for V-ADD
and S-MULT involving V, N, COSET, and S. The subspace N should be in the interior of
V, but it is depicted separately in order to illustrate the operational names in a clear
fashion. In any case, the closure requirements are as follows:

1. Homogeneous: a � 0 [v]5 [a �v].
2. Linear: [v] 1 0 [w]5 [v1 w].

In this figure, it is depicted that when two vectors in the subspace N are added together,
the result is the zero equivalence class in the quotient space. So the two vectors map into [0] in
COSET. When a vector from N and another vector from V get added together, the result is a
coset in COSET the quotient space. Also illustrated in this diagram is a scalar a; multiplying an
element [v] in the COSET, that is, a� 0 [v], the product is in COSET. Additionally, the result is
given by criteria (1) above a� 0 [v]5 [a� v]. Also in this diagram, it can be seen that two cosets,
say [v] and [w], in the quotient space are added; the sum is again a coset. The sum can also be
found by referring to criteria number (2) above [v] 1 0 [w]5 [v1 w].

Example 10.1:

Use the carrier set R2 for the sort VECTOR, and use R for the sort SCALAR.
Additionally, let the carrier set for subspace sort SUBV consist of vectors on a 45-degree
line in the x, y plane. In Fig. 10.1B, there is an illustration of SUBV, the subspace N, along
with a typical coset, consisting of a parallel line, to the right of N. Two vectors on this line
are v5 (1 0)0 and w5 (0 �1)0. The prime in this expression indicates matrix transpose, so

+

+

+

+

'

'

N
V

SCOSET

COSET

V-ZERO

(A) (B)

LINE

[v] = [w]

Y N
v-w

X

R2

0
-1

1
0

v =

w =

FIGURE 10.1 General and specific algebraic quotient spaces. (A) Mappings in quotient space, (B) quotient
space, line in plane.
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that these two vectors are column vectors. In any case, the difference between these two
vectors is a vector in N. This vector is illustrated in the diagram, and the difference vector
is located at (1 1)0. In this case, cosets are all affine spaces, that is, lines parallel to N.#

10.2 The topological quotient space

In topology, the quotient space is also defined by using equivalence classes as in the algebra
described in the previous section. The set X used in the topological quotient space can be any
set; it need not be a vector space. The topology Tx consists of a collection of subsets of X, called
open sets. They are such that the empty set and the whole set X are in the topology along with
the finite intersection as well as the arbitrary union of open sets. Repeating the requirements,
Tx determines the sets that are open in the topology on X. It is such that:

1. Both X and the empty set φ are in Tx.
2. The union of any number of sets in Tx must be in Tx.
3. The finite intersection of any sets within Tx must also be in TX.

The quantity Tx is called the topology on X, and the topological space is denoted by
(X, Tx) (Munkres, 1999). From an MSA perspective, Tx can be viewed similarly to MSA
describing a sigma field, as indicated in Appendix A.2. Namely, in the present case, there
exist two sorts, POWX, and OPEN. For a concrete example, POWX is the name for the
power set 2X. Additionally, OPEN is symbolic for all the open sets in the topology. Finally,
a single signature set containing a unary operation Tx finalizes the high view of a topolog-
ical space in the MSA methodology. Here, Tx: 2X-OPEN, so Tx is a partial identity func-
tion in this case. It selects which subsets of X are to be open always obeying the
constraining equations (1) � (3) above.

The quotient space (Y, Ty) is a topological space obtained from another topological space
(X, Tx) using an equivalence relation along with the quotient topology Ty. The latter topology
is the finest topology making the onto canonical projection map p: X-Y continuous. So, a sub-
set U is open in Y when and only when p21 (U) is open in X. This defines the topology Ty
on Y. It does not say that p is an open map, that is, if V is in Tx, which is an open set in X,
then p(V) need not be an open set in Y. The process of making p continuous is the opposite of
that used in fiber bundles. In the latter case, it is the coarsest or initial topology. Here, it is the
final topology. Again, the quotient map, p: X - Y, is always:

1. Onto.
2. Continuous.
3. For any set A in Y for which p21(A) is open in X, then A must be open in Y.

The criteria in number (3) always hold for a canonical mapping. Utilizing the quotient
topology, whenever an open set A in X is a union of inverses of equivalence classes, then
A is called saturated. Equivalently, A is saturated with respect to p, which means that p21

(U [.])5A. In this case, p(A) is open in Y, so for this situation p is an open mapping, but it
is not an open mapping in general.

17310.2 The topological quotient space

Many-Sorted Algebras for Deep Learning and Quantum Technology



Example 10.2:

Use X5R with the usual topology. Let the points r and s in R be related, rBs, iff the dif-
ference r-s is an integer. As a consequence, the quotient space Y5R/B will be homeomor-
phic to the unit circle. In this case, the quotient space Y5R/B5 {{01/2 n, for n in Z},
{t1/2 n, for n in Z}, such that t in (0, 1)}}5 {[0], [t], such that t in (0, 1)}. Refer to Fig. 10.2.
Here, the map p takes a real number r and maps it into equivalence classes [r]. In the quotient
space Y, an open set A is illustrated in this diagram. Also in this diagram, the inverse opera-
tion p21 (A) maps into open sets in R. These infinite number of sets are open intervals of the
same size and disjoint, all an integer apart.

Let f0: R-S1, where S1 is the unit circle, and use the parameterization, f0 (t)5 (sin(2πt),
cos(2πt)). This function is continuous, and moreover, it is an open mapping. The latter con-
dition is most easily seen from complex analysis. Nonconstant holomorphic maps are
open maps, and when restricted to the real axis, it is an open mapping. Additionally, this
mapping is a local homeomorphism, which is always an open mapping (Rudin, 1966).
Define f: Y-S1, by f([t])5 f0 (t). The function f0 at all integers always provides the same
value, thereby showing that f is well defined. In the figure, note that f0 (.)5 f (p(.)); this
equation will be used later.

The function f will be shown to be a homeomorphism. It is bijective since it is onto and
1�1. Onto follows by choosing any point, in S1; it is of the form (sin(2πt0), cos(2πt0)). The
value of t0 used here is a point t0 in R. However, [t0] in Y corresponds to all points t0 1 n in
R, for n in Z showing f is onto. For 1�1, if [t1] does not equal [t2], then t1 does not equal to
t2 1 n, where n is an integer. As a consequence, sin(2πt1) does not equal sin(2π (t2 1 n))5
sin(2πt2); accordingly, f([t1]) does not equal f([t2]). Next, since p is a quotient mapping, it is
continuous. Also, f0 is continuous, and so f021(U) is open for U open. Since f0215
(f (p))215p21(f21), applying this to an open set U in S1, f021(U)5p21(f21)(U)) is open,
which implies that f21(U) is open since U is open in Y when and only when p21 (U) is

. . . . . .

. . .. . .

r X
P-1(A)

P-1Y=R/~

P

-2 2 3-1 0 1

[r]
[t]A

RCC

t +/- η, ηєZ

f = f' (P-1(∙))

f' =(Sin (2�t), Cos (2�t)

S'

Onto, Continuous, Open
Mapping

P Quotient Map
Onto, Continuous
Ɐ AcY э P-1(A) Open
InX  A Open In Y=>

FIGURE 10.2 Homeomorphism of quotient space of reals.
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open in X; this shows that f is continuous. For a homeomorphism, the only thing left to
show is that f is an open mapping. However, this does follow since f0 is an open mapping.
Since f (.)5 f0 (p21 (.)), apply this mapping to U an open set in Y. Then, f (U)5 f0 (p21 (U)),
this is an open mapping since p is continuous, and f0 is an open mapping. Thus, the
homeomorphism of Y and S1 is established.#

Example 10.3:

Consider the unit interval X5 [0, 1] with the subset topology Tx, induced from the real
line. Use the equivalence relation on X, 0B1. This means that 0 and 1 are glued together.
Let q: X-[0, 1]/B5Y be the canonical projection map. Here, [0, 1]/B 5 {{0, 1}, {t}}, and
{t} are singleton sets for every t in (0, 1). Accordingly, for any t in (0, 1), q(t)5 [t], but for 0
or 1, q(0)5q(1)5 [0]5 [1]. The quotient topology is employed; here, U is open in Y iff
q21(U) is open in X. Since 0 and 1 are the same, it seems that this structure is like a circle.
In fact, Y is also homeomorphic to S1. To see this first, let f0: X-S1, where f0 (t)5 (sin(2πt),
cos(2πt)); it is a continuous map. Define f, where f([t])5 f0 (t), for t in (0, 1) and f([0])5 f0

(0)5 f0 (1). Refer to Fig. 10.3.
To show that f: Y-S1 is onto, take a specific point in S1, say c5 (sin(2πt0), cos(2πt0)),

then the point t0 in X is such that f0 (t0)5 c. This means that [t0] in Y is such that f ([t0])5 c.
To see that f is 1�1, if [t1] does not equal [t2], then t1 differs from t2, and sin(2πt1) is not
equal to sin(2πt2), because the only time they can be equal is when t1 and t2 differ by an
integer, that is at the end points of [0, 1]. Since they are the same in the equivalence class
Y, 1�1 is proven. The homeomorphism for f follows by using a theorem from topology
(Dugundji, 1975). Here, the continuous bijective function f from a compact space Y to a
Hausdorff space is a homeomorphism. Note that S1 is a Hausdorff space because R2 is a
Hausdorff space. The quotient space Y5R/B is compact. This can be seen since it is the
onto the continuous image of a compact set, namely X is compact, and the homeomor-
phism is shown.#

10 ¼

¼

½

½

q

q
Y

f

¾

X = [0, 1]     R

S'

f' = (Sin (2�t), Cos (2�t))
Onto, Continuous

[0] = [1]

∩

FIGURE 10.3 Homeomorphism involving circular interval.
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Example 10.4:

The mapping q: (0, 1]-S1, where q(t)5 (sin(2πt), cos(2πt)) is not a homeomorphism, since
q21 is not continuous. To show this, consider the distance in R2 between the point (0, 1) and
(sin(2πt), cos(2πt)). It is the square root of [sin(2πt)21 (12 cos(2πt))2]5 2 (1 2 cos(2πt)). So for
2 (12 cos(2πt)) less than delta, for t about zero, this should imply that |t21| is less than epsi-
lon, but there is a gap between t and one. More quickly, to show that they are not homeomor-
phic, use the fact that S1 is compact, but (0, 1] is not compact in R. #

Example 10.5:

Again consider the real line with the usual topology. This time, consider Y5R/B,
where for all x and y in Z, xBy means x5 y. However, for all nonintegers, that is, for all x
not in Z, xBx. These points are singletons. The resulting quotient space is illustrated in
Fig. 10.4, along with the quotient map q. The resulting structure is an excellent example of
a nonfirst countable space. The point [0], which represents all the integers, does not have a
countable basis. Let {Un}, n in N, be a collection of neighborhoods of [0]. It will be noticed
that the open set U defined below will not contain any Un. This result will be seen by find-
ing open intervals U0n containing individual integers n5 0, 1/2 1, 2, . . . where the Un0

are proper nonempty subsets of q21(Un). Letting U5q (union of all Un0), then no Un can
be in U, for if it were, then Un0 cannot be a proper subset of q21(Un).#

10.3 Basic topological and manifold concepts

Manifolds M are always special topological spaces of the Hausdorff type. These spaces
are such that every distinct two points must each be contained in distinct open sets dis-
joint from one another. Moreover, the Hausdorff space must everywhere be locally

.  .  .
.  .  .
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FIGURE 10.4 Nonfirst
countable space.
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homeomorphic to Rn. So, this means it appears to be locally like a Euclidean space, even
though the overall structure might be highly nonlinear. A homeomorphic map is a bi-
continuous, one-to-one onto structure-preserving map. Finally, most of the time, M is sec-
ond countable, which means there exists a countable basis that is a countable union of
open sets. This feature is assumed from here on. Second, countable implies first countable;
the latter topological space needs to only have local countable bases. An illustration of a
nonfirst countable space is given in Fig. 10.4. This example is pathological; moreover,
Euclidean space is both a Hausdorff space and a second countable space.

A manifold M is always associated with an atlas A. This is a collection of open sets
called charts, denoted by Ua. These charts describe regions within the manifold.
Additionally, their union covers M. So in an atlas every point of the manifold must have
coordinates within a chart. Accompanying these charts within an atlas are always func-
tions, fa. The functions are such that fa: M-Rn, where fa and fa21 are homeomorphisms.
The chart is called the coordinate domain, and fa is called the coordinate map. Often an
atlas along with the corresponding manifold is called smooth when fbfa21 has k continu-
ous derivatives, k5 1, 2, . . . . Accordingly, they are in Ck. More often than not, smooth
means infinitely differentiable. Within a chart, the various group structures will be viewed
as an n-dimensional vector space with local coordinates. For the local coordinate system,
the identity plays a special role to be seen in later chapters. Usually, a global coordinate
system for the whole manifold is not feasible. For instance, using the surface of a sphere,
only local representations can be exhibited.

Two charts Ua and Ub, with nonempty intersection, are in the manifold M. They are
within a fixed atlas and are compared using a transition function T. See Fig. 10.5. For an
atlas to be usable, the overlapping regions must not differ too much. The transition func-
tions such that if fa: Ua-Rn and likewise fb: Ub-Rn, then Tab5 fb fa21, that is, Tab: fa
(Ua intersect Ub)-fb (Ua intersect Ub). Note that T is also a homeomorphism since both
fa and fb are homeomorphisms. There can be several atlases for a manifold. A maximal
atlas is one which is not a proper subset of another atlas. For every smooth atlas A on M,
there exists a unique maximal atlas on M. A differential structure, which is a globally
defined differential structure, on a manifold is a maximal atlas (Lee, 2006).

A connected topological space T cannot be the disjoint union of two or more nonempty
open sets. When a space is not connected, in these cases, there are subsets within the space

(M, Tm, A) M
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Fb(Ub)
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Fb(P)

R
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(p1,p2,...,pn)
f,fa,fb,T Homeomorphisms
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Tab
P

P

OPEN

f

n

Rn

Rn

M-MANIFOLD FIGURE 10.5 Manifold with two charts
and transition mapping.
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that are connected. These are called connected components. Connected components are
maximally connected subsets of a topological space T. A different concept of connectivity
is path connection. A path-connected space T means that there is a continuous function
f: [0, 1|-T, such that for x, y in T, f(0)5 x, f (1)5 y. The path connected implies connected.

A topological space is compact whenever every open cover has a finite subcover.
A maximal compact subgroup is a compact subgroup that is the largest. In Rn,
compactness can be stated more easily: Here, every closed and bounded subset is compact;
this is the Heine-Borel theorem. Also, compact manifolds are of special importance since
there exist atlases with only finitely many charts. This is because in a compact group,
every open cover has a finite subcover and charts are open sets.

10.4 Fiber bundles from manifolds

Fiber bundles are frequently comprised of manifolds held together by continuous func-
tions. The manifolds always include the base B, and the fiber F, which is intuitively like
strands or sticks of arbitrary length. Together, they create the total space E. For instance, if
B is the circle S1, place match sticks or line segments of intervals (0,1), perpendicular to
and upright surrounding the circle. This represents the fiber F, and accordingly, a cylinder
E is produced. It appears like a cylinder or a can with walls constituting the fiber and the
bottom being the base. Here, the total space E5B x F. A different structure results, called
the Möbius band by using a similar technique. Begin with the same base B, the circle.
Again use sticks or intervals (0,1) surrounding the base circle to create the fiber F.
However, now employ a gradual twist of 180 degrees while placing the line segments or
sticks on the base. This is illustrated in Fig. 10.6. The twist is not performed at a single
point of the circle; rather, it is uniformly distributed throughout the circle. However, the

Circle Base

180 FILP

FIGURE 10.6 Möbius stick
figure.
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diagram provided does not illustrate this very well. The twisting can be viewed as a twist-
ing of the local charts. The two structures, the cylinder, and Möbius strip are similar. They
utilize the same base and about the same amount of fiber for construction. But the end
results are quite different due to parameterization.

The Möbius structure is locally a product space, but it is not globally a product space as
is the cylinder. Intuitively, the complexity of parameterization of the Möbius bundle can
be seen using horizontal transport. The illustration provided in Fig. 10.7 is helpful in
describing this phenomenon. Assume that the base is the horizontal unit circle, and ini-
tially a point u on a vertical fiber is located at height 1/3, as measured from the base. Here
it is assumed the fibers are 1 unit long, and horizontal angles are measured in degrees
counterclockwise. The coordinates of u initially are (0, 1/3). Although the fibers are of the
same length, they no longer stay vertical due to the flip as the angle changes. However, all
measurements are made along the fiber from the base. If point u is transported by a
change of angle of 360 degrees, point u is now at height 2/3 and located at point w. The
trace for the movement of point u is illustrated in the figure.

A solid line with arrows is used when the sides of the Möbius strip can be observed in
the front view. Broken lines with arrows are used for portraying hidden views. By rotating
another 360 degrees, the point u does return to its original position. Equivalently, let w
have initial coordinates (0, 2/3), and restrict the angle to stay between zero and
360 degrees. The trace is given again as w is transported. This is depicted in the diagram
this time using solid dots for observable traces and nonsolid circles for hidden traces. See
Fig. 10.7. Note that the traces of the points u and w must intersect at some point. It follows

End

W = (0, 2/3)

U = (0,1/3) 

Start

FIGURE 10.7 Möbius
strip.
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that the parameterization is not global. The point where the paths cross the parameteriza-
tion is not well defined.

Among the largest differences between the cylinder and the Möbius fiber bundles are the
structure groups that are employed for construction. Transition functions within these groups
are smooth and determine how the fibers are held together. These functions are used to
smoothly change the parameterization when needed. For the Möbius strip, the transition func-
tions are used to separate two possible parameterizations. Intuitively, a change in parameters
occurs at the point where the paths intersect. All in all, these algebraic groups characterize the
fiber bundle and are described further in the subsequent sections.

In more detail, a fiber bundle is comprised of three sets: the total space E, the base space B,
and the fiber F. As previously seen in simple cases, E5B x F, that is, E is just the product
space. In this case, B is called the trivial bundle. Generally, there is a local continuous, onto
projection p: E-B. This map p is also an open map because projections of products are open
maps. Moreover, this map is also known as the submersion of the bundle (Phillips, 1967). In
more complex spaces, the map is involved; however, locally, it still acts like a projection, but it
usually is not 1�1. Similar to short exact sequences, fiber bundles are described by:

F-E�p-B

For any point x in B, p21(x) must be diffeomorphic to the fiber F. In general, local trivi-
alization occurs for any u in E; this begins with the projection p(u)5 x, where u is an ele-
ment of the fiber above x. A fiber bundle is a set of trivializations that cover the base
manifold. It is possible to use a map, h(u)5 (x, f), where for any open set U in B,
h: p21(U)-U x F. Let h0 be another trivialization: h0 (u)5 (x, f0) where h0: p21(U)-U x F.
When these two trivializations overlap, h and h0 are related to a transition function based
on x. An instance of this is illustrated in Fig. 10.9. For the overlap, the structure group G
for the fiber bundle has elements g, depending on x, such that f0 5 g f. This is a smooth left
action of G on F. Transition functions map fibers into fibers and are diffeomorphisms; they
are in the structure group. This group is a subset of all diffeomorphisms on F. Recall that
a trivial fiber bundle is a fiber bundle where E5B x F everywhere. Only one bundle chart
is needed in this case.

10.5 Sections in a fiber bundle

A section of a fiber bundle is an identity-type mapping from B to E. The section
includes points in F that are above point x in the base B, The projection p when applied to
points in the section restores the original base point x.

Example 10.6:

Refer to the Möbius fiber bundle given above and in particular to Fig. 10.7. The entire
continuous path in the transport for u in [0, 2π) is a section. In this case, it is assumed
there are no gaps in the path so that the projection of every point in the path restores the
entire base S1. In the figure, the start position is illustrated at the far end of the strip, and
the ending point is approached in the limit on top of the back of the strip.#
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Example 10.7:

This is a simpler example of a trivial fiber bundle when compared to the Möbius fiber
bundle. Consider R2 as the total space E. Let the base B be just the line R1, the x axis. Also
let the fiber be F5R1 placed orthogonal to the original line B, also parallel to each other,
and constituting a plane. This is a trivial bundle, that is, E5B x F. Intuitively think of the
base as the x-axis, and the fibers are strands along and all parallel to the y axis. Moreover,
if g: B-F, where g(x)5 x3, then g is a section. Accordingly, the projection map p(g)(x)
provides all points on B. This is illustrated in Fig. 10.8.#

10.6 Line and vector bundles

Bundles in general consist of sets of trivializations covering the base manifold within a
fiber bundle. Trivializations create bundles utilizing transition functions. Line bundles or
vector bundles of rank one have fibers that are one-dimensional complex or real vector
spaces. Additionally, the structure group acts linearly on the vector space. Rigorously,
they are defined by letting L and B both be smooth manifolds with a smooth onto projec-
tion p: L-B. For every x in B, the fiber F of L over x, that is, p21({x}), is a complex vector
space of dimension 1. As specified earlier, there is a trivialization for every x. There is an
open neighborhood U of x such that the diffeomorphism h: p21(U)-U x C. Furthermore,
for the projections p1: U x C-U, and p2: U x C-C, first let p(u)5p1(h(u)) for all x in U.

E Y

X

Fibers

F

Base B

P

y = x3 = g(x)

FIGURE 10.8 Sections in
a fiber bundle.
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In this case, p2(h(u)) is a vector space isomorphism of p21({x}) with C. Fig. 10.9 illustrates
some of these concepts.

Vector bundles have fibers that are real or complex n-dimensional vector spaces.
Additionally, the structure group acts linearly on the vector space. Transition functions
also act with n-dimensional operations on the fibers. These functions belong to subgroups
within GL(n, R) or GL(n, C); both groups are general linear groups and are described in
detail in the next chapter.

10.7 Analytic vector bundles

Let B be a complex manifold over C. An analytic vector bundle of rank n is a holo-
morphic map p: E-B, such that for any point x in B the preimage Ex5p21(x) has an
n-dimensional complex vector space structure. Here, Ex is a fiber. Additionally, the map p
is locally trivial. This means that for any point x in the base B there exists an open neigh-
borhood Uj, which contains x along with a bi-holomorphic map fj: p21(Uj)-Uj x Cn,
where the projection p1: Uj x Cn5Uj5p(p21(Uj)). Also, fj is an isomorphic mapping from
Ex onto {x} x Cn for every x in Uj, also called a trivialization of E over U. As mentioned
previously, the general linear group is involved. For any pair of trivializations fi and gj,
the mapping hij: Ui intersects Vj-GL(n, C) where hij(x)5 fi(gj21), but gj has a restricted
domain of {x} x Cn. This mapping is holomorphic and called transition functions for E
relative to the trivializations fi and gj. The transition functions satisfy the identities:

1. Inverse: hij(x) hji(x)5 I for all x in Ui intersect Uj.
2. Co-cycle Condition: hij(x) hjk(x) hki(x)5 I for all x in the intersection of Ui, Uj, and Uk.

Vector bundles E can be created using transition functions hij: Ui intersect Uj-GL(n, C)
where {Uk} is an open cover of B. This employs the gluing construction using Ui X Cn for
all I, thus obtaining E5 the disjoint union of (Ui x Cn)/B. Here, B refers to the equiva-
lence class (x, v)B(x, hij(x)(v)) for all x in Ui intersect Uj and v in Cn.

Example 10.8:

The trivial analytic vector bundle of rank n uses the projection map p1: B x Cn-B. For
the vector bundle E over B, let hij be the transition functions and {Uj} an open cover of B.

x
u

Base B

Open

U x C

Complex
vs L Line Bundle P

P-1

P-1h

FIGURE 10.9 Trivialization in a line
bundle.
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The dual bundle is E* defined by transition functions gij(x)5hij21(x), for all x in Ui inter-
sect Uj. For an open set U in B, a holomorphic section s over U is s: U-E, and
p(s(U))5U. A global section of E is a holomorphic section where U5B. In this case, all
such global sections form a vector space, denoted by Ho(B, E) (Chern, 1979).#

10.8 Elliptic curves over C

Elliptic curves are defined over several distinct fields. These carrier sets include the
reals, the rationals, and Galois fields, as well as the current application, the complex field.
Appendix A3 provides an introduction to the MSA involving the additive group structure
for elliptic curves involving the real field. Later chapters will utilize elliptic curves over
Galois fields for encryption purposes.

For an elliptic curve E, over C there always exists a lattice L, a subset of C that is unique
up to scaling or homothety. Homothety preserves dilations and contractions about a cen-
ter. For every lattice, there is an elliptic curve. More specifically, the elliptic curve is the
quotient space of C by a lattice. Going the other way, any quotient space of C by a lattice
is an elliptic curve. Additionally, there is a complex and analytic isomorphism g,
g: C/L-E (Silverman, 2009). This is the set of points on the elliptic curve in the complex
plane. It is an isomorphism of Lie groups. The uniformization theorem provides the
connection between elliptic curves over C and lattices.

Example 10.9:

The elliptic curve is the cubic, y25 x3 1 ax 1 b, where a and b are now complex num-
bers. Also, 4 a3 1 27 b2 is not zero, making the curve smooth. Let E5 {(x, y), where x and
y are in C and are points on the elliptic curve} union the point at infinity, N. In projective
space, N5 (0: 1: 0) (Coxeter, 1989).#

A lattice L is a discrete Abelian additive group of C. It consists of the points that inter-
sect the somewhat horizontal parallel lines with the somewhat vertical parallel lines. See
Fig. 10.10.

LATTICE OF INTEGERS
GENERAL LATTICE

(A) (B)

FIGURE 10.10 Two types of lattices.
(A) Square pattern lattice, (B) more gen-
eral lattice.
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Example 10.10:

The simplest lattice is L5Z[i] illustrated in Fig. 10.10A. It is defined as L5 {v5n1 mi,
such that n and m are in Z}. It follows that under usual complex field operations, this is
an additive Abelian group. A more typical lattice is illustrated in Fig. 10.10B. In general,
the parallelograms in a lattice are all of the same dimension and equally spaced.#

An isogeny h, of elliptic curves E1 and E2 is a nonzero holomorphic group homomor-
phism such that h: E1-E2, where g(0)5 0. When E15E25E, then the isogeny is called
an endomorphism from E into itself, and it is abbreviated as End(E). An endomorphism
ring on E is an endomorphism on E with addition being defined by the group structure
point-wise, and multiplication is defined as function composition. This is denoted by End
(E). An in-depth treatment can be found in Silverman (1994).

Example 10.11:

If for every p in E, g(p)5n p, where n is some point in Z, then this is an endomorphism on
E. This is called the multiply by n map. Consider, the elliptic curve E1, y

25 x3 2 x, and the
elliptic curve E2: y

25 x3 1 4 x Then, the mapping g: E1-E2, where (x, y)-(y2/x2, 2 y (1 1
x2)/x2), and h: E2-E1, where (x, y)-(y2/(4 x2),2 y (41 x2)/(8 x2)). Next, the coordinate image
under g will be substituted into the elliptic curve E2. That is, [2 y (11 x2)/x2]25 [y2/x2]3 1 4
[y2/x2], this quantity also can be written as follows: [y2 (11 2 x21 x4) x2]5 y61 4 y2 x4, when
x differs from zero. Writing this again gives the result: y45 x6�2 x4 1 x25 (x3 2 x)2. One
branch yields the elliptic curve E1. A similar conclusion would happen if the image of h was
substituted into the elliptic curve E1. The crux of all this is that h(g)(.) is a multiply by two map
from E1 into itself. Likewise, g(h)(.) is a multiply by two map from E2 into itself (Lin, 2021).

Example 10.12:

The map z mod(Z[i]-iz mod(Z[i]) is an endomorphism for y25 x32 x. Since g: (x, y)-
(2x, iy), substituting into the curve yields (i y)25 (2x)32 (2x), so y25 x3 � x, the same curve.
Notice that g4 is the identity map. However, g is not a multiply by n map. Because the order
of points (x, y) for the elliptic curve and for g, it is (2x, iy), they differ. To see that g4 provides
the identity map, apply the substitution (x, y)-(2x, iy) over and over four times. Thus, g4:
(x, y)-(2x, iy)-(x, 2 y)-(2 x, 2 iy)-(x, y).#

An elliptic curve E has complex multiplication (CM), which means that Z is not the
only endomorphism in End(E). The previous example is an illustration of CM. When E
does not have CM, then the endomorphism is an isomorphism, that is, g: E-E, g(p)5n p,
for fixed n in Z.

10.9 The quaternions

The quaternions can be described in various ways. They form a four-dimensional vector
space over the reals. Additionally, the quaternions form a skew field or a division algebra.
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It is also a normed, unital, noncommutative, associated algebra over the reals. Similar to
the complex number system, there is a conjugate operation acting in an analogous manner.
Indeed, for the quaternion q5 a1 bi 1 cj1 dk, the conjugate of q is denoted by q* and it
equals a2 bi2 cj2dk. Moreover, conjugation is an involution, that is, (q*)*5q and for
two quaternions (p q)*5q* p*.

A quaternion p is unital when |p|5 1. The most important unital quaternions are the
single unit quaternions: 1, i, j, and k. V-ONE5 1. The others obey the multiplication identi-
ties: ij5 k, jk5 i, ki5 j, ji52k, kj52i, ik52j, ii521, jj521, and kk521. Unlike con-
jugation in the complex field, conjugation for quaternions can be performed utilizing the
defining operations as given in the MSA for fields, along with the equational identities. In
this case, the quantity q to be conjugated equals minus one-half times the sum involving
all single unital quaternions. These unital quaternions multiply q on both sides, resulting
in the formula q*52(1/2) [1q11 iqi1 jqj1 kqk].

Example 10.13:

Given the quaternion q5 2 2 j 1 4k. The conjugate quaternion is q*5 2 1 j 2 4k.
However, utilizing operations within the skew field specification, the conjugate can again
be found. Thus, in a lengthy calculation, q*52(1/2) [(22 j1 4k)1 i(22 j1 4k)i1 j (22
j 1 4k)j 1 k(2 2 j 1 4k)k]. Now multiply by the left single quaternion, q *52(1/2) [(2 2 j
1 4k) 1 (2i 2 k 2 4j)i 1 (2j 11 14i)j 1 (2k 1 i 2 4)k]. Next multiply by the right single
quaternion, q*52(1/2) [(2 2 j 1 4k) 1 (22 2 j 1 4k) 1 (22 1 j 1 4k) 1 (22 2 j 2 4k)].
Finally, add everything together gives q*52(1/2) [2 4 �2j1 8k]5 2 1 j2 4k.#

The norm of p is :p:; it is usually written as |p|, and it when squared equals a2 1 b2

1 c2 1 d2. Being a division algebra, it is such that every nonzero element has an inverse
on the left or on the right. Thus, for p nonzero it follows that either pq21 or q21p5 1,
where q215 q*/:q:25 (a 2bi 2cj 2dk)/(a21 b21 c21 d2).

It will be seen that the quaternions have a group structure on the 3 sphere, resulting in
isomorphisms with the special unitary group SU(2), as well as similarities with the special
orthogonal group SO(3). These groups were previously mentioned in connection with the
Bloch sphere. Unit quaternions are isomorphic to the special unitary group consisting of
unitary matrices with determinant one. Integer or half-integer quaternions are also utilized
in describing symmetries in regular polyhedra.

Every quaternion p can be written as a real part po and a three-dimensional vector
part v. Here, v5 bi 1 cj 1 dk. A unit quaternion can be written as p5 cos(t) 1 v sin(t)
where |v|5 1 and t is in [0, 2 π). Similar to the complex field situation, the scalar part
of p5 (1/2)(p1 p*) and the vector part of p5 (1/2)(p2 p*). Let q5qo1 w, where w is
the vector part. Then, the product of the two quaternions p5po 1 v times q equals (po
qo 2 ,v, w.) 1 (po w 1 qo v 1 v x w). Here, the first set of parenthesis is scalar-
valued with , v, w . being the usual dot product in R3. The second set of parenthesis
contains the vector part of the product p q. The quantity v x w is the cross product in
R3. The final representation of quaternion q involves the complex numbers c1 and c2.
Write quaternion q5 c1 1 c2 j, where c15 a 1 bi and c25 c 1 di, then q5 a 1 bi 1 cj 1
dk as before.
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Example 10.14:

The quaternions Q, being an algebra among other things, can be made into a Lie
algebra LQ, where the Lie bracket is utilized. That is, use for p, q in Q the commutator:
[p q 2 q p]. In particular, the Lie algebra of derivations D is the Lie algebra R3. This is
shown below where the commutator is related to the cross product in R3, [p q 2 q p]5 2
p x q. Note that the center of LQ is the reals R, because for any real, say po and any
quaternion q, it follows that [p, q0]5qop2 qop equals zero.#

Scalars commute with quaternions. It is said that the real quaternions form the center of
the quaternion algebra. So R is also the kernel. Next, form the factor Lie algebra LQ/R. Take
the Lie bracket [p, q] using v and w as the vector parts of p and q. So p q2 q p5 (po qo2
,v, w.)1 (po w1 qo v1 v x w)2 (qo po2,v, w.)2(qo v1 po w1 w x v). Note that
the real part equals zero as well as all vector parts except for the cross product terms. The
result is 2 (v x w)5v x w2 w x v, as mentioned in the previous example.

10.10 Hopf fibrations

There are four different Hopf fibrations all solely involving spheres. The fiber F the
base B, as well as the total space E, all involve spheres. These four fibrations are denoted
using the schema:

F-E-B

S0-S1-S1

S1-S3-S2

S3-S7-S4

S7-S15-S8

The first fibration mentioned earlier involves a point S0, along with the unit circle S1,
and is illustrated below in the example. The second fibration makes use of complex num-
bers in deriving results for relationships between the fiber, the base, and the overall struc-
ture. The procedure is developed below while relating the fibration to the Bloch sphere.
See Section 10.11. The third fibration forms the contents of Section 10.12. In this case, qua-
ternions are employed in showing Hilbert space relationships between two qubits and
their possible entanglement. Finally, the last fibration employs octonions and is not
explained herein.

Example 10.15:

Pairs of antipodal points on a circle are mapped to a single point on a new circle for the
first fibration. The process is employed in two steps and is illustrated in Fig. 10.11.
The original points along with antipodal points are located in Fig. 10.11A. Pairs of points
are labeled j and j0, j5 1, 2, 3, 4, 5. The first operation is illustrated in Fig. 10.11B, to the
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right. Here, the original circle is twisted into a figure eight. In this diagram, antipodal
points are still identifiable, except for point 55 50. Secondly, folding the left half of
figure eight onto the right half yields the end result. It is a circle in which antipodal points
are mapped into single points on a new circle. This can be seen in Fig. 10.11C. In the lower
figure. The resulting space is the quotient space S1.

10.11 Hopf fibration with bloch sphere S2, the one-qubit base

This presentation is entirely based on Mosseri and Dandoloff (2001). It involves the
mappings, S1-S3-S2. Specifically, the Hopf fibration with base B5 S2 is a most important
example of a nontrivial fibration. In this structure, E5 S3 is fibered with great circles,
F5 S1. Due to the nontriviality, E is not equal to B x F everywhere, except as usual they
are equal locally. In terms of qubits, the fiber is identified with the uncertain global phase,
φ of a general qubit, eiφ |q.. The base can be thought to be the Bloch sphere with pure
qubits occupying its surface, and mixed qubits lie within. As mentioned earlier, the fibra-
tion will be realized using complex values, u and v in C where u5 x 1 iy and v5 z 1 it,
with x, y, z, and t real valued. Since S3 is defined as x21 y21 z2 1 t25 1, it can be defined
using u and v by |u|2 1 |v|25 1. The Hopf fibration in this case will be described using
the composition of two mappings H followed by K. The first map sends S3 into the
extended plane R2 union {N}. The second map sends this extended plane into S2 using an
inverse stereographic projection. Specifically, these maps are:

H u; vð Þ5 u v21
� �

T

K u v21
� �

T
� �

5 X;Y;Zð Þ;X2 1Y2 1Z2 5 1

The great circle u eiφ;v eiφ
� �

in S3, parametrized by φ, is mapped into the single point,
that is, H u eiφ; v eiφ

� �
5 u v21
� �

T.
Substituting into the first mapping H (u, v)5 (u v21)*5 (x2 iy)/(z2 it)5 [(x z1 yt)1 i(x t

2 yz)]/(z21 t2).

5'

(A) (B)

(C)

5=5'

5=5'

4'

4'

4=4'
3=3'

2=2'

3'

3'
2'

2'

1'

1'

1=1'

54 4

3
3

2
21 1

FIGURE 10.11 Hopf fibration S0 - S1 -
S1. (A) Original circle; (B) Twist applied to cir-
cle; (C) Folding operation.

18710.11 Hopf fibration with bloch sphere S2, the one-qubit base

Many-Sorted Algebras for Deep Learning and Quantum Technology



10.12 Hopf fibration with sphere S4, the two-qubit base

This presentation is entirely based on Mosseri and Dandoloff (2001). The Hopf fibration
involving the sphere E5 S7, with fibers, F5 S3, and base S4, is developed similar to
S1-S3-S2. In place of complex numbers, quaternion numbers are used. The whole treat-
ment parallels the fibration given in Section 10.11. In this case, the fibration: S3-S7-S4

will be illustrated. The procedure follows that of the referenced paper. For complex num-
bers, up5 xp 1 iyp, and vp5 zp 1 itp, with xp, yp, zp, and tp real valued, p5 1 or 2; the qua-
ternion numbers qp5up 1 vpj will be used for the Hopf fibration. Also, |q1|

2 1 |q2|
25 1

and so x1
2 1 y1

2 1 z1
21t1

21x2
21y2

21z2
21t2

2 5 1, showing that the pair of quaternions

q1 and q2 represents a state lying on the surface of S7.

The Hopf fibration in this case will again be described using the composition of two
mappings H followed by K. The first map sends S7 into the extended surface R4 with {N}.
The second map sends this extended surface into S4 using an inverse stereographic projec-
tion. As previously mentioned, the method parallels the complex situation almost 100%.
The big differences are that the dimension in this case is larger, and more importantly,
the quaternions form a noncommutative field-type structure. The two mappings are as
follows:

H q1;q2

� �
5 q1q

21
2

� �
T

K q1 q
21
2

� �
T

� �
5 X;Y;Z;U;Vð Þ;X2 1Y2 1Z2 1U2 1V2 5 1

Care has to be taken in expanding the first map H, because in general, quaternions do

not commute. Beginning with the first mapping: Hðq1; q2Þ5ðq1q2
21ÞT5ðq2

21ÞTq1T. Taking

q2
21 gives q21

2 5q2 � =:q2:
2
5 x2 2 y2i2z2j2t2k
� �

= x22 1 y22 1 z22 1 t22
� �

. As a consequence,

q21
2

� ��
5 x2 1 y2i1z2j1t2k
� �

= x22 1 y22 1 z22 1 t22
� �

. So, H q1; q2

� �
5 q21

2

� ��
q�
1 5 x2 1 y2i1z2j1t2k

� �
x1 2 y1i2 z1j2 t1k
� �

= x22 1 y22 1 z22 1 t22
� �

. Next, let D5 x22 1 y22 1 z22 1 t22
� �

, and using the

complex quantities, up 5 xp 1 iyp, and vp 5 zp 1 itp, with qp 5up 1 vpj, for p5 1, 2. This

yields the expression: H (q1, q2)5 [(u2 1 v2 j) (u1*2 v1j)]/D5 [(u2 u1*1 v2 v1)1 (v2 u1*2
u2 v1)j]/D5 [(u1* u2 1 v1 v2) 1 (u1* v2 � v1 u2)j]/D. In the referenced paper (Mosseri and
Dandoloff, 2001), the quantity u1* appears without the conjugation, and the term multiply-
ing j is set to zero. There, they interpret or relate the pure complex result to the criteria for
simple tensors, or in their case, nonentangled states.
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C H A P T E R

11

Lie algebras and Lie groups

11.1 Algebraic structure

A Lie algebra is a nonunital often, nonassociative algebra. Accordingly, it has a binary opera-
tion similar to multiplication; however, it is different from all those binary operations previously
mentioned. The multiplication is not a functional calculus type, not convolution, nor actually
operator composition. It is called the Lie bracket and is an alternating bilinear map that must
satisfy several equational constraints beyond those for a vector space or an algebra. These con-
straints are rigorously specified below in the MSA global view. As in the concept of Hilbert
space, there exists an unlimited number of distinct Lie algebras. Each algebra has its own carrier
sets corresponding to the sorts, as well as operators described from the signature sets.

Like a Hilbert space, Lie algebras have topological as well as other mathematical struc-
tures besides the algebraic structure. Moreover, in finite dimensions, every Lie algebra can
be associated with one or more Lie groups. In general, a Lie algebra over vector fields is a
Lie algebra of a diffeomorphism group for a manifold. A diffeomorphism is an isomor-
phism of smooth manifolds. It maps one manifold to another, and it and its inverse are
differentiable. In any case, there exists a strong connection between a Lie algebra and
group structures. This correspondence exploits Lie algebra to better understand and
categorize the groups involved. Much of this correspondence will be illustrated later.

11.2 MSA view of a Lie algebra

To begin, a high-level description of a Lie algebra in the MSA utilizes two sorts:
SCALAR and VECTOR. The carrier sets corresponding to SCALAR are usually either com-
plex or real numbers, and the signature sets are those of a field. Accordingly, the complex
or real field results in a lower view in the MSA. When Lie groups are considered, the sort
SCALAR will not only include complex and real numbers; it will also include quaternion
numbers. Consequently, the signature sets and equational identities will be those of a
skew field in the latter case. For a Lie algebra, as in an associative or nonassociative
algebra, there exists a binary function BINE such that:

BINE : VECTOR3VECTOR-VECTOR
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Besides all the equational identities for vector space and an algebra, the operational name
BINE must satisfy the following four identities. First, replace the sorts and operational names for:

VECTOR by u, v, w.
SCALAR by a, b.
BINE by [.,.], this is often called a Lie bracket.
V-ADD by 1.
S-MULT by � .
The equational identities are the following:

1) Bilinearity: [a�v1 b�u, w]5 a� [v, w]1 b� [u, w].
2) Bilinearity: [w, a�v1 b�u]5 a� [w, v]1 b� [w, u].
3) Anticommutative: [u, v]52 [v, u].
4) Jacobi identity: [u, [v, w]]1 [v, [w, u]]1 [w, [u, v]]5 0.

Note that by using (3) it follows that [u, u]52[u, u] implies that [u, u]5 0. Also, note that
the two distributive laws for an algebra are upheld by using the two bilinear relations (1) and
(2). Similarly, the multiplicative homogeneity condition for an algebra also holds. It holds again
by using the two bilinear conditions. The possible nonassociativity means that [x, [y, z]] need
not equal [[x, y], z]. Fig. 11.1 illustrates the polyadic graph for a Lie algebra. Not shown in this
diagram are all the operational names solely associated with sort SCALAR.

11.3 Dimension of a Lie algebra

The dimension of a Lie algebra is the dimension of its underlying vector space over the
reals or complex numbers. A subalgebra M, of a Lie algebra L, is a subspace where the Lie
bracket is closed. Thus, if for all v and w in M, there exists a u in M such that u5 [v, w];
then M is a sub-Lie algebra (Jacobson, 1979).

Example 11.1:

Among the simplest examples of a Lie algebra is where sort VECTOR has the carrier set
of all real-valued three-dimensional vectors. In this case, the cross product operation x acts

SCALAR

VECTOR

V-ZERO

V-MINUS

V-ADD

BINE [,] S-MULT

FIGURE 11.1 Lie algebra MSA graph.
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as the Lie bracket in R3. The standard i, j, and k coordinate system is most often employed
in this application with i x j5 k, j x k5 i, k x i5 j. Whenever the operands in the product
are transposed, the result is negated. This establishes criteria (3) anticommutative.
Moreover, the cross product of any vector with itself is zero. The Jacobi identity follows
immediately since (i x (j x k))5 i x i5 0. As an example, say that the vectors are v5 1i1 2j
1 3k and w521i1 4j22k; then v x w can be found by taking the determinant of:

j i j kj
j1 2 3j
j2 1 4 2 2j

5
ji j kj i j
j1 2 3j 1 2
j2 1 4 2 2j 2 1 4

So the result is v x w524i23j1 4k1 2k 212i1 2j5216i 2 j1 6k.#
Basis-independent criteria can be employed showing R3 is a Lie algebra over the reals.

Here, we use the fact that R3 is a real-valued Hilbert space H. For u, v, and w in H, use the
real-valued dot product as the inner product ,v, w.. In this case, by direct calculation, it
follows that the formula holds: u x (v x w)5v ,w, u.2w ,u, v.; then substituting into
the left side of the Jacobi identity, it becomes u x (v x w) 1 w x (u x v) 1 v x (w x u)5v
,w, u.2w ,u, v. 1 u ,v, w.2v ,w, u.1w ,u, v.2u ,v, w.5 0.#

Example 11.2:

An associative algebra A over the real or complex field becomes a Lie algebra by intro-
ducing the Lie bracket. In this case, it is called the commutator. The commutator is defined
for v and w in A and is given by [v, w]5v�w2w�v. The multiplication v�w and w�v are
the inherited multiplication in the not necessarily commutative associative algebra A.
Accordingly, now there exist two types of multiplication: one for the associative algebra
and the other for the Lie algebra. #

In finite dimensions, the Lie algebra of n by n matrices is described with the Lie bracket being
the commutator. These Lie algebras are denoted by gl(n,C) or gl(n, R) depending on whether the
field is complex or real. These are the general linear Lie algebras corresponding to the general
linear groups of invertible matrices. So, the determinants of these matrices are nonzero.

There are numerous properties relating Lie groups to specific Lie algebras. In particular,
Lie groups have an identity, usually a matrix related to the zero vector in the Lie algebra.
Additionally, the Lie group is locally invertible; there are neighborhoods about the identi-
ties allowing continuous maps between these open sets. It will be seen that the exponential
is a mapping from the Lie algebra to the Lie group. Conversely, there is a linearization or
tangent operation from the Lie group to the Lie algebra. Essentially, the tangent space
becomes the Lie algebra. These are methods for associating Lie algebras with certain Lie
groups and associating Lie groups with a unique Lie algebra.

Example 11.3:

The Campbell-Baker-Hausdorff (CBH) formula will show the large use of Lie algebra in
determining local behavior for elements near the identity of Lie groups. This formula is
provided as an infinite series that need not converge, and the presentation is formal. The
group multiplication of the exponential group is determined by the bracket of the Lie
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algebra in this case. The formula involves the Lie bracket as well as the power series
expansions for exp and log. The CBH formula involves log((ea) (eb)), where a and b are ele-
ments from a Lie algebra, which do not commute. Use for log (1 1 z), the Taylor expan-
sion about the origin, this gives log (1 1 z)5 z2z2 / 2 1 z3 / 3 � z4 /4 1 . . . . This series
converges for | z | ,1, and it is used for only a small neighborhood of the origin. Also,
let, ez5 1 1 z 1 z2/2 1 . . ., which converges everywhere in C. This is the usual power
series expansion for the exponential ez. Next, the power series expansion for the logarithm
of the product of two exponential will be found. The terms will be illustrated one by one,
in order of their polynomial degree.

For log((ea) (eb)), there is no constant term, but:

There are two linear terms and when added together are a1 b.
There are second-order terms given as ab/22ba/2; these terms can be described by
using the Lie bracket as 1/2 [a, b].
There are third-order terms that are 1/12 (a2 b1 a s21 b2 a1 b a2�2 a b a22 b a b).
As previously seen from the lower order terms, this expression can also be written
using the Lie bracket. In this case, it equals,1/12 ([a, [a, b]]1 [b, [b, a]]).
There are fourth-order terms, and they are 1/24 [a, [b, [a, b]]]. . . .#

The CBH formula shows that all terms of the expansion can be written exclusively
using Lie brackets. Also, of interest, Dynkin’s formula enables calculation for a large num-
ber of commutator terms within a partial sum series for the CBH formula (Hall, 2015).

Example 11.4:

Consider the unit circle in the complex plane, S15U(1)5 {z, such that z is in C and |
z|5 1}, then z5 eit. The Lie bracket [it, is]5 0, for s and t real. Accordingly by CBH, just
using the linear terms, it follows that eiteis5 ei(s1t). All other terms in the CBH formula are
zero. Taking the tangent line at the point (1, 0) on the unit circle, here the associated Lie
algebra is parallel to the tangent line at (1, 0). To see this, first note that at time t5 0 the
point on the circle path is (1, 0). Next taking the derivative of z with respect to the parame-
ter t is dz/dt5 i ei,t and evaluating at t5 0 gives i. So the direction in the complex plane is
pointing upward along the upper part of the ordinate. Translating this vector to the point
(1, 0) again gives a tangent vector pointing upward. #

Another identity related to the CBH formula is the Lie�Trotter formula. In this case, it
involves exponentials raised to n by n real or complex matrix powers. In short, let the
matrices be A and B; then e(A1B)5 limk-N [eA/k eB/k]1/k. When a finite value of k is used,
an approximation is obtained. Better approximations are obtained using the Suzuki-
Trotter product formula: e(A1B), which is about equal to eB/2 eA eB/2. Higher order approx-
imations can be found in Berry (2006).

11.4 Ideals in a Lie algebra

An ideal in a Lie algebra L is a subalgebra M having special properties. It is such that it
is not only true that for all v, w in M, there is a u in M where [v, w]5u, but also for every
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z in L and for every w in M, there is a v in M such that [z, w]5v. All ideals in L are two
sided. Also, L itself is an ideal as well as the kernel of L. The factor or quotient algebra is
L / M; it is an algebra of cosets of the form: L1 M5 [v1 M, w1 M]5 [v, w]1 M, for all
v and w in L. The factor algebra is a Lie algebra using the Lie bracket. A Lie algebra
is said to be simple when the only ideals in L are 0 and L whenever [L, L] is not zero, that
is, it is not commutative. Examples of a nonsimple Lie algebra are the general linear alge-
bras, gl(3,C) or gl(3,R). These algebras are often referred to as gl(3) for short. In any case, it
is easy to see that all scalar matrices in gl(3) constitute a subalgebra. Moreover, matrices
within this subspace have the property that for a and b scalars, the commutator of diago-
nal matrices [aI, bI]5 0.

Example 11.5:

Within g(3), a special subalgebra will be described. In this case, sort VECTOR consists
of all three by three matrices that are upper triangular. The sort SCALAR can be the reals
or the complex numbers. In any case, signature sets correspond to the usual operations for
associative algebra over a field. This structure S is a Lie algebra using the Lie bracket: [A,
X]5A.X2X.A, where A and X are upper triangular and A.X denotes the operation BINE
(A, X) in the associative algebra of 3 by 3 matrices. An important fact is that the sub-Lie
algebra of strictly upper triangular matrices forms an ideal of S. These types of matrices T
only allow nonzeros above the main diagonal; consequently, all zeros appear on and
below the main diagonal. They are also called the Heisenberg matrices. So, consider X in S
and T in the ideal mentioned above; then, [X, T] results in another Heisenberg matrix.
Given below are X, T, and the commutator X.T2T.X in that order.

ja b cj j0 x yj j0 a2dð Þx a2 fð Þy2 ex1 bz j
j0 d ej j0 0 zj j0 0 d2 fð Þz j
j0 0 fj j0 0 0j j0 0 0 j:

This shows that the strictly upper triangular matrices form an ideal among all upper tri-
angular matrices within S.#

Example 11.6:

In this example, consider the carrier set for VECTOR to be all 2 by 2 real-valued matri-
ces with trace equaling zero. In this case, SCALAR refers to the real-valued field, and the
matrices are over the real field also. Let the operation BINE for the Lie bracket be the com-
mutator. For this Lie algebra, a basis consists of the three matrices: u, v, and w given
below, in their respective order:

j0 1j j0 0j j1 0j
j0 0j j1 0j j0 2 1j

An arbitrary element x of the special linear Lie algebra, sl(2, R), is given by a matrix of
form having trace zero given to the left, below. It is a linear combination of the three
matrices u, v, and w above. The commutator will now be employed using the basis matri-
ces mentioned earlier. Begin by forming the commutator of x with the first two basis
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elements mentioned earlier. First, using u, the first basis element mentioned earlier gives
y5 [u, x]5 (u.x2x.u). The resulting matrix is the matrix for y, which is illustrated in the
center image. Lastly, using the commutator again, let z5 [v, x]5 (v.x2x.v), where x.v is
the usual matrix product of a general element x, of sl(2, R), and a basis matrix v mentioned
earlier. These matrices x, y, and z are, respectively,

ja cj jb 2 2aj j2 c 0j
jb 2 aj j0 2 bj j2a cj:

Arbitrary elements having the structure of x in sl(2, R) form a Lie algebra using this
commutator. The set of all elements of structure y form a sub-Lie algebra of sl(2, R) and so
do all elements of the form z. Moreover, structures such as these are said to be inner ideals
of sl(2, R), because the Lie algebra sl(2, R) is simple; there are no actual ideals besides zero
and sl(2, R) itself.#

In general, however, there are inner ideals that are not even subalgebras
(Benkart, 1977).

The aforementioned example illustrating the existence of inner ideals in a simple Lie
algebra also holds true in gl(2, C); all statements remain the same. Sort VECTOR in this
case would be the set of all 2 by 2 complex-valued matrices of trace zero, and sort
SCALAR would be the complex numbers.

Example 11.7:

For the Lie algebras gl(2, R), gl(2, C), sl(2, R), or sl(2, C), as in previous examples, a basis
for the latter two Lie algebras consists of the matrices: u, v, and w. They are given below
in their respective order:

j0 1j j0 0j j1 0j
j0 0j j1 0j j0 2 1j:

Notice that [w, u]5 2u, [w, v]5 2 2 v, and [u, v]5w. These relations involving the Lie
brackets are satisfied for arbitrary k by k matrices, k5 2, 3, . . . For instance, let k5 3.

Call these three matrices U, V, and W. Let the nine entries of each matrix be addressed
exactly as given next for U. The entries for U will be denoted by Uij where i is the row
entry i5 1, 2, 3 and j is the column entry j5 1, 2, 3. Then for all the matrices, assume that
all entries are equal to zero unless specified otherwise. Begin for U, let U125 2, and
assume that U235 1. For V, let V215 1 and let V325 2. For W, let W115 2 and use
W33522. The following three-by-three matrices are in order, U, V, and W

j0 2 0j j0 0 0j j2 0 0j
j0 0 1j j1 0 0j j0 0 0j
j0 0 0j j0 2 0j j0 0 2 2j

Then, analogous to the two-by-two situation, it follows that [W, U]5 2U, [W, V]522V,
[U, V]5W.

For k5 4, again the first two matrices X and Y are triangular upper diagonal and lower
diagonal, respectively, and the third matrix Z is again diagonal. Using the same notation
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as for k5 3, let all matrices have 0 entries except for the matrix entries: X125 3, X235 2,
X345 1, Y215 1, Y325 2, Y435 3, Z115 3, Z225 1, Z33521, and finally, Z44523. If
the Lie commutator brackets are used, then as before [Z, X |5 2 X, [Z, Y]5 2 2Y, and
[X, Y]5Z.#

Generalizing the results in the previous example for n1 1 by n1 1 matrices, the Lie
bracket relation again holds. Let A be the upper triangle diagonal, B the lower triangle diag-
onal, and C the diagonal. Again all matrix entries are zero except for A125n, A235n2 1,
and Ak(k1 1)5n1 12 k, k5 1, 2, . . ., n. Next, for B215 1, B(k1 1)k5 k, k5 1, 2, . . ., n.
Finally, for n even, then C115n, Ckk5n 1 2 �2 k, k5 1, 2, . . ., n/2, and Cnn52n,
C(n2 k1 2)(n2 k1 2)5 2n1 2k 22, k5 1, 2, . . ., n/2, and for the central entry, C(n/21 1)
(n/21 1)5 0. Finally, for n odd, then C115n, Ckk5n1 2 �2 k, k5 1, 2, . . ., (n1 1)/2, and
C(n1 1)(n1 1)52n, C(n2 k1 2)(n2 k1 2)5 2n1 2k2 2, k5 1, 2, . . ., (n1 1)/2.
Interesting descriptions of this can be found in Draper and Meulewaeter (2022).

The centralizer sub-Lie algebra of a set M is a set CM of elements that commute with
M, that is, CM5 {v in L is such that for all w in M, [v, w]5 0}. The center of L is the cen-
tralizer of L. A derivation D on the Lie algebra L is a linear mapping D: L - L, defined
using the adjoint operation adu(v)5 [u, v]. These derivations form a Lie subalgebra.
Moreover, derivations satisfy Leibniz rule: D([u, v])5 [D(u), v] 1 [u, D(v)]. A Lie algebra
homomorphism h, from one algebra to another, say h: Lie1 into Lie2, is a linear mapping
such that h([u, v])5 [h(u), h(v)] for all u and v in Lie1.

11.5 Representations and MSA of a Lie group of a Lie algebra

A representation of a Lie algebra A consists of a family of self-adjoint operators, skew
self-adjoint operators, and symmetric or skew-symmetric operators. In the following, it
will be assumed that the representation is a family F of self-adjoint matrices. For each gen-
erator, Xi in A, there corresponds a matrix Mi in F. The same commutation algebra holds
[Xi, Xj]5 [Mi, Mj]. An irreducible representation occurs whenever there are no trivial
invariant subspaces of column vectors using any Mj. Two representations are equivalent;
that is, M and N are equivalent meaning that there is a unitary matrix U such that N5U*
M U (Hall, 2013).

Lie groups differ from discrete groups in that there are always some topological attributes
associated with or defining the group. These include compactness and connectedness as well
as separation axioms. Moreover, there are various manifolds, such as smooth, differentiable,
or even holomorphic, also involved. As previously mentioned, in general these manifolds
resemble Euclidean space on a small scale everywhere. Elements of the group are points in
the manifold. Moreover, continuity plays a crucial role. As suggested early on, these groups
are similar to the additive vector groups. However, Lie groups most of the time are of the
multiplicative variety, but they do not have to be multiplicative; see Example 11.11. In
any case, they are called continuous parameter groups. Their use is usually in modeling
continuous symmetries, particularly rotational symmetries. Various types of Lie groups will
be described, including real Lie groups, matrix Lie groups, and complex Lie groups.
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The simplest Lie groups are the finite-dimensional real groups. In the MSA description,
there exists one sort ELEMENT and it is the name for the members of the group. As in
any group, the arity structure is (1, 1, 1). There exist three distinct signature sets, each con-
taining a distinct arity operator name:

Zero-ary, IDENTITY,
Unary, INV: ELEMENT - ELEMENT
Binary, MULT: ELEMENT x ELEMENT - ELEMENT

However, unlike a discrete group, additional requirements prevail. ELEMENTS will
have corresponding carrier sets being manifolds M, often Euclidean. Of most importance
is that these manifolds enable calculus-type operations to be performed such as differential
tangent space creation. In short, Lie group algebraic operations must be at least continu-
ously differentiable. Derivative-type operations are usually conducted in a neighborhood
of the most important element in the sort, the IDENTITY, I. For any element of the group,
a mapping can be found transforming this nonunital element into the identity.
Accordingly, two tangent spaces can be naturally identified resulting in a nonvanishing
vector field on the group manifold. The existence of smooth vector fields on a manifold is
termed parallelization.

Additionally, not only must there just exist mappings x and g corresponding to the
names MULT and INV of arity 2 and 1, respectively, but they must also be smooth map-
pings. The degree of smoothness varies from differentiability to analyticity. As usual, three
algebraic equational constraints must hold. Let A, B, and C be in M; then the constraints
are as follows:

1) Associative law: (A x (B x C))5 ((A x B) x C)
2) Identity condition: I x A5A x I5A
3) One-sided Inverse: g(A) A5 I is left inverse, and A g(A)5 I is right inverse; both hold

for Lie group. Fig. 11.2 illustrates a polyadic graph for a Lie group.

11.6 Briefing on topological manifold properties of a Lie group

Before examples are given, a review of some topological and manifold properties pos-
sessed by Lie groups will be mentioned. Manifolds M are always special topological
spaces of the Hausdorff type, and are assumed to be second countable. Moreover, the
Hausdorff space must everywhere be locally homeomorphic to Rn. The space appears to
be locally like an Euclidean space, even though the group structure may be highly

INV

MULT

IDENTITY

ELEMENT
OPERATORS MULT AND INV
PROVIDE SMOOTH MAPS ON
MANIFOLDS WHERE THE TANGENT

BUNDLE IS TRIVIAL

FIGURE 11.2 Lie group MSA graph.
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nonlinear. A homeomorphic map is a bi-continuous, one-to-one, onto, structure-preserving
map. Euclidean space is both a Hausdorff space and a second countable space.

A manifold M is a collection of open sets called charts, Ua; their union covers M.
Together the charts constitute an atlas. Functions, or coordinate maps fa such that
fa: M - Rn, along with fa21 are homeomorphisms. The chart is called the coordinate
domain, and fa is called the coordinate map. Both fa and fa21 are continuous. These maps
are said to be smooth whenever, fb fa21 is in Ck or more often than not in CN. Lie groups
can be viewed as an n-dimensional vector space with local coordinates. Fig. 10.5 applies
one hundred percent when the Lie group is the manifold M. Just replace M by the Lie
group. Here again, transition functions are homeomorphisms T, such that Tab5 fb fa21;
they map elements from one chart Ua into another chart Ub.

Again, some brief concepts from Section 10.3 will be reviewed for Lie group manifolds.
These manifolds are a connected topological space Tp, whenever they cannot be represented
as a disjoint union of two or more nonempty open sets. For a nonconnected space, there
exist maximally connected subsets of the topological space Tp, called connected compo-
nents. A path-connected space Tp is such that there is a continuous function f: [0, 1] - Tp,
where for x, y in Tp, f(0)5 x, f (1)5 y. The path connected implies connected.

A topological space is compact whenever every open cover has a finite subcover. Since
charts are open covers, compact manifolds need an atlas with only a finite number of
charts. Compact Lie groups are important in that all irreducible representations are finite
dimensional with tensor product construction ( Johnson, 1976).

Example 11.8:

In this example, a general linear group will be described. First, the pure algebraic prop-
erties will be specified. Then, some of the topological and subgroup properties will be
mentioned. For the sort, ELEMENTS let the carrier set be 2 by 2 invertible matrices over
the real number field. Use the identity matrix for IDENTITY and the usual matrix multipli-
cation for MULT. Let the typical matrix inversion operation correspond to INV. As seen
before, the structure is a unital associative algebra, so surely it is a multiplicative group. It
is symbolized by GL(2, R) and is called the general linear group of dimension four, and it
is a subgroup within M(2, R) the real vector space of all 2 by 2 matrices over the real field.
Subsequently, the related complex-valued Lie group GL(2, C) will be described along with
its relation with the Möbius transformation group.

The general linear group GL(2, R) is a smooth manifold of four dimensions; it is a noncom-
pact open subset of R4. As mentioned earlier, this Lie group is represented by 2 by 2 real-
valued matrices with nonzero determinants. It is disconnected and has two connected compo-
nents corresponding to the sign of the determinant. Those elements with positive determinants
are called the positive component and include the IDENTITY. It too is a Lie group and is
denoted by GL1 (2, R). Both GL(2, R) and GL1 (2, R) have the same Lie algebra m(2, R). The
Lie bracket in m(2, R) is the algebra multiplication [A, B], which equals AxB2BxA that can
equal zero, for instance, if A5 I. Thus, the Lie algebra is not a division algebra. The maximal
compact subgroup for GL(2, R) is O(2, R), the orthogonal Lie group, which is described in detail
in a subsequent section. For GL1 (2, R), the maximal compact subgroup is the special orthogo-
nal group SO(2) (Jacobson, 1979). These subgroups will be addressed subsequently.#
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A topological space T is said to be simply connected when it is path connected, and
every loop can be continuously contracted into a point in T. Rigorously, it is a homoto-
py between the two continuous functions f and g, describing the loop in T. Say that
f: [0, 1] - T, g: [0, 1] - T, f(0)5 g(0), f(1)5 g(1). Then, these two paths define a
loop. The properties of loops will be more thoroughly explained in Chapter 12, where
homotopy is the principal concept.

Lie’s third theorem states every finite-dimensional real Lie algebra is the Lie algebra of
a simply connected Lie group. In essence, simple connectivity will be the criteria for estab-
lishing a 1�1 correspondence between Lie groups and Lie algebra in the real case. Finally,
a Lie group is said to be simple when it is connected, not Abelian, and all closed-
connected subgroups are trivial, that is, they equal the identity or the whole space.

The next figure, Fig. 11.3, illustrates two continuous paths. This shows path connectiv-
ity, but simple connectivity is problematic from an analytical or practical point of view.
Here, let f(t)5 t sin(π /(2t)) for t in (0, 1], and f(0)5 0. Then, f is continuous in the interval
[0, 1], since it satisfies the condition at the origin that |f(t)| is less than or equal to |t|. A
Lipchitz condition therefore holds for f at the origin. Also, let g(t)5 2t � t2. Since f(0)5 g
(0) and g(1)5 f (1), together they form a loop. However, shrinking this loop to a point, say
zero would take a lot of doing because the function f is not of bounded variation. The total

variation in [0, 1] equals summation,
PN

n50 1= 2n1 1ð Þ� �
5N. Thus, the curve correspond-

ing to this function is not rectifiable and intuitively it is of infinite arc length.

Example 11.9:

The special Lie group SL(2, R) is a subgroup of GL(2, R). This subgroup SL(2, R) con-
sists of all 2 by 2 matrices with determinant equal to one. It is connected, not compact, and
a simple group. SL(2, R) is not simply connected; however, SL(2, C), the complex special
group, will be seen to be simply connected subsequently. The dimension of SL(2, R) is
three because of the constraint on the determinant. Polar form parametrization, among
other parametrizations, can be employed on elements of this group. Indeed, elements of
SL(2, R) can be written as the product of an orthogonal rotation matrix and a symmetric
matrix with positive eigenvalues and unit determinant. The corresponding Lie algebra sl

1... 1/7 1/5 1/3

0

2t-t2

sin

t

t ( /2t)

FIGURE 11.3 Path connectivity.
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(2, R) consists of all 2 by 2 matrices A, and B over the reals with trace zero. The binary
operation as usual is the Lie bracket commutator. So, [A, B]5AxB2BxA.

Among the many applications involving elements from SL(2, R) is the classification of
conic sections utilizing a modified eccentricity parameter e, see (SL2(R), Wikipedia). This
involves the Cayley-Hamilton equation. Every matrix satisfies its characteristic equation.
Thus, for A in SL(2, R), the characteristic equation for A is x22tr(A) x 1 det(A)5 0, and
since det(A)5 1, the characteristic equation becomes x2 2 tr(A) x 1 15 0. The quadratic
formula provides the solution x, for the characteristic equation:

x5 tr Að Þ1 2 tr Að Þ224
� �1=2� 	

=2: Letting e5 jtr Að Þj=2 then:

For e ,1, A is elliptic with complex, unit, and conjugate eigenvalues, used for rotation.
For e5 1, A is parabolic with single eigenvalue 11 and 21, used as a shear operation.
For e. 1 A is hyperbolic with real reciprocal eigenvalues, used as a squeeze operation.#

Operators of the hyperbolic case mentioned in the previous example are also from the
projective linear Lie group PSL(2, R). They are used as the Lorenz boost in Minkowski
space. The hyperbolic functions sinh and cosh are employed in this case, providing a
symmetric hyperbolic space. The latter property means that cosh2� sinh25 1
(Bargmann, 1947).

Example 11.10:

Again consider SL(2, R). In Example 11.9, it was mentioned in not so many words that
the manifold associated with this group is parametrized by the product manifold R2 and
the circle group S1. Also mentioned is that there are other parameterizations. For instance,
every point (a, b, c) in this group belongs to R3 and a parameterization for the case where
a is nonzero, which can also be given by the matrix:

ja b j
jc 11 bcð Þ=aj

The point a is a singular point. However, when the scalar a is nonzero, the determinant
of this matrix is one. Singular points are abundant in Lie groups and are problematic. In
any case at these singular points, alternative parametrization is required and can often be
provided.#

It seems at this point in the document all Lie groups that have been described are
matrix Lie groups. An example of a nonmatrix Lie group is given next (Hall, 2013).

Example 11.11:

Again consider a dimension three Lie group, similar in dimension and construction
to SL(2, R). This time, every point (a, b, c) in this group belongs to the carrier set:
R23 S1, where S1 is the circle group. So the third tuple is complex valued and of
length one in this case. Thus c is nonzero. The real dimension in this example is four. A
parameterization is given involving the addition of points in the plane R2 and rotations
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using elements of the circle group S1. Specifically, for two elements v5 (a, b, c) and
w5 (d, g, f) in this manifold, then

MULT v;wð Þ5 a1d;b1 g; c f expiag
� �

INV vð Þ5 2a; 2 b; 1=c
� �

;note that MULT v; INV vð Þð Þ5 0; 0; c=c
� �

5 IDENTITY
IDENTITY5 0; 0; 1ð Þ

It can be shown (Hall, 2013) that there is no matrix Lie group corresponding to this
abstract Lie group.#

11.7 Formal description of matrix Lie groups

Many Lie groups have elements that are highly nonlinear, and it is essential to utilize
the corresponding Lie algebra to better understand the group structure. However, a sim-
pler subset of Lie groups are matrix Lie groups. A matrix Lie group is a subset of M(n, C),
where M(n, C) is the set of all complex-valued n by n matrices. Its dimension is n2, over
the complex numbers; over the reals, its dimension is 2n2. A matrix Ak in M(n, C) is said
to converge to A in M(n, C), which means all the n2 elements of Ak converge to corre-
sponding elements of A. GL(n, C) is a Lie group consisting of invertible matrices. The set
of all matrices A in this group form an open subset of M(n, C) and can be viewed as a
manifold of dimension 2n2 over the real field. A subgroup G of GL(n, C) is said to be a Lie
subgroup, which means that every matrix Ak in G either converges to A in G or else it is
not invertible. For instance, GL(n, R) is a matrix Lie subgroup of GL(n, C) since if An is a
sequence of matrices in GL(n, R) and converges to A, then the entries are real and either A
is not invertible or A is in GL(n, R).

Group G is closed in GL(n, C), which means that it is closed as a subset of GL(n, C). For
matrix Lie groups, connectivity is equivalent to path connectivity. The importance of the
latter type of connectivity is that it is easier to validate.

Example 11.12:

Consider the special linear Lie group SL(n, R) for n greater than 1. This is the group of
all n by n matrices A, with determinant one. Since the determinate is continuous, a
sequence of matrices of determinate one will converge to a matrix with the same determi-
nate value, thus showing SL(n, R) is a Lie matrix group. The matrix A can be written in
polar form as the product of an orthogonal matrix and a symmetric matrix of determinant
one. The dimension of this Lie group is n2�1.#

Example 11.13:

The Lie group U (n, C) is the group of n by n complex-valued unitary matrices. Their
inverse is the adjoint matrix. The dimension is n2 over the complex field; over the reals,
the dimension is 2n2. When n5 1, it is the circle group S1 of all complex numbers of abso-
lute value one. The determinant of a matrix A in U (n, C) is also a complex number of
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absolute unit value. An important subgroup is SU(n, C); these are unitary matrices with
determinant one. This group is of prime importance in quantum gate-type computers. The
Lie algebra u(n, C) associated with U(n, C) are all skew self-adjoint matrices with the com-
mutator as the Lie bracket.

The matrix A in U(n, C) is both connected and compact. It is compact, because in R2n2 ,
A is closed and bounded. It is closed, because the set of points making up the real and
imaginary parts of elements in A satisfy the simultaneous equations from the identity
U*U5 I. It is bounded because each column of A is of unit length.

Connectivity follows from path connectivity by using the unitary transform involving
the matrix: V* A V5diag (eip1, . . ., eipn). Here, diag (eip1, . . ., eipn) is a diagonal matrix with
each diagonal entry of unit length. Thus, A5V diag (eip1, . . ., eipn) V*. For t in [0, 1], the
parametrization A(t)5V diag (eipt1, . . ., eiptn) holds with t5 0 and yields A5 I. So as t goes
from 0 to one, A(t) makes a continuous path from I to A in U(n, C).#

Example 11.14:

Consider the carrier set consisting of elements of the special unitary Lie group of 2 by 2
complex-valued matrices SU(2, C). These matrices are of the form A5

jz 2wTj
jw zTj

where z and w are complex numbers and |z|2 1 |w|25 1. A matrix A in SU(2, C) is uni-
tary with determinant one. The columns of A form an orthonormal set. The inner product
of the two column vectors is ,(z w)0, (2w* z*)0.5 (z* w*) (2w* z*)0 5 0. Moreover, the
structure of the matrix A in this group is determined once the first column is defined. The
second column is uniquely determined by using the orthonormality and the fact that the
determinant equals one. SU(2, C) is diffeomorphic to the three sphere. This will be seen by
letting z5 a 1 bi, and w5 c 1 di. Then, |z|2 1 |w|25 a2 1 b2 1 c21 d25 1 gives the
equation of the three sphere, S3. When the equation for S3 is written as a2 1 b2 1 c25 1 �
d2, it can be seen that for varying d this becomes the equation of a point, when d5 1,
along with numerous spheres for d in [0, 1). As a consequence, SU(2, C) is both compact
and simply connected. Moreover, SU(2, C) is isomorphic to the unit quaternions: q5 a1 bi
1 cj 1 dk, where, a, b, c, and d are real, and their sum squared equals one (Gilmore,
1974).#

Previously, the carrier set utilizing SL(2, R) was illustrated with several representations.
Next, illustrations will be given for the complex two-dimensional special linear group. The
first example will use a continuous map D from the topological space X5 SL(2, C) into a sub-
space. This map will also be a retraction map, wherein the operator D acts like the identity
on the subspace. The subspace under these conditions is called a retract of the superspace.
The mapping will also be a deformation retraction mapping D. This is a retraction procedure
in which D operates on the original space to continuously contract it into the subspace. A
purpose for using a deformation is to relate or extend homotopic properties from a subspace
to the original space. So, if the subspace possesses certain homotopic properties, then after
successfully performing the procedure, the parent space will also posses these properties. In
short, deformation retract is a procedure for creating homotopy equivalence. The objective of
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homotopy is to preserve or identify properties within a topological space, which are invariant
under stretching or shrinking operations. The next chapter describes homotopy in detail.
However, there exist spaces where deformation contracts, but does not do so in a
continuous fashion, such as the zig-zig pattern. In this case, homotopy is not preserved
(Hatcher, 2002).

Example 11.15:

The special linear group of 2 by 2 matrices over the complex numbers with determinant
one is denoted by SL(n, C). With n5 2, the dimension is three, but over the reals, it is six.
It is a simple but not compact group. Similar to SL(n, R), these matrices can also be param-
etrized using polar form. In this case, they can be represented as the product of a special
unitary matrix, in SU(2, C), and a positive definite self-adjoint matrix with determinant
one. To show SL(2, C) is simply connected, it will be shown that there exists a deformation
retract D, from SL(2, C) to the subspace of special unitary matrices, SU(2, C). The subspace
was seen to be simply connected in Example 11.14.#

The next example is dedicated to showing that SL(2, C) is simply connected. This will
be done by illustrating that there exists a deformation retract D, from SL(2, C) to the sub-
space of special unitary matrices, SU(2, C).

Example 11.16:

Since SU(2, C) consists of unitary matrices, the homotopy will be accomplished by
employing an arbitrary matrix in SL(2, C) and continuously transforming it into a unitary
matrix. This can be done by ortho-normalizing the columns of the matrix. Thus, the Gram-
Schmidt process can be employed on the column vectors. For instance, to show a retract,
the left matrix below in SL(2, C) will have the second column vector transformed such
that it is orthogonal to the first column. The original matrix is given next with the resulting
matrix directly following:

ja cj ja ej
jb dj jb fj:

In detail, the second column (c d)0 of the original matrix will be mapped into the second
column (e f)0 of the second matrix by using projections involving inner products. Using
the Gram-Schmidt process involving the second column gives:

e fð Þ0 5 c dð Þ0 2, a bð Þ0; c dð Þ0 . a bð Þ0= :a:2 1 :b:2
� 	

:

Evaluating the inner product yields:

e fð Þ0 5 c dð Þ0 2 a bð Þ0 c a � 1 b � dð Þ= :a:2 1 :b:2
� 	

:

The quantity ,(a b)0, (c d)0. (a b)0/(:a:2 1 :b:2) is called the projection of column
(c d)0 onto column (a b)0 and is denoted by proj ((c d)0)
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The inner product of (a b)0 with (e f)0 is also given by the product of row times column
vector: (a* b*) (e f)0 and it equals zero because,

aT e1 bT f5 aT c1 bT d- :a:2 1 :b:2
� 	

c aT1 bTdð Þ= :a:2 1 :b:2
� 	

5 0:

Lastly, in the procedure, each resulting column in the two-by-two matrix should be nor-
malized. The normalization is illustrated below, involving the matrix before normalization
and the one after, given in order:

ja ej ja= :a:21:b:2
� 	1=2

e= :e:21:f:2
� 	1=2

j

jb fj jb= :a:21:b:2
� 	1=2

f= :e:21:f:2
� 	1=2

j:

Let x5 (:a:21 :b:2)1/2, y5 (:e:21 :f:2)1/2, and also let:

v5 (c a*1 b* d)/(:a:21 :b:2); then, the last matrix is more efficiently written as A5

ja=x e=yj
jb=x f=yj:

Since ad2bc5 1, e/y5 (c2a v)/y and f/y5 (d2b v)/y, so the products:
(a f)/(x y)5 (a d2a b v)/(x y) and (b e)/(x y)5 (b c2a b v)/(x y), subtracting gives the

determinant (a d2bc)/(x y)5 1/(x y). However, to see that the determinant is one, a
simple calculation A* A5 I, thus providing the identity matrix.

To show the deformation retract D, it must be shown the shrinking transformation from
SL(2, C) to SU(2) occurs continuously. This will be performed using columns A1 and A2
of A. Consider t in [0, 1], and use Gram-Schmidt somewhat backward; let F (A1, A2)5
(A1/:A1:t A2/:A1:t) for t: 0 - 1. The matrix remains in SL(2, C) and ends up with a
normalized first column B1. Next, using a projection, let G(B1, A2)5 (B1, A22t proj(A2));
this matrix is in SL(2, C) for all t in [0, 1] and for t5 1; the second column becomes orthog-
onal to the first column. The Gram-Schmidt orthonormal method is completed with H, the
normalization of the second column, just as before. Finally, the composition of these
three maps D5H G F shows the homotopy from SL(2, C) to SU(2, C). Thus, SL(2, C) is
also simply connected (Gilmore, 1974).#

Example 11.17:

Again consider the carrier set consisting of elements of the special unitary Lie group
SU(2, C). Following is a typical matrix A in SU(2, C), followed by the X and Z Pauli
matrices:

jz 2wTj j0 1j j1 0j
jw zTj j1 0j j0 2 1j:

If the complex numbers z and w in the matrix A are replaced using polar coordinates,
z5 r eia and w5 s i eib, for real r, s, a, and b. Use r5 cos(t) and s5 sin(t), for t in [0, 2π),
and note that r2 1 s25 1. Then, the unitary matrix A can be represented using the Pauli
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matrices X and Z as A5 cos(t) eiaZ 1 sin(t) X eibZ. Since Z is a diagonal matrix, so is eiaZ,
as well as eibZ. The matrix eiaZ is given followed by matrix A:

jeia 0j jcos tð Þeia isin tð Þe2ibj
j0 e2iaj jisin tð Þeib cos tð Þe2iaj

Justification for the matrix representation of eiaZ is most easily seen by a power series
expansion. More complicated functions of a matrix are best performed using Frobenius
covariants along with the Lagrange-Sylvester expansion, described in Section 5.5.#

Example 11.18:

The Lie group O(n, R) of n by n matrices A with real elements is such that
AA0 5A0A5 I. Here, A0 is the transpose of A. Additionally, the columns of A form an
orthonormal set. A is in O(n, R) iff ,Av, Aw.5,v, w. for all v, w in Rn. The group
is compact, but not connected. The determinant of a matrix in this group has values
plus or minus one; these two values correspond to each of the two components. One of
these includes the identity and results in the subgroup SO(n, R). As an example of
matrices in the other connected component, consider the carrier set (O(2, R)2SO(2, R)).
Let A be in this set; then a typical matrix is a reflection, for instance, A5

j2 1 0j
j0 1j

Then, for a vector v in R2 where v5 (a b)0, then A v5 (2a b), which is a reflection about
the x-axis.#

Example 11.19:

The special orthogonal Lie group is SO(n, R); it is a subgroup of O(n, R) with matrices
A, having determinant one. It is a subgroup that preserves the orientation of space also
called a direct isometry. It is also compact and connected. But it is not simply connected
(Hall, 2015). For a concrete example, consider the carrier set SO(3, R), which is a rotation
group. Topologically, this space is the real projective space RP3. There are numerous
charts associated with this group rendering distinct parametrizations, each leading to
three-dimensional rotations. Some parametrizations involve four parameters, and some
involve three, but there cannot be only a two-variable parametrization. Euler’s theorem
specifies any rotation in R3 can be produced with three parameters. In this case,
two angles give the axis of rotation and the third for the actual angle of rotation itself
(Palais et al., 2008).

These parametrizations are valid for local use on R3 manifolds, but there are often sin-
gularities associated with global parametrization. Among the three-parameter implementa-
tions is the Euler angle matrices. These are three matrices each producing a rotation about
a coordinate axis x, y, and z, axes with parameters called the Euler angles a, b, and d,
respectively. The corresponding three Euler matrices given here are specified in order of
rotation axis, x, y, and z, and are provided as follows:
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j1 0 0j jcb 0 sbj jcd 2 sd 0j
j0 ca 2 saj j0 1 0j jsd cd 0j
j0 sa caj j2 sb 0: cbj j0 0 1j

The notation specified here is ca, which is the cosine of a; sa represents the sine of a;
and so on. All three of these rotation matrices are multiplied in some order providing a
general rotation in R3. Distinct applications of these matrices use one of the 24 different
combinations due to the choice of axes of rotation, as well as the order of application of
the individual matrices. Usually, this is not a problem; however, the gimbal lock is.
Gimbal lock is where singularities occur in the sense that a degree of freedom is lost due
to a specific matrix configuration. Technically, it occurs due to the lack of a covering map
relating the three Euler angles with the rotation space. Specifically, the mapping is not a
homeomorphism at certain points. The loss of a degree of freedom is illustrated utilizing
the three Euler angle matrices given earlier. Prior to multiplying these matrices in the
exact order from left to right, as illustrated earlier, x, y, and then z, use in the matrix for y
the angle for b, as b5 π/2; this gives cb5 cos(b)5 0 and sb5 sin(b)5 1. Then multiplying
these matrices, x y z, yields the matrix of the product, Y. The same result would occur if
the three matrices were first multiplied, and then the angle for b was substituted. The
result is Y, which is given as follows:

j0 0 1j
js a1dð Þ c a1dð Þ 0j
j2 c a1dð Þ s a1dð Þ 0j:

As can be seen from the above matrix Y, the three degrees of freedom for rotation are
gone. When there are changes in b, there is no effect; the matrix stays the same. A primary
application for the use of these types of matrices is in strap-down inertial navigation using
gyroscopes and accelerometers, but no gimbals. Each of the Euler matrices is employed for
either a roll, pitch, or yaw action for the craft. All these actions could range from zero to
three hundred and sixty degrees.

In this application, because of the singularities with Euler matrices, quaternions are
often employed instead with SCALAR equal to the reals, and VECTOR being the quater-
nions. Here, the quaternion for q5 a 1 bi 1 cj 1 dk is normalized, that is, :q:25 1; this
type of quaternion is also called a versor. Also let s5 1/:q:2. Then, the quaternion four-
parameter matrix for rotation replaces the Euler matrices. The well-known quaternion
matrix for rotation is as follows:

j12 2s c2 1d2
� �

2s bc2dað Þ 2s bd1 cað Þj
j2s bc1dað Þ 12 2s b2 1d2

� �
2s cd2 bað Þj

j2s bd1 cað Þ 2s cd1 bað Þ 12 2s b2 1 c2
� �j

In the strap-down application just mentioned, this matrix takes the place of the mechan-
ical gimbals. Moreover, the gyroscopes that are rigidly fastened to the craft provide the
angular velocity in the form ω or actually small angle changes. This allows the quaternion
matrix to change according to the derivative involving the quaternion equation:
dq/dt52ωq (Giardina, 1973).#
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11.8 Mappings between Lie groups and Lie algebras

Often, there correspond several Lie groups associated with a single Lie algebra. The cor-
respondence is very exact; from all Lie groups, a linearization can be conducted to deter-
mine the unique Lie algebra, at least in a categorial manner. On the other hand, there is an
exponential map involving the Lie algebra to distinguish each Lie group. Referring to
Fig. 11.4, an illustration is given of a many-to-one mapping from Lie groups to a Lie alge-
bra. In this figure, observe that there is a linear map LIN, which goes from each Lie group
to the Lie algebra. Also, there is an exponential map from the Lie algebra g to each of the
Lie groups, G.

One of the principal techniques for creating the Lie algebra g corresponding to a spe-
cific Lie group G will be described later in a formal manner. It involves a topologically
closed subgroup G of the general linear group GL(n, R). Closure in this development is
extremely important. In this case, g5 {X, such that X is in gl(n, R) where etX is in G for all
t in R}. Moreover, g is the tangent vector space to G at I. Additionally, the mapping exp:
g - G is locally invertible. This tangent space procedure is outlined next for general Lie
matrix groups. This is similar to Example 11.4 where the tangent line is created for the cir-
cle U(1)5 S1. Examples are given in a formal manner, using the complex field, the real
field, as well as over the quaternion skew field. Moreover, only matrix groups are consid-
ered, and all groups are assumed to be closed in the topology.

The linearization map LIN illustrated in Fig. 11.4 is obtained using the differentiation of
smooth paths associated with the Lie group G. First is a smooth path p: R1 - G, where G
is the matrix Lie group, p: [2 r, r] - G for some small value r. In addition, p(0)5 I, the
identity element in G. Next, the tangent space is formerly used. It is the set of all equiva-
lence classes, each consisting of all smooth paths in G with the same derivative at t5 0. In
a nutshell, the tangent space will be a vector space; however, it is isomorphic to what is
called the Lie algebra associated with the Lie group G. A rigorous presentation of this and
the following description involving tangent spaces can be found in Hall (2013).

LIE GROUP

LIE ALGEBRA

G1
G2

EXP1

EXP2

EXPnπ1G1

π1G2
Gn

π1Gn

LIN LINLIN

.  .  .

FIGURE 11.4 Mappings between
Lie groups and a Lie algebra.
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For a matrix Lie group G, the tangent space at the identity is denoted by T(G). Let p(t)
and q(t) be smooth paths in G. Assume that the derivatives evaluated at zero are given by
dp(0)/dt5v and dq(0)/dt5w, with p(0)5q(0)5 1. T(G) is a real vector space. This fol-
lows by first letting v and w be in T(G). To see that v1 w is in T(G), consider s(t)5p(t) q
(t) then differentiating, using Leibnitz’s rule: s0 5p0 q1 p q0. Here, the prime indicates the
first derivative. Evaluating at zero gives s0 (0)5p0 (0) 1 q0 (0)5v 1 w, so the sum is in T
(G). Equivalently, use f(t)5 etvetw in G for all real t in R, where f(0)5 I. Taking the deriva-
tive df/dt gives ve1 etvwetw. Evaluating at zero gives v1 w, again. To see that a real sca-
lar c times v is in T(G), consider s(t)5p(ct), then s0 (t)5 c p0 (t), evaluating at t5 0 gives c
v, showing this in T(G). Alternately, consider g(t)5 etcv in G; here g(0)5 I and dg/dt eval-
uated at the origin gives cv; thus, T(G) is a vector space.

For any matrix Lie group G, the tangent space T(G) becomes a Lie algebra whenever the Lie
bracket is the commutator: [X, Y]5X Y2Y X, for X and Y in G. The associated Lie algebra is
denoted by g. To see this is a Lie algebra, the CBH formula will be employed so let

h tð Þ5 eXt
1=2
eYt

1=2
e2Xt1=2e2Yt1=2 . Then using CBH gives h tð Þ5 eXt

1=2
1Yt1=2 1 1=2 X;Y½ �1

O t3=2
� �

e2Xt1=2 2Yt1=2 1 1=2 X;Y½ �1O t3=2
� �

, the t1=2 terms cancel.

Applying CBH again yields h tð Þ5 e t X;Y½ �2t X1Y;X1Y½ �1O t3=2ð Þð , but [X 1 Y, X 1 Y]5 0. Now

differentiation of h tð Þ5 e t X;Y½ �1O t3=2ð Þð Þ gives h0 tð Þ5 X;Y½ �1O t1=2
� �� �

e t X;Y½ �1O t3=2ð Þð Þ. Evaluation
at t5 0 gives [X, Y].

Several examples are provided illustrating the tangent space and tangent vector calcula-
tion for important Lie groups. Subsequently, Lie algebras are constructed corresponding to
some of these Lie groups.

Example 11.20:

The quaternions form a Lie group SLC(1, Q). The tangent space for the quaternions at
unity is the set of all vector parts. To see this, let q(t) have a smooth path with q(0)5 1.
Note that q(t) q*(t)5 1; then differentiating gives q0 q*1q q*0 5 0, so substituting in t5 0
gives q0(0)1q*0(0)5 0. Use the scalar, q0, plus vector, v, representation for quaternions. It
follows that q00(0) 1 v0(0) 1 q0*0(0) 1 v*0(0)5 0, but v0(0)52v*0(0), and therefore the real
part of q5 0. So the tangent vector at 1 is a vector part of q.

The Lie algebra g for the quaternions is found using the commutator Lie bracket. Since
[i, j]5 2k, [j, k]5 2i, [k, i]5 2j. This is isomorphic to the cross product algebra in R3, [i, j]5
2 i x j, [j, k]5 2 j x k, [k, i]5 2 k x i.#

Example 11.21:

The tangent vectors pass through unity, that is, they pass through the ONE for the Lie
group. In O(n, R), tangent vectors are found using matrix A(t) having a smooth path with
A(0)5 I. Since A A*5 I for all t so, differentiating results in A0 A*1A A*0 5 0, where the
prime again denotes derivative. Then, substituting t5 0 gives A0(0)1A0*(0)5 0. Use the
carrier set O(3, R) and as an example employ an Euler matrix A given below along with
the derivative A0 as well as A0(0)1 A0*(0).
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Displayed in order, these matrices are as follows:

jcos tð Þ 2 sin tð Þ 0j j2 sin tð Þ 2 cos tð Þ 0j j0 0 0j
jsin tð Þ cos tð Þ 0j jcos tð Þ 2 sin tð Þ 0j j0 0 0j
j0 0 1j j0 0 0j j0 0 0j:

So let the tangent vector at t5 0 be v, where v5A0 (0); in any case, it follows that
v1 v* equals zero.#

Example 11.22:

The tangent vectors v, through unity for the Lie group U(n, C), are found using matrix
B(t) having a smooth path with B(0)5 I. Since BB*5 I for all t, differentiating gives
B0 B* 1 B B*0 5 0; substituting in t5 0 gives B0(0) 1 B0*(0)5 0. As before, let the tangent
vector at t5 0 be v; it is again an n by n matrix. This time, v5B0(0); in any case it follows
that v1 v* equals zero.#

Example 11.23:

As in the previous two examples, the tangent space of SO(n, R) again consists of n by n
matrices v, with v1v*5 0. The tangent space here is denoted by T(SO(n, R)) and is in fact a Lie
algebra using the commutator. So also consider w in T(SO(n, R)); then w*52w; the Lie bracket
must also satisfy this identity. To see this, then u*5 [v, w]*5 (v w)*2(w v)*5w*v*2v*w*5w
v2v w52 [v, w]52u. This shows that this is a Lie algebra, and it is denoted by so(n, R).
The dimension of this algebra is n(n21)/2.

Use the carrier set SO(3, R), and as an example of u *1 u5 0, consider the Euler matrix A
given below. It is followed by the derivative A0 as well as A0(0)1 A0*(0), all shown in order:

jcos tð Þ 2sin tð Þ 0j j2 sin tð Þ 2cos tð Þ 0j j0 0 0j
jsin tð Þ cos tð Þ 0j jcos tð Þ 2sin tð Þ 0j j0 0 0j
j0 0 1j j0 0 0j j0 0 0j:

For any n by n matrix M such that M 1 M*5 0, there is the function of a matrix A(t)5
etM, and it is in O(n, R). This can be seen formally, since M and M* commute because
M*52M. It follows from a power series expansion that (eM)*5 eM*, and so
eM eM* 5 e(M1M*)5 e05 I. This shows that eM is in O(n, R). Using tM 1 tM* illustrates the
desired results. Moreover, since A(t) is continuous, this implies that the determinant is
also continuous. Because A(t) is in the orthogonal group, the determinant is one or minus
one. However, A(0)5 I shows that det(A(t))5 1 for all t.#

Example 11.24:

The tangent space of the unitary Lie group U(n, C) is the vector tangent space of all n
by n matrices M such that M1 M*5 0. Additionally, the Lie algebra u(n, C) are all the tan-
gent vectors in T(U(n, C)), which satisfy the Lie bracket commutator operation. The dimen-
sion of this space is n2.#
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Example 11.25:

The tangent space for the special unitary group SU(n, C) consists of all n by n matri-
ces M such that M 1 M*5 0 and the trace M5 0. This can be seen by letting A(t)5 etM.
First note that the derivative A0(t)5M etM, and substituting in t5 0 gives A0(0)5M.
Consider A(t) A*(t)5 e(tM1tM*)5 e05 I. This shows that A(t) is in U(n, C). Next, since
det(etM)5 etr(tM)5 e05 1, this shows that A(t) is in SU(n, C). Going the other way since
SU(n, C) is a subset of U(n, C), it follows that M 1 M*5 0. Using the fact that eM is in
SU(n, C), implies that det(eM)5 I. Using the relationship between determinants and
traces gives etr(M)5 I, and so tr(M)5 0. It follows that the space of all such matrices M
forms the Lie algebra su(n, C) using the commutator Lie bracket. The dimension of the
algebra is n2�1.#

The process of obtaining a Lie group knowing its Lie algebra is a more difficult process
than finding the Lie algebra from a given Lie group. First of all, there may be several Lie
groups associated with a single Lie algebra. However, more importantly, the procedure is
more complicated since it entails two steps. The first is solving a localization problem.
Namely, the only thing known about the Lie group is its matrix dimension. Also, it has an
identity element, say I, and the object is to find other group elements near I. This step
involves an element from the Lie algebra and an isometric mapping that provides the
structure of the infinitesimal matrices near the identity matrix. The following step is in
finding general group elements. This step involves the basis elements from the Lie algebra
along with a power series expansion of the exponential function. For simple cases, this
series is summed using standard calculus techniques yielding a general element within
the matrix Lie group.

The next example will illustrate how the Lie group SU(2, C) is obtained from su(2, C). It
begins with u(2, C) and then finds a local representation of the group U(2, C) in terms of
the Pauli matrices. Then imposing a constraint on the determinant yields a local represen-
tation for the group SU(2, C). Finally, the exponential map provides a global
representation.

Example 11.26:

In this example, begin by using the Lie algebra u(2, C) of 2 by 2 skew self-adjoint matri-
ces. To determine a Lie group having u(2, C) as its Lie algebra, take any 2 by 2 matrix M,
with arbitrarily small entries. Then, I 1 M5U is an element, that is, it is a matrix in a
neighborhood of the identity of the desired group. So, set U* I U5 I; this equals I 1 M* 1
M 1 M*M 5 I. This is the metric-preserving property. The product term is small, and
therefore setting it equal to zero results in M*52M. Thus, the matrix M has to be skew
Hermitian, that is, skew self-adjoint. Accordingly, using small real numbers: p, q, a, and b,
then M is of the form given below followed by 2 iM, and with slight modifications, it is
again given by 2 iM. These matrices are illustrated in order; however, substitutions are
made for the two real numbers p and q in the last expression. They are written as p5 c0 1
d0, q5 c0 2 d0, for c0 and d0 real:-
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jpi b2 aij
j2 b2 ai qi:j

jp 2 a2 ibj
j2 a1 bi qj

jc0 1 d0 2 a2 ibj
j2 a1 bi c0 2 d0j

The last matrix will be described in terms of the identity 2 x 2 matrix I along with the
three modified Pauli matrices M1, M2, and M3 specified in a previous chapter. These
matrices are illustrated below in order: M15 is1, M252is2, and M35 is3.

j0 ij j0 2 1j ji 0j
ji 0j j1 0j j0 2 1j

The Pauli matrices will be modified for another time involving a division by two, but
first note that 2 iM5 c0 I 1 a i M1 1 i b M22d0 i M3. Therefore, M52c0 iI 1 a M1 1 b
M22d0 M3.

The group SU(2, C) is a subgroup of U(2, C) but with a determinant equaling one. Take
det(I1 M), but only retaining linear terms gives 11 pi1 qi. This results in p1 q5 0, that
is, c0 5 0. As a consequence, to order one, the matrix M only involves the three Pauli matri-
ces, not the identity matrix. As such, SU(2, C) has only three real parameters, a, b, and d0.
The parameters provided the coordinates on the manifold for the Lie group. The matrix M
generates any infinitesimal element in SU(2, C).

To perform the exponential mapping, structure constants and Einstein notation are use-
ful when a general matrix in SU(2, C) is desired. Basically, M5 aj Mj is a short notation for
the sum M5 a M1 1 b M2 1 d M3. Here, a15 a, a25 b, and a35d, all in C. So I 1 aj Mj
generates any element in the group SU(2, C) near the identity I. A general element of the
group is eM, which is the summation

PN
n50 Mn=n!

� �
. In M, substitute the three modified

Pauli matrices, M15 (is1) /2, M25 (2is2) /2, and M35 (is3) /2. Recall that the Pauli
matrices sj have nice properties; they are such that M252 ((a2 1 b2 1 d02)/2) I. This fol-
lows since the Poison bracket {si, sj}5 0 for i not equal to j and 5 1 otherwise. Next write
M252 d2/2 I, where d25 (a2 1 b2 1 d20). Now the summation for eM should be broken
into even and odd terms denoted by Even and Odd. Also, the indices for summation are
not shown and Einstein-type notation is employed. So eM5 eiajsj5Even 1 Odd.
Utilizing the identity M252 d2/2 I gives for the Even situation5 I cos(d/2), and for the
Odd5 i(aj sj) sin(d/2)5 i(a s1 1 b s2 1 d0 s3) sin(d/2). Using Even plus Odd expressions
together provides the most general element of SU(2, C). After substituting in for the Pauli
matrices sj, this yields the general matrix structure for SU(2, C); call this matrix T:

jcos d=2
� �

1 id0 sin d=2
� �

b sin d=2
� �

1 ia sin d=2
� �j

jb sin d=2
� �

1 ia sin d=2
� �

cos d=2
� �

2 id0 sin d=2
� �j:

An important fact about this matrix is when d5 0, the identity results. However, when
d5 2π, minus the identity is obtained. Both the identity I and 2 I commute with any
matrix in SU(2, C). Recall that the subgroup, {I, 2 I} is called the center of SU(2, C); it is
the largest subgroup that commutes with all elements of SU(2, C). The group SU(2, C) is
also compact since all possible values of this matrix mentioned earlier are achieved within
the closed sphere in a three-dimensional manifold of radius 2π. Moreover, anywhere on
the boundary of this sphere, there is only one matrix. That is, at all boundary points of the
sphere, the corresponding matrices are all equal.#
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Example 11.27:

To find U(2,C), most of the work is done in the previous example. The only thing to do
here is to exponentiate the four basis elements from the Lie algebra u(2,C). In the previous
example, eM5 eiajsj was found. In this example, ei=2c

0
I1iajsj need to be found. Because I com-

mutes with all of the Pauli matrices, it follows that ei=2c
0
I1iajsj 5 ei=2c

0
I eiajsj. The only thing to

determine now is the first exponent ei=2c
0
I 5

jeic0=2 0j
j0 eic

0=2j:
Multiplication of this matrix with the result from Example 11.26, that is, matrix T, gives

a typical matrix from U(2, C).#

Example 11.28:

Now, SO(3, R) will be found from the same Lie algebra, su(n, C) as given in Example
11.25. Again, the transformation of the metric must be invariant. In this case, since the real
field is used, the transform is a similarity transform involving orthogonal matrices, O, and
its transpose, O0. Hence, there exists an orthogonal matrix O such that O0 B O5B, for any
matrix B in the desired group. Again, using small entries this time in 3 by 3 matrix M and
substituting O5 I 1 M yields M 1 M0 5 0, and so M is skew symmetric. Accordingly,
using small real values a, b, and c, it follows that M5

j0 c 2 bj
j2 c 0 aj
jb 2 a 0j:

This matrix can be written in terms of a skew symmetric basis using X1, X2, and X3 all
provided as follows. The first involving scalar a, the next for value b, and finally for
value c:

j0 0 0j j0 0 2 1j j0 1 0j
j0 0 1j j0 0 0j j2 1 0 0j
j0 2 1 0j j1 0 0j j0 0 0j

M5 aX1 1 bX2 1 cX3, or in terms of Einstein-type notation M5 aj Xj. Note that a15 a,
a25 b, and a35 c in this example. Employing the Lie bracket gives [Xi, Xj]5 2Eijk Xk,
where the Levi-Civita symbols are again utilized. For SO(3, R), the determinant must be
one. Taking det(I 1 M), setting it equal to one and retaining up to linear terms, just gives
one. So no other constraints are needed. Again, using Einstein notation yields an actual
group element using the exponential, eajXj. Before expanding this, the Cayley-Hamilton
formulation of the characteristic equation is employed to obtain M3 1 d2 M5 0, where
d25 (a2 1 b2 1 c2). Similar to the previous problem, M352d2 M is used to more quickly
sum the series for the exponential. Again, use even and odd terms in the series for eajXj.
Continually substitute �d2 M for M3. A simple power series approximation can be utilized
in showing eajXj5 I 1 ajXj sin(d) 1 (ajXj)2(12cos(d)). Now, substituting in for the basis
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elements Xj, remembering that ajXj5 a X1 1 b X2 1 c X3, and d25 (a2 1 b2 1 c2), and
finally squaring ajXj and substituting gives eajXj as the following three-by-three matrix:

j12 b2 1 c2
� �

12 cos dð Þð Þ ab 12 cos dð Þð Þ1d3sin dð Þ ac 12 cos dð Þð Þ2d2sin dð Þj
jab 12 cos dð Þð Þ2d3sin dð Þ 12 a2 1 c2

� �
12 cos dð Þð Þ cb 12 cos dð Þð Þ1dsin dð Þj

jac 12 cos dð Þð Þ1d2sin dð Þ cb 12 cos dð Þð Þ1dsin dð Þ 11 b2 1 a2
� �

12 cos dð Þð Þj
This is a general element of SO(3, R). Here, notice that for d5 0, the identity matrix I is

obtained. This corresponds to the origin of the three-dimensional manifold representation.
When d5 π, eajXj5

j12 ðb2 1 c2Þð2Þ abð2Þ acð2Þj
jabð2Þ 12 ða2 1 c2Þð2ÞÞ cbð2Þj
jacð2Þ cbð2Þ 11 ðb2 1 a2Þð2Þj:

This matrix also holds for antipodal points in the manifold. In this case, d5π, and the coor-
dinate variables a, b, and c are now all negative. Under these conditions, the exact same matrix
is obtained when a, b, and c are positive. Any straight line segment through the origin intersects
a sphere of radius π at two opposite points. These are antipodal points, and the matrices eajXj at
these two points are identical. Additionally, this Lie group is compact because all possible
values of the general matrix are obtained in this closed sphere of radius π.

Example 11.29:

It will be seen that the special group of one-dimensional quaternions, SLC(1, Q), also
has the same Lie algebra as the two different groups given in the previous examples. That
is, SU(2, C) and SO(3, R), and the group SLC(1, Q) all have the same Lie algebra, su(2, C).
For SLC(1, Q), the elements here are one by one matrices. The identity for the quaternions
is I equal to 1, so the vector part v of q is zero. A matrix near the identity is I1 q where q
is a small in absolute value quaternion say q5 a0I 1 a1i 1 a2j 1 a3k. In Einstein notation,
v5 aksk. The Lie algebra glc(1, Q) has a basis of four elements. This is the general linear
algebra. The special Lie algebra consists of normalized quaternions. A change of basis for
this Lie algebra yields X1521/2i, X2521/2j, and X3521/2k. So [X1, X2]5 1/4
(ij2ji)5 1/2k5X3. Consequently, [Xi, Xj]5 2EijkXk. For SLC(1, Q), a norm of one is
required, so (1 1 q) (1 1 q)*5 1. Multiplying gives 1 1 q 1 q* 1 |q|25 1, which implies
since v52v* and retaining only linear terms results in a05 0, only the vector part of
small q is left.

Now to find a general element of SLC(1, Q), take eðakXkÞ; this is similar to what was done
in the previous examples. Note that (ak Xk)25 (a1X1 1 a2X2 1 a3X3)25 (a1X1)2 1 (a2X2)2

1 (a3X3)2521/4 ((a1)2 1 (a2)2 1 (a3)2)5 21/4 d2, where d25 (a1)2 1 (a2)21 (a3)2) as in
previous examples. Using even and odd terms of the power series as before gives
eakXk5 cos(d/2)1 2akXk/d sin(d/2)5 cos(d/2)2(a1i/d1 a2j/d1 a3k)sin(d/2).

If GLC(1, Q) is desired, then all that needs to be found is eaOI1ajXj; this is performed in
the next example.
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Example 11.30:

Imitating the results from Example 11.27, the exact same procedure is utilized. The Lie
group GLC(1, Q) can be obtained by employing the four basis elements in glc(1, Q) as

mentioned earlier. The result is found by multiplying the exponentials eaOI eaXj; this
results in the expression eaOI eaXj5 a0(cos(d/2)2(a1i/d1 a2j/d1 a3k)sin(d/2)).

11.9 Complexification of Lie algebras

It was seen that a real vector space can become a complex vector space by complexifica-
tion. Indeed, the carrier set for the sort SCALAR was swapped from the real numbers to
the complex numbers. Correspondingly, the complex field was utilized in place of the real
number field. Concurrently, carrier sets for the sort VECTOR were adjusted to include
imaginary parts. Operators from the signature sets with names S-MULT and V-ADD were
used in mapping the new elements in accordance with their definitions. In short, scalar
multiplication and vector addition are closed using complex manipulations. Since the tan-
gent space is a vector space, the vector space complexification is applicable. Similar to a
Hilbert space situation, the tensor product Hc5Hr � C is applicable.

For a Lie algebra, the Lie bracket must also be complexified. In this case, for A, B, D,
and E in the Lie algebra g, then the complexification of the Lie bracket is given by a form
similar to the polarization identity: [A 1 i B, D 1 i E]5 [A, D]2[B, E] 1 i[A, E] 1 i[B, D]
(Humphreys, 1997). Finally, realize that the matrix A 1 Bi is shorthand for A�1 1 B�i,
where � is the tensor product. As a result, complexification is similar to just complexifica-
tion of a vector space. An excellent example follows using a Lie algebra, which is falsely
assumed to be a complex algebra.

Example 11.31:

The Lie algebra su(n, C) is the algebra with Lie bracket being the commutator consisting
of all matrices M, such that M*52M. These matrices are skew Hermitian, or skew sym-
metric and with a trace of M equaling zero. Note that this Lie algebra is not complex; it is
real, because as a vector space it is real. This follows using M, then (Mi)*52M*i5Mi.
Refer to the vector space definition. Here, the SCALAR sort determines whether the vector
space is real or complex. In any case, the most general matrix in su(2, C) is M5

jix 2 cTj
jc 2 ixj

where x is real and c is a complex number. A basis for this Lie algebra is given next, and
they are related to the Pauli matrices, sj, j5 1, 2, and 3. Given below in order are M15 is1,
M252is2, and M35 is3. These are also denoted X, Y, and Z:

j0 ij j0 2 1j ji 0j
ji 0j j1 0j j0 2 ij
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The commutators [M1, M2]5 2 M3, [M2, M3]5 2 M1, and finally, [M3, M1]5 2 M2.
[Mi, Mj]5 2 Eijk Mk. Here, the Levi-Civita symbol Eijk is once again employed. The Lie
algebra sl(2,C)5 su(2,C) 1 su(2,C) i. This expression will provide the complexification of
su(2,C). The most general element in the special linear algebra, sl(2,C), is N5

jx1 iy u1 ivj
jr1 is 2 x2 iyj

This matrix has complex values, and the trace equals zero. A basis for this Lie algebra
is given in the order, N1, N2, and N3 as follows:

j1 0j j0 1j j0 0j
j0 2 1j j0 0j j1 0j

Going back to su(2, C) and now utilizing the above basis shows that the most general
matrix in su(2, C) is M5 ixN12c*N21 cN3, since M is given by:

jix 2 cTj
jc 2 ixj

This is not surprising since su(2,C) is a sub-Lie algebra of sl(n, C). The objective is to
see the expansion involving the complexification of su(2, C). Now consider the most
general matrix in sl(2, C), which is N52ixM3 1 yM32u/2 (M2 1 i M1)2iv/2
(M21 i M1)1 r/2 (M22iM1)1 is/2 (M22iM1). This shows that the two Lie algebras are
essentially the same. Moreover, note that only six complexified basis elements of su(2, C)
are needed in describing N. These six matrices are M1, M2, M3, iM1, iM2, and iM3. Again,
this is expected since the dimension of sl(2, C) is six over the real field.#
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C H A P T E R

12

Fundamental and universal covering
groups

12.1 Homotopy a graphical view

Recall that a topological space T is said to be simply connected when it is path con-
nected. That is, there exists a continuous function, f: [0, 1]-T, such that for every two
points, x and y in T, f(0)5 x and f(1)5 y. For another continuous function g: [0, 1]-T,
where f(0)5 g(0) and f(1)5 g(1). Then, these two paths define a loop when they can be
continuously contracted into a point xo, in T. In this case, f(0)5 f(1)5 g(0)5 g(1). It is
termed a homotopy, H between the two continuous functions f and g, providing the loops
in T (Whitehead, 1978). The homotopy must be such that:

H: [0, 1] x [0, 1]-T, where
H (t, 0)5 xo, for all t in [0, 1]; here, xo is the initial as well as the final point in T;
H (t, 1)5 xo for all t in [0, 1]; t is a parameter positioning a loop within T;
H (0, s)5 f (s) for s in [0, 1], t5 0; this positions f, and by varying s, it creates the loop;
H (1, s)5 g (s) for s in [0, 1], t5 1; this positions g, and varying s, it creates the loop.

Refer to Fig. 12.1; the unit homotopy square [0, 1] x [0, 1] performs the homotopy.
Vertical lines within [0, 1] x [0, 1] map into and create different continuous loops in T.
Values of t on the horizontal bottom of the square locate continuous functions that corre-
spond to loops. These values only act as pointers to a loop. At the extreme vertical edges,
on the left of the homotopy square t5 0, there is the mapping creating loop A. This is
formed by the continuous function f. It will be written f(s)5A, so as s changes from zero
upward toward the top of the square toward s5 1, the loop forms. On the right-hand side
of this square, that is, at t5 1, the function g is indicated; it provides the loop B. Thus,
g(s)5B. Other values of t determine other loops that are not necessarily in between loops
A and B in T. Other vertical lines lie in between the lines for f and g inside the unit square.
In the diagram, the continuous function h(s)5C occurs at t5 1/3. Note that curve C over-
laps curve B. Using H(t, s), homotopy is demonstrated by continuously varying t and then
showing that the loops formed by H(t, s) also vary continuously from H(0, s) to H(1, s).
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Example 12.1:

Let T5R2, and let xo be the point (1, 0). Assume that f(s)5 (cos(2πs), sin(2πs)), for s
in the interval [0, 1]. In this case, as s goes from zero to one, f defines the loop being the
unit circle centered at the origin. It starts at xo5 (1, 0) and traverses the circle, coming
back to xo.#

The next example provides a homotopy where the loop-determining parameter t does
yield loops in between those given by f and g. See Fig. 12.2.

Example 12.2:

Again let T5R2. Also use xo5 (0, 0). Let f be a constant fixed-point identity map, that
is, f (s)5 (0, 0) for all s in [0, 1]. Also let g (s)5 (12cos (2πs), sin (2πs)). The operation H
shows that f and g are homotopic. Moreover, by continuously varying t from zero to one,
the function H (t, s) provides continuous distinct loops between those given by f and g. To
see the homotopy, use H (t, s)5 (t (1 2cos (2πs)), t sin (2πs)) and vary t from zero to one
continuously. As usual, the value t points to distinct loops.#

(0,0)

(0,1) (1,1)

(1,0)X0

X0
X0

t

h g

S

f : 0
g : 0

h : 0

1
1

1

A
B

C f

B

C

A FIGURE 12.1 Homotopy square.

(0,1) (1,1)

(1,0)(0,0)
s

f g

t t'

f(s) = H(0,s)
g(s) = H(1,s)

H(t',s)

FIGURE 12.2 Example of homotopy
with loops touching only at the origin.
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12.2 Initial point equivalence for loops

The fundamental group often denoted by π1 is found only using topological properties
involving connectivity. It is, however, an actual algebraic group describing topological
shapes. In particular, it specifies holes within simple topological structures such as path-
connected spaces. This is illustrated subsequently. Higher homotopy groups are used in
finding holes within more general topological structures such as high-order spheres.
Actually, the fundamental group consists of equivalence classes satisfying RST relations
involving loops that can be continuously converted into each other. See Example 12.3. This
is designated as a homotopy; it was previously defined in reference to paths and connec-
tivity. That homotopy forms RST equivalence classes is shown next.

To prove reflexivity, that is, f is homotopic to itself in the homotopy square, let
H(0, s)5H(1, s)5 f(s), but also let H(t, s)5 f(s) for all t in [0, 1]. This is the constant map,
it begins with f(s), and as t: 0-1, it stays at f(s) and winds up at f(s). Next, to show
symmetry, if f is homotopic to g, then there is a homotopy map H(t, s). To show that g is
related to f, use H(12 t, s). Accordingly, as t: 0-1, H(1, s)5 g goes to H(0, s), which is f.
Finally, to show transitivity, say that F(t, s) provides a homotopy from f(s) to g(s). Also,
say that G(t, s) gives a homotopy between g(s) and h(s). Then, H(t, s) will give a homotopy
between f(s) and h(s) when H(t, s)5 F(2t, s) for t in [0, 1/2], and H(t, s)5G(2t2 1, s) for t
in [1/2, 1]. Note that at t5 1/2, F(1, s)5G(0, s), which represents the same point xo. The
next example will illustrate equivalence classes of homotopy.

Example 12.3:

Consider the x, y plane in R2, but with a pinhole at (0, 0). This can be modeled as if a
post existed at the origin, and strings are used to create loops. See Fig. 12.3. Use any point
xo different from (0, 0) as a starting and ending point. Loops that do not enclose the pin
are homotopic to just xo; this acts like the identity. These loops are all homotopic to each
other and form an equivalence class denoted by [I]. Later this coset will employ a coset
leader of zero. Loops belonging to [I] can be traced in the positive direction, that is, coun-
terclockwise, or in the reverse direction, clockwise. For this coset, it does not matter; these
loops are all equivalent. All such loops are homotopic to xo. This is because all these loops
can be continuously shrunk to xo. Loops not equivalent to the identity must again start
and end at xo but must now also enclose the pin. These loops are not homotopic to the

X0
PIN

Two Loop In [I] Single Loop In [1]

Loop In [I] And In [-1]
Single Loop In [-2]

FIGURE 12.3 Equivalence classes for loops.
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loops in [I]. A continuous tightening of a string starting and ending at xo and enclosing
the pin can never morph totally into the point xo due to the post at the origin being in its
interior.

There are distinct equivalence classes for the number of times the loop encloses the pin.
The pin is pointed upward from the level surface. For the counterclockwise enclosures,
these equivalence classes are denoted by [1], [2], [3],. . . indicative of the number of times
the loop fully encloses or entirely wraps around the pin. Thus, there exist an infinite num-
ber of equivalence classes. Moreover, direction matters here. So, if a loop g goes clockwise
and encloses the pin only once, it cannot belong to [1] because no homotopy can be found
between f in [1] and g. In this case, g belongs to [2 1]. Similarly, if a loop encloses the pin
n times going clockwise, then it belongs to the equivalence class [2n]. This is illustrated
in Fig. 12.3. The result is that there exists an equivalence class for each integer with integer
0 corresponding to I in [I].#

The set of all equivalence classes of loops form a group under the concatenation of func-
tions. For a path-connected space, loops need not occur at the same point xo; here, loops
with different starting points are homotopic. In this case, homotopy is shown by traversing
the path connecting distinct initial points in two ways. Fig. 12.4 illustrates the process. In
this diagram, the path from initial point x1 to xo is traversed by h and the loop from xo
back to xo by f. The trace then returns to the point x1 using the function h21. Homotopy
follows by letting x1 approach xo continuously. The total path is given by h x (f x h21) or
(h x f) x h21. Using the associativity property of groups, these paths are the same up to
homotopy. The associative law is proved later.

For a Lie group, the fundamental group is always abelian (Humphreys, 1997).
However, this is not the case in general; a counterexample is provided in Example 12.10.

12.3 MSA description of the fundamental group

In the MSA description, the carrier set for the single sort ELEMENT is the set of all
equivalence classes of loops. Equivalence classes should be written [f], designating all
loops homotopic with f, but this will not be the case in this section. It should be under-
stood that equivalence classes are employed without the usual notation, that is, just use f
instead of [f]. Also in the diagrams, loops as well as their defining functions are denoted
by the symbols expressing the continuous functions f and g, creating these loops. The

f : 0            1 

h : 0            1 
h-1:0            1 h-1(0) = X0  h-1(1) = X1 

h(fh-1) =  (hf)h-1 

h(0) = X1  h(1) = X0 

f(0) = f(1) = X0 

h-1

X0

X1
h

f

FIGURE 12.4 Initial point equivalence.
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symbol B is used to symbolize equivalence. The MULT here is concatenation not compo-
sition of functions. Thus, the order of operation in the binary case is that the left loop or
operand is employed first; then, the right argument is employed in MULT. The polyadic
diagram in Fig. 12.5 is a reminder of the employment of the order of binary operations. As
usual, the tail of the polyadic arrow has a single dash for the first operand. The second
tale of MULT in the polyadic arrow is marked with two slashes for the second operand.
All the group operational names within the signature sets are as follows:

MULT(f, g): [0, 1] x [0, 1]-T, where T is a topological space.
MULT(f, g)(s)5 f(2 s) for s in [0, 1/2] and 5 g(2 s -1) for s in [1/2, 1].
INV: f21 (s)5 f(12 s) for s in [0, 1].
IDENTITY: e(s)5 xo for all s in [0, 1].

The usual equational identities must hold for the group structure. Here, for conve-
nience, replace or use:

ELEMENT by A, B, C.
MULT(A,B) by A x B.
IDENTITY by I.
INV(A) by A21.

The equational identities are written below as strict identities, but they actually hold
under homotopy involving equivalence classes; they do not hold point-wise unless by
coincidence:

1) Associative law: (A x (B x C))5 ((A x B) x C).
2) Identity condition: I x A5A x I5A.
3) Inverse: A21 x A5 I is left inverse, and A x A215 I is right inverse; both must hold for

a group structure.

The polyadic graph in Fig. 12.5 illustrates the operator names used in homotopy.
Fig. 12.6 illustrates that if fBf0 and gBg0, then MULT(f, g)(s)BMULT(f0, g0)(s). In this

figure, there is a path-connected topological space T, with equivalent loops f and f0 with
homotopy H, along with equivalent loops g and g0 with homotopy K. Also in this diagram
is the homotopy square with K on top of the interior, above s5 1/2, and H on the bottom
half of the interior of the homotopy square. On the left side is g on top and f on the bot-
tom. On the right side is g0 on top and f0 on the bottom. Here, MULT(f, g)(s)5 f(2 s) for s
in [0, 1/2], and5 g(2 s 21) for s in [1/2, 1]. This essentially shows that for equivalence

Left Loop
Right Loop

IDENTITY
Elements

MULT INV FIGURE 12.5 Polyadic graph for the fundamental group.
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classes the concatenation type of multiplication is well defined. Note that at s5 1/2, f(1)
equals g(0); this indicates that they are equal and, in fact, equal to xo.

The associative law is proven in Fig. 12.7. In this diagram, there is a topological space
T, with three loops. These are actually equivalence classes. The continuous functions f, g,
and h denote the loops. In this case, f(0)5 f(1)5 g(0)5 g(1)5h(0)5h(1). View the two
distinct vertical sides of the homotopy square. On the left side of the square, t5 0, the
product f x (g x h) is illustrated. On this side, let H5 f(2 s) for s in [0, 1/2], H5 g (4 s2 2)
for s in [1/2, 3/4], and H5h(4 s2 3) for s in [3/4, 1]. On the right-hand side, the product
(f x g) x h is given. Here, K5 f (4 s) for s in [0, 1/4], K5 g(4 s 2 1) for s in [1/4, 1/2], and
K5h (2 s2 1) for s in [1/2, 1]. Again, the associative law holds for the equivalence classes
and not for the individual functions f, g, and h. It holds under homotopy, not point-wise.
If any point t in [0, 1] is chosen, then this point determines the specific functions forming
the homotopy. Notice that there are straight line segments separating f, g, and h, where
they are defined in terms of s and t. In addition, the arguments for these functions are
for the most part nonlinear.

At t5 0, on the left side of the homotopy square, the evaluation of the functions
illustrated agrees with H given earlier. The same is true for t5 1 on the right-hand side;
evaluation gives K. Additionally, for any point t in (0, 1), the homotopy exists because the
transitions are continuous. For instance, as seen using the homotopy square, at t5 1/3, there
exists a dashed vertical line. On this dashed line, three distinct ranges for the domains exist
as s increases from zero to one vertically. There is one domain for each of f, g, and h using

K

H

g

f

g' g~g' Under Homotopy K

f~f' Under Homotopy Hf'

t

s = 1/2

MULT (f,g) ~ MULT (f',g')

FIGURE 12.6 Equivalent classes are
well defined.

1/2 1/2

3/4

1/4

t = 1/3 

h(4s-3)
h(2s-1)

g(4s-1)
g(4s+t-2)

g(4s-2)

f(2s)
f(4s)

S

)0,1()0,0( t

f 4s
2-t

h 4s-3+t
1+t

s = (2-t)/4

s = (3-t)/4

FIGURE 12.7 Proof of the associated law.
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the independent variable s. For f, the domain is [0, 5/12]. For g, the domain is [5/12, 8/12],
and for h, the domain is [8/12, 1]. The evaluation of these functions f, g, and h, which of
course are representatives of equivalence classes of concatenated loops, will show the
homotopy. On the lower inclined line segment, and at t5 1/3, here s5 5/12, and evaluating
f gives f((20/12)/(2�1/3))5 f (1). For this same point (t, s), evaluating g results in
g(20/12 1 1/3�2)5 g(0). Note that f(1)5 g(0) are equal in terms of homotopy; these
represent equality in terms of the final and initial points. That is, they denote the same point
xo in T. In a similar way, on the upper incline line segment for t5 1/3, s5 8/12. At this
point, the evaluation of both functions f and g yields g(1)5h(0).

The proof that the identity condition holds for the equivalence class is provided in
Fig. 12.8. Only one part of this identity, f x I5 f, is shown in the diagram. The other part
(I x f5 f) is proved analogously. Illustrated in this figure is the homotopy square. On the
left is f x I, and on the right is just f(s). The homotopy is obtained first by considering the
left-hand side, that is, t5 0. Here, H5 f(2 s) for s in [0, 1/2], and H5 f(1); that is, it is a
constant for s in [1/2, 1]. On the right-hand side is f(s) alone. For any t between
0 and 1, the lower region of f has an upper boundary equal to the incline line segment,
s5 (11 t)/2. In this region, the argument of f is 2 s/(t 11); thus, for any t and correspond-
ing s on the incline, the upper boundary values of f agree; it is f(1). This is the same value
as above the incline.

Fig. 12.9 involves the inverse function for f. The purpose of this diagram is to illustrate
the fact that MULT(f, INV(f))5 IDENTITY. This is the right-sided identity. Left-sided iden-
tity relation can be shown in a similar manner. The identity in the topological diagram is
the point xo. Any loop in this diagram may go all the way from xo to xo and then unwind
and go back again indicative of the inverse function. However, this only happens at t5 0.
In all other cases, the path will start from xo, but it will stall. It essentially will stop and
then turn around and go back, reaching xo again. This indeed is the case illustrated in the
Fig. 12.9 below. Note that counterclockwise motion is attributed to f and clockwise motion
is attributed to INV(f). At the upper left corner, the small diagram within this
figure illustrates a full revolution xo to xo. This is followed by an inverse full revolution.
This correlates only with the left boundary of the homotopy square, t5 0, and was
previously explained. Partial revolutions are illustrated underneath this figure in the
upper left-hand corner. Note that in this application INV(f)(s)5 f(2�2 s).

(0,1)

)0,1()0,0(

f(1)

f(2s)
f(2s/(t+1))

f(1)

f(s)

t

1_
2

1_
2

t_
2s= +

FIGURE 12.8 Identity condition.
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The homotopy square H is also given in the figure. On the left-hand side of H are f and
f21. Specifically, for s in [0, 1/2], f(2 s) is applied. In the interval [1/2, 1], f(2�2 s) is used.
On the right side of the homotopy square is f(0), indicative of the identify function. For t
in [0, 1], there exist inclined line segments s5 1/2 1 t/2 and s5 1/2 2 t/2 for s in [0, 1].
These line segments provide boundaries for the arguments of the homotopy function f.
For fixed t, values of s in [0, 1] result in a loop or a partial loop for f. In particular, at the
extremes of the square, to the left as s: 0-1/2, f makes an entire loop from xo to xo coun-
terclockwise. For s: 1/2-1, the loop backtracks on itself in a clockwise fashion. This is
illustrated in the uppermost diagram to the left of the homotopy square. On the right-
hand-side boundary of the homotopy square is the identity, where for s in [0, 1], no move-
ment occurs, and the loop stays at the point xo, for all s in [0, 1]. However, for t in (0, 1),
in all cases movement does occur. However, it does not make a full loop counterclockwise,
and movement stalls and proceeds clockwise back to xo.

For instance, at t5 1/3, there is a dashed vertical line in the diagram. This line intersects
the v-type inclines at two points. On the lower incline segment, the intersection provides
s5 1/3. Evaluation of the function f in the lower region at s5 1/3 gives f(2/3). Evaluation
again, this time from the central region at s5 1/3, yields f(1�1/3)5 f(2/3), which is the
same value again. This is a must for continuity. In this case, a loop is not attained. There is
no movement, as s changes upward, until the upper inclined line segment is hit; that is, as
s increases, s: 1/3-2/3. In the uppermost region, movement starts again but clockwise. It
starts at the point (1/3, 2/3) providing the value f(2�4/3)5 f(2/3), agreeing with the value
of f interior to the value of f in the v-shaped region. On the upper region, counterclockwise
motion prevails, and finally, f winds up at f(1), the identity. As t: 0-1, continuous
changes in loop creation occur, from a full loop and its undoing continually to just a point.
The sequence is illustrated to the extreme left of the homotopy square in Fig. 12.9.

t = 1/3 t(0,0)

(0,1)

(1,0)

f-1

f-1

f-1
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X0

X0

X0

X0

1_
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f

s

f(2s)

f(2-2s)

f(1-t) f(0)

1+t
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1-t
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f

f

f

FIGURE 12.9 Inverse function
equational identity.
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12.4 Illustrating the fundamental group

The fundamental group will be found for several situations, and in particular for
Lie groups. These groups are isomorphic to well-known infinite groups such as Z, under
addition, or the positive reals under multiplication. Another fundamental group of infinite
cardinality is described next in the following example. Here, equivalence classes are again
denoted using the usual bracket notation, [].

Example 12.4:

Refer to the x, y plane in R2, but with a pinhole at (0,0), as given in Example 12.3. The
identity corresponds to the equivalence class [I] of all loops not enclosing the origin and is
homotopic to point xo. Loops enclosing the origin n times counterclockwise are in equiva-
lence class [n]. For those loops containing the origin and enclosing it m times clockwise,
form the equivalence class [2m]. The corresponding fundamental group is isomorphic to
Z, all the integers under usual addition. For instance, if f is in [2] and g is in [3], then
MULT(f, g) is in [5]. Additionally, if h is in [I], then MULT(f, h) is in [2], and if k is in
[2 7], then MULT(f, k) is in [2 5]. Finally, INV(k) is in [7].#

The next few examples are presented in an intuitive manner. For rigorous presentations
see (Strom, 2011; Humphreys, 1972; Hatcher, 2002).

Example 12.5:

For the Lie group SO(3,R), as presented in Example 11.28, it was seen that the closed
sphere of radius π is the full domain for a typical matrix eiaXj of SO(3,R). That is, the coor-
dinates on the manifold corresponding to any element of this group lie in or on this
sphere. Additionally, identical matrix values exist at the two points, namely at any point
along with the corresponding antipodal point both on this sphere. Because of this, the fun-
damental group associated with SO(3,R) has more elements than just the equivalence class
containing the identity I. Taking any two loops f and g, starting and ending at interior
point xo and staying in the open region of this sphere, then fBgBI. However, for any
loop h, starting at xo if it touches the boundary at any point p, it goes back to xo, leaving
from the antipodal boundary point, which is directly opposite from point p. The reason is
that the values of the matrix at this point and at the antipodal point are identical. They
represent the same element of the group. Because of this, a new equivalence class forms;
assume it contains -I. In short, the fundamental group is isomorphic to Z2. It has cardinal-
ity two. Note that two distinct paths beginning at xo and touching the sphere result in two
antipodal points. The corresponding paths then return to xo, meaning that they are in the
equivalence class [I].#

Example 12.6:

For the Lie group SU(2,C), as described in Example 11.26, it was seen that the closed
sphere of radius 2π is the full domain for a typical matrix eiajsj of SU(2,C). Additionally, at
every point on the boundary of this sphere, there is only one corresponding matrix. The
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identity homotopy holds for all loops in SU(2,C). That is, there is only one equivalence
class; it is the identity. Begin with two loops f and g, both starting and ending at xo. Also
assume that f stays in the interior of the sphere and returns to xo. However, let g hit the
boundary and return to xo, leaving some arbitrary point p on the boundary. In this case,
all points on the boundary act like a single point. This is because substituting in boundary
coordinates yields a group element, that is, a matrix that is unique. The corresponding
loops can always be brought back to point p and detach. The conclusion is that g0Bf0.
Consequently, the fundamental group only contains one equivalence class [I]. The
difference between this example and the last one is that here the points on this sphere are
identical, so movement along the boundary is permitted. In the previous example, once
movement on the surface of the sphere occurs, this always corresponds to the identical-
type movement of the antipodal point.#

Example 12.7:

In R2, the figure eight is a wedge sum of two circles. The fundamental group is the non-
abelian free group consisting of two generators. Generator a winds around clockwise
always on the same half of the figure eight, the left half. Also, generator b winds around
counterclockwise on the other half of the figure eight. These are positive rotations on these
circular-type surfaces. When a winds counterclockwise on the left half, it forms inverse-
type words; one complete revolution forms INV(a)5 a21; similarly, for the right circle
with b. See Fig. 12.10. The free group of two generators consists of words or elements of
the form: (v5 an1 bm1 . . .ank bmp), ni, and mj are the integers. These form strings of words
as rotations occur around the figure eight. The IDENTITY5 a05 b0, denoted by I. For
instance, the string f5 a2b3 corresponds to two rotations to the left clockwise, followed by
three rotations counterclockwise to the right. Now assume that the multiplicative process
and inversion operations are extended to strings. Then it follows that MULT(f, INV(f))5
a2b3 x (b23a22)5 I.#

A more in-depth description of an algebra consisting of string manipulations is given in
Section 14.4, entitled MSA For Partial Isometries.

12.5 Homotopic equivalence for topological spaces

Two topological spaces X and Y are said to be homotopically equivalent whenever
F: X-Y, G: Y-X, and G(F)5 the identity on X, and F(G) is the identity on Y. When this
holds, the notation given for F and G is homotopically equivalent, FBG. Under this condi-
tion, the equalities for the identities are given by G(F)5 Ix and F(G)5 Iy, respectively. This

a-1
b-1

a Positive

Positive b

FIGURE 12.10 Figure eight.
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equivalence obeys the RST relations. Note that the operation in this case is function com-
position and not concatenation. The functions equaling the one-sided identity when com-
posed are called homotopic inverses. When two topological spaces are homeomorphically
equivalent, they are homotopically equivalent. The converse is not true.

Example 12.8:

Consider the topological spaces X5Rn, and say that the other space Y is just some point
in Rn, say that Y5 {0}. Then F: X-Y, so all points in Rn map to 0, and say that G: Y-X is
such that G(Y)5 {0}. So G(F)5 Ix and F(G)5 Iy. The two spaces X and Y are homotopically
equivalent and not homeomorphic.#

12.6 The universal covering group

For a connected topological space X, there exist a simply connected space Y and a map
f, such that f: Y-X. This mapping is called a covering mapping. When X is simply con-
nected, it has a trivial fundamental group and it is its own universal cover (Hatcher, 2002).
A universal covering group G for a connected Lie group H is the unique simply connected
Lie group among all groups with the same Lie algebra h, as H. These groups form a family
of groups having h as their Lie algebra. A Lie algebra has a special associated simply con-
nected Lie group, which becomes the universal covering group. As with every covering
group, there exists a kernel K for a covering homomorphism L. The homomorphism is a
continuous, onto group homomorphism L: G-H. Also, K is a discrete normal subgroup
of G, and H5G/K. Points mapped to p in H are called fibers over p; they are left cosets.
Additionally, disjoint open sets enclosing p, an interior point in H, are called sheets.

Example 12.9:

Consider the circle group T. It is a one-dimensional manifold and a single-parameter
subgroup of the group of nonzero complex numbers under multiplication. Specifically,
T5 {z, such that z is in C, |z|5 1}. It is a unique up to isomorphism compact and con-
nected Lie group within the complex plane. It is isomorphic to U(1), the first unitary
group. The covering group for T is R, the real numbers with the usual additive group. The
covering homomorphism L: R-T, where L(r)5 e2irπ5 cos(2rπ) 1 i sin(2rπ). L is onto but
not 1�1. The kernel of the homomorphism is the set of all integers Z, since the inverse
image of the identity element 1 in T are integers, Z in R. T is isomorphic to R/Z.#

The process of finding a universal covering group will be described for Lie groups and
then followed by an example. Here, it is assumed that there exist several Lie groups shar-
ing a single Lie algebra (Gilmore, 1974). The first thing to find are the fundamental groups
associated with each Lie group. One of these groups, G, must be simple, so homotopy
π1(G)5 {I}. If more than one of the fundamental groups of a Lie group are simple, then the
corresponding Lie groups are isomorphic. Next, find the discrete invariant subgroups D1,
D2, . . ., DN also called normal subgroups for the Lie group G. G is the universal covering
group for the Lie algebra A. The discrete invariant subgroup D of G is invariant; therefore,
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gD5Dg. For all g in G, this could be written as g D g215D. Also, they are discrete, that
is, usually finite or countable infinite, with no accumulation point. It will be seen next that
D, being discrete, strengthens the commutativity property.

The Lie group G always commutes with every element d0 and dv of D. This commuta-
tivity follows by continuously moving g to the identity in gd0g215dv. Because D is a dis-
crete group, this implies that d0 5dv, because d0and dv cannot differ continuously; they
only differ by delta amounts. This is a direct result of having discrete elements. The group
D is the center of G; it is the largest, discrete invariant subgroup of G. All other discrete
invariant subgroups Dj are themselves a subgroup of D. Most importantly, all other Lie
groups within this family are isomorphic to G/D. The number of distinct discrete invari-
ant subgroups governs the number of distinct Lie groups in a family corresponding to a
single Lie algebra. Here, when Di and Dj are isomorphic, but distinct, each might corre-
spond to a distinct group in the family. Moreover, each of the groups G/Di within this
family has a fundamental topological group π1(Gi), which is isomorphic to the correspond-
ing algebraic discrete invariant group Di. This relationship provides a strong link between
algebraic and topological structures in Lie groups. The discrete invariant group Di is alge-
braic, but the fundamental group π1(Gi) is a group because of homotopy, a topological
quality; nevertheless, isomorphisms between these structures control the consequences of
the universal covering group.

The next example will involve a family of three Lie groups, all of which have the same
Lie algebra h5 su(2, C). All three Lie groups are locally similar to each other, but they are
not identical.

Example 12.10:

This is probably the simplest instance of the covering space for Lie groups. It involves
three distinct Lie groups illustrated in Fig. 12.11. These three groups are given next. They
are, first, the Lie group of special orthogonal rotation SO(3). The next is SLC(1, Q), which
is the special linear group of one-dimensional quaternions. The last Lie group is the

LIE GROUP

LIE ALGEBRA

SO(3)
SU(2,C)

SU(2,C)

SU(2,C)

EXP1

EXP2

EXPnπ1G1

π1G2 π1G3

LIN LINLIN

FIGURE 12.11 Universal cover-
ing group.
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special unitary group SU(2). They all possess the common Lie algebra, su(2), even though,
respectively, they involve three-by-three matrices, quaternion scalars, and lastly two-by-
two matrices. The Lie group SU(2) is the extension of SO(3) by Z2. All these groups when
linearized gave the same Lie algebra. That is, the linearization gives the same Lie bracket
and generators. On the other hand, now going the other way. Different representations
provided these different Lie groups for the unique Lie algebra su(2) when exponentiated.

Since the fundamental group of SU(2, C) is simple, that is, it only consists of the equiva-
lence class [I]. That is, π1(SU(2, C))5 [I]. It follows that SU(2, C) is the universal covering
group. Next, the discrete invariant subgroups of SU(2, C) must be determined. Observe
that the center of SU(2, C) is D5 {I, 2 I}. It is the largest subgroup of SU(2, C), which com-
mutes with all elements of SU(2, C). This subgroup can be found by utilizing the coordi-
nates in the general matrix structure of SU(2, C) in Example 11.26. Let all entries be zero,
except that first let d5 2π and then use d5 0. The only other discrete invariant subgroup
is {I}. Note that D is isomorphic to π1(SO(3, R)). The factor group of SU(2, C) by {I, 2 I} is
isomorphic to SO(3, R). The factor group of SLC(1,Q) by {I} is itself. Also since the discrete
invariant subgroup is {I}, the special quaternion group, SLC(1, Q), and the special unitary
group, SU(2, C), are isomorphic and homeomorphic.

The quotient space SU(2, C)/{I, 2 I} consists of an uncountable number of elements, for
instance, a, b of SU(2, C) partitioned into cosets. The set of all cosets are of the form
{I, 2 I}, {a, 2 a}, and {b, 2 b}, and form an uncountable number. resulting in a new group.
Multiplication of cosets [a] x [b]5 [a x0 b], where x0 is the multiplication in SU(2, C) and
x is the induced multiplication in SO(3, R). SU(2, C) is an extension of SO(3, R) by the fun-
damental group Z2.#

12.7 The Cornwell mapping

The two-to-one homomorphic map T, from SU(2, C) to SO(3, R) is also referred to as a
Cornwell mapping (Cornwell, 1997).

Example 12.11:

For a 2x2 matrix U given below with z, w in C and |z|21 |w|25 1,

jz wj
j2wT zTj:

This is a typical matrix in SU(2, C). It is also called a low-dimension spinor
representation when written in terms of the Pauli matrices. The image of U is given by
T(U), which is:

jRe z2 2w2
� �

Im z2 2w2
� �

2 2Re zwð Þj
jIm z2 2w2

� �
Re z2 1w2

� �
2Im zwð Þj

j2Re zwTð Þ 2Im zwTð Þ jzj2 2 jwj2j
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T(U) is in SO(3, R).#
It is interesting to note that the representation of T(U) in SO(3,R), in the aforementioned

example, was used in proving a version of the Solovay-Kitaev theorem for special orthogo-
nal groups. The SU(2,C) version of this theorem is described in a forthcoming section on
quantum computing.
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C H A P T E R

13

Spectra for operators

13.1 Spectral classification for bounded operators

This section is a continuation of Sections 8.5 and 8.6. The principal references for a
major earlier part of this chapter are Halmos (1957) and He’lein (2014). In Chapter 8, the
criteria originating with the first reference (Halmos, 1957) were provided for illustrating
the existence of a spectrum, specifically, the spectrum spT in Hilbert space H. The neces-
sary and sufficient condition is repeated here. For an operator T, in B(H,H), spT5 {c, such
that c in C, and (c I2T) is not invertible iff both 1) and 2) hold}:

1) The image of T is dense in H, and
2) There is a scalar, a. 0 such that for all v in H:Tv:.a:v:.

In the second reference given earlier, criterion (1) is referred to as weakly onto, and the
second criterion number (2) is implied to be strongly one to one.

For T, in B(H,H), it was previously shown that the spectrum of T is nonempty and
forms a compact set in C. Moreover, the resolvent set, RsT, is an open set in C. This set
RsT5 fλ, where λ is in C, and such that (T2λI) is one to one and onto, ðT2λIÞ21 is
bounded}. The boundedness of the inverse follows also from the bounded inverse theo-
rem. This theorem can be found in Appendix A.6. Additionally, a partition of the spT is
provided by three disjoint sets sppT, spcT, and sprT. Briefly, the spectra will be described
for T, a bounded operator on a complex Banach space, X differing from {0}. The inner
product is not necessary for this development; thus a Banach space is utilized. Numorous
examples are provided, and in the unbounded case they are presented in a formal manner.
Domain issues are not considered.

1) The point spectrum sppT5 {λ in C such that (T2λI) is not one to one on X}.
2) The continuous spectrum spcT5 {λ in C such that (T2λI) is one to one on X, but it is

not onto X; however, it has ran (T2λI) dense in X}.
3) The residual spectrum sprt5 {λ in C such that (T2λI) is one to one and not onto, but

with ran (T2λI) not dense in X}.
1) For sppT, Ker(λ I2T) is not {0}; there must exist a nonzero vector f in X such that T f5λ f,

f-(T2λI)f. This mapping is not one to one in X; any nonzero multiple of f satisfies this
criterion, since any nonzero scalar times an eigenvector is again an eigenvector. In complex
n-dimensional space, dim (Ran (T))1dim (Ker (T))5n. Additionally, f in X is called an

231

Many-Sorted Algebras for Deep Learning and Quantum Technology

DOI: https://doi.org/10.1016/B978-0-443-13697-9.00013-8

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/B978-0-443-13697-9.00013-8


eigenvector, and λ is called an eigenvalue. In finite-dimensional Hilbert space, there only
exists this point spectrum. Several examples of the point spectrum have been illustrated
using matrix operations in finite-dimensional Banach or Hilbert space. A most trivial
illustration of the point spectrum in an infinite-dimensional space is given in Example 8.16.
Additional examples in infinite-dimensional Hilbert space with a point spectrum are
provided in Examples 13.1 and 13.2.

2) For spcT, Ker(λ I2T) is {0}, and the image of λI2T is dense in H, but Im (λ I2T) is not
equal to X. Equivalently, λI2T is dense in H iff ker (λI2T)T5 {0}. Since Ker(λ I2T) is
{0}, (λ I2T) (f1 � f2)5 0; this implies that f15 f2, so (T2λI) is one to one on X. It is not
onto because if it were then Im (λ I2T)5X. Instances of this spectrum are given in
Examples 8.17 and 8.18.

3) Ker(λ I2T) is {0}, the image of λI2T is not dense in H, and Im (λ I2T) is not equal to
H; then λ is in the residual spectrum. This means that the operator T having a residual
spectrum is far away from being onto. The associated spectrum is denoted by sprT. An
example of a nonempty residual spectrum is provided in Example 13.3 (Stack
Exchange, 2016).

Example 13.1:

Consider, lp, for p in [1, N), with scalars in C. For λ1, λ2, λ3, . . . in C and bounded, that
is, sup|λn|,N. Let T be an infinite scalar matrix T: lp-lp, with T having values of λ in
order on the main diagonal. Using the standard basis implies that Tvn5λnvn where the
eigenvector is vn5 (0 0 . . . 0 1 0. . .), and the 1 is in the nth tuple position. So sppT is a sub-
set of the set spT. That is, vn are eigenvectors corresponding to eigenvalues λn.

In the closure of the set of all eigenvalues, there could exist a point c in C, and this point is
in the spectrum. If there exists a limit point c, for the set of all λn, then c cannot be in sppT,
but c is in spT. This will happen in the closure of the set of all eigenvalues. For instance, if
λn5 1/n, then 0 would be in the spectrum of T, that is, it is sprT or spcT.#

Example 13.2:

Let T: l2-l2 over the complex field. For any v in l2, we have that T(v1, v2, v3, . . .)5 (v1, v2/
2, v3/3, . . .). The point spectrum is {1, 1/2, 1/3, . . .}. This can easily be seen by writing an infi-
nite scalar matrix with values 1/n on the main diagonal. Using the standard basis implies that
Tvn5λnvn where the eigenvector is vn5 (0 0 . . . 0 1 0. . .), and the value one is in the nth tuple
position. So sppT is a subset of the set spT. That is, vn are eigenvectors corresponding to eigen-
values λn. The value zero is a limit point of eigenvalues. So zero would also be spT.#

Example 13.3:

This is an example of the residual spectrum being nonempty. Let the carrier set for the
Hilbert space H be l2, the space of all square absolute summable sequences with complex
entries. For T: l2-l2, consider T(v1, v2, v3, . . .)5 (0, v1, v2/2, v3/3, . . .). This is a right-
shift operation. The Ker( c I - T ) 5 {0}. T v15 0, T v25 v1, T v35v2/2 . . . . So again, the
spectrum is not empty, and zero is a spectral point, because of the noninvertible criteria. T
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is not onto, since the first tuple in the codomain is fixed. If vn is a unit vector with 1 at
position n and 0 elsewhere, then Tvn---. 0. See Stack Exchange (2016). Note that the dual
operator TT is such that ,TTw, v.5,w, Tv.. Since T(v1, v2, v3, . . .)5 (0, v1, v2/2, v3/
3, . . .), substituting into the leftmost inner product gives w10Tv11w20Tv21w30Tv3
1 . . .5w1 � Next expanding the other inner product results in 01w2 v11w3 v2/2 1 . . . .
Here, wj0T5TTwj. Next, equating coefficients of vj implies that w10T5w2, w20T5w3/2,
. . . . Therefore, TT (w1, w2, w3, . . .)5 (w2, w3/2, . . .). It is a left-shift type operation.#

13.2 Spectra for operators on a Banach space

The spectrum of the adjoint operators when they exist is often related to the spectrum
of the original operator. The Lumer-Phillips theorem is a useful tool for determining the
spectrum of adjoint operators in Hilbert and Banach spaces (Lumer and Philips, 1961).
This theorem was used in He’lein (2014), to illustrate the distinct types of spectra for
bounded operators in a Banach space. Many of these same examples are repeated in the
following section. First, however, Lumer-Phillips theorem specifies that, in a Banach space
A with T0 being the dual operator of T in A, the spectra spT5 spT0. Moreover, for c in the
resolvent set Rs(T), the resolvent operators Rc(T)0 5Rc(T0). Also, for T in a Hilbert space
with adjoint TT, it follows that spTT5 (spT)T5 {cT|c in the spectrum of T, that is, c in
spT}. Finally, for c in the resolvent set Rs(T), the resolvent operators: RcT(TT)5 (Rc(T))T.

The Banach space l1 has a dual space lN; additionally, there is a continuous isomor-
phism from lN into the dual space of l1. Consider a continuous linear operator φ, φ:
lN-C. Let en, n5 0, 1, 2, . . ., in l1 be a basis where en5 (0, 0, . . .0, 1, 0, . . .) and has one in
the nth tuple and zero elsewhere. For v in l1, where v5 (v0, v1, v2, . . .), the norm of the
difference :v-

PN
n50 vn � enð Þ: is less than or equal to

PN
N11 vnj j, which goes to zero as N

goes to infinity, since vn is absolute summable. Now using φ and then employing the

continuity condition gives φ vð Þ5 limN-Nφ½PN
n50 vn � enð Þ�5 limN-N

PN
n50 vn �φ en½ �ð Þ5PN

n50 vn �φ en½ �ð Þ. Since φ is continuous for all w in l1 and since φ is bounded, :φ: is less
than or equal to c, where c. 0. Also,|φ(w)|is less than or equal to :φ: :w:. In
particular,|φ(en)|is less than or equal to :φ: :en:5 c. So φ(en) is bounded, and as a con-
sequence, the series for φ vð Þ5 PN

n50 vn �φ en½ �ð Þ is absolutely converging;
PN

n50 vn �φ en½ �
�� ��

is less than or equal to c
PN

n50 vnj j. It follows that :φ: is less than :φðenÞ: because a
bounded operator norm is the infimum of the Lipschitz constant M, where :φðvÞ: is less
than or equal to M:v:. This implies that :φ:5 :φðenÞ:.

Several examples that follow (He’lein, 2014) involve the Banach space l1 and its dual space
lN. In the following, the range and image of an operator T are used interchangeably. That is,
ranT5 imT; they are the same. Additionally, the closure of an operator is denoted by closT.

Example 13.4:

Consider the Banach space l1 of all complex-valued sequences v5 (v1, v2, . . .), which are
absolutely summable. Let L be the left-shift operator L (v)5 (v2, v3, . . .). The dual operator is
denoted by LT and not symbolized as L0 for readability purposes. It operates in the dual space
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IN, the space of bounded sequences w5 (w1, w2, . . .). Even though the inner product is not
applicable, it will be employed as an operational calculus device to quickly find the adjoint.
So formally, taking the inner product ,w, L (v).5w1Tv21w2Tv31. . . . Next, to find
LT, use ,LT (w), v. and then equate this result to the sum written earlier as ,LT (w),
v.5w10Tv11w20Tv21w30Tv31. . ., where the prime, that is, wn0T, indicates the nth tuple of
LT(w). Equating coefficients of vk involving ,LT (w), v. and ,w, L (v)., and solving for
wk0T, gives w10T5 0, w20T5w1T, w30T5w2T, . . .. This shows that the dual operator
LT (w)5 (0, w1, w2, . . .). The resulting operation is the right shift.

Note that :Ln:5:ðLTÞn:5 1, and the norm equals the spectral radius for both L and LT.
Gelfand’s formula from Section 8.10, shows this. Here the limit n-N, of
:Ln:1=n 5 rðLÞ5 15 limit n-N, of : LTð Þn:1=n 5 r LTð Þ5 1. Because of this result, the spectra
of L and LT lie in the closure of an open ball centered at the origin, and of radius one. The
ball is denoted clos(O(0,1)). Where clos represents the closure operation. All the points
of the open ball are eigenvalues, that is, O(0,1) is a subset of sppL. If v5 (1, 0, 0, . . .),
then v is an eigenvector of L with c5 0 as an eigenvalue, because L(v)5 0 v. Other
points c in O(0,1) are also in sppL. To see this, let v5ð1; c; c2; . . .Þ then
LðvÞ5ðc; c2; c3; . . .Þ5 cð1; c; . . .Þ5 c v. Accordingly, the results mentioned earlier show
that the open unit ball consists of eigenvalues for L.#

Example 13.5:

Again consider the Banach space l1, as in Example 13.4. This space consists of all
complex-valued sequences v5 (x1, x2, . . .), which are absolutely summable with L the left-
shift operator L (v)5 (x2, x3, . . .). It was seen in that example that the dual operator LT
operates in the dual space lN, the space of bounded sequences w5 (y1, y2, . . .). Moreover,
the dual operator LT (w)5 (0, y1, y2, . . .) is the right-shift operator. It was seen that the
spectra of L and LT lie in the closure of an open ball centered at the origin with radius
one, clos(O(0,1)). The inclusions hold: O(0,1) is contained in sppL, which itself is contained
in spL, and this is contained in clos(O(0,1)). Then, since spL is compact, spL5 clos(O
(0,1))5 spLT, by the Lume-Phillips theorem. In Example 13.4, it is shown that O(0,1) is a
subset of sppL. Ultimately, it will be seen that O(0,1)5 sppL, that is, the open unit ball is
the point spectrum for L.

First note that the boundary of O(0,1) is not in sppL. That is, the boundary points are
not eigenvalues. The boundary consists of {c, such that|c|5 1}. Say that c is in ker(c2L)
and not equal to {0}. This is proof by contradiction. Let v5 (x1, x2, . . .) and then (c2L)
v5 0. That is, (c x1, c x2, . . .)5 (x2, x3, . . .). A result of this identity is a recursive set of
equations. Specifically, the recursion must hold, x(n1 1)5 c xn, n5 1, 2,. . . . Solving, by
using backward substitution, gives v5c x1ð1; c; c2; . . .Þ. Since|c|5 1, v is not in I1, unless
x1 is zero. It follows that the boundary is not in sppL, and therefore, the whole point spec-
trum is sppL5O(0,1).

Next, it will be seen that the point spectrum of LT is empty. Again assume not, that is,
there is a complex value c such that (c2LT) w5 0 for a vector w5 (y1, y2, . . .) in lN. That
is (c y1, c y2, . . .)5 (0, y1, y2, . . .); this also leads to a set of equations, namely: c y15 0,
c yk5 y(k-1), k5 2, 3, . . .. When c5 0, then w5 0 and cannot be an eigenvector.
Otherwise, when c is not zero, then from the equations mentioned earlier, y15 0, and then
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by recursion, yk5 0 for all k5 2, 3, . . . . This implies that w5 0, and it cannot be an eigen-
vector. Thus, sppLT is empty, and all that is known so far is that for the adjoint; the closed
ball centered at the origin is the spectrum of L.#

Example 13.6:

Refer to Examples 13.4 and 13.5. The right-shift operator LT operates in the dual space
lN, where for w5 (y1, y2, . . .), LT (w)5 (0, y1, y2, . . .). It will be seen that the open ball
O(0,1) is in sprLT. For c or cT in O(0,1), let v5 ð1; c; c2; . . .Þ, so v is in l1, and the same holds
for a vector involving the conjugates of c. To be in the residual spectrum of LT, all that
needs to be shown is the following: ker (cT I2LT) is {0}, and the image of cTI2LT is not
dense in H. These criteria uniquely classify sprL. Consider any vector w in lN, and using
again, only in a formal manner, a map of the form, f: w-,w, v.. Accordingly, f: (cT2LT)
w-,(cT2LT) w, v.5,w, (c2L) v.5,w, c v2L v.. Use the definition of the opera-
tor L, and notice that c v2Lv5 0, because all points c in the open ball are eigenvalues.
This shows ker(cT2LT)5 {0}, and the image of cT2LT is not dense, because for any w in
lN, f: (cT2LT) w5 0; therefore, closf(c2LT) cannot be dense in lN. This shows that the
open ball O(0,1) is in sprLT.

Next, it will be shown that the residual spectrum of LT equals the closed unit ball,
that is, sprLT5 clos(O(0,1)). Employ any complex number c, of unit length and vector u
in lN, and w in C. Use the vector tuples to form the set of equations resulting from the
following identity: (c2LT) w5u. Expanding the identity provides c w15u1, and
(c w22w1)5u2,. . ., c wk2w(k-1)5uk, k5 2, 3,. . . . Solving for vector w: w15 cTu1,
w25 cT (w11u2),. . ., wk5 cT (uk1w(k-1)). Back substitution gives the result:
wk5 cTuk1 cT2uðk2 1Þ1 . . .1 cTku1:u5 ð1; cT; cT2; . . .Þ is in lN, because the scalar c is of
unit length and u is bounded. Substituting in the tuples of u into the expression for wk
gives wk5 cTn 1 cTn 1 . . .1 cTn 5 kcTn-N as k-N and so the vector w is not in lN.
Thus, u5 1; cT; cT2; . . .

� �
is not in the image of (c2LT). This shows that points on the

boundary of the unit circle are not eigenvalues of LT. So far, this shows that the bound-
ary of the unit circle can be in the continuous or residual spectrum of LT. Next, it will be
shown that ran(cI2LT) is not dense in lN. Accordingly, these points will then be shown
to be in the residual spectrum of LT.

To see this, it will be shown that O (u, 1/2) intersects im(cI2LT) and is empty in lN. For
v in O (u, 1/2), v5u1w, where the lN norm,:w:is less than 1/2. Consider the equation:
(cI2LT) z5v5u1w. Here, z5 (z1, z2, . . .) is a vector of complex-valued tuples, which is
to be the solution of the aforementioned equation. It follows that
c z120511w1; c z22z15cT1w2; . . . ; c zk2zðk21Þ5cTk21 1wk; k5 3; 4; . . . : Again, by
substitution, solving tuple by tuple for the complex vector z yields
zn5 cTn 1

Pn
j51 cTn112jwj

� �
. Now using the bounds on c and the vector w shows that

jzn2cTn|is less than or equal to jPn
j51 cTn112jwj

� �j, which shows that jzn2cTnj,n=2. The
vector zn is not bounded and therefore not in lN. This follows since jzn2cTn|is greater or
equal to jcTnj2 jznj5n2 jznjorjznj is greater than or equal to n2jzn2cTnj.n=2. This
shows that the closure of (cI2LT) is not lN. Thus, sprLT5|c|. Moreover, sprLT is the
whole closed unit disk in C.#
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Example 13.7:

For the left-shift operator L, in Example 13.4, it will be seen that the residual spectrum is
empty. Since it was shown in Example 13.5 that O(0,1)5 sppL, only the boundary of the unit
ball need to be considered. So use a unit complex value c. That c is in sppLT is false since
Example 13.6 shows that sppLT is empty on the boundary|c|5 1. The continuous spectra for
L and LT are found using the fact that the three types of spectra are mutually disjoint and the
union is the total spectra for each operator, which shows that spcLT is empty. Use the fact
that sppLT is empty on|c|5 1. Also, apply the proposition 6.3 (ii) from He’lein, (2014). It
states that if the ran (cI2L) is not dense in a Banach space, then c is in the sppLT. From the
contrapositive of this proposition, it follows that if sppLT is empty on
|c|5 1, then the ran (cI2L) is dense in l1; this implies that spcL equals the boundary of O
(0,1). So, the boundary of the unit ball is the continuous spectrum of L.#

A summary of the results from Examples 13.5�13.8 appears in Fig. 13.1 (He’lein, 2014).
In this figure, the closed unit disk appears twice, once to the left, for the left-shift operator
L, and once for its dual operator LT. The spectrum of L consists of a point spectrum sppL
in the open unit disk in C. On the boundary of this disk is the continuous spectrum, spcL.
The adjoint operator indicated on the right-hand side diagram shows that everywhere in
the closed disk, LT has a residual spectrum, sprLT.

13.3 Symmetric, self-adjoint, and unbounded operators

In quantum technology, the self-adjoint operator is of principal importance in that it is
uniquely utilized in the observation process. This section and the next few sections are
used in reviewing, extending, and illustrating numerous facts pertaining to self-adjoint
operators both in the bounded and unbounded cases. Several illustrations of self-adjoint
operators have been exhibited, mainly in terms of matrix operators. A simple example of a
self-adjoint operator on an infinite-dimensional Hilbert space follows.

Example 13.8:

This instance of a self-adjoint operator extends the results given in Example 13.1. Let
T: l2-l2 over the complex field. For any v in l2; use the mapping, Tv5T(v1, v2, v3, . . .)5
(v1, v2/2, v3/3, . . .). To be in l2 means that the sum

PN
n51 vnð Þ2 converges. Consider w in

Boundary Continuous
Spectrum

Spectrum L Spectrum L*

Point Spectrum Interior

Residual Spectrum
Whole Closed Disc

FIGURE 13.1 Spectra
for operator L in l1 and
its dual in lN.
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l2, where w5 (w1, w2,. . .), and then the inner product ,w, Tv. 5w1Tv11w2Tv2/
21w3Tv3/31. . .. The definition of the adjoint operator involving the inner product is
,TTw, v.5w10Tv11w20Tv21w30Tv3 1 . . .. Here, wj0T is TTwj. Then to see if there exists
a relation between T and TT, equate coefficients involving vn. This gives w10T5w1T,
w2T0 5w2T/2, w30T5w3T/3. . .. As a consequence, TTw15w1, TTw25w2/2, TTw35w3/ 3,
. . .. Accordingly it follows that TT5T, and so the operator T is self-adjoint.#

Example 13.9:

Let T: l2-l2 over the complex field. For any v5 (v0, v1, v2, v3, . . .), in l2 say that Tv5
(v1, v2/2, v3/3, . . .). To find TT, notice that for w in l2, ,w, Tv.5w0Tv11w1Tv2/21. . ..
Also forming ,TTw, v.5w00Tv01w10T v11. . .. Then equating the two inner product
expressions together and then setting the coefficients of vn equal to each other yields:
w00T5 0, w10T5w0T, w20T5w1T/2, . . .. As a consequence, TTw5 (0, w0, w1/2, w2/3,
. . .). So in this example TT does not equal T, so it is not self-adjoint. Notice, also that
,TTw, v.5 01w0Tv11w1Tv2/21. . .. Accordingly, ,TTw, v. does not equal ,w, Tv.,
and so T and TT are not even symmetric, which is a must in this case.#

In the previous example since the operator T is not self-adjoint, it automatically follows
that the operator is not symmetric. The result does not hold for unbounded operators that
in fact are the most important in quantum. For a not necessarily bounded operator on
Hilbert space H, the domain of T, domT, is a subset of H. The adjoint TT has domain
domTT, which is also a subspace of H with vectors w such that there is a vector v in H
such that ,v, Tu.5,w, u.. By letting TTw5v, define the adjoint operator TT.

The graph of T is graph(T)5 {(v, Tv) such that v is in domT}. An operator S extends T
means that graph(T) is a subset of graph(S). For a symmetric operator T, the graph(T) is a sub-
set of the graph(TT). The operator T is self-adjoint when graph(T)5 graph(TT). In this case,
domT5domTT and T5TT. A symmetric operator having domT5dom TT is self-adjoint.

A key theorem for quantum is the Hellinger-Toeplitz theorem stating that when T is
defined on a Hilbert space for all v, w in H such that ,Tv, w.5,v, T w., then T must
be bounded (Teschl, 2009). Since an everywhere-defined symmetric operator on H is also
self-adjoint, then it follows that for a self-adjoint nonbounded operator T, its domain must
be a proper subset of H. The operator T in this case must be a partially defined operator
on H.

In several areas of quantum, operators are sometimes defined on a subset of a Hilbert,
or a Banach space. This most often occurs for the adjoint operation, as well as for the
closed operation. First, for the adjoint, T is defined on dom(T), which is a subset of Hilbert
space H1, and T: domfTÞ-H2. H2 is another Hilbert space. In this case, TT is defined by
TT(u)5v, which means ,v, w.5,u, T w., for all w in the dom(T). In the above inner
products, the first inner product is in H1 and the second is taken in H2. It is assumed that
TT is a closed operator and that dom(T) is dense in H1. When this is true,
,u, T v.5,TT u, v., for v in dom(T) and u in dom(TT). Similarly, assume that B1 and
B2 are Banach spaces, and consider T in L ðB1;B2Þ. T is said to be a closed operator on dom
(T), which is a subspace of B1 when given that vn converges to v in dom (T), and given
that Tvn converges to w in B2, then w5Tv.
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The operator T is said to be densely defined when dom(T) is dense in B1. T is fully
defined when domðTÞ5B1. Closure of an operator T means that there exists a closed opera-
tor S, such that dom(T) is a subset of dom(S), and S5T on dom(T). Also, the graph norm
on dom(T) is given for v in dom(T),:v:5 :v:1:T v:; the first norm is taken in dom(T),
the second in B1, and the third in B2.

For a nonbounded operator T on a Hilbert space H, it is a closed operator when its
graph is closed. The graph of T is a subset of the Cartesian product H x H. It is a vector
space. The graph of T is Gr(T)5 {,v, T v.|v is in dom(T)}. The closed graph theorem
says that an everywhere-defined linear map with a closed graph is continuous. See
Appendix A.6. A partially defined linear map with a closed graph can be not
continuous.

Example 13.10:

Consider the Hilbert space H5l2, that is, all complex-valued absolute sum squared
sequences that converge. Let dom(T) be equal to all sequences such that the sumP jn vnj2 converges. Let T: dom (T)-H by Tv5T (v1, v2, v3, . . .)5 (v1, 2v2, 3v3, . . .).
The closure of dom(T)5H, so dom(T) is dense in H. This follows since dom(T) contains
all sequences that have at most a finitely many nonzero terms. T is not one to one due
to the finite number of nonzero terms. Two identical finite vector tuple strings in the
range correspond to an infinite number of different terms in the domain whose image
is the same finite tuple sequence. Additionally, T is unbounded, but it is self-adjoint,
since ,TTw, v. 5w10Tv11w20Tv21. . . and ,w, Tv.5w1Tv11w2T2v2 1 . . .. Here
wk0T are tuples from TTw. Then equating coefficients of vk gives wk0T5wk/k. This
means that TTw5 (w1, 2w2, 3w3, . . .). Moreover, the spectrum for T is the point spec-
trum: sppT5 {1, 2, 3, . . .} since Tvn5n vn.#

Example 13.11:

For the unbounded operator T, having an adjoint TT in the Hilbert space H with T: dom
(T)-H. Let cT be in sppTT. That is, cT is in the point spectrum of TT. It will be seen that c
will be in the union of sppT with sprT, specifically, that is, it will be in one of these. Since
cT is an eigenvalue for TT, there is an eigenvector v in dom(TT) such that TTv5 cT v. For
all w in dom(T), it follows that ,v, Tw.5,TTv, w.5, cTv, w.5 c ,v, w.. So,
,v, c w.2,v, Tw.5 0, and because this holds for all w, this means that ,v, (cI2T)
w. 5 0 for all w in dom(T). Consequently, it follows that the ran(cI2T) is not dense, and
so the spectrum cannot be continuous.#

Example 13.12:

Even though the position operation Q in H5L2ðRÞ is unbounded, it is, however, self-
adjoint. The inner product for f in H and the product x �g in H, where g is also in H, are
given by the integral

ÐN
2N fT � (x � g) dx)5, f, x �g.. It follows that this quantity equals

,x � f, g.. The latter inner product is the integral
ÐN
2N (x � fT) �g dx)5, x � f, g..

So Q(f)5 x � f, and so the multiplication operator Q is self-adjoint.#
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Example 13.13:

The momentum operator is also unbounded, but it too is self-adjoint in H5L2ðRÞ. The
inner product in this case is ,f, 2 id/dx g.; it is the integral

ÐN
2N fT � (2id/dx g) dx. Here

it is assumed that the derivatives are integrable. Now integrating by parts gives (fT � g)
evaluated between minus infinity to plus infinity, along with the integral

ÐN
2N (i d/dx fT) �

g dx. Assume that the product (fT � g) goes to zero; then this result in terms of the inner
product is ,2id/dx f, g., thus showing that this operator is also self-adjoint.#

13.4 Bounded operators and numerical range

As mentioned in Section 7.1, the numerical range is very useful in characterizing the
types of spectra associated with bounded operators on Hilbert space. To see this, consider
the operator T in the Banach space or actually the CT algebra, B(H). The numerical range
for an operator T is sup:v:51 ,v, T v.. Assume that cI2T is not invertible, and it is not
even one to one. Then, there exists v nonzero in H with (T2I c) v5 0. Use this identity,
Tv5 c v, and form the inner product with v, ,v, Tv.5 c ,v, v., where:v:5 1. This
shows that the eigenvalue c is in the numerical range. As a consequence, the point spec-
trum sppT is a subset of the numerical range.

Now assume that the range of (c2T) is not dense in H; this means that the closure clos
(c2T) is a proper subset A of H. Then there exists a unit vector w in A\, such that the
inner product ,w, (T2c) w.5 0, that is, ,w, T w.5 c. So again c is in the numerical
range. Thus, the residual spectrum sprT is part of the numerical range of T.

Lastly, assume that the range of (T2c) is dense in H, but not equal to H. In this situa-
tion, there exists a sequence of normalized vectors, wn in H such that (T2c) wn-0.
A sequence going to zero has to exist. Otherwise, (T2c) would be bounded from below,
and as seen in Section 7.6 and earlier in this chapter, dense and bounded from below
implies (T2c) is invertible. Using the inner product with the sequence wn gives ,wn,
(T2c) wn .5,wn, T wn .2c,wn, wn .-0. As a consequence, this time c is in the clo-
sure of the numerical range. In this case, the continuous spectrum spcT is a subset of the
closure of the numerical range.

A list of properties for the numerical range W(T) for n by n complex -valued matrix are
provided as follows (Gustafson and Rao, 1997):

1) W (T) is a compact subset of C.
2) W (T) is a convex set in C, by the Hausdorff-Toeplitz theorem.
3) W (T) contains the spectrum of T.
4) If T5TT, then W (T) is the closed interval on the real line. Moreover, it consists of end

points that are two eigenvalues of T.

The next example illustrates the use of eigenvalues for finding the numerical range. It
also illustrates Property 4). This same example was solved by numerical simulation in
Example 7.3 where a most general qubit in C2 was inserted into the numerical range
formula.
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Example 13.14:

The eigenvalues for the self-adjoint matrix T5

j2 ij
j2 i 1j

are found from the solution of the characteristic equation: t2 2 3t1 15 0. The eigenvalues
are ð31251=2Þ=2:5 :382; 2:618. The numerical range is W (T)5 [.382, 2.618].#

More generally, for an operator T on Hilbert space H, several other properties hold for
the numerical range (Shapiro, 2004).

1) W (T) is invariant under unitary similarity.
2) W (T) lies in the closed disk of radius :T: centered at the origin.
3) W (TT)5 {cT for all c in W (T)}.
4) W (I)5 {1}.
5) For a, b in C, and T in B(H), W (a T1b I)5 a W (T)1b.
6) If T is nilpotent, that is, Tn11 5 0, then the spectrum of T is zero in clos W (T).

Example 13.15:

Use as the carrier set the algebra of 2 by 2 complex-valued matrices T. If T is the matrix with
all zeros except for the first row second column entry, here, let entry T1;2 be equal to one, T5

j0 1j
j0 0j

Then sp(T)5 0 and :T:5 1. Additionally, T is nilpotent order two since T25 0.#
For unbounded operators, relations between the spectrum and the numerical range are

the following: (StackExchange, 2015).

1) If T is normal, then the whole spectrum of T lies in the clos W (TT).
2) If T is symmetric, contained in closT contained in TT, then the spectrum need not be

real, but closW (T) is a subset of R.
3) If T is not a closed operator, and T is a subset of closT5TTT, then the spectrum is

complex and it contains the closW (T).

For a self-adjoint bounded operator T on H, there is a relationship between the numeri-
cal range W(T) and an eigenvalue of T. When a5 inf,v, Tv. for all :v:5 1, then a is in
spT (Gustafson and Rao, 1997).

As mentioned earlier, the real part of the dissipative operator T in a Hilbert space H is one
such that for all v in H, the real part of the numerical range is nonpositive. That is, Re ,v, Tv.
is nonpositive, with :v:5 1. The next few examples will illustrate this concept.

Example 13.16:

Let the carrier set for the Hilbert space be H5Rn, with the usual inner product if
T52I, that is the negative of the diagonal identity matrix; then for all v in
H; ,v;T v.52:v:2, as such T is dissipative.#
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Example 13.17:

Another instance of a dissipating operator T this time in L2ðRÞ intersects Co1ðRÞ. This is
the space consisting of continuously differentiable functions of compact support, which
are absolutely square integrable. Let T be a momentum type operator, T5d/dt.

Then ,T f, f. 5 integral,
ÐN
t52N f 0T f dt, where the prime stands for derivative. Now integrat-

ing by parts gives ,T f, f. 5
ÐN
t52N 2 fT f0dt52 ,f, T f.52 ,Tf, f. T. So the real part of

,T f, f.5 0, because when z52 zT, z is pure imaginary. Accordingly, T is dissipative.#
In a Banach space A, the definition of an operator T being dissipative is extended

because there need not be an inner product. In this case, if for all c. 0 and all v in dom
(T),:(c2T) v:is greater than or equal to c:v:; then T is dissipative. A quite complete com-
pilation of dissipative operators in a Banach space is in Lumer and Philips (1961) and
Engel and Nangel (2000). These properties are needed in proving the Lumer-Phillips theo-
rem previously mentioned relating the spectrum of an operator with the spectrum of its
dual operator.

Whenever Re ,v, Tv. is nonnegative, with:v:5 1, T is called an accretive operator.
Applications to these, as well as dissipative operators, are in creating one-parameter semi-
groups, much like in Stone’s theorem. In the present case, the semigroup consists of operators
in a Banach space of the form, etT , when a dissipative operator is utilized. The corresponding
operators in a Banach space are of the form e2tT whenever the generator is an accretive operator
T. However, many of these operators are partially defined (Delaubenfels, 1988).

13.5 Self-adjoint operators

As previously mentioned, this and the next section provide a review as well as an
extension of concepts related to self-adjoint operators. Of most importance, in quantum
disciplines, observables are operators in a CT algebra, A. They are self-adjoint operators T,
such that T5TT. Moreover, these operators are measurable and defined via RRT, similar
to the procedure of finding the dual space. The method is very similar to the creation of
the adjoint TT, for the case where T: H-H was considered previously.

Suppose that T: H1-H2, where H1 and H2 are Hilbert spaces. Additionaly assume for
now that T is bounded, that is, T is in B (H1, H2). As in the dual space development, a
functional f will be defined. It is such that for fixed w in H2, f: H1-C, where for any v in
H1 it follows that f (v)5,w, T v.. The functional is linear and bounded since T is
bounded and also|f (v)|is less than or equal to:w::T v:. This inequality is a direct result
of the CBS inequality. Additionally, the last expression is less than or equal
to:w::T::v:since T is bounded. Moreover f is in the dual space of H1.

Using RRT, for every w in H2, there is a unique u in H1 such that f (v)5,u, v., hold-
ing for all v in H1. This defines a mapping: TT: H2-H1, which is called the adjoint of T,
mentioned previously in the last section. The mapping TT is given by TT (w)5u. In short,
the defining property of TT is ,w, T v.5,TT w, v., for all v in H1 and w in H2. The
first inner product mentioned earlier is in H2, and the second is in H1. Since T is assumed
to be bounded, it follows that TT is also linear and bounded, that is, TT is in B (H2, H1). In
addition, the following holds for T and TT.
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1) Norm equality: :TT:5 :T:.
2) Involution: (TT)T5T.
3) Commuting norm: :T TT:5:TTT:5:T:2.
4) Inverse: If T is invertible, then so is TT and (T21)T5 (TT)21.
5) Additive: (S1T)T5 ST1TT, where S is also in B (H1, H2).
6) Anticommutative: ST TT5 (T S)T.

A unique representation involving self-adjoint operators can be made for a bounded
operator T. Let Q and S be self-adjoint operators in the CT algebra A; then T can be repre-
sented as T5Q1iS. Therefore TT5Q2iS. Adding T plus TT and then subtracting TT from
T gives Q5 (T1TT)/2 and S5 (T2TT)/ (2i), respectively. The operators Q and S can be
thought to be the real and imaginary parts of T, in that order.

If K is a closed subspace of H, then K is itself a Hilbert space. In this case, any vector v in H
can be written as u1w, where ,u, w.5 0 and u is in K. The space of all those vectors orthog-
onal to vectors in K is called K perp, that is, write it as perp(K) or K\. A projection operator P
can be associated with this procedure. Indeed, let P: H-K, where P (v)5u. Such an operation
is both idempotent and self-adjoint. Note that (I2P) (v)5w. If also v0 5u01w0 with u0 in K and
w0 in perp(K), then ,P(v), v0.5,u, u0.5, v, u0.5,v, P(v0).. Furthermore, ,u,
w.5,P(v), (I2P)(v).5,v, P (I2P) (v).5 0. When K is a closed subspace of H, then perp
(K) is also closed. An important property of a vector subspace K of a Hilbert space H is that the
closure of K equals perp(perp(K)). If K is a closed subspace of H, then again K5perp(perp(K)).
Moreover, K is closed iff K5ðK\Þ\. To see this, first assume that K5ðK\Þ\. Then choose a
sequence vn-v, where vn is in K and v is in H. It will be shown that v is in K. Take w in K\,
then ,w, vn . 5 0 for all n, and then using the continuity of an inner product: limn-N ,w,
vn.5,w, limn-Nvn.5,w, v.5 0. This shows that v is in K5ðK\Þ\, and so K is closed.

Going the other way, if K is a closed subspace of H, then K5ðK\Þ\ will be shown.
Taking the inner product of v in K and any w in K\ gives ,v, w.5,w, v.T5 0, thus
showing v is also in ðK\Þ\. So K is a subset of ðK\Þ\. To see the opposite set inclusion, let
v be in ðK\Þ\. Then represent v5w1z, where w is in K and z is in K\. Using linearity,
05,v, z.5,w, z.1, z, z.5 01, z, z.5 :z:2, which implies that z5 0.
Accordingly, v5w and so ðK\Þ\ is a subset of K, and therefore they are equal.

When T is bounded, there is a relation between the kernel and the image of the adjoint
operation, namely Ker(T)5perp(Im(TT)) and also that the closure of Im(TT)5perp(ker
(T)). Additionally, if K is closed, then perp(K)5perp(closure(K))5 closure(perp(K)). Also,
perp(perp(K))5 closure(K). For a closed subspace K, it follows that perp(perp(K))5K.
Moreover, using w5u1v, then for P in B(H) and P(w)5u, :PðwÞ:25:w:22:w2u:2; this
follows, because w2u5v and ,u, v.5 0. So, :u:25:w2v:25:w:22:v:2.

Relations between the adjoint and the kernel are as follows:

1) Ker(TT)5perp(ran(T)).
2) Perp(ker(TT))5 clos(ran(T)).

An example will be given using the basis for a momentum operator, the derivative
operation. It will illustrate a closed operator on a subspace of a Hilbert space, where this
operator is not bounded.
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Example 13.18:

Consider the Lebesgue space of square absolute value integrable complex-valued functions
on [0, 1]. It is denoted by L2 [0, 1]. Again, let the unbounded momentum type operator T be
employed where T5d /dx. Then, the domain of T is D(T) where DðTÞ5ff in L2 [0, 1], such
that f is absolutely continuous, where d f /dx is in L2 [0, 1] with f(0)5 0}. Then T is closed in
D(T) (Park, 2013). It is not closed in the Banach space C[0, 1]. That is, it is not closed in the
domain {f in C[0, 1], such that d f /dx is in C [0, 1] with f(0)5 0}. See Example 8.1 for details.#

In a finite-dimensional Hilbert space, the adjoint operator is guaranteed to exist by RRT;
however, in an infinite-dimensional Hilbert space H, the adjoint may not exist at all.
Sometimes it will exist and be of little use. First of all, the adjoint will exist when and only
when T is densely defined. In this way, RRT can be used on the inner product showing
existence and uniqueness of the adjoint operation. The adjoint is of great use whenever the
adjoint itself, TT, is densely defined, and this is when T is closable. The definition of the
adjoint is given as follows: For all v in dom(T) and for all u in dom(TT), then the inner pro-
ducts are equal, ,u, Tv.5,TTu, v.. Because, the closure of the domain of T5 clos
(dom(T))5H, therefore TT will uniquely be found for u in dom(TT).

Consider a vector u in H; if there is a w in H such that ,u, Tv.5,w, v. for all v in
dom(T), then ,u, Tv. is a continuous linear form on dom(T). When ,u, Tv. is continu-
ous on dom(T), it can be extended by continuity on all of H. Next, RRT can be applied
showing there is a unique w in H such that ,u, Tv.5,w, v.. The result follows when
and only when dom(T) is dense in H. This shows the adjoint exists and is unique when T
is bounded.

13.6 Normal operators and nonbounded operators

The spectrum of a bounded operator is compact and nonempty; therefore, it is closed
and bounded in the complex plane. Because of these properties, the spectral radius r (T)
can be defined for T in A. It is r (T)5 sup {|c|, such thatc is in the spectrum of T}.
Additionally, the supremal radius is achieved for some c in sp(T), and also r (T) is less
than or equal to:T:. Moreover, the spectrum can be found using the Gelfand formula: r
(T)5 limit as n goes to infinity for :Tn:1=n. When the operator T is normal, it follows that
the spectral radius is the norm, that is, r (T)5 :T:. As a consequence, if T is in a CT alge-
bra, then:T:25 r (TT T).

Example 13.19:

Because a self-adjoint operator T, H:-H is normal, the spectral radius of T equals its
norm that is r (T)5 :T:. So, for instance, if spT5 0, this implies that T5 0. Note that the
operator T5

j0 1j
j0 0j

The spectrum spT5 0, but T is not zero, nor is it a normal operator.#
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In general, however, the spectral radius can be smaller than the norm, as seen, for
instance, using nilpotent operators.

Previously for a bounded operator T in the CT algebra A, it was seen that T can be
represented using two self-adjoint operators Q and S, as T5Q1iS. Therefore, TT5Q2iS.
Multiplying T by its adjoint TT gives T TT5Q21i(S Q2Q S)1S2. Next multiplying TT
T5Q21i(2 S Q1Q S)1S2. So whenever S Q2Q S5 2 S Q1Q S, that is, when S Q5Q S, it
follows that T is a normal operator. Another interesting property of a normal operator is
given in the following example.

Example 13.20:

If T is a normal operator in a CT algebra, then :T2:5 :T:2. To see this, use the CT iden-
tity :TT T:5 :T:2 from Section 3.8; then it follows that :(TT T)2:5 :T:4. On the other
hand, squaring :T2: gives :T2:2, and applying the CT identity to this quantity leads to the
equation :T2:25 :(TT)2 T2:. Employing the normality condition winds up with
:T2:25 :(TT T)2:. So:T:45 :T2:2, and taking square roots completes the proof.

A distinct proof uses the spectral radius. As mentioned earlier, let r5limitn-N :Tn :1=n.
For integer n larger than zero, :T2n :25:ðT2nÞTT2n:5:ðTTTÞ2n:5:T:2

n11

. So, by mathemati-
cal induction :T2n:5:T:2

n

, for all n larger than zero. By Gelfands formula,
r5limitn-N:T2n:2

2n

5 :T:.#
For normal operators T, the residual spectrum, that is sprT is nonexistent (Conway,

1990). So the spectrum is comprised of the point and continuous spectrums only. This will
be seen again in a later section. Moreover, normal operators have numerical radius the
same as spectral radius. There is a close relation between a nonzero normal operator T in
a CT algebra and the states within a CT algebra. For every such operator T, there exists a
state g where gðTTTÞ5:T:2 and |g (T)|5 :T:. For every such nonzero normal operator T
in A, there exists a pure state g where |g (T)|5 :T:.

The set of all compact operators on H forms a CT algebra. It is nonunital in the infinite-
dimensional case. However, an approximate identity can be developed, since this structure
is isomorphic to the space of square summable sequences, l2 (Murphy, 2014).

For two nonbounded operators S and T on H, T is an extension of S whenever dom(S) is a
subset of dom(T) and S (v)5T (v) for all v in dom(S). Here, S is said to be a restriction of T. So,
S is said to be closable if it has a closed extension T. A core of a closed operator T is a subspace
X contained in the dom(T) when T is the closure extending dom(T) intersecting X. The core is
also called the essential domain; it is such that for v in dom(T) there exists a sequence vn in X
such that:v2vn:1:Tv2Tvn:-0 as n-N (Reed and Simon, 1980).

For any nonbounded operator T on H that is also closable, the closure of T denoted by
closT is defined to be the smallest closed extension. It is given by the intersection of all
closed sets containing T, and additionally, closT is unique. For T densely defined on dom
(T) in H, T is called symmetric, which means that ,u, Tv.5,Tu, v. for all u and v in
dom(T). A symmetric densely defined unbounded operator T has closure: closT5TTT.
Nonsymmetric operators need not be closable. It is easy to use a test for the self-adjoint
criteria of a closed symmetric operator T. It is that the intersection of the resolvent set of T
and R is nonempty (Woozy, 2017).
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An operator T on H is symmetric, which means that ,T x, y.5, x, T y. for all x and
y in the dom(T). This means that dom(T) is contained in the dom(TT). A symmetric opera-
tor is such that T is a subset of TTT, which itself is a subset of TT. The operator T is sym-
metric also iff the numerical range of T is real, that is, W (T) is a subset of R. When T is
bounded and if for all v, w in H ,v, T w. is real, then T is symmetric. For closed sym-
metric operators, the following holds: T5TTT is a subset of TT. A rigorous treatment
involving all important domain issues can be found in Hall (2013).

A closable operator T is said to be essentially self-adjoint whenever it has self-adjoint
closure. It is essentially self-adjoint iff it is symmetric, densely defined and there exists a
nonreal complex number c, such that c2T and cT2T have dense range. For a bounded
self-adjoint operator T, with smallest spectral value a and largest spectral value b, it fol-
lows that a5 2 :T:, or b5 :T:. Moreover, the closure of the numerical range5 [a, b].
Additionally, the self-adjoint operator T is positive when W (T) or spT lies in the nonnega-
tive real line. The set of all positive operators in a CT algebra A is a convex cone in a real
vector space V5 {T in A, such that T5TT|.

For a self-adjoint operator T, on Hilbert space H, it follows that ker(T1 2 i)5 {0}. In order to
see this, first assume that Tv5 iv. Then ,v, Tv. 5,v, iv. 5 i ,v, v., and also
,Tv, v. 5, iv, v. 52i ,v, v., but since T is self-adjoint, it follows that ker(T1 2 i)5 {0}.
The same is true for TT, that is, ker(TT1 2 i)5 {0}. When T is symmetric and closed with ker
(T1 2 i)5 {0}, then ran(T1 2 i)5H. It will be shown that ran(T1 2 i) is dense in H. For v in
perp(ran(T1 i)) and for all w in dom(T). it follows that ,v, (T1 i)w. 5 0. So, in this case,
,v, Tw. 5, 2 iv, w.. For v in the dom(TT) and (TT1i)v5 0, therefore v is in ker(TT1 i).
Also notice that :ðT1iÞv:25, ðT1iÞv; ðT1iÞv.5:Tv:21:v:2. Consequently, if (T1 i)vn is a
CS, then it follows that Tvn is a CS and also vn is a CS. When vn converges to v since T is
closed, v is in dom(T) and Tvn-Tv.

Unbounded operators should be closed and densely defined. As mentioned previously,
the closed graph theorem and the concepts associated with this construct play an impor-
tant role in determining closure of operators. As an instance of the closed graph theorem
determining closure, consider the example.

Example 13.21:

For the densely defined self-adjoint operator T5TT, it follows that T is closed. Begin
with the identity ,TT u, v.5,u, T v.. In terms of the relation, (u, w) is in the graph of
TT, which means that ,w, v.5,u, Tv. for all v in dom(T). By using continuity
w-,w, v. and u-,u, Tv. shows that the set of all (u, w) in TT is closed. Therefore,
TT is closed, but T5TT and so T is also closed.#

A densely defined symmetric operator T with dom(T) a subset of H-H is self-adjoint iff
the ran(T1iI)5 ran(T2iI)5H. First notice that to be symmetric means that dom(T) is con-
tained in dom(TT). Assume that the identities involving the range equaling H hold. Next, it is
shown that dom(TT) is contained in dom(T). So let w be in dom(TT). We must show that w is
also in dom(T). Then there exists an element v in H such that for any u in dom(T),
,w, (T1 i)u. 5,v, u.. Now because ran(T2 i)5H it follows that v5 (T2 i)z for some z in
dom(T). Because T is symmetric and u is also in dom(T), it follows that ,w, (T1 i)u. 5
,v, u. 5, (T2 i)z, u. 5,Tz, u.1i, z, u. 5, z, Tu.1, z, iu. 5, z, (T1 i)u.,
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but ran(T1 i)5H; this implies that w5 z since z is in dom(T); then w is in dom(T). So dom
(T)5dom(TT).#

Symmetric densely defined operator T, on Hilbert space H, can be self-adjoint whenever
T1 2 i is injective; then TT1 2 iI becomes an extension, i.e., a bijection from dom(T)
onto H. Here T5TT. The problem for T being only symmetric and not self-adjoint is that
T1 2 iI is not necessarily surjective. There exist self-adjoint extensions for T whenever the
deficiency indices of T are equal, and only then. These indices are given by dim(ran(perp
(T1 iI))) and dim(ran(perp(T2 iI))) and are mentioned again in the context of partial iso-
metrics. Partial isometries are linear maps between Hilbert spaces. It is an isometry on the
orthogonal complement of its kernel. Whenever the indices are the same, these extensions
can be parametrized by using linear isometrics or by the use of the Cayley transformation
mentioned earlier (Hall, 2013).

For a symmetric operator T, there are relationships between X5dim(perp(T1i)) and
Y5dim(perp(T2i)) and unique self-adjoint or essentially self-adjoint extensions of T.
When X5Y5 0, these extensions exist. When X5Y is greater than or equal to one, then T
has infinitely many self-adjoint extensions. When X differs from Y, then T has no self-
adjoint extensions. In any case, whenever T is essentially self-adjoint, then the closure of T,
clos(T), is the unique self-adjoint extension of T. This can be seen because if S5 ST then
since a self-adjoint operator is always closed, it follows that dom(ST) is a subset of dom
(clos(T)), which is a subset of dom(S). Since S is self-adjoint, all three domains are equal
and so S5 clos(T).

The square root of a positive operator P is a self-adjoint operator T, such that P5T2. For
any bounded operator P, there is a unique positive square root, it is denoted|T|, and it is
the positive square root of TTT. Also the polar decomposition can be performed involving
a unique partial isometry U and |T|. Here, T5U|T|, and ker(TT) is a subset of Ker(U).
The same results hold for unbounded operators provided that they are closed and densely
defined. In this case, |T| could be unbounded. It is a nonnegative self-adjoint operator
with the same domain as T. Also U is a partial isometry such that U5 0 on perp(Im(T)). In
finite dimensions, however, U can be extended to a unitary operator (Wells and Williams,
2012). In infinite dimensions, it is not true that a partial isometry can be extended to a uni-
tary operation. For instance, the left-shift operator L: l2-fðx2; x3; . . .Þ in l2g is an isometry
on the subspace S5 {x in l2, where x1 5 0g. So L:S-l2 and is onto.

A simple result for bounded, self-adjoint operators T extends eigenvalue and eigenvector
consequences of self-adjoint or Hermitian matrices. Indeed, let a and b be in the point spec-
trum of T, sppT. The associated eigenvectors v and w are nonzero and such that Tv5 av
and Tw5 bw. When a is different from b; then v is orthogonal to w, since ,T v, w.5 a
,v, w.5,v, T w.5 b ,v, w., and (a2b) ,v, w.5 0, but a2b is not zero. Thus, ,v,
w.5 0. For any self-adjoint operator, it follows that T5TT5TTT. Additionally, a closed
symmetric operator is self-adjoint iff TT is symmetric.

13.7 Spectral decomposition

The spectral decomposition for bounded self-adjoint operators T on the complex Hilbert
space H will be described next. These operators are fundamental in quantum since all
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observables are of this form. For continuous functions f and g, defined on the spectrum of
T, and a and b real scalars, the following identities involving T must uphold:

1) Linear: (a f1b g) (T)5 a f (T)1b g (T).
2) Product: (f g) (T)5 f (T) g (T).
3) Identity: I (T)5 I.
4) Adjoint: fT (T)5 f (T).
5) Spectral Invariance: For eigenvalue c of T and v in H, if T v5 c v, then this implies that

f (T) v5 f (c) v.
6) Spectrum: The spectrum of f (T)5 {f (c) is such that c is in the spectrum of T}.
7) Positive: f greater or equal to zero implies f (T) is greater or equal to zero.

Example 13.22:

This is another example involving the residual spectrum for a bounded operator T, in
Hilbert space H. It makes for an interesting example of an eigenvector. In this case, if c is
in sprT, then the conjugate value cT is in sppTT. First, since c is in the residual spectrum of
T, then ran(cI2T) is not dense in nor equal to H; it is a subspace. Then, there has to exist a
nonzero vector v in H, which is not in clos(cI2T). This element is in the null space of
(cTI2TT) and is such that for arbitrary w in H, ,v, (cI2T) w.5, (cTI2TT) v, w.5 0.
Since w is arbitrary, (cTI2TT) v5 0, implying that cT is an eigenvalue for TT and so cT is in
sppTT.#

Example 13.23:

Let T:l2-l2 where T(v0, v1, v2, . . .)5 (v0, 0, v1, 0, v2, . . .). The operator T produces a
stretching type operation over the complex field. This operation is also called dilation or
stride. The spectrum of T is the closed unit disk in C. To see this, first consider the adjoint
operator. Observe what it does to the kth basis vector vk, where vk5 (0, 0, 0, . . .0, 1, 0, 0,
. . .) with 1 at the kth tuple. So for any w in l2 by definition of adjoint: ,TTvk, w.5,vk,
T w.5T(wk)5 0 for all k odd, and for k even, it follows that T(wk)5w(k/2). Likewise,
TTvk5 0 for k odd and equal to v(k/2) for k even.

To determine what the adjoint operator is, use w in l2. Take ,w, Tv.5w0Tv01w1T
01w2Tv11w3T 01w4Tv21. . .. This expression equals ,TTw, v.5w00Tv01w01Tv11w02T
v21w03Tv31w04T 01w05Tv21. . . . Equate tuple coefficients of vk, for k5 0, 1, 2, . . .. This
means that TT(v0, v1, v2, . . .)5 (v0, v2, v4, . . .). Any c such that|c|,1 is an eigenvalue
of TT. In order to see this, use v cð Þ5 sum;

PN
k50 c

kv2k; then TTv(c)5TTv11the sum,PN
k51 c

kTTv2k. First, TTv15 0, since 1 is odd. TTvðcÞ5 sum;
PN

k51 c
kv2k21Þ5 cvðcÞ. It follows

that c is an eigenvalue of TT. Consequently, for every c such that|c|,1, this value is an
eigenvalue. But, since the spectrum is always closed and since:TT:5 1, therefore
sp(TT)5 sp(T)5 closed unit disk.#

For any closed operator T on H, the spectrum of TT is the set {cT, such that c is in
spT}; also the resolvent operator at c for operator TT is such that Rz(cT)5Rz (c)T.
Where the resolvent operator for T at c is Rz (c). This result is similar to the Lumer-
Phillips result.
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13.8 Spectra for self-adjoint, normal, and compact operators

It was seen that for a self-adjoint operator in B(H), there is no residual spectrum, and
moreover, the spectrum is always real. Approximate eigenvalues of an operator in B(H)
are such that for any E. 0, there exists a unit vector v in H, such that :Tv2λv:,E.
Replacing v by w /:w:for w not zero, the equivalent condition is as follows: For any E.
0, there exists a nonzero vector w in H, such that :Tw2λw:,E:w:; then λ is an approxi-
mate eigenvalue for T. The set of all such λ for T is called the approximate spectrum of T.
It will be denoted by A(T). If T has an eigenvalue, then it is in A(T) since Tv2λv is identi-
cally zero. Additionally, A(T) is a true spectrum since A(T) is a subset of spT. The result
follows by contradiction. If λ is not in spT, then T2λI is invertible. This implies that
:v:5:ðT2λIÞ21 (T2λI) v:is less than or equal to :ðT2λIÞ21: :Tv2λv: for every vector v,
that is, :Tv2λv: is greater than or equal to 1=:ðT2λIÞ21: :v:. Letting E51=:ðT2λIÞ21:
shows that :Tv2λ v:is bounded below, and therefore λ is not in A(T), which is a contra-
diction. So the conclusion is that A(T) is always a subset of spT.

For bounded normal operators, even more is true besides the result mentioned earlier;
here, spT5A(T), this was mentioned previously. That is, for a normal operator T, all
eigenvalues are approximate. What must be shown is that spT is a subset of A(T). Again
contradiction will be employed. First say that there is an eigenvalue λ in spT, which is not
in A(T). Then for some E. 0, this eigenvalue is such that :Tw2λw: is greater or equal to
E:w: for all v nonzero. Since T is normal, it follows that :TTw2λTw: is greater or equal
to E:w: for all v nonzero. So both :Tw2λw: and :TTw2λTw: are bounded below, see
Section 13.1. If it can be shown that their ranges are dense, then a contradiction occurs,
because then, in particular, Tw2λw would be invertible. Instead of showing the range to
be dense, it is equivalent, showing that the orthogonal complement of the range is {0}.
This follows since ranðuÞ\ 5 kerðuTÞ, or kerðuTÞ\ 5 closðranðuÞ. So if v isorthogonal to
Tw2λw, that is, ,v, Tw2λw.5 0 for all w, using the adjoint, this is the same as ,TTv-
λTv, w.5 0 for all w. The latter equation implies that TTw2λTw5 0. However, using the
previous bounded below property :TTw2λTw: is greater than or equal to E:w:shows
that w5 0.

For normal operators, it is easy to show the relationship between eigenvalues of T and
of TT. The example below illustrates this fact

Example 13.24:

For T, a normal operator in B(H), if Tv5λv for nonzero v in H, then TTv5λTv. This follows
by letting A consist of all eigenvectors of T for which λ is an eigenvalue. Then since T(TTv)5
TT(Tv)5TT(λv)5λ(TTv), it follows that TTv is in A. Consider the inner product, ,u,
TTv2λTv. with the assumption that u is also in A. It follows that ,u, TTv2λTv.5,u,
TTv.2,u, λTv.5,T u, v.2λT,u, v.5,T u, v.2,λ u, v.5,T u2λ u, v.5 0.
Since TTv is in A, as well as any nonzero constant times v, it shows that TTv2λTv is in A. In
turn, this implies that TTv5λTv.#

For compact self-adjoint operators T, on a Hilbert space H, the spectrum is a real-
valued point spectrum with the possible exception of zero. The point zero might be an
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accumulation point, and therefore it might not be in the point spectrum. In this case, it is
in the continuous spectrum. Again, the operator T can be represented as a converging sum
of projections onto the eigenspace {an, such that Tv5 an, for v nonzero in H}. That is, Pn
is the projection onto this eigenspace and an, and T is the sum,

P
(an Pn). Also, for any w

in H, it follows that Tw is equal to the sum,
P

(an Pn(w)).

Example 13.25:

Consider a compact self-adjoint operator T on a Hilbert space H. It is possible that such
an operator only has a point spectrum with eigenvalue 0. Accordingly, in this situation, 0
is not a point of accumulation; it is an isolated point. By the projection theorem for normal
compact operators, perp(ker(T)) cannot be infinite. For if it had an infinite ON basis {ek}
with Tek5 ck ek, and ck-0, then 0 is not isolated (Conway, 1990). Therefore, perp(ker(T))
is finite and so Ker(T)5 0 has infinite dimension. It also follows that there exist
countable infinite vectors, all with 0 as their eigenvalue.#

If T and S are compact operators on H, the product TS and ST are compact, as well as
the adjoint ST and TT. Moreover, TTT is self-adjoint and positive; as such, it has nonnega-
tive eigenvalues an. A compact operator T is said to be of trace class whenever the one
norm of T is finite. The one norm is :T: and is such that the summation of the square root
of each an, the eigenvalues of TTT, is finite.

For a trace class operator T, the trace is defined as before: Tr (T) is the sum of the inner
products: ,en, T en., where en is an ON basis on H. Additionally, the series must con-
verge absolutely and independently of the ON basis employed. When T is also self-
adjoint, then Tr (T)5 sum of the real eigenvalues of T. Also, for a unitary operator U on
H, it follows that the trace: TrðTÞ5TrðU21T UÞ. See Section 7.5.

13.9 Pure states and density functions

The most important trace class operator previously given is the pure state Rz. It is also
called a density operator, because it acts like a probability density function when forming
expected values. As such, it is nonnegative and Tr (Rz)5 1. The eigenvalues an of Rz are
in (0, 1]. The projection Pn onto the eigenspace is Rz, and it equals the sum

P
(an Pn)

where the sum of all the an equals one.
A state is defined to be a linear functional g on a CT algebra A. That is, g: A-C. It

must also satisfy:

1) Nonnegative: g (TT T) is greater or equal to zero for all T in A.
2) Identity: g (I)5 1.

It can be shown that if g is linear functional on A, where g (I)5 :g:5 1, then g is a
state. That is, the nonnegativity can be obtained from the norm of g equaling one
(Murphy, 2014).

Some useful facts concerning any nonnegative linear functional g, on a CT algebra A
will be listed. Here, T and S are operators in A, often called observables, and I is the
identity operator in A:
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1) CBS Type Inequality: jgðTTSÞj2 is less than or equal to g (TT T) g (ST S).
2) Conjugate: g (ST)5 g (S)T.
3) One Law: g (I)5 :g:.
4) Norm Bound: g (TT ST S T) is less than or equal to :S:2gðTTTÞ (Murphy, 2014).

The norm bound is a type of CBS inequality. Pure states were described previously in
several different ways. One of them bears a ray involving a convex set within a vector
space. Recall that a convex set S is such that for any two vectors u and v in S the line seg-
ment joining these two vectors lies wholly in S also. That is, a v1(12a) u is in S for all a in
[0, 1]. An extreme point occurs when a v1(12a)u5w and u5v5w for all a in (0, 1). So
an extreme point on a convex line segment is an end point of that segment. In a CT alge-
bra, the set of extreme points are called pure states and belong to a space of bounded
operators over a Hilbert space. An example will be given.

Example 13.26:

The trace on a CT algebra A is a positive linear functional f: A-C such that for all T
and S in A:

1) The trace property holds f (TS)5 f (ST).
2) Positive means f (TT T) is greater than or equal to zero for T in A. Moreover, whenever

f (TT T)5 0 only when T5 0, the trace is said to be faithful. Faithful means for a
positive map g, if S is greater or equal to zero and g (S)5 0, then it must be that S5 0.

The unital associative algebra of all n by n complex-valued matrices is a CT algebra,
and the trace is the sum of the diagonal elements, Tr(|a. , b|)5, b, a.. So, for
instance, in C2, if a5 (2 i)0 and b5 (3 4i)0, then ,b, a.5 10. The outer product,
T5 a., b, is given below with TTT the conjugate symmetric matrix with positive trace:

j100 2 80ij j45 2 60ij
j80i 80j j60i 80j:#

13.10 Spectrum and resolvent set

The analytic functional calculus will be investigated on the spectrum and resolvent set
for an operator T, in the Banach algebra B. Recall that the resolvent set RsT is the comple-
ment in C of the spectrum of T, spT. For any complex variable z in RsT, the operator
(z2T) is invertible. It defines the resolvent operator of T, denoted by RzðTÞ5ðz2TÞ21.
Whenever|z|is greater than the spectral radius, r(T) of T, a Laurent expansion can be
made for z2Tð Þ21 5 z21 12T=z

� �21
5 sum;

PN
k50 z

21Tkz2k. The resolvent operator is ana-
lytic for|z|. r(T).

The resolvent formula for T is given for the point z as RzðTÞ5ðz2TÞ21. Therefore, the
identity element I5 (z2T) Rz(T)5Rz(T) (z2T). For point w, it also follows that I5 (w2T)
Rw(T)5Rw(T) (w2T). Accordingly, it can be written that Rz(T)2Rw(T)5Rz(T) (w2T)
Rw(T)2Rz(T) (z2T) Rw(T)5Rz(T) (w2T)2(z2T) Rw(T)5Rz(T) (w2z) Rw(T)5 (w2 z)
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Rz(T) Rw(T). Therefore, Rz(T)2Rw(T)5 (w2 z) Rz(T) Rw(T). By exactly the same
argument, it follows that Rw(T)2Rz(T)5 (z2w) Rw(T) Rz(T). From these two identities,
the conclusion is that Rz(T) Rw(T)5Rw(T) Rz(T).

Now, the complex polynomials p(z) will be considered again. This time, Cauchy’s inte-
gral theorem (CIT) will be employed. This integral as usual will utilize a closed path
within an open set. It must enclose the spectrum spT, of the operator T, from a Banach
algebra. The resolvent set is open, and spT is nonempty and compact. Since the resolvent
operator is analytic, the product p(z) Rz(T)5p(z)/(z2T) is analytic. Moreover, the closed
path of integration is in RsT. CIT gives p(T)5 1/(2π i)

Ð
(p(z)/(z-T)) dz. All integrals are

over a closed path. For a single contour integration, the orientation is counterclockwise in
the finite z plane. With these assumptions, bounds can be given as follows: :p (T): is less
than or equal to (1/2π) maxjpjsup:ðT2zÞ21Þ: Ð djzj.

The same procedure as mentioned earlier can be performed using an entire function.
All assumptions as in the polynomial case must hold. Since the path of integration is a
closed, rectifiable, oriented curve, the maximum of the polynomial or any analytic function
for that matter will be on the boundary. As a consequence, the same type of bound as
mentioned earlier holds when any entire function is employed. In general, meromorphic
functions cannot be handled just yet. However, for any rational function, since there are at
most a finite number of poles, the procedure is just as before. In this case, the zeros of the
denominator must be enclosed within their own closed path of integration, and a spectral
decomposition results. Partial fraction expansions and the use of CIT or residue theory
will provide the solution. Again, commutativity of resolvents is subtly employed, that is,
Rz(T) Rw(T)5Rw(T) Rz(T).

For an analytic function f(z) on the neighborhood of the spectrum spT, it follows that
f(spT)5 spf(T), where T is bounded in Banach space X. This is called the spectral mapping
theorem, and it is based on the Riesz-Dunford calculus. Numerous extensions to this theo-
rem are given in Haase (2005); here, invertible operators that are not bounded are consid-
ered along with different regions of the complex plane.

13.11 Spectrum for nonbounded operators

Nonbounded functions might have their spectrum include the point at infinity. Here,
we view the complex plane as extended as on the Riemann sphere. This sphere is geomet-
rically given by stereographic projection and topologically given by the one point compac-
tification of a locally compact Hausdorff space. Moreover, it is a complex one-dimensional
manifold. In any case, CIT and other closed path integrals can be used enclosing the point
at infinity. The path of integration must have its orientation reversed in this situation. The
integration path is always counterclockwise enclosing singularities.

To proceed, let w5 1/z. In the following, leave out the constant 1/(2π i) for the
moment, and remember all integrals are closed. Beginning with CIT, CIT5 integral,Ð
(f(w) / (w2 a) dw). Then, the integrator is given as dw521=z2dz. The integrand in

CIT: f(w) / (w2a)5 f (1/z)/ (1/z2a). Next partial fractions are employed on the new inte-
grand: fð1=zÞ=ðz2a z2Þ5fð1=zÞ=z1z fð1=zÞ=ð12zaÞ5fðð1=zÞ=z1fð1=zÞ=ða21 2 zÞ. This must
be integrated with the opposite orientation. So a minus sign must be included; that is, the
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result is 2fðevaluated at infinityÞ51=ð2πiÞ Ð fð1=zÞ=ðz2a21Þ. The latter integral will either
be 0 via Cauchy formula or it will equal f(a) via CIT. In other words, the value of the inte-
gral depends on whether a21 is outside the path of integration or not.

The spectrum of unbounded operators will be considered. First recall, for bounded
operators, that in a Banach algebra the resolvent set is open. Also, the resolvent is analytic.
The spectrum is always nonempty and compact. For unbounded closed operators, the
spectrum will be closed. However, the spectrum could, in this case, be all of C or
the empty set. Recall that the empty set and the whole set is both open and closed. As in
the bounded situation, the resolvent formula for closed operators commutes. For
unbounded operators, the point at infinity (the north pole on the Riemann sphere) could
be in the spectrum. Thus, also the point infinity can be an analytic point.

Example 13.27:

This is an illustration of an operator T with empty spectrum. The operator was illus-
trated in Example 13.18. It is densely defined on L2[0, 1] and is a closed operator. Let
T5d/dt where domain T5 {f absolutely continuous. such that f0 in L2½0; 1�, and f (0)5 0}.
To prove that spT5 empty set, it will be shown that the resolvent set is the whole complex
plane, that is, RsT5C. For g in L2½0; 1�, the solution of the differential equation: f02λ f5 g,
f (0)5 0 is found by variation of parameters to be: fðtÞ5 Ð t

0e
λðt2xÞgðxÞdx. The resolvent

exists for all λ in C, because RsTðgÞ5ðT2λIÞ21ðgÞ5 Ð t
0 e

λðt2xÞgðxÞdx. This can be checked:

g5ðd=dt2λÞ Ð t0 eλðt2xÞgðxÞdx5eλðt2tÞgðtÞ1λ
Ð t
0 e

λðt2xÞgðxÞdx2λ
Ð t
0 e

λðt2xÞgðxÞdx5 gðtÞ. For f in

the domain of T, domðTÞ; fðtÞ5 Ð t
0 e

λðt2xÞgðxÞ dx corresponds to a bounded operator on
L2½0; 1� for all λ in C.#

Example 13.28:

Let T be a normal, possibly unbounded operator over Hilbert space H. Then spT is non-
empty. Assuming the contrary, then T21 is a bounded operator, with spectrum sp T21 that
can only at most be {0}. This follows using λ not equal to zero in
ðT212λIÞ5ðI2λTÞT215λðI=λI2TÞT21 5X. The operator X has a bounded inverse:
X2151=λTð1=λI2TÞ21. Bounded normal operators have identical norms and spectral
radius, implying that T21 5 0, yielding a contradiction. If T is unbounded with empty
spectrum, then T21 is bounded with zero in the resolvent set.#

13.12 Brief descriptions of spectral measures and spectral theorems

There are numerous versions of the spectral theorem. To begin with a most powerful
version, Haase (2018) called the multiplicative version for a normal operator T on a
Hilbert space H. In this case, T is unitarily equivalent to a multiplication operator on some
L2 space in a semifinite measure space. Semifinite measures are described in Appendix
A.2. As a quick review, a measure is said to be semifinite if for each E in a measure space,
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M with measure, μ (E)5N, there exists a measurable set, F a subset of E such that
0 ,μ(F) ,N. A sigma finite measure is always a semifinite measure.

The spectral theorem for a normal operator T, in Hilbert space H, says there exists a
unitary operator U, such that T:H-L2 Sð Þ;T5U21M U. Here, S is a semifinite measure
space that could be a Radon measure in a locally compact space. M represents a continu-
ous multiplication operation in L2ðSÞ. This spectral theorem shows that normal operators
in Hilbert spaces have a multiplicative representation in L2; however, they are not unique.
For a self-adjoint operator T, there is a real-valued measurable function f, corresponding
to multiplication by a unitary operator: U:H-L2, involving measure space M, where
UTU21. This multiplication operator involves f whose domain is {g in L2, such that f g in
L2}. When H is separable, as assumed unless stated otherwise, a finite measure space can
be employed.

A simpler version of the spectral theorem will briefly be described for a bounded self-
adjoint operator T, T: H-H, where H is a Hilbert space over C. Here, T is given by a
projective-valued measure, PVM. T5

Ð
λdEλ. In this case, the integral is understood as a

Stieltjes integral (Apostle, 1974; Rudin, 1987), here, Eλ is called the integrator and
is a projection onto the null space consisting of the positive part of
Tλ

151=2fðT2λIÞ1½ðT2λIÞTðT2λIÞ�1=2g. Since T is self-adjoint, the positive square root
of the square ðT2λIÞ2 could appear, in place of the bracketed portion. Finally, the limits of
integration are from the lower limit, equaling the minimum of the smallest eigenvalue m,
or infimum of the continuous spectrum to the upper limit, the larger of the biggest eigen-
value, M, and the supremum of the continuous spectrum. Additionally, using functional
calculus integrals of the form fðTÞ5 Ð

fðλÞdEλ will be considered in Chapter 19.

Example 13.29:

The purpose of this example is to illustrate Stieltjes integration in R. The integrand in
this example is continuous, for instance, fðxÞ5x3. The integrator F(x) has a discontinuity
at x5 1, and it equals x2 on [0, 1) and equals 2x on [1, 2]. The integral
L5

Ð 2
x50 x

3dFðxÞ5 Ð 1
x50 2x

4dx1131
Ð 2
x51 2x

3dx. The central term involves the saltus or
amount of jump from left hand limits to right hand limits at t5 1. Also the Riemann inte-
grals were obtained using dF(x)5 2 x dx, on [0, 1). And dF(x)5 2 on [1, 2]. A delta func-
tion could have been utilized instead of a Stieltjes integral. In any case, continuing gives
L5 2/51118�1/2.#
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C H A P T E R

14

Canonical commutation relations

14.1 Isometries and unitary operations

Let U be an element of the C* algebra A5B(H). U is said to be an isometry when it pre-
serves the norm, that is, :U v:5 :v:, for all v in H. In this case, it will be shown that
U* U5 I. In addition, when U is onto, it becomes a unitary operator, and then it is also
invertible, that is, U has an inverse. However, an isometry need not be unitary. This is
illustrated in Example 14.1. Also, it is an example involving generalized displacement or
shift operators and hypergroups. A hypergroup is a hyperstructure involving a multiva-
lued operation. In the hypergroup, there is a binary-type operation taking pairs of ele-
ments from a nonempty set H, into a subset of H, which is not the empty set. This
operation is sometimes called addition. Very often, the set H has additional structure,
such as C* algebra or Hilbert space, and so on. The next section introduces the canonical
hypergroup structure using the MSA. Applications in quantum will be illustrated in a later
chapter (Corsini and Leoreanu, 2003).

Example 14.1:

Let U operate on the carrier set H5l2, that is, the Hilbert space of all sequences of com-
plex numbers such that the sum of the entries’ absolute values squared converges. So if
U: l2-l2 where the operator U shifts entries to the right: U: (a0, a1, a2,. . .)5 (0, a0, a1,. . .),
then U is an isometry, because the norms are preserved: :(a0, a1, a2,. . .) :5 : (0, a0,
a1,. . .):. But, U is not a unitary operator. Note that (1, 0, 0,. . .) is not in the range of U. So,
if an inverse was to be defined for U, it could only be defined on its range, and not all of
H. U is not onto, and therefore, U is not a unitary operation.#

Note that whenever U is an operator on a Hilbert space H and it is an isometry, then it
is true that for any v and w in H if :U v:5 :v: then ,U v, U w.5,v, w.. As a conse-
quence, an isometry does preserve the inner product as well as the norm. This will be
seen by showing the real and imaginary parts of two inner products are equal. First con-
sider, :U (v1w):25 :v:21:w:212 Re (,U v, U w.)5 :(v1w):2, and by substitution
:U (v1w):25 :v:21:w:212 Re (,v, w.). Therefore, Re (,U v, U w.)5Re (,v, w.).
Again, forming the norm squared, but this time using :U (v1i w):25 :v:21:w:212 im
(,U v, U w.)5 :(v1i w):25 :v:21:w:212 im (,v, w.). In this case, it follows that im
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(,U v, U w.)5 im (,v, w.). Since the real parts as well as the imaginary parts are
equal, this implies that ,U v, U w.5,v, w..

Let U be an operator on a Hilbert space H, and assume it is an isometry. That is, for
any v and w in H, it follows that ,U v, U w.5,v, w.. Using the definition of adjoint,
namely ,U v, U w.5,U* U v, w. accordingly, U*U5 I, and therefore, U*U acts like
the identity in a C* algebra. Notice that this is a one-sided identity. Again, let U be an
isometry in C* acting on the elements in the Hilbert space H, with v and w in H. It is
always 1�1, that is, U is injective. This follows because :U v2U w:5 :v2w:, so then
U v5U w iff v5w. When U is also onto, that is, surjective, then it is invertible, and there-
fore, UU* also equals the identity I. In this case, now, U is a unitary operator,
U*U5UU*5 I. Accordingly, U is a normal operator also; in other words, U commutes
with its adjoint, U*. Furthermore, for nonzero v in H, :U*U v:5 :v:is greater than or
equal to zero and so U*U is a positive operator. A positive operator has a spectrum always
on the nonnegative part of the real line. A unitary operator always has its spectrum on the
unit circle in C. Consequently, the spectrum of UU* is just the point one.

Example 14.2:

For T: H-H, where H is as usual a complex separable Hilbert space and T a positive
operator, that is, ,v, Tv. is greater than or equal to zero for all v in H. It follows that T is
also self-adjoint. Here, it must be shown that T5T*. Since T is positive, then this implies
that ,v, Tv. is real valued, and so ,v, Tv.5,v, Tv.*5,T v, v.5,T*v, v.. Now,
let S5T2T*, as a consequence ,Sv, v.5, (T2T*) v, v.5 0, but this does not show
T5T*, because the inner product in this expression involves a single vector v. To conclude
the verification that T5T*, the polarization identity is needed, with v and w. Set
,Sv, w.5 1/4 {, S(v1w), v1w.2, S(v2w), v2w.1i, S(v1iw), v1iw.2i, S(v2iw),
v2iw.}5 0. This holds for all v and w in H, thereby showing that T5T*.#

Example 14.3:

As in the previous example, let T be a positive operator, that is, ,v, Tv. is greater
than or equal to zero for all v in the Hilbert space H. This time, however, assume that H is
a real Hilbert space, equal to R2. So the carrier set for the Hilbert space is now a real vector
space. It follows that T is not symmetric. To see this, let T5

j0 2 1j
j1 0j :

Then, if for any vector v in H v5 (a b)0, then ,v, Tv.5, (a b)0, (2b a)0.5 0, but T
does not equal T*.#

Example 14.4:

The Cayley transform can be used in relating self-adjoint operators with unitary opera-
tors. In particular, for a self-adjoint operator T on Hilbert space H, the Cayley transform
(z2i)/(z1i) is a special type of Möbius transform from complex variables. This operation
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maps the x-axis onto the unit circle. It is analytic except for a simple pole at 2 i.
Specifically, use the Mobius transform as a one-parameter group: f (z)5 (z1it)/(z2it),
where t is real. So, [(T1it)/(T2it)]*5 (T2it)/(T1it)5 [(T1it)/(T2it)]21, thus showing that f
(T) is unitary.#

Similar to the illustration in the previous example, Section 14.5 is dedicated to relating
self-adjoint operators with unitary operators. Indeed, here Stone’s theorem shows the rela-
tionship between single-parameter families of unitary operators and self-adjoint operators.

Also, the von Neumann algebra was described in Chapter 9. However, it is interesting
to relate isometries and unitarily transformations in this regard. Here, a von Neumann
algebra V, which is a subset of B(H), is finite-dimensional iff all isometries are unitary
transformations (Sakai, 1971).

14.2 Canonical hypergroups—a multisorted algebra view

A hypergroup is a multivalued operation with a binary-type operation taking pairs of
elements from a set H into a subset of H. So it maps a pair of points into a set. It is a set-
valued function. From an MSA perspective of a canonical hypergroup, there exist two
sorts, and they are ELEMENTS and SUB. The first sort denotes elements from a nonempty
set H; this set need not be a Hilbert space. The second sort SUB indicates all nonempty
subsets from H. As in a group, there exist three signature sets one of each arity 0, 1, and 2,
containing a single operation name: ZERO, MINUS, and ADD. The second sort SUB is the
nonempty power set for H. Since SUB does not contain the empty set, it is denoted by 2H

0
.

The prime indicates that 2H
0
52H 2φ. Therefore, replace the following operator names by

corresponding symbols:

ZERO, 0 is in H.
MINUS: H-H.
ADD: H x H-2H

0
. So for a and b in H, ADD(a,b)5 S where {a1b} is a subset of S.

A polyadic graph provides an illustration of these closure operations for a canonical
hypergroup. See Fig. 14.1. The arity sequence is again (1, 1, 1) as in a group. However, the
equational identities make a world of difference from those of a conventional group.

The corresponding operators are extended to allow for set operations. So let ZERO be
represented by 0, MINUS be symbolized by 2 , and for ADD, use 1. Also let A and B be

MINUS

H 2H'

ZERO

ADD

FIGURE 14.1 Canonical hypergroup polyadic
graph.
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nonempty subsets of H; then A1B5 {a1b, for all a in A and b in B}. Note the ordering; in
general, the hypergroup may not be commutative. To emphasize this, let x1A5 {x1a,
where a is in A} and A1x5 {a1x, where a is in A}, so A1x need not equal x1A.

For the equational identities to prevail, let A, B, C, and X be nonempty subsets of H,
and let x, y, and z be elements in H, then:

1) Associative: A1(B1C)5 (A1B)1C. This should be understood that for all a in A, for all
b in B, and finally for all c in C, the following holds: a1(b1c)5 (a1b)1c.

2) Zero property: 01x5 x105 {x}. The meaning of this is when the binary operator is
applied with x and one of its arguments is zero, then the singleton-type subset occurs,
that is, then {x10}5 {x}.

3) Minus property: x1(2x)5 (2 x)1x5X, where 0 is an element of X. This shows that the
subset X of H will contain the ZERO in H whenever either operand of ADD is the
negative of the other operand.

4) Cyclic property: For x in {y1z}, this implies that z is in {x2y}. Note that liberties are
taken here by using minus as a binary operation. Indeed {x2y}5 {x1MINUS(y)}.

If in addition the equational identity (5) holds, then the hypergroup is said to be abelian.
5) Commutative: A1B5B1A. This should be understood that for all a in A and for all b

in B, the following holds: a1b5 b1a.

Example 14.5:

Consider the set H5 {0, 1, 2} mod 3. Using the usual mod 3 additive structure for this
carrier set, here, 225 1 in H and 215 2 in H. So, 2115 {0}. Furthermore, illustrating the
cyclic property, 2 is in the set {111}; as a consequence, 1 is in the set {2�1}. This shows
that hypergroup results from the module three addition operation using H and 2H0 5 {{0},
{1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.#

The next example of a hypergroup is from Linzi and Stojalowska (2020).

Example 14.6:

Let H5 {0, 21, 1}, and consider the addition given below; this defines what is called
the sign hypergroup.

21ð Þ1 21ð Þ5 21ð Þ1 05 01 21ð Þ5 21f g
01 05 0f g

11 15 11 05 01 15 1f g
11 21ð Þ5 21ð Þ1 15H:

Note that MINUS(1)521, MINUS(21)5 1, and MINUS(0)5 0. Also, 2) holds because
ZERO added to anything is anything. Additionally, 3) holds because say 11(21)5 {0, 21,
1}, and 0 is in this set. Unlike a regular group, the ZERO element must be in a set where
11(21) is located, but it need not be {0}. Finally, note that 4) holds; for instance, x5 1 is in
the set {111}, referring to 4), y5 1 and z5 1; therefore, z is in {x2y}5 {12MINUS(1)}5
{111}5 {1}.#
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14.3 Partial isometries

A partial isometry U for a bounded operator on H is where U is an isometry when U is
restricted to perp(ker(U)). That is, U: perp(ker(U))- range of U. To obtain some intuition
about a partial isometry operator U, it is best to see that it is a mapping from a closed sub-
space, A in H onto another closed subspace B of H. Often, in this case, A is referred to as
the initial space, and B is called the final space. A is found by taking the orthogonal com-
plement to the kernel, and B is found by taking the range. See Fig. 14.2. Simultaneously,
the adjoint U* performs the opposite mapping. It maps subspace B onto subspace A.
Additionally, it is useful to think that in the complement of domains A and B, the values
are all equal to zero. U*U is a projection on subspace A, also called the initial projection,
while UU* is a projection on subspace B and it is called the range projection. These map-
pings are used to indicate if there exist self-adjoint extensions for symmetric operators.
Additionally, if there are extensions, these mappings are useful in determining these
extensions.

Example 14.7:

Let L be the left shift operator in lp, where L(v1, v2,. . .)5 (v2, v3,. . .), then L is a partial
isometry. Since ker(L)5 {(v1, 0, 0, 0,. . .)}, it consists of all those vectors in lp which map to
zero. Perp(ker(L))5 {(v2, v3,. . .)}5 ran(L).#

Example 14.8:

Let the carrier set for the sort VECTOR be the two-dimensional complex-valued field.
So, here in Hilbert space H5C2, consider the partial isometry Ua5

j0 1j
j0 0j

Then, the initial space for Ua is A5direct sum of C and {0}. This follows because the
ker(Ua)5 the set of all column vectors (z 0)0, where z is any complex number. Multiplying
Ua times this vector gives zero. So the initial space consists of all two-by-one column vec-
tors with first tuple in C and the second tuple zero. Perp(ker(Ua))5 the set of all vectors of
the form (0 w)0, where w is any complex number. This is also the range of Ua. The final
space B is the direct sum of {0} and C.#

0
K

HH

A

U

U*

B

Initial Space Final Space

Perp (KerU) Ran (U)

FIGURE 14.2 Partial isometry mappings.
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Refer to the partial isometries from subspaces A to B in H. Denote Ua to be the partial
isometry from A to B. The deficiency indices of Ua are given by the dimensions of perp(A)
and perp(B), respectively. Only when these indices are equal can Ua be extended to a uni-
tary operator on all H. First, when these indices are equal, it will be shown that U is the
extension to all of H. U will equal the direct sum of Ua and Up where Up is the unitary
operator from perp(A) to perp(B). This operator maps H into itself using the domain
equaling the direct sum of A with perp(A) and range being the direct sum of B with perp
(B). Since two Hilbert spaces are isomorphic when and only when they have the same
dimension, this shows that U is an extension. On the other hand, if U extends Ua, then U
(perp(A))5perp(U(A))5perp(Ua(A))5perp(B); since U is unitary, dim(perp(A))5dim
(perp(B)) and the indices are equal.

The Cayley transform mentioned in Example 14.4 provides a partial isometry between
ran(T1 iI) and ran(T2 iI) in H when T is a closed and symmetric operator. Moreover,
under these conditions, the transform is unitary on H if and only if T is self-adjoint. A the-
orem of von Neumann states that for T closed and symmetric, T has a self-adjoint exten-
sion if and only if the deficiency indices of its Cayley transform are equal. Additionally, T
has a self-adjoint extension if and only if ker(T*2 iI) and ker(T*1 iI), or ran(T1iI) and ran
(T2iI), have the same dimension (Conway, 1999).

There are strong relations between partial isometries and projections in Hilbert space. A
bounded operator U is said to be a partial isometry whenever UU* is a bounded projec-
tion. Additionally, it is called a partial isometry whenever U5UU*U or whenever U* is a
partial isometry and all are in B(H). The first identity mentioned earlier is related to the
pseudoinverse operation. These relations are verified below in the next section.
Additionally, the pseudoinverse operation is illustrated in Section 18.4 in a machine learn-
ing environment, namely a regression application. Previously mentioned, but not in the
same manner, using function composition, if Ua: A-B, then Ua*: B-A and then
Ua*Ua5 I on A, that is, it is the identity operator on the Hilbert space A. Similarly,
UaUa*5 I on B, the identity operator on B. Partial isometries are intrinsically related to
generating a von Neumann algebra as well as showing the unitary equivalence of
bounded operators in a Hilbert space (Pearcy, 1964).

14.4 Multisorted algebra for partial isometries

Partial isometries of B(H) operators in a C* algebra as mentioned earlier are described
in several equivalent ways:

1) Idempotent: if v5UU*, then v2 5v.
2) Pseudoinverse: UU*U5U.
3) Pseudoinverse: U*UU*5U*.
4) Idempotent: if w5U*U, then w2 5w.

To show (1)-(2), set u5U2UU*U and then evaluate uu*5 (U2UU*U) (U*2U*UU*)5
UU*2UU* UU*2UU*UU*1UU*UU*UU*5v2v22v21v35 0. Because v35v2 v5v2, and
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uu*5 :u:2. Next, to show (2)-(3), take adjoint. To show (3)-(4) since U*UU*5U* and
w5U*U, multiplying the equation U*UU*5U* on the right by U shows w2 5w. Lastly, to
show (4)-(1), set u5U*2U*UU*; next multiplying by U on the left gives v2 5v. It will be
seen next that in the MSA, the high view for partial isometries is that of an idempotent
semigroup.

Several times in this document, it was seen that not all operators were defined fully
on their domain. For instance, special attention and notation was given for the inverse
operation in a field, and the same is true for both the momentum and the distance
operators on a Hilbert space. Including the inversion of the zero element in a field
would have enlarged the domain to include the point at infinity. This results in a
pointed set, and a new algebraic structure arises, but it is not a field. Under function
composition, often a partial isometry U cannot be followed by itself. That is, U2 is not
defined unless U*U5UU*, and the same is true for U* (Paterson, 1999). As a conse-
quence, the binary operation of multiplication, actually function composition, is modi-
fied in the MSA to accommodate these types of partial isometries. Additionally, as in
previous structures, there is an order in which these operators can perform. The argu-
ments do not necessarily commute. For these situations, as previously mentioned, the
polyadic graph has slashes indicating the order of argument utilization from designated
sorts. The same is true in this application along with an additional restriction, described
later; also see Fig. 14.3.

For the case at hand, when the first operand or argument for the binary operator MULT
is applied, there are no restrictions on this operation. Assume that the tail of the polyadic
arrow has a single dash in this case. However, the second tale of the polyadic arrow is
marked with two slashes. However, there is a restriction on the operand to be utilized in
the present situation. To explain this, the single sort carrier set STRING must be identified.
STRING is {U, U*}! And is defined as the set of all strings containing U or U* of arbitrary
finite, nonzero length, but containing no two or more adjacent identical elements within a
string. So star elements with nonstar elements must alternate. They cannot be adjacent
within any string. For instance, UU*UU* is allowed; it is an alternating string of length
four. The back b of a string is the leftmost element; however, it is applied last in function
composition. The front f of a string is the right-most element of the string. For a string of
length two, it is applied first in function composition. This structure becomes a semigroup
using the binary operation of concatenation of strings. However, even though in this alge-
bra multiplication is the concatenation of the operators themselves, as mentioned before,
when applied to elements within a Hilbert space, they are employed in function composi-
tion. Right to left, not left to right. This order is unlike the fundamental group described
previously. See Section 12.4.

*
MULT

fS2 = bS1

STRING

ADJ

INVOLUTIONAL
SEMIGROUP

FIGURE 14.3 Polyadic graph for partial isometry
[U, U*] nonzero.
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Partial isometry is an idempotent using the unary operational name adjoint ADJ, along
with the three equational constraints given later. First, a description of what makes a
string valid.

MULT: STRING x STRING-STRING

ADJ: STRING-STRING

In the following denote:

Mult by �
ADJ by *
STRING by concatenation of elements from {U, U*}! Again, this is the set consisting of
one or more U, or U*, but always alternating.

The binary operation is partial because the front of the second input string must be the
adjoint of the back of the first input string. Formally: f25 (b1)*. This prevents two or more of
the same elements U being adjacent to each other. The same goes for U*. For instance, say that
the first argument is -U*UU*UU*; then b1 is U* with an arrow pointing to it. Therefore, the
second argument must have the front entry U, with no *. So say that the second entry is U*U, a
valid input; then, the result of the MULT operation is U*U�U*UU*UU*5U*UU*UU*UU*,
a string of lengthy seven. More generally, a valid string to exist will be symbolized for instance
as T5u.v.w.y.z, where z is the first string. It becomes valid because the front entry in y equals
the adjoint of the last entry in z. This is denoted by fy5 bz*. Thus, because the individual
strings y and z are multiplied to obtain a new string yz, T5u�v �w�yz, and then the multipli-
cation ensures that the front of w has the adjoint value of the back of the string yz.
Symbolically, fw5 b(yz)*5 b(y)*z, resulting in T5u� v�wyz; again, fv5 b(wyz)*5 b(w)*yz
and so T5u�vwyz; finally, fu5 b(vwyz)*5 b(v)*wyz gives T5uvwyz.

For the polyadic graph, the second input is not only double slashed but also has the
adjoint symbol * next to it. This is a reminder that the second argument must be a string
whose first symbol is the adjoint of the last symbol of the first argument. As another
reminder, the first argument is to the right of the second argument as in function composi-
tion, and not concatenation. Fig. 14.3 illustrates many of these facts. The equational con-
straints for the idempotent semigroup are as follows:

1) Idempotent Adjoint: (UT)T5U.
2) Idempotent: ðUUTÞ2 5UUT:UUT5UUT.
3) Associative: (x. (y. z))5 ((x. y). z); this is justified next.

Using formal but suggestive notation: Begin with the left hand side of 3), (x � (y � z)). As
before, let f represent the front of second input, and b represent the back of the first input
string. Then, fy5 (bz)T, fx5 (byz)T, which is exactly the same as fx5 b(y)Tz. This follows
because the back of yz and the back of y are the same. Accordingly, (x � (y � z))5 xyz.
Going the other way ((x � y) � z), since fx5 (by)T, now f(xy)5 xfy5 (bz)T gives ((x �y) �
z)5 xyz again. Thus, the associative law holds; as such, this structure is more than just a
groupoid; it is an idempotent semigroup.

A power partial isometry on a Hilbert space is U such that for all positive integers Un it
is also a partial isometry. All isometries along with their adjoints are power isometries. An
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important example of a nonisometric power partial isometry is the truncated shift opera-
tion in the next example.

Example 14.9:

The truncated shift Tn:Cn-Cn, where Tn(ej)5 e(j1 1) when j ,n and is zero otherwise.
Here, {e1, e2,. . ., en} is a basis set for Cn. So, for instance, if n5 3, then T3(e1)5 e2. Also,
ðT3Þ2ðe1Þ5e3; ðT3Þ3ðe1Þ5 0. In all cases, perp(ker(T))5 ran(T).#

In general, compositions of partial isometries are rarely themselves partial isometries. It
was shown that if S and T are partial isometries then so is ST, when and only when SST
and TTT commute. Moreover, even for power partial isometries, they are unitarily equiva-
lent to the direct sum of unitary operator. These are copies of a unilateral shift S, on l2 as
well as its adjoint. Additionally, there are also copies of the truncated shift Tn given in the
previous example, but for all positive integers n (Hoover and Lambert, 1974).

14.5 Stone’s theorem

In short, Stone’s theorem establishes a one-to-one correspondence between self-adjoint
operators in a Hilbert space H and one-parameter family of unitary operators. A one-
parameter family of unitary operators form a group. These operators U depend on a real
parameter and are such that for 0, s, and t in R.

1) Identity U (0)5 I
2) Transition U (s1t)5U (s)1U (t).

The one-parameter group in this theorem is strongly continuous in H. This is the SOT,
meaning that the limit, as s-t, of :U (s) v2U (t) v:5 0, for all vectors v in H and t in R.
Since the Hilbert spaces in this document are separable, unless otherwise specified, weak
continuous suffices. That is WOT and the limit as s-t of ,(U (s)2U (t))v, v.5 0, for all
vectors v in H and t in R. In Section 9.1, descriptions of SOT and WOT are provided with
examples. Nonseparable Hilbert space will be considered in a subsequent chapter. See
Section 9.1, which involves operator topology. In the referenced section examples, as well
as counterexamples for SOT and WOT are provided.

Of most interest is that Stone’s theorem establishes that a nonbounded self-adjoint operator T
with a dense domain in Hilbert space H generates a one-parameter continuous group of unitary
operators: UðtÞ5eitT. Moreover, all these unitary groups are generated in such a fashion. That
is, there exists a densely defined self-adjoint operator T on H, such that UðtÞ5eitT. For t0 in R
and v in H, the limit t-t0 of U(t)v5U(t0)v. Also U(t1 t0)5U(t)U(t0).

Additionally, T will be bounded iff the one-parameter group in this theorem is norm
continuous in H (Hall, 2013). The Cayley transform will be employed in relating the opera-
tor T, on a dense subset dom(T), of a Hilbert space H, with the operator U given by U5
(T2iI)/(T1iI). The following hold:

1) The operator U is closed iff the operator T is closed.
2) The operator U is unitary iff the operator T is self-adjoint.
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Example 14.10:

Angular momentum can be considered a generator for rotation. It is a one-parameter
group of unitary transformations, and by Stone’s theorem, it is an infinitesimal generator
performing a natural action of the rotational group SO(3,R) on X5L2ðR3Þ. A finite rotation
about an axis can be obtained by applying successive infinitesimal rotations about that
axis. For instance, in R3, a rotation about the z-axis of angle φ, R (φ), can be found using
R (φ)5 limit as n-N of 12i J φð Þ= n hð Þ
 �n

. Taking a logarithm, this limit can be found
using basic calculus. The limit is n-N of n � ln [12i(J φ)/(n h)] equals limit as n-N, ln
[12i(J φ)/(n h)]/(1/n) equals limit as n-N [i(J φ)/(n2 h)]/(21/n2)52i(J φ)/(h). Here,
J is an infinitesimal symmetric, rotation operator. Raising e to the power involving the
last limit gives RðφÞ5e2iJφ=h.#

14.6 Position and momentum

The canonical commutation relations (CCR) express the relationship between the two princi-
pal observables in quantum, namely position and momentum. Momentum produces operations
that directly affect position by way of translational changes. The basic theory behind the connec-
tion is that infinitesimal changes in position are generated by momentum. The Stone-von
Neumann theorem expresses the relationship between commutation of position and momentum
and the Weyl exponential relation are the fundamental cornerstones.

Example 14.11:

Consider the simplest Hilbert space H, where the carrier sets for both SCALAR and
VECTOR are the one-dimensional real field. Let v be a simple element in H, commonly
called a state, so :v:5 1. In this example, the basic relationship between position and
momentum will be illustrated using the essence of the CBH construction. The average ini-
tial position of a particle is given by its expected value: xo5,v|Y|v.. When a transla-
tion by x occurs, correspondingly a new state w is produced generated by momentum
P. Additionally, the expected value results in a new position. In this case, w5eð2ixP=hÞ; and
the new position is X5,vjeðixP=hÞY eð2ixP=hÞjv. . Next utilize power series for each of the
exponentials. Follow this by substituting for the Lie bracket [P, Y]52ih wherever possible
as in CBH, see Example 11.3. This gives:

X5, v|Y1[ixP/h, Y]11/2! [ixP/h, [ixP/h, Y]]1. . .|v.. All high-order terms have Lie
brackets within Lie brackets just as in the 1/2! term. Since the Lie bracket always
equals 2 ih, a constant, it follows [ixP/h, ih]5 0, so X5,v|Y1x101. . .|v.5 xo1x and
the particle moved from xo to xo plus x. The constant h in the aforementioned equation is
the reduced Plank’s constant.#

In the CCR structure, it is assumed that both the momentum operation P and multipli-
cation or distance function Q are defined on a common dense domain D, in a separable
Hilbert space H. They are both self-adjoint operators. Also, for the rest of this section,
omitting the h factor will be in effect. Thus, it follows that [P, Q]52iI, on D. The creation
a†, and annihilation a, operators for use in Fock space are described in detail in the next
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chapter. For the moment, these operators will now be represented utilizing P and Q. The same
is true when describing the harmonic oscillator, in Section 19.1. Indeed, let the creation
operator be given by ay5ðQ2iPÞ=21=2, and the annihilation operator, a5ðQ1iPÞ=21=2. It
follows that [a, ay�5 1, to see this using the Lie bracket ½ðQ1iPÞ=21=2; ðQ2iPÞ=21=2�5
ðQ1iPÞ=21=2ðQ2iPÞ=21=22ðQ2iPÞ=21=2ðQ1iPÞ=21=2 5 1=2iðP Q2Q P2Q P1P QÞ5 i½P;Q�5 I.
Similarly, ½a; a�5½ay; ay�5 0.

These identities are important in describing bosonic particles in the CCR CT algebra.
Bosonic particles include photons, phonons, mesons gravitons, and several other particles.
Similarly, fermions are described in the canonical anticommutative relations CT algebra. In
this case, the Poisson-type bracket is employed in showing the relation between the crea-
tion b† and the annihilation operation b. Here, fb;byg5bby1byb5 1. Additionally,
fb;bg5fby;byg5 0, and the operators b and by are bounded unlike a and ay. Fermion fam-
ily include electrons, protons, neutrons, muons, neutrinos, and several other particles.

14.7 The Weyl form of the canonical commutation relations and the
Heisenberg group

The Weyl form for the CCR is related to both the Stone’s theorem and the CBH deriva-
tion. The Weyl structure utilizes two one-parameter unitary groups U(t) and V(s), similar
to Stone’s theorem. The functional calculus establishes the fact that for t and s, real-valued
eisP and eitQ are unitary and bounded operators (Putman, 1967). Finally, from the CBH
type of formal computation using UðtÞ5eitQ, VðsÞ5eisP and for all real values of t and s, it
follows that UðtÞVðsÞ5e2istVðsÞUðtÞ. The substance of the Stone-von Neumann results fol-
lows. It declares that all pairs of irreducible one-parameter unitary groups U(t) and V(s)
satisfying the Weyl form of the CCR on a separable Hilbert space H are unitarily equiva-
lent. In this case, there exists a unitary operator W:L2-H, such that WTUðtÞW5eitQ and
WTVðsÞW5eisP.

Example 14.12:

The Heisenberg algebra h is closely related to CCR. It is the Lie algebra associated with
the continuous nilpotent Heisenberg group of 3 by 3 upper triangular matrices, over the
reals. This Lie group is denoted by H(3,R). It will be seen that the Stone-von Neumann
theorem describes unique, up to isomorphism, irreducible representations of H(3,R). The
algebra h has a basis X, Y, and Z that obey the commutator relations similar to those of
position and momentum. The basis is given below. Here, X, Y, and Z are as follows:

j0 1 0j
j0 0 0j
j0 0 0j

j0 0 0j
j0 0 1j
j0 0 0j

j0 0 1j
j0 0 0j
j0 0 0j :

The commutation relations are as follows: [X, Y]5X Y2Y X5Z, [X, Z]5 0, and
[Y, Z]5 0. The Lie algebra h is also nilpotent.#

The corresponding group that is most basic among all the Heisenberg groups is
described next.
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Example 14.13:

The Heisenberg group H(3,R) is the noncommutative group of all upper triangular matrices
A, over the real field with the usual matrix operations. So IDENTITY5 I. All equational identi-
ties for a group hold. Below is matrix A and its inverse INV(A), in that order:

j1 a bj
j0 1 cj
j0 0 1j

j1 2a ac2 bj
j0 1 2 cj
j0 0 1j :

Following is matrix B in H(3,R) along with the product MULT(A,B)

j1 d ej
j0 1 fj
j0 0 1j

j1 a1d b1 e1 a fj
j0 1 c1 fj
j0 0 1j :

More generally, there are Heisenberg matrices of dimension 2n1 1, n5 1, 2, 3,. . .. They
form a simply connected Lie group of (n1 2) by (n1 2) matrices. A typical matrix is A:

j1 v0 bj
j0 In wj
j0 0 1j

:

Here, v and w are n by 1 column vectors; v0 is the transpose of v, a row vector, and In
is a n by n identity matrix.#

14.8 Stone-von Neumann and quantum mechanics equivalence

Stone-von Neumann theorem is important in showing equivalence between the Heisenberg
formulation of quantum mechanics and that of Schrodinger. In particular, the Heisenberg repre-
sentation keeps state vectors independent of time changes, whereas observables and other
operators are time dependent. The Schrodinger characterization is that the state vector evolves
with time. Unitary operators U(t, to) produce time evolution of kets |v(to)., from time to to a
later time t. It occurs using a transition operation: |v(t).5U(t, to)|v(t).. The Schrodinger
equation involves the Hamiltonian H and is i h@|v./@t, that is, ih@ (| v(t).)/@t5H |v(t)..
When time independence exists, the partial derivative of H with respect to t is zero. The time
evolution operator U(t) must obey ih@(|U(t))/@t5HU(t). A more in-depth account of the
Schrodinger representation of the CCR will be described, because P and Q are unbounded, and
therefore domain issues must be stated. The representation was shown to be unique up to uni-
tary equivalence by both Stone and von Neumann (Hall, 2013).

The domain for functions f in the Schrodinger formulation is S, a subspace of L2(R) con-
sisting of functions of rapid decrease such as the Schwarz functions S(R). It could also be
functions with a continuous nth derivative, Cn, or even absolutely continuous functions
AC. For instance, for the momentum operator P, P: S - S, absolute continuity is sufficient,
with the almost everywhere existing derivative also in L2. An additional domain for P is
Dp being the set of all functions p(x) in L2(R) with wF(p)(w) in L2ðRÞ where F(p)(w) is the
Fourier transform of p(x). Moreover, for the position operator Q, Q: S - S, also needed is
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that the multiplication operation t f(t) is in L2. Therefore, when working with both opera-
tors simultaneously, the intersection D of these type of domains must be employed.
Moreover, assume that Q and P are self-adjoint or just essentially self-adjoint on the clo-
sure of this domain. The operators P and Q satisfy the CCR on this domain, that is, [P, Q]
(f)52if on D. Additionally, [P, P]5 [Q, Q]5 0.

Example 14.14:

Consider f in domain D5C1, as stated earlier. Using the annihilation operation a on f
gives a f5ðQ1iPÞf=2ð1=2Þ5ðt f1f0Þ=2ð1=2Þ 5 0. The result is a first-order linear differential
equation whose solution is f5c e2t2=2. Moreover, this solution is related to the ground state
for the harmonic oscillator. See Section 6.1.#

The vacuum state |0. is the state of lowest energy. It is also referred to as ground state
or zero point field. Here, the annihilation operation has zero for the expected value in this
state. The same is true for electrical and magnetic fields as well as vector potential; they
have an expected value of zero. However, the expected value of the square of the field
operators is nonzero. In field theory, the vacuum is the vector with no particles. Also in
the Garding-Wightman axioms, the vacuum state is postulated as a unique, Poincare-
invariant state (Wightman, 1976). Moreover, the vacuum is assumed to be a cyclic vector.
The vacuum state is a coherent state; this means that it is a unique eigenstate of the annihi-
lation operation a with corresponding eigenvalue a^, that is, a^|a. 5 a|a.. In other
words, a coherent state remains unaltered by the annihilation of field effects.

14.9 Symplectic vector space—a multisorted algebra approach

A symplectic vector space is a real or complex vector space with an additional binary
operation named SKEW. All the other operators and equational identities for the field and
vector space hold true. The new operator is bilinear and such that:

SKEW: VECTOR x VECTOR-SCALAR:

The polyadic graph for this structure is provided in Fig. 14.4, where only arrows involv-
ing sort VECTOR are illustrated. The additional equational identities are given by first
replacing:

SCALAR

SKEW

V-ZERO

V-MINUS

V-ADD

VECTOR

S-MULT

FIGURE 14.4 Polyadic graph for a symplectic
vector space.
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VECTOR by u, v.
SKEW by S.

The identities are as follows:

1) Alternating S (u, u)5 0.
2) Nondegenerate S (u, v)5 0, for all v implies that u5 0.

Note that S (u, v)52 S (v, u). This follows by using S (u1v, u1 v)5 S (u, u) 1
S (u, v)1S (v, u)1S (v, v)5 0, so S (u, v)1S (v, u)5 0.

Example 14.15:

An abstraction of the Heisenberg group can be formed from a symplectic vector space
V. Here, for a real-valued vector space, the product space V x R is the domain. For v and
w in V and t and r in R, the group law is (v, t) x (w, r)5 (v1w, t1r1S (v, w)/2), where S
is the operation corresponding to SKEW. In terms of the MSA characterization:

IDENTITY5 0; 0ð Þ
INVERSE (v, t)5 (2v,2 t), since S (v,2 v)52 S (v, v)5 0, as a consequence of the

bilinearity.
MULT ((v, t), (w, r))5 (v1w, t1r1S (v, w)/2), note that MULT ((v, t), (2v,2 t))5 (v2w,

t2t1S (v, 2 v)/2)5 (0, 0).
As a carrier set, consider sort VECTOR to be V5R2 with the usual operations corre-

sponding to the vector space signature sets. Additionally, assume that the operation asso-
ciated with SKEW is S (v, w)5v0 H w. Here, v and w are 2 by 1 real vectors, v0 is the
transpose of v, and H is a skew symmetric 2 by 2 matrix with zeros on the main diagonal;
thus H0 52H.#

Example 14.16:

The abstract Heisenberg algebra can be formed from a symplectic vector space V. Here,
for a real-valued vector space, the product space V x0 R is the domain, where x0 denotes
the direct product. For v and w in V and t and r in R, the commutator law is [(v, t),
(w, r)]5 (0, S (v, w)), where S is the operation corresponding to the binary operation in the
symplectic vector space SKEW.#

The strong operator topology plays an important role in the representations of a
Heisenberg group; see Section 9.1. This representation is continuous from the Heisenberg
group to a topological group of unitary operators on a Hilbert space H. The Schrodinger
representations form a family of irreducible infinite dimensional representations of the
Heisenberg group. For a Heisenberg algebra, a representation is a Lie algebra homomor-
phism involving skew-symmetric endomorphisms for a dense subspace of a Hilbert space
H. The representation is irreducible whenever H is not {0} and all invariant closed sub-
spaces of H are H or {0} subspace. All Schrodinger representations of both the Heisenberg
group and algebra are irreducible (Hall, 2013).

268 14. Canonical commutation relations

Many-Sorted Algebras for Deep Learning and Quantum Technology



14.10 The Weyl canonical commutation relations CT algebra

Weyl operations determine the CT algebra called the Weyl CCR CT algebra; it involves
a real symplectic Hilbert space H, generated by elements {W(f)|f is in H} and with the
equational identities holding:

1) W(0)5 1.
2) W(f) unitary.
3) WT(f)5W(2 f), f in H.
4) WðfÞWðgÞ5eð2iImð, f ;g.Þ=2ÞWðf1 gÞ, g also in H. Note that S(f, g)5 (2 i Im(,f, g.)/2) is

a symplectic bilinear form. For instance, since , f; f.5:f:2 is real, the imaginary part
is equal to zero. Also, when ,f, g.5 0 for all g in H, then f also must equal zero.

The Weyl version of the CCR CT algebra is unique up to T isomorphism (Slawny, 1972).
Moreover, it was shown that for f not equal to g,:W(f)2W(g): is greater than or equal to
21=2. So the unitary group here cannot be norm continuous, and the CT algebra is not sepa-
rable. This CT algebra is faithfully represented on the symmetric Fock space. This space
has a distinguished vector called the vacuum vector. As mentioned previously, it is
destroyed by the annihilator operation and is cyclic with respect to the creation operator.
Recall the cyclic property in this context means that successive applications of the creation
operator generate all states. Bosonic Fock space is described in the next chapter.

Weyl rewrote the CCR in terms of unitary operations and unitary groups. Recall the
Schrodinger representation. For the operators of position Q(f)5 tf, and for momentum
P(f)52if0, they are both defined as essentially self-adjoint on the closure of domain D
in H. The corresponding bounded unitary operators are UðtÞ5eitP and VðsÞ5eiQs. The
critical relations involving the bounded unitary operators are ðUðtÞfÞðxÞ5
fðx1tÞ; and ðVðsÞfÞðxÞ5eisxfðxÞ. These identities can be formally verified by employing
Taylor series evaluated at the origin. Doing this, and using O to denote the remainder
of terms that are assumed to be small, gives the following: First,
ðUðtÞfÞðxÞ 5 ½1 1 itP 1O�fðxÞ 5 ½fðxÞ 1 tf0ðxÞ1O�5 fðx1 tÞ5 ½fðxÞ1 f0ðxÞt=1!1O�; Next;VðsÞfÞðxÞ5
½11 iQs1O�fðxÞ5 ½fðxÞ1 isxfðxÞ�5 eisxfðxÞ5 ½11 isx1O�fðxÞ.

Apply the two identities found earlier. Using V on the first approximation shows that
ðVðsÞUðtÞfÞðxÞ5ðVðsÞfÞðx1tÞ5eisðx1tÞfðx1 tÞ. Next applying U to the second approximation
mentioned earlier gives ðUðtÞVðsÞfÞðxÞ5eisxðUðtÞfÞðxÞ5eisxfðx1 tÞ. Comparing these two
results yields the desired conclusion: eistVðsÞUðtÞ5UðtÞVðsÞ, the Weyl relation for the CCR.
This formal development is attributed to Schrodinger.

The Weyl relation is a strongly continuous unitary group on a Hilbert space; the represen-
tation is irreducible and unique up to unitary equivalence. This means there is no sub-Hilbert
space K, in H with the following properties: Here, K is nonzero, not equal to H; U(t)K is a
subspace of H; and V(s)K is a subspace of H for all real s and t. When there is a change of
basis, a new representation forms (U0, V0) on H0. But since there is unitary equivalence, there
is a unitary operator W, W: H-H0 such that U(t)5WT U0 (t) W and V(s)5WT V0 (s) W. All
Weyl relation representations of the CCR are unitarily equivalent to an at most
countable direct sum of Schrodinger representations. An irreducible representation of the
Weyl relation is unitarily equivalent to the Schrodinger representation (Slawny, 1972).
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The Weyl CCR CT algebra is often denoted by CCR(H) or CCR(H, s) where H is for
Hilbert space and s stands for symplectic space, Im(,f, g.). CCR(H) is a simple CT alge-
bra, that is, it does not have any two-sided ideals. Additionally, let T be an isometry such
that T: H-H, and assume that it preserves symplectic structure. That is, s(T f, Tg)5 s(f, g), for
f and g in H. Under these conditions, T can be implemented as a star automorphism A, from
CCR(H) to CCR(H). Additionally, there is a unique automorphism B, from CCR(H) to CCR(H)
such that B(W(f))5B(W(T f)).
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C H A P T E R

15

Fock space

15.1 Particles within Fock spaces and Fock space structure

Fock space is a direct sum of tensor products of Hilbert spaces. It is used in representing
various states of identical particle Hilbert spaces H. All elements are indistinguishable from
one another in a fixed Fock space. The major types of particles described in Fock spaces are
bosons and fermions. Other particles such as negatively charged ions, like anyonic particles,
are not described in this space. For bosons, a sum of a symmetrized tensor product of
n single-particle Hilbert spaces is employed. Zero-particle states, single-particle states, two-
particle states, . . .. These are all a tensor product of H with itself. All these products exist in
Fock space. Bosonic Fock space is a representation of a Weyl algebra. For fermions, an anti-
symmetrized tensor product of single-particle Hilbert spaces is used. Fermionic Fock spaces
provide a representation for a Clifford algebra. In both cases, a Hilbert space completion is
utilized in forming the direct sum of these tensor products. The inner product of elements
in Fock space is defined as sums and products of inner products of individual Hilbert
spaces.

Example 15.1:

For vectors v1 and w1 both in Hilbert space H1 and vectors v2 and w2 in Hilbert space
H2, the inner product of vectors in the tensor product H1�H2 is given by ,v1�v2,
w1�w2. 5,v1, w1. ,v2, w2.. This is the inner product from the individual Hilbert
spaces multiplied together as seen in Section 7.4.#

In general, the form of Fock space is F5 the direct sum,
PN

n50 S �Hð Þn
 �
. Here, S is a

function performing symmetric or antisymmetric operations on a tensor depending on
whether they are bosons or fermions, respectively. The quantity (� H)n is the tensor prod-
uct of H, n times. In short, Fock space F will be written in this section in the following
manner: It is F5 (1) [S (� H)n]. Here, n5 0, 1, 2, . . . , and the operator (1) stands for the
direct sum from 0 to infinity. So, expanding the above expression in more detail gives
F5C1H1S (H�H)1S (H�H�H)1. . .. In this representation, the plus, 1 , is used for the
direct sum of two individual terms. The quantity C is the field of complex numbers denot-
ing the vacuum state, and it is abbreviated vac. Vac is the state consisting of no particles.
The Hilbert space H is the state for single particles, while S (H�H) describes the states for
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two identical particles. The two identical particle state is also denoted by S H2. Similarly,
S (H�H�H) describes the states of three identical particles, and it will be denoted by
S H3, and so on.

The Hilbert space completion of the algebraic direct sum above is required. In this direc-
tion, (1) Hn5 {(x0, x1, x2, . . .)}, where xj is in Hj. Additionally, the sum x01x11x21. . . must
be such that the sum

PN
n50 :xn:

2
5 the sum

PN
n50 xn; xnh i; and this sum is less than infinity.

Finally, identify a vector v in Hj by the jth tuple of (0, 0, . . . , 0, v, 0, . . .), and use the notation
v5vj. Also, the space Hj is orthogonal to the space Hi whenever j does not equal the integer
value i. The latter statement means that the n particle subspaces for different values of n are
orthogonal.

It is useful to provide an additional, but related concept of a state for Fock space. Begin
with the symmetric Fock space; it must always be infinite dimensional. For a finite-
dimensional Hilbert space H1, consider an observable having eigenvectors |ej., j5 1, 2, . . . , n,
and corresponding eigenvalues aj. When a single particle occupies the kth state, this means
that the eigenstate ket, |ek.5|0, 0, . . . , 0, 1, 0, . . . 0., and where the one appears in the kth
position. Correspondingly, with similar assumptions, the two-particle space H2 could have
both particles in a single state, or a single particle in two distinct states among the n states. So,
for instance, in bosonic Fock space, the possibilities for two particles in a single state are both
in the first state, |2, 0, . . . , 0., or both in the second state, |0, 2, 0, . . . , 0., and so on to the
last state |0, . . . , 0, 2.. Additionally, in any Fock space, the two particles can be separated:
|1, 1, 0 . . ., 0., |1, 0, 1, 0, . . . , 0., . . . , |0, . . . 0, 1, 1.. These are all the possible state occupan-
cies for two particles. An important thing to realize is that H2 is not the tensor product of H1
and H1. It is isomorphic to the symmetrized direct sum of tensor products, that is, H5 S (H1�
H1). Briefly, in this case, S (ha�hb)5 (ha�hb)1(hb�ha). Similarly, in H3 there would be a
direct sum of three factorial tensored products, that is, six possibilities. Linear combinations of
product states are the general state in Fock space.

Example 15.2:

Consider H2; this is a two-particle Hilbert space, using distinct kets {|0., |00.}. As
seen previously, there exist four possible states involving these two kets; these distinct
states are given by {|0 0., |0 00., |00 00., |00 0.}. Each state has an equal probability of
being assembled, but not observed. There exist three symmetrical states for observation
and a single antisymmetrical state. These are in order, |0 0., |00 00., |0 00.1|00 0.,
and |0 00.2|00 0.. The first three are bosonic states; they are similar to the form,
S (ha�hb)5 (ha�hb)1(hb�ha). The last expression will be shown to be a fermionic state.#

15.2 The bosonic occupation numbers and the ladder operators

In Fock space, there exist transitions between particles within subspaces of distinct
numbers. Thus, particle numbers are not preserved; particles can be created or destroyed,
that is, annihilated. These elements can be added or removed from any given energy state.
Operators corresponding to these functions are called ladder operations. Instances of these
operators are seen in Section 14.8. In quantum mechanics, these transitions caused by the
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ladder operators are referred to as second quantization and involve the blending of
Hilbert subspaces Hn and H(n1 2 1). The ladder operators are used in several areas of
physics in raising and lowering energy eigenfunctions, as well as changing units of the
angular momentum number. The operators have arguments that are particles like photons
or quasiparticles like phonons.

The bosonic Fock space algebra over the Hilbert space H allows all states to be occupied by
n, where n is any finite number of particles. That is, n5 0, 1, . . .. In this space, the number oper-
ator Nj provides the count of the number of particles for the jth eigenstate. This operator keeps
track of the quantity of particles that are located in every state. The occupational number nj, for
an observable A, along with nonnegative integer-valued eigenvalues, is such that Nj (|n0, n1,
n2, . . . , nj, . . . , nk.)5nj |n0, n1, . . . , nj, . . . , nk.. Accordingly, for the operator, Nj, the eigen-
vector is |n0, n1, n2, . . . , nj, . . . , nk., and the corresponding eigenvalue is the occupational
number, nj. The observable A can be written as a sum,

P
jðcj NjÞ, where the cj are scalars.

The creation operation is employed in Fock space to add a particle in the prescribed
quantum state, j. This operator is denoted by aj†; it focuses on the jth state only and incre-
ments the occupancy number of this state by one. This operation on the quantum state is
an exterior or symmetric multiplication. Specifically, aj† (|. . ., nj, . . ..)5 (nj11)1/2 (|. . .,
nj11, . . ..). The parenthesis will often be left out for these operators in the following.
Opposite to the creation operator is the annihilator operator aj. Examples of both of these
operators were used in the CCR. See Section 14.8. There, the creation operator was given
by a†5 (Q2 iP)/21/2, involving the position operator Q and the momentum operator P.
Similarly, the annihilation operator a was given by a5 (Q1iP)/21/2.

In general, the creation operator adds a particle whenever a particle is present or not. For a
nonvacant state, the annihilated will decrement the occupation number by one. However, when
the jth state is empty, the annihilation operator performed on this state will result in zero. When
the annihilator acts on the vacuum state C, that is, vac, the result will also be zero. The opera-
tion performed by the annihilator is an interior product-type operation with the state. In sum-
mary, for nonvacant states, aj |. . ., nj, . . .. 5nj1=2 |. . ., nj21, . . . ,., when nj is positive, and
this yields zero otherwise. Fig. 15.1A illustrates the ladder operators in bosonic Fock space.

Ladder operators and matrix representation of the annihilation operation a and the creation
operation a† are given in matrix form below in a respective order. These matrices provide the
scalar multiple for an allowable decrement or an increase in particles in a designated state. On
top of the matrix above, each column is the state number on which the operation is performed.
The scalar multiple to be used is found by identifying the column number, starting from zero.
The corresponding row number is one less when using the annihilation operator, a. When using
the creation operator, a†, use one more row, that is, an additional row. Remember that all states
begin with state zero. Below in the following order is the matrix for the annihilation operation
a, followed by the matrix for the creation operator, a†:

0 1 2 3 4. . .ð Þ 0 1 2 3. . .ð Þ
j0 1 0 0 0. . .j j0 0 0 0. . .j
j0 0 21=2 0 0. . .j j1 0 0 0. . .j
j0 0 0 31=2 0. . .j j0 21=2 0 0. . .j
j0 0 0 0 41=2::j j0 0 31=2 0::j

27315.2 The bosonic occupation numbers and the ladder operators

Many-Sorted Algebras for Deep Learning and Quantum Technology



Example 15.3:

This is an application of using the matrices mentioned earlier to find the scalar mul-
tiple for both creating and annihilating a particle from a designated state. Say that the
creation operator is a2†, that is, the state two is to be incremented by an additional par-
ticle. Go to the column two on top and to row three on the right matrix mentioned ear-
lier, and find the scalar entry 31=2. For instance, before applying the operation, assume
that the space is occupied as φ5|3, 0, 6, 4, 0, . . . , nk.; then a2†(φ)5 31/2 |3, 0, 7, 4,
0, . . . , nk.. Next, assume that an annihilation operation is to be performed on the
third state involving φ. To find a3(φ), using the third column second row of the first
matrix mentioned earlier gives 31=2, so a3(φ)5 31/2 |3, 0, 6, 3, 0, . . . , nk.. If a1(φ) is
desired, then the answer is zero, because there is no particle to be taken away from
state one in φ.#

The matrices mentioned earlier can be used with the number basis eigenvectors ψi,
and ψj. This will be the situation in Section 19.1, where the harmonic oscillator solutions
are described for all energy values. In any case, the following identities hold: ai,j5,ψi

|a |ψj. and ai,j
†5,ψi |a

† |ψj..
There are numerous relationships between the creation operator, a†, the annihilation

operator, a, and the number N, operator. Some of these relationships were illustrated in
the previous section. Before additional relations are identified, it will be assumed that the
creation operation and the annihilation operations are adjoints of one another. That is,
a†5 a* and (a†)*5 a. These facts are justified in the C* algebra of the Banach space comple-
tion for the bosonic Fock space (Townsend, 2000). Now use the nonvacuum and occupied
state with n particles. Here, a†ajn. 5n1=2a†jn2 1. 5n1=2n1=2jn. 5Njn. . Thus, the
identification between the number operator and both the creation and annihilation
operations is N5 a†a. In a similar fashion, aa†jn. 5 ðn11Þ1=2ajn1 1. 5
ðn11Þ1=2ðn11Þ1=2jn. 5 ðn1 1Þjn. . It follows that aa† acts like (N1I). This is the number
operator plus the identity map. Commutation relations are a consequence of the identities

a*

a*

a* a*

a*

a* a*

aaaa

a

aa
O

C H HK H(K+1) .  .  ..  .  .

. . .

. . .
VACUUM

CREATION
a ANNIHILATION

(A)

(B) 

SINGLE
OCCUPANCY

NO
OCCUPANCY

FIGURE 15.1 Ladder
operators for Fock spaces.
(A) Bosonic Fock space,
(B) Allowable operations in
Fermionic Fock space.
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just given. The commutator, ½a; a†�5 aa† 2 a†a5 ðN1 IÞ2N5 I. Additionally, ½N; a†�5
Na† 2 a†N5 a†aa† 2 a†a†a5 a†ðaa† 2 a†aÞ5 a†ðIÞ5 a†. Similarly, ½N; a�5Na2 aN5 a†aa2
aa†a5 ða†a2 aa†Þa52 a.

Example 15.4:

The ground state of zero can be algebraically explained using the ladder operators
using the fact that the operators a and a† are mutually adjoint. Here, for the annihilation
operation energy, eigenstates can only be lowered to zero, and never less than this
amount. To see that the minimum eigen number is zero, consider N5 a†a, and N φn5n φn.
Then ,φn|N φn.5,φn|a

† a φn.5, a φn|a φn.5 , :a|φn.:2, which is nonnegative
and equals zero iff a |φn.5 0, and so for n5 0, again, it is shown that a |φ0.5 0.

Basic Fock states with n bosons are given by the cyclic property of the creation operation:
ða†Þnj0. , where n is a positive integer. These Fock states usually do not contain any informa-
tion as to the phase. However, the bosonic coherent state v is in essence a Gaussian wave
packet. It is a special bosonic state and involves the annihilation operator a. Specifically, it is
the eigenstate of a. So, a v5 r v, where r is the eigenvalue and since v is a state; it is assumed
that :v :5 1. Coherent states have dynamics similar to classical oscillatory trajectories and are
related to the quantum harmonic oscillations (Gazeau, 2009).

The coherent state is given by an infinite sum involving the occupation numbers. It is
defined as v5 e21=2jrj2 PN

n50 r
n=ðn!1=2Þjn. ; where |n. is the number operation. To see this,

let v5 the sum,
PN

n50 cnjn. , where cn are complex scalars. Then using the annihilation
operation on v, a v5 the sum,

PN
n51 cn ajn. 5 the sum,

PN
n51 cn n1=2jn-1. 5 the sum,PN

n50 c n1 1ð Þ n11ð Þ1=2jn. . Using the definition of v above, set r v equal to the sum,PN
n50 cn rjn. . Form the inner product of both of these quantities with the bra number

operator ,n |. Then use the orthogonality condition ,n, n0.5 0, except when n5n0; in
this case, the result is one. It follows that c(n11) (n11)1/25 cn r or c(n11)5 cn r/(n11)1/2.
Employing successive substitution to this difference equation yields cn5 c(n21) r/n1/2

and so c(n21)5 c(n22) r/(n21)1/2; substituting gives cn5 c(n22) r2/(n (n21))1/25 c(n23)
r3/(n (n21) (n22))1/25 . . .5 co rn/n!1/2. Thus, v5 the sum,

PN
n50 cnjn. 5 the sum,PN

n50 co rn=n!1=2jn.�
. Since :v:5 1, then ,v, v.5 1. Forming this inner product gives

v5 the sum,
PN

n50ðjcoj2jrj2n=n!Þ; this follows because ,n, n0.5 0, when n, n0 differ.

Therefore, v;vh i5 jcoj2ejrj2 . Setting this quantity equal to one gives jcoj2 5 e2jrj2 ;
or co5 e21=2jrj2 . This shows that the coherent state v5 e21=2jrj2 PN

n50 r
n= n!1=2
� �jn. .

Example 15.5:

Consider two coherent states v and w, where v is given by the aforementioned
expression and w is given in an identical manner as v, for instance, w5 e21=2jsj2PN

n050 sn
0
= n0!1=2
� �� �jn0 . . Then w; vh i5 e21=2jrj2e21=2jsj2ers�. This expression follows by substi-

tuting into the inner product for both w and v. Then, the only term needed to show is ers�,
because the other terms are scalars. The last term follows by Taylor series expansions for
both w and v. Then noticing that ,n0, n.5 0 except when n0 5n, here it is one. This
reduces the double sum to a single sum. In this situation, the expansion becomes the sum,
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PN
n50 r sTð Þn=n!, which in conclusion is formally given by ers�. Special cases arise: For r5 s,

then ,w, v.5 1. Also, for r52s, then ,2w;v. 5 e22jrj2 . For larger |r|, v and w
become close to orthogonal.

Now, the solution for defining the difference equation for the adjoint operator will be
found. Recall a†jn2 1. =n1=2 5 jn. , and the solution is not a surprise that any occupation
number can be found from the vacuum state. Thus, jn. 5 a†n=n!1=2j0. . To see this, as
before, iterate a†jn2 2. =ðn21Þ1=2 5 jn2 1. ; then substituting for |n21. into the equa-
tion, a†jn2 1. =n1=2 5 jn. , gives a†2jn2 2. =ðnðn21Þ1=2Þ. Continuing to iterate and sub-
stitute provides the desired results via induction.#

15.3 The fermionic Fock space and the fermionic ladder operators

The occupation number in the case of fermionic Fock space is trivial because N can only
be zero or one. Either there exists a particle in a given state or there is none. The occupation
operator is a binary function in the fermionic Fock space. The ladder operators a† and a in
the fermionic Fock space are similar to those in the bosonic Fock space. Intuitively, as before,
the creation operator a† adds a particle to a state, but in this space the state must have to be
empty. The annihilation operator removes a particle from a state, provided there is a single
particle to be annihilated. This is also illustrated in Fig. 15.1B. The anticommunication rela-
tions providing the fermionic Fock space algebra are given by the Poisson bracket: {ai, aj}5
ai aj1aj ai5 0, for all states i and j, also fai†; aj†g5 0, and finally, fai; aj†g5 0, except that it
equals one when i5 j. As a consequence of the first two identities, it follows that
aa5 a†a† 5 0. The number operator as in the bosonic case is given by N5 a†a. However,
since faa† 1 a†ag5 1, then aa† 5 12N. From this, Nð12NÞ5 a†aaa† 5 0. So the eigenvalues
for N are either zero or one. This confirms the Pauli principle that the occupation number is
zero or one. It can be seen that the eigenstates of N are a† |0. and a |1. with correspond-
ing eigenvalues 1 and 0, respectively. These results follow since (12N) a† |0.5 a a† a† |
0.5 0, as well as N a |1.5 a† a a |1.5 0.

In two-dimensional Hilbert space with orthonormal basis, {|0., |1.}. It follows that a
|0.5 a† |1.5 0, a† |0.5|1.; finally, a |1.5|0.. Note that a5|0., 1|, because a
|0.5|0., 1|0.5 0, and also a |1.5|0., 1|1.5|0.. Correspondingly, for the
creation operation a†5|1., 0|, since a† |1.5|1., 0|1.5 0, and a† |0.5|1., 0|
0.5|1.. Also, a a5|0., 1|0., 1|5 0, and a† a†5|1., 0|1., 0|5 0. As a conse-
quence, neither a nor a† is self-adjoint; however, they are conjugate adjoint. That is,
(a) *5 a†, because (|0., 1|)*5|1., 0|; similarly, (a†)*5 a.

In the Hilbert space C2, it was seen that the representations for |0. and |1. are given
by the column vectors (1 0)0 and (0 1)0, respectively. In this space, two-by-two matrices for
the creation operation a† and annihilation operation a are given in order as follows:

j0 0j j0 1j
j1 0j j0 0j:

Using these matrices and the column vectors above, again it is seen that a† |0.5 (0 1)0

5|1., a† |1.5 0, a |0.5 0, and a |1.5 (1 0)0 5|0..
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In a fermionic Hilbert space with n states, there are 2n dimensions. Moreover, each
transposition of elements results in an overall negation. This follows due to the anticom-
mutation of creation operations a†j and a†k. That is exchanging j and k creates an opposite
sign, from1to2or conversely. For instance, |nj, nk.5 aj†ak† |vac.52 |nk, nj.. Here
vac is the vacuum state.

Example 15.6:

In H3, this is a Fermionic Fock space with three distinct allowable states. The Hilbert
space consists of potentially three identical fermions. So, |nj, nk, nm. spans the space. In
this case, the distinct possibilities are eight in number. They are |0, 0, 0., |0, 0, 1., |0, 1,
0., |1, 0, 0., |0, 1, 1., |1, 1, 0., |1, 0, 1., and |1, 1, 1.. Also since |nj, nk,
nm.5 aj†ak†am† |vac., then ak†aj† am†|vac.52 aj†ak*am† |vac.. However, notice
that |ak†am†aj†|vac.5 aj†ak†am†|vac., since there are two transpositions. In this case,
the sign changes twice.#

For a general fermionic Fock state |f.5|n1, n2, . . . , nj, . . . , nk, . . .., the creation
operation is such that aj† |f.5|n1, n2, . . . , nj11, . . .. when nj5 0, and the result is
zero otherwise. The annihilation operation using |f. above is such that aj |f.5|n1,
n2, . . . , nj21, . . ..; this occurs only when nj5 1, and the result is zero otherwise. To
move a particle position from the jth location to an empty location say k, then an anni-
hilation must be performed on the particle in the jth position and a creation of a parti-
cle on the kth position. In this strict order, and do not forget, all particles here are
identical. So, ak†aj |f.5|n1, n2, . . . , nj 21, . . . nk 11, . . ..5|g.. Note that aj ak†

|f.52 ak† aj |f.52|g..

Example 15.7:

In fermionic Fock space H2, the resolution of the identity is given by I5 {a, a†}5 a a†1
a† a5|0., 1|1. ,0|1|1. ,0|0., 1|5|0., 0|1|1., 1|. Notice that a a† I5 a
|1., 0|(|0., 0|1|1., 1|)5 a |1., 0|5|0., 1|1., 0|5|0., 0|; this is a
projection onto the first component of I. Also, a† a I5 a† |0., 1|(|0., 0|1|
1., 1|)5 a† |0., 1|5|1., 0|0., 1|5|1., 1|; this is a projection onto the sec-
ond component of I.#

Consider C2, but this time let |0.5 (1 0)0 denote the vacuum state. And let |1.5
(0 1)0 represent the occupied state in this Fock space. The number operator n, the creation
operator a†, and the annihilator operation a are all illustrated as the 2 by 2 matrices pro-
vided in the following order:

j0 0j j0 0j j0 1j
j0 1j j1 0j j0 0j:

Note that a†a5n, by multiplying the second matrix above by the third to yield the first
matrix. The Poisson bracket operator gives {a, a†}5 aa†1a†a5 I. As well as a†|0.5|1.,
a† |1. 0, a |0.5 0, and finally a |1.5|0..
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15.4 The Slater determinant and the complex Clifford space

Vectors within fermionic Fock space can be represented by determinants called Slater deter-
minants. The antisymmetry results from the definition of determinants. Beginning with two-
dimensional space, a review of notation will be conducted. A two-particle state in H2 can be
written involving two single-particle states, |n1. and |n2.. First, assume that particle r15 1
is in state |1. and particle r25 2 is in state |2.; then this will be written as follows: (r1|n1)(r2
|n2)5 f(r1)f(r2). Similarly, assume that particle r2 is in state |1. and particle r1 is in state |2.;
then this will be written as follows: (r1|n2)(r2 |n1)5 f(r2)f(r1). Here, particles are indistinguish-
able, and because they are antisymmetrical, the allowed representation is |v.5 1=21=2 (|n1.|
n2.2|n2.|n1.)5 1=21=2 (f1(r1)f2(r2)2f2(r1)f1(r2)). The latter equation is the determinant.
Specifically, the latter representation can be written as a 2 by 2 Slater matrix S 2, which is given
below with the scalar 21=2 in front, so 21=2S25 :

jf1 r1ð Þ f1 r2ð Þj
jf2 r1ð Þ f2 r2ð Þj:

Generalization to N particle antisymmetric wave functions is given by the N by N
Slater determinant S N (Slater, 1929). The subspace spanned by these states is the fermion
Fock space. The matrix S N is given as N!1=2 SN5

jf1 r1ð Þ � � � f1 rNð Þj� � �
jfN r1ð Þ � � � fN rNð Þj:

Slater matrices provide basis states involving n particles and n orbitals. It is antisym-
metric when exchanging any two particles.

Clifford algebra, over C, is a unital associated algebra A, involving a linear map f, from
its underlying vector space V, into A. It is such that for v in V, there is a quadratic func-
tional Q, where f(v)25Q(v) I, and I is the identity in A. These algebras are used in describ-
ing spin 1/2 particles in two-dimensional space. Additionally, they are useful in
representations of quaternion vector spaces. Other representations of Clifford algebras
involve quantization and lead to star algebras as well as extensions to a C* algebra.
Importantly, a representation for the Fock space is that the Clifford algebra is a unital asso-
ciative algebra generated by creation and annihilation elements on Z11/2. Again subject
to the usual Poisson bracket constraints. A very in-depth treatment of physics applications
using Clifford algebras can be found in Borstnik and Nielsen (2021).

As mentioned earlier, Fock space representations F, with its dual space F*, exist for the
Clifford algebra. These spaces both have unique vacuum states |0. and ,0|. The vac-
uum states are also known as the Dirac sea (Rutgers Physics, 2018). As usual, fermionic
states arise using the creation operators: aj1† . . . ajn† |0..

15.5 Maya diagrams

Maya diagrams consist of a straight line pattern of black and white pebbles, dots, or
other small objects located at every half-integer on the real line. Here, 0 denotes white and
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X denotes black all at points Z11/2. They are used as a free representation of fermionic
Fock spaces. In Maya diagrams, there exists a negative integer m such that for all points j,
less than or equal to m, white dots only occur. Similarly, there exists a positive integer n
such that for all points j, greater than or equal to n, only black dots appear. In general,
there also must be more than one transition of color. There is a 1�1 and onto correspon-
dence between Maya diagrams and Young diagrams, see Appendix A.4. This correspon-
dence involves critical parameters for both diagrams. For Maya diagrams, two parameters
will be specified to start. These are two positive half-integer numbers w and b, w ,b. That
is, w and b are in Z11/2, where w is the largest white dot location for which there does not
exist any black dot located at a point less than w. Analogously, let b be the smallest location
of a black dot for which no white dots have a larger location. Also needed is the total num-
ber nb of black dots that exist in the open interval (w, b); along with this, needed is the total
number of white dots nw, in (w, b). An example of a Maya diagram follows.

Example 15.8:

Consider the following Maya diagram with 0 denoting a white dot and X for black dot:

. . . 2 11=2: 2 9=2:: 2 7=2:: 2 5=2:: 2 3=2:: 2 1=2:: 1=2. . . 3=2. . . 5=2. . . 7=2 9=2:: 11=2:: 13=2:: 15=2:: 17=2. . .

. . . 0 X: 0: X: X: X: 0: X: X: 0: X: X: X: 0: X. . .

In the aforementioned illustration of a Maya diagram, it follows that w5211/2, since
it is assumed that there are no black dots less than w. Also for a similar reason, b5 17/2.
The number of black dots in the open interval (w, b) is nine, and the number of white dots
in this interval is four.#

The bijection between these Maya and Young diagrams follows by utilizing the follow-
ing constructive procedures. Let M stand for a Maya diagram and Y for a Young diagram,
as given in Appendix A.4. As seen in the appendix, or observing Fig. 15.2, all Young dia-
grams are horizontal bar graphs. The bars are largest on the top row, and then they

9/2-
11/2-

3/2- 1/2-

3/2 5/2

9/2 11/2 13/2

17/2

(8, 5, 3, 1, 1)(0,0)

VERTICAL = WHITE
HORIZONTAL = BLACK

(p,q) = (0,0)
FIGURE 15.2 Young
diagram obtained from
the Maya diagram (see
Example 15.9).
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monotonically stay the same or decrease in length as the bars go downward. First it will
be shown, given M, that the unique Y will be found. Correspondingly, the converse will
be described. Starting from the Appendix A.4, Y is uniquely determined from
ðn10;n2;0 . . . ;nk0Þðp;qÞ, where (p, q) are subscripts, providing left uppermost portion of the
Young diagram. This is given as a bound matrix notation (Dourgherty and Giardina,
1987). Here, the positive integer nj0 is used to indicate the actual row length in Y. For the
procedure given later, redundant rows will be eliminated. That is, now each row will have
a unique size denoted by nj, j5 1, 2, . . . , r. Separate rules will be given to indicate when a
row in Y is repeated. Assume that the M parameters, w, b, nw, and nb, specified earlier,
are known. Using these quantities, p, q, and the nj will be found. To begin, p5 (the inte-
gral part of b), minus nb. Similarly, q5 (the ceiling function of w) with nw added. This
locates the upper left-hand corner of the Y structure. Additionally, the first and largest
block is given by n15nb. Subsequent blocks in Y are placed adjacent underneath if there
are any.

When there are other blocks, they are found from M by noting the clusters of black dots and
the number of separating white dots in the interval (w, b). A cluster of black dots consists of a
contiguous string of black dots, and their lengths should be calculated, c1, c2, . . . cr, where c1 is
the leftmost cluster and the others if any are in order. The white dots should also be noted. A
single white dot separating two black clusters indicates the left cluster is of unique length.
When k, k. 1, white dots separate two black clusters; this means that the block of cells in Y is
repeated k times underneath each other. Also, note that the sum j5 1 to r of cj5n1. The second
unique row in Y is found using n25n12cr. Moreover, this row is repeated again if more than
one white dot separates the clusters with cr and c(r2 1) black dots. In any case, the next unique
row in Y is found using n35n22c(r2 1). Again, check the number of white dots. In general,
nk5n(k21)2c(r2k12), k5 2, 3, . . . , r. The ending condition is that the final unique block for Y
is of size nr5n(r2 1)2c25 c1. Finally, check to see the number of white dots in between the
first two clusters of M; if there is only one white dot, then Y is complete. Otherwise, the final
block with nr cells must be repeated k times; k is the number of white dots.

Example 15.9:

Consider the following Maya diagram with 0 denoting a white dot and X for black dot:

. . . 2 11=2: 2 9=2:: 2 7=2:: 2 5=2:: 2 3=2:: 2 1=2:: 1=2. . . 3=2. . . 5=2. . . 7=2 9=2:: 11=2:: 13=2:: 15=2:: 17=2. . .

. . . 0 X: 0: 0: X: X: 0: X: X: 0: X: X: X: 0: X. . .

Assume also that there does not exist any other transitions in color. Accordingly,
w5211/2, since all white dots occur from minus infinity to and including w. Likewise,
b5 17/2, since only black dots appear at and beyond this point. Finally nb5 8 and nw5 5;
these are the number of black and white pebbles, always excluding the boundaries. From
this information, a unique Young diagram will be created, see Fig. 15.2. Its starting point
is (p, q), where p is the integer part of w that equals the integer part of 17/2 minus nb;
thus p5 8�85 0. Also q equals the upper integer part of w5211/21nw; therefore,
q525 155 0. In this case, the Young diagram totally exists in the fourth quadrant and is
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left justified on the negative part of the y-axis. The last comment means that all bars in Y
have their left vertical boundary on the y-axis.

As can be seen from Fig. 15.2, the first block with n1 cells, hugging the x-axis, has
n15nb5 8 cells long. The next lower block in Y is of unique length n2, since the last clus-
ter c4 of M is separated by a single white dot; consequently n25n12c45 8�35 5.
Similarly, since a single dot separates the second and third clusters, this implies n3 in Y is
unique and it is n35n22c35 5�25 3. However, since two dots separate the left, first,
and second clusters in M, the blocks n4 and n5 are equal and of length n32c25 3�25 1.
This agrees with the length of the bottom-most block in Y and the length of the first cluster
in M.#

Now going the other way, given a Young diagram, the corresponding unique Maya
diagram will be constructed. The procedure is given after an initialization or a setting
up. Again, consult Appendix A.4. M is described by (p, q), its integer location in R2,
along with the length nj, of every block, each located adjacent to and underneath each
other, left justified. Recall the blocks top down form a finite nonincreasing sequence of
lengths. Here, nj can equal n(j11), that is, the block lengths can be repeated underneath
each other. It is useful to construct ruled horizontal and vertical lines. These lines are
orthogonal to each other meeting at (p, q). Ruled markings increase in the horizontal
direction and decrease in the vertical direction all by the same units, the size of a cell
edge. The Y structure is left justified and are usually located in the fourth quadrant.
All rulings are compatible with the cell size making up each bar. Intuitively, all vertical
line segments in Y symbolize white dots in M, and horizontal line segments in Y
denote black dots.

The setup is crucial; it provides the environment for the initial, recursive, and final
stages in determining M. The largest location of a white point w in M for which all smaller
half-unit points are also white is easy to find. It is found at half a unit, in the vertical direc-
tion, right below the bottom bar of Y. So, the leftmost cell of the bottom bar in Y is
(p, p1 1] x [2h, 2h1 1); then w52 h 21/2. Here h is the total number of bars consti-
tuting Y; it is the number of nj’s. Place white dots at w and at all half-integer points to the
left of w in M.

Next, the profile of Y is traversed, from left to right and bottom up. This is the lower
and left-hand boundary line segments. Black dots are placed in M for each horizontal
line segment of every cell in Y traversed along the profile. White dots are placed in M,
for every vertical cell wall in the profile when going upward. The location in M for
each of these dots starts with w and is found accumulatively, that is, by adding one
black dot to the location in M for every line segment of each cell going to the right.
Also add one white dot for each line segment going up in the profile of Y.
Accordingly, dots will be issued to locations w11, w12, and so on. The first black dot
is found traversing the bottommost and leftmost cell (p, p11] x [2 h,2h11), going
horizontal, and thereby marking a black dot at w115 1/22h. The next dot is placed at
w12; it will be a black dot by going horizontal if the bottom bar has more than one
cell, but if the bottom block has one cell only, up is the direction and a white dot is
placed at w12. The next dot is placed at w13; it is black for horizontal movement and
white for vertical movement per each unit line segment traversed in the profile. The
final line segment in the profile must be vertical. It corresponds to the right-hand
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vertical edge of cell (p1n1�1, p1n1] x [q21, q), indicating a white dot should be
placed at p1n1�1/2. Finally, b5p1n111/2, and at b and all larger half-integer points,
there should be black dots.

Example 15.10:

Consider the Young diagram illustrated in Fig. 15.3. From this figure, it is seen that the
Y structure is located at (p, q)5 (0, 1), and the length of the bars is given by the finite
sequence: (n1, n2, n3, n4)5 (5, 3, 3, 1), and h5 4 since there exist 4 bars in Y. As a bound
vector, Y is ð5; 3; 3; 1Þð0;1Þ.

Going half a unit under the lowest bar gives w523 1/2. This value could be found
algebraically by using w5q2h 21/25 1�421/2. That is, it can be found from the
bound vector, whose length is four, and starts at (0, 1). The y component is one. In
any case, this point should be marked white along with all half-integer values less
than w. So:

11=2: 2 9=2:: 2 7=2:: 2 5=2:: 2 3=2:: 2 1=2:: 1=2. . . 3=2. . . 5=2. . . 7=2. . . 9=2:: 11=2:: 13=2:: 15=2:: 17=2. . .

0 0 0:

Next, the bottom bar consisting of a single cell is encountered; it is horizontal, so a black
dot is drawn at position 25/2, one unit more than w. A single black dot appears since the
last tuple in the bound vector is one. Go up on the bottom bar on the profile, of Y, produc-
ing a white dot at 23/2. Now the next to the bottom bar is encountered in a horizontal
manner. Since there are two cells involved, two black dots are issued at points 21/2 and
1/2. These two black dots appear since the difference between the next to last tuple and
the last tuple in the bound vector is two. Consequently, at this point, the M diagram is as
follows:

11=2: 2 9=2:: 2 7=2:: 2 5=2:: 2 3=2:: 2 1=2:: 1=2. . . 3=2. . . 5=2. . . 7=2. . . 9=2:: 11=2:: 13=2:: 15=2:: 17=2. . .

0 0: 0: X: 0: X: X

7/2

7/2 9/2

11/2
13/2

- 5/2

5/2

-
3/2

3/2

-
1/2- 1/2

(p,q) = (0,1)

y=0

= 0

=

(5, 3, 3, 1)(0,1)

FIGURE 15.3 Young diagram to find
Maya diagram.
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Going up in the profile for blocks 3 and 2 induces white dots at locations 3/2 and
5/2. Again, these two consecutive white dots could be seen from the bound vector
since the two tuples have the same number, three. Then going horizontal on block
1 yields black dots at 7/2 and 9/2. As before, using the difference between the first and
second tuple provides the number of black dots. Finally, the profile traversing ends by
providing a white dot at 11/2. Starting from 13/2 inclusive, all black dots exist. The
final M structure is:

11=2: 2 9=2:: 2 7=2:: 2 5=2:: 2 3=2:: 2 1=2:: 1=2. . . 3=2. . . 5=2. . . 7=2. . . 9=2:: 11=2:: 13=2:: 15=2:: 17=2. . .

0 0: 0: X: 0 X X 0: 0: X: X: 0 X: X X :#

15.6 Maya diagram representation of fermionic Fock space

Fermionic Fock space as a vector space V5direct sum complex-valued basis indexed by
the half-integers. For an element w, in this space it can be expanded in a basis: w5 ej1 & ej2
& . . ., where jk is a strictly increasing sequence of half-integers. Also, & is the wedge, or and
type product. Each wedge can be visualized as a Maya diagram. Moreover, fermionic Fock
space can be viewed as the free span over C of all Maya diagrams. The standard basis for this
space is the Maya diagrams. The vacuum state (vac) has white dots exclusively at every posi-
tive half interval. In general, if there exist black dots only beyond some half-integer n, the dia-
gram is said to have a vacuum at level n. This is also called the Fermi level.

For a fixed Maya diagram M, a k translation operator moves black dots to the left k units. It
does this, provided that there does not exist a black dot presently occupying the half-integer

position in M. Specifically, for the translation operator sk5 sum, Σð21ÞjðM;M
0 Þ. The translation

ends in the Maya diagram M0 and involves all Maya diagrams continually starting from M. It
results in all diagrams for which a black dot moves k spaces to the left with a plus or minus
sign. The function j(M, M0) indicates the number of black dots bypassed in M, when the avail-
able black dot relocates. The translation operation can be expressed as a convolution-type opera-
tor involving the creation f† and annihilation operation f. Indeed, sk equals the following sum,

sk5
P

ninZ1 1=2 f
†ðk1nÞfðnÞ. Again, however, the function j must be utilized to keep track of

the number of dots jumped over (Bouttier, 2019). For the next example, use v(a/2), where a is
an integer as a representation of a black dot. These are the dots that will relocate to the left.

Example 15.11:

In this example, the original standard basis is given by the Maya diagram M, specified
below. It is given involving wedge products, v(25/2) & v(21/2) & v(1/2) & v(7/2) & v(9/2) &
v(13/2) . . .. As mentioned earlier, each v(a/2) indicates a black dot location. All other loca-
tions can be considered blank or white dots. Say that a translate minus three units is to be
found, that is, s(23) M. It is useful to provide a list of black dot locations in M that are
relocatable, that is, they do not contain a black dot, this list is fixed. Also a corresponding
list for the value of j(M,M0) should be created. The first list is {2 5,2, 21/2, 9/2, 17/2}.
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These are the four black dots that will translate to the left. The transition is performed one
operation at a time using this list, left to right. Note that the black dot at location 1/2 is
not relocatable because 23 unit away, to the left, is occupied by the black dot at 25/2.
The corresponding ordered list for the number of jumped black dots j(M,M0) is {0, 1, 1, 2}.
The last number in this list 2 is the number of black dots in M, between 11/2 and 17/2.
This is the number of black dots to jump over when the black dot at 17/2 relocates three
units to the left. For this basis M, the resulting basis M0 will be the sum or difference of
four lower diagrams. Immediately below M is the translation of v(25/2); it relocates three
units to the left, arriving at 211/2. The resulting Maya diagram, say M1 , is positive since
j(M,M1 )5 0. The next translation is of v(21/2), and the Maya diagram appears under-
neath M1 . However, it has a negative sign, since in the translation this black dot had to
jump over one other black dot in M to arrive at 27/2. M0 is the sum of the bottom four
Maya diagrams:

It is interesting to use the creation and annihilation formula in a convolutional manner,
sk5

P
ninZ1 1=2 f

†ðk1nÞfðnÞ, to perform the translations given earlier. In this example, k523.
Accordingly, s(23) equals the sum for n in Z11/2 of f†(n2 3) f(n). Starting with M process will
provide the same M0 as mentioned earlier. Begin with the first available black dot X at its initial
location 25/2 in M. The annihilation operation f removes the black dot at 25/2; this is f(25/
2). This black dot was available because the relocation position 231(25/2)5 211/2 is not
occupied by a black dot. Also jMM0 5 0, since there are no black dots in between the present
and relocatable position. Accordingly, a plus sign is used when the creation operation f†(211/2)
is employed, and it relocates the starting black dot.

The next black dot X on the relocatable list is at n521/2 in M. In this case, this point
gets annihilated by f(21/2), thus removing the black dot and replacing it with nothing,
that is, a white dot. Next, location 23 1/2 in M was inspected to be unoccupied, and since
this is the case, the creation operator, then f†(27/12), puts a dot X at this location in M0.
However, in this situation one dot was jumped over in the relocation process, causing a
minus sign to be included in M0. Similarly, for the black dot X at 9/2, f(9/2) performs an
annihilation of X and f*(3/2) creates a new black dot at 3/2 with an overall minus sign
since one black dot was jumped over. Finally, the back dot at 17/2 is first annihilated and
a new black dot at 11/2 is created, but this time with a plus sign since two black dots
were jumped over in the process. The result using the convolution is the same as before.#
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15.7 Young diagrams representing quantum particles

For systems of n identical particles with permutation invariance for the
Hamiltonian H, then the eigenfunctions of distinct permutations share their same
eigenvalue E. Let P be a permutation operator and e(x1, x2, . . . xn) be an eigenfunction
with eigenvalue E. Then Pe5Ee. The symmetrizing operation is S5 (1/n!) sum P, and
the antisymmetrizing operation is A5 (1/n!) sum P dp; here, all sums are over Sn, the
permutation group of n objects. The parity dp is 1 for P even and 21 for P odd. Note
that dp5 (21)t where t is the number of transpositions in P; also dp5ð21Þðn2cÞ, where
P consists of c cycles. Boson states are represented by a single row of the Young tab-
leau where the states are completely symmetric. Likewise, Fermi states are represented
by single columns in the Young tableau where the states are completely antisymmetric
(Yong, 2007). Young tableaux are Young diagrams with markings within cells to keep
track of configurations.

Example 15.12:

Let u and v be orthogonal single-particle states, and w the two-particle state, w5u v.
More precisely, w5u(x1) v(x2). From above, for two particles, the symmetrized operation,
S125 1/2 (I1P12), where I is the identity operator in the symmetric group S2. For w, this
operator projects the symmetric part; thus: S12w5 1/2 [u(x1) v(x2)1 v(x1) u(x2)]. The anti-
symmetrized operation is A125 1/2 (I2P12), and so A12w5 1/2 [u(x1) v(x2)2v(x1) u(x2)].

The Young diagrams associated with these particle configurations contain two cells.
These diagrams have adjacent two horizontal cells or two cells one above the other.
The former diagram corresponds to the class of two one-cycle symmetric states and the
latter to a two cycle that is a transposition and therefore antisymmetric state. The two
horizontal cells correspond to any of the states: u(x1) u(x2), v(x1) v(x2), 1/2[u(x1) v
(x2)1v(x1) u(x2)]. The last quantity can be written as 1/2 [u1 v21v1 u2]. While the ver-
tical bar corresponds to the state 1/2 [u(x1) v(x2)2v(x1) u(x2)], this can also be written
as 1/2 [u1 v22v2 u1].#

Example 15.13:

For the situation of three-particle states, the construction of Young’s diagrams
becomes somewhat more complex. The arrangement of u, v, and z, three single-particle
states, will be utilized. There exist six linearly independent functions, which will be
described in terms of symmetry properties. First, the completely symmetric pattern
w5 1/3! [uvw1vwu1wuv1vuw1uwv1vuw]. This again corresponds to three 1 cycles
and is a single horizontal bar in V. It again is the identity representation. The completely
antisymmetric configuration is w5 1/3! [uvw2wvu1wuv2uwv1vwu2vuw]. In Y, this
exists as a single column. Moreover, this generates another irreducible representation
for S3.#

Four more functions besides the bosonic and fermion exist in the three-state quantum
particle environment. These have mixed symmetry; first, two particles can be
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symmetrized, and then two particles can be antisymmetrized. These particles are known
as quark-flavor eigenstates. The Y description for the four quark states always has a top
bar of two cells and a bottom bar of a single cell. In terms of the quark flavor, the genera-
tion of wave functions for baryons can be illustrated, leading to a 27-dimensional repre-
sentation of SU(3). Here, the Clebsch-Gordon series could be found consisting of the SU(3)
irreducible representations. They can be described in terms of Y and Weyl diagrams and
occur in angular momentum coupling (Messiah, 1981).

15.8 Bogoliubov transform

The Bogoliubov transform is an isomorphism for the CCR or the CAR. Specifically,
the transforms provide conditions for which the creations and annihilation operations
can be transformed into a new set of equivalence operations. Let the original
creation and annihilation operations be f† and f, respectively. The new operations are
a† and a. The Bogoliubov transform T is such that (a† a)0 5T (f† f)0, where T is such
that for A5

j0 1j
j1 0j

TAT0 5A:

Example 15.14:

Let T be given below along with T, T A, as well as T0, in the following order:

ji 0j j0 ij ji 0j
j0 2 ij j2 i 0j j0 2 ij

The product T A T0 5A. As a consequence, in this case the new creation and annihila-
tion operations are given from the original ones by a†5 i f†, a52i f.#

15.9 Parafermionic and parabosonic spaces

These spaces are built on the premise that irreducible representations of the permutation
group govern the transformation of wave functions. In particular, particle states transform
under generalized symmetry. The states exist in between bosonic and fermionic states. Precise
representations are given using Young diagrams. Quons are a theoretical particle believed to
exhibit symmetries as well as antisymmetries. An algebra for working with quons involves
operators from the bosonic as well as the fermionic Fock spaces. Specifically, the operator is a
convex combination of the Lie bracket and the Poisson bracket. Indeed, for r in the interval
[2 1, 1], the operator involves both the annihilation a and creation operation a† and is (11r)/2
[am, an†]1(12r)/2 {am, an†}5dmn, where dmn5 0, unless m5n; then it equals one. The vac-
uum state is defined as in Fock space and am|0.5 0 as before. For r5 1, the bosonic Fock
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space is described in the aforementioned formula. Similarly for r521, the fermionic Fock space
operations are applicable. Irreducible representations of the symmetric group are weighted in
describing the states for quons.

15.10 Segal�Bargmann�Fock operations

An application of holomorphic functions in quantum mechanics is in describing the phase
space for a quantum particle moving in Rn. Here the Segal�Bargmann�Fock (SBF) space is
employed (Guillemin, 1984). It is a Hilbert space, with an inner product developed so that crea-
tion aj† and annihilation operators ak commute among themselves, and such that aj† is the
adjoint of aj. The inner product of two holomorphic functions F and G in Cn is for functions in
L2(Cn) and is ,F, G., which equals the integral,

Ð ðF zð ÞTG zð Þe2jzj2Þdz where dz is the 2n-
dimensional Lebesgue measure on Cn. The representation is a Gaussian-type integral.

Fock observed that conjugate coordinate operations in complex variables obey the com-
mutation relations. Accordingly, the conjugate coordinate operations are a form of the
Cauchy Riemann criteria for analyticity. These equations involve partial derivatives:
@ /@zj*5 1/2 (@/@xj1i@/@yj) and @/@zj5 1/2 (@/@xj2i@ @/@yj). A holomorphic function can
never be a function of z*, so the partial derivative of any analytic function F is such that @F/
@zj*5 0. Forgetting about Planck’s constant and identifying zj with multiplication-type oper-
ation and the partial derivative @/@zk with the momentum operation, then the commutators:
[zj, zk]5 [@/@zj, @/@zk]5 0, and [@/d@zj, zk]5 0 for j not equal to k, and one when they are
equal. Here, aj* is the raising or creating operation, and aj is the lowering or annihilating
operation with the domain of holomorphic polynomials, which is a dense subspace of SBF.

15.11 Many-body systems and the Landau many-body expansion

Second quantization provides the foundation for many-body quantum systems. Fock
space provides a basic setting along with bosonic and fermionic creation and annihilation
operations. Representations are given for one-body operators. These operators manipulate
single particles in N-dimensional Hilbert space. Similarly, two-body operators are
described, which illustrate the interaction between particles.

Landau presented an expansion involving the number of interacting particles produced
by operators of various arity with interacting arguments. For operators of arity one, also
called single-body or single-particle operators, they are denoted by T1. The operators of
arity two whose operands interact with each other are called two-particle or two-body
operators and are denoted by T2. The operators of arity three whose operands interact
with each other are called three-particle or three-body operators and are denoted by T3.
And so on.

The expansion is as follows: Sum,
P

j T1j1 Sum;
P

j, k T2jk1 Sum;
P

j, k,m T3jkm1 . . .

In second quantization, this expansion involves the bosonic or fermionic creation opera-
tors a† and c†, as well as the annihilation operators a and c, respectively. In this case, the

expansion is as follows: Sum,
P

j;k T1aj
†akÞ1 1=2ðSum;

P
j;k;m;n T2aj

†ak†an amÞ1 . . . This
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expansion was used for bosons, but the same expansion holds for fermions. The creation
and annihilation operations are given next with applications to the one-body and two-
body problem in second quantum.

15.12 Single-body operations

Single-particle or one-body operators are defined in N particle Fock space as summa-
tion,

PN
k51 bk, where bk is an operator acting on the kth particle state. Of principal impor-

tance is the number operator nk, which is the number of particles in location k. The
quantity nk5 ak†ak; here it is given for bosons. Recall the eigenstate (ak†)k |vac. of the
number operator has eigenvalue k, that is, nk (ak†)k |vac. 5 k (ak†)k |vac.. Moreover,
the creation operator aj† (|. . ., nj, . . ..)5 (nj11)1/2 (|. . ., nj11, . . ..), and the annihilator
operator is such that aj |. . ., nj, . . .. 5nj1/2 |. . ., nj21, . . . ,.. For the fermionic Fock
space, the number operator is nk5 ck†ck. The creation operator this time is cj†(|. . ., nj,
. . ..)5 (12nj)1/2 (|. . ., 12nj, . . ..), and annihilation operator is such that cj (|. . ., nj,
. . ..)5 (nj)1/2 (|. . ., 12nj, . . ..). The large difference between bosonic and fermion opera-
tors is that the former is symmetric in the creation of two particles, and the latter is anti-
symmetric. That is, aj†ak†|0. 5 ak†aj†|0. 5|1j 1k., but cj†ck†|0. 52 ck†cj†|0. 5
|1j 1k.52 |1k 1j..

One-body operation T1 transfers a particle from state v to state v0 with probability ,v
|T1|v0., where T15 sum,

PN
j51 Tj, and Tj acts only on particle j. The formula is T15 sum,P

v;v0 ,vjTjv0 . avTav0.

Example 15.15:

The kinetic energy of a system of N particles is T, the sum,
PN

j51 pj
2=ð2mÞ, with pjs the

momentum and m the particle mass. The second quantization for the single-body
operation is T15 sum,

P
u;v ,ujp2=ð2mÞjv. au†av. This formula becomes T15 sum,P

k;s h
2k2=ð2mÞaks†aks. Here k denotes the momentum vector, and s is the spin. The nota-

tion is summarized by noting that the number operator, in this case, is nks5aks† aks,
which counts the number of particles with momentum k and spin s.

15.13 Two-body operations

Similar to one-body operators, two-particle operators conserve the number of particles.
The formula for two-body interaction is T25 1/2 sum for v, v0, u, and u0 of ,u, v |T|

u0, v0. au†av†av0au0. The quantity ,u, v |T| u0,v0. represents a two-particle integral
involving T (Hall, 2013).
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C H A P T E R

16

Underlying theory for quantum
computing

16.1 Quantum computing and quantum circuits

Quantum computing can be conducted similarly to conventional computing involving cir-
cuits with inputs and outputs. It can also be conducted as a specialized optimization type,
namely adiabatic computing. In any case, all methods mentioned in this or the following
chapters have a speedup greater than that of a conventional computer. However, the speedup
of quantum computation over a conventional computation of order N can never be more than
quadratic. It was shown (Bennett et al., 1997) that the quantum computation of the order
square root of N is as optimal as possible. Quantum circuit-type computers and conventional
computers are similar in some respects; however, they do differ in many ways.

The most fundamental thing about quantum circuits is that the inputs must be qubits from
some Hilbert space. Additionally, these circuits are described similarly to input-output block-
type diagrams as in engineering disciplines. In engineering, the different inputs are usually not
linked together; they have no relation to each other. In quantum, however, these diagrams usu-
ally symbolize input qubits that are tensored together, and they enter the circuit, often linked
in this structural manner. Moreover, the output of quantum circuits is always equal in number
to the number of inputs. Usually, computation ends with a measurement of a tensor product
of several output qubits. The result is a collapse of the wave function. This will be the case in
all quantum algorithms described later. Also, all the operations T performed on the qubits
must be linear unitary operations. The latter requirement is T T*5T*T5 I. The set of all uni-
tary operators mapping a Hilbert space of qubits into itself forms a group, called the Hilbert
group. The MSA description of a Hilbert group is provided in Fig. 16.1. Here, as usual, the
polyadic graph illustrates the closure operations from the signature sets. Accompanying is a
list of equational identities needed for the rigorous specification of a group.

The simplest way of showing that an operator T is unitary in a quantum circuit is to
show that the product of the matrix with its adjoint is the identity matrix. A sufficient con-
dition for T to be a unitary operator is if it is both an involution and it is normal. That is,
show that T25 I and T T*5T*T, respectively. This result is a consequence of the spectral
theorem for finite-dimensional normal operators. If T is normal, then T5A D A*, where D
is a diagonal matrix consisting of eigenvalues of T with multiples repeated, and A is
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unitary. If T is an involution, then D25 I, so all the eigenvalues are plus or minus one.
This shows that D is both self-adjoint and unitary, because T5A D A* with A unitary
shows that T is unitary also. The ket is represented as a unique point on the Bloch sphere.

Example 16.1:

Consider the carrier set to be C2, and the operator T: C2-C2. Note that if T25 I, that is,
if T is an involution, then this is not enough to verify that T is unitary. Just to show that
an operation is reversible is not enough to prove the operation is unitary. To see this, let
the involutionary matrix T5

j2 1 1j
j 0 1j

Then T is not a unitary matrix even though T25 I, because T T* does not equal I.#

16.2 Single-qubit quantum gates

Unitary operations in a quantum circuit are called quantum gates. Thus, a quantum circuit
is comprised of quantum gates. Quantum gates usually have a single-qubit input, but some
gates have multiple-qubit inputs. When a single qubit is the input to a gate, this is most often
performed using a representation in C2, as in the aforementioned example. The following
examples again involve linear operators acting on qubits represented in C2. All these opera-
tors belong to the Hilbert group mentioned earlier, but in addition all of these operators also
belong to specific Lie groups. As a reminder, important algebraic specifications of some Lie
groups will be quickly reviewed. In particular, the special unitary Lie group SU(n,C) is a real
Lie group consisting of unitary n by n matrices with determinant one. The general unitary
real Lie group U(n,C) consists of n by n unitary matrices with determinant absolute value
equaling one. In general, the global phase of the qubit|v. is ignored. More rigorously, qubits
belong to the projective space Pn(C)5CPn but this fact will not be emphasized. In any case,
for p a real number in [0, 2π) and t real-valued in [0, π], the general ket in C2 is |v., and it

Unitary
Operators

T

I=Identity

Multiply •

Inverse ( )-1

Equational Identities :
1) Associative : R∙(S∙T) = (R∙S)∙T,
2) Identity Law : I∙T = T∙I = T
3) Inverse Law : T∙(T)-1 = (T)-1 T = I

For Unitary Operators (T)-1 = T*

R, S, T Each Map H → H
Where H Is A Hilbert Space

FIGURE 16.1 Hilbert group.
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can be written using a superposition of kets: |v.5 (cos (t/2))|0. 1 eip sin (t/2)|1.. Only
the global phase is left out in the previous representation.

Example 16.2:

The Hadamard gate H has a single qubit as input, say |v.5 a|0.1b|1.5 (a b)0, in
C2, where|a|21|b|25 1. This gate is specified by the matrix H given by

1=21=2j1 1j
j1 2 1j

This matrix is an involution, that is, H25 I. Inspection shows that it is symmetric and there-
fore self-adjoint, and consequently it is normal. Accordingly, H is also unitary. The multiplication
H|v. gives the column vector, 1=21=2 (a1b a2b)0. Utilizing ket notation again, it follows that
Hjv. 5 1=21=2½ða1 bÞj0. 1 ða2 bÞj1. �. In particular, Hj0. 5 1=21=2½j0. 1 j1. �5 j1. and

is called the plus state. Similarly, Hj1. 5 1=21=2 j0. 2 j1.½ �5 j2 . and is called the minus
state. These two qubits lie on the x-axis on the surface of the Bloch sphere, see Figure 5.3.

A different representation for the Hadamard matrix is using outer products involving
ket and bra qubits; indeed, H51=21=2ðj0.,0j1 j0.,1j1 j1.,0j2 j1.,1jÞ. This represen-
tation is useful because there is no need to use vectors in C2 as a representation. In short,
kets and bras could be manipulated directly by H described earlier. Illustrations follow
on how to evaluate H acting on an input qubit. For instance, to find the Hadamard
matrix operating on the south pole qubit, H|1.. Use linearity to obtain Hj1. 5
1=21=2ðj0.,0j1. 1 j0.,1j1. 1 j1.,0j1.2 j1.,1j1.Þ5 1=21=2ðj0. 2 j1. Þ. The last
result follows since|0. and|1. are each of unit length and are orthogonal to each other,
so, for instance, ,0|1.5 0 and ,0|0.5 1. Finally, note that the determinant of H is
minus one. This shows that H is in the Lie group U(2, C), but it is not in the Lie group SU
(2, C). However, modified Hadamard matrices are often utilized, for instance, iH is
employed. In this case, the matrix iH is in SU(2,C), since (iH) (iH)*5 (iH) (- iH)5H25 I.#

Example 16.3:

The NOT gate also has a single-qubit input; in this situation, the output just exchanges
zero qubits for one qubits and vice versa. Thus, for the qubit|v. as in the previous exam-
ple,|v.5 a|0.1b|1.5 (a b)’, in C2, where |a|21|b|25 1. Evaluation using NOT
|v. 5NOT(a|0.)1NOT(b|1.)5 a NOT|0.1b NOT|1. 5 a|1.1b|0., just illus-
trated is the linearity property of this operator. Also shown is the use of parenthesis to
gain more clarity, for instance, use NOT(a|0.), but don’t use NOTa|0.. In any case,
operating in the Hilbert space C2, the matrix for the NOT operation is as follows:

j0 1j
j1 0j

This matrix is both symmetric and an involution, and so NOT is a unitary operation.
NOT gate can be described as linear combination of outer products. Thus, NOT5
(|0., 1|1|1., 0|). Since the determinant of NOT is minus one, again like the
Hadamard matrix, NOT is in U(2, C) and it isn’t in SU(2, C).#
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Example 16.4:

The identity gate I, where I: C2-C2, is given as follows:

j1 0j
j0 1j

It is represented in terms of outer product bras and kets by I5|0., 0|1 {1., 1|. As
such, any input|v. to this gate exits unaltered. Since the determinant is one, I is in SU(2,C).#

The next example of a single-qubit operation involves a single, but famous phase gate.

Example 16.5:

The π/8 phase gate also known as the T operation is part of the Hadamard, H, T gate
set. The corresponding matrix operating in C2 is as follows:

je2iπ=8 0j
j0 eiπ=8j

Note that this matrix is not an involution. However, of importance is that the T matrix is
a unitary matrix and the determinant is one. Accordingly, T is a member of the Lie group
SU(2, C). Often, in quantum circles, the T gate is defined slightly different. Here, it is repre-
sented as the above T gate multiplied by eiπ=8, and sometimes additionally as follows:

ji 0j
j0 eiπ=4j:#

Example 16.6:

A generalization of the T gate above is the PHI gate, which involves a nonzero angle of
φ, with an uncountably infinite number of such values for this angle. Specifically, PHI5

j1 0j
j0 eiφj:#

Use of an operator having the versatility of employing an uncountable number of
angles is a must in quantum computing. This is because the Lie groups involved are
topological spaces with an uncountable number of elements. The next quantum gate S
is a member of the Clifford1T set. The operator T is illustrated in Example 16.5.

Example 16.7:

The S gate is called the phase-shift gate. It is represented as a matrix mapping Hilbert
space C2 into itself. S5

j1 0j
j0 ij
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This matrix is unitary, but the determinant equals i; accordingly, S is a member of the
unitary Lie group U(2, C). It is not in SU(2, C). Note that this is a special case of the PHI
gate specified above with φ5π/2. This operator along with the T operator, as well as H,
forms the Clifford1T finite group. The Clifford single-qubit group is described in a subse-
quent section. It was shown that the Clifford 1T set is universal and certain strings of
matrices from this set can be represented by matrices with algebraic number entries. Also,
certain approximations to entries U in SU(2, C) in terms of H, S, and T are strings of matri-
ces of the form: {T or empty} {HT or HST}.#

Example 16.8:

This is an example of how the S gate operates on the qubit,|q.5 (cos (t/2) eip sin
(t/2))0, on the Bloch sphere. First form S|q.5 (cos (t/2) ieip sin (t/2)); then since i5 eiπ=2,
it follows that Sjq. 5 ðcosðt=2Þeiðp1π=2Þsinðt=2ÞÞ. Referring to the Bloch sphere, the new
qubit after the application of S is now located at a new longitude, but the same latitude
as|q.. It is located 90 degrees rotated counterclockwise, about the z-axis, away from|q..
The z-axis is pointing up. The Darboux vector is the name often used for the angular
velocity vector causing the rotation.#

16.3 Pauli rotational operators

The next gate set involves the three Pauli matrices that were previously specified, and
again given below, in order X, Y, and Z:

j0 1j j0 2 ij j1 0j
j1 0j ji 0j j0 2 1j:

These matrices are exponentiated, resulting in the Pauli rotation operators. They are
illustrated in the next example. All rotation operators can be found using Frobenius covar-
iants with Lagrange-Sylvester interpolation, or by using power series methods. See
Section 5.5, for the Frobenius covariants with Lagrange-Sylvester interpolation.

Example 16.9:

The three rotation matrices corresponding to the Pauli matrices are as follows:
RXðtÞ5 e2itX=2;RYðtÞ5 e2itY=2, and RZðtÞ5 e2itZ=2. These rotation matrices are presented in
order as follows:

jc t=2 2 is t=2j jc t=2 2 s t=2j je2it=2 0j
j-is t=2 c t=2j js t=2 c t=2j j0 e2it=2j

Here, c t/2 stands for cos(t/2) and s t/2 represents sin(t/2). For a single qubit for which
these matrices are applied, they rotate the qubit about the corresponding x-, y-, or z-axis
of the Bloch sphere. All three matrices are in SU(2, C).
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To derive RXðtÞ5 e2itX=2, note that RX tð Þ5 ct=2I2 is t/2X, where I is the identity 2 by 2
matrix and X is the first Pauli matrix. From the cosine and sine expression, the result fol-
lows immediately by substitution. More generally, the expression for RX(t) can again be
found as indicated earlier by using the eigenvalues of X. This is the method specified in
Section 5.5. Utilizing the Frobenius covariant method, since the eigenvalues of X are x15 1
and x25 2 1, the Frobenius covariants are X15 1/2 (X1I) and X2521/2 (X2 I).
The Lagrange-Sylvester interpolation formula for RXðtÞ5 e2itX=2 5 e2ti=2X11 eti=2X25
1=2½ðe2ti=2 1 eti=2ÞI1 ðe2ti=2 2 eti=2ÞX�. Substituting in I and X yields the same solution as the
one previously given.#

Of importance is the meaning of the angle t in the Pauli rotation matrices. This angle t
in R(t) is the angle employed according to the Bloch sphere spherical coordinate system.
An example follows.

Example 16.10:

On the surface of the Bloch sphere, the spherical coordinate vector q locates the pure
qubit,|q.. For instance, along the x-axis qx5 (1 0 0) is the location for the qubit,|
qx.5 1/21/2 (|0.1|1.)5 (cos(π/4) sin(π/4))0 5 1/21/2 (1 1)0. Also, along the x-axis, note
that q2x5 (21 0 0) is the location for the qubit,|q2x.5 1/21/2 (|0.2|1.)5 (cos(π/4)
2 sin(π/4))0. Finally, qy5 (0 1 0) locates the qubit|qy.5 1/21/2 (|0.1i|1.)5 (cos(π/4)
isin(π/4))’. Notice that RZ(π) applied to|qx. is (2icos(π/4) isin(π/4))’52i|q2x., where
the global phase 2 i is irrelevant because single qubits are in a projective space CP1. Next,
RZ(π/2) multiplying|qx. gives 1/2 (12i 11i)0 5 1/2 ((12i) cos(π/4) (11i) sin(π/4))0 5
(12i)/21/2 (cos(π/4) (11i)/(12i) sin(π/4))’5|qy.. Again, the global phase does not mat-
ter. Lastly, using RY(π/2), multiplying|qx. yields the south pole qubit,|1.. The matrix

representation of 21/2 RYðπ=2Þ5 j12 1j
j1 1j:

Multiplying RY(π/2) times the column vector,|qx.5 1/21/2 (1 1)0, yields the qubit
representing the south pole,|1..#

The Pauli rotational operators have a sort of universal property in that for any U in
U(2, C), there are real numbers a, b, c, and d such that the unitary operator can be expressed in
terms of three Pauli operators: U5 eia RZ(b) RY(c) RZ(d) (Nielsen and Chuang, 2000).

Example 16.11:

Notice that the Hadamard gate H can be represented using the aforementioned expres-
sion, namely by H5 eia RZ(0) RY(π/2) RZ(π). Here, RZ(0)5 I, and given below are
RYðπ=2Þ;RZðπÞ and RYðπ=2ÞRZðπÞ all in order:

jc π=4 2 s π=4 j2 i 0j j2i=21=2 2i=21=2j
js π=4 c π=4j j0 ij j2i=21=2 2i=21=2j:

By letting eia5 i, that is, a5π/2, the last rightmost matrix above is H. Other gates in the
previous section are even easier to represent with the Pauli rotation operators. For
instance, the shift gate S5 eiπ=4 RZðπ=2Þ.#

296 16. Underlying theory for quantum computing

Many-Sorted Algebras for Deep Learning and Quantum Technology



The Clifford single-qubit group is generated by the Hadamard and phase-shift matrices H
and S. This group is defined as the set of unitary matrices U, which when applied to a Pauli
matrix P, as UPU* this quantity yields a Pauli matrix again. The cardinality of this group is 24.

Example 16.12:

Note that SXS*5Y, SZS*5Z, HXH*5Z, and HZH*5X. For the last identity, note that
the quantity 21=2 HZ and HZH* are given in order and are equal to:

j1 2 1j j0 1j
j1 1j j1 0j:#

16.4 Multiple-qubit input gates

As previously mentioned, operations involving multiple qubits are very often inputted with
these qubits tensored together. For the case involving two qubits, the operation X: H � H-H
� H. As an instance of this is the operator X5CNOT. Most often, for a multiple-qubit gate, the
first qubit is used as a control qubit. This means that the actual operation is employed to the
other, the second qubit. Here, the second qubit is conditioned on the state of the first qubit, and
the second qubit is called the target. An example of this type of operation is detailed next.

Consider the CNOT gate, also known as the conditional not operation. The input to this
operation is|x. �|y., where � denotes the tensor operation. The tensored product is
written more briefly as|x y., where x is the first or top qubit and the second is y. Both x
and y can take on only the values of zero or one. This gate is illustrated in Fig. 16.2.

As can be seen from this diagram, the first qubit|x. passes through not altered. The
bottom output is the qubit|y (1) x., where (1) denotes the mod2 operation or exclusive
or. Thus|y (1) x.5 0 when and only when x5 y; otherwise it equals 1. The CNOT opera-
tion is given in C4 by the matrix:

j1 0 0 0j
j0 1 0 0j
j0 0 0 1j
j0 0 1 0j:

Input |×> |×> Output 

|×>  y> Output Input |y>

CNOT

yx x y
00 0
10 1
01 1
11 0

FIGURE 16.2 CNOT gate.
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The aforementioned CNOT matrix is symmetric and an involution; this shows that the
CNOT operation is unitary. This matrix multiplies|x y. when expressed as a column vec-
tor in C4 after the tensor product is utilized. There are four possibilities for this input; they
are as follows:|0 0.5|0. �|0.5 (1 0)0 � (1 0)0,|0 1.5 (1 0)0 � (0 1)0,|10.5 (0 1)0 �
(1 0)0, and finally,|11. 5 (0 1)0 � (0 1)0. The 4x1 vector representations are given as col-
umn vectors in the corresponding order:

j1j j0j j0j j0j
j0j j1j j0j j0j
j0j j0j j1j j0j
j0j j0j j0j j1j:

The matrix CNOT when operating on these vectors in the exact same order is as
follows:

j1j j0j j0j j0j
j0j j1j j0j j0j
j0j j0j j0j j1j
j0j j0j j1j j0j

Now these resulting vectors must be interpreted in terms of tensored kets.
Representing the 4x1 vectors above, in order and in terms of kets, gives|0 0.,|0 1.,

|1 1., and finally,|1 0.. Accordingly, when the first qubit is zero, the output is|x y.
and is unchanged. When the first qubit is one, then the second qubit flips sign, that is, the
output becomes|x (12y).. The determinant of CNOT is minus one, so it is in the Lie
group U(4, C), but it isn’t in the Lie group SU(4, C).

Notice that the CNOT operator is an entangler, but also it is an unentangler. For

instance, CNOT(1/21/2 (|0 0.1|1 0.))5 1/21/2 (|0 0.1|1 1.); the last qubit pair is
entangled. It is one of the Bell states. To see this, first note that|10. 5 1/21/2 (|0.1|
1.) �|0. so the input to the CNOT is not entangled. Finally, to see that the output is
entangled, note that the most general|0. and|1. qubit tensor product is z5 a11|0. �|
0.1a12|0. �|1.1a21|1. �|0.1a22|1. �|1.. The tensor is called a pure tensor iff
a11 a225 a12 a21; otherwise it is entangled. Here a215 0, but a115 a225 1. See Section 7.4
for further information on entanglement.

Finally, using the Pauli matrices X, Y, and Z are as follows:

j0 ij j0 2 1j ji 0j
ji 0j j1 0j j0 2 ij

CNOT5 j0.,0j � I1 j1.,1j � X5 I1Zð Þ � I1 I2Zð Þ � X=2

In higher dimensional Hilbert spaces, unitary operators can be replaced by the CNOT
gate in U(4,C) along with single-qubit gates in U(2,C) (Nielsen and Chuang, 2000)

The Pauli group on n qubits consists of {1, 21, i, 2 i} x {I, X, Y, Z}@n, where the last set
involves the Pauli matrices tensored together n times. In a similar manner as in the single-
qubit case, the Clifford n qubit group consists of all the unitary matrices U such that for P
and P0 in the n qubit Pauli group, U P U*5P0.
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Example 16.13:

For the two qubit case, notice that when using operations in order by multiplying the
following three matrices, CNOT, (Z � I), CNOT*, the result is the Z � I. That is, CNOT.(Z
� I). CNOT*5Z � I. Likewise, CNOT.(I � Z). CNOT*5Z � Z, CNOT.(I � X). CNOT*5 I
� X, and CNOT.(X � I). CNOT*5X � X. For the last identity, note that X � I, CNOT.(X �
I), and X � X are given in order as follows:

j0 0 1 0j j0 0 1 0j j0 0 0 1j
j0 0 0 1j j0 0 0 1j j0 0 1 0j
j1 0 0 0j j0 1 0 0j j0 1 0 0j
j0 1 0 0j j1 0 0 0j j1 0 0 0j:

16.5 The swapping operation

The CNOT gate is additionally useful in creating other important gates. In particular, the
swap gate is designed by utilizing three CNOT gates in succession. See Fig. 16.3. The symbol
for the swap gate is SWAP. When used SWAP: HA �HB-HB �HA. For input state|x y., the
swap gate yields SWAP(|x y.)5|y x.. It begins with the first bit as a control bit in the first
CNOT. Then the second bit is used as a control bit in the second CNOT, and finally for the last
CNOT, the first bit is used again as the control bit. The following sequence illustrates the swap-
ping operation, with a single arrow indicating the use of a CNOT operation:|x y.-|x, x (1)
y.-|x (1) x (1) y, x (1) y.5|y, x (1) y.-|y, x (1) y (1) y.5|y x..

16.6 Universal quantum gate set

Intuitively a universal quantum gate set (UQGS) is a fixed, finite number of unitary operators
that, when applied in succession, can approximate any unitary operation in SU(2, C). The opera-
tors are applied in composition, from left to right. However, they are illustrated as the concate-
nation of strings of operations, labeled in order. Let G5 {g1, g2, . . ., gm} be a finite subset of SU
(2, C). A word of length n is wn5 g1 g2 . . .,gn, with gi in G and n greater or equal to 1. The set
of all words from G with length n or less is denoted by Gn. The union of all Gn for n ,N is

>  |>x|

>xy|>y|

FIGURE 16.3 The SWAP Gate.
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denoted by ,G.. A set of gates is UQGS whenever ,G. is dense in SU(2, C). That is, for
any U in SU(2, C), and E. 0, there exists a string of operators g in ,G. such that the distance
d (U, g) is less than E. The metric is induced by the trace norm, :A:5 tr[(A* A)1/2]. The trace
norm satisfies the equational identities and inequalities:

1) Triangle Inequality: :A1B: is less than or equal to :A:1:B:.
2) Submultiplicative: :A B: is less than or equal to :A: :B:.
3) Unitary Invariance: :U A V:5 :A: for all unitary operators U and V.

The operator norm is also used; it is :A:5 sup|Av|, for :v:5 1. For U and V in U(2,C),
U approximates V that means d (U, V)5 sup :(U2V) v:,E, for :v:5 1. For two strings of
quantum gates U5U1 U2 . . .,Un and V5V1 V2 . . .,Vn, then d(U,V) is less than or equal to the
sum, Σ d (Ui,Vi). This follows using n5 2 and can be proved by mathematical induction. For
n5 2, d(U1 U2, V1 V2)5 sup :(U2U1�V2V1) v:5 sup :(U2U1�V2U11V2U12V2V1) v: is less
than or equal to sup :(U2U12V2U1) v:1sup:(V2U12V2V1) v :5 sup:(U22V2) U1v :1sup
:V2 (U1 � V1) v:5d(U2, V2)1d(U1, V1). Note that a maximum could be used here in place of
sup and that the order of operation of operators is backward from the string notation.

A most popular UQGS for SU(2, C) consists of the Hadamard gate H and the π=8 gate T.
The proof makes use of the Pauli rotation operators. Section 16.3 illustrates that the
Hadamard gate is a product of Pauli rotation operators. Also, T5RZ(π/4). The T gate and the
HTH string of gates are successively utilized in showing {H, T} is a UQGS. An important
identity in producing the approximation with any degree of accuracy is the identity
THTH5RZðπ=4ÞRXðπ=4Þ. More general UQGS is explained in Lloyd (1995).

16.7 The Haar measure

Haar measure u is best understood as a left G invariant measure (Nachbin, 1965). Here G is
a locally compact topological group. For the binary operation of multiplication, an invariant
measure is such that u(x V)5u (V), where x is an element of the group G and V is a Borel mea-
surable set. Appendix A.2 provides an outline of relevant measure theoretic concepts.

Historically, Haar measure was first expressed as an approximation of an absolute measure
based on a unit measure. The unit measure for the Haar measure uses E as a Borel subset of G,
and V is a nonempty open subset of G. Then let (E: V) denote the smallest number of left trans-
lates of V that cover E. Thus, (E: V)5 inf {cardinality of A such that E is a subset of the union of
x V, for x in A, A a subset of G}. Hence (E: V) can be viewed as a relative measure of E.

Fix a precompact open subset Eo, and assign its measure as one. Precompact means that the
closure of the set is compact. Then consider as an approximation to the absolute measure of E
the following: (E: V)/(Eo: V). Notice for all x in G, (E: V) /(Eo:V)5 (Ex: V)/(Eo: V), and this
operation is left G invariant. Taking the limit as V shrinks to the identity element shows that
the Haar measure is defined as the limit. So, u(E)5 limit [(E: V)/(Eo: V)], as V-I.

For G, a locally compact topological group, Haar’s theorem states that there is up to a
positive multiplicative scalar a countably additive measure on Borel subsets of G such that

1) The measure is left invariant as mentioned earlier.
2) For a compact subset K of G, u(K) ,N.
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3) The measure is both outer regular on Borel sets in G and inner regular on open sets U
in G, respectively, u(S)5 inf {u(U) such that S is a subset of an open set, U in G}, and u
(U)5 sup {u(K) such that K is a subset of U and K is compact}.

Example 16.14:

Consider the carrier set for G to be the group of positive real numbers R1 , under mul-
tiplication, with the usual topology on the real line. Then for any Borel subset, B, in R, a
Haar measure can be created using the usual Cauchy-Riemann, Riemann, or Lebesgue
integral: u(B)5

Ð
B1/x dx. For any Borel set, say the interval [2, 4], the corresponding

measure u([2, 4])5 ln(4)2ln(2)5 ln(2). Also for any positive real number in R1 , say three,
and multiplying the interval by three, then the Haar measure u([6, 12])5 ln(12)2ln(6)5 ln(2)
again. This illustrates the invariance of the Haar measure using the multiplicative group
involving elements in R1 .#

16.8 Solovay�Kitaev theorem

The notion of unitary operators in SU(2, C) being approximated by a string of unitary
operators, S1S2. . .Sn, is described in Section 16.6. This string forms a UQGS and was
explained with emphasis on {H, T}, the Hadamard, and the π=8 gate set. In this section,
the degree of closeness in the approximation is related to the number of elements n, in the
string of unitary operators.

The Solovay�Kitaev theorem (SK) gives a constructive procedure to approximate arbi-
trary unitary 2x2 matrices with determinant one by a string of physically realizable unitary
gates. The approximation is to within E. 0. The string is a finite product of gates from a
universal gate set S. The SK result shows that the length of the string of gate products
needed is of the order O(log4(1/E)). Required, for these approximations to hold, the set of
gates S must be dense in G. More precisely, consider a finite subset S, of SU(2, C), which
contains inverses and is dense in SU(2, C). Then there is a constant c, in [1, 4], such that
for any such S and E. 0, n can be chosen where n5 0(logc (1/E)) such that Sn is an E net
for SU(2, C). For any U in SU(2, C), there is a string of gates S1S2. . .Sn in Sn, where d
(S1S2. . .Sn, U) ,E. The distance metric d is induced by the trace norm. That is, d (A, B)5
:A2B:. So for A, B in SU(2, C), :A:5Tr [(A A*)1/2], this is also equal to the sum of the
absolute value of the two eigenvalues of A. In short, an E net for SU(2, C) means that
SU(2, C) is a finite subset of the union of open balls of radius E centered about strings
S1S2. . .Sn in Sn. Thus, for every unitary operator in SU(2, C), there exists a string of gates
from Sn that come E close to producing the same results.

The SK criteria for closeness in approximation are inversely related to an increase in the
length of the approximating string of operators. The group commutator [U, V]G5UVU*V*
is employed in the proof of SK. It is used in determining how close unitary operators are
to the identity operator, I. The group commutator is related to the usual Lie bracket for U,
V in SU(2, C), as follows: [U, V]5 0, then [U, V]G5 I. This is true because [U,V]5 0, which
means that UV5VU; then in the group commutator, [U, V]G5UVU*V*, replacing UV by
VU gives [U, V]G5VUU*V*, which is the identity.
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Consequently, the group commutator is close to the identity when and only when
the two operators commute. Repeated application of this commutator relationship
enables E net approximations to be made to the identity element. Lastly by translation,
the approximation can be seen to hold for any unitary operator in SU(2, C). Most
proofs of the SK theorem employ the shrinking lemma specifying better approxima-
tions of the identity using larger length strings. Smaller and smaller E net approxima-
tions are made to neighborhoods of the identity. The final step in the proof is using the
bi-invariance of distance to translate the E nets to approximate other elements in SU(2,
C). In-depth details are provided in Zarapico (2018). For S in a UQGS with algebraic
entries and E. 0, n can be chosen where n5 0(logc (1/E)), with c5 1 (Holevo, 2003;
Bourgian and Gamburd, 2001).

16.9 Quantum Fourier transform and phase estimation

The quantum Fourier transform (QFT), denoted by F, sends vectors in a complex
Hilbert space CN back into CN, where usually N is the positive integer 2n. Specifically, for

jx. 5
PN21

j50 xjjj. , the QFT, F jx.ð Þ5 PN21
j50 yjjj. , where yj 5 1=N1=2 PN21

k50 xk wNð Þkm, for

m5 0, 1, 2, . . ., N2 1. Also, wN 5 eð2iπÞ=N . The inverse QFT is similarly defined. It too sends
vectors in the complex Hilbert space CN back into CN . In this case, xj 5 1=N1=2PN21

k50 yk wNð Þ2km, for m5 0, 1, 2, . . ., N2 1. The QFT as well as its inverse can be imple-
mented as a unitary matrix, UN operating on quantum state vectors.

Example 16.15:

In the Hilbert space C2, the QFT, F5H, the Hadamard transform. This follows
since wN 5 eð2iπÞ=N 5w2 5 eð2iπÞ=2 52 1. Therefore, jx. 5

P1
j50 xjjj. ;F jx.ð Þ5 P1

j50 yjjj. ,

where yj 5 1=21=2
P1

k50 xk w2ð Þkm, for m5 0, 1. Fðjx.Þ5 1=21=2½x0ðw2Þ0 1 x1ðw2Þ0�j0. 1

1=21=2½x0ðw2Þ0 1 x1ðw2Þ1�j1. 5 1=21=2½x0 1 x1�j0. 1 1=21=2½x0 2 x1�j1. . So it follows that F
(|x.)5H (x0 x1)

0.#

Example 16.16:

In C4, let jx. 5
PN21

j50 xjjj. 5 1=3ðj0. 1 2ij2. 2 2j3.Þ5 1=3ðj00. 1 2ij10. 2 2j11.Þ.
Notice that the norm:|x.:5 1. The objective is to find the QFT, F (|x.). This will be
computed using the unitary matrix U4. Provided below is 2U4, followed by the vector, 3|
x. represented as a four-by-one column vector in C4,

j1 1 1 1j
j1 i 21 2 ij
j1 21 1 2 1j
j1 2i 21 ij

j 1 j
j 0 j
j 2i j
j 2 2 j:
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Multiplying out the four-by-four matrix 2U4, time the four-by-one vector, 3|x., in C4, gives
F (|x.)5 1/6 (2112i 1 312i 1�4i)0. Note that the norm of F (|x.)5 1. This had to be the
case since a unitary mapping is always an isometry; thus it preserves the length of vectors.#

A quantum circuit to perform the QFT involves inputting each qubit and then using first a
Hadamard matrix followed by a sequence of several controlled rotation matrices of the form:

j1 0j
j0 e2iπ= 2kð Þxj j

This is employed for each input qubit.

16.10 Uniform superposition and amplitude amplification

In quantum algorithms, an important application of the Hadamard gate is to utilize it on
almost every input. Usually, the inputs are n in number and are all|0. qubits. In this case, the
operation is called the diffusion operation. Say that a Hadamard operator is applied to every
input in parallel, it is symbolized as H@n j0.@n

� �
5 1=2n=2

PN21
x50 jx. , where N52n, and the

tensor product is symbolized by @. So the probability associated with any vector|x. within
the uniform superposition is 1=2n. Since all amplitudes are the same, the average height of
any|x. is also 1=2n.

Example 16.17:

Consider the two input system, H@2 j0.@2
� �

5 1=2
P3

x50 jx. . Mathematically, this fol-
lows because Hj0.51=21=2ðj0. 1 j1.Þ5 j1. , and since there are two Hadamard gates
in parallel, the computation is H@2ðj0.@2Þ. So forming the tensor product of |1. with
itself, that is, gives |1. @|1. 5 1/2 [|0 0.1|0 1.1|1 0.1|1 1.]. Interpreting each
ket,|x. in binary, provides the same result, namely 1=2

P3
x50 jx. . A simple calculation

shows that these vectors within the uniform superposition are each of unit length and
mutually orthogonal to each other. The last property is best seen using the representation
in C4. In this case, each of these kets is represented by a four-by-one vector. Each vector
contains all zero-valued tuples except for a single one in different locations.#

Letting|w. be the uniform superposition of N52n states jw. 5 1=2n=2
PN21

x50 jx. . Then
these vectors are often illustrated in a bar-type graph with N vertical line segment entries
on the abscissa all of height 1=2n=2. See Fig. 16.4A. Uniform superposition is usually the
initial state for an amplitude amplification algorithm. As a prime example is the Grover
search, described in the next chapter. In its simplest form, this search utilizes the pair {RW,
Uf}, consisting of two reflection operators to find a single vector|x*. within|w.. An
application of the first reflection Uf negates the value of|x*. or reflects it about the
abscissa. That is, it becomes2|x*., or graphically it reflects the state|x*. in the line seg-
ment graph; see Fig. 16.4B. This operator is also called an oracle. In this diagram, a dashed
horizontal line indicates the new lower average value u, of all probability amplitudes for
states in Uf|w.. The overall lower average or the overall lower mean value of the proba-
bility amplitudes occurs because the application of Uf kept all states invariant but it
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negated|x*.. So this single negation pulls the overall average amplitude down slightly.
The average has nothing to do with the true average involving the actual probability. This
follows since the actual probabilities of|x*. and2|x*. are the same. The absolute ampli-
tude squared gives the true probability, and therefore, this quantity does not change.

The next reflection operation RW is defined herein to be a reflection of the mean or actually,
the average value u of the amplitude. Accordingly, for any vector ay|y. with|y. in {0, 1}n, the
reflection operation about this mean u is such that RW (ay|y.)5 (2 u2ay)|y.. This equation is
shown to hold by subtracting u from height ay, obtaining (ay2u). Then reflect this quantity about
the x-axis as in an application of Uf. This operation only negates the quantity. Accordingly, the
result is (u2ay), and finally lifting, that is adding u again provides the desired result.

Since the mean is smaller for all vectors Uf|x. in Uf|w., except for Uf|x*., applying the
operator RW will make these amplitudes smaller yet. However, the amplitude of RW Uf|x*.
will become about three times its original value. See Fig. 16.4C, which is not to scale. Amplitude
amplification is the name given to the process of utilizing a pair of reflections such as RW and
Uf in succession. If the pair of reflections were applied again, then first, Uf RW Uf|w. is illus-
trated in Fig. 16.4D, and RW Uf RW Uf|w. is illustrated in Fig. 16.4E. In any case, repetitive
applications of the reflection pair produce a decreasing average value of all state amplitudes
while increasing the probability amplitude of the desired state. This beneficial increase occurs
provided that π=4N1=2 applications of RWUf are not exceeded.

These reflections are the corner stone for the Grover search. This search is useful for logistic
applications like finding the most efficient path and similar optimization problems. It is also
used in machine learning algorithms, in particular, classification problems. Also, one-way func-
tions that are hard to calculate, but easy to verify provide good results with the Grover search
method.

16.11 Reflections

Reflections in the finite Hilbert space H5C2 have a precise meaning. Reflections are
used as a linear operator RW, RW: H-H. The operator is always applied to a nonzero

...

... ...

...

... ...

. .

-|x*>

|x*>
|x*>

... ...

-|x*>

(A)
(B)

(E)

(D)

(C)

1/2 n/2 FIGURE 16.4 Trace of
amplitude amplification.
(A) Uniform superposition,
(B) Reflection of the state|x*. ,
(C) Amplitude amplification,
(D) One and a half reflection
pairs applied again, (E) Two
refection pairs applied/.
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vector |v.. By doing so, it reflects this vector |v. about a specified nonzero vector
|w.. See Fig. 16.5A, where|v. and|w. are illustrated along with the reflected ket,
RW|v.. The end result is written with a dashed line. A most simple instance of this is when
|w.5|0.5 (1 0)0 in the computational basis, and|v.5 (a b)0. Then RW|v.5 (2|0.,
0|2I)|v.5 (a 2 b)0. This operation is also called a Householder reflection (Householder,
1958). As in the last section, use the diffusion operator to represent |w.5H@n (|0.@n).
Then RW|v.5H@n [2|0@n., 0@n|2I] H@n|v.5 (2|w. ,w|2I)|v..

Accordingly, the operator performing the reflection about w is given by RW5 (2|w.
,w|2I), where I is the identity operation.

Example 16.18:

Let|w.5|0. be the simple vector about which a reflection is performed. If the vector
to be reflected is jv.5ð3=5Þ1=2j0. 1 ð4=5Þ1=2j1. 5 ðð3=5Þ1=2ð4=5Þ1=2Þ0 in C2, the operator to
perform the reflection involves twice the pure density function|w., w|, along with the
negative of the identity function. Thus RW 5

j1 0j
j0 2 1j:

An application of this operator upon the vector|v. gives RW jv. 5 ð3=5Þ1=2j0. 2
ð4=5Þ1=2j1. 5 ðð3=5Þ1=2 2 ð4=5Þ1=2ÞÞ0 in C2. See Fig. 16.5B.#

The reflection operator is a key operation in the Grover search methodology. This operator is
performed over and over again along with a sign alternating operation to perform this search.
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C H A P T E R

17

Quantum computing applications

17.1 Deutsch problem description

The Deutsch problem is one of the earliest problems having a quantum solution outper-
forming a classical solution. The problem involves a function f, f: {0, 1}-{0, 1}, and the
objective is to determine whether the function is constant or if it is balanced. To be con-
stant means that the output is always the same, no matter what the value of the input. To
be balanced means that the output has a zero for one value of the input and a one for the
other value of the input. The five columns below illustrate all the possibilities. The first
column provides the input to the function f; it has as tuples a zero or a one. The next two
columns give the outputs from f, illustrating the constant concept. The last two columns
are the outputs of a balanced function f.

j0j j0j j1j j0j j1j
j1j j0j j1j j1j j0j

INPUT ˄ CONSTANT ˄ ˄ BALANCED ˄

Classically to determine whether f is constant or balanced, it is obvious that two queries
are needed. First f must be evaluated for the input value, say zero, and next it must be
evaluated at the other input value, one. This is indicated above with two possibilities for a
constant function and two possibilities for a balanced function. A quantum solution could
determine if f is constant or balanced using only one quarry. Details involve the use of an
oracle, which is a unitary transformation U, represented as a black box illustrated in
Fig. 17.1.

|x>

|y>

|x>

|x, f(x) ��y>

U

FIGURE 17.1 Deutsch oracle.

307

Many-Sorted Algebras for Deep Learning and Quantum Technology

DOI: https://doi.org/10.1016/B978-0-443-13697-9.00002-3

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/B978-0-443-13697-9.00002-3


17.2 Oracle for Deutsch problem solution

In Fig. 17.1, the oracle is given as a black box; the only thing that is known is that U maps
four dimensions into itself. U: C2 (x) C2-C2 (x) C2, where U is an operation such that U (|x.
|y.)5|x.|(y(1) f(x))., for all x, y, f(x) in {0, 1}. The addition (1) is the mod(2) operation,
the same as exclusive or, in logic. So whenever y and f(x) are of the same value, zero is the
result; otherwise one is the result. Only unitary operations are allowed. Proving that U is a uni-
tary operator follows by showing that U is an involution, that is, U25 I, the identity function.
Also required is that U is a normal operator, that is, U*U5UU*. First, an involution is shown
by applying U twice in succession, so U2(|x.,|y.)5|x. |(y(1) f(x) (1) f(x)). 5|x. |y.;
this shows an involution because f(x) (1) f(x)5 0. The normality of U will be immediate once
the black box or oracle is identified as the symmetric matrix U5

j12 fð0Þ fð0Þ 0 0j
jfð0Þ 12 fð0Þ 0 0j
j0 0 12 fð1Þ fð1Þj
j0 0 fð1Þ 12 fð1Þj

Multiplying the second input qubit |y., represented in C4, by U always provides the
second output of the oracle. Illustrations are given later.

The matrix U incorporates all four situations involving all the possibilities for a pair of
input qubits, |x. the control and |y. the target, along with the output pair of qubits, |x.
and |y (1) f(x)., where x, y, and f(x) are 0 or 1, and (1) is mod 2. These four different sce-
narios are listed below in the last four columns. The first column denotes the input qubit
pair of values for |x y.. The last four columns give the output value of |x y(1) f(x) using
the four cases: 1) f(0)5 f(1)5 0; 2) f(0)5 0, f(1)5 1; 3) f(0)5 1, f(1)5 0; 4) f(0)5 f(1)5 1. These
are given in order below where situations 1) and 4) correspond to constant f, and 2) and 3)
are for balanced f. Inspection of the second, that is, the right-hand, column for all situations
provides the results.

1Þ 2Þ 3Þ 4Þ
00 00 00 01 01
01 01 01 00 00
10 10 11 10 11
11 11 10 11 10

INPUT CONSTANT ˄ BALANCED ˄ CONSTANT

There are four matrices associated with U, and all are given consisting of 2 x 2 block
submatrices involving the identity matrix or the Pauli x, or Pauli s1, matrix. For instance,
for case 3), the matrix U has the Pauli x matrix in the upper left-hand corner, and it has
the identity two by two in the lower right corner, U5

j0 1 0 0j
j1 0 0 0j
j0 0 1 0j
j0 0 0 1j
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As previously mentioned, when this matrix multiplies the input vector in C4 represent-
ing input qubit |y., that is, (0 1 0 1)0, the result is (1 0 0 1)0, which is the second output in
situation 3).

Fig. 17.2 provides a quantum circuit for each of the four situations mentioned earlier. In
circuits for cases 2) and 3), there are CNOT gates. In cases 3) and 4), there are single-qubit
NOT gates.

17.3 Quantum solution to Deutsch problem

Numerous quantum solutions exist for solving the Deutsch problem; however, they all
involve the Deutsch oracle. Perhaps the easiest solution is illustrated in Fig. 17.3. Here, the
actual inputs to the circuit illustrated in this figure are both the same qubit |1.. Using
the tensor product yields as input |1. @ |1.5|11.. Referring to this diagram, after the
first Hadamard operation on both the first and second qubit yields the state value of
|v1.5 1/2 (|00.2|10.2|01.1|11.), this is a superposition of all possible

CASE 1

CASE 2

CASE 3

CASE 4

|x> |x>

|x> |x> |x> |x>

|x>|x>

|y>|y>

>y|>y| |x (+) y > |NOT(y) >

|NOT(x(+)y) >|y>

(+) Is Mod 2

C NOT

C NOT

NOT

NOT

FIGURE 17.2 Quantum circuits representing Deutsch oracle.

H H

H I

|1>
|1> Constant
|0> Balanced

|1>

|V1> |V2> |V3>

U

FIGURE 17.3 Deutsch algorithm.
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combinations of the inputs, but is not entangled. The computation in determining |v1. is
the tensor product involving the Hadamard transform: (H|1.)@(H|1.)5 1/2 (|0. 2|
1.)@ (|0.2|1.)5 1/2 (|00.2|10.2|01.1|11.).

The next state value, after the oracle U, yields the quantity: |v2. 5 1/2(|0 f(0).2|1 f
(1). )2|0 1(1)f(0).1|1 1(1)f(1).. Now if f is constant, that is, f(0)5 f(1), then |v2. 5 1/2
(|0.2|1.)(|f(0).2|1(1)f(0).). On the other hand, if f is balanced, then f(0)5 1(1)f(1); in this
case, |v2. 5 1/2(|0.1|1.)(|f(0).2|1(1)f(0).). Finally, utilizing the Hadamard on the first
qubit and the identity on the second qubit yields the results that |v3. 5|1. (|f(0).2|1(1)f
(0).) occurs whenever f is constant. Also, |v3. 5|0. (|f(0).2|1(1)f(0).), whenever f is
balanced. Next measuring the contents of the first register yields |1. when f is constant.
Additionally it gives an observed value of |0. for f balanced. Only one cycle execution was
needed to obtain this result.

17.4 Deutsch-Jozsa problem description

This problem is among the earliest to have a quantum solution outperforming a classical
one. The problem involves a function f, f: {0, 1}n-{0, 1}, n. 1, and the objective is to deter-
mine whether the function is constant or if it is balanced. Since the output is a single value, to
be constant means that the output is always the same, no matter what the value of the input.
To be balanced means that the output has zeros for half of the inputs and ones for the other
half of the inputs. Additionally, it is promised that these are the only types of outputs; no
others exist. The problem is to determine for sure if the function f is constant or balanced. The
quantum solution only utilizes a single evaluation.

To analyze the situation, it is assumed that the input is utilized 2n times in succession to
obtain an output string consisting of 2n zeros or ones. For the 2n different possible input values,
there are only two constant strings of outputs; these are all-zero or all-one strings.
Correspondingly, there are 22

n

possible strings of a mixed number of zeros or ones. Only some
of these strings contain an equal number of zeros and ones. For the case in which f is balanced,
half the length of a string must contain zeros and the other half must contain ones, not in any
order. Since the length of the output string is 2n, a permutation consisting of this many distinct
objects can be one of (2n)! That is, the only possible number of outputs is 2n factorial. However,
for the balanced case, half or 2n21 values of an output string must be zeros and the other half
must be ones. Accordingly, there are ð2nÞ!=½ð2n21Þ! ð2n21Þ!� balanced output strings. For instance,
if n5 3, then, again there are only two constant output strings, but there are 8!/[4! 4!]5 70 bal-
anced output strings. In any case, if all output strings are equally likely to occur, then for n5 3,
the probability of obtaining a constant string would be 1/35. As n gets larger, this probability
goes to zero, but the result is not certain. To be certain in classical methods, the first 2n21 output
strings must be examined. After this, and when and if they are all of the same value, then the
next, 2n21 1 1 string will determine for sure if f is constant or balanced.

Example 17.1:

Using n5 2, the Deutsch-Jozsa problem will be illustrated. In this case, the input con-
sists of two tensored qubits. But the output corresponding to this pair of input qubits is a
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single qubit, as in the Deutsch problem. Below in the left column are all the possible input
pairs of qubits. These qubits are denoted without the ket notation, and output strings are
presented as columns. The next two columns show the only possible constant output
values; these are output strings of length four of all zeros and all ones, respectively. The
final six columns show the balanced cases with half zero and half one strings of output.
The total number of output strings is 2(22)5 16, but only the relevant ones are shown. The
strings of outputs left out have a nonconstant or nonbalanced number of zeros and ones.
Utilizing the formula given above with n5 2, for the number of balanced output strings,
(22)!/[2! 2!]5 4!/45 6.

00
01
10
11
INPUT

0 1
0 1
0 1
0 1
CONSTANT

0 0 0 1 1 1
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
˄ BALANCED ˄:#

17.5 Quantum solution for the Deutsch-Jozsa problem

The solution of the Deutsch-Jozsa problem using quantum circuits involves only one
quarry. It provides the solution in one shot The circuit to perform this solution is given in
Fig. 17.4. The solution is very similar to the standard Deutsh problem. As can be seen
from this figure, the input consists of |0.@|0.@ . . .@|0. 5|00. . . 0., n-fold tensor of
control qubits, and a single |1. as the target input. After an application of Hadamard
transforms, the qubit |v1. is obtained. This result is given by jv1.51=2ðn11Þ=2j1
1 . . .12. ;51=2n=2 sum,

P
x|x.@|2., for x in {0,1}n |x.@|2.. In the next step,

before the oracle is utilized, notice that |x2. acts like an eigenvector for the oracle U;
indeed, consider the qubit pair |x2.. Then U|x2 . 5|x2(1) f(x). 5 1/21/2 [|x 0 (1)
f(x).2|x 1 (1) f(x).]5 1/21/2 (21)f(x) |x|2.. The eigenvalue corresponding to this
eigenvector is 1/21/2 (21)f(x) (Jozsa, 1994).

At qubit |v2. after the oracle is applied, it follows that |v2. equals for x in {0,1}n of
the sum,

P
1/2n/2 [(21)f(x) |x.|2 . ]. Before |v3. is found, note that the single

Hadamard operator acting on x5|0. or |1. can be written as Hjx.51=21=2 sum,Pð21Þxzjz. , for z in {0,1}. When x is a tensor product of basis states, then a similar

H H

H I

|1>
|1> Constant
|0> Balanced

|1>

|V1> |V2> |V3>

U

FIGURE 17.4 Deutsch-Jozsa algorithm.
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formula holds H@njx.51=2n=2 sum,
P

(21), x,y. |z., for z in {0,1}n. Here, ,x, z. is
bitwise inner product mod 2.

At qubit |v3., this is after the n-fold Hadamard gate is applied to |x. and the iden-
tity to |2.. In this case, |v3. equals for x in {0,1}n 1/2n sum,

P
[for z in {0,1}n, sum,P

((21)f(x) (21), x,y.|z.@|2.)]. These are the final output qubits. Lastly a measurement
is performed on the standard basis on the control qubits |z.. The probability of finding
that |z. 5|0. involves the amplitude absolute squared. This probability is |for x in
{0,1}n, 1/2n sum

P
(21)f(x) |2. For f constant, the probability summed yields one. For f bal-

anced since the partial sums alternate, zero is obtained. In any case, one execution cycle is
employed in yielding this result.

17.6 Grover search problem

The Grover problem is an unstructured search problem involving a positive integer
number N5 2n of items. The underlying Hilbert space for this application is CN. A typical
structure for this searching problem is, for instance, f: {0, 1}n-{0, 1}, and say that only one
instance of the output yields a one; all the rest are zero. The objective is to find the item,
x*, that is the string of length n, such that f (x*)5 1.

Example 17.2:

The Grover problem, in this case, is to find number six where N5 23 and f: {0, 1}3-{0,
1}. In binary representation if x*5 110, then f (x*)5 1, and this is the sought-after answer.
Otherwise, f (x)5 0. It may be considered that for each binary representation of integers �0
through 7, a flag is attached with a zero for all strings except for 110; it has a flag with a
one. Below, these strings are provided in order; in general, this is not the case; the order
might be random. Moreover, in general, the length of each string is positive integer n.

0 0 0 0 0 0 1 0
000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

It is convenient sometimes to write the tensor |110. as |6., using binary number
system.#

Employing conventional computers, N queries are needed to solve this problem. In all
cases, this number is a guarantee of finding the string labeled by the numeral one. That is,
a search through every single item is needed to find a solution. This is similar to knowing
a person’s telephone number and trying to find the owner of that number going through a
telephone book. When a random searching procedure is employed in solving this problem,
about N/2 queries are only required. However, using quantum algorithms (Grover, 1996),
only N1=2 queries need to be made to determine the string labeled one. So, if N is about a
million, instead of using brute force, by employing a quantum algorithm only a thousand
applications are needed to solve this search problem. As mentioned previously, the best
quantum computing can do is of order N1=2 complexity when order N complexity is
needed in conventional computing. The Grover algorithm shows this result is sharp.
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In general, quantum computing is referred to as bounded error quantum probability
(BQP) computing. This class of computing includes conventional P, that is, solving a prob-
lem in polynomial time. It also includes a portion of nondeterministic polynomial (NP)
computing, such as factoring. The NP complexity class is where verification of solutions in
polynomial time can occur, but the solution itself cannot be found in polynomial time.
BQP does not include NP-hard or NP-complete problems. NP-complete includes NP and
other problems in NP with polynomial overhead that can be translated to it (Encyclopedia
Britannica).

17.7 Solution to the Grover search problem

The Grover algorithm begins with a uniform superposition of inputs. There are N
inputs each with state |0., by applying a Hadamard transform yielding jw. 5
1=N1=2 PN21

x50 jx. , where again x is a string of length n of zeros or ones. In binary, this
string represents the integer number k lying in [0, N 21]. So the probability amplitude of
each of these tensors is 1=N1=2. If a measurement was performed, one of these tensors
would be found with probability 1/N. This is true for every x including x*. The next step
in Grover algorithm is the oracle; it will negate the sign of x*.

The solution to the Grover searching problem involves an oracle, Uf ; which is a unitary
gate. This gate has the property of flipping the sign, that is, negating an input vector |x.
whenever the Boolean function f (x)5 1. Thus, Uf jx.5ð21ÞfðxÞjx. 52 jx. when f (x)5
1 and equals |x. whenever f (x)5 0. The objective is to find the unique x* such that f
(x*)5 1, by using the oracle. In matrix representation, an N by N diagonal matrix would
represent the oracle. On the main diagonal, there exist all ones for this matrix, except for
the location corresponding to x*, where a value minus one would appear. An application
of this matrix reflects the entry x* relative to all other entries x. The next step is to use
amplitude amplification, explained in Section 16.10 and illustrated next. It increases the
probability amplitude for x* and decreases the probability amplitude of all other elements
x by a small amount. This follows because N is large and the total probability of all entries
must equal one.

The amplitude amplification algorithm involves Uf as well as the reflection about |w.
operation, RW 5 ð2jw. ,wj2 IÞ. Here I is the identity operation along with pairs of reflec-
tion, operators that is RW preceded by Uf . These two operations performed in sequence
will yield a rotation in two dimensions. In the Grover search algorithm, the two vectors |
x*. and |w. span a two-dimensional subspace in CN . These two vectors are almost per-
pendicular since the inner product , xT;w.51=N1=2, and N is large. A vector |s. can
be found by subtracting |x*. from |w., and rescaling. This results with |s. orthogonal
to |x*.. Refer to Fig. 17.5A. In this diagram, there exist three vectors: along the vertical
axis is |x*., perpendicular to |x*. is |s., and at an angle θ above |s. is the original
uniform superposition state |w.. Here cos (θ)5, s, w.. Note that |w. is comprised of
a sum of N52n states, each with probability amplitude 1=N1=2. Also, |s. is comprised of
2n2 1 states, each with probability amplitude 1=ðN21Þ1=2. Thus, the inner product
,s, w. is equal to 1=½N1=2ðN21Þ1=2�½2n 2 1�; this implies that cosðθÞ5½ð2n21Þ=2n�1=2;
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consequently, sin (θ)5 [1/2n]1/2. For n large, θ is about equal to 1/2n/2, since the sine of a
small angle is approximately equal to that angle.

By first applying the oracle Uf to |w., a new vector is found by the reflection about
the |s. axis. The resulting vector, Uf |w., is illustrated in Fig. 17.5B, Finally, utilizing
the actual reflection operator RW on Uf |w. yields a new vector, RW Uf |w., which is
located at an angle 3 θ above the |s. axis. The angle follows since RW Uf |w. is at an
angle 2 θ above Uf |w.. See Fig. 17.5C. Next, the Fig. 17.5D illustrates Uf RW Uf |w.,
where the oracle is applied again. Then if the oracle is followed by the reflection operator
RW , a new vector RW Uf RW Uf |w.5 ½RW Uf � 2 |w. is found at an angle of 5 θ from the
|s. axis. This can be seen in Fig. 17.5E. The next diagram, Fig. 17.5F, shows the reflection
along the x-axis, which is followed by another application of RW illustrated in Fig. 17.5G.
These vectors have angles that seem to be monotonically increasing in a counterclockwise
manner to ninety degrees, which is the location of x*. However, stopping conditions are
needed. This makes sure that enough pairs of operators RW Uf are applied to get close
enough to x*, but not to wildly overshoot it.

In the Grover search algorithm, the two vectors |x*. and |s. are ON and span the
plane. From geometry or using the inner product, ,s, w.5 cos(θ) and ,x*, w.5 sin (θ).
As mentioned earlier, pairs of reflections RW Uf applied to the initial superposition vector
|w. enable the resulting vector to approach the solution vector, |x*.. Let
Ψ r5ðRWUf Þrjw. be the resulting vector by employing r applications of the reflection pair.
So, for r5 0, ψ0 makes an angle of θ from |s.. For r5 1, ψ1 makes an angle of 3 θ from |
s.. For r5 2, ψ2 makes an angle of 5θ from |s.. The object now is to find r where ψr

makes an angle of (2 r11)θ from |s.. Again from the geometry, or using the inner prod-
uct, ,s, ψr.5 cos((2 r 11) θ) and ,x*, ψr.5 sin ((2 r 11) θ). The objective is to get |ψr.
as close to |x*. as possible, and the probability of this happening is sin2 (2 r 11) θ). Since
sin2 (2 r 11) θ) is maximum for (2 r 11) θ5π/2, using θ51=2n=2, as found earlier, implies
that r5 [(π/2) 2n/2�1] / 2. So about (π/4) 2n/2 is the value for r. To find x, N1/2 tries are
all that are needed. If there are k items with value 1, then (N/k)1/2 tries are all that are
needed. Quantum circuit illustrations of the refection operations used in Grover’s algo-
rithm can be found in Nielsen and Chiangmai (2000).

|x*>

|w>
|s>

Uf|w> RwUf|w>

)C()B()A(

(G)(F)(E)(D)

θ
–θ

–5θ–3θ
5θ

3θ

7θ

FIGURE 17.5 Grover reflec-
tion operations. (A) Starting
position, (B) Application of
Oracle, (C) Reflection applied,
(D) Application of Oracle again,
(E) Reflection applied again, (F)
Oracle applied, (G) Reflection
applied.
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Example 17.3:

The solution to the Grover problem, in this case, is to find number 6 where N5 23, and
f: {0, 1}3-{0, 1}. In binary representation if x*5 110, then f (x*)5 1, and this is the sought-
after answer. It is assumed that states |0. are inputted and Hadamard transforms pro-
vide the uniform superposition state jw. 5 1=81=2

P821
x50 jx. . As before, each x is a string

of length three illustrated in Example 17.2. The next step is to find the state |s., which is
orthogonal to |x*.5|110.. As mentioned earlier, this vector is found by subtracting
|w. by |x*. and rescaling to make the resulting vector have length one. So,
js. 5 1=71=2

P821
x50;not6 jx. . The number r, of reflection pairs ðRWUf Þr, to apply is given by

r5π=423=2, which is about 2. Also θ5 1/2n/2, which in this case is about 0.35. Accordingly,
the first application of the pair ðRW Uf Þ on |w. increases the angle from |s. to RW

Uf jw. to about 0.95. This is illustrated in Fig. 17.5. The next application of this pair of
reflections provides an angle between |s. and ðRWUf Þ2jw. of about 1.75, which is close
to π/2.#

17.8 The Shor’s cryptography problem from an algebraic view

The Shor’s problem has the objective of breaking the code in conventional public key
cryptography. Just about all cryptography methods utilize a very large integer N, which is
generated as a product of two large prime numbers. Although N might be known, the
prime factors p and q are extremely difficult to find. The objective of Shor’s problem is to
find these primes p and q, such that p � q.5N. Determining these factors is the critical
point in all conventional cryptography methods. It is employed in RSA and in all current
methods such as Diffie�Hellman public and private key exchange, as well as more
advanced methods, including elliptic curve (EC) cryptography. In all these cases, a large
amount of algebra is utilized along with number theory for developing and describing
these cryptography methods. However, the crucial step is always to find the two primes
whose product is N. Factoring N by conventional methods involves actual multiplication
using prime numbers one at a time, p from 2 up to about N1=2 and would take about N1=2

steps. When N is represented by d decimal digits, the order of difficulty becomes exponen-
tial in d. The best-known number theoretic methods involving number field sieves provide
a complexity of an exponential raised to d1=3. Shor’s algorithm has a runtime complexity,
which is a polynomial in d.

Shor’s contribution (Shor, 1997) is mainly that of converting this factoring problem into
a problem of finding the period of a generating element in a cyclic group. The value of the
period is also called the order of the group. In a previous section, the cyclic group Zn was
introduced in the context of wraparound signals. Now, it will be described more formally
in the direction of presenting the Shor periodicity problem. In the following, there is a
deliberate avoidance of using equivalence classes until a partition is described at the end
of this section. The algebra and number theory background will be outlined now.
Beginning with positive integer N. 1, the Euler’s totient function, φ (N) (Landau, 1966), is
the cardinality of the set of all integers between 1 and N inclusive, which are coprime or
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relatively prime with N. The important case is when N is a product of two primes p and
q, that is, N5p � q. The Euler phi totient set will be described using the carrier set,
Φ(N)5 {n, such that n is an integer less than or equal to N, n. 0, gcd(n, N)5 1}. As usual,
gcd is the greatest common divisor, and this set consists of integers n, which are relatively
prime or coprime with N.

Importantly, the set of elements in Φ(N) form an abelian group-type algebraic structure
under multiplication modular N. It is called Euler’s totient group in the following presen-
tation. Closure for the multiplication operation modulo N occurs since for x and y in Φ(N),
x � y is also in Φ(N), since the gcd (x � y, N.)5 1. The associative and commutative laws fol-
low from similar properties of the integers. The number one is the identity in Φ(N), and
the multiplicative inverse of x mod N is the integer y in Φ(N), such that x �y5 1 mod N.
The proof of the inverse property depends on Bezout’s lemma (Ore, 1948). An important
result derived from φ(N) is that the cardinality of Φ(N), that is, the cardinality of the
Euler’s totient group, is the product (p21)(q21) where p � q5N, and p and q are primes.

Example 17.4:

If N5 14, then the career set is given by Φ(14)5 {1, 3, 5, 9, 11, 13}. Note that 9 is in Φ(14)
because the largest integer dividing both 9 and 14 is 1, whereas 8 is not in this set because
gcd(8, 14)5 2. Moreover, illustrating the abelian multiplicative group structure, observe
that 9 � 3 mod 145 13, since 27 divided by 14 has a remainder of 13. Also, 1/11 mod 14 is
the same as solving the problem, 11 � ?5 1 mod 14, where “?” must be in the carrier set
Φ(14). The solution is 1/115 ?5 9, because 9 � 115 99, and when divided by 14, a remain-
der of 1 is left. The identity function for this abelian group is 1. Finally, the number of ele-
ments in Φ(14) is (7�1)(2�1) 5 six, this is the value of the totient function.#

The cyclic group needed and mentioned earlier is a subgroup Ga of Φ(N). A cyclic
group is generated by using an element a from the Euler totient group. The cyclic group is
multiplicative mod N and consists of {1, a1, a2, . . ., ar}. The smallest positive integer r such
that ar 5 1 is most important because r is called the period of a, or the order of the cyclic
subgroup. The value a is called a generator for the cyclic group Ga. The most boring case
is if a5 1, then by default the period is r5 0.

Example 17.5:

For N5 15, the Euler’s totient group Φ(15)5 {1, 2, 4, 7, 8, 11, 13, 14}. This is a very
important example because it was used for the first time to experimentally solve Shor’s
problem using quantum technology (Vandersypen et al., 2001). To illustrate the periodic-
ity, let a5 4, then G4 5 f1; 4g, and the period of a is two, because 425 16, but this value
mod 15 is 1 since the remainder of 16 when divided by 15 is 1. Consider G75 {1, 7, 4, 13}.
In this case, the period is four. It is the number of elements in this subgroup of Φ(15).

To illustrate the periodicity, like in a graph of a cosine wave or a sine wave, consider
the function f: Z1-Ga, for some nonidentity element a in Φ(N). Here, Z1 are all the non-
negative integers, and f(n)5 an. It would be useful to graph n versus f(n).
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Example 17.6:

Again refer to Example 17.5. This time, use f(n)5 7n. Then f: Z1-G7, in Φ(15), is pro-
vided below with the nonnegative integers, n given above and the corresponding values f
(n) given below:

0 1 2 3 4 5 6 7 8 9 10. . .
1 7 4 13 1 7 4 13 1 7 4:. . .

In the above diagram, it becomes apparent that the period is four; that is, the pattern
repeats every fourth time and forms a partition of Z1, resulting in the creation of four
equivalence classes. #

17.9 Solution to the Shor’s problem

The solution to the cryptography problem involving integer factorization is solved by
Shor with quantum computations in polynomial time. As mentioned earlier, this is expo-
nentially faster than conventional solutions. The procedure is roughly performed in two
stages: First, similar to the Deutsh-Jozsa algorithm, quantum parallelism and constructive
interference are utilized in determining the periodicity of a function, rather than seeing if
it is balanced or not. Next, the period for a generator a of the cyclic group is found using
the QFT. From an engineering perspective, QFT is used in determining the frequency5 1/
period. In any case, it is the latter procedure that produces the exponential speed up in
using Shor’s algorithm. Moreover, in actuality, quantum phase estimation is employed
with unitary operations. Randomly choosing eigenvalues for these operators leads to
determining the desired period r.

The actual steps, proposed by Shor that are needed in determining a factor p or q of N,
are summarized below. They will be described in terms of the Euler’s totient group, Φ(N);
therefore, all computations are performed modulo N, for N a very large positive integer.
Also, to set the stage for cryptography-type operations, assume that N5p �q, where p
and q are prime. The procedure is to do the steps in order:

1) Choose a random integer a in (1, N); a lucky guess would be if the value does not
belong to the Euler totient group, Φ(N).

2) Compute k5 gcd(a, N); Euclid’s algorithm is a standard procedure.
3) If k differs from one, it must be p or q, and the search ends otherwise.
4) Find the period r for the chosen value a, i.e., find the order of the cyclic group Ga.
5) If r is odd, choose a different element a, in the interval (1, N), and repeat steps starting

with the computation in step 2) otherwise.
6) The product (ar/211) � (ar/2�1)5 0, and therefore, the factors of N are gcd (ar/211, N)

and gcd (ar/2�1, N). These two numbers may be p and q, but with low probability,
they could be 1 and N. These are factors. However, if the latter occurs, begin with step
1) and repeat the procedure.
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Example 17.7:

Again let N5 15. Note that in Example 17.5 the Euler’s totient group is Φ(15)5 {1, 2, 4,
7, 8, 11, 13, 14}. As mentioned earlier, a lucky guess would be a number, a not in Φ(15).
Shor’s steps to find the prime divisors of N are as follows:

1) Say that a5 6, a number not in Φ(15) is chosen.
2) Compute gcd (6, 15), Euclids algorithm: 15T5 6T3 21 3T

6T5 3T3 21 0;yields gcd 6; 15ð Þ5 3

3) Since k5 3, the procedure ends with p5 3, and an easy computation will always
provide the other factor; in this case, it is q5 5.#

Example 17.8:

Again let N5 15; the Euler’s totient group is Φ(15)5 {1, 2, 4, 7, 8, 11, 13, 14}.

1) Say that a5 4 is chosen.
2) Compute gcd (4, 15), Euclid0s algorithm: 15T5 4T3 31 3T

4T5 3T3 11 1; yields gcd 4; 15ð Þ5 1

3) Since k5 1, it must continue in order.
4) To find the period of a, or the order of the cyclic group G45 {1, 4}, it is r5 2.
5) The value r is not odd.
6) The product (411) � (4�1)5 0, because 15 divided by 15 has remainder zero. In this

case, gcd(4�1, 15)5 3 and gcd (411, 15)5 5. So these are the prime factors of 15.#

Actual quantum circuits implementing algorithms similar to those specified earlier can
be found in Nielsen and Chiangmai (2000) and Beauregard (2002).

17.10 Elliptic curve cryptography

Elliptic curve cryptography (ECC) employs Galois fields, Fq, otherwise known as finite
fields. These fields are described below. ECC is much more efficient and secure than other
present cryptography systems. For instance, in conventional information transmission of
keys with 3072 bits, as employed in RSA, then using ECC only 256 bits are needed to yield
the same level of security. In top secret information transfer, ECC keys are 384 bits long,
while RSA would require 7680 bits to provide the same level of security. The result of
using ECC is an increase in speed and security.

ECC is utilized in numerous cryptocurrency applications involving blockchain technol-
ogy. These include Bitcoin and Ethereum; they use secp256k1 (Cook, 2018). In blockchain
applications, and in general, a known special point on the EC is found. It is called the base
point or primitive element. The actual point is (x,y) and is located on the EC. Therefore,
this is an element of Fq x Fq, the Cartesian product of Fq with itself. This tuple pair is
shared by all users. It is called the shared key or public key. Specifically, for crypto coin
applications, it is represented by 130 hexadecimal digits. In all crypto-type applications,
point addition and the doubling operation are utilized and described below. For Bitcoin
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and Ethereum, the ECC is performed using the specific EC, y25 x317 mod p. For this
application, p is the very large prime number, p5 2256�2322977. The private key is
referred to as the order of the base point; it is an integer n. In these applications, the pri-
vate key is represented with 60 hexadecimal digits. The private key n is used with the
primitive element by adding (x,y), over and over again, n times. The operation is based on
the addition rule for this commutative group described below. Doing this results in n2 1
other point pairs on the EC. The value n is a hidden number specific to a single user. It is
the private key. So in summary, the base point (x, y) is shared, along with the product of
n multiplied by the base point (x, y), but not n itself. The value n is known as the secret
key; it is never shared. As mentioned before, ECC executes operations using an underlying
Galois field,. This field is summarized and illustrated below.

Galois fields exist only for q5pn, where p is a prime number and n is a positive
integer. These fields are denoted by GF(q) or by Fq. The order of the field or its cardi-
nality is given by pn. The characteristic of the field is p; it has the property that when
adding any element in Fq, p times the result is zero. The nonzero elements of Fq form a
multiplicative cyclic group Ga. As in any cyclic group, there is at least one generating
element a, for which all powers of a produce all elements of Ga. In this case, a is also
called a primitive element of Fq. In cryptography, the most important field is the prime
field Fp 5Z=pZ; however, in these applications the prime number p is very large. Fp
consists of integers modulo prime p, with the usual addition and multiplication
involving mod p arithmetic. As previously stated, the elements of Fp will be repre-
sented as integers in the carrier set {0, 1, 2, . . ., p2 1}, but in actuality there are equiva-
lence classes created. The elements in the carrier set act as leaders or representers for
each equivalence class. As before, the equivalence classes form a partition of Z. Also
see Example 17.6.

Example 17.9:

Consider the Galois field F5. From the aforementioned description, the carrier set is {0,
1, 2, 3, 4}, and the order of the field is 5. The characteristic of the field is p5 5; so, for
instance, adding the number 2 five times, by using 4 plus signs, gives 10 mod 5, but when
dividing 10 by 5, a remainder of 0 is found. If the number a5 3 is used as a generating ele-
ment for the cyclic group Ga, then a05 1, a15 3, a25 4, and a35 2. So G3 has a carrier set
{1, 2, 3, 4}, and a5 3 is also called a primitive element. For the Galois field F5, utilizing G3

causes the partition illustrated below for all the integers. In this diagram, the top row
depicts all the integers n, and the bottom row depicts powers 3n:

. . .2 2 21 0 1 2 3 4 5 6 7. . .
. . .4 2 1 3 4 2 1 3 4 2. . .

For instance, referring to the aforementioned diagram, 321 mod 5 means that 3 � (?)5 1
mod 5, and?5 2 is the correct answer. Accordingly, 21 is in the same equivalence class as
3, 7, and so on with period p215 4.#

Although, at present cryptography is usually performed in Fp, for p prime, for com-
pleteness sake, it is interesting to provide an example of a Galois field Fq, where q5pm,
with m. 1. Such Galois fields might be employed in the future.
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Example 17.10:

In this example, the carrier set for the Galois field consists of four elements,
F4 5 f0; 1; a; a1 1g. The six operations needed for a field structure are provided in an earlier
section; these operators are named in Figure 1.1. To begin, the zero-ary operators are first
the ZERO element, which is 0, and the ONE is 1. For the binary operations, the actual
ADD operation is symbolized as 1. The actual MULT operation is denoted by � , or when
applied to elements within the carrier set or anywhere else, these elements may be placed
side by side. Actual operations are best explained by referring to the tables provided
below. These tables are like matrices; however, the elements within the carrier set are
located in the top row and the leftmost column for each table. Since the field structure is
abelian, both of these tables are symmetric about the main diagonal.

1 j 0 1 a 11 a � j 0 1 a 11 a
0 j 0 1 a 11 a 0 j 0 0 0 0
1 j 1 0 11 a a 1 j 0 1 a 11 a
a j a 11 a 0 1 a j 0 a 11 a 1

11 a j 11 a a 1 0 11 a j 0 11 a 1 a :

For instance, in the addition table using the bottom entry on the left column, and the
rightmost entry on the top, shows that (11a)1(11a)5 0. Using the same entries in the
multiplication table gives (11a) � (11a)5 a. On the other hand, (11 a) � (11 a)5 112
a1a2, but from the same table a25 a11, so (11a) � (11a)5 213 a; however, 25 0, from the
addition table, 1115 0, and 2 a5 0, from that same table; consequently, (11a) � (11a)5 a,
as previously mentioned. Before unary operations are described, it should be mentioned
that the carrier set for F45 {0, 1, a, a1 1}. Any other number such as 2 or a2 can be consid-
ered to be in an equivalence class where the coset leaders are in the carrier set. So without
using the brackets, [] for cosets, we just let 25 0 and a25 a11.

The unary operations follow again from these tables. For MINUS, the symbol2is utilized.
From the addition table, to find 2 x, find x on the left column. Then using the row containing
the value x, find in that row the value 0. Now, the column containing that zero also contains
the value of 2 x as the topmost entry. For instance,2a5 a. In other words, 2 a is whatever is
added to a to yield zero. So going to the addition table and finding a in the left column, in the
row containing a the number zero should be found. In the column for which the zero element
was found, using the top element shows that 2 a5 a. The final unary operation is a partial
operation; it is INV and denoted by /, or (.)21, etc. Again, use the multiplication table, but this
time to find 1/x5 x21, where x is not zero. Use the left column to find x, and then in that row,
find the value 1. The solution is found using the top value in the column containing the one.
For instance, 1/a5 11 a. Do not forget that a21 means that a� (?)5 1; indeed, a� (11a)5
a1a25 a111a5 1. All the equational identities hold. For a field structure, some identities were
illustrated earlier, and since the field is finite, each identity can be easily checked. #

Example 17.11:

Referring to the previous example, using F4, all the nonzero elements form a cyclic
group isomorphic to Z3. Here, Ga5 {1, a, 11 a}5 {1, a, a2}. #

320 17. Quantum computing applications

Many-Sorted Algebras for Deep Learning and Quantum Technology



17.11 MSA of elliptic curve over a finite field

ECs are presented in several sections in this text. The underlying field structure was the
complex field, the real field, as well as the rational number field. Also, they were
described in projective space. Moreover, it was shown that certain points on the curve can
be used in generating an Abelian group under specified addition, minus, and zero opera-
tions. This fact illustrates the concept of an Abelian variety where the group is described
algebraically even though the operations are motivated by geometric considerations.
Moreover, the associative law was shown to hold for EC group structures in Appendix
A.3. Additionally, the point at infinity, N, is the identity element within the group.
Accordingly, N1(x, y)5 (x, y)1N5 (x, y). Including the point at infinity makes the alge-
braic structure become a pointed set. The carrier set for the EC is a commutative group
structure including N, and the carrier set for the underlying field is a finite field. Now,
the ECs are be illustrated within a Galois field structure, beginning with an example.

Example 17.12:

Consider the EC: y25 x312x112, over the Galois field F17. The objective in this example
is only to illustrate how a point pair is found on this curve. The point that is found could
be a base point and used as a shared key in cryptography applications. For instance, if
x5 16, then substituting into the EC gives y25 40961321125 4140. Since the underlying
field is mod 17, the number 4140 must be mapped to a number in the carrier set for the
field, {0, 1, 2, . . ., 16}. Elements in this set are also called coset leaders. That is, 4140 has to
be divided by 17 and the smallest nonnegative remainder must be found. As usual, the
calculation is performed by Euclid’s algorithm: 4140*5 17* � 24319*. Thus, the remainder
is the desired number 9, so y25 9. Accordingly, there are two corresponding point pairs
on this curve: (16, 3) and (16,23).#

The short Weierstrass normal form is employed throughout this section. This implies
that the most general form of the EC will always be y25 x31ax1b, with a and b in Fq. The
reason for not having a more general form is that the characteristic of the fields employed
in the following do have a characteristic greater than 3. The characteristic for Fq is the
smallest number of times the number one must be added to itself such that the result is
zero. If there does not exist such a number, then the characteristic is defined to be zero.
Note that from Example 17.10, in F4, the characteristic is 2. Moreover, the characteristic of
the real field, R, is zero.

Additionally, EC must be such that the equation 4a3127b2 is not zero. This guarantees
that the EC is not singular, that is, there are no cusps, and as such the curve is smooth.
For the EC, the partial derivatives should not be equal to zero simultaneously. Also, the
curve should be simple, that is, it does not intersect itself. Illustrations of different EC are
given in Fig. 17.6. As illustrated, there exist essentially two types of EC; the common fea-
ture is that the curves are symmetric about the x-axis. Additionally, all curves intersect the
x-axis in one or three locations. Illustrations, not good-curves have no line segments.

Although the Abelian group structure and group operations for an ECC are the most
important, in ECC there are two operations that are dominant in applications. These are
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the point or cord addition and the point doubling operation. Both methods arise from
using basic calculus techniques to describe the geometric approach. For point addition,
use two points (x1, y1) and (x2, y2), both on the EC and connected by a straight nonverti-
cal line on the EC. Then, a third point (x3, 2 y3) lies on this same line, and on the EC as
well. When this point is reflected about the x-axis, then the result (x3, y3) is called the
point addition for the first two points. Next, the doubling operation on a point occurs by
finding a nonvertical tangent line to a point (x1, y1) on the EC. This line will intersect the
EC at a point whose reflection about the x-axis yields (x3, y3). The result is called the dou-
bling of the original tangent point. The point addition and doubling operations are
described graphically in detail, in Appendix A.3. Now these operations are found from
basic calculus and are presented algebraically relative to the short Weierstrass normal
form of EC: y25 x31ax1b.

For the cord addition or the two-point addition:

The slope is s5 (y22y1)/ (x22x1).
The x coordinate is x35 s22x12x2.
The y coordinate is y35 s (x12x3)2y1.

For the doubling or the double-tangent method:

The slope is s5 (3 x121a)/(2 y1).
The x coordinate is x35 s22x12x1.
The y coordinate is y35 s (x12x3)2y1.

An example will illustrate the use of these equations.

Example 17.13:

Consider the EC, y25 x316 x12, over F7. Here, a5 6, and b5 2. First, notice that
4a3127b25 86411085 972. Now dividing the quantity by 7 and retaining the smallest

(2,5)

(0,1)

(–1,1)

(2,–5)

(1,3)

(2,1)

(6,–3)(0,–3)

(0,3)

y2 = 4x3 – 4x+1 y2 = x3 + 6x+2 G7
(A) (B)

FIGURE 17.6 Types
of elliptic curves.
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nonnegative remainder gives 6 in F7, so it is not zero, and the EC is not singular. First, the
two-point cord method will be employed. Use (0, 3) and (1, 3) as the two distinct point pairs
to be added together. These points are on the EC. Using (0, 3) and substituting into the EC
shows that y25 2. This square has solutions y5 3, as well as y5 4, because squaring each of
these results in 2, thus providing the unique number in the carrier set F7. In any case, using
these two points, that is, (0, 3) and (1, 3), yields a slope s5 0, x35215 6, y3523. As a
result, point addition yields (6, 23), and this point is on the curve. Substituting into the EC
gives (2 3)25 2, and y25 6316 � 6125 216136125 2545 36� 7145 2. Next, the tangent-
doubling method will be illustrated using the point (2, 1) on the EC. A quick substitution into
the EC shows that 125 2316 � 2125 225 1. The slope is s5 (3� 2216)/(2)5 95 2. Therefore,
the x coordinate is x35 22�2225 0. The y coordinate is y35 2 (2�0)215 3. Accordingly, the
new point is (0, 3). As before, this point is on the EC. The EC in this example is illustrated in
Fig. 17.6B. Here, the corresponding procedure for point addition and tangent point doubling
is roughly illustrated graphically.#

In the general case, where the EC is y25 x31ax1b, a few algebraic computations not
covered by the aforementioned equations will be described next. For point addition, using
two points (x1, y1) and (x2, y2) connected by a straight line, which is a vertical line on the
EC, the result is the neutral point at infinity, N. This can also be seen since in this case,
(x2, y2)52 (x1, y1)5 (x2, 2 y2), resulting in the neutral element, a third point (x3, y3)
being N. The same is true for the tangent-doubling method: If the tangent line is vertical,
the third point is N. Finally, it was mentioned before that when the point N is added to
any other point, z on the EC, including itself, the result is z.

Example 17.14:

Again consider the EC, y25 x316x12, over F7. Refer to the diagram given in Fig. 17.6B.
In this diagram, the two points (1, 3) and (1, 23)52 (1, 3)5 (1, 4) are illustrated, and the
vertical line that passes through these two points yields the point N.#

For an EC, E with Galois field Fp, the elements form an abelian group. The order of the
group, that is, its cardinality E, must be known exactly, and this is the case in ECC.
However, in general Hasse’s theorem over mod p provides bounds for #E (Cassels, 1991).
These are lower and upper bounds; specifically, p1122p1=2 is less than or equal to E,
which itself is less than or equal to p1112p1=2. These bounds will be illustrated by way of
an example.

Example 17.15:

Consider the EC, E: y25 x3 11, using the Galois field F11. Since p5 11, Hasse’s theorem
shows that the cardinality of E, E, is an integer lying in the interval [1111�2 � 111/2,
111112 � 111/2]5 [5.4, 18.6]. For this curve, the carrier set is E5 {N, (10, 0), (0,10), (0, 1),
(9, 2), (9,9), (6, 3), (6, 8), (8,4), (8, 7), (3, 5), (3, 6)}. The actual cardinality is E5 12. To vali-
date the point (0, 10), that is, to verify that this point is in E, note that y25 1, when x5 0. If
y5 10, y25 100, and when this number is divided by 11, the least positive remainder is 1;
note that 2105 1. #
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Getting back to ECC, the discrete log problem referred to as ECDLP utilizes an EC with a
primitive element a, that is, a point pair (x, y) on the EC. This element generates all points on
the EC using point-adding and tangent-doubling operations. In particular, the point
t5 c1c1. . .1c is n time hops on the EC. The starting point c is a public key c that is a point
pair on the EC. The integer n is a secret or private key; it is an integer and is not known.
However, the product of n with c, which is t, is known to all users. In actual applications like
blockchain, the prime number utilized is very large, as seen previously. The cardinality for
the carrier set of E, #E, is very large and so is n. Since n is only known to a private user, the
value n � c is efficiently found using the algorithm specified below. However, knowing c and
n � c, it is almost impossible to find n. The use of quantum computers, as described in
Section 17.9, makes breaking the code simpler.

The quick algorithm to find n � c requires a binary representation for the positive integer
n. Here, the leftmost bit is the most significant and is 1. Starting with the next most signifi-
cant bit and working to the least significant bit, if a one appears, then first a doubling tan-
gent operation is performed on c; then this is followed by a two-point addition operation.
If a zero appears in the binary representation, only a doubling tangent operation is
employed. An example will illustrate the methodology.

Example 17.16:

Since n is known to the private user, n � c can be determined by the above algorithm.
Here assume that n5 1 � 251 1 � 2411 � 21115 51, and in binary, it is (1 1 0 0 1 1). Starting
with the point pair c on the EC, doubling yields 2 � c, followed by point adding that gives
3 � c. The next binary digit is zero, so only a doubling is utilized, giving 6 � c. Again, the
next digit is doubling, so 12 � c is the result. The next digit is one, so both EC operations
must be performed. First doubling gives 24 � c, and followed by point addition, this yields
25 � c. The final bit is one, accordingly doubling provides 50 � c, and point addition gives
the final result, 51 � c.#

17.12 Diffie�Hellman EEC key exchange

The EC Diffie�Hellman key exchange is described next. It consists of two phases: the
setup and the exchange. For the setup, there are two users, and needed are the parameters
for ECC. These are a, b, p, and primitive point pair c5 (x, y). In the second phase, the two
parties 1 and 2 agree on EC and p. Party 1 chooses a random number that is a private key
in {2, 3, . . .#E 21}, call it d. Party 1 computes D5d � c5 (x1,y1). Also party 2 randomly
finds a number, f in {2, 3, . . .#E 21} and computes F5 f � c5 (x2,y2); they exchange the
publicly known values D and F. However, when received both multiply, using their secret
number, and obtain R5d �F5 f �D. The value R is private and enables correspondence
using this address along with hashing techniques. Hashing techniques map using h, an
arbitrary length signature-type string, into a large fixed-size binary string, length m. Here,
h: {0, 1}*-{0, 1}m. It is a one-way function, that is, knowing the original string, an algo-
rithm is used to find the fixed-length binary string. However, using the binary string, it is
almost impossible to regain the signature (Dorey et al., 2016).
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C H A P T E R

18

Machine learning and data mining

18.1 Quantum machine learning applications

Machine learning with adiabatic quantum computing (AQC) and quantum annealing
(QA) employs both supervised and unsupervised methods to discover patterns and corre-
lations directly from data sets. Global or subglobal optimization techniques accelerate
training time in the learning process. A great book describing many applications of quan-
tum in the data mining field is the text by Wittek (2014). The text was way before its time
in illustrating quantum and data mining interfacing. Now many more applications in the
machine learning environment employ quantum gate type computers as well as adiabatic
computers. Several of these applications will be described below.

Facial patterns were obtained from a QA process (O’Malley et al., 2018). Additionally,
and more recently, facial expression recognition using a quantum simulator was con-
ducted (Mengoni, 2021). In this research, several machine learning techniques were
employed. Quantum interference was exploited to perform classification similar to the k-
nearest neighbor (KNN) classification algorithm. In this study, images were first identified
using 68 point tuples (x, y) in R2. This was followed by triangulation procedures and
graph theoretic methods, leading to an adjacency matrix. The triangularization procedure
is used in providing a noncomplete, meshed graph while not compromising information
content. Subsequently, quantum states were defined by encoding tuples within adjacency
vectors as amplitudes for quantum states. The conclusion from this work is that classical
recognition methods provided better results when complete graphs were used. However,
the quantum classifier yielded comparable results when the meshed graph was employed.

The Hyundai company collaborated with Ion Q quantum for autonomous vehicles
(IonQ Staff, 2023). Also refer to the trapped ion technology, as developed by IonQ
described in Section 6.7. Research in the past involved quantum computers in modeling
battery performance to improve usage in self-driving cars. Currently, quantum computing
is used to enhance safety and human engineering aspects in autonomous vehicles. Specific
objectives involve blind spot warnings, emergency braking, lane control, as well as com-
fort within the vehicle to make traveling occur more leisurely.

IonQ quantum computing for Hyundai is primarily directed in two areas: image recog-
nition of road signs and, second, object detection. In the former situation, forty-three dis-
tinct road signs were employed in a quantum machine learning simulator. Only 16 qubits
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were utilized; however, this allowed estimates of how image recognition will improve uti-
lizing more qubits. Fault-tolerant procedures were also investigated concerning object
detection. In this case, the quantum computer had to discriminate objects based on these
images. Boxes surrounding perceived objects within an image were used as an image seg-
mentation procedure. The boxes were utilized in predicting the location of the object.
However, several boxes could overlap and be of various sizes. The next task is to identify
objects within each box.

AQC and QA methods are used for classification applications as well as training of
Boltzmann machines. These machines are a type of NN (Liu and Rebentrost, 2018).

A decentralized feature extraction speech recognition system was developed using
quantum convolutional neural nets (QCNNs) (Yang et al., 2021). A quantum circuit
encoder as well as a quantum feature extractor were employed. Also a recurrent NN
(RNN) was employed locally for determining the final recognition. The QCNN model
showed greater than ninety-five percent accuracy in recognition. This article reported
somewhat better results than utilizing previous centralized RNN systems. Spectrogram
features are used as inputs to the quantum circuit layer. It is this quantum circuit that
learns and encodes speech patterns. The front end of the QCNN performs encoding and
organizing the input into two by two patches, thus allowing the quantum circuits to pro-
cess the data. After the quantum circuits act on the data, a decoding process is entered.
This procedure involves projecting qubits into a set of spanning quantum states.

The creation of a large data set for quantum machine learning applications was devel-
oped in Perrier et al. (2022). The QDataSet is made up of 52 publicly available data sets
originating from simulations involving one or two qubits. Some data within the QDataSet
contains noise, and some are without noise. Each data set is comprised of 10,000 samples
useful in machine learning algorithm development. Specifically, this data set is intended
to be utilized in machine learning applications such as quantum computation, quantum
control, quantum spectroscopy, as well as in quantum tomography. These data sets are of
particular importance in benchmarking algorithms in quantum control, as well as assisting
in solutions to constrained optimization problems involving quantum data.

18.2 Learning types and data structures

Machine learning utilizes various data types. Vectors are one of the most basic data
structures. Tuples within a vector constitute recorded values of attributes for designated
entities, and possibly relationships. For instance, each patient in a doctor’s office might
have an associated vector. Here, for patient X, the vector might consist of tuple values for
height, weight, blood pressure, mother’s blood type, . . ., smoker. Other data structures are
matrices, images, videos, lists, sets, trees, graphs, strings, as well as macrostructures con-
sisting of several of these data types. As an example, self-driving vehicles probably utilize
all these structures with strings of natural language converted into navigation and guid-
ance rules. Real-time image, sound, and video observations are sent to the deep learning
machine. These are processed, and control signals are sent to appropriate control surfaces.

The conversion of actual observations into control signals often employs estimation and
classification techniques. Some intuitive descriptions of the problems need solving by
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deep learning machines, most often classification problems. In particular, binary classifica-
tion entails a choice of determining for y, one of two random quantities. In this applica-
tion, it is assumed that labels exist to make identifications. The random quantities might
be locations, for instance, partitioning or separating a group of labeled objects into one of
two segregated locations. In multiple classification, a choice of several random quantities
needs to occur. Likewise, a partition of objects into several parts is a critical machine learn-
ing application. Labeling is an important problem in machine learning. Sometimes, labels
may be clear and other times they may not be clear. In the latter case, objects possessing
these labels are removed and often termed erasures. Additionally, sometimes the label
contains more information, and it can be utilized in a beneficial manner. Regression is an
extremely important machine learning tool. In this case, some a priori model is utilized in
estimating or checking results of observations, and also for determining outliers. An intui-
tive description of different types of machine learning is provided as follows:

1) Online learning often consists of a pair of sequences (xi, yi), and the objective is to estimate
yi, in real time, when observing the x values. This is also called sequential filtering. When
given such a sequence pair, and a past value of the y sequence, yi-k is to be estimated; this is
called sequential smoothing. Similarly, if a future value yi1k is to be estimated, this is called
sequential prediction. Estimation with missing x data is often called erasure estimation,
interpolatory estimation, or estimation with missing variables.

2) Batch learning again uses a two-tuple pair (xi, yi), wherein the y values are to be
estimated, but the x observation values are usually preassembled in a set. When these x
values are chosen for model building, this is called active learning. If there are two x
type observational sets somewhat correlated and in which a possible covariant shift
correction was made, this results in cotraining.

18.3 Probably approximately correct learning and Vapnik-Chervonenkis
dimension

Probably approximately correct (PAC) learning (Valiant, 1984) involves a function or a
set of functions in some class. They are said to be learnable, which means that once trained
on random samples under supervision, the function can be utilized in estimating test sets
with a low error. Thus, the generalization error is small when the test data has the same
distribution as the training data. In general, a good learner will learn close approximations
to test data with high probability. More formally, let X be a set of all samples, also called
the instance space. Associated with X is the set of all labels. The function that is to be
learned is c: X-Y and is called a concept. Moreover, let H be a set of all concepts.
Assume that a sample S of identical independent random variables of size m is to be used
from a distribution D. The objective is to find an algorithm that produces a concept h in
H, also known as the hypothesis. The basic idea is to determine or minimize the generali-
zation error R, namely how far h is from c. This quantity will depend on the distribution
D, as well as the sample S, that determines how h is chosen. Additionally, it will depend
on what concept c is to be learned. Here, the generalized error R is defined as the proba-
bility that c and h differ, that is, R5P (c is not equal to h).
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A concept class H is said to be PAC learnable whenever there exists an algorithm, for
every distribution D on X, for every concept c in H, and for all small quantities, E and δ in
[0, 1], described next. Then the probability P (R is less than or equal to E) is greater than or
equal to 1 2 δ. This must be true for all m greater than or equal to a polynomial ordered
function in 1/E, 1/δ. Additionally, taken into account are the computational costs of using
x in X and representing target concept c. The major theorem due to Valiant involves
a zero/one loss function in a finite number of models H, with empirical risk
Rn 5 1=n

Pn
j51 sgn jf xj

� ��
not equal to yj|), where sgn (z)5 1 for z not zero and 0, other-

wise. Also, fn5minRnðfÞ, if min R(f)5 0, then for every n and E.0, the probability
PðRðfnÞ. EÞ ,card (H) e2nE 5 δ. The sgn function was used for a NN creating an approxi-
mation to continuous functions in Section 2.5.

An empirical method for estimating the capacity of a learning machine is described in
Vapnik (2000). In this case, the training set consists of tuple pairs (x,w) where x is in X, a
subset of Rn, and w is binary, in {0, 1}. The m point pairs are drawn from independent,
identically distributed unknown distribution, P(x,w)5P(w|x) P(x), where P(x) describes
regions of interest for the inputs. The input-output relationship is governed by P(x,w).
Binary classification functions are described by the function f(x,a), where a is a parameter
in parameter space A. The objective is to find a parameter a*, which minimizes the proba-
bility of error p(a)5E(w2f(x,a)). This quantity is actually an average value, where the
expectation operation E is evaluated with respect to P(x,w).

Minimizing errors on the training set will be consistent iff the uniform convergence
property holds (Vapnik and Chervonenkis, 1971), limm2.NP½sup0ainAðpðaÞ2vðaÞÞ. E�5 0,
where v(w) is calculated from the training set; it is the empirical mean absolute value,
v wð Þ5 1=mfPm

i51 jwi 2 f x; að Þjg.
For a finite concept class, m needs to be only greater than or equal to a polynomial

ordered function in 1/E, 1/δ, as well as the log of the cardinality of H. For infinite concept
classes, the Vapnik-Chervonenkis (VC) dimension can be used. The VC dimension
involves the process of shattering. The vectors x1, x2,. . ., xm, in X are shattered by f(x,a), for
a in A, if for any possible partition B1 and B0 of x1, x2,. . ., xm, there exists a function f(x,a*),
such that f(x,a*)5 0, for x in B0, and f(x,a*)5 1 for x in B1. So to be shattered, all 2 m parti-
tions must be employed. The VC dimension is the maximum number of vectors, x1, x2,. . .,
xk, which can be shattered by f(x,a), a in A. In practice, a set of vectors is shattered when
any arrangement of these vectors can be shattered. If no arrangement of all the objects can
be shattered, then they are classified as nonshatterable.

Example 18.1:

The following example illustrates the shattering process. For brevity, the vectors x1,
x2,. . ., xm in X will be illustrated as points in R2. It will be shown that for a single point
m5 1, it can be shattered. Also two points, m5 2, can be shattered, and three points,
m5 3, can be shattered. These are all illustrated in Fig. 18.1. The partition is created by f(x,
a), an oriented affine line with parameters in A. The affine line is described by parameter
weights wx and wy, along with a bias term b. Additionally, an indicator is employed for
describing orientation. Here, an arrow on the affine manifold, pointing upward, indicates
that to the right is B1 and to the left is B0. For (x,y) in R2, the affine line is determined by
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wx,x1wyy1b5 0. Referring to Fig. 18.1A, a single point p is shattered by f since both sub-
sets, the empty set φ and {p}, are created by an oriented affine line. If p5 (0,0), then the
affine line at x5 2, with an upward arrow, yields φ, because points within in the region B0

are not counted; only points in B1 are counted, that is, points to the right of the arrow.
Again in the figure to the right is say x5 2 2, with an upward arrow, and so {p} is
determined.

Similarly in Fig. 18.1B, two points are shattered by f. This is done in four steps; the most
interesting step is where the left point has to be shattered by itself. Here the oriented affine line
has an arrow going down. Thus all subsets consisting of two distinct points are created by f.

Finally Fig. 18.1C illustrates how three points are shattered by an oriented affine manifold. All
eight subsets consisting of three points are created. For instance, referring to the figure where the
set {p1, p3} is shattered, the affine line might be y5 x11/2, with an arrow upward.#

Analogous to the aforementioned example, it is shown (Vapnik, 2000) that in Rn exactly
n11 points can be shattered employing the partition B1 and B0 created by functions like f.

Example 18.2:

In R3, four points can be arranged as vertices of a tetrahedron. An oriented affine plane
can be employed to determine the 245 16 desired subsets.#

Various other functions f, besides oriented affine manifolds, can be utilized in determin-
ing how large a set of points can be such that they are shattered.

Example 18.3:

Consider a set of four points in R2. The function f will shatter these four points by
determining all 16 subsets. Here the parameter set A will insure that f creates nonempty rectan-
gles in the x, y plane such that the left edges of the rectangle are parallel to the
�y-axis. Accordingly, the top and bottom line segments of the rectangle are parallel to the x-axis.

{P} {P1,P2}

{P1,P2}

{P1,P3}{P2,P3} {P1,P2,P3}

{P1}

{P1}

{P2}

{P2}
{P3}

P
φ

φ

φ

P2

P2

P3

P1

P1

(A) (B)

(C)

FIGURE 18.1 Shattering
one, two, and three points by
Affine manifold: (A) shattering
a single point; (B) shattering
two points; (C) shattering three
points.
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Points within a rectangle correspond to B1, and points outside of the rectangle correspond to B0.
Fig. 18.2 illustrates the arrangement of these four points to ensure that shattering exists. Four
points taken one at a time yield four subsets. Four points taken two at a time yield six subsets.
Four points taken three at a time yield four subsets. Finally, zero at a time and four at a time
each yield one subset. In the referenced diagram, only two instances of shattering appear.#

Example 18.4:

Following Wittek (2014), the VC dimension could be infinite. To see this, let the set of
points be all the odd integers on the x-axis in R2. Any point, for instance, the point (1, 0) in
the x-y plane, will be shattered by sin(π/2 x) for x in [0, 2). Here B1 is indicative of
points below the sinusoid, and points above the sinusoidal are represented by B0. To
obtain all single-point sets among the odd integers, use parameters in A. Here usePN

n52N jsinðπ=2 xÞ|χ½2n;2n12Þ. To obtain all two adjacent odd point sets, usePN
n52N jsinðπ=2 xÞ|χ½2n;2n14Þ. For obtaining every two-point set containing every other odd

point, use
PN

n52N jsin π=2 x
� �jχ 2n;2n12½ Þ 1 jsin π=2 x

� �jχ 2n14;2n16½ Þ 1

 �

. And so on and so
forth. This shows that all the odd integers are shattered by f, using the parameters in A.#

In the referenced papers by Vapnik, the VC dimension is used in predicting upper
bounds for test errors in a classification model. These bounds involve independent identi-
cally distributed random variables, with the training and test data having the same under-
lying probability distribution functions.

18.4 Regression

Ridge regression is a least square technique mainly used when variables are thought to
be highly correlated. In this case, the variance or least squared error is sometimes smaller
when Ridge regression is employed rather than usual least squares. In the usual linear
least squares regression for an overdetermined system, the pseudoinverse provides the
solution. See Section 14.3, 14.4, where partial isometries are described. In this method, an
observed k � 1 vector y is projected onto the k �n design matrix H, with k. n or k5n, and
of full rank. An estimator of the form x5B y is desired, where the model equation is
y5H x1u, and u is a vector consisting of noise or slack variables. Moreover, it is assumed
that nothing is known about the vector u, only that it is used to make the equations consis-
tent. By projection methods, or by differentiating the least squares loss, the estimator is the
pseudoinverse: x5 (H0H)21H0y. The prime indicates the transpose operation. If more infor-
mation is known about u, a better estimator could be employed.

P1

P2

P3

P4
FIGURE 18.2 Shattering four points by a
rectangle.
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When the columns of H are correlated, the inverse may be inaccurate due to multicolli-
nearity, which affects the condition number for the matrix H’H. In this case, a Ridge
regression is often used. It too is a linear estimator; here: x5 (H0H1λI)21H0 y.

The value λ. 0 is usually small; it is heuristically determined. Also, the identity matrix
I is n �n. A simple example is used to illustrate the technique.

Example 18.5:

For y5H x1u, use y5 (1.1 1 0.8)0, u5 (u1 u2 u3), and H5

j1 1j
j1 :9j
j1 1j

Then H0H, (H0H)21, and (H0H)21H0 are, respectively, given as follows:

j3 2:9j
j2:9 2:81j

j140:5 2 145j
j2 145 150j

j2 4:5 10 2 4:5j
j5 210 5j

The linear least squares estimate is x5 (1.45 20.5). The residual, slack, or noise vector is
u5 y2Hx5 (1.1 1 0.8)02(.95 1 0.95)0 5 (.6 0 20.15)0.

If Ridge regression were used with λ5 0.1, just to illustrate the methodology, then
H0H10.1I, (H0H10.1I)21, and (H0H10.1 I)21H0 are, respectively, given as follows:

j3:1 2:9j
j2:9 2:91j

j4:76 2 4:75j
j2 4:75 5:07j

j:01 :5 :01j
j:32 2:2 :32j :

The Ridge estimate x5 (.52 20.18). The residual, slack, or noise vector is u5 y � Hx5
(1.1 1 0.8)0 � (.34 0.35 0.34)0 5 (.75 0.65 0.46)0.#

In the last example, ridge regression did not do well compared to regular least squares.
However, as in many machine learning disciplines, heuristic parameters must be set. In
this case, the value of λ could be changed, over and over again.

An interesting application is illustrated next when the feature space is an interval [2 1,
1] and the regression involves polynomials within this interval. Using a least squares esti-
mator in the form of pseudoinverse, with observed data, y5 (x1, x2, . . ., xn)

0. In this case,
the Vandermonde matrix V is utilized in the pseudoinverse construction, that is, H5V,
and x5 (V0 V)21V0 y, where V5

j1 x1. . . xm1 j
j1 x2. . . xm2 j� � �
j1 xn. . . xmn j

The Vandermonde matrix also appears in Example 8.21 in the context of cyclic vectors.
However, in this regression application, the Vandermonde matrix often is unstable. A pop-
ular solution to increase stability is to utilize the Chebyshev orthogonal polynomials
within the Vandermonde matrix. In Appendix A.7, the Chebyshev polynomials are shown
to be an orthogonal set of polynomials since they are a solution to the Sturm-Liouville dif-
ferential equation.

33318.4 Regression

Many-Sorted Algebras for Deep Learning and Quantum Technology



18.5 K-nearest neighbor classification

A most elementary example of machine learning is the KNN, similar to the K-means
methodology described in Section 2.1. KNN is also a technique for classification and
clustering. It is often used as an example of batch learning. The method involves set-
ting up and implementation stages. In order to employ KNN, there must exist integer
N. 0 tuple pairs (xi, yi), and the objective is to estimate yi, in real time, when observ-
ing the x valued data set. This data set is pretrained, with labels y, which are assumed
to be categorical and binary valued in {0, 1}. The value K5 1, 2, . . ., N is chosen a
priori. It refers to the number of points in the data set used in making a decision on the
distance to the query or test value x. The distance function also must be chosen prior to
implementation. A norm should be chosen, and the one norm distance will be utilized
in the subsequent example.

The method is to calculate the distance from all N points from xi to x. Then order
these distances, along with the corresponding tuple values, in ascending order for dis-
tance. Next choose the first K entries. The classification is performed by using the
modal value of the labels for the K entries. A few practical aspects of the method fol-
low. Usually K is taken to be an odd integer. Moreover, it is usually much smaller than
N. Also several different values for K are often employed, and an optimal K is
attempted to be found. Here, the metric might involve the number of distinct entries
from those successfully classified, as a function of K. For small problems consisting of
two tuples, it is useful to make a visual diagram by placing the unknown test point at
the origin of a plot with the elements of the data set in its surroundings. This is illus-
trated in Fig. 18.3.

K = 3
= 1

(  ,1)

(  ,1)
(  ,1)

(  ,0)

= 0

Mode = 1

–2 –1 1

1

2

2

3

3

–3/2

3/2

1/2

1/2

√3

√3

Distance Vector

(  ,0)
(  ,0)

FIGURE 18.3 K-nearest
neighbor classification.
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Example 18.6:

Consider the data illustrated in Fig. 18.3. Here there are N5 6 data points: squares with
label 0 and triangles with label one. At the origin is the item x, to be classified. The dis-
tance,|x2xi|, i5 1, 2, . . ., 6, is calculated and listed from smallest to largest distance, along
with their two-tuple vector representation. Since K5 3 in this situation, only the first three
entries in the ordering table are examined for the largest number of common labels. Since
there are two 1 s and one 0, the mode is 1. So the unknown is classified as a triangle. The
error is that among the K5 3 closest distances, only one item was not among the classified
entries.#

Using a small value for K makes the KNN technique unstable, that is, it might misclas-
sify. On the other hand, larger values of K make the method more stable due to the major-
ity voting protocol, that is, using the mode. Usually the method is conducted with a
relatively small value of K and then gradually increasing the values of K. This increase is
halted once the number of items distinct from those classified becomes too large. The
method is easily extended for other than binary classification. Additionally, the procedure
works for data sets in n dimensions, that is, n1 1 tuples in each vector. The last tuple is
again a categorical label. It can be binary, trinary, etc.

18.6 K-nearest neighbor regression

KNN regression is different from KNN classification in numerous ways. First of all, it is
employed on vectors (xi, yi), for which the labels yi can take on continuous values, say in
R. Additionally, to begin, it is assumed that the data set, {xi}, is real valued and monotonic,
xi , xi11, for i5 1, 2, . . ., N. Moreover, for each xi a positive integer mi, number of labels, is
associated. Thus, there exist (xi, yi1 ), ðxi;yi2Þ,. . ., ðxi;yimi

Þ vectors. The actual regression pro-
cess amounts to forming a function f, defined on the data set fxig. It is such that f:fxig-R,
where the empirical mean estimator is used, f x̂ið Þ5 1=K

P K
j5 1 yij . Furthermore, the K

values yij that are employed in the sum are closest to each other using some metric, or
clustering algorithm. Alternatively, a nominal, test value yi is chosen for each xi, and K
values of yij are utilized in the average, all of which are closest to yi.

The value K must be less than mi. In any case, K always could be equal to one, but in
this situation the regression is an overfit. The resulting function would be very good for
the trained data, but not so good using different data. In general, there is an abundance of
labels, and in this situation, K could be set equal to or less than the minimum of all the mi.
Similar to the classification KNN, different values of K are used to determine the best fit-
ting function.

Example 18.7:

Suppose it is thought that the data set fxig has labels that approximately follow a square
law path, that is, fðxiÞ5yi5xi

2. If a data point say xi 5 1 is chosen along with its labels, the
vectors are (xi, yi1 ), (xi, yi2 ),. . ., (xi, yimi

). Assume that these vectors are (1, 1.3), (1, 0.7),
(1, 0.3), (1, 1.4), (1, 1.2). Here, mi 5 5, and say that K5 3. Then since, yi5xi

2 5 1, in this
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example the distance from 1 to all five labels must be found as in usual KNN methods.
Again, only the closest three are chosen. In this case, the three vectors are (1, 1.3), (1, 0.7),
and (1, 1.2). It is the labels in the second tuple that are used in forming the average. Thus,
f˄ xið Þ5 1=K

P K
j5 1 yij 5 f˄ 1ð Þ5 1=3

P 3
j5 1 yij 5 1=3 1:31 :71 1:2ð Þ5 1:06.#

KNN regression can be performed using n-dimensional data sets, where again it is
assumed that there is a strict order in the data, and the labels are from a continuous sort.

18.7 Quantum K-means applications

Several recent articles have appeared involving quantum K-means applications. For
instance, Kavitha and Kaulgud (2022) employ unsupervised training methods for data min-
ing and machine learning in determining heart disease using quantum circuits. A brief
description is provided in the next paragraph. Quantum techniques have shown to perform
better than classical techniques in several areas such as classification, detection, and tacking,
as well as in optimization (Shah and Gorard, 2019). A somewhat related work was per-
formed by Singh and Bose (2021); here a quantum optimization scheme was employed in a
K-means algorithm for use in CT chest images. A quantum approach for solving mean clus-
tering using QUBO model is explained in Date et al. (2021). Additionally, Khan (2019) used
quantum and destructive interference along with rotations to implement K-means cluster-
ing. Although Grover’s search provides a speedup relative to classical techniques, it is not
able to increase the ability to form clusters (Flick et al., 2017).

In the first referenced paper, for quantum K-means clustering, Kavitha and Kaulgud
(2022) employed data preprocessing for quantum that involves the PCA along with outlier
rejection techniques. Quantum circuits are created for centroid and distance calculation
methods. Centroid and cluster updates are performed in an iterative fashion until conver-
gence is achieved. Quantum processing to form clusters is shown to be the paramount
improvement area in speed. Prior to performing the K-means clustering, data was con-
verted into quantum states using the method given in Benlamine et al. (2020). The quan-
tum K-means clustering is achieved using three subroutines. First, a swap test gate is
employed to calculate the distance between a centroid cluster|φ. and a data point|Ψ.;
this is followed by cluster updates and centroid updates.

Also in this paper, a tensor product is given involving the centroid qubit and the data qubit.
An ancillary qubit|0. is also involved. These are inputted into the circuit in order|0 Ψφ.. A
Hadamard gate is applied to the ancillary qubit, thus giving 1/21/2 [|0 Ψφ.1|1 Ψφ. ]. This is
followed by a controlled swap gate to assign each state to its nearest cluster. In conclusion, com-
parable results were achieved between classical and quantum means approaches. However, less
execution time was experienced for the quantum system.

18.8 Support vector classifiers

Support vector classification (SVC) is a binary classification procedure that can be
extended to multiclass classification. In terms of machine language, a training set consists
of n pairs of vectors: {(v1, y1), (v2, y2), . . ., (vn, yn)}, where vi are in H5RN and yi are in
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{2 1, 1}. The objective is to classify the vi by finding a linear decision hyperplane A, along
with a margin. Technically, a margin consists of a pair of hyperplanes each parallel to A
and each equidistant from A. These margins are also called gutters or curbs. Additionally,
the area between them is thought of as a street, with A as the center line. Points lying on
the curb are called support vectors, and this is how SPV machines acquire their name.
SPV machines are often called maximum margin classifiers, usually when the data is sepa-
rable. Another name for this machine is a hard margin classifier. Soft margin classifiers
allow for some miss-classification-type errors to occur. This is allowed because they
employ cross-validation. This results in better overall classification.

Mathematically, the affine classifying hyperplane is A5min(|,w, vi.1b|) for i5 1, 2,
. . ., n. Let yi5 1 whenever it is yi in A15fvi in H, such that ,w, vi.1b is greater than or
equal to zero}. Likewise, let yi equal 21, when yi is in A2 5 {vi in H, such that ,w,
vi.1b is less than zero}. Normalization can be employed in separable circumstances.
Assume that the scaling is adjusted and that normalization occurs in the following. Recall
that A5 {v in H, such that ,w, v.1b5 0}. Now the two gutters, that is, the parallel affine
spaces one unit from A, are given by: A1 5 {v in H, such that ,w, v.1b5 1} and A2 5 {v
in H, such that ,w, v.1b521}. Also, by the scaling, the minimization is |,w,
vi.1b|5 1. By requiring the margin to be as large as possible, this can be converted into
a maximization problem. First, by noticing that for yi (,w, vi.1b), it is greater than or
equal to one for all yi in A1 as well as in A2.

Using the aforementioned facts, solving a constrained convex maximization problem
will find A as well as the maximum margin. In the following, it is assumed that the data
is linearly separable. If this is not the case, the method fails. Moreover, the method is
called a hard margin classifier. Finally, the Lagrange multipliers technique will be used to
maximize or minimize an objective function with constraints. This will lead to a quadratic
optimization that almost always needs an approximate numerical solution. However, a
very simple example is provided below, but even here a lot of computation is required.

To begin, finding the max :w:21
with constraints: yið,w;vi . 1 bÞ is greater than or

equal to one, for all yi. This maximization problem can be replaced by finding the
min:w:2=2, with the same constraints. So, the first step is to form the Lagrangian: L5 1/2
,w, w.2

P
ai½yi (,w, vi.1b)21]. Here, the ai are called the Lagrange multipliers; they

also need to be found. Next, take the partials derivatives or the gradient with respect to w,
b, as well as all the ai, and then set them all equal to zero. Do this first with @
L/@w5w2

P
ai yi vi5 0, and then, @ L/@b5

P
ai yi5 0. Substituting the quantity,

w5
P

ai yi vi, back into L gives the long expression L5 1/2 ,
P

ai yi vi,P
ajyjvj .2

P
aiyi½,

P
ajyjvj; vi . �2P

aiyib1
P

ai. Next using
P

aiyi 5 0 and simplify-
ing the equation gives L52

P
ai21=2

PP
aiajyjyi ,vi;vj . . Now using the decision rule

with w, ,w, v.1b, that is, its relationship with one, w5
P

aiyivi;
P

aiyi , vi;u.1
b:L52

P
ai21=2

PP
aiajyjyið,vi; vj .Þ.

Example 18.8:

Consider the training set: {(v1, y1), (v2, y2), (v3, y3)}, where vi are in H5R2 and yi are in
{1, 21}. To find the SVC A, where A5 {v in H, such that ,w, v.1b5 0}. Above A should
be those vectors with yi5 1, and below A should be those vectors such that
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yi.5 21. Say that the vectors vi with yi5 1 are v15 (21 0)0 and v25 (0 1)0, and the one
with yi.5 21 is v35 (0�1)0. Form the inner product Gram matrix G, with entries ,vi,
vj., i5 1, 2, 3 as row indicators, and j5 1, 2, 3 as column indicators. The matrix is given
as follows:

j1 0 0j
j0 1 2 1j
j0 21 1j

The Lagrangian for this problem is L52
P

ai21/2
PP

ai aj yj yi (,vi, vj.). In partic-
ular, expanding out provides L52 a1 1 a2 1 a3ð Þ2 1=2 a21 1 a22 1 a2a3 1 a3a2 1 a23

� �
. Here,

the inner products ,vi, vj. are substituted using values from the Gram matrix G. Taking
the partial derivatives of L: @L/@a15212a15 0; @L/@a2521 � a2 � a3; @L/@a3521 � a3
� a2. From this, it is seen that a1521. The other two equations are dependent,
a21a3521. However, using the constraint,

P
aiyi5 0, this implies that a22a35 1.

Consequently, a25 0 and a3521. Finally, using w5
P

ai yi vi, it follows that
w52v11v35 (1 0)01(0�1)0 5 (1�1)0. Therefore, the affine line classifier happens to be a
subspace of R2, in x-y coordinates; it is y5 x. The margin here is 1=21=2, and support
vectors are v15 (21 0)0 and v35 (0�1)0.#

When the data is not linearly separable, slack variables are often introduced to make
the constraining equations less rigid. The constraints now become as follows: yi (,w,
vi.1b) is greater than or equal to one minus slack values si, usually taken to be nonnega-
tive. So again, the object is to minimize min :w:2/ 2, but the si cannot be made too large.
A modified Lagrangian problem is formulated: min[:w:2/ 21C/n

P
si,] where the mini-

mization is for w, b, and si. The constant C is a positive parameter, n is the number of
data points, and the sum is from 1 to n. The value C balances the importance of regulariza-
tion and the importance of matching the training set correctly. When C is too large, the
training set is matched well; if C is too small, this benefits overfitting. In the latter case,
this might be good for training, but maybe not so good for unseen real data. C is called
the penalty parameter for miss-classification.

Using the constraining equation gives the formula for L, where ai and ci are Lagrange multi-
pliers. L5 :w:2/ 21C/n

P
si1

P
ai (12si2yi (,w, vi.1b))2

P
si ci. As before, taking the

partial derivatives or gradient of L, with respect to w, b, and si, and setting them equal to zero
gives @L/@w5w2

P
ai yivi5 0; @L/@b52

P
ai yi5 0; @L/@si5C/n2ai2ci5 0. As in the

strict margin classifier, substituting these partials into L winds up with the dual objective func-
tion below, and as such it needs to be maximized or its negative minimized. Accordingly, the
constraint minimization occurs: min 1/2

PP
ai aj yj yi ,vi, vj.2

P
aj, with minimization over

ai, and constraints
P

ai yi5 0, and ai greater than or equal to zero, but less than or equal to
C/n. This is a consequence of C/n2ai2ci5 0 and having ci greater than or equal to zero.

As mentioned previously, the solution involves a quadratic program. Unlike the afore-
mentioned example, the Gram matrix G will not be used explicitly. Here, an n by n matrix
H with entries Hij5yjyi ,v; c;vj . will be utilized. Note that if vector matrix notation is
employed then the quadratic minimization is min 1/2 a0 H a2a0 I. It is such that a0 y5 0,
with 0 less than or equal to ai less than or equal to C/n. In this case, a is the vector of ai, y
is the vector of yi, and I is the identity vector.
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18.9 Kernel methods

This section is a continuation of Sections 1.10 and 5.7. Recall, in machine learning algo-
rithms, the kernel is employed directly without computing the feature transformation, Φ
mapping vectors in the original space. Here, the identity is exploited, K(v,w)5, Φ(v),
Φ(w).5 (,v, w.)d. An interesting application, not previously illustrated, involves
the nonhomogeneous polynomial kernel. Specifically, K(v,w)5 (,v, w.1a)d, where a is
a real number. By the binomial expansion: ,v;w.1að Þd 5 Pd

k50 d!= k! d2 kð Þ!ð Þ
,v;w. kad2k. An example illustrating this kernel follows.

Example 18.9:

Let v and w be in R2 and a in R; then let A5 ,v;w.1að Þ2 5 v2
1w

2
1 1 2v1v2w1w2 1

�
w2

2v
2
2Þ1 2a v1w1 1w2v2ð Þ1 a2. Rearranging: A5 v2

1w
2
1 1w2

2v
2
2

� �
1 2 v1v2w1w2ð Þ1 a v1w1 1ð

w2v2Þ1 a2 5
P2

i51 v
2
iw

2
i 1

P2
i51

Pi21
j51ð21=2vivjÞð21=2wiwjÞ1

P2
i51 2að Þ1=2vi 2að Þ1=2wi 1 a2: This

representation is important because it can generalize easily into higher dimensions. Also it
will enable Φ to be found. Here, the kernel5, Φ(v), Φ(w).. Both arguments within the
inner product are the same, so factoring would yield Φ(v).

Accordingly, the mapping Φ:R2-R6 is being employed in this example. The feature
map Φ employs the two tuples of v5ðv1v2Þ0, in R2. It maps them into all possible second,
d5 2, degree nonhomogeneous monomials, resulting in ΦðvÞ5ðv1

2v1
221=2v1v2ð2aÞ1=2v1

ð2aÞ1=2v2aÞ0. Note here that commutativity does not matter. However, by using the same
protocol as in the homogeneous case, then the mapping is Φ:R2-R7, where distinct label-
ing does matter, that is, even though v1v25v2v1, each one occupies a distinct tuple. Thus:
ΦðvÞ5ðv1

2v1
2v1v2v2v1ð2aÞ1=2v1ð2aÞ1=2v2aÞ0.#

Recall that a kernel is a function involving a nonempty set X, such that K: X x X-R. It is
linked to a map: Φ: X-H, where H is a Hilbert space over the reals. Additionally, for x and y
are in X, and K defined by the inner product: K(x,y)5, Φ(x), Φ(y). , the function Φ is called
the feature map. Also, K is called the feature kernel, and H is sometimes called the feature
space. H need not be a RKHS. On the other hand, a kernel in a RKHS is also a feature kernel.
Feature kernels are symmetric and positive semidefinite: Let i and j be in any finite set of posi-
tive integers, and xi, xj in X and aiaj real valued, then

P
i;j aiajK xi; xj

� �
5P

i

P
j aiaj ,Φ xið Þ;Φ xj

� �
. 5

P
i ai ,Φ xið Þ;Pj ajΦ xj

� �
.5,

P
i aiΦ xið Þ;Pj ajΦ xj

� �
.5:

P
j ajΦ xj

� �
:2

which is greater than or equal to zero. In terms of vectors, a0 K a is greater than or equal to

zero, where a is a column vector consisting of all the ai, a
0 is a row vector of ai, and K is a

Gram matrix.
Kernels are defined in terms of sequences in l2. Kernel methods form a firm foundation

for machine learning involving support vector-type classification. In this type of classifica-
tion, hyperplanes are utilized usually in binary categorization. These planes are employed
in separating two distinct data classes or objects. Indeed, these planes normally do not
pass through the origin and are instances of an affine transformation. Such transforma-
tions preserve lines and keep parallels parallel. Additionally, they preserve convexity as
well as extreme points. They do not preserve distance or angles. In machine learning, they
are also useful because they are an automorphism of affine spaces; they preserve
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dimension and subspaces. The data to be categorized into two groups is first assumed to
be linearly separable. This preassumes that there exists a hyperplane that can separate the
data into two parts. Soft categorization is given for which the data is nonlinear separable.
Soft categorization refers to the fact that data is marginally nonseparable, that is, there are
occasional outliers. Also, applications of kernels in regression analysis exist. Here, parame-
ter settings are determined that minimize overfitting or under fitting of the data by
regressed curves.

Some combinations of feature maps are also feature maps. In particular, the sum and
the product of feature maps is a feature map along with nonnegative scalar products.
However, the difference of two feature maps might not be a feature map. These properties
are used in the construction described later.

Consider a nonempty set X, and a sequence Φ1, Φ2, Φ3 . . ., of l
2 functions such that Φi:

X-R. Then ΦðxÞ5ðΦ1Φ2Φ3 . . .Þ is the feature map, and K x;y
� �

5
PN

i5 1 Φi xð ÞΦi y
� �

is a ker-
nel on X. This follows using the CBS inequality, that is, jK x;y

� �j5 jPN
i5 1 Φi xð ÞΦi y

� �j is
less than or equal to

PN
i5 1 jΦi xð Þj2 PN

i5 1 jΦi y
� �j2.

Hyperplane A will be described herein in finite real inner product spaces H5Rn. These
planes will be an affine subset of H of degree less than n. For b in R, and for w in H, A5
{v in H, such that ,w, v.1b5 0}.

Example 18.10:

Let H5R2, for b5 2, and w5 (1 4)0 in H, A5fv5ðv1v2Þ0 in H, such that
, ð14Þ0; ðv1v2Þ0 . 1 25 0g. Accordingly, A is the straight affine line: v114v2 52 2.#

Support vector machine is supervised learning and needs training data. The kernel trick
transforms data to a higher dimension, performs classification, and then transforms back.
Points in space have tuples that are called features. The hyperplane partitions H into two
half planes: A1 5 {v in H|,w, v.1b greater than or equal to 0} and A2 5 {v in H|,w,
v.1b ,0}, thus giving the hyperplane the decision boundary for binary classification. H
is a metric space because it is an inner product space and therefore it is also a normed vec-
tor space. Indeed, the inner product provides a natural metric d. The distance between v
and w in H is dðv;wÞ5,v2w; v2w. 1=2 5 :v2w:. The last quantity is the norm
induced by the inner product. For a set of vectors, X5fv1; v2; . . . ; vng in H, the distance
from a single point vi in this set to the affine classifier A is given by j,w;vi . 1 bj=:w:.
This smallest distance from a vector in X to A is given by minimizing this expression.
Multiplying an affine space by constant, that is, multiplying w and b by the same constant,
does not change the space A; actually the two spaces are equivalent. Thus the minimum
distance can be found by minðj,w;vi . 1 bjÞ for i5 1, 2, . . ., n. See Section 2.9, involving
affine spaces.

Example 18.11:

As in the previous example, a hyperplane will be created. Then the distance will be
found from A to the closest vector in the set X. Again, let H5R2, with bias b5 3, and w5
(1 2)0 in H, A5fv5ðv1v2Þ0 in H, such that ,(1 2)0, ðv1v2Þ0.135 0}. Consider the set X5 {(0
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0)0, (2 3)0, (22�4)0}. The hyperspace line is v112v2 52 3. The distance from (0 0)0 to A
is|,w, (0 0)0.1b|/:w:5|013|/51/25 3/51/2.

The distance from (2 3)0 to A is|,w, (2 3)0.1b|/:w:5|813|/ 51/25 11 / 51/2.
The distance from (22�4)0 to A is|,w, (22�4)0.1b|/:w:5|21013|/ 51/25 7 / 51/2.

Classification of all the points in X yields the following: (0 0)0 and (2 3)0 are in A1; also
(22�4)0 is in A2. In any case, the zero vector is the closest. Remembering that an affine space
can be scaled, and so, multiplying by the absolute norm value of the weight w, the distance
formulation is normalized, and the distances become 3, 11, and 5, respectively. By knowing
the minimum distance, further scaling could be employed. Indeed, a scaling by 3:w:would
normalize the results.#

18.10 Radial basis function kernel

Radial basis function (RBF) kernel uses, for instance, v5 (x y)0 in R2, and the mapping
φ(v) provides an infinite-dimensional vector ΦðvÞ5ð1x y xy yx x2y2x2yy2x . . .Þ0. The kernel
method avoids calculating Φ(v), which produces the single, the double, the triple interac-
tions, etc., between the tuples of v. Instead the inner product is performed in R2, and then
the kernel: kðv;wÞ5,ΦðvÞ;ΦðwÞ.5e21=2:v2wjj2 . To show formally that this is an inner
product kernel, write e21=2:v2wjj25e21=2½ðv2wÞ0 ðv2wÞ�5e21=2½v0v22v

0
w1w

0
w�5e21=2½v0v1w

0
w�ev

0
w. Let

C5e21=2½v0v1w
0
w�. Then e21=2:v2wjj25Cev

0
w5Cev

0
w11e215C0ev

0
w11 where C0 is a new constant.

Thus e21=2:v2w:2 5
PN

n50 11v0wð gn=n! This shows that the RBF kernel makes all nonhomo-
geneous polynomial kernels. This kernel projects into infinite-dimensional space. It per-
forms an infinite number of interactions between data.

The RBF model is founded on using the distance between points in space. If data consists of
the pair (xn, yn), this influences h(x) based on :x2xn:. The standard form is

h xð Þ5 PN
n51 wne

2γ:x2xn:
2

. The expression is a functional form for a hypothesis. In most cases,

the objective is to find w consisting of tuples wn, n5 1, 2,. . . N, based on data D5 (xn, yn). To

solve for w:
P N

n5 1 wne
2γjjx2xnjj2 5 ym for x5xm

0. So Φ w5 y. The solution is w5Φ21y, similar

to regression. For classification, use h xð Þ5 sgnðP N
n5 1 wne

2γjjx2xnjj2 Þ. Let

s5
P N

n5 1 wne
2γjjx2xnjj2 .

18.11 Bound matrices

Similar to time-limited signals described in Section 1.9, two-dimensional time-limited
matrices form an inner product space (Alotto et al., 1998; Dougherty and Giardina, 1987).
These are real-valued functions f with finite support in RZxZ. This is the carrier set corre-
sponding to VECTOR, and for SCALAR, the reals are employed. The function f in RZxZ

means that f: Z x Z-R, but all these functions described by bound matrices have nonzero
values on a finite subset of lattice points. They will be denoted by A. Note that V-ZERO
corresponds to the 0 entity in A. Signals or functions in A form a real-valued vector space
using point-wise operations. As in the referenced section, A also forms an inner product
space, using the dot product on the intersection of these matrices, but again, it is not a
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Hilbert space. Additionally, the cozero set, complement of zero, for f in A, is denoted by
COZ(f). This finite set consists of all lattice points, (n, m) in Z x Z where f (n, m) differs
from V-ZERO.

A convenient representation for any signal f in A, such that COZ(f) is not empty, is described
similar to the Young diagrams in Section 15.7. Indeed, a critical lattice point (p, q) is the location
of the leftmost, uppermost element of any matrix enclosing all nonzero values of f. For instance,
find the point (p, q) equaling the smallest value n, for which f (n, � ) that is nonzero is located,
and also the largest value of m such that f (� , m) that is nonzero is located. Next, a matrix-type
structure is employed to enclose all the nonzero values of f, along with (p, q). The latter point
itself might be zero. This is similar to a minimal enclosing rectangle, although the matrix need
not be minimal. However, in general, there has to be at least one nonzero value in the matrix
and no nonzero values outside. Once the leftmost coordinate p and uppermost value coordinate
q are located, the value (p, q) is used as a pointer on the lower right-hand side of the matrix.
This data structure is called a bound matrix. Throughout, it is at least initially assumed that the
cozero set is nonempty. An example might be helpful.

Example 18.12:

Consider the two-dimensional digital signal f in A, where f is zero except on COZ(f)5 {(0, 0),
(21, 1), (1, 2), (1, 0), (1, 1)}. Also say that f (0, 0)5 5, f (21, 1)5 3, f (1, 2)5 2, f (1, 0)5 23, and
finally, f (1, 1)5 6. The first x coordinate set of COZ(f) consists of points in Z, which is {0, 21,
1}, and the minimum is p521. The second y coordinate set is {0, 1, 2}; the maximum is q5 2.
Accordingly, two bound matrix structures representing the function f are given by:

j0 0 2j
j3 0 6j
j0 5 23j21;2

j0 0 0 0 2 0j
j0 0 3 0 6 0j
j0 0 0 5 23 0j
j0 0 0 0 0 0j23;2:#

Thus it is seen that there exists an equivalence class of bound matrices representing a
function in A, but this direction will not be pursued. However, in the aforementioned
example, a form of compression is illustrated. The bound matrix to the left is called a mini-
mal bound matrix, since no smaller matrix than this three-by-three matrix can capture all
the nonzero values of f.

The inner product space A also forms an algebra. For f and g in A, the point-wise multi-
plication is the convolution defined by

BINE(f, g)(n,m)5 (f%g)(n,m)5
PN

k52N

PN
j52N g n-k;m-j

� �
f k; j
� �

. With this type of multi-
plication BINE, A becomes a unital, commutative, associative algebra. The unital function
V-ONE is I5ð1Þð0;0Þ, and I%f5 f%I5 f. Although the limits in the aforementioned summa-
tion are infinite, there are only a finite number of nonzero terms. A more concise expres-
sion for the actual summation limits involves the cozero sets. In particular, COZ(f%g) is a
subset of the dilation of the two sets COZ(f) and COZ(g). The dilation is given by D(COZ
(f),COZ(g)). This quantity equals the union of all sets of integer pairs {(n1 k, m1j)}, where
(n, m) is in COZ(f) and (k, j) is in COZ(g). The convolution of f and g will be zero outside
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this dilated set. Thus the dilation provides a support region for the convolution. Therefore,
the convolution can be calculated using

ðf%gÞðn;mÞ5
X

fðn2 k;m2 jÞgðk; jÞ;
where (k, j) is in COZ(g) and (n2 k, m2 j ) is in COZ(f). The procedure for finding (f%g)
(n,m) is to first find the dilated set D(COZ(f),COZ(g)). Only if (n,m) is in this set, then use
(k, j) in COZ(g); if (n2 k, m2 j ) is in COZ(f), then multiply f(n2 k, m2 j) by g(k,j). This
must be calculated for all possibilities, and the sum should then be taken. This result is the
convolution at (n, m). Because this sum might equal zero, it shows that the dilated set
might not be the cozero set for the convolution.

Example 18.13:

Consider the two bound matrices f and g, in A, given by minimal bound matrix struc-
tures, respectively:

j0 1j
j2 3j0;2

j2 0j
j2 1 4j1;3

COZ(f)5 {(1, 2), (0, 1), (1, 1)} and COZ(g)5 {(1, 3), (1, 2), (2, 2)}. The dilation of these
two sets is D(COZ(f),COZ(g))5 {(2, 5), (2, 4), (3, 4), (1, 4), (1, 3), (2, 3), (3, 3)}. This set of lat-
tice points will only provide a support region for the convolution. Outside this region, all
zeros appear at lattice points. Beginning with the first element in this set, (n, m)5 (2, 5),
use (k, j)5 (1, 3) in COZ(g), and then see if (n2 k, m2 j)5 (1, 2) is in COZ(f). Yes, it is, so
find the product, f(1, 2) �g (1, 3)5 1 � 25 2. Next, the second element in this set (n, m)5 (2,
4), use (k, j)5 (1, 3) in COZ(g), and then see if (n2 k, m2 j)5 (1, 1) is in COZ(f). Yes, it is,
so find the product, f(1, 1) � g (1, 3)5 3 � 25 6. But (k, j)5 (1, 2) also works, that is, (n2 k,
m2 j)5 (1, 2) is in COZ(f); accordingly f(1, 2) � g (1, 2)5 1 � (21)521. These must be
added together; thus (f%g)(2, 4)5 6�15 5.

Next, the third element in this set (n, m)5 (3, 4), use (k, j)5 (1, 3) in COZ(g), and then
see if (n2 k, m2 j)5 (2, 1) is in COZ(f). No, then try (k, j)5 (1, 2) in COZ(g); then see if
(n2 k, m2 j)5 (2, 2) is in COZ(f). Again no, then try (k, j)5 (2, 2) in COZ(g); then see if
(n2 k, m2 j)5 (1, 2) is in COZ(f). Yes, it is, so find the product, f(1, 2) �g (2, 2)5 1 � 45 4.
Next, the fourth element in this set (n, m)5 (1, 4), use (k, j)5 (1, 3) in COZ(g), and then
see if (n2 k, m2 j)5 (0, 1) is in COZ(f). Yes, it is, so find the product, f(0, 1) �g (1, 3)5
2 � 25 4. Next, the fifth element in this set (n, m)5 (1, 3), use (k, j)5 (1, 2) in COZ(g), and
then see if (n2 k, m2 j)5 (0, 1) is in COZ(f). Yes, it is, so find the product, f(0, 1) � g (1,
2)5 2 � (21)5 22.

Next for the sixth element in the dilated set, (n, m)5 (2, 3), use (k, j)5 (1, 2) in COZ(g),
and then see if (n2 k, m2 j)5 (1, 1) is in COZ(f). Yes, it is, so find the product, f(1, 1) �g
(1, 2)5 3 �21523. However, (k, j)5 (2, 2) also works since if (n2 k, m2 j)5 (0, 1) is in
COZ(f). Then f (0, 1) � g (2, 2)5 2 � 45 8. Adding yields 23185 5. Finally, the last value in
the dilated set is (n, m)5 (3, 3), and (k, j)5 (2, 2) works because (n2 k, m2 j)5 (1, 1) is in
COZ(f). Therefore, f (1, 1) � g (2, 2)5 3 � 45 12.

Consequently, the bound matrix for f%g is the following:
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j0 2 0j
j4 5 4j
j2 2 5 12j1;5 :#

As in the bound vector description in Section 3.2, there exists a parallel algorithm for
finding bound matrix convolution. It too is illustrated in Figure 3.2. In short the method is

f%g5ADD½SCALARðgðn;mÞ;TRANðf; n;mÞÞ; forðn;mÞinCOZðgÞ:
SCALAR is just multiplication of translates of the matrix for f, by values of g, located at

(n, m). TRAN just translates the matrix for f by changing the location pointer on the lower
right outside corner of the matrix. The change occurs by adding, resulting in (p1n, q1m).
The values within the matrix do not change by only using this operation. The difference
between the parallel convolution equation mentioned earlier and the referenced figure is
none. SCALAR and TRAN operations commute!

Example 18.14:

Referring to Example 8.13 where COZ(g)5 {(1, 3), (1, 2), (2, 2)}, also g (1, 3)5 2, g
(1, 2)5 21, g (2, 2)5 4. Then f is given below, followed by g (1, 3) �TRAN(f; 1, 3),
followed by an application of g(1, 2) �TRAN (f; 1, 2), finally multiplying g (2, 2) �
TRAN (2, 2):

j0 1j
j2 3j0;2

j0 2j
j4 6j1;5

j0 2 1j
j2 2 23j1;4

j0 4j
j8 12j2;4:

Rewriting the last three bound matrices with a common location indicator gives the
following:

j0 2 0j
j4 6 0j
j0 0 0j1;5

j0 0 0j
j0 21 0j
j2 2 23 0j1;5

j0 0 0j
j0 0 4j
j0 8 12j1;5:

Adding the aforementioned three bound matrices together gives exactly the same
answer as previously given in Example 18.13.#

A bound matrix with minimal support for f%g, where f and g are in A, can be found.
Assume that the convolution is not equal to zero. First find D(COZ(f),COZ(g)). Then in
this set find the minimum value of the first tuple and the maximum value of the second
tuple; call this (p, q). Use this as the location of the left uppermost entry in the bound
matrix for the convolution. The actual bound matrix of support is N by M where
N5p02p,11, where p0 is the largest value of the first tuple in the dilated set, and
M5q2q011, where q0 is the minimum value of the second tuple in the dilated set.

Example 18.15:

Again refer to Example 18.13, where D(COZ(f),COZ(g))5 {(2, 5), (2, 4), (3, 4), (1, 4), (1,
3), (2, 3), (3, 3)}. Then (p, q)5 (1, 5), and since p0 5 3 and q0 5 3, then N5 3�1115 3,
M5 5�3115 3.#
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Similar to Section 3.9, where wraparound bound vectors were described, wraparound
bound matrices also form a Banach* algebra. In this case, functions f in RZrxZr are utilized.
These are functions with domain {0, 1, . . . r2 1} x {0, 1, . . . r2 1}, with codomain the real
numbers. Moreover, Zr has a cyclic group structure, modular r. The set of all these func-
tions for fixed positive integer r will be denoted by Ar. Bound matrices provide a conve-
nient representation for elements in Ar. Point-wise addition, scalar multiplication, and so
on show that this structure becomes a real-valued vector space with V-ZERO being the
bound matrix of all zeros. Additionally, convolutional multiplication gives a structure of a
unital, abelian, and associative algebra. The unity element, V-ONE, is a bound matrix of
all zeros, except that at the (0, 0) location there is a one. Finally, a Hilbert space structure
is created using the l2 norm. The completeness follows as in Appendix A.1.

Just like the one-dimensional case of wraparound bound vectors, a superscript (Wr) will
appear on the upper right-hand corner for modulo r bound matrices. It also indicates an r2

size of bound matrix is being utilized. Additionally, a subscript outside the lower right-
hand side indicates the upper left-hand entry of the wraparound bound matrix. An exam-
ple should help make some of these concepts more understandable.

Example 18.16:

Consider the wraparound bound matrix, f in A3; it is given below as described earlier.
This is followed below by the scalar multiple of f by 2, that is, SCALAR(f; 2). Finally, the
third matrix below is a more compact representation for this actually three-by-three matrix:#

j 0 2 21 jW3

j 0 0 2 3 j
j 0 0 0 j0;3

j 0 4 22 jW3

j 0 0 2 6 j
j 0 0 0 j0;2

j 2 21 jW3

j 0 23 j1;3

Additionally, the two norm of f is :f:
2
5ð41119Þ1=25141=2, whereas the one norm is

:f:
1
5 6.#

The cozero set for f in Ar consists of {(n, m) in ZrxZr such that f (n, m) in R2{0}}. As
before, the dilated set for two functions in Ar is of the uttermost importance in calculating
the convolution. The dilated set is a support region for the convolution, and consequently
only points within this set should be employed for this operation. The convolution can be
calculated using:

ðf%gÞðn;mÞ5
X

fðn2 k;m2 jÞgðk; jÞ;
where (k, j) is in COZ(g) and (n2 k, m2 j) is in COZ(f). The procedure for finding (f%g)
(n,m) is, as before, to first find the dilated set D(COZ(f),COZ(g)). Only if (n,m) is in this
set, then use (k, j) in COZ(g); if (n2 k, m2 j) is in COZ(f), then multiply f(n2 k, m2 j) by
g(k,j). This must be calculated for all possibilities, and the sum should then be taken. This
result is the convolution at (n, m). Before an example is provided, it is best to introduce
the parallel algorithm.

The parallel algorithm for finding wraparound bound matrix convolution is illustrated
in Figure 3.2. As before, the method is:

f%g5ADD½SCALARðgðn;mÞ;TRANðf; n;mÞÞ; forðn;mÞinCOZðgÞ:
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Again, SCALAR, in this formula, is multiplication of translates of the matrix for f. The
multiplication factor is the value of g, located at (n, m). This is similar to the multiplication
in the bound matrix situation. TRAN just translates the matrix for f by changing the loca-
tion pointer on the lower right outside corner of the matrix, but this is performed modulo
r. The change occurs by adding. Resulting in (p1n, q1m), all operations modulo r. The
values within the matrix do not change with only this operation.

Example 18.17:

Again consider the wraparound function f in A3 from the previous example. It is given
again below followed by g also in A3. The objective is to find f%g. The operation will be
performed using the parallel algorithm, and then a value or two will be checked using the
point-wise calculation.

j2 21jW3

j0 23j1;2
j1 4jW3

j0 5j1;2:
First finding the cozero sets, COZ (f)5 {(1, 2), (2, 2), (2, 1)}, and COZ (g)5 {(1, 2), (2, 2), (2,

1)}. The dilation is D(COZ (f), COZ (g))5 {(2, 4), (3, 4), (3, 3), (4, 4), (4, 3), (4, 2)}5 {(2, 1), (0, 1),
(0, 0), (1, 1), (1, 0), (1, 2)}. The last set of integer pairs occurs since all domain operations are per-
formed modulo three. Reading off the values for matrix g gives g (1, 2)5 1, g (2, 2)5 4, g
(2, 1)5 5. Preparing for the parallel algorithm, first f is given below. This is followed by g (1, 2)�TRAN(f; 1, 2). Next, it follows g(2, 2)�TRAN (f; 2, 2). Finally, use g (2, 1)�TRAN (f; 2, 1).

j 2 21 jW3 j 2 21 jW3 j 8 24 jW3 j 10 25 jW3

j 0 23 j1;2 j 0 23 j2;1 j 0 212 j0;1 j 0 215 j0;0:
Rewriting the last three matrices with a common pointer gives:

j0 0 0jW3

j2 1 0 2j
j2 3 0 0j0;2

j0 0 0jW3

j8 24 0j
j0 212 0j0;2

j0 215 0jW3

j0 0 0j
j10 25 0j0;2:

Adding these is simple compared with the earlier, more compact representation. As a
consequence, the result is f%g.5

j0 215 0jW3

j7 24 2j
j7 217 0j0;2:

As a check, consider f%g (0, 0)5 f (1, 2) �g (2, 1)1f (2, 1) �g (1, 2)5 2 � 51(23) � 15 7.
Also f%g (0, 1)5 f (1, 2) � g (2, 2)1f (2, 2) � g (1, 2)5 2 � 41(21) � 15 7.#

18.12 Convolutional neural networks and quantum convolutional neural
networks

The principal operation in a convolutional neural network (CNN) is convolution. This
operation is often performed at several layers in a CNN architecture. Fig. 18.4 provides a
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typical illustration of the operations within a CNN used in imaging. Very often, in
between convolution operations, some type of compression is performed. These operations
are illustrated in the figure and are called pooling layers. In these operations, a small num-
ber of pixels, usually in a rectangular pattern, are converted into to a single scalar value.
This is often done by max pooling, wherein the largest value among all the pixel values is
chosen as the representative. Sometimes, the average or median value is calculated and
employed. In any case, a source coding has occurred, and the result is a reduced computa-
tional burden. The final operation is a typical fully connected NN layer. Often backpropa-
gation is performed to adjust critical parameters involving the convolutional kernels.
Convolutional kernels in the past were often handcrafted. However, with the back end
NN being utilized often, more useful kernels can be machine learned.

In the referenced figure, C represents a convolutional layer. The leftmost convolutional
layer, for instance, might seek out edges or low-level characterization of texture. Adjacent
to C is P representing a pooling layer. This layer might reduce the noise level. The next
convolutional layer might be used for recognizing more complex structures. The last layer
is often a fully connected NN.

In CNN, there exists an observed image f, for instance, consisting of N by M pixels
represented by a bound matrix. The convolution process involves a heuristically deter-
mined smaller n by m bound matrix g, called the kernel that is convolved with f. The
observed image in this case is said to be filtered by g. Usually, the filtering matrix is
required to fit into the interior of the observed image. Because of this arrangement, the
resulting convolution is of dimensions N2n11 by M2m11. To prevent shrinkage, often
the observed image is enlarged by adding a boarder.

Recently, there has been a surge of papers and articles on quantum versions of CNN, QCNN
(Hur et al., 2022). They are used in classical machine learning classification contexts and exploit
entanglement. QCNNs are also employed in conventional image processing applications such
as spatial filtering, edge detection, as well as handwritten symbol recognition (Wei et al., 2022).
As in the past, research continues using machine learning devices to classify high-energy events
in physics. An instance of this research is the article Chen et al., (2022). Another instance of this
type of application can be found in Hermann et al. (2022). In this report, QCNNs are utilized on
a superconducting quantum processor for recognizing quantum phases. Some papers explain
how QCNNs can be implemented using quantum circuits (Zheng et al., 2022). In this article, a
universal QCNN model is proposed consisting of all three: the convolutional layer, the pooling
layer, and a fully connected NN layer. Several papers have emerged on medical-type applica-
tions using QCNNs (Magallanes et al., 2022).

IM
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P N
N

C- CONVOLUTION LAYER
P- POOLING LAYER

FIGURE 18.4 Convolutional neural network.
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C H A P T E R

19

Reproducing kernel and other Hilbert
spaces

19.1 Algebraic solution to harmonic oscillator

In Section 6.1, the ground-state solution to the harmonic oscillator is shown to be equal

to Ψ05ðm w0=ðπhÞÞ1=4e2mw0x2=ð2hÞ. The solution was obtained by solving a first-order
differential equation and normalizing a Gaussian-type kernel. The normalization
involved finding N5 (m w0/(π h))1/4. For the general quantum harmonic oscillator, the
time-independent Schrodinger equation is as follows: 2h2=ð2mÞ@2ΨðxÞ=@x@x1
1=2 m w2

0x
2ΨðxÞ5EΨðxÞ. The objective is to find the allowed energy states E, as eigenva-

lues and their corresponding eigenfunctions, Ψ (x). These functions should be normalized
and either symmetric or antisymmetric about x5 0. Moreover, the probability density
function, jΨðxÞj2, must be finite over the interval (2N, N).

Following the excellent presentation provided in Hall (2013), the solutions for higher
energy, that is, the solutions for excited state levels, will be found in a purely algebraic
manner. In the referenced text, one can find important domain issues concerning the
unbounded creation and annihilation operators used in this development. From an alge-
braic viewpoint, the key identities involve the ground state, Ψ0. First, using the annihila-
tion operation a yields a jΨ0 . 5 0. Second, there exist cyclic properties for the creation
operation ay:ðayÞnjΨ0 .5Ψn, where n is a nonnegative integer. See Section 15.2 for details
on the cyclic property of a†. A result of the cyclic property is that the excited state
Ψn5HnΨ0. Here, Hn is a polynomial of degree n, and it can be found using induction,
starting with H0 5 1. Additionally, these polynomials are called the Hermite polynomials.
They are orthogonal on (2N, N), a consequence of being solutions to a Sturm-Liouville
differential equation. See Appendix A.7. Using the Rodrigues formula for Hermite polyno-
mials: Hn5ð21Þnex2dne2x2=dxn, n5 0, 1, 2, . . . gives, for instance, H05 1, H15 2 x, H25 4
x2�2, and H35 8 x3�12 x, . . .

Accordingly, the wave function solutions are Ψn5N Hnðb xÞe2ðbxÞ2=2, where
b5½ðmw0Þ=h�1=2. These solutions have corresponding eigenvalues given by allowable dis-
crete energy levels En5ð2n11Þh w0=2;n5 0; 1; 2; . . . : Fig. 19.1 illustrates the even symme-
try for even-numbered wave functions and odd symmetry for the odd-numbered wave
functions. Moreover, when the horizontal coordinate is zero, there is either an extreme
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point or a zero crossing for each wave function. The zero crossings occur mod2, starting
with Ψ0, and local maxima occur mod4, and so do the local minima.

19.2 Reproducing kernel Hilbert space over C and the disk algebra

To begin, a useful and intuitive definition of H being a reproducing kernel Hilbert space
(RKHS) over X means that H is a Hilbert space of complex-valued continuous functions
over the nonempty set X. So, H is a subset of CX. Also, for all functions or vectors, f and g
in H, and E. 0, there exists a δ. 0, such that if :f2g:,δ, then |f(x)2g(x)|,E.
Accordingly, this means that the functions are point-wise continuous. Using RKHS,
boundedness and continuity are not related. To see that this is a subtle requirement, con-
sider the following illustration.

Example 19.1:

Let H be the Hilbert space of complex-valued absolute squared functions, on [0, 1].
Consider the two functions f5 t on this closed interval and g5 t on [0, 1) and g(1)5 4 1
3i. In this case, :f2g:5 0; however, sup |f2g|5 5. These functions are bounded, but not
continuous.#

In the previous example, it was shown that boundedness in the Hilbert space plays no
role in point-wise calculations as far as continuity is concerned. A function K: X2-C is
called a reproducing kernel of H, whenever H contains all unary functions for x in X,
where Kx (y)5K (x, y), and for every x in X and f in H, then f (x)5, f, Kx.. The last
property is the actual reproducing property.

The key to a rigorous approach for creating a RKHS and relating it to the reproducing
property is the Riesz representation theorem (RRT): For a Hilbert space H, with inner
product , � , �.: H x H-C and any continuous linear functional φ in H*, there exists a
unique vector fφ in H such that φðvÞ5,v; fφ . , for all v in H. Additionally, the norms are
equal, that is, :fφ:5 :φ:. The first norm is in H, and the second norm is in H*, where-
:φ:5 inf {C. 0 such that |φ (v)|,C:v: for all v in H}.

E4

E3

E2

E1

E0

ψ4

ψ3

ψ2

ψ1

ψ0

FIGURE 19.1 The first five wave functions for the har-
monic oscillator.
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Getting back to the RKHS, there is a linear evaluation functional Ex:H-C (or R in the
next section), such that ExðfÞ5 fðxÞ is bounded. By the RRT, every bounded linear func-
tional is given by an inner product with a unique vector in H; thus for every x in X, there
is a unique function Kx in H such that for all g in H, gðxÞ5, g;Kx.. Following Putnam
(2019), Kx is called the reproducing kernel at the point x. The reproducing kernel for H is
K: X x X-H, and it is defined by Kðx;yÞ5, ky; kx . . Also, jExj25, kx;kx .5
:kx:

2
5Kðx; xÞ. So a reproducing Hilbert space H, over C, contains a reproducing kernel

K, having the reproducing property, ,K(., x), f.5 f(x), for all x in X and f in H.
Additionally, if there exists a reproducing kernel, then H is a RKHS. That is, the linear
evaluation function Ex is bounded. Here, ExðfÞ5,Kð:; xÞ; f. 5 fðxÞ, and so by the CBS
inequality, it follows that jExðfÞj is less than or equal to :Kð:; xÞ::f:5
,Kð:; xÞ;Kð:; x. 1=2:f:5Kðx; xÞ1=2:f:, and so ExðfÞ is bounded and jExj is less than or equal
to Kðx; xÞ1=2.

The kernel is self-reproducing and positive semidefinite. Use ,K(., x), K(., y).5K(y, x)5
,K(., y), K(., x).*. To see that the property, positive semidefiniteness holds, let i and j be in any
finite set of positive integers. Then

P
i;j a

�
i ajKðxi; xjÞ5

P
i a

�
i ,K :; xið Þ;Pj ajKð:; xjÞ. 5

,
P

a�i K :; xið Þ;Pj ajKð:; xjÞ. 5 :
P

j ajKð:; xjÞjj2 which is greater than or equal to zero. This

holds for all ai in C and xi in X. Kernels having these properties are sometimes called Mercer
kernels. There is a converse to this result. It says whenever a symmetric positive semidefinite
kernel K on a set X exists, then there is a unique Hilbert space H for which K produces a RKHS.
This theorem is due to Moore-Aronszajn (Aronszajn, 1950). An outline of the results from
this paper follows. For any x in X, let K(x,.) be an operator Kx. Define the set of all Kx as a,
the linear span for a vector space comprised of all linear combinations of such operators
over C. An inner product can be defined for two such linear combinations as
,
P n

i5 1 aiKxi;
P m

j5 1 ajKyj . 5
P n

i5 1

P m
j5 1 aja

�
i Kðxi; xjÞ. The properties of an inner product

hold since the kernel is symmetric and positive definite. Let H be the completion of this inner
product space. This shows that H consists of functions fðxÞ5 P n

i5 1 aiKxiðxÞ such that the limit

supremum as n goes to infinity and positive nonzero m. n, :
P n1m

i5 n aiKxi:5 0.
To see that the reproducing property holds, ,f, Kx . 5,

Pn
i51 aiKxi xð Þ;Kx . 5Pn

i51 ai ,Kxi;Kx . 5
Pn

i51 aiK xxi; xð Þ5 f xð Þ. In order to determine that the Hilbert space is
unique, let H! be another Hilbert space of functions having K as a reproducing kernel;
then for every x and y in X, this other Hilbert space would have inner product ,Kxi,
Kx . , which again is Kðxxi; xÞ. Using linearity, both inner products are the same on the
span using all Kx. Also assume that the completion is performed as before, but for H!.
This shows that H is a closed subset of H!. To prove that the inclusion goes the other way,
use f in H!, and write f5fH1fH

\, where fH is in H and fH
\ is in H\. Because K is the

reproducing kernel for both H and H!, it follows using inner products in H! that fðxÞ5,Kx,
f.5,Kx, fH .1,Kx, fH

\ .5,Kx, fH . . Because, ,Kx, fH
\.5 0 and since Kx is in H,

it follows that the inner product of Kx with fH
\ in H! is zero. Therefore, the inner product in

H! equals the inner product in H, showing that ,Kx, fH .5fH, and so H5H!.
If H is the space of functions from X to C, then a functional on this space can be found

for x in X; write Exf5 fðxÞ. Given a set X, a RKHS H is the space of functions from X to C;
the evaluation functionals for each x in X, Ex: H-C, are bounded, as originally stated.
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Example 19.2:

The Hardy space is a Hilbert space, HN; it consists of all analytic functions f, on the
open unit disk, D in C. The mean square value of these functions on any circle of radius r
is bounded as r approaches one from the interior. That is, :fjj2 5 sup½1= 2πð Þ Ð 2π0
jfðreiθj2dθ�,N, where the supremum is taken over all 0 ,r ,1 (Katznelson, 1976). As a
result of Fatou’s theorem (Krantz, 2007), the analytic function can be extended to a func-
tion in L2 on the boundary of the disk. It becomes the point-wise limit almost everywhere.
The limit is always taken from the interior and never a tangential limit. Also, using the
uniform norm for f, that is,:f:5max {f (z) such that z is in clos(D)}, HN is a commutative
Banach algebra. For f(z) in HN, f zð Þ5 PN

n5 0 anz
n analytic in unit disk D, and such thatPN

n5 0 janj2 ,N. This is called the disk algebra.
To construct the Hardy RKHS, let L: HN-l2, where LðfÞ5ða0 a1 . . .Þ. The Hardy space

HN is identified with l2. Because L is linear and is an isometric isomorphism between HN

and l2, this implies that HN is a Hilbert space. Using the formal power series inner prod-

uct, let f zð Þ5 PN
n5 0 anz

n and g zð Þ5 PN
n5 0 bnz

n be analytic in the unit disk D. The inner

product is , f;g. 5
PN

n5 0 a
�
nbn. All sums are from zero to infinity from here on. By the

CBS inequality, jP a�kbkj2 is less than or equal to
P jakj2

P jbkj2. So for every z0 in D,

gzo ðzÞ5
P

z0T
nzn51=ð12z0TzÞ. Note that ,f, gzo .5

P
akz0Tn5fðz0Þ, and |, f, gzo.| is

less than or equal to :f: :gzo:. The results will lead to an evaluation functional. The

induced norm is :fjj2 5 PN
n5 0 janj2. To see that each power series converges to a function

on D, simultaneously, consider the evaluation functional EzðfÞ. The objective then is to
show that it is bounded, for z in D, so let Ez fð Þ5

PN
n5 0 anz

n. This is a complex number, so

Ez is a functional. The absolute value jEz fð Þj5 jPN
n50 anz

n | is less than or equal toPN
n5 0 jan:zjn is less than or equal to ½P n50

Njanj2
PN

n50 jzj2n�1=2 that is less than or equal

to :f: [1/(12|z|2)]1/2. Accordingly, :EZ: is bounded by [1/(12|z|2)]1/2, and HN is a
RKHS over X5D. The kernel for a point w in D, in this case, is the Szego kernel:
Kðz;wÞ5KwðzÞ5 1=ð11wTzÞ. To see this, use the definition of the inner product for
g zð Þ5 PN

n5 0 w
nTzn and f zð Þ5 PN

n5 0 anz
n, both in HN. Here , g; f . 5

PN
n5 0 w

nan 5 f wð Þ.
This means that g is a reproducing kernel for w in X5D, and therefore, summing the
series for g5

PN
n5 0 w

nTzn gives the Szego kernel K(w, z)5 1/(12w*z). Also, :EZ:
25K(z, z)

5 1/(12z*z)5 1/(12|z|2).#
For every x in X, there is a Kx in H such that for all f in H ,f, Kx.5 f(x). The function

Kðx;yÞ5,Kx, Ky. is called the kernel function corresponding to H. K is positive definite, that
is, for all finite collections of vectors v1. . . vj, in X the gram-type matrix is positive definite. An
alternate definition of kernel function x in X, as well as a feature map Φ:X-l2, is given by the m
tuple, ðΦ1. . .ΦmÞ, where

P jΦkj2 ,N. In this case, ,ΦðxÞ;ΦðyÞ.5
P

ΦkðxÞTΦkðyÞ5Kðx;yÞ.
From H2-ΦkðzÞ5zk21. Every kernel function can be written as a feature space.

Example 19.3:

For the vector space of polynomials with domain in D, here D is the unit disk in C and
the closure in L2 is the Hilbert space. The associated inner product for zn and zm analytic
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in D is given by , zn; zm . 5
Ð
Dz

n�zmdx dy5
Ð 2π
0

Ð 1
0 r

ne2inθrmeimθr dr dθ. It equals zero for
all m not equal to n, and when they are equal, ,zn, zm.5 π/(n1 1).

The Bergman kernel is K(z, u)5 1/[π (12z* u)2], where|z|,1 and|u|,1. This follows by
using power series, and all sums employ index variable going from zero to infinity. To begin,
notice that K (z, u)5

P
[1/π (n1 1) zn* un] should be the reproducing kernel. Proceeding for-

mally, consider fðuÞ5P
am um, analytic in D; then ,K(z, u), f(u).5,K(z, u),P

an um.5
P P

an [1/π (n 1 1) ,zn* un, um.]5
P P

an [1/π (n 1 1) zn ,un, um.]5P
an zn5 f (z). Since

P
wn5 1/(12w), differentiating the last expression with respect to w

gives the following: Sum
P

n wn215 1/(12 w)2 or sum
P

(n 1 1) wn5 1/(12w)2. Now
substituting in for w gives

P
[1/π (n1 1) zn* un]5 1/(12z* u)2.#

Example 19.4:

The Mittag-Leffler real-valued RKHS of order q. 0 consists of functions in
F5 ff zð Þ5 PN

n50 an z
qn, such that

PN
n50 janj2Γ qn1 1

� �
,Ng, where the gamma function is

Γ zð Þ5 ÐN
0 tz21e2tdt. The kernel is given by the Mittag-Leffler function: Kqðλ; tÞ5Eqðλq; tqÞ,

where Eq zð Þ5 PN
n5 0 z

n=½Γðqn1 1Þ�. This function is entire and generalizes the exponential
function. When q5 1, E1ðzÞ5ez; moreover, when the Bargmann-Fock space is restricted to
the positive x-axis, the Mittag-Leffler real-valued RKHS is a consequence. On the other
hand, a complexification of the Mittag-Leffler real-valued RKHS will yield a Mittag-Leffler
space of entire functions generalizing the Bargmann-Fock space (Rosenfeld et al., 2018).#

Example 19.5:

The Drury-Arveson space is Hn
2, with B the open unit ball in Cn for n larger or equal to

two. When n5 2, this space is a Hilbert space of analytic functions on B with a reprodu-
cing kernel KZ(w)5 1/(12, z, w.). It is a RKHS with inner product , f;g. 5P

ainZn
1

a!=jaj!� �
baca,* where f zð Þ5 P

ainZn
1
baz

a;g zð Þ5 P
ainZn

1
caz

a. This is a generalization of

the Hardy RKHS (Jury and Martin, 2018).#

Example 19.6:

The Bargmann-Fock space is a RKHS of entire functions F, in the Hilbert space L2, with
Gaussian measure, namely the inner product in Cn is given by , f;g.5π2n

Ð
fðzÞT

gðzÞeð2jzj2Þdz. Specifically, F5 ff zð Þ5 PN
n50 anz

n, such that
PN

n50 janj2n!,Ng. The reprodu-

cing kernel is Kðz;wÞ5ewz�, and therefore, π2n
Ð
ewzTg zð Þe 2jzj2ð Þdz5 g wð Þ (Hall, 2013;

Barbier, 2013).#
In the second reference mentioned above, Jordan algebras are used in exploring Fock space

as well as Bargmann transforms. In that reference, the algebra involved real-valued symmetric
matrices. It is interesting to mention that in the present text, in Example 3.3), a Jordan-type alge-
bra results. This occurs when the subalgebra of real-valued symmetric matrices is employed in
that example. In general, a Jordan algebra is a unital, commutative, and usually nonassociative
algebra obeying an additional constraint, besides those MSA identities provided in Section 3.1.
This equational constraint involves multiplication using BINE or� . It is given by
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Jordan identity: BINE (u, BINE (BINE (u, u), v))5BINE (BINE (u, u), BINE (u, v)).
Again, the Jordan identity: u � (u2 � v)5u2 � (u � v). The more succinct notation may be

more understandable. The constraint is a sort of associative type law.

Example 19.7:

With the remarks given earlier, consider the carrier set J, of all 2 by 2 real-valued sym-
metric matrices, u and v. Using BINE (u, v)5 (u v 1 v u)/2, as in Example 3.3), then by
substitution, not only is this structure a unital, commutative, nonassociative algebra, but it
is also a Jordan algebra.#

Example 19.8: (Barbier, 2013)

Again refer to the original unital, commutative, nonassociative algebra M over C, given
in Example 3.3). Of interest is if u is in M, and there is a v in M such that BINE (u, v)5
BINE (v, u)5 I, then v is said to be an inverse of u. For instance, using u and v provided
below, along with u v and v u,

j 1 0 j j 1 a j j 1 a j j 1 2a j
j 0 21 j j a 21 j j 2a 1 j j a 1 j :

Then, BINE (u, v)5 (u v1 v u)/25 the identity I. For every value of a in C, there exists
an inverse for u.#

19.3 Reproducing kernel Hilbert space over R

The function k: X x X-R is a kernel iff there exists a Hilbert space H and a map Φ: X-H
such that ,Φ(x), Φ(y).. Given are X and a kernel function, a scalar product, and a mapping
Φ: X-H such that k(x,y)5,Φ(x), Φ(y).. To see this, given X and k there exists a mapping,
Φ: X-H where k(x,y)5,Φ(x), Φ(y).. This exists for all x and y in X. The RKHS is a space
of functions. For any x in X, use kx5Φ(x)5 k(x, � ), where we use x as a parameter, and let kx:
X-R, so kx is a functional. However, every point in X gets mapped into a function. Let S be
the range or image of {kx, such that x is in X}. Take the set of all linear combinations, that is,
the span of these functions makes S become a vector space. Define the inner product ,kx,
ky.5, k(x, � ), k(y, � ).5 k(x, y). This inner product can be extended for arbitrary functions
f and g, where f5

P
i ai k(xi, � ) and g5

P
j bj k(yj, �). Here, , f;g. 5

P
i;j aibjkðxi;yj; Þ, and

let S0 be the resulting inner product space. If the completion is performed making every
Cauchy sequence converge by adding limit points, a RKHS H is obtained.

The kernel is self-reproducing and positive semidefinite. Use ,K(., x), K(., y).5
K(y, x)5,K(., y), K(., x).*. Thus for the real case, the kernel is symmetric.

Example 19.9:

One of the simplest examples of a RKHS is l2. Here, these are all functions from the pos-
itive integers N into the reals and are square summable. These functions form a vector
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space and a Hilbert space with induced norm squared :f:25
P jfðnÞj2. An evaluation func-

tional En:l
2-R, for each n in N, is EnðfÞ5fðnÞ5, f; en . , where en in l2 is such that

enðnÞ5 1, and for all other values in N, enðmÞ5 0. Moreover, jEnðfÞj is less than or equal to
:f:, so it is a bounded functional. As an instance, let f (n)5 1/n; then f is in l2. As an eval-
uation functional, notice that E351=3; and :f:5π=61=2.#

Example 19.10:

Consider the vector space of affine functions f(t)5 a 1 bt, where a and b are in R. Use

the inner product in L2(0, 1), that is, ,f, g.5
Ð 1
0 f g. Then to find the kernel, K(t,s), which

recreates the affine function, that is, a 1 bt5
Ð 1
0 (a 1 b s) K(t,s) ds, first use 15

Ð 1
0 Kðt; sÞ

ds, and next use t5
Ð 1
0 s K(t,s) ds. Substituting into the last two equations K(t,s)5 a(t) 1 b

(t) s gives 15 a(t) 1 b(t)/2 and t5 a(t)/2 1 b(t)/3. Solving for a(t) and b(t) gives 1�2
t52b(t)/6, so b(t)5 26 112t and a(t)5 4�6t. The kernel is K(t,s)5 4�6 (s1 t) 112st. To

verify the result, note that
Ð 1
0 (a 1 b s) K(t,s) ds.5 4a 23a 26at 1 6at 12b 22b 23bt

14bt5 a1 bt.#

Example 19.11:

Consider band-limited functions f(t) in L2 that have a Fourier transform
F wð Þ5 Ð N

2Nf tð Þe2iwtdt, of compact support, on [2 a, a], a. 0. Because F(w) is also in L2

and it is of finite support, then F(w) is also in L1. Consequently f(t) has numerous proper-
ties; see the excellent reference (Goldberg, 1961):

1) Inverse Fourier transform: f tð Þ5 1= 2πð ÞÐ N
2NF wð Þeiwtdw5 1= 2πð ÞÐ a

2aF wð Þeiwtdw
2) Uniform continuity: for any E. 0, there is δ. 0 such that|t2t0|,δ implies|f(t)2f (t0)|

,E.
3) Bounded:|f(t)|is less than or equal to 1/(2π):F:1
4) Riemann-Lebesgue Lemma: limit as|t|- N implies f(t)-0.

The inner product ,f(t), g(t).5
ÐN
2N f*(x) g (x) dx. Since f is continuous, a functional

ExðfÞ5 fðxÞ is defined, and from 3), it is bounded. So H is a RKHS. The reproducing kernel
is K(x,y)5 sin[a(x2y)]/[π(x2 y)].

The Fourier transform of the sinc function g(t)5 sin(t)/t, is given by a Cauchy improper
integral limR-N

Ð R
2Rg tð Þe2iwtdt5π χ21;1½ � wð Þ. By using the scaling and shifting properties of

the Fourier transformation, it follows that the Fourier transform of K(x,y) is e2wix χ½2a;a�ðwÞ.
Finally, by Plancherel’s theorem, ,K(x,y), f.5

ÐN
2N K(x,y)* f(y) dy5 1/(2π)Ð a

2a FðwÞeiwxdw5 fðxÞ.#

19.4 Mercer’s theorem

For K, in L2, K: X x X-R is called a positive definite kernel provided that K is symmet-
ric. That is, K(x, y)5K(y, x), and it is positive semidefinite; this means that for any non-
zero function f in L2 it follows that

Ð Ð
f(x) K(x,y) f(y) dx dy is greater than or equal to
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zero. It is positive definite when
Ð Ð

f(x) K(x,y) f(y) dx dy. 0. It will be assumed that K has
the finite trace property; here K is continuous and also the integral

Ð Ð
Kðx;yÞ2 dx dy is

finite.
Eigenvalues and eigenfunctions arise similar to those in Fredholm-type integral equa-

tions. Specifically, φ is an eigenfunction for the kernel K if
Ð
K(x,y) φ(y)dx5λφ(x). Here, λ

is an eigenvalue. This equation is denoted as an inner product: ,K, φ.5λφ. Eigenvalues
and eigenfunctions provide estimates on errors occurring in learning machines.

A theorem of Mercer states that if K is a positive definite kernel with finite trace, then
there exists a countably infinite set of eigenfunctions, {φi} with corresponding eigenvalues
λi where λ1 is greater than or equal to λ2 that is greater than or equal to λ3 . . . is greater
than zero. Finally, K x;y

� �
5

PN
n5 1 λnφn xð Þφn y

� �
, and the convergence can be shown to be

absolute and uniform. For f in L2; the eigenfunctions can be employed very similar to
Fourier series computations. Here,

Ð
fðyÞφnðyÞdx5, f;φn .5fn, where φn is an eigenvector

associated with the kernel K, and λn is the corresponding eigenvalue. In this case, an inner
product can be created in the kernel space involving functions f and g; this inner product
is defined as follows: , f;g. 5

PN
n5 1ðfn �gnÞ=λn.

Feature maps can be created with the help of Mercer’s theorem. Here, the feature space
is l2, and the feature map: X-l2, and ΦðxÞ5λ1=2ðφ1ðxÞ;φ2ðxÞ; . . .Þ.

Whenever and if only N of the eigenvalues are positive, then the feature map:
X-RN . Forming the l2 inner product will provide the formula for the kernel,
,Φ xð Þ;Φ y

� �
. 5

PN
n5 1ðλ1=2

n φn xð ÞÞðλ1=2
n φnðyÞÞ5

PN
n5 1 λnφn xð Þφn y

� �
5K x; y

� �
.

Example 19.12:

This is an instance of a Fredholm-type integral equation of the second kind, since the
unknown function appears outside the integral, and within part of the integrand:

Ð
K(x,y) φ (y)

dy5λφ(x). Fredholm integrals of the first kind only have the unknown φ, within the inte-
grand. In any case, a solution for φ(x) will be found for

Ð 1
y50 x y φ (y) dy5λφ(x)1x.This inte-

gral equation could be solved by differentiating with respect to x. Instead, first multiply the
whole equation by x. Then integrate again from zero to one, but this time with respect to x.
Then assuming that φ (y) is smooth enough for Fubini’s theorem to hold, the integral with
respect to x and with respect to y can be interchanged. Thus, it follows that

Ð 1
y50 y φ (y) dy

Ð 1
x50

x2 dx5λ
Ð 1
x50 x φ(x) dx1

Ð 1
x50 x2 dx. This becomes after integrating and re-arranging [1/32λ]Ð 1

y50 y φ (y) dy5 1/3, so
Ð 1
y50 y φ (y) dy5 1/[1�3 λ]. Substituting this back into the original

equation gives x/[1�3 λ]5λφ(x)1 x, and therefore φ(x)5 x/[λ (1�3 λ)]2x/λ. To verify that
this is a solution, using it in the original equation gives

Ð 1
y50 x y {y/[λ (1�3 λ)]2y/λ} dy5λ

{x/[λ (1�3 λ)]2x/λ} 1 x. Integrating yields x/[3 λ (1�3 λ)]2x/(3 λ)5 x/[(1�3 λ)]2x 1
x5 x/[(1�3 λ). But the left hand side is x/[3 λ (1�3 λ)]2x/(3 λ)5 x/(1�3 λ) 1 x/(3 λ)2
x/(3 λ). Thus showing both sides are equal.#

Example 19.13:

This is probably the most important example of Mercer’s theorem. For real-valued func-
tions f(x) periodic, of period 2π, with basic domain [2π, π], the Fourier series will extend
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this function to the whole real line. In this case, f xð Þ5 PN
k52N fke

ikx where fk are the

Fourier coefficients. Integrating:
Ð π
2πf xð Þe2inxdx5

Ð π
2π

PN
k52N fke

ikxe2inxdx, interchanging

the sum and the integral, this gives
PN

k52N fk
Ð π
2πe

ikxe2inxdx5
PN

k52N fk
Ð π
2πe

ixðk2nÞdx5
2π fk whenever n5 k, and zero otherwise. Therefore, fk 5 1= 2πð ÞÐ π

2πf xð Þe2ikxdx. The expo-
nentials form an ON basis on [2π, π]. Since f(x) is real, the Fourier coefficients are conju-
gate symmetric, fk�5f2k. If it is assumed that f(x) is an even function, then fk5f2k. Also
assume that the kernel is of the form K(x, y)5K(x2y) and has the aforementioned proper-
ties. Let the Fourier representation of the kernel be K xð Þ5 PN

k52N kke
ikx.

Now consider the L2 inner product of f xð Þ5 PN
k52N fke

ikx and g xð Þ5 PN
k52N gke

ikx;

then , f; g. 5,
PN

n52N f�ne
2inx;

PN
k52N gke

ikx . 5
PN

n52N f�ngn. Next a subspace H of

L2 will be a RKHS by defining an inner product , f;g. H 5
PN

n52N f�ngn
� �

=kn. The

induced norm in H is :f:H5, f; f. H 5
PN

n52N f�nfn
� �

=kn 5
PN

n52N jfnj2=kn. So in this

RKHS H, it must be that
PN

n52N jfnj2 is convergent. The reproducing property must be

shown using K xð Þ5 PN
k52N kke

ikx, so Kðx2 yÞ5 PN
k52N kke

ikðx2yÞ. For a function f in H,

,K(, y), f. H 5
PN

n52Nðkne2inyÞTfnÞ=kn 5
PN

n52N fne
iny 5 fðyÞ.#

Example 19.14:

This example will continue from the previous example, Example 19.13. From there, it
was seen that the kernel Kðx;yÞ5Kðx2 yÞ5 PN

k52N kke
ikðx2yÞ 5

PN
k52N eikxkke

2iky.
Similarly K x2 zð Þ5 PN

k52N eikxkke
2ikz. Now it will be seen that the kernel itself can

be reproduced: ,K :; y
� �

;K :; zð Þ. H 5
PN

n5 2N K :;y
� ��;K :; zð Þ
 �

=kn 5
PN

k5 2N kke
2iky

� ��

kke

2ikz
� ��=kn 5

PN
k52N kke

kiy
� �

kke
2ikz

� �
 �
=kn 5

PN
k52N k2ke

kiy2ikz
� �
 �

=kn 5
PN

k52N kke
kiy2ikz

� �
5

K y2 z
� �

. Finally, the feature maps will be identified. Again writing the inner product,

,Kð; yÞ; f. H 5
PN

n52Nððkne2inyÞ�fnÞ=kn. Use as the feature map φkðxÞ5ðkne2inxÞ. To see that

the feature maps obey the reproducing property, use the inner product ,φk xð Þ;φkðyÞ. 5PN
n52Nððkne2inxÞ� kne2inyÞ=kn 5

PN
n52N knðeinxe2inyÞ5 PN

n52N kne
inðx2yÞ 5Kðx;yÞ.#

19.5 Spectral theorems

It was seen in Section 13.1 that bounded operators have a nonempty compact spectrum
consisting of an eigenvalue spectra, continuous spectra, or residual spectra. In finite
dimensions n, every matrix has only an eigenvalue spectrum, and its cardinality is
between one and n. This is a result of the fundamental theorem of algebra. In this case,
the characteristic equation always has complex roots. Among the main results from
Chapter 13 is that for a self-adjoint operator T, in B(H,H), then the eigenvalues are all real.
Eigenvectors corresponding to distinct eigenvalues are always orthogonal. Finally, the
eigenvalues lie in the interval [m, M] of R. Moreover, from the numerical range develop-
ment, m5 inf ,v, T v. and M5 sup ,v, Tv., both over:v:5 1, v in H. Finally the
residual spectrum, sprt is empty; additionally, the residual spectrum is empty for the
larger class of operators, the normal operators.
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Again to motivate the spectral theorem involving T, a self-adjoint operator in B(H,H),
consider the carrier set Rn. Additionally, let T be a matrix over H with distinct eigenva-
lues, that is, T has a nondegenerate discrete spectrum. Assume that values within sppT
are ordered, that is, m5λ1 ,λ2 ,. . . ,λn5M. The corresponding eigenvectors should be
normalized, thereby forming an ON basis. Define a projection operator Pj, such that
Pjv5,vj;v. vj5ajvj, where vj is the jth eigenvector for T and aj is in R. Since any vector
in H is a superposition of the basis element, then v5

P n
j5 1 ajvj, and so v5

P n
j5 1 Pjv. As

a consequence,
P n

j5 1 Pj can be thought to be equal to the identity element I. The sum of

projections in this case is often called the resolution of the identity. The operation Tv can be
written as Tv5

P n
j5 1 λjPjv. Accordingly, when v is nonzero, the operator T5

P n
j5 1 λjPj.

At this juncture, it is time to provide the essence of spectral theories from an engineering per-
spective. Basically in this case, it will be explained what is meant by integrating on the spectrum
spT. First, forget the projections for a moment, and consider delta functions, located at each
eigenvalue, δ(t2λj) for j5 1, 2,. . ., n. For a continuous function f on the real line, a type of spec-
tral integral for f is

ÐN
2N f tð ÞPn

j51 δðt2λjÞ dt. Here, the integral goes from minus infinity to plus
infinity. It could have instead only went to a finite upper limit, say x in R. In that case, only
those eigenvalues less than or equal to x would be included in the integral. This integral opera-
tion maps from the reals into the reals; specifically, it maps the spectrum of T into R.

Example 19.15:

In C2, consider the self-adjoint matrix T5

j4 6j
j6 9j

The eigenvalues are λ15 0 and λ25 13. Consequently, a type of spectral integral occurs,ÐN
2N f(t) [δ(t)1 δ(t213)] dt 5 f (0)1 f (13).#
Returning to the actual projection operations, Pj v5,vj, v. vj5 aj vj, where vj is the

jth eigenvector for T, and aj is in R. The objective in the next example is to actually find
these projective operators.

Example 19.16:

Refer to the previous example, and use the operator T along with the associated eigen-
values. The corresponding ON eigenvectors are v15 1/131/2 (23 2)0 and v25 1/131/2

(2 3)0. The projection operators in C2 are such that for any v in C2, Pj v5,vj, v. vj, for
j5 1, 2. So let P represent the generic projection matrix, and let v be the arbitrary vector in
C2. Illustrated below is P, and then following P is the two-by-one column vector v. Finally,
the product 2 by 1 column vector P v is given in the third position below:

jx yj jaj jxa 1 ybj
jw zj jbj jwa1 zbj :

To start, P1 will be determined. But first, only the top row of this matrix, x and y, will
be found. Set the first tuple of P1v, [x a 1 y b] equal to the inner product of the first
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eigenvector, with the vector v, all multiplied by the first tuple of the first eigenvector,
1=131=2 [(23 2) (a b)0] (23/131/2). Form the inner product above and equate coefficients
of a and b, where [x a 1 y b]5 23/13 [2 3 a 1 2 b]. Finally, solving for x and y yields
x5 9/13 and y526/13. This computation provides the first row of P1.

The second row of P1 is found in an analogous manner, but using the bottom tuple of
Pv, as well as the bottom tuple of the first eigenvector. Therefore, [w a 1 z b]5 1/131/2

[(23 2) (a b)0] (2/131/2). Now equate coefficients of a and b, where [w a 1 z b]5 2/13
[2 3 a1 2 b], and solving for x and y yields w526/13 and y5 4/13. In exactly the same
way, the two-step procedure can be performed using the second eigenvector to find the
second projection matrix, P2. Both 13 P1 and 13 P2 are illustrated below.

j9 2 6j j4 6j
j2 6 4j j6 9j

Note that P1, 1 P25 I. Also, T5
P 2

j5 1 λjPj. This follows by substituting the values of
the eigenvalues and the projections; doing this gives T50P1113P2 #

Continuing with the projection operators, these operators are used in mapping the spec-
trum of T into B(H,H). Consider the staircase-type functions consisting of sums of projec-
tions, Eλ 5

P
λ. 5λj

Pj. Notice that Eλ5 0 for λ ,λ1, and for λ in the interval
½λ1;λ2Þ;Eλ5P1; also for λ in the interval [λ2, λ3), Eλ5P11P2. And so on, until the values of
λ are greater than or equal to λn; then Eλ 5 I. The operator Eλ can be thought to be a
staircase-type function, continuous from the right with saltus sj, at each eigenvalue. That
is, at each eigenvalue, λj, when λ5λj, the jump value is Pj2Pj215sj. In general,
sj5Eλj

2Eλj2
, where Eλj2

5 limit as λ-λj, from the left.
Now, compare the following conclusion with the Stieltjes integral illustrated in Example

13.29. For a continuous function f on the real line, the spectral integral of f is formally
given by

ÐN
2N f tð Þd Eλ 5

Pn
j51 fðλjÞðPj 2Pj21Þ;P0 5 0. In the referenced example, more was

going on besides the discrete spectrum. Subsequently, it will be seen that the continuous
spectrum can be modeled a lot like the calculations involved in that example. First, an
example of an integral over the spectrum will be made resulting in operator-valued results
in B(H,H).

Example 19.17:

Refer to Example 19.16, Eλ 5
P

λ. 5λj
Pj. Then, Eλ5 0 for λ ,λ1 5 0, and for λ in the

interval [λ1, λ2)5 [0, 13), Eλ5P1, also for λ greater or equal to λ25 13, Eλ5P11P2 5 I. The
best way to describe Eλ is to partition R into three regions: first, for all λ ,0, second for λ
in [0, 13), and third for λ greater than or equal to 13. Now use the characteristic functions,
χA5 one for λ in A and equal to zero otherwise. Point sets A will be represented as points
themselves. Then Eλ is described in each of the regions, as a 2 by 2 matrix consisting of
four functions; these function matrices are listed in order:

j0χ2N;0ð Þ 0χ2N;0ð Þj j9=13χ½0;13Þ 2 6=13χ 0;13ð Þj j1χ 13;Nð Þ 0χ 13;Nð Þj
j0χ2N;0ð Þ 0χ2N;0ð Þj j2 6=13χ½0;13Þ 4=13χ½0;13Þj j0χ 13;Nð Þ 1χ 13;Nð Þj :
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The saltus at the eigenvalues is given at 0 and 13; these are the jump values. In terms of
two-by-two function matrices, these values are given by

j9=13χ0 2 6=13χ0j j4=13χ13 6=13χ13j
j2 6=13χ0 4=13χ0j j6=13χ13 9=13χ13j :

So, at the first eigenvalue, λ15 0, the saltus matrix is s15P1�05P1, and the first matrix
above is P1 χ0. At λ25 13, the saltus matrix is s25P2 � P15 I2P1, and the second matrix
above is (I � P1) χ13. The saltus matrices and the saltus function matrices are isomorphic;
accordingly, in this case, the saltus matrix will only be used herein. Then,ÐN
2N fðλÞd Eλ5fð0ÞP11fð13ÞðI2P1Þ. This integral results in a linear combination of operators
in B(H,H). It could also be written as

ÐN
2N fðλÞd Eλ5fð0ÞEλ1

1fð13ÞðEλ2
2Eλ1

Þ5fð0ÞE01
fð13ÞðE132E0Þ5fð0Þs01fð13Þs13. So, for instance, if fðλÞ5λeλ, then

ÐN
2N λeλd Eλ 5

j4e13 6e13j
j6e13 9e13j :#

Continue for a moment with the assumption that T has a nondegenerate discrete spectrum.
The spectral integral of f is formally given by

Ð N
2Nf λð Þd Eλ 5

P n
j5 1 fðλjÞðPj 2Pj21Þ;P0 5 0. It

can be seen that this formal integral can be written as a summation of saltus operators, namelyÐ N
2Nf λð Þd Eλ 5

P n
j5 1 f λj

� �
sj. Also, an additional spectral representation using T5

Pn
j51 λjP is

T5
P n

j5 1 λjsj. The integral above is only a symbolic representation for the summation. To
obtain a more common meaning of the integral, form the inner product for any v and w in H.
Namely, use ,v;T w. 5

P n
j5 1 λj ,v; sjw. . In this case, the inner product can be given by

a true Stieltjes integral: ,v, T w.5
ÐN
2N λ d g (λ), where gðλÞ5,v;Eλw. . Here, the integra-

tor g is a real-valued step-type function, and this is the spectral theorem for the operator T.

Example 19.18:

To obtain a simple example of the actual Stieltjes integral
ÐN
2N λ d g (λ)5,v,

T w. 5
Pn

j51 λj ,v; sjw. , consider Example 19.17. Here, the eigenvalues 0 and 13 along
with the operators T, s0, and s13 are specified. Let v5|0. and w5|1.. Then, ,v, T
w.5 (1 0) (6 9)0 5 6. Also, ,v, s13 w.5 (1 0) (6/13 9/13)0 5 6/13, and therefore,P2

j51 λj , v; sjw. 5 01 13 � 6=135 6.#

The spectral theorem for self-adjoint bounded operators on a Hilbert space is almost
exactly the same as the one mentioned right before the last example. The major difference
is that in place of the saltus, a measure is employed. The measure is described in detail in
Appendix A.2. As in the previous cases, the integrals are the Stieltjes integrals over the
spectrum. The need for a spectral measure is that the continuous spectrum, as well as limit
points arriving from clusters of discrete spectral points, can also be included in the spec-
tral integration. This is somewhat like the integration process illustrated in Example 13.29.

For T self-adjoint and bounded with spectrum spT, there corresponds a spectral mea-
sure u. It is such that, for all v and w in the Hilbert space H, the inner product
,v;Tw.5

Ð
spTλd,v;uλw. .

Generalization of the aforementioned concepts leads to the projective-valued measure
(PVM). These measures have values that are self-adjoint projections. As usual, measures

360 19. Reproducing kernel and other Hilbert spaces

Many-Sorted Algebras for Deep Learning and Quantum Technology



are defined on a measurable space. The spectral theorem involving PVM associates a PVM
with any self-adjoint operator T in B(H,H). Here, T5

Ð
λdEλ. The integral is understood as

a Stieltjes or Lebesgue integral on the real line. A rigorous well-explained description of
PVM, along with direct integrals, can be found in Hall (2013).

Example 19.19:

Let T be a bounded self-adjoint operator on the Hilbert space with carrier set H5R2. In
addition, assume that|v. is a unit vector in H and that f is in BM, that is, f is bounded
and measurable. The inner product ,v|f(T) v. is a positive functional on the spectrum
spT5σ(T). As such, there exists a unique spectral measure uv associated with|v.. The
following equality holds on the compact set σ(T), where ,vjfðTÞv.5

Ð
σðTÞfðλÞdujv. v,

and the integral is of Lebesgue type. Use for|v.5 221/2(|0. 1 |1.), which is also in R2

being the column vector, 221/2 (1 1)0. Assume that f(t)5 t2 and that T is given by the fol-
lowing matrix:

j4 0j
j0 2j

Accordingly, spT5 sppT5 σ(T)5 {4, 2}. In this case, ,v|f(T) v.5, 221/2 (1 1)0,
T2 221/2 (1 1)0.5 10. The PVM is

Ð
σðTÞfðλÞduvjv.5½fð4Þuvðf4gÞ1fð2Þuvðf2gÞ�jv. . Here,

f(4)5 16 and f(2)5 4; the projections uvðf4gÞ and uv({2}) are given as follows:

j1 0j
j0 0j

j0 0j
j0 1j :

Substitute these values into
Ð
σðTÞfðλÞduvjv.516uvðf4gÞ221=2ð11Þ014uvðf2gÞ221=2ð11Þ05

221=2ð164Þ0. Note that the Borel sets in this example are in fφ; f4g; f2g; f4; 2gg52σðTÞ.#
This section will end with a most important spectral theorem that is easy to understand.

It is for self-adjoint compact operators T, in a Hilbert space H. Using N, the null space of
T, then the dimension of N\ is at most countable and has an ON basis φn;n5 1; 2; . . ., of
eigenvectors of T. Here, Tφn5nφn, where for every n, there is a nonzero eigenvalue.
Moreover, if N\ is not finite, then the eigenvalues λn go to zero, that is, λn;-0 as n-N,
and this is the only accumulation point. Additionally, the eigenspaces for nonzero eigen-
values are finite dimensional.

Since nonzero eigenvalues are isolated points in the complex plane, Cauchy integral
theorem provides a Riesz projection E(λ). This is done by integrating over a SCROC,
enclosing only a single eigenvalue. λ A SCROC is a simple closed rectifiable oriented
curve. These operators are spectral projections and also E(λ) �E(μ)5E (λ) whenever λ5μ,
and zero otherwise (Conway, 1990).

19.6 The Riesz-Markov theorem

Let X be a locally compact Hausdorff space, with a state S in C0ðX;RÞ. Then there exists
a unique Borel probability measure uS such that for all f in C0ðX;RÞ it follows that
SðfÞ5Ð

Xf d uS. Moreover, the functional S(f) can be viewed as being the expected value of
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an observable f in state S. Thus, S(f) can be considered the average value. Likewise the
conditional variance σS

25Sððf2SðfÞÞ2Þ5Sðf2Þ2SðfÞ2.

Example 19.20:

Heisenberg uncertainty principle: For the fixed state S, and observables p and q, σSðpÞσSðqÞ
is greater than or equal to h/2. Here p and q denote position and momentum. Without loss
of generality, assume that the means of p and q are zero. So, σS

2ðpÞσS
2ðqÞ5Sðp2ÞSðq2Þ. Since

all observables are self-adjoint, it follows that (ap1 ibq)*5 ap2ibq for all a, b in R. Since the
states are positive, the expression S[(ap2ibq) (ap1ibq)]5 a2 S(p2)2ibaS(qp)1iabS(pq)1b2S(q2)
is greater than or equal to zero. The terms involving i can be written using the commutator,
that is, it could be written as iabS([p, q]). Let v be the column vector (a b)0, and M5

��S p2
� �

1=2S i p; q

 �� �����1=2S i p;q


 �� �
S q2
� ��� :

It follows that the aforementioned inequality can be written as v0 M v, which is greater
than or equal to zero, and so M is positive definite. Accordingly, the determinant of M is
greater than or equal to zero, that is, Sðp2ÞSðq2Þ21=4ðSði½p;q�ÞÞ2 is greater than or equal to
zero. Consequently, Sðp2ÞSðq2Þ is larger or equal to 1=4ðSði½p; q�ÞÞ2. Finally, see Section 8.7,
where [p, q]5 ih, and so σSðpÞσSðqÞ is greater than or equal to h/2. This is the Heisenberg
uncertainty principle.#

19.7 Some nonseparable Hilbert spaces

Throughout this document, all Hilbert spaces were assumed to be separable. That is,
the Hilbert space possesses a countable dense subset, and accordingly, it has a Schauder
basis. Nonseparable Hilbert spaces are employed in condensed matter physics. Also in
quantum field theory, dropping Poincare invariance for curvature results in a nonsepar-
able Hilbert space. Additionally, in Section 14.10, it was shown that the Weyl version of
the CCR C* algebra is not separable. This C* algebra is faithfully represented on the sym-
metric Fock space.

A couple of other examples of nonseparable Hilbert spaces are given below. In the next
section, one of the most important facts about separable Hilbert spaces is proved.

Example 19.21:

Consider a modification of l2ðRÞ, the Hilbert space of all converging square summable
sequences of real numbers. Let f: R-R, where f(x)5 0 for all x except for a countable set,

and here the sum over all x of fðxÞ2 is finite. Then the characteristic function of a single
point p or q in R, p not equal to q, will be designated by χp and χq, respectively. Let f

(x)5 g(x)5 0, except that fðxÞ5χp and gðxÞ5χq. These functions are in this Hilbert space,

and their individual sum squared is one. The distance, however, between them is

dðfðxÞ; gðxÞÞ5 the sum;
P

x f xð Þ2g xð Þ� �2h i1=2
5
h�

fðpÞ2gðpÞ
	2

1
�
fðqÞ2gðqÞ

	2i1=2
5
h
χ2
p1χ2

q

i1=2
5 21=2.
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There cannot be a countable dense subset of this space. For using any open set at f of

radius less than 21=2, it only contains f itself, and there are uncountable such points.#

Example 19.22:

The space of all Bohr’s almost periodic functions forms a nonseparable Hilbert space.

The inner product is ,f, g. equals the limit T-N, 1/(2 T)
Ð T
2T (f(t)* g(t)) dt. The

uncountable set feiwtg for w nonzero in R is an orthonormal family of vectors in this space.

They are periodic, and moreover, limit T-N; 1=ð2TÞ Ð T2T e
2iateibtdt5 1 whenever a5 b and

equal to zero otherwise. The completion is a nonseparable Hilbert space.#

19.8 Separable Hilbert spaces are isometrically isomorphic to l2

The proof of the fact that every separable Hilbert space H is isometrically isomorphic to
l2 is given in the following eight steps and is shown for when SCALAR are the reals.

1) Since H is separable, it has a Schauder basis: feng, n5 1, 2, . . ..
2) For v in H and T such that T:H-l2, let T(v) be the sequence consisting of the inner

product of v with the ON basis feng. Denote the sequence by ðenÞ. Thus,
TðvÞ5, v; e1 . ; ,v; e2 . ; . . .5ð,v; en .Þ.

3) Utilizing Bessel’s inequality given next shows that TðvÞ5ð,v; en .Þ is in l2.
The Bessel’s inequality holds for arbitrary inner product space. It involves the ON

basis feng, along with v. To begin, the sums in the following go from n5 1 to N,

:v2sum,
Pð,v; en . enÞ:25,v2sum;

Pð,v; en . enÞ, ðv2sum;
Pð,v; en . enÞ.5

:v:22sum;
P j, v; en . j2 is greater than or equal to zero, and so :v:2 is greater than

or equal to sum,
P j,v; en . j2. Next let N - N. This shows that :TðvÞ:

2
,N, so

TðvÞ5ð,v; en .Þ is in l2. All limits and indices are from n5 1 to N, from here on in.
4) Next to show that T is linear, for v and w in H and a in R, note that T (v1 a w)5 (,v

1 a w, en.)5 (,v, en. 1 a ,v, en.)5 (,v, en.)1 a (,v, en.)5T (v)1 a T (w)
5) Using the ON basis {en}, the unique representation v5 sum,

P
(,v, en. en) holds.

With sums from 1 to N, :v:25, sum,
P

(,v, en. en), sum,
P

(,v, ek. ek).5 sum,P
(,v, ek.

2 ,ek, ek.)5 sum,
P

(,v, ek.
2)5 :T (v):2. This shows that T is bounded,

and moreover, it is an isometry.
6) T is 1�1, since if T (v)5T (w), then (,v, en.) � (,w, en.)5 0, and (,v � w, en.)5

0, and because for all n, ,v � w, en.5 0; this implies that v5w.
7) T is onto because if (zn) is any element in l2, then consider z5 sum,

P
(zn en); it will be seen

that z is in H and T (z)5 (zn). The two norm squared,:z:25, z, z.5 sum,
P

(|zn|
2)

,N. So, T (z)5 (,z, ek.)5 (,sum,
P

(zn en), ek.)5 (zk:ek:)5 (zk).
8) Finally, using the bounded inverse theorem, see Appendix A.6. That is, if A: X - Y,

with X and Y Banach spaces and A, 1�1 and onto, then A21: Y - X is also bounded.
Since all these conditions apply, T has a bounded inverse. As such, T is an isometric
isomorphism between H and l2.
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A P P E N D I X

A

Hilbert space of wraparound digital
signals

The set of all wraparound digital bound vectors and bound matrices both form Hilbert
spaces. The inner product is evaluated on the intersection of their co-zero sets. For the
empty intersection, this product is zero. Completeness follows using Cauchy sequences
(CSs). In these cases, it was shown that they form CSs of bound vectors or bound matrices
fn. The objective is to show fn converges, say to f, in the one norm; other norms follow in
the same manner. The first thing to notice is that if fn - f, each element vn within fn will
converge to say v. The elements vn are tuples within the bound vector, or matrix entries
vn, within the bound matrix fn. Convergence in this manner follows since || fn2 f || is
greater than or equal to the difference within specific entry values | vn2v |. Conversely,
if every tuple element converges, this means that fn converges, because there are only a
fixed finite number of tuples making up the bound vector or bound matrix structure. As
mentioned earlier, the one norm will be employed in the following, but the results hold
for any norm. The sequence of facts is proven (Apostle, 1974; Rudin, 1987):

1. Every sequence of real numbers has a monotonic subsequence.
2. Every CS is bounded.
3. A bounded monotonic sequence of reals always converges.
4. Every CS of reals converges.
5. The space of wraparound bound vectors and matrices is complete and therefore forms

a Banach and also a Hilbert space.
6. Every sequence vn of real numbers has a monotonic subsequence. This results follows

by using peaks. A peak vm is an element of the sequence such that vm is larger than all
elements vn, in the sequence with n.m. If there exists an infinite set of peaks, then this
is a subsequence consisting of peaks and is strictly decreasing. On the other hand, say
that there only exists a finite number of peaks. Let vm be the last peak. Then start from
the m1 1st value vm11 in the sequence. This value must be less than or equal to all the
following values of this sequence except a finite number for otherwise, this too would
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be a peak. Using induction, let vk be a member of the sequence with k.m1 1, and vk is
greater or equal to vm11. Now vk is not a peak, so there is a value p. k with vp greater
than or equal to vk. Continuing thusly, the sequence: vm11 vk vp . . . forms a subsequence
of vn, which is monotonically increasing.

Example A.1:

The sequence: 1 0 1/2 0 1/3 0 1/4 . . .. This sequence has peaks at every odd position
and therefore results in a monotonically decreasing subsequence, 1 1/2 1/3 1/4 . . ..#

Example A.2:

Consider the sequence of real numbers: 3, 1, 2, 21*, 21/2, 21/3, 21, 21, 21/2**, 21/
3, 21/4,. . ., 21/n,.. . . Then peaks exist at the values 3 and 2, and that’s it; from this
point onward, there are no more peaks. Starting at v4, the value 21* is less than or
equal to all the following terms in the sequence. The element v9521/2** is greater
than v4521*. Also the value v9521/2** is not a peak, so an index value larger than 9
will be considered as being part of a monotonic increasing sequence. A subsequence of
vn that is monotonically increasing is thus found. Here, this subsequence is vm11 vk vp
. . .,5v4 v9 v10 . . .521* 21/2** 21/3 . . .2 1/n . . ..

2. Next, assuming that vn is a CS it is easy to see that it is bounded. This follows, because
for any positive integer n, k.N2 1, where N is fixed, implies | vn�vk | is less than or
equal to E. In particular, then by the triangle inequality, | vn |2| vN | is less than or
equal to | vn�vN |, because | vn |5| (vn�vN)1vN | is less than or equal to |
(vn�vN) |1 | vN |. Consequently, | vn | is less than or equal to | vN |1 E, for all
n.N2 1, and for n,N, there are a finite number of values of n. An overall bound will
be to employ the maximum of a finite number of values, that is, use max(| vN | 1 E,
| v1 |, | v2 |, . . ., | vN21|).

3. In the following, it will be shown that a bounded monotonic sequence of reals vn
always converges. Assume that the sequence vn is monotonic increasing. Then, let
s5 supremum of vn; then for every E. 0, there exists N. 0, such that vN. s2 E. This is
true since, otherwise, s2 E would be a supremum of vn. Using monotonicity implies
that vn is greater than or equal to vN, and for n.N, s2 E,vn, s1 E, which is the
definition of a sequence converging, thereby showing that vn converges to s.

4. Next, show that every CS of reals converges. Notice that | vn�vki | , E holds true for
vki, where vki is a monotonic subsequence of vn, because the sequence is CSs. Using the
triangle inequality gives | vn2 s |, which is less than or equal to | vn�vki |1 | vki2 s
|. For N large enough, and n, ki.N, since the first expression is less than E since it is
CS and the second absolute value term is also less than E, using (3) above gives | vn2 s
| , 2E.

5. Finally, for bound vectors in Wn, say fj 5 ajbj. . .dj

� �Wn

k
. Let fj form a CS of bound

vectors. So for N large enough and j, m.N, it follows that || fj�fm || , E.
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Using the one norm || fj�fm ||15| aj�am | 1 | bj�bm | 1 . . .1 | dj�dm| shows
that each tuple itself is a CS. Since these are real sequences, they all converge. Say that aj
- a, bj - b, . . ., dj - d. Then, fj-f5 a b. . .dð ÞWn

k . The same exact proof holds for bound
wraparound matrices. These structures are therefore Banach spaces.

The two norm also provides the same conclusion. Accordingly, these structures form
Hilbert spaces. Moreover, the proof above holds for complex-valued wraparound bound
vectors and bound matrices. The verification is to just use the real and imaginary parts of
the complex quantities.
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A P P E N D I X

B

Many-sorted algebra for the
description of a measurable and

measure spaces

An axiomatic framework for measure theory in the many-sorted algebra (MSA) is essen-
tially the same model as is often used in real analysis and integration theory. However, a
slight modification is made in the case of an MSA description. For the concept of a mea-
surable space, begin with X a nonempty set. Let S be the set of all subsets of X. That is,
S5 2X. Let M be the class of sets that form a sigma algebra of subsets of X. These are
specified and are special subsets, which are elements in S. The measurable space is often
written as (X, M). The polyadic graph in Fig. B.1A illustrates the two sorts involved in a
measurable space description. These sorts are given next along with descriptions and
abbreviations. The sorts are the following:

SUBSET-S, which are all subsets of X, thus S5 2X.
M-SET-E, which are all sets in a sigma algebra described later and are special elements

from S. M-SET is an abbreviation for measurable sets.

σ-FIELD σ-FIELD μ-MEASURE

SUBSET SUBSETM-SET M-SET

(A) (B) 

[0,1] 

FIGURE B.1 (A) Measurable space and (B) measure space.
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There exists a single unary function in a measurable space, and it is called a sigma alge-
bra or a sigma field, σField. It is such that

σField:SUBSET-M-SET:

This function and associated sorts are more easily described by σF: S - M. It is a par-
tial (identity) function, abbreviated by σF. It selects which elements or subsets in M are to
be called measurable. This is similar to the inverse function for a field structure. The latter
partial operator selects nonzero elements to have an inverse. Note that in the polyadic
graph, the arrow for σF is dotted, indicative of a partial operation.

The equational identities must hold for all elements E in M:

1. The empty set E5φ in S must be in M, that is, σF(φ)5φ.
2. For E such that σF(E)5E, the complement of E in X, that is, X2E, σF(X2E), is also in

M, so σF(X2E)5 (X2E).
3. If Ek in S, and σF(Ek) is in M where k5 1, 2, 3, . . ., that is, σF(Ek)5Ek, then σF(union of

all Ek)5union of all Ek.

Note that, by using (1) and (2), X is also a measurable set, that is, σF(X)5X.
By De Morgan’s law, for σF(Ek) in M, σF(intersection of all Ek) is also in M. Point (3)

along with this result says that (X, M) is closed under countable unions and countable
intersections. The next example illustrates a fundamental measurable space underlying all of
Lebesgue integration theory (Halmos, 1950).

Example B.1:

Let X be a locally compact Hausdorff space. A Borel set E is a subset of X such that E
is the image of the smallest σF using closed sets in X. These are called the Borel sets
belonging to the smallest σ algebra generated by the closed sets of X. To make the
example more concrete, let X be the real line R. A Borel set E is a subset of X, or an ele-
ment of S5 2X, having the property that σF(E) is in M. The empty set and the whole
real line R belong in M. The interval closed interval [0, 1] is in M, since [0, 1] is a closed
set in R. For the same reason, the interval, [1.5, 2] is in M. Moreover, using constraint
number (3), the union of these two sets is in M. Remember that σF is like a partial iden-
tity function; it chooses which types of sets within the power set 2X of X are to be mea-
surable sets. Then, using the union, difference, and intersection closure conditions
specified by the constraint conditions, all the other measurable sets can be found.
However, constraint number (3) must hold not only for the finite case but also for the
countably infinite case. Thus it follows that [0, 1) is also a Borel measurable set. Note,
using Borel measurable sets Ek5 [0, 1�1/k], k5 1, 2, . . . and then taking the infinite
union of Ek gives the desired result. Accordingly, all open sets, half open and half
closed, are also in M and are therefore Borel measurable.#

In Rn or Cn, a similar conclusion holds using closed sets in the real case and using these
sets for the real and imaginary parts in the complex situation.
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Example B.2:

Again, let X be a locally compact Hausdorff space. A Baire measurable set X is a subset
of X belonging to the smallest σ algebra generated by specific compact sets K of Ω. These
compact sets K are specified to be the intersection of a countable number of open sets in
X. Again, in order to provide a more concrete example, let X5R. Then, a typical compact
set used in generating a Baire measurable set in this σ algebra is the closed and bounded
set K5 the intersection of all Ak5 (0�1/k, 11 1/k), k5 1, 2, . . . The intersection results in
the compact set K5 [0, 1]. When the topology of X is first countable, that is, when there
exists a local countable base, the Baire and Borel sigma algebras are equal. Except for rare
exceptions, a countable basis always exists, and so in most practical situations, Baire and
Borel sigma algebras are the same (Arveson, 1996).#

An instance of a nonfirst countable space is provided in Figure 10.4. In this diagram,
there exist an infinite number of loops at the origin. Intuitively, this makes it impossible to
find an open ball about the origin fitting into this region.

For a measure space, there exist three sorts: SUBSET, M-SET, and R1N; here, the first
two sorts are as is in a measurable space. The third sort is R1N5 [0, N]. The MSA
description of a measure space involves two signature sets ignoring the strict total order-
ing of signature sets associated with the real numbers in the extended nonnegative real
line. The first signature set was specified above containing σField. The second signature
set has the unary operator name μMeasure. It is such that

μMeasure is a mapping from M-SET - R1N. This is illustrated in Fig. B.1B.
Next, use μ in place of μMeasure; the equational relations and identities must hold for

the measure μ.

1. μ (X) is in [0, N]
2. For Ek in M, where k5 1, 2, 3, . . . and they are mutually disjoint, that is, their

intersection is empty, μ , Ekð Þ5 P
μ Ekð Þ.

A measure μ is called sigma finite, which means that for any E in M, E equals the
countable union of Ek, for Ek in M, and such that μ (Ek),N, for all, k5 1, 2, 3, . . .. A mea-
sure μ is said to be finite whenever μ (X),N. It is said to be semifinite if for each E in M
with μ (E)5N, there exists a measurable set, F a subset of E such that 0,μ(F),N. A
sigma finite measure is always a semifinite measure. This assertion follows using proof by
contradiction. Assume that μ is not semifinite. So there exists a set E in M with μ (E)5N,
and there is no subset F of E where 0,μ(F),N. Then for μ, being sigma finite, there is a
sequence of measurable sets Ek, where X equals the countable union of Ek. It follows that E
equals the countable union of [E intersect Ek]. This implies that μ (E) is less than or equal
to

PN
k51 μ E intersect Ekð Þ. Furthermore, μ(E intersect Ek) is less than or equal to μ(Ek),

which is finite. But since, by assumption, any subset of E has measure zero, and (E inter-
sect Ek) is a subset of E; then μ(E intersect Ek) must equal zero. It follows that μ(E)5 0, giv-
ing a contradiction.
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Example B.3:

Consider the measurable space (X, M). With X nonempty, M5 2X, and f: X - [0, N].
The function f determines a measure μ on M, where μ Eð Þ5 P

xinE f xð Þ. This is a semifinite
measure when and only when f (x),N, for all x in X. It follows that if f(x)5N, then {x}
is in M, and there is no proper subset of a single point. In this case, one cannot find a sub-
set of finite measure. Assume that f (x) is finite for all x in X. If μ (E)5N, then for a single
point x in E, it follows that {x} is a subset of E for which μ xf gð Þ5 P

x f xð Þ,N.

Example B.4:

The Lebesgue measure on the real line is sigma finite, but not finite. Use the Borel mea-
surable sets [n, n1 1) for all integers n. This provides a disjoint union of countably many
unit Borel intervals covering the whole real line. Thus the Lebesgue measure is sigma
finite.#
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A P P E N D I X

C

Elliptic curves and Abelian group
structure

Working with elliptic curves (ECs), the objective is to find all integer or rational solutions
for that cubic equation in R2. Consider the following: b2c5 4a3�4ac21 c3, with c nonzero.
Let x5 a/c and let y5 b/c, then the equation becomes the elliptic equation: y25 4x3�4x1 1
(see Fig. C.1). Factoring gives the equation (y2 1)(y1 1)5 4x(x1 1)(x2 1). Among the solu-
tions, that is, points on the curve, for this equation, are (0,1), (0,2 1), (1,1), (1,2 1), (21,1),
(21,2 1). Other solutions, if any, can be found by creating a straight line through two dis-
tinct solution points and then solving for the third point of intersection. Since the equation
is symmetric about the x-axis, it follows that for any solution the opposite branch will also
be a solution for the same abscissa value. The process of choosing two points to determine
the third point produces a binary operation; for convenience, it will be called addition.

(–1, –1)

(2,–5)

(2,5)

(0,1)

P

L

ADDITION OF (–1, –1), AND
(0,1) = (2,–5), BECAUSE
THIRD POINT ON LINE = L
IS (2,5) PROJECT DOWN = P

FIGURE C.1 Elliptic curve
addition.
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Referring to the figure, the line y5 2x1 1 goes through (0,1) and (21,2 1) and intersects
the elliptic curve at (2,5). Accordingly, (2,-5) is also a point on the curve. The reflected
point is the solution and is called the addition of (0,1) and (21,2 1). So the sum of (0,1)
and (21,2 1) is (2,2 5) (see Fig. C.1). This time, passing a line through (0,1) and (2,2 5)
gives y523x1 1, finding the intersecting point yields (1/4,1/4). Consequently, the point
(1/4.2 1/4) is the solution. Thus (0,1) plus (2,2 5)5 (1/4.2 1/4). Continuing, the line
y5 x goes through (21,2 1) and (1,1) and yields (1/4.1/4) as before.

The mechanics behind the Abelian group structure for elliptic curves is as follows: The
sum of two points on the curve is found by utilizing the equation of a straight line passing
through these two points, then finding where it again intersects the curve, thus determin-
ing a third point on the given line, and finally, reflecting this found point about the x-axis.
If the line through two points is vertical, the third point is N, and the point at infinity is
therefore the sum. Thus, by including the point at infinity, the structure is a pointed set.
Tangents to the curve are handled similarly; in this case, the point of tangency is added to
itself. If the tangent line intersects the curve, for a third time, then the sum is that point
with the negative ordinate value applied. When there is no intersection with the curve, the
point at infinity N is used. The set of points under this binary operation so far is a group-
oid (see Fig. C.2).

To see that it is a semigroup, associativity must prevail. Here, returning to projective lines
and projective space, a theorem (Cassels, 1991) is applied: Whenever a cubic curve goes
through eight of nine points of intersection with two other cubic curves, then a ninth point of
intersection must be included. This is often called the ninth point lemma or the
Cayley�Bacharach theorem. The proof of associativity follows from this result (Cayley, 1889)
(refer to Fig. C.3).

The basic idea is finding two curves C1 and C2 which share eight distinct points with a
given curve C, then showing that these curves are cubic and not equal to C, and then
applying the aforementioned theorem illustrating that the ninth point is in both C1 and

(2,–5) = -P

ADDITION OF (2,5) AND
(2,–5) IS POINT AT ∞

(2,5) = P

∞ FIGURE C.2 Addition of vertical points on an ellip-
tic curve.
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C2. By judicially configuring the eight points in a strategic pattern, containment of the
ninth point will prove the associative law. In this figure, the symbol (?) is supposed to be
the ninth point. The eight points which are shared by all six straight lines are: A, P, Q, R,
B, Q1R, Z, and P1Q. Points on a straight line depict lines in affine space. The overall
objective is to show that (P1Q)1R5P1 (Q1R); this will follow because line L2 and
line M2 intersect at ?. The three lines L1, L2, and L3 each can be given as degree-one
homogeneous polynomials: 15 25 35 0jjj . In this case, C15 1 2 3jjj describes a degenerate
cubic. Analogously let C25m1m2m3, where m15m25m35 0 are degree-one homoge-
neous polynomials describing M1, M2, and M3, respectively. So given the elliptic curve C,
including the eight points, applying the Cayley�Bacharach theorem shows the ninth point
(?) is included and in the intersection of L2 and M2. This shows that the structure is a
semigroup. Next, showing that the structure is a monoid follows.

A ZERO must be found and prove that it satisfies the zero law to obtain a monoid. The
zero is the point at infinity N. It obeys the zero law because if you take any single point
p, then the sum of p1Z is found by taking the vertical line and connecting these two
points. Then for a nontangent point p, there exists a third point q on this same line, thus
the sum is 2q. However, 2 q is p. When p is a tangent point and the tangent is vertical,
then p1Z5p. The next to show is that this structure is a group. For a group, a MINUS is
needed, and the minus identity must be satisfied. However, for point p5 (a, b), MINUS
(p)5 (a, 2 b) denoted 2p for short. Moreover, when these two points are connected with
a straight line, the line is always vertical, so p1 (2p)5N as desired. Since there is only
one point at infinity, MINUS(Z)5N. Finally, the group is Abelian because the order of
choosing two points, p and q, on a line does not change the resulting third point r, on the
same line, which is reflected and consequently p1q52r5q1p.

Lastly, a theorem by Mordell specifies the group structure for rational solutions on
an elliptic curve with rational coefficients. It states that it is a finitely generated
Abelian group provided that it is nonsingular, that is, it has distinct roots (Silverman,
1986). So by this theorem, there exists a finite set of points Pj, in this group such that
every point P in the group can be expressed as P5 summation j5 1 to n of nj Pj for nj
in Z. Moreover, the structure of this group was proved by Mazur (Dumber, 2019) to be
of the form T x Z x Z x . . . x Z, where T is a torsion subgroup with order at most 16,
and T always being one of fifteen possibilities. Additionally, there are r copies of Z
above, and it is called the rank. Finally, for an elliptic curve y25 x31 ax1 b, with a
and b in Z, Siegel (Lang, 1978) showed that the associated group has finitely many
points with integer coordinates.

?

Z

P+Q

A P Q

R

B
Q+R

M2 M3LINE M1

Line L3

Line L2

Line L1

3 VERTICAl LINES
M1, M2, M3

3 HORIZONTLE LINES
L1, L2, L3

FIGURE C.3 Proof of associative law.
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A P P E N D I X

D

Young diagrams

There are several versions of Young diagrams, but almost all are constructed like bar
graphs employing a finite number of cells or unit squares (Yong, 2007). These diagrams are
important in representations of Fock space as well as quark flavor eigenstates (Bouttier,
2019; Sagan, 2001). The diagrams employed here are often located in the fourth quadrant
and always involve integral translates of the unit square (0, 1]3 [2 1, 0). The structure
forms contiguous horizontal bars all left justified, usually along the y-axis. The structure has
a starting point at (p,q) in Z3Z. This is the point at which the upper left-hand corner of the
first square is located. Most often, this point is (0, 0). Horizontally, there are n1 contiguous
cells forming a block or bar of length n1, located at (p, p1n1]3 [q2 1, q) where n1 is
greater than or equal to 1. Underneath, there can be another bar of length n2 less than or
equal in size to n1. This bar is formed by n2 cells and is (p, p1n2]3 [q2 2, q2 1). This pat-
tern continues with nonincreasing nj cells, one underneath the other. Instead of drawings of
Young diagrams, they are specified as (p,q), (n1, n2, . . ., nk), the latter grouping is a finite
number of nonnegative numbers nj, which is a nonincreasing sequence. The profile of a
Young diagram is the boundary points made up of piecewise continuous horizontal and
vertical line segments located on the right and lower parts of the structure. Also, the height
h, for a Young diagram, is the number of nonzero nj values. In short, the Young diagram
can be represented as a k tuple bound vector, (n1, n2, . . ., nk)(p,q).

Example D.1:

Consider the Young diagram in Fig. D.1. It is given by (p, q)5 (0, 0) and (n1, n2, n3,
n4, 0, . . .)5 (5, 3, 2, 1, 0 . . .). The profile for this structure consists of a path-connected
set of line segments: It starts from the bottom leftmost corner and travels to the left hor-
izontal line segment, {(x, y) | y524, x in (0, 1]. Then at x5 1, y in [2 4,2 3), y523, x
in [1, 2], x5 2, y in [2 3, 22), y522, x in [2, 3], x5 3, y in [2 2, 21), y521, x in [3, 4),
y521, x in [4, 5], x5 5, y in (21, 0]. Finally, the height for this structure is h5 4. Since
q5 0, 2h524 is the minimum value attained by this structure. Bound vector representa-
tion uniquely specifies this diagram: (5, 3, 2, 1) (0, 0), where the last integer pair specifies the
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left-hand corner of the diagram and is usually written as a subscript. See Section 1.9, for an
additional use of this representation. The Young diagram is marked starting on the x5 0
axis, half a unit under the bottom cell at 29/2. This is followed by adding one on each side
of the cells in the profile. The markings are important in determining Maya diagrams. If the
point (p, q) is arbitrary, an equivalence class of Young diagrams occurs. Moreover, the ori-
gin can be considered the coset leader in this case.#
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(5,3,2,1)(0,0)

–7/2

7/2

–9/2

9/2
11/2

–5/2

5/2

–3/2

3/2

–1/2
1/2

(0,–4)

(0,–3)

(0,–2)

(0,–1)

(p,q) = (0,0) FIGURE D.1 Young diagram.
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A P P E N D I X

E

Young diagrams and the symmetric
group

The symmetric group Sn is important in group theory mainly because of Cayley’s theo-
rem. That is, the symmetric group, Sn, contains all subgroups isomorphic to any group of
n elements or less. This is used in describing Fock space. It will be seen that the Young
diagrams described in Appendix A.4 provide visual descriptions of irreducible representa-
tions of Sn. Of importance, besides elements of Sn being composed of products of transpo-
sitions of elements, it can be expressed as disjoint products of cyclic generators. Each cycle
has a finite length, namely the number of elements in a cycle. This number is positive and
less than or equal to n. Classes for Sn are specified by the n numbers w1, w2, . . ., wn,
where wj indicates the number of cycles for Sn with length j. Due to the disjointness of
cycles, it follows that the sum

Pn
j51 j wj5n (Sagan, 2001).

Example E.1:

Consider the permutation group of symmetries S7, provided in the matrix-type diagram
below. Use this diagram to trace out the path and thereby determine a specific cycle
within the symmetric group. Start with the top numeral, x, to determine the numeral verti-
cally underneath the numeral, x, and call it y. Then if y appears on top, repeat the previ-
ous step; do this until x appears again on top. The number of times this up plus down
process is performed for a specific x indicates the length of the cycle. The distinct elements
involved form a cyclic group:

1 2 3 4 5 6 7jj
7 6 4 5 3 21 :jj

Beginning with 1, 1 - 7 - 1, so this is a length two cycle. Next, for 2, 2 - 6 - 2, this
is also length two cycle. Finally, for 3, 3 - 4 - 5 - 3, this is a length three cycle. The
group Sn can be written as the product of cycles: {1 7) (2 6) (3 4 5), where order does not
matter. Classes for S7 are denoted by wk. Here, k is the length of the cycle, and wk
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specifies how many cycles there are of length k. In this case, w15 0, w25 2, w35 1, and
w45w55w65w75 0. This follows because there exist two length k5 2 cycles and one
k5 3 length cycle. Moreover, the sum 2 � w21 3 � w35 2 � 21 3 � 15 7.#

A partition is denoted by p5 (p1, p2, . . ., pn, . . .). It is any sum of a finite or infinite
sequence of nonincreasing nonnegative numbers pj, that is, each pj less than or equal to p
(j1 1). Each pj is called a part of p. The sum of the parts is | p |, called the weight. When
the weight is n, then p is said to be a partition of n. Since singleton cycles w1 exist for
some symmetric group Sn, there can be n of these cycles, because there are no larger
cycles. Also, for n. 1, there are Sn with one two cycle w2, the rest being one cycle, and so
on, considering all the possibilities. Finally, some Sn are described by a single cycle of n
elements wn. Thus, for any Sn, all the possibilities for the partition of n involving classes
are p15w11 w21 . . .1 wn, p25w21 w3 1 . . .1 wn, . . ., pn5wn. A pj is used when-
ever there exists a k greater than or equal to j, such that there exists a wk. These quantities
can be arranged in order from the largest p1 to the smallest pn in rows on top of each
other. Each row consists of pj one unit square cells resulting in a structure called a Young
diagram. The number of rows equals h and is the number of nonzero pj. In this applica-
tion, the Young diagram representation is left justified and starts at the origin in the fourth
quadrant in the x, y plane.

Example E.2:

In Example E.1, it was seen that there were w25 2, two cycles, and one three cycle w3.
Accordingly, the partition of n5 7 will be given, but only for wj with nonzero entries.
Accordingly, for p15w21w35 21 15 3, p25w21w35 3, p35w35 1, and so the sum
of these is n5 7. The partition is (p1, p2, p3, . . . p7)5 (3, 3, 1, 0, 0, 0, 0,)5 (3, 3, 1). The
assosciated Young diagram has seven cells. It has three rows with the top row consisting
of three cells. Underneath is the second row of three cells. Finally, the bottom row has one
cell. All rows are left justified. As a bound vector, this structure is (3 3 1)(0,0) (see Fig. E.1).#

There is a bijection between irreducible representations of Sn and Young diagrams. The
Young diagrams enable simple identification of products of irreducible representations. In
order to better identify representations with these diagrams, a Young tableau is utilized.

(3, 3, 1)(0,0)

p3 = W3 = 1

p2 = W2 + W3 = 3

p1 = W2 + W3 = 3

(0,0) FIGURE E.1 Young diagram of permutation group.
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This is a Young diagram with the n cells filled uniquely with integers 1, 2, . . ., n. For such
a tableau, there exist n! ways of numbering the cells. When the numbering goes from left
to right increasingly per row, continuing to the row below, then this is called a normal tab-
leau. When the numbers only appear increasingly in a row or a column, this is called a
standard Young tableau. A standard Young tableau arises from a normal tableau using a
permutation.
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A P P E N D I X

F

Fundamental theorems in functional
analysis

A listing of the basic theorems from functional analysis is provided below. Along with
these theorems are several definitions relevant to the theorems proper (Apostle, 1974;
Narici & Beckenstein, 2011; Rudin, 1973).

• Weierstrass approximation theorem
Any continuous function f, defined on a compact interval [a, b] of R, can be

uniformly approximated by a polynomial p, to within any E, E. 0. Uniform
approximation means that supx | f(x) - p(x) | , E. A most elegant proof can be found
using the Bernstein polynomials in Achieser (1956) and Narici (2004).

• Stone�Weierstrass theorem
Let X be a locally compact Hausdorff space, and A a subalgebra of the Banach

algebra C0(X), with the sup norm. Here, C0(X) consists of continuous real-valued
functions, f(x) on X, which go to zero as | x | - N. Then if it separates points and
vanishes nowhere, then A is dense in C0.

A set S of functions f: A - B is said to separate points in A whenever there exists at
least one function h in S that is injective, that is, it is 1�1. For all x, y in A, x is different
from y, which implies that h(x) is different from h(y). The set of functions is said to
vanish nowhere or at no point of A, which means that for every point x of A, there
exists a function f in S such that f(x) is nonzero.

Example F.1:

The set of functions: S15 {f(x)5 1, g(x)5 x2} does not separate points on the domain,
A5 [-2, 2], because at x5 1 and x5 -1, f5 g. However, S25 {f(x)5 1, g(x)5 x2, h(x)5 x}
does separate points in A, since S2 contains a function h, which is 1�1 on A.
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Example F.2:

The set of functions: S15 {f(x)5 1, g(x)5 x2} does vanish nowhere on the domain, A5
[-2, 2]. However, S35 {g(x)5 x2, h(x)5 x} does not vanish nowhere on this domain,
because at zero there is no function in this set that is nonzero.

• The Stone�Weierstrass theorem
For any compact set K, let A be possibly a nonunital, associative self-adjoint algebra

of continuous functions f: K - C, which separates points in K. If additionally, A
vanishes at no point of K, or if A is unital, then A is dense in C(K) using the uniform
norm.

• The Arzela�Ascoli theorem
Let {fn}, n5 0, 1, 2, . . . be a sequence of real-valued functions on the compact set [a,

b] in R. If this sequence is both uniformly bounded and equicontinuous, then there
exists a subsequence ffnkg, which converges uniformly on [a, b]. When every
subsequence of {fn} converges uniformly on [a, b], then {fn} is both uniformly bounded
and equicontinuous.

When there exists a constant M. 0, such that for all x in [a, b] and all nonnegative
integers n, such that | fn | , M, then the sequence of continuous functions fn is said to
be uniformly bounded.

The sequence {fn} is uniformly equicontinuous whenever for E . 0, for all x, and y is
in [a, b], and n nonnegative, there is a δ. 0, such that if | x2 y | , δ, then | fn(x)2
fn(y) | , E.

• Hahn�Banach theorem
Let f be a continuous linear functional on a vector subspace M of a normed vector

space X. In this case, f has a continuous linear extension F to all of X, and moreover, ||
f ||5|| F ||. An excellent historical account appears in the study of Narici (2004).

• Open mapping theorem
For an onto, continuous, linear operator T, T: A—-.B, where A and B are Banach

spaces; then T is an open map. Thus, for any open set U in A, T(U) is an open set in B.
• Principle of uniform boundedness

Let B(X,Y) be the space of all bounded operators from the Banach space X into the
normed vector space Y, and let F be a subset of B(X,Y). If the supTinF||T(x)|| , N, for
all x in X, then letting c5 supTinF||T(x)|| when || x ||5 1, it follows that
c5 supTinF|| T ||.

• Bounded inverse theorem
For X and Y Banach spaces if T: X - Y is bounded and invertible, then T21 is also

bounded.
• Baire category theorem

A subset S of a topological space T is of the second category if S cannot be written as
a countable union of nowhere dense sets in T. This means that at least one set within
the union has closure with nonempty interior.

• Banach�Steinhaus theorem
Consider X and Y both topological vector spaces, and Γ5 {Ta}ainR, where Ta is a

continuous linear map from X to Y. Let B denote the set of all points x in X whose
orbits Γ(x)5 {Ta(x), such that Ta is in Γ} are bounded in Y. If B is of the second category
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in X, then B5X, and the collection of functions Γ is equicontinuous. An excellent
presentation is made by Stover (2023).

• Closed graph theorem

For a linear operator T, T: A - B, where A and B are Banach spaces, then T is bounded
iff the graph of T is closed. Equivalently, when given that vn - v, all in A and also given
that T vn - w, all in B, if Tv5w, then T is bounded.

The Cartesian product, A3B is called the product space. It possesses the product topol-
ogy, also called the Tychonoff topology or the coarsest topology. It is the topology contain-
ing the smallest number of open sets when using continuous projections, pa and pb, where
pa: A3B - A and pb: A3B - B.

The graph of T is graph(T)5 {(v, Tv) such that v is in domT}. The map T: A - B is
closed in the graph A3B whenever it is a closed subset of the product space A3B with
the Tychonoff topology. Equivalently, when given that vn - v, for all vn and v in A, and
also given that T vn - w, for all T vn and w in B, if Tv5w, then T is bounded.
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A P P E N D I X

G

Sturm�Liouville differential
equations and consequences

A Sturm�Liouville equation is a second-order linear differential equation (DE) involv-
ing functions p, q, and r as well as a parameter λ. This DE is given by (p(x)y0)0 1 (q(x)1λ
r(x)) y5 0. The prime indicates a derivative. A Sturm�Liouville problem consists of the
aforementioned DE along with a domain, for instance, the interval (a, b). It also contains
boundary conditions at the endpoints for the closure of this interval. Moreover, it is
assumed that p, p0, q, and r are continuous on the domain, where p0 denotes the derivative
of p and the function p. 0, on this domain. The function r is often represented as w and
is referred to as the weight. The parameter λ is not specified a priori. It is found as part of
the nontrivial solution, and in this case, it is called an eigenvalue. The solutions to the DE
are called eigenvectors or eigenfunctions corresponding to the eigenvalues.

The DE can be reconfigured into a self-adjoint operator, in a Hilbert space H of func-
tions. The inner product in H is defined as follows: , f;g. 5

Ð b
a f � g dx. Principal refer-

ences are Bochner (1929) and Birkhoff and Rota (1978). Solutions of the Sturm�Liouville
DE exist under various boundary conditions, in particular, when they are referred to be
separable. In this case, there exist real-valued scalars c1, c2, d1, and d2 such that c21 1 c22 . 0;
and d2

1 1d2
2 . 0; where the boundary conditions hold: c1 y(a)1 c2 y

0 (a)5 0 and d1 y (b)1
d2y

0 (b)5 0. The Sturm�Liouville DE along with the aforementioned boundary values
(BVs) constitutes a system wherein the DE and BV have

1. Solutions, which consist of eigenfunctions yn(x), in the interval (a, b). They are unique
up to a scalar multiple. The interval might extend to infinity in one or two directions.
The corresponding eigenfunctions have n-1 zeros in this interval.

2. Eigenvalues; each eigenfunction has an associated unique real eigenvalue, and they are
ordered λ1,λ2,λ3 , . . .

3. Weighted Hilbert space. Normalized eigenfunctions form an ON basis of functions in a
weighted L2, Hilbert space. The inner product, ,yn, ym., is given by the weighted integral:Ð b
a yn xð Þym xð Þu xð Þdx5 zero, except when n5m, then the integral equals one after
normalization.
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From a practical point of view, finding the weight u (x) is the most important criterion
because it defines the inner product for the Hilbert space in L2. In short, for the linear

operator: L(y)5 a yv1 b y0 1 c y, the weighting function is u5e
Ð
ðb2a0Þ=adx. This is illustrated

below for several prominent polynomial classes. After developing all the weighting func-
tions, the Hermite polynomials and the Laguerre polynomials are described in detail.

Example G.1:

Legendre polynomials: L(y)5 (1�x2) yv2 2x5λ y. Then u5e
Ð
ðb2a0Þ=adx5e0 5 1. For these

functions on the interval [2 1, 1], there is no need for boundary conditions to make L self-
adjoint. The Legendre polynomials, yn, form an ON basis, with an inner productÐ 1
21 ynðxÞymðxÞdx5 zero, except when n5m; then the integral can be normalized to one.
The DE with the eigenvalues substituted in is (1�x2) yv2 2x2n (n1 1)5 0.

Example G.2:

The Hermite polynomials: H(y)5 yv 22xy0 5 2λ y. Then, u5e
Ð
ðb2a0Þ=adx 5 e

Ð
ð22xÞdx 5 e2x2 .

For these functions on (2N, N), the Hermite polynomials form an ON basisÐN
2N ynðxÞymðxÞe2x2dx5 zero, except when n5m; then the integral can be normalized to one.

Example G.3:

The Laguerre polynomials: L(y)5 xyv1 (12 x) y0 5 2λ y on [0, N). Then

u5e
Ð
ðb2a0Þ=adx 5 e

Ð
ð21Þdx 5 e2x. They form an ON basis

ÐN
0 ynðxÞymðxÞe2xdx5 zero, except

when n5m; then the integral can be normalized to one.

Example G.4:

Harmonic oscillator: H(y)5 1/2 (2h2/m yv1 m(w0 x)2) y5λ y. Then the solutions

form an ON set. Weight u5e
Ð
ðb2a0Þ=adx

5 e0 5 1. In this case, the eigen functions are in L2.
Accordingly, the weighting function is one in this case.

Example G.5:

The confluent hypergeometric equation: L(y)5 x yv1 (c2 x) y0 5λ y. The weight is

u5e
Ð
ðb2a0Þ=adx 5 e

Ð
ðc2x21Þ=xdx 5 jxjc21e2x. The DE is x yv1 (c2 x) y0 1n y5 0.

Example G.6:

Chebyshev polynomials: L(y)5 (1�x2) yv - x y0 5λ y, L(y)5 (1�x2) yv2 3 x y0 5λ y.

First, it is self-adjoint on [2 1, 1]. Weight u5e
Ð
ðb2a0Þ=adx

5 e
Ð
ðxÞ=ð12x2Þdx

5 1=ð12x2Þ1=2.Ð 1
21 ynðxÞymðxÞ=ð12x2Þ1=2 dx5 zero, except when n5m; then the integral can be normalized

to one. The DE with the eigenvalues substituted into the DE is (1�x2) yv2 x y0 1n2 y5 0.
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Example G.7:

Jacobi polynomials: L(y)5 (1�x2) yv 1 (e x1 g) y0 5λ y, on [2 1, 1]. Weight

u5e
Ð
ðb2a0Þ=adx 5 e

Ð
ðex1g22xÞ=ð12x2Þdx. For g521, 22, 23 and e5 0, the Jacobi polynomials

become the Legendre and Chebyshev polynomials, respectively. If 2e, g, e, then the
DE is (1�x2) yv1 (e x1 g) y0 1 [n (n2 1)2n e] y5 0.

Many classes of special functions can be defined or described in several different ways.
For the Hermite polynomials, they satisfy the following:

1. Differential equation: hv 22xh0 1 2nh5 0, or in terms of Sturm�Liouville differential
equation, e2x2 hv2 2xe h0 1 2ne2x2 h5 0

2. Rodrigues formula: hn5 (-1)n ex
2
dn e2x2 / dxn, n5 0, 1, 2, . . ..

3. Difference equation: h(n1 1) - 2xhn1 2nh(n-1)5 0
4. Generating function: eð2xt2t2Þ times the sum

P
(tk / k! Hk), k5 0, 1, 2, . . .

When they are normalized, they are symbolized by Hn, become an ON basis (not
weighted and no longer polynomials) for L2 and are given by
Hn5e21=2x2hn=ð2nn!ðpiÞ1=2Þ1=2. These are called Hermite ON functions.

Also for the Laguerre polynomials, y5Ln(x), they satisfy the following:

1. Differential equation: xyv1 (12 x) y0 1n y5 0, x in [0, infinity), or in terms of
Sturm�Liouville (e2x xy0)0 1 n e2x y5 0.

2. Rodrigues formula: Ln(x)5 [(d/ dx2 1)n] xn / n!.
3. Difference equation: L(n1 1)(x)5 [(2 n 11 - x) Ln(x) - n L(n - 1)(x)]/(n1 1), for n5 1, 2,

3, 4, . . .
4. Generating function: Sum,

P
tnLnðxÞ5ð12tÞ21e2tx=ð12tÞ, n5 0, 1, 2,.. . .

A second-order linear homogenous DE can be represented as a Sturm�Liouville DE by
defining an integrating factor p. The method is outlined below, more rigorously. For a lin-

ear operator, L(y)5 a yv1 b y0 1 c y, if p5 e
Ð
ðb2a0Þ=adx is finite over an interval I, and V is a

vector space of functions such that

1. V is invariant under L.
2. For every y in V, the integral of p y2 over I is finite.
3. For u and y in V, the difference of p a (u0 y2u y0)5p a (u0 y2u y0) evaluated at the

end points of I vanishes, then L is self-adjoint with respect to the inner product ,y,
u. 5

Ð
p y u dx.
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Cauchy-Bunyakovsky-Schwarz inequality (CBS

inequality), 142
Cauchy’s integral theorem (CIT), 251
Cayley transform, 256�257, 260
Cayley-Hamilton theorem, 159
Cayley’s theorem, 379
Cayley�Bacharach theorem, 374�375
CBH formula. See Campbell-Baker-Hausdorff formula

(CBH formula)
CBS inequality. See Cauchy-Bunyakovsky-Schwarz

inequality (CBS inequality)
CCRs. See Canonical commutation relations (CCRs)
Chain rule, 34�35
Character space, 168
Characteristic equation, 99, 201
Charge qubits, 121
Charts, 177, 199
Chebyshev polynomials, 333, 388�389
CIT. See Cauchy’s integral theorem (CIT)
Clifford algebra, 278
Clifford single-qubit group, 295, 297
Closable operator, 245
Closed graph theorem, 238, 385
Closed operators in Hilbert spaces, 135
CMOS. See Complementary metal oxide semiconductor

(CMOS)
CNNs. See Convolutional neural networks (CNNs)
CNOT gate, 297, 299
CNOT matrix, 298
CNOT operator, 298
Coarsest topology, 385
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122�124
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bound matrices, 341�346
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346�347
K-nearest neighbor classification, 334�335
K-nearest neighbor regression, 335�336
Kernel methods, 339�341
learning types and data structures, 328�329
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quantum K-means applications, 336
quantum machine learning applications, 327�328
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regression, 332�333
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DE. See Differential equation (DE)
De Morgan’s law, 370
De-coherence, 91, 115, 122
Decentralized feature extraction speech recognition

system, 328
Deep learning, 23

activation functions and cost functions for neural
net, 28�30

affine transformations for nodes within neural net, 24
backpropagation for neural net learning, 31�35
classification with single-node neural net, 30�31
convolutional neural networks, 37�38
global structure of neural net, 24�28
machine learning and data mining, 21�23
many-sorted algebra description of affine space,

35�37
recurrent neural networks, 38�40
and relationship to quantum, 23�24

Defects, 115
Delta function potential well, 107�110
Density functions, 249�250
Density matrix, 88, 91
Density operator, 249
Derivative-type operations, 198
Determinant, 73�74
Deutsch oracle, 307f
Deutsch problem

description, 307
Deutsch oracle, 307f
oracle for, 308�309
quantum solution to, 309�310

Deutsch-Jozsa problem, 310�311
description, 310�311
quantum solution for, 311�312
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Deutsh-Jozsa algorithm, 317
Diffeomorphism, 180, 191
Differential equation (DE), 387
Differential operator, 145
Diffie�Hellman EEC key exchange, 324
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Dilation, 44�45, 247
Dirac sea, 278
Direct isometry, 206
Discrete log problem, 324
Disk algebra, 350�354
Dissipative operator, 240
Distinct isometries, 80
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Division algebra, 42�43
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Double dual Hilbert space, 64�66
Double dual space, 64
Double-tangent method, 322
Doubling, 322

operations, 321�322
Downsampling, 37�38
Drury-Arveson space, 353
Dual basis of Vd, 61�62
Dual bundle, 182�183
Dual space

basis, 64
used in quantum, 60�64

Dynkin’s formula, 194

E
Earnshaw’s theorem, 116
ECC. See Elliptic curve cryptography (ECC)
ECs. See Elliptic curves (ECs)
Eigenfunctions, 356, 387
Eigenproblem, 94�95
Eigenvalues, 95, 232, 356, 387
Eigenvectors, 94�96, 98�99, 103�104, 387
Electron spin quantum number, 112
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Elliptic curve cryptography (ECC), 4�5, 318�320
Elliptic curves (ECs), 183�184, 315, 373
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MSA of elliptic curve over finite field, 321�324

Endomorphism, 73, 84, 132, 184
Entanglement, 106, 139
Equational constraints, 67
Equivalence relation, 171�172
Essentially bounded measurable functions, 166
Ethereum, 318�319

Euler angle matrices, 206�207
Euler’s totient function, 315�316
Euler’s totient group, 316�318
Extended convolution, 49
Exterior derivatives, 92�93

F
Facial patterns, 327
Factoring, 373
Fatou’s theorem, 352
Feature kernels, 339
Feature maps, 15�17, 97�98, 340
Fermi level, 283
Fermionic Fock space, 276�277
Maya diagram representation of, 283�284

Fermionic Fock state, 277
Fermionic Hilbert space, 277
Fermionic ladder operators, 276�277
Fermions, 265
Fiber bundles
analytic vector bundles, 182�183
basic topological and manifold concepts,

176�178
elliptic curves, 183�184
Hopf fibrations, 186�187

with Bloch sphere, 187
with sphere S4, 188

line and vector bundles, 181�182
from manifolds, 178�180
MSA for algebraic quotient spaces, 171�173
quaternions, 184�186
sections in, 180�181, 181f
topological quotient space, 173�176

Filtering, 21
Final space, 259
Finite concept class, 330
Finite fields, 318
MSA of elliptic curve over, 321�324

Finite-dimensional Hilbert space, 243, 272
First-order differential equation, 349
Flux qubits, 121
Fock space, 3�4, 57�58, 84, 377, 379
Bogoliubov transform, 286
bosonic occupation numbers and ladder operators,

272�276
fermionic Fock space and fermionic ladder

operators, 276�277
many-body systems and Landau many-body

expansion, 287�288
Maya diagram representation of fermionic Fock

space, 283�284
Maya diagrams, 278�283
parafermionic and parabosonic spaces, 286�287

394 Index



particles within Fock spaces and Fock space
structure, 271�272

SBF operations, 287
single-body operations, 288
Slater determinant and complex Clifford space, 278
two-body operations, 288
Young diagrams representing quantum particles,

285�286
FOIL rule, 133
Forward propagation, 37
Fourier transform, 355
Fredholm integrals, 356
Free particle solution, 108
Frobenious norm, 147
Frobenius covariants, 94, 206, 295

matrices, 93�94
Frobenius norm, 142�143
Fubini-Study metric, 80
Functional analysis, 383�385
Functional calculus, 93
Fundamental groups, 226

Cornwell mapping, 229�230
homotopic equivalence for topological spaces, 226�227
homotopy, 217�218
illustrating, 225�226
initial point equivalence for loops, 219�220
MSA description of, 220�224

Future data, 21

G
Gage transformation, 128
Gallium (Ga), 114
Galois fields, 319�320, 323
Garding-Wightman axioms, 267
Gated recurrent units (GRUs), 38
Gaussian kernel, 104
Gelfand formula, 163
Gelfand transform, 168�169
Gelfand-Naimark-Segal (GNS), 2

construction, 158�162
General-purpose computers, 113
Generalized error, 329
Germanium (Ge), 114
Gimbal lock, 207
Glide reflections, 80
Global field structure, 3�5

in quantum and machine learning, 5�6
GNS. See Gelfand-Naimark-Segal (GNS)
Gradient descent algorithm, 34
Gram matrix, 16�17
Gram-Schmidt ortho-normalizing procedure, 96
Gram-Schmidt process, 204
Grassmann algebra, 47

Groupoid, 6
Grover algorithm, 313
Grover search

algorithm, 314�315
problem, 312�313
solution to, 313�315

GRUs. See Gated recurrent units (GRUs)
Gyroscopes, 207

H
Haar measure, 300�301
Hadamard gate, 293, 296
Hahn�Banach theorem, 384
Hamiltonian equations, 126�127
Hamiltonian operator, 103�104
Hardy RKHS, 352
Hardy space, 352
Harmonic oscillator, 104, 388

algebraic solution to, 349�350
Hasse’s theorem, 323
Hausdorff space, 175�176
Heap, 83�84
Heisenberg algebra, 265
Heisenberg group, 266

Weyl form of CCR and, 265�266
Heisenberg matrix, 195
Heisenberg uncertainty principle, 362
Hellinger�Toeplitz theorem, 237
Hermite ON functions, 389
Hermite polynomials, 104, 388�389
Heuristics, 110
Hilbert group, 291
Hilbert space, 2, 12�13, 57�58, 104, 111, 133, 238, 253,

255�256, 272�273, 276�277, 302
bounded operators on, 151�153
closed operators in, 135
higher dimensional, 298
invertible operator algebra criteria on, 153�155
many-sorted algebra for tensor product of, 76�78
rank, 145�147
of rays, 78�79
of wraparound digital signals, 48�49, 365�367

Hilbert-Schmidt bounded operators, 142�143
Hilbert-Schmidt norm, 147
Hilbert-Schmidt operators, 142�143
Holevo’s theorem, 110
Holomorphic function, 287
Holomorphic functional calculus, 43
Hom (V, C), 60
Homeomorphic map, 176�177, 198�199
Homeomorphism

involving circular interval, 175f
of quotient space of reals, 174f

395Index



Homomorphism, 47�48
Homothety, 183
Homotopic equivalence for topological spaces,

226�227
Homotopic inverses, 226�227
Homotopy, 200, 203�204, 217�218, 223, 227�228

square, 222�224
Hopf fibrations, 186�187

with Bloch sphere, 187
with sphere S4, 188

Hotelling transform, 94�95
Householder reflection, 304�305
Hyperfine qubit, 117
Hypergroup, 255, 257
Hyperparameters, 38
Hyperplanes, 339�340
Hyundai company, The, 327

I
Ideals

in Banach algebra, 157�158
in Lie algebra, 194�197

Identity gate, 294
Identity vector, 162
Infinite-dimensional Hilbert space, 3, 141, 243
Initial point equivalence for loops, 219�220
Initial projection, 259
Initial space, 259
Inner product space, 12�13
Instance space, 329
Integrator, 253
Interference, 105
Interior derivatives, 92�93
Interior products, 68�71
Intertwining, 138
Inverse Fourier transform, 355
Inverse stereographic projection, 187
Invertible operator algebra criteria on Hilbert space,

153�155
Ion trap fabrication, 116
IonQ quantum computing for Hyundai, 327�328
Ions, basic structure of, 111�114
Isogeny, 184
Isometry, 60�61, 80, 255�257
Iterative procedure, 25

J
Jacobi identity, 192�193
Jacobi polynomials, 389
JJ. See Josephson junction (JJ)
Jordan algebras, 43, 353
Jordan identity, 354
Josephson frequency, 119�120

Josephson junction (JJ), 107, 115, 117�121
Josephson qubits, 121
Josephson super-conductance effect, 118

K
K perp, 242
k-means procedure, 30
k-means technique, 21�22
k-median technique, 21�22
k-nearest neighbor (KNN), 327
classification, 334�335
regression, 335�336

Karhunen-Loeve transform (KLT), 94�95
Kernel principal component analysis (KPCA),

97�98
Kernels, 339�340
matrix, 98
methods, 1, 339�341

in real Hilbert spaces, 15�17
Kinetic energy, 288
KLT. See Karhunen-Loeve transform (KLT)
KNN. See k-nearest neighbor (KNN)
KPCA. See Kernel principal component analysis

(KPCA)

L
Ladder operations, 272�273
Ladder operators, 272�276
Lagrange multiplier, 337
Lagrange-Sylvester expansion, 206
Lagrange-Sylvester interpolation formula, 94, 296
Laguerre polynomials, 388
Landau many-body expansion, 287�288
Landau-Zener transitions, 126
Lattice L, 183�184
Learning
rate, 32
types and data structures, 328�329

Lebesgue integration theory, 370
Lebesgue measure, 372
Lebesgue space of square absolute value integrable

complex-valued functions, 243
Lebesgue square-integrable functions, 104
Left-shift operator, 236
Left-sided identity relation, 223
Legendre polynomials, 388
Leibnitz’s rule, 209
Leibniz rule, 71, 84, 93
Levi-Civita symbols, 213�214
Lie algebra, 186, 191
briefing on topological manifold properties of Lie

group, 198�202
complexification of Lie algebras, 215�216

396 Index



dimension, 192�194
formal description of matrix Lie groups, 202�207
ideals in, 194�197
mappings between Lie groups and Lie algebras,

208�215
MSA view, 191�192
representations and MSA of Lie group of,

197�198
Lie bracket, 191
Lie derivatives, 92�93
Lie groups, 193, 197, 225�226, 228�229
Lie�Trotter formula, 194
Line bundles, 181�182
Linear combinations, 62�63
Linear maps, 131�132
Linear operators, 131�134
Linearity, 132, 146

condition, 132
Linearization, 208
Lipschitz condition, 136, 200
Long short-term memory (LSTM), 38�40
Loops

equivalence classes for loops, 219f
initial point equivalence for, 219�220

LSTM. See Long short-term memory (LSTM)
Lumer�Phillips theorem, 233

M
Machine learning, 21�23, 327�328

algorithms, 339
bound matrices, 341�346
CNN and quantum convolutional neural networks,

346�347
K-nearest neighbor classification, 334�335
K-nearest neighbor regression, 335�336
Kernel methods, 339�341
learning types and data structures, 328�329
PAC learning and Vapnik-Chervonenkis dimension,

329�332
quantum K-means applications, 336
quantum machine learning applications, 327�328
radial basis function kernel, 341
regression, 332�333
SVC, 336�338

Magnetic quantum number, 112
Majorana fractional JJ effect, 119
Majorana particles, 116
Manifolds

briefing on topological manifold properties of Lie
group, 198�202

concepts, 176�178
fiber bundles from, 178�180

Many-body systems, 287�288

Many-sorted algebra (MSA), 1�2, 57�58
Banach algebra as, 51�52
for Banach* and C* algebra, 52�53
description of affine space, 35�37
description of Banach space, 49�51
fundamental illustration of MSA in quantum, 12�13
methodology, 2�3
for tensor product of Hilbert spaces, 76�78
for tensor vector spaces, 71�73

Mappings between Lie groups and Lie algebras,
208�215

Matrix, 83
for algebraic quotient spaces, 171�173
characterization, 268
complex representation for Bloch sphere, 91�92
description of fundamental group, 220�224
of elliptic curve over finite field, 321�324
interior, exterior, and Lie derivatives, 92�93
kernel principal component analysis, 97�98
Lie groups, 201
formal description of, 202�207

operations, 83�85
principal component analysis, 94�97
qubits and matrix representations, 85�91
spectra for matrices and Frobenius covariant

matrices, 93�94
SVD, 98�101

Max pooling, 37�38
Maximal atlas, 177
Maximum margin classifiers, 336�337
Maya diagrams, 278�283, 377�378

representation of fermionic Fock space, 283�284
Measurable space, 369�370
Measure space, 369
Measurement operator, 160
Mercer’s theorem, 355�357
Metric tensors, 73
Minimal bound matrix, 342
Minkowski space, 201
Mittag-Leffler real-valued RKHS, 353
Mittag�Leffler function, 353
Mixed states, 91
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