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Preface

John Stewart Bell was without doubt one of the most influential scientists of the
second half of the twentieth century. His scope of the research was very broad.
Starting in accelerator physics in the 1950s at Harwell and Malvern, he soon turned
to particle physics. In particular, after moving to CERN in 1960, he considered
particle physics as a “job” he got paid for, but he certainly was enthusiastic about
doing it. Parallel to his “job”, he worked continuously on his “hobby”, the foun-
dations of quantum mechanics, the field he is most famous for, until his untimely
death on 1 October 1990.

In all these areas, Bell made outstanding contributions. Let us mention just a
few.

Already Bell’s Ph.D. thesis included a fundamental paper “Time reversal in field
theory”. In that work, he proved independently from Gerhart Lüders and Wolfgang
Pauli the celebrated CPT theorem, a basic symmetry of Nature that leaves a
physical system unchanged under the joint action of charge conjugation C, parity
inversion P and time reversal T.

Bell’s most far-reaching contribution to particle physics, developed together
with Roman Jackiw, was the discovery of the so-called Adler–Bell–Jackiw
anomaly, which is responsible for the decay of the pion into two photons. It turned
out to be the key to a deeper understanding of quantum field theory.

In accelerator physics, Bell wrote several papers, alone or in collaboration with
William Walkinshaw at Harwell, mostly on how to focus a bunch of electrons or
protons in a linear accelerator. At CERN, he collaborated with his wife Mary who
was working in the Accelerator Research Group. Together they published several
papers, for example on electron cooling in storage rings.

A particularly attractive work, in our opinion, was Bell’s combination of the
Unruh effect of quantum field theory with accelerator physics. The idea was to use
the polarization of accelerated electrons as a thermometer that measures the tem-
perature of the blackbody radiation experienced by the electrons. The results, small
but measureable, were published together with Jon Leinaas.
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Of course, John Bell is most famous for his contributions to the foundations of
quantum mechanics. This topic attracted his interest already in the late 1940s while
he was a student at Queen’s University Belfast, got stimulated in the 1950s by
Bohm’s reinterpretation of quantum mechanics and culminated in 1964 when he
was on sabbatical in the USA. There, he wrote his two seminal papers. The first one
(but published secondly due to a delay in the publishing journal) was “On the
problem of hidden variables in quantum mechanics”, where he discovered that
non-contextual hidden variable theories are in conflict with quantum mechanics.
The second one, “On the Einstein-Podolsky-Rosen paradox”, contained the cele-
brated Bell inequality, or what is called Bell’s theorem, stating that any local
realistic theory disagrees with quantum mechanics.

Thus, the year 2014 marked the 50th anniversary of Bell’s theorem, one of the
most significant developments in quantum theory. For us, it was immediately clear
that we had to organize some kind of celebration. Discussing this idea with our
colleagues, we received such a huge and enthusiastic response that our initial
intention finally resulted in the conference “Quantum [Un]Speakables II: Half a
Century of Bell’s Theorem”, which took place June 18th–22nd at the University of
Vienna. About 400 scientists of the quantum foundations community attended. We
were also very happy and felt privileged that Mary Bell took the effort to come as a
Guest of Honour and to speak at the opening. The major part of the contributions to
the conference is collected in this book.

As is well known by now, when John Bell started to work on the foundations of
quantum mechanics, there was hardly any interest in such topics. Even worse,
working on foundations was not considered to be a proper topic for a physicist. The
first who had the courage to carry out an experiment on Bell inequalities was John
Clauser in the 1970s; he had to struggle enormously to get the resources for doing
the experiment. The situation began to change after the experiments of Aspect in the
1980s. Slowly, the community began to realize that there was something essential
to Bell’s theorem. The third generation of Bell experiments commenced in the
1990s and has extended into the twenty-first century. It has taken advantage of new
technologies, such as spontaneous parametric downconversion, which is an effec-
tive way to create entangled photons. Also, more recently, it became possible to
create entanglement in other systems, such as atoms or ions in traps or supercon-
ducting devices. In such experiments, the case against local realism, the viewpoint
excluded by Bell’s theorem, and for quantum mechanics became stronger and
stronger, and more and more loopholes for the experiments were closed.

Also in the 1990s, the field of applications of entangled states and of Bell’s
theorem opened up. This was signified by experiments on quantum teleportation,
quantum cryptography, long-distance quantum communication and the realization
of some of the basic entanglement-based concepts in quantum computation.

Today, Bell’s theorem and the underlying physics of entangled states have
become cornerstones of the evolving technology of quantum information. Violation
of Bell’s inequality has become a litmus test for the realization of quantum
entanglement in the laboratory. It has become part of the common understanding
that a loophole-free Bell experiment is the final and definitive demonstration that
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quantum cryptography can be unconditionally secure. Also, entanglement
swapping, the teleportation of an entangled state, is central for quantum repeaters,
which are expected to be the backbone of a future worldwide quantum internet.
Furthermore, Bell’s theorem, as a fundamental contradiction between local realism
and quantum mechanics, has been extended to higher dimensions and multiparticle
systems.

The number of citations of Bell inequalities over the last decades is shown in
Fig. 1.

Nowadays, physicists agree that John Bell would have definitely received the
Nobel Prize for his outstanding contributions to the foundations of quantum
mechanics if he had lived longer. This was, for instance, expressed explicitly by
Daniel Greenberger in an interview given at the conference Quantum [Un]Speak-
ables II in Vienna:

Of course, people more and more appreciate John Bell’s beautiful work. He was essentially
starting the field, his work was totally seminal, and if he were alive he certainly would have
won the Nobel Prize!

We also want to mention that Bell was not only an outstanding scientist with a
sharp and clear view of Nature, but also a man of honest character and high morals.
The late Abner Shimony expressed his appreciation for Bell, which we fully share,
in the following way:

Fig. 1 Number of citations of Bell’s paper according to Google Scholar (February 2016)
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His [Bell’s] passion for understanding, uncompromising honesty, simplicity of lifestyle and
demeanour, dignity, courtesy, generosity to other scientists, and passion for social justice
were combined into a character that was inspiring to all who had the privilege to be
acquainted with him.

In 2014, the city of Belfast honoured John Bell as “one of Northern Ireland’s
most eminent scientists”. The City Council named a street after his theorem “Bells
Theorem Crescent” in the Titanic Quarter of Belfast, bending their rule of avoiding
streets being named after individuals (see Fig. 2). Today, the Technical College,
renamed Belfast Metropolitan College, that Bell attended is situated in that location.
Furthermore, the Naughton Gallery at Queen’s University Belfast organized the
exhibition “Action at a distance: The life and legacy of John Stewart Bell” com-
bined with lectures about Bell at the university.

Finally, we would like to mention that the late Walter Thirring, Austria’s most
prominent theoretical physicist, who was a member of the International Advisory
Board of our conference series, in his last years developed a deep interest in Bell’s
theorem and published several papers about it together with Heide Narnhofer and
one of the editors (R.A.B.). When working on Bell’s ideas, Thirring said:

I have to apologize to John Bell that I recognized the significance of Bell’s theorem only so
late.

Fig. 2 The Belfast City
Council named a street “Bells
Theorem Crescent” in the
Titanic Quarter of Belfast to
honour its eminent scientist
John Stewart Bell. Photo Joan
Whitaker
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Thirring’s original German phrasing was:

Ich muss John Bell Abbitte leisten, dass ich erst so spät die Bedeutung von Bell’s Theorem
erkannt habe.

This collection of articles is based to some extent on presentations made at the
conference “Quantum [Un]Speakables II” in Vienna. However, where possible,
contributors have made an effort to write at a level accessible to non-specialists and
have also updated and expanded their texts as necessary. We are confident that the
result will be of interest to graduate students and researchers in quantum theory,
specifically in the conceptual foundations of quantum mechanics. But it will be also
of value to philosophers and historians of science working in this field, as well as
providing stimulating reading for many scientifically literate persons from other
fields.

The current volume would not exist without our editor at Springer, Angela
Lahee. Her unequivocal support right from the beginning and her continuing
feedback and guidance were invaluable for the making of this book.

The organization of the conference in Vienna would have been impossible
without the financial support of the Austrian Academy of Sciences, the SFB
Foundations and Applications of Quantum Science, the Vienna Center for Quantum
Science and Technology (VCQ), the Science and Research Funding of the City of
Vienna, and the University of Vienna. We are very grateful to Andrea Aglibut who
managed the whole organization of the conference with great commitment and
charm and thank her for supporting the editing process of the present book. We are
grateful to the numerous students who helped us with the organization, in particular
to Bernhard Wittmann and Robert Fickler who were responsible for the technical
run. Last but not least, our thanks go to the Austrian Central Library for Physics, in
particular to Gerlinde Fritz and Daniel Winkler for the video documentation and to
Rudi Handl for taking a complete photographic record of the event.

Vienna, Austria Reinhold Bertlmann
Anton Zeilinger
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Chapter 1
Address to Participants at Quantum
[Un]Speakables II

Mary Bell

I thank everyone for coming to the meeting. J.S.B. would have been amazed to see
so many people here.

I first saw John in the autumn of 1949 when he first arrived at the Theory
Division of A.E.R.E. After a few months he agreed to go to Malvern where a small
group (already part of A.E.R.E.) under Bill Walkinshaw was working on short
electron accelerators. Later on, I joined the group. At that time, only desk calcu-
lators were available, so it was a different world from now. As you may have read,
he always referred to himself as a ‘quantum engineer’. He must have become aware
of a class difference between physicists and so-called engineers. Recently, I have
seen a number of such references. In the book ‘Quantum Enigma’ by Bruce
Rosenblum and Fred Kuttner, they express great surprise that, after graduation,
John took a job involving an ‘almost engineering role’. In fact, he liked the work a
lot. However, not everyone has the same attitude. Later, when we went to Stanford,
we were amused at immigration. The officer didn’t think much of John’s description
as a ‘theoretical physicist’, but was very impressed by mine as ‘mathematical
engineer’.

Later, the Malvern group moved to Harwell to join the rest of A.E.R.E. The
Theory Division had a number of groups, but we all had tea or coffee together, and
it was there that John and Franz Mandl had many friendly arguments about
quantum mechanics, arguments which they both enjoyed.

In 1953, he was offered a year at a University on his usual salary. In the end he
chose Birmingham where Rudolf Peierls was professor. He saw a lot of the late
Paul Matthews there. The first part of his thesis was the T.C.P. theorem. On his
return to Harwell he joined the Nuclear Physics Group of the Theoretical Physics
Division, at that time headed by the late Tony Skyrme. In 1960 we moved to
CERN, as John thought that he would like to work in high-energy physics.

M. Bell (✉)
European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland
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As he always said, the quantum mechanics foundations was a hobby. Most of the
time he was thinking about other things. As he had a wide knowledge people often
consulted him. At the end of 1963 we went for a year to Stanford. It was there that
the inequality was thought out during a week-end.

There was not a lot of interest at first. Most people took the Tini Veltman
attitude. As he writes in his book “Facts and Mysteries in Elementary Particle
Physics”, Tini asked John: “Why are you doing this? Does it make the slightest
difference in the calculations such as I am doing?” To which Tini says John
answered: “You are right, but are you not interested and curious about the
interpretation?”

Gradually, more people began to take an interest, many of them here today. It
also attracted a number of non-physicists. John always said that CERN was like a
railway station with many passers-by. On one occasion when he arrived in the
morning, he found his blackboard filled with questions. A stranger wished to write a
paper with him. It was to consist of the questions, with the answers supplied by
John.

Of course, he had many visits from well-known physicists, many of whom I am
pleased to see here today.

4 M. Bell



Chapter 2
John Stewart Bell, Quantum Information
and Quantum Information Theory

Andrew Whitaker

It is traditional to take virtually for granted [1, 2] that John Bell’s work on the
foundations of quantum theory led fairly directly to the founding of the discipline of
quantum information theory, and thus it is natural to give Bell credit perhaps for the
very existence of this subject.

This tradition obviously provides a massive boost to anyone, in the present or in
the future, who has the task of describing Bell’s importance and demonstrating his
stature to non-scientists as well as to scientists. Anybody not interested in such
arcane matters as determinism, locality and realism may be excited by his having
provided the means of breaking codes, of running safe and efficient elections, or
even of teleportation.

Of course looking at events historically there is every reason to take the influ-
ence of Bell on quantum information theory as obvious and beyond question. Many
of the people involved in foundational studies moved on seamlessly to work on
quantum information, though they were joined there, particularly in the study of
quantum computation, by many with little genuine interest or understanding of
Bell’s work, and Mermin [3] has pointed out in his introduction to quantum
computation how little physics is needed to work in this area.

Experimental and theoretical techniques designed for one or other of the areas of
quantum foundations and quantum information theory were often capable of being
adapted to be used in work on the other. For example experimental methods used in
the study of quantum teleportation [4] were the basis of those used to demonstrate
the existence of the GHZ states [5].

And of course it is also natural to bring up the matter of entanglement. It is
surely fair to take note of Bell’s importance in the full realisation of the significance
of entanglement. Its importance was probably first pointed out by EPR and was
stressed by Schrödinger, particularly in his famous statement that it was ‘not one

A. Whitaker (✉)
School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
e-mail: a.whitaker@qub.ac.uk
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but the characteristic feature of quantum mechanics, the one that enforces the entire
departure from classical thought’ [6].

Subsequently, however, it was not discussed in a substantial way until Bell used
it in his important discoveries [7, 8]. Then, of course, and almost entirely as a result
of his influence and his theorems, it became central in at least all the standard
examples met in both quantum foundational studies and quantum information
theory. It must surely be fair to give him credit for that. So we may feel quite happy
in talking about Bell’s major part in the development of quantum information
theory. But it is still slightly different to claim that his work was its main theoretical
stimulus or underpinning.

We may remember David Deutsch, who was, at least in many people’s views,
the genuine founder of the study of quantum computation [9]. His important
insight, obvious enough in retrospect, was that, not only must there be a subject of
quantum computation, with its own theoretical basis, but that, at least from a
rigorous point of view, we do not have classical and quantum computation on an
equal footing, any more than classical and quantum physics are on an equal footing.

Rather quantum physics and quantum computation are fundamental, and clas-
sical physics and classical computation, are again, in principle, merely good
approximations, often extremely good approximations, to the quantum versions.

Thus Deutsch declared that the classical theory of computation, unchallenged for
more than fifty years, was obsolete, and it was necessary to rewrite the
Church-Turing argument to meet quantum-mechanical requirements [10]. (Turing,
Deutsch said, had restricted his argument to paper, thinking, or at least acting as
though he thought, that paper was classical, but it wasn’t—it was quantum.)

Incidentally Mermin [3] has effectively made a reply to Deutsch’s point about
the primacy of the quantum computer. To say that a quantum computer is one that
obeys the laws of quantum mechanics, he says, is a temptation to be resisted. It
would imply that any laptop or even a mainframe computer is a quantum computer,
and that is just not how we think of things. Rather: ‘A quantum computer is one
whose operation exploits certain very special transformations of its internal state’.

For the present argument, the important and obvious point is that Deutsch’s
argument had nothing to do with the work of Bell. Rather in terms of analysis of
quantum theory it had a close, perhaps a symbiotic, relationship with one of
Deutsch’s other core beliefs, that in many worlds [10, 11]. For Deutsch, the existence
of many worlds could be read straight off from quantum theory by any unprejudiced
student, but, if that argument was questioned, he could argue that they certainly
explained the possible vast speed-up of a quantum computer—the calculations were
being carried out in the many worlds; this is known, of course, as parallelism [9, 10].

Deutsch’s claim that quantum computation relies on many worlds and parallelism
has been strongly criticised by Steane [12], who argues that a quantum computer
requires only a single universe, and that is misleading to argue that quantum com-
puters perform more operations than those allowed by a single universe.

Steane himself has suggested that the real source of speed-up in quantum
computation is entanglement. As we have already said entanglement is indeed
present, and indeed seemingly centrally important, in the examples normally
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considered, so it seems to be a very natural suggestion. However various arguments
have shown that quantum computation may proceed with the usual speed-up
without any entanglement at all [13–15].

As well as parallelism and entanglement, the combination of superposition and
interference has been suggested, but certainly does not guarantee any speed-up as
compared to classical computation.

Another contender is contextuality, which was essentially Bell’s response [7] to
the demonstration by Kochen and Specker [16] that without contextuality hidden
variables could not exist. Contextuality says that measurement depends on context—
the result of measuring physical quantity A depends on whether it is measured
together with physical quantity B or C. Again it may be relevant for the speed-up in
quantum computation in some cases [17].

Indeed every attempt to isolate ‘the’ ingredient of effective quantum computa-
tion, essential in every case, seems doomed to failure. Overall none of these factors
seem to be either necessary or sufficient for quantum computational speed-up. It
may, in the end, be best just to say that the power of quantum computation is a
result of a fusion of every aspect of quantum theory, different elements of quantum
computation relying on different aspects of quantum theory [18].

While on the question of the centrality of entanglement in quantum information
theory, we will remember, of course, that one of the central methods of quantum
cryptography, BB84, of course, at least in its basic form [19], does not rely at all on
entanglement. Indeed it requires only the most elementary aspects of quantum
theory, well-known in fact from the 1920s.

In fact when we analyse the extent to which John Bell’s work led to quantum
information theory, we have two big difficulties. First, as we have seen, it is difficult
or impossible to understand what the essential features of quantum information
theory actually are. But secondly, over and above the actual mathematical logic of
Bell’s inequalities, there are very different understandings of what the conclusions
of the experiments will be, once all loopholes are removed. Some, perhaps most,
believe they show that local realism is impossible [20]. Some believe that
non-locality has actually been demonstrated [21, 22]. Still others just say they show
that Copenhagen was right all along [23].

However first we will try to discover Bell’s actual views on the idea of infor-
mation. To what extent might he have found palatable the views of those, such as
Brukner and Zeilinger [24], Vedral [25], Wheeler [26], Lloyd [27], and many
others, who stress the primacy of information? While those mentioned have a wide
range of views, they might be summed up by saying that they regard information as
the fundamental quantity in the universe, and that using this idea to derive the basic
laws of physics makes clear the reason for their quantum nature.

At first sight it is unlikely that Bell would have given much support to this set of
ideas, as it seems that his only comment on information comes in his famous or
notorious paper Against “measurement”, originally presented at the Erice confer-
ence 62 years of uncertainty in August 1989, and published in Physics World in
August 1990 [28], sadly at about the time of Bell’s sudden death.
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This paper, of course, was a diatribe against a list of words that Bell claimed
were used illegitimately to ‘explain’ the results of quantum mechanical experi-
ments. Most of the words were criticised either for implying an artificial division of
the world between measuring and measured systems, with the intention of being
cavalier about interactions across the divide, or alternatively for defying precise
definition. Of course ‘measurement’ was, in his view, the ‘worst’, and most of the
rest of the paper is used to savage various attempts to use this word to explain how
the results of experiments are produced, those of Dirac [29], Landau and Lifshitz
[30], Gottfried [31] and van Kampen [32].

All of the words except one—‘system’, ‘apparatus’, ‘environment’, ‘micro-
scopic, ‘macroscopic’, ‘reversible’, ‘irreversible’, ‘observable’ and ‘measurement’
itself clearly relate to Bell’s bugbear about conventional approaches to quantum
theory—the ‘shifty split’ between apparatus and system. Bell had been suspicious
of this division from his earliest days as a student of quantum theory, and had been
actively hostile to it for many years, so it was scarcely surprising that all these
words appeared on his hit list [33, 34].

Much more surprising was the inclusion of the word ‘information’. The only
comment is: ‘Information? Whose information? Information about what?’ The
inclusion of this word is indeed surprising because there is little other evidence that
Bell had been particularly concerned with the use or misuse of this word, or its
(possible) synonym, ‘knowledge’.

There is no doubt that these words had often been used in a way that was quite
capable of annoying Bell. They were often used, by quite a variety of writers, to
provide what seemed to be an easy ‘explanation’ of the conceptual problems of
quantum theory, but which in fact explained nothing and avoided all the real
problems.

Perhaps the simplest misunderstanding is just to assume that all a measurement
or an experiment does is to provide information about a property of an observed
system that we may regard as existing before, during and after the measurement
process. There is every temptation to regard the actual system just as conventionally
or classically as we wish, with all observables having precise values at all times—in
a sense the measured system is not itself really part of the quantum world, which is
just the information.

That may perhaps apply just when we gather information for the first time.
Collapse of wave-function occurs when we have some prior knowledge but perform
an observation or experiment to bring our knowledge up to date. Naturally our
information changes. So in this approach collapse appears to be altogether a
straightforward process, merely representing the alterations in our brain when we
take in factual information. Collapse need not imply any change of any type in the
observed system.

Of course there may be complications. It may be that we initially know the value
of sx and come to know the value of sy. We must then recognise that our knowledge
of sx is defunct. But a knowledge or information interpretation certainly does not
necessitate, but may often encourage, the belief that all properties of a system (such
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as sx and sy) have precise values at all times even though our information about
these values is necessarily limited.

Bell may well have seen such interpretations claiming all the conceptual gains of
hidden variables without accepting any of the accompanying difficulties of such
theories, the labour in their creation, or, of course, the struggle in analysing and
making sense of their own properties.

While it has been said that Bell had no particular target in mind, it may be
suggested that his criticism was rather obliquely on the practically universal belief
that quantum theory is about the results of measurements, rather than what actually
‘exists’, and just a little less obliquely on the well-known views of John von
Neumann and Eugene Wigner.

For von Neumann, [35] final collapse was in the ‘abstract ego’ or perhaps mind
of the observer, not too far from talking in terms of knowledge. Bell was, of course,
a great admirer of Wigner, but he did make Wigner’s idea of consciousness [36]
performing the required collapse of wave-function one of his three ‘romantic’, and
hence in Bell’s view ‘bad’ worlds of quantum mechanics. (The kind of interpre-
tation that brought in the same type of stochastic terms mathematically and so in
what Bell took to be a more professional or ‘unromantic’ way, and was thus a
‘good’ world became exemplified in GRW [37].) Thus Wigner may also have been
in his sights in this paper.

Another suggestion is that of a paper of Cavalcanti and Wiseman [38], that
studies two of Bell’s papers in which he analyses his theorem in a little more depth
than when it was originally presented. These are ‘The theory of local beables’ [39]
from 1976, and ‘La novelle cuisine’ [40], published after his death in 1990.

In these papers, having reached the general existence of non-locality, Bell asks
whether this implies that ‘we’ can signal faster than light. He produces an argument
showing that this is not possible, and his argument in itself is not much different
from that produced by others. He divides his ‘beables’ into two classes, ‘control-
lables’ and ‘uncontrollables’. Controllables may send or receive signals, but
uncontrollables may only receive them. What he calls an ‘exercise’ in quantum
mechanics shows that a change in a controllable variable cannot result in a change
in a spacelike separated region.

However his words show a lot less enthusiasm for the analysis and the very idea
of signal locality. To give a proper answer to the question, he says, or in other
words to discuss signal locality, actually requires at least a schematic theory of
‘what “we” can do’, or in other words ‘a fragment of a theory of human beings’.
Clearly he is unhappy about the use of such anthropocentric ideas as ‘controlla-
bility’ and, in the background, ‘information’.

In the later paper he questions whether ‘no signalling faster than light’ can be an
expression of the fundamental causal structure of theoretical physics, but he rejects
the idea. ‘No signalling’, he says, should really be expressed as ‘We cannot signal
faster than light’, which, he says, immediately provokes the question: ‘Who do we
think “we” are?’
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Do ‘we’ include chemists or just physicists?
Plants or just animals?
Calculators or just computers?

The ‘we’ who can ‘signal’, he says are the same ‘we’ who can manipulate
‘external fields’, and, in particular, the same ‘we’ who take ‘measurements’.

So in this paper, written at about the same time as ‘Against “measurement”’, we
do seem to have reached the closest connection between ‘information’ and the other
words on Bell’s banned list.

Of Bell’s questions, the first—‘Whose information?’ may have genuinely been a
request for a coherent answer, one which was actually to be supplied over the next
years. Probably more likely is that it was intended to be pointing out that Bell
considered to be an obvious inconsistency of the idea—surely different people must
have different amounts of information. As we shall see, this was not necessarily a
defect of the theory.

The other question—‘Knowledge about what?’—perhaps brought out Bell’s
main frustration. Information, he assumed, must be about something, in which case,
why not discuss what it is actually about? In other words return the discussion to
atoms, molecules, electrons and discuss, for example, how they behave at a mea-
surement, and which if their properties may have values simultaneously. Bell may
have felt that talk of information or knowledge may not have actually been wrong,
but rather unhelpful; it may have failed to distinguish between things that we are
prohibited from knowing by the laws of quantum theory, and those that we could
know but have not bothered to find out!

In terms of the later development of quantum information theory it may be
remarked that there are perhaps two different definitions of information being used.
What we may call information1 is by definition telling you about something—it has
some content. Thus a parent might see their child’s scribble—it has no meaning, no
information. When the parent is told that it is in fact a picture of him or her, it
immediately becomes information1. Bell, it must be assumed, was thinking of
information1. Information as in information theory, classical or quantum, is
information2.

Bell’s paper was regarded as a polemic, and it was not surprising that quite a few
replies were sent to Physics World, among them letters from Gottfried [41] and van
Kampen [42] defending their arguments, and from Squires [43] supporting Bell.

The most interesting was from Peierls [44], which managed to include, in a
totally non-contrived manner, both of Bell’s targets, measurement and information.
Peierls was a great admirer of Bell. He had given Bell his first chance to enter
genuinely mainstream physics by advocating his move at Harwell to a division
devoted to tackling such problems as quantum field theory and particle physics
[34], and, for the rest of Bell’s career, Peierls had probably been split between
admiration of his mathematical ability and his honesty, and horror at his constant
attacks on the conventional interpretations of quantum theory [45]. A conspiracy
theorist might think that Bell had deliberately included the attack on ‘information’
to allow Peierls to give full rein to his beliefs.
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Peierls regarded himself as a complete believer in Bohr’s views, to the extent
that he rejected the term ‘Copenhagen interpretation’. For him, using this term
implied that there were several interpretations of quantum theory, of which
Copenhagen was just one. For Peierls, there was only one interpretation, so if you
say ‘Copenhagen interpretation’ you really mean ‘quantum mechanics’ [46].

Yet Peierls’ reply to Bell, titled ‘In defence of “measurement”’, seemed to be
very different from what would come from the mouth of Bohr or Heisenberg, being,
as stated above, in terms of knowledge, indeed very much along the lines sketched
above in a rather cavalier way but with care taken to avoid the obvious problems. In
our previous terms, Peierls’ knowledge was presumably still information1.

If our knowledge is complete, by which Peierls meant the greatest that could be
allowed by the laws of quantum theory, in particular the uncertainty principle, we
may represent this knowledge with a wave-function. However for less knowledge
we must use a density-matrix. Uncontrolled disturbances may reduce our knowl-
edge. Measurement may increase it. If we start with the wave-function case and
gain new information, some of the previous information must be lost, and so on.

When there is a change of knowledge, Peierls says that the density-matrix must
obviously change, but this is not a physical process so we should certainly not
expect the change to follow the Schrödinger equation. This argument does indeed
seem an excellent way of giving some explanation of von Neumann’s poser of the
contrast between type 2 processes, processes outside of measurement, which follow
the Schrödinger equation, and type 1 processes, measurements, which follow
completely different dynamics such as collapse.

On the first of Bell’s questions—whose information?—rather than regarding the
question as a means of ridiculing the whole idea, Peierls produced a intelligent and
convincing answer. His basic point is that the knowledge of different observers
must not contradict each other. Contradiction would occur if one observer ‘knew’
that sz was +½, while another ‘knew’ that it was −½, but it would also occur if one
‘knew’ that sz was +½ while another ‘knew’ that sy was +½. Mermin [47] says that
Peierls uses two conditions. A strong one is that the density-matrices of the two
observers must commute, while a weaker one is just that the product of the two
density-matrices must not be zero.

Mermin also points out that Peierls does not answer Bell’s other question—
information about what? He may have felt that the whole point of the Bohr
approach was that one need not, could not and should not answer it. It might be
surmised, though, that if an observer knows that sz is +½, then even an orthodox
interpretation would admit that there is a system with sz equal to +½. It would
probably prefer, though, not to comment on the values of sy or sx.

Mermin reports that he was initially on Bell’s side in his clash with Peierls, but
his view was changed by sustained interaction with those involved in quantum
computation, who were convinced that quantum theory was ‘self-evidently and
unproblematically’ a theory of information. In our previous terms, this is, of course,
information2.
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Like Peierls, Mermin was keen to answer the question—Whose information? By
demonstrating a subtlety of entanglement, he was able to demonstrate a weakness in
Peierls’ strong condition and to suggest improvements, thus again demonstrating
that, if Bell thought the question showed up the weakness of the whole position, he
was definitely wide of the mark.

However Mermin rejected altogether Bell’s other question—Information about
what? He described this as a fundamentally metaphysical question and considered
that it should not distract ‘tough-minded physicists’. It is not possible, he says, to
discover whether information is about something objective or just about other
information, and one certainly should not waste time trying to do so. Of course this
is information2.

And of course once one recognises the primacy of information, the whole
argument from the quantum to information may be reversed. Rather one argues
from information to the physical Universe. For Brukner and Zeilinger [24], the
obvious quantisation of information is the cause of the quantisation we see in the
Universe. For Vedral [25], information is the only entity on which we may base our
most fundamental theories; for example evolution is purely the inheritance of
information with occasional changes of the basic units, the genes. For Wheeler [26]
too, the concept of information may unlock some of the most basic mysteries of the
Universe. For Lloyd [27], the Universe is just a quantum computer, and what it
computes is just its own behaviour. Smolin [48] believed that quantum information
is a possible alternative to string theory as an attempt to solve the most basic
problems of physics. And so on.

Now let us return to Bell. It must seem bizarre to allocate credit to him for this
development, when his only contribution consisted of seven words, of which four
were the same—‘information’, and also when he seemed to end up on the wrong
side of the argument. Yet it may also be said that Bell did not believe in wasting
words. He took an issue that had maybe been under the radar for half a century,
challenged some basic assumptions, and asked precisely the telling questions, the
questions that would take others so far, even if they took them to regions which
would have surprised him.

I now want to go back to the beginning of quantum computation and the work of
Richard Feynman. If you take the founder of quantum computation as David
Deutsch, as I have done, it is natural, following Brown [49], to think of Feynman’s
earlier work as rather analogous to ‘the old quantum theory’, the period between
1900 and 1925 when many important results were obtained but without any rig-
orous foundation to the work.

Feynman published two important papers, the first, a conference paper from
1981, published in 1982 under the title ‘Simulating physics with computers’ [50],
and the second, ‘Quantum mechanical computers’ [51], published in 1985.

In the first he asks a number of important questions about simulations. In each
case the simulation must be exact, and the computational work required must
increase only in proportion to the size of the system being studied, not
exponentially.
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First he shows that a classical system may simulate a classical system, but it
cannot simulate a quantum system. He then asks if it can simulate the quantum
system probabilistically. The answer is again—no, but in this case Feynman has to
provide a detailed argument. He examines in some detail an EPR system, and
calculates the probabilities all the way through. Everything works out well—with
the exception that some probabilities used in the course of the analysis, not in the
answers, have to be negative. Feynman now demonstrates why negative proba-
bilities cannot be avoided, and he effectively works through a proof of Bell’s
theorem.

Tony Hey, who has edited both Feynman’s own work in this area (with Robin
Allen) [52], and also more recent papers by his collaborators [53], comments [53]
that ‘Only Feynman could discuss “hidden variables”, the Einstein-Podolsky-Rosen
paradox and produce a proof of Bell’s Theorem, without mentioning John Bell’!

Hey appears to assume that Feynman had encountered Bell’s work, but had
perhaps forgotten the name of the originator and worked through the analysis
himself.

It must be said that Feynman did have form for this kind of sloppiness. Most
significantly, in 1957 George Sudarshan, as a research student being supervised by
Robert Marshak, had demonstrated in great detail that the structure of the weak
interaction was of a V-A type (vector minus axial vector). However Feynman and
Murray Gell-Mann were privately informed of this result and thought about the
matter themselves, but forgetting their source of information, published the result in
their own names and gained priority over Sudarshan and Marshak. Feynman did
write later that: ‘The V-A theory was discovered by Sudarshan and Marshak, and
published by Feynman and Gell-Mann.’ [54–56].

But it is, of course, quite possible that Feynman did produce the Bell-type
analysis independently of Bell. Gottfried and Mermin [57] do say that the actual
analysis is ‘extraordinarily elementary’. Presumably it is having the motivation to
think about the matters that is requires a special intellect [57, 58], and Bell and
Feynman would both come into that category.

It may be stressed then that for Feynman it is Bell’s theorem that makes going
beyond classical computers inevitable, and he discusses very briefly the possibility
of quantum computers or ‘universal quantum simulators’.

However more interestingly he remarks that he often has fun trying to squeeze
the difficulty of quantum mechanics into a smaller and smaller place—to isolate the
essential difficulty, so as to give the possibility of analysing it is detail. He feels that
he has located it in the contrast between two numbers—one required by quantum
theory, the other the demand of classical theory—a direct result of a Bell type of
analysis.

Thus the significance of Bell’s work, according to Feynman, can scarcely be
over-exaggerated. It is the core element of quantum theory!

Let us briefly turn to Quantum Key Distribution (QKD). It is well-known that
Nicolas Gisin, Antonio Acín and co-workers have produced much detailed analysis
of the part that the Bell Inequalities play in many aspects and many variants of
QKD.
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Here I just want to pick up on one important point that they make [59]. It would
perhaps normally be said that QKD relies on the fact that, if Alice and Bob are
sufficiently entangled, then Eve is effectively factorised out. Yet it could be the case
that Alice and Bob share a space of higher dimension that is separable, and thus the
method for QKD becomes insecure. This is easily shown to be the case for BB84.

Usual proofs of the security of QKD rely on entanglement theory, and thus they
assume that Alice and Bob share knowledge of the fixed dimension of the Hilbert
space of their system. If this assumption, which is in fact rather arbitrary, cannot be
made, QKD must involve the violation of some Bell inequality. Thus yet again we
see the crucial role played by Bell’s theorem.

We are seeing that, while quantum theory is obviously different from classical
theory in many ways, in many cases at least the core of the difference or the
essential discrimination is just Bell’s inequality or a result of Bell’s inequality.

We may think of Holland’s comment [60] in his book on Bohmian mechanics.
He was answering a complaint that Bohm theory was trying to restore classicality to
quantum theory. His reply was that Bohm theory fully recognised the great dif-
ferences between quantum and classical theory. In fact, he said, it gave a possibility
of discussing classical and quantum mechanics in the same language, but not of
reducing one to the other. But it might be said that the task could not be a total
success, precisely because of non-locality, or in other words yet again a result of
Bell’s theorem.

We might well contemplate adjusting Schrödinger’s comment mentioned at the
beginning of this discussion to obtain the rather striking statement that it is not (just)
entanglement but actually Bell’s theorem and its implications that are ‘not one but
the characteristic trait of quantum mechanics, the one that enforces the entire
departure from classical thought.’
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Chapter 3
Bell’s Universe: A Personal Recollection

Reinhold Bertlmann

Abstract My collaboration and friendship with John Bell is recollected. I will

explain his outstanding contributions in particle physics, in accelerator physics, and

his joint work with Mary Bell. Mary’s work in accelerator physics is also summa-

rized. I recall our quantum debates, mention some personal reminiscences, and give

my personal view on Bell’s fundamental work on quantum theory, in particular, on

the concept of contextuality and nonlocality of quantum physics. Finally, I describe

the huge influence Bell had on my own work, in particular on entanglement and Bell

inequalities in particle physics and their experimental verification, and on mathe-

matical physics, where some geometric aspects of the quantum states are illustrated.

Keywords Bell inequalities ⋅ Nonlocality ⋅ Contextuality ⋅ Entanglement ⋅
Factorization algebra ⋅ Geometry

PACS number: 03.65.Ud ⋅ 03.65.Aa ⋅ 02.10.Yn ⋅ 03.67.Mn

Collaboration with John Bell

In April 1978 I moved from Vienna to Geneva to start with my Austrian Fellow-

ship at CERN’s Theory Division. Already in one of the first weeks, after one of

the Theoretical Seminars, when all newcomers had a welcome tea in the Common

Room, I got acquainted with John Stewart Bell. I remember when he approached

me straightaway, “I’m John Bell, who are you?” I answered a bit shy, “I am
Reinhold Bertlmann from Vienna, Austria”. “What are you working on?” was his

next question and I replied “Quarkonium...”, which was already a magic word since

we immediately fell into a lively discussion about bound states of quark-antiquark
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Fig. 3.1 First encounter with John Bell at CERN in April 1978. Cartoon: © Reinhold A. Bertl-

mann.

systems, a very popular subject at that time, which continued in front of the black-

board in his office. A fruitful collaboration and warm friendship began (Fig. 3.1).

The first problem we attacked was how to understand the production of hadrons

(strong interacting particles) in e+e− collisions. The experiments showed the follow-

ing feature: At low energies there occurred pumps, the resonances, in the hadronic

cross-section whereas at high energies the cross-section became quite flat or asymp-

totically smooth. Hadrons consist of quarks and antiquarks thus the e+e− collisions

actually produce quark-antiquark (qq̄) pairs. The idea was that at high energies,

which corresponds to short distances, the qq̄ pairs behave as quasi-free particles pro-

viding such the flat cross-section. However, at low energies, where the quarks can

penetrate into larger distances they are confined and generate bound states—called

quarkonium—which show up as resonances.

Our starting point was the idea of duality that stated that smearing each resonance

in energy already appropriately matches the corresponding result of the asymptotic

cross-section determined by the short-distance interaction [1, 2], an idea that can

be traced back to a work of Sakurai [3]. Theoretically, it can be understood in the

following way. Allowing for an energy spread means—via the uncertainty relation—

that we focus on short times. But for short times the corresponding wave does not

spread far enough to feel the details of the long distances, the confining potential.

So this part can be neglected and the wave function at the origin of the bound state,

which determines the leptonic width or area of a resonance, matches the averaged

quasi-free qq̄ pair. However, if we want to push the idea of duality even further in

order to become sensitive to the position of the bound state in the mass spectrum

then we have to include into the wave function the contributions of larger distances,

confinement.
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How could we include confinement in our duality concept? Our starting point

was the vacuum polarization tensor Π(q2), the vacuum expectation value of the time

ordered product of two quark currents in quantum field theory, quantum chromo

dynamics

i∫ dx eiqx⟨Ω|T j
𝜇

(x)j
𝜈

(0)|Ω⟩ = Π(q2)(q
𝜇

q
𝜈

− q2g
𝜇𝜈

) . (1)

This quantity was proportional to the hadronic cross-section, where at low energy

the bound states, the resonances, occurred. More precisely, the imaginary part of the

vacuum polarization function (the forward scattering amplitude) was related to the

total cross-section via the optical theorem

ImΠ(E) ∼ 𝜎tot (E) , (2)

and calculable within perturbation theory with help of Feynman diagrams, the loop

diagrams depicted in Fig. 3.2. At that time the Russian group, Shifman-Vainshtein-

Zakharov (SVZ) [4], claimed that the so-called gluon condensate ⟨
𝛼s
𝜋

GG⟩, the

vacuum expectation value of two gluon fields, would be responsible for the

Fig. 3.2 Perturbative expansion (Feynman diagrams) of the vacuum polarization tensor in QCD

including the gluon condensate, and the equivalent potential of Bell and Bertlmann to this expan-

sion. Foto: © Renate Bertlmann.
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influence of confinement (represented by the third loop diagram in Fig. 3.2). This

idea we wanted to examine further.

Approximating quantum field theory by potential theory, we could calculate both

the perturbative and the exact expression. For the energy smearing we had chosen an

exponential as weight function, which was called a moment by the mathematicians

M(𝜏) = ∫ dE e−E𝜏 ImΠ(E) = 3
8m2 ⟨x⃗ = 0|e−H𝜏 |x⃗ = 0⟩ . (3)

In this case, where we had rediscovered the 𝜏 dependent Green’s function at x⃗ = 0 ,

the procedure corresponded to perturbation theory of a Hamiltonian H with respect

to an imaginary time 𝜏 . This I found quite fascinating. The actual calculation pro-

vided the following result

M(𝜏) = 3
8m2 4𝜋 (

m
4𝜋𝜏

)
3
2

{

1 + 4
3
𝛼s
√
𝜋m 𝜏

1
2 − 4𝜋2

288m
⟨
𝛼s

𝜋

GG⟩ 𝜏3
}

. (4)

The leading term corresponded to the free motion of the quarks (first diagram in

Fig. 3.2); it was perturbed by the 𝛼s term, representing the short distance interaction

(second diagram), and by the gluon condensate ⟨
𝛼s
𝜋

GG⟩ term, responsible for the

longer distances (third diagram).

How did we get the levels of the bound states, the masses of the resonances? The

ground state level we could extract by using the logarithmic derivative of a moment,

R(𝜏) = − d
d𝜏

log M(𝜏) =
∫ dE E e−E𝜏 ImΠ(E)
∫ dE e−E𝜏 ImΠ(E)

𝜏⟶∞
⟶ E1 , (5)

which approached the ground state energy for large (imaginary) times since the con-

tributions of the higher levels were cut off. In this way we were able to predict the

ground states of charmonium (the J∕𝜓 resonances) and of bottonium (the Υ reso-

nances) to a high accuracy, quantitatively within 10% [5–8].

We observed a remarkable balance, see Fig. 3.3:

The energy average can be made coarse enough—involving small times—for the
modified perturbation theory to work, while on the other hand fine enough for the
individual levels to emerge clearly.

This is a surprising feature, indeed, since intuitively we had expected that for a

clearly emerging level the confinement force must be dominant and not just a small

additional perturbation. The moments, however, forced us to re-educate our intuition,

when modifying the perturbation with the gluon condensate term, levels do appear

for magical reasons. Therefore we gave our paper the title “Magic Moments” [5].

At the time of our collaboration, the late 1970 s and 1980s, there was no internet,

no quick email exchange. The way we interacted, when I was absent from CERN,

was via letters written by hand. Of course, this communication took some time, the

writing itself, the search for stamps, the walk to the post office, etc. In retrospect these
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Fig. 3.3 The ratio of

moments R(𝜏) is depicted

qualitatively. There occurs a

balance between the short

and long distance

contributions in the ratio of

moments. The stability of the

expansion determined by the

Feynman diagrams of

Fig. 3.2 approximates quite

accurately the exact ground

state level.

letters were beautiful documents expressing not only our scientific thoughts but also

our personal attitudes, our characters, how we had investigated a physical subject and

how we had presented our scientific work, what to include and what to leave out. As

a typical example, I would like to show a letter of John (see Fig. 3.4), which he wrote

to me in November 1983 [9], while I was staying in Vienna. The letter was written in

connection with the preparation of our paper on the “SVZ moments for charmonium
and potential model” [8], which we were going to publish. It shows quite nicely our

struggle for an accurate and clear presentation.

Since John and I were working within potential theory, which functioned remark-

ably well [8], it was quite natural for us to ask whether one can attach a potential to

the occurrence of the gluon condensate. Indeed, we found ways to do this [10, 11].

One way was to work within the moments, which regularize the divergence of

the long-distance part of the gluon propagator, the gluon condensate contribution.

In this case a static, nonrelativistic potential containing the gluon condensate can

be extracted, which is called in the literature the equivalent potential of Bell and
Bertlmann [10]

VBB(r) = −4
3
𝛼s

r
+ 𝜋

2

144
⟨
𝛼s

𝜋

GG⟩m r4 , (6)

where 𝛼s is the QCD coupling constant, m the quark mass and ⟨
𝛼s
𝜋

GG⟩ the gluon

condensate.

The short-distance part was the well-known Coulomb potential, whereas the long-

distance component, the gluon condensate contribution, emerged as a quartic poten-

tial m r4 and is mass-, i.e., flavour-dependent. In this respect it differed considerably

from the familiar mass-independent, rather flat potential models [12–15]. However,

for a final comparison with potential models one has to go further and take into

account the higher order fluctuations [16].

I very well remember one of our afternoon rituals in our collaboration. John, a

true Irishman, always had to drink a 4 o’clock tea, and this we regularly practiced
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Fig. 3.4 a Page 1 of the handwritten letter of John Bell to Reinhold Bertlmann from 1983 [9], in

connection with the preparation of their paper on the “SVZ moments for charmonium and potential
model” [8]. b Page 2 of the letter.

Fig. 3.5 Bertlmann (left) and Bell (right) choosing the right sort of tea at Bell’s home in 1980.

Foto: © Renate Bertlmann.

in the CERN Cafeteria or at John’s home, when we were working there. Choosing

the right sort of tea was quite a ceremony, see Fig. 3.5. Then, in this relaxed tea-

atmosphere, we talked not only about physics but also about politics, philosophy,

and when we were joined by my artist wife Renate, we three also had heated debates

about modern art.

Next we studied very heavy quarkonium systems, which described e.g. bottonium

(theΥ resonances). There John and I found another way to extract a potential from the

gluon condensate effect [11]. In that case the low-lying bound states, because of their

small size, were dominated by the Coulomb potential and the condensate effect, an

external colour field representing the gluon, could be added as a small perturbation.

Leutwyler [17] and Voloshin [18] had considered such a colour-electric Stark effect

and calculated the energy spectrum for all quantum numbers n and l. John and myself,
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on the other hand, were able to construct a gluonic potential, which by perturbing

the Coulomb states provided the energy spectrum of Leutwyler-Voloshin

Vgluon(r) = 4𝜋2
81𝛽

⟨
𝛼s

𝜋

GG⟩
(

r3 − 304
81

r2
m𝛽

+ 53
10

r
m2
𝛽

2 − 113
100

1
m3
𝛽

3

)
with 𝛽 =

4𝛼s

3
. (7)

The leading term in potential (7), the infinite mass limit, had a cubic r3 dependence

and was therefore mass-independent. But for finite masses there were further correc-

tions necessary proportional to
r2

m
,

r
m2 ,

constant
m3 such that the potential became flavour-

dependent again.

While our equivalent potential (6) was constructed to reproduce the gluon con-

densate shifts in the moments à la Shifman, Vainshtein and Zakharov [4], the poten-

tial (7) was designed to reproduce gluon condensate level shifts à la Leutwyler [17]

and Voloshin [18] in hydrogen-like heavy qq̄ systems. The two potentials differed

because they were fitted to different aspects of quantum field theory—and potential

theory is, of course, not field theory.

In conclusion, whereas the moment procedure including the gluon condensate

worked surprisingly well for predicting the ground state levels of quark-antiquark

bound states, no adequate bridge was found between a field theory containing the

gluon condensate, quantum chromodynamics, on one side, and popular potential

models on the other. For an overview of this field I would like to refer to Ref. [19].

John Bell—the Particle Physicist

Bell graduated with First-Class Honours in Experimental Physics in 1948 at Queen’s

University Belfast, where the senior staff members of the Physics Department were

Karl Emeleus and Robert Sloane. He spent an additional year at the University

and obtained a second degree in Mathematical Physics, where his teacher was

the famous crystallographer Peter Paul Ewald. Subsequently, in 1949, he got a

position the Atomic Energy Research Establishment (AERE) at Harwell, Oxford-

shire, but was soon sent to the Telecommunications Research Establishment (TRE)

at Malvern, Worcestershire. There he began to work in accelerator physics, see

Sect. “John Bell—the Accelerator Physicist”. In 1951, the accelerator group at Malvern

moved to the Atomic Energy Research Establishment (AERE) at Harwell, Oxford-

shire.

In 1953, one of the few persons who had got that privilege, John was selected

to spend some time at a university to perform a PhD Thesis while keeping his usual

AERE salary. He had eventually chosen the University of Birmingham, where Rudolf

Peierls was the head of Theoretical Physics. There he could study quantum field the-

ory having much contact with Paul T. Matthews. John succeeded already as a student

to write a fundamental work, namely his PhD Thesis. It consisted of two parts: “Time
reversal in field theory” and “Some functional methods in field theory”. In the first

part, published in 1955 in the Proceedings of the Royal Society [20], he established
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the celebrated CPT Theorem (C, the charge conjugation operator, which replaces

particles by anti-particles; P, the parity operator, which performs a reflection; and

T , which carries out a time reversal). The theorem states that any Lorentz invariant,

local quantum field theory with a Hermitian Hamiltonian must be CPT symmetric.

It is commonly believed that Nature is CPT invariant, no CPT violating phenomena

have been found so far. For a long time Lüders [21] and Pauli [22], who proved the

theorem a little ahead of Bell, received all the credit but nowadays Bell’s ‘elemen-

tary’ derivation, being more accessible than the formal mathematical arguments of

Lüders and Pauli, is also rightly recognized.

After his PhD, about 1955, John turned to nuclear and particle physics, a grow-

ing field at that time. At AERE he closely worked with Tony Skyrme, the head of

the Nuclear Physics Group, whose soliton model for nucleons, called skyrmions,

became well-known later on. Together they investigated the “Nuclear spin-orbit
coupling” [23], the “Magnetic moments of nuclei and the nuclear many body prob-
lem” [24, 25] and the “Anomalous magnetic moments of the nucleons” [26]. His

mastery in field theory he also showed in a paper about a “Variational method in
field theory” [27], where he found a new form of Skyrme’s variational principle for

the one-nucleon propagator.

John also contributed various papers to the many-body theory of nucleons

[28–31] and together with Euan Squires he derived an effective one-body potential,

the “Formal optical model” for the scattering of a particle incident on a complex

target [32, 33].

An other one of John’s colleagues at Harwell was Franz Mandl. They harmo-

niously worked together in particle physics, for instance, on the “Polarization-
asymmetry equality” [34] for elastic scattering of spin

1
2

particles off unpolarized

targets, but concerning the interpretation of quantum mechanics Mandl was John’s

strong opponent. At that time David Bohm’s papers on the “Interpretation of quan-
tum theory in terms of hidden variables” [35] had appeared, which were a “revela-
tion” for John. After John had reflected upon the papers he also gave a talk about

them in the Theory Division and, as Mary Bell remembered, there were many inter-

ruptions from Mandl “with whom he had many fierce arguments” [36].

In 1960, John together with Mary joined CERN (Conseil Européen pour la

Recherche Nucléaire), the European Organization for Nuclear Research which

attracted the preeminent scientists, and he worked there until the rest of his life.

His interest was both in phenomenological aspects of particle physics, where he fre-

quently interacted with experimentalists, and in more formal, mathematical features

of the theory, which often had no relation to experiment. As I could experience, John

always was open to discuss and study any topic in physics, no matter how specula-

tive it was. He liked to test his thoughts by basic examples. “Always test your general
reasoning against simple models!” was his maxim.

In the 1960s, the theory of weak interactions became a hot topic. John also entered

in this field and collaborated with several physicists. With his experimental colleague

Jack Steinberger, who received the Nobel Prize in 1988 “for the discovery of the
muon neutrino”, John has written the influential review on “Weak interaction of



3 Bell’s Universe: A Personal Recollection 25

kaons” [37]. The so-called Bell-Steinberger unitarity relations for the kaon decay

amplitudes belong still to the standard achievements in this area.

Most important, I think, was John’s scientific exchange with his colleague and

friend Martinus Veltman, just called with his nickname ‘Tini’, who was a Fellow

at CERN. They had a fruitful and each other appreciative collaboration in parti-

cle physics, however, concerning John’s quantum work Tini was, as most people at

that time, quite reluctant to recognize its value (see Veltman’s book [38] or Bell’s

essay [39]).

John and Tini started to investigate the carriers of the weak interactions, the inter-

mediate bosons or W-bosons, which were just hypothetical particles at that time.

But they had faith in their existence, encouraged and assisted the experimentalists

at CERN to find these particles, and published important papers on the W-boson

production by neutrinos on nuclei [40–42], which served as a basis for the neutrino

experiments. As we know, it took two decades to discover the W-bosons, due to their

big mass.

They also had numerous discussions about the characteristics of a quantum field

theory, the issue of symmetries turned up and the feature of currents in a quantized

theory. In these discussions already the seed was planted that led John finally to his

most important discovery in particle physics. In case of a modern quantum field the-

ory the gauge symmetry formed the basis for the so-called gauge theory, i.e., the

Lagrangian and the basic equations of the theory were invariant with respect to pos-

sible gauge transformations. To each generator of the transformation corresponded

a gauge field whose quanta were called gauge bosons, the W-bosons in case of weak

interactions. Veltman successfully pursued these ideas further with his former stu-

dent Gerald’t Hooft and both were awarded with the Nobel Prize in 1999 for “elu-
cidating the quantum structure of electroweak interactions”.

However, such a quantized theory for the weak interaction, what we call nowadays

standard model, the unification of the electromagnetic and weak interactions, was not

yet developed in the 1960s and physicists probed different ideas. Gell-Mann’s cur-
rent algebra, where instead of the conventional fields the currents were considered,

was quite popular. Using plausible ideas from group theory Murray Gell-Mann pos-

tulated a canonical structure for the commutators of the current components which

were involved in the physical process [43]. Conserved vector current (CVC) and

partially conserved axial current (PCAC) were assumed. Physical processes could

be studied by calculating the corresponding matrix elements of the currents. Amus-

ingly, Gell-Mann published his current algebra, the “Symmetry group of vector and
axial-vector currents” [43], in the now-defunct journal Physics, in which Bell just

some pages behind published his seminal “On the Einstein Podolsky Rosen paradox”
paper [44]. Due to the success of current algebra many particle physicists began to

research its foundations and applications. So did John, and it is within this area that

he made his outstanding contribution to particle physics.

In quantum field theory infinities occur and quantities like currents must be renor-

malized. It was not clear at that time whether the postulated relations of the canonical

commutators for the current components survived a proper renormalization proce-

dure. John illuminated this problem by studying an “Equal-time commutator in a
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solvable model” [45], the unrealistic but completely solvable Lee model. He demon-

strated that indeed the canonical commutation relations must be taken with care since

in a certain case, in the calculation of a related sum rule, the canonical values do

not agree with the summation of the explicitly calculated amplitudes. On the other

hand, relying on a work by Veltman about gauge invariance of sum rules [46], John

showed in “Current algebra and gauge invariance” [47] that the desired commu-

tation relations of the currents are achieved if gauge invariance is imposed in the

matrix elements of interest.

Next, trusting current algebra and PCAC an analysis revealed that the decay of the

eta meson into three pions, 𝜂 → 3𝜋 , is forbidden [48, 49], even though the decay is

experimentally seen. Moreover, with the same assumptions the calculation of the

decay of the neutral pion into two photons, 𝜋
0 → 𝛾𝛾 , yielded a vanishing result

[50, 51], again in contradiction to experiment.

These features were generally considered as shortcomings of the otherwise suc-

cessful theory of current algebra. But John, dissatisfied with incompleteness and

deficiency of a theory, always kept these current algebra defects in his mind. When

Roman Jackiw, a postdoc from MIT visiting CERN in 1967–1968, asked John for

a research problem he suggested to analyze the failure of current algebra in the

𝜋

0 → 𝛾𝛾 decay (see Jackiw’s contribution to Ref. [52]). The result then turned out,

as we know now, to be John’s most far-reaching contribution to particle physics and

his most-quoted paper.

But how to tackle the problem? Interestingly, John’s colleague Steinberger with

whom he had frequently contact, in a discussion during a coffee break in the CERN

cafeteria pointed the right way. In 1949, Steinberger [53] had already calculated in

his PhD a Feynman diagram, a triangle diagram with two vector current vertices and

one axial vertex (see Fig. 3.6), in an at that time fashionable pion—nucleon model

in order to describe the decay 𝜋
0 → 𝛾𝛾 . He obtained a nonvanishing result that,

Fig. 3.6 An interplay of physics and mathematics: The Abelian anomaly is responsible for the

decay 𝜋
0 → 𝛾𝛾 . It is represented by the triangle diagram with two vector current vertices that couple

to the two photons and one axial vertex linking to the 𝜋
0

. The anomaly is related to the Atiyah-

Singer index theorem in topology.



3 Bell’s Universe: A Personal Recollection 27

moreover, agreed well with experiment. John and Jackiw recognized immediately

that Steinberger’s procedure could be pursued in the sigma model (𝜎-model) [54], a

field theory based on current algebra and PCAC. So they calculated the pion decay

amplitude directly and found that the 𝜎-model did not satisfy the requirements of

PCAC, the effective coupling constant of the decay did not vanish. Their paper was

entitled “A PCAC puzzle: 𝜋0 → 𝛾𝛾 in the 𝜎-model” [55].

Independently, in the same year, Stephan L. Adler from the Institute of Advanced

Study in Princeton investigated the axial-vector vertex in spinor electrodynam-

ics [56]. He found that the axial Ward identity failed in case of the triangle diagram,

which led him to modify PCAC by an extra term, the anomaly as he phrased it.

When applying this modified PCAC equation to calculate the pion decay rate Adler

obtained an excellent agreement with experiment, when the fermions propagating in

the triangle diagram are interpreted as quarks with their fractional charges, which

occur in three species, colours as we know now. Thus the modified PCAC equation

𝜕

𝜇j5(3)
𝜇

(x) = f
𝜋

m2
𝜋

𝜙

(3)
𝜋

(x) +  , (8)

states that axial current j5 a
𝜇

= �̄�𝛾
𝜇

𝛾5
𝜎

a

2
𝜓 is not conserved in massless limit of the the-

ory but represents the celebrated ABJ anomaly (in honour of Adler, Bell and Jackiw)

 = e2

16𝜋2
𝜀

𝜇𝜈𝛼𝛽F
𝜇𝜈

F
𝛼𝛽

, (9)

where F
𝜇𝜈

is the electromagnetic field strength tensor.

Now the ice was broken, it turned out that the anomaly was not just a pathology of

the quantization procedure but opened the door to a deeper understanding of quantum

field theory. A new era of field theory research began (for an overview see Ref. [57]).

Quantum field theories with non-Abelian fields had been studied subsequently

and anomalies were found there. In terms of differential geometry the anomalies

could be formulated very concisely:

Singlet anomaly (corresponding to the Abelian- or ABJ anomaly with e = 1)

 = d ∗ j5 = 1
4𝜋2

Tr FF = 1
4𝜋2

d Tr(AdA + 2
3

A3) , (10)

non-Abelian anomaly

Ga[A] = −(D ∗ j)a = ± 1
24𝜋2

Tr Tad (AdA + 1
2

A3) , (11)

with A = Aa
𝜇

Ta dx𝜇 the non-Abelian 1-form (or connection, geometrically), F =
1
2
Fa
𝜇𝜈

Ta dx𝜇 ∧ dx𝜈 the field strength 2-form (or curvature), D the covariant deriva-

tive and Ta
the generators of the gauge group. The signs ± corresponded to positive

or negative chiral fields. Expression (11) was determined by a simple equation, the

Wess-Zumino consistency condition
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s G(v,A) = s∫ vaGa[A] = 0 , (12)

where v = vaTa
denoted the Faddeev-Popov ghost and s the BRST operator with

s2 = 0 , a gauge variation with respect to the gauge fields and the Faddeev-Popov

ghosts (for literature, see the book [57]).

Particularly interesting was the connection of the anomaly to topology in math-

ematics. Several authors, among them Roman Jackiw, had discovered that the sin-

glet anomaly was determined by the distinguished Atiyah-Singer index theorem (see

Fig. 3.6). The reason was that the anomaly could be expressed by a sum of eigenfunc-

tions of the Dirac operator, where only the zero-modes of a given chirality (n+, n−)

survived

1
2i ∫ dx(x) = ∫ dx

∑

n
𝜑

†
n(x)𝛾5 𝜑n(x) = n+ − n− = indexD+ . (13)

The difference of the chirality zero modes represented the index of the Weyl operator

D+ for positive chirality, which was expressed via the Atiyah-Singer index theorem

by a Chern character

indexD+ = − 1
8𝜋2 ∫ Tr FF . (14)

Furthermore, when gravitation was considered as a gauge theory, where the

gauges were the general coordinate transformations or the rotations in the tan-

gent frame, then the classical conservation law of the energy-momentum tensor

could be broken in the quantum case, an Einstein- or Lorentz anomaly occurred

(see Refs. [57, 58]).

Thus quantum anomalies play a vital role in all quantum theories and it is their

double feature which makes them so important for physics. On one hand, anomalies

are needed to describe certain experimental facts but, on the other hand, they must

be avoided since they violate a classical conservation law and signal the breakdown

of gauge invariance, which ruins the consistency of the theory. This avoidance of the

anomaly, which may be possible, leads to severe constraints on the physical content

of the theory. For example, the standard model of electro-weak interaction is con-

structed such that no anomalies occur (actually, they canceled each other), which has

led to the prediction of the top quark that has been discovered much later on.

It is interesting that John did not participate actively in these further developments

of the anomaly, whereas Jackiw, Adler and many other physicists did. Roman Jackiw

once asked me in a letter (from May 17th, 1996 [59]) why this might be the case:

“I was very interested in your ‘Preface’ (of the book [57]) where you reminisce
about conversations with Bell on anomalies a decade ago. I was very happy to read
about this, because I always felt a certain surprise (disappointment) that he did not
take an active role in subsequent developments, after our paper was published. Did
you ever learn why this was so?”
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My assessment of John’s missing engagement in the further developments I

expressed in a return letter to Jackiw (from July 21st, 1996 [60]) as follows:

“At first side it seems indeed surprising that John Bell did not take an active
role in the further developments of anomalies after your common paper which had
such a great influence on QFT. He never mentioned explicitly a reason for that. But
my impression is that one aspect of his character or of his attitude towards physics
was to find out the fundamental weaknesses of a theory. It was his criticism which
has led him to important discoveries. This was so in his famous works on quantum
mechanics and also I experienced this attitude in our collaboration. After having
found the crucial point (error, ...) he was not so interested any more in working out
the further details.

In the case of the anomalies John got interested again in the middle of the 80ties
since he was puzzled by the fact that several types of anomalies are linked in differ-
ent dimensions (descent equations). In this connection John always spoke with high
respect of your works.”

Of course, after the anomaly paper John did further important works. Let me just

mention a few.

Together with Bell and de Rafael [61] he calculated an upper bound on the

hadronic contribution to the anomalous magnetic moment of the muon, which is

satisfied by today’s accepted value. Nevertheless, the topic is still of high interest

due to the present discrepancy between experimental- and theoretical value.

More phenomenological work, also in view of the experiments at CERN, John

carried out in collaboration with Christopher LLewellyn Smith who later on became

Director General of CERN (1994–1998) and was knighted in 2001. They studied

several effects in neutrino—nucleus interactions [62, 63].

More formal, mathematical topics on hadronic symmetry classification schemes,
Melosh transformations, and all that ..., John presented in his Lectures Notes of the

Schladming Winter School 1974 [64], Austria, and in further papers in collaboration

with Hey [65] and Bell and Ruegg [66, 67].

About John’s last interests, QCD, gluon condensate and potential models, I have

reported already in the previous Section; that was the topic I had the great joy to

collaborate with him.

John received several prestigious awards, among them the Dirac Medal of the

Institute of Physics (1988), the Dannie Heinemann Prize of the American Physical

Society (1989), and the Hughes Medal of the Royal Society (1989):

“For his outstanding contributions to our understanding of the structure and
interpretation of quantum theory, in particular demonstrating the unique nature of
its predictions.”

Moreover, in 1988 he received honorary degrees from both Queen’s University

Belfast and Trinity College Dublin. John obtained these honours, as Mary Bell

emphasized, mainly for his contributions in particle physics. I personally think that

the discovery of the anomaly had such an enormous impact on several branches in

physics that sooner or later John, if he had lived longer, would have been awarded

the Nobel Prize together with Jackiw and Adler.
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John Bell—the Accelerator Physicist

As already mentioned John started his scientific career at Malvern in 1949. There he

joined the group of William Walkinshaw and was mainly concerned with the theory

of particle accelerators. Walkinshaw highly appreciated Bell’s abilities (recorded in

Ref. [68]):

“Here was a young man of high caliber who soon showed his independence on
choice of project, with a special liking for particle dynamics. His mathematical talent
was superb and elegant.”

John began with the study of a dielectric-loaded LINAC (Linear Accelerator) for

electrons [69, 70], which at the beginning were used for medical purposes and later

on for basic science. In 1951 Walkinshaw’s group moved to Harwell and was one

of those groups that established the Theory Division of AERE. In the course of the

setting-up of CERN they also began to investigate proton accelerators. John himself

contributed to “Scattering-” and “Phase debunching by focussing foils in a pro-
ton linear accelerator” [71, 72]. Although at that time John’s works appeared as

internal reports they were highly appreciated and read by the accelerator commu-

nity, in particular, his report on “Basic algebra of the strong focussing system” [73]

received much attention. Just 2 works out of 21 papers (see Bell’s collected works in

Ref. [74]), the topic was on strong focussing, John’s special interest, have been pub-

lished in journals [75, 76]. In fact, an other work about “Linear accelerator phase
oscillations” [77], John was pleased with, he submitted to a journal and got back a

‘typical’ referee report, as Mary Bell remembered [36]: “One referee said it was too
short, the other that it was too long.” So John gave up, he was leaving the accelerator

field anyhow and turned to particle physics.

In the beginning of the 1980s John became interested again in accelerator physics.

It was the time of the construction of the SPS (Super Proton Synchrotron) and LEAR

(Low Energy Antiproton Ring) at CERN. There he collaborated with Mary on elec-
tron cooling, quantum beamstrahlung and bremsstrahlung, which will be reported

in Sect. “Joint Works of the Bells”.

A particularly attractive work, in my opinion, was Bell’s combination of the

Unruh effect of quantum field theory with accelerator physics. According to Unruh,

a uniformly accelerated observer through the electromagnetic vacuum will experi-

ence a black body radiation at a temperature proportional to the acceleration [78].

There is a close connection between the Unruh effect and the Hawking radiation of

a black hole, which can be seen already in the temperature formula. From the Unruh

temperature TU for a given acceleration a

k TU = ℏ a
2𝜋c

⟶ ℏ𝜅

2𝜋c
= ℏ c3

8𝜋GM
= k TH (15)

follows directly the Hawking TH temperature [79] for the surface gravity 𝜅 = c2

2RS
of

a black hole with Schwarzschild radius RS = 2GM
c2

.
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John discussed this subject with Jon Leinaas, a Norwegian CERN Fellow in the

early 1980s, who got interested in the Unruh effect. Starting from a paper of Jack-

son [80] about the spin polarization effect of electrons circulating in a storage ring,

they tried to find a connection to the Unruh effect. Their idea was to consider accel-

erated electrons as detectors, with the spin degree of freedom used to measure the

temperature of the radiation. Indeed, what John and Leinaas found was that the spin

depolarization effect of the electrons in a storage ring is closely related to the ther-

mal effect of linearly accelerated electrons [81]. The effect is small but in agreement

with the measured values at a storage ring. However, there are complications due to

the circular motion (Thomas precession), a resonance occurs, etc. ... For this reason

“the measurements cannot be considered as a direct demonstration of the (circu-
lar) Unruh effect. Therefore a measurement of the vertical fluctuations would be of
interest, as a more direct demonstration of this effect. However, these fluctuations
are small, and it is not clear whether it would be possible to separate this effect from
other perturbations in the orbit.” [82]. These subtle points show their great effort

and achievement to test a quite sophisticated theory in an advanced experiment of

accelerator physics. A discussion of the Unruh effect for the case of extended ther-

mometers is given in Ref. [83].

John and Mary Bell

John and Mary met for the first time in 1949 when John came to Harwell, where

Mary had worked on reactors since 1947. At 1949/1950, both moved for a year to

Malvern, first John then Mary followed, and they returned again to Harwell. At that

time John was still without a beard as one could see from an excursion of the couple to

Stonehenge in the 1950s, see Fig. 3.7. They obviously enjoyed both their scientific

and private life. In 1954, they were married and pursued their careers together. In

course of their life they collaborated several times on issues of accelerator physics.

In 1960, both moved to CERN and lived in Geneva. End of 1963, they took a

sabbatical year staying in the USA. There John had time to work on his ‘hobby’, the

foundations of quantum mechanics, and it was at SLAC where he had written his

celebrated ‘inequality paper’.
When I think of John I always remember both, John and Mary, the couple. In

lasting memory are the many pleasant events, the lunches, walks, ..., Renate and

myself spent together with the Bells: For instance, the lunch in the former ‘Haas
Haus Restaurant’ in Vienna in 1982, see Fig. 3.8, when John was the distinguished

‘Schrödinger Guest Professor’ at our Institute of Theoretical Physics; Or the beau-

tiful walks in the Calanque de Port d’Alon in 1983, where we even could arrange a

typically British weather for John and Mary, which was not so easy to get in South

of France, see Fig. 3.9. I was at that time a Visiting Professor at the University of

Marseille, Luminy, and the Bells visited us in Bandol; Or, finally, our last reunion in

Bures sur Yvette in April 1990, when I stayed at the CNRS (Centre Nationale de la

Recherche Scientific).
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Fig. 3.7 Mary and John Bell at Stonehenge in the 1950s. Foto: © Mary Bell.

Fig. 3.8 Mary and John Bell in the former ‘Haas Haus Restaurant’ in Vienna in 1982. Foto:

© Renate Bertlmann.

Mary always was present, what John nicely had expressed in the preface of his

book Speakable and Unspeakable in Quantum Mechanics [84], when he wrote the

moving tribute to Mary:
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Fig. 3.9 Reinhold, John and Mary on a walk in the Calanque de Port d’Alon, South of France,

1983. Foto: © Renate Bertlmann.

“... I here renew very especially my warm thanks to Mary Bell. When I look
through these pages again I see her everywhere.”

Mary Bell

Mary, with maiden name Ross, originates from a Scottish family resident in Glasgow.

The parents were Alexander Munro Ross, a commercial manager in a ship-building

firm, and Catherine Brown Wotherspoon, an elementary school teacher. Her father

was quite enthusiastic to send Mary and her two older sisters to university.

As a teenager Mary attended the Hyndland Secondary School which was situated

at a two minutes walk from where she lived. There she spent all her school life except

for the year 1939–1940, when her father had sent her to the Kingussie High School in

Iverness-shire to stay with his two sisters. This was to elude the bombing in Glasgow

at the beginning of World War II. There Mary’s talents as a storywriter had been

already discovered, for instance, her amusing agent short-story “The Secret Service
Agent” had been printed in the Kingussie Secondary School Magazine [85].

Mary returned to Hyndland for the year 1940–1941. The Hyndland Secondary

School catered for all types of pupils, academic and non-academic, but in different

classes. Mary was quite fortunate that this school had a strong science department.

Two of the headmasters were science teachers: There was an older building, but also
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a fine airy new building with a number of laboratories, art rooms, and an apartment

for domestic science. Hyndland School was without fees, in contrast to the ‘Girls’
High School’ (in the centre of the city) which had fees. Hyndland had pupils, boys

and girls, from a wide area. There was an examination which all pupils (at all schools)

had to take on a given day for getting money for the Girls’ High School, which was

considered as a good school. Mary told me in a letter [86]:

“Unfortunately, I won this, but my father insisted that I stay at the local school,
instead of travelling into the town each day. He was right. The Girls’ High School
had only botany among the science subjects (no physics).”

At Hyndland, science was a strong subject. Mary even obtained a prize for “Gen-
eral Excellence in Dynamics” in the season 1938–1939, a phrase John found quite

amusing, and she still remembers learning Newton’s Laws of Motion.

Mary also won an open ‘Bursary Competition for the University’, in particular for

a female studying science, and got enough money to pay the university fees. “But
money for fees was not really a problem” as she said.

The university course was four years in Mathematics and Natural Philosophy
(Natural Philosophy was the former term for Physics). Due to World War II many

students were called up after two years and could qualify for a wartime degree. Mary

was allowed to stay three years because of the need for demonstrators. Eventually in

1944, she was called up and sent to TRE in Malvern, which was the big government

establishment for radio navigation, radar, infra-red detection and related subjects.

After a year the war ended and she returned to the University. When she graduated

in 1947, it was quite natural for her to apply for AERE at Harwell.

At that time, there were only a few female scientists in the Theory Division, about

3 of 20 persons as Mary remembers. Science was not considered as an appropriate

profession for a woman. Thus it was quite exceptional, in my opinion, that Mary had

chosen already as a young girl a scientific subject for her career and not just a ‘girl
subject’. When I once asked her why, she replied in her beautiful handwriting [87]:

“I always liked to solve little problems, even when I knew only arithmetic.”
So already at an early stage her vision for a career was science and not so much

being just a ‘house wife’, may be also her good scientific education in the Hyndland

School was quite encouraging for her.

Mary’s appointment at Harwell started in February 1947. The research was on

nuclear reactors but soon it broadened including nuclear physics, accelerators and

related topics. The head of the theory division was the well-known Klaus Fuchs, a

left-wing refugee from Germany with British citizenship, who had worked before

on the ‘Manhatten Project’ in Los Alamos and on the ‘Tube Alloys’ programme, the

British atomic bomb project. Fuchs had close contact with his compatriot Rudolf

Peierls (later on Sir Rudolf) who was a consultant to AERE and had much influence

there.

“At the beginning the work at Harwell was not very interesting”, Mary remem-

bered [87]. But then Fuchs told her “to move to more interesting problems.” She

was instructed to work on treating the control rods in a fast fission reactor. Some

calculations she published in the paper: “Slow neutron absorption cross-section of
the elements” [88]. In fact, she had to carry out a special perturbation calculation
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devised by Klaus Fuchs. Soon after this work was completed Fuchs confessed, in

1950, that he was a spy (out of conviction) supplying information from the Ameri-

can, British, Canadian atomic bomb project to the Soviet Union. He was sentenced

to 14 years imprisonment, got arrested but released in 1959 and emigrated to the

former German Democratic Republic.

As already mentioned, in 1950, Mary and John were sent to TRE in Malvern

to join the accelerator group. After a year working there, for a second time, Mary

and all the other physicists moved back to Harwell to the Theory Division which

was then headed by Brian Flowers (later on Lord Flowers). In the next years Mary

worked there on several subjects of accelerator physics. A fairly complete list of

papers, mainly AERE reports, are given by the Refs. [88–104]. Some works, whose

topics I personally find very interesting, are:

∙ “Series impedance of double-ridged wave guides.” [90]

∙ “Focussing system for the 600 MeV proton linear accelerator.” [96]

∙ “Nonlinear equations of motion in the synchrotron.” [97]

∙ “Injection into the 7 GeV synchrotron.” [102]

After working for a decade at Harwell John and Mary felt somehow ready for

a change, mainly since John had been attracted by particle physics. In 1960, they

moved to CERN, the big European center for particle physics, John to the Theory

Division and Mary to the Accelerator Research Group.

At CERN Mary wrote a lot of computer programmes representing the orbits of the

circulating particles in different accelerator machines. These orbits, of course, had

to be extremely accurate. In the 1970s, when particle accelerators for higher energy

(some GeV region) were planed and constructed the question of cooling particles in

a storage ring became a hot issue. Two methods were debated at CERN for further

use in the accelerators in order to reduce the large phase space spread of an ion, pro-

ton or antiproton beam in the ring: ‘Electron cooling’ proposed by Gersh Itskovich

Budker [105] and successfully applied at the Novosibirsk storage ring [106] and

‘stochastic cooling’ invented by Simon van der Meer at CERN.

Mary was studying electron cooling (a picture of her at about that time can be

seen in Fig. 3.10) which is based on repeated interactions of protons circulating in the

storage ring with a dense and cold electron beam. She published a paper on “Electron
cooling with magnetic field” [107], where she discussed the basic equations for the

slowing of a proton in an electron gas with magnetic field. She was also part of a

working group headed by Frank Kienen, which studied the cooling of protons by

means of electrons in the ICE (Initial Cooling Experiment) storage ring in order to

test the feasibility of a high luminosity proton—antiproton collider. Kienen often had

discussions with John. It raised John’s interest again in accelerator physics and he

began to collaborate with Mary on these topics, which will be reported in Sect. “John

and Mary Bell”. The results of the ICE measurements of the momentum spread,

beam profile, beam lifetime, etc. ..., were quite in agreement with theory and were

published in a common paper [108], where also Carlo Rubbia (appointed to Director-
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Fig. 3.10 Mary Bell in

1982. Foto: © Renate

Bertlmann.

General of CERN in 1989) and Simon van der Meer contributed. Further details of

the cooling method in the ICE were published in Ref. [109] and Mary had to prepare

the paper for publication. As she remembers [36]:

“This involved a lot of condensing to make the paper a reasonable size, and John
kindly helped me. He particularly liked to be acknowledged at the end for ‘helping
with the typing’.”

Also stochastic cooling was explored in the ICE storage ring and in these tests it

turned out that van der Meer’s stochastic cooling method was sufficient to be imple-

mented in the newly constructed SPS (Super Proton Synchrotron) to collide protons

and antiprotons in the same ring. Rubbia and van der Meer were the leading figures

in constructing the SPS and detected in 1983 the W and Z bosons. In 1984, they

received the Nobel Prize “for their decisive contributions to the large project, which
led to the discovery of the field particles W and Z, communicators of weak inter-
actions.” Nevertheless, electron cooling was used further on in the redesigned ring

LEAR (Low Energy Antiproton Ring) to decelerate and store antiprotons.

Joint Works of the Bells

When John stayed at Malvern also Mary joined the accelerator group of Walkin-

shaw. Having previously worked on nuclear reactors she now switched to acceler-
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ator physics. Clearly, Mary and John had many discussions on accelerator issues,

and back again at Harwell they wrote a common paper in 1952 (where Mary still

signed with her maiden name Mary Ross) about: “Heating of focussing foils by a
proton beam” [92]. Since John was leaving the accelerator field and turned to parti-

cle physics there was a long pause of collaboration of about 30 years. John’s interest

in accelerator physics got revived about 1980 at CERN when Mary was working on

electron cooling.

John and Mary’s first common paper at CERN was devoted to “Electron cool-
ing in storage rings” [110], where they calculated the effect of ‘flattening’ of the

electron velocity distribution, which meant that the longitudinal velocity spread was

suppressed, to increase the rate of cooling of small betatron oscillations. This paper

they devoted to the nuclear and accelerator physicist Yuri Orlov who was impris-

oned at that time in the Soviet Union for his human rights activism, freed later on

and deported to the USA. Such an act of solidarity was quite typical for the Bells.

A paper on a similar issue: “Capture of cooling electrons by cool protons” [111]

followed. There Mary and John presented formulae for the capture of low-energy

electrons by stationary protons using Maxwellian and flattened electron velocity dis-

tributions. The latter was more appropriate for the electron beams used in the acceler-

ator proton beam cooling experiments. They found out that the flattening increased

the capture rate by a factor of about two. Also similar formulae for the capture of

antiprotons by protons were mentioned.

In a further paper “Radiation damping and Lagrange invariants” [112] Mary

and John proposed a general formula for the damping of small oscillations about

closed orbits. It was applied to derive the results for the effects of classical radiation

damping on storage ring orbits.

Next, Mary and John turned to ‘beamstrahlung’ which is the radiation of the

whole beam of charged particles in a storage ring or LINAC, when the beam

interacts with the electromagnetic field of the other beam. In their paper “Quan-
tum beamstrahlung” [113] they showed that the well-known Blankenbecler-Drell

formula [114] for the bremsstrahlung energy loss of a relativistic electron pass-

ing through the field of a cylindric charge agrees with the popular ‘Russian for-
mula’ [115–118] if the spin-flip contributions were added to Blankenbecler-Drell

approach.

In “End effects in quantum beamstrahlung” [119] Mary and John also included

so-called ‘end effects’ in their beamstrahlung calculations. These effects occurred at

the ends of a sharply bounded cylindrical charge bunch. Their conclusion was that

end effects were indeed negligible when the bunch length is large compared to its

typical quantum length.

In their last joint work “Quantum bremsstrahlung in almost uniform fields” [120]

Mary and John studied inhomogeneity effects in quantum bremsstrahlung in the

extreme quantum limit, in the case of a weakly nonuniform deflecting field.
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Out of the Blue

At CERN Bell was a kind of ‘Oracle’ for particle physics, consulted by many col-

leagues who wanted to get his approval for their ideas. Of course, I had heard that

he was also a leading figure in quantum mechanics, specifically, in quantum foun-

dations. But nobody could actually explain to me his work in this quantum area,

neither at CERN nor anywhere else. The standard answer was: “He discovered some
‘relation’ whose consequence was that quantum mechanics turned out alright. But
we knew that anyway, so don’t worry.” And I didn’t. John, on the other hand, never

mentioned his quantum works to me in the first years of our collaboration. Why?

This I understood later on, John was reluctant to push somebody into a field that was

quite unpopular at that time.

At the end of summer 1980, I returned for some time to my home institute in

Vienna to continue our collaboration on the gluon condensate potential from there.

At that time, there was no internet, and it was a common practice to send preprints

(typed manuscripts) of the work, prior to publication, to all main physics institutions

in the world. Also we in Vienna had such a preprint shelf where each week the new

incoming preprints were exhibited.

One day, on the 15th of September, I was sitting in the Institute’s computer room,

handling my computer cards, when my colleague Gerhard Ecker, who was in charge

of receiving the preprints, rushed in waving a preprint in his hands (see Fig. 3.11).

He shouted, “Reinhold look—now you’re famous !” I hardly could believe my eyes

Fig. 3.11 Gerhard Ecker standing in front of Reinhold Bertlmann holds a preprint in his hands

with the title “Bertlmann’s socks and the nature of reality” [121]. Fotos: © Renate Bertlmann.
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Fig. 3.12 Cartoon in the

CERN preprint

Ref.TH.2926-CERN

“Bertlmann’s socks and the
nature of reality” of John

Bell from 18th July 1980

[121]. The article is based on

an invited lecture John Bell

has given at le Colloque sur

les “Implications
conceptuelles de la physique
quantique”, organisé par la

Foundation Hugot du

Collège de France, le 17 juin

1980, published in Journal

de Physique [123].

as I read and reread the title of a paper by Bell [121]: “Bertlmann’s socks and the
nature of reality”.

I was totally excited. Reading the first page my heart stood still:

“The philosopher in the street, who has not suffered a course in quantum mechan-
ics, is quite unimpressed by Einstein-Podolsky-Rosen correlations [122]. He can
point to many examples of similar correlations in every day life. The case of Bertl-
mann’s socks is often cited. Dr. Bertlmann likes to wear two socks of different colours.
Which colour he will have on a given foot on a given day is quite unpredictable. But
when you see (Fig. 3.12) that the first sock is pink you can be already sure that the
second sock will not be pink. Observation of the first, and experience of Bertlmann,
gives immediate information about the second. There is no accounting for tastes,
but apart from that there is no mystery here. And is not the EPR business just the
same ?”

Seeing the cartoon John has sketched by himself (see Fig. 3.12), showing me

with my odd socks, nearly knocked me down. All this came so unexpectedly—I had

not the slightest idea that John had noticed my habits of wearing socks of different

colours, a habit I cultivated since my early student days, my special ‘generation-
68’ protest. This article pushed me instantaneously into the quantum debate, which

changed my life. Since then ‘Bertlmann’s socks’ had developed a life of its own. You

can find Bertlmann’s socks everywhere on the internet, in popular science debates,

and even in the fields of literature and art.

Now the time had come for diving into the quantum world of John, to under-

stand why the “EPR business” was not just the same as “Bertlmann’s socks”, and

to appreciate his profound insight. It was John who pushed the rather philosoph-

ical Einstein-Bohr discussions of the 1930s about realism and incompleteness of

quantum mechanics onto physical grounds. His axiom of locality or separability
was the essential ingredient of a hidden variable theory and illuminated the physical

difference between all such hidden variable theories and the predictions of quan-

tum mechanics. Due to ‘Bell’s Theorem’ we can distinguish experimentally between
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quantum mechanics and all local realistic theories with hidden variables. I was

impressed by the clarity and depth of John’s thoughts. From this time on we had

fruitful discussions about the foundations of quantum mechanics and this was a great

fortune and honour for me. It was just about the time when Aspect [124] finished his

time-flip experiments on Bell inequalities and the whole field began to attract the

increasing interest of physicists. For me a new world opened up—the universe of

John Bell—and caught my interest and fascination for the rest of my life.

Bell and the Quantum

John never was satisfied with the interpretations of quantum mechanics. Already as

a student at Queen’s University Belfast he disliked the so-called Copenhagen Inter-
pretation with its distinction between the quantum world and the classical world. He

wondered, “Where does the quantum world stop and the classical world begin?” He

wanted to get rid of that division.

For him it was clear that hidden variable theories, where quantum particles do

have definite properties governed by hidden variables, would be appropriate to refor-

mulate quantum theory. “Everything has definite properties !” I remember John

saying.

Contextuality

Hidden variable theories (HVT) as well as quantum mechanics describe an ensemble

of individual systems. Whereas in QM the orthodox (Copenhagen) doctrine tells us

that measured properties, e.g. the spin of a particle, have no definite values before

measurement, the HVT in contrast postulate that the properties of individual systems

do have pre-existing values revealed by the act of measurement.

Given a set of observables {A,B,C, ...} then a hidden variable theory assigns to

each individual system a set of values (eigenvalues) {v(A), v(B), v(C), ...} to the cor-

responding observables [125]. The hidden variable theory provides a rule how to

distribute the values over all individual systems of an ensemble. Such states, speci-

fied by the quantum mechanical state vector and by the additional hidden variable,

are called dispersion-free.

If a functional relation, f (A,B,C,…) = 0, is satisfied by a set of mutually com-

muting observables A,B,C,…, then the same relation must hold for the values in

the individual systems, f
(
v(A), v(B), v(C),…

)
= 0. Amazingly, just by relying on

above two conditions a contradiction can be constructed, a so-called No-Go Theo-
rem.
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Bell started his investigation “On the problem of hidden variables in quantum
mechanics” [126] in 1964

1
by criticizing John von Neumann who had given already

in 1932 a proof [127] that dispersion-free states, and thus hidden variables, are

incompatible with quantum mechanics. What was the criticism? Consider three oper-

ators A,B,C with condition C = A + B , then the correspondingly attached values

also have to satisfy v(C) = v(A) + v(B) , since the operators A,B are supposed to

commute.

Von Neumann, however, also imposed the additivity property for noncommuting
operators. “This is wrong!” John grumbled and illustrated his dictum, before giving

a general proof, with the example of spin measurement. Measuring the spin operator

𝜎x for a magnetic particle requires a suitably oriented Stern-Gerlach apparatus. The

measurements of 𝜎y and (𝜎x + 𝜎y) demand different orientations. Since the operators

cannot be measured simultaneously, there is no reason for imposing additivity. Of

course, for the quantum mechanical expectation values we have additivity in the

mean ⟨𝜓|A + B|𝜓⟩ = ⟨𝜓|A|𝜓⟩ + ⟨𝜓|B|𝜓⟩ , irrespective whether A,B commute or

not.

Interestingly, already in 1935 the mathematician and philosopher Hermann [128]

raised her objection to von Neumann’s assumption but she was totally ignored. Also

Kochen and Specker [129], when reading von Neumann’s proof in 1961, had their

doubts about the additivity for noncommuting operators.

John being aware of Gleason’s Theorem [130], which was not explicitly addressed

to HVT but aimed instead to reduce the axioms for QM, established the following

corollary [126], more directed to HVT:

Corollary 1 (Bell’s Corollary) Consider a state space  . If dim > 2 then the
additivity requirement for expectation values of commuting operators cannot be met
for dispersion-free states.

Corollary 1 states that for dim > 2 it is in general impossible to assign a defi-

nite value for each observable in each individual quantum system. Thus Bell pointed

to another class of hidden variable models, where the results may depend on dif-

ferent settings of the apparatus. Such models are called contextual and may agree

with quantum mechanics. Corollary 1, on the other hand, states that all noncontex-
tual HVT are in conflict with QM (for dim > 2). Hence the essential feature for the

difference between HVT and QM is contextuality.

In 1967, Simon Kochen and Ernst Specker published their famous paper on “The
problem of hidden variables in quantum mechanics” [131], where they established

their No-Go Theorem that noncontextual hidden variable theories are incompatible

with quantum mechanics.

1
Due to a delay in the Editorial Office of Review of Modern Physics the paper was published not

until 1966.
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Theorem 1 (Kochen-Specker Theorem) In a Hilbert space  of dim > 2 it is
impossible to assign values to all physical observables while simultaneously pre-
serving the functional relations between them.

Since then, contextuality has become an important issue in the research of quan-

tum systems (see, e.g., Refs. [132–138], and references therein).

Nonlocality

The starting point of John’s quantum studies was Bohm’s [35] reinterpretation of

quantum theory as a deterministic, realistic theory with hidden variables. Although

Bohm’s work was not at all appreciated by the physics community, neither by Ein-

stein nor by Pauli, John was very much impressed by Bohm’s work and often

remarked, “I saw the impossible thing done”. To me John continued, “In every quan-
tum mechanics course you should learn Bohm’s model!”

John examined Bohm’s model quite carefully and analyzed a system of two parti-

cles with spin
1
2

[126], interacting with the external magnetic fields ⃗B of two magnets

that analyze the spins. The argumentation goes as follows. The hidden variables in

this two-particle system are two vectors ⃗X1 and ⃗X2 which yield the results for position

measurements. The variables are supposed to be distributed in configuration space

with probability density

𝜌(⃗X1, ⃗X2) =
∑

i,j
|𝜓ij(⃗X1, ⃗X2)|2 , (16)

which describes the quantum mechanical state; 𝜓ij is the solution of the Schrödinger

equation. The position operators, the hidden variables, for the two-particle system

then vary in time according to (ℏ = 1, 2m = 1)

d ⃗X1

dt
= 1
𝜌(⃗X1, ⃗X2, t)

Im
∑

i,j
𝜓

∗
ij (⃗X1,

⃗X2, t)
𝜕

𝜕

⃗X1

𝜓ij(⃗X1,
⃗X2, t)

d ⃗X2

dt
= 1
𝜌(⃗X1,

⃗X2, t)
Im

∑

i,j
𝜓

∗
ij (⃗X1, ⃗X2, t)

𝜕

𝜕

⃗X2

𝜓ij(⃗X1, ⃗X2, t) . (17)

The strange feature now is that the trajectory equations (17) for the operators, the

hidden variables, have a highly nonlocal character. Only in case of a factorizable

wave function for the quantum system

𝜓ij(⃗X1, ⃗X2, t) = 𝜂i(⃗X1, t) ⋅ 𝜒j(⃗X2, t) , (18)
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the trajectories decouple

d ⃗X1

dt
= 1

∑
i |𝜂i(⃗X1, t)|2

Im
∑

i
𝜂

∗
i (⃗X1, t)

𝜕

𝜕

⃗X1

𝜂i(⃗X1, t)

d ⃗X2

dt
= 1

∑
j |𝜒j(⃗X2, t)|2

Im
∑

j
𝜒

∗
j (⃗X2, t)

𝜕

𝜕

⃗X2

𝜒j(⃗X2, t) , (19)

and the trajectories of ⃗X1 and ⃗X2 are determined separately by involving the magnetic

fields ⃗B(⃗X1) and ⃗B(⃗X2) respectively. However, in general, this is not the case. The

trajectory of particle 1 depends in a complicated way on the trajectory and wave

function of particle 2 , and thus on the analyzing magnetic field acting on particle 2 ,

no matter how remote the particles are. Therefore, as John remarked [126]: “In this
theory an explicit causal mechanism exists whereby the disposition of one piece of
apparatus affects the results obtained with a distant piece.”

John, realizing the importance of this nonlocal feature, wondered if it was just a

defect of this particular hidden variable model, or is it somehow intrinsic in a hidden

variable theory reproducing quantum mechanics. After playing around a bit to find

a local account for the quantum results he could construct an impossibility proof, a

Bell inequality.

Bell Inequalities

In his paper “On the Einstein-Podolsky-Rosen paradox” [44] John reconsidered the

at that time totally disregarded paper of Albert Einstein, Boris Podolsky and Nathan

Rosen (EPR) [122]. Therein the authors argued that quantum mechanics is an incom-
plete theory and that it should be supplemented by additional parameters, the hidden

variables. These additional variables would restore causality and locality in the the-

ory. What was John’s essence when considering Bohm’s spin version [139] of EPR?

Let us analyze such a Bohm-EPR setup, where a pair of spin
1
2

particles is pro-

duced in a spin singlet state and propagates freely into opposite directions (see

Fig. 3.13). The spin measurement on one side, called Alice, performed by a Stern-

Gerlach magnet along some direction a⃗ is described by the operator �⃗�A ⋅ a⃗ and yields

the values ±1 . Since we can predict in advance the result of �⃗�B ⋅ ⃗b on the other side,

Bob’s side, the result must be predetermined. This predetermination we specify by

the additional variable 𝜆 . In such an extended theory we denote the measurement

result of Alice and Bob by

A(a⃗, 𝜆) = ±1, 0 and B(⃗b, 𝜆) = ±1, 0 . (20)
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Fig. 3.13 In a Bohm-EPR setup a pair of spin
1
2

particles, prepared in a spin singlet state, propa-

gates freely in opposite directions to the measuring stations called Alice and Bob. Alice measures

the spin in direction a⃗, whereas Bob measures simultaneously in direction ⃗b.

We also include 0 for imperfect measurements to be more general, i.e., what we

actually require is

|A| ≤ 1 and |B| ≤ 1 . (21)

Then the expectation value of the joint spin measurement of Alice and Bob is

E(a⃗, ⃗b) = ∫ d𝜆 𝜌(𝜆)A(a⃗, 𝜆) ⋅ B(⃗b, 𝜆) . (22)

The choice of the product in expectation value (22), where A does not depend on

Bob’s settings, and B does not depend on Alice’s setting, is called ‘Bell’s Locality
Hypothesis’. It is the obvious definition of a physicist as an engineer, and must not be

confused with other locality definitions, like local interactions or locality in quantum

field theory.

The function 𝜌(𝜆) represents some probability distribution for the variable 𝜆, and

does not depend on the measurement settings a⃗ and ⃗b which can be chosen truly free

or random. This is essential! The distribution is normalized ∫ d𝜆 𝜌(𝜆) = 1 .

Now it is quite easy to derive Bell’s original inequality [44] by assuming perfect

(anti-)correlation E(a⃗, a⃗) = −1

SBell ∶= |E(a⃗, ⃗b) − E(a⃗, ⃗b ′ )| − E(⃗b ′
,

⃗b) ≤ 1 . (23)

The quantum mechanical expectation value for the joint measurement when the

system is in the spin singlet state |𝜓 −⟩ = 1
√
2
(| ⇑⟩⊗ | ⇓⟩ − | ⇓⟩⊗ | ⇑⟩) , also

called Bell state, is given by

E(a⃗, ⃗b) = ⟨𝜓 −| a⃗ ⋅ �⃗�A ⊗
⃗b ⋅ �⃗�B |𝜓

−⟩

= − a⃗ ⋅ ⃗b = − cos(𝛼 − 𝛽) , (24)

where 𝛼, 𝛽 are the angles of the orientations in Alice’s and Bob’s parallel planes.

Inserting expectation value (24) then inequality (23) is violated maximally for the

choice of (𝛼, 𝛽, 𝛽 ′ ) = (0, 2 𝜋
3
,

𝜋

3
) , the ‘Bell angles’
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SQM
Bell = 3

2
= 1.5 > 1 . (25)

Well adapted to experiment is an other inequality, the familiar CHSH inequality,

named after Clauser, Horne, Shimony, and Hold who published it in 1969 [140]

SCHSH ∶= |E(a⃗, ⃗b) − E(a⃗, ⃗b ′ )| + |E(a⃗ ′
,

⃗b) + E(a⃗ ′
,

⃗b ′ )| ≤ 2 . (26)

As we know, in case of quantum mechanics (24) the CHSH inequality (26) is violated

maximally

SQM
CHSH = 2

√
2 = 2.828 > 2 , (27)

for the choice of the Bell angles (𝛼, 𝛽, 𝛼 ′
, 𝛽

′ ) = (0, 𝜋
4
, 2 𝜋

4
, 3 𝜋

4
) . Inequality (26) has

been tested experimentally, e.g., by Zeilinger’s group [141, 142] by using entangled

photons in the Bell state |𝜓 −⟩ . In the photon case, however, the expectation value

(24) changes to E(a⃗, ⃗b) = − cos 2(𝛼 − 𝛽) , i.e., the Bell angles become a factor of 2
smaller as compared to the spin case.

Other types of Bell inequalities, often used in experiments, are:

Firstly, Wigner’s inequality derived by Eugene P. Wigner in 1970 [143]. He

focused on probabilities which are proportional to the number of clicks in a detector.

In terms of probabilities P for the joint measurements the expectation value can be

expressed by

E(a⃗, ⃗b) = P(a⃗ ⇑, ⃗b ⇑) + P(a⃗ ⇓, ⃗b ⇓) − P(a⃗ ⇑, ⃗b ⇓) − P(a⃗ ⇓, ⃗b ⇑) , (28)

and assuming that P(a⃗ ⇑, ⃗b ⇑) ≡ P(a⃗ ⇓, ⃗b ⇓) and P(a⃗ ⇑, ⃗b ⇓) ≡ P(a⃗ ⇓, ⃗b ⇑) together

with
∑

P = 1 the expectation value becomes

E(a⃗, ⃗b) = 4P(a⃗ ⇑, ⃗b ⇑) − 1 . (29)

Inserting expression (29) into Bell’s inequality (23) yields Wigner’s inequality for

the joint probabilities, where Alice measures spin ⇑ in direction a⃗ and Bob also ⇑

in direction ⃗b (we drop from now on the spin notation ⇑ in the formulae)

P(a⃗, ⃗b) ≤ P(a⃗, ⃗b ′ ) + P(⃗b ′
,

⃗b) , (30)

or rewritten

SWigner ∶= P(a⃗, ⃗b) − P(a⃗, ⃗b ′ ) − P(⃗b ′
,

⃗b) ≤ 0 . (31)

For the Bell state |𝜓 −⟩ the quantum mechanical probability gives

P(a⃗, ⃗b) = |
(
⟨a⃗ ⇑ |⊗ ⟨⃗b ⇑ |

)
|𝜓 −⟩|2 = 1

2
sin2 1

2
(𝛼 − 𝛽) , (32)
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and leads to a maximal violation of inequality (31)

SQM
Wigner = 1

8
= 0.125 > 0 , (33)

for (𝛼, 𝛽, 𝛽 ′ ) = (0, 2 𝜋
3
,

𝜋

3
) , the same choice as in Bell’s original inequality.

Secondly, the Clauser-Horne inequality of 1974 [144]. It relies on weaker assump-

tions and is very well suited for photon experiments with absorptive analyzers.

Clauser and Horne work with relative counting rates, i.e., number of registered parti-

cles in the detectors. More precisely, the quantity N(a⃗, ⃗b) is the rate of simultaneous

events, coincidence rate, in the photon detectors of Alice and Bob after the photons

passed the corresponding polarizers in direction a⃗ or ⃗b respectively. The relative

rate N(a⃗, ⃗b)∕N = P(a⃗, ⃗b) , where N represents all events when the polarizers are

removed, corresponds in the limit of infinitely many events, which is practically the

case, to the joint probability P(a⃗, ⃗b) . If one polarizer is removed, say on Bob’s side,

then expression NA(a⃗)∕N = PA(a⃗) stands for the single probability at Alice’s (or the

correspondingly at Bob’s) side.

Starting from a pure algebraic inequality −XY ≤ x1y1 − x1y2 + x2y1 + x2y2 −
Yx2 − Xy1 = S ≤ 0 for numbers 0 ≤ x1, x2 ≤ X and 0 ≤ y1, y2 ≤ Y , it is now

easy to derive the corresponding inequality for probabilities, which is the Clauser-
Horne inequality

− 1 ≤ P(a⃗, ⃗b) − P(a⃗, ⃗b ′ ) + P(a⃗ ′
,

⃗b) + P(a⃗ ′
,

⃗b ′ ) − PA(a⃗
′ ) − PB(⃗b) ∶= SCH ≤ 0 . (34)

Inequality (34) has been used by Aspect in his time-flip experiment [124]. The

two-photon state produced was the symmetrical Bell state |𝜙+⟩ = 1
√
2
(|R⟩⊗ |L⟩ +

|L⟩⊗ |R⟩) = 1
√
2
(|H⟩⊗ |H⟩ + |V⟩⊗ |V⟩) , where |R⟩, |L⟩ denote the right and left

handed circularly polarized photons and |H⟩, |V⟩ the horizontally and vertically

polarized ones.

In case of |𝜙+⟩ entangled photons the quantum mechanical probability to detect a

linear polarized photon with an angle 𝛼 on Alice’s side, and simultaneously an other

linear polarized one with angle 𝛽 on Bob’s side, is given by

P(a⃗, ⃗b) = |
|
[(
⟨H| cos 𝛼 + ⟨V| sin 𝛼

)
⊗

(
⟨H| cos 𝛽 + ⟨V| sin 𝛽

)]
|𝜙+⟩||

2 = 1
2
cos2(𝛼 − 𝛽) . (35)

Choosing now for the Bell angles (𝛼, 𝛽, 𝛼 ′
, 𝛽

′ ) = (0, 𝜋
8
, 2 𝜋

8
, 3 𝜋

8
) the quantum

mechanical probabilities (35) violate the Clauser-Horne inequality (34) maximally

SQM
CH =

√
2 − 1
2

= 0.207 > 0 . (36)
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The violation of the above discussed Bell inequalities is expressed by the follow-

ing theorem:

Theorem 2 (Bell’s Theorem 1964) In a certain experimental situation all local
realistic theories are incompatible with quantum mechanics !

For a thorough discussion we refer to Ref. [145] and further literature can be

found in the review article [146, 147].

Conclusions:

I remember very well, when I had derived Bell’s inequality (23) for the first time,

I was totally astonished and fascinated that quantum mechanics contradicted an

inequality that relied on such general and quite ‘natural’ assumptions. It was impres-

sive to see how John could turn the pure philosophical debate of Einstein and Bohr

into exact mathematical terms. And, this formulation could be tested experimentally!

What are the conclusions? In all Bell inequalities the essential ingredient is Bell’s

locality hypothesis, Eq. (22), i.e., Einstein’s vision of reality and Bell’s concept of

locality, therefore we have to conclude as expressed in Theorem 2:

Local realistic theories are incompatible with quantum mechanics !

Bell in his seminal work [44] realized the far reaching consequences of a realistic

theory as an extension to quantum mechanics and expressed it in the following way:

“In a theory in which parameters are added to quantum mechanics to determine
the results of individual measurements, without changing the statistical predictions,
there must be a mechanism whereby the setting of one measuring device can influence
the reading of another instrument, however remote. Moreover, the signal involved
must propagate instantaneously, so that such a theory could not be Lorentz invari-
ant.”

He continued and stressed the crucial point in such EPR-type experiments:

“Experiments ..., in which the settings are changed during the flight of the parti-
cles, are crucial.”

Thus it is of utmost importance not to allow some mutual report by the exchange

of signals with velocity less than or equal to that of light.

Historical Experiments

First Generation Experiments of the Seventies:

After John had published his paper about the inequality there was practically no

interest in this field. It was the ‘dark era’ of the foundations of quantum mechanics.

Pauli’s opinion was often cited [148]:

“One should no more rack one’s brain about the problem of whether something
one cannot know anything about exists at all, than about the ancient question of how
many angels are able to sit on the point of a needle.”
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The first who got interested in the subject was John Clauser, a young graduate stu-

dent from Columbia University, in the late sixties. When he studied Bell’s inequality

paper [44] that contained a bound for all hidden variable theories, he was astounded

by its result. As a true experimentalist he wanted to see the experimental evidence

for it. So he planed to do the experiment. However, experiments of this type were not

appreciated at that time. When Clauser had an appointment with Richard Feynman

at Caltech to discuss an experimental EPR configuration for testing the predictions

of QM, he immediately threw him out of his office saying [149]:

“Well, when you have found an error in quantum-theory’s experimental predic-
tions, come back then, and we can discuss your problem with it.”

But, fortunately, Clauser remained stubborn, he belonged to the revolting gener-

ation, and prepared the experiment. He sent an Abstract to the Spring Meeting of

the American Physical Society proposing the experiment [150]. Soon afterwards,

Abner Shimony called and told him that he and his student Michael Horne had the

same ideas. So they joined and wrote together with Richard Holt, a PhD student of

Francis Pipkin from Harvard, the famous CHSH paper [140], where they proposed

an inequality that was well adapted to experiments.

Clauser carried out the experiment in 1972 together with Stuart Freedman [151], a

graduate student at Berkeley, who received his PhD with this experiment. As pointed

out in the CHSH paper [140], pairs of photons emitted in an atomic radiative cascade

would be suitable for a Bell inequality test. Clauser and Freedman chose Calcium

atoms pumped by lasers, where the excited atoms emitted the desired photon pairs.

The signals were very weak at that time, a measurement lasted for about 200 hours.

For comparison with theory a very practical inequality was used, which was derived

by Freedman [152]. The outcome of the experiment is well known, they obtained a

clear violation of the Bell inequality very much in accordance with QM.

In 1976, at Houston Edward Fry and his student Randall Thompson set up an

experiment by using mercury atoms. As in Clauser’s experiment the correlated pho-

tons were produced in a radiative cascade from by lasers excited atomic levels. Due to

the much better signals with improved lasers they could collect enough data already

in 80 min. The result was in excellent agreement with QM, the Bell inequality was

violated by 4 standard deviations [153].

Thus at that time, it was already convincing that hidden variable theories did not

work but quantum mechanics was correct. However, the experiments were not perfect

yet, the analyzers were static, only a small amount of photon pairs were registered,

etc. There still existed several loopholes, the detection efficiency or fair sampling

loophole, and the communication absence or freedom of choice loophole, just to

mention some important ones. To close these loopholes was the challenge of the

future experiments.

Second Generation Experiments of the Eighties:

In the late 1970s and beginning of the 1980s, the general atmosphere in the physics

community was still such:
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“Quantum mechanics works very well, so don’t worry!”
I remember, in 1980 I stayed for some time at the Rockefeller University. There I

met Abraham Pais, an outstanding particle physicist, with whom I had several stim-

ulating discussions. He had published a bestseller “Subtle is the Lord: The Science
and the Life of Albert Einstein” [154], where he described very thoroughly all the

works of Einstein. However, the EPR paper was, in my opinion, treated a bit poor

and not with his usual enthusiasm for Einstein. Pais summarized (on p.456 of his

book [154]):

“The content of this paper has been referred to on occasion as the Einstein-
Podolsky-Rosen paradox. It should be stressed that this paper contains neither a
paradox nor any flaw of logic. It simply concludes that objective reality is incompat-
ible with the assumptions that quantum mechanics is complete. This conclusion has
not affected subsequent developments in physics, and it is doubtful that it ever will.”

Having read this I felt somehow unease about his EPR assessment. So I asked

him frankly: “You don’t appreciate the EPR paper?” And with an impish smile Pais

responded: “The EPR paper was the only slip Einstein made.” How wrong can be

sometimes the judgement and prophecy of a physical work!

Alain Aspect, on the other hand, when reading Bell’s inequality paper [44], was

so strongly impressed that he immediately decided to do his “thèse d’état” on this

fascinating topic. He visited John Bell at CERN to discuss his proposal. John’s first

question was, as Alain told me, “Do you have a permanent position?” Only after

Aspect’s positive answer the discussion could begin. Aspect’s goal was to include

variable analyzers.

Aspect and his collaborators performed a whole series of experiments

[124, 155–158] with an improved design and approached step by step the ‘ideal’

setup configuration. As Clauser, they chose a radiative cascade in calcium that emit-

ted photon pairs in the Bell state |𝜙+⟩ . For comparison with theory the Clauser-

Horne inequality (34) was used, which was significantly violated in each experiment.

In the final time-flip experiment [124] together with Jean Dalibard and Gérard

Roger a clever acoustic-optical switch mechanism was incorporated. It worked such

that the switching time between the polarizers, as well as the lifetime of the photon

cascade, was much smaller than the time of flight of the photon pair from the source

to the analyzers. That implied a space-like separation of the event intervals. How-

ever, the time flipping mechanism was still not ideal, i.e., truly random, but “quasi-
periodic”, as they called it. The mean for two runs which lasted about 2 h yielded the

result Sexp
CH = 0.101 ± 0.020 in very good agreement with the quantum mechanical

prediction SQM
CH = 0.113 ± 0.005 that had been adapted for the experiment (recall

the ideal value is SQM
CH = 0.207 (36)).

This time-flip experiment of Aspect received much attention in the physics com-

munity and also in popular science, and Alain was the best apologist. In my opin-

ion, it caused a turning point, the physics community began to realize that there

was something essential in it. The research started and flourished into a new direc-

tion, into what is called nowadays quantum information and quantum communica-

tion [159, 160].
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Third Generation Experiments of the Nineties and Beyond:

In the 1990s, the spirit towards foundations in quantum mechanics totally changed

since quantum information gained increasing interest, Bell inequalities and quantum

entanglement were the basis.

Meanwhile, the technical facilities improved considerably too, the electronics and

the lasers. Most important was the invention of a new source for creating two entan-

gled photons. That was spontaneous parametric down conversion, where a nonlinear

crystal was pumped with a laser and the pump photon was converted into two pho-

tons that propagated vertically and horizontally polarized on two different cones. In

the overlap region they were entangled.

Such an EPR source was used by Anton Zeilinger and his group, when they

performed their Bell experiment in 1998 [141]. Zeilinger’s student Gregor Weihs

obtained his PhD with this experiment [142] (see Fig. 3.14). Their challenging

goal was to construct an ultra-fast and truly random setting of the analyzers at

each side of Alice and Bob, such that strict Einstein locality—no mutual influence

between the two observers Alice and Bob—was achieved in the experiment. The

data were compared with the CHSH inequality (26) and the experimental result

was: Sexp
CHSH = 2.73 ± 0.02 , which corresponded to a violation of the inequality of

30 standard deviations. Due to this high efficiency photon source the measurement

could be performed already in 3–4 min. It was the experiment that truly included the

vital time factor, John Bell insisted upon so strongly.

Fig. 3.14 The timing experiment of Weihs et al. [141]. The EPR source is a so-called BBO crystal

pumped by a laser, the outgoing photons are vertically and horizontally polarized on two different

cones and in the overlap region they are entangled. This entangled photons are led separately via

optical fibres to the measurement stations Alice and Bob. During the photon propagation the orien-

tations of polarizations are changed by an electro-optic modulator which is driven by a truly random

number generator, on each side. In this way the strict Einstein locality condition—no mutual influ-

ence between the two observers Alice and Bob—is achieved in the experiment. The figure is taken

from Ref. [142], © Gregor Weihs.
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About the same time other groups investigated energy correlated photon pairs to

test Bell inequalities [161, 162]. A record was set by the group of Gisin et al. [163], by

using energy-time entangled photon pairs in optical fibres. They managed to separate

their observers Alice and Bob by more than 10 Km and could show that this distance

had practically no effect on the entanglement of the photons. The investigated Bell

inequalities had been violated by 16 standard deviations.

Fascinating experiments on quantum teleportation [164, 165] and quantum cryp-

tography [166, 167] followed.

Then a race started in achieving records of entanglement based long distance

quantum communication. The vision was to install a global network, in particular

via satellites or the International Space Station, that provided an access to secure

communication via quantum cryptography at any location.

It was again Zeilinger’s group that pushed the distance limits further and further.

Firstly, in an open air experiment in the City of Vienna over a distance of 7.8 km

the group [168] could violate a CHSH inequality (26) by more than 13 standard

deviations. Secondly, this is presently the world record, the group [169] successfully

carried out an open air Bell experiment over 144 km between the two Canary Islands

La Palma and Tenerife.

In search of closing loopholes a recent Bell experiment of the group [170]

closed the fair-sampling loophole, i.e., their results of violating an inequality à la

Eberhard [171] were valid without assuming that the sample of measured photons

accurately represented the entire ensemble.

Another loophole, the detection efficiency loophole, could be closed with ion

traps. Working with ions the group Rowe et al. [172] tested a Bell inequality with

perfect detection efficiency.

Finally, I also want to refer to Bell inequality tests of the group of Rauch

et al. [173–175]. These neutron interferometer experiments were of particular inter-

est since in this case the quantum correlations were explored in the degrees of free-

dom of a single particle, the neutron. Physically, it meant that rather contextuality

was tested than nonlocality in space.

It is quite interesting and amusing to see the development of Bell experiments in

the history of time. Beginning in the 1970s, where one had to overcome huge tech-

nical difficulties and the enormous resistance of the physics community, the devel-

opment ended in the 2010s in such a way that a Bell experiment belonged already to

the standard educational program “Laboratory Quantum Optics” for the students at

the Faculty of Physics of the University of Vienna. It would have been nice if John

Bell could have seen that!

For a detailed description of all Bell-type experiments the reader may consult

Quantum [Un]speakables [160].

Some Memories and John’s Quantum Legacy

When I think back again and recall the sometimes lively discussions I had with John

about quantum mechanics and its interpretations, in particular, about the meaning of
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contextuality and nonlocality, then interestingly, John was never so much concerned

about contextuality and its implications. Whereas, I always thought that contextuality

was the important quantum feature and had a profound rooting in Nature, and I am

still convinced that some day it will have technical applications.

John, on the other hand, was deeply disturbed by the nonlocality feature of quan-

tum mechanics since for him it was equivalent to a “breaking of Lorentz invariance”
in an extended theory for quantum mechanics, what he hardly could accept. He often

remarked: “It’s a great puzzle to me ... behind the scenes something is going faster
than the speed of light.”

At the end of his Bertlmann’s socks paper John expressed again his concern [123]:

“It may be that we have to admit that causal influences do go faster than light. The
role of Lorentz invariance of a completed theory would then be very problematic. An
‘ether’ would be the cheapest solution. But the unobservability of this ether would
be disturbing. So would be the impossibility of ‘messages’ faster than light, which
follows from ordinary relativistic quantum mechanics in so far as it is unambigu-
ous and adequate for procedures we can actually perform. The exact elucidation of
concepts like ‘message’ and ‘we’, would be a formidable challenge.”

When John gave a talk on the foundational issues, there often arose a great tension

between him and the audience, especially, about the item of nonlocality. People didn’t

want to listen, didn’t want to accept what John was saying, John was like ‘a lone voice
in the wilderness’. Once, in the late 1980s, he gave a talk at the ETH Zürich and I

asked him afterwards, “How was it?” John replied clenching his fists, “I could beat
them!”

On a summer afternoon in 1987, John and I were sitting outside in the garden

of the CERN cafeteria, drinking our late 4 o’clock tea, and talked as so often about

the implications of nonlocality. In this tea-atmosphere I spontaneously said: “John,
you deserve the Nobel prize for your theorem.” John, for a moment puzzled, replied

quite strictly: “No, I don’t. ... it’s like a null experiment, and you don’t get the Nobel
prize for a null experiment. ... for me, there are Nobel rules as well, it’s hard to make
the case that my inequality benefits mankind.” I countered: “I disagree with you!
It’s not a null result. You have proved something new, nonlocality! And for that I
think you deserve the Nobel Prize.” John, although feeling somehow pleased, raised

slowly his arms, shrugged his shoulders and mumbled sadly: “Who cares about this
nonlocality?”

In John’s last paper “La nouvelle cuisine”, published in 1990 [176] (and see his

collected quantum works [177]), he still remained profoundly concerned with this

nonlocal structure of Nature. The paper was based on a talk he gave at the Univer-

sity of Hamburg, in 1988, about the topic: “What cannot go faster than light?”.

Somebody with Hanseatic humor added to the announcement by hand: “John Bell,
for example!” (see Fig. 3.15). This remark made John thinking, what exactly that

meant, his whole body or just his legs, his cells or molecules, atoms, electrons ...

Was it meant that none of his electrons go faster than light?

In our modern view of Nature the concepts of a classical theory changed, the sharp

location of objects had been dissolved by the fuzzyness of the wave function or by
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Fig. 3.15 Announcement of John Bell’s talk: “What cannot go faster than light?” at the University

of Hamburg in 1988. Somebody with Hanseatic humor added to the announcement by hand: “John
Bell, for example!”.

the fluctuations in quantum field theory. As John remarked: “The concept ‘velocity
of an electron’ is now unproblematic only when not thought about it.”

Finally, John discussed “Cause and effect” in this paper. As Einstein [178]

already pointed out, if an effect follows its cause faster than the propagation of light,

then there exists an inertial frame where the effect happens before the cause. Such a

thing was unacceptable for both, Einstein and Bell. Therefore, sticking to “no signals
faster than light” John defined locally causal theories and demonstrated, via an EPR-

Bell type experiment, that “ordinary quantum mechanics is not locally causal”, or

more precisely, “quantum mechanics cannot be embedded into a locally causal the-
ory”. It was essential in his argumentation that the measurement settings a⃗ at Alice’s

side and ⃗b at Bob’s side could be chosen totally free, i.e., at random. “But still, we
cannot signal faster than light” John noted at the end.

Let me finally cite John’s point of view concerning the existence, the realism of

Nature, John in his own words, taken from an interview he gave in the late 1980s.
2

John’s confession:

“Oh, I’m a realist and I think that idealism is a kind of ... it’s a kind of ... I think it’s
an artificial position which scientists fall into when they discuss the meaning of their
subject and they find that they don’t know what it means. I think that in actual daily
practice all scientists are realists, they believe that the world is really there, that it
is not a creation of their mind. They feel that there are things there to be discovered,
not a world to be invented but a world to be discovered. So I think that realism is
a natural position for a scientist and in this debate about the meaning of quantum
mechanics I do not know any good arguments against realism.”

2
The whole interview with John Bell can be seen on a DVD available at the Austrian Central Library

for Physics and Chemistry, Vienna.
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Fig. 3.16 Sketch of my

conclusions in the paper

“Bell’s theorem and the
nature of reality”, which I

dedicated John Bell in 1988

on occasion of his 60th

birthday [179]. Cartoon:

© Reinhold A. Bertlmann.

John was totally convinced that realism is the right position of a scientist. He

believed that the experimental results are predetermined and not just induced by the

measurement process. Even more, in John’s EPR analysis reality is not assumed but

inferred! Otherwise (without realism), he said, “It’s a mystery if looking at one sock
makes the sock pink and the other one not-pink at the same time.”

So he did hold on the hidden variable program continuously, and was not discour-

aged by the outcome of the EPR-Bell experiments but rather puzzled. For him “The
situation was very intriguing that at the foundation of all that impressive success (of

quantum mechanics) there are these great doubts”, as he once remarked.

I got back at John for “Bertlmann’s socks” in paper “Bell’s theorem and the nature
of reality” [179] that I dedicated to him in 1988 on occasion of his 60th birthday.

I sketched my conclusions in a cartoon, shown here as Fig. 3.16. John, as a strict

teetotaler, was very much amused by my illustration, since the spooky, nonlocal ghost
emerged from a bottle of Bell’s Whisky, a brand that really did exist.

In the 1990s, Bell’s huge impact on the developments of quantum information

became widely appreciated. It is known that in 1990 (the year of John’s unexpected

death) John was appointed for the Nobel Prize. Nowadays physicists agree that

John would have definitely received the prize for his outstanding contributions to

the foundations of quantum mechanics if he had lived longer. For instance, Daniel

Greenberger expressed it explicitly in an interview given at the Conference Quantum
[Un]Speakables II in Vienna [180]:
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“Of course, people more and more appreciate John Bells beautiful work. He was
essentially starting the field, his work was totally seminal, and if he were alive he
certainly would have won the Nobel Prize !”

Turn to Quantum Mechanics

A year after John’s death Franco Selleri, Professor at the Universitá degli Studi di

Bari Aldo Moro, and his crew organized the Conference “Bell’s Theorem and the
Foundations of Modern Physics” (7–10 October, 1991, Cesena). It was an interna-

tional conference in memory of John Bell. Many leading scientists of the field partic-

ipated and gave talks to honour posthumously John Bell. Among them where: Jeffrey

Bub, James Cushing, Bernard d’Espagnat, Giancarlo Ghirardi, Daniel Greenberger,

Max Jammer, Leonard Mandel, Sir Roger Penrose, Franco Selleri, Euan Squires,

Anton Zeilinger, myself and many others.

There I met Anton Zeilinger, he was one of the two people who responded to

my ‘Bell-revenge’ paper [179]. Anton just became a Professor at the University of

Innsbruck and was establishing a quantum group. At that time I still worked in par-

ticle physics, but we found an overlapping interest in the foundations of quantum

mechanics. Since we both were fascinated by this topic we thought that it would be

a good idea to educate the young Austrian generation in this field. So we intensified

the contact and exchange of our universities, which, in 1994, resulted in founding

officially the Joint Seminar “Foundations of Quantum Mechanics” between the uni-

versities of Vienna and Innsbruck. For the meetings Anton and his group came to

Vienna, and alternatingly, the Vienna students were travelling by train to Innsbruck,

see Fig. 3.17.

This Seminar immediately became very popular among the Viennese students

since Anton’s group reported on fascinating experiments carried out in Innsbruck,

and the experiments were performed by young scientists, in fact by students, what

impressed our students very much. Also the quite informal, familiar character of the

Seminar—we always served coffee and cake—added to the success of the Seminar.

One event is unforgettable, when Alois Mair, a student of Anton’s group reported

on the first experiment of “Entangled states of orbital angular momentum of pho-
tons”(published in Ref. [181]). In such states the phase surface of the wave resembled

a screw in direction of the wave propagation. At the filters it impressively looked like

a doughnut. After the talk we had a big doughnut party, where 70 real doughnuts,

delivered by the nearby bakery “Ritz”, had been served. Meanwhile the Seminar

belongs to the regular student educational programme of our Faculty.

Of course, after Anton’s move from Innsbruck to Vienna in 1999, we further inten-

sified our collaboration in several areas, for instance, in organizing conferences like

“Quantum [Un]Speakables” in 2000 in commemoration of John Bell, “Quantum
[Un]Speakables II” in 2014 to celebrate 50 years of Bell’s Theorem, see Fig. 3.17. In

2014 there were celebrations of Bell’s quantum achievements all over the world, also

Queen’s University Belfast, John’s home university, organized an exhibition “Action
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Fig. 3.17 Activities of Anton Zeilinger and Reinhold Bertlmann: Establishing in 1994 “Founda-
tions of Quantum Mechanics”, a Joint Seminar between the Universities of Vienna and Innsbruck.

Organizing the Conferences “Quantum [Un]Speakables I” 2000, “Quantum [Un]Speakables
II” 2014, and “Quantum [Un]Speakables III” 2028. Cartoon: © Reinhold A. Bertlmann, Foto:

© Renate Bertlmann.

at a Distance” in The Naughton Gallery at Queen’s [182] and the Belfast City Coun-

cil named a street “Bell’s Theorem Crescent” in Belfast’s Titanic Quater to hon-

our John Bell as “One of the Northern Ireland’s most eminent scientists”. Finally,

for 2028 a third conference “Quantum [Un]Speakables III” had been announced to

commemorate Bell’s 100th birthday [183], see Fig. 3.17.

This fascination for the foundations of quantum mechanics also stimulated my

research interest in this field and I began to study this topic in the area I was famil-

iar with, that was particle- and mathematical physics. About this research I want to

report next.

Entanglement in Particle Physics

Decoherence of Entangled Particle–Antiparticle Systems

The second person who responded to my ‘Bell-revenge’ paper [179] was Walter

Grimus, a distinguished particle physicist of our Institute in Vienna. He was an expert
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in strangeness systems, the K-mesons, and in beauty systems, the B-mesons. So it was

quite natural that we discussed the phenomena of quantum information, the peculiar

quantum correlations of bipartite and multipartite systems, within these systems in

particle physics.

The difference to the photon systems, discussed so far, was that particle systems

had entirely different and additional properties, which the photons did not have. First

of all, the investigated particles were very massive, they decayed into other parti-

cles, they oscillated between their flavour content, i.e., between their particle and

antiparticle nature, and they could regenerate, e.g., once the short-lived kaon state

had decayed it could be regenerated from the surviving long-lived component. In

addition, they possessed internal symmetries, like the CP symmetry (charge conju-

gation and parity), which turned out to be essential. For these reasons, I think, that

it was, and still is, of great importance to investigate such systems, particularly, with

regard to the EPR-Bell quantum correlations.

Experimentally, the particle–antiparticle systems that were generated in the huge

particle accelerators were already entangled due to conservations laws. For example,

the K0
̄K0

system was produced at the Φ resonance in the e+e− machine DAΦNE at

Frascati, for a sketch see Fig. 3.18, and the B0
̄B0

system at the Υ(4S) resonance in

machines like DORIS II (Doppel Ring Speicher) at DESY (Deutsches Elektronen

Synchrotron), in CESR (Cornell Electron Storage Ring) at Cornell, or nowadays in

the KEK B-factory in Japan.

The first system Walter and I investigated was the B0
̄B0

system since there existed

already usable data from DORIS II and CESR. We found that the B0
̄B0

state gener-

ated in the decay of the resonance Υ(4S) at 10.6 GeV is very well suited to perform

tests of the EPR correlations over macroscopic distances. Using measurements of

the ratio R = (No. like-sign dilepton events)/(No. opposite-sign dilepton events) we

could show that already presently existing data strongly favoured the contribution

of the interference term to R , as it was required by the rules of quantum mechanics

[184, 185].

The next system we explored was the K0
̄K0

system, where data was available

from the CPLEAR experiment at CERN [186]. It was precisely the time, when a

Fig. 3.18 Entanglement of matter and antimatter created in an accelerator of particle physics.

Cartoon: © Reinhold A. Bertlmann.
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young enthusiastic graduate student, with name Beatrix Hiesmayr, approached me

searching for a Diploma Thesis. I thought, that’s a good topic for her, so she joined

and it was the starting point for fruitful and still ongoing collaboration.

Our aim was to show, if a pair of particle–antiparticle had been created by any

kind of interaction in an entangled state, the two-particle wave function retained its

non-separable character even if the particles were space-like separated over large

macroscopic distances (about 9 cm). To describe quantitatively spontaneous factor-

ization and decoherence of the K0
̄K0

system we modified the quantum-mechanical

interference term of the entangled 2-kaon state by a multiplication with the term

(1 − 𝜁 ). Thus we changed the quantum mechanical expression in such a way that the

effective decoherence parameter 𝜁 quantified the deviation from quantum mechanics

(corresponding to 𝜁 = 0) and provided a measure for the distance of the total system

from its total decoherence or spontaneous factorization (𝜁 = 1).

The relevant quantities we had to calculate were the probabilities to measure

like-strangeness and unlike-strangeness events at a time tl on the left side and tr on

the right side. Starting from a produced asymmetric Bell state |𝜓 −⟩ = 1
√
2
(|KS⟩⊗

|KL⟩ − |KL⟩⊗ |KS⟩) , where the short-lived kaon KS and the long-lived kaon KL
played the role of spin up ⇑ and spin down ⇓ , we found for the like-strangeness
probability [187] (see also reviews [188, 189])

P(K0
, tl;K0

, tr) = ||⟨K0|l ⊗ ⟨K0|r |𝜓
−(tl, tr)⟩||2

⟶ P
𝜁

(K0
, tl;K0

, tr) = 1
2

{

e−ΓStl−ΓLtr |⟨K0|KS⟩l|
2 |⟨K0|KL⟩r|

2

+ e−ΓLtl−ΓStr |⟨K0|KL⟩l|
2 |⟨K0|KS⟩r|

2 − 2 (1 − 𝜁 )
⏟⏟⏟

modification

e−Γ(tl+tr)

× Re
{
⟨K0|KS⟩

∗
l ⟨K

0|KL⟩
∗
r ⟨K

0|KL⟩l⟨K0|KS⟩r e−iΔmΔt}
}

= 1
8

{

e−ΓStl−ΓLtr + e−ΓLtl−ΓStr − 2 (1 − 𝜁 )
⏟⏟⏟

modification

e−Γ(tl+tr) cos(ΔmΔt)
}

,

(37)

and the unlike-strangeness probability just changed the sign of the interference term.

The quantity directly sensitive to the interference term was the asymmetry

A(tr, tl) =
Punlike(tr, tl) − Plike(tr, tl)
Punlike(tr, tl) + Plike(tr, tl)

, (38)

that had been measured in the CPLEAR experiment. The comparison of the theoret-

ical expression for the given basis {KS,KL} [187]
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AKLKS
𝜁

(tr, tl) = (1 − 𝜁 )AQM(tr, tl) with AQM(tr, tl) = cos(ΔmΔt)
cosh( 1

2
ΔΓΔt)

,

(39)

whereΔm = mL − mS ,ΔΓ = ΓL − ΓS andΔt = tr − tl , with the CPLEAR data [186]

restricted the decoherence parameter 𝜁 to the interval [187]

𝜁 = 0.13+0.16−0.15 . (40)

This result confirmed nicely in a quantitative way the existence of entangled massive

particles over macroscopic distances (9 cm).

When concentrating on a specific decay process of the kaon system 𝜙 → KSKL →
𝜋

+
𝜋

−
𝜋

+
𝜋

−
the quantitative estimate of the 𝜁 could be improved by orders of mag-

nitude [190]

𝜁 = 0.003 ± 0.018stat ± 0.006sys . (41)

We also found out that the decoherence parameter 𝜁 , which we had introduced

by hand, also had a deeper physical basis. It was related to the decoherence strength

𝜆 of a Lindblad [191] and Gorini-Kossakowski-Sudarshan [192] master equation for

the density matrix 𝜌 of the total quantum system

d𝜌
dt

= − iH𝜌 + i𝜌H† − D[𝜌] . (42)

The dissipator D[𝜌] was chosen as

D[𝜌] = 𝜆

(
P1𝜌P2 + P2𝜌P1

)
= 𝜆

2
∑

j=1,2

[
Pj, [Pj, 𝜌]

]
, (43)

with the projectors Pj = |ej⟩⟨ej| ( j = 1, 2) onto the states |e1⟩ = |KS⟩l ⊗ |KL⟩r and

|e2⟩ = |KL⟩l ⊗ |KS⟩r . Then the connection was [188, 193]

𝜁 (t) = 1 − e−𝜆t
. (44)

The parameter 𝜆 representing the strength of the interaction of the system with its

environment had to be considered as the more fundamental one.

The increase of decoherence of the initially totally entangled K0
̄K0

system as

time evolves means on the other hand a decrease of entanglement of the system,

an entanglement loss. Interestingly, there is a direct relation between the decoher-

ence parameter 𝜁 , or 𝜆 , which quantifies the spontaneous factorization of the wave

function, and the entanglement loss of the system that is defined via the entropy.

The amount of entanglement is defined by the familiar measures: Entanglement of
formation E [194] or Concurrence C [195–197].
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Then we have the following proposition:

Proposition 1 (Bertlmann-Durstberger-Hiesmayr [198]) The entanglement loss
(1 − C) or (1 − E) equals the amount of decoherence:

1 − C
(
𝜌(t)

)
= 𝜁 (t) , (45)

1 − E
(
𝜌(t)

) ≐ 1
ln 2

𝜁 (t) ≐ 𝜆

ln 2
t . (46)

Bell Inequalities in Particle Physics

Together with Beatrix I also turned to the topic of Bell inequalities in particle physics.

The typical feature of these particle systems, e.g., of a kaon–antikaon system, is that

the joint expectation value of a measurement at Alice’s and Bob’s detectors depends

on both, on the flavour content, which corresponds to a quasi-spin property, and

on the time of the measurement, once the system is created. More precisely, the

expectation value for the combined measurement E(ka, ta; kb, tb) is a function of the

flavour ka measured on the left side at a time ta and on a (possibly different) kb on

the right side at tb. Relying on the usual argumentation for Bell inequalities we could

derive the following Bell–CHSH inequality [199] (see Ref. [188], for an overview in

this field)

|E(ka, ta; kb, tb) − E(ka, ta; kb′ , tb′ )|
+ |E(ka′ , ta′ ; kb, tb) + E(ka′ , ta′ ; kb′ , tb′ )| ≤ 2 , (47)

which expressed both the freedom of choice in time and in flavour. Identifying

E(ka, ta; kb, tb) ≡ E(a⃗, ⃗b) we are back at the inequality (26) for the spin–
1
2

case.

Therefore we may choose in a Bell inequality:

(I) varying the flavour (quasi-spin) or fixing the time,

(II) fixing the flavour (quasi-spin) or varying the time.

However, the experimental test of Bell inequalities in particle physics is much

more intricate than in photon physics. Active measurements have to be carried out,

but they are difficult to achieve. Usually, the measurements are passive since they

happen through the decays of the particles, for a detailed analysis see Ref. [200].

Let me mention two important cases.

Case I: By varying the flavour content in the particle–antiparticle system a Wigner-

type inequality, like Eq. (30), can be established for the kaon system [201]

P(KS,
̄K0) ≤ P(KS,K0

1 ) + P(K0
1 ,
̄K0) . (48)



3 Bell’s Universe: A Personal Recollection 61

Although inequality (48) cannot be tested directly, the CP-conserving kaon state K0
1

does not exist in Nature, it can be converted into a Bell inequality for CP violation

when studying the leptonic charge asymmetry

𝛿 =
Γ(KL → 𝜋

−l+𝜈l) − Γ(KL → 𝜋

+l−�̄�l)
Γ(KL → 𝜋

−l+𝜈l) + Γ(KL → 𝜋

+l−�̄�l)
with l = 𝜇, e , (49)

where l represents either a muon or an electron.

Then Beatrix, Walter and myself [202] could convert the Wigner-type inequality

(48) into the inequality

𝛿 ≤ 0 , (50)

for the measurable leptonic charge asymmetry which is proportional to CP violation.

However, inequality (50) is in contradiction to the experimental value

𝛿exp = (3.27 ± 0.12) ⋅ 10−3 . (51)

In fact, considering further Bell inequalities [202] restricts the asymmetry to 𝛿 = 0 ,

which means strict CP violation.

In conclusion, the premises of local realistic theories are only compatible with

strict CP violation in K0
̄K0

mixing. Conversely, CP violation in K0
̄K0

mixing always

leads to a violation of a Bell inequality. In this way, 𝛿 ≠ 0 is a manifestation of

the entanglement of the considered state. I also want to remark that in case of Bell

inequality (48), since it is considered at t = 0, it is rather contextuality than nonlo-

cality that is tested. This connection between the violation of a Bell inequality and

the violation of an internal symmetry of a particle is quite remarkable and must have

a deeper meaning, and probably will occur for other symmetries as well.

Case II: When fixing the flavour of the kaons and varying the time of the measure-

ments, it turns out that due to the fast decay compared to the slow oscillation, which

increases the mixedness of the total system, a Bell inequality is not violated anymore

by quantum mechanics [199]. However, Beatrix and a group of experimentalists and

theorists [203] succeeded to establish a generalized Bell inequality for the K0
̄K0

sys-

tem, which is violated by quantum mechanics in certain measurable time regions. In

this case hidden variable theories are excluded. For such an experiment the prepara-

tions at DAΦNE for the KLOE-2 detector are in progress [204].

I also want to draw attention to possible experiments that test Bell inequalities

by inserting a regenerator, that is a piece of matter, into the kaon beam [205–209].

These experiments are of particular interest since regeneration, a typical quantum

feature of the K meson, is directly related to a Bell inequality.

Furthermore, a Bell test for quite a different system, a hyperon system like the Λ ̄Λ
system, has been studied [210, 211] and is experimentally planned by the FLAIR

collaboration, Darmstadt.

Last but not least, tests of local realism in the decay of a charmed particle into

entangled vector mesons should be mentioned as well [212–214].
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These direct Bell-type tests of our basic concepts about matter are of utmost

importance since there is always a slim chance of an unexpected result, despite the

fact of the general success of quantum mechanics.

I think John Bell, who was both, a particle- and a quantum-physicist, had been

pleased seeing the developments of this kind of experiments.

As a particle physicist I certainly was very much interested in studying the entan-

glement features in a relativistic setting. I was again lucky that an enthusiastic grad-

uate student, Nicolai Friis whom I knew very well from my university lectures,

approached me for a Diploma Thesis and showed his strong interest in the connection

of quantum mechanics and relativity.

The first topic Nicolai and I investigated was “Relativistic entanglement of two
massive particles” [215], see Fig. 3.19. We described the spin and momentum

degrees of freedom of a system of two massive spin–
1
2

particles as a 4 qubit sys-

tem, one qubit for each of the two momenta and each of the two spins. Of course,

relativistically spin and momentum of a particle were not independent of each other,

what we had to take into account. Then we explicitly showed how the entangle-

ment changed between different partitions of the qubits, when considered by differ-

ent inertial observers [215]. Although the two particle entanglement corresponding

to a partition into Alice’s and Bob’s subsystems was, as often stated in the literature,

invariant under Lorentz boosts, the entanglement with respect to other partitions of

the Hilbert space on the other hand, was not. It certainly did depend on the chosen

inertial frame and on the initial state considered. This surprising feature we could

understand clearly. The change of entanglement arose, because a Lorentz boost on

the momenta of the particles caused a Wigner rotation of the spin, which in certain

cases entangled the spin- with the momentum states. We systematically investigated

the situation for different classes of initial spin states and different partitions of the

4 qubit space.

Furthermore, we studied the behaviour of Bell inequalities for different observers

and demonstrated how the maximally possible degree of violation, using the Pauli-

Lubanski spin observable, could be recovered by any inertial observer, when Lorentz

transforming both the states and the observables such that each observer will mea-

sure the same expectation value if the correct measurement directions were chosen.

As a next step it was quite natural for Nicolai and me to consider non-inertial

particle systems and to study the entanglement features there. For example, two

observers shared a bipartite entangled state, where one observer was moving with

uniform acceleration. There occurred an entanglement degradation in such a state by

the accelerated motion, which was commonly attributed to the thermalization due to

the Unruh effect. Whereas for bosonic modes the entanglement vanished in the infi-

nite acceleration limit [216] there still remained a non-zero residual entanglement

in case of (anti-) fermionic modes [217]. So we asked ourself if this residual entan-

glement could be used for quantum information tasks. The criterion for it was the

inspection of a Bell inequality. The result published with our colleagues was “Resid-
ual entanglement of accelerated fermions is not nonlocal” [218].

The statement, more precisely, was the following: Two observers share a maxi-

mal entangled state of two fermions, where the entanglement decreases for increas-
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Fig. 3.19 Eve, a

relativistically moving

observer, is studying the

behaviour of the

entanglement of a system of

two massive spin–
1
2

particles

as a 4 qubit system, one

qubit for each of the two

momenta and each of the two

spins. She is also testing the

relativistic invariance of a

Bell inequality in the Alice

and Bob partition. Cartoon:

© Reinhold A. Bertlmann.

Fig. 3.20 Relativistic entanglement: Alice, being an accelerated observer when falling into a black

hole, cannot communicate on a quantum information level (via an EPR pair) with an observer, Bob,

who is resting near the horizon. Thus quantum mechanics cannot overcome relativity ! Cartoon:

© Reinhold A. Bertlmann.

ing acceleration. The surviving entanglement, in the infinitely accelerated frame,

however, cannot be used to violate the CHSH inequality, which is the optimal Bell

inequality for this situation. Therefore no quantum information tasks using these

correlations can be performed!

This is especially important not only for the results in the infinite acceleration

limit but also if we identify this limit with a black hole situation, where an observer

is freely falling and another observer is resting arbitrarily close to the event horizon.

Alice, when falling into a black hole, cannot communicate on a quantum information

level with an observer who is resting near the horizon, see Fig. 3.20. Therefore we

have to conclude:

Quantum mechanics cannot overcome relativity !



64 R. Bertlmann

Entanglement in Mathematical Physics

Entanglement and Bell Inequalities

In mathematical physics the quantum states are described by density matrices. Then

all quantum states can be classified into separable or entangled states. The set of
separable states is defined by the convex (and compact) hull of product states

S =
{
𝜌 =

∑

i
pi 𝜌

A
i ⊗ 𝜌

B
i | 0 ≤ pi ≤ 1 ,

∑

i
pi = 1

}
. (52)

A state is called entangled if it is not separable, i.e., 𝜌ent ∈ Sc
where Sc

denotes

the complement of S, with S ∪ Sc = ̃ ⊂ L() and ̃ = ̃A ⊗
̃B represents the

Hilbert-Schmidt space of linear operators L() on the finite dimensional bipartite

Hilbert space  =  ⊗ of Alice and Bob, with dimension D = dA × dB. For

our discussion of qubits dA = dB = 2 .

In terms of density matrices the CHSH inequality (26) can be rewritten in the

following way

⟨𝜌|CHSH⟩ = Tr 𝜌CHSH ≤ 2 , (53)

for all local states 𝜌 , where the CHSH-Bell operator in case of qubits is expressed

by

CHSH = a⃗ ⋅ �⃗�A ⊗ (⃗b − ⃗b ′ ) ⋅ �⃗�B + a⃗ ′
⋅ �⃗�A ⊗ (⃗b + ⃗b ′ ) ⋅ �⃗�B . (54)

Rewriting inequality (53) gives

⟨𝜌| 2 ⋅ 1 − CHSH⟩ ≥ 0 . (55)

If we choose, however, the entangled Bell state 𝜌
− = |𝜓 −⟩⟨𝜓 −| the inner product

changes the sign

⟨𝜌−| 2 ⋅ 1 − CHSH⟩ < 0 . (56)

Now we can ask, is the inner product (56) negative for all entangled states? The

answer is yes for all pure entangled states [219], i.e., there exist measurement direc-

tions for which the CHSH inequality is violated. For mixed states, however, the situ-

ation is much more subtle (see, e.g., Sect. 5 of Ref. [220]). Werner [221] discovered

that a certain family of bipartite mixed states, which remained entangled, produced

an outcome that admitted a local hidden variable model for projective measurements,

that is, it satisfies all possible Bell inequalities.



3 Bell’s Universe: A Personal Recollection 65

This feature is nicely demonstrated by the so-called Werner states

𝜌Werner = 𝛼 𝜌

− + 1 − 𝛼
4

14 = 1
4
(
1 ⊗ 1 − 𝛼 𝜎i ⊗ 𝜎i

) ≡ 𝜌

𝛼

, (57)

written in terms of the Bloch decomposition with the parameter values 𝛼 ∈ [0, 1] .

The region of separability is determined by the so-called PPT criterion (positive

partial transposition) of Peres [222] and the Horodecki family [223]. Given a general

density matrix 𝜌 in Hilbert-Schmidt space ̃ = ̃A ⊗
̃B in its Bloch decomposi-

tion form

𝜌 = 1
4
(
1 ⊗ 1 + ri 𝜎i ⊗ 1 + ui 1 ⊗ 𝜎i + tij 𝜎i ⊗ 𝜎j

)
, (58)

then a partial transposition is defined by the operator T acting in a subspace ̃A or

̃B and transposing there the off-diagonal elements of the Pauli matrices: T (𝜎i)kl =
(𝜎i)lk . If and only if, in 2 × 2 and 2 × 3 dimensions, a state remains positive under

partial transposition then the state is separable. In higher dimensions the PPT crite-

rion is only necessary but not sufficient for separability.

In case of the Werner states (57) the partial transposition provides the following

result: the states are separable for 𝛼 ≤ 1
3

and entangled for 𝛼 >
1
3

.

In order to find the states violating a Bell inequality an other theorem of the

Horodecki family [224] is very powerful since we do not have to check all mea-

surement directions a⃗ and ⃗b . There one has to consider the square root of the

two larger eigenvalues t21, t
2
2 of the product of the t-matrices (tij)T (tij) . If Bmax =

1
2
max Tr 𝜌CHSH =

√

t21 + t22 > 1 then the CHSH inequality is maximal vio-

lated.

In case of the Werner states we can read off the coefficient matrix directly from

the Bloch decomposition (57), which yields the maximal violation of the CHSH

inequality by Bmax =
√
2𝛼2 > 1 . Thus, for all 𝛼 > 1∕

√
2 the CHSH-Bell inequal-

ity is violated.

Entanglement Witness Inequality

I remember, when Anton and I organized the conference “Quantum [Un]Speakables
2000” Walter Thirring, our Doyen of Theoretical Physics, participated very actively.

We had many discussions about Bell inequalities and their physical meaning. These

resulted in an enjoyable collaboration and series of works together with Heide Narn-

hofer, a prominent mathematical physicist.

In “A geometric picture of entanglement and Bell inequalities” [225] we asked

ourselves how to ‘detect’ entanglement and to discriminate it from all separable

quantum states. A Bell operator given by expression (54) was obviously not appropri-

ate to find all entangled states. In order to locate entanglement accurately a different
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operator had to be constructed. This was a Hermitian operator, the so-called entan-
glement witness A, that detected the entanglement of a state 𝜌ent via an entanglement
witness inequality. So we arrived at the following theorem.

Theorem 3 (Entanglement Witness Theorem [223, 225, 226])

A state 𝜌ent is entangled if and only if there is a Hermitian operator A—the entan-
glement witness—such that

⟨𝜌ent|A⟩ = Tr 𝜌entA < 0 ,
⟨𝜌|A⟩ = Tr 𝜌A ≥ 0 ∀𝜌 ∈ S , (59)

where S denotes the set of all separable states.

An entanglement witness is called optimal, and denoted by Aopt , if apart from

Eq. (59) there exists a separable state 𝜌0 ∈ S such that

⟨
𝜌0|Aopt

⟩
= 0 . (60)

The operator Aopt defines a tangent plane to the convex set of separable states S
(52), as illustrated in Fig. 3.21. Such an Aopt always exists due to the Hahn-Banach

Theorem and the convexity of S.

On the other hand, with help of the Hilbert-Schmidt norm we can define the

Hilbert-Schmidt distance between two arbitrary states 𝜌1 and 𝜌2

dHS(𝜌1, 𝜌2) = ‖𝜌1 − 𝜌2‖ =
√
< 𝜌1 − 𝜌2|𝜌1 − 𝜌2 > =

√

Tr (𝜌1 − 𝜌2)†(𝜌1 − 𝜌2) .
(61)

We view the minimal distance of an entangled state 𝜌ent to the set of separable states,

the Hilbert-Schmidt measure

Fig. 3.21 Illustration of the

Bertlmann-Narnhofer-

Thirring Theorem:

D(𝜔) = B(𝜔), the minimal

distance D of the entangled

state 𝜔 to the set of separable

states S in the

Hilbert-Schmidt space is

equal to the maximal

violation B of the

entanglement witness

inequality. Aopt represents

the optimal entanglement

witness.
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D(𝜌ent ) ∶= min
𝜌∈S

‖
‖𝜌 − 𝜌ent

‖
‖ = ‖

‖𝜌0 − 𝜌ent
‖
‖ , (62)

where 𝜌0 denotes the nearest separable state, as a measure for entanglement.
What we then discovered was an interesting connection between the Hilbert-

Schmidt measure and the entanglement witness inequality. Let us rewrite entangle-

ment witness inequality (59)

⟨𝜌|A⟩ − ⟨𝜌ent|A⟩ ≥ 0 ∀𝜌 ∈ S , (63)

and define the maximal violation of inequality (63) as follows (𝜌 and A are still free

at our disposal):

Definition 1 (Maximal violation of the entanglement witness inequality [225])

B(𝜌ent ) = max
A

(
min
𝜌∈S

⟨𝜌|A⟩ − ⟨𝜌ent|A⟩
)
. (64)

The minimum is taken over all separable states and maximum over all possible

entanglement witnesses A , suitably normalized. Then there holds the following the-

orem:

Theorem 4 (Bertlmann-Narnhofer-Thirring Theorem [225])

(a) B(𝜌ent ) = D(𝜌ent ) , (65)

(b) The maximal violation of the entanglement witness inequality is achieved when
𝜌→ 𝜌0 and A → Aopt , then the optimal entanglement witness is given by

Aopt =
𝜌0 − 𝜌ent − ⟨𝜌0|𝜌0 − 𝜌ent⟩1

‖
‖𝜌0 − 𝜌ent

‖
‖

. (66)

In words:

The maximal violation of the entanglement witness inequality is equal to the
Hilbert-Schmidt measure !

As we regard the Hilbert-Schmidt measure (62) as a measure for entanglement, it

means that the amount of entanglement is given by the amount of violation (64) of

the witness inequality. This is a remarkable result that we have illustrated in Fig. 3.21.

Furthermore, the optimal entanglement witness is given explicitly by expression

(66). However, we have to know the nearest separable state 𝜌0, which is easy to

find in low dimensions, but not in higher ones. Nevertheless, there exists an approx-

imation procedure to approach 𝜌0 [227]. For a review, see Ref. [147].

For example, in case of Alice and Bob the Werner states are given by 𝜌
𝛼

(57), and

the Bell state 𝜌
− = |𝜓 −⟩⟨𝜓 −| by choosing the parameter value 𝛼 = 1 , i.e., 𝜌

− =
𝜌

𝛼=1.
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The nearest separable state is easily found

𝜌0 = 1
4

(
1 ⊗ 1 − 1

3
𝜎i ⊗ 𝜎i

)
, (67)

yielding the Hilbert-Schmidt measure

D(𝜌
𝛼

) = ‖
‖𝜌0 − 𝜌

𝛼

‖
‖ =

√
3
2

(𝛼 − 1
3
) . (68)

The optimal entanglement witness we calculate from expression (66)

Aopt = 1
2
√
3

(
1 ⊗ 1 + 𝜎i ⊗ 𝜎i

)
, (69)

and the maximal violation of the entanglement witness inequality from Eq. (64)

B(𝜌
𝛼

) = −
⟨
𝜌

𝛼

|Aopt
⟩

=
√
3
2

(𝛼 − 1
3
) . (70)

Clearly, both results (70) and (68) coincide as required by Theorem 4.

Geometry of Quantum States: Entanglement Versus
Separability

Let us next turn to a geometrical description of the quantum states, how they are

distributed in the Hilbert-Schmidt space of the density matrices. The quantum states

for a two-qubit system, the case of Alice and Bob, have very nice geometric features

in the Hilbert-Schmidt space, more precisely, in the spin–spin space. Quite generally

a quantum state can be decomposed as in Eq. (58), where the last term, the spin–spin

term, is the important one to characterize entanglement. If we parameterize the spin-

spin space by

𝜌 = 1
4

(

1 ⊗ 1 +
∑

i
ci 𝜎i ⊗ 𝜎i

)

, (71)

the Bell states have the coefficients ci = ±1.

Due to the positivity of the density matrix the four Bell states 𝜓
−
, 𝜓

+
, 𝜙

−
, 𝜙

+
set

up a simplex, a tetrahedron, in this spin–spin space [225, 228, 229], as illustrated by

the two figures in Fig. 3.22. The separable states, given by the PPT criterion, form

an octahedron which lies inside, and the maximal mixed state
1
4
14 = 1

4
(1⊗ 1) is

placed at origin. The entangled states are located in the remaining cones. The local
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states, on the other hand, satisfying a CHSH-Bell inequality lie within the parachutes,

the dark-yellow surfaces in the tetrahedrons of Fig. 3.22 [230]. They are determined

by the Horodecki Theorem [224] and contain all separable but also a large amount

of mixed entangled states. The Werner states (57), the red line in Fig. 3.22b from the

origin to the maximal entangled Bell state 𝜓
−

, show nicely how the states change

from maximal mixed and separable to local, mixed entangled, and finally to nonlocal

states, ending at 𝜓
−

which is pure and maximal entangled.

There is an important point I became aware of in my discussions with Walter and

Heide. For a given quantum state we have the free choice of how to factorize the

algebra of a density matrix, which implies either entanglement or separability of the

quantum state. Only with respect to such a factorization it makes sense to talk about

entanglement or separability. For instance, quantum teleportation precisely relies

on this fact that we can think of different factorizations in which entanglement is

localized with respect to the measurements that are carried out. Thus we may choose!

Via global unitary transformations we can switch from one factorization to the other,

where in one factorization the quantum state appears entangled, however, in the other

not. These discussions we published in the paper “Entanglement or separability: The
choice of how to factorize the algebra of a density matrix” [230], where also Philipp

Köhler, one of my last Diploma students, joined.

We realized that there is “total democracy between the different factorizations”
[230], no partition has ontologically a superior status over any other one (see also

Ref. [231]). For an experimentalist, however, a certain factorization is preferred and

is clearly fixed by the set-up. Consequently, entanglement or separability of a quan-

tum state depends on our choice of factorizing the algebra of the corresponding den-

sity matrix, where this choice is suggested either by the set-up of the experiment or

by the convenience for the theoretical discussion. This was our basic message.

For pure states the status is quite clear. Any state can be factorized such that it

appears separable up to being maximally entangled depending on the factorization.

We can prove the following theorems [230]:

Theorem 5 (Factorization algebra) For any pure state 𝜌 one can find a factorization
MD = 1 ⊗2 such that 𝜌 is separable with respect to this factorization and an
other factorization MD = 1 ⊗ 2 where 𝜌 appears to be maximally entangled.

The extension to mixed states requires some restrictions, as can be seen from the

tracial state
1
D
1D which is separable for any factorization.

Theorem 6 (Factorization in mixed states) For any mixed state 𝜌 one can find a fac-
torization MD = 1 ⊗2 such that 𝜌 is separable with respect to this factorization.
An other factorization MD = 1 ⊗ 2 where 𝜌 appears to be entangled exists only
beyond a certain bound of mixedness.

It is interesting to search for this bound, for those states which are separable

with respect to all possible factorizations of the composite system into subsystems

1 ⊗2 . This is the case if 𝜌U = U𝜌U†
remains separable for any unitary trans-

formation U. Such states are called absolutely separable states [232–234], the tracial
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state being the prototype. In this connection the maximal ball of states around the

tracial state
1
d2 1d2 with a general radius r = 1

d2−1
of constant mixedness is consid-

ered, which can be inscribed into the separable states. This radius is given in terms

of the Hilbert-Schmidt distance

d (𝜌,1d2 ) =
‖
‖
‖
‖
𝜌 − 1

d2 1d2

‖
‖
‖
‖

=
√

Tr
(
𝜌 − 1

d2 1d2

)2
. (72)

Theorem 7 (Absolute separability of the Kuś-Życzkowski ball [232]) All states
belonging to the maximal ball which can be inscribed into the set of mixed states for
a bipartite system are not only separable but also absolutely separable.

The maximal ball of absolutely separable states we have illustrated by the green

shaded ball in Fig. 3.22a.

As illustration of Theorem 7 let us choose the following separable state

𝜌N = |
|𝜓N ⟩ ⟨𝜓N

|
| = 1

4
(
1⊗ 1 + 𝜎x ⊗ 𝜎x

)
. (73)

It is placed at the corner of the double pyramid of separable states (see Fig. 3.22a) and

has the smallest possible mixedness or largest purity. The following unitary trans-

formation [230]

Fig. 3.22 a Tetrahedron of physical states in 2 × 2 dimensions spanned by the four Bell states

𝜓

+
, 𝜓

−
, 𝜙

+
, 𝜙

−
: The separable states form the blue double pyramid and the entangled states are

located in the remaining tetrahedron cones. The unitary invariant Kuś-Życzkowski ball (shaded in

green), the maximal ball of absolutely separable states, is located within the double pyramid and

the maximal mixture
1
4
14 is at the origin. Outside the ball at the corner of the double pyramid is

the state 𝜓N, the separable (but not absolutely separable) state with maximal purity. The local states

according to a Bell inequality lie within the dark-yellow surfaces containing all separable but also

some entangled states. b Tetrahedron with the illustration of the Werner states (red line from the

origin to the maximal entangled Bell state 𝜓
−

) that pass through all regions of separability, locality

and entanglement.
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U = 1
4
(
(2 +

√
2)1 ⊗ 1 + i

√
2 (𝜎x ⊗ 𝜎y + 𝜎y ⊗ 𝜎x ) − (2 −

√
2) 𝜎z ⊗ 𝜎z

)
(74)

transforms the state 𝜌N (73) into

𝜌U = U𝜌N U† = 1
4
(
1 ⊗ 1 + 1

2
(𝜎z ⊗ 1 + 1 ⊗ 𝜎z ) +

1
2
(𝜎x ⊗ 𝜎x + 𝜎y ⊗ 𝜎y)

)
. (75)

However, due to the occurrence of the term (𝜎z ⊗ 1 + 1 ⊗ 𝜎z) the transformation

U (74) leads to a quantum state that is located outside of the set of Weyl states which

are pictured in Fig. 3.22. This new state 𝜌U (75) is not positive any more under partial

transposition, 𝜌
PT
U ≱ 0 , where 𝜌

PT
U = (1 ⊗ TB) 𝜌U and TB means partial transposi-

tion on Bob’s subspace. Therefore, due to the Peres-Horodecki criterion the state 𝜌U
(75) is entangled and has a concurrence C = 1

2
. Transformation U (74) is already

optimal, i.e., it entangles 𝜌N maximally [230].

It is also quite instructive to illustrate Theorem 5 by a specific example. General

quantum states are expressed by Eq. (58) and separable states can be decomposed

into

𝜌sep = 1
4
(
1 ⊗ 1 + ri 𝜎i ⊗ 1 + ui 1 ⊗ 𝜎i + riuj 𝜎i ⊗ 𝜎j

)
, (76)

with r⃗ 2 = u⃗ 2 = 1. A specific separable state is

𝜌⇑⇓ = | ⇑⟩⊗ | ⇓⟩⟨⇑ |⊗ ⟨⇓ | = 1
4
(
1 ⊗ 1 + 𝜎z ⊗ 1 − 1 ⊗ 𝜎z − 𝜎z ⊗ 𝜎z

)
. (77)

Let us start with the maximal entangled Bell state

𝜌

− = |𝜓−⟩⟨𝜓−| = 1
4
(
1 ⊗ 1 − �⃗� ⊗ �⃗�

)
. (78)

Its optimal entanglement witness

A𝜌
−

opt = 1
2
√
3

(
1 ⊗ 1 + �⃗� ⊗ �⃗�

)
, (79)

provides the entanglement witness inequality

⟨
𝜌

−|A𝜌
−

opt

⟩
= Tr 𝜌

−A𝜌
−

opt = − 1
√
3
< 0 ,

⟨
𝜌sep|A

𝜌

−

opt

⟩
= Tr 𝜌sepA𝜌

−

opt = 1
2
√
3
(1 + cos 𝛿) ≥ 0 ∀𝜌 ∈ S , (80)

where 𝛿 represents the angle between the unit vectors r⃗ and u⃗.
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Then there exists a global unitary matrix

U = 1
√
2

(
1⊗ 1 + i 𝜎x ⊗ 𝜎y

)
, (81)

which transforms the Bell state 𝜌
−

into the separable state 𝜌⇑⇓

U 𝜌

− U† = 1
4
(
1 ⊗ 1 + 𝜎z ⊗ 1 − 1 ⊗ 𝜎z − 𝜎z ⊗ 𝜎z

) ≡ 𝜌⇑⇓ , (82)

⟨
U 𝜌

− U†|A𝜌
−

opt

⟩
= Tr U 𝜌

− U† A𝜌
−

opt = 0 , (83)

i.e., separability with respect to the algebra {𝜎i ⊗ 𝜎j} . Thus the transformed state

U 𝜌

− U†
represents a separable pure state as claimed in Theorem 5 and geometrically

it has the Hilbert-Schmidt distance

d (𝜌−) = ‖
‖
‖

U 𝜌

− U† − 𝜌

−‖‖
‖

= 1 , (84)

to the state 𝜌
−

. This distance represents the amount of entanglement of 𝜌
−

.

Transforming on the other hand also the entanglement witness, i.e., choosing a

different algebra,

U A𝜌
−

opt U† = 1
4
(
1 ⊗ 1 − 𝜎z ⊗ 1 + 1 ⊗ 𝜎z + 𝜎z ⊗ 𝜎z

)
, (85)

we then get for the entanglement witness inequality

⟨
U𝜌− U†|UA𝜌

−

opt U†
⟩

=
⟨
𝜌

−|A𝜌
−

opt

⟩
= − 1

√
3
< 0 , (86)

and the transformed state is entangled again with respect to the other algebra fac-

torization {𝜎i ⊗ 1,1 ⊗ 𝜎j, 𝜎i ⊗ 𝜎j} . It demonstrates nicely the content of Theo-

rem 5. It can be seen as an analogy to choosing either the Schrödinger picture or the

Heisenberg picture in the characterization of the quantum states.

In an other collaboration Walter, Heide and myself studied “The time-ordering
dependence of measurements in teleportation” [235], where the phenomenon of

“delayed-choice entanglement swapping” could be traced back to the commutativ-

ity of the projection operators that were involved in the corresponding measurement

process. We also proposed an experimental set-up which depended on the order of

successive measurements corresponding to noncommutative projection operators.

Finally, I would like to mention a recent collaboration with Beatrix and Gabriele

Uchida, an expert in scientific computing, where we investigated “Entangled Entan-
glement: The Geometry of Greenberger-Horne-Zeilinger States” [236]. The famil-

iar Greenberger-Horne-Zeilinger (GHZ) states could be rewritten by entangling the

Bell states for two qubits with a state of the third qubit, which was named “entan-
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gled entanglement” [237]. We showed that in a constructive way we could obtain

all 8 independent GHZ states that formed the simplex of entangled entanglement,

the magic simplex. The construction procedure allowed a generalization to higher

dimensions both, in the degrees of freedom (considering qudits) as well as in the

number of particles (considering n-partite states). Such bases of GHZ-type states

exhibited a cyclic geometry, a Merry Go Round, relevant for experimental and theo-

retical quantum information applications. We also discussed the inherent symmetries

and the regions of (genuine) multi-partite entanglement within the simplex.

As Time Goes by ..

This Article is devoted to the memory of John Stewart Bell, the outstanding scientist

and man with honest character and high moral. I had the great fortune to be close to

him, to enjoy the fruitful collaboration and warm friendship. My aim was to show

the large scope of Bell’s Universe, Bell’s deep insight into Nature, by describing his

superb contributions in particle physics, accelerator physics and quantum physics.

Fig. 3.23 Renate (left picture) and Reinhold Bertlmann (right picture) having fun during a dinner

with John and Mary Bell in Bertlmann’s apartment in Geneva in 1982. Fotos: © Renate Bertlmann.
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John himself had no preference for his works in the different fields, he was just as

pleased with his particle physics papers as with his accelerator papers or with his

quantum mechanics papers.

Of course, John had an enormous impact on my own research, in fact, on my whole

life. He opened my eyes for a sharp and clear view of Nature paired with honesty and

modesty, and for the beauty in scientific thinking. With the taste of Bell’s Universe I

could enjoy the many collaborations I had in my life in the field of particle physics,

mathematical physics and quantum physics.

My essay would not be complete without reporting on Mary Bell, John’s wife,

who was a committed physicist as well. In my memory are always both, John and

Mary. Renate and myself have spent a pleasant time with the Bells and we also had

great fun together, as can be seen on Fig. 3.23.

I really feel privileged and thankful for the time I could spend with John and I

would like to end with the French saying:

“Le temps passe et le souvenir reste.”
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Chapter 4
Why QBism Is Not the Copenhagen
Interpretation and What John Bell Might
Have Thought of It

N. David Mermin

Abstract Christopher Fuchs and Rüdiger Schack have developed a way of under-

standing science, which, among other things, resolves many of the conceptual puzzles

of quantum mechanics that have vexed people for the past nine decades. They call it

QBism. I speculate on how John Bell might have reacted to QBism, and I explain the

many ways in which QBism differs importantly from the orthodox ways of thinking

about quantum mechanics associated with the term “Copenhagen interpretation.”

Our students learn quantum mechanics the way they learn to ride bicycles (both
very valuable accomplishments) without really knowing what they are doing.

—J. S. Bell, letter to R. E. Peierls, 20/8/1980

I think we invent concepts, like “particle” or “Professor Peierls”, to make the imme-
diate sense of data more intelligible.

—J. S. Bell, letter to R. E. Peierls, 24/2/1983

I have the impression as I write this, that a moment ago I heard the bell of the tea
trolley. But I am not sure because I was concentrating on what I was writing…
The ideal instantaneous measurements of the textbooks are not precisely realized
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anywhere anytime, and more or less realized, more or less all the time, more or less
everywhere.

—J. S. Bell, letter to R. E. Peierls, 28/1/1981
1

For the past decade and a half Christopher Fuchs and Rüdiger Schack (originally

in collaboration with Carlton Caves) have been developing a new way to think about

quantum mechanics. Fuchs and Schack have called it QBism.
2

Their term originally

stood for “quantum Bayesianism”. But QBism is a way of thinking about science

quite generally, not just quantum physics,
3

and it is pertinent even when probabilistic

judgments, and therefore “Bayesianism”, play no role at all. I nevertheless retain the

term QBism, both to acknowledge the history behind it, and because a secondary

meaning remains apt in the broader context: QBism is as big a break with 20th

century ways of thinking about science as Cubism was with 19th century ways of

thinking about art.

QBism maintains that my understanding of the world rests entirely on the expe-

riences that the world has induced in me throughout the course of my life. Nothing

beyond my personal experience underlies the picture that I have formed of my own

external world.
4

This is a statement of empiricism. But it is empiricism taken more

seriously than most scientists are willing to do.

To state that my understanding of the world rests on my experience is not to say

that my world exists only within my head, as recent popularizations of QBism have

wrongly asserted.
5

Among the ingredients from which I construct my picture of my

external world are the impact of that world on my experience, when it responds to

the actions that I take on it. When I act on my world, I generally have no control over

how it acts back on me.

Nor does QBism maintain that each of us is free to construct our own private

worlds. Facile charges of solipsism miss the point. My experience of you leads me

to hypothesize that you are a being very much like myself, with your own private

experience. This is as firm a belief as any I have. I could not function without it.

1Selected Correspondence of Rudolf Peierls, v. 2, Sabine Lee [ed], World Sci., 2009. I have the

impression (confirmed at the conference) that all three of these quotations are unfamiliar even

to those who, like me, have devoured almost everything John Bell ever wrote about quantum

foundations.

2
C. A. Fuchs and R. Schack, Rev. Mod. Phys. 85, 1693–1714 (2013).

3
When the QBist view of science is used to solve classical puzzles I have suggested calling it CBism;

N. D. Mermin, Nature, 507, 421–423, March 27, 2014.

4
For “my”, “me,” “I”, you can read appropriate versions of “each of us”; the singular personal

pronoun is less awkward. But unadorned “our”, “us”, and “we” are dangerously ambiguous. In

QBism the first person plural always means each of us individually; it never means all of us col-

lectively, unless this is spelled out. Part of the 90-year confusion at the foundations of quantum

mechanics can be attributed to the unacknowledged ambiguity of the first-person plural pronouns

and the carelessness with which they are almost always used.

5
H. C. von Baeyer, Scientific American 308, 46–51, June 2013; M. Chalmers, New Scientist, 32–35,

May 10, 2014. I believe that in both cases these gross distortions were the fault of overly intrusive

copy editors and headline writers, who did not understand the manuscripts they were trying to

improve.
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If asked to assign this hypothesis a probability I would choose p = 1.
6

Although

I have no direct personal access to your own experience, an important component

of my private experience is the impact on me of your efforts to communicate, in

speech or writing, your verbal representations of your own experience. Science is a

collaborative human effort to find, through our individual actions on the world and

our verbal communications with each other, a model for what is common to all of our

privately constructed external worlds. Conversations, conferences, research papers,

and books are an essential part of the scientific process.

Fuchs himself may be partly responsible for the silly accusations about solipsism.

One of his favorite slogans about QBism is
7

“Quantum mechanics is a single-user

theory”, sometimes abbreviated to
8

“Me, me, me!” This invites the s-word. I hurled

it at him myself the first time I came upon such slogans. Although susceptible to

misinterpretation, they are important reminders that any application of quantum

mechanics must ultimately be understood to be undertaken by a particular person
9

to

help her make sense of her own particular experience. They were never intended to

mean that there cannot be many different users of quantum mechanics. Nor do they

require any particular user to exclude from her own experience what she has heard

or read about the private experience of others.

Those who reject QBism—currently a large majority of the physicists who know

anything about it—reify the common external world we have all negotiated with

each other, removing from the story any reference to the origins of our common

world in the private experiences we try to share with each other through language.

For all practical purposes reification is a sound strategy. It would be hard to live

our daily private or professional scientific lives if we insisted on constantly tracing

every aspect of our external world back to its sources in our own private personal

experience. My reification of the concepts I invent, to make my immediate sense of

data more intelligible, is a useful tool of day-to-day living.

But when subtle conceptual issues are at stake, related to certain notoriously

murky scientific concepts like quantum states, then we can no longer refuse to

acknowledge that our scientific pictures of the world rest on the private experiences

of individual scientists. The most famous investigator Vienna has ever produced,

who worked just a short walk from the lecture hall for this conference, put it con-

cisely: “A world constitution that takes no account of the mental apparatus by which

we perceive it is an empty abstraction.” This was said not by Ludwig Boltzmann,

not by Erwin Schrödinger, and not even by Anton Zeilinger. It was said by Sigmund

Freud,
10

just down the hill at Berggasse 19. He was writing about religion, but his

remark applies equally well to science.

6
I have more to say about p = 1 below.

7
Christopher A. Fuchs, arXiv:1003.5182.

8
Christopher A. Fuchs, arXiv:1405.2390, especially pp. 546–549.

9
Generally named Alice.

10The Future of an Illusion, 1927, concluding paragraph.
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After he returned to Vienna in the early 1960s, Schrödinger repeatedly made

much the same point,
11

somewhat less concisely than Freud: “The scientist sub-

consciously, almost inadvertently simplifies his problem of understanding Nature by

disregarding or cutting out of the picture to be constructed, himself, his own person-

ality, the subject of cognizance.” In expressing these views in the 1960s he rarely

mentions quantum mechanics. Only thirty years earlier, in a letter to Sommerfeld,

does he explicitly tie this view to quantum mechanics, and even then, he allows that

it applies to science much more broadly: “Quantum mechanics forbids statements

about what really exists—statements about the object. It deals only with the object-

subject relation. Even though this holds, after all, for any description of nature, it

evidently holds in quantum mechanics in a much more radical sense.”
12

We were

rather successful excluding the subject from classical physics (but not completely

(Footnote 3)). Quantum physics finally forced (or should have forced) us to think

harder about the importance of the object-subject relation.

Niels Bohr, whose views on the meaning of quantum mechanics Schrödinger

rejected, also delivered some remarkably QBist-sounding pronouncements, though

by “experience” he almost certainly meant the objective readings of large classical

instruments and not the personal experience of a particular user of quantum mechan-

ics: “In our description of nature the purpose is not to disclose the real essence of

the phenomena but only to track down, so far as it is possible, relations between the

manifold aspects of our experience.”
13

Thirty years later he was saying pretty much

the same thing: “Physics is to be regarded not so much as the study of something a

priori given, but as the development of methods for ordering and surveying human

experience.”
14

Bohr and Schrödinger are not the only dissenting pair who might have

found some common ground in QBism.

The fact that each of us has a view of our world that rests entirely on our private

personal experience has little bearing on how we actually use our scientific concepts

to deal with the world. But it is central to the philosophical concerns of quantum

foundational studies. Failing to recognize the foundational importance of personal

experience creates illusory puzzles or paradoxes. At their most pernicious, such puz-

zles motivate unnecessary efforts to reformulate in more complicated ways—or even

to change the observational content of—theories which have been entirely successful

for all practical purposes.

This talk is not addressed to those who take (often without acknowledging it)

an idealistic or Platonic position in their philosophical meditations on the nature

of quantum mechanics. They will never be comfortable with QBism. My talk is

intended primarily for the growing minority of philosophically minded physicists

11Nature and the Greeks, Science and Humanism, Cambridge (1996), p. 92. See also Mind and
Matter and My View of the World.

12
Schrödinger to Sommerfeld, 11 December, 1931, in Schödingers Briefwechsel zur Wellen-

mechanik und zum Katzenparadoxon, Springer Verlag, 2011.

13
Niels Bohr, 1929. In Atomic Theory and the Description of Nature, Cambridge (1934), p. 18.

14
Niels Bohr, 1961. In Essays 1958–1962 on Atomic Physics and Human Knowledge, Ox Bow

Press, Woodbridge, CT (1987), p. 10.
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who, far from rejecting QBism, are starting to maintain that there is nothing very

new in it.
15

I am thinking of those who maintain that QBism is nothing more than

the Copenhagen interpretation.

I may be partly to blame for this misunderstanding. I have used the above quo-

tations from Bohr in several recent essays about QBism, because QBism provides a

context in which these quotations finally make unambiguous sense. While they made

sense for Bohr too, it was not a QBist kind of sense, and I very much doubt that peo-

ple gave them a QBist reading. Similarly, my quotation from Freud does not mean

that QBism should be identified with psychoanalysis, and the three epigraphs from

John Bell at the head of this text should not be taken to mean that I believe QBism

had already been put forth by Bell in the early 1980s. The quotations from Bell’s

letters to Peierls are only to suggest that John Bell, who strenuously and elegantly

identified what is incoherent in Copenhagen, might not have dismissed QBism as

categorically. There are many important ways in which QBism is profoundly differ-

ent from Copenhagen, and from any other way of thinking about quantum mechanics

that I know of. If you are oblivious to these differences, then you have missed the

point of QBism.

The primary reason people wrongly identify QBism with Copenhagen is that

QBism, like most varieties of Copenhagen, takes the quantum state of a system to be

not an objective property of that system, but a mathematical tool for thinking about

the system.
16

In contrast, in many of the major non-standard interpretations—many

worlds, Bohmian mechanics, and spontaneous collapse theories—the quantum state

of a system is very much an objective property of that system.
17

Even people who

reject all these heresies and claim to hold standard views of quantum mechanics, are

often careless about reifying quantum states. Some claim, for example, that quantum

states were evolving (and even collapsing) in the early universe, long before any-

body existed to assign such states. But the models of the early universe to which we

assign quantum states are models that we construct to account for contemporary

astrophysical data. In the absence of such data, we would not have come up with

the models. As Rudolf Peierls remarked, “If there is a part of the Universe, or a

period in its history, which is not capable of influencing present-day events directly

or indirectly, then indeed there would be no sense in applying quantum mechanics

to it.”
18

A fundamental difference between QBism and any flavor of Copenhagen, is that

QBism explicitly introduces each user of quantum mechanics into the story, together

15
I count this as progress. The four stages of acceptance of a radical new idea are: (1) It’s nonsense;

(2) It’s well known; (3) It’s trivial; (4) I thought of it first. I’m encouraged to find that stage (2) is

now well underway.

16
Heisenberg and Peierls are quite clear about this. Bohr may well have believed it but never spelled

it out as explicitly. Landau and Lifshitz, on the other hand, are so determined to eliminate any

trace of humanity from the story that I suspect their flavor of Copenhagen might reject the view of

quantum states as mathematical tools.

17
In consistent histories, which has a Copenhagen tinge, its quantum state can be a true property of

a system, but only relative to a “framework”.

18
R. E. Peierls, Physics World January 1991, 19–20.
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with the world external to that user. Since every user is different, dividing the world

differently into external and internal, every application of quantum mechanics to the

world must ultimately refer, if only implicitly, to a particular user. But every version

of Copenhagen takes a view of the world that makes no reference to the particular

user who is trying to make sense of that world.

Fuchs and Schack prefer the term “agent” to “user”. “Agent” serves to emphasize

that the user takes actions on her world and experiences the consequences of her

actions. I prefer the term “user” to emphasize Fuchs’ and Schack’s equally important

point that science is a user’s manual. Its purpose is to help each of us make sense of

our private experience induced in us by the world outside of us.

It is crucial to note from the beginning that “user” does not mean a generic body of

users. It means a particular individual person, who is making use of science to bring

coherence to her own private perceptions. I can be a “user”. You can be a “user”. But

we are not jointly a user, because my internal personal experience is inaccessible to

you except insofar as I attempt to represent it to you verbally, and vice-versa. Science

is about the interface between the experience of any particular person and the subset

of the world that is external to that particular user.
19

This is unlike anything in any

version of Copenhagen.
20

It is central to the QBist understanding of science.

The notion that science is a tool that each of us can apply to our own private

body of personal experience is explicitly renounced by the Landau-Lifshitz version

of Copenhagen. The opening pages of their Quantum Mechanics21
declare that “It

must be most decidedly emphasized that we are here not discussing a process of

measurement in which the physicist-observer takes part.” They explicitly deny the

user any role whatever in the story. To emphasize this they add “By measurement,

in quantum mechanics, we understand any process of interaction between classi-

cal and quantum objects, occurring apart from and independently of any observer.”
[My italics.] In the second quotation Landau and Lifshitz have, from a QBist point

of view, replaced each different member of the set of possible users by one and the

same set of “classical objects”. Their insistence on eliminating human users from the

story, both individually and collectively, leads them to declare that “It is in principle

impossible…to formulate the basic concepts of quantum mechanics without using

classical mechanics.” Here they make two big mistakes: they replace the experiences

of each user with “classical mechanics”, and they confound the diverse experiences

of many different users into that single abstract entity.

Bohr seems not as averse as Landau and Lifshitz
22

to letting scientists into the

story, but they come in only as proprietors of a single large, classical measurement

apparatus. All versions of Copenhagen objectify each of the diverse family of users

of science into a single common piece of apparatus. Doing this obliterates the fun-

19
See in this regard my remarks above about the dangers of the first-person plural.

20
And unlike any other way of thinking about quantum mechanics.

21
Translated into English by John Bell, who was therefore intimately acquainted with it.

22
But Peierls identifies their positions, referring to “the view of Landau and Lifshitz (and therefore

of Bohr)” in his Physics World article. He disagrees with all of them, saying that it is incorrect to

require the apparatus to obey classical physics.
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damental QBist fact that a quantum-mechanical description is always relative to the

particular user of quantum mechanics who provides that description. Replacing that

user with an apparatus introduces the notoriously ill-defined “shifty split” of the

world into quantum and classical, that John Bell so elegantly and correctly deplored.

Bell’s split is shifty in two respects. Its character is not fixed. It can be the Landau-

Lifshitz split between “classical” and “quantum”. But sometimes it is a split between

“macroscopic and microscopic”. Or between “irreversible” and “reversible.” The

split is also shifty because its location can freely be moved along the path between

whatever poles have been used to characterize it.

There is also a split in QBism, but it is specific to each user. That it shifts from

user to user is the full extent to which the split is “shifty”. For any particular user

there is nothing shifty about it: the split is between that user’s directly perceived

internal experience, and the external world that that user infers from her experience.

Closely related to its systematic suppression of the user, is the central role in

Copenhagen of “measurement” and the Copenhagen view of the “outcome” of

a measurement. In all versions of Copenhagen a measurement is an interaction

between a quantum system and a “measurement apparatus”. Depending on the

version of Copenhagen, the measurement apparatus could belong to a “classical”

domain beyond the scope of quantum mechanics, or it could itself be given a quan-

tum mechanical description. But in any version of Copenhagen the outcome of a

measurement is some strictly classical information produced by the measurement

apparatus as a number on a digital display, or the position of an ordinary pointer, or

a number printed on a piece of paper, or a hole punched somewhere along a long

tape—something like that. Words like “macroscopic” or “irreversible” are used at

this stage to indicate the objective, substantial, non-quantum character of the out-

come of a measurement.

In QBism, on the other hand, a measurement can be any action taken by any
user on her external world. The outcome of the measurement is the experience the

world induces back in that particular user, through its response to her action. The

QBist view of measurement includes Copenhagen measurements as a special case,

in which the action is carried out with the aid of a measurement apparatus and the

user’s experience consists of her perceiving the display, the pointer, the marks on the

paper, or the hole in the tape produced by that apparatus. But a QBist “measurement”

is much broader. Users are making measurements more or less all the time more or

less everywhere. Every action on her world by every user constitutes a measurement,

and her experience of the world’s reaction is its outcome. Physics is not limited to the

outcomes of “piddling” laboratory tests, as Bell complained about Copenhagen.
23

In contrast to the Copenhagen interpretation (or any other interpretation I am

aware of), in QBism the outcome of a measurement is special to the user taking the

action—a private internal experience of that user. The user can attempt to communi-

cate that experience verbally to other users, who may hear
24

her words. Other users

23
John S. Bell, Physics World 3 (8), 3340 (1990).

24
As John Bell may have heard the bell of the tea trolley. Hearing something, of course, is a personal

experience.
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can also observe her action and, under appropriate conditions, experience aspects

of the world’s reaction closely related to those experienced by the original user. But

in QBism the immediate outcome of a measurement is a private experience of the

person taking the measurement action, quite unlike the public, objective, classical

outcome of a Copenhagen
25

measurement.

Because outcomes of Copenhagen measurements are “classical”, they are ipso
facto real and objective. Because in QBism an outcome is a personal experience of

a user, it is real only for that user, since that user’s immediate experience is private,

not directly accessible to any other user. Because the private measurement outcome

of a user is not a part of the experience of any other user, it is not as such real for

other users. Some version of the outcome can enter the experience of other users and

become real for them as well, only if the other users have also experienced aspects

of the world’s response to the user who took the measurement-action, or if that user

has sent them reliable verbal or written reports of her own experience.

This is, of course, nothing but the famous story of Wigner and his friend, but in

QBism Wigner’s Friend is transformed from a paradox to a fundamental parable.

Until Wigner manages to share in his friend’s experience, it makes sense for him

to assign her and her apparatus an entangled state in which her possible reports of

her experiences (outcomes) are strictly correlated with the corresponding pointer

readings (digital displays, etc.) of the apparatus.

Even versions of Copenhagen that do not prohibit mentioning users, would draw

the line at allowing a user to apply quantum mechanics to another user’s reports of her

own internal experience. Other users are either ignored entirely (along with the user),

or they are implicitly regarded as part of “the classical world”. But in QBism each

user may assign quantum states in superposition to all of her still unrealized potential

experiences, including possible future communications from users she has yet to hear

from. Asher Peres’ famous Copenhagen mantra, “Unperformed experiments have no

results”, becomes the QBist user’s tautology: “Unexperienced experiences are not

experienced.”

Copenhagen, as expounded by Heisenberg and Peierls, holds that quantum states

encapsulate “our knowledge”. This has a QBist flavor to it. But it is subject to

John Bell’s famous objection: Whose knowledge? Knowledge about what?
26

QBism

replaces “knowledge” with “belief”. Unlike “knowledge”, which implies something

underlying it that is known, “belief” emphasizes a believer, in this case the user of

quantum mechanics. Bell’s questions now have simple answers. Whose belief does

the quantum state encapsulate? The belief of the person who has made that state

assignment. What is the belief about? Her belief is about the implications of her past

experience for her subsequent experience.

No version of Copenhagen takes the view that “knowledge” is the state of belief

of the particular person who is making use of quantum mechanics to organize her

25
I shall stop adding the phrase “or any other interpretation”, but in many cases the reader should

supply it.

26
Bell used the word “information”, not “knowledge”, but his objection has the same force with

either term.
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experience. Peierls may come closest in a little-known 1980 letter to John Bell:
27

“In my view, a description of the laws of physics consists in giving us a set of

correlations between successive observations. By observations I mean…what our

senses can experience. That we have senses and can experience such sensations is an

empirical fact, which has not been deduced (and in my opinion cannot be deduced)

from current physics.” Had Peierls taken care to specify that when he said “we”,

“us”, and “our” he meant each of us, acting and responding as a user of quantum

mechanics, this would have been an early statement of QBism. But it seems to me

more likely that he was using the first person plural collectively, to mean all of

us together, thereby promulgating the Copenhagen confusion that Bell so vividly

condemned.

Copenhagen also comes near QBism in the emphasis Bohr always placed on the

outcomes of measurements being stated in “ordinary language”. I believe he meant

by this that measurement outcomes were necessarily “classical”. In QBism the out-

come of a measurement is the experience the world induces back in the user who acts

on the world. “Classical” for any user is limited to her experience.
28

So measurement

outcomes in QBism are necessarily classical, in a way that has nothing to do with

language. Ordinary language comes into the QBist story in a more crucial way than

it comes into the story told by Bohr. Language is the only means by which different

users of quantum mechanics can attempt to compare their own private experiences.

Though I cannot myself experience your own experience, I can experience your ver-

bal attempts to represent to me what you experience. It is only in this way that we can

arrive at a shared understanding of what is common to all our own experiences of

our own external worlds. It is this shared understanding that constitutes the content

of science.

A very important difference of QBism, not only from Copenhagen, but from vir-

tually all other ways of looking at science, is the meaning of probability 1 (or 0).
29

In Copenhagen quantum mechanics, an outcome that has probability 1 is enforced

by an objective mechanism. This was most succinctly put by Einstein, Podolsky and

Rosen,
30

though they were, notoriously, no fans of Copenhagen. Probability-1 judg-

ments, they held, were backed up by “elements of physical reality”.

Bohr
31

held that the mistake of EPR lay in an “essential ambiguity” in their phrase

“without in any way disturbing”. For a QBist, their mistake is much simpler than

that: probability-1 assignments, like more general probability-p assignments are per-

sonal expressions of a willingness to place or accept bets, constrained only by the

27
Peierls to Bell, 13/11/1980, Selected Correspondence of Rudolf Peierls, vol. 2, Sabine Lee [ed],

World Scientific, 2009, p. 807.

28
Indeed, the term “classical” has no fundamental role to play in the QBist understanding of quan-

tum mechanics. It can be replaced by “experience”.

29
A good example to keep in mind is my above mentioned assignment of probability 1 to my belief

that you have personal experiences of your own that have for you the same immediate character that

my experiences have for me.

30
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777–780 (1935).

31
N. Bohr, Phys. Rev. 48, 696–702 (1935).
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requirement
32

that they should not lead to certain loss in any single event. It is wrong

to assert that probability assignments must be backed up by objective facts on the

ground, even when p = 1. An expectation is assigned probability 1 if it is held as

strongly as possible. Probability-1 measures the intensity of a belief: supreme con-

fidence. It does not imply the existence of a deterministic mechanism.

We are all used to the fact that with the advent of quantum mechanics, determin-

ism disappeared from physics. Does it make sense for us to qualify this in a footnote:

“Except when quantum mechanics assigns probability 1 to an outcome”? Indeed, the

point was made over 250 years ago by David Hume in his famous critique of induc-

tion.
33

Induction is the principle that if something happens over and over and over

again, we can take its occurrence to be a deterministic law of nature. What basis do

we have for believing in induction? Only that it has worked over and over and over

again.

That probability-1 assignments are personal judgments, like any other probability

assignments, is essential to the coherence of QBism. It has the virtue of undermining

the temptation to infer any kind of “nonlocality” in quantum mechanics from the

violation of Bell inequalities.
34

Though it is alien to the normal scientific view of

probability, it is no stranger or unacceptable than Hume’s views of induction.
35

What

is indisputable is that the QBist position on probability 1 bears no relation to any

version of Copenhagen. Even Peierls, who gets closer to QBism than any of the

other Copenhagenists, takes probability 1 to be backed up by underlying indisputable

objective facts.

Since this is a meeting in celebration of John Bell, I conclude with a few more

comments on the quotations from Bell’s little-known
36

correspondence with Peierls

at the head of my text.

The first quotation suggests a riddle: Why is quantum mechanics like a bicycle?

Answer: Because while it is possible to learn how to use either without knowing

what you are doing, it is impossible to make sense of either without taking account

of what people actually do with them.

The second quotation indicates Bell’s willingness to consider concepts, as funda-

mental as “particle” or the person to whom he is writing his letter, as “inventions”

that help him to make better sense of the data that constitute his experience.

The third reveals a willingness to regard measurements as particular responses of

particular people to particular experiences induced in them by their external world.

These are all QBist views. Does this mean that John Bell was a QBist? No, of

course not—no more than Niels Bohr or Erwin Schrödinger or Rudolf Peierls or Sig-

32
Known as Dutch-book coherence. See the Fuchs-Schack Revs. Mod. Phys. article cited above.

33
David Hume, An Enquiry concerning Human Understanding (1748).

34
C. A. Fuchs, N. D. Mermin, and R. Schack, Am. J. Phys. 82, 749–754 (2014).

35
I would have expected philosophers of science, with an interest in quantum mechanics, to have

had some instructive things to say about this connection, but I’m still waiting.

36
I have had no success finding any of them with Google. For example, there is no point in googling

“Bell bicycle.” “ ‘John S. Bell’ bicycle” does no better. Even “ ‘John S. Bell’ bicycle quantum” fails

to produce anything useful, because there is a brand of bicycle called “Quantum”, and Quantum

bicycles have bells.
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mund Freud were QBists. Nobody before Fuchs and Schack has pursued this point

of view to its superficially shocking,
37

but logically unavoidable and, ultimately,

entirely reasonable conclusions. On the other hand, what Bell wrote to Peierls, and

the way in which he criticized Copenhagen, lead me to doubt that Bell would have

rejected QBism as glibly and superficially as most of his contemporary admirers

have done.

John Bell and Rudolf Peierls are two of my scientific heroes, both for their remark-

able, often iconoclastic ideas, and for the exceptional elegance and precision with

which they put them forth. Yet in their earlier correspondence, and in their two short

papers in Physics World at the end of Bell’s life, they disagree about almost every-

thing in quantum foundations. Peierls disliked the term “Copenhagen interpretation”

because it wrongly suggested that there were other viable ways of understanding

quantum mechanics. Bell clearly felt that Copenhagen was inadequate and down-

right incoherent. I like to think that they too, like Bohr and Schrödinger, might have

found common ground in QBism.

Acknowledgments I am grateful to Chris Fuchs and Rüdiger Schack for their patient willingness

to continue our arguments about QBism, in spite of my inability to get their point for many years.

And I thank them both for their comments on earlier versions of this text.

37
Ninety years after the formulation of quantum mechanics, a resolution of the endless disagree-

ments on the meaning of the theory has to be shocking, to account for why it was not discovered

long, long ago.



Chapter 5
On the Quantum Measurement Problem

Časlav Brukner

Abstract In this paper, I attempt a personal account of my understanding of the mea-

surement problem in quantum mechanics, which has been largely in the tradition of

the Copenhagen interpretation. I assume that (i) the quantum state is a representa-

tion of knowledge of a (real or hypothetical) observer relative to her experimental

capabilities; (ii) measurements have definite outcomes in the sense that only one out-

come occurs; (iii) quantum theory is universal and the irreversibility of the measure-

ment process is only “for all practical purposes”. These assumptions are analyzed

within quantum theory and their consistency is tested in Deutsch’s version of the

Wigner’s friend gedanken experiment, where the friend reveals to Wigner whether

she observes a definite outcome without revealing which outcome she observes. The

view that holds the coexistence of the “facts of the world” common both for Wigner

and his friend runs into the problem of the hidden variable program. The solution

lies in understanding that “facts” can only exist relative to the observer.

Two Measurement Problems

There are at least two measurement problems in quantum mechanics.
1

The less

prominent of the two (the “small” problem) is that of explaining why a certain out-
come – as opposed to its alternatives – occurs in a particular run of an experiment.
The bigger problem of the two (the “big” problem) is that of explaining the ways in

1
Two problems are assumed in Refs. [1, 2] and three problems are assumed in Ref. [3].
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which an experiment arrives at an outcome. It addresses the question of what makes
a measurement a measurement.2

In the following, I would like to present a personal account of my understanding of

the measurement problems in quantum mechanics. My intention is not to argue that

the approach I chose is the “best” way in any particular sense, but rather to demon-

strate its logical consistency and to investigate what consequences the requirement

for its consistency have for our understanding of physical reality. I will first present a

probabilistic argument that explains why the measurement process is irreversible “for

all practical purposes”. Furthermore, by analyzing Deutsch’s version of the Wigner’s

friend gedanken experiment, I will show that any attempt to assume that the mea-

surement records (or “facts” or experiences) coexist for both Wigner and his friend

will run into the problems of the hidden variable program, for which I propose a

Bell-type experiment. The conclusion is that these records can have meaning only

relative to the observers; there are no “facts of the world per se”.

Although I see my view of the quantum measurement problem broadly in the tra-

dition of the Copenhagen interpretation, particularly within the information-

theoretical approach to quantum mechanics [4], it contains elements from Qbism [5],

the relative interpretation of Rovelli [6] and even the many-worlds interpretation.

This indicates that the various interpretations might have much more in common

than their supporters are willing to accept.

The solutions to the small measurement problem which have been offered to date

basically present two underlying premises. They either introduce “hidden” causes

that determine which outcome will occur in a given experimental run (as in Bohm’s

hidden-variables theory), or they refute the basic notion of measurements resulting

in definite outcomes (as in the Everett interpretation). None of that is really neces-

sary. My position is that measurements have definite outcomes in the sense that only

one outcome can be the result of a single experimental run. This is rather obvious.

If it were otherwise, the notion of measurement would become ambiguous. If the

outcome is not definitive, then no observation has occurred. This, however, does not

exclude the possibility that the conditions that define a measurement are fulfilled for

one observer but not for another. As far as discussions of the small measurement

problem are concerned, I fail to see the reality of that problem. If one accepts the

possibility of quantum probabilities being fundamentally irreducible, this problem

vanishes.

Let me explain that in more detail. Within quantum theory, a description of the

quantum state of a system and of the measurement apparatus allows us to calcu-

late the probability p(a|x) to observe outcome a, for a measurement choice x. The

probabilities are “irreducible” if there are no additional variables 𝜆 in the theory,

which potentially are yet to be discovered, such that when one conditions predic-

tions on them, one has either P(a|x, 𝜆) = 1 or 0, i.e. they allow the outcome to be

2
The proposed formulation of the two problems is inspired but not equivalent to the one of Refs.

[1, 2] where the two categories of measurement problems were first introduced with the designa-

tions “small” and “big”.
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predicted perfectly.
3

Not only quantum mechanics, but every probabilistic theory in

which probabilities are taken to be irreducible “must have” the small measurement

problem. (The “hypothetical collapse” models [8–10] that predict the breakdown of

quantum-mechanical laws on a macroscopic scale, if not supplemented by non-local

hidden variables, also fall into this category.) The lack of the small measurement

problem in the probabilistic theories would contradict the very idea of having irre-

ducible probabilities.
4

The big measurement problem is more subtle. It can be illustrated by the following

situation. As students, we are taught that there are two processes a quantum state can

undergo. First, the deterministic, unitary, and continuous time evolution of the state

(of a system, possibly together with its environment) that obeys the Schroedinger

equation or its relativistic counterpart. Second, the probabilistic, non-unitary, and

discontinuous change of the state, called “projection” or “collapse”, brought about

by measurement. Equipped with this knowledge, we attend a practical training in a

quantum optics laboratory, where we see various pieces of equipment, such as pho-

tonic sources, beam-splitters, optical fibers, mirrors, photodiodes, phase shifters etc.,

for the first time. The instructor sets us the task of computing the evolution of the

photonic quantum state in the set-up prepared on the optical table. We soon realize

that we are in trouble. There is nothing in the theory to tell us which device in the

laboratory corresponds to a unitary transformation and which to a projection! We

start to ask questions. What makes a photodiode a good detector for photons? And

why is a beam splitter a bad detector? At least manufacturers of photon detectors

should know the answers to these questions, shouldn’t they? Or perhaps the mea-

surement is not completed in the detector, but only when the result is finally recorded

in a computer, or even in the observer’s mind? Bell sardonically commented [11]:

“What exactly qualifies some physical systems to play the role of ‘measurer’? Was

the wave function of the world waiting to jump for thousands of millions of years

until a single-celled living creature appeared? Or did it have to wait a little longer,

for some better qualified system . . . with a Ph.D.?”.

3
The notion of irreducibility can be weakened to the requirement that the predictions conditioned

on the variables are not more informative about the outcomes of future measurements than the

predictions of quantum theory [7]. Formally, for every measurement, the probability distribution

conditioned on the variable cannot have lower (Shannon) entropy than the quantum probability

distribution.

4
The so-called “non-local” features of quantum theory are not a subject of the present article. I

should, however, like to mention that once one accepts the notion that probabilities can be irre-

ducible, there is no reason to restrict them to be locally causal [11], i.e. to be decomposable as:

p(a, b|x, y) = ∫ d𝜆𝜌(𝜆)P(a|x, 𝜆)P(b|y, 𝜆), where x and y are choices of measurement settings in two

separated laboratories, a and b are respective outcomes and 𝜌(𝜆) is a probability distribution. It

appears that the main misunderstanding associated with Bell’s theorem stems from a failure to

acknowledge the irreducibility of quantum probabilities irrespectively of the relative experimental

space-time arrangements [12]. Bell’s local causality accepts that probabilities for local outcomes

can be irreducibly probabilistic, but requires those for correlations to be factorized into (a con-

vex mixture of) probabilities for local outcomes. There is no need for imposing such a constraint

on a probabilistic theory, where probabilities are considered to be fundamental. Rather, the notion

of locality should be based on a operationally well-defined no-signaling condition, and it is this

condition whose violation is at odds with special relativity.
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One possibility to address these questions would be to dismiss the big measure-

ment problem as a pseudo-issue, just as we did for the small one. If quantum theory

is understood as a fundamental theory of observations and observers’ actions upon

these observations, then measurement can be introduced as a primitive notion, which

cannot be subject to a complete analysis, not even in principle. At most, one could

motivate it informally, through an appeal to intuition and everyday experience. It

seems to me that this path is taken by some proponents of the Copenhagen inter-

pretation and Quantum Bayesianism (QBists), for example when Fuchs and Scheck

write [13] “a measurement is an action an agent takes to elicit an experience. The

measurement outcome is the experience so elicited”. Such a view is consistent and

self-contained, but in my opinion, it is not the whole story. It is silent about the ques-

tion: what makes a photon counter a better device for detecting photons than a beam

splitter? Yet the question is scientifically well posed and has an unambiguous answer

(which manufacturers of photodetectors do know!).

I would like to express clearly that I do agree with the Qbists and the Copen-

hagenists on the necessity of a functional distinction between the object and the sub-

ject of observation. This distinction is at the heart of Bohr’s epistemological argu-

ment that measurement instruments lie outside the domain of the theory, insofar as

they serve their purpose of acquiring empirical knowledge. Regretfully, this argu-

ment has repeatedly been misinterpreted in textbooks and articles and “replaced by

the crude physical assumption that macroscopic systems behave classically, which

would introduce an artificial split of the physical world into a quantum microcosms

and a classical macrocosms.” [14]. The “cut” is not between the macro and micro

worlds but between the measuring apparatus and the observed quantum system. It is

of epistemic, not of ontic origin.

Bohr and Heisenberg seem to have disagreed about the movability of the cut [15].

As Heisenberg recalls in his letter to Heelan [16] (quoted in Ref. [15]): “I argued

that a cut could be moved around to some extent while Bohr preferred to think that

the position is uniquely defined in every experiment”. In my understanding, the two

views are not conflicting and can be brought into accordance. Heisenberg acknowl-

edges the universality of the laws of quantum mechanics in the sense that every

system, including the measuring instrument, is in principle subject to these laws.

Of course, in moving the cut, the measurement instrument loses its function as a

means for acquiring knowledge about a quantum system and becomes itself a quan-

tum system—an object that can be observed by a further set of measurement instru-

ments. Bohr, however, believes “that for a given (my italics) experimental setting the

cut is determined by the nature of the problem . . . ”, as he writes in a 1935 letter to

Heisenberg [17] (quoted in Ref. [15]). The cut is hence movable in principle, but

is fixed in any concrete experimental set-up. Still, we might wonder what fixes the

position of the object–instrument cut in a concrete experimental set-up? Here, Bohr

encounters the big measurement problem.

The question of the meaning of the quantum state is closely related to the mea-

surement problem(s). Which approach one takes in addressing the later depends on

the specific view one has on the former. The next section is devoted to this question.
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What Is the Quantum State?

The discussion over the meaning of quantum states is often presented as a conflict

between two fundamentally opposed approaches. The first approach speaks of “states

of reality” that are independent of any empirical access, and implicitly assumes the

existence of such states. The second approach refers to observations, and what we

can know about them and deduce from them. This approach requires differentiation

with regard to the question “Knowledge about what?”. Insofar as the quantum state is

seen as representing the observer’s incomplete knowledge about an assumed “state of

reality”, it is not fundamentally dissimilar to the first approach. This is why, to use

modern terminology, the distinction between a realist interpretation of a quantum

state that is “psi-ontic” and one that is “psi-epistemic” [18]—which actually is a dis-

tinction between two kinds of hidden variable theory—is only relevant to supporters

of the first approach.

An alternative exists. The quantum state can be seen as a mathematical representa-

tion of what the observer has to know in order to calculate probabilities for outcomes

of measurements following a specific preparation. However, one could also object

to this “operationalist’s view”. Malin phrased it nicely [19]: “What if the knower is

a physicist who had a martini before trying to ‘know’? What if a person who knows

just a little physics learns of the result? What if he had a martini? Somehow we feel

that such questions are irrelevant.” He continues: “To avoid difficulties of this kind

regarding the epistemic interpretation, we can consider a quantum state as represent-

ing not actual knowledge (which requires a knower), but the available or potential

knowledge about a system.”

Of course, the argument that quantum theory does not apply in the absence of

observers has not been made. Yet when calculating a quantum state, it might help to

think of a hypothetical observer for whom the quantum state stands for her knowl-

edge.
5

For example, when quantum cosmologists talk about the pressure of a pri-

mordial state of the universe, we can make sense of it if we imagine a well-defined

experimental procedure a hypothetical observer could apply on the state to provide

an operational meaning to the term “pressure”. The ultimate meaning is given by

current cosmological observations, based on which we reconstruct the idea of the

early universe’s pressure. (The observer here is always considered to be external to

the universe. The “wave function of the universe” that would include the observer

is a problematic concept, as it negates the necessity of the object–subject cut.). This

is compatible with Malin’s view [19] that “quantum states represent the available

knowledge about the potentialities of a quantum system, knowledge from the per-

spective of a particular location in space”, not of any actual observer.

I share Malin’s view on the meaning of the quantum state, which is essentially

the one supported by Copenhagenists and Qbists. I would like to add just one, but an

5
Peres correctly notes that considering hypothetical observers is not a prerogative of quantum the-

ory [20]. They are also used in thermodynamics, when we say that a perpetual-motion machine of

the second kind cannot be built, or in the theory of special relativity, when we say that no signal

can be transferred faster than the speed of light.
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important, aspect to this view: The quantum state is a representation of knowledge
necessary for a hypothetical observer – respecting her experimental capabilities –
to compute probabilities of outcomes of all possible future experiments. An explicit

reference to the observer’s experimental capabilities is crucial to address the big

measurement problem. The “knowledge” here refers to Wigner’s definition of the

quantum state [21]: “... the state vector is only a shorthand expression of that part of

our information concerning the past of the system which is relevant for predicting

(as far as possible) the future behaviour thereof.”

The available experimental precision will in every particular arrangement deter-

mine to which objects the observer can meaningfully assign quantum states. This

agrees with Bohr’s view “that for a given experimental setting the cut is determined

by the nature of the problem . . . ” That there is nothing in the theory that would

prohibit reaching the necessary experimental precision to allow a meaningful state

assignment to objects of increasingly large sizes—eventually as large as our measure-

ment devices—reflects Heisenberg’ view that the “cut can be shifted arbitrarily far in

the direction of the observer”, as he wrote in an unpublished paper [22] from 1935,

in which he outlined his response to the Einstein, Podolsky, and Rosen paper from

the same year.
6

The measurement instrument and the observer can be included in the

quantum mechanical description, and then observed by someone else, a “superob-

server”, for whom the original measurement instrument loses its previous status as a

means for acquiring knowledge. For this purpose, she needs another set of “superin-

struments” that are superior to the original instruments regarding their precision.

FAPP Irreversibility

The distinct outcomes of a measurement apparatus are associated with “macroscop-

ically distinct states”. (Only in that aspect does “macroscopicity” play a role in the

measurement process.) These are defined as states that can still be differentiated even

in those cases where the observations are imprecise and coarse-grained. If, for exam-

ple, just a few spins of a large magnet are flipped, then the entire quantum state of the

magnet will change into an orthogonal one. Yet, at our macroscopic level, we will

still perceive it as the very same magnet. In order for the change to become notice-

able even in a coarse-grained measurement, the quantum states of a sufficiently large

number of spins need to be changed.

6
In the same paper, Heisenberg concludes: “... the quantum mechanical predictions about the out-

come of an arbitrary experiment are independent of the location of the cut . . . ” This can be seen as

a consequence of “purification” in quantum theory, which states that every mixed state of system

A can always be seen as a state belonging to a part of a composite system AB that itself is in a

pure state. This state is unique up to a reversible transformation on B. The assumption of purifica-

tion is one of the central features of quantum theory, which, taken as an axiom together with a few

other axioms, makes it possible to explain why the theory has the very mathematical structure it

does [23].
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In order to quantify the distinguishability of such macroscopic states, consider

a spin-j system, with j ≫ 1, and the coarse-grained measurements with the POVM

elements

PΩ0
=

2j + 1
4𝜋 ∬Ω0

dΩ|Ω⟩⟨Ω| (1)

as a model example, where |Ω⟩ =
∑+j

m=−j

( 2j
j+m

)1∕2
cos j+m 𝜃

2
sin j−m 𝜃

2
e−im𝜙0 |m⟩ is the

spin coherent state and 𝜃 and 𝜙 are the polar and azimuthal angles respectively,

corresponding to the solid angle Ω. The size of the integration region around the

solid angle Ω0 = (𝜃0, 𝜙0) is taken to be such that its projection Δm along the z
axis is much larger than the intrinsic uncertainty of the coherent states,

7 Δm ≫

√
j.

Under the coarse grained measurement with elements (1), any state �̂� can effec-

tively be described in terms of a positive probability distribution (the well-known

Q-function) [26].

Q(Ω) =
2j + 1
4𝜋

⟨Ω|�̂�|Ω⟩. (2)

Specifically, the probabilities for the POVM outcomes can be obtained by averaging

the Q-function: PΩ0
= ∬Ω0

Q(Ω). Hence, the description in terms of Q(Ω) is effec-

tively classical and it leads to the classical limit of quantum mechanics
8

[26]. Since

Q(Ω) represents a complete description of the system under coarse-grained mea-

7
When we introduce coarse-grained observables, we need to define the states that are “close” to

each other to conflate them into coarse-grained outcomes. However, the terms “close” or “distant”

make sense in a classical context only. There, “close” states correspond to neighboring outcomes

in the real configuration space. For example, the coherent states conflated in the single outcome

Ω0 of the POVM all correspond to approximately the same direction Ω0 in real space. Therefore,

certain features of classicality need to be presumed before macroscopic states can be defined. An

alternative would be the attempt to reconstruct the notions of closeness, distance, and space—and

consequently, also the theories referring to these notions, such as quantum field theory—from within

the formalism of the Hilbert space only. Useful tools for this attempt might be preferred tensor

factorizations, coarse-grained observables, and symmetries. The results of Refs. [24, 25] present

the first progress towards this goal. The most elementary quantum system, the qubit, resides in an

abstract state space with SU(2) symmetry. This is locally isomorphic to the group SO(3) of rotations

in three-dimensional space. Considering directional degrees of freedom (spin), this symmetry is

found to be operationally justified in the symmetry of the configuration of macroscopic instruments

used for transforming the spin state. Hereby one assumes that quantum theory is “closed”: the

macroscopic instruments do not lie outside of the theory, but are described from within it in the

limit of a large number of its constituents (as coherent states or “classical fields”) [25].

8
The classical world arises from within quantum theory when neighboring outcomes are not dis-

tinguished but bunched together into slots in the measurements of limited precision. What would

the classical world look like if non-neighboring outcomes were conflated to slots? To address this

question, one could imagine an experiment on a person whose nerve fibers behind the retina are

disconnected and again reconnected at different, randomly chosen, nerve extensions connecting to

the brain. It seems reasonable to assume that the neighboring points of the object that is illuminated

with light and observed by the person’s eye will no more be perceived by the person as neighboring

points. One may wonder if, in the course of further interaction with the environment, the person’s

brain will start to make sense out of the seen “disordered classical world”, or if it will post-process

the signals to search for more “ordered” structures as a prerequisite for making sense out of them.
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surements, I will call it the “macroscopic state”. This approach to classicality differs

conceptually from and is complementary to the decoherence program that is dynam-

ical and describes correlations of the system with other degrees of freedom which

are integrated out [27].

A measure of the distinguishability between two probability distributions P(Ω)
and Q(Ω) is the Euclidean scalar product (𝐏,𝐐) ∶= ∬ dΩ

√
P(Ω)Q(Ω). If two prob-

ability distributions are perfectly distinguishable (𝐏,𝐐) = 0, while if they are identi-

cal (𝐏,𝐐) = 1. Consider two pure quantum states |𝜓1⟩ and |𝜓2⟩ with the Q-functions

|⟨𝜓1|Ω⟩|2 and |⟨𝜓2|Ω⟩|2, respectively. Then
2j+1
4𝜋

∬ dΩ |
|⟨𝜓1|Ω⟩||⟨Ω||𝜓2⟩| ≥ 2j+1

4𝜋
|∬ dΩ⟨𝜓1|Ω⟩⟨Ω|𝜓2⟩| = |⟨𝜓1|𝜓2⟩|, where

2j+1
4𝜋

∬ dΩ|Ω⟩⟨Ω| = 11. This shows that

distinguishability between the quantum states and distinguishability between macro-

scopic states are two different notions. The latter implies the former, but the opposite

is not true. Say, spin j is composed of N spins-1/2. In this case, a number of spins of

the order of

√
N need to be flipped in order to arrive at a macroscopically distinct

state. Only then do we perceive it as a new state of magnetization. It is now a new

“fact”.

The macroscopic states are robust. This means that they are stable against pertur-

bations, which may for example be caused by repeated coarse-grained observations.

In other words, the Q-function before and after a coarse-grained measurement is

approximately the same [28]. It therefore becomes possible for different observers to

repeatedly observe the same macroscopic state. The result is a certain level of inter-

subjectivity among them. If we assume, however, that quantum mechanics is univer-

sally valid, then it is in principle possible to undo the entire measurement process.

Imagine a superobserver who has full control over the degrees of freedom of the mea-

suring apparatus. Such a superobserver would be able to decorrelate the apparatus

from the measured system. In this process, the information about the measurement

result would be erased. Seen from this perspective, “irreversibility” in the quantum

measurement process merely stands for the fact that it is extremely difficult—but not

impossible!—to reverse the process. It is irreversible “for all practical purposes” (or

“FAPP,” to use Bell’s acronym).

I have often heard the following objection to FAPP: No matter how low the prob-

ability is to reverse the evolution in the measurement process, it is still there. How

is it possible to settle the question of what actually exists by an approximation? In

my eyes, such questions do not take into consideration the simple fact that quantum

theory cannot be both, universal and not irreversible merely FAPP. While on the

one hand, measurements have to result in irreversible facts (otherwise, the notion of

measurement itself would become meaningless, as no measurement would ever be

conclusive), this irreversibility on the other hand must be merely FAPP if quantum

theory is in principle applicable to any system. “Any system” here means that the

measuring apparatus and even the observer herself can also be subject to the laws of

quantum theory. My main point is the following. While it is obviously possible to

(Footnote 8 continued)

The latter may eventually nullify the effect of the random reconnection of nerves, and the person

will again perceive the ordinary classical world.
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describe the subject as an object, it then has to be the object for another subject. So,

one can make sense of a quantum state of the measurement apparatus as well as the

observer only with respect to another set of measurement instruments and another

observers. In my eyes, not enough thought has gone into the fundamental nature of

FAPP. More research on the philosophy of FAPP, if you like, should be done by

philosophers of physics. This, in my eyes, would contribute to the resolution of the

problem in a much deeper way than the perpetual attempts to expel this term from

the foundations of physics based on presupposed philosophical doctrine.

Detection devices, such as photographic plates or photo-diodes, consist of a large

number of constituents in a certain “metastable state”. Their interaction with the

observed quantum systems brings them into a “stable state” that can be distinguished

from the initial one even under coarse-grained observations. This transition is sig-

nified by the “click” in the detector or a new position of the pointer label. In both

the metastable and the stable state, the constituents of the instrument can be in any

of a large number of quantum states that correspond to the respective macroscopic

states. In order to understand how irreversibility FAPP is possible, it is crucial to

realize that not only the initial and final quantum states of the instrument are impre-

cisely known, but also the full details of the interactions (i.e. Hamiltonian) among

its constituents and with the environment. Even if it were possible to know the initial

and final states precisely, the lack of precise knowledge of these interactions prevents

us from reversing the measurement process. Moreover, a photodetector also does not

spontaneously “de-click”. It does not turn itself back into the initial metastable state

and and it does not emit the photon into its initial state.

The irreversibility of the measurement process might be explained in quantum

mechanical terms, but as metastable and stable states of the detector are macroscopic

states, a classical explanation of irreversibility is sufficient. In fact, nothing “quan-

tum” is indispensable for “solving” the big measurement problem. The “problem” is

essentially present in classical measurements as well.

For classical (chaotic) systems, the physical state after a certain time can become

unpredictable if the solutions of dynamical equations are highly sensitive, either to

initial states or to uncontrollable external perturbations of the Hamiltonian. The sit-

uation is different in quantum mechanics because of the unitarity of the dynami-

cal evolution: the scalar product between the unperturbed and the perturbed state is

constant such that an uncertainty in initial states will not grow in time. However,

an uncontrollable external perturbation to the Hamiltonian can explain FAPP irre-

versibility for both the classical and quantum case. Below I consider one such model.

Consider the detection device to be a classical dynamical system for which the

state 𝐱t at an arbitrary time t is given in terms of a flow 𝐱t = ft(𝐱0) on the initial

state 𝐱0 = (𝐪,𝐩), where 𝐪 are the positions and 𝐩 the momenta of all the system’s

constituents. The flow is assumed to be reversible, i.e. there exists the involution

𝜋(𝐪,𝐩) = (𝐪,−𝐩) with 𝜋

2 = 11 for which for all times 𝜋ft𝜋 = f −1t . We now choose

two regions A and B of the phase space. We assume a uniform probability distribution

of the state over A to exist at the outset. The probability of finding the state in the

set B at the time t when, at the time t = 0, the state was in the set A is given by the

volume fraction of the states from A that evolves in B.
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Fig. 5.1 Schematic illustration of the phase space evolution in both the regular and the chaotic

case. An infinitesimal element A of volume (Δx0)n, where n is the dimension of the phase space,

evolves in ftA under a regular flow or in f ′t A under a chaotic flow. The volume of the overlap between

the two evolved elements has the linear size of Δx0 along all directions of divergence and e𝜆i tΔx0
(𝜆i < 0) for every direction i of contraction.

Prob[𝐱t ∈ B|𝐱0 ∈ A] =
|A ∩ f −1t B|

|A|
. (3)

Here, |X| is the Lebesgue measure of set X. In the remaining argument I will assume

that B = ftA, for which the probability (3) is 1.

Suppose now that we want to reverse the evolution, but do not have precise control

of the flow ft, for example due to uncontrollable influences from the environment.

Hence, the inverse flow f ′t ≠ ft is perturbed, where we assume 𝜋f ′t 𝜋 = f ′−1t . At the

time t, we inverse all the momenta and set the time again to 0 for simplicity. (Note that

inverting momenta does not require measuring them, which would be impossible due

to the limited precision of the instruments, nor does it require to know them precisely.

An arrangement with elastic bounce of the molecules would be sufficient [29]. If f ′t =
ft, it would be sufficient to inverse the momenta to perfectly reverse the evolution.)

Then, the probability to find the state in the set 𝜋A at the time t when, at time t = 0,

the state was in the set 𝜋B = 𝜋ftA is given by

Prob[𝐱t ∈ 𝜋A|𝐱0 ∈ 𝜋ftA] =
|𝜋ftA ∩ f ′−1t 𝜋A|

|𝜋ftA|
=

|ftA ∩ f ′t A|
|A|

, (4)

where we used |𝜋X| = |X| and the Liouville theorem |ftX| = |X|. (Once one arrives

at the states from the set 𝜋A, one can obtain those from the initial set A by simply

inverting the momenta. This might induce additional imprecisions, neglected here

for simplicity.) The expression (4) has an operational meaning, namely that of the

“probability for reversing the evolution”. It is the probability to find the system in the

initial state under first the forward, and then the reverse, perturbed, flow (Fig. 5.1).
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The classical explanation of irreversibility is based on the notions of mixing and

coarse graining. Mixing is a property of chaotic systems for which at least one of

the Lyapunov exponents is positive. (If the system is a Hamiltonian system, the sum

of all Lyapunov exponents is zero. If the system is dissipative, the sum is nega-

tive.) Two trajectories in phase space with an initial separation Δx0 along dimension

i diverge at a rate given by Δxt ≈ e𝜆i tΔx0, where 𝜆i > 0 is a Lyapunov exponent.

Suppose that |A| = (Δx0)n corresponds to the small volume that can still be dis-

tinguished from other such volumes in a coarse-grained observation, and n is the

dimension of the phase space. Furthermore, suppose that ft is regular and does not

significantly change the form of A, while f ′t is chaotic. One has for the phase space

volume |f ′t A| ≈ e
∑n

i 𝜆i(Δx0)n. Then the probability (4) is specified by the volume

|ftA ∩ f ′t A| of the overlap between the volume elements ftA and f ′t A. This volume

has the linear size Δx0 along all directions of stretching and e𝜆i tΔx0 along every

direction i of contraction. Hence, the probability is bounded as

Prob[𝐱t ∈ 𝜋A|𝐱0 ∈ 𝜋ftA] ≤ e−
∑′

i 𝜆i t
, (5)

where the sum
∑′

i is over positive Lyapunov exponents. The probability of reversing

the evolution and arriving at the initial state is negligibly small after several multi-

ples of the characteristic time t ∼ 1∕
∑′

i 𝜆i. The above argument can also explain the

classical irreversibility of “macroscopic states” in detection instruments in quantum

experiments, but for completeness, I will below present a quantum version for it.

One can define a quantum mechanical measure of the state revival when an

imperfect time-reversal evolution is applied to a quantum system. We will illus-

trate this with an example of a spin system. Suppose that an initial quantum state

|𝜓⟩ evolves during a time t under a Hamiltonian H0 into the final state |𝜓(t)⟩. The

two states define macroscopic states (Q-functions) P(Ω, 0) = |⟨Ω|𝜓⟩|2 and P(Ω, t) =
|⟨Ω|𝜓(t)⟩|2, respectively. Any attempt to reverse the evolution and arrive back at the

initial macroscopic state will result in an application of a perturbed, slightly different

Hamiltonian ̂H = ̂H0 + ̂V with perturbation ̂V . Perfect recovery of macroscopic state

could be achieved only if one could have a perfect control over ̂H. FAAP, however,

such a control is impossible.

As a measure of reversibility of macroscopic states we use the scalar product

(𝐏,𝐐) = ∬ dΩ
√

P(Ω, 0)Q(Ω, t) (6)

between the probability distribution P(Ω, 0) = |⟨Ω|𝜓⟩|2 of finding initially the sys-

tem in a macroscopic “phase point” Ω and the probability distribution

Q(Ω, t) = |⟨Ω|e
i ̂Ht
ℏ e

−i ̂H0 t
ℏ |𝜓⟩|2 (7)

of finding it there after a combined evolution: forward evolution in duration of t
under the Hamiltonian ̂H0 and then backward evolution in duration of t under − ̂H.
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The combined evolution embodies the notion of time-reversal. If for some t > 0,

one has (𝐏,𝐐) ≈ 1, the evolution is reversed at the macroscopic level. (Note that

the reversed quantum state e
i ̂Ht
ℏ e

−i ̂H0 t
ℏ |𝜓⟩ does not need to be identical to the initial

one |𝜓⟩ to have reversibility at the macroscopic level. It is only important that they

approximately correspond to the same macroscopic state.)

Consider for simplicity a non-degenerative Hamiltonian ̂H0 with eigenstates |𝛼0⟩

for eigenvalues E0
𝛼

, and the perturbed Hamiltonian ̂H with eigenstates |𝛼⟩ for eigen-

values E
𝛼

. For simplicity, I assume an extremely weak perturbation ̂V for which

E
𝛼

= E0
𝛼

+ ⟨𝛼0| ̂V|𝛼0⟩ and ⟨𝛼|𝛽0⟩ = 𝛿

𝛼,𝛽0
. Expanding |𝜓⟩ =

∑
𝛼

𝜓

𝛼

|𝛼⟩, one has

Q(Ω, t) =
∑

𝛼,𝛽

𝜓

𝛼

𝜓

∗
𝛽

⟨Ω|𝛼⟩⟨𝛽|Ω⟩e
i(V

𝛼

−V
𝛽

)t
ℏ

, (8)

where V
𝛼

∶= ⟨𝛼| ̂V|𝛼⟩.

The value of (8) depends on the statistical distribution of V
𝛼

− V
𝛽

over differ-

ent perturbations [30]. This means that in every repetition of our procedure the

system might be differently perturbed during its backwards evolution. For chaotic

systems, one assumes that this distribution is governed by a random matrix the-

ory [31]. According to this theory, V
𝛼

are independent random numbers, and for a

large number of eigenstates, the distribution can be approximated by a Gaussian one

g(V
𝛼

) = 1
√
𝜋𝜎

e−
(V
𝛼

−W
𝛼

)2

𝜎

2 around the mean value W
𝛼

. Taking an ensemble average over

different perturbations, one obtains ⟨e
iV
𝛼

t
ℏ ⟩pert = ∫ ∞

−∞ dxg(x)e
ixt
ℏ e

iW
𝛼

t
ℏ = e

iW
𝛼

t
ℏ e−

𝜎

2 t2

4ℏ2 . In

the model the distribution spread 𝜎 is taken to be much smaller than the level spac-

ing to ensure no correlations in the distribution, ⟨e
i(V

𝛼

−V
𝛽

)t
ℏ ⟩pert = ⟨e

iV
𝛼

t
ℏ ⟩pert⟨e

−iV
𝛽

t
ℏ ⟩pert.

Finally, we obtain

⟨Q(Ω, t)⟩pert =
∑

𝛼,𝛽

𝜓

𝛼

𝜓

∗
𝛽

⟨Ω|𝛼⟩⟨𝛽|Ω⟩e
i(W

𝛼

−W
𝛽

)t
ℏ e−

𝜎

2 t2

2ℏ2 = |⟨Ω|𝜙(t)|2e−
𝜎

2 t2

2ℏ2
, (9)

where in the final step we introduce 𝜙

𝛼

(t) ∶= 𝜓

𝛼

e
iW

𝛼

t
ℏ and |𝜙(t)⟩ ∶=

∑
𝛼

𝜙

𝛼

(t)|𝛼⟩.
Using ⟨

√
Q(Ω, t)⟩pert ≤

√
⟨Q(Ω, t)⟩pert one obtains for the measure of reversibil-

ity

⟨(𝐏,𝐐)⟩pert ≤ ∬ dΩ|⟨Ω|𝜓⟩||⟨Ω|𝜙(t)⟩|e−
𝜎

2 t2

4ℏ2 ≤ e−
𝜎

2 t2

4ℏ2
. (10)

We see that for random perturbations on average the macroscopic state will signif-

icantly change after first forward evolution in duration of time t, and then reverse

evolution in duration of time t, if t > ℏ∕𝜎, indicating FAPP irreversibility. Specifi-

cally, for t → ∞, one has ⟨(𝐏,𝐐)⟩pert → 0. The regime beyond the validity of weak

perturbation can be treated using the results from the field of quantum chaos [32].
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For the present distribution over perturbations both the evolution of the macro-

scopic state and of the quantum state is FAPP irreversible. One can find, however,

such distributions for which the evolution of the macroscopic state is reversible and

the evolution of the quantum states is irreversible FAPP, but we will not analyse them

here further.

We conclude that the lack of the complete knowledge of the Hamiltonian circum-

vents the time reversal objection, also known as Loschmidt’s paradox, which states

that it should not be possible to deduce time irreversibility from an underlying time

reversal theory. A similar argument could be applied to address the recurrence objec-

tion, which is based on the Poincaré recurrence theorem, that all finite systems are

recurrent, i.e. return arbitrarily close to their initial state after a possibly very long

time. Results show that recurrence times in the dynamics of quantum states could

be extremely large [33]. Hence, quantum measurements are irreversible FAPP. A

comprehensive study of various models of quantum measurement can be found in

Ref. [34].

Deutsch’s Thought Experiment

After arguing in favour of understanding measurement irreversibility to be FAPP, we

now turn back to conceptual issues. In Ref. [35], Deutsch proposed an experiment

which he claims can distinguish experimentally between the Copenhagen and the

Everett interpretations of quantum mechanics. While I do not in any way see the

necessity of assuming that the two interpretations might have distinct predictions in

the experiment, I acknowledge that the experiment most strikingly demonstrates the

necessity of a radical revision of our attitude to physical reality in quantum physics.

The thought experiment involves measurements on the observer by another,

superobserver, and is a variant of the Wigner’s-friend thought experiment [36]. Four

systems are involved in the experiment as illustrated in Fig. 5.2. System 1 is a spin-

1/2 atom which passes through a Stern-Gerlach apparatus in such a way that the two

trajectories, corresponding to outcomes “spin up” and “spin down”, pass over sys-

tems 2 and 3. These two systems, also spin-1/2 atoms, represent part of the observer’s

“sense organ”. Their receptive states at the outset are “spin down”. They are coupled

with atom 1 in such away that when atom 1 follows the “spin up” trajectory, it passes

over atom 2. The spin of atom 2 now flips to “spin up”. Meanwhile, the spin of atom

3 remains the same. If in a similar way atom 1 follows the “spin-down” trajectory,

the spin of atom 3 will flip while the spin of atom 2 will remain unchanged. System 4

is the observer, and it couples only to sense organs 2 and 3. Potentially, there are fur-

ther systems that constitute an environment of the four systems. They all are isolated

from the rest in a sealed laboratory. The experiment is then performed a sufficient

number of times to collect statistics.

Initially, the state of the four systems is factorized with atom 1 in state |x+⟩1 =
1
√
2
(|z+⟩1 + |z−⟩1) and the observer in some definite state, |0⟩4, whose exact proper-
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Fig. 5.2 Deutsch’s version of the Wigner’s friend gedanken experiment. An observer performs the

Stern-Gerlach experiment on a spin-1/2 atom (system 1) in a closed laboratory. The outcome “spin

up” or “spin-down” is recorded in sense organs, which are also spin-1/2 atoms (systems 2 and 3)

and finally in the observer’s brain (system 4). The outside observer, the superobserver, describes the

experiment as a coherent evolution of a large entangled state. The observer communicates a message

to the superobserver outside, which contains information about whether she sees a definite outcome

or not, without revealing which outcome she sees. What will the observer then experience? Will

the superobserver in principle be able to perform an interference experiment on the systems and

the observer and confirm the appropriateness of his state assignment?

ties do not need to be specified, except that she is capable of completing a measure-

ment:

|𝜓(0)⟩ = 1
√
2
(|z+⟩1 + |z−⟩1)|z−⟩2|z−⟩3|0⟩4. (11)

One can also consider mixed states, but this assumption would complicate the situ-

ation unnecessarily. The Stern-Gerlach magnet is assumed to be oriented along the

z-axis. After atom 1 has passed through the Stern-Gerlach apparatus and has inter-

acted with the sense organs at time t, the state is

|𝜓(t)⟩ = 1
√
2
(|z+⟩1|z+⟩2|z−⟩3 + |z−⟩1|z−⟩2|z+⟩3)|0⟩4. (12)

Finally, after the interaction between the observer and the sense organs at time t′, the

state becomes

|𝜓(t′)⟩= 1
√
2
(|z+⟩1|z+⟩2|z−⟩3|knows “up”⟩4 + |z−⟩1|z−⟩2|z+⟩3|knows “down”⟩4),

(13)

where |knows “up”⟩4 and |knows “down”⟩4 denote the observer’s states after record-

ing the result. If there are further systems in the laboratory, their states can eventu-

ally also get correlated with the two amplitudes in Eq. (13) in a huge entangled state.

Unless stated otherwise, I will assume that there are no further systems in the labo-

ratory.

Strictly speaking, the quantum state (13) can have an operational meaning only

for the superobserver, who is stationed outside the sealed laboratory. To him on the
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outside, on the basis of all the information that is in principle available to him and

conditioned on having sufficient experimental capabilities, the physical description

of the state in the laboratory will be the superposition (13). For example, he can test

the validity of the state assignment by performing an interference experiment with

the output states:

|𝜓+⟩ = 1
√
2
(|z+⟩1|z+⟩2|z−⟩3|knows “up”⟩4 + |z−⟩1|z−⟩2|z+⟩3|knows “down”⟩4)

|𝜓−⟩ = 1
√
2
(|z+⟩1|z+⟩2|z−⟩3|knows “up”⟩4 − |z−⟩1|z−⟩2|z+⟩3|knows “down”⟩4).

This requires a special experimental arrangement and instruments of high measure-

ment precision, which allow measuring the systems’ and the observer’s brain states

in coherent superpositions.

What will the observer in the laboratory perceive in state (13) after completing

of her measurement? Will she definitively know if she has observed one single out-

come or not? It is tempting to answer such questions within the standard quantum

framework: Within the laboratory, the actual observation projects the quantum state

into one of the two possibilities. The observer will therefore either observe outcome

“spin up” or outcome “spin-down”. We know that for the projection to occur, it is

not necessary for the observer to actually read out the information from the mea-

surement device; it is sufficient that the information is available in principle [37].

Then, if the superobserver were to project his state onto the basis of “all informa-

tion that is in principle available” to him, would that not include information that is

available to the observer? Should the mere availability of the information about the

outcome somewhere—specifically, in the observer’s brain—not collapse the quan-

tum state that the superobserver assigns? Or does the observer observe some kind of

“blurred reality”, while the superobserver keeps describing the situation in terms of

the superposition state? Deutsch’s ingeniously contrived experiment could answer

these questions at least in principle, albeit its execution is impractical.

The idea is that the superobserver could learn whether the observer has observed

a definite outcome, without himself learning which outcome she has observed. It

is enough for the observer to communicate “I observe a definite outcome” or “I

observe no definite outcome” to the superobserver. (For this purpose, the labora-

tory may be opened to pass only this message, keeping all other degrees of freedom

still fully isolated. While being practically demanding, this is possible in princi-

ple.) The message could, for example, be written on a piece of paper and passed

on to the superobserver. The key element of the experiment is that the message

contains no information about which outcome has occurred and thus should not

lead to a collapse of the quantum state assigned by the superobserver. Imagine that

the observer encodes her message in state |message⟩5 of system 5. This state is

factorized out from the total state, |𝜓(t′)⟩ = 1
√
2
(|z+⟩1|z+⟩2|z−⟩3|knows “up”⟩4 +

|z−⟩1|z−⟩2|z+⟩3|knows “down”⟩4) |message⟩5, and thus the communication of the

message does not destroy the superposition.
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What will be written in the message? Will the superobserver see the interference?

Three different results of the experiment are possible
9
:

1. The quantum state collapses due to a breakdown of the quantum-mechanical laws

when applied to states of brain or to systems of sufficiently large size, mass, com-

plexity, and the like. The collapse models Ghirardi-Rimini-Weber [8] or Diosi-

Penrose [9, 10] fall into this category. One could also argue in favor of the col-

lapse within the view according to which a quantum state is a representation of the

observer’s knowledge. Every measurement yields new information, and the rep-

resentation of this knowledge update is the state projection. Since the new infor-

mation about the outcome is available somewhere—specifically in the observer’s

brain—the state has to collapse for all observers, including the superobserver.
10

Independently of the specific rationale behind the state collapse, the observer

sends the message that she observers a definite outcome. The superobserver con-

cludes that although he could exclude all known effects caused by conventional

decoherence, the state is not in the superposition. This he can confirm in the inter-

ference experiment by observing that both outputs in the interference experiments

occur with equal probability.

2. The superobserver’s state assignment is the superposition state, and the observer

perceives a “blurred reality” that she associates with not seeing a definite out-

come. She sends a message: “I observe no definite outcome”. The superobserver

confirms the superposition state in the interference experiment by observing a

single output state in the interference experiment. I personally have trouble to

make sense of this option. If quantum theory describes an observer’s probability

assignments in well-defined experimental procedures, where, to quote Bohr [39]

“. . . by the word ‘experiment’ we refer to a situation where we can tell others

what we have done and what we have learned . . . ”, then experience of “blurred

reality” seems to be outside of the standard quantum framework. Moreover, such

a situation would install a fundamental asymmetry between the observers, those

who see and those who do not see “blurred reality”.
11

9
In a quantum mechanical experiment, the “observer” could be simulated by a qutrit with the fol-

lowing encoding [38]: |0⟩ for “knowing spin up”, |1⟩ for “knowing spin down” and |2⟩ for “I see no

definite outcome”. The message is then encoded either in |2⟩ or in a state with the two-dimensional

support spanned by vectors |0⟩ and |1⟩ (for example
1
2
(|0⟩⟨0| + |1⟩⟨1|). The superobserver applies

the measurement with the projectors ̂P1 = |0⟩⟨0| + |1⟩⟨1| and ̂P2 = |2⟩⟨2|.
10

It seems to me that Deutsch had this particular view in mind when he claimed that the Copenhagen

interpretation predicts the occurrence of the collapse. I see this view at most as a variant of the

interpretation and (to my knowledge) not widely spread.

11
A stronger argument against the possibility of seeing “blurred reality” has been brought to my

attention by Jacques Pienaar. Consider a different experimental scenario where a referee prepares

a state of the system either in a definite state |z+⟩ or |x+⟩ and the observer still performs the spin

measurement along z-axis. In the first case the observer sees spin up and informs the superobserver

about his outcome (for example by writing a message: “I see spin up along z-axis”). If the observer

in the second case instead sees no definite outcome, e.g. a “blurred reality”, he informs the super-

observer about this too, e.g. through the message “I observe no definite outcome”. The protocol
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3. The quantum laws are unmodified. The superobserver’s state assignment is the

superposition state. And yet, the observer observes a definite outcome. The

assigned superposition state can be confirmed in the interference experiment.

In my eyes, outcomes 1 and 2 would indicate fundamentally new physics. I will

not consider these cases further and regard quantum theory to be a universal physi-

cal theory. This leaves us with situation 3 as the only possible outcome of Deutsch’s

thought experiment. The outcome is compatible with the Everett interpretation: each

copy of the observer observes a definite but different outcome in different branches

of the (multi)universe. The outcome is compatible with the Copenhagen interpre-

tation too, but it is rarely discussed what the implications of this claim are for our

understanding of physical reality within the interpretation. The rest of the current

manuscript is devoted to this problem.

Note that in situation 3 of the thought experiment, the two observers have com-

plementary pieces of information. Taken together, they would violate the com-

plementarity principle of quantum physics. The observer has complete knowledge

about the value of observable A1 with eigenstates |z+⟩1|z+⟩2|z−⟩3|knows “up”⟩4 and

|z−⟩1|z−⟩2|z+⟩3 |knows “down”⟩4, whereas the superobserver has complete knowl-

edge about the value of observable A2 with eigenstates |𝜓+⟩ and |𝜓−⟩. The two

observables are non-commuting. One might be tempted to interpret outcome 3 of

Deutsch’s experiment as implying that the two pieces of information coexist. After

all, the superobserver has evidence—in form of the message—that the observer had

perfect knowledge about A1. And yet, on the very same state (13), he can learn the

value of A2. It appears that even the observer herself, retrospectively, after comple-

tion of the interference experiment, can be convinced that there is a discrepancy

between her message and the fact that she always ends up in one output state in

the interference experiment (thereby forgetting which outcomes she had observed).

This is because, if she previously were in a state observing a definite outcome, then

by applying standard quantum mechanical predictions on the systems and relevant

degrees of freedom of herself (which in itself might be seen as a problematic step

because without specifying which degrees of freedom belong to the “system” and

which to the “observer” one ignores the necessity of the object-subject cut), she

should have equal probability to end up in either of the two output states.

The trouble with the assumption that values for A1 and A2 coexist in a single

logical framework is that it introduces “hidden variables”, for which a Bell’s theo-

rem can be formulated with its known consequences. To this end, consider a pair of

superobservers, Alice and Bob, who reside in their local laboratories and conduct

an experiment involving observers Anton and Bertlmann, respectively, who in turn

each perform a Stern-Gerlach experiment of the type explained above. More specif-

ically, Alice has four systems in her laboratory: atom A1, sense organs A2 and A3,

and observer Anton A4. Similarly, Bob has four systems: atom B1, sense organs B2

(Footnote 11 continued)

would allow the superobserver to distinguish between nonorthogonal states perfectly. This is in

disagreement with the laws of quantum mechanics.
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Fig. 5.3 Bell’s experiment to exclude the coexistence of “facts” (i.e. measurement outcomes or

records) for both the observer and the superobserver. Alice and Bob (both of them superobservers)

reside in their space-like separated laboratories in which two further observers, Anton and Bertl-

mann respectively, perform a Stern-Gerlach type of measurement. By choice of local measure-

ment setting (1 or 2), each of the superobservers can either interrogate which outcome the respec-

tive observer in his laboratory has observed or perform the interference experiment jointly on the

observer and the spin. With a suitable entangled state (14), the superobservers can violate Bell’s

inequality.

and B3, and observer Bertlmann B4. Suppose that the two superobservers share an

entangled state:

|𝜓⟩AB = 1
√
2
(|Aup⟩|Bdown⟩ − |Adown⟩|Bup⟩), (14)

where

|Aup⟩ = |z+⟩A1|z+⟩A2|z−⟩A3|Anton knows “up”⟩A4,

|Adown⟩ = |z−⟩A1|z−⟩A2|z+⟩A3|Anton knows “down”⟩A4,

|Bup⟩ = |z+⟩B1|z+⟩B2|z−⟩B3|Bertlmann knows “up”⟩B4,

|Bdown⟩ = |z−⟩B1|z−⟩B2|z+⟩B3|Bertlmann knows “down”⟩B4.

Using these states, one can define observables that are analogues to spin projec-

tions along the z and x axes of a spin-1/2 particle, respectively: Az = |Aup⟩⟨Aup| −
|Adown⟩⟨Adown|, Ax = |Aup⟩⟨Adown| + |Adown⟩⟨Aup| for Alice, and similarly for Bob.

Note that eigenstates of Az correspond to the observer’s states “knowing the spin-

z to be up” and “knowing the spin-z to be down”, and those of Ax to the possible

outcomes of the superobserver’s interference experiment (Fig. 5.3).

Let us assume that in the Bell experiment, Alice chooses between two mea-

surement settings A1 = Az and A2 = Ax and Bob between B1 =
1
√
2
(Bz + Bx) and

B2 =
1
√
2
(Bz − Bx). In a local (deterministic) hidden variable theory, one assumes

that there jointly exist predetermined values for A1, A2, B1 and B2 which are +1 or

-1. It is a well-known fact that state (14) with the chosen settings leads to a violation

of the Bell-Clauser-Horne-Shimony-Holt inequality |⟨A1B1⟩ + ⟨A1B2⟩ + ⟨A2B1⟩ −
⟨A2B2⟩| ≤ 2, where ⟨AiBj⟩, i, j = 1, 2, is the correlation function. The maximal quan-

tum value for the Bell expression is 2
√
2. Just like in every other Bell test, we con-

clude that the definite values for the observables cannot coexist if one keeps the
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assumption of locality.
12

We conclude that the two pieces of information, one of the

observer and another of the superobserver, cannot be taken to coexist.

What consequences does outcome 3 of Deutsch’s thought experiment have for

our understanding of physical reality? Let us assume that the observers’ and super-

observers’ laboratories contain a large number of degrees of freedom which allow

the information about respective measurement records to be FAPP redundantly

imprinted in their respective “environments”. I will call these records “facts”. This

could be a click in a photodetector, a certain position of a pointer device, a print-

out of a computer or a written page in the lab-book, or a definite human brain state

of a colleague who read the lab-book. If we assume that all these records in the

observer’s laboratory get correlated with the spin atoms and her brain state, and the

superobserver can still perform the interference experiment, the result of which is

also recorded in his laboratory, one has to accept that the two pieces of information

can redundantly be imprinted in two environments: the sealed laboratory and the out-

side, respectively. As long as there is no communication on the relevant information

(the actual measurement outcome) between the two laboratories, they will remain

separate.

If we respect that there should be no preferred observers, then there is no reason to

assume that the “facts” of one of them are more fundamental than those of the other.
13

But then, the observers’ records cannot be comprised as “facts of the world”, inde-

pendent of the “environment” in which they have occurred. Any attempt to introduce

“facts of the world per se” would run into problems of the hidden variable program.

The implications of the present Bell experiment are stronger than those of the

standard Bell test. In the latter, we can exclude the view according to which the

outcomes for measurements are (locally) predetermined, no matter if any

measurement—and no matter which measurement—is actually performed. Still,

between the partners there is no ambiguity with respect to whether measurements

take place and about the coexistence of their records. The records can be accom-

plished as “facts of the world”, which they share and even need to communicate in

order to evaluate the experimental bound of the Bell expression. This is no longer the

case in the present Bell experiment. What the Bell experiment excludes is the coex-

istence of the “facts” themselves. Everettians solve this by assuming that mutually

complementary facts never coexist in between two branchings of the (multi)universe.

Copenhagenists (can) take the position that there are no facts of the world per se, but

12
Here “locality” means that, for example, value A1 depends only on the local setting of Alice and

not on the distant one of Bob. In a non-local hidden variable theory, we would need to distinguish

between A11 and A12, depending on whether Bob’s setting is 1 or 2, respectively. It is not necessary to

assume local deterministic values to derive Bell’ inequalities. Bell’s local causality is sufficient [11].

This however does not change the conclusions [12].

13
One might be tempted to assume that the “facts” of the superobserver are the “real” ones, as he

definitely has more reliable measurement instruments than the observer. This view cannot withstand

the objection that the superobserver himself might be an object observed by yet another observer,

the supersuperobserver, who describes the interference experiment of the superobserver quantum

mechanically. The regression of increasingly more powerful observers might eventually find its end

in a universe with a finite amount of resources.
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only relative to observers. This is similar to Quantum Bayesianism, which treats the

state of a quantum system as being observer-dependent, and to Rovelli’s relational

quantum mechanics [6], according to which “quantum mechanics is a theory about

the physical description of physical systems relative to other systems . . . ” There are,

however, important differences.

In Rovelli’s relational interpretation, the “observer” does not “make any refer-

ence to a conscious, animate, or computing, or in any other manner special, sys-

tem” [6]—each system provides its own frame of reference relative to which states

of other systems can be assigned. Taking this position and outcome 3 of the Deutsch’s

experiment and applying them to, for example, two entangled electrons, one would

conclude that, although the observer has no information about the state of a sin-

gle electron, one electron “knows” in which state is the other. Relative to one elec-

tron, other one has a definite state. Obviously, we are here encountering the limits of

meaningful language when we associate the terms “knowledge” or “taken” to single

electrons. In this respect, quantum theory (in my eyes) remains a fundamental theory

of observations in which a (hypothetical) observer, measurement and probabilities

play a central role.

The two dominant approaches to the probability interpretation are the frequen-

tist approach and the Bayesian approach. Qbism views the quantum state to be a

user’s manual—a mathematical tool that an observer uses to make decisions and

take actions on the surrounding world upon observations. Central to this position is

a Bayesian or personalist probabilistic approach to the probabilities that appear in

quantum theory. To me, however, the problem of probability interpretation is prior

to quantum theory, the solution of which alone will not be able to answer the ques-

tion: What are the invariant features that characterize quantum theory in ways that

are not relative to observers? By taking the subject matter of quantum theory to be

restricted to an individual agent’s decisions and experiences, Qbism runs into the

danger of denying any objective elements in the notion of the quantum state. I agree

with the Qbist’s notion of subjective quantum states as representatives of an agent’s

beliefs, but only to the extent where a fundamental limit on maximal possible degree

of belief of any agent is respected. This limit is represented FAPP by a pure quantum

state. The fact that the predictions of agents cannot be “improved” over and above

this limit in my eyes indicates that probabilities are not just personal and subjective,

but also formed by the aforementioned invariant features of the theory. The role of

reconstructions of quantum theory is to identify these invariants.
14

The difference to the Everett interpretation is more evident. In the view adopted

here, no meaning is given to “the universal wave function”, nor is there an attempt

to arrive at the probabilities from within such a concept alone. Here, the probabili-

ties are always given by the Born rule, which is part of the formalism. This applies

also to superobservers of any order: probabilities acquire meaning only when the

measurement arrangement is specified, in which these probabilities are observed.

14
In recent years, there have been several attempts to account for the origin of the basic principles

from which the structure of quantum theory can be derived without invoking mathematical terms

such as “rays in Hilbert space” or “self-adjoint operators.” [23, 40–42].
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Finally, I comment on the view [43] that the cut cannot be moved to include mea-

surement instruments, observers etc. as objects under observation, since an object

can never grow up to the point that it includes measurement contexts that, in turn,

are unavoidably given in terms of classical concepts in accordance to Bohr’s doc-

trine [44]: “However far the (quantum) phenomena transcend the scope of classi-

cal physical explanation, the account of all evidence must be expressed in classical

terms.” According to this view [43], the necessity of unambiguous usage of classical

concepts fixes the object-subject cut whose position is therefore fundamental and

equal for all observers. Consequently, one can retain the objectivity of the “facts of

the world”. I do not think that this view stands up to closer scrutiny. The description

of any quantum mechanical experiment is expressed “in common language supple-

mented with the terminology of classical physics” [45]. Although this observation

has played an important role in clarifying misconceptions in debates over the inter-

pretation of quantum theory, it is in retrospective rather self-evident. For example,

the description of a double-slit experiment with atoms, includes the depiction of

the source of atoms directed towards the diaphragm normal to the beam, where the

diaphragm contains two slits and a photographic plate with a characteristic interfer-

ence pattern on the plate where the atoms are deposited. By extending the experiment

to larger and larger systems, eventually as large as measurement instruments, nothing

should change in the epistemic basis of the theory: we will still give an unambigu-

ous account of the phenomenon in terms of classical language including a suitable

“source”, “beam” and “observation screen”. This should not be confused with the

impossibility of giving a classical explanation of the phenomenon, e.g. in terms of

well-defined classical trajectories, which is present both for atoms and for macro-

scopic objects. To conclude, the cut can be shifted with no change in the epistemic

foundation of the theory. Negating this would either mean negating Wigner-type

experiments as legitimate quantum mechanical experiments or predicting outcome

1 in Deutsch’s experiment. In my view, both choices indicate an acceptance that

quantum theory is not universal, though the authors of [43] have a different opinion.

The above-mentioned Bell’s theorem for “facts” implies a striking departure from

naive realism. This brings us to the question of the role of our physical theories. If

physical theories do not describe “physical reality per se”, what do they describe

then? A possible answer is given by Bohr as communicated by Petersen [46]: “It is

wrong to think that the task of physics is to find out how nature is. Physics concerns

what we can say about nature”.

Acknowledgments This work has been supported by the Austrian Science Fund (FWF) through

CoQuS, SFB FoQuS, and Individual Project 2462. I would like to acknowledge discussions with

Mateus Araujo, Borivoje Dakić, Philippe Grangier, Richard Healey, Johannes Kofler, Luis Masanes,

Jaques Pienaar and Anton Zeilinger.



116 Č. Brukner

References

1. J. Bub, I. Pitowsky, Two dogmas about quantum mechanics, in Many Worlds? Everett, Quan-
tum Theory, and Reality, ed. by S. Saunders, J. Barrett, A. Kent, D. Wallace (Oxford University

Press, 2010), pp. 431–456

2. I. Pitowsky, Quantum mechanics as a theory of probability, in Festschrift in honor of Jeffrey
Bub, ed. by W. Demopoulos, I. Pitowsky (Springer, Western Ontario Series in Philosophy of

Science, New York, 2007)

3. T. Maudlin, Three measurement problems. Topoi 14(1), 7–15 (1995)

4. C. Brukner, A. Zeilinger, Information and fundamental elements of the structure of quantum

theory, in Time, Quantum, Information, ed. by L. Castell, O. Ischebeck (Springer, 2003)

5. C.A. Fuch, R. Schack, Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693 (2007)

6. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)

7. R. Colbeck, R. Renner, No extension of quantum theory can have improved predictive power.

Nat. Commun. 2, 411 (2011)

8. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic sys-

tems. Phys. Rev. D 34, 470 (1986)

9. L. Diosi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A

40, 1165–1174 (1989)

10. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28, 581–600

(1996)

11. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum
Philosophy (Cambridge University Press, 2004)

12. M. Zukowski, Č. Brukner, Quantum non-locality—it ain’t necessarily so.., Special issue on 50

years of Bell’s theorem. J. Phys. A: Math. Theor. 47, 424009 (2014)

13. C.A. Fuchs, R. Schack, QBism and the Greeks: why a quantum state does not represent an
element of physical reality. arXiv:1412.4211 (2014)

14. S. Osnaghi, F. Freitas, O. Freire Jr., The origin of the Everettian heresy. Stud. Hist. Philos.

Mod. Phys. 40(2), 97–123 (2009)

15. K. Camilleri, M. Schlosshauer, Niels Bohr as philosopher of experiment: does decoherence

theory challenge Bohr’s doctrine of classical concepts? Stud. Hist. Philos. Mod. Phys. 49, 73–

83 (2015)

16. P. Heelan, Heisenberg and radical theoretical change. Z. Allgemeine Wissenschaftstheorie 6,

113–138 (1975)

17. AHQP, Archives for the History of Quantum Physics—Bohr’s Scientific Correspondence, 301

microfilm reels (American Philosophical Society, Philadelphia, 1986)

18. N. Harrigan, R.W. Spekkens, Einstein, incompleteness, and the epistemic view of quantum

states. Found. Phys. 40, 125 (2010)

19. S. Malin, What are quantum states? Quantum Inf. Process. 5, 233–237 (2006)

20. A. Peres, When is a quantum measurement?. Ann. New York Acad. Sci. 480, New Tech. Ideas

Quantum Meas. Theory 438 (1986)

21. E. Wigner, Symmetries and Reflections (Indiana University Press, 1967), p. 164

22. W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, vol. 2, ed. by K.

von Meyenn, A. Hermann, V. F. Weisskopf (Springer, Berlin, 1985), pp. 1930–1939. For the

English translation of Heisenberg’s manuscript with an introduction and bibliography see E.

Crull, G. Bacciagaluppi. http://philsci-archive.pitt.edu/8590/

23. G. Chiribella, G. D’Ariano, P. Perinotti, Informational derivation of quantum theory. Phys. Rev.

A 84, 012311 (2011)

24. M.P. Mueller, L. Masanes, Three-dimensionality of space and the quantum bit: an information-

theoretic approach. New J. Phys. 15, 053040 (2013)

25. B. Dakic, Č. Brukner, The classical limit of a physical theory and the dimensionality of space,

in Quantum Theory: Informational Foundations and Foils, ed. by G. Chiribella, R. Spekkens.

(Springer, 2016) pp. 249–282. arXiv:1307.3984



5 On the Quantum Measurement Problem 117

26. J. Kofler, Č. Brukner, Classical world arising out of quantum physics under the restriction of

coarse-grained measurements. Phys. Rev. Lett. 99, 180403 (2007)

27. W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod.

Phys. 75, 715 (2003)

28. J. Kofler, Č. Brukner, Conditions for quantum violation of macroscopic realism. Phys. Rev.

Lett. 101, 090403 (2008)

29. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, New York,

1995)

30. A. Peres, Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610

(1984)

31. H.-J. Stöckmann, Q. Chaos, An Introduction (Cambridge University Press, Cambridge, 1999)

32. P. Jacquod, I. Adagideli, C.W.J. Beenakker, Decay of the Loschmidt echo for quantum states

with sub-Planck-scale structures. Phys. Rev. Lett. 89, 154103 (2012)

33. A. Peres, Recurrence phenomena in quantum dynamics. Phys. Rev. Lett. 49, 1118 (1982)

34. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Understanding quantum measurement

from the solution of dynamical models. Phys. Rep. 525, 1 (2013)

35. D. Deutsch, Quantum theory as a universal physical theory. Int. J. Theor. Phys. 24, I (1985)

36. E.P. Wigner, Remarks on the mind-body question, in The Scientist Speculates, ed. by I.J. Good

(London, Heinemann, 1961)

37. X.Y. Zou, T.P. Grayson, L. Mandel, Observation of quantum interference effects in the fre-

quency domain. Phys. Rev. Lett. 69, 3041 (1992)

38. C. Bennett, Private Communication

39. N. Bohr, Discussion with Einstein on epistemological problems in atomic physics, in Albert
Einstein: Philosopher-Scientist, ed. by P.A. Schilpp (The Library of Living Philosophers,

Evanston, Illinois, 1949)

40. L. Hardy, Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012 (2001)

41. B. Dakic and C. Brukner, Quantum theory and beyond: is entanglement special?, in Deep
Beauty: Understanding the Quantum World through Mathematical Innovation, ed. by H.

Halvorson (Cambridge University Press, 2011), pp. 365–392

42. L. Masanes, M. Müller, A derivation of quantum theory from physical requirements. New J.

Phys. 13, 063001 (2011)

43. A. Aufféves, P. Grangier, Contexts, systems and modalities: a new ontology for quantum

mechanics. arXiv:1409.2120 (2014)

44. N. Bohr, The Philosophical Writings of Niels Bohr 3 (Ox Bow Press, Woodbridge, Conn.,

1987)

45. N. Bohr, On the notions of causality and complementarity. Dialectica 2, 312–319 (1948)

46. As quoted in “The philosophy of Niels Bohr” by Aage Petersen, in the Bull. Atom. Sci. 19(7)

(1963); “The Genius of Science: A Portrait Gallery” (2000) by Abraham Pais, p. 24, and “Niels

Bohr: Reflections on Subject and Object” (2001) by Paul. McEvoy, p. 291



Chapter 6
Causarum Investigatio and the Two Bell’s
Theorems of John Bell

Howard M. Wiseman and Eric G. Cavalcanti

Abstract “Bell’s theorem” can refer to two different theorems that John Bell proved,

the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of

quantum phenomena with the joint assumptions of LOCALITY and PREDETERMINA-

TION. His 1976 theorem is their incompatibility with the single property of LOCAL

CAUSALITY. This is contrary to Bell’s own later assertions, that his 1964 theorem

began with the assumption of LOCAL CAUSALITY, even if not by that name. Although

the two Bell’s theorems are logically equivalent, their assumptions are not. Hence,

the earlier and later theorems suggest quite different conclusions, embraced by oper-

ationalists and realists, respectively. The key issue is whether LOCALITY or LOCAL

CAUSALITY is the appropriate notion emanating from RELATIVISTIC CAUSALITY,

and this rests on one’s basic notion of causation. For operationalists the appropriate

notion is what is here called the Principle of AGENT-CAUSATION, while for real-

ists it is REICHENBACH’s Principle of common cause. By breaking down the latter

into even more basic Postulates, it is possible to obtain a version of Bell’s theorem in

which each camp could reject one assumption, happy that the remaining assumptions

reflect its weltanschauung. Formulating Bell’s theorem in terms of causation is fruit-

ful not just for attempting to reconcile the two camps, but also for better describing

the ontology of different quantum interpretations and for more deeply understanding

the implications of Bell’s marvellous work.
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Motivation

The work presented here grew from my
1

observation, over the years, but particularly

at a quantum foundations conference in 2013 (see Ref. [1]), that different ‘camps’ of

physicists and philosophers have a different understanding of what Bell’s theorem

actually is, and a different understanding of the words (in particular ‘locality’) often

used in stating it. As a consequence they often talk (or shout) past one another, and

come no closer to understanding each other’s perspective. I have friends in both

camps, and I would like to think that they are all reasonable people who should be

able to come to terms that allow the pros and cons of different interpretations of

Bell’s theorem to be discussed calmly.

More recently, my thinking has evolved beyond this original motivation, as a con-

sequence of the 50th anniversary of Bell’s annus mirabilis,2 which led to three invi-

tations to present on the topic: for a special issue of J. Phys. A [4], for an opinion

piece in Nature [5], and for the Quantum [Un]speakables conference (and thus to a

fourth invitation, for these Proceedings). These challenged me to think more deeply

about what lay behind the different positions of the two camps, and how this could

lead to a deeper understanding of Bell’s theorem. The key to my reconsideration is to

be found, conveniently, on the the magnificent ceiling of the Festsaal of the Austrian

Akademie der Wißenschaften, host to Alain Aspect’s public lecture at the Quantum

[Un]speakables conference. There, one finds the role of natural philosophy defined

as causarum investigatio (Fig. 6.1). The investigation of causes, or, more particu-

larly, of notions of causation, has proven to be a very fruitful way to analyse Bell’s

theorem, and the disagreements over it [4–8].

While this chapter, Ref. [4], and Ref. [5], each has independent material, they all

share some core material, which can be summarized as follows. Bell actually proved

two theorems (Sect. “The Two Bell’s Theorem of John Bell”). The 1964 one [3] is

that

[some of] the statistical predictions of quantum mechanics are incompatible with separable

[i.e. local] predetermination.

This involves two assumptions: “separability or locality” and the “predetermination

[of] the result of an individual measurement” [3]. The 1976 one [9] is that

quantum mechanics is not embeddable in a locally causal theory

and involves a single assumption, “local causality” [9]. Although each theorem is

a corollary of the other (Sect. “A Fine Distinction”), they are embraced by differ-

1
This first section is written in first person by one of us (Wiseman), who spoke at the Quantum

[Un]speakables conference. The other of us (Cavalcanti) has been a long-time co-worker and cor-

respondent with Wiseman on Bell’s theorem. In particular, since the conference, their discussions

have convinced Wiseman of a better way to formulate the causal assumptions in Bell’s theorem,

and this is reflected in the latter parts of the paper, and in its authorship.

2
It was the year he wrote his review of hidden variables (HVs) [2], by misfortune not published until

1966, in which he dismissed von Neumann’s anti-HV proof, gave the first proof of the necessity of

contextuality for deterministic HV theories, and raised the question of the necessity of nonlocality,

which he immediately answered in the positive in his 1964 paper [3].
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Fig. 6.1 Scene from the ceiling of the Festsaal of the Austrian Akademie der Wissenschaften.

ent intellectual camps, whom I will call operationalists and realists respectively

(Sect. “The Two Camps”). The latter, however, deny that there are really two dif-

ferent theorems, claiming that in his 1964 paper Bell used ‘locality’ to mean LOCAL

CAUSALITY, and that from it he derived PREDETERMINATION
3

rather than assuming

it. I have argued in depth [4, 11] that this is a misrepresentation of what Bell proved

in 1964.

Whether LOCALITY or LOCAL CAUSALITY is the appropriate notion emanating

from Einstein’s Principle of relativity rests on one’s underlying concept of causation.

Operationalists and realists implicitly hold to quite different notions of causation and

it is fruitful to make this explicit (Sect. “Back to Basics”). These last points lead

on to the notable new material in this chapter: a form of Bell’s theorem that could

be acceptable to both camps (Sect. “Reactions and Reconciliation”), and discussion

of the many other advantages of formulating Bell’s theorem in terms of causation

(Sect. “Conclusion”).

3
In earlier, albeit recent, publications [4, 5] I used the term ‘determinism’ for Bell’s second assump-

tion in 1964. However, Bell did not actually use this word in 1964, and it is useful to reserve it for a

different notion [10]. Note the use here of small-capitals for terms with a precise technical meaning,

even when the relevant definition is given only at a later point in the chapter.
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Fig. 6.2 Minkowski diagram for the scenario Bell introduced in 1964. Time is the vertical axis,
space horizontal, and the diagonal lines indicate the boundaries of light-cones.

The Situation Bell Considered

The experimental situation Bell considered is shown as a Minkowski (space-time)

diagram in Fig. 6.2. This is closely based on such diagrams which Bell used in

Refs. [9, 12], for example. He did not use such a diagram in 1964, and only briefly

referred to relativistic concepts, but the diagrams he used in his definitive paper on

the subject [12] are applicable to, and even use the same notation as, his original

1964 paper. It is convenient to use something close to the form of diagram which

Bell finally settled upon [12], as it allows the assumptions from both those theo-

rems (LOCALITY and PREDETERMINATION in 1964; LOCAL CAUSALITY in 1976) to

be stated naturally. Considering more general distributions of events in space-time

lead to different conclusions about which assumptions can be stated naturally; see

Sect. “Conclusion” and Ref. [10].

The experiment involves two observers, Alice and Bob, with spatially sepa-

rated laboratories, where they perform experiments that are independent, but may

have correlated outcomes. This allows them to perform experiments in space-like-

separated regions of space-time, labelled A and B respectively. In her region, Alice

makes a free choice a of setting for her measurement, which yields an outcome A,

and Bob likewise, mutatis mutandis. In the overlap of the past light-cones of A and

B is a preparation event c which is necessary to produce the correlations between

the outcomes. Even for a fixed preparation c, the ability of Alice and Bob to make

free choices, and the existence of multiple possible outcomes, gives rise to a PHE-

NOMENON described by the relative frequencies
4

{f (A,B|a, b, c) ∶ A,B, a, b}. (1)

The existence of correlations in the outcomes in a physics experiment is typically

‘explained’ by stepping away from operationalist language, in a manner such as this:

the event c prepares a correlated pair of particles, one of which goes to A and the

other to B, each at subluminal speed.

4
Note that here we are not making a commitment to frequentism, but rather simply recognising that

real experimental data are relative frequencies.
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Stepping even further away from operationalism, we follow Bell in allowing for

the possibility of non-observable (or “hidden”) variables in the formalism, introduc-

ing variables 𝜆, defined at a time—i.e. on a space-like hypersurface (SLH)—before a
and b but after c, that could describe these particles, or anything else of relevance.

5

Note in particular that 𝜆 could represent a pure quantum state |𝜆⟩, since this is a

mathematical object defined on a SLH. If the source c reliably produces this par-

ticular pure state then this |𝜆⟩ would contain no more information than is already

given by specifying c. But this is an idealization, and in general |𝜆⟩ would have

some distribution given c, and so is just like any other hidden variable. In general,

we say that a MODEL (which Bell [3] called a ‘theory’) 𝜃 for the above PHENOM-

ENON, comprises a probability distribution for hidden variables, P
𝜃

(𝜆|c), and further

probabilities P
𝜃

(A,B|a, b, c, 𝜆), such that
6

∑

𝜆

P
𝜃

(A,B|a, b, c, 𝜆)P
𝜃

(𝜆|c) = f (A,B|a, b, c). (2)

Note that by considering a MODEL with non-trivial dependence on 𝜆, one is not
presuming PREDETERMINATION of outcomes:

Definition 1 (PREDETERMINATION) ∀ A, a,B, b, 𝜆, P
𝜃

(A,B|a, b, c, 𝜆) ∈ {0, 1}.

(See the next section for the source of this terminology.) An example of a hidden

variable MODEL that is stochastic (i.e. that violates PREDETERMINATION) is the one

mentioned above, where c prepares a mixed quantum state 𝜌c and 𝜆 is taken to define

a pure quantum state |𝜆⟩ such that 𝜌c =
∑

𝜆

P
𝜃

(𝜆|c) |𝜆⟩ ⟨𝜆|.
Note also that PREDETERMINATION should not be confused with the stronger and

purely operational notion of PREDICTABILITY [13]:

Definition 2 (PREDICTABILITY) ∀ A, a,B, b, f (A,B|a, b, c) ∈ {0, 1}.

While we have defined PREDICTABILITY in terms of the experimental frequencies

f (A,B|a, b, c), for a given MODEL it is of course possible to determine whether the

PHENOMENON it is supposed to describe has this property, via Eq. (2). The point is

that a MODEL may satisfy PREDETERMINATION even though the PHENOMENON does

not satisfy PREDICTABILITY.

The Two Bell’s Theorems of John Bell

In this section we present the two theorems, in chronological order, and then discuss

the relationship between them.

5
More generally [12], one could sandwich these variables between two suitable SLHs, but the above

formulation will suffice.

6
Given footnote 4, this equation is not to be read as a strict equality, but as carrying the same

meaning as that of any probabilistic prediction.
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Bell’s 1964 Theorem

In Bell’s 1964 paper he states what he has proven most clearly in his Conclusion

(Sect. VI):

In a theory in which parameters are added to quantum mechanics to determine the results
of individual measurements, without changing the statistical predictions, there must be a

mechanism whereby the setting of onemeasuring device can influence the reading of another
instrument, however remote.

Here the italics, added by us, emphasize the two assumptions that lead to a contra-

diction with the statistical predictions of quantum mechanics; the second assumption

is stated in the negative, since its negation follows if one holds to the first assump-

tion. These two assumptions are stated positively, with equal status, in the immediate

preceding sentence, at the end of his Sect. V:

for at least one . . . state . . . the statistical predictions of quantum mechanics are incompatible

with separable predetermination

as quoted in Sect. “Motivation” above. As was noted there, Bell did not distinguish

separability from locality, and he is explicit that PREDETERMINATION means “pre-

determination [of] the result of an individual measurement”. Thus his theorem is:

Theorem 1 (Bell-1964) There exist quantum PHENOMENA for which there is no
MODEL satisfying PREDETERMINATION and LOCALITY.

Although this was not the case in 1964, the quantum phenomena relevant to Bell’s

theorem have long since been verified experimentally, albeit with a few challenging

loopholes [5, 14].

It is presumably uncontroversial to understand PREDETERMINATION as per Def-

inition 1 already given above. The meaning of LOCALITY is more controversial, to

say the least (compare Refs. [15, 16] with Refs. [4, 11]). However, by our reading,

Bell is quite clear:

the requirement of locality [is] more precisely that the result of a measurement on one system

be unaffected by operations on a distant system

This is of course the positive form of the final notion in the first quote in this section,

and Bell states the same assumption (the irrelevance of Alice’s measurement choice

to Bob’s outcome) twice more in the paper. Although he successfully applies the

notion of locality only to theories with predetermined outcomes, he introduces it

prior to making the assumption of predetermination.
7

Thus it seems that we should

adopt a definition that accords with his words and applies to probabilistic theories:

7
He introduces it in the first paragraph of the paper proper, which serves as motivation for the

formulation of the assumptions he will use. There, Bell unfortunately misapplies his notion, in

attempting to derive predetermination via EPR-Bohm-correlations and locality. See Refs. [4, 11]

for discussions of the irrelevance of this flawed paragraph to Bell’s 1964 theorem (i.e. the “result

to be proved”, as he calls it, which he does indeed prove).
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Definition 3 (LOCALITY)

∀ a,B, b, 𝜆, P
𝜃

(B|a, b, c, 𝜆) = P
𝜃

(B|b, c, 𝜆),

and likewise for Alice’s result, which will remain unstated in similar definitions

below. (The existence of the function P
𝜃

(B|b, c, 𝜆) is also implicit here, and in similar

definitions below.) This definition of LOCALITY was also the one adopted by Jarrett

in 1984 [17]. In the same year Shimony [18] coined the phrase “parameter indepen-

dence” for the same concept, to emphasize that it required only that Bob’s outcome

be statistically independent of Alice’s setting, a controllable ‘parameter’. We prefer

to follow the terminology of Jarrett and (in our reading) Bell.

Note that LOCALITY is not the same [13] as the purely operational notion of

Definition 4 (SIGNAL-LOCALITY)

∀ a,B, b, f (B|a, b, c) = f (B|b, c),

the violation of which has never been observed, and, most physicists think, never

will be observed. However, for a strictly operational MODEL (that is, one that makes

no use of hidden variables, be they pure quantum states or other objects) there is no

distinction between LOCALITY and SIGNAL-LOCALITY. Thus, operational quantum

mechanics, involving only preparations, settings, and outcomes, satisfies LOCALITY.

In fact, LOCALITY is satisfied even in the non-operational quantum theory discussed

above, where c prepares 𝜌c but one assumes that, conditional on the hidden variable

𝜆, the probabilities of outcomes are determined by |𝜆⟩. In both cases, the reduced

quantum state on Bob’s side, which is mixed in general, defines probabilities for

Bob’s outcomes, for any measurement he makes, which are independent of Alice’s

choice of measurement. Moreover, introducing a realist narrative, involving instan-

taneous wave-function collapse, makes no difference to the fact that LOCALITY is

satisfied, as a mathematical statement about the probability distributions in the the-

ory. Even spontaneous collapse theories such as the celebrated GRW model [19]

respect LOCALITY (to the extent that they respect SIGNAL-LOCALITY).

Bell’s 1976 Theorem

More than a decade after his 1964 paper, Bell reformulated his theorem in a way

that he would cleave to, in essence, for the rest of his life. Building on his own work

from 1971 [20] and that of Clauser and Horne from 1974 [21], he introduced a new

notion:

Definition 5 (LOCAL CAUSALITY)

∀ A, a,B, b, 𝜆, P
𝜃

(B|A, a, b, c, 𝜆) = P
𝜃

(B|b, c, 𝜆).



126 H.M. Wiseman and E.G. Cavalcanti

Strictly speaking (and Bell was strict about this [9]), the above is a consequence of

the broader Principle of LOCAL CAUSALITY (Principle 2 in Sect. “Realist Principles”

below) when applied to the specific set up of Fig. 6.2. Note the crucial difference

from LOCALITY in that LOCAL CAUSALITY requires Bob’s outcome to be statisti-

cally independent of Alice’s outcome as well as her setting. This, Bell argued, is a

reasonable ‘localistic’ notion for a theory in which 𝜆 provides a complete description

of the relevant state of affairs prior to the measurements being performed.

As quoted in Sect. “Motivation”, Bell proved in 1976 that

quantum mechanics is not embeddable in a locally causal theory as formulated [above].

In other words, he proved a theorem involving only a single assumption:

Theorem 2 (Bell-1976) There exist quantum PHENOMENA for which there is no
MODEL satisfying LOCAL CAUSALITY.

Unfortunately for our purposes, having invented a new concept with a new name, Bell

immediately became indiscriminate once more, using “local causality” and ‘local-

ity’ interchangeably.
8

However, in his most mature treatment of the subject [12],

Bell unequivocally showed his preference for the term “local causality” [4], and in

following suit we respect Bell’s final will.

A Fine Distinction

Bell’s 1976 theorem implies Bell’s 1964 theorem. This is because, as is easy to

see, any MODEL 𝜃 satisfying LOCALITY and PREDETERMINATION satisfies LOCAL

CAUSALITY. The converse of that last clause is not true; there are theories satis-

fying LOCAL CAUSALITY that do not satisfy LOCALITY and PREDETERMINATION.

Orthodox quantum mechanics with separable states is one example. Nevertheless,

the converse of the first sentence of this subsection is true. That is, Bell’s 1964 the-

orem implies Bell’s 1976 theorem. This is because of the following:

Theorem 3 (Fine-1982) For any PHENOMENON, there exists a MODEL 𝜃 satisfying
LOCAL CAUSALITY if and only if there exists a MODEL 𝜃

′ satisfying PREDETERMI-

NATION and LOCALITY.

Although we have given the credit here to Fine [23], this result was known, in

essence, by Bell even in 1971 [20]; see Ref. [4] for details. For this reason, it is

useful shorthand to introduce the well-known term ‘Bell-local’ for describing the

type of MODEL that satisfies the broader assumptions of Bell’s 1976 theorem. That

is,

8
Indeed, by 1981 [22] he was implying that by ‘locality’ he had always meant LOCAL CAUSAL-

ITY. This historical revisionism is perfectly understandable, and probably unconscious—a plausible

unfolding of the localistic intuition Bell had in 1964 is LOCAL CAUSALITY, since this would have

worked, where LOCALITY failed, in Bell’s attempt to reproduce the EPR argument (see footnote 7).
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Definition 6 (BELL-LOCAL) A MODEL 𝜃 is BELL-LOCAL if and only if

∀ A, a,B, b, P
𝜃

(A,B|a, b, c) =
∑

𝜆

P
𝜃

(A|a, c, 𝜆)P
𝜃

(B|b, c, 𝜆)P
𝜃

(𝜆|c). (3)

If the two Bell’s theorems are logically equivalent, why should we bother to distin-

guish them? The answer is that the two different forms appeal to two different camps

of scholars, and indeed these two camps often recognise only the one form that they

favour. The broad term ‘scholars’ here is deliberately chosen to cover the increas-

ing range of disciplines—including (at least) physics, philosophy, and information

science—interested in Bell’s theorem. But it is important to note that the division into

two different camps does not sharply follow these disciplinary divisions. Of course

there are many more than two attitudes towards Bell’s theorem. Nevertheless, the

most common attitudes can be broadly grouped within the two camps, called here

operationalist and realist.

The Two Camps

The realist camp [15, 27–29] has the following credo:

Bell’s theorem uses only one assumption: local causality (or ‘locality’ as we usually call it

for short). This is the only reasonable way to apply the principle of relativity for statistical

theories. It is essentially what EPR assumed in 1935. They showed that operational quantum

mechanics is nonlocal, and Bell showed in 1964 that adding hidden variables cannot solve the

problem. Experiments violating a Bell inequality thus leave us with no option: the principle

of relativity is false. The world is nonlocal.

The operationalist camp [6, 24–26], on the other hand, could be caricatured by the

following:

Bell’s theorem uses two assumptions. The first assumption is locality. This is essentially the

same as signal locality, which is all the principle of relativity implies, but also applies to hid-

den variable theories. Orthodox quantum mechanics respects locality. The second assump-

tion is something else which has been variously called realism, predetermination, deter-

minism, objectivity, classicality, counter-factual-definiteness, and causality (perhaps with

slightly different formulations). Clearly it is the second assumption that we should abandon,

whatever we call it. Locality is here to stay.

Why do the two camps come to such contrary conclusions? Partly it is just a

difference in terminology: realists use ‘locality’ to mean LOCAL CAUSALITY, while

operationalists use it to mean LOCALITY. But the deeper question is why they dis-

agree about which is the ‘correct’ way to apply the principle of relativity. Bell well

explains the motivations of the realist camp [12]:

The obvious definition of “local causality” does not work in quantum mechanics, and this

cannot be attributed to the “incompleteness” of that theory. . . .

Do we then have to fall back on “no signalling faster than light” as the expression of the

fundamental causal structure of contemporary theoretical physics? That is hard for me to
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accept. For one thing we have lost the idea that correlations can be explained . . . . More

importantly, the “no signalling” notion rests on concepts which are desperately vague . . . .

The assertion that “we cannot signal faster than light” immediately provokes the question:

“Who do we think we are?”

Here the italics, added by us (except for the ‘we’ in the final question), emphasize

the two key tenets of the realist camp: that correlations should be explained, and that

anthropocentric notions such as ‘signalling’ should play no fundamental role.

An operationalist, however, would claim to know well enough who ‘we’ are, and

point out that statements about what we may, or may not, be able to do are very use-

ful, for example in informational security proofs. From an operationalist perspective,

moreover, explanations, in the sense Bell means, might be regarded as superfluous.

These differences between realists and operationalists hark back to Einstein’s 1919

distinction between constructive theories and principle theories [30]. But a more pre-

cise understanding of the origin of the disagreement is possible by breaking down the

assumptions used in Bell’s theorem to a more basic level (Sect. “Back to Basics”). As

we will see, this is also the way towards enabling the two camps to discuss Bell’s the-

orem using the same terms, agreeing on what combinations of assumptions it implies

to be impossible,
9

even while disagreeing on which assumption is most implausible

(Sect. “Reactions and Reconciliation”).

Back to Basics

Here we make a fresh start, aiming to base Bell’s theorem on notions more compre-

hensive and more fundamental than those defined earlier in this chapter with refer-

ence to the particular scenario of Sect. “The situation Bell considered”. Those earlier

notions are temporarily abandoned, but they will gradually be reintroduced and their

relation to the deeper concepts indicated.

To begin, we introduce some axioms. In calling them ‘axioms’ we are not imply-

ing that they are unquestionable, only that we will not question their necessity in the

formulations of Bell’s theorem below. Without further ado:

Axiom 1 (MACROREALITY) An event observed by any observer is a real sin-

gle event, and not ‘relative’ to anything or anyone.

This rules out consideration of the “relative state” [31] or “many worlds” [32] inter-

pretation, as well as the extreme subjectivism of the ‘QBist’ interpretation [33].

9
This is always assuming that a loophole-free test, expected soon [5, 14] will not turn up any sur-

prises.
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Axiom 2 (MINKOWSKI SPACE-TIME) Concepts such as space-like separation,

light-cones, and foliations of SLHs are well defined in ordinary laboratory

situations.

This rules out short-cuts through space (‘wormholes’) between distant locations [34].

There is actually no need to restrict to flat space-time; any time-orientable Lorentzian

space-time manifold will do, but the above terminology is more straight-forward.

Axiom 3 (TEMPORAL ORDER) For any event A, there is a SLH containing A
that separates events in the PAST of A from events that have A in their PAST.

Note the term PAST is not, in this axiom, to be understood as having definite mean-

ing; the font used is meant to alert the reader to this fact. In particular, there is no

implication that all events on one side of the SLH are in the PAST of A and all events

on the other side in the future of A (i.e. having A in their PAST). For example, TEM-

PORAL ORDER is satisfied if we take PAST to mean the past light-cone, which defines

only a partial ordering of events (that is, for some pairs of events, neither is in the

PAST of the other). To define an almost-total ordering of events (that is, such that for

almost every pair of events, one of them is in the PAST of the other) one would need

to define PAST via a fixed foliation of SLHs.

Axiom 4 (CAUSAL ARROW) Any CAUSE of an event is in its PAST.

This axiom, together with Axioms 2 and 3, implies a causal structure describable by

a directed acyclic graph, as is standard in modelling of causation [7]. It rules out

retrocausal approaches to Bell’s theorem such as in Refs. [35, 36]. Note that, like

PAST above, CAUSE here does not yet have any precise meaning. The meaning of

these concepts will become more defined as more assumptions are added.

In moving now from axioms to postulates, we list assumptions that are more likely

to be questioned, or at least that were questioned, in some form, relatively early in

the literature on Bell’s theorem. Indeed, if one accepts the Axioms then one must

(modulo the remaining experimental loopholes) reject one of the postulates below,

as we will show in Sect. “Reactions and Reconciliation”. The first postulate (which

was listed as an Axiom in Ref [4]) begins the process of adding meaning to ‘CAUSE’:
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Postulate 1 (FREE CHOICE) A freely chosen action has no relevant CAUSES.

Here, ‘relevant’ means “in common with, or among, the other events under study.”

This postulate is not meant to indicate a philosophical commitment to Cartesian dual-

ism, or a religious commitment to Pelagianism, although it is possibly incompatible

with Augustinian predestination.
10

Here, it serves to rule out (when combined with

other principles) what Bell called ‘superdeterminism’ [12]. The ‘super’ in ‘superde-

terminism’ indicates that free choices would not just have causes as a matter of prin-

ciple (as believed by those who hold to the ‘determinist’ philosophy of free will).

Rather, they would of necessity have causes that are correlated in a very particu-

lar way with external physical variables that affect the outcomes of measurements.

Although this viewpoint has at least one prominent scientific proponent [37], our

personal view is that Postulate 1 is as unquestionable as any of the Axioms above;

see footnote 14 below.

Postulate 2 (RELATIVISTIC CAUSALITY) The PAST is the past light-cone.

Note that a term like “past light-cone” is to be understood as having definite meaning,

from the Axiom of MINKOWSKI SPACE-TIME.

Postulate 3 (COMMON CAUSES) If two sets of eventsA andB are correlated,
and no event in either is a CAUSE of any event in the other, then they have a
set of common CAUSES C that EXPLAINS the correlation.

Here, common CAUSES means events that are CAUSES of at least one event in A
and at least one event in B. It is important to note that this postulate is not the

same as REICHENBACH’s Principle of common cause [38]. Rather, following Ref. [8]

(although with some differences in details) we have deliberately split Reichenbach’s

celebrated principle into the above Postulate of COMMON CAUSES, and the below

10Les passions de l’âme (1649), De natura (415), and De natura et gratia (415).
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Postulate 4 (DECORRELATING EXPLANATION) A set of CAUSES C , common
to two set of eventsA andB, EXPLAINS a correlation betweenA andB only
if conditioning on C eliminates the correlation.

As Reichenbach said [38], “When we say that the common cause explains the [cor-

relation], we refer . . . to the fact that relative to the cause the events A and B are

mutually independent.”

In the above principles we referred always to events, but for statistical concepts

such as correlation it is more common for physicists to think in terms of variables. In

such cases we will be loose with notation and terminology, and allow, for instance, A
to stand for the outcome that Alice gets (a variable) as well as the event that Alice’s

outcome takes the value A.

Realist Principles

The axioms and postulates above form (as we will see in Sect. “Reactions and Rec-

onciliation”) a nice set in that they are sufficient to enforce BELL-LOCALITY, and,

with one exception, all necessary. (The one exception is TEMPORAL ORDER, which

is not needed if one assumes RELATIVISTIC CAUSALITY.) However they do not cor-

respond to the principles stated in Bell’s two theorems, and hence do not obviously

connect to the two camps. Thus we will develop principles that do relate to the two

camps (starting with realists) and show their relation to the postulates above.

First, since the explanation of correlations is a realist tenet, realists hold to

REICHENBACH’s Principle, which we state here explicitly,

Principle 1 (REICHENBACH) If two sets of events A and B are correlated, and no

event in either is a CAUSE of any event in the other, then they have a set of common

CAUSES C , such that conditioning on C eliminates the correlation.

For realists, this is the point of causation—to explain correlations. However we made

that a separate assumption, as discussed above, and as captured by this:

Lemma 1 The postulates of COMMON CAUSES and DECORRELATING EXPLANA-

TION imply REICHENBACH’s Principle.

For realists, the role of REICHENBACH’s principle is in this:

Lemma 2 REICHENBACH’s Principle and the Postulate of RELATIVISTIC CAUSAL-

ITY imply the Principle of LOCAL CAUSALITY,

if we define the last generally, basically as Bell did in 1976, as
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Principle 2 (LOCAL CAUSALITY) If two space-like separated sets of events A and

B are correlated, then there is a set of events C in their common Minkowski past

such that conditioning on C eliminates the correlation.

Here the common Minkowski past means the intersection of the union of past light-

cones of events in A with the union of past light-cones of events in B.

The reader may well ask how this Principle of LOCAL CAUSALITY relates to the

Definition 5. Take the two sets of events in Principle 2 to be A = (A, a) and B =
(B, b). Thus if LOCAL CAUSALITY is satisfied there must exist a set of CAUSES C
in their common Minkowski past such that P(A, a,B, b|C ) = P(A, a|C )P(B, b|C ).
Thus,P(B, b|A, a,C ) = P(B, b|C ), andP(B|A, a, b,C ) = P(B|b,C ). ReplacingC by

Bell’s variables c and 𝜆,
11

a sufficient specification of the causes by assumption, gives

Definition 5.

This is not, however, sufficient to derive a contradiction with quantum phenom-

ena. It was sufficient in Sect. “The Two Bell’s Theorem of John Bell” because there

we were working within the framework of our definition of a MODEL in Eq. (2).

Here we want a more principled derivation of the condition of BELL-LOCALITY, in

Eq. (3). For this it is necessary to use an additional assumption related to the Postu-

late of FREE CHOICE. Specifically, we combine this postulate with other postulates:

Lemma 3 The Postulates of RELATIVISTIC CAUSALITY and COMMON CAUSES and
FREE CHOICE imply the Principle of LOCAL AGENCY,

where we have defined (for terminological reasons to be explained elsewhere [10])

Principle 3 (LOCAL AGENCY) The only relevant events correlated with a free

choice are in its future light cone.

This assumption was not stated precisely by Bell in 1976, who said only “It has been

assumed that the settings of instruments are in some sense free variables . . . .”.
12

11
The alert reader will have noticed some sleight of hand. In Bell’s 1976 paper, where he introduced

LOCAL CAUSALITY, 𝜆 denoted all events in the intersection of the past light-cones. But in Ref. [12]

Bell took the 𝜆s to be defined between two SLHs, and the limit when these become one corresponds

to the situation he considered in 1964, where the 𝜆s were “initial values of the [relevant] variables at

some suitable instant.” As in Fig. 6.2, that suitable instant (SLH) may not even cross the intersection

of the past light-cones. The resolution is that since, by assumption, the variables {𝜆} are the only

relevant ones, they must carry the information that was present in the common causes C in the

common Minkowski past of A and B. This they can without falling foul of LOCAL CAUSALITY (in

the sense of Principle 2) because there is a part of the SLH that is in the future light-cone of the

events in C , but in the past light-cone of A, and likewise for B.

12
Bell was immediately criticised for the vagueness of this statement (and for what followed, some

of which was not sufficient for his purpose) by Shimony, Horne and Clauser [39]. The immediacy

was, according to Clauser [40], because the latter two authors had originally drafted their 1974

paper [21] using the above Principle of LOCAL CAUSALITY (or something like it), but Shimony

pointed out to them that this was not sufficient to derive BELL-LOCALITY without an extra assump-

tion relating to free choice. As a consequence they retreated from such a principled formulation of

LOCAL CAUSALITY to the more specific Definition 5, which they said characterized “objective local

theories” [21], enabling a “less general and more plausible” [39] assumption (than LOCAL AGENCY,
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However, according to Bell in 1977 [41] what he meant by this, in the context of

theories satisfying LOCAL CAUSALITY, was that “the values of such variables have

implications only in their future light cones,” in other words, the above Principle of

LOCAL AGENCY.

It is worth noting, however, that Bell does not actually need a Principle as strong

as this, but rather only (as he says two sentences later) that “In particular they have

no implications for the . . . variables in . . . [their] backward light cones.” This weaker

assumption follows (using Axioms 3 and 4 without RELATIVISTIC CAUSALITY) from

the following.

Principle 4 (AGENT-CAUSATION) If a set of relevant events A is correlated with a

freely chosen action, then that action is a CAUSE of at least one event in A .

This can be seen as follows. Assume that a is correlated with some event A. From

this Principle of AGENT-CAUSATION, a must be a cause of A. From Axiom 4, a must

be in the PAST of A. From Axiom 3, this means there must be a SLH separating a
and A. Thus, as claimed, A cannot be in the past light-cone of a. If one is making the

assumption of LOCAL CAUSALITY, then the Axioms need not be used, and one can

directly conclude from Principle 4 that A must be in the future light-cone of a. That

is, the Principles of AGENT-CAUSATION and LOCAL AGENCY become equivalent.

Now, to obtain Eq. (3) we must consider P(A,B|a, b, c), which can be written as
∑

𝜆

P(A,B|a, b, 𝜆, c)P(𝜆|a, b, c). With the location of events in Fig. 6.2, if the events

in C are in the common Minkowski past of A and B, they are not in the future

light-cone of either a or b. Thus from the principle of LOCAL AGENCY, P(𝜆|a, b, c) =
P(𝜆|c). Using LOCAL CAUSALITY as above then gives Eq. (3). Thus we have a more

principled version of Bell’s 1976 theorem:

Theorem 4 (Bell-1976, in principles) Quantum PHENOMENA violate the conjunc-
tion of Axioms 1–4, the Principle of LOCAL CAUSALITY, and the Principle of LOCAL

AGENCY (or AGENT-CAUSATION).

From the lemmata in this section (noting that REICHENBACH’s Principle implies the

Principle of COMMON CAUSES, and applying this in Lemma 3), we can also formulate

this theorem using the more fundamental postulates as follows:

Theorem 5 (Bell-1976, in deeper principles) Quantum PHENOMENA violate the
conjunction of Axioms 1–4, the Postulate of FREE CHOICE, the Postulate of RELA-

TIVISTIC CAUSALITY, and REICHENBACH’s Principle.

These two theorems, and the relationship between them are illustrated in Fig. 6.3.

(Footnote 12 continued)

for example) relating to free choice. Clauser and Horne [21] deserve credit for first (as far as we are

aware) discussing, in their footnote 13, the need for independence of the hidden variables 𝜆 from the

free choices a and b which is implicit in Eq. (2). They note that to justify that assumption one has

to rule out the “possibility” that “Systems originate within the intersection of the backward light

cones of both analyzers and the source . . . [which] effect [sic.] both the experimenters’ selections

of analyzer orientations and the emissions from the source.”
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Fig. 6.3 Two realist

versions of Bell’s

Theorems 4 and 5. The

coloured (shaded) boxes are

concepts used in the

formulation in question, or

upheld in the philosophy of

the camp (here, realists) in

question. The black boxes
are concepts used in the

formulation in question, but

rejected in the philosophy of

the camp in question. The

white (pale) boxes are

concepts not used in the

formulation in question and

ignored in the philosophy of

the camp in question.

Underlined bold font is

used for the fundamental

assumptions (2, 3, or 4 in

number) of the formulation

in question. The arrows

indicate that a particular

concept holds if all concepts

pointing to it (plus the

Axioms) hold.

Operationalist Principles

As discussed in Sect. “The Two Camps”, a key difference between realists and oper-

ationalists is that the former seek to explain correlations while the latter do not (or,

at least, not in the same sense). We have shown how realists can enshrine this goal

in causal terms by REICHENBACH’s Principle. Another key difference is that opera-

tionalists are happy to put the actors in centre-stage. Thus, operationalists should be

happy to accept a notion of causation which is not about explaining all correlations,

and which is agent-centric: the Principle of AGENT-CAUSATION (Principle 4 above).

Just as combining REICHENBACH’s Principle with the Postulate of RELATIVISTIC

CAUSALITY gives LOCAL CAUSALITY (the realists’ favoured localist notion), here we

have:



6 Causarum Investigatio and the Two Bell’s Theorems of John Bell 135

Lemma 4 The Principle of AGENT-CAUSATION plus the Postulate of RELATIVISTIC

CAUSALITY implies the Principle of LOCALITY,

where we can provide the following principled version of LOCALITY:

Principle 5 (LOCALITY) The probability of an observable event A is unchanged by

conditioning on a space-like-separated free choice b, even if it is already conditioned

on other events not in the future light-cone of b.

This Lemma can be demonstrated as follows. Define A to be A and other events not

in the future light-cone of b. By Postulate 2, none of the events in A can have b as a

CAUSE. If b is a freely chosen action, then by Principle 4,A cannot be correlated with

b. Hence the probability of A, even conditional on other events in A , is independent

of b.

Note that LOCALITY is by no means the strongest principle that can be derived

from AGENT-CAUSATION and RELATIVISTIC CAUSALITY; one can also show

Lemma 5 The Principle of AGENT-CAUSATION plus the Postulate of RELATIVISTIC

CAUSALITY implies the Principle of LOCAL AGENCY,

as defined in the preceding section (Principle 3). We use LOCALITY rather than

LOCAL AGENCY to remain faithful to Bell’s original concept. However, we do also

use these principles to derive another principle that was implicit for Bell in 1964:

Lemma 6 The Principle of AGENT-CAUSATION, and the Postulate of RELATIVISTIC

CAUSALITY imply the Principle of NO SUPERDETERMINISM,

where this last is:

Principle 6 (NO SUPERDETERMINISM) Any set of events on a SLH is uncorrelated

with any set of freely chosen actions subsequent to that SLH.

The name of this Principle is taken from Bell [12], and its form chosen in keeping

with the assumption of PREDETERMINATION below.

Unlike LOCAL CAUSALITY, LOCALITY is not sufficient to make a theory BELL-

LOCAL, even with the Principle of NO SUPERDETERMINISM. We require an additional

principle, which, based on Bell’s 1964 paper, we formulate as:

Principle 7 (PREDETERMINATION) For any observable event A, and any SLH S
prior to it, A has CAUSES on S, which, possibly in conjunction with free choices

subsequent to S, determine A.

Applying this to Bell’s scenario, choose the SLH to be prior to both a and b, so

that Bob’s outcome is a function B(a, b, c, 𝜆). By the Principle of LOCALITY, the

dependence on a must be trivial, because it is space-like-separated from B. Finally,

by the Principle of NO SUPERDETERMINISM, the probability of 𝜆 cannot depend on

a and b. Doing the same for A, and following the same argument as in Sect. “Realist

Principles” we see that BELL-LOCALITY is obeyed. Thus,
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Fig. 6.4 Two operationalist

versions of Bell’s

Theorems 6 and 7. For

explanatory details, see

Fig. 6.3.

Theorem 6 (Bell-1964, in principles) Quantum PHENOMENA violate the conjunc-
tion of Axioms 1–4 and the Principles of NO SUPERDETERMINISM, LOCALITY, and
PREDETERMINATION.

From the lemmata in this section, we can also formulate this theorem using more

fundamental, and not more numerous, principles, as follows:

Theorem 7 (Bell-1964, in deeper principles) Quantum PHENOMENA violate the
conjunction of Axioms 1–4, the Postulate of RELATIVISTIC CAUSALITY, and the Prin-
ciples of AGENT-CAUSATION and PREDETERMINATION.

This has the advantage of not using the term ‘locality’, which realists generally use

with a different meaning, as discussed above. These two theorems, and the relation-

ship between them are illustrated in Fig. 6.4.
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Reactions and Reconciliation

Let us now review the forms of Bell’s theorem favoured by the two camps, as for-

mulated in terms of causal principles deeper than those used by Bell in either 1964

or 1976. In all of the below (as in the related figures), we assume the usual

1. Axiom of MACROREALITY,

2. Axiom of MINKOWSKI SPACE-TIME,

3. Axiom of TEMPORAL ORDER,

4. Axiom of CAUSAL ARROW.

First, the realist’s version makes the additional assumptions of

∙ The Postulate of FREE CHOICE,

∙ The Postulate of RELATIVISTIC CAUSALITY,

∙ REICHENBACH’s Principle.

Of these three, realists reject RELATIVISTIC CAUSALITY, leaving the question of what

defines PAST in the Axiom of CAUSAL ARROW open to further physical investiga-

tion. Operationalists, on the other hand, would reject (or indeed have rejected [6])

REICHENBACH’s Principle. But the latter have reason to be unhappy with the remain-

ing list, because the remaining Axioms and Postulates have no empirical conse-

quences. They do not imply even SIGNAL-LOCALITY, for example. Thus the oper-

ationalists would be left saying that they privilege the Postulate of RELATIVISTIC

CAUSALITY over REICHENBACH’s Principle even though they cannot point to any

consequences of believing in the former. For this reason the operationalists would,

presumably, object to the list of options offered by this form of Bell’s theorem.

Next we consider the operationalist’s version, which assumes instead

∙ The Postulate of RELATIVISTIC CAUSALITY,

∙ The Principle of AGENT-CAUSATION,

∙ The Principle of PREDETERMINATION.

Of these three, operationalists reject PREDETERMINATION, embracing the idea of

intrinsic randomness. Realists, on the other hand, would presumably still reject the

Postulate of RELATIVISTIC CAUSALITY. But the latter have reason not to be happy

with the list of options offered here. The reason is that PREDETERMINATION is just

too easy to reject. Even though many of the theories realists take seriously, such

as de Broglie–Bohm mechanics [42, 43], satisfy PREDETERMINATION, it is not a

necessary feature of realist theories, and realists would not want to be characterized

as basing their rejection of RELATIVISTIC CAUSALITY on a belief in PREDETERMI-

NATION. Realists do not reject the Principle of AGENT-CAUSATION, because it is

implied by REICHENBACH’s Principle and FREE CHOICE (this is just a weaker ver-

sion of Lemma 7 below). But it is the fact that AGENT-CAUSATION is weaker than

REICHENBACH that is the problem, they might say, because it entails the addition of

the third assumption (PREDETERMINATION) which is clearly too strong, and so too

easy to reject. Thus realists do, in fact [28], object to a form of Bell’s theorem listing

PREDETERMINATION as a fundamental assumption.
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It would seem that the two camps are still at an impasse. But by returning to the

Postulates of Sect. “Back to Basics” we can bridge the gap. From results already

discussed, it is apparent that BELL-LOCALITY can be derived from the Axioms plus

∙ The Postulate of FREE CHOICE,

∙ The Postulate of RELATIVISTIC CAUSALITY,

∙ The Postulate of COMMON CAUSES,

∙ The Postulate of DECORRELATING EXPLANATION.

For realists, little has changed from their preferred formulation, and they will as

before, reject RELATIVISTIC CAUSALITY. But operationalists now should be happy

to reject DECORRELATING EXPLANATION, and keep the other postulates. The reason

is that

Lemma 7 The Postulates of FREE CHOICE and COMMON CAUSES imply the Princi-
ple of AGENT-CAUSATION.

This can be seen as follows. Say a set of events A is correlated with a free choice a.

Now by Postulate 1, a has no relevant CAUSES. Thus by Postulate 3, the only option is

that a is a CAUSE of at least one event inA , as in Principle 4. Thus operationalists still

have their agent-centric notion of causation, which operational quantum mechanics

respects, even with the addition of the Postulate of RELATIVISTIC CAUSALITY. Some

following this direction believe that a replacement for the Principle of DECORRELAT-

ING EXPLANATION is open to further physical investigation [44]. The attitude each

camp would be expected to take to this theorem is illustrated in Fig. 6.5.

Conclusion

After thorough investigation, we suggest that the cause of the disagreement between

operationalists and realists over Bell’s theorem is a disagreement over causes. This

leads the two camps to favour Bell’s 1964 theorem and Bell’s 1976 theorem respec-

tively, because the localistic notions they employ relate to notions of agent-causation

and explanatory causation respectively. However, by breaking down notions into

more fundamental postulates, we could formulate what we believe is the best version

of Bell’s theorem, for the purposes of reconciling the two camps:

Theorem 8 (Bell-reconciliation) Quantum PHENOMENA violate the conjunc-
tion of Axioms 1–4 and the Postulates of FREE CHOICE, RELATIVISTIC

CAUSALITY, COMMON CAUSES, and DECORRELATING EXPLANATION.

This formulation avoids contentious words like ‘locality’, and allows each camp to

reject one assumption (DECORRELATING EXPLANATION and RELATIVISTIC CAUSAL-

ITY, respectively), knowing that the remaining assumptions reflect its philosophical
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Fig. 6.5 The realist and

operationalist interpretations

of our ‘reconcilation’ version

of Bell’s Theorem 8. For

explanatory details, see

Fig. 6.3.

position. Of course even if the two camps do agree upon a single form of Bell’s

theorem, their disagreement about which assumption to reject is still a substantive

disagreement. But at least they could discuss the merits of their weltanschauungen
using a common vocabulary, and so avoid talking past one another, or (the next stage)

interminable arguments about what terms like ‘locality’ should mean. If, in the end,

they just agree to disagree, that would still be a great improvement over the present

state of affairs [1, 29, 45–47].

Another advantage of the above formulation is that RELATIVISTIC CAUSALITY

better reflects the ontology of different quantum interpretations than does a notion

like LOCALITY. As has been stated a few times above, orthodox quantum mechanics

respects LOCALITY, even when it is understood as a realistic theory, an understand-

ing held by most physicists who don’t think long and hard about foundations (and

by some who do). That is, even the process whereby, when Alice and Bob share a

singlet state, a measurement by Alice in a certain basis causes the quantum state of

Bob’s system to collapse instantaneously into one of the basis states, does not violate

LOCALITY. Yet the very wording of the preceding sentence implies that the described
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process does violate RELATIVISTIC CAUSALITY.
13

By contrast, operational quantum

mechanics does not violate RELATIVISTIC CAUSALITY, because it does not entail any

causal narrative involving quantum states, but simply uses them as computational

tools. A more precise formulation of this idea will be given elsewhere [10].

A similar example of the advantage of talking about causes is the ability to for-

mulate FREE CHOICE in an obvious way: that a freely chosen action has no rele-

vant CAUSES.
14

This can be opposed to Colbeck and Renner’s assumption FR, which

also supposedly corresponds to “the assumption that measurements can be chosen

freely” [49], but which is actually the assumption of LOCAL AGENCY as defined

in Sect. “Realist Principles”. As we have seen (Lemma 3), this can be derived from

FREE CHOICE only by also using the Postulates of RELATIVISTIC CAUSALITY and

COMMON CAUSES (or something similar). The assumption FR clearly embodies far

more than merely freedom of choice, and interpreting it as if it does not (i.e. tak-

ing their language at face value) leads to bizarre conclusions. For example, Colbeck

and Renner would be forced to claim that a typical physicist (see preceding para-

graph), adhering to the realistic interpretation of orthodox quantum mechanics, does
not believe in freedom of choice, even if said physicist were to believe that humans

are not wholly governed by physical laws and have free will in the strongest possible

philosophical sense.

Formalizing notions relating to Bell’s theorem as causal principles also makes it

apparent that some notions are more natural than others. In particular, the notions

of LOCALITY and PREDETERMINATION, which Bell introduced in his first paper, are

not very natural. The first is weaker than the notion of LOCAL AGENCY that can

be derived from the more fundamental postulates of AGENT-CAUSATION and REL-

ATIVISTIC CAUSALITY, while the second is even more contrived. The latter criti-

cism we would also level, even more strongly, at another notion which has been

suggested as a replacement for PREDETERMINATION, namely ‘completeness’ [17]

(or ‘Jarrett-completeness’ as one of us has called it [4]), also known as ‘outcome-

independence’ [18]. In this context, more natural concepts for formulating a theorem

in the style of Bell’s 1964 theorem will be considered elsewhere [10].

Finally, approaching Bell’s theorem using ideas of causation can lead in new

directions. For instance, if one assumes the predictions of relativistic quantum

13
Notably, the faster-than-light effect of Alice’s choice on Bob’s conditioned state has now been

verified experimentally with no detector efficiency loophole [48], unlike BELL-NONLOCALITY [14].

14
This may sound like a strong statement, and the reader may feel tempted to follow neither the

operationalist nor the realist camp, but rather to reject Postulate 1 from the list of assumptions in

Theorem 8. This temptation should vanish if the reader thinks through what it would actually mean

to explain away Bell-correlations through the real (not just in-principle) failure of FREE CHOICE.

There is no general theory that does this. If such a theory did exist, it would require a grand con-

spiracy of causal relationships leading to results in precise agreement with quantum mechanics,

even though the theory itself would bear no resemblance to quantum mechanics. Moreover, it is

hard to imagine why it should only be in Bell experiments that free choices would be significantly

influenced by causes relevant also to the observed outcomes; rather, every conclusion based upon

observed correlations, scientific or casual, would be meaningless because the observers’s method

would always be suspect. It seems to us that any such theory would be about as plausible, and

appealing, as, belief in ubiquitous alien mind-control.
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mechanics to be correct, then it seems that one can, in Theorem 8, replace the two

Postulates of FREE CHOICE and RELATIVISTIC CAUSALITY by the single Postulate of

NO FINE-TUNING [7]. This is a postulate that the conditional independence relations

between observable events are a consequence only of the causal structure (i.e. which

events are CAUSES for which other events), and are not to be explained by fine-tuning

of the probabilities of events. Whether this formulation can really be regarded as

having fewer postulates than the above, whether it is truly possible to dispense with

FREE CHOICE, and how the two camps could be expected to react to it, are interesting

questions for exploration.
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Chapter 7
Whose Information? Information About
What?

Jeffrey Bub

My title is from an article by John Bell [1], in which he argues that terms like mea-

surement or information have no place in the formulation of fundamental theories of

physics. I want to argue here, against Bell, that the conceptual revolution in the tran-

sition from classical to quantum mechanics should be understood as resting on the

recognition that there is an information-theoretic structure to the mosaic of events,

and this structure is not what Shannon thought it was—just as the theory of rela-

tivity rests on the recognition that events have a spatio-temporal structure, and this

structure is not what Newton thought it was.

Firstly, let me say what I don’t mean by this thesis. I don’t mean that information

is primary and that particles and fields—what physics is usually understood to be

about—are in some sense derived from elementary units of information as the basic

building blocks of reality. Wheeler’s slogan ‘it from bit’ suggests a view like this.

Vlatko Vedral endorses something similar in his book Decoding Reality. As Vedral

puts it, ‘our reality is ultimately made up of information,’ and ‘the laws of Nature

are information about information.’

The classical theory of information was initially developed by Claude Shannon

to deal with certain problems in the communication of messages as electromagnetic

signals along a channel such as a telephone wire. A communication set-up involves

a transmitter or source of information, a communication channel, and a receiver.

An information source produces messages composed of sequences of symbols from

an alphabet, with certain probabilities for the different symbols. The fundamental

question for Shannon was how to quantify the minimal physical resources required

to represent messages produced by a source, so that they could be communicated via
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a channel and reconstructed by a receiver. For this problem, and related communi-

cation problems, the meaning of the message is irrelevant.

As Shannon put it in his seminal paper ‘A Mathematical Theory of Communica-

tion’ [2, p. 379]:

The fundamental problem of communication is that of reproducing at one point either exactly

or approximately a message selected at another point. Frequently the messages have mean-
ing; that is they refer to or are correlated according to some system with certain physical

or conceptual entities. These semantic aspects of communication are irrelevant to the engi-

neering problem. The significant aspect is that the actual message is one selected from a set
of possible messages. The system must be designed to operate for each possible selection,

not just the one which will actually be chosen since this is unknown at the time of design.

So a theory of information in the sense relevant for physics is about the ‘engineer-

ing problem’ of communicating messages over a channel efficiently. In this sense, the

concept of information has nothing to with anyone’s knowledge and everything to

do with the stochastic or probabilistic process that generates the messages. Shannon

showed that it is possible to compress the information required to communicate a

message—to reduce the average number of bits per symbol—up to a certain optimal

compression, if the probabilities of the different symbols produced by an information

source are not all equal.

Quantum mechanics began with Heisenberg’s seminal ‘Umdeutung’ paper of

1925 [3], which he developed shortly afterwards into the first version of quantum

mechanics in collaboration with Max Born and Pascual Jordan [4, 5]. The problem,

for Heisenberg, was to explain the discrete spectral lines in the emission and absorp-

tion spectra of gases, without appealing to the ad hoc quantum rules for electron

orbits in Bohr’s atomic theory. Bohr’s theory stipulates that the energy of an orbiting

electron is quantized: there is a discrete set of allowed orbits associated with different

energies that an electron can occupy, with lower energy orbits closer to the nucleus.

The theory also stipulates that an atom radiates or absorbs energy only when an elec-

tron jumps from one of these quantized orbits to another orbit, with the frequency

of the radiation depending on the energy gap between the two orbits. These rules for

electrons conflict with classical electrodynamics and also with classical mechanics.

The full title of Heisenberg’s paper in English is ‘On the quantum-theoretical re-

interpretation [Umdeutung] of kinematical and mechanical relations.’ Heisenberg

showed that the discrete frequencies of light emitted by atoms could be explained

without referring to electron orbits by re-interpreting classical quantities, like posi-

tion, momentum, energy, angular momentum, as operations. In later versions of the

theory, these operations are represented by operators that act on and transform the

states of quantum systems. In a letter to Wolfgang Pauli written July 9, 1925, Heisen-

berg wrote:

All of my meagre efforts go toward killing off and suitably replacing the concept of the

orbital path that one cannot observe.

The algebra of operators contains commuting and noncommuting operators that

are ‘intertwined,’ to use Gleason’s term [6, p. 886]: an operator can belong to dif-

ferent mutually commuting sets of operators that don’t commute with each other.
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Gleason proved, under very weak assumptions, that the quantum probabilities spec-

ified by the Born rule are unique as probabilities that can be defined on the operator

algebra [6]. Kochen and Specker [7] proved that quantum systems can’t have defi-

nite values simultaneously for certain finite sets of quantities represented by these

operators. The result follows from the way quantities with more than two possible

values are intertwined in the operator algebra (there is no intertwinement for quanti-

ties with only two possible values), if the value of a physical quantity Q represented

by an operator Q is ‘noncontextual,’ in the sense that the value doesn’t depend on the

contexts defined by the different commuting sets of operators to which Q belongs.

In particular, an electron in atom can’t have definite position and momentum values,

and so can’t have a well-defined orbit in an atom.

If a quantity has a definite value in a quantum state, then certain other quanti-

ties are indefinite, and the result of measuring a quantity with an indefinite value is

an intrinsically random event, assuming no action at a distance or something simi-

lar. (See, e.g., the argument by Colbeck and Renner [8]), who derive intrinsic ran-

domness from a related condition of ‘free choice’ for the observables measured.)

This intrinsic randomness allows new sorts of nonlocal probabilistic correlations for

entangled quantum states of separated systems, where the probabilities are, as von

Neumann put it, ‘perfectly new and sui generis properties of physical reality’ [9].

Schrödinger, who coined the term, referred to entanglement as ‘the characteristic

trait of quantum mechanics, the one that enforces its entire departure from classical

lines of thought’ [10, p. 555].

Schrödinger published a wave mechanical version of quantum mechanics in 1926

[11, 12] that kept the orbits and explained their quantization as a wave phenomenon.

Shortly afterwards, he proved the formal equivalence of Heisenberg’s noncommuta-

tive mechanics and his own wave mechanics. Not surprisingly, physicists found wave

mechanics more intuitively appealing as a picture of reality at the subatomic level

than the abstract notion of a noncommutative mechanics, but the intuitive appeal is

misleading. As Schrödinger pointed out in a lecture to the Royal Institution in Lon-

don in March, 1928 [13, p. 160], the wave associated with a quantum system evolves

in an abstract, multi-dimensional representation space, not real physical space:

The statement that what really happens is correctly described by describing a wave-motion

does not necessarily mean exactly the same thing as: what really exists is a wave-motion.

. . . It is merely an adequate mathematical description of what happens.

The idea of a wave as a representation of quantum reality continues to shape con-

temporary discussions of conceptual issues in the foundations of quantum mechan-

ics. From the perspective adopted here, the later formalization of quantum mechanics

by Dirac in 1930 [14] and von Neumann in 1932 [15] as a theory of ‘observables’

represented by operators on a space of quantum states is fundamentally an elabora-

tion of Heisenberg’s ‘Umdeutung’ rather than a wave theory. What is revolutionary

about quantum mechanics is analogous to what is revolutionary about the theory of

relativity: a fundamental structural change in the way we represent how events fit

together, where the change involves spatio-temporal structure in the case of relativ-

ity, and the structure of information in the case of quantum mechanics.
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In proposing that quantum mechanics is about the structure of information, I mean

that the theory deals with new sorts of probabilistic correlations that are structurally

different from correlations that arise in classical theories (and, of course, the theory is

also able to handle standard classical correlations). The deep significance of Heisen-

berg’s ‘Umdeutung’ is that quantum mechanics, as a noncommutative modification

of classical mechanics, is a theory about a structurally different sort of information
than classical information, insofar as information in the physical sense is about prob-

abilistic correlations. What we have discovered is that the ‘engineering’ possibilities

for representing, manipulating, and communicating information in a quantum world

are different than we thought, irrespective of what the information is about.

Of course, this is not a historical claim about what the founders of quantum

mechanics had in mind. Shannon published ‘A Mathematical Theory of Commu-

nication’ in 1948 and Heisenberg’s ‘Umdeutung’ paper appeared in 1925. Rather,

I’m proposing that the conceptual revolution involved in the transition from classi-

cal to quantum mechanics should be seen as implicit in the ‘Umdeutung,’ and that

this is about the novel ‘engineering’ possibilities of information in a quantum world.

The idea is illustrated in the correlation diagram in Fig. 7.1 for correlations

between Alice and Bob, who are separated and can each choose to measure one

of two binary-valued observables on systems they hold, say A and A′
for Alice and

B and B′
for Bob. Each point in the diagram represents a correlation array of six-

teen probabilities for Alice’s two possible measurements, each with two possible

outcomes, and Bob’s two possible measurements, each with two possible outcomes.

In a representation proposed by Pitowsky [16], a correlation array is reduced to a

correlation four-vector.

Correlations that can be simulated with local resources available to Alice or

Bob separately are represented by the points in the innermost square, , which is a

schematic representation of a polytope, the local correlation polytope. The vertices

represent all the local deterministic correlations, with 0, 1 probabilities for the out-

Fig. 7.1 A schematic

representation of local and

nonlocal correlations.
no-signaling polytope

quantum convex set

local polytope

PR box correlation
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by a Bell inequality

L

Q
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comes of measurements. In Pitowsky’s representation, the local correlation polytope

 is a four-dimensional hyperoctahedron, with eight vertices.

The outermost square  represents all the probabilistic correlations that satisfy

a no-signaling principle: no information should be available to Alice about Bob’s

choices of measurement, or about whether Bob made any measurement at all, and

similarly no information should be available to Bob about Alice’s measurements. In

Pitowsky’s representation, the no-signaling polytope  is a four-dimensional hyper-

cube, with sixteen vertices, the eight vertices of the local correlation polytope and an

additional eight vertices representing extremal nonlocal no-signaling correlations,

the Popescu-Rohrlich (PR) correlations [17]. One of these eight no-signaling ver-

tices represents the standard PR correlation: the outcomes are the same, except when

Alice measures A′
and Bob measures B′

, in which case the outcomes are different.

The remaining seven no-signaling vertices represent correlations defined by replac-

ing A′
by A and/or B′

by B in the standard PR correlation, and by switching ‘same’

and ‘different’ in these correlations.

Quantum correlations are represented by the points inside a convex set  with

a continuous boundary between the local polytope  and the no-signaling poly-

tope  . Points between the quantum convex set  and the boundary of  repre-

sent superquantum no-signaling correlations. The representation in Fig. 7.1 is only

schematic. In particular, the boundary of the quantum set  is a complicated three-

dimensional manifold, not nicely spherical, as the diagram suggests.

The correlations represented by points in the local correlation polytope  can be

simulated by Alice and Bob with local resources. Local quantum resources provide

no advantage over local classical resources, and classical resources (excluding action

at a distance) are local, so  could equivalently be characterized as the polytope of

classical correlations.

There are two sorts of explanations for correlations in : either there is a direct

causal connection in which information is transmitted from one event to the other

by some physical system moving continuously at finite speed between the correlated

events, or there is a common cause that is the source of the same information con-

veyed to the correlated events, like a flash of lightning that is the common cause of

the experience of thunder at two separate locations in the vicinity of an electrical

storm. The correlations represented by points outside  are inconsistent with any

explanation by a direct causal connection between the Alice-events and the Bob-

events [18, 19], or by a common cause, as Bell showed [20] for the correlations of

maximally entangled states represented by points on the boundary of the quantum

region .

What we’ve discovered is that we live in a world in which there are correlations

outside the local polytope. Astonishingly, the correlated events outside are, sepa-

rately, intrinsically random. For correlations in , a deterministic explanation is pos-

sible, and Alice and Bob can simulate these correlations with local instruction sets

for Alice and Bob separately that determine how they respond to measurements. For

correlations outside, the probabilistic description is complete. Nothing is left out of

the story—the probabilities don’t reflect our ignorance of variables that would restore

a deterministic picture. The indefiniteness of quantum observables and the intrinsic
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randomness of measurement outcomes is a structural feature, a consequence of the

way observables are intertwined in a noncommutative algebra. The content of the

Kochen-Specker theorem is that the subalgebra of binary-valued observables, corre-

sponding to the properties of a quantum system, can’t be embedded into a Boolean

algebra. A Boolean algebra is the structure characterizing the ways in which the

properties of a classical system combine under the operations ‘and,’ ‘or’, and ‘not,’

where, for every property, the system either has the property or not in a definite sense

(no property is indefinite).

Correlations cry out for explanation, as Bell remarked [21, p. 140]. This raises

the problem of what would count as an explanation for correlations outside , if no

common cause explanation or explanation by direct causes is possible. There’s a prej-

udice for deterministic explanations as the gold standard for explanation in physics—

or rather, a prejudice for a presupposition of deterministic theories: that probabilities

are defined on an event space where the events, which correspond to a system hav-

ing certain properties, are definite in the sense associated with the Boolean property

structure of classical physics.

For example, in Bohm’s hidden variable theory [22, 23], the quantum wave func-

tion acts as a guiding field for the positions of particles. The particle positions, which

are the hidden variables of the theory, are always definite. It’s an ingenious feature of

the deterministic Bohmian dynamics that if the particles are distributed according to

the quantum probabilities defined by the wave function via the Born rule at any time,

they remain so distributed as the wave function evolves. So the hidden variables can’t

be pinned down more precisely than the Born distribution by any possible measure-

ments, which means that they remain hidden. The price to pay for a common cause

explanation of nonlocal quantum correlations in Bohm’s theory is a violation of the

no-signaling principle at the level of the hidden variables. Provided that the hidden

variables remain hidden and can’t be exploited to refine the quantum probabilities,

this does not lead to observable effects.

In the Everett interpretation of quantum mechanics [24, 25], all possible events

that are assigned probabilities in the theory actually occur, but in different ‘worlds’

associated with different branches of the wave function. There are some well-known

conceptual difficulties with the Everett interpretation, having to do with how to

explain the specific branching associated with quantum probabilities and how to

make sense of probability in a universe in which everything that can happen does

happen. Assuming that these difficulties can be resolved (and this is a matter of dis-

pute; see, in particular, the critique by Adrian Kent [26]), each Everettian world is

perfectly definite in a classical sense.

In both Bohm’s theory (with the Born distribution for particle positions) and the

Everett interpretation, the randomness of quantum events is only apparent. In Bohm’s

theory, randomness is only apparent because of a limitation on what we can measure:

we can’t, in principle, measure position more precisely than allowed by the Born

distribution. In the Everett interpretation, randomness is only apparent because of

our limited perspective: we live in a multiverse and only have access to our own

world in the multiverse.
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Is there a new sort of explanation appropriate for correlations outside , in which

the correlated events are intrinsically random? The theory of special relativity pro-

vides a case study that is relevant here. Einstein distinguished between two sorts of

theories in physics [27]: constructive theories, which explain the behavior of com-

plex systems by showing how they are constructed from elementary systems like

particles or fields or the ether as basic ontological building blocks, and principle
theories, which are formulated in terms of principles that express empirical regular-

ities. Einstein’s point was that the theory of relativity should be understood as a prin-

ciple theory, formulated in terms of the relativity principle and the light postulate.

Lorentz’s rival ether theory [28] is a constructive theory, where the basic building

blocks are elementary systems like electrons and electric and magnetic fields and, of

course, the ether.

Lorentz thought that a proper account of electromagnetic phenomena requires

assuming the existence of the ether as a physically real medium for the transmission

of light and other electromagnetic waves. Then it makes sense to take the ether as the

state of rest for space and time measurements, in the Newtonian sense of space and

time in classical physics. From Lorentz’s perspective, Einstein simply assumes the

constancy of the velocity of light in empty space, and the impossibility of detecting

motion through the ether, either from mechanical phenomena or electromagnetic

phenomena. Minkowski spacetime, which is structurally different from Newtonian

space and time, follows from these assumptions.

In special relativity, length contraction and time dilation, and more generally the

Lorentz transformation, are kinematic or pre-dynamic effects of the relativistic struc-

ture of Minkowski spacetime. As Lorentz saw it, showing that certain phenomena

arise from purely kinematic aspects of this geometrical structure doesn’t count as an

explanation—what we should be looking for is a dynamical explanation, in terms of

forces that have something to do with motion relative to the ether [28, pp. 229–230]:

[Einstein’s] results concerning electromagnetic and optical phenomena . . . agree in the main

with those which we have obtained in the preceding pages, the chief difference being that

Einstein simply postulates what we have deduced, with some difficulty and not altogether

satisfactorily, from the fundamental equations of the electromagnetic field. . . .

Yet, I think, something may also be claimed in favour of the form in which I have presented

the theory. I cannot but regard the ether, which can be the seat of an electromagnetic field

with its energy and its vibrations, as endowed with a certain degree of substantiality, however

different it may be from all ordinary matter. In this line of thought, it seems natural not to

assume at starting that it can never make any difference whether a body moves through the

ether or not, and to measure distances and lengths of time by means of rods and clocks having

a fixed position relative to the ether.

Bell suggested [29] that to really understand phenomena like Lorentz contraction,

it ought to be possible to explain the contraction dynamically, with an explicit cal-

culation of the forces involved, and he provided such a dynamical explanation in a

clever example of a contracting thread that breaks because the contraction is resisted

by two spaceships connected by the thread, which maintain a distance apart greater

than the Lorentz contraction. But Bell’s dynamical explanation is quite different from

a strictly Lorentzian dynamical explanation. Bell doesn’t assume the existence of the



150 J. Bub

ether or the validity of Newtonian space and time. His forces are relativistic forces

that are consistent with Minkowski spacetime—they are Lorentz invariant. So what

Bell shows is that there is a dynamical account of the thread breaking that is consis-
tent with the kinematics of special relativity.

On the information-theoretic interpretation, quantum mechanics is a principle

theory of information-theoretic structure that provides the framework for the physics

of a genuinely indeterministic universe. Just as Minkowski space-time characterizes

the structure of space-time in a relativistic universe, the structure of information in

a quantum universe is characterized by the intertwinement of commuting and non-

commuting observables in Heisenberg’s ‘re-interpretation,’ which imposes objective

pre-dynamic probabilistic constraints on correlations between intrinsically random

events. The Born probabilities arise as a pre-dynamic feature of this information-

theoretic structure.

The state of a quantum system can be specified by the probabilities of the out-

comes of measurements on some finite ‘informationally complete’ or ‘fiducial’ set

of observables. If the transition to a definite outcome in a quantum measurement

process could be described by a deterministic reversible dynamics, then it would be

possible to reverse the dynamical evolution to recover the original quantum state

after a measurement. This could be done an indefinite number of times for an infor-

mationally complete set of observables, which would allow the identification of an

unknown quantum state to any arbitrary accuracy from the statistics of the measure-

ment outcomes.

If this were possible it would violate the no-signaling principle. Suppose that

Alice and Bob share an entangled state of two qubits, say the Bell state |𝜙+⟩ =
|0⟩|0⟩ + |1⟩|1⟩ = |+⟩|+⟩ + |−⟩|−⟩. Suppose Alice chooses to measure her qubit

either in the computational basis |0⟩, |1⟩ or in the basis |+⟩, |−⟩. Bob’s qubit will

either end up in an equal weight mixture of the states |0⟩, |1⟩, or an equal weight

mixture of the states |+⟩, |−⟩. If Bob could identify an unknown quantum state

by the above procedure, he could distinguish these two mixtures. Alice could sig-

nal to Bob, effectively instantaneously, because Alice and Bob could be any dis-

tance apart. So a dynamical account of how an individual measurement outcome is

selected from among the possible measurement outcomes in a quantum measurement

process would be inconsistent with the no-signaling principle. Since every observ-

able belongs to many informationally complete sets, if information is gained about

an observable in an informationally complete set in a quantum measurement, the no-

signaling principle requires that the measurement must lead to a loss of information

about other observables in informationally complete sets.

Lorentz contraction is a physically real phenomenon explained relativistically as

a kinematic or pre-dynamic effect of motion in a non-Newtonian space-time struc-

ture. We don’t worry about how to understand this once we see that space-time has

a Minkowski structure rather than the structure Newton thought it had. A dynamical

explanation like Bell’s is really a demonstration that the relativistic dynamics is con-

sistent with the kinematics. Similarly, the random selection of a particular outcome

in a quantum measurement process is a pre-dynamic effect of any mode of gain-

ing information about the relevant observable, irrespective of the specific dynamical
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process involved in the measurement. It’s a generic feature of no-signaling correla-

tions that lie outside the local correlation polytope.

A quantum ‘measurement’ is not really the same sort of thing as the measure-

ment of a property of a classical system. It involves putting a quantum system, like

a photon, in a situation, say a beamsplitter or an analyzing filter, where the system

has to make an intrinsically random transition between two or more macroscopically

distinct alternatives recorded in a device like a photon detector. Given the intrinsic

randomness of events, a dynamical description of this process can only demonstrate

the consistency of the dynamics with the pre-dynamic probabilistic description.

On the standard Copenhagen interpretation of quantum mechanics proposed by

Bohr, Heisenberg, and some of the other founders of the theory, quantum phenomena

are assumed to take place in a classical arena with observers who can make definite

choices and an infrastructure able to record and store stable records that is left out

of the quantum theoretical story. As Bohr put it [30, p. 209]:

The argument is simply that by the word experiment we refer to a situation where we can

tell others what we have done and what we have learned and that, therefore, the account

of the experimental arrangements and the results of the observations must be expressed in

unambiguous language with suitable application of the terminology of classical physics.

This doesn’t justify applying the presuppositions of classical physics, where sys-

tems have definite properties corresponding to definite, pre-existing values of observ-

ables, to the macroscopic experimental arrangements used to probe the quantum

world. To some extent, the problem of showing that macrosystems in a quantum

world are ‘quasi-classical’ is still an open problem in physics, but there is a large

literature on the topic and various ways of showing that, in an idealized sense, the

observables of a macrosystem composed of a very large number of microsystems

commute, or equivalently, that the properties of a macrosystem have the structure

of a Boolean algebra characteristic of classical systems. (See, e.g., the review by

Landsman [31], and Landsman’s paper on the Bohr-Einstein debate [32].) The prob-

lem is not unlike the problem of showing that a macroscopic classical system can

have ‘emergent’ properties that are not properties of its constituent microsystems,

and this involves introducing idealizations in the mathematical analysis, as in clas-

sical explanations of phenomena like phase transitions from a gas phase to a liquid

phase when water vapor cools, or from a liquid phase to a solid phase when water

freezes.

If a photon interacts with a macroscopic measuring instrument like a beamsplitter

that itself interacts with the environment, the resulting quantum description of the

system-plus-beamsplitter (ignoring the environment) is effectively a quantum mixed

state with probabilities that are consistent with the kinematic probabilities of the

theory. ‘Effectively,’ because this would be the case if the environmental states were

strictly orthogonal. The environmental states aren’t strictly orthogonal, but in a typi-

cal ‘decoherence’ process of this sort they become infinitesimally close to orthogonal

states, and the approach to orthogonality is virtually instantaneous.

This dynamical analysis does not explain how something definite actually hap-

pens in a quantum measurement process, because the full quantum description
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including the environment is an entangled state. The analysis is often taken in this

way, and Bell rightly ridicules such claims as ‘FAPP’ (‘For All Practical Purposes’)

explanations [1]. But if quantum mechanics is about the structure of information

in a similar sense to which relativity is about the structure of space-time, then the

explanation that something definite actually happens in a quantum measurement, and

happens randomly with the relevant probability, lies in pre-dynamic structural fea-

tures of the theory, not the dynamics. The random occurrence of a definite outcome

in a quantum measurement is a pre-dynamic feature of the structure of information

in a quantum world, just as Lorentz contraction is fundamentally a pre-dynamic or

kinematic feature of the structure of space-time in a relativistic world.

To sum up: The conceptual framework of Heisenberg’s ‘quantum theoretical rein-

terpretation of kinematical and mechanical relations’ is a new conceptual framework

for physical explanation, in which quantum mechanics describes a genuinely indeter-

ministic world with nonclassical correlations between intrinsically random events.

The commutative structure of classical observables is replaced by a noncommutative

structure of intertwined observables—equivalently, the Boolean structure of classi-

cal properties is replaced by a non-Boolean structure that can’t be embedded into a

Boolean structure (so it’s not just the classical structure with something left out). The

possibility of correlations outside the local correlation polytope is a feature of the

non-Boolean structure. If the world is genuinely indeterministic in this way, then

it isn’t possible to provide a dynamical explanation of how a system produces a

particular outcome in a quantum measurement—the outcome is intrinsically ran-
dom. Finally, the pre-dynamic measurement probabilities obtained by applying the

Born rule to a measured system match up extremely well with the description of the

entangled system resulting from a dynamical interaction between the measured sys-

tem, the macroscopic measuring instrument, and the environment, taking account of

decoherence.

Is this a solution to the notorious ‘measurement problem’ of quantum mechanics?

It’s not a solution if the problem is to explain how the events associated with quan-

tum probabilities come about in the physical processes that couple microsystems and

macrosystems that we call quantum measurements, if what’s meant by an acceptable

explanation is an account of the evolution in space-time. If quantum mechanics is a

principle theory of information-theoretic structure that provides the framework for

a genuinely indeterministic universe, then there is no explanation of this sort within

the conceptual framework of the current theory. Rather, what the theory provides

are probabilities for a range of possibilities associated with macroscopic measur-

ing and recording devices. Decoherence involves an arbitrary split between system

and environment, and the decoherence dynamics, which can be applied at any level

of precision however the split is defined, is consistent with these probabilities. If

this is unsatisfactory, the complaint lies with quantum mechanics itself. There is no

remaining problem associated with a sensible research program in quantum mechan-

ics. Current ‘solutions to the measurement problem’ have a reactionary, Lorentzian

air. For any further explanation of what is thought to be unsatisfactory in the quantum

description of events, we should look to future physics.
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Chapter 8
Quantum Theory: It’s Unreal

Terence Rudolph

In this essay I try to explain in layman’s terms how quantum theory challenges our
ability to give a plausible story of what is “really going on” at microscopic scales.
I have also tried to channel the spirit of John Bell, who famously advocated
banning certain words from discussions of the foundations of quantum theory, and
have forbidden myself from using words such as entanglement, superposition,
measurement, interference, wave-particle duality and other words that are essen-
tially just labels for things we do not understand, and which therefore carry no
useful explanatory power.

This essay is about a simple question: when we zoom closely in on some small
object what is in there and what is up to? You might say “I know, I’ve heard there
are tiny particles—things like atoms, protons, electrons, photons and neutrons
interacting with each other”. It’s a nice story on the surface, but, a bit like looking
into the promises of a politician, we find when we look into the details of the story,
which we do using a theory of physics called “quantum mechanics” then it all
begins to fall apart. I want to explain to you how the simple story falls apart and
why it matters. I’m then going to make a fool of myself by hazarding some ill
formed thoughts for a potential resolution.

I should emphasize that I think stories are a vital and perhaps the only route to
our understanding of the world. Narrative understanding of the world is, I believe,
deeply ingrained into us, passed down from our hominid ancestors who followed
this process to explain the phenomena that governed their lives.

Much of this essay is based on my inaugural lecture “Quantum Theory: It’s Unreal”, which can
be found on YouTube.

T. Rudolph (✉)
Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
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A Story About Muons

Let’s begin with the story of some particles called muons. You may never have
heard of muons—they are some of the more exotic of the tiny charged particles that
make up the universe. The story is that a few hundred of these suckers bore straight
through you at very high speed every second. They are produced high in the Earth’s
atmosphere when extremely energetic particles called cosmic rays, which come
from the far reaches of outer space, collide with the air. The muons in turn barrel
through the atmosphere, through the walls of the room you are sitting in, and then
through you!

However you can’t feel or see these muons. So should you believe this story?
Whenever we are faced with existentially vexing questions I know many of you
would agree with me that it is important to turn to… alcohol. In fact you can
directly observe these muons using alcohol in a pint glass! You can build a small
version of a device called a cloud chamber: Place alcohol soaked cotton in a pint
glass, cool the bottom of the glass with extremely cold dry ice, which creates a
super cold vapour of alcohol that is just desperate to turn into clouds. It looks a bit
like a light alcohol fog (by which I do not mean the fog in your head after you have
had a few too many pints!). Watch this fog very carefully and you will see much
denser streaks of clouds that look a bit like tiny shooting stars! These are the tracks
that the tiny muon particles make as they pass through the pint glass. Just as water
droplets in clouds use dust particles as a seed to condense on, the muons passing
through knock some air molecules around in such a way they become a seed for
little alcohol cloud droplets, and these trails are the result. It’s similar to how jet
planes leave a cloud behind them, called a contrail—because their exhaust fumes
can ‘seed’ the formation of clouds (Fig. 8.1).

Fig. 8.1 Nic Harrigan’s “muon detector in a pint glass” experimental setup. Sketch by Geraldine
Cox.
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This is a very cool experiment to do, and I recommend at least watching a video
of someone doing it if you don’t want to try it yourself. But, even if you do build a
muon detector are you really seeing muons directly? Nope, in fact what you are
observing is a vapour trail of tiny alcohol droplets, but, as small as those are, they
are huge compared to the actual muons. The observations are consistent with the
story I told—that there really are tiny muons flying through the glass—but ulti-
mately you and I are monkeys whose interactions with the world around us are
optimized for chasing after bananas and other monkeys whom we think look cute,
not for looking at muons. So everything microscopic needs to be amplified up to the
scale of bananas before we can claim to have knowledge of it (Fig. 8.2).

The Assumption of Physical Properties

This brings us to our first challenge to understanding what’s happening at the small
scale. To describe muons, I used words like they are massive, energetic, charged,
travelling at high speed—things we would call the physical properties of muons.
The assumption that things have physical properties is completely hardwired into us
—consider a banana. You would describe the colour as yellow and the shape as
curved and the inside as soft and squishy but the outside as firm and the banana as
located in the bowl of fruit and so on. What we understand by this banana is in some
sense the totality of the large scale physical properties we perceive, many of which
are defined only with respect to the other things nearby and by association, the
properties of those things as well.

Fig. 8.2 Photo of a muon track in a pint glass, taken by Pete Shadbolt.
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In physics we combine these descriptions of physical properties with causal
language—saying things like “eating the banana causes me to be happy”, or to talk
a bit more like a physicist “the banana flew into the wall, bounced off and came
back and hit Terry in the head, causing him to be knocked out”. OK, well my
experiments never work, it’s why I’m a theorist. The point is we extend this type of
causal language to the small scale—“the muons knock electrons off some of the air
molecules and those molecules now become little seeds for a cloud of alcohol to
form upon”. Such causal language—that A causes B and B causes C is extremely
useful—understanding the causes of things is pretty much what science is about.
This whole framework of systems that have physical properties and interact with
each other causally is known as realism.

Monkey Realism

Our monkey brains build in some core assumptions about the world—one being
that stuff exists and has physical properties. Another is that if I leave a banana here
it stays here and doesn’t spread out or fall through the table; If it disappears I’m
pretty sure another monkey ate it! Another simple assumption is that if I shake a
branch in my tree it doesn’t instantaneously have an effect on some branch in a tree
on the other side of the world, i.e. that influences have to take some time to
propagate from the cause to the effect via some tangible thing, which could usually
be blocked if we wanted. I am going to call this simple and natural view of the
world and how it works “monkey realism”. These ideas are so obvious to us, that it
sounds strange that I would even point them out, but….

Quantum Realism

There is a conundrum at the heart of quantum theory, because we have discovered
that it is extremely difficult to tell such common sense physical stories about what is
actually going on and remain consistent with the theory and with the experiments
that we do which confirm the theory. That is, if we insist that stuff happens because
the little particles really exist, have real physical properties and really cause a
sequence of events that culminates in our observations, we find that the descriptions
of what is going on are very difficult to construct. It’s not impossible, but when we
do succeed we always get forced into a corner where the whole story ends up
extremely weird and counterintuitive. That is, our story of the world does not end
up having the sensible features at all of monkey realism. So I am going to call this
weird realism “quantum realism”. And unfortunately there happen to be many
different options for quantum realism—all very strange (that is to say very different
from the kind of monkey realism we are used to taking for granted) but also all
radically different from each other.
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An Intellectual Mess

Let me give you an example of the intellectual mess we can end up in. I’m going to
do this by describing a simple thought experiment where everyone agrees with what
would actually be observed on the monkey scale, but for which different stories
about what is going on can be proffered.

If it was cold and dark in my office I could open a box and release a single particle.
The simplest way of interpreting what quantum theory says goes on is the particle
begins to disembody in some sense; it spreads out completely through the room.
However; when I turn the lights back on and perhaps use some fancy apparatus to locate
the particle, I would only find it as a single lump of stuff at one location—although
every time I repeat the experiment the specific location at which I find it will be different.

If that disembodying process is real, when I decided to observe where the
particle is by turning the lights on, it must be the case that it immediately springs
back to all being concentrated now at one location, the point where I actually
observe the particle. This is a little bit crazy—if the particle, really is a tiny lump of
stuff as the name suggests, then why when we are not looking at it will it become
like some ethereal ghost and spread itself out through the room, but if we do look
then the spread out particle springs back instantaneously?

We call the springing back “collapse”. It’s important to realise that the collapse
process is highly unintuitive for a physicist. Normally we would expect the physical
stuff which has spread out through the room to take some time to re-morph (con-
sider an elastic band snapping back—we would expect that one piece of band
affects the piece beside it and pulls it along and this process happens continuously
and takes time even if it is rapid) until all the pieces of particle stuff have somehow
regrouped into the complete particle we eventually observe. Which in turn would
raise the question why, if the particle really is disembodied through the room, we
cannot ever see a small part of it on one side and a small part on the other?

Knowledge Quite Naturally Spreads and Collapses

So what is really going on when we do that experiment with the particle? Is it really
spreading out into some disembodied gloop that can re-morph itself instantly? An
alternative option we consider seriously is that what spreads out is not the particle and
its associated properties, but rather our information, or our knowledge about the
particle.

To get a feel for this, let us think about an experiment that does not involve tiny
particles, but rather something larger, like a parrot. Imagine you close your eyes,
and a friend of yours releases a parrot inside the room you are sitting. The parrot
flies around quietly, and after a minute or so you really have no clue where it is.
Your knowledge of the parrot’s location has become completely spread out—a kind
of disembodiment.
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When you open your eyes and see where the parrot is, your knowledge of the
parrot collapses instantly to something like “aha—the parrot is sitting right there!”.
Now it is not strange that the collapse process is instantaneous because it is not in
some sense physical at all.

Going back to the particle, a natural thing to consider is that when I release the
particle it really is somewhere, but due to my lack of information quantum theory
insists I talk about it as if it becomes disembodied. Moreover in this picture it is
intuitive why every time we repeat the experiment we find the particle/parrot at a
different location.

To me this is very compelling. The collapse is not real, the disembodiment and
spreadoutness is not real, those are things just to do with my knowledge or
information about the world. It wouldn’t necessarily get us all the way back to
monkey realism, but it would go some of the way.

Sadly, It Cannot Just Be All About Knowledge

Unfortunately, 5 or 6 years ago, some work I did with Nicholas Harrigan opened a
small crack in this story. It showed that not quite all of that disembodied spread-
outness of a particle is attributable to a lack of information; Unlike with the parrot
—it is not possible to entirely take care of the problem with that approach. This was
mildly disconcerting at the time, but I hoped that some sort of subtle trick could be
found to avoid the nasty consequences, and that we could still have a sensible
account of many weird quantum things like collapse.

Even more unfortunately, a few years later a different student, Matthew Pusey
exploded the crack open and caused the dam to flood. The conclusion of that work
is that, under some extremely mild assumptions, any assumption of realism
whatsoever forces you into accepting that the disembodied spreadoutness is also
real. This is something I hate, not least because quantum theory insists that when
the collapsing happens, it is completely instantaneous. This seems a very ugly
feature to have forced into our causal story of the world and it is certainly not
compatible with monkey realism.

Other Ways Quantum Realism Is Weird

So now we have one example—collapse—showing that quantum realism is highly
incompatible with monkey realism. There are many other examples: quantum
realism allows a quantum sized banana to fall through the table, or disappear from
where you left it because it instantaneously spread out and then when you looked it
ended up over there, and shaking a quantum branch over here can instantaneously
shake a branch over on the other side of the universe, via a completely unblockable
influence. The list goes on and on into even weirder stuff.
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Things get so weird that people entertain nutty notions to try and avoid these
conclusions of quantum realism, things like assuming that there are bazillions of
parallel universes and so on! Other serious physicists say that somehow for stuff
going on at the microscopic scale that we cannot see directly, any notion of realism
must be abandoned; If correct this would be a radical change to our whole view of
the world and I’m not sure how we could even really do science, because the whole
of scientific endeavour to date has been premised on the notion of stuff existing and
having properties that we can understand. For those of you who know a bit about
quantum mechanics I emphasize that the weirdness I am talking about is not
because of randomness and unpredictability, things that are often thought to be the
weird parts of quantum mechanics– those are completely compatible with monkey
realism as the parrot story shows—the issues are much deeper.

Faced with this, my way of coping is to turn to consuming lots of alcohol in a
pint glass. This consistent program of drinking has helped me consider a whole
bunch of whacky ways of trying to get around the conclusion that the disembodied
spreadoutness of a particle is real. But, before I outline some crazy thoughts on
what might fix the problem, I want to take a bit of time to explain……

Why Thinking About These Pretty Abstract
and Philosophical Things Is Sometimes Practically
Important

Our brains are very good at thinking and making sense of large-scale things around
us, which helps us find bananas and mates, but only under the assumption that
monkey realism is true. These days we can build a device that actually helps us to
think—that can help us to find those bananas and mates. I mean of course, a
computer.

It is a very, very deep feature first understood by Alan Turing, that we can build
our computer assuming that the world obeys monkey realism. That is, we build it
out of stuff that obeys the simple principles of monkey realism and it also can do the
same kind of thinking as us, as long as that thinking doesn’t violate the principles of
monkey realism. It’s very beautiful and deserves a whole essay on its own. Don’t be
fooled by the smallness of the components in your computer, they are basically just
bananas, they behave only in ways that are completely understandable from the
perspective of monkey realism.

A really cool twist is that these days we can go and build a whole new type of
computer, one built out of quantum sized systems. These microscopic systems that
are doing the computing can use all the nutty features of quantum realism. Of
course we monkeys have no way of understanding how they are doing what they
do, because it’s radically incompatible with monkey realism. But, the very cool
thing is that—even though we don’t know precisely how they do it—we know of a
number of ways that they can be highly useful for us—that they can let us solve
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some problems which we have no hope of solving with our brains or with regular
computers, constrained as those are to monkey-realistic principles. For example,
one thing these quantum computers will be able to do is to let us design new types
of pharmaceuticals, because designing new drugs is about understanding chemistry,
understanding chemistry is about understanding how quantum sized particles—
atoms and molecules—interact with each other, and of course monkey realism is
incompatible with that, it’s where the whole problem began!

On the flip side, however, it is extremely difficult for us to understand how we
can use such a new type of computer, because it is operating on the different set of
principles of quantum realism, whatever the heck they turn out to be. The only
understanding we have obtained to date about this practical question has come from
making precise and quantitative the differences between monkey realism and
quantum realism. This is the remit of the field of quantum foundations and the
worryings about realism that we were musing on earlier! So, here at least is one
application for this abstract philosophical quest, which is why I am allowed to work
in the physics department at Imperial College and haven’t been shipped off to a
philosophy department somewhere in Oxfordshire.

Back to Crazy Speculations About a Route to a Solution

Perhaps you don’t care about the practical applications; you just want to understand
what’s going on better. Perhaps, like me, you aren’t happy with just accepting the
bizarre features of all the current proposals for quantum realism, you wonder if
there isn’t some hidden assumption that has trapped us into an intellectual corner
like this. Well, you end up spending your weekends thinking a lot of crazy
thoughts, and your colleagues begin to think you are a bit strange, never mind the
particles! But I believe such crazy thinking is necessary, that we should show
students it’s OK to have crazy ideas, and so I will finish by describing one of the
craziest I am currently thinking about. I should emphasize—I put very little faith in
any of the details I discuss below being “true”, whatever that means. I am essen-
tially trying to point out that not everything has been thought about carefully yet.

To set the scene, let me remind you of the story of epicycles—when people
believed that the earth was at the centre of the universe, they were forced into
thinking that the planets took weird spirally trajectories around earth—because this
was the only way that they could fit what they were seeing when they looked up at
the planets in the sky, with the earth centred idea that they dogmatically held on to.
Once they shifted view and stopped thinking of themselves as so important, they
saw that things were greatly simpler if they took the perspective that everything
actually revolved around the Sun.

So, what could be the hidden assumption that is leading us to the weirdness of
quantum realism? Well I wonder about whether the very concepts of space and time
really are more than just something useful for the purposes of chasing bananas.
Perhaps space and time themselves are not relevant to the particles of the universe.
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Perhaps they are useful to us and so we evolved to see them, but irrelevant on
microscopic scales. A glib way of summarising this would be to say “what if space
and time are like the taste of a banana—important to monkeys, but not to the basic
physical properties we think are essential to obtain a realistic description of the
world?”.

This is a bit off-the-wall, obviously: Space and time are two of the fundamental
physical properties we use to describe everything—where and when something is,
is pretty much what we mean by calling a thing a thing at all.

So that you can see how much of a mess we could get into if time and space
were wrong assumptions, let me give a brief—tried and tested—example, of how
things can get messy if we choose the wrong fundamental properties out of which to
construct a theory. Consider the theory called thermodynamics that’s been around
for some time and is still going strong. This was the theory that gave us steam
engines, and the physical properties that this theory uses are things like heat, power,
temperature, pressure, entropy and so on. We now understand this theory in terms
of a deeper theory of atoms bouncing around in a container. But, in that deeper
theory it makes no sense to assign those atoms the same physical properties that
were important at the larger scale—we don’t say things like “each atom has a
pressure, a temperature, a work, an entropy” and so on. If you tried to understand
the one theory using the same properties that are relevant in the other you poten-
tially end up with nonsense.

How to Construct a Theory with a Different Space/Time
Experience?

I don’t really have any clue how to construct a theory in which the space and time
experienced by fundamental particles, if they experience it at all, is different to that
experienced by us. I have one simple example that I think is cute and which at least
indicates how things could be very different—even if it isn’t the way that they do
actually turn out to be different.

Previously I described an experiment where I could let a particle go and it would
spread throughout the room. Let me describe a slightly different experiment which
operates similarly: We release a particle at one end of a narrow bench, wait exactly
1 s and then look for it. We arrange things so it can only be found somewhere along
the length of the bench.

As before, we don’t always find the particle in the same place. Although we
prepare the experiment the same every time, we only ever find the particle in certain
equally spaced locations along the bench and we never find it in the in-between
these locations. We can never be sure exactly, at which of the equally spaced spots
we will find it, that is just the randomness of quantum theory, but more strangely if
we never find it in-between does it mean it never actually crosses those points?
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Let me tell you a story, a parable as it were, which is meant to illustrate how—if
our concept of time is not compatible with the time experienced by particles, this
behaviour might not be so strange. Things didn’t work out so well for the last guy
who spent time telling parables about 2,000 years ago, so I’m a bit nervous.

The story goes that a Malawian boy who lives on the shores of Lake Malawi has
the job of, every morning at the same time, picking up fish from the fishermen at the
lakeshore and running them through the village to his father’s store. There is an old
man in the village who owns a clock. It is one of those round-dialled clocks, and
because this is Africa and pretty much everything there is broken, the clock only
has one hand. Every day when he wakes up he looks at the clock and he sees the
one hand is pointing at the number one. He believes this means he wakes up at the
same instant every day. When he wakes up he looks out the window and he always
sees the boy running on the path past his house. He notices after a few months that
he only ever sees the boy in one of a few locations along the path and never
in-between (Fig. 8.3).

What is a natural explanation of the old man’s observation? Is it to say the boy
disembodies along the path into some kind of wavy thing that re-morphs only at
certain special places? No—it is to say the old man is mistaken about the rela-
tionship between the time on his clock and the time experienced by the boy. If it is
the case that some days when he sees the number one on the clock it has in fact
already done a full revolution before pointing to the number one, and on other days
it has done two or three or more revolutions first, then it is quite natural that
(assuming the boy really does set out at the same time by his reckoning and runs at
constant speed) the old man only ever sees the boy at discretely spaced locations.
By understanding that there is a many-to-one relationship between the old man’s
time and that of the boys, something which seemed to require a quantum-realistic

Fig. 8.3 A sketch by Geraldine Cox of the view from the old man’s window.
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type of explanation becomes more amenable to an monkey-realistic explanation.
I emphasize that this proposal is meant to be illustrative; I have only marginal
evidence that these types of explanations are tenable more generally. But since this
is meant to be a parable, I should say the end of the story is a sad one; That the old
man accused the boy of being a witch, and belief in witchcraft still being very
strong in Malawi, the boy was burned at the stake. I hope the same fate does not
await me when any of my colleagues read these crazy thoughts!
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Chapter 9
The Universe Would Not Be Perfect
Without Randomness: A Quantum
Physicist’s Reading of Aquinas

Valerio Scarani

Abstract Randomness is an unavoidable notion in discussing quantum physics,
and this may trigger the curiosity to know more of its cultural history. This text is an
invitation to explore the position on the matter of Thomas Aquinas, one of the most
prominent philosophers and theologians of the European Middle Ages.

Introduction

Physical determinism has been a powerful methodological assumption in science
since the dawn of the modern era. It is so engrained in our culture, that the sentence
“to find a scientific explanation” usually means “to point to an antecedent situation,
which existed (or can reasonably be assumed to have existed) in the past, from
which the present situation follows by law of necessity”. Since the first half of the
20th century, physical determinism has been famously challenged by quantum
physics, with the theorem of Bell that we are celebrating here as one of the mile-
stones. But neither 50 years of a theorem, nor a century of quantum physics, can
easily dispose of an intellectual option that dates back at least to the time of
Democritus and Lucretius, and has deeply shaped the last few centuries of human
thought. The urge for physical determinism explains why many laymen are still
associating quantum physics with some esoteric quest rather than with the most
successful scientific endeavor of all times, popular journals thriving on the mis-
conception by suggesting that the latest research paper may be the one lifting the

This text has been written for the Proceedings of the Conference Quantum [Un]Speakables II: 50
Years of Bell’s Theorem (Vienna, 19–22 June 2014).
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veil. Determinism appeals to the specialists too1: for those who support Bohmian
mechanics or the many-worlds interpretation, determinism is a cornerstone that
should not be removed; one should rather abandon other supposed features of the
physical world and of our assessment of it.

Surely, chance and randomness in their various meanings have also had their
supporters in the recent scientific and philosophical debates. Nevertheless, I was
intrigued when I chanced over the following statement in Thomas Aquinas’ Summa
contra gentiles (CG), most probably written around the years 1260–64:

it would be contrary to […] the perfection of things, if there would be no chance
events.

(CG, Book 3, Chapter 74)

Which arguments in favor of chance as a feature of nature could Aquinas bring
up, several centuries prior to Darwinian evolution, deterministic chaos and quantum
physics—and obviously without any hint thereof?

I decided to write about this text and a few related passages by the same author2

for these proceedings. I knew it would be a challenge: in the words of a philosopher
friend of mine, I opened a window and discovered an ocean, for whose exploration
I am not well equipped. The purpose of this text is not to claim a place among the
explorers, but to invite others to come at the window.3

Aquinas on God’s Providence

The third book of the CG is devoted to “Providence”, which is God’s governance of
creation. As an orthodox Christian philosopher and theologian, Aquinas had to
juggle to accommodate both an all-powerful God and really free human beings.
Alongside this extremely important anthropological question, certainly still debated
today,4 comes a more neutral but general observation of nature: all the beings that
we perceive are limited in their being. Aquinas integrates both considerations in a
response that rings surprisingly modern: not only “human free will”, but the whole

1For a recent perspective on determinism by a quantum colleague: L. Vaidman, Quantum theory
and determinism, Quantum studies: mathematics and foundations 1, 5–38 (2014); http://link.
springer.com/article/10.1007/s40509-014-0008-4.
2Interestingly, a quantum colleague, who contrary to me cannot be suspected of Catholic leaning,
has also advocated recently a re-discovery of Aquinas’ thought: D.M. Appleby, Mind and Matter,
http://arxiv.org/abs/1305.7381. This text sketches a much more ambitious program than mine here;
Aquinas’ philosophy is proposed as a possible way of avoiding Cartesian dualism.
3A very convenient summary of Aquinas’ philosophical work is available as: Aquinas, Selected
philosophical writings (Oxford World’s Classics, Oxford University Press, 2008). The Latin text
and English translation of most of Aquinas works can be found online in http://www.dhspriory.
org/thomas/. When available, I’ll give the link to this website.
4See e.g. http://plato.stanford.edu/entries/providence-divine/; Aquinas’ position is discussed in
paragraph 6.
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creation, including its material aspect, possesses a relative autonomy from God.
This autonomy is going to be the foundation for the discussion of “fortune and
chance”.

If the reader is yawning at the apparent banality of this observation, they have
better wake up quickly because the statement is not trivial at all. In fact, if prompted
to define “autonomy from God”, we tend to refer to the cosmology5 of the time of
Leibniz and Newton. God’s role is that of a watchmaker who builds a perfect
mechanism, which later evolves “autonomously”—meaning here, according to the
deterministic laws of classical physics. The autonomy of the watch from the
watchmaker is indeed the fitting setting for physical determinism.

Aquinas lived at a time where the watch had not been invented yet. The cos-
mology of his time is twice removed from us, transiting as we are to a new
cosmology of evolutionary flavor. Aquinas’ metaphor for the universe is that of an
orderly kingdom6:

Political life offers a parallel: for all the members of the household are ordered to one
another by subordination to the master of the house, and then that master and all other
masters of households in a city ordered to one another and to the ruler of the city; and he
with all his fellows in a kingdom, ordered to the king.

(CG 3, 98)

This cosmology contains two elements that are currently banned from much of
the intellectual discourse on nature. These are finality and the existence of a hier-
archy of beings.

Concerning finality, or finalism, I feel incapable of providing an even moderately
competent discussion7; however, there is a point that I want to bring to the attention
of the reader. The absence of finalism was a defining feature of the atomism of
Democritus and Leucippus, as noticed explicitly by Aristotle. Early in his career,
Aquinas writes about this8:

First, we have to know that some stated that there is no providence for anything, that
everything happens by chance: this was the position of Democritus and the other ancient
authorities who denied agent causes and affirmed only material causes. But this position has
been sufficiently refuted in philosophy.

(Scriptum super Liber Sententiarum I, d.39)

5In this text, “cosmology” will be used in the sense of Weltanschauung, not in the sense of the
discipline of physics that studies the universe at large.
6http://www.dhspriory.org/thomas/ContraGentiles3b.htm#98. I am citing from the more readable
translation of Timothy McDermott in the Oxford book cited above.
7For a text that mentions Aquinas extensively and provides a glimpse of the complexity of the
issue, see http://inters.org/finalism, paragraphs I and II.
8I am grateful to V. Cordonier for sharing with me her text “La doctrine aristotélicienne de la
Providence divine selon Thomas d’Aquin” [in: P. D’Hoine, G. van Riel (ed.), Fate, Providence and
Moral Responsibility in Ancient, Medieval and Early Modern Thought. Studies in Honor of Carlos
Steel (Peters, Leuven, 2014) pp. 495–515, in which I found this very relevant citation (footnote
14). My translation.
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A doctrine that “affirms only material causes”: to our ears, this would make of
Democritus a precursor of determinism, and as such he is indeed presented in
philosophy textbooks. Aquinas’ highlights rather the fact that, in such a doctrine,
“everything happens by chance”, that is “without any providence”—with a more
modern twist, we may say “without meaning”. Atomism and determinism have
gone hand-in-hand for centuries—till quantum mechanics cast its shadow on the
idyll. Is it a full-scale betrayal or a test that will further consolidate the relationship?
This is what we are still debating.

Let us now discuss the hierarchy of beings. In his theory of knowledge, Aquinas
considers “being” as the first we grasp9: that is, before knowing that it is (say) a
tree, or that it is in that place, or that it is good for us, we know that it “is”. From the
perspective of our knowledge, thus, the existence of various beings is not a truth to
be derived, but the starting point. In CG, Aquinas rather takes God’s creation as
starting point, and argues why such a creation must consist of multiple finite
beings10:

Now, created things must fall short of the full goodness of God, so, in order that things may
reflect that goodness more perfectly, there had to be variety in things, so that what one thing
could not express perfectly could be more perfectly expressed in various ways by a variety
of things. […] And this also draws attention to how great God’s perfection is: for the
perfect goodness that exists one and unbroken in God can exist in creatures only in a
multitude of fragmented ways.

(CG 3, 97)

My last introductory comments will be on the following citation from the same
chapter:

Clearly then, the dispositions of providence have their reasons, but reasons that presuppose
God’s will. All this allows us to avoid two kinds of mistakes. First, the mistake of those
who believe everything comes from the simple will, devoid of reason […]; and secondly,
the mistake of those who say the causal order is a necessary consequence of God’s
providence.

(CG 3, 97)

The first mistake, that Aquinas is convinced of having disposed of, is the belief
that there is no rationality in the world, that everything is pure arbitrariness from
God’s decisions.11 The second mistake addresses our concern. It is beyond human

9It is acknowledged that this is a foundational element of Aquinas’ theory of knowledge. If
prompted to find a citation, probably the most famous is primum enim quod in intellectum cadit,
est ens (De Pot. 9, 7, ad 15 http://www.dhspriory.org/thomas/QDdePotentia9.htm#9:7).
10http://www.dhspriory.org/thomas/ContraGentiles3b.htm#97; I am citing again the translation
from McDermott.
11Aquinas was aware that some Arabic philosophical schools of Andalusia promoted this doctrine.
One century after Aquinas’ death, it was going to be championed again, this time in the Christian
world by William of Ockham. It still lurks behind many anti-scientific attitudes of our times.
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capacity to assess the purpose of God,12 which is the ultimate final cause; but
whatever it is, it does not determine a unique unfolding13 because created beings
can act as causes, including final (i.e. they can act for some purpose that is their
purpose, not God’s). This is the “relative autonomy” that was mentioned. Some
beings being more perfect than others, their causality is also of different power: in
particular, it may fail to produce the desired effect. This brings us to the main
objective: a discussion of the case for “fortune and chance”.

The Case for Fortune and Chance

In our main reference, CG 3, 74, Aquinas lists five arguments to defend the thesis
that fortune and chance are compatible with God’s providence.14 I rephrase them in
my words:

1. If nothing rare would happen, we would conclude to necessity. Thus “fortune
and chance” are the manifestation of contingency, which is God’s respect of the
autonomy of created beings.

2. The second argument combines finality and finiteness: all beings act for an end,
but finite beings may fail with regards to the intended end, thus bringing about
unintended effects.

3. The third argument is different: it is the classic concursus causarum. Since God
does not determine everything and each being has its own autonomy, it is
possible that initially independent causal chains collide to produce an unex-
pected effect. The example of Aquinas is more than clear: “For example, the
discovery of a debtor, by a man who has gone to market to sell something,
happens because the debtor also went to market”.

4. In yet another chance of perspective, the finite beings are no longer considered
as agents, but as beings, whose properties are not all necessary. The actual text,
a scholastic demonstration, sounds very convoluted to us; so let me try my own
example. A given woman is a human being, is tall, is dressed in blue, and is a
physicist. “While being human” is obviously essential, the other features look
accidental and uncorrelated among them— but who knows, maybe there is a
deep common cause for all the features of this woman? Aquinas argues that

12Aquinas inherited the “negative theology” of Pseudo-Dionysius: we can’t know anything of
God’s plan, besides what He chooses to reveal to us. The Revelation accepted by both deals with
the finality set by God for human beings, but says close to nothing about that for the material world
(indeed, basically all that Christian belief has to say on the final destiny of matter is that the final
destiny of humans does involve a material element, in the following of Jesus, who resurrected with
what we could call an “upgraded version” of his own body).
13Notice again the discrepancy with the later cosmology: Liebniz argued that the God-watchmaker
must have created the best possible world in all the details of its gears.
14http://www.dhspriory.org/thomas/ContraGentiles3a.htm#74 .
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against such a higher causality: it is proper of finite beings to have indeed many
accidental features.

5. The fifth argument has some flavor of the second and the third: the power of a
finite cause is necessarily finite and therefore cannot extend to all things that can
happen.

A comprehensive commentary is beyond my capacity, since I have not dived
into the ocean. But there is another island visible from the window, which is
impossible to ignore. Indeed, fortune and chance had already been discussed by
Aristotle in his Physics, Book II, Chaps. 4–6. After having introduced his classi-
fication of four causes, Aristotle discusses the opinion that fortune, chance or
“spontaneity” are also causes; he reasons that all these are indeed real, but are not
proper causes, thus justifying his previous classification. More or less in the same
years15 as CG, Aquinas wrote a commentary to this work, the Commentaria [or
Expositio] in Octo Libris Physicorum. A scholastic commentary was in fact a series
of lectures reviewing the text of an authority point by point. It is not easy to follow,
insofar as the commentator can be critical of one statement and will nevertheless go
ahead with the commentary of the next. I just want to point to a few points that shed
some light on the text from CG.

• Even if it comes unexpectedly last, I want to mention first that “chance” and
“fortune” are defined in Aristotle’s Chap. 6, commented by Aquinas in his 10th
lecture.16 Fortune (misfortune) implies happiness (sadness) and thus is proper of
beings that can experience happiness; whereas chance is a neutral word that
applies to all beings. The fact that these definitions are elaborations on the
common meaning of those words may explain why Aquinas did not define those
terms in CG.

• The example of the two men meeting by chance in the market, which we saw in
argument #3 above, comes directly from Chap. 4 of Physics. As stressed by
Aquinas,17 the example here is meant to show that “fortune” is certainly not
always a cause: indeed, here one would speak of fortune (especially for the
creditor), but the cause of each person going to the market was not “fortune”, it
was “to buy something”.

• At the beginning of Chap. 5 of Physics, Aristotle makes what we may call
nowadays call a “phenomenological study” of the cases in which chance or
fortune are invoked as causes. It opens with an observation similar to the one in
argument #1 above: one speaks of chance when things happen rarely. In his
Lecture 8,18 Aquinas writes: “it seems that this division [in things that happen

15The most probable date is around 1268, which would put it some 5 years after the most probable
date for CG—anyway, all that matters here is that the two texts belong to the same period, so that
in first approximation we can assume them to be consistent with each other.
16In Physic. II, l.10 (http://www.dhspriory.org/thomas/Physics2.htm#10).
17In Physic. II, l.7 (http://www.dhspriory.org/thomas/Physics2.htm#7).
18In Physic. II, l.8 (http://www.dhspriory.org/thomas/Physics2.htm#8).
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always, frequently or rarely] of the Philosopher is insufficient, for there are some
happenings which are indeterminate”. From what I understand, “indeterminate
happenings” (contingentia ad utrumlibet) refers to events whose frequency
cannot even be defined.

Message in an Old Bottle

In these notes from the window, I tried to grasp Aquinas’ effort of rationalization.
It’s a message in a bottle from a cultural world that is no longer ours: in particular it
would be grossly anachronistic to read Aquinas as a precursor of quantum phy-
sics.19 But we are allowed to read the message and derive some inspirations for our
times.

Aquinas’ study is very far from a naive god-of-the-gaps argument, which would
run: “there are things I cannot predict, the only possible explanation is to invoke the
intervention of God or some other spirit”. Chance and fortune are neither God’s
doing nor the devil’s: they are the manifestation of the finiteness of created beings,
and of the autonomy that God’s providence gave them. Since this autonomy is a
sign of God’s respect for his creation, chance and fortune are to be considered
positive realities.

I want to stress that the existence of God is not an assumption for the argument.
As we said, Aquinas does believe in an all-powerful God, and his challenge was to
present a doctrine of providence that does not end up in determinism. One could
make a God-free case for randomness along similar lines, as long as one accepts the
existence of finite autonomous beings. This is far from universally accepted: many
philosophies and mysticisms around the world and across the centuries have upheld
the doctrine that behind the appearance of a multitude of beings there is only one
Being.20 Such “holistic” or “pantheistic” doctrines may have their own way to deal

19Authors like Heisenberg, Jauch and Piron, have used the wording of “potency and act” in their
attempts to appraise quantum physics. Inspired by this, some years ago I browsed extensively
Aquinas’ works to see if a hint of the quantum could be found there: I can say with high
confidence that such is not the case. Let me give an example. For Aquinas (and Aristotle), the
statement “I am in potency of being at B” means that I actually am at A, and by motion I could
exchange my “being at A” with “being at B”. In no way they had thought of “not being actually
localized anywhere”, which is what Heisenberg, Jauch and Piron were aiming at—as to whether
this extension is legitimate and successful, I am skeptical but with no strong feelings.
20When speaking of “holism” or “pantheism”, Indian-born religions come immediately to mind,
but similar hints can be found even in Plato. Very relevant for our story is the fact that Averroes
explicitly commented Aristotle in a holistic sense, making him very suspicious in the Christian
world: the “redemption” of Aristotle from that interpretation was arguably Aquinas’ greatest
challenge (see e.g. G.K. Chesterton, Saint Thomas Aquinas, the “Dumb Ox”, several editions). In
later times, some humanists will promote again the doctrine of an anima mundi, and Spinoza will
champion a renewed form of pantheism. Presumably some members of the Church of the Larger
Hilbert Spaces have a similar doctrine in mind.
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with freedom and chance, of which I know little, but certainly they won’t follow
Aquinas’ path.

I want to conclude on a recollection from the conference, whose proceedings
you are reading. I happened to give two talks there: the first one was my own, the
second one was the one of Nicolas Gisin, who had been retained in Geneva by
urgent family matters. This second talk led to a broad discussion, during which
Anton Zeilinger dropped the suggestion that a better appreciation of quantum
physics may pass through a rediscovery of finality. There and then, I thought of
Aquinas. Now, after reading CG 3, 74, it’s easy to recall that Zeilinger and Brukner
have also promoted the explanation of quantum randomness as a consequence of
the finiteness of the information that can be stored in a quantum system. Surely, if
all nature cares is that some statistics are respected, the concrete way to get there
may be left to “chance”. Happy as I am with this argument, I feel it does not explain
why nature wanted the statistics to violate Bell inequalities. Maybe God wanted us
humans to be able to certify intrinsic randomness?

Acknowledgments This text has greatly benefitted from discussions with and feedback or
encouragement from: Antonio Acín, Michael Brooks, Jeff Bub, Jonathan Chua Yi, Valérie Cor-
donier, Artur Ekert, Berge Englert, Nicolas Gisin, Jenny Hogan, Matthew Leifer, Antoine Suarez,
Giuseppe Tanzella-Nitti and Anton Zeilinger. My research on randomness is sponsored by the
Ministry of Education, Singapore, under the Academic Research Fund Tier 3 MOE2012-T3-1-009
“Random numbers from quantum processes”.

174 V. Scarani



Chapter 10
Bell’s Theorem Tells Us Not What Quantum
Mechanics Is, but What Quantum Mechanics
Is Not

Marek Żukowski

Abstract Non-locality, or quantum-non-locality, are buzzwords in the community

of quantum foundation and information scientists, which purportedly describe the

implications of Bell’s theorem. When such phrases are treated seriously, that is it is

claimed that Bell’s theorem reveals non-locality as an inherent trait of the quantum

description of the micro-world, this leads to logical contradictions, which will be

discussed here. In fact, Bell’s theorem, understood as violation of Bell inequalities

by quantum predictions, is consistent with Bohr’s notion of complementarity. Thus,

if it points to anything, then it is rather the significance of the principle of Bohr, but

even this is not a clear implication. Non-locality is a necessary consequence of Bell’s

theorem only if we reject complementarity by adopting some form of realism, be it

additional hidden variables, additional hidden causes, etc., or counterfactual definite-

ness. The essay contains two largely independent parts. The first one is addressed to

any reader interested in the topic. The second, discussing the notion of local causal-

ity, is addressed to people working in the field.

PACS numbers: 03.65.Ta ⋅ 03.65.Ud

Introduction

In the first part I shall present a simple version of the Bell’s theorem based on the

works of GHZ [1] and Mermin [2], and its relation to the EPR paradox [3]. Simple

but not oversimplified, I hope. The aim of the presentation will be to show that the

EPR work does not contain a complete analysis of the problem, and some crucial

assumptions are not overtly expressed therein, but can nevertheless be pinpointed.
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The whole section is formulated in as a counter-factual story about EPR attempt-

ing to write their paper, but learning about GHZ results before finishing it. I have

chosen GHZ paradox, instead of Bell’s original work “On the Einstein-Podolsky-

Rosen” paradox [4], only because GHZ-type reasoning is very accessible, and does

not require any knowledge about statistical methods, or probability. The presentation

of the situation is for laypersons. It will require only elementary algebra, and logical

intuition. The second section is also elementary, however it is addressed to scientists

interested in Bell’s theorem.

All what I present here is not new. It is a concise presentation of the basic facts

about quantum theory, Einstein-Podolsky-Rosen Paradox (EPR) and Bell’s Theo-

rem. The aim is to reveal logical inconsistency in attempts to claim that the sole

assumptions of Bell’s theorem are locality, freedom to choose the setting of experi-

mental devices, and quantum predictions. Some authors following such views claim

that no other assumption is needed at all (currently some claim that it is enough to

assume local causality, which is correct, but they seemingly treat it as the opposite

notion to non-local causality, which not the case). Some claim the missing assump-

tion of hidden variables or realism, or counterfactual definiteness [5] is irrelevant

because it can be replaced in the derivations of Bell’s inequalities by determinism,

which in turn is derivable via an EPR type reasoning [6]. This will be shown to be

impossible in the first part of this essay.

The second section concentrates on showing that the assumption of local causal-
ity is effectively a version of local hidden variable theories. What is important, its

negation is not non-local causality. As local causality is a compound condition, it

may not hold because of several reasons. This may be non-locality or non-existence

of causes of elementary quantum events which are outside of the quantum descrip-

tion (that is, that the only predictive tool describing given situation is the quantum

state, and quantum formalism allowing, via some kind of form of Born rule, to calcu-

late the probabilities). Thus the violation of Bell inequalities, which can be derived

using freedom assumption and local causality, does not indicate whether quantum

mechanics it is local or non-local. The property of non-signalling indicates that quan-

tum mechanics is local. Some claim that the collapse of the wave packet postulate

(projection postulate) points to non-locality. However, the wave function has real

status only in realistic interpretations. In (neo?) Copenhagen Interpretation, which

is, admittedly, different for every apostle of it, this is just symbolic mathematical

tool allowing predictions for a system which is a member of an ensemble defined

by the preparation procedure. At least Bohr himself says: “actual calculations are

most conveniently carried out with the help of a Schrodinger state function, from

which the statistical laws governing observations obtainable under specified condi-

tions can be deduced by definite mathematical operations. It must be recognized,

however, that we are dealing here with a purely symbolic procedure, the unambigu-

ous physical interpretation of which in the last resort requires reference to the com-

plete experimental arrangement.” [7] Note also, that the projection postulate within

Qbist Interpretation is just the quantum Bayesian update [8], thus cannot be treated

as a non-local real phenomenon.
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Paradoxes of Interpretations of the EPR Paradox:
Elementary Presentation

Let me now present a reasoning which is based on some quantum predictions, and

the assumptions of EPR which led Bell in 1964 to formulate his original inequalities,

which in turn led to his Theorem. In a way this will be an intellectual game. Let start

just like EPR did in 1935, but let us consider the fascinating properties of three

photons which have maximally entangled polarizations, discovered 54 years later

by Greenberger, Horne and Zeilinger (GHZ). Let us see whether EPR can reach

the same conclusions as in their 1935 paper, where they considered a completely

different state. Let us also see whether Bohr was right in his 1935 criticism of the

EPR paper [9].

Consider first, the physical situation described by GHZ. Imagine that we have a

source, which in a single run of the experiment, when excited, emits three particles,

each in a different direction, such they reach three observers (for a history of efforts

to actually build such source with quantum optical techniques see [10]). The three

observes Danny, Mike and Anton are very very far away from each other. The par-

ticles reach their labs at the same moment of time. Spin is a kind of internal angular

momentum of a particle. Angular momentum is a vector, thus spin must be a vector

too. But this is a very strange vector. In the case of photons if we measure any of its

components the results are always +1 or −1 (times Planck Constant dividend by 2𝜋,

but this we shall treat as an irrelevant detail). By the way, polarization of light is a

consequence of the fact that photons are massless “spin-1” particles, and measure-

ments of the spin components of photons are in fact specific measurements of their

polarization.

After very many repetitions of their experiments, on a big enough statistical sam-

ple of the emissions of the particle-triples, the three observes, if they inform each

other about the results of their measurements and the settings of their measuring

local apparatuses (which is decided randomly by the whim of each local observer

separately, in each run of the experiment), notice the following phenomena.

∙ If two of them decide to measure the vertical component of the spin of the arriving

particle (its velocity is assumed to define the third direction in space for the local

observer), and the remaining third observer (whoever he is) chooses to measure the

horizontal component (at the right angle with the previous one, and perpendicular

to the velocity of the local particle), then the product of their local results is always

−1. That is either all of them get −1 or for two of them the results are 1 and for

one of them −1.

∙ However in such situations. as well as in the other one considered below, each

observer, before he exchanges the information with his partners, sees all his ±1
local results as fully random, following the statistics of fair coin toss. This is so

irrespectively of the local setting of the measuring device (that is, of which com-

ponent is measured).
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∙ If by chance all three decide to measure the horizontal components of local spins,

the product of their local results is always 1: either all of them get 1, or for two of

them results are −1, and for one of them is 1.

We have considered four experimental situations. EPR would notice here that in

each such a situation any pair of observers would be able to predict with certainty

what would be the result of the third one, if he also chooses a setting which allows

the correlations described above.

∙ For example Anton and Mike measure both vertical components, and each receives

the value−1. It they exchange the information about their results, they would know

that if the choice of Danny was to find out the value of the horizontal component,

his results must be −1 (as the product of the three local results must always be

−1).

∙ However, if Anton and Mike measure vertical and horizontal components, respec-

tively, and they receive, say, −1 and 1, they would know (after information

exchange) that if the choice of Danny is to measure the vertical component, he

would definitely receive −1.

Elements of reality. This is the moment at which EPR could enter with their defi-

nition. They did say: “If, without in any way disturbing a system, we can predict with

certainty (i.e., with probability equal to unity) the value of a physical quantity, then

there exists an element of physical reality corresponding lo this physical quantity.”

Additionally they stressed that “every element of the physical reality must have a

counter part in the physical theory”. Notice that all four situations discussed above

are cases in which each result of each observer can be predicted with certainty by

other two observers. E.g., in the first displayed example Mike and Anton can fix the

value of Danny’s element of reality pertaining to his possible measurement result for

horizontal component. Thus this possible result must be “part of the physical the-

ory”. However, the second example fixes the value of the vertical component of spin

of Danny’s particle. It is also potentially an element of reality.

EPR realized that “one would not arrive at our conclusion if one insisted that

two or more physical quantities can be regarded as simultaneous elements of real-

ity only when they can be simultaneously measured or predicted. On this point of

view, since either one or the other, but not both simultaneously, of the quantities

[horizontal spin component] and [vertical component] can be predicted, they are not

simultaneously real. This makes the reality of [horizontal component] and [vertical

component] depend upon the process of measurement carried out on the [two other]

system[s], which does, not disturb the [third] system in any way. No reasonable def-

inition of reality could be expected to permit this.”
1

Thus the claim is that any “reasonable definition of reality” would treat the values

of horizontal and vertical components of the spin as two elements of reality, which

1
The phrases in brackets indicate the text of EPR transformed in such a way so that it fits the

considered three-particle example. Their Q (position) is now horizontal component of the spin, and

P (momentum) is the vertical one.
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are missing in the quantum theory. Thus quantum theory in incomplete. This is where

the argument of EPR ends.

Bohr in his 1935 reply said “... there is essentially the question of an influence

on the very conditions which define the possible types of predictions regarding the

future behavior of the system... In fact, it is the mutual exclusion of any two exper-

imental procedures, permitting unambiguous definition of complementary physical

quantities, which provides room for new physical laws the coexistence of which at

first sight appear irreconcilable with the basic principles of science.”

Thus, the trouble is that in the considered examples, leading to elements or real-

ity, Mike is to measure either vertical or horizontal components of the spin of his

particle. However no experimental device can measure the two components simul-

taneously (as such a device must must have the property that it singles our a specific

direction, linked with the measured spin component; there is no way to single out two
directions). The two components are complementary, they are non-commensurable.

2

So, who is right EPR of Bohr? The statement of EPR is equivalent to treating two

situations, the actual one (say, Mike in a given run of the experiment, on a specific

particle, measured vertical component) and the potential one (Mike could have mea-

sured instead the horizontal component), on equal footing. Replacing the final “this”

in the quoted paragraph of EPR by what is actually meant by it we get: “No reason-

able definition of reality could be expected to permit [...]” “that two or more physical

quantities can be regarded as simultaneous elements of reality only when they can

be simultaneously measured or predicted.” Thus EPR effectively treat the actual and

potential different situations [measurements] on equal footing.
3

Bohr definitely does

not.

Who is right? Let us return to the GHZ predictions for three spins. As all possible

combinations of the results which are consistent with the quantum predictions are

equiprobable (recall that values obtained by each observer have the statistics of a fair

coin toss), the EPR elements of reality for a specific run of an experiment and the first

three potential situations (in which only one of the observers measures the horizontal

component, other two measure vertical) can be all −1. Why not? Their product is −1,

everything is OK. However, this means that if any one of them measures the horizon-

tal component, and if the notion of elements of reality is internally consistent, and

2
The mathematical formalism of quantum mechanics reflects complementarity of pairs “observ-

ables”. If this is the case say for observables A and B, e.g. describing two different components of

spin, then they “do not commute”. This is turn means that in the formal quantum description “oper-

ators” associated which the two observables we have the following property: AB ≠ BA. Of course

complementarity can occur in various degrees. We have perfect complementarity when experiments

measuring B give completely random results for quantum systems prepared in any state, which was

prepared by measuring A and selecting only systems which gave the same result of this measure-

ment. For example, photons which are selected by a polarization analyzer which allows only linearly

polarized photons to pass through it, would upon subsequent measurement of circular polarization

give fully random results. Either clockwise or anti-clockwise polarized photons would appear, with

equal probabilities. like in a coin toss.

3
Such an approach accepts so called “counterfactual” statements or conditionals. Such statements

contain an “if” clause which describes a situation which in fact did not occur: e.g., “If EPR knew

the results of the GHZ paper, they would not have written their 1935 work”.
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counter-factual reasonings allowed, then the result must be −1 (as all results men-

tioned above were assumed to be such, and one of them in all three situations pertains

to measurement of the horizontal component by one of the observers, in each case a

different observer). This implies that if by their own whim in the considered run of

the experiment accidentally all choose to measure horizontal components (the fourth

situation), the product of their results must be −1. However quantum mechanics pre-

dicts the product to be in such a case always +1, see above. The reader may check

all other combination of possible results which agree with the three first situations

considered in our example. This invariably leads to the the same prediction for the

fourth situation: if elements of reality are to be a consistent notion then the product

must be −1.

Thus if the thesis of EPR holds then 1 = −1. As the complementary nature of

horizontal and vertical spin components prohibits the reasoning of the previous para-

graph: if Bohr is right one still has 1 = 1. If for a given photon Mike measures the

horizontal component, he is not allowed to even speak about the possible value for

the complementary measurement.

This is the end. Where here is non-locality? One could try to argue that non-

locality is the solution of this conundrum, provided one insists that counterfactual

situations can be treated on equal footing with the actual ones. Then the fact that Mike

and Anton choose to measure horizontal component could, by “a spooky action at a

distance”, flip the value of Danny’s element of reality for the horizontal component

to +1. Of course, such a non-locality would clearly contradict EPR argument as:

“This makes the reality of [horizontal component] and [vertical component] depend

upon the process of measurement carried out on the [two other] system[s], which

does, not disturb the [third] system in any way. No reasonable definition of reality

could be expected to permit this.”

Thus non-locality cannot be derived via an EPR-type reasoning, just as the ele-

ments of reality (and thus determinism) are not derivable. The bad luck of EPR was

to consider in their work the specific quantum state and specific “observables”, for

which elements of reality seem to be a consistent notion (the original EPR state was

a state of two particles with total momentum equal to zero). In 1964 Bell took the

simplest possible two spin entangled state, the so-called singlet, and showed that if

we accept EPR reasoning and thus elements of reality, then the bound for his origi-

nal inequality for elements of reality does not hold for quantum predictions (i.e., the

inequality is violated). However his reasoning was not as simple as the one for GHZ

states, which allows to reveal directly the fallacy of EPR ideas.

The moral of this story is that with EPR-type reasoning it is not possible to derive

determinism, elements of reality, etc. This is so despite the fact that the tacit assump-

tion of EPR is counterfactual definiteness, which is effectively a rejection of comple-

mentarity, as in counterfactual reasonings we can talk about values of measurements

which were actually not done. So the situation is really tragic. The EPR reasoning,

which originally already assumed a form of realism (counterfactual definiteness)

when confronted with Bell and GHZ reasonings cannot lead us to a consistent notion

of elements of reality, as they imply 1 = −1. All this invalidates one of their assump-

tions. If we carefully enumerate the assumptions they are: “free will”, counterfactual
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definiteness, locality and quantum predictions. Their conjunction must be false. As

quantum mechanics has not been as yet falsified in any experiment, and “free will”

is rather indisputable, it is locality and/or counterfactual definiteness which must be

abandoned. But which—there is no answer.

Additionally, we see that EPR aim to falsify complementarity cannot be reached

once we consider GHZ correlations. They wrote “Starting then with the assumption

that the wave function does give a complete description of the physical reality, we

arrived at the conclusion that two physical quantities, with noncommuting operators,

can have simultaneous reality.” However, their effective assumption of counterfac-

tual definiteness directly implies rejection of complementarity. Thus, the reasoning

does not lead to any progress in this question (effectively they show that counterfac-

tual definiteness prohibits complementarity, which is a tautology). Still, with their

example, of two particles with vanishing total momentum, everything seems to be

internally consistent, although... circular. However, had they considered the GHZ

correlations, they would have not been able to reach the consistency, as in such a

case we are led to 1 = −1, which is a pretty inconsistent statement in elementary

algebra.

Local Causality

The above fairy tale shows that any attempt to derive determinism, or realism via

EPR correlations, is futile (as just one counterexample is needed to disproof such

a claim).
4

Thus realism of a form must be separately assumed in any derivation of

Bell inequalities. This means that violation of such inequalities is a falsification of a

compound assumption which is a conjunction realism of sorts (at least counterfac-

tual definiteness), locality (no action at a distance, constraints of relativistic causal-

ity working), and free will (settings decided at the whim of the local observer, or

existence of stochastic processes which decide the local settings, which can be sta-

tistically independent of any other factor in the experiment).
5

Still, there is a current fashion to claim that what is sufficient to derive Bell’s

inequalities is just freedom to choose settings and local causality, which is treated

as unrelated with any form of realism or hidden variables.

Let me therefore present a standard introduction of local causality, which mainly

follows the work of Bell ‘La nouvelle cuisine’ [11].

We have two space-like separated parties, Alice and Bob. They can choose freely

between a number of local measurement settings. Let us denote, by x and y Alice’s

and Bob’s measurement settings and by A and B their results. The predictions for a

Bell type experiment are given probabilities p(A,B|x, y).

4
EPR forgot that if a new notion is to be introduced to a theory, then it must checked whether it is

consistent with all predictions of the theory...

5
“Free will” is usually not a challenged assumption, thus we assume it to hold throughout the dis-

cussion.
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It is argued, that the probabilities p(A,B|x, y) are a statistical mixture of different

situations, labeled by 𝜆, and called by Bell ‘causes’.
6

The probabilities acquire the

following form

p(A,B|x, y) = ∫ d𝜆𝜌(𝜆)p(A,B|x, y, 𝜆),

where 𝜌(𝜆) is a probability distribution of the causes. Standard formulas for condi-

tional probabilities, and the fact that conditional probabilities for the same condition

have all properties of unconditioned probabilities, allow one to put

p(A,B|x, y, 𝜆) = p(A|B, x, y, 𝜆)p(B|x, y, 𝜆).

Local causality assumption as stated by Bell reads ‘The direct causes (and effects) of

[the] event are near by, and even the indirect causes (and effects) are no further away

than permitted by the velocity of light’. This allows one to state that ‘what happens

on Alice’s side does not depend on what happens on Bob’s side’ and vice versa [12].

Thus the following must hold p(A|B, x, y, 𝜆) = p(A|x, 𝜆) and p(B|x, y, 𝜆) = p(B|y, 𝜆).
By symmetry, which must be assumed in any reasonable approach p(B|A, x, y, 𝜆) =
p(B|y, 𝜆). Thus, we obtain the general mathematical structure of probabilities which

allows to derive all two-particle Bell inequalities:

p(A,B|x, y) = ∫ d𝜆𝜌(𝜆)p(A|x, 𝜆)p(B|y, 𝜆), (1)

provided one additionally assumes “free will” to choose measurement settings.

Sometimes, local causality is thought to be synonymous to locality. There are

claims that introduction of this notion by Bell in 1976 is effectively his second theo-

rem about entanglement.
7

This I cannot understand because stochastic hidden vari-

able theories, giving probabilities of the structure of Eq. (1), were introduced by

Clauser and Horne in 1974 [13]. The formula p(A|B, x, y, 𝜆) = p(A|x, 𝜆) is already

implied by in the Bell 1964 condition: local result depends on the local setting and

the local hidden variables 𝜆 (or “more complete specification”), however this was

formulated by Bell in the deterministic context (just replace here ‘local result’ by

‘probability of a local result’, and local causality emerges). I shall argue below the

local causality is a form of local realism or local hidden variables.
8

6
Note already here, that 𝜆’s do not appear in quantum mechanics, thus they are hidden variables.

Basically this could already end the discussion, as hidden variables are a program of completing
quantum mechanics, just like the aim of EPR. As a matter of fact elements of reality are indeed
hidden variables.
7
Some authors reserve the phrase Bell’s second theorem to his independent derivation of the impos-

sibility of non-contextual hidden variables.

8
Of course there is a full mathematical equivalence between local causal theories and stochastic

local hidden variable theories of Clauser and Horne. I shall argue that additionally there is no

conceptual difference.
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The danger in thinking that local causality is equivalent to locality is the fact

the opposite notion to locality is non-locality. However violation of local causality

implies either non-local causality, or that we have spontaneous events of a local or

non-local nature. Local causality assumes locality and existence of causes 𝜆, which

are not present in the quantum formalism.

In the case of mixed separable states, one may think that 𝜆 specifies the “actual”

quantum state in the probabilistic mixture. All this would agree with the formula (1).

However when the two particle quantum state is a pure entangled one, denoted here

by 𝜓 , there is a trouble. There is just one joint quantum mechanical state describ-

ing the two separated systems. No other specification of the situation is allowed

in quantum mechanics, all predictions are derivable using the state and the quan-

tum formalism which additionally gives us methods of calculation probabilities,

once the state is known. The probabilities are calculable using projectors which

depend on the (local) settings. Thus the quantum state 𝜓 is the sole “cause” in quan-

tum theory, except the settings. Applying local causality principle would mean that

p(A|B, x, y, 𝜓) = p(A|x, 𝜓) and equivalently p(B|A, x, y, 𝜓) = p(B|x, 𝜓), and the for-

mula (1) would read

p(A,B|x, y) = p(A|x, 𝜓)p(B|y, 𝜓), (2)

implying no correlations whatsoever! To get correlations, one must introduce at least

one two valued ‘cause’, say 𝜆 = 𝜆1 or 𝜆2, other than 𝜓 . In this way we can get

p(A,B|x, y) =
2∑

i=1
p(A|x, 𝜓, 𝜆i)p(B|y, 𝜓, 𝜆i). (3)

Such a formula allows for correlations. As such additional 𝜆’s do not appear in quan-

tum formalism, they are hidden variables per se. They are an attempt to complete the

quantum formalism by some additional factors.

The 𝜆’s, which enter Eq. (1) get various names: e.g. ‘the physical state of the

systems as described by any possible future theory’ [12], ‘local beables’ [14], ‘the

real state of affairs’, ‘complete description of the state’, etc. Bell himself writes ‘𝜆

denote any number of hypothetical additional variables needed to complete quantum

mechanics in the way envisaged by EPR’ ([11], pp. 242). This sentence of Bell’s is

often forgotten by those who think that local causality differs from local hidden vari-

able theories. As a matter of fact even Bell himself had a tendency to ignore it [15].

The other way of looking at this is to notice that local causality implies existence

of an underlying joint probability distribution for results of all possible measure-

ments (commensurable or non-commensurable), which is normalizable to unity and

non-negative. Once we have probabilities p(A|x, 𝜆) and p(B|y, 𝜆) to define such an

object is trivial, while in general in quantum mechanics this in general is impossi-

ble, and there is no quantum mechanical method to formulate such a distribution.

Denote by Axi the possible values (spectrum) of an observable ̂OA
xi

for Alice’s sys-

tem, and also by Byj the possible values (spectrum) of an observable ̂OB
yi

for Bob’s
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system. Indices i, j numerate the observables in whatever way. Then the underlying

distribution reads

P(Ax1 ,… ,Axn ,By1 ,… ,Bym ) = ∫ d𝜆𝜌(𝜆)
n∏

i=1
p(Axi |xi, 𝜆)

m∏

j=1
p(Byj |yj, 𝜆)

and all other probabilities in a local causal theory are marginals of such distribu-

tions. If in a probability theory such distributions exist then then all properties of the

axioms of Kolmogorov are satisfied, and probabilities can have the classical lack of

knowledge interpretation. One can model them by a normalized measure on some

sample space Ω. Elements of Ω have all properties of hidden variables. Thus con-

versely any theory with allP(Ax1 ,… ,Axn ,By1 ,… ,Bym ) existing and non-negative can

be modelled with some hidden variable on a sample space, for details see [16].

Final Remarks

In Sect. “Paradoxes of Interpretations of the EPR Paradox: Elementary Presenta-

tion” it was shown that the EPR reasoning cannot be used to derive determinism or

realism of sorts, as it has as a tacit assumption acceptance of courterfactual state-

ments as valid. Once one accepts such statements, then for a given quantum system

unmeasured quantities have the same status as the one actually measured, even if they

are mutually non-commensurable. This is of course prohibited by complementarity

principle. Thus, EPR reasoning cannot be used do deny complementarity, because

EPR deny complementarity in their initial assumptions.

Still the situation is even worse, as in the counterfactual situation of EPR consid-

ering the GHZ correlations, they would have run into a 1 = −1 contradiction in their

denial of complementarity. Thus, EPR reasoning, as it leads in this case to an outright

contradiction cannot be useful in any scientific reasoning, and especially it is useless

as a tool to derive determinism or realism of any sort (as this leads in such a case

to a contradiction). Still, this work is seminal and extremely important—but these

are not terms which describe its internal consistency, especially if one considers all

quantum predictions, and not only for their state (in the case of which unluckily for

the history of physics the contradiction was difficult to spot).
9

Thus, the consequences of the inconsistency of EPR argument are either that

unperformed experiments have no results [19], or non-locality, or both (if we insist

to retain “freedom”). With counterfactual reasonings the algebraic identity leading

to the CHSH [20] inequality reads:

Ax1By1 + Ax1By2 + Ax2By1 − Ax2By2 = ±2. (4)

9
For a version Bell’s theorem for EPR states see [17], or for a more recent development see [18].
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Note that it pertains to all possible choices of local measurements in two-setting per

observer Bell experiment, hypothetically applied in the case of a given single pair of

particles. With complementarity in mind, and for the case in which the actual setting

for the given pair of particles is on both sides the first one, x1, y1, as values for the

complementary settings are then unspeakable, we have

Ax1By1 + Ax1 (?) + (?)By1 − (?)(?) =?. (5)

In the considerations of Sect. “Local Causality”, it is shown that local causality

is a compound notion. Thus, its opposite is not ‘non-locality’. Local causality is

equivalent to stochastic local hidden variable theories introduced in [13]. We have

locality and causes 𝜆 which are not present in quantum description, and therefore

are hidden variables. Thus an antonym of local causality may be non-locality or

spontaneous events, or both.
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Chapter 11
The Unspeakable Why

Adán Cabello

Abstract For years, the biggest unspeakable in quantum theory has been why quan-

tum theory and what is quantum theory telling us about the world. Recent efforts are

unveiling a surprisingly simple answer. Here we show that two characteristic limits

of quantum theory, the maximum violations of Clauser-Horne-Shimony-Holt and

Klyachko-Can-Binicioğlu-Shumovsky inequalities, are enforced by a simple prin-

ciple. The effectiveness of this principle suggests that non-realism is the key that

explains why quantum theory.

Introduction

There is a photograph of John Bell taken in 1982 in front of a blackboard in his

office at CERN. The famous Clauser-Horne-Shimony-Holt (CHSH) Bell inequality

[1, 2] is written in the blackboard. At the right hand side of the maximum bound for

local hidden variable theories it is written “Einstein.” Below that, it is written the

maximum for quantum theory (QT): “2
√
2.” Already in 1969, CHSH noticed that

this was the maximum for two-qubit systems [2]. In 1980, Tsirelson proved that it is

also the maximum in QT, no matter the dimensionality of the state space [3]. It took a

lot of time until somebody asked the obvious question: why? [4]. It took a surprising

amount of time until somebody came with a compelling answer [5]. However, it was

soon proved that this answer cannot explain the maximum quantum values for some

tripartite Bell inequalities [6]. This leads us back to square one: Why the quantum

maxima of all Bell inequalities? What is the fundamental reason that limits quantum

probabilities?

In the summer of 1964, before submitting the Bell inequality paper, Bell submit-

ted other paper which, for several reasons [7, 8], was not published until 1966 [9].

There, Bell discusses the implications for the hidden variables problem of Gleason’s

theorem [10], which was directed to reducing the axiomatic basis of QT. The rele-

vant corollary of Gleason’s theorem is that, if the dimensionality d of the state space

A. Cabello (✉)
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is grater than two, then there exists a set of elementary tests such that values t(rue)

or f (alse) cannot be assigned to them respecting that: (i) t cannot be assigned to two

mutually exclusive tests, and (ii) t must be assigned to exactly one of d mutually

exclusive tests. Bell proved this corollary by constructing an explicit infinite set of

elementary tests in d = 3 for which such an assignment is impossible. A finite set was

found by Kochen and Specker in 1962 [11], but not published until 1967 [12], making

explicit a result anticipated by Specker in 1960 [13]. These sets prove the impossibil-

ity of reproducing QT with theories satisfying the assumption of non-contextuality

of results, namely, the assumption that the “measurement of an observable must yield

the same value independently of what other measurements may be made simultane-

ously” [9]. Bell considered that this assumption was not reasonable and finished his

paper suggesting that it would be interesting to pursue some proof of impossibility

of hidden variables replacing non-contextuality by some assumption of locality. One

month later, Bell submitted the Bell inequality paper.

However, the problem of hidden variables in QT can be mathematically formu-

lated in a way which goes beyond whether or not non-contextuality is reasonable.

The problem of hidden variables in QT is simply whether or not it is possible to

recover the quantum probabilities from a joint probability distribution over a single

probability space. What is proven by Kochen-Specker and Bell’s examples is that

this is not possible in any scenario in which the dimensionality of the state space is

three or higher, irrespective of whether or not locality can be invoked (Fig. 11.1).

Fig. 11.1 John Bell at CERN. © 1982 CERN.
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The KCBS and the CHSH Inequalities

What if Bell would have derived a Bell-like inequality violated by quantum sys-

tems of dimension three? Such an inequality was introduced in 2008 and is called

the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) non-contextuality (NC) inequal-

ity [14]. The KCBS inequality is the analog for quantum systems of dimension three

of the CHSH inequality. The KCBS inequality is the simplest NC inequality vio-

lated by quantum systems of dimension three; the CHSH inequality is the simplest

NC inequality violated by quantum systems of dimension four. Simplicity is here

measured by the number of dichotomic observables used. The quantum violation of

NC inequalities shows the impossibility to recover the quantum probabilities from a

joint probability distribution over a single probability space.

The KCBS inequality says that, for any non-contextual hidden variable (NCHV)

theory,

𝜅

NCHV≤ 3, (1)

with

𝜅 = ⟨A1A2⟩ + ⟨A2A3⟩ + ⟨A3A4⟩ + ⟨A4A5⟩ − ⟨A5A1⟩, (2)

where Ai are observables with two possible results −1 and +1, and

⟨AjAj+1⟩ = P(Aj+,Aj+1+) − P(Aj+,Aj+1−) − P(Aj−,Aj+1+) + P(Aj−,Aj+1−), (3)

where, e.g., P(Aj+,Aj+1−) denotes the joint probability of obtaining +1 when mea-

suring Aj and −1 when measuring Aj+1. Probabilities in Eq. (3) are assumed to be

well defined no matter in which order Aj and Aj+1 are measured. However, for Aj and

Aj+2 this may not be the case.

Similarly, the CHSH inequality says that, for any local hidden variables (LHV)

theory,

𝛽

LHV≤ 2, (4)

with

𝛽 = ⟨A1A2⟩ + ⟨A2A3⟩ + ⟨A3A4⟩ − ⟨A4A1⟩. (5)

The difference between 𝜅 and 𝛽 is that, in 𝛽, A1 and A3 can be measured on a sub-

system while A2 and A4 are measured on a distant subsystem. Therefore, in 𝛽 the

choice of measurement on one subsystem and the result on the other subsystem can

be space-like separated. This allows us to invoke locality to justify the assumption

of non-contextuality.

In contrast with (1) and (4), in QT,

𝜅

QT≤ 4
√
5 − 5 ≈ 3.944 (6)
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and

𝛽

QT≤ 2
√
2 ≈ 2.828. (7)

The big question is not just why QT violates the inequalities for hidden variable

theories, but rather why QT violates them exactly up to these limits.

Introducing the Exclusivity Principle

Consider non-demolition measurements that are repeatable (i.e., that give the same

result when repeated) and cause no disturbance on other measurements (i.e., when

combined with these other measurements, all are repeatable). These measurements

are called “sharp” [15, 16] and, in QT, are represented by projection operators. These

are the measurements that von Neumann called “quantum observables” [17]. Let

us define an event as the state of the system after some sharp measurements (with

certain results) on some initial state. Two events are equivalent when they correspond

to indistinguishable states. Two events are exclusive when there is a measurement

that distinguishes between them.

A theory satisfies the exclusivity (E) principle [18] when any set of n pairwise

exclusive events is n-wise exclusive. Therefore, if we assume the E principle, Kol-

mogorov’s axioms of probability lead us to the conclusion that the sum of the prob-

abilities of any set of pairwise exclusive events cannot be higher than 1.

However, the E principle cannot be derived from Kolmogorov’s axioms. To see

it, consider the maximum value of the following sum of probabilities of events:

S = P(A1+,A2+) + P(A2−,A3−) + P(A3+,A1−), (8)

where the notation is the same used above. The three events (A1+,A2+), (A2−,A3−)
and (A3+,A1−) are pairwise exclusive. Therefore, the only restrictions from Kol-

mogorov’s axioms are that the probabilities are non-negative and that

P(A1+,A2+) + P(A2−,A3−) ≤ 1, (9a)

P(A2−,A3−) + P(A3+,A1−) ≤ 1, (9b)

P(A3+,A1−) + P(A1+,A2+) ≤ 1. (9c)

Therefore, for theories satisfying Kolmogorov’s axioms the maximum is S = 3∕2,

since each of the three probabilities in (8) can be 1/2. However, for theories satisfying

the E principle, the maximum is S = 1, since the E principles forces that

P(A1+,A2+) + P(A2−,A3−) + P(A3+,A1−)
E≤ 1. (10)
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The E principle can be derived from a variety of axioms. For example, from the

axiom that pairwise co-measurability implies joint co-measurability [13], from the

principle of fundamental sharpness of measurements [16], from axioms 1 and 2 in

Ref. [19], and from the principle of lack of irreducible third order interference [20].

The E principle imposes limits to the sum of probabilities of pairwise exclusive

events. Therefore, in order to study the implications of the E principle for the limits

of the KCBS and CHSH inequalities, it is convenient to rewrite both inequalities

in terms of sums of probabilities of events. For that, it is useful to notice that the

condition of normalization of probabilities allows us to write

⟨AjAj+1⟩ = 2P(Aj+,Aj+1+) + 2P(Aj−,Aj+1−) − 1, (11a)

−⟨AjAj+1⟩ = 2P(Aj+,Aj+1−) + 2P(Aj−,Aj+1+) − 1. (11b)

Therefore, we can write

𝜅 =2SKCBS + 2S′KCBS − 5, (12a)

𝛽 =2SCHSH − 4, (12b)

where

SKCBS =P(A1+,A2+) + P(A2−,A3−) + P(A3+,A4+) + P(A4−,A5−) + P(A5+,A1−), (13a)

SCHSH =P(A1+,A2+) + P(A1−,A2−) + P(A2+,A3+) + P(A2−,A3−)
+ P(A3+,A4+) + P(A3−,A4−) + P(A4+,A1−) + P(A4−,A1+) (13b)

and S′KCBS is obtained from SKCBS by changing the signs of all the results. Then, we

can write the KCBS and CHSH inequalities and their quantum limits as follows:

SKCBS
NCHV≤ 2

QT≤ √
5 ≈ 2.236, (14a)

SCHSH
LHV≤ 3

QT≤ 2 +
√
2 ≈ 3.414. (14b)

The Limit of the KCBS Inequality

Our first target is to explain why SKCBS cannot go beyond

√
5 or, equivalently, why

𝜅 cannot go beyond 4
√
5 − 5. For this purpose, consider two independent experi-

ments both aiming the maximum of SKCBS. Suppose that one of the experiments is

performed in Vienna on a certain physical system, while the other experiment is per-

formed in Stockholm on a different physical system. Let us denote by (Aj+,Aj+1+)
an event of the experiment in Vienna, by SAKCBS the sum of the corresponding five

probabilities, by (Bk+,Bk+1+) an event of the experiment in Stockholm and by SBKCBS
the sum of the corresponding five probabilities.
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Since the experiments are independent, the probability of an event involving both

experiments is the product of the probabilities of the corresponding (single-city)

events. For example,

P(Aj+,Aj+1+,Bk+,Bk+1+) = P(Aj+,Aj+1+)P(Bk+,Bk+1+). (15)

Having two copies, we can identify larger sets of pairwise exclusive events. For

example, the set with the following events: (A1+,A2+,B1+,B2+), (A2−,A3−,B4−,
B5−), (A3+,A4+,B2−,B3−), (A4−,A5−,B5+,B1−) and (A5+,A1−,B3+,B4+). The

E principle and assumption (15) applied to this set imply that

P(A1+,A2+)P(B1+,B2+) + P(A2−,A3−)P(B4−,B5−) + P(A3+,A4+)P(B2−,B3−)

+P(A4−,A5−)P(B5+,B1−) + P(A5+,A1−)P(B3+,B4+)
E≤ 1. (16a)

Similarly, by identifying sets of pairwise exclusive events, we can derive the follow-

ing inequalities:

P(A1+,A2+)P(B3+,B4+) + P(A2−,A3−)P(B1+,B2+) + P(A3+,A4+)P(B4−,B5−)

+P(A4−,A5−)P(B2−,B3−) + P(A5+,A1−)P(B5+,B1−)
E≤ 1, (16b)

P(A1+,A2+)P(B5+,B1−) + P(A2−,A3−)P(B3+,B4+) + P(A3+,A4+)P(B1+,B2+)

+P(A4−,A5−)P(B4−,B5−) + P(A5+,A1−)P(B2−,B3−)
E≤ 1, (16c)

P(A1+,A2+)P(B2−,B3−) + P(A2−,A3−)P(B5+,B1−) + P(A3+,A4+)P(B3+,B4+)

+P(A4−,A5−)P(B1+,B2+) + P(A5+,A1−)P(B4−,B5−)
E≤ 1, (16d)

P(A1+,A2+)P(B4−,B5−) + P(A2−,A3−)P(B2−,B3−) + P(A3+,A4+)P(B5+,B1−)

+P(A4−,A5−)P(B3+,B4+) + P(A5+,A1−)P(B1+,B2+)
E≤ 1. (16e)

The geometry behind these sets is explained in Fig. 11.2. If we sum all five inequal-

ities (16a)–(16e), we obtain

SAKCBSS
B
KCBS

E≤ 5. (17)

Assuming that the maximum is the same in both experiments, i.e., that SAKCBS =
SBKCBS, we can conclude that, for any theory satisfying the E principle,

SKCBS
E≤ √

5. (18)

Exactly as in QT. This is an arguably clearer presentation of a result introduced in

Ref. [18].
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Fig. 11.2 Exclusivity graphs of the five sets of five pairwise exclusive events used in the proof

of the limit of the KCBS inequality. Events are represented by nodes and exclusivity relations by

edges. The black pentagons correspond to the exclusivity relations between the events (Aj𝛾,Aj+1𝛿).
The coloured pentagrams correspond to the exclusivity relations between the events (Bk𝜖,Bk+1𝜙).
Any two graphs differ in a rotation of the pentagram.

The Limit of the CHSH Inequality

Our second target is to explain why SCHSH cannot go beyond 2 +
√
2 or, equivalently,

why 𝛽 cannot go beyond 2
√
2. For this purpose, first notice that the state space on

which A1 and A3 act is, at least, two-dimensional. Second, notice that the conditions

of normalization of probabilities allows us to write,

4 − SCHSH = P(A1+,A2−) + P(A1−,A2+) + P(A2+,A3−) + P(A2−,A3+)
+P(A3+,A4−) + P(A3−,A4+) + P(A4+,A1+) + P(A4−,A1−). (19)

Now consider two independent experiments both testing SCHSH. Suppose that one

of the experiments is performed in Vienna and the other experiment in Stockholm.

As before, let us denote by (Aj+,Aj+1+) one event in Vienna and by (Bk+,Bk+1+)
one event in Stockholm.

Now notice that A1 and B1 are co-measurable and that the state space on which

A1 and B1 act is, at least, four-dimensional. Therefore, there must exist an observable
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C11 co-measurable with A1 and B1 and such that the result for C11 is +1 if the results

of A1 and B1 are equal, and −1 if they are different. C11 acts on a four-dimensional

state space, but only distinguishes between two subspaces. Therefore, there must

be an observable C33 co-measurable with C11 that distinguishes between other two

subspaces and such that

P(C11+,C33+) + P(C11+,C33−) + P(C11−,C33+) + P(C11−,C33−) = 1. (20)

Since we have made no assumption about A3 and B3 (other than each of them acts

on a different at least two-dimensional subspace), we can relate C33 to A3 and B3, the

same way we related C11 to A1 and B1. Similarly, we can start with A1 and B3 and

define C13 and then define a co-measurable C31 related to A3 and B1.

These observables allow us to identify larger sets of pairwise exclusive events. For

example, the set with the following events: (A1+,A2+,B1+,B2+,C11+), (A1+,A2−,
B1+,B2−,C11+), (A3+,A2+,B3−,B2−,C33−), (A3+,A2−,B3−,B2+,C33−), (A1−,
A2−,B1−,B2−,C11+), (A1−,A2+,B1−,B2+,C11+), (A3−,A2−,B3+,B2+,C33−),
(A3−,A2+,B3+,B2−,C33−) and (C11−,C33+). Since, by definition of C11, P(A1+,
A2+,B1+,B2+,C11+) = P(A1+,A2+,B1+,B2+), the E principle and assumption

(15) applied to this set imply that

P(A1+,A2+)P(B1+,B2+) + P(A1+,A2−)P(B1+,B2−) + P(A3+,A2+)P(B3−,B2−)
+P(A3+,A2−)P(B3−,B2+) + P(A1−,A2−)P(B1−,B2−) + P(A1−,A2+)P(B1−,B2+)

+P(A3−,A2−)P(B3+,B2+) + P(A3−,A2+)P(B3+,B2−) + P(C11−,C33+)
E≤ 1. (21)

As explained in Table 11.1, there are 16 sets like this one. For each of them, there

is a inequality like (21). If we sum all of them we obtain,

SACHSHS
B
CHSH + (4 − SACHSH)(4 − SBCHSH) + 4

E≤ 16. (22)

Assuming that the maximum is the same in both experiments, we can conclude that,

for any theory satisfying the E principle,

SCHSH
E≤ 2 +

√
2. (23)

Exactly as in QT. This result is an improved version of an argument introduced in

Ref. [21]. A similar argument allows us to derive the quantum limits for n-partite

Bell-like inequalities for non-local (but not genuinely n-partite non-local) hidden

variable theories [22].
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The Unspeakable Why

We have shown that some characteristic limits of QT have a simple explanation.

Indeed, we suspect that all the limits of quantum probabilities have the same expla-

nation. If this would be the case, what should we learn about QT?

For some people, a fundamental message of QT is that the world is non-local,

i.e., that the results of quantum observables correspond to some reality and change

non-locally [24]. However, from this perspective, it is puzzling that the no-signaling

principle allows for higher than quantum violations of the CHSH inequality [4]. Why

then QT is not more non-local?

The reason why QT is exactly as non-local as it is, apparently, the same reason

why QT is exactly as contextual as it is. However, in the contextuality case, there is

no Alice and Bob and no communication.

Why nobody paid attention to the E principle before? Arguably, because the E

principle is trivial in classical deterministic theories and not well defined in non-

local realistic theories.

However, if one takes non-realism (of the results of observables represented in

QT by self-adjoint operators) as a fundamental key of the world, then everything

makes much more sense. The fundamental non-existence of results makes that not

all conceivable combinations of observables allow for joint probability distribu-

tions (i.e., makes not all observables to be co-measurable). Indeed, it makes all

conceivable relations of co-measurability/non-co-measurability (among sharp mea-

surements) realizable and, as a consequence, makes all conceivable relationships of

exclusivity/non-exclusivity (among events) realizable. There is where the E principle

makes a profound contribution: The possible sets of probabilities of a given scenario

(i.e., a certain structure of co-measurability/non-co-measurability) are restricted by

the E principle applied to all conceivable embeddings of the scenario into a larger

scenario. In this sense, the E principle acts in an holistic way. In particular, the limits

of the probabilities of a given scenario follow from identifying the most (or one of

the most) restrictive embedding(s) (details will be presented elsewhere [23]). The

resulting picture points out that non-realism is not “a soft option” [24], but rather a

fundamental key of the world. QT is a probability theory about things that do not

exist and are unpredictable at a fundamental level.

One may argue that the view I have drawn before is just one of the possible options

and that the predictions of QT are also compatible with contextual and non-local

realistic views of the world. I disagree. Common to all these other views is a certain

degree of realism that ranges from hidden variables determining the results of all

possible experiments to just taking the quantum state as real. It seems evident that

any of these other views, when examined in detail, will lead to predictions that QT

does not make. Hopefully, we will soon identify these predictions and test them.

Time and experiments will tell.
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Chapter 12
A Reconstruction of Quantum Mechanics

Simon B. Kochen

Introduction

Almost a century after the mathematical formulation of quantum mechanics, there is

still no consensus on the interpretation of the theory. This may be because quantum

mechanics is full of predictions which contradict our everyday experiences, but then

so is another, older theory, namely special relativity.

Although the Lorentz transformations initially gave rise to different interpreta-

tions, when Einstein’s 1905 paper appeared it soon led to a nearly universal accep-

tance of Einstein’s interpretation. Why was this? Einstein began with the new con-

ceptual principle that time and simultaneity are relative to the inertial frame, drop-

ping the classical assumption that they are absolute. By then using the linearity of

transformations due to the local nature of special relativity and the experimental fact

that the speed of light is constant, Einstein was able to derive the Lorentz transforma-

tions. Furthermore, by introducing the natural classical notions of state, observable,

and symmetry in the new setting, Einstein derived the new dynamical equations to

replace the Newtonian equations. This manifestly consistent derivation allowed for

a resolution of the apparent paradoxes which confounded the older ether theory, and

led to the adoption of Einstein’s interpretation by physicists.

In this paper, we shall endeavor to use Einstein’s approach as a model for deriving

and interpreting quantum mechanics. We also start with a new conceptual precept

which replaces a classical premise. It is a basic assumption of classical physics that

experiments measure pre-existing inherent observables and properties of systems,

and any disturbance due to the interaction with the apparatus can be minimized or

incorporated into its effect on the observables. By contrast, when we measure a par-

ticle’s component of spin in a particular direction in a Stern-Gerlach experiment, it

is the general belief that we are not measuring a pre-existing property. Rather, it is
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the interaction of the particle with the magnetic field, which is inhomogeneous in

that direction, that creates the value of the spin. We shall say that such properties are

relational or extrinsic, as opposed to the intrinsic properties of classical physics.

That quantum observables and properties take values only upon suitable interac-

tions is, of course, not new to physicists. Bohr, the founder of the Copenhagen inter-

pretation, wrote in [1]: “The whole situation in atomic physics deprives of all mean-

ing such inherent attributes as the idealization of classical physics would ascribe to

such objects.” This is a radically new consequence of quantum physics that contro-

verts one of the main conceptual assumptions of classical physics, that properties of

a physical system are intrinsic.

The aim of this paper is to show that a mathematical formulation of this principle

allows us to reconstruct the formalism of quantum mechanics. Let us give the basic

idea in defining the structure of extrinsic properties, given in Sect. “Properties”.

Every experiment yields a 𝜎-algebra of measured properties. For instance, in mea-

suring an quantum observable with spectral decomposition
∑

aiPi, the 𝜎-algebra is

generated by the projections Pi. It is shown in Sect. “Properties” that for quantum

experiments the different measured 𝜎-algebras cannot all be imbedded into a single

𝜎-algebra. In the case of classical physics, on the other hand, the measured 𝜎-algebras

all sit inside the 𝜎-algebra B(Ω) of intrinsic properties of the system, consisting of

the 𝜎-algebra generated by the open sets of the phase space Ω of the system.

To mathematically treat the extrinsic properties of quantum mechanics, we replace

the encompassing 𝜎-algebra B(Ω) of properties by a 𝜎-complex Q, consisting of the

union of all the 𝜎-algebras of the system elicited by different decoherent interactions,

such as measurements.

This change allows us to define in a uniform and natural manner the concepts

of state, observable, symmetry, and dynamics, which reduce to the classical notions

when Q is a Boolean 𝜎-algebra, and to the standard quantum notions when Q is the

𝜎-complex Q() of projections of Hilbert space . Moreover, we use this approach

to derive both the Schrödinger equation and the von Neumann-Lüders Projection

Postulate. We also show on the basis of interferometry experiments why Q has the

form Q().
The most noteworthy feature of this reconstruction of quantum mechanics is that

the classical definitions of the key physical concepts such as state, observable, sym-

metry, dynamics, and the combining of systems take on precisely the same form in

the quantum case when they are applied to extrinsic properties.

In the standard formulation, these concepts take on a strikingly different form

from the classical one. In particular, the definition of state as a complex function and

the complex form of the Schrödinger equation, as opposed to the intuitive, real def-

initions of classical physics, led Bohr to speak of this formalism as only a symbolic

representation of reality.

One purpose of this approach is to show that once the relational character of prop-

erties is accepted, the definitions of the basic concepts of quantum mechanics are as

real and intuitive as is the case for classical mechanics. Of course, it is not our inten-

tion to dispense with the linear complex Hilbert space in treating problems in physics.

The linearity of the Schrödinger equation is crucial for solving atomic problems. Our
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purpose in showing that our intuitive definitions of the notions are equivalent to the

standard complex ones is rather to reduce the use of the complex Hilbert space to

a technical computational tool, similar to the use of complex methods in classical

electromagnetism and fluid mechanics.

At first sight the structure of a 𝜎-complex Q is unusual. Operations between ele-

ments of Q are not defined unless they lie in the same Boolean 𝜎-algebra within Q.

That however is the whole point of this structure. Operations are only defined when

they make physical sense. This points to the main difference of this approach to that

initiated by Birkhoff and von Neumann [2], and carried forward by Mackey [3], and

Piron [4], among others. They define the logic of quantum mechanics to be a cer-

tain kind of lattice, consisting of the set of projection operators of Hilbert space.

However, Birkhoff and von Neumann [2] already raised the question:

What experimental meaning can one attach to the meet and join of two given experimental

propositions?

That question has never been adequately answered. Varadarajan, in his book [5] on

the lattice approach to quantum mechanics, written some thirty years after the Birk-

hoff and von Neumann paper, writes:

The only thing that may be open to serious question in this is [the] assumption . . . which

forces any two elements of  to have a lattice sum, . . . We can offer no really convincing

phenomenological argument to support this.

Replacing the structure of a complex Hilbert space by an equally mysterious struc-

ture of a lattice does not achieve the goal of a transparent foundation for quantum

mechanics. What is perhaps surprising is that the far weaker structure of a 𝜎-complex

suffices to reconstruct the formalism of quantum mechanics. Our approach has nev-

ertheless benefited from the lattice approach, especially as delineated in Varadarajan

[5], since theorems using lattices turned out often to have proofs using the weaker

𝜎-complex structure.

One of the aims of a consistent, logical reconstruction of quantum mechanics

is to resolve problematic questions and inconsistencies in the orthodox interpreta-

tion, such as the Measurement Problem, the Einstein-Podolsky-Rosen paradox, the

Kochen-Specker paradox, the problem of reduction and the von Neumann-Lüders

Projection Rule, and wave-particle duality. We discuss a resolution of these ques-

tions in the context of this reconstruction as they arise in this paper.

At various points in the paper we consider properties of systems as they are mea-

sured by experiments. We are not however espousing an operational view of quan-

tum mechanics. We believe quantum mechanics describes general interactions in the

world, independently of a classical macroscopic apparatus and observer. We do not

subscribe to the Bohrian view that classical physics is needed to give meaning to

quantum phenomena. The interactions we describe using a macroscopic apparatus

could apply equally well to appropriate decoherent interactions between two systems

in general. (See the discussion in Sect. “Properties”). Nevertheless, we refer for the

most part to experiments rather than general interactions in order to emphasize that
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the postulates have operational content and meaning. This has the merit of allowing

those who prefer the operational approach to make sense of this reconstruction.

Another point is that since the properties that constitute a 𝜎-complex correspond

to the results of possible measurements, they refer to what in the orthodox interpre-

tation are the properties that may hold as a result of reduction. We do not attempt

to discuss the conditions under which reduction or decoherence occurs. There are

discussions in the literature on the conditions under which reduction can occur. For

instance, Bohm [6] analyzes the strength of the inhomogeneity of the magnetic field

for a successful reduction to occur in the Stern-Gerlach experiment. We consider

these as interesting pragmatic questions which lie outside the purview of this paper.

We have not given a new axiomatization of quantum physics. In fact, there are

no axioms in this paper, only definitions of the basic concepts, definitions which

are identical with the classical ones. Rather, we have presented a framework that is

common to all physical theories. It is the aim of every theory to predict the proba-

bilities of the outcomes of interactions between systems. Experiments are particu-

lar instances of such interactions. An experiment gives rise to a Boolean 𝜎-algebra

of events which reflects an isomorphic 𝜎-algebra of properties of the system. The

different possible experiments yield a family of 𝜎-algebras, reflecting a family of 𝜎-

algebras properties of the system, whose union we call a 𝜎-complex. This 𝜎-complex

helps determine the underlying theory, and conversely, a given theory determines the

kind of 𝜎-complex of perperties that arises, but the general structure of a 𝜎-complex

as a union of 𝜎-algebras is independent of any particular theory.

The main aim of the paper is to derive elementary quantum mechanics by applying

the natural classical definitions of the physical concepts to extrinsic properties, and

then use this derivation to resolve the standard paradoxes and problematic questions.

We shall accordingly give only outlines of the proofs of the requisite theorems. To

show that we have accomplished the goal of reconstructing the formalism, we shall

use the textbook by Arno Bohm [6]. This book has the advantage of explicitly intro-

ducing five postulates which suffice to treat the standard topics in quantum theory.

We shall specify each of the Bohm postulates as we derive them in the paper.

To avoid repetition, we shall make the blanket assumption that the Hilbert space

 that we deal with is a separable complex Hilbert space. The Appendix has a table

which summarizes the reconstruction.

Properties

Scientific theories predict the probabilities of outcomes of experiments. We recall

from probability theory that the individual outcomes of an experiment on a system

form the sample space S. For instance, a Stern-Gerlach experiment which measures

the z-components of spin for a spin 1 system has the sample space S = {s−1, s0, s1}
corresponding to the three possible spots labeled s−1, s0, s1 on the screen. An exper-

iment to measure the temperature of water by a thermometer has (an interval of) the

real line as sample space.
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Out of the elementary outcomes, one forms an algebra of more complex out-

comes, called events, consisting of a Boolean algebra B of subsets of the space S.

The operations of B consist of union a ∨ b, and complementation a⊥, and all other

Boolean operations, such as intersection a ∧ b, which are definable from them. If S is

finite, then B consists of all subsets of S. If S is infinite, then the operation of count-

able union
⋁

ai of elements ai of B, is added, and B is called a (Boolean) 𝜎-algebra.

(For the definition of and details about Boolean algebras see Koppellberg [7]).

The algebra B of events, i.e. sets of outcomes, reflects the corresponding structure

of properties of the system. For instance, in the above Stern-Gerlach experiment, the

sets {s−1}, {s0}, and {s1} correspond to the properties Sz = −1, Sz = 0, and Sz = 1;

the set {s−1, s1} corresponds to the property Sz = −1 ∨ Sz = 1 (where∨ denotes ‘or’),

or equivalently, the property ⌋ (Sz = 0) (where ⌋ denotes ‘not’), and so on. In this

case, the Boolean algebra is clearly the eight element algebra. In the case of the above

temperature measurement of the water, the elementary outcomes are open intervals

of the real line, and the algebra of events is the 𝜎-algebra of (Borel) sets generated

by the intervals by complement and countable intersection.

Thus, for both classical and quantum physics, every experiment on a given system

S elicits a 𝜎-algebra of properties of S, which are true or false, i.e. have a truth value,

for the system.

We come now to a crucial difference between the two theories. In classical

physics, we assume that the measured properties of the system already exist prior

to the measurement. It may be true that the interaction of the system with the appa-

ratus disturbs the system, but this disturbance can be discounted or minimized. For

instance, the thermometer may change the temperature of the water being measured,

but this change can be accounted for, and there is no doubt that the water had a tem-

perature prior to the measurement which is approximated by the measured value.

The basic assumption is that systems have intrinsic properties, and the experiment

measures the values of some them.

The family of intrinsic properties of a system form a Boolean algebra, and in the

infinite case a 𝜎-algebra. For classical physics, one introduces the phase (or state)

space, with a canonical structure. The open sets of Ω generate a 𝜎-algebra B(Ω) of

Borel sets by complement and countable intersection. The algebra B(Ω) constitutes

the 𝜎-algebra of intrinsic properties of the system. Since the 𝜎-algebras of measured

properties are aspects of all the intrinsic properties of the system, these different

𝜎-algebras must all be part of the 𝜎-algebra B(Ω). Hence, the union ∪B of all the

𝜎-algebras arising from possible measurements is embeddable in B(Ω). In fact, if we

assume that every property of the system is, in principle, experimentally measurable

then the union ∪B itself forms a 𝜎-algebra.

In quantum mechanics, for measurements such as the Stern-Gerlach experiment,

physicists do not believe that the value of the spin component Sz exists prior to the

measurement. On the contrary, it is the interaction with the magnetic field, inho-

mogeneous in the z-direction, that results in a definite spot, say s1, on the screen,

reflecting the value, Sz = 1 of the spin of the particle.

This general conviction is, in fact, supported by a theorem, called the Kochen-

Specker Paradox. This result showed that the spin component Sz cannot be an intrin-
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sic property of a spin 1 particle. We recall that this result shows that there exist a

small number of directions in space (33 suffice) such that any prior assignment of

values to the squares of the components of spin in these directions contradicts the

condition that S2x + S2y + S2z = 2, for an orthogonal triple (x, y, z). Since the squares

of the components of spin in orthogonal directions commute for a spin 1 system,

we may measure them simultaneously for the triple (x, y, z). For instance, the mea-

surement of the observable S2x − S2y , with eigenvalues 1,-1, 0 gives us the value 0 for

S2x , S
2
y , or S2z , respectively, and 1 for the other two. We shall call such an experiment

a triple experiment on the frame (x, y, z).
The operators S2x , S

2
y , S

2
z generate an eight element Boolean algebra:

Bxyz = {0, 1, S2x , S
2
y , S

2
z , 1 − S2x , 1 − S2y , 1 − S2z}.

The 33 directions give rise to 40 orthogonal triples, and hence 40 Boolean alge-

bras. It is important to note that the Boolean algebras have common sub-algebras.

For instance, the algebra Bx′y′z of the triple experiment on (x′, y′, z) has the Boolean

algebra Bz = (0, 1, S2z , 1 − S2z ) in common with Bxyz.

The 40 Boolean algebras, and hence their union ∪Bxyz, cannot be embedded into

a single Boolean algebra. We may see this directly from the fact that every Boolean

algebra has truth values, i.e. a homomorphism onto the Boolean algebra {0, 1}, so

that such an embedding would assign values to all the 40 Boolean algebras simulta-

neously, and hence to the 40 triples S2x , S
2
y , S

2
z , contradicting the Kochen-Specker the-

orem. (For a proof of this theorem, with the 40 triples, see Conway and Kochen [8]).

The conclusion is that, in general, quantum mechanical properties are not intrinsic

to the system, but have truth values created by interactions with other systems. We

shall call such interactive or relational properties extrinsic. The question now is:

what mathematical structure captures the concept of extrinsic properties, to replace

the Boolean 𝜎-algebras that characterize intrinsic properties?

Such a structure must contain all the 𝜎-algebras that are elicited by experiments.

The minimal structure is then clearly the union ∪B, where B ranges over all the 𝜎-

algebras that arise in experiments. Intuitively, we may obtain such a structure by

gluing together the 𝜎-algebras at the “faces,” i.e. the common sub-𝜎-algebras. This

structure is the minimal one which contains all the 𝜎-algebras arising from different

experiments. We shall adopt it as embodying the idea of extrinsic properties. We

now give the formal definition of this notion.

Definition1
Let F be a family of 𝜎-algebras. The 𝜎-complex QF based on F is the

union ∪B of all 𝜎-algebras B lying in F.

We shall generally leave the family F implicit, and simply refer to a 𝜎-complex

Q. We shall usually deal with 𝜎-complexes that are closed under the formation of

sub-𝜎-algebras. We can, in any case, always close a 𝜎-complex by adding all its

sub-𝜎-algebras.

1
A Boolean 𝜎-complex is a closely connected generalization of a partial Boolean algebra (intro-

duced in Kochen and Specker [9], and further studied in [10] and [11]).
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The term 𝜎-complex is based on the notion of a simplicial complex in topology.

A simplicial complex is obtained by taking a family of simplices, which is closed

under sub-simplices, and gluing together common simplicial faces. 𝜎-complexes are

not just analogous to simplicial complexes, but have a close correspondence, as we

now outline. First recall that an atom of a Boolean algebra is an element x such that

y ≤ x (i.e. x ∧ y = y) implies y = 0 or y = x. The atoms of a Boolean algebra in a

closed Boolean complex define the vertices of a simplex, and the union of these

simplices yield a simplicial complex. We may conversely define a Boolean complex

from a simplicial complex. The graphs called K-S diagrams in the literature define

simplicial complexes of the corresponding Boolean complexes. Strictly speaking, a

simplicial complex is the family of simplices, and their union is called the carrier,

so we should really call F the 𝜎-complex. However, we shall find it convenient and

harmless to conflate the two notions of 𝜎-complex and its carrier.

Let  be a Hilbert space. Every set of pair-wise commuting projection operators

closed under the operation of orthogonal complement P⊥(= 1 − P) and countable

intersection
⋀

Pi forms a 𝜎-algebra. We form the family of all such 𝜎-algebras, and

name their union, the 𝜎-complex based on this family, Q(). The 𝜎-complex Q()
is the structure in quantum mechanics that replaces the 𝜎-algebra B(Ω) of Borel sets

of the phase space Ω in classical mechanics.

We now summarize this discussion of properties in a form that will serve as a tem-

plate for each of the other concepts we introduce in the later sections. We first give

the classical form of the concept in terms of the 𝜎-algebra B(Ω); then we generalize

the concept by simply replacing the 𝜎-algebra by a 𝜎-complex Q; finally, we special-

ize to quantum mechanics by taking Q to be the 𝜎-complex Q(). It then requires

a theorem to show that the resulting concept is equivalent to the standard quantum

definition on . Some of the classical concepts are defined in terms of the phase

space Ω, rather than the 𝜎-algebra B(Ω). We must then give an equivalent definition

of the concept in terms of B(Ω).

Classical Mechanics
The properties of a system form the 𝜎-algebra B(Ω) of Borel sets of the phase

space Ω of the system.

General Theory
The properties of a system form a 𝜎-complex Q.

Quantum Mechanics
The properties of a system form the 𝜎-complex Q() of projections of the Hilbert

space  of the system.

For a system S with a 𝜎-complex Q, an appropriate interaction with another sys-

tem, such as a measurement, or, more generally, a decoherent interaction, will elicit

a 𝜎-algebra B in Q of properties that have truth values. We shall call B the (current)
interactive algebra for the system S in the interaction.

For instance, Bxyz is the interactive algebra in the triple experiment with the frame

(x, y, z). Thus, a measurement of the observable S2x − S2y has the interactive algebra

Bxyz. We may also consider an experiment for which the interactive algebra is Bz =
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{0, 1, S2z , 1 − S2z}. For instance, a variant of the Stern-Gerlach experiment with the

magnetic field replaced by an inhomogeneous electric field measures the absolute

value |Sz| of Sz, since the electric field vector is a polar vector. For a spin 1 system

this amounts to measuring S2z . Such an experiment is described in Wrede [12].

In general, a measurement of the observable with discrete spectral decomposition
∑

aiPi has as interaction algebra the 𝜎-algebra generated by the Pi’s. The general

case, where the observable contains a continuous spectrum, is described in Sect.

“Observables”.

In the triple experiment, the interaction algebra Bxyz of the measured system is

reflected in the isomorphic eight element algebra of events consisting of the subsets

of the three spots on the detection screen.

This isomorphism is, as we have seen, a general feature of a measurement, but

it is also true for any appropriate decoherent interaction. If the state of the com-

bined two interacting systems is
∑

ai𝜙i ⊗𝜓i at the end of the interaction, then the

interaction algebras of the systems are the two 𝜎-algebras generated by the P
𝜙i

and

the P
𝜓i

, which are isomorphic. It is important to note that the macroscopic nature

of the apparatus plays no role in the classical nature of the interaction algebras as

Boolean 𝜎-algebras. It simply follows from the nature that we attributed to extrinsic

properties, that in every appropriate interaction they have the classical structure of

a 𝜎-algebra. As a consequence, we have no need to (and do not) subscribe to the

Copenhagen interpretation, especially espoused by Bohr, that it is necessary to pre-

suppose a classical physical description of the world in order explicate the quantum

world. Quantum properties are not intrinsic, but the appropriate interaction elicits an

interaction algebra with the classical structure of a 𝜎-algebra.

States

Probability Measures

The theory of probability (following Kolmogorov) is based on a probability measure,

a countably additive, [0, 1]-valued measure, i.e. a function

p ∶ B → [0, 1]

with domain B a 𝜎-algebra, such that p(1) = 1, and

p(
⋁
ai) =

∑
p(ai) for pair-wise disjoint elements a1, a2,… in B.

In the case of a measurement on a system S, the probability function p gives the

probabilities of the 𝜎-algebra of events, or equally of the measured properties of S.

A physical theory predicts the probabilities of outcomes of any possible experiment,

given the present state. This leads to the following concept of a state.
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Classical Mechanics: 𝜎-algebra B(Ω)
A state of a system with phase space Ω is a probability measure on the 𝜎-algebra

B(Ω).

General Theory: 𝜎-complex Q
A state of a system with a 𝜎-complex of properties Q is a map p ∶ Q → [0, 1]

such that the restriction p|B of p to any 𝜎-algebra B in Q is a probability measure

on B.

Quantum Mechanics: 𝜎-complex Q = Q()
Assume that  has dimension greater than two. There is a one-one correspon-

dence between states p on Q() and density operators (i.e. positive Hermitean oper-

ators of trace 1) w on  such that

p(x) = tr(wx) for all x ∈ Q().

That a density operator w defines a probability measure p on Q() is an easy

computation. The converse, that a state p defines a unique density operator w on

, follows from a theorem of Gleason [13]. Gleason’s theorem is the affirmative

answere to a question of Mackey [3], in which Mackey asked whether a state on

the lattice of projections on  defines a unique density operator. A careful check of

Gleason’s proof of the theorem shows that, in fact, the stronger theorem stated above

is true, and that the lattice operations on non-commuting projections are not needed

for the proof.

As this result shows, the intuitive and plausible definition of classical states leads,

with the change from intrinsic to extrinsic properties, to a similar characterization

of quantum states.

Pure and Mixed States

The set of states on a 𝜎-complex is closed under the formation of convex linear

combinations: if p1, p2,… are states then so is
∑

cipi, for positive ci, with
∑

ci = 1.

The above one-one correspondence between states of Q() and density operators

is convexity-preserving. The extreme points of the convex set of states of a system

are those that cannot be written as a non-trivial convex combination of states of the

system.

Classical Mechanics: 𝜎-algebra B(Ω)
A pure state of a system is an extreme point of the convex set of all states of the

system.

For B(Ω), a pure state p has the form p(s) =
{

1 if 𝜔 ∈ s
0 if 𝜔 ∉ s .

In other words, the classical pure states correspond to the points in Ω. Thus, the

phase space Ω consists of the pure states, and so is also called the state space.
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Thus, in the classical case all the properties of the system in a pure state are either

true or false. As we would expect for intrinsic properties, measurements simply find

out which measured properties are the case. The general states as mixtures of the

pure states can then be interpreted as giving the probabilities of the properties which

are true. These may be termed epistemic probabilities, based on the knowledge of

the actual pure state that subsists.

General Theory: 𝜎-complex Q
A pure state of a system is an extreme point of the convex set of states of the

system.

Quantum Mechanics: 𝜎-complex Q = Q()
There is a one-one correspondence between the pure states of a system and rays

[𝜓] of unit vectors 𝜓 in , such that p(x) = ⟨𝜓, x𝜓⟩.

For it is easily seen that the pure states correspond to one-dimensional projections

P
𝜓

(with 𝜓 in the image of P
𝜓

) and p(x) = tr(P
𝜓

x) = ⟨𝜓, x𝜓⟩. As in the classical

case, the state space of the system consists of the pure states, and in this case corre-

sponds to the projective Hilbert space of the rays of .

In the quantum case, even the pure states predict probabilities that are not 0 or

1, and so these are not the probabilities of properties that already subsist. This is, of

course, what we should expect of extrinsic properties. A pure state simply predicts

the probabilities of properties in possible future interactions, such as measurements.

Mixed states are, as in the classical case, mixtures of the pure states. However, in

this case there is no unique decomposition of a mixed case into pure states. This has

led to a traditional difficulty in interpreting quantum mixed states. We shall postpone

a discussion of our interpretation of mixed states until we have treated conditional

probabilities in Sect.“ Reduction and Conditional Probability”.

Observables

Some classical concepts such as observables are defined using the phase space Ω
rather than the 𝜎-algebra B(Ω). We can, in general, restate these definitions in terms

of B(Ω). The reason for this is that the Stone Duality Theorem between Boolean

algebras and spaces (and its extension by Loomis to 𝜎-algebras) assures us that con-

structions on the algebras have their counterparts on the spaces and vice versa.

A classical observable is defined as a real-valued function f ∶ Ω → ℝ on the

phase space Ω of the system. To avoid pathological, non-measurable functions, f
is assumed to be a Borel function, i.e. a function such that f −1(s) ∈ B(Ω), for every

set s in the 𝜎-algebra B(ℝ) of Borel sets generated by the open intervals of ℝ.

The inverse function f −1 ∶ B(ℝ) → B(Ω) is easily seen to preserve the Boolean 𝜎

operations, i.e. to be a homomorphism. Moreover, as we see below, any such homo-

morphism allows us to recover the function f .
For our purposes, the advantage of using the inverse function is that it involves

only the 𝜎-algebra B(Ω) instead of the phase space Ω, allowing us to generalize the

definition to a 𝜎-complex.
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Classical Mechanics: 𝜎-algebra B(Ω)
An observable of a system with phase space Ω is a homomorphism u ∶ B(ℝ) →

B(Ω), i.e. a map u satisfying

u(s⊥) = u(s)⊥,
u(
⋁
si) =

⋁
u(si),

for all s, s1, s2,…inB(ℝ).
There is a one-to-one correspondence between observables u and Borel functions

f ∶ Ω → ℝ such that u = f −1.
For given the map u we may define the Borel function f by the equation

f (x) = inf{y ∣ y ∈ ℚ, x ∈ u((−∞, y])}.

The proof that f has the requisite properties is direct, using the denumerability of

the rationals ℚ to apply the countable additivity of u. (See Varadarajan [5, Theorem

14]).

General Theory: 𝜎-complex Q
An observable of a system with 𝜎-complex Q is a homomorphism

u ∶ B(ℝ) → Q.

Note that the image of u lies in a single 𝜎-algebra in Q.

Quantum Mechanics: 𝜎-complex Q = Q()
There is a one-one correspondence between observables u ∶ B(ℝ) → Q() and

Hermitean operatorsA on, such that, given u,A = ∫ 𝜆dP
𝜆

, whereP
𝜆

= u((−∞, 𝜆]).
Conversely, given a Hermitean operator A on , the spectral decomposition A =

∫ 𝜆dP
𝜆

defines the observable u as the spectral measure u(s) = ∫s dP𝜆

, for s ∈ B(ℝ).
This establishes the one-one correspondence.

It follows easily that if u ∶ B(ℝ) → Q(Ω) is an observable with corresponding

Hermitean operator A, then, for the state p with corresponding density operator w,

the expectation of u
Expp(u) = tr(Aw).

(See Postulates I and II of Bohm [6]).

The theorem shows the close connection between the measurement of an observ-

able and the interaction algebra of measured properties. For instance, for the case of

a discrete operator A, the spectral decomposition A =
∑

aiPi defines the interaction

algebra of measured properties generated by the Pi. Conversely, given the interaction

algebra of measured properties, its atoms Pi allow us to define, for each sequence of

real numbers ai, the Hermitean operator
∑

aiPi which is thereby measured. In par-

ticular, we may in this way associate an observable with values 0 and 1 with every

property in Q(). If A is a non-degenerate observable with eigenvalue 𝜆 belonging

to eigenstate 𝜙, we shall often speak of the property A = 𝜆 to mean the projection

P
𝜙

which has image the ray of 𝜙.
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Combined Systems

An essential part of the formalism of physics is the mathematical description of the

physical union of two systems. In this section we answer the question: what is the

𝜎-complex of the union S1 + S2 of two systems with given 𝜎-complexes Q1 and Q2?

In classical physics, given two systems S1 and S2 with the phase spaces Ω1 and

Ω2, the phase space of the combined system S1 + S2 is the direct product space Ω1 ×
Ω2, whereas for quantum systems with Hilbert spaces 1 and 2, the Hilbert space

of S1 + S2 is the tensor product 1 ⊗2. The direct and tensor products are very

different constructions. The dimension of the direct product space is the sum of the

dimensions of the two factor spaces, whereas the dimension of the tensor product

is the product of the dimensions of the factor spaces. It is this difference that lies

behind the promise of quantum computers.

We have nevertheless to combine these two operations via a single construction

on the 𝜎-complex Q. When Q = B(Ω), we may get a clue to the construction by

means of Stone duality for Boolean algebras and Boolean spaces. The dual of the

direct product of two Boolean spaces is the direct sum B1 ⊕ B2 (also called the free

product or co-product) of Boolean algebras. (See Koppelberg [7, Chap. 4]). A similar

duality extends to 𝜎-algebras. (See [7, Chap. 5]). We now use our general principle

of defining a concept on a 𝜎-complex by reducing it to the corresponding concept

on its 𝜎-algebras.

Classical Mechanics: 𝜎-algebra B(Ω)
Given two systems S1 and S2 with 𝜎-algebras B(Ω1) and B(Ω2), the combined

system S1 + S2 has the 𝜎-algebra B(Ω1)⊕ B(Ω2). There is a unique space Ω1 × Ω2
such that B(Ω1)⊕ B(Ω2) ≅ B(Ω1 × Ω2).

The isomorphism is a well-known part of Stone Duality. For a proof see Koppel-

berg [7, Chaps. 4 and 5].

General Theory: 𝜎-complex Q
Given two systems S1 and S2 with 𝜎-complexes Q1 and Q2, the combined system

S1 + S2 has the 𝜎-complex Q1 ⊕ Q2, consisting of the closure (i.e. all the sub-𝜎-

algebras) of the direct sumsB1 ⊕ B2 of all pairs of 𝜎-algebrasB1 andB2 inQ1 andQ2.

Quantum Mechanics: 𝜎-complex Q = Q()
Given the combined system S1 + S2 with the 𝜎-complex Q(1)⊕ Q(2), there

is a unique Hilbert space 1 ⊗2 such that Q(1)⊕ Q(2) ≅ Q(1 ⊗2).
(See Postulate IVa of Bohm [6]).

We give an outline of the proof when1 and2 have finite dimensions. It suffices

to show that every element of Q(1 ⊗2) lies in Q(1)⊕ Q(2). The elements

of Q(1)⊕ Q(2) are generated by the one-dimensional projections P
𝜙⊗𝜓

, where

𝜙 ∈ 1and 𝜓 ∈ 2. We must show that if Γ is an arbitrary unit vector in 1 ⊗2,

then PΓ lies in Q(1)⊕ Q(2). One definition of the tensor product allows us to

think of Γ as a conjugate-linear map from 2 to 1. (See Jauch [14], for example).

The proof proceeds by induction on the rank of Γ as such a map. The maps of rank

1 are of the form P
𝜙⊗𝜓

, so the basis of the induction is true.
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Now suppose Γ has rank n.

The proof is greatly simplified by choosing suitable orthonormal bases in 1 and

2 in which to expand Γ. We can construct bases {𝜙i} and {𝜓i} in 1 and 2 such

that Γ =
∑

ci𝜙i ⊗𝜓i, with the ci real. (Briefly, ΓΓ∗
and Γ∗Γ have common strictly

positive eigenvalues, say ai, and respective eigenvectors 𝜙i and 𝜓i; it follows that

Γ =
∑√

ai𝜙i ⊗𝜓i. See Jauch [14], for example).

Let

Θ =

{
−c2𝜙1 ⊗𝜓1 + c1𝜙2 ⊗𝜓2, for n = 2
c1𝜙3 ⊗𝜓1 + c2𝜙2 ⊗𝜓3 + c3𝜙1 ⊗𝜓3 +

∑
i>3 ci𝜙i ⊗𝜓1, for n > 2

Δ = c1𝜙2 ⊗𝜓1 + c2𝜙1 ⊗𝜓2 +
∑

i≥3
ci𝜙i ⊗𝜓2

Then Γ,Θ, and Δ are pairwise orthogonal unit vectors. Hence, PΓ,PΔ, and PΘ
mutually commute, and PΓ = (PΓ ∨ PΘ) ∧ (PΓ ∨ PΔ).

For n = 2, let x+ = c2Γ + c1Θ and x− = c1Γ − c2Θ. For n > 2, let x± = Γ ± Θ.

Also, let y± = Γ ± Δ. Then it is easily checked that the four vectors x± and y±
are of rank n − 1, and x+ and x− are orthogonal, as are y+ and y−. It follows that

[Px+ ,Px−] = [Py+ ,Py−] = 0. Moreover, PΓ ∨ PΘ = Px+ ∨ Px− and PΓ ∨ PΔ = Py+ ∨
Py− . Hence, PΓ = (Px+ ∨ Px−) ∧ (Py+ ∨ Py−). Since Px+ ,Px− ,Py+ , and Py− inductively

lie in Q(1)⊕ Q(2) and each of the pairs (Px+ ,Px−), (Py+ ,Py−), and (Px+ ∨ Px− ,Py+
∨ Py−) lie in a common 𝜎-algebra, it follows that PΓ lies in Q(1)⊕ Q(2). The

proof provides an algorithm for constructing x± and y±.

The uniqueness (up to isomorphism) is a routine consequence of the fact that

Q1 ⊕ Q2 is categorically a co-product (see Koppellberg [7] for a proof in the 𝜎-

algebra case).

The infinite dimensional case is discussed in Sect. “Reconstructing the 𝜎-Complex

Q()”.

As an illustration we consider the simplest case of the tensor product 1 ⊗2 of

two-dimensional Hilbert spaces, which we may take to represent two spin
1
2

particles.

Each element of Q(1) (resp. Q(2)) corresponds to the property sz ⊗ I = 1
2

(resp.

I ⊗ sz =
1
2
) for some direction z. For Γ in 1 ⊗2 we shall identify Px+ ,Px− ,Py+ ,

and Py− .

We write the vector Γ in the diagonal form c1𝜙1 ⊗𝜓1 + c2𝜙2 ⊗𝜓2. Hence,

x− = 𝜙1 ⊗𝜓1, x+ = 𝜙2 ⊗𝜓2

y+ = (𝜙1 + 𝜙2)⊗ (c1𝜓1 + c2𝜓2), y− = (𝜙1 − 𝜙2)⊗ (c1𝜓1 − c2𝜓2)

Now 𝜙1 defines sz ⊗ I = 1
2

for a direction z, and 𝜓1 defines 1⊗ sw = −1
2

in a direc-

tion w. Thus, 𝜙1 ± 𝜙2 defines sx ⊗ I = ±1
2

for a direction x orthogonal to z. Also, if
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we write c1 = cos(𝜇∕2), then c1𝜓1 + c2𝜓2 defines I ⊗ su =
1
2

in a direction u at an

angle 𝜇 from the w direction, and c1𝜓1 − c2𝜓2 defines I ⊗ sv =
1
2

in a direction v at

angle −𝜇 from the w direction. It follows that

PΓ = (Px+ ∨ Px− ) ∧ (Py+ ∨ Py− )

=
(
sz ⊗ I = 1

2
↔ I ⊗ sw = −1

2

)
∧
[(
I ⊗ su =

1
2
→ sx ⊗ I = 1

2

)
∧
(
sx ⊗ I = 1

2
→ I ⊗ sv =

1
2

)]

In this manner every state in a combined system can be interpreted as a compound

proposition about the factors.

A particularly interesting case is the singleton state Γ =
√

1
2
(𝜙+

z ⊗𝜓

−
z − 𝜙

−
z ⊗

𝜓

+
z ), (with sz𝜙±

z = ±1
2
𝜙

±
z and sz𝜓±

z = ±1
2
𝜓

±
z ) where

PΓ = (PΓ ∨ PΘ) ∧ (PΓ ∨ PΔ)
= (Sz = 0) ∧ (Sx = 0)
= (Px+ ∨ Px−) ∧ (Py+ ∨ Py−)

= (sz ⊗ I = 1
2
↔ I ⊗ sz = −1

2
) ∧ (sx ⊗ I = 1

2
↔ I ⊗ sx = −1

2
).

In Sect. “The Einstein-Podolsky-Rosen Experiment” we shall apply this result to the

EPR experiment.

This construction of the direct sum generalizes in an obvious way to the direct sum

of an arbitrary number of 𝜎-complexes, representing the union of several systems.

The above theorems then generalize to:

B(Ω1)⊕ B(Ω2)⊕⋯ ≅ B(Ω1 × Ω2 ×⋯)
Q(1)⊕ Q(2)⊕⋯ ≅ Q(1 ⊗2 ⊗⋯).

These general sums are needed in discussing statistical mechanics. It is now rou-

tine to define symmetric and anti-symmetric direct sums of 𝜎-complexes, yielding

the corresponding symmetric and anti-symmetric tensor products of Hilbert spaces,

needed to deal with identical particles. (See Postulate IVb of Bohm [6]. The spin-

statistics connection that Bohm adds can also be added here).

Symmetries

As Noether, Weyl, and Wigner showed, observables such as position, momentum,

angular momentum, and energy arise from global symmetries of space and time, and

the conservation laws for them arise from the corresponding symmetries of interac-

tions. Other observables arise from local symmetries. In classical physics the sym-
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metries appear as canonical transformations of phase space, and in quantum physics

they appear as unitary or anti-unitary transformations of Hilbert space. For us they

naturally appear as symmetries of a 𝜎-complex.

Definition An automorphism of a 𝜎-complex Q is a one-one transformation 𝜎 ∶
Q → Q of Q onto Q such that for every 𝜎-algebra B in Q and all a, a1, a2,… in B

𝜎(a⊥) = 𝜎(a)⊥ and 𝜎(
⋁
ai) =

⋁
𝜎(ai).

General Theory: 𝜎-complex Q
A symmetry of a system with 𝜎-complex Q is given by an automorphism of Q.

A symmetry 𝜎 defines a natural convexity-preserving map p → p
𝜎

on the states

of Q by letting p
𝜎

= p◦𝜎−1
, i.e. p

𝜎

(x) = p(𝜎−1(x)), for all x ∈ Q.

Quantum Mechanics: 𝜎-complex Q = Q()
There is a one-one correspondence between symmetries 𝜎 ∶ Q() → Q() and

unitary or anti-unitary operators u on  such that 𝜎(x) = uxu−1, for all x ∈ Q().

If a state p corresponds to the density operator w, then

p
𝜎

(x) = p(𝜎−1(x)) = tr(wu−1xu) = tr(uwu−1x),

so that the state p
𝜎

corresponds to the density operator uwu−1.

It is easy to check that unitary and anti-unitary operators define a symmetry on

Q(). For the converse we use a well-known theorem of Wigner. (See Bargmann

[15]). The original theorem of Wigner posits a one-one map of the set of rays of 
onto itself which preserves the inner product. Uhlhorn [16] was able to weaken this

to preserving the orthogonality of rays. As Bargmann states in [15], the proof he

gives of Wigner’s theorem may be easily modified to prove Uhlhorn’s result. (For a

proof see Varadarjan [5]).

Now assume that 𝜎 is a symmetry of Q(). Then 𝜎 is a one-one map of the

set of atoms, i.e. one-dimensional projections P
𝜓

, of Q() onto atoms of Q(). In

other words, rays [𝜓] of  are one-to-one mapped onto rays of . Moreover, since

𝜎-algebras are mapped by 𝜎 to 𝜎-algebras, the orthogonality of rays is preserved.

The Uhlhorn version of Wigner’s theorem then shows there is a unique (up to a

multiplicative constant) unitary or anti-unitary map u on  such that 𝜎(x) = uxu−1.

In the case of classical physics, withQ = B(Ω), a symmetry is defined by a canon-

ical transformation of the manifold. Every such transformation defines an automor-

phism of the 𝜎-algebra B(Ω). However, the converse is not true. Although the auto-

morphism still defines a continuous map from Ω to itself, the structure of a 𝜎-algebra

is too weak to recover the canonical structure. It is remarkable that the 𝜎-complex

structure is sufficient to allow one to define the symmetries of the Hilbert space. In

that sense, quantum physics allows a more satisfactory reconstruction than classical
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physics. As Sect. “From Quantum Physics to Classical Physics” suggests, we may

recover the classical canonical structure from the quantum structure in the limit of

an increasing number of particles.

Dynamics

Now that we have shown that the symmetries of Q() are implemented by symme-

tries of , we may use time symmetry to introduce a dynamics for systems.

To define dynamical evolution, we consider systems that are invariant under time

translation. For such systems, there is no absolute time, only time differences. The

change from time 0 to time t is given by a symmetry 𝜎t ∶ Q → Q, since the structure

of the system of properties is indistinguishable at two values of time. We assume

that if the state evolves first for a time t and then the resulting state for a time t′, then

this yields the same result as the original state evolving for a time t + t′. Moreover,

we assume that evolution over a small time period results in small changes in the

probability of properties occurring.

The passage of time is thus given by a continuous representation of the additive

group ℝ of real numbers into the group Aut(Q) of automorphisms of Q under com-

position:

i.e. a map 𝜎 ∶ ℝ → Aut(Q), such that

𝜎t+t′ = 𝜎t ◦ 𝜎t′

and p
𝜎t
(x) is a continuous function of t.

The image of 𝜎 is then a continuous one-parameter group of automorphisms

on Q.
2

We have seen that an automorphism 𝜎 corresponds to a unitary or anti-unitary

operator. Anti-unitary operators actually occur as symmetries, for instance in time

reversal. However, for the above representation only unitary operators ut correspond-

ing to the symmetry 𝜎t can occur, since ut = u2t∕2, which is unitary.
3

It follows that the evolving state p
𝜎t

corresponds to the density operator wt =
utwu−1t . By Stone’s Theorem,

ut = e−
i
ℏ

Ht
,

where ℏ is a constant to be determined by experiment; so

wt = e−
i
ℏ

Htw e
i
ℏ

Ht
.

2
The group Aut(Q) may, in fact, be construed as a topological group by defining, for each 𝜖 > 0, an

𝜖-neighborhood of the identity to be {𝜎 ∣ |p
𝜎

(x) − p(x)| < 𝜖 for all x and p}. We may then directly

speak of the continuity of the map 𝜎, in place of the condition that p
𝜎t
(x) is continuous in t.

3
More precisely, we have a projective unitary representation of ℝ, but such a representation of ℝ

is equivalent to a vector representation. (See, e.g., Varadarajan [5]).
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Differentiating,

𝜕twt = − i
ℏ

[H,wt].

This is the Liouville-von Neumann Equation.

Conversely, this equation yields a continuous representation ofℝ intoAut(Q()).
For w = P

𝜓

, a pure state, wt = P
𝜓(t) and this equation reduces to the Schrödinger

Equation:

𝜕t𝜓(t) = − i
ℏ

H𝜓(t).

(See Postulate Va of Bohm [6]. Postulate Vb is the Heisenberg form of the equation,

and follows similarly).

We stop here without specifying any further the form of the Hamiltonian H. This

form depends upon calculating the linear and angular momentum observables as

operators from the homogeneity and isotropy of space, using the corresponding uni-

tary representations that we have used for time homogeneity. This a well-known part

of quantum mechanics and need not be explored further here. (See Jauch [14], for

example). We have treated the non-relativistic dynamical equation. The connection

between automorphisms of Q() and unitary operators given above allows to us to

treat the relativistic dynamical equations in a similar manner, following Wigner’s

work. (See Varadrajan [5]).

Reduction and Conditional Probability

Conditional States

With these results, which cover four of Bohm’s five postulates, we can now recover

much of quantum theory. So far however, we will never predict interference. The

states we introduced are probability measures on Q, which for any experiment is a

classical probability measure on the 𝜎-algebra of properties being measured. In fact,

the probability must be classical, since it is mirrored in the probability measure on

the experiment’s 𝜎-algebra of events, which are generated by macroscopic spots on

a screen.

How then does interference enter the picture? In dealing with experiments, we

have omitted a key ingredient that is usually referred to as “the preparation of state.”

To calculate the probability p(x) of a property holding at the end of an experiment, we

need to know both the property x and the state p. In general, when we are presented

with a particle to be measured, we do not know its state. One way to know the state

is to prepare it by means of a prior interaction.

For instance, the book [17] by Feynman, Leighton, Sands introduces quantum

mechanics via a spin 1 system by discussing the probability of, for instance, going

to state Sx = 1, given that it is in state Sz = 0. The particle is prepared in state Sz = 0
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by sending it through a Stern-Gerlach field in the z direction, and then filtering it

through a one-slit screen to allow only the central beam through. If the system is

not detected as hitting the filtering screen, then it is reduced to the state Sz = 0. If

allowed to hit a final detection screen it is certain to register the central spot. But we

are free to send it through another Stern-Gerlach field in the x direction to measure

Sx = 1, say. This is a reduction by preparation of the original, possibly unknown,

state to the state Sz = 0.

Some physicists think that reduction is a phenomenon unique to quantum mechan-

ics that has no counterpart in classical mechanics, but this not the case. Consider a

one slit experiment with bullets. If we shoot at a target, we get a probability distribu-

tion on the target that defines a mixed state for the bullet. Since the target screen can

be placed anywhere from the gun to any distant point, the probability distribution

is a function of time that gives a time evolution of this state, satisfying the classical

Liouville equation for mixed states. If we now interpose a one-slit screen between

the gun and the target screen, we find that after the evolution of the state p up to the

one-slit screen, the bullet either has hit this screen, or if not, has passed through with

a new state p( ⋅ ∣ y), where y is the property that it has not hit the screen. This is clas-

sically called conditionalizing the state p to y. The new state p( ⋅ ∣ y) is defined by

p(x ∣ y) = p(x ∧ y)∕p(y), as the frequency definition of probability can verify. This

filtering to a new state is entirely similar to the filtering of a spin 1 system described

earlier, and is the classical equivalent of reduction.

Now that we have the classical form of reduction as conditionalization, we can

follow our prescription by generalizing from a 𝜎-algebra to a 𝜎-complex.

Classical Mechanics: 𝜎-algebra B(Ω)
Let p be a state on the 𝜎-algebra B(Ω) and y ∈ B(Ω) such that p(y) ≠ 0. By a state

conditionalized on y we mean a state p( ⋅ ∣ y) such that for every x in B(Ω),

p(x ∣ y) = p(x ∧ y)∕p(y).

General Theory: 𝜎-complex Q
Let p be state on a 𝜎-complex Q and y ∈ Q such that p(y) ≠ 0. By a state condi-

tionalized on ywe mean a state p( ⋅ ∣ y) such that for every 𝜎-algebraB inQ containing

y and every x ∈ B,

p(x ∣ y) = p(x ∧ y)∕p(y).

In the literature, there exist generalizations of probability measures and condi-

tional probability to non-commutative algebras, and, in particular, to lattices of pro-

jections. (See Beltrametti and Cassinelli [18]). In general, it is by no means clear that

such a state p( ⋅ ∣ y) either exists or is unique, as is obviously the case for classical

mechanics. However, for the quantum 𝜎-complex Q() this can be proved:

Quantum Mechanics: 𝜎-complex Q = Q()
If p is a state on Q() and y ∈ Q() such that p(y) ≠ 0, then there exists a unique

state p( ⋅ ∣ y) conditionalized on y. Ifw is the density operator corresponding to p, then
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ywy∕ tr(ywy) is the density operator corresponding to the state p( ⋅ ∣ y).

To see that the operator ywy∕ tr(ywy) corresponds to the state p( ⋅ ∣ y), note that if

x lies in the same 𝜎-algebra as y, then x and y commute, so

tr(ywyx)∕ tr(ywy) = tr(wxy)∕ tr(wy) = p(x ∧ y)∕p(y) = p(x ∣ y).

For uniqueness, it suffices to consider the case when x ∈ Q() is a one-dimensional

projection. Let p(⋅ ∣ y) be a state conditionalized on y, and let v be the corresponding

density operator. Let𝜙 be a unit vector in the image of x. We can write𝜙 = y𝜙 + y⊥𝜙.

Then

p(x ∣ y) = tr(vx) = ⟨𝜙, v𝜙⟩
= ⟨y𝜙, vy𝜙⟩ +

⟨
y𝜙, vy⊥𝜙

⟩
+
⟨
y⊥𝜙, vy𝜙

⟩
+
⟨
y⊥𝜙, vy⊥𝜙

⟩
.

Now, tr(vy⊥) = p(y⊥ ∣ y) = p(y⊥ ∧ y)∕p(y) = 0, so vy⊥𝜙 = 0. Hence,

p(x ∣ y) = ⟨y𝜙, vy𝜙⟩ = ‖y𝜙‖2 tr(vPy𝜙) = ‖y𝜙‖2p(Py𝜙)∕p(y),

since Py𝜙 ≤ y. If p′( ⋅ ∣ y} is another state conditionalized on y, then

p′(x ∣ y) = ‖y𝜙‖2p(Py𝜙)∕p(y) = p(x ∣ y),

proving uniqueness.

The change from w to ywy∕ tr(wy) in state preparation or measurement is the

general formula for the reduction of state given by the von Neumann-Lüders Projec-

tion Rule. In the orthodox interpretation this rule is an additional principle that is

appended to quantum mechanics. Here it appears as the unique answer to condition-

alizing a state to a given property. (See Postulate IIIa of Bohm [6]).

The natural definition of applying a symmetry 𝜎 to a conditionalized state p( ⋅ ∣ y)
is given by

p
𝜎

(x ∣ y) = p(𝜎−1(x) ∣ 𝜎−1(y)).

Classical and Quantum Conditional Probability

In the well-known paper [19], Feynman writes that the basic change from classical

to quantum mechanics lies in the revision in the probability rule called the Law of

Alternatives,

p(a ∣ c) =
∑

i p(a ∣ bi)p(bi ∣ c) for disjoint bi, to the quantum law that ⟨𝛼 ∣ 𝛽⟩ =
∑

i ⟨𝛼 ∣ 𝛽i⟩ ⟨𝛽i ∣ 𝛾⟩, giving an additional interference term.
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We agree that this is an important difference in the two theories. However, we shall

derive it from what we consider the more basic difference, that between intrinsic and

extrinsic properties.

Let y1, y2,… lie in a 𝜎-algebra with yi ∧ yj = 0 for i ≠ j, and let y =
⋁

yi. Then

Classical Mechanics:

p(x ∣ y) = p(
⋁
(x ∧ yi))∕p(y)

=
∑

(p(x ∧ yi)∕p(yi)) ⋅ (p(yi)∕p(y))

=
∑

p(x ∣ yi)p(yi ∣ y),

The Law of Alternatives in classical probability theory.

On the other hand, by Sect. “Conditional States”, we have

Quantum Mechanics:

p(x ∣ y) = tr(ywyx)∕ tr(wy)
= tr(

⋁
i,jyiwyjx)∕ tr(wy)

=
∑

tr(yiwyix)∕ tr(wy) +
∑

i≠j
tr(yiwyjx)∕ tr(wy)

=
∑

p(x ∣ yi)p(yi ∣ y) +
∑

i≠j
tr(yiwyjx)∕ tr(wy).

This shows that in conditionalizing for the extrinsic properties of quantum mechanics

an interference term must be added to the classical law of alternatives.

Conditionalizing on Several Properties

There is a different kind of preparation of state, one which leads to a mixed state.

This occurs when, instead of all but one of the beams being blocked, as in Sect.

“Conditional States”, the beams are allowed to pass through the filter, while being

registered. For instance, [17] describes a version of the two-slit experiment in which

the particle scatters high frequency photons that register which slit the particle passed

through. In this case, the property y1 of passing through slit 1 is true or the property y2
of passing through slit 2 is true, so that the state of the particle is either the conditional

state p( ⋅ ∣ y1) or the state p( ⋅ ∣ y2).
If we consider an ensemble of particles, then each of the particles in the ensemble

will be in the state p( ⋅ ∣ yi) with probability p(yi), for i = 1, 2, so that the ensemble

is in the mixed state p(y1)p( ⋅ ∣ y1) + p(y2)p( ⋅ ∣ y2). Thus, by registering the results of

passage through each of the two slits, we restore the classical Law of Alternatives.
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For a single particle, the same mixed state describes its predicted state upon pas-

sage through the registering two-slit screen. However, upon actual passage through

the registered slits, the state is either p( ⋅ ∣ y1) or p( ⋅ ∣ y2). We may say that even after

the passage, the state of the particle for an experimenter who is not aware of the

registered result the state remains the mixed state. In this regard, the mixture has

a similar interpretation as in the classical case, viz., the ignorance interpretation of

mixtures.

A measurement of an observable is the most familiar example of conditionaliz-

ing with respect to several properties. If the observable has a spectral decomposition
∑

aiPi, then measuring the observable amounts to registering the values of the prop-

erties given by the Pi. The interaction algebra B is the 𝜎-algebra generated by the Pi.

We now formulate this notion of conditioning with respect to several conditions.

Given a system with 𝜎-complex Q and disjoint elements y1, y2,… in a common 𝜎-

algebra in Q, and a state p, we define the state conditionalized on y1, y2,… to be

p( ⋅ ∣ y1, y2,…) =
∑

p(yi)p( ⋅ ∣ yi). We shall also write this more succinctly as p( ⋅ ∣ B),
the state conditionalized on the interaction algebra B, the 𝜎-algebra generated by

the yi.
For quantum mechanics, with Q = Q(), if w is the density operator correspond-

ing to the

state p:

p( ⋅ ∣ B) =
∑

tr(wyi)(yiwyi∕ tr(wyi)) =
∑

yiwyi,

so that for each x the probability p(x ∣ B) =
∑

tr(yiwyix). This gives the state of an

ensemble without selection. (See Postulate IIIb of Bohm [6]).

The natural definition for applying a symmetry to the conditioned state is given by

p
𝜎

(x ∣ B) = p(𝜎−1(x) ∣ 𝜎−1B).

Note that the non-uniqueness of the decomposition of a degenerate density operator

into pure states causes no problems in this interpretation. This is because mixed states

arise as mixtures of given pure states in the conditionalization from an experiment

or the evolution of the mixture. The 𝜎-algebra B generated by the y1, y2,… is simply

the current interaction algebra of the 𝜎-complex, and is always given to us as part of

the interaction.

The fact that degenerate density operators do not have a unique decomposition

into pure states has led some to put mixed and pure states on an equal footing, and

to deny them the role as mixtures. This puts the cart before the horse, and ignores

the historical development of the concept of mixed states. Mixtures of pure states

were in long use in quantum mechanics (as well as in classical statistical mechan-

ics) when von Neumann introduced the invariant formulation of a mixed state as

a density operator. The use of the density operator has the advantage of allowing

the introduction of the abstract notion of mixed state, without requiring the explicit

mention of any basis of pure states, which could be recovered in the non-degenerate
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case. For us, however, in any interaction (and subsequent evolution) the interaction

algebra is always given, which yields a unique decomposition of the mixed state as

a mixture of pure states even in the degenerate case.

Reconstructing the 𝝈-Complex Q()

We saw in Sect. “Properties” that if we restrict ourselves to classical experiments,

then the 𝜎-complex of interaction algebras can be imbedded into a 𝜎-algebra. On the

other hand, the 40 quantum triple experiments yield a 𝜎-complex that cannot be so

imbedded. Thus, increasing the set of experiments has changed the structure of the

𝜎-complexes of systems. It may then be possible that a sufficiently comprehensive

family of experiments may force the structure of the 𝜎-complex Q to be isomorphic

to Q(). In this section we shall see that this is indeed the case.

The result is based on the paper Reck, Zeilinger, Bernstein, Bertani [20]. The

interactions arise from a composition of interferometers. First, Mach-Zender inter-

ferometers together with beam splitters allow one to construct Q(2), where 2 is a

two-dimensional Hilbert space. A standard theorem, which allows one to decompose

n-dimensional unitary operators as a product of two-dimensional ones, is then used

to treat the 𝜎-complex of higher dimensional Hilbert spaces.

We outline the construction in [20] (from which the diagrams below are copied).

The experimental realization of a general two-dimensional unitary matrix is obtained

by a Mach-Zender interferometer consisting of two mirrors, two 50-50 beam split-

ters, an 𝜔-phase shifter, and a 𝜙-phase shifter at one output port:

This device transforms the input state with modes (k1, k2) into the output state

with modes (k′1, k
′
2), which are related by the unitary matrix:

(
k′1
k′2

)

=
(
ei𝜙 sin𝜔 ei𝜙 cos𝜔
cos𝜔 − sin𝜔

)(
k1
k2

)

.

We can then realize all 2-dimensional unitary matrices by varying the phase shifters.

To treat n × n unitary matrices, the authors in [20] show how to eliminate the off-

diagonal element ujk of a unitary matrix U by multiplying U by the matrix Tjk which

is obtained from the n × n identity matrix I by replacing the (jj), (jk), (kj), (kk) entries

by the entries of a matrix of the above 2-dimensional unitary form. This inductively

results in the product

UTnn−1Tnn−2 …T32T31T21 = D
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where D is a diagonal unitary matrix with diagonal entries of modulus 1. Hence

U = DT†
21T

†
31T

†
32 …T†

n1T
†
n2 …T†

nn−1.

We now combine copies of the above interferometers so that the outputs of one

are the inputs of the succeeding one, corresponding to the above product of the T†
jk

matrices, followed by n phase shifters to account for the matrix D. The result is a

device which realizes the matrix U. For instance, for n = 3, we have:

To realize an n-dimensional Hermitean matrix A, we use additional beam splitters

to superpose those beams that correspond to the same eigenspace of A, and then add

detectors for the resulting beams. The use of beam splitters to superpose beams is

well-known. (See e.g. Zukoowski, Zeilinger, and Horne [21]).

This is a précis of the construction in [20]. It allows us to realize every element

of Q(), where  is an n-dimensional complex Hilbert space. What is significant

is that we can also realize the 𝜎-complex structure of Q(). To see this it suffices

to consider the two Boolean operations of complementation x⊥ and join x ∨ y. The

output for a projection x consists of two beams, labeled the 1-beam and the 0-beam

according to the eigenvalues of x. The operation of complementation x⊥ requires only

a transposition of the 1 and 0 labels. The join x ∨ y of two projections corresponds to

superposing the two 1-beams of x and y. These two operations suffice to define all the

Boolean operations, and therefore the 𝜎-complex structure of Q(). Note that this

realization of the 𝜎-complex of properties via the different 𝜎-algebras generated by

the outcomes of interferometer experiments follows the general prescription given

in Sect. “Properties” for defining the 𝜎-complex of properties of a system by means

of the different 𝜎-algebras of events defined by the experimental outcomes.

It is instructive to contrast the simple experimental counterparts to the 𝜎-complex

structure with the lattice structure of the set of projections. We know of no corre-

sponding experimental realization to the lattice join (or meet) of two non-commuting

projections. This is due to the difficulty of relating the eigenspaces of two non-

commuting operators to the eigenspaces of their sum (or, for projections, to their

union), while for commuting operators there is a simple relation. It is this difficulty

that is alluded to in our earlier quotations from Varadarajan [5] and Birkhoff and von

Neumann [2] in the introduction.

We have seen that if we can in principle form arbitrarily large networks of inter-

ferometers, then we can realize the 𝜎-complex Q() for Hilbert spaces of all finite

dimensions. The single minimal space  for which Q() realizes all the interferom-

eter experiments, and hence contains all finite dimensional Hilbert spaces, is an infi-

nite dimensional separable pre-Hilbert space, i.e. an inner product space , whose

completion forms a separable Hilbert space 
𝜔

. To see this note that  may be con-
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strued as the space of all complex sequences {ai} that are non-zero for only finite

many i, with inner product ⟨{ai}, {bi}⟩ =
∑

aibi.
Thus in the infinite dimensional case we must add ideal elements which are limits

of sequences of realized elements. We cannot expect to realize Q(
𝜔

) via experi-

ments without adding limits since the world itself may be finite. This is similar to

the use of probability in physica as an ideal limit of relative frequency for longer and

longer sequences of experiments. Of course, even the above realization of Q() in

the finite dimensional case is an idealization, since it requires 𝜔-phase shifters for

arbitrary real 𝜔, in [0, 2𝜋].
We may now extend the result Q(1)⊕ Q(2) ≃ Q(1 ⊗2) of Sect.

“Combined Systems” to the infinite dimensional case.

The fact that  is the minimal space such that Q() is realized by the above inter-

ferometry experiments highlights the open-ended nature of our reconstruction. If we

restrict ourselves to experiments of classical physics, then the 𝜎-complex reduces to a

𝜎-algebra, and the concepts lead to classical physics. If we add the forty triple exper-

iments, the resulting 𝜎-complex cannot be imbedded into a 𝜎-algebra. If we allow

for the interferometry experiments of this section, then Q must take the form Q().
It thus suffices to consider these interferometry experiments to realize the structure

of quantum physics. We may then apply the resulting theory to general interactions.
4

As we have emphasized throughout the paper, the special nature of experiments, with

the macroscopic apparatus, plays no role in the theory. Any appropriate decoherent

interaction gives rise to isomorphic 𝜎-algebras for the two systems. Experiments do

play the pragmatic role of allowing us to become cognizant of a sufficient number

of interactions to help deteremine the theory.

It is possible that other experiments may require a different realization of the 𝜎-

complexes. For instance, if we consider systems which satisfy superselection rules
(see e.g. [18]), then the 𝜎-complex Q has a non-trivial 𝜎-algebra which is common

to all the 𝜎-algebras B in Q. In this case Q is not of the form Q(), but is a sub-𝜎-

complex of Q().  takes the form of a direct sum ⊕i of Hilbert spaces with the

pure states forced to lie in a factor i.

From Quantum Physics to Classical Physics

With the description in Sect. “Combined Systems” of the 𝜎-complex of combined

systems, it is possible to treat the statistics of a large number of particles such as

macroscopic bodies. This is, of course, a major subject in quantum statistics, and we

shall not venture there. However, we wish to say a few words on how the 𝜎-complex

of quantum mechanics tends to a classical 𝜎-algebra with an increasing number of

particles, so that the quantum system becomes effectively classical.

4
Historically, of course, it was not such interferometry experiments, but rather spectroscopic exper-

iments that lead Schrödinger to his equation.
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We shall adapt a remark in Finkelstein [22] for this purpose. Let S be an ensemble

of n non-interacting copies of a system Si, i = 1, 2,… , n, with 𝜎-complex Q(i).
Then S has the 𝜎-complex

Q(i)⊕ Q(2)⊕⋯⊕ Q(n) ≃ Q(1 ⊗2 ⊗⋯⊗n).

Suppose each Si is in the pure state 𝜙. Then S is in the state Φ = 𝜙⊗ 𝜙⊗⋯⊗𝜙.

Consider the observable 𝐀 of S which is the average of the same observable A of

each Si:

𝐀 = (A⊗ I ⊗⋯⊗ I + I ⊗ A⊗⋯⊗ I +⋯ + I ⊗ I ⊗⋯⊗ A)∕n.

We recall that the uncertainty ΔR of an operator R is the square root of the variance:

(ΔR)2 = Exp((R − ExpR)2). Hence,

(Δ𝐀)2 = ⟨Φ, (𝐀 − Exp𝐀)Φ⟩

= (1 − 1∕n) ⟨𝜙, (A − ExpA)𝜙⟩2 + (1∕n)
⟨
𝜙, (A − ExpA)2𝜙

⟩

= (ΔA)2∕n.

Hence, if

𝐁 = (B⊗ I ⊗⋯⊗ I + I ⊗ B⊗⋯ I + · · · + I ⊗ I ⊗⋯⊗ B)∕n

is another such averaged observable, then for the commutator [A,B] we have

Δ[𝐀,𝐁] = Δ[A,B]∕n.

Thus, limn→∞ Δ[𝐀,𝐁] = 0. It follows that the averaged observables of S all commute

in the limit, and so the 𝜎-complex of S becomes essentially a 𝜎-algebra for very large

n, as in a macroscopic body.

This calculation was made under the assumption that S is an ensemble of non-

interacting replicas of one particle. In a real body the states and observables need

not be identical. Without going into details, it is possible to give conditions on the

allowed variation of the states of the particles and the averaged observables so that

Δ[𝐀,𝐁] still tends to zero with increasing n. In any case, the result is at least sug-

gestive that in a real body, the 𝜎-complex of S will be very close to a 𝜎-algebra.

The change in dynamics accompanying the move from the Hilbert space  to

the phase space Ω has been well-studied. In essence, the quantum bracket
i
ℏ

[X,Y]
is replaced by the Poisson bracket {X,Y}, so that the von Neumann-Liouville equa-

tion 𝜕twt = − i
ℏ

[H,wt] is replaced by the classical Liouville equation 𝜕t ft = −{H, ft}.

(See Faddeev and Yakubovskii [23], for example). We saw in Sects. “Symmetries”

and “Dynamics” that the lack of sufficient structure of a 𝜎-algebra did not allow us

to derive the classical dynamics from the automorphisms of B(Ω), whereas we could
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do so in the quantum case Q(). We can see now how it is possible to recover the

classical dynamical equation by an excursion into the quantum structure Q().

Interpreting and Resolving Quantum Paradoxes

The K-S Paradox and the Projection Rule

We have already applied this reconstruction to treat several issues in the interpreta-

tion of the formalism. One of these, the Kochen-Specker Paradox, which showed that

the assumption that all properties are intrinsic leads to a contradiction, was the moti-

vation for introducing the 𝜎-complex of extrinsic properties. Conversely, assuming

the relational nature of properties resolves this paradox. Another issue, discussed in

Sect. “Reduction and Conditional Probability”, is the nature of reduction and the von

Neumann-Lüders Projection Rule, which here appears as the counterpart to classical

conditionalizing, not as an ad hoc addition to quantum theory. We now consider a

number of other controversial questions from the literature.

Wave-Particle Duality

We discuss wave-particle duality in the context of the two-slit experiment. Let y1
and y2 be the projections of position in the regions of the two slits 𝛿1 and 𝛿2. Then

y1 ∨ y2 is the projection of position for the union 𝛿1 ∪ 𝛿2. Let x be the property of

position in a local region Δ on the detection screen.

If passage through each of the two slits is registered, then the Law of Alternatives

of Sect. “Classical and Quantum Conditional Probability” tells us that p(x|y1 ∨ y2) =
p(x|y1)p(y1|y1 ∨ y2) + p(x|y2)p(y2|y1 ∨ y2),which, in the case of symmetrical posi-

tioned slits, is propotional to the sum p(x|y1) + p(x|y2) of the probabilities of passage

through the individual slits, just as in the classical case.

In the case where the passage through the two slits by the quantum particle is not

registered, we have shown in Sect. “Classical and Quantum Conditional Probability”

that there is an additonal interference term

[tr(y1wy2)x) + tr(y2wy1x)]∕tr(w(y1 ∨ y2)).

Note that if x and y1 and y2 commute, this interference term vanishes. This happens

if the detector is right next to the two-slit screen. If the detector is a distance from the

two-slit screen, then the particle undergoes free flight evolution 𝜎t, so 𝜎t(yi) = utyiu−1t
no longer commutes with x, giving rise to the non-zero interference term.

An explanation of the interference effect that is often given is that the particle is,

or acts as, a pair of waves emanating from the slits, which exhibit constructive and
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destructive interference effects. This was, of course, the explanation for Young’s

original experiment with the classical electromagnetic field. For individual quantum

particles however, it leads to the paradoxical effect that the wave suddenly collapses

to a local region at the detection screen.

The explanation given here is a different one. A system forms a localized particle

if there is a position operator for the system, so that a measurement of position detects

the system at a localized region in space. Until the position is measured the position

has no value, since position in a region is an extrinsic property. We may view the

two-slit screen as a preparation of state for the particle, for which the position is

conditionalized, or reduced, to the region 𝛿1 ∪ 𝛿2. This reduction is not a position

measurement, since 𝛿1 ∪ 𝛿2 is not a localized region (as it would be for a single-slit

screen). It is only at the detection screen, where the particle, in interaction with the

screen, is reduced to the local region Δ, that its position has a value.

The question of why the particle shows the interference effects of a wave is

answered in Sect. “Dynamics”, where the evolution of the quantum particle was

defined by a trajectory in the space Aut(Q). This yielded the Schrödinger equation,

which is a wave equation. On the other hand, a trajectory in the phase space of a

classical particle passing through a two-slit screen is governed by the classical Liou-

ville equation, without any wave properties. Thereby, the wave-like properties of a

quantum particle are explained by the extrinsic character of its properties.

The Measurement Problem

The Measurement Problem refers to an inconsistency in the orthodox interpretation

of quantum measurement. The interpretation assumes that an isolated system under-

goes unitary evolution via Schrödinger’s equation. We quote from Bohm [6, Chap.

12]:

If time evolution is a symmetry transformation, then the mathematical structure (in particular

the algebraic relations) of the algebra of observables does not change in time; this means that

the physical structure is indistinguishable at two different points in time. Our experience

shows that there are physical systems that have this property and in fact it is this property

that defines the isolated systems. Thus isolated physical systems do not age, an absolute

value of time has no meaning for these systems, and only time differences are accessible to

measurement. Irreversible processes do not take place in isolated physical systems defined

as above.

Accordingly, in the orthodox interpretation, for a measurement of an observable A of

a system S by an apparatus T , the total system S + T , which is assumed to be isolated,

undergoes unitary evolution.

We outline the standard description of an ideal measurement. Suppose the spectral

decomposition of an observable is A =
∑

aiPi, where each Pi is a one-dimensional

projection with eigenstate𝜙i. The apparatus is assumed to be sensitive to the different

eigenstates of A. Hence, if the initial state of S is 𝜙k and the apparatus T is in a neutral

state 𝜓0, so that the state of S + T is 𝜙k ⊗𝜓0, then the system evolves into the state
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𝜙k ⊗𝜓k, where the𝜓i are the states of the apparatus co-ordinate corresponding to the

states 𝜙i of the system. By linearity, if S is in the initial state 𝜙 =
∑

ai𝜙i, then S + T
evolves into the state Γ =

∑
ai𝜙i ⊗𝜓i. The intractable problem for the orthodox

interpretation is that the completed measurement gives a particular apparatus state

𝜓k, indicating that the state of S is 𝜙k, so that the state of the total system is 𝜙k ⊗𝜓k,

in contradiction to the evolved state
∑

ai𝜙i ⊗𝜓i. We may also see the reduction

from the viewpoint of the conditionalization of the states. If the state p of S + T just

prior to measurement is PΓ, then after the measurement it is the conditionalized state

p(⋅ |P
𝜙k

⊗ I ∧ I ⊗ P
𝜓k
) = (P

𝜙k
⊗ I ∧ I ⊗ P

𝜓k
)PΓ(P𝜙k

⊗ I ∧ I ⊗ P
𝜓k
)∕tr((P

𝜙k
⊗ I ∧ I ⊗ P

𝜓k
)PΓ)) = P

𝜙k⊗𝜓k
.

Hence, the new conditionalized state of S + T is the reduced state 𝜙k ⊗𝜓k.

The orthodox interpretation then has to reconcile the unitary evolution of S + T
with the measured reduced states of S and T . The present interpretation stands the

orthodox interpretation on its head. We do not begin with the unitary development of

an isolated system, but rather with the results of a measurement, or, more generally,

of a decoherent interaction. In fact, the original motivation for forming a 𝜎-complex

of properties was via the set of measured, and hence reduced, properties which form

the current interaction algebra. For us, it is the conditions under which dynamical

evolution occurs that is to be investigated, rather than the reduced state. We can-

not take for granted what is assumed in the orthodox interpretation, as in the above

quotation, that an isolated system evolves unitarily. So we must answer the question

whether in a measurement the 𝜎-complex structure of S + T undergoes a symmetry

transformation at different times of the process. As Sect. “Dynamics” showed, this

is formalized as the condition for the existence of a representation 𝜎 ∶ ℝ → Aut(Q).
It is easy to see, however, that in the process of a completed measurement or a

state preparation there are two distinct elements of Q()(= Q(1 ⊗2)) at initial

time 0 which end up being mapped to the same element at a later time t. We have

seen that an initial state 𝜙⊗ 𝜓0 results in a state 𝜙k ⊗𝜓k, for some k. However,

𝜙k ⊗𝜓0 also results in the state 𝜙k ⊗𝜓k. If we choose the state 𝜙 to be distinct from

𝜙k, then the two elements P
𝜙⊗𝜓0

and P
𝜙k⊗𝜓0

of Q() both map to the same element

P
𝜙k⊗𝜓k

. However, any automorphism 𝜎t is certainly a one-to-one map on Q, so the

measurement process cannot be described by a representation 𝜎 ∶ ℝ → Aut(Q), and

hence a unitary evolution.

In our interpretation, the Measurement Problem is thus resolved in favor of reduc-

tion rather than unitary evolution. The point can be made intuitively that points of

absolute time do exist in a measurement and also in state preparation, namely the

point (or, better, small interval) of time at which reduction takes place. If for instance,

we consider a Stern-Gerlach experiment with a state preparation in which a filter reg-

isters the passage of a particle through one of several slits, before the particle reaches

a detection screen, then the interval of time of passage through the slit, in which the

state of the particle is reduced, is such an absolute point of time: the state after pass-

ing through the slit is the conditionalized state, whereas before it is not.
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Time and its passage is a problematic concept in physics, so to reinforce the point

we shall give another example, in which time homogeneity is tied to spatial sym-

metry. Consider a particle resulting, say, from decay in which its state has spherical

symmetry. Assume that the particle is initially at the center of a spherical detector

system. During the passage of the particle until it hits the detector, the combined

system of particle and detector is spherically symmetric and time homogeneous. At

the moment of registering the impact on a local region of the detector, the system

loses both its isotropy in space and its time symmetry. If it is difficult to argue against

this breaking of space symmetry in favor of a particular direction, it seems to us to

be equally hard to gainsay the breaking of time symmetry at the moment this non-

isotropy occurs.

For a composite system it is not only outside forces that can break symmetry, but

internal interactions. As opposed to the quotation of Bohm [6] above, we believe

that symmetry-breaking processes do take place in isolated compound systems with

internal decoherent interactions during reduction of state. To argue that nevertheless

symmetry has not been broken for the combined system is to favor the theoretical for-

malism ahead of the facts on the ground. It is notable that with this interpretation the

system consisting of the universe as a whole, for which there are no external systems,

acquires reduced or, as we say, conditionalized states as a result of the interactions

of component systems.

Note that our alternative term interactive property is more appropriate here than

extrinsic property. The reduction of the state to 𝜙k ⊗𝜓k happens for the composite

system S1 + S2 because of the interaction of the component systems S1 and S2 which

are internal to S1 + S2 rather than an interaction of S1 + S2 with an external system.

The Einstein-Podolsky-Rosen Experiment

We shall discuss the EPR phenomenon in the Bohm form of two spin
1
2

particles

in the combined singlet state Γ of total spin 0. Suppose that in that state the two

particles are separated and the spin component sz of particle 1 is measured in some

direction z. That means that the observable sz ⊗ I of the combined system is being

measured.

Let P±
z = 1

2
I ± sz. We have the spectral decomposition

sz ⊗ I = 1
2
P+
z ⊗ I + (−1

2
)P−

z ⊗ I,

so the interaction algebra B = {0, 1,P+
z ⊗ I,P−

z ⊗ I}. We expand the singlet state

Γ =
√

1
2
(𝜙+

z ⊗𝜓

−
z − 𝜙

−
z ⊗𝜓

+
z ),
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where P±
z 𝜙

±
z = 𝜙

±
z and P±

z 𝜓
±
z = 𝜓

±
z . Thus, if particle 1 has spin up, the state

p( ⋅ ∣ P+
z ⊗ I) of the system is, by Sect. “Conditional States”, given by

p( ⋅ ∣ P+
z ⊗ I) = (P+

z ⊗ I)PΓ(P+
z ⊗ I)∕ tr((P+

z ⊗ I)PΓ) = P
𝜙

+
z ⊗𝜓

−
z
.

This is, of course, equivalent to projecting the vector Γ into the image of P+
z ⊗ I:

P+
z ⊗ I(Γ) =

√
1
2
(𝜙+

z ⊗𝜓

−
z ).

Similarly, if particle 1 has spin down the state p( ⋅ ∣ P−
z ⊗ I) is given by the vector

P−
z ⊗ I(Γ) =

√
1
2
(𝜙−

z ⊗𝜓

+
z ).

This shows that if sz is measured for particle 2, it is certain to have opposite value

of sz for particle 1. It does not mean that after sz is measured for particle 1, then sz
has a value for particle 2. The properties I ⊗ P+

z and I ⊗ P−
z do not lie in the interac-

tion algebra B = {P+
z ⊗ I,P−

z ⊗ I, 0, 1}, and so have no value. The spin components

are extrinsic properties of each particle, which do not have values until the appro-

priate interaction. To claim otherwise is to revert to the classical notion of intrinsic

properties.

This is a necessary consequence of our interpretation, but it also follows from a

careful application of standard quantum mechanical principles. For after the mea-

surement of sz on particle 1 gives a value of
1
2
, the state of the combined system is

𝜙

+
z ⊗𝜓

−
z , which is an eigenstate of I ⊗ sz. Born’s Rule implies that an eigenstate of

an observable will yield the corresponding eigenvalue as value only if and when that

observable is measured.

The situation is entirely similar to the unproblematic triple experiment. A triple

experiment on the frame (x, y, z) yields the interaction algebra Bxyz. If S2z = 0, then

S2x = S2y = 1. If (x′, y′, z) is another frame, then it is also the case that p(S2x′ = 1|S2z =
0) = 1, so that S2x′ is certain to have the value 1 if the triple experiment on the frame

(x′, y′, z) is performed. But S2x′ does not have a value unless and until that experiment

is carried out since S2x′ = 1 does not lie in the interaction algebra Bxyz.

We have not in this discussion mentioned a word about special relativity. Indeed,

the spin EPR phenomenon has nothing to do with position or motion and is indepen-

dent of relativistic questions. However, EPR with space-like separated particles has

been used to put in question the full Lorentz invariance of quantum mechanics. This

is replaced by a weaker notion that EPR correlations cannot be used for faster than

light signaling. We believe that Lorentz invariance is a fundamental symmetry prin-

ciple, which gives rise to basic observables, and is not simply an artifact of signaling

messages between agents.
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The relativistically invariant description of the EPR experiment is that if exper-

imenters A1 and A2 measure particles 1 and 2, and the directions of spin in which

they are measured are the same, then an experimenter B in the common part of the

future light cones of A1 and A2 will find that the spins are in opposite directions.

Now that we have studied what EPR actually says, we shall treat the question of

how correlations can exist between the different directions of spins of two particles

when such spins cannot simultaneously have values.

To set the stage for EPR, we again first consider the triple experiment. For a

spin 1 particle the proposition S2z = 1 defines the same projection in Q() as the

proposition

S2x = 0 ↔ S2y = 1 (1)

If we perform the (x, y, z) triple experiment with interaction algebra Bxyz and find that

S2z = 1, then we can check that either S2x = 0 and S2y = 1 or S2x = 1 and S2y = 0, so that

(1) is true. However, for the orthogonal triple (x′, y′, z)

S2x′ = 0 ↔ S2y′ = 1 (2)

is the same projection as (1) and so is also true. But S2x′ and S2y′ do not lie in the

interaction algebra Bxyz, and so have no truth value unless and until the (x′, y′, z) triple

experiment is performed. Thus, the correlation (2) is true without its component

properties S2x′ and S2y′ having truth values.

Now consider the EPR experiment. We have seen in Sect. “Combined Systems”

tha S = 0 is the same projection as (Sz = 0) ∧ (Sx = 0), and Sz = 0 and Sx = 0 are in

turn respectively the same projections as

sz ⊗ I = 1
2
↔ I ⊗ sz = −1

2
(3)

and

sx ⊗ I = 1
2
↔ I ⊗ sx = −1

2
. (4)

If the projections Sz = 0 and Sx = 0 are true, then so are the correlations (3) and (4)

since they define the same projections. As in the triple experiments, we see that these

correlations subsist simultaneously, even though the spins sz and sx for each parti-

cle cannot have values simultanously. Thus, the existence of seemingly paradoxical

EPR correlations in different directions can be understood via the logic of extrinisic

properties.

In summary, the extrinsic properties of a 𝜎-complex may have relations subsisting

among its elements because of general laws of physics, such as conservation laws,

which are timeless and independent of particular interactions. The 𝜎-complex struc-

ture accommodates such relations in the form of compound formulas such as (3) and

(4), which are true, even when the constituent parts do not have truth values. This
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fact allows us to interpret the EPR phenomenon in a fully relativistically invariant

way. For extrinsic properties a compound property may have truth values even when

the component parts do not.

On the Logic of Quantum Mechanics

As we have stressed thoughout this paper, the major transformation from classical to

quantum physics in this approach lies not in modifying the basic classical concepts

such as state, observable, symmetry, dynamics, combining systems, or the notion of

probability, but rather in the shift from intrinsic to extrinsic properties.

Now properties, whether considered as predicates or propositions, are the domain

of logic. Boolean algebras correspond to propositional logic and 𝜎-algebras to pred-

icate logic. Hence the change to a 𝜎-complex of exrinsic properties should entail

a new logic of properties. At first sight however, it would appear that the logic of

extrinsic properties as elements of a 𝜎-complexQ is no different than classical propo-

sitional logic, since these elements can only be compounded when they lie in the

same 𝜎-algebra in Q. This is far from the case; in fact, the difference in logic plays

an important role in resolving some of the quantum paradoxes. The underlying rea-

son is that a compound property such as x ∨ y may be lie in an interaction algebra

and so have a truth value, even though neither x nor y lie in the algebra, and have no

truth value.

The logic of extrinsic properties has been sysematically studied in Kochen,

Specker [10, 11], where a complete axiomatization of the propositional calculus of

extrinsic properties is given. Here we shall confine ourselves to pointing out some

uses of this logic that appeared in this paper.

1. The simplest such case is x ∨ x⟂, which equals 1 in Q, and so is always true,

even though x may have no truth value.
5

Thus, for a spin
1
2

particle, sz =
1
2
∨ sz = −1

2
is true simultaneously for all directions z, though sz may have no value.

2. In the two-slit experiment (Sect. “Classical and Quantum Conditional Proba-

bility”), we saw that it is this lack of truth value that leads to the interference pat-

tern at the detector screen. The source of the interference pattern is not some non-

classical probability, but rather the applications of classical Kolmogorov axioms of

probability to the logic of extrinsic propeties. The conditional probability p(x|y) is

the probability of x given that y has happened and so has a truth value. Therefore

the probability p(x|y1 ∨ y2) implies that y1 ∨ y2 is true. However, neither y1 nor y2
has happened. We should not expect the classical Law of Alternatives connecting

5
This is reminiscent of Aristotle’s famous sea battle in De Interpretatione: “A sea battle must either

take place tomorrow or not, but it is not necessary that it should take place tomorrow neither is it

necessary that it should not take place, yet it is necessary that it either should or should not take

place tomorrow.”
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p(x|y1 ∨ y2) to p(x|y1) and p(x|y2) to be valid unless y1 and y2 are events that have

happened. In that case the Law of Alternatives is in fact valid in quantum mechanics.

3. In the EPR experiment, the singleton state S = 0 implies that sz ⊗ I = 1
2
↔ I ⊗

sz = −1
2

is true for any direction z. In fact, as shown in Sect. “Combined Systems”

the element S = 0 equals

(sz ⊗ I = 1
2
↔ I ⊗ sz = −1

2
) ∧ (sx ⊗ I = 1

2
↔ I ⊗ sx = −1

2
).

Thus, the correlation exists in both the z and x directions even though the spins cannot

simultaneously have values in these directions. Section “Combined Systems” shows

how general superpositions of states of combined systems may be reformulated as

compound statements of this quantum logic.

4. The K-S Paradox in Sect. “Properties” can be stated as a proposition that is

classically true but false in quantum mechanics. To see this, let + denote exclusive

disjunction. Then x + y + z + x ∧ y ∧ z is true if and only if exactly one of x, y, and z
is true.

The statement
⋁

i≤40(xi + yi + zi + xi ∧ yi ∧ zi)⟂, where (xi, yi, zi) range over the

orthogonal triples of the 40 triple experiments of Sect. “Properties” is classically

true, but false under a substitutions xi ↦ S2xi , yi ↦ S2yi , zi ↦ S2zi .
For two spin

1
2

particles there is a K-S Paradox in Mermin [24] which yields a

much simpler such proposition in four dimensional Hilbert space:

[(x ↔ y) ↔ (z ↔ w)] ↔ [(x ↔ z) ↔ (y ↔ w)].

This classically true proposition is false under the substitution

x ↦ sz ⊗ I = 1
2
, y ↦ I ⊗ sz =

1
2
, w ↦ sx ⊗ I = 1

2
, z ↦ I ⊗ sx =

1
2
.

(see [6] for details.) Kochen, Specker
6

[9] Theorem 4 shows that every K-S Paradox

corresponds to a classically true proposition which is false under a substitution of

quantum properties.
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For details, see J. Conway and S. Kochen, The Geometry of the Quantum Paradoxes, Quantum
[Un]speakables, R.A. Bertlemann, A. Zeilinger (ed.), Springer-Verlay, Berlin, 2002, 257.
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Appendix: Summary Table of Concepts

General mechanics Classical mechanics Quantum mechanics

Properties 𝜎-complex 𝜎-algebra 𝜎-complex

Q = ∪B, with B a 𝜎-algebra B(Ω) Q(}
States p ∶ Q → [0, 1] p ∶ B(Ω) → [0, 1] w ∶  → 

p ∣ B, a probability measure a probability measure Density operator

p(x) = tr(wx)
Pure states Extreme point 1 dim operator

of convex set 𝜔 ∈ Ω i.e. unit 𝜙 ∈ 
p(x) = ⟨x, x𝜙⟩

Observables u ∶ B(ℝ) → Q f ∶ Ω → ℝ A ∶  → 
homomorphism Borel function Hermitean operator

Symmetries 𝜎 ∶ Q → Q h ∶ Ω → Ω u ∶  → 
automorphism canonical unitary or

transformation anti-unitary operator

𝜎(x) = uxu−1
Dynamics 𝜎 ∶ ℝ → Aut(Q) Liouville equation von Neumann

representation 𝜕t𝜌 = −[H, 𝜌] -Liouville equation

𝜕twt = − i
ℏ

[H,wt]
Conditionalized states p(x) → p(x ∣ y) p(x) → p(x ∣ y) w → ywy∕ tr(wy)

for x, y ∈ B in Q = p(x ∧ y)∕p(y) von Neumann

p(x ∣ y) = p(x ∣ y)∕p(y) -Lüders Rule

Combined systems Q1 ⊕ Q2 Ω1 × Ω2 1 ⊗2
direct sum of direct product of tensor product of

𝜎-complexes phase spaces Hilbert spaces
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Chapter 13
A Quantum Mechanical Bound
for CHSH-Type Bell Inequalities

Michael Epping, Hermann Kampermann and Dagmar Bruß

Abstract Many typical Bell experiments can be described as follows. A source

repeatedly distributes particles among two spacelike separated observers. Each of

them makes a measurement, using an observable randomly chosen out of several

possible ones, leading to one of two possible outcomes. After collecting a sufficient

amount of data one calculates the value of a so-called Bell expression. An important

question in this context is whether the result is compatible with bounds based on

the assumptions of locality, realism and freedom of choice. Here we are interested

in bounds on the obtained value derived from quantum theory, so-called Tsirelson

bounds. We describe a simple Tsirelson bound, which is based on a singular value

decomposition. This mathematical result leads to some physical insights. In par-

ticular the optimal observables can be obtained. Furthermore statements about the

dimension of the underlying Hilbert space are possible. Finally, Bell inequalities

can be modified to match rotated measurement settings, e.g. if the two parties do not

share a common reference frame.

Introduction

Since the advent of quantum theory physicists have been struggling for a deeper

understanding of its concepts and implications. One approach to this end is to carve

out the differences between quantum theory and “classical” theories, i.e. to explicitly

point to the conflicts between quantum theory and popular preconceptions, which

evolved in each individual and the scientific community from decoherent macro-

scopic experiences. Plain formulations of such discrepancies and convincing exper-

imental demonstrations are crucial to internalizing quantum theory and replacing
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existing misconceptions. For this reason the double-slit-experiments (and similar

experiments with optical gratings) [1–5], which expose the role of state superpo-

sitions in quantum theory, are so very fascinating and famous. Other examples of

“eye-openers” are demonstrations of tunneling [6, 7, pp. 33–12], the quantum Zeno

effect [8] and variations of the Elitzur-Vaidman-scheme [9–11], to pick just a few.

Bell experiments [12–15], which show entanglement in a particularly striking

way, belong to this list. Informally, entanglement is the fact that in quantum theory

the state of a compound system (e.g. two particles) is not only a collection of the

states of the subsystems. This fact can lead to strong correlations between measure-

ments on different subsystems. Before going into more detail here, we would like to

note that the described differences between the relatively new quantum theory and

our old preconceptions are obvious starting points when to look for innovative tech-

nologies which were even unthinkable before. This is in fact a huge motivation for

the field of quantum information, where Bell experiments play a central role.

Bell Experiments Bring Three Fundamental Common Sense
Assumptions to a Test

The idea of Bell was to show that some common sense assumptions lead to predic-

tions of experimental data which contradict the predictions of quantum theory. In the

following we employ a black box approach to emphasize that this idea is completely

independent of the physical realization of an experiment. For example the measure-

ment apparatuses get some input (an integer number which will in the following be

called “setting”) and produce some output (the “measurement outcomes”). We refer

readers preferring a more concrete notion to Sect. “The CHSH inequality can be vio-

lated in experiments with entangled photons”, where physical implementations and

concrete measurements are outlined.

In the present paper we consider the following (typical) Bell experiment, see also

Fig. 13.1. There are three experimental sites, two of which we call the parties Alice

(A) and Bob (B), and the third being a preparation site which we call source (S). Alice

and Bob have a spatial separation large enough such that no signal can travel from

one party to the other at the speed of light during the execution of our experiment.

The source is separated such that no signal can travel from A or B to it at the speed

of light before it finishes the state production. The importance of such separations

will become clear later.

The source produces a quantum system, and sends one part to Alice and one to

Bob. We will exemplify this in Sect. “The CHSH inequality can be violated in exper-

iments with entangled photons”. A and B are in possession of measurement appara-

tuses with a predefined set of different settings. In each run they choose the setting

randomly, e.g. they turn a knob located at the outside of the apparatus, measure the

system received from the source and list the setting and outcome. In the present paper

the measurements are two-valued and the outcomes are denoted by −1 and +1. Let



13 A Quantum Mechanical Bound for CHSH-Type Bell Inequalities 241

Fig. 13.1 Two parties, Alice (A) and Bob (B), perform a Bell experiment. Both of them receive

parts of a quantum system from the source (S). They randomly choose a measurement setting,

denoted by x = 1, 2,… ,M1 and y = 1, 2,… ,M2, and write down their outcomes a = −1 or 1 and

b = −1 or 1, respectively. The experiment is repeated until the accumulated data is analyzed accord-

ing to the text. Angles of 45
◦

in the space-time-diagram correspond to the speed of light. The future

light cones of A, B and S show, that the setting choice and outcome of one party cannot influence

the other and that A and B also cannot influence any event inside the source.

M1 and M2 be the number of different measurement settings at site A and B, respec-

tively. We label them by x = 1, 2, 3,… ,M1 for Alice and y = 1, 2, 3,… ,M2 for Bob.

This preparation and measurement procedure of a quantum system is repeated until

the amount of data suffices to estimate the expectation value of the measured observ-

ables, up to the statistical accuracy one aims at. The expectation value of an observ-

able is the average of all possible outcomes, here ±1, weighted with the correspond-

ing probability to get this outcome.

Let us sketch the preconceptions that are jointly in conflict with the quantum the-

oretical predictions for Bell tests. These are mainly three concepts: Locality, realism

and freedom of choice. This forces us to question at least one of these ideas, because

any interpretation of quantum theory, as well as any “postquantum” theory, cannot

obey all of them. We invite the reader to pick one to abandon while reading the

following descriptions. Do not be confused by our comparison with the textbook

formalism of quantum theory: so far you are free to choose any of them.

Locality is the assumption, that effects only have nearby direct causes, or the other

way around: any action can only affect directly nearby objects. If some action here

has an impact there, then something traveled from here to there. And, according to

special relativity, the speed of this signal is at most the speed of light. In our setup,

this means that whatever Alice does cannot have any observable effect at Bob’s site.

In particular, the measurement outcome at one side cannot depend on the choice of

measurement setting at the other site. While the formalism of quantum theory has

some “nonlocal features”, e.g. a global state, it is strictly local in the above sense,

because any local quantum operation on one subsystem does not change expectation

values of local observables for a different subsystem.

Realism is the concept of an objective world that exists independently of sub-

jects (“observers”). A stronger form of realism is the “value-definiteness” assumption

meaning that the properties of objects always have definite values, also if they are

not measured or even unaccessible for any observer. It seems to be against common

sense to assume that objects cease to have definite properties if we do not measure
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them any longer. In particular the natural sciences were founded on the assumption,

that nature and its properties exist independently of the scientist. In our setup realism

implies, that the measurement outcomes of unperformed measurements (in uncho-

sen settings) have some value. We do not know them, but we can safely assume that

they exist, give them a name and use them as variables. If possible outcomes are

−1 and +1, for example, we might use that the outcome squared is 1 in any of our

calculations. In general the (usual) formalism of quantum theory does not contain

definite values for measurement outcomes independent of a measurement.

Freedom of choice, which is also sometimes called the free will assumption,

means it is possible to freely choose what experiment to perform and how. Because

this idea is elusive, we are content with a decision that is statistically independent of

any quantity which is subject of our experiment. The idea of fate seems to be tempting

to many people. However, dropping freedom of choice makes science useless. Just

imagine you “want” to investigate the question whether a bag contains black balls

but your fate is to pick only white balls (and put them back afterwards), even though

there are many black balls inside. In our setup, freedom of choice implies, that A’s

and B’s choice of measurement setting does not depend on the other’s choice or the

outcomes. In quantum theory, there is freedom of choice in the sense that random

measurement outcomes of some other process can be used to make decisions.

If you decided that you preferably take leave of locality you are in good company.

Many scientists conclude from Bell’s theorem, that the locality assumption is not

sustainable. This is particularly interesting when you consider the above comparison

with the standard textbook formalism of quantum theory, which is apparently not

realistic but local in the described sense. The fact that in this context many scientists

speak about “quantum nonlocality” thus leads to controversy [16]. We therefore want

to stress again, that the experimental contradiction only tells us that at least one of

all the assumptions that lead to the predictions needs to be wrong. We cannot decide

which assumption is wrong from Bell’s theorem alone.

We now focus on a tool to show the contradiction in the described experiment

between the above assumptions and quantum theory, the so called Bell inequali-

ties. These are inequalities of measurable quantities which are (mainly) derived from

locality, realism and freedom of choice and therefore hold for all theories which obey

these principles, while they are violated by the predictions of quantum theory. We

consider a special kind of Bell inequalities which are linear combinations of joint

expectation values of Alice’s and Bob’s observables. The joint expectation value

of the two observables of Alice and Bob is the expectation value of the product of

the measurement outcomes, which again takes values ±1. It depends on the setting

choice x at Alice’s site and y at Bob’s site and we denote it by E(x, y). If we denote the

(real) coefficient in front of the expectation value E(x, y) as gx,y, then we can write

such Bell inequalities as

M1∑

x=1

M2∑

y=1
gx,yE(x, y) ≤ Bg, (1)
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where the bound Bg depends only on the coefficients gx,y. These coefficients form a

matrix g which has dimension M1 ×M2. Any real matrix g defines a Bell inequality

via Eq. (1). The may be most famous example is the Clauser-Horne-Shimony-Holt

(CHSH) [17] inequality, which reads

E(1, 1) + E(1, 2) + E(2, 1) − E(2, 2) ≤ 2. (2)

Here the corresponding matrix g is

g =
(
1 1
1 −1

)

. (3)

Due to its prominence we call the class of Bell inequalities in the form of Eq. (1)

CHSH-type Bell inequalities. For completeness we sketch the derivation of Bg. It

turns out that it suffices to consider deterministic outcomes only, as a probabilistic

theory, where the outcomes follow some probability distribution, cannot achieve a

higher value in Eq. (1): it can be described as a mixture of deterministic theories and

the value of Eq. (1) is the sum of the values for the deterministic theories weighted

with the corresponding probability in the mixture. For deterministic theories the

expectation value is merely the product of the two (possibly unmeasured) outcomes

a of Alice and b of Bob, which we are allowed to use when assuming realism. Due

to locality a only depends on the setting x of Alice, which has no further dependence

due to freedom of choice. Analogously b depends only on the setting y of Bob, which

in turn has no further dependence. Thus the expectation value is

E(x, y) = a(x)b(y). (4)

Now we can calculate Bg by maximizing Eq. (1) over all possible assignments of

−1 and +1 values to a(x) and b(y). In Eq. (2) the maximal value is Bg = 2, which

is achieved for a(1) = a(2) = b(1) = b(2) = 1, for example. Note that the sign of

E(2, 2) cannot be changed independently of the other three terms, because E(1, 2)
and E(2, 1) contain b(2) and a(2), respectively.

We point out that any function that maps the probabilities of different measure-

ment outcomes to a real number may be used to derive Bell inequalities, and different

types of Bell inequalities can be found in the literature (e.g. [18]). However, here we

focus on Bell inequalities of the form of Eq. (1).

The CHSH Inequality Can Be Violated in Experiments with
Entangled Photons

We recapitulate some basics of quantum (information) theory. Analogously to a clas-

sical bit the quantum bit, or qubit, can be in two states 0 and 1, but additionally in

every possible superposition of them. Mathematically this state is a unit vector in the
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two-dimensional Hilbert space (a vector space with a scalar product) C2
spanned by

the basis vectors

𝟎 ∶=
(
1
0

)

and 𝟏 ∶=
(
0
1

)

. (5)

An example of a superposition of these basis states is 𝜓 = 1
√
2
(𝟎 + 𝟏). Any observ-

able on a qubit with outcomes +1 and −1 can be written as

A = ax

(
0 1
1 0

)

⏟⏟⏟

𝜎x

+ay
(
0 −i
i 0

)

⏟⏞⏟⏞⏟

𝜎y

+az
(
1 0
0 −1

)

⏟⏞⏞⏟⏞⏞⏟

𝜎z

, (6)

where the vector 𝐚 = (ax, ay, az)T (here
T

denotes transposition) defines the measure-

ment direction and the matrices 𝜎x, 𝜎y and 𝜎z are called Pauli matrices. The expecta-

tion value of this observable given any state 𝜓 can be calculated as E = 𝜓

†A𝜓 (here

†
denotes the complex conjugated transpose), which is between −1 and +1.

Any quantum mechanical system with (at least) two degrees of freedom can be

used as a qubit. In the present context the spin of a spin-
1
2
-particle, two energy lev-

els of an atom and the polarization of a photon are important examples of qubits.

The spin measurement can be performed using a Stern-Gerlach-Apparatus [19], the

energy level of an atom may be measured using resonant laser light, or the polar-

ization of a photon can be measured using polarization filters or polarizing beam

splitters.

The Hilbert space of two qubits is constructed using the tensor product, i.e.

C2
⊗ C2 = C4

. The tensor product of two matrices (of which vectors are a spe-

cial case) is formed by multiplying each component of the first matrix with the

complete second matrix, such that a bigger matrix arises. The state of the com-

posite system of two qubits in states 𝜙
A = (𝜙A

1 , 𝜙
A
2 )

T
and 𝜙

B = (𝜙B
1 , 𝜙

B
2 )

T
then reads

𝜙

AB = 𝜙

A
⊗𝜙

B = (𝜙A
1𝜙

B
1 , 𝜙

A
1𝜙

B
2 , 𝜙

A
2𝜙

B
1 , 𝜙

A
2𝜙

B
2 )

T
. The states of such composite sys-

tems might be superposed, which leads to the notion of entanglement.

Out of several physical implementations of the CHSH experiment we sketch the

ones with polarization entangled photons (see [20]). We identify 𝟎 with the horizon-

tal and 𝟏 with the vertical polarization of a photon. Nonlinear processes in special

optical elements can be used to create two photons in the state

𝜙+ = 1
√
2
(1, 0, 0, 1)T , (7)

i.e. an equal superposition of two horizontally polarized photons and two vertically

polarized photons. The measurements of Alice and Bob in setting 1 and 2 are



13 A Quantum Mechanical Bound for CHSH-Type Bell Inequalities 245

A1 = cos(2 × 22.5◦)𝜎x + sin(2 × 22.5◦)𝜎z, (8)

A2 = cos(−2 × 22.5◦)𝜎x + sin(−2 × 22.5◦)𝜎z, (9)

B1 = cos(2 × 0◦)𝜎x + sin(2 × 0◦)𝜎z (10)

and B2 = cos(2 × 45◦)𝜎x + sin(2 × 45◦)𝜎z, (11)

respectively. Here the angles are the angles of the polarizer and the factor 2 is due to

the fact that in contrast to the Stern-Gerlach-Apparatus a rotation of the polarizer of

180◦ corresponds to the same measurement again. One can now calculate the value

of Eq. (2):

E(1, 1) + E(1, 2) + E(2, 1) − E(2, 2) = 𝜙

†
+(A1 ⊗ B1)𝜙+ + 𝜙

†
+(A1 ⊗ B2)𝜙+

+𝜙†
+(A2 ⊗ B1)𝜙+ − 𝜙

†
+(A2 ⊗ B2)𝜙+

= 1
√
2
+ 1

√
2
+ 1

√
2
−

(

− 1
√
2

)

= 2
√
2. (12)

The value 2
√
2 ≈ 2.82 is larger than 2 and therefore the CHSH inequality is violated.

One can ask whether it is possible to achieve an even higher value, e.g. when using

higher-dimensional systems than qubits, because at the first glance a value of up to

four seems to be possible. This question is addressed in the following sections (the

answer, which is negative, is given in Sect. “The singular value bound is a simple

Tsirelson bound”).

The Quantum Analog to Classical Bounds on Bell Inequalities
Are Tsirelson Bounds

Analogously to the “classical” bound one can ask for bounds on the maximal value of

a Bell inequality obtainable within quantum theory, so-called Tsirelson bounds [21],

and the observables that should be measured to achieve this value. In other words:

which observables are best suited to show the contradiction between quantum theory

and the conjunction of the three discussed common sense assumptions. This ques-

tion, which is also of some importance for applications of Bell inequalities, is the

main subject of the present essay.

The scientific literature contains several approaches to derive Tsirelson bounds,

some of which we want to mention. The problem of finding the Tsirelson bound of

Eq. (1) can be formulated as a semidefinite program. Semidefinite programming is

a method to obtain the global optimum of functions, under the restriction that the

variable is a positive semidefinite matrix (i.e. it has no negative eigenvalues). This

implies that well developed (mostly numerical) methods can be applied [22, 23]. The

interested reader can find a Matlab code snippet to play around with in the appen-
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dix “MATLAB snippets”. Furthermore there has been some effort to derive Tsirelson

bounds from first principles, amongst them the non-signalling principle [24], infor-

mation causality [25] and the exclusivity principle [26].

The non-signalling principle is satisfied by all theories, that do not allow for faster-

than-light communication. Information causality is a generalization of the non-

signalling principle, in which the amount of information one party can gain about

data of another is restricted by the amount of (classical) communication between

them. The exclusivity principle states, that the probability to see one event out of a

set of pairwise exclusive events cannot be larger than one.

The Singular Value Bound

Here we will discuss a simple mathematical bound for the maximal quantum value

of a CHSH-type Bell inequality defined via a matrix g, which we derived in [27].

While it is not as widely applicable as the semidefinite programming approach, it is

an analytical expression which is easy to calculate and it already enables valuable

insights. For “simple” Bell inequalities, like the CHSH inequality given above, it is

sufficient to use the method of this paper.

We will make use of singular value decompositions of real matrices, a standard

tool of linear algebra, which we now shortly recapitulate.

Any Matrix Can Be Written in a Singular Value
Decomposition

A singular value decomposition is very similar to an eigenvalue decomposition, in

fact the two concepts are strongly related. Any real matrix g of dimension M1 ×M2
can be written as the product of three matrices V , S, WT

, i.e.

g = VSWT
, (13)

where these three matrices have special properties. The matrixV is orthogonal, i.e. its

columns, which are called left singular vectors, are orthonormal. It has a dimension

of M1 ×M1. The matrix S is a diagonal matrix of dimension M1 ×M2, which is not

necessarily a square matrix. Its diagonal entries are positive and have non-increasing

order (from upper left to lower right). They are called singular values of g. The matrix

W is again orthogonal. It has dimension M2 ×M2 and its columns are called right

singular vectors.

The largest singular value can appear several times on the diagonal of S. We call

the number of appearances the degeneracy d of the maximal singular value. Due

to the ordering of S, these are the first d diagonal elements of S. Here we note the
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Fig. 13.2 The matrices involved in the singular value decomposition of a general real M1 ×M2
matrix g:V andW are orthogonal matrices, S is diagonal.V andW contain the left and right singular

vectors, respectively, as columns, and S contains the singular values on its diagonal. The shaded
parts belong to a truncated singular value decomposition of g. We denote the parts corresponding

to the maximal singular value as V (d)
, S(d) and W (d)

.

concept of a truncated singular value decomposition: instead of using the full decom-

position one can approximate g by using only parts of the matrices corresponding to,

e.g., the first d singular values (i.e. only the maximal ones). These are the first d left

and right singular vectors, and the first part of S, which is just a d × d identity matrix

multiplied by the largest singular value. Since these matrices play an important role

in the following analysis we will give them special names: V (d)
, S(d) and W (d)

. All

these matrices are depicted in Fig. 13.2.

The matrix g maps a vector 𝐯 to a vector g𝐯 which, in general, has a differ-

ent length than 𝐯. Here the length is measured by the (usual) Euclidean norm

||𝐯||2 =
√

v21 + v22 +⋯ + v2M2
. The largest possible stretching factor for all vectors

𝐯 is a property of the matrix: its matrix norm induced by the Euclidean norm. The

value of this matrix norm coincides with the maximal singular value S11. We can

therefore express the maximal singular value using

S11 = max
𝐯∈RM2

||g𝐯||2
||𝐯||2

=∶ ||g||2. (14)

The notation ||g||2 for the maximal singular value of g is more convenient than S11,

as it contains the matrix as an argument.

The Singular Value Bound Is a Simple Tsirelson Bound

It turns out that the matrix norm of g, i.e. its maximal singular value, leads to an upper

bound on the quantum value for a Bell inequality, defined by g via Eq. (1). This is

the central insight of this essay. It is remarkable that a mathematical property, solely

due to the rules of linear algebra, leads to a bound for a physical theory, here the

theory of quantum mechanics. With the definition of the matrix norm given above,
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we can now write this singular value bound of g, a simple Tsirelson bound [27]. It

reads
M1∑

x=1

M2∑

y=1
gx1,x2E(x1, x2) ≤

√
M1M2||g||2, (15)

where E now denotes the expectation value of a quantum measurement in setting x1
and x2. Equation (15) is the central formula of this essay. Note that this bound is not

always tight, i.e. there exist examples where the right hand side cannot be reached

within quantum mechanics. However for many examples it is tight. The proof of this

bound is sketched in Appendix “Tsirelson’s theorem carries the Tsirelson bound to

Linear Algebra”.

We now calculate this bound for the CHSH inequality given in Eq. (2). We see,

that here the matrix of coefficients is

g =
(
1 1
1 −1

)

=
⎛
⎜
⎜
⎝

1
√
2

1
√
2

1
√
2
− 1

√
2

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏟⏞⏞⏞⏟

V

(√
2 0
0

√
2

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

S

(
1 0
0 1

)

⏟⏟⏟

WT

. (16)

It is easy to check that the given decomposition of g is a singular value decomposi-

tion, i.e. V , S and W have the properties described above. From this we read, that the

maximal singular value of g is ||g||2 =
√
2. Then Eq. (15) tells us, that the maxi-

mal value of the CHSH inequality (Eq. (2)) within quantum theory is not larger than

2
√
2, a value which can also be achieved when using appropriate measurements and

states (see Sect. “The CHSH inequality can be violated in experiments with entan-

gled photons”)

Tightness of the Bound Can Be Checked Efficiently

We already mentioned that the inequality (15) is not always tight, i.e. sometimes it

is not possible to find observables and a quantum state such that there is equality.

From the derivation of Eq. (15) sketched in Appendix “Tsirelson’s theorem carries

the Tsirelson bound to Linear Algebra” one understands, why this is the case. The

value

√
M1M2||g||2 is achieved if and only if there exists a right singular vector 𝐯

to the maximal singular value and and a corresponding left singular vector 𝐰 which

fulfill further normalization constraints.

It is common to denote the element in the i-th row and j-th column of a matrix

A as Aij. We will extend this notation to denote the whole i-th row by Ai∗ and the

whole j-th column by A∗j, i.e. the ∗ stands for “all”. For example, the l-th M1 +M2
dimensional canonical basis vector, with a one at position l and 0 everywhere else,

can then be written as 1
(M1+M2)
∗,l .
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With this notation at hand we write down the normalization constraint from above

as the system of equations

‖
‖
‖
𝛼

TV (d)
x∗
‖
‖
‖

2
= 1 for x = 1, 2, ...,M1 (17)

and

‖
‖
‖
‖
‖
‖

√
M2
M1

𝛼

TW (d)
y∗

‖
‖
‖
‖
‖
‖

2

= 1 for y = 1, 2, ...,M2, (18)

where the d × d′ matrix 𝛼 is the unknown. The bound in Eq. (15) is tight if and only if

such matrix 𝛼 solving this system of equations can be found. Here d is the degeneracy

of the maximal singular value of g and d′, the dimension of the vectors 𝐯x = 𝛼

TV (d)
x∗

and 𝐰y = 𝛼

TV (d)
y∗ , is a natural number. The steps leading to Eqs. (17) and (18) can be

found in the supplemental material of [27]. Because Eqs. (17) and (18) are quadratic

in 𝛼 it may not be obvious how to solve it. In [27] we described an algorithm to

solve the above system of equations in polynomial time with respect to the size of

g. The interested reader may also find a Matlab snippet in the Appendix “MATLAB

snippets”. Often the solution 𝛼 is obvious, e.g. when it is proportional to the identity

matrix.

Optimal Measurements Are Obtained from the SVD

From the previous considerations we understand that the existence of the unit vec-

tors 𝐯x = 𝛼

TV (d)
x∗ and 𝐰y = 𝛼

TV (d)
y∗ , i.e. the existence of the matrix 𝛼 that allows this

normalization, is crucial to the satisfiability of the singular value bound. Further-

more they have a physical meaning, because they are related to the observables in

the following way.

Let us again consider the example of Eq. (2), with the singular value decomposi-

tion

g =
(
1 1
1 −1

)

=
⎛
⎜
⎜
⎝

1
√
2

1
√
2

1
√
2
− 1

√
2

⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏟⏞⏞⏞⏟

V

(√
2 0
0

√
2

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

S

(
1 0
0 1

)

⏟⏟⏟

WT

. (19)

which we repeat from Eq. (16). The multiplicity d = 2 of the maximal singular value√
2 equals the number of measurement settings M1 and M2, so each of the rows V (d)

x∗
and W (d)

y∗ are already normalized due to orthogonality of V and W. Therefore we can

choose 𝛼 = 1(2)
to solve Eqs. (17) and (18). We then have 𝐯1 = (1, 1)T∕

√
2, 𝐯2 =

(1,−1)T∕
√
2, 𝐰1 = (1, 0)T and 𝐰2 = (0, 1)T . We are looking for a state and observ-

ables such that E(x, y) = 𝐯x ⋅ 𝐰y, which is always possible to find (see Tsirelson’s
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theorem, Appendix “Tsirelson’s theorem carries the Tsirelson bound to Linear Alge-

bra”).

Consider for example two spin-
1
2

particles in the state 𝜙+ = 1
√
2
(1, 0, 0, 1)T . Alice

and Bob can measure their particles’ spin with Stern-Gerlach apparatuses along any

orientation in the x-z-plane. The observable of Alice corresponding to a measure-

ment along the direction (ax, az)T is

A = ax

(
0 1
1 0

)

+ az

(
1 0
0 −1

)

, (20)

where the matrices are two of the so-called Pauli matrices. Bob’s measurement reads

analogously. The reader can easily verify that the expectation value of the joint

observable A⊗ B is given by

𝜙

†
+(A⊗ B)𝜙+ = 𝐚 ⋅ 𝐛. (21)

Therefore optimal measurement directions leading to equality in In Eq. (15) are given

by 𝐯x and 𝐰y. For this reason we will call 𝐯x and 𝐰y the measurement directions, even

though they can have a dimension greater than three for general g.

We note how this construction of observables generalizes: The state can be taken

to be 𝜙+ = 1
√
D

∑D
i=1 𝐞i ⊗ 𝐞i and the observables can be constructed as Ax = 𝐯x ⋅ 𝐗

and By = 𝐯y ⋅ 𝐗, where 𝐗 is a vector of matrices Xi generalizing Pauli matrices in

some sense (they anticommute, i.e. XiXj + XjXi = 0 for i ≠ j).

Bell Inequalities Allow to Lower Bound the Hilbert Space
Dimension

In the previous example we chose 𝛼 to be a square matrix, namely 𝛼 = 1(2)
. We will

now illustrate the role of the dimension of the measurement directions d′ with an

example of a trivial Bell inequality, where d′ = 1 suffices to obtain the Tsirelson

bound. For this example the coefficients are g = 1(2)
. An obvious singular value

decomposition of this identity matrix is to choose V = S = W = 1(2)
. Just as before

we can say that 𝛼 = 1(2)
is a solution to Eqs. (17) and (18), thus the bound is achiev-

able with d′ = 2. But we can also choose 𝛼 = (1, 1)T , which also solves the system

of equations. In this case the measurement directions are one-dimensional (d′ = 1),

in fact they are all equal to 1. Then the expectation value given by the scalar product

of the measurement directions reduces to the “classical” expectation value of deter-

ministic local and realistic theories given in Eq. (4). Both quantum theory and local

realistic theories can achieve the maximal value of two. This inequality is therefore

unable to show a contradiction between quantum theory and locality, realism and

freedom of choice. You might have expected this, since the matrix of coefficients
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does not even contain a negative coefficient, which implies that the maximum value

is achieved if all outcomes are +1.

Let us discuss a more interesting example. It is a special instance of the family of

Bell inequalities discussed by Vertési and Pál [28]. You can also find the following

analysis for the whole family in the supplemental material of [27]. The coefficients

are

g =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
−1 1 1 1
1 −1 1 1
−1 −1 1 1
1 1 −1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)

Please note, that the columns of g are orthogonal, thus it is easy to find a truncated

singular value decomposition of g: We can choose V (d) = 1
2
√
2
g, S(d) = 2

√
21(4)

and W = 1(4)
. One can easily check, that 𝛼 =

√
21(4)

is a solution for the (d × d′)-
matrix 𝛼 of Eqs. (17) and (18), so the maximal quantum value of 16 (see Eq. (15))

is achievable with (d′ = 4)-dimensional measurement directions. It turns out, that

the system of equations is not solvable if we choose d′ = 3, i.e. 𝛼 to be a (4 × 3)-
dimensional matrix. This has some very interesting physical implications. Since

(d′ = 3)-dimensional measurement directions do not suffice to obtain the maximal

value of the Bell inequality, we can conclude from a measured value of Q = 16, that

our measurement directions were at least four-dimensional. Of course one will never

measure this value perfectly in experiment, so what one has to do in practice is to

calculate the maximum of the Bell inequality over all three-dimensional measure-

ment directions (this is analog to the calculation of the classical bound Bg described

above). If we call this value T3, then any value between T3 and 16 witnesses the

dimension of the measurement directions to be at least four (see Fig. 13.3).

For spin-
1
2

particles, there are three orthogonal measurement directions (orienta-

tions of the Stern-Gerlach-apparatus), i.e. x-, y- and z-direction, corresponding to the

three Pauli matrices (see Eq. (6)) and not more. This holds for all quantum systems

Fig. 13.3 Depending on the dimension d′ of the measurement directions different values Td′ are

maximal for the Bell inequality given by coefficients in Eq. (22). An experimentally obtained value

Q of the Bell inequality inside the shaded area witnesses, that the produced quantum system had a

greater Hilbert space dimension than qubits (see text). The values are taken from [28].



252 M. Epping et al.

with two-dimensional Hilbert space (qubits). Thus if in some Bell experiment the

value of the Vertési-Pál-inequality given by the coefficients in Eq. (22) is found to

be 16 (or larger than T3), one can conclude that the produced and measured systems

were no qubits. In particular they were not single spin-
1
2

particles. Please note, that

this argument is independent of the physical implementation of the source and the

measurement apparatuses. For this reason the concept is often called device inde-

pendent dimension witness.

Satisfiability of the Bound Can Be Understood Geometrically

With 𝐫 = V (d)
x∗ Eq. (17) can be written as 𝐫T𝛼𝛼T𝐫 = 1. This quadratic form defines an

ellipsoid with semi-axes
1

√
𝜆1
,

1
√
𝜆2
, ...,

1
√
𝜆d

where 𝜆1, 𝜆2, ..., 𝜆d are the eigenvalues of

𝛼𝛼

T
. Analogously the vectors 𝐫′ =

√
M2
M1

W (d)
y∗ lie on the same ellipsoid (see Eq. (18)).

We therefore state, that the singular value bound is obtainable if and only if the

vectors V (d)
x∗ and

√
M2
M1

W (d)
y∗ lie on an ellipsoid. As we mentioned before, in many

cases (e.g. from the literature), 𝛼 can be chosen to be proportional to the identity

matrix. Thus in these cases the vectors lie on a d-dimensional sphere, i.e. for d = 2
they are on a circle, which is shown for the CHSH inequality [17] in Fig. 13.4.

If 𝛼 is not square or not full rank (i.e. at least one eigenvalue of 𝛼 is zero), then at

least one of the eigenvalues of 𝛼𝛼
T

is zero, too. We define the corresponding semi-

axis to be infinite.

The measurement directions lie in the image of the linear transformation associ-

ated with 𝛼. Thus the dimension of the measurement directions cannot be larger than

the rank of 𝛼. For g = 1 we show the degenerate ellipsoid with one infinite semi-axis

corresponding to the solution 𝛼 = (1, 1)T (see above) in Fig. 13.5.

Fig. 13.4 The singular value bound is achievable if and only if the vectors V (d)
x∗ and

√
M2
M1

W (d)
y∗

lie on the surface of an ellipsoid. These vectors and the ellipsoid (here a circle) are shown for the

CHSH inequality.
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Fig. 13.5 The vectors V (d)
x∗ and

√
M2
M1

W (d)
y∗ of g = 1(2)

lie on the dotted ellipse. Increasing the larger

semi-axis while keeping the vectors on the ellipse leads to the solid (degenerate) ellipse in the

limit. Infinite semi-axes of the ellipsoid imply, that lower dimensional measurement directions (here

d′ = 1) suffice to achieve the Tsirelson bound.

Changing g Without Changing the Tsirelson Bound

The parts of the SVD of g which do not correspond to the maximal singular value

of (i.e. the non-shaded areas in Fig. 13.2) did not appear in our discussion of the

Tsirelson bound. Therefore any changes of these singular vectors in V and W and

singular values in S will not affect our analysis. The last is, of course, only true

as long as these new singular values do not become bigger than the (previously)

maximal singular value. While this changes the matrix g, i.e. leads to a new Bell

inequality, the quantum bound remains obtainable and its value remains the same.

From the geometric picture we immediately understand, that rotations of the vec-

tors V (d)
x∗ and

√
M2
M1

W (d)
y∗ which keep them on the ellipsoid (see Figs. 13.4 and 13.5)

also do not change the value and satisfiability of the singular value bound.

We give an example to illustrate that the measurement directions can be rotated

without affecting the singular value bound and its tightness. Consider the CHSH

test described above, but now Alice and Bob did not agree on a common coordinate

system before performing the experiment, see Fig. 13.6. Let us assume for simplicity

that their local coordinate systems are only rotated relative to each other by an angle

𝜑 around their common y-axis. This angle 𝜑 is unknown to Alice and Bob at the time

of collecting the measurement data. The quantum state is still 𝜓 = 1
√
2
(1, 0, 0, 1)T ,

independent of 𝜑.

Let us analyze the effect of the relative rotation on the violation of the CHSH

inequality. The first idea might be to measure the observables of Sect. “Optimal

measurements are obtained from the SVD” in the local basis and insert the esti-

mated expectation values into the CHSH inequality. For a relative angle 𝜑 = 0◦ these

observables are optimal, but for an angle of 𝜑 = −45◦ Alice and Bob measure in the

same direction and their data will not violate the CHSH inequality. From the pre-

vious considerations we know that it is also possible to “rotate” the Bell inequality

such that the actually performed measurements are optimal for that inequality. This

can be done by applying a rotation matrix to the matrix W. However, twisting the
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Fig. 13.6 Alice and Bob share pairs of particles in a spin-entangled state 𝜓 and want to violate a

Bell inequality. They each can measure the spin of their particle along transversal axes with different

angle relative to the table’s up. Unfortunately they were not able to agree on what “up” means, yet,

and their local coordinate systems are twisted by a relative angle 𝜑. The text explains that one

possibility is to measure using (local) angles 𝛾1 = 45◦, 𝛾2 = −45◦, 𝛾3 = 0◦, 𝛾4 = 90◦ at Alice’s site

and 𝛿1 = 0◦ and 𝛿2 = 90◦ at Bob’s site and “rotate” the Bell inequality.

original CHSH inequality by 45◦ gives

√
21 (up to relabeling of the measurement

settings), see Figs. 13.4 and 13.5. And as it is shown in Fig. 13.5 all but one semiaxis

of the ellipse associated with 𝛼 can be chosen to be infinite, which is equivalent to

the fact that the classical bound and the quantum bound coincide. This implies that

the inequality given by coefficients g =
√
21 cannot be violated.

The trick is to include more measurement directions. If the measurement direc-

tions of Alice already uniquely define the ellipsoid associated with 𝛼, then the rota-

tion of the measurement directions of Bob does not change the fact that the Bell

inequality can be violated. One obvious possibility to achieve this is to add all set-

tings of Bob to Alice. We do this for the CHSH inequality (see Eq. (16)) and get

g(𝜑) =

⎛
⎜
⎜
⎜
⎜
⎝

1
√
2

1
√
2

1
√
2
− 1

√
2

1 0
0 1

⎞
⎟
⎟
⎟
⎟
⎠

(
cos(𝜑) − sin(𝜑)
sin(𝜑) cos(𝜑)

)

. (23)

If we call the different measurement angles 𝛾1, 𝛾2, 𝛾3, 𝛾4 at Alice’s site and 𝛿1, 𝛿2 at

Bob’s site we have for 𝛼 =
√
21 that 𝛾1 = 45◦, 𝛾2 = −45◦, 𝛾3 = 0◦, 𝛾4 = 90◦, 𝛿1 =

0◦ and 𝛿2 = 90◦ are optimal measurement settings. The quantum value T = 4 of

this inequality does not depend on 𝜑, but the classical bound B does. Figure 13.7

shows the violation of the Bell inequality depending on the relative rotation 𝜑. As

expected it is always strictly larger than one. The maximal violation of 4 − 2
√
2 can
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Fig. 13.7 The ratio of the

maximal quantum and

classical value, the violation,

is plotted for the Bell

inequality given by the

coefficients of Eq. (23) as a

function of the relative

rotation of the two

laboratories 𝜑.

be obtained for 𝜑 = k 𝜋

4
, where k is an integer number. We remark that if Alice and

Bob even do not agree on a common coordinate system for the analysis of the data,

they still can maximize the violation over the angle 𝜑.

A similar analysis for a general rotation in three dimensions given by three Euler

angles was done in [29]. Different approaches to Bell inequalities without a com-

mon coordinate system have been described in the literature. We want to mention

the following strategy. Each party measures along random but orthogonal measure-

ment directions. Afterwards the violation of the CHSH inequality is calculated for

all combinations of pairs of measured settings of Alice and Bob. The result is similar

to the one in this section: if the parties measure along more than two directions, then

one can find a Bell inequality that is violated with certainty [30].

A deeper understanding of the correlations between measurements on separated

systems possible according to quantum theory, including the maximal value of Bell

inequalities, is an aim of ongoing research in the field of quantum information theory.

In this essay we saw how more measurement settings and higher-dimensional quan-

tum systems can lead to stronger violations of Bell inequalities, e.g. in the context of

device-independent dimension witnesses or Bell experiments without a shared ref-

erence frame. The insights gained from these simple examples may help to find Bell

inequalities well suited for different situations and applications.
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Appendix

Tsirelson’s Theorem Carries the Tsirelson Bound to Linear
Algebra

We now sketch the derivation of Eq. (15) following [27]. It is strongly based on a

theorem by Boris Tsirelson [31]. It links the expectation values of quantum measure-

ments to scalar products of real vectors. While the full theorem shows equivalence

of five different ways of expressing the expectation value, we will repeat two of them

here.

Remember that in the formalism of quantum theory observables are hermitean

operators, i.e. they equal their complex conjugated transpose. And quantum states

can be described by density matrices, which are convex mixtures of projectors onto

pure quantum states, with the weights being the probability to find the system in the

corresponding pure state. This implies that the density matrix is positive and has

trace one.

Consider two fixed sets of observables with eigenvalues in [−1, 1], {A1,A2, ...,

AM1
} and {B1,B2, ...,BM2

}, and a quantum state given in terms of its density matrix

𝜌. Then the expectation value of the joint measurement of Ax and By, Ax ⊗ By, is

E(x, y) = tr(Ax ⊗ By𝜌) according to quantum theory. Tsirelson’s theorem states, that

there exist real M1 +M2 dimensional unit vectors {𝐯1, 𝐯2, ..., 𝐯M1
} and {𝐰1,𝐰2, ...,

𝐰M2
} such that all expectation values can be expressed as E(x, y) = 𝐯x ⋅ 𝐰y. This

is the direction we need, because it allows us to replace the expectation value in

Eq. (1) by the scalar product of some real vectors. Tsirelson also proved the converse

direction: given the vectors 𝐯1, 𝐯2, ..., 𝐯M1
and 𝐰1,𝐰2, ...,𝐰M2

there exist observ-

ables A1,A2, ...,AM1
and B1,B2, ...,BM2

and a state 𝜌 such that the expectation value

E(x, y) = tr(Ax ⊗ By𝜌) equals the scalar product 𝐯x ⋅ 𝐰y.

After application of Tsirelson’s theorem Eq. (1), i.e.
∑

x,y gx,yE(x, y), takes the

form

M1∑

x=1

M2∑

y=1
gx,y

M1+M2∑

i=1
vx,iwy,i =

M1∑

x=1

M2∑

y=1

M1+M2∑

i=1

M1+M2∑

j=1
vx,igx,y𝛿ijwy,j

= 𝐯T (g⊗ 1(M1+M2))𝐰. (24)

Here we expressed the scalar product as a matrix product using the M1 +M2 dimen-

sional identity matrix 1(M1+M2) and defined the vectors 𝐯 and 𝐰, which arise if one

concatenates all 𝐯x and𝐰y, respectively. For the decomposition given in Eq. (16) with

𝛼 = 1(2)
, for example, 𝐯1 = ( 1

√
2
,

1
√
2
)T and 𝐯2 = ( 1

√
2
,− 1

√
2
)T and thus

𝐯 = ( 1
√
2
,

1
√
2
,

1
√
2
,− 1

√
2
)T . From Eq. (24) we see, that the maximal quantum value

of the Bell inequality is given by the maximal singular value (the maximal stretch-

ing factor) of g⊗ 1(M1+M2) times the length of the vectors 𝐯 and 𝐰. The matrix

g⊗ 1(M1+M2) has the same singular values as g, except that each of them appears
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M1 +M2 times. Because the 𝐯x and 𝐰y constituting 𝐯 and 𝐰 are all unit vectors, the

length of 𝐯 is

√
M1 and the length of 𝐰 is

√
M2. Putting these factors together we

arrive at Eq. (15).

MATLAB Snippets

func t i on [ T ] = s i n g u l a r v a l u e b o u n d ( g )

%SINGULARVALUEBOUND Ca l c u l a t e s t h e SV−bound o f g
% t h e r e t u r n e d va l u e i s a T s i r e l s o n bound f o r
% t h e CHSH− t y p e i n e q u a l i t y g i v en by g
T=sqr t ( numel ( g ) ) ∗norm ( g ) ;

end

func t i on [ a ] = a l p h a m a t r i x ( g )

%ALPHAMATRIX L i n k s SVD to measurement d i r e c t i o n s
% see PRL 111 , 240404 (2013 )
[M1 M2]= s i z e ( g ) ;

[V S W]= svd ( g ) ;

acc=1E−4; % ad j u s t t o numer i ca l p r e c i s i o n
d=sum ( diag ( S)>=S (1 ,1) − acc ) ;

% th e v e c t o r s t o be no rma l i z e d by a lpha :
A=[V( 1 :M1, 1 : d ) ; sqr t (M2/M1)∗W( 1 :M2, 1 : d ) ] ;

Q=(A∗A’ ) . ^ 2 ;

c=pinv (Q)∗ ones (M1+M2, 1 ) ;

i f sum ( abs (Q∗c−ones (M1+M2, 1 ) ) > acc )

error ( ’ a l p h a m a t r i x : n o s o l ’ , ’No␣ s o l u t i o n ␣ a l p h a ␣ found . ’ ) ;

e l s e
X=A’∗ diag ( c )∗A;

i f e i g s (X, 1 , ’sm ’ )<0

error ( ’ a l p h a m a t r i x : n o r e a l s o l ’ ,

’No␣ r e a l ␣ s o l u t i o n ␣ a l p h a ␣ found . ’ ) ;

end
end
a=X^ 0 . 5 ;

end

func t i on [ T ] = t s i r e l s o n b o u n d ( g )

%TSIRELSONBOUND Ca l c u l a t e s t h e T s i r e l s o n bound f o r g
% Uses t h e s e m i d e f i n i t e programm de s c r i b e d by
% S t e p han i e Wehner i n PRA 73 , 022110 ( 2 0 0 6 ) .
[M1 M2]= s i z e ( g ) ;

W=[ zero s (M1,M1) g ; g ’ zero s (M2,M2 ) ] ;

G=s d p v a r (M1+M2,M1+M2 ) ;

o b j=t r a c e (G∗W) / 2 ;

F=s e t (G>0) ;

f o r i =1:M1+M2
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F=F+s e t (G( i , i ) == 1 ) ;

end
s o l v e s d p ( F , obj , s d p s e t t i n g s ( ’ v e r b o s e ’ , 0 ) ) ;

T=−d o u b l e ( o b j ) ;

end
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Chapter 14
Bell Inequalities with Retarded Settings

Lucien Hardy

Abstract We consider retarded settings in the context of a Bell-type experiment.

The retarded setting is defined as the value the setting would have taken were it not

for some external intervention (for example, by a human). We derive retarded Bell
inequalities that explicitly take into account the retarded settings. These inequalities

are not violated by Quantum Theory (or any other theory) when the retarded settings

are equal to the actual settings. We construct a simple model that reproduces Quan-

tum Theory when the retarded and actual settings are equal, but violates it when

they are not. We discuss using humans to choose the settings in this type of experi-

ment and the implications of a violation of Quantum Theory (in agreement with the

retarded Bell inequalities) in this context.

Introduction

I first got interested in Bell’s theorem [4], many years ago, on account of the follow-

ing question: if we employed humans to switch the measurement settings at the two

ends of the experiment, might we then expect Bell’s inequalities to be satisfied and

Quantum Theory to be violated? I was particularly interested in whether we might

think of this as a test for mind-matter duality. The papers I wrote on this subject did

not, of course, get past the referees in 1989. In the meantime, I have come to be much

more accepting of Bell style nonlocality in Quantum Theory. By now I more-or-less

fully expect that, even if humans were used to switch the measurement settings, we

would see a violation of Bell’s inequalities in agreement with Quantum Theory. On

the other hand, the implications of a violation of Quantum Theory in this context

would be so incredibly significant that it is worth discussing how we might go about

doing an experiment.

In this contribution I will present modified Bell inequalities that I obtained 1989

(but did not publish) that take account of the possibility that a signal actually passes

between the two ends of the experiment at the speed of light carrying information

L. Hardy (✉)
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as to the distant setting (this is the retarded setting). The inequalities I will present

actually include these retarded settings. After all, these are things we can measure

and their values would be significant if switching distant settings actually changed

the physics.

Although my original motivation for thinking about retarded settings was in the

context of having people actually do the switching, we could use the inequalities

obtained here in other contexts. For example, we might attempt to collect cosmo-

logical signals from regions of space-time that are causally disconnected from our

own to implement the switching (see, for example, [13]). We might use them to ana-

lyze existing experiments in which the settings are varied in time [2] or in which

a random number generator is used to do the switching [14, 16]. Additionally, we

might investigate practical applications of such inequalities (in device independent

quantum cryptography [1, 3] and communication complexity [7, 11] for example).

Retarded Settings

We will define two notions of retarded settings. We are particularly interested in the

second type (whose definition is a little subtle). Consider that the settings a and b at

the two ends, 1 and 2 respectively, of a Bell experiment are switched by some means

during the course of the experiment. Then we are interested in the retarded settings,

ar (as regarded from side 2), and br (as regarded from side 1).

Simple retarded settings. The most obvious interpretation of retarded setting is that

it is simply ar = a(t2 − L∕c) where L is the distance between the two ends and t2 is

the time at which the measurement at side 2 takes place. Likewise, we would have

br = b(t1 − L∕c).

Predictive retarded settings. A different notion of retarded settings is that ar is a

prediction made at end 2 as to what setting a will take at time t1 based on infor-

mation that can be locally communicated to end 2. Thus, if the variation of a were

deterministic then a calculation at end 2 would enable us to predict a at time t1. Now,

we can imagine that the variation of a is deterministic except for interventions. Then

the retarded setting, ar, is be the value a is predicted to take at time t1 if there are

no interventions on this setting after time t2 − L∕c that alter a at t1 from the value it

would have taken.

If we only allow the measurement setting to be changed by these supposed inter-

ventions then the above two definitions of retarded setting coincide. However, this

will not be the case in general.

In the introduction we supposed that the interventions are due to a person doing

the switching. We will discuss this possibility later and the issues arising. Another

possibility, also mentioned above, is that the interventions are due to signals from

causally disconnected regions of space. One other possibility is that appropriate ran-

dom number generators can supply such interventions.
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Clauser Horne Shimony Holt Inequalities with Retarded
Settings

Consider a Bell type experiment with two ends. Imagine we have a central source of

two systems, 1 and 2, described by hidden variables, 𝜆 ∈ Γ, with probability distri-

bution 𝜌(𝜆) such that

∫Γ
𝜌(𝜆)d𝜆 = 1 (1)

We can obtain Clauser Horne Shimony Holt type Bell inequalities [10] with retarded

settings. In this scenario, we have a measurement, A, on system 1 which can take

values +1 and −1. Similarly, we have a measurement, B, on the right which can take

values +1 and −1. For simplicity, we will assume that the hidden variable model is

deterministic (this assumption could easily be dropped). Let

A(a, br, 𝜆) (2)

be the outcome at side 1 when we have setting a, retarded setting br, and hidden

variable 𝜆. Similarly, we have

B(b, ar, 𝜆) (3)

at end 2. Note that, at each end, we allow for a dependence on the retarded setting at

the other end. Since these settings are retarded, this is a local dependence.

We define the correlation function

E(a, b|ar, br) = ∫Γ
A(a, br, 𝜆)B(b, ar, 𝜆)d𝜆 (4)

So E(a, b|ar, br) is the expectation value of the product of the outcomes at the two

ends.

Clauser, Horne, Shimony, and Holt used the following (easily verified) mathe-

matical identity

X′Y ′ + X′Y + XY ′ − XY = ±2 (5)

where X,X′
,Y ,Y ′ = ±1. We put

X = A(a, br, 𝜆) (6)

X′ = A(a′, b′r, 𝜆) (7)

Y = B(b, ar, 𝜆) (8)

Y ′ = B(b′, a′r, 𝜆) (9)

Substituting these into (5) and integrating over 𝜆 we obtain
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− 2 ≤ E(a′, b′|a′r, b′r) + E(a′, b|ar, b′r) + E(a, b′|a′r, br) − E(a, b|ar, br) ≤ +2
(10)

These are the retarded CHSH inequalities.

When Retarded and Actual Settings Are Equal

If the retarded settings are equal to the actual settings for each term in the retarded

CHSH inequalities (10) then we have a′r = a′ = ar = a and b′r = b′ = br = b and

the inequalities become

− 2 ≤ 2E(a, b|a, b) ≤ +2 (11)

This inequality is always satisfied (as E is bounded by ±1) and hence there is no

constraint from the retarded CHSH inequalities when the retarded settings are equal

to the actual settings.

It is also interesting to consider the case where the retarded setting is equal to the

actual setting for one end only. Consider the case when a′r = a′ = ar = a. Then the

retarded CHSH inequality reduces to

− 2 ≤ E(a, b′|a, b′r) + E(a, b|a, b′r) + E(a, b′|a, br) − E(a, b|a, br) ≤ +2 (12)

Now, this inequality is not violated by any theory, T , which has

E(a, b|ar, br) = ET (a, b) (13)

i.e. theories in which the retarded settings do not influence the physics (such as Quan-

tum Theory). This is because (12) then reduces to

− 2 ≤ 2ET (a, b′) ≤ +2 (14)

which cannot be violated. Hence, if we want to test such theories, then we need to

be sure the retarded and actual settings are different for each end.

Testing Quantum Theory

The quantum predictions do not depend on the retarded settings so, according to

Quantum Theory, we would have

E(a, b|ar, br) = EQT(a, b) (15)

and the inequalities would become
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− 2 ≤ EQT(a′, b′) + EQT(a′, b) + EQT(a, b′) − EQT(a, b) ≤ +2 (16)

As is well known, these inequalities can be violated by the predictions of Quantum

Theory.

Hence, we cannot have a local model of the sort used in setting up the retarded

CHSH inequalities that reproduces Quantum Theory. However, we have also seen

that we can have

E(a, b|a, b) = EQT(a, b) (17)

Furthermore, we would expect this to be true since the motivation for consider-

ing local models with retarded settings is to reproduce Quantum Theory when the

retarded settings are equal to the actual settings. The model we will provide in

Sect. “A model” has the property (17) by construction. The retarded CHSH inequal-

ities also allow

E(a, b|a, br) = E(a, b|ar, b) = EQT(a, b) (18)

(where the retarded setting equals the actual setting for one end). The model we pro-

vide in Sect. “A model” does not have this property. However, it should be possible

to build a more sophisticated model that does have this property.

Retarded Versus Standard Bell Inequalities

The standard Bell inequalities do not take account of retarded settings. If we per-

form an experiment where we actively change the settings during the flight of the

systems from the source before they arrive at the measurement apparatuses, then

we have to take care to be sure that the retarded and actual settings are different for

a sufficiently large proportion of cases. However, in the standard Bell inequalities,

we simply ignore the retarded settings and average over all cases. If the probability

of any particular retarded setting is independent of the actual settings then we can

recover standard Bell inequalities. In this case we can define

E
av
(a, b) =

∑

ar ,br

p(ar, br)E(a, b|ar, br) (19)

where p(ar, br) is the probability that the retarded settings are ar and br. Now we can

take the average of the retarded CHSH inequality and obtain

− 2 ≤ E
av
(a′, b′) + E

av
(a′, b) + E

av
(a, b′) − E

av
(a, b) ≤ +2 (20)

These are standard CHSH inequalities (where we ignore the retarded settings). How-

ever, this derivation of standard from retarded CHSH inequalities fails when there is

a correlation between the retarded and actual settings. Any such correlation could, in

principle, lead to a situation where the standard Bell inequalities are violated while
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the retarded Bell inequalities are satisfied. Hence, if we take seriously the need to

actively switch the settings, then we need to use the retarded Bell inequalities.

It is particularly noteworthy that the famous experiment of Aspect, Dalibard

and Roger in 1982 [2] used periodic switching. Unfortunately, the switching period

was such that the actual and retarded settings were equal. This was pointed out by

Zeilinger [17] and formed part of the motivation for the experiment in his group

[16] in which ultrafast random switching was used. Under such a scenario, it seems

likely that the retarded and actual settings would not be correlated and hence we

can obtain standard from retarded Bell inequalities by the above type of averaging

(another, even more definitive, experiment was performed by Zeilinger’s group in

[14]). On the other hand, if we use the retarded Bell inequalities directly, then we

do not have to make such an assumption. Retarded Bell inequalities provide a tool

for analyzing this kind of experiment. Of course, neither of these experiments used

humans or signals from cosmologically disconnected parts of the universe and so

it is really models with “simple retarded settings” (as defined in Sect. “Retarded set-

tings”) that are being tested (though one might argue that a random number generator

forces interventions of the sort we discussed above).

Source Distribution of Hidden Variables

In our model, we supposed that the retarded settings influenced the outcome at the

other end (for example, by using a function A(a, br, 𝜆)). Another possibility (con-

sidered by Zeilinger [17]) is that the retarded settings influence the distribution of

hidden variables at the source. Then we would have Γarbr . This would block the

derivation of the retarded Bell inequalities above. We can address this concern in the

following way. First, rather than associating the hidden variables, 𝜆, with the source

alone we associate them with the full situation concerning the experiment at a time,

t0, earlier than both t1 − L∕c and t2 − L∕c. Thus, the hidden variables describe the

source, measurement apparatuses and every other detail of the physics that might

be relevant for the experiment. This means, in particular, that 𝜆 also encodes the

retarded settings ar and br as long as there is no intervention between t0 and the rel-

evant retarded time. Let us assume that these retarded settings are equal to a and b.

If there are no interventions in the remaining time then the actual settings will be a
and b respectively. On the other hand, if there is an intervention at both ends, or just

one end then we could have actual settings a′ and/or b′ accordingly. This is true with

the given initial distribution on 𝜆 and so we can obtain retarded Bell inequalities as

follows

− 2 ≤ E(a′, b′|a, b) + E(a′, b|a, b) + E(a, b′|a, b) − E(a, b|a, b) ≤ +2 (21)

Note that every term has the same retarded settings (consistent with assumption

above). This inequality is interesting as only the E(a′, b′|a, b) term has different

retarded and actual settings on both sides. The inequality can be violated by Quan-
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tum Theory if we substitute (15) in. Thus, in the unlikely event we saw a violation of

Quantum Theory, the term, E(a′, b′|a, b), is the most likely to be the place we would

see it.

AModel

It is interesting to construct an explicit model reproducing the predictions of Quan-

tum Theory (for a certain state) when the retarded settings are equal to the actual

settings for both ends. Consider a singlet state

|𝜓⟩ = 1
√
2

(
|+⟩1|−⟩2 − |−⟩1|+⟩2

)
(22)

We can subject this to a measurement of spin in the xy plane at angle a at end 1 and

angle b at end 2. Then a simple calculation shows that the correlation function is

E𝜓 (a, b) = − cos(a − b) (23)

Now consider a hidden variable model with a hidden variable 𝜆 having

0 ≤ 𝜆 < 2𝜋 Γ = 1
2𝜋

(24)

We define the result functions

A(a, br, 𝜆) =
{

+1 for 𝜃L ≤ 𝜆 < 𝜃L + 𝜋

−1 for 𝜃L + 𝜋 ≤ 𝜆 < 𝜃L + 2𝜋

}

(25)

and

B(b, ar, 𝜆) =
{

+1 for 𝜃R ≤ 𝜆 < 𝜃R + 𝜋

−1 for 𝜃R + 𝜋 ≤ 𝜆 < 𝜃R + 2𝜋

}

(26)

where we understand 𝜆 to be an angle (so angles greater than, or equal to 2𝜋 are

identified with angles in the interval [0, 2𝜋) in the usual way) and where 𝜃L is a

function of a and br and 𝜃R is a function of b and ar. It is easy to prove that

E(a, b|ar, br) = 1 −
2|𝜃R − 𝜃L|

𝜋

(27)

Hence, if we set

𝜃L = −𝜋

4
(1 + cos(a − br)) 𝜃R = 𝜋

4
(1 + cos(ar − b)) (28)
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we obtain

E(a, b|ar, br) = −1
2
(cos(a − br) + cos(ar − b)) (29)

When the retarded settings are equal to the actual settings we get

E(a, b|a, b) = − cos(a − b) (30)

in agreement with Quantum Theory. If the actual and retarded setting differ for one

side only then the model does not give quantum theory (although the retarded CHSH

inequalities would allow quantum theory to be reproduced).

The retarded Bell inequalities are not violated by this model. To illustrate this

consider the special case

a = 𝜋

2
, a′ = 0, b = −𝜋

4
, b′ = 𝜋

4
(31)

If we substitute (29) into (21) with these settings then we obtain

E(a′, b′|a, b) + E(a′, b|a, b) + E(a, b′|a, b) − E(a, b|a, b) = −
√
2 (32)

This satisfies the particular retarded CHSH inequalities. It is interesting that we do

not saturate the inequalities with this model. A better model may saturate the inequal-

ity.

Clauser Horne Inequalities

We can also derive retarded Clauser Horne inequalities based on the Clauser Horne

inequalities [9]. These inequalities are especially useful in experiments since they

have 0 as the upper bound. Consequently it is sufficient to measure count rates with-

out normalizing the probabilities with a total count rate. These inequalities pertain to

the same setting as before, but now we are interested in the probabilities for some

particular outcome (we will take this to be the + outcome) at each end. We let

p1(a, br|𝜆) (33)

be the probability of that we see a outcome +1 to measurement A with setting a at

this end and retarded setting br at the other end. Similarly we have

p2(b, ar|𝜆) (34)

for the probability that we see outcome +1 for measurement B on particle 2 with

setting b and retarded setting ar at the other end. The joint probability of seeing a +1
at both ends is
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p12(a, b|ar, br) = ∫Γ
p1(a, br|𝜆)p2(b, ar|𝜆)d𝜆 (35)

Note that we allow for a dependence of this joint probability on the retarded settings

at the other end. We can also construct the local probabilities

p1(a) = ∫Γ
p1(a, br|𝜆)d𝜆 (36)

p2(b) = ∫Γ
p2(b, ar|𝜆)d𝜆 (37)

We could, without violating locality, also allow these probabilities to depend on the

retarded settings. However, this seems less likely and so we will stick with the given

functional dependence. If we do want to have such functional dependence then this

can easily be inserted in the Bell inequalities we derive below.

Quantum theory does not predict any dependence on the values of retarded set-

tings. Thus, according to Quantum Theory, we will have

p12(a, b|ar, br) = pQT

12 (a, b) (38)

However, it will follow (by adapting the usual Bell analysis) that this cannot actually

be the case in a local hidden variable model of the type we are considering.

Now we will derive retarded Clauser Horne inequalities. Consider the following

easily verified mathematical inequalities (introduced by Clauser and Horne [9])

− 1 ≤ x′y′ + x′y + xy′ − xy − x − y ≤ 0 (39)

where 0 ≤ x, y, x′, y′ ≤ 1. Now we put

x = p1(a, br|𝜆)
x′ = p1(a′, b′r|𝜆)
y = p2(b, ar|𝜆)
y′ = p2(b, a′ar|𝜆)

Inserting these into (39) we obtain

−1 ≤ p12(a′, b′|a′r, b′r) + p12(a′, b|ar, b′r) + p12(a, b′|a′r, br)
−p12(a, b|ar, br) − p1(a) − p2(b) ≤ 0 (40)

Note that we could allow p1(a) and p2(b) to depend on the retarded settings (so we

would have p1(a|br) and p2(b|ar) instead). We can substitute the quantum predictions

(38) in to this inequality. This gives



270 L. Hardy

− 1 ≤ pQT

12 (a
′
, b′) + pQT

12 (a
′
, b) + p12(a, b′) − pQT

12 (a, b) − pQT

1 (a) − pQT

2 (b) ≤ 0
(41)

It was shown by Clauser and Horne that this inequality can be violated by choosing

the two systems to be in an appropriate entangled state and by choosing appropriate

settings. Note that, to get a violation by Quantum Theory, it is a necessary condition

that both a′ ≠ a and b′ ≠ b.

How to Perform an Experiment

To perform an experiment to test the retarded Bell inequalities we need a source

of interventions. We could imagine two subjects, let us call them Alice and Bob,

sitting at the two ends each switching the settings by hand. The only problem with

this is that the hand and the device it switches both operate at mechanical speeds. To

have any chance of having a retarded setting different from the actual setting, with

such a system, we would need the distance between the two ends to be very big.

However, whenever Alice decides to switch the setting, there is some accompanying

electrical activity in the brain. We could use this accompanying electrical activity to

do the actual switching (where the device that Alice switches is just a retrospective

control). Pockel cells can be used to accomplish fast switching (at electrical speeds)

on photons. Hence, with this set up we could realistically perform an experiment

over a shorter distance.

It is not actually necessary that Alice (and Bob) actually switch a switch. It only

necessary that they engage in some activity such that we want to regard the resulting

electrical activity as constituting an intervention. A challenge would be identifying

the electrical signals originating in the brain that should be regarded as interventions

in the sense understood here. However, we could filter for lots of different types of

signature and analyze the data accordingly. Another challenge would be to get the

count rates high enough that we can have statistically meaningful results.

A possible control on this type of experiment would be to introduce a delay

between the source of interventions and the switching. If this delay were longer than

L∕c then any supposed effect ought to vanish.

Interpretation

Quantum Theory is a coherent whole. It has been tested extensively at low energy

in laboratories around the world. Hence, it seems very unlikely that we could expect

to see its violation in circumstances such as those we have discussed. On the other

hand, as long as we do these kind of experiments to test the theory, it is worth think-

ing carefully about what we are testing. We have here suggested that we may see
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a violation of Quantum Theory in accordance with the retarded Bell inequalities

derived here when we actually use humans to switch the settings. If such a violation

of Quantum Theory was seen, and yet it was impossible to obtain such a violation

where the switching was performed by non-animate systems (such as computer pro-

grams, physically chaotic systems, or quantum random number generators) then we

would have to seek an explanation of this. The Cartesian idea of mind-matter duality

provides a model for a kind of external intervention (of mind on matter) of the type

that we have discussed. This kind of duality has been much discussed by philoso-

phers in the context of understanding consciousness. A modern proponent of such

dualism is Chalmers [8] while Dennett [12] advocates the opposite point of view.

While it is difficult to understand consciousness in terms of matter stuff alone, it is

not clear that adding mind stuff into the mix helps us particularly. On the other hand,

if it turned out that systems we take to be conscious were capable of things (like vio-

lating Quantum Theory under the described circumstances) that ordinary systems

were not then that would be a profound challenge to our usual way of thinking about

the world. We should not shy away from such experiments.

The situation here is reminiscent of the Turing test [15]. In the Turing test, com-

puters and humans compete over a computer screen interface to convince human

interviewers that they are human. This test involves the subjective judgement of

the interviewers. Here, instead, pairs of humans compete against pairs of comput-

ers (or whatever other physical system we want to use) to violate Quantum Theory

by providing the inputs to the setting switches of an experimental apparatus which

they, otherwise, have no control over. The test is completely objective—passing the

test would entail bringing about a violation of Quantum Theory in accord with the

retarded Bell inequalities. As such, this test is interesting simply because it provides

a scientific way to investigate a particular model of mind-matter duality (even if, as

seems overridingly likely, an actual test will not violate Quantum Theory).

Bell’s La Nouvelle Cuisine Remarks

I never met John Bell (though I was in the audience for two talks he gave). I did,

however, send him a copy of a paper outlining some of the above ideas (my second

attempt attempt at such a paper). He responded by sending me a copy of his La

Nouvelle Cuisine paper [5] (now available as the penultimate article in the wonderful

collection of papers by Bell et al. [6]). This paper is a beautiful discussion of how

to understand causality. While he had clearly thought about using humans to do the

switching, I suspect he was not sympathetic to the idea that anything would come of

it. I end with a quote from this paper—it is classic Bell:

The assertion that “we cannot signal faster than light”immediately provokes the question:

Who do we think we are?”
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We who can make “measurements”, we who can manipulate “external fields”, we who can

“signal” at all, even if not faster than light? Do we include chemists, or only physicists,

plants, or only animals, pocket calculators, or only mainframe computers?

The unlikelihood of finding a sharp answer to this question reminds me of the relationship

of thermodynamics to fundamental theory.
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Chapter 15
How to Avoid the Coincidence Loophole

Jan-Åke Larsson

Bell inequality tests of local realism are notoriously difficult to perform. Physicists

have attempted these tests for more than 50 years, and for each attempt, gotten closer

and closer to a proper test. So far, every test performed has been riddled by one or

more loopholes. While I personally am not overly fond of using the word “loophole”,

it has become the standard term; the word is usually used in connection to laws,

most commonly taxation law, where a “loophole” points to some unintended and/or

unexpected circumstance where the law does not apply, so that one can avoid the

law without technically breaking it. In connection to Bell tests, the word points to

some unexpected circumstance in experiments that makes additional assumptions

necessary, we will see some examples of this below.

Here, we will encounter one of the more recently found loopholes, the coincidence

loophole, and learn how to avoid it. First, the scene is set by reviewing the relation

between the Einstein-Podolsky-Rosen (EPR) paradox and the Bell inequality, and

also fix the notation and formal background. Then a few (not all) recent and not so

recent experiments will be presented, with some of their qualities and shortcomings.

And finally, we have a look at the coincidence loophole, why it seems to be more

serious than one could have expected given results from the eighties, and then why

the seemingly large impact is in fact not so damaging after all. In short, how to avoid

the coincidence loophole.
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Local Realism

The concept of local realism is motivated by the question posed by Einstein, Podol-

sky, and Rosen (EPR) in [12]: “Can [the] quantum-mechanical description of phys-

ical reality be considered complete?” EPR argue that the answer to the question is

negative, while Bohr in [7] argues that the question is meaningless. Although many

physicists agree with Bohr, one should note that EPR were actually correct in a sense:

for the system used by EPR, there does exist a more complete description as Bell [5]

noted. Bell simply constructed a more complete description of that system. His con-

struction gives the same predictions as quantum mechanics for position and momen-

tum, and also has these two explicit in the description.

Another example was used by Bohm [6] to simplify the experiment, going from

the infinite-dimensional quantum description of position-momentum to the much

simpler finite-dimensional quantum description of two spin systems. The choice of

measuring position or momentum now translates into a choice of axis, or direction,

along which a spin component measurement is performed. This choice of direction

is denoted 𝜙 and 𝜓 at the two sites in Fig. 15.1. In a spin-1/2 system, there are only

two outcomes: magnetic dipole moment parallel to the direction (“spin up”, +1) or

anti-parallel to the direction (“spin down”, −1).

The system is such that the outcomes are (anti-)correlated; if the same direction

is chosen on both sides (𝜓 = 𝜙), the outcomes are always opposite, as indicated in

Fig. 15.1. This is called a singlet state, which is a special case of a so-called entan-
gled state. The terminology is due to Schrödinger who translated the German Ver-
schräkung in one of his letters to Einstein into entanglement. Obtaining an outcome

at one site at direction 𝜙 allows prediction (with probability 1) of the outcome at the

other at direction 𝜓 = 𝜙. If the systems are separated, the choice of direction can be

performed so that it (the choice of direction) cannot disturb the remote system, such

disturbances being limited by the speed of light. Prediction without disturbance is

the reason to believe that the outcome exists, as a physical property, independent of

measurement (EPR [12]).

In this system, there are more choices than in the EPR system, since the direc-

tion parameter 𝜙 is has a continuous range (uncountably infinite to a mathematician)

rather than the two choices of position and momentum in EPR. Still, if one only con-

Fig. 15.1 Bohm’s modification of the EPR setup. Two spin-1/2 systems are created in a joint state

such that measurement of the spin component along the same direction gives opposite results, for all

directions. Such a state can be created, it is called a singlet state and has total spin 0. The two systems

are then separated, while making sure that the joint state is preserved. Then, a local measurement at

one site for one direction can be used to predict, with probability 1, the outcome of a measurement

at the remote site, for the same direction.
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siders the predictions for equal settings 𝜓 = 𝜙, there exists a more complete descrip-

tion just as for EPR, so that equal settings give opposite outcomes (several authors,

but see e.g., [3]). In this sense, EPR are still correct. However, there are many more

combinations 𝜓 ≠ 𝜙 than in the plain EPR case (position ≠ momentum), something

John Bell made use of in his famous inequality [4]. The trick is to use three (later

four, five, . . . ) different settings, and use that anticorrelations are large when the two

directions are close but not equal to each other.

To write down the inequality we need some concepts and notions from probability

theory. In probability theory, measurement outcomes are given by random variables

A and B that can take parameters such as measurement directions, and also depend on

a random sample 𝜆, here often referred to as a hidden variable. The hidden variable

takes values in a sample space 𝛬, and subsets of the sample space where, e.g., the

random variable takes a certain value is called an event. To tell us the probability of

events, we need a probability measure, so for example the probability that a random

variable takes a certain value can be written

P
({

𝜆 ∶ A(𝜙, 𝜆) = −1
})

= P
(

A(𝜙) = −1
)
. (1)

The notation is often simplified by leaving out the set notation and the 𝜆 as shown

above. The conditional probability of one outcome given another can be calculated

as

P
(

A(𝜙) = −1||
|
B(𝜓) = −1

)
=

P
(

A(𝜙) = −1 ∩ B(𝜓) = −1
)

P
(

B(𝜓) = −1
) . (2)

Missing detections (as in lowered efficiency) can be handled through either assigning

value 0 to the outcome, or not defining an outcome value at all [18, 19]. Finally, we

need the concept of an expectation value, so to speak, the average outcome. For

brevity I will only give what we need here, the expectation of the product of ±1
outcomes,

E
(

A(𝜙)B(𝜓)
)

= P
(

A(𝜙) = B(𝜓)
)
− P

(
A(𝜙) ≠ B(𝜓)

)
(3)

The above would tell us if the outcomes are equal with high probability, which

would give a value close to +1 or unequal with high probability (close to −1). Using

this, Bell could formulate and prove a theorem, later improved by Clauser, Horne,

Shimony and Holt [10] into

Theorem 1 (The CHSH inequality, [10].) Under the two assumptions

Realism: The outcomes can be described by random variables

A(𝜙i, 𝜓j, 𝜆), B(𝜙i, 𝜓j, 𝜆); |A| = |B| = 1

Locality: The r.v.s are independent of the remote setting
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Ai(𝜆) = A(𝜙i, 𝜓j, 𝜆); Bj(𝜆) = B(𝜙i, 𝜓j, 𝜆)

the following inequality holds:

|
|E(A1B1) + E(A1B2)|| + |

|E(A2B2) − E(A2B1)|| ≤ 2.

An oversimplified but popular attempt to explain this uses anticorrelated out-

comes: one ball in one of two boxes, one box sent to each of two sites, and then

opened. If the box at the first site is opened and found to contain a ball, there will

be no ball found when the box at the second site is opened. Perfect predictability.

The oversimplification is that it uses too few boxes, since the CHSH expression uses

four boxes, two sent to one site (A1 and A2) and two sent to the second site (B1 and

B2). The terms E(AiBj) tells us how often we can expect to see balls in both or none

of the boxes. A negative value tells us that the probability is high that there is a ball

in only one of the two boxes. On the other hand, a positive value tells us that the

probability is high that there are balls in both or none of them. The CHSH inequality

puts bounds on these probabilities: a consequence of the inequality is

E(A2B2) ≤ 2 + E(A2B1) + E(A1B1) + E(A1B2). (4)

This means: if the probability is large that there is one and only one ball in the two

boxes A2, B1; one in A1, B1; and one in A1, B2, the terms on the right will be negative.

If they are negative enough, the bound will tell us that the left-hand side must be

negative, so that the probability must be large that there is only one ball in A2, B2 (in

essence because there are three pairs on the right-hand side, an odd number). In the

extreme case, if all three terms on the right are −1, the term on the left is forced to

be −1. For our system, we are already able to predict with probability 1, so there is

no news there.

But Bell realized that using directions 𝜙2, 𝜓1, 𝜙1, and 𝜓2 that are close to each

other (in that order) but not equal, the bound tells us something new. As indi-

cated above, the most common example is the singlet state, for which the quantum-

mechanical prediction is

E
QM

(AiBj) = − cos(𝜙i − 𝜓j), (5)

with 𝜙2 = 0, 𝜓1 = 𝜋∕4, 𝜙1 = 𝜋∕2, and 𝜓2 = 3𝜋∕4. Then,

2 + E
QM

(A2B1) + E
QM

(A1B1) + E
QM

(A1B2) = 2 − 3
√
2
< 0, (6)

while

E
QM

(A2B2) =
1
√
2
> 0. (7)
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In other words, for this quantum-mechanical system, there is a large probability of

one and only one ball in the box pair A2, B1, one in A1, B1, and one in A1, B2. And

the bound tells us that the probability is larger that there is one and only one ball

in A2, B2, than two or none (the bound is less than 0). But the quantum-mechanical

prediction is instead that it is more likely that there are two or no balls in A2, B2, than

just one (the quantum prediction is larger than 0). The prediction does not obey the

bound, there is a violation.

If our desired complete description is local realist, then this gives good support

for Bohr’s argument: there exists no local realist description that gives the quantum-

mechanical predictions. The importance of this result cannot be stressed enough: we

have learned something about what possible types of mathematical models that can

be used to describe quantum-mechanical systems.

Loopholes

At this point, it is important to make one thing clear: even though a local realist

description cannot give the quantum-mechanical predictions, it is still possible that

it can give the statistics that we see in nature. It could be the case that the underlying

assumptions of Theorem 1 does not apply in nature, or more accurately in our exper-

iment. So our task now is to make sure that the theorem really does apply in our

experiment, and as it turns out, this may be difficult. There are several loopholes,

problems that could occur in experiment that makes the theorem need additional

assumptions. These mainly fall into two classes: efficiency and locality (see e.g.,

[19]).

Lowered efficiency, that not all single systems give outcomes, is a common prob-

lem in experiments to test local realism. This may seem like a small problem, can one

not just normalize to the subset of systems that do give outcomes? Well, not really:

doing this requires an assumption, the fair sampling assumption. To be allowed to

normalize to that subset, one needs to be sure that the subset is a fair sample of the

full ensemble, in a sense that the subset itself does not depend on the local settings.

Many modern experiments only violate the inequality under this assumption. And

fair sampling is an assumption because in experiment it is impossible to verify that

the sample is fair.

If the sample is not fair, the CHSH inequality changes, something first suggested

in [27]. The bound increases when the efficiency decreases, making it possible for

a local realist description to reach the quantum value. The crossover for CHSH is

82.84% [13], and below this efficiency, a local realist description can reach the same

value as quantum mechanics. Much work has been put into calculating this and other

bounds under increasingly general conditions, and also new inequalities for new sys-

tems where the effects are smaller.

Many of these modified inequalities need the number of emitted pairs to be

known, so that one can get probabilities from counts (by dividing beneficial counts

by the total counts). The below version of the inequality gives a bound for the

conditional correlations, and the only extra parameter used is the conditional proba-



278 J.-Å Larsson

bility of coincidence, conditioned on single detections. It does not need the number

of emissions, but simply the ratio of coincidences to single detections. This data is

already available in the experimental record, which simplifies the analysis greatly.

Theorem 2 (The CHSH inequality with inefficiency, [18].) Under the three assump-
tions

Realism: The outcomes can be described by random variables

A(𝜙i, 𝜓j, 𝜆), B(𝜙i, 𝜓j, 𝜆); |A| ≤ 1; |B| ≤ 1

Locality: The r.v.s are independent of the remote setting

Ai(𝜆) = A(𝜙i, 𝜓j, 𝜆); Bj(𝜆) = B(𝜙i, 𝜓j, 𝜆)

Detection: Detection is controlled by the local realist model

𝜂 = min
settings

P(remote detection|local detection)

the following inequality holds:

|
|E(A1B1|coinc.) + E(A1B2|coinc.)|| + |

|E(A2B2|coinc.) − E(A2B1|coinc.)|| ≤ 4
𝜂

− 2

So, if the violation is high enough and the efficiency is high enough, then a proper

test can be performed. It is important to remember that efficiency refers to the total

efficiency. There is no reference to detectors or other equipment, the focus is on the

output data: coincidences compared to local detections.

The requirements for violation are quite high. Also, we need to take experimental

noise into account. If we use the singlet state and take noise into account, the ampli-

tude of the cosine correlation is decreased. This is quantified in terms of visibility, a

multiplicative factor v in front of the cosine. The inequality now translates into

2
√
2v ≤ 4

𝜂

− 2 (8)

The region of violation is drawn in Fig. 15.2, the small region on the top right.

It is difficult to reach violation when using photons, the system of choice in long-

distance experiments. Efficiency and visibility of four example photonic experiments

[2, 14, 15, 32] is shown in Fig. 15.3. The most-cited experiment is [2], for which the

main intent was to show that the violation remains even with fast-changing settings

at the two sites, fast enough that no light-speed signal could carry information on the

setting from one site to the other. This is to avoid disturbance in the spirit of EPR,

to ensure that the locality assumption of the inequality holds. And the experiment is

conclusive, since the violation does remain. The fair sampling assumption is needed

because the experiment has an efficiency of approximately 0.1 % which is not visible

to the scale of the figure. One reason for the low efficiency of the Aspect experiment
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Fig. 15.2 The region of violation of the CHSH inequality for the singlet state, in terms of effi-

ciency 𝜂 and visibility v. The almost triangular region of violation has corners at visibility 70.71 %

and efficiency 82.84 %. The fair-sampling assumption would enable a violation in the entire region

above visibility 70.71 %, striped in the figure.

is the wide directional spread of the emissions. More modern sources (for example

[17], but there are many improvements after that) give much better collection of

photons, and in the experiment of [32] this can be seen, the reported efficiency is 5 %.

That experiment also uses proper random settings rather than the quasiperiodic

switching used by Aspect [2]. Another improvement in locality is made in [31],

where the random numbers are selected so that no light-speed signal can reach them

from the emission event. This requires a large distance resulting in a 35 dB attenu-

ation for the most remote site, or an efficiency of 0.03 %. Impressive for the 144 km

distance, but of course lower than our other examples.

At the other end of the scale, we have experiments designed for very high (mean-

ing 100 %) efficiency, these are depicted in the enlarged part of Fig. 15.3. These

experiments do not use photons, but instead other more massive systems, or even

solid state systems. Our examples are ions in one trap [30], in two separate traps

[25], Josephson phase qubits [1], atoms in two separate traps [16], and nuclear spins

near a nitrogen-vacancy centre in diamond [28]. In these experiments experimental

runs are well defined and do give outcomes, so the efficiency is 100 %, but there is

still the locality issue: the systems are not separated enough to guarantee locality.

The quotient between the distance you need because of the duration of the relevant

measurement, to the distance you have, has improved from 109 [30] via 1500 [25],

and 300 [1], to 15 [16]. And this is still improving as we speak; the race is really on

to achieve and surpass the magic number 1.

Meanwhile, photons are still the system of choice for long-distance quantum

experiments, and efficiency numbers have increased steadily over the years. Mod-

ern superconducting detectors (e.g., [24] have a very high efficiency, and modern

sources (e.g., [29] have very high collection. Coupled with low-loss components for

the rest of the setup, an experiment can reach 𝜂 = 75%. There were two such exper-
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Fig. 15.3 Examples of experimental tests of local realism. The green dot shows efficiency and

visibility of the experiments. All the papers also report the quality of the visibility estimate in

terms of an estimated standard deviation, this is shown as a vertical bar.

iments recently [8, 15], but at this point one may ask: with the bound at 82.84 %,

how can an experiment with efficiency 75 % be useful?

As it turns out, Eberhard found that one obtains lower bounds if a different state is

used in the test [11]. We need to relax the perfect anticorrelation at equal directions,

that we (and Bell, and EPR) thought so important. This is easiest to see if we use

a different inequality that relates probabilities directly rather than correlations as

in CHSH. The discovery sounds simple but is really profound, so much so that the

below inequality sometimes is called the Eberhard inequality when used with counts

rather than probabilities.

Theorem 3 (The Clauser-Horne (CH) inequality, [9].) Under the two assumptions

Realism: The result can be described by random variables

A(𝜙i, 𝜓j, 𝜆); B(𝜙i, 𝜓j, 𝜆)

Locality: The r.v.s are independent of the remote setting

Ai(𝜆) = A(𝜙i, 𝜓j, 𝜆); Bj(𝜆) = B(𝜙i, 𝜓j, 𝜆)

the following inequality holds:

P(A1 = B2 = 1) + P(A2 = B1 = 1) − P(A2 = B2 = 1)
≤ P(A1 = 1) + P(B1 = 1) − P(A1 = B1 = 1).

One should be aware that the above is equivalent to CHSH, but there is a benefit

since the efficiency estimate 𝜂 does not enter into the calculation. There is no need
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Fig. 15.4 Region of violation for non-maximally entangled quantum states. The region stretches

to efficiency 66.67 %, but thins out considerably close to the limit. The two experimental efficiency

estimates are qualitatively different and not so easily comparable with the earlier results, or to each

other. [15] uses a separate efficiency measurement while [8] uses an estimate from equipment para-

meters (with a large standard deviation as indicated), and neither of these are necessarily equal to

the 𝜂 of Theorem 2, so the horizontal position of the two dots might not be accurate. On the other

hand, the Clauser-Horne inequality does not need an explicit 𝜂, and indeed, both datasets violate

the bound.

to condition on coincidence here, nor estimate the efficiency of the experiment. We

will use this inequality below because of its somewhat simpler structure, since there

are fewer outcome combinations that contribute to the expression, but in principle,

the same can be done with CHSH.

In any case, for a given efficiency, we can find a non-maximally entangled state

(i.e., not our earlier singlet state) and measurement directions that give a violation

even if the efficiency is below 82 % but above 66.67 % [11, 21, 23]. The region of

violation in terms of visibility and efficiency becomes somewhat larger if this is done,

see Fig. 15.4. And the two mentioned experiments are inside the region of violation.

This makes photons the only kind of system for which both kinds of loopholes, both

efficiency and locality, have been closed, in separate experiments. It remains to close

both in the same experiment, but nonetheless, we are gathering evidence that there

really exists no local realist description of such a system.

The Coincidence Loophole

There is one problem in photonic experiments that we have not addressed yet: how

the experimenter knows which clicks come from the same pair of photons. This is

not the same as the efficiency loophole discussed above, which is more the problem

of finding photons at all. Typically pairs are identified by coincidence detection, by

comparing the detection times, either to each other (we’ll call this moving windows),

or to a predetermined reference (which we’ll call fixed time slots). If the comparison
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Fig. 15.5 Example local realist model (due to E. Knill). The detection time depends on the hidden

variable and the local setting. If Alice measures A1 and Bob measures B2, the events are close

enough to give a coincidence.

Fig. 15.6 Other choices of setting in the same local realist model will give different detection times.

If Alice measures A2 and Bob measures B2, the events are not close enough to give a coincidence.

is to other events, each event on one side is surrounded with a time interval of length

𝜏, centered on the event, as in Figs. 15.5 and 15.6. If there is a remote event in the

time interval, this is considered as belonging to the same pair, or coincident. (In a

real experiment there may be several events in the time interval, in which case the

closest can be chosen as belonging to the same pair, but we will just consider the

simple case here.)

We are considering local realist models, and it is possible that such a model influ-

ences the time of detection, similar to influencing (non-)detection. In this situation,

the subset of coincidences could change. It could happen that all of the events are

shifted in time so that there always are coincidences if A2,B1 are measured, or if

A1,B1 or A1,B2 are measured, but never if A2,B2 are measured (see Figs. 15.5 and

15.6). This would give

P(A2 = B1 = 1 ∩ coincidence) = 1 (9a)

P(A1 = B1 = 1 ∩ coincidence) = 1 (9b)

P(A1 = B2 = 1 ∩ coincidence) = 1 (9c)

P(A2 = B2 = 1 ∩ coincidence) = 0 (9d)

P(A1 = 1) = P(B1 = 1) = 1 (9e)

so that

P(A1 = B2 = 1 ∩ coinc.) + P(A2 = B1 = 1 ∩ coinc.) − P(A2 = B2 = 1 ∩ coinc.)
= 1 + 1 − 0 = 2
≰ P(A1 = 1) + P(B1 = 1) − P(A1 = B1 = 1 ∩ coinc.)
= 1 + 1 − 1 = 1. (10)
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The Clauser-Horne inequality does apparently not hold anymore. The apparent viola-

tion above is the highest possible, because this reaches the algebraic bound of the CH

inequality. But note that the terms containing pairs of outcomes P(Ai = Bj = 1) have

been replaced by P(Ai = Bj = 1 ∩ coincidence), so it is no longer the same expres-

sions on the right- and left-hand sides. The terms contain an additional restriction in

the pair events (that we calculate the probability of), that comes from not knowing

beforehand which events belong to the same pair. Clearly, the CH inequality does

not apply to the modified expressions, because the left-hand side is larger than the

right-hand side.

The effect of this kind of time dependence on the CHSH inequality was studied in

[20] (it seems the effect is first discussed in [26]). In [20] a modified CHSH inequality

is derived that does apply, and also a local realist model that saturates the inequality

(actually containing the above example).

Theorem 4 (The CHSH inequality with coincidence identification, [20].) Under
the three assumptions

Realism: The outcomes can be described by random variables

A(𝜙i, 𝜓j, 𝜆), B(𝜙i, 𝜓j, 𝜆); |A| ≤ 1; |B| ≤ 1

Locality: The r.v.s are independent of the remote setting

Ai(𝜆) = A(𝜙i, 𝜓j, 𝜆); Bj(𝜆) = B(𝜙i, 𝜓j, 𝜆)

Coincidence: Coincidence is controlled by local realist time delays and

P(coincidence) = 𝛾

the following inequality holds:

|
|E(A1B1|coinc.) + E(A1B2|coinc.)||

+ |
|E(A2B2|coinc.) − E(A2B1|coinc.)|| ≤ 6

𝛾

− 4

This is similar to Theorem 2, but there are differences. The expression 4∕𝜂 − 2 is

replaced by 6∕𝛾 − 4, giving a higher bound (in 𝛾) than the previous (in 𝜂). There is

no violation unless 𝛾 > 87.87%, which is visible also in Fig. 15.7. Also, 𝛾 is not so

simple to estimate from experimental data as 𝜂, again the emission rate is needed for

the estimate. Since the efficiency on the single-photon level is 100 % in the model

example, it has been conjectured that the bound for 𝛾 translates directly into an equal

bound for 𝜂, therefore a comparison with the detection efficiency bound can also be

found in Fig. 15.7.

Interestingly, since the model example has single-photon efficiency 100 %, the

fair sampling assumption holds. All the photons are registered, so the sample is fair

(for the same reason, the no enhancement assumption holds, for details see e.g.,
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Fig. 15.7 Coincidence probability bound for violation of the modified CHSH inequality, when

using a singlet state. The coincidence probability must exceed 87.87 %.

[19]). If anything, it is the coincidence identification that is not fair. The subset of

coincidences that we register may change with the measurement directions. This

happens also when we have lowered efficiency, but there is a difference: detection is

a local process, and detection at one site happens on a subset of 𝜆s

𝛬Ai
= {𝜆 ∶ Ai(𝜆)is detected}. (11)

A coincidence then occurs on the set

𝛬Ai
∩ 𝛬Bj

. (12)

This is in stark contrast to the coincidence detection we use here, where the detection

time TAj
depends on the setting and the hidden variable, and coincidence occurs on

the set

𝛬AiBj
=
{
𝜆 ∶ |

|TAi
(𝜆) − TBj

(𝜆)|| <
1
2
𝜏

} ≠ 𝛬Ai
∩ 𝛬Bj

(13)

There is even no possibility to rewrite 𝛬AiBj
so that it can be factorized in this man-

ner. Equivalently, attempting to assign the outcome 0 or ±1 to “missing coinci-

dences” will lead to a non-local hidden-variable model, because even though the

time-dependence is local, the newly assigned missing-coincidence-outcome needs

to depend on both settings.

At this point, things look bleak. Even 100 % efficient detectors do not help, and

the coincidence probability must exceed 87.87 %, considerably higher than the previ-
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ously known efficiency bound 82.84 %. It is not even enough to assume fair sampling,

since it already holds in the model example. It seems that the coincidence loophole

is much worse than the efficiency loophole ever was. But fear not, there are quite

simple modifications that will re-enable the bounds from before.

How to Avoid the Coincidence Loophole

Of course, one could substitute the fair sampling assumption with a fair coincidence
assumption, that the subset of pairs chosen by our coincidence procedure is a fair

sample of the whole ensemble. But we want to avoid that kind of assumptions. Better

to check why the inequality does not apply, and attempt find conditions under which

it does apply.

The timing of the example is such that all the pairs that increase the violation

count as coincidences, while the pairs that decrease the violation does not count.

One alternative to re-establish the inequality would therefore be to make sure that

the latter pairs do count as coincidences. But ensuring that in general would demand

that we know which photons belong together in pairs, and as we already have said,

this is not possible. There will always be pairs that we cannot identify, so we need to

be less ambitious. What we can aim for is to ensure that a pair that would count as a

coincidence for all three measurement combinations that increase the violation, also

would count as coincidence for the fourth measurement combination. This can be

done by having the time window for A2, B2 as wide as all three of the other windows

taken together, we call this the window sum method [22]. The reason that this works

is that if 𝜆 is such that

⎧
⎪
⎨
⎪
⎩

|
|TA2

(𝜆) − TB1
(𝜆)|| ≤ 𝜏, and

|
|TA1

(𝜆) − TB1
(𝜆)|| ≤ 𝜏, and

|
|TA1

(𝜆) − TB2
(𝜆)|| ≤ 𝜏,

(14)

then, for the same 𝜆 (see Fig. 15.8), the triangle inequality gives

|
|TA2

(𝜆) − TB2
(𝜆)||

≤ |
|TA2

(𝜆) − TB1
(𝜆)|| + |

|TB1
(𝜆) − TA1

(𝜆)|| + |
|TA1

(𝜆) − TB2
(𝜆)|| ≤ 3𝜏. (15)

Since this applies to the individual 𝜆 values, the subsets (in terms of 𝜆) that give

coincidence will obey

𝛬A1B1
∩ 𝛬A1B2

∩ 𝛬A2B1
⊂ 𝛬A2B2

. (16)

That this really fixes the issue will of course need a formal proof, so that there is no

possibility for another model to evade our construction. The following theorem will

do this for us.
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Fig. 15.8 One method to avoid the coincidence loophole is to have longer coincidence windows

that decrease the violation (A2B2), as long as the sum of the coincidence windows that increase it

(A1B2, A1B1, A2B1). This ensures that if there is a chain of possible coincidences that increase the

violation (B2 ↔ A1 ↔ B1 ↔ A2), the two endpoints that would decrease the violation (B2 ↔ A2)

will also be a possible coincidence.

Theorem 5 (The CH inequality, avoiding the coincidence loophole, [22].) Under
the three assumptions

Realism: The result can be described by random variables

A(𝜙i, 𝜓j, 𝜆); B(𝜙i, 𝜓j, 𝜆)

Locality: The r.v.s are independent of the remote setting

Ai(𝜆) = A(𝜙i, 𝜓j, 𝜆); Bj(𝜆) = B(𝜙i, 𝜓j, 𝜆)

Coincidence: Coincidences are controlled by local realist time delays, are
obtained on subsets 𝛬A1B1

; 𝛬A1B2
; 𝛬A2B1

; and 𝛬A2B2
, of 𝛬, and the last coinci-

dence set contains the intersection of the other three,

𝛬A1B1
∩ 𝛬A1B2

∩ 𝛬A2B1
⊂ 𝛬A2B2

the following inequality holds:

P(A1 = B2 = 1 ∩ 𝛬A1B2
) + P(A2 = B1 = 1 ∩ 𝛬A2B1

)
− P(A2 = B2 = 1 ∩ 𝛬A2B2

)
≤ P(A1 = 1) + P(B1 = 1) − P(A1 = B1 = 1 ∩ 𝛬A1B1

).

Another alternative to re-establish the inequality would be to avoid counting some

pairs that increase the violation. Here, instead, we ensure that if a pair does not count

as a coincidence for the measurement combination that decreases the violation, it is

also not counted for at least one of the three measurement combinations that increase

the violation. This can be ensured, in general, by introducing fixed points on the time-

line that break pairs if the detection times are on different sides of such a point (see

Fig. 15.9). And this is what happens when using fixed time slots. Formally, we choose

a number of fixed time slots Ik = {t ∶ tk ≤ t ≤ tk + 𝜏} (these must be disjoint), and

count a coincidence in slot k when the detection time of both events are in the time
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Fig. 15.9 Another method to avoid the coincidence loophole is to have fixed time slots, so that if

two events are far enough apart to not give a coincidence (B2 ⋰↔ A2), there cannot be a chain

of possible coincidences from one event to another, that connects the two (here B2 ↔ A1 ⋰↔
B1 ↔ A2).

Fig. 15.10 Violation of the Clauser-Horne bound under local realism, using three different meth-

ods of handling the coincidence loophole [data from [14]]. The vertical axis scale is in counts rather

than probability, a negative value is a violation. The dotted yellow line uses standard moving win-

dows and the fair-coincidence assumption. The green dashed line uses fixed time slots. The blue
solid line uses the window-sum method with length 𝜏 of the three short windows. The latter two are

not vulnerable to the coincidence loophole, and the first one can avoid it by using the fair coinci-

dence assumption. The shading corresponds to plus or minus three estimated standard deviations.

slot,

𝛬

(k)
AiBj

=
{
𝜆 ∶ TAi

(𝜆) ∈ Ik, TBj
(𝜆) ∈ Ik

}
. (17)
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Using these time slots, if 𝜆 is such that the events A2, B1 are in the same time slot,

and also B1, A1, and A1, B2, then of course A2, B2 are in the same time slot, so that

𝛬

(k)
A1B1

∩ 𝛬

(k)
A1B2

∩ 𝛬

(k)
A2B1

⊂ 𝛬

(k)
A2B2

. (18)

Since 𝛬AiBj
is the disjoint union over k of 𝛬

(k)
AiBj

, Eq. (16) immediately follows. As

does the modified CH inequality.

Conclusion

Thus, there are (at least) two ways to avoid the coincidence loophole, either by using

the window-sum method, or by using fixed time slots. This will re-enable the CH

inequality, so that the bound for 𝛾 (coincidence probability) will be replaced by a

bound for 𝜂 (efficiency, as defined in Theorem 2). Essentially, we have restored the

violation region from the small region of Fig. 15.7 to the larger region of Fig. 15.4

This means that both experiments from 2013 do violate the modified CH inequal-

ity. The experiment in [8] has a natural time slot structure since the experiment uses a

pulsed-pump source, so Theorem 5 applies directly. The experiment in [15] does not

have this natural structure because it uses a continuously pumped source, but time

slots can still be used. We can also use the window-sum method, and interestingly

the best time slot and time window lengths are different for the two methods, see

Fig. 15.10.

Even though the coincidence loophole did seem to be very serious, e.g., that 100 %

efficiency did not help, we have found two methods that remove it. And both avail-

able photonic experiments can use one or both methods, so that there is a viola-

tion. In conclusion, we are approaching a proper violation; locality remains to be

enforced, but we are getting closer and closer. The importance of performing a con-

clusive experiment cannot be stressed enough: then we will have learned something

fundamental about what possible types of mathematical models that can be used to

describe physical reality.
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Chapter 16
Bringing Bell’s Theorem Back to the Domain
of Particle Physics and Cosmology

Beatrix Hiesmayr

Abstract John St. Bell was a physicist working most of his time at CERN and con-

tributing intensively and sustainably to the development of Particle Physics and Col-

lider Physics. As a hobby he worked on so-called “foundations of quantum theory”,

that was that time very unpopular, even considered to be scientifically taboo. His

1964-theorem, showing that predictions of local realistic theories are different to

those of quantum theory, initiated a new field in quantum physics: quantum infor-

mation theory. The violation of Bell’s theorem, for instance, is a necessary and suffi-

cient criterion for generating a secure key for cryptography at two distant locations.

This contribution shows how Bell’s theorem can be brought to the realm of high

energy physics and presents the first conclusive experimental feasible test for weakly

decaying neutral mesons on the market. Strong experimental and theoretical limita-

tions make a Bell test in weakly decaying systems such as mesons and hyperons

very challenging, however, these systems show an unexpected and puzzling rela-

tion to another big open question: why is our Universe dominated by matter, why

did the antimatter slip off the map? This long outstanding problem becomes a new

perspective via quantum information theoretic considerations.

Introduction

Only, since 2012 a promising proposal for testing Bell’s 1964-theorem for systems

usually produced at accelerator facilities, so called neutral -mesons, is on the mar-

ket [1]. Putting it to reality in current or upcoming accelerator facilities will be for

several reasons challenging but feasible. However, from the theoretical point of view

these systems at high energies are of great interest since—as will be presented in this

essay—a puzzling relation between the information theoretic content and the viola-

tion of discrete symmetries was found [2–4]. Discrete symmetries and their violation

play an important role in the understanding of the four forces ruling our Universe. In
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particular, they may be the key observation in finding an explanation to the question

why the antimatter did slip off in our Universe.

This essay starts with an introduction to the cosmological question of the imbal-

ance of matter and antimatter and proceeds by discussing discrete symmetries such

as parity  , charge-conjugation  and time reversal  , their breaking and its imple-

mentations. After that Bell’s theorem and in particular its application to quantum

cryptographic protocols is reviewed. Herewith, all key ideas have been gather to

relate the security of cryptographic protocols to the difference between a world of

matter and antimatter. Last but not least half integer spin particles decaying weakly,

so called hyperons, are discussed from an information theoretic perspective.

How Did the Antimatter Slip Off the Map of Our Universe?

The Russian mathematician Alexander Friedmann solved Einstein’s equations of

general relativity showing that these equations predict a continually expanding Uni-

verse. Since an expansion can not go on for ever sometime in the past it must have

started out from a tiny spot, an explosion leading to our expanding Universe. In the

aftermath of this Big Bang particle and antiparticle pairs were generated. As the

Universe cooled, less and less particle-antiparticle pairs formed, while those already

existing could have annihilated with each other to produce photons. If this picture is

correct, there should be as many particles in the Universe as antiparticles.

Considering on the composition of an average cubic meter of our Universe we find

109 photons, 1 proton and no antiprotons. Tracing back to just after the Big Bang the

same cubic metre should have had 109 photons, 109 antiprotons and 109 + 1 pro-

tons. This sounds odd, why should there be slightly more baryonic matter particles

than baryonic antimatter particles in our visible Universe? Where does this observed

imbalance of matter and antimatter come from?

There are two main obvious explanations for this asymmetry: either our Universe

began with a small preference for matter, i.e. the total baryonic number of the uni-

verse is non-zero, or the universe was originally perfectly symmetric, but somehow

a set of phenomena contributed to a small imbalance in favor of matter over time.

This hypothetical physical processes that produces an asymmetry between baryons

and antibaryons in the very early universe is dubbed baryogenesis. The second point

of view is generally preferred, although there is no clear experimental evidence to

favor one over the other one. Except the argument that an initial asymmetry should

most likely have quickly eliminated due to thermodynamic considerations.

Short after 1964 the Russian nuclear physicist Andrei Dmitrievich Sakharov put

forward three necessary conditions for the baryogenesis to occur, regardless of the

exact mechanism.
1

Firstly, obviously the baryon number  must have been violated

in at least one process generating baryons and antibaryons. Thus there needs to exist

processes of the type

1
In his paper “Violation of  invariance, , and baryon asymmetry of the universe” in JETP

Letters 5, 24 (1967), re-published in Soviet Physics Uspekhi 34, 392 (1991), he did not explicitly

list the three conditions.
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a ⟶ b + c , (1)

where a, c are particles with baryon number  = 0 and b a baryon ( = 1). If the dis-

crete symmetry charge-conjugation , which transforms a particle to its antiparticle

or vice versa, is a symmetry of the universe, then the mirrored  reaction ā ⟶ ̄b + c̄
has to have the same rate Γ, i.e.

Γ(a ⟶ b + c) = Γ(ā ⟶ ̄b + c̄) . (2)

Then even if the baryon number  is violated a conservation of charge-conjugation

symmetry  does not produce an advantage of matter over antimatter for a long

period of time. Thus one needs a violation of this symmetry as well. This is not

quite enough, since if we consider a (hypothetical)  symmetry violating process

a ⟶ bl + bl, which generates left-handed baryons, then if  is a symmetry of

Nature ( . . . parity), the mirrored  process ā ⟶ ̄br + ̄br (r. . . right handed) exists

and hence we have

Γ(a ⟶ bl + bl) + Γ(a ⟶ br + br) = Γ(ā ⟶ ̄bl + ̄bl) + Γ(ā ⟶ ̄br + ̄br) . (3)

Thus, though the symmetry  leads to different rates, the combined symmetry 
acts to conserve the total baryon number . Indeed, before 1964 physicists assumed

that antiparticles are just there to explain the unexpected violation of the parity sym-

metry with  , discovered 1956, that was seen in the experiments of madame Wu (see

next Sect. “Broken Mirrors and the Absolute Definition of Charges”). Consequently,

the symmetry  needs to be violated as well such that more baryons are generated.

One striking fact is that the masses of particles and their antiparticles are identical.

At the thermal equilibrium Boltzmann distribution law dictates any existing baryon

asymmetry to turn back to the same amount. Hence there must have been a period,

i.e. outside of the equilibrium, where different regions existed, some conserving,

some violating the , and  symmetries. After baryogenesis has taken place,

the universe should have turned to equilibrium and no other process should have

appeared reversing this asymmetry.

All of these conditions are compatible with today’s observations, particulary with

the predictions of the Standard Model. In particular we want to draw our attention in

the next section to the peculiar violation of the  symmetry and the  symmetry,

found in the year 1956 and 1964, respectively.

Broken Mirrors and the Absolute Definition of Charges

Weak interactions, one out of four fundamental forces, are responsible for the decay

of massive quarks and leptons into lighter quarks and leptons. When fundamental

particles decay, it is very astonishing: we observe the particle vanishing and being

replaced by two or more different particles. Although the total of mass and energy is
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conserved, some of the original particle’s mass is converted into kinetic energy, and

the resulting particles always have less mass than the original particle that decayed.

The only matter around us that is stable is made up of the smallest quarks and leptons,

which cannot decay any further. When a quark or lepton changes type (a strange

quark changing to down quark, for instance) it is said to change flavor. All flavor

changes are due to the weak interaction.

Until the mid-1950s, physicists thought that handedness, i.e. a reflection of right

to left or vice versa, does not change subatomic processes. Similar like a right-handed

screwdriver would work equally well if they were manufactured to be left-handed,

quantum physicists took for guaranteed that if a handed particle or process exists

then its mirror-image should also exist. A left-handed particles would reflect via

a left-right mirror transformation as a left-handed particle, but otherwise all other

properties would happen in the same way and with the same rate. Also the behaviour

would not essentially be altered by a mirror that transforms particles into antiparticles

and vice versa.

Perhaps stimulated by the discovery of molecules that had due to their handedness

very different behaviours Lee and Yang reexamined the evidence of the conservation

of these two transformations, parity  and charge-conjugation . They found that it

has not rigorously been proven. Hearing about that Madame Chein-Shiung Wu set up

an experiment with radioactive cobalt in a strong magnetic field. If the symmetry 
holds as many electrons from the 𝛽-decay should spray out in direction of the field

as in opposite direction. Indeed, it was even not a small effect, a 40% asymmetry

was seen! This was indeed overlooked since no one before Lee and Yang dared to

question this discrete symmetry!

Then it was obvious to look also closer to the second discrete symmetry ! Indeed

the experiments revealed that also this particle-antiparticle symmetry was flawed.

Wolfgang Pauli, in a letter to Victor Weisskopf [5], has written “Now the first
shock is over and I begin to collect myself again (as one says in Munich).. . . It is good
that I did not make a bet. I would have resulted in a heavy loss of money (which I
cannot afford); I did make a fool of myself, however (which I think I can afford to
do) incidentally, only in letters or orally and not in anything that was printed. But
the others now have the right to laugh at me. What shocks me is not the fact that
“God is just left-handed” but the fact that in spite of this He exhibits Himself as
left/right symmetric when He expresses Himself strongly. In short, the real problem
now is why the strong interaction are left/right symmetric. How can the strength of an
interaction produce or create symmetry groups, invariances or conservation laws?
This question prompted me to my premature and wrong prognosis. I don’t know any
good answer to that question. . .”

Somehow the idea established that the antiparticles come to rescue the broken par-

ity symmetry, meaning that at least the combined symmetry  should be unbroken.

Getting familiar with the non-conservation of these discrete symmetries the long out-

standing so called “𝜏-𝜃 puzzle” found a solution. The neutral particles named 𝜏 and

𝜃 surprisingly having the same mass, however, decaying in strongly different ways

with opposite parities turned out indeed to be the same particle, nowadays known by

the name neutral -meson or kaon. Kaons are mesons that are composed by a quark
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and an antiquark, in particular the neutral kaon’s quark content is a strange quark s
and a down quark d. The new quantum number, strangeness S, was introduced by

Kazuhiko Nishijima, Tadao Nakano and Murray Gell-Mann in 1953, to explain the

“strange” behaviour of these particles being produced quite often but decaying rather

slowly: the strong force responsible in production process conserves the strangeness

quantum number S, whereas the weak interaction is the one in charge for the sub-

sequent decay which violates the strangeness conservation. The two different decay

times with the two different decay channels, 2 pions having  = +1 and 3 pions

having  = −1, of a single neutral -meson are thus naturally explained by the

maximal violation of  and  , respectively. In modern formalism one would say

that a neutral kaon strangeness state |0⟩ is a superposition of a short-lived state

|S⟩ (decaying into 2 pions) and the long lived state |L⟩ (decaying into 3 pions),

|0⟩ = 1
√
2

{
|S⟩ + |L⟩

}
(4)

and an antikaon state |0
⟩ is consequently defined by (where one puts the minus

sign is not of physical importance)

|0
⟩ = 1

√
2

{
−|S⟩ + |L⟩

}
. (5)

Since both the kaon and its antimatter state decay into the same products, one cannot

distinguish via the daughter particles the strangeness number, i.e. being a particle or

an antiparticle state. This means that if in a process , for instance, an antikaon is

generated, it can oscillate in its particle state and vice versa, this is known under the

term “strangeness oscillations”: s → s̄ → s → … . Solving the Schrödinger equation

for the two particle scenario one finds the following time evolution for an initial |K0⟩

|0(t)⟩ = 1
√
2

{
e−

ΓSt
2 ⋅ e−imSt |S⟩ + e−

ΓLt
2 ⋅ e−imLt |L⟩

}
, (6)

where mS,L and ΓS,L corresponds to the masses and decay constants of the short/long

lived states. Note that between the decay rate ΓS and ΓL is a factor of about 600. So

typically, a short lived state decays after 4 cm and thus the long lived state decay

peaks only after about 2.4 m! Was this combined symmetry  really conserved or

also flawed?

In 1963, James Cronin and Val Fitch set up an experiment at Brookhaven to have a

closer look. Concentrating their data analyzes on the long lived kaons end of October

1963, they expected to see only 3 pions, however, for one event out of thousand

decays they did not find the third pion. Since obviously such a small effect could

have many reasons, they put all their effort into the careful analyzes. Due to a formal

mistake in the submission process they could not present their experiment at the

Washington meeting in April 1964 giving them several more months to find the error.
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After trying everything to explain these 2 pion decays they decided to go public.

Indeed no error could be found, also the combined symmetry  is broken, not

maximally as the other ones, only by a tiny amount!

Consequently, the mass eigenstates become non-orthogonal, i.e.

⟨S|L⟩ =
2Re{𝜀}
1 + |𝜀|2

, (7)

where 𝜀 is the  violating parameter and of the order 10−3.

The electric charge gets absolutely defined by a neutral particle: Because of

 violation, Nature allows for an ultimate way of defining the charge. Indeed, the

electrically neutral kaon distinguishes positive charges from negative charges! E.g.

in semileptonic decays (0 ⟶ 𝜋

− + l+ + 𝜈l and 0
⟶ 𝜋

+ + l− + 𝜈l with l being

an electron e− or a muon 𝜇) the kaon state decays slightly more often into a positive

charged lepton than the antikaon state in a negative charged lepton state. Before

meeting an alien from a distant world one certainly should find out whether they

consist of antimatter or matter since shaking hands with antimatter would result in

annihilation. Thus a kaon experiment is highly recommended before scheduling any

meeting!

Considering symmetries of Nature is a powerful tool to explain empirical obser-

vations in physics, in particular in Particle Physics. There are three discrete symme-

tries: The spatial reflection that leads to parity  conservation if and only if there is

no distinction between left and right. Discovering antiparticles another discrete sym-

metry, charge-conjugation , connects the partner with its antipartner and its con-

servation reflects the non-existence of an absolute electric charge. Last but not least

there is the time reversal symmetry  , stating that there should be no preferences

for a forward or backward direction in time. So far, no violations of the combined

symmetry  has been found, but experimental investigations are ongoing (see

e.g. Refs. [6, 7]). Since the combined symmetry  has been found to be broken in

meson-antimeson systems, also  symmetry violations have to exist to compensate

such that the symmetry  is conserved (only recently violation of the  sym-

metry have been measured without referring indirectly to  symmetry violations

[8]). Now let us turn to quantum information theory to discuss how distant parties

can generate a key for sending secret messages among them.

Bell’s Theorem and the Security of Quantum Cryptography

John St. Bell was a physicist working at CERN and contributing intensively and

sustainably to the development of Particle Physics and Collider Physics. His famous

1964-theorem, known nowadays as Bell’s theorem, shows that predictions of local

realistic theories are different to those of quantum theory. As, e.g. one application

it has been found that the violation of Bell’s theorem is a necessary and sufficient
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criterion for generating a secure key for cryptography at two distant locations, which

we will show in some detail in the following.

In the famous Einstein-Podolsky-Rosen scenario a source produces two particles,

which are separated and independently measured by Alice and Bob. Both parties

can choose among two different measurement alternatives i = n, n′ for Alice and

j = m,m′
for Bob. These settings yield either the outcomes k, l = +1 or k, l = −1.

Any classical or quantum correlation function can be defined, e.g., by

EAB(i, j) =
∑

k,l
(k ⋅ l) Pkl

AB(i, j) , (8)

where Pkl
AB(i, j) is the joint probability for Alice obtaining the outcome k and Bob

obtaining the outcome l, when they chose measurements i and j, respectively. For

local realistic theories Bell’s locality assumption imposes a factorization of the joint

probabilities. Bell inequalities are tests for correlations that can be simulated using

only local resources and shared randomness (a modern terminology for local hidden

variables) and have, therefore, at hitherto nothing to do with quantum theory. Insert-

ing the probabilities derived by the rules of quantum mechanics, however, in some

cases lead to a violation of the inequality, i.e. to a contradiction between predic-

tions of local hidden variable theories and quantum theory. For bipartite entangled

particles with two degrees of freedom a tight Bell inequality is the famous Clauser-

Horne-Shimony-Holt (CHSH) Bell inequality [9], i.e.

−2 ≤ S(n,m, n′,m′) ∶= EAB(n,m) − EAB(n,m′) + EAB(n′,m) + EAB(n′,m′) ≤ 2 .

(9)

In quantum mechanics the S(n,m, n′,m′)-function is given by deriving the four quan-

tum mechanical expectation values EQM
AB (n,m′)(𝜌) = Tr(On ⊗ Om′𝜌) (where Oi are

appropriate operators and 𝜌 is the density matrix of the bipartite state). It is straight-

forward to prove that only entangled states can violate CHSH-Bell inequality, but

not all entangled states violate the inequality. Moreover, the maximum violation

SQM = 2
√
2 is reached for a maximally entangled state, e.g., the antisymmetric Bell

state

|𝜓−⟩ = 1
√
2

{

| ⇑⟩⊗ | ⇓⟩ − | ⇓⟩⊗ | ⇑⟩

}

. (10)

Let us extent the Einstein-Podolsky-Rosen scenario such that Alice and Bob mea-

sure randomly and independently one out of three specifically chosen observables

each, where two of those observables are equal. Moreover, we assume that the source

produces without loss of generality the maximally entangled antisymmetric Bell

state (10). Via a fully public open channel Alice and Bob announce their observ-

able choices but not there measurement outcomes. Then we have two cases: Alice

and Bob have chosen by chance the same or unequal observables. In case, Alice and
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Bob have chosen the same observable, since the source produces the antisymmetric

Bell state, their measurement outcomes are perfectly anti-correlated and they can

use these outcomes to both obtain a fully identical and random string of “0” and “1”

(before, they have decided which measurement outcome is labeled “0” and which one

is labeled “1”). In the remaining case, they announce their outcomes (even in public)

and use this data to compute the four quantum mechanical correlations functions of

the CHSH-Bell inequality. If there is no eavesdropping, the CHSH-Bell inequality

should be maximally violated. As proven in detail in Ref. [10] any violation of Bell’s

theorem guarantees that an attack by an eavesdropper, even including the manipu-

lation of the source, cannot reveal enough bit’s of the string of the sifted key of

Alice and Bob. Consequently, Alice and Bob can be sure based on the quantum laws

that there generated key is secure! These correlations that violate Bell’s theorem are

stronger than anything that can be generated with classical physics!

Now we are prepared to connect both results, the existence of correlation stronger

than those by classical physics and the violation of the discrete symmetries.

Bell’s Theorem and the Violation of the  Symmetry

The main problems in testing Bell’s theorem conclusively are limitations that arise

from the experimental side. These are in particular that only the antisymmetric Bell

state (compare with Eq. (10)),

|𝜓−⟩ = 1
√
2

{

|0⟩⊗ |0
⟩ − |0

⟩⊗ |0⟩

}

, (11)

is typically produced with high enough intensity and, secondly, only the strangeness

content of neutral -mesons can be measured by an “active” measurement proce-

dure. Active measurements are a crucial requirement for any conclusive test of Bell’s

theorem since obviously if Alice and Bob have no control over their measurements

it is straightforward to construct a local realistic theory resulting in the observed cor-

relation. In particular, a decay event is a “passive” measurement procedure, i.e. no

experimenter has control over into which particles the meson will decay nor at which

time this decay will occur. Though—as shown in Ref. [11]—an decay can be viewed

as an open quantum system, in particular modeled by a Markovian Lindblad master

equation, the decay states have to be included. This, in particular, means that one

is not allowed to normalize to only surviving pairs. These are all subtle points that

need to be taken into account for testing Bell’s theorem conclusively in the domain of

high energy systems. The requirement of an “active” measurement procedure rules

out all other meson system due to short decay constants, except the neutral -meson

system. The second requirement that all information available has to be considered

makes it hard to find a Bell inequality that is violated for the observed constants in

the -meson system.
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Actively measuring the strangeness content of neutral -mesons: The exper-

imenter places at a certain distance from the source a piece of matter that forces

the incoming neutral -meson beam to interact with the material and to reveal the

strangeness content, i.e. being at that distance in the state |0⟩ or in the state |0
⟩.

Since Bell’s theorem tests against all local realistic theories one is not allowed to

ignore the fact that the neutral kaon could have decayed before. Therefore the ques-

tion that one has to raise has to include that information, i.e. one has to ask: “Are you
at a certain distance from the source in the state |0

⟩ or not?”, which is obviously

different to the question “Are you at a certain distance from the source in the state
|0

⟩ or in the state |0⟩?”.

To test Bell’s theorem given by the S-function, Eq. (9), one has to compute four

expectation values for such active measurements of strangeness given for the anti-

symmetric Bell state for different distances (that one can always convert in proper

times since the velocity for a given experimental setup is known). Surprisingly, an

optimization over all possible distances (times) does not show any value higher than

2 and −2, i.e. no contradiction to local realistic theories. Why is this the case?

The point is that the oscillation in comparison to the two decay constants is too

slow or, equivalently, the decay is too fast in comparison to the oscillation. Since

we cannot obviously change the natural constants of elementary particles, we have

to search for a different Bell inequality. Unfortunately, the CHSH-Bell version is

already the most tight one. In Ref. [1] the authors derived a new type of Bell’s

inequality for decaying system by including the decay property into the derivations

of the bounds from local realistic theories. They assumed that any local realistic

theory must also describe the well experimentally tested time evolution of single

mesons correctly. This is the more striking since in a typical accelerator experiment

-mesons are only generated in pairs, in huge contrast to typical photon experiments.

Observing only a single event on one side, one knows with very high probability that

the other one existed but due to purely experimental reasons was not detected.

With this new Bell inequality [1] taking the decay property into account without

spoiling the conclusiveness, the authors show which time regions have to be inves-

tigated experimentally to reveal correlations that are stronger than those allowed by

classical physics. Surprisingly, though investigating strangeness oscillation the 
symmetry violation plays a crucial role! Asking the question “Are you at a certain
distance from the source in the state |0⟩ or not?” or “Are you at a certain distance
from the source in the state |0

⟩ or not?” makes the difference, i.e. leading in one

case to a violation in the other one not!

Consequently, the security of cryptography protocols depends in a given
setup on analyzing the particle or the antiparticle content! How odd is Nature!

Bell’s Theorem and the Violation of the  Symmetry

In the last section we discussed neutral mesons which are spinless particles. Hyper-

ons are half-integer spin particles that are baryons containing in addition to up or
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down quarks also one or more strange quarks. They decay via the weak interaction

violating the  symmetry. The Standard Model of elementary particles predicts also

tiny contribution of  violating processes, however, no violation of the  sym-

metry has been up to now experimentally found. In this section we discuss the quan-

tum information theoretic content of weakly decaying hyperons and discuss whether

Bell’s theorem can be tested for these weakly decaying systems.

Any closed quantum system’s dynamic is given by the Schrödinger equation, i.e.

a unitary evolution. Some times one is only interested in a part of the closed quantum

system or has only access to a part of the system, for instance a spin in a heat bath.

The dynamics of the system of interest, the open quantum system, can be derived by

the unitary evolution of the total system, system of interest plus environment, and

taking the partial trace of the environmental degrees of freedom (for an introduction

to open quantum systems consult e.g. Refs. [12, 13]). On the other hand, if the total

Hamiltonian is not known, one can study the dynamics of open quantum systems

by a proper parametrization of the dynamical map. Any kind of time evolution of a

quantum state 𝜌 can always be written in the form [14]

𝜌(t) =
∑

i
i(t, t0, 𝜌(t0)) 𝜌(t0) †

i (t, t0, 𝜌(t0)) (12)

where the operators i are in general dependent on the initial time t0 and state 𝜌(t0)
and are often called the Kraus operators. In particular, the dynamical map defines a

universal dynamical map if it is independent of the state it acts upon. This is only the

case if and only if the map is induced from an extended system with the initial con-

dition 𝜎total(t0) = 𝜌(t0)⊗ 𝜌environment (t0) where 𝜌environment (t0) is fixed for any 𝜌(t0).
This is exactly the above described scenario.

In Ref. [15] it has been shown that any hyperon decay process can be modeled

efficiently by an open quantum formalism, i.e. via Kraus operators. Typically, the

directions of the momentum of the daughter particles of a hyperon are measured.

This distribution is connected to the initial spin state of the hyperon. In the weakly

decay process there are two interfering amplitudes, one conserves and one violates

the parity symmetry. The momentum distribution computes to (𝜃, 𝜙 are the angular

coordinates of the momentum direction of one daughter particle and 𝜌spin the density

operator corresponding to the spin degrees of freedom of the decaying hyperon)

I(𝜃, 𝜙) = Trspin(K+ 𝜌spin K+ + K− 𝜌spin K−)

where the Kraus operators have the conceptually simple form (𝜔± > 0)

K± =
√
𝜔± | #»

𝜔1 ± #»
𝜔2⟩⟨

#»
𝜔1 ± #»

𝜔2| ∶=
√
𝜔± Π #»

𝜔 1± #»
𝜔 2

with 𝜔+ + 𝜔− = 1. The two Blochvectors
#»
𝜔1,2 have to be orthogonal,

#»
𝜔1 ⋅

#»
𝜔2 = 0,

since the transition is completely positive and are chosen such that they have maximal

length | #»
𝜔1 ± #»

𝜔2|
2 = s(2s + 1) (s. . . spin number).
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A Blochvector expansion of a density matrix is generally given by 𝜌 = 1
d
{𝟙d +

#»b ⋅
#»Γ} where d is the dimension of the system [16]. Since we are dealing with spin-

degrees of freedom we have d = 2s + 1 and we can choose as a set of orthonormal

basis the generalized Hermitian and traceless Gell-Mann matrices
#»Γ (for s = 1

2
they

correspond to the Pauli matrices). Given this structure we can reinterpret the weak

decay process as an incomplete spin measurement of the decaying particle

I(𝜃, 𝜙) = 𝜔+ Tr(Π #»
𝜔 1+ #»

𝜔 2
𝜌spin) + 𝜔− Tr(Π #»

𝜔 1− #»
𝜔 2

𝜌spin)

= 1
(2s + 1)

{
1 +

(
# »
𝜔1 + (𝜔+ − 𝜔−) # »

𝜔2
)
⋅ #»s

}
(13)

where
#»s is the Bloch vector representation of 𝜌spin, i.e.

#»s = Tr( #»Γ𝜌spin). With prob-

ability 𝜔+ the spin state of the hyperon is projected onto direction
#»
𝜔1 + #»

𝜔2 or with

the remaining probability 𝜔− the initial spin state is measured along the direction
#»
𝜔1 − #»

𝜔2. Thus the weak process can be associated to a spin measurement with

an imperfect Stern-Gerlach apparatus (switching with probability 𝜔± the magnetic

field). The imperfection has two causes: Firstly, the difference (𝜔+ − 𝜔−) equals an

asymmetry (denoted in the following by 𝛼) and is a typical measurable constant for

each hyperon. The asymmetry corresponds to interference contrast (visibility) times

the cosine of the phase shift of the two interfering amplitudes, one is parity  con-

serving and one violates the symmetry  . Secondly, the two directions
#»
𝜔1 ± #»

𝜔2 are

typical for the spin number s. Indeed, for s = 1
2

the Blochvector
#»
𝜔1 is zero, thus only

two directions, ± #»
𝜔2, are chosen by Nature.

Entangled hyperons can be produced, e.g. by proton-antiproton annihilations. The

introduced open quantum formalism allows for a straightforward extension by the

tensor product of the Kraus operators [15]. Let us assume that (i) there is no initial

correlation between the momentum degrees of freedom and the spin degrees of free-

dom and (ii) there is no entanglement between the momentum degrees of freedom.

Experiments [17–19], e.g. for the spin-
1
2
Λ hyperon and ̄Λ anti-hyperon, suggest that

the initial spin state is a maximally entangled Bell state (except for backward scat-

tering angles). Therefore without loss of generality we can assume that (iii) the spin

degrees of freedom of the particle and antiparticle are produced in the antisymmetric

Bell state (compare with Eq. (10))

|𝜓−⟩ = 1
√
2

{

| ⇑Λ⟩⊗ | ⇓
̄Λ⟩ − | ⇓

̄Λ⟩⊗ | ⇑Λ⟩

}

. (14)

Then the computation of the angular distribution of the momenta of the two daughter

particles of the Λ and ̄Λ results in

I(𝜃Λ, 𝜙Λ; 𝜃 ̄Λ, 𝜙 ̄Λ) =
1
4
{
1 − 𝛼Λ𝛼 ̄Λ

#»n Λ ⋅ #»n
̄Λ
}

. (15)
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Since the Bloch vectors

nΛ∕ ̄Λ =
⎛
⎜
⎜
⎝

sin 𝜃Λ∕ ̄Λ cos𝜙Λ∕ ̄Λ
sin 𝜃Λ∕ ̄Λ sin𝜙Λ∕ ̄Λ

cos 𝜃Λ∕ ̄Λ

⎞
⎟
⎟
⎠

are multiplied,
#»n Λ ⋅ #»n

̄Λ, by the constants 𝛼Λ ⋅ 𝛼
̄Λ, Törnqvist [20] concluded that

the hyperon Λ decays “as if it had a polarization 𝛼Λ tagged in the direction of the
𝜋

+ (coming from the ̄Λ) and vice versa”. The knowledge of how one of the Λ′s
decayed—or shall decay (since time ordering is not relevant)—reveals the polariza-

tion of the second Λ. He concludes that this is the well-known Einstein-Podolsky-

Rosen scenario.

Does the imperfection of the spin measurement allow for detection of entan-
glement?

In general entanglement is detected by a certain observable that can witness the

entanglement content, i.e. a Hermitian operator  for which holds Tr(𝜌) < 0
for at least one state 𝜌 and Tr(𝜌sep) ≥ 0 for all separable states 𝜌sep. For the

antisymmetric Bell state such an optical entanglement witness is given by  =
1
3
(𝟙⊗ 𝟙 +

∑
i 𝜎i ⊗ 𝜎i) (any other witness can be obtained by local unitary transfor-

mations). Since the weak interaction only allows for an imperfect spin measurement

we have to multiply the spin part by 𝛼Λ𝛼 ̄Λ. Thus the entanglement witness for the

Λ ̄Λ system results in

1
3
− 𝛼Λ𝛼 ̄Λ ≥ 0 ∀ 𝜌sep , (16)

which is clearly violated since 𝛼Λ𝛼 ̄Λ = 0.46 ± 0.06 [21]. Therefore, the measurement

of the correlation functions ⟨𝜎i ⊗ 𝜎i⟩ in x, x and y, y and z, z directions of the Λ and

̄Λ reveals entanglement. Let us here emphasize that a re-normalization (dividing by

𝛼Λ𝛼 ̄Λ) is not proper since also an mixed separable state may give the value up to
1
3
.

Generally, one can say that the asymmetries lead to imperfect spin measurements

which shrink the observable space. Equivalently, we can say that the given interfer-

ometric device leads to a shrinking of the Hilbert space of the accessible spin states.

However, does the imperfection of the spin measurement allow for detection
of correlations stronger than those of classical physics?

For that we have to investigate Bell’s inequalities and in principle all its variants.

The CHSH-Bell type one, Eq. (9), leads to [15]

𝛼Λ𝛼 ̄Λ
for all local realistic theories≤ 1

√
2
. (17)
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This is clearly not violated since 𝛼Λ𝛼 ̄Λ ≈ (0.46 ± 0.06)! However, here we anyway

missed a requirement for any conclusive test of Bell’s theorem: active measure-

ments! The weak interaction chooses the quantization axes ± #»
𝜔2 spontaneously, we

just know the probabilistically which one (with the probabilities 𝜔±). Thus Bell’s

theorem cannot be tested in this way!

Outlook

We discussed Bell’s theorem in the realm of high energy physics. We have seen that

a conclusive version that can be experimentally be put to reality is very involved,

however, both mesons and hyperons offer a new theoretical perspective since their

properties are connected to violations of the discrete symmetry parity  and the

combined discrete symmetry charge-conjugation-parity  . This surprising relation

between Bell’s theorem and discrete symmetry breaking, in turn, can be attributed to

the unsolved problem of why we live in a universe dominated by matter, a problem

which itself links to distinct and fundamental questions in physics. This discovery

may pave the way to provide a first understanding for a more fundamental rule in

Nature and to whether information theoretic considerations played a key role in the

development of our universe (or may play).
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Chapter 17
Black Box Quantum Mechanics

Antonio Acín and Miguel Navascués

Abstract There is no doubt that Bell’s theorem [1] is a fundamental result for our

understanding of quantum physics and its relation with classical physics. Before Bell,

the possibility that an intuitive classical model could exist with the same predictive

power as quantum physics was valid and, in a sense, justified in view of the argu-

ments by Einstein, Podosky and Rosen (EPR) on the incompleteness of quantum

physics [2]. After Bell’s work, a classical model for quantum physics is still possible

but, as discussed below, requires breaking some very natural assumptions that, in a

way, make it as counter-intuitive as quantum physics. In the last decade, our under-

standing of Bell’s theorem, for instance of the assumptions required for its derivation

and its implications, has significantly improved using concepts and ideas borrowed

from quantum information theory. At the same time, concepts from foundations of

quantum physics have opened new approaches to quantum information applications,

especially in the so-called device-independent scenario. The purpose of this text is

to provide an overview over this new research direction merging quantum founda-

tions and information theory, with an emphasis on the motivations and some of the

obtained results. Our text, however, should not be understood as a review paper,

but more as a rather personal selection of results in the field, unavoidably biased to

some of our works. The structure of the essay is as follows: we start by presenting

the assumptions required in the derivation of Bell’s theorem and its implications.

We move on and show how ideas from Bell’s arguments can be used for quantum

information purposes: we introduce the device-independent approach to quantum

information theory and argue that it can be interpreted as a form of Bell-type quan-

tum information theory. Then, we reverse this direction and show how ideas from

information theory help us to understand quantum physics.
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Bell Scenario
One of the main strengths of Bell’s theorem is its simplicity and level of abstraction.

It just involves two (or more) different systems given to two different observers,

named in what follows Alice and Bob, who can perform m > 1 possible different

actions on it and get r > 1 possible results. What the observers precisely do with

their systems is irrelevant for the derivation of the theorem. For instance, in a stan-

dard quantum optics experiment, a pair of entangled photons is prepared and one

photon is sent to each of the two observers. These two photons are the two sys-

tems to be measured. The observers perform polarization measurements on their

corresponding photon along m different directions, in the simplest case m = 2. As

a result, the photon may impinge on two possible detectors with different probabili-

ties,
1

defining the two possible results, r = 2. However, this is just one of the possible

practical realizations of the previous theoretical scenario: any situation in which two

observers can performm different measurements of r possible results is equally valid.

In fact, the Bell scenario can just be described, see Fig. 17.1, by a very minimalistic

setup in which Alice and Bob have access to a completely uncharacterized device,

represented by a box, on which they can perform m different actions, represented

by classical variables x, y = 1,… ,m, and get r possible results, denoted by classi-

cal variables a, b = 1,… , r. Each round of the experiment is simply described by a

choice of inputs and the corresponding outputs. By repeating the experiment many

times,
2

it is possible to describe it by means of a conditional probability distribu-

tion P(ab|xy) specifying the probabilities of getting outputs a and b when choosing

inputs x and y. The experiment is arranged so that each party has a well-defined sta-

tistical description independent of the other. This requirement is also known as the

no-signalling condition and states that the marginal probability distribution seen by

one party does not depend on the choice of setting by the other,
∑

a P(ab|xy) = P(b|y)
and

∑
b P(ab|xy) = P(a|x), for all x, y. Note that the validity of this statement can be

tested, up to statistical uncertainties, as it is expressed only in terms of the observed

probabilities. This is all what is needed to derive, and to experimentally test, Bell’s

theorem.

Bell’s theorem is a statement about the possible correlations between the mea-

surement results observed in the two systems, described by the conditional proba-

bility distribution P(ab|xy). The genius of Bell was to realize that assumptions on

the physical behavior of the systems had consequences on the observed correlations.

While Bell stuck to the terms locality and realism introduced by EPR [2], here we

will slightly modify the terminology and name the assumptions in his theorem as

follows:

1
In fact, in a realistic experiment, there are 4 possible results: no detector clicks, only detector

1 clicks, only detector 2 clicks, and both detectors click. However, here we are considering an

idealized scenario where photons are always detected and only one photon is sent to each observer.

2
There is an implicit assumption when writing this conditional probability distribution, namely that

all the rounds of the experiment represent independent and identically distributed (iid) realizations

of P(ab|xy). It is however possible to derive a form of Bell’s theorem valid without the iid assump-

tion, see for instance [3]. Here, for the sake of simplicity, we work under the iid assumption.
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Fig. 17.1 Bell scenario: two distant observers, Alice and Bob, have access to two uncharacterised

quantum systems. These systems can be seen as black boxes that take a classical input, x for Alice

and y for Bob, and produce a classical output, a and b. The correlations observed between these vari-

ables are described by a joint probability distribution P(ab|xy). This distribution can be statistically

estimated by repeating the experiment.

1. Determinism: The possible randomness or probabilistic character observed in the

experiment is just a consequence of ignorance. In other words, it should be pos-

sible to describe the observed correlations as a mixture of deterministic assign-

ments specifying the outputs given the inputs. Formally, this means that it should

be possible to write the observed correlations as:

P(ab|xy) =
∑

𝜆

P(𝜆)D
𝜆

(ab|xy), (1)

where P(𝜆) is a probability distribution over a classical random variable 𝜆, usu-

ally known as the hidden variable, and D
𝜆

(ab|xy) denote different deterministic

functions that given a value for the inputs x and y return 1 for just one of the r2
possible configurations of (a, b) and zero otherwise. Note that this assumption

alone does not impose any limitation on the set of possible correlations, as any

conditional probability distribution P(ab|xy) can be easily decomposed in terms

of deterministic assignments. The intuition behind the hidden variable is that, as

it happens in classical physics, any source of observed randomness in the setup

should be attributed to ignorance or lack of information on the deterministic val-

ues of the outputs, encapsulated by the probability distribution P(𝜆).
2. No-signalling: The observers should not be able to infer the choice of input by the

other observer, even if they had access to a possible hidden variable. Formally,

this means that it should be possible to write the observed correlations as:

P(ab|xy) =
∑

𝜆

P(𝜆)P
𝜆

(ab|xy), (2)

where P(𝜆) is a probability distribution over a classical random variable 𝜆, again

a hidden variable, and P
𝜆

(ab|xy) are non-signalling probability distributions, that

is
∑

a P𝜆

(ab|xy) = P
𝜆

(b|y) and
∑

b P𝜆

(ab|xy) = P
𝜆

(a|x), for all x, y, 𝜆. Again, this
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assumption is trivially satisfied in the previous scenario, as P(ab|xy) is already

non-signalling.

While, as mentioned, these two assumptions are trivially satisfied separately,

when combined, they give a non-trivial structure to the space of correlations. In

fact, some given correlations P(ab|xy) satisfy determinism and no-signalling if and

only if they can be written as:

P(ab|xy) =
∑

𝜆

P(𝜆)DA
𝜆

(a|x)DB
𝜆

(b|y). (3)

This easily follows from the fact that a deterministic assignment is compatible with

the no-signalling principle if and only if it has a product form. Equation (3) are

nothing but the standard EPR-correlations. In fact, all correlations obtained in clas-

sical physics are of this form. Bell was the first to notice this non-trivial structure

and derived a Bell inequality, linear on the correlations P(ab|xy), that is satisfied

by EPR-correlations. Then, Bell showed that these inequalities can be violated by

performing local measurements on entangled quantum particles. This phenomenon

is often named quantum non-locality, mostly because of historical reasons, and it is

the terminology we follow here. Leaving aside whether the term non-locality fully

captures the implications of the theorem, here it simply means that the correlations

of a theory cannot be written as in Eq. (3).

Before concluding this part, which is rather introductory, we would like to men-

tion several important points. First of all, Bell’s Theorem is a mathematical theorem.

As such, it cannot be wrong: given the assumptions, or hypotheses, the result just fol-

lows after some simple algebra. In this sense, it is desirable to state assumptions that

have a physical motivation but, also, can be easily formalized in mathematical terms,

as above.

It is of course licit to discuss about the validity of the assumptions, either from

a theoretical perspective or in concrete experimental setups. From a theoretical per-

spective, the discussions about the assumptions is non-scientific and mostly based

on personal taste. For instance, in Bohm’s model, assumption 2 is abandoned, as

the model is signaling at the hidden-variable level. There is no scientific argument

against this logical possibility and, in fact, Bohm’s model represents a valid and

intrinsically deterministic model for quantum physics. The discussion about the

assumptions is possibly more justified, yet still subjective, when discussing concrete

setups. This is for instance relevant when considering experimental loopholes, espe-

cially in the context of the free-will and locality loophole. In this sense, the detec-

tion loophole is not really a loophole: whenever it appears, it just means that it is

possible to give an EPR model (3) for the observed correlations without affecting

assumptions 1 and 2. Of course, this EPR model breaks the fair-sampling assump-

tion, which states that the observed statistics when the particles (usually photons)

are detected is a fair representation of the statistics one would observe in the case of

perfect detection. In other words, it is impossible to find a model for the correlations

that is compatible with assumptions 1 and 2 plus the fair-sampling assumption. The
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locality or the free-will loophole share some similarities and are from a logical point

of view completely different from the detection loophole, as they shed doubts on the

validity of assumption 2. Arranging the measurements so that they define space-like

separated events, or selecting the inputs of the experiments using a proper random

number generator or the Geneva phone book [4], will only increase our confidence

that assumption 2 is satisfied in the experiment. But, strictly speaking, and contrary

to the detection loophole, it will never be possible to close the locality and free-will

loophole.

Finally, it is worth recalling that there is nothing quantum in the derivation of

Bell’s Theorem. What is quantum is the violation of Bell inequalities. In fact, in our

opinion, Bell inequalities are nothing but the application of our intuition to explain

the correlations that are possible among separate devices. It is not surprising that

some Bell inequalities already appeared in texts by Boole in 1854, much before the

birth of quantum physics.

Device-Independent Quantum Information Processing

Bell inequalities prove the existence of correlations in quantum physics that do not

have a classical analogue: they are satisfied by classical physics, which is determin-

istic and non-signalling, but violated by quantum physics. It is somehow natural

to expect that quantum non-locality plays an important role in quantum informa-

tion theory. In fact, the main goal of this field is to design protocols for information

processing that are impossible using classical resources. For quantum information

purposes, the more quantum the better. However, before the advent of the device-

independent approach, described in what follows, no quantum information protocol

was based on non-locality.

In the case of quantum computation, this is perhaps less surprising. Bell non-

locality tells us about something which is possible in quantum physics and impos-

sible in classical physics. In quantum computation, the main objective is to design

quantum algorithms that solve a relevant computational problem much faster than

any classical algorithm. It is not expected that classical resources cannot solve the

problem, but “just” that they do it in a significantly less efficient way, possibly with

an exponential overhead. In the case of quantum cryptography, Artur Ekert, in 1991,

proposed a protocol for cryptography based on the violation of a Bell inequality [5].

But soon after Eker’s proposal, Bennett, Brassard and Mermin wrote an article [6]

showing that the role played by Bell’s inequalities in the security of Ekert’s protocol

was marginal and security can equally be guaranteed by the non-orthogonality of

quantum superpositions, as in previous quantum cryptographic protocols à la BB84

(for Bennett and Brassard in 1984 [7]). Yet, Ekert’s work was the first connecting

Bell’s Theorem with quantum cryptography.

A few years later, Mayers and Yao [8] realized that quantum non-local correla-

tions were useful as an information resource in a scenario where devices are not

characterized. The idea is that if some devices provide an almost maximal quan-
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tum violation of a Bell inequality, they should come from measurements on a highly

entangled state and security follows. This gave rise to the concept of self-testing, as

the protocol certifies that the state and measurements implemented by the uncharac-

terized devices are the expected ones. Somehow unrelated, another work connecting

quantum cryptography and Bell violation was by Barrett, Hardy and Kent [9], who

studied whether it is possible to have secure key distribution in a scenario where

quantum physics is not assumed, but the no-signalling principle, that is, the impos-

sibility of faster-than-light communication, holds. The authors of [9] showed how

to establish a secret bit (not a secret key) when the maximal violation of some Bell

inequalities is observed.
3

Finally, in [10], the two approaches were merged and it was

shown how the techniques developed in [9] for security could be adapted to present a

quantum key distribution protocol using uncharacterized devices, the new approach

being named device-independent quantum key distribution (DIQKD).
4

The general goal of DIQKD is to construct protocols that allow two parties, Alice

and Bob, to establish a secure secret key without making any assumption on the

internal working of the devices used in the protocol. In other words, the devices are

just seen as black boxes, as in a standard Bell test (see Fig. 17.1) and the key should be

established from the observed correlations between the measurement results. Alice

and Bob don’t need to have any characterization of the local processes producing

the classical outputs a and b given the classical inputs x and y, but they have to

assume that these processes are quantum. On the contrary Eve may a have a complete

knowledge of this process, that is, contrary to the honest parties, she perfectly knows

which quantum state is prepared and which measurements are performed on it.

In any cryptographic problem, one has to assume a paranoid perspective and work

in the worst-case scenario. In the device-independent approach, this means that,

given some correlations observed between their devices, Alice and Bob must assume

that the actual preparation, unknown to them, is the worst compatible with these cor-

relations. This immediately explains why non-locality is necessary to have a secure

DIQKD protocol. In fact, if the observed data are compatible with an EPR model,

they are of deterministic nature and can be perfectly predicted by the eavesdropper

Eve with a perfect knowledge of the hidden variable 𝜆. In other words, the observed

correlations can be reproduced by classical information, which can be copied and

therefore be in Eve’s hands.

The parallelism between the device-independent approach to QKD and the Bell

scenario becomes even clearer when analyzing the assumptions needed in the defi-

nition of DIQKD. We can identify three main assumptions:

3
It is at the moment an open problem whether a secret key, and not just a single bit, can be distributed

in a realistic noisy scenario only under the assumption of the no-signalling principle.

4
Strictly speaking, the security proof in [10] was valid only under a specific class of attacks, known

as collective attacks. A general security proof has later been established in [11].
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1. Quantum physics is correct.

2. There is no information leakage from the honest parties’ locations.

3. Alice and Bob have trusted randomness to choose their classical inputs.

It should be now clear that assumptions 2 and 3 are the cryptographic analogs of

the locality and free-will loopholes. If these assumptions cannot be met (the loop-

holes cannot be closed), a secure key distribution (proper Bell violation) cannot be

guaranteed.

DIQKD is a formalism that supersedes traditional quantum key distribution. In

recent years, several works, see for instance [12], reported the successful hacking

of some standard QKD protocols. In all these attacks, the hackers did not break

the principle but the implementation. The security proofs of standard QKD proto-

cols build on several assumptions about the states and measurements that are crucial

for the security proof but very hard to meet in practice. The unavoidable mismatch

between theoretical security proofs and practical implementations was the loophole

exploited by the quantum hackers. Of course, it is always possible to put in place

patches solving the problems used in the attacks. This is in fact a possible approach

to the problem: trying to experimentally guarantee that the states and measurements

required in the protocol are correctly implemented. But it is unclear whether a com-

plete solution to this problem would ever be possible, due to the unavoidable pres-

ence of noise and imperfections in any implementation. DIQKD offers a completely

different solution to this problem. In DIQKD security is guaranteed only from the

observed statistics and does not rely on any detailed modelling of the internal work-

ing of the devices. Any implementation is good provided that it produces the needed

correlations between the honest parties, something that can be easily tested in an

implementation. Thus, there is no mismatch between the theoretical requirements in

the security proof and the actual implementation and the previous hacking attacks

become impossible.

We conclude this part by mentioning that the device-independent scenario, origi-

nally introduced in the context of QKD, has been generalized in recent years to other

quantum information problems. We now have, for instance, schemes for device-

independent randomness generation [13] or entanglement detection [14]. All this

effort is sometimes known as device-independent quantum information processing

and can be understood as a form of quantum information theory with black boxes

and without any explicit mention to any Hilbert space. As for DIQKD, any quan-

tum information protocol in this scenario must be built from quantum correlations

violating a Bell inequality.

From Information Principles to Quantum Foundations

The device-independent approach to quantum information theory exploits one of

the most fundamental quantum properties, namely quantum non-locality, to design

information protocols which do not have any classical analogue. However, it is
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possible to reverse this direction and borrow concepts from quantum information

theory to gain a better understanding of quantum foundations.

In 1992, Popescu and Rohrlich proposed to classify physical theories according

to their ability to produce correlations between distant observers [15]. Each experi-

mental set of correlations P(ab|xy) is viewed as a point in a probability space, and

the goal is to study the shape of the set of all accessible points of the physical theory

under consideration. In this framework, classical physics is represented by flat-sided

convex figures (polytopes), with facets corresponding to Bell inequalities and pos-

itivity conditions of the sort P(ab|xy) ≥ 0. Quantum mechanics is described by a

much more convoluted object, combining both flat and curved surfaces [16]. In fact,

to this day we ignore how to characterize the quantum set explicitly even in the sim-

plest Bell scenarios, and there are arguments which hint that the problem may be

actually undecidable [17]. A natural question in this context is: why quantum corre-

lations? Which physical principles are behind this set?

Popescu and Rohrlich ventured that perhaps the shape of the quantum set could

be entirely explained by the no-signalling conditions [15]. Inspired by Einstein’s

notion of causality, the no-signalling conditions represent an intuitive restriction on

the transmission of information between separate parties. Most importantly, they can

be formulated in terms of correlations between measurement devices, without mak-

ing any reference to states, observables or any other element of the actual physical

theory behind the experiment. As such, the no-signaling conditions can be regarded

as the first information-theoretic physical principle.

Unfortunately, as the authors discovered, the no-signalling conditions are not

strong enough to recover the set of quantum correlations [15]. This state of affairs

led to a race to come up with an information-theoretic physical principle which did

the job. Soon many candidates appeared in the literature: Non-Trivial Communi-

cation Complexity [18], No-Advantage for Nonlocal Computation [19], Informa-

tion Causality [20], Macroscopic Locality [21] and Local Orthogonality [22]. Let us

briefly review them:

∙ Non-Trivial Communication Complexity (NTCC) considers a communication

scenario where two separated parties receive the strings of bits x̄, ȳ ∈ {0, 1}n,

respectively, and try to compute the function f (x̄, ȳ) with just one bit of commu-

nication. If they succeed in doing so with probability greater than p >

1
2

for all

possible functions and input sizes n, then we say that the world where they live has

trivial communication complexity. In analogy with the quantum mechanical case,

NTCC postulates the impossibility of such a state of affairs. In [18] it is proven

that the NTCC principle restricts nonlocality further than the no-signalling con-

dition alone. The authors of [18] leave open, though, whether NTCC is enough to

single out the quantum set.

∙ Similarly to NTCC, No-Advantage for Nonlocal Computation (NANLC) [19]

posits constraints in a communication scenario where two parties are asked to

compute a function in a distributed way. This time, the n-bit string z̄ is sampled

from the probability distribution p(z̄), while x̄ is completely random. Both parties

are handed the bit strings x̄, c̄, respectively, with ci = xi + zi (mod 2) and asked
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to generate bits a, b such that a + b (mod 2) = f (z̄), for some Boolean function

f . Note that, taken separately, the strings x̄, c̄ contain no information about the

variable z̄. However, if both parties were allowed to share information, they could

recover the value of z̄ and output the bits a = 0, b = f (z̄), hence winning the game

with certainty. If they are not allowed to communicate, however, they can only

expect to guess the value of f (z̄) with some probability, that will depend on both

f and the distribution of the variable z̄. Interestingly, quantum nonlocality does

not offer any advantage towards winning this family of games: namely, if Alice

and Bob share quantum correlations prior to being distributed x̄, c̄, they cannot

expect to win the game more often than by applying the best classical strategy.

The authors of [19] postulate that future physical theories should also satisfy this

nonlocality constraint. NANLC allows recovering important limits on the strength

of quantum nonlocality [19].

∙ In Information Causality (IC) [20], Alice is distributed an n-bit string x̄, while Bob

receives a number k ∈ {1,… , n}. Bob’s task is to guess Alice’s kth bit. In order to

increase his chances, we allow Alice to transmit him m bits. Intuitively, one would

not expect Alice and Bob to succeed with high probability if m ≪ n. IC tries to

formalize this intuition by demanding that the sum of the mutual informations5

between the correct answer xk and Bob’s guess b for each value k does not exceed

the number of transmitted bits. That is,

n∑

k=1
H(xk ∶ b|k) ≤ m. (4)

IC has been shown to induce severe constraints over the set of possible correlations

[20, 23–27].

The last two principles have a different flavor, in that their original formulation does

not make any reference to communication games.

∙ Roughly speaking, Macroscopic Locality (ML) [21] states that, even though cer-

tain microscopic experiments cannot be understood classically, their natural

macroscopic counterparts should admit a classical description. Think about the

Physics behind a typical experiment of nonlocality: some event somewhere in-

between Alice’s and Bob’s labs produces a pair of correlated particles. After a

time, Alice (Bob) receives a particle, which she (he) subjects to a given interac-

tion x (y). Frequency analysis then allows one to estimate the probability P(ab|xy)
that the particles respectively impinge on detectors a, bwhen interactions x, y were

switched on. Now, consider an experiment where N ≫ 1 independent particle

pairs with distribution P(ab|xy) are produced. This time Alice (Bob) will receive

not just one particle, but a beam of them. As before, Alice and Bob can interact

with each particle beam; each interaction, however, will affect all the particles of

5
The mutual information between two random variables A and B is defined as H(A ∶ B) =
∑

A,B P(A,B) log2
(

P(A,B)
P(A)P(B)

)
.
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the beam at the same time. As a consequence, in Alice’s (Bob’s) lab, a number

of particles Ia (Jb) of the incident beam will impinge against detector a (b). ML

postulates that, under low resolution detectors, the ‘macroscopic’ (Gaussian) prob-

ability distribution P(I1,… , Ir, J1,… , Jr)|x, y) observed by Alice and Bob should

be local and not violate any Bell inequality, that is, it should be of the form (3).

The authors of [21] show that many quantum limits in nonlocality follow straight-

forwardly from ML.

∙ Local Orthogonality (LO) is a genuinely multipartite principle; as such, in order

to formulate it, we need to go beyond the bipartite scenario. Suppose, then, that

n distant parties are conducting experiments simultaneously. Denoting by xk (ak)
the experimental input (output) of the kth party, the full statistics of the multipar-

tite experiment are given by P(a1 … an|x1 … xn). Any pair of vectors e ≡ (x̄, ā),
representing n inputs and outputs, will be called event; and by P(e) we will denote

the corresponding conditional probability P(ā|x̄). Two events (ā, x̄), (ā′, x̄′) are

locally orthogonal if one of the parties performs the same measurement in both

events (xk = x′k), but obtains different outcomes (ak ≠ a′k). The principle of LO

states that, for any set E of pair-wise locally orthogonal events,
∑

e∈E P(E) ≤ 1.

LO can be shown to limit nonlocality non-trivially even in the bipartite case [22].

Most notably, LO allows precluding the existence of tripartite supraquantum cor-

relations which nonetheless satisfy all bipartite physical principles [28].

The above principles highlight previously unnoticed features of quantum mechan-

ics. Taken together, these works hint that the nonlocality of any future physical theory

cannot be much different from that of quantum mechanics. However, the question of

whether all those principles are enough to single out the quantum set exactly remains

open.

In [29], it was argued that no set of reasonable physical principles would suf-

fice. There the authors propose a set of correlations, dubbed almost quantum, that

contains strictly the quantum set. The authors of [29] prove that, with the possible

exception of Information Causality [20] for which no proof could be obtained, the

almost quantum set satisfies all the aforementioned physical principles. Furthermore,

they provide compelling numerical evidence that the IC axiom is satisfied as well.

The findings of this work suggest that singling out quantum correlations by means of

device-independent principles, that is principles stated only in terms of the observed

correlations, may be much subtler than initially expected.

In addition, the almost quantum set has a number of interesting features:

1. The almost quantum set can be shown to be physically consistent, in the sense that

natural operations over a number of almost quantum correlations cannot create

effective correlations outside the set. Mathematically, this is an extremely non-

trivial property, and fairly natural sets of correlations fail to comply with it [30–

32].

2. In any Bell scenario, the almost quantum set admits an efficient characterization.

In contrast, characterizing the quantum set in two-party Bell scenarios is, at best,

computationally hard [33] and, at worst, an undecidable problem [17].
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3. As shown in [34], the set of almost quantum correlation naturally emerges when

one tries to extend the consistent histories approach to physical theories beyond

quantum mechanics à la Sorkin [35].

The above properties led the authors of [29] to pose the question of whether the

almost quantum set corresponds to the set of correlations of a yet-to-be-discovered

consistent physical theory. Finding such a theory could be an important step. In fact,

quantum theory has been proven to a rather robust theoretical framework, in the

sense that the proposed alterations of the theory, even if a priori simple, have been

problematic for fundamental reasons. For instance, they have been shown to imply a

significant increase of the computational power of the theory [36] or violations of the

no-signalling principle [37, 38]. These results, among others, have led researchers

to question whether “quantum mechanics is special” [39] and “an island in theory

space”[40]. Finding a modification of quantum theory that does not lead to viola-

tions of the no-signalling principle, as a theory compatible with the set of almost

quantum correlations would imply, would shed light on how a theory alternative to

quantum physics could look like. Moreover, a theory for almost quantum correlations

would be operationally equivalent to quantum physics for all the physical principles

proposed so far.

Conclusion

In this essay, we have tried to give the reader a brief account of the ongoing interac-

tion between quantum information science and the foundations of quantum mechan-

ics. On one hand, Bell’s ideas have inspired the very recent device-independent

approach to quantum information theory, with DIQKD [10] and randomness gen-

eration [13] as its maximum exponents. In this framework, the security of quan-

tum communication protocols relies on minimal assumptions, such as the validity

of quantum theory, and does not require any modelling of the devices used in the

protocol. Hence device-independent solutions provide an unprecedented degree of

security.

On the other hand, ideas from quantum information science have allowed us to

deepen our understanding of quantum nonlocality: now we know that quantum non-

locality does not represent a significant advantage for a number of communication

games [18–20]; that it vanishes in natural macroscopic experiments [21] and that

it constrains the statistics of locally orthogonal events [22]. Furthermore, we have

strong reasons to believe that future theories beyond quantum mechanics cannot

exhibit correlations much stronger than what quantum theory allows. Finally, ideas

from quantum information science have pointed out new promising directions for

future generalizations of quantum theory [29].

We would like to conclude this essay with an interesting remark. Note that, sem-

inal papers aside, most of the works we have cited in this review were published in

the past decade. It is certainly impressive how this synergy between quantum infor-
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mation and the foundations of physics has evolved in such a short period of time!

We nonetheless feel that we are not at the apex of the hill, but barely have begun to

explore the bottom: the best is yet to come.
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Chapter 18
Quantum Measurement of Spins and
Magnets, and the Classical Limit of PR-Boxes

Nicolas Gisin

Abstract Using weak quantum measurements one can determine the direction in

which a large ensemble of spins, as in a classical magnet, points. Assume Alice and

Bob share a large ensemble of N pairs of spin-
1
2
. If Alice measures all her spins, all

along the same direction, she prepares at a distance an ensemble of spins for Bob

which, because of statistical fluctuations, have a magnetic moment of the order

√
N.

By making N large enough, this magnetic moment can be made arbitrarily large,

indicating an apparent possibility to signal. However, we show that an arbitrarily

large magnetic moment is not necessarily classical in the sense that it might be fun-

damentally impossible to determine in which direction it points. We also consider

stronger than quantum correlations and show that Tsirelson’s bound follows from the

physical assumption that in the macroscopic limit all measurements are compatible

and that this should not lead to signaling.

Introduction

The question of how one should apply quantum theory to our macroscopic world,

and even the big question whether quantum theory applies at all scales, have been

with us since the inception of quantum theory. To illustrate the question, let as study

the following little conundrum.

First, consider a single spin
1
2
. When measured the result is probabilistic and the

quantum state perturbed, except if the spin was in a state without quantum inde-

terminacy. Next, consider a large ensemble of N spins, as in a magnet. Then there

is no doubt that one can measure the global magnetization essentially without any

disturbance. Now, if Alice and Bob share 2 spins in the singlet state and if Alice

measures her spin in a direction we label z, then she will get as result ±1 (assuming

her measurement is described by the Pauli operator 𝜎z). This prepares Bob’s spin

at a distance in the state |∓z⟩. Since the mixture of these two states is independent
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of Alice’s measurement direction (and equal to Bob’s state obtained by tracing out

Alice), there is no signaling from Alice to Bob, as is well known.

But consider now the case where Alice and Bob share a large number N of pairs

of spins, each in the singlet state. If Alice measures all of them, individually, in the

z-direction and adds all her results, then she will get a positive or negative fluctua-

tion around zero of the order 𝜇 ≈ ±
√
N. Because of the quantum correlation, Bob

will also get a fluctuation of the order 𝜇, i.e. a magnetization of about ∓𝜇 in the

z-direction. By making N large enough, Bob’s magnetization 𝜇 can be made arbi-

trarily large. But then, if the magnetization is arbitrarily large, it may seem that Bob

can measure it without significantly perturbing it. Obviously, the same should hold

if Alice chooses to measure her spins in the x-direction. But then, it seems that Bob

could determine the direction in which his magnetization points, either ±z or ±x.

Bob could thus deduce from his magnetization the measurement direction chosen

by Alice, without anything carrying this information from Alice to Bob; this would

be signaling. Moreover, by enlarging the distance between Alice and Bob and assum-

ing Bob’s measurement takes a finite time, this signaling would lead to faster than

light communication. But that is impossible. Hence, there must be something wrong

in the above story.

In this paper we apply standard quantum measurement theory to resolve this

conundrum, i.e. we couple the spin system under investigation to the pointer of the

measuring device, treated quantum mechanically. We shall see that the size of the

system, here the size of the magnetization 𝜇 doesn’t suffice to characterize systems

that can be measured “classically”. In our example, the background noise of the ran-

domly oriented spins, although averaging to zero magnetization, can’t be ignored.

Next, we investigate what happens if one replaces the quantum singlet state

by stronger than quantum correlations, such as the so called PR-boxes. Following

Navascues and Wunderlich [1] and Rochlich [2], we argue that any physical box,

when there are large ensembles of them, should admit “classical” measurements.

We show that isotropic noisy PR-boxes [3] satisfy this highly plausible physical con-

strain if and only if the noise is large enough for the correlation to be quantum. We

thus recover Tsirelson’s bound from a physical assumption, in contrast to previous

derivations based on more information theoretical arguments [4–6].

Weak Measurements as Classical Measurements

The standard description of quantum measurements goes as follows. First, one cou-

ples the system to be measured to an auxiliary system called the pointer. The later is

initially in the state |q = 0⟩, i.e. it points to zero. The coupling between the system

and the pointer is assumed so strong and brief that, during that short time, one may

safely ignore all Hamiltonian evolutions, except the one that describes the coupling

[7, 8]:

Hc = g(t)A⊗ p (1)
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where A is the operator describing the physical quantity to be measured and p is the

translation operator acting on the pointer’s position; g(t) is a function with non-zero

values only during the short system-pointer interaction time, normalized such that

∫ g(t)dt = 1.

Let us illustrate this in the case of N spin
1
2
, all in the state |m⃗⟩, with measurement

A =
∑N

j=1 𝜎
j
z, where 𝜎

j
acts on the j-th spin. Assume that the pointer’s initial state is

|q = 0⟩ = Φ(x), with, for example, the function Φ(x) a Gaussian [9]:

Φ(x) = (2𝜋Δ2)−1∕4exp{−x2∕4Δ2}, (2)

where Δ is the mean square deviation of the pointer’s position. After the interaction

(1) the initial state |m⃗⟩⊗N
⊗ |q = 0⟩ evolves to:

ΨSP =
N∑

k=0
⟨ k,N | m⃗⊗N ⟩ ⋅ |k,N⟩⊗ |q = 2k − N⟩ (3)

where |k,N⟩ is the normalized and symmetrized state of N spins with k pointing up z
and N − k pointing down in the z-direction, so that the magnetization is 𝜇 = 2k − N.

The pointer’s state is thus merely its initial state displaced by 𝜇: |q = 2k − N⟩ =
Φ
(
x − (2k − N)

)
.

The usual quantum measurement story goes then on as follows. The pointer being

macroscopic, one can directly look at it. If one finds it at position xp, then the state

of the measured system collapses to the unnormalised state (its norm square being

the probability of finding xp):

ΨS|xp =
N∑

k=0
⟨ k,N | m⃗⊗N ⟩Φ

(
xp − (2k − N)

)
⋅ |k,N⟩ (4)

A measurement is strong if the pointer has a well defined position, i.e. if its mean

square deviation is small with respect to the distance between the eigenvalues of

the measured operator: Δ ≪ 1. In this case the sum in (4) reduces to a single value

k ≈ xp, because for all other values of k, Φ
(
x − (2k − N)

)
is (practically) zero. This

corresponds to the standard textbook measurement process.

A measurement is weak if, on the contrary, the pointer’s position has a quantum

uncertainty much larger than the distance between the eigenvalues of the measured

operator: Δ ≫ 1. In this case, many terms in (4) remain. Actually, for the most likely

results xp all significant terms remain quasi unchanged. Hence, weak measurements

practically don’t perturb the N-spin system. This is how one can measure the mag-

netization of magnets.

As a first example, assume m⃗ = e⃗z, i.e. all N spins are up in the z-direction. Then

⟨ k,N | m⃗⊗N ⟩ vanishes for all k except k = N, hence (3) simplifies to:

ΨSP = |e⃗ ⊗N
z ⟩⊗ |q = N⟩ (5)



324 N. Gisin

In this case the spin system is not perturbed at all and the pointer moves N steps to

the right.

As second example, consider a magnet in the x-direction, i.e. m⃗ = e⃗x, and a weak

measurement with Δ ≥ √
N. In this case the scalar product ⟨ k,N | m⃗⊗N ⟩almost van-

ishes except for k ≈ N∕2 ± 1
2

√
N in which cases Φ

(
xp − (2k − N)

)
≈ Φ

(
xp∓

√
N
)

is essentially independent of k. Hence, the first terms in Eq. (3) are non-negligible

only when the second term is independent of k. Consequently, the pointer’s central

position doesn’t move, but merely broadens a bit. Its mean square deviation after

the interaction is the convolution of the initial spread Δ and the square root of the

number of spins:

√
Δ2 + N. Again, the state of the N spins is almost not perturbed.

In summary, weak measurements, as we recalled their formalization, allow one

to discriminate magnets pointing to any of the 4 directions ±z or ±x without signif-

icantly perturbing their quantum state.

Weak Measurements on N Half Singlets

Let Alice and Bob share N pairs of spins, each in the singlet state. Alice can chose

between measuring all her spins individually in the z- or in the x-directions, i.e. mea-

sure 𝜎z or 𝜎x on each spin. Adding all her results, on average she should find zero. But

in any run (a run consists of N measurement, one on each of her spins), she will find

a fluctuation, typically ±
√
N. Hence, Bob’s N spins will result in a magnetization

of about 𝜇 = ±
√
N in either the z- or the x-direction, depending on Alice’s choice.

If Bob could use weak measurements to determine this direction, there would be

signalling. How is it that signalling is impossible, despite the fact that Alice’s mea-

surement does indeed trigger an arbitrarily large magnetization on Bob’s side?

If 𝜇 is the magnetization, i.e. the difference between the number of spins up and

down along any direction, then one has
N+𝜇
2

spin up and
N−𝜇
2

spin down along that

direction. Assume first that this direction is the z-direction. Then, according to the

formalism recalled in the previous section “Weak Measurements as Classical Mea-

surements”, the pointer will move a distance 𝜇 without broadening and without per-

turbing the state of the N spins. Hence, the probability distribution of the pointer’s

position, condition on a magnetization 𝜇, reads:

𝜌

z(xp|𝜇) = |Φ(xp − 𝜇)|2 (6)

where the suffix z recalls that Alice measured her spins along the z-direction.

Since the probability of a magnetization 𝜇 is binomial: 2−N
(
N
j

)

, with j = N+𝜇
2

,

Bob’s pointer distribution reads:
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𝜌

z(xp) = 2−N
N∑

j=0

(
N
j

)

|Φ
(
xp − (2j − N)

)
|2 (7)

Next, assume that Alice chooses the x-direction, hence that the magnetization is

along the x-direction:

Ψx
in = | + x⟩⊗

N+𝜇
2

⊗ | − x⟩⊗
N−𝜇
2 (8)

where
1

| ± x⟩⊗n = 2−n∕2
n∑

j=0

√(
n
j

)

(±1)n−j|j, n⟩ (9)

Accordingly, in the z-basis Ψx
in reads:

Ψx
in =

N+𝜇
2∑

j=0

N−𝜇
2∑

k=0
cjk|j,

N + 𝜇

2
⟩⊗ |k,

N − 𝜇

2
⟩ (10)

where

cjk = 2N∕2
√( N+𝜇

2
j

)( N−𝜇
2
k

)

(−1)
N−𝜇
2 −k

(11)

The unitary system-pointer interaction results in:

U(Ψx
in ⊗ |q = 0⟩) = (12)

∑

j,k
cjk ⋅ |j,

N + 𝜇

2
⟩⊗ |k,

N − 𝜇

2
⟩⊗ |q = 2k + 2j − N⟩

Accordingly, the pointer’s position probability distribution obtains by tracing out the

N-spin system reads:

𝜌

x(xp|𝜇) =
jm∑

j=0

km∑

k=0
c2jk|Φ

(
xp − (2k + 2j − N)

)
|2 (13)

where jm = N+𝜇
2

, km = N−𝜇
2

and the suffix x recalls that Alice measured her spins

along the x-direction.

Note that the (−1)
N−𝜇
2 −k

sign in the expression of cjk in (13) cancels because only

the square of cjk appears in 𝜌(xp). Furthermore, the double sum in (13) can be reduced

1
Note that it is not necessary to symmetrize Ψx

in; indeed, the system-pointer interaction being sym-

metric, a symmetrized Ψx
in would lead to the same effect.
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to a single sum by using the identity
∑s

j=0

( N+𝜇
2
j

)( N−𝜇
2

s − j

)

=
(
N
j

)

and the con-

vention

(
k
j

)

= 0 for all j > k. For this purpose introduce the variable s = k + j and

rewrite the double
∑jm

j=0
∑km

k=0 =
∑jm+km

s=0
∑s

j=0:

𝜌

x(xp|𝜇) =

= 2−N
jm+km∑

s=j

s∑

j=0

(
jm
j

)(
km
s − j

)

|Φ
(
xp − (2s − N)

)
|2

= 2−N
N∑

s=0

(
N
s

)

|Φ
(
xp − (2s − N)

)
|2 (14)

Consequently, Bob’s pointer position distribution doesn’t depend on the magne-

tization 𝜇 and is rigorously equal to the case Alice measured along the z-direction;

this holds for all pointer’s state Φ(x), see (7).

This proves that Bob can’t get any information about Alice’s choice of measure-

ment direction. The reason is that when Alice choses the z-direction, Bob’s pointer

moves without any deformation by a random distance depending on Alice’s result,

i.e. depending on the magnetization 𝜇. If, on the other hand, Alice chooses the x-

direction, then the pointer’s central position doesn’t move, but the noise due to the

background spins broadens its distribution by precisely the amount required to make

it indistinguishable from the case of a z-direction measurement. In other words,

Bob’s magnetization 𝜇 ≈
√
N doesn’t consist of

√
N spins in the direction corre-

sponding to Alice’s measurement, but is smeared in a bath of N random spins with

a

√
N fluctuation in a the direction chosen by Alice. The large bath of random spins

in which Bob’s magnetization exists hides the information about Alice’s direction.

Note that this result is exact for any number N of spins and for any strength of the

measurement, i.e. any function Φ(x), in particular any Δ.

In summary, an arbitrarily large magnetic moment is not necessarily classical in

the sense that it might be fundamentally impossible to determine in which direction

it points.

Macroscopic Limit of Isotropic PR-Boxes

We just saw that quantum entanglement doesn’t allow for signaling, even in the case

when it allows one to prepare arbitrarily large magnetic moments at a distance. The

inavoidable noise is precisely sufficient to prevent any information transfer, just as

in quantum cloning [10] and general quantum dynamics [11, 12]. This raises the

question whether stronger than quantum correlations would lead to signaling when

large ensemble are considered.
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Let Alice and Bob share N noisy PR-boxes [13], with isotropic noise [3]. Denote

the inputs x, y ∈ {0, 1} and outcomes a, b = ±1. Hence, each PR-box has random

marginals and correlation

P(a ⋅ b = (−1)x⋅y|x, y) = V (15)

where the “visibility” V is the “pure PR-box weight”, V ∈ [0, 1].
As in the case of N singlets, consider the case where Alice measures all her boxes

with either the setting x = 0 or with all x = 1 (i.e. she inputs into all her boxes either

x = 0 or x = 1). In this way she prepares Bob’s ensemble of boxes at a distance. If

Bob measures all his boxes with the same input y and sums up all his outcomes, he

finds a fluctuation of the order ±
√
N around zero. If x ⋅ y = 0, then Alice and Bob’s

fluctuations are likely to be of the same sign; however, if x ⋅ y = 1, then they are

likely to be of opposite signs. So far, this is very similar to the N singlet case. But if

the noise is small enough for the correlations to be stronger than quantum, then one

may wonder whether signaling is still excluded.

At this point one would like to define weak-measurements for large ensemble of

PR-boxes. Indeed, as emphasized by Rohrlich [2], any physical box must be such that

when large ensembles are considered, then collective measurements of their global

“magnetization” should be feasible. Unfortunately, at present one doesn’t know how

to define the analog of weak measurements for ensembles of PR-boxes, a clear weak-

ness of today’s concept of PR-boxes. Nevertheless, it makes good sense to assume

that in the macroscopic limit of large enough N, the following two quantities on

Bob’s side can both be measured
2
:

By =
N∑

j=1
bj|y (16)

where bj|y is the outcome of Bob’s j-th PR-box when it gets the input y.

If the PR-boxes are noise-free, i.e. V = 1, when Bob could read Alice’s input x
from B0 and B1. Indeed, if x = 0, then B0 = B1, while if x = 1, then B0 = −B1.

But clearly, if the PR-boxes are noisy enough to be realizable with quantum

entanglement, i.e. if V ≤ 1
2
(1 +

√
1
2
) ≈ 0.85, then, as we have seen in the previous

section “Weak Measurements on N Half Singlets”, the assumption that B0 and B1
are jointly measurable doesn’t lead to signaling. Hence the natural question: “How

much noise should PR-boxes have to avoid signaling in the macroscopic limit?”.

We shall consider the limit of infinitely many PR-boxes and assume that, in this

limit, all 4 quantities A0,A1,B0,B1 can be measured simultaneously, where

2
Note that according to quantum theory B0 and B1 (i.e.

∑
j 𝜎

j
z and

∑
j 𝜎

j
x) can be measured simul-

taneously. Indeed, a weak measurement of B0 with a pointer’ spread of the order

√
N essentially

doesn’t perturb the quantum state, hence can be followed by a similar weak measurement of B1.

Both measurements provide pretty good information about B0 and B1, respectively. Note further-

more that this process can be extended to series of measurements, similarly to [9].
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Ax =
N∑

j=1
aj|x (17)

with similar notations for Alice’s aj|x.
Hence there exist a well defined (i.e. non-negative) probability distribution

P(A0,A1,B0,B1). This implies that the possibility for Bob to measure simultane-

ously B0 and B1 doesn’t lead to signaling. Indeed, the existence of a global proba-

bility distribution excludes violation of a Bell inequality, hence guarantees the exis-

tence of a local model [14]. This also establishes the connection with the concept of

macroscopic-locality [1].

In the limit of many PR-boxes, thanks to the central limit theorem, the probability

distribution P(A0,A1,B0,B1) is Gaussian, with zero mean:

P(A0,A1,B0,B1) = (18)

exp{−(A0,A1,B0,B1)K−1(A0,A1,B0,B1)t}

where the suffix t indicates the transpose and the correlation matrix is defined as

follows:

K ≡
⎛
⎜
⎜
⎜
⎝

⟨A0A0⟩ ⟨A0A1⟩ ⟨A0B0⟩ ⟨A0B1⟩

⟨A1A0⟩ ⟨A1A1⟩ ⟨A1B0⟩ ⟨A1B1⟩

⟨B0A0⟩ ⟨B0A1⟩ ⟨B0B0⟩ ⟨B0B1⟩

⟨B1A0⟩ ⟨B1A1⟩ ⟨B1B0⟩ ⟨B1B1⟩

⎞
⎟
⎟
⎟
⎠

(19)

with ⟨A0A1⟩ the correlation between A0 and A1 and similarly for all entries. K is

clearly symmetric.

The first entry is easy to evaluate: ⟨A0A0⟩ = ⟨
∑N

i, j=1 ai|0 ⋅ aj|0⟩. If i = j one has

ai|0 ⋅ aj|0 = 1. If i ≠ j, in the limit of largeN the average vanishes. Hence ⟨A0A0⟩ = N,

and similarly for all 4 diagonal terms of K.

The second entry ⟨A0A1⟩ can’t be evaluated without further assumptions. Hence,

let’s move to the next entry: ⟨A0B0⟩ = ⟨
∑N

i,j=1 ai|0 ⋅ bj|0⟩. If i = j,P(ai|0 ⋅ bj|0 = (−1)0⋅0

= +1) = V , hence ⟨
∑N

j=1 aj|0 ⋅ bj|0⟩ = N(2V − 1) ≡ Nv. If i ≠ j, in the limit of large

N the average vanishes. Hence ⟨A0B0⟩ = Nv. Similarly ⟨A0B1⟩ = ⟨A1B0⟩ = Nv and

⟨A1B1⟩ = −Nv.

Consequently, the correlation matrix reads:

K = N

⎛
⎜
⎜
⎜
⎝

1 s v v
s 1 v −v
v v 1 s
v −v s 1

⎞
⎟
⎟
⎟
⎠

(20)

where we assume ⟨A0A1⟩ = ⟨B0B1⟩ and define s ≡ ⟨A0A1⟩∕N = ⟨B0B1⟩∕N. Note

that one can prove that this symmetry assumption is not necessary to derive our

conclusion, though it is a very natural assumption.
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Now, the Gaussian probability P(A0,A1,B0,B1) is non-negative if and only if the

correlation matrix K is non-negative. The eigenvalues of K∕N are:

1 +
√
2v2 + s2 + 2vs (21)

1 −
√
2v2 + s2 + 2vs (22)

1 +
√
2v2 + s2 − 2vs (23)

1 −
√
2v2 + s2 − 2vs (24)

These must be non negative. Adding (22) and (24) one gets 2 ≥ 4v2 + 2s2. Hence,

1 − 2v2 ≥ s2 ≥ 0, thus v2 ≤ 1
2
, i.e.

v ≤ √
1∕2 (25)

which is Tsirelson’s bound (recall V = 1+v
2

) [15].

Hence, Tsirelson’s bound follows from the physical assumption that in the macro-

scopic limit all measurements are compatible and that this should not lead to sig-

nalling.

Extension to Asymmetric Noisy PR-Boxes

The result of the previous section can easily be extended to asymmetric

non-signalling boxes with arbitrary noise. It suffices to replace (18) by:

P(A0,A1,B0,B1) = (26)

exp{−( ̄A0, ̄A1, ̄B0, ̄B1) ̄K−1( ̄A0, ̄A1, ̄B0, ̄B1)t}

where ̄Ai ≡ Ai − ⟨Ai⟩ and ̄Bi ≡ Bi − ⟨Bi⟩ and the correlation matrix ̄K is constructed

as (19), but using the ̄Ai and ̄Bj instead of the Ai and Bj.

The non-negativity of ̄K is then equivalent to the first step in the hierarchy [16]

characterizing quantum correlations. It is known that, in general, this first step is

not sufficient to single out quantum correlations, hence—surprisingly—there are

stronger than quantum correlations that have a macroscopic non-signalling limit,

as emphasized in [17].

Conclusion and Open Problems

Large ensembles of small systems should be jointly measurable in some sort of

a macroscopic or classical limit. If not, they are not physical [2]. This is true as
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well for quantum systems as for systems described by any post-quantum theory. In

section “Weak Measurements onN Half Singlets” we illustrated this for large ensem-

bles of spin-
1
2

and showed that indeed, the quantum formalism of weak measurement

provides the tool to describe collective measurements and how they carefully are

just at the border of not violating the no-signaling principle. In the following section

we considered noisy PR-boxes, that is hypothetical boxes with stronger than quan-

tum correlations. In the case of isotropic noise and in the limit of infinitely many

boxes, we found that the assumption that all collective measurements are compati-

ble leads to non-physical signaling whenever the noise is weak enough for the boxes

to share correlations stronger than possible according to quantum theory; that is we

recovered Tsirelson’s bound. This is physically very nice, however one should be

able to get to this result without the N to infinity limit. Furthermore, in the case

of non-isotropic noise one doesn’t recover the quantum boundary (even in the limit

N → ∞), as already emphasized in [17]. This is absolutely remarkable and deserves

deeper investigation. In particular, there is an urgent need for a model of collective

measurements of large-but-finite ensembles of noisy PR-boxes.
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Chapter 19
The Dynamical Roles Played by Mass
and Proper Time in Physics

Daniel M. Greenberger

Introduction

If EPR (Einstein, Podolsky, and Rosen) had been correct in 1935, and “elements of
reality” actually existed, the subsequent history of quantum theory would have been
completely different, and much more conservative. But Bohr was right on this issue,
and Bell’s Theorem made the subject experimentally accessible. Bohr’s answer was
quite unintuitive, and so it took many experiments to convince most people. But
even then, it took a long time before it led to the modern revolution of information
technology. But after the initial challenge of EPR, who would have bet on how the
controversy would turn out? Furthermore, almost nobody cared, even though the
result is crucial to the interpretation and meaning of quantum mechanics.

I am going to present to you today another challenge to the usual theory, that
most people also won’t care about. If it is confirmed, it will have enormous con-
sequences, but, as Carl Sagan was fond of saying, “extraordinary claims require
extraordinary proof.” Only experiment can give you that. I can only offer plausi-
bility arguments at the present time. (I hope you won’t put it in the category “silly
claims require silly proofs.”)

One problem that I have always had with the standard physics formalism is with
the roles that are played by mass and proper time within it. Mass plays a dynamical
role in many problems, and yet it enters the formalism as a passive parameter. You
can’t do anything with it. In the formula E = mc2, E is an operator, and energy
states can be superposed, while m has no dynamical role at all.

If an atom decays from an excited state to its ground state, the energy of the atom
changes, and the interaction provides the mechanism for this to happen. But nothing
happens to the mass. If you need to keep track of the changing mass in this case,
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you can enter it by hand. But there ought to be some kind of interaction mechanism
that automatically keeps track of the changing mass. It should enter the formalism
as a dynamical variable, and there should be an equation of motion for it, to keep
track of these things [1–9].

For this to be so, the mass should be defined as the energy in the center of mass
(barycentric) frame. That way, it will keep track of changes in binding energies.
Also, if the energy is uncertain, and has a spread ΔE, then the mass will have a
spread Δm. So even if you know, say, that the particle is a free electron, the mass
will not necessarily be me, the mass that appears in the free particle Dirac Equation.
We call that the “nominal mass” of the particle. The actual mass will include
binding energies and uncertainties.

If m plays the role of a dynamical variable, then what will be its conjugate
variable? The obvious candidate is the proper time of the particle. In the standard
formalism the proper time is defined geometrically, by

dτ2 = dt2 − dx2,

within special relativity (throughout the paper we will take c = 1, unless otherwise
stated), and there is no room for it to be a dynamical variable. So if it is to be
considered as a dynamical variable, this equation, or equivalently,

τ ̇=
ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p
,

must follow as an equation of motion, which can be changed with an appropriate
interaction. We will consider the proper time of a particle to be the time read by a
clock in the rest frame of the particle, and it will be subject to uncertainties.

The Hamiltonian Formalism

The Hamiltonian formalism is perfectly suited to bring out the meaning of this new
addition to dynamics. A particle normally is described by a set of dynamical
variables, x, the position, and p, the momentum, the conjugate variable. Generally
the Hamiltonian will be the energy of the particle. Then the Hamiltonian will be

H =Hðx, pÞ.

The equations of motion are

x ̇≡ v=
∂H
∂p

, p ̇= −
∂H
∂x

.

The meaning of these equations are that if space is homogeneous, i.e., the
Hamiltonian does not depend on x, then p will be conserved. But if there is a
potential that depends on x, it will induce forces that will change the momentum.
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Similarly, we now include the two new dynamical variables τ and m, and the
Hamiltonian and equations of motion become

H =Hðx, p; τ,mÞ,
x ̇=

∂H
∂p

, p ̇= −
∂H
∂x

,

τ ̇=
∂H
∂m

, ṁ= −
∂H
∂τ

.

In a likewise manner, if H does not depend on τ, space is homogeneous in τ and
the mass will not change. This is the usual situation in mechanics and in special
relativity.

However if H does depend on τ, then the particle can decay, and change its mass,
even classically. So here is a natural extension of the classical theory, and the theory
automatically accommodates to a changeable mass. This is a totally new role for
dynamics, and with the correct Hamiltonian the particle can react to the physical
situation and, for example, pick up an addition to its mass that responds to, say, a
change in the binding energy. Also, the particle can decay into a lighter one. And it
becomes possible to have coherent superpositions of masses, which can happen in
relativity, but again it does not automatically get produced by the formalism. But
also, there will be an equation of motion for τ ̇, which then becomes more general
than the geometrical prescription it usually has, and it can display more physical
properties.

As a very simple example, consider the case of a free particle. Here, the
Hamiltonian will be the usual one

H =Hðp;mÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 +m2

p
,

x ̇= v=
∂H
∂p

=
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 +m2
p , or p =

mvffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p ;

τ ̇=
∂H
∂m

=
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 +m2
p =

ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p
.

So we see that τ ̇ obeys the usual equation, not as a constraint, but as an equation
of motion, that comes from the form of the Hamiltonian. In this simple case, m is
constant, and there is no modification to the behavior of τ. But notice that m no
longer plays the role of an external parameter, but is as intrinsically dynamical as is p.

To see how a particle can classically decay, take the simple case where a particle
decays from some initial m0 to some final mf, by an exponential decay,
m=mf +Δe− γτ, where mf is a stable state, and Δ≪mf . The decay is a f (τ), not
a f (t), because it is known experimentally that if it decays in a moving system, there
will be a time dilatation effect. This decay is a low energy one, like an atom
decaying into its ground state. Imagine that the decay is caused by some potential,
φ(τ). Then
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H =m+mφðτÞ=mf .

H will be a constant, since there is no direct t dependence. So we have

m=
mf

1+φ
=mf +Δe− γτ,

φ=
1

1+ Δ
mf
e− γτ

− 1≈−
Δ
mf

e− γτ.

We can solve for τ as a function of t, and we get

τ ̇=
∂H
∂m

=1+φ=
1

1+ Δ
mf
e− γτ

,

τ+
Δ
mf γ

1− e− γτð Þ= t.

Here we have set τ = 0 at t = 0, and we see that as

t→∞, t− τ→
Δ
mf γ

, t> τ.

So even though the particle is at rest, τ ≠ t. So there is a decay time delay on τ.
One can make this plausible by making a model of the particle as a damped
oscillator which, even though it is at rest on average, is moving back and forth
while decaying, and so its proper time is slowly falling behind (one gets the same
order of magnitude effect). But here it is a general phenomenon associated with all
decays, and one need not concoct a specific model.

However we see here a general and surprising phenomenon. The potential φ acts
here just like a gravitational potential, and so there is a second and extremely
important role for gravity. When the gravitational potential depends on τ as well as,
or instead of, on x, it acts as a mechanism causing particles to decay. Thus besides
its usual role of bending space to cause the usual gravitational attraction, it also
distorts proper time, and causes particles to decay. This is the unexpected con-
nection of gravity to the other forces of physics, and it implies that one will have to
rethink and extend general relativity, especially if one wants to quantize it.

The Uncertainty Principle Between Mass and Proper Time

Once one quantizes a system of particles, one is confronted by the fact that there
must be an uncertainty principle between conjugate variables. This would imply
that one cannot measure both the proper time (the reading of a clock in the rest
system of the particle) and its mass at the same time. This shows that the mass
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cannot mean the nominal mass of the particle, but the dynamical mass associated
with the given experimental arrangement. In fact, this is true, and we can illustrate it
with countless examples, both gravitational and non-gravitational. A simple grav-
itational example would be the following.

One wants to measure the mass of a light particle by gravitationally scattering it
off a much heavier particle. The situation is shown in Fig. 19.1.

The mass m is located at r, and the distance of closest approach is a. The
gravitational force on m is F = GmM/r2, and the momentum px it picks up will beR
Fxdt = px. Most of the force will be exerted in the region where |φ| < 45°, and so

px ∼
GMm
a2

2a
v
, Δpx ∼

2GM
av

Δm.

Even if the velocity is perfectly known asymptotically, a clock sitting on m will
be uncertain, because if the distance a is not perfectly known, then the gravitational
potential on m, φ, will also be unknown to that extent, and will affect the accuracy
of the clock on m. So

Δτ∼
φ

c2
Δt∼

φ

c2
2Δa
v

∼
GM
ac2

2Δa
v

.

So that finally, one has

ΔpxΔx∼
2GM
av

Δm
ac2v
2GM

Δτ∼ c2ΔmΔτ∼ℏ.

If one believes in the uncertainty relation for the other conjugate variables, one
cannot avoid it for m and τ.

A second simple example, which does not depend on gravity, is the attempt to
measure the mass of a charged particle by passing it through a thin slit, and into an
opposing electric field, and measuring how far it travels before coming to rest. The
situation is shown in Fig. 19.2.

A particle with known velocity v0 and mass m, charge e, enters a slit, and is
brought to rest by an opposing field E, in distance L. The distance it takes to come
to rest is

Fig. 19.1 Mass-Proper Time Uncertainty. The mass m is measured by gravitationally scattering it
off a much larger massM. The distance of closest approach is a, mass m is located at r, and θ is the
scattering angle.
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L=
eE
2m

T2, ΔL=
eE
m

TΔT =Δx.

Since v0 is accurately given, the momentum will be

p= v0m, Δp= v0Δm,

and so

ΔxΔp∼ℏ∼
eE
m

TΔTv0Δm.

Now v0 = aT = (eE/m)T, and

τ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2 c̸2

p
T , Δτ∼

v2

c2
ΔT , and

ΔpΔx∼ v20ΔmΔT ∼ c2ΔmΔτ∼ℏ.

In this case, τ is determined by special relativity, while in the previously case it
was determined by the gravitational potential of general relativity.

These examples depend on the usual uncertainty principles, but it would be nice
to find an example that could show the effect of the mass and proper time as
dynamic operators in a much more spectacular and convincing way. Our candidate
for such an experiment is to find a system that can be broken into N parts, with
equally spaced energies, like a spin in a magnetic field, and to break the system up,
and after some time T to coherently recombine it. Then the masses of each part
would be

c2mn =E0 + nε, n=0, 1, . . . ,N − 1.

The proper time, if the particle states are separated such that each part has the
same momentum (i.e., each has the same probability of absorbing the momentum of
an incident exciting photon),

Fig. 19.2 Mass-Proper Time
Uncertainty Without Gravity.
A particle enters the slit,
encounters an electric field E,
and is brought to rest at
distance L.
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τn = t−
v2n
2c2

t, vn =
p
mn

=
c2p
E0

1−
nε
E0

� �
,

τn = t 1−
c2p2

E2
0

1−
2nε
E0

� �� �
= τ0 + nκt, κ=

2c2p2ε
E3
0

.

So the proper times are equally spaced, and when the beams are brought toge-
ther, the energy differences will be removed, and the wave function will become

ψ = ∑ψ0e
− iE0τn ℏ̸ =ψ0e

− iE0τ0 ℏ̸ ∑ e− niE0κτ0 ℏ̸

=ψ0e
− iE0τ0 ℏ̸ ∑ e− inωt =ψ0e

− iE0τ0 ℏ̸ sin
2 Nωt 2̸

sin2 ωt 2̸
.

where we have ω=E0κτ0 ℏ̸. So we have in effect a diffraction pattern in proper
time.

Now if the original set of states were slowly decaying, due to some other cause,
the graph of the envelope of ΨðtÞj j2 will look like that below (Fig. 19.3).

So experimentally, one would only see decays during the brief periods when all
the different segments of ψ were in phase, a pretty convincing demonstration of the
dynamical properties of proper time.

There are many other aspects to the dynamical behavior of proper time and mass,
but one hopes that this shows that the inclusion of these variables into the
dynamical aspects of the theory would prove to introduce a whole range of
unexpected behavior to the mechanics of particles. We also believe that the
implications of gravity playing a dynamical role, by being responsible for particle
decays, will provide a big clue for how to include gravity into the general scheme of

Fig. 19.3 Truncated decay times due to coherent proper time interference. Due to the coherent
adding of wave-functions with different proper times having elapsed, the overall effect is that of a
diffraction pattern in proper time, and the particle can decay only in those brief periods when the
various parts are in phase, during the circled periods in the graph. Without this coherence, the
decay graph would be the dotted line.
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the other forces. Our contention is that the failure to find a straightforward quan-
tized theory of gravity is not due to the mathematical complexities of the problem,
such as non-linearities, but rather to the failure to recognize this as a physics
problem, even at the simple level of the equivalence principle.
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Chapter 20
On Spatial Entanglement Wave Functions

Michael Horne

There exists tension between two of Bell’s papers collected in Speakable and
Unspeakable in Quantum Mechanics [1]. Paper 2, the 1964 inequality paper [2],
employs Bohm’s 1951 entanglement of spin states [3] instead of EPR’s original
1935 entanglement of spatial wave functions [4]. Moreover, earliest [5], improved
[6], and most other experimental violations of Bell’s inequality, have employed
spin-like entanglements, specifically polarization-entangled photon pairs. But in the
“Generalization” section of paper 2 Bell argues that the shift from EPR to Bohm is
of no significance because “we can always consider two-dimensional subspaces” in
each particle’s Hilbert space. In 1986, in paper 21, Bell returns to the EPR state and
argues [7] that “there is no non-locality problem” with this state because it has a
non-negative Wigner distribution. Does the EPR state pay inadequate attention to
suitable two-dimensional subspaces? Is the non-negativity of a Wigner distribution
an inadequate test of the absence of a locality problem? I haven’t resolved this
tension, but I do wish to propose it as a research project.

Bell’s motivation for shifting from Bohm back to EPR comes partly from a 1985
explicit, but still gedanken proposal [8] for a Bell experiment with linear
momentum entanglement instead of polarization entanglement. Such gedanken
arrangements, known as two-particle interferometers [9], became realizable as
down-conversion replaced atomic cascades as the primary source of entangled
photon pairs; absence of the residual atom provides strong correlation in the
magnitude and/or direction of the pair’s momenta. Prototypical two-particle inter-
ferometers are either two-particle Mach-Zehnder type or two-particle double-slit
type, and hence emphatically require two spatial dimensions to set up. (The one
violation of Bell’s inequality produced via spatial entanglement employed a
two-particle Mach-Zehnder-type setup [10].) The original EPR spatial entanglement
is emphatically in one spatial dimension. Does the number of spatial dimensions
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enter into creating (and resolving) the tension? On the one hand, interferences made
possible by having two spatial dimensions play a pivotal role in violating Bell’s
inequality, with the relative phase of two paths playing the role of the orientation of
the Stern-Gerlach magnet [linear polarizer] in a spin [polarization] experiment. On
the other hand, couldn’t one contemplate a two-particle Fabry-Perot type setup and
hence work in one spatial dimension?

It is noteworthy in paper 21 that Bell only shows positiveness of the Wigner
distribution for the raw or initial EPR state. He doesn’t address what effects
complicated manipulations of the EPR state might have on the initially positive
Wigner distribution, specifically, manipulations with beamsplitters and mirrors
which bring two of the EPR momenta of each particle to interference. However, in
the single spatial dimension of the EPR state, the only two different momenta for a
particle are two that differ only in magnitude (or sign). Therein may lay the
importance of having at least two spatial dimensions: the existence of two momenta
of equal magnitude but different direction (other than simply opposite).

To prepare for an investigation of the behavior of Wigner’s distribution in
two-particle interferometry, first review (or create) the basic elements (i.e. defini-
tion) of two-particle Wigner distributions [11]. To expose the behavior and evo-
lution of the distribution in the context of, say, a double-slit-type interferometer,
first compute the time-independent Wigner distribution in the region between the
source and the two double slits, then in the region close behind the double slits
where the wave functions haven’t yet crossed, and finally in the region where they
do cross, e.g. on the surfaces of the two receiving planes where the two-particle
fringes reside. Which, if any, of these Wigner distributions are everywhere posi-
tive? Which, if any, are not? Did the double double-slits change the former into the
latter?

To summarize, spatial entanglements that violate Bell’s inequality confirm the
“Generalization” section of Bell’s paper 2. But these spatial entanglement experi-
ments also suggest that paper 21 is misleading, or incomplete, or both. An inves-
tigation is called for.
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Chapter 21
Analysing Multiparticle Quantum States

Otfried Gühne, Matthias Kleinmann and Tobias Moroder

Abstract The analysis of multiparticle quantum states is a central problem in quan-

tum information processing. This task poses several challenges for experimenters

and theoreticians. We give an overview over current problems and possible solu-

tions concerning systematic errors of quantum devices, the reconstruction of quan-

tum states, and the analysis of correlations and complexity in multiparticle density

matrices.

Introduction

The analysis of quantum states is important for the advances in quantum optics and

quantum information processing. Many experiments nowadays aim at the genera-

tion and observation of certain quantum states and quantum effects. For instance,

in quantum simulation experiments thermal or ground states of certain spin mod-

els should be observed. Another typical problem is the demonstration of advanced

quantum control by preparing certain highly entangled states using systems such

as trapped ions, superconducting qubits, nitrogen-vacancy centers in diamond, or

polarized photons.

All these experiments require a careful analysis in order to verify that the desired

quantum phenomenon has indeed been observed. This analysis does not only con-

cern the final data reported in the experiment but in fact, many more questions have

to be considered in parallel. Did the experimenter align the measurement devices

correctly? Have the count rates been evaluated properly in order to obtain the mean

values of the measured observables? Such questions are relevant and, as we demon-

strate below, ideas from theoretical physics can help the experimenters answer them.
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Fig. 21.1 The analysis of many experiments in quantum physics can be divided into several steps,

from the experimental procedures to the verification of quantum mechanical properties of the gen-

erated states.

Many experiments in quantum optics can be divided in several steps (see also

Fig. 21.1). In the beginning, some experimental procedures are carried out and mea-

surements are taken. The results of the measurements are collected as data. These

data are then processed to obtain a quantum state or density matrix 𝜚, which is often

viewed as the best description of the “actual state” generated in the experiment. This

quantum state can then be further analysed, for instance, its entanglement properties

may be determined.

In this article, we show how ideas from statistics and entanglement theory can

be used for analysing the transitions between the four building blocks in Fig. 21.1.

First, we consider the transition from the experimental procedures to the data. We

show that applying statistical tests to the data can be used to recognize systematic

errors in the experimental procedures, such as a misalignment of the measurement

devices. Then, we consider the reconstruction of a quantum state from the exper-

imental data. We explain why many frequently used state reconstruction schemes,

such as the maximum-likelihood reconstruction, lead to a bias in the resulting state.

This can, for instance, result in a fake detection of entanglement, meaning that the

reconstructed state is entangled, while the original state, on which the measurements

were carried out, was not entangled. We also show how such a bias can be avoided.

Finally, we discuss the characterization of quantum states on a purely theoretical

level. Assuming a multiparticle density matrix 𝜚 we show how its entanglement can

be characterized and how the complexity of the state can be quantified using tools

from information geometry and exponential families.

Systematic Errors in Quantum Experiments

In this first part of the article, we discuss what assumptions are typically used in

quantum experiments. The violation of these assumptions leads to systematic errors

and we show how these systematic errors can be identified using statistical methods

and hypothesis tests.
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Assumptions Underlying Quantum Experiments

Before explaining the assumptions, it is useful to discuss a simple example. Con-

sider a two-photon experiment, where a quantum state should be analysed by per-

forming state tomography. For that, Alice and Bob have to measure all the nine pos-

sible combinations of the Pauli matrices 𝜎i ⊗ 𝜎j for i, j ∈ {x, y, z}. In practice, this

can be done as follows: Alice and Bob measure the three Pauli matrices 𝜎x, 𝜎y, 𝜎z
by measuring the polarization in different directions, getting the possible results +
and −. These results correspond to the projectors on the eigenvectors of the observ-

able. By combining the results, they obtain one of four possible outcomes from

the set {++,+−,−+,−−}. The measurement is repeated N times on copies of the

state, where the outcome ++ occurs N++|ij times etc. From that, one can obtain

the relative frequencies F++|ij = N++|ij∕N and estimate the expectation values as

⟨𝜎i ⊗ 𝜎j⟩exp = (N++|ij − N+−|ij − N−+|ij + N−−|ij)∕N. In addition, the expectation val-

ues of the marginals 𝜎i ⊗ 𝜎0 (here and in the following, we set 𝜎0 = 1) can be deter-

mined from the same data. Given all the experimental results, Alice and Bob may

then reconstruct the quantum state via the formula

�̂� = 1
4

∑

i,j∈{0,x,y,z}
𝜆ij𝜎i ⊗ 𝜎j, where 𝜆ij = ⟨𝜎i ⊗ 𝜎j⟩exp. (1)

This simple quantum state reconstruction scheme is often called linear inversion.

It assumes that the observed frequencies equal the probabilities, we will discuss its

advantages and disadvantages below. For the moment, we just use it as an example to

illustrate the definitions and discussion concerning systematic errors in experiments.

Now we can formulate the assumptions that lead to the statistical model typically

used in quantum experiments. We consider a scenario where one actively chooses

between different measurements (e.g., the 𝜎i ⊗ 𝜎j), each having a finite number of

results. We use the label s to denote the measurement setting and r to denote the

result. It is important to note that, if in an experiment using the setting s one registers

the result r, then this outcome r|s is not just treated as a classical result. In addition,

each outcome is tied to an operator Mr|s (e.g., the projectors onto the eigenstates

corresponding to the results {++,+−,−+,−−} of 𝜎i ⊗ 𝜎j) that serves as the object

to compute probabilities within quantum mechanics: If the underlying quantum state

is characterized by the density operator 𝜚, then the probability to observe r|s is given

by P(r|s; 𝜚) = tr(𝜚Mr|s). Therefore, this quantum mechanical description is one of

the essential ingredients to connect the observed samples with the parameters of

the system that one likes to infer. Knowledge about this description can come from

previous calibration measurements or from other expertise that one has acquired with

the equipment. But one thing should be obvious: If one assumes a description Mr|s,

which deviates from the true description in the experiment ̃Mr|s, then things can go

terribly wrong and these type of errors are the ones that we like to address in the

following.
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Clearly, such deviations are presumably present in any model, but they are usu-

ally assumed to be small. However, considering the increased complexity of present

experiments, one can ask the question, whether or not these deviations show up sig-

nificantly in the data. Well known examples, like different detection efficiencies or

dark-count rates in photo-detectors or non-perfect gate fidelities for single-qubit rota-

tions preceding the readout of a trapped ion, could support this scepticism. However,

these effects are hardly ever considered in the description of Mr|s.

Let us complete the list of assumptions. Most often each experiment of setting

s is repeated N times, which are assumed to be independent and identically dis-

tributed trials. So one further assumes that one always prepares the same quantum

state 𝜚, measures the same observables Mr|s, and that both are completely indepen-

dent.
1

Clearly, also in all these steps there can be errors, for instance, due to drifts in

the measuring devices or dead-times in detectors coming from previous triggering

events. However, if everything works as planned, then it is not necessary anymore to

keep track of the individual measurement results, since every information that can

be inferred about the state parameters is already included in the count rates Nr|s of

the individual measurement results r|s. Their probability is then given by a multino-

mial distribution Mult[N,P(r|s; 𝜚)] for each setting, which is the distribution char-

acterizing N repetitions of independent trials. Here, the single event probabilities

P(r|s; 𝜚) = tr(𝜚Mr|s) are calculated according to quantum mechanics and these are

the only parameters that depend on the quantum state.

Finally, the whole collection of distributions for all measurement settings is the

exact parametric model used for most quantum experiments. These distributions are

given by the set

QM =
{
P({Nr|s}r,s; 𝜚) =

∏

s
Mult

[
N, tr(𝜚Mr|s)

]
, for all 𝜚 with 𝜚 ≥ 0, tr(𝜚) = 1

}
,

(2)

and the observed probabilities are assumed to be an element of this set. In the fol-

lowing, we discuss how the validity of this model can be tested.

Testing the Assumptions

How can one test in this framework whether the assumed measurement description

is correct for the experiment? As a first try, we could intersperse the experiment with

test measurements, in which one prepares previously characterized states. But such

an option seems very cumbersome, independent of problems like how to characterize

the test states in the first place and to ensure that they are well prepared in between

1
This means that both, measurements and states are described by the corresponding N-fold tensor

products. While such a property can be inferred for the states with the help of the de Finetti the-

orem [1], one should be aware that its exchangeability requirements do not apply to experiments

where one actively measures first all the s = 1 measurements, followed by all s = 2 measurements

and so on.
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the true experiment. In contrast, we want to do it more directly and this becomes

possible, at least partially, by exploiting that quantum states only allow a restricted

set of event probabilities.

Let us first discuss the idea for the case where one has access to the true event

probabilities P0(r|s) which can be attained from the relative frequencies Fr|s =
Nr|s∕N → P0(r|s) in the limit N → ∞. We want to know whether these observed

probabilities are at all compatible with the assumed measurement description. This

boils down to the question whether there exists a quantum state 𝜚0 with P0(r|s) =
tr(𝜚0Mr|s) for all r, s. Since quantum states must respect the positivity constraint

𝜚 ≥ 0, not all possible probabilities are accessible: For instance, if one measures a

qubit along the x, y, z directions, its corresponding probabilities will be constrained

by the requirement that the Bloch vector must lie within the Bloch ball. To make

this more general, assume that we have a certain set of numbers wr|s such that the

observable
∑

r|s wr|sMr|s ≥ 0 has no negative eigenvalues and is, therefore, positive

semidefinite. If the probabilities P0(r|s) can indeed by realized by a quantum state,

one has

w ⋅ P0 ≡
∑

r,s
wr|sP0(r|s) =

∑

r,s
wr|str(𝜚0Mr|s) = tr[𝜚0

(∑

r,s
wr|sMr|s

)
] ≥ 0, (3)

where the inequality holds because both operators are positive semidefinite. Thus, if

everything is correct one must get a non-negative value forw ⋅ P0 ≥ 0. Consequently,

whenever one observesw ⋅ P0 < 0, one knows that something must be wrong and that

the description of the measurements Mr|s has some flaws. This type of inequalities is

similar in spirit to Bell inequalities for local hidden variable models or entanglement

witnesses for separable states [2, 3]. Let us point out that the above inequalities

are necessary and sufficient. So, indeed any P0(r|s) which cannot originate from

a quantum state, can be detected by appropriately chosen coefficients wr|s by w ⋅
P0 < 0 [4]. Finally, we add that besides the positivity, some other constraints for

the measurement description are conceivable. For instance, in the example of state

tomography from above, the marginal ⟨𝜎x ⊗ 𝜎0⟩ should not depend on whether it has

been derived from the measurement 𝜎x ⊗ 𝜎x or 𝜎x ⊗ 𝜎y. This can be formulated as

a linear dependency of the form
∑

r,s wr|sMr|s = 0 and the corresponding constraint

even becomes an equality w ⋅ P0 = 0.

Note that, with this test we ask the question whether the data P0(r|s) fit at all to

the assumed measurement model Mr|s. But it should be clear that this approach can

never serve as a proof that everything is correct in the experiment. For example, one

can consider again the Bloch ball, where the measurement model assumes perfectly

aligned measurements in the x, y, z directions, but in the true experiment one mea-

sures in slightly tilted directions which distorts the resulting Bloch ball. All states

from this tilted Bloch ball, which lie outside the standard sphere, will be detected

by the above method as being incompatible with the assumed model. For all other

states, however, we do not see the difference because they are still consistent with

the model.
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Finally, let us address the point that we only collect count rates in the experiment.

Since the relative frequencies Fr|s are only approximations to the true probabilities

P(r|s), it is clear that a similar inequality as Eq. (3) does not need to hold anymore for

w ⋅ F, even if everything is correct. One would expect, however, that larger negative

values are much less likely. This is indeed the case and is made more quantitative

via Hoeffding’s inequality [5].

This inequality states the following: Consider N independent, not necessarily

identically distributed, bounded random variables Xi ∈ [ai, bi]. Then the sample

mean ̄X =
∑

i Xi∕N satisfies

Prob[ ̄X − 𝔼( ̄X) ≤ −t] ≤ exp
( −2t2N2
∑

i(bi − ai)2
)

(4)

for all t > 0, where 𝔼( ̄X) denotes the expectation value of ̄X. In practice, the main

statement of this inequality is that forN independent repetitions of an experiment, the

probability of deviations from the mean value by a difference t scales like exp(−t2N).
It is important to stress that this result uses no extra assumptions, like N being large,

at all.

For our case, we can use Hoeffding’s inequality to bound the probability of

observing data that violate positivity constraints as in Eq. (3). More precisely, we

can derive the following statement [6]: For all distributions compatible with quan-

tum mechanics, the probability to observe frequencies {Fr|s}r,s such that w ⋅ F < −𝜀
is bounded by

ProbP
[
w ⋅ F < −𝜀

] ≡ ∑

{nr|s}r,s∶
w⋅F<−𝜀

P({nr|s}r,s) ≤ exp
(
− 2𝜀2N

C2
w

)
, for all P ∈ QM (5)

with C2
w =

∑
s(wmax|s − wmin|s)2 and wmax|s, wmin|s being the extreme values of

{wr|s}r. Again, this can be interpreted as showing that if everything is correct, then

the probability of finding a violation of the positivity constraint is exponentially sup-

pressed.

We can use this statement as follows: Suppose that we should reach a conclusion

whether the observed data are “compatible” or “incompatible” with our assumed

model. Of course, if we say “incompatible”, we do not want to reach this conclusion

too often, if indeed everything is perfect. For definiteness, we may assume that the

probability of claiming incompatibility if everything is correct should be at maxi-

mum 𝛼 = 1%. We then use Eq. (5) to deduce the threshold value that we need to

beat, 𝜀
𝛼

=
√

C2
w| log(𝛼)|∕2N. If we now carry out the experiment and register click

rates with w ⋅ F < −𝜀
𝛼

, we know that there was at most a 𝛼 = 1% chance that we

would have registered such badly looking data, if everything is correct. Since this
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would be really bad luck we would rather say “incompatible”, and assume that some

systematic error was present.
2

In practice, this test can be used to detect systematic errors in various scenarios:

In ion trap experiments, a typical systematic error comes from the cross talk between

the ions, i.e. the fact that a laser focused on one ion also influences the neighbouring

ions. This phenomenon can be detected with the presented method [6]. The second

application are Bell experiments: In these experiments, the choice of the measure-

ments on one party should ideally not influence the results of the other party and

a violation of this condition completely invalidates the result of a Bell test. Again,

this non-signalling condition can be formulated as linear constraints on the probabil-

ities and this can be tested with the presented method. In all these applications, the

determination of the vector w characterizing the positivity constraint or the linear

constraint can be done as follows: One splits the observed data into two parts. From

the first part one determines the w leading to the maximal violation of the respective

constraint for the first half. Then, one applies this w as a test to the second part of

the data. If the violations of the constraint are only due to statistical fluctuations, the

respective w for the two parts of the data are uncorrelated and the test will not find a

significant violation of the constraint.

Let us point out that the mathematical framework just described is called a hypoth-

esis test [7], in which one tests the null-hypothesis N0: “compatible”, against the

alternative A: “incompatible”. The special property of such a test is that there is

an asymmetry about the two types of errors that can occur. As already explained,

our concern is that, when saying “incompatible”, then this statement is more or less

correct. The other error can occur when we respond “compatible” to incompatible

data. Naturally, this error characterizing the detection strength of our test, ideally,

should also be made small. However, it is not possible to reduce both errors equally

simultaneously. Nevertheless, since we cannot detect all possible systematic devia-

tions from the assumed model, anyway, one should not be too euphoric about the

statement “compatible” in this sense.

Note that, while the presented test has been build up by first deriving specific

inequalities for event probabilities and then equipping it with the necessary statis-

tical rigour to arrive at an hypothesis test, one can also take the other direction, by

using techniques which are known to be good for hypothesis tests and apply them to

the special statistical model of the quantum experiments. We have done this for the

so-called generalized likelihood-ratio test [7] and details can be found in Ref. [6].

Finally, other tests for systematic errors can be found in Refs. [8–10].

2
Since one typically likes to leave the choice of appropriate levels of 𝛼 to the reader one can also

report the p-value [7] of the observed data: It is the smallest 𝛼 with which we would have still said

“incompatible” with the test.
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Performing State Tomography

In the previous section, we have seen that care has to be taken when making the

measurements on the quantum system. In this section, we show that the interpretation

of tomographic data, such as the reconstruction of the quantum state, has to be done

with care, too. Otherwise, one introduces yet another class of systematic errors.

Problems with State Estimates

We are used to summarize experimental data by an estimate together with an error

margin. In quantum state tomography this corresponds to an estimate for the density

matrix together with an error region. So, the first question is how one can obtain

an estimate �̂� for the experimentally prepared density matrix 𝜚exp from the observed

frequencies Fr|s. The simplest approach is to use linear inversion, that is, the method

given in Eq. (1). This has, however, at first sight some disadvantages: Due to statis-

tical fluctuations the observed frequencies are not equal to the true probabilities and

this leads to the consequence that the reconstructed “density matrix” will typically

have some negative eigenvalues. This makes the further analysis of the experiment,

e.g. the evaluation of entanglement measures, not straightforward. In order to cir-

cumvent this, one often makes a density matrix reconstruction by setting

�̂� = argmax
𝜎≥0  (Fr|s, 𝜎). (6)

Here, one optimizes a target function  over all density matrices 𝜎 and the optimal 𝜎

will obviously be a valid density matrix. Examples for this type of state reconstruc-

tion are the maximum-likelihood reconstruction or the least-squares reconstruction,

both are frequently used for experiments in quantum optics.

An important property of such an estimator is the question whether it is biased or

unbiased. This means the following: The underlying state 𝜚exp leads via the multino-

mial distribution to a probability distribution over the frequencies Fr|s. The estimator

�̂� is a function from the observed data (the frequencies Fr|s) to the state space. In

this way, the original state 𝜚exp induces a probability distribution over the estimators

�̂�, and one can ask whether the expectation value of this equals the original state,

𝔼[�̂�]
?
= 𝜚

exp
. If this is the case, the estimator is unbiased, otherwise it is biased. It

must be stressed, however, that biased estimators are not necessarily useless or bad,

as it all depends on the purpose the estimator is used for.

For quantum state reconstruction one can prove the following: Any state recon-

struction scheme that yields a density matrix from experimental data will be biased,

i.e., on average, the reconstructed state �̂� will not be the state used in the experiment,

𝔼[�̂�] ≠ 𝜚

exp
. A proof of this statement was given in Ref. [11], but the following exam-

ple demonstrates that the problem in finding an unbiased estimator comes from the

fact that the quantum mechanical state space is bounded by the positivity constraint.
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Fig. 21.2 Demonstration of the bias for different state estimators. A given state 𝜚exp having 80 %

fidelity with the GHZ state was used to sample the distribution of the estimator �̂� in state space,

and from these samples the fidelities with the GHZ state were computed. The maximum-likelihood

(ML) and least-square (LS) estimators clearly underestimate the fidelity, while the linear inversion

(LIN) is unbiased. The figure is taken from Ref. [11].

Consider a coin toss where we are interested in the modulus of the difference between

the probability of obtaining heads or tails, Δ = |ph − pt| = 1 − 2min{ph, 1 − ph}.

This quantity cannot be negative, so also an estimator should not be negative. Let

us assume that an estimator ̂Δ is unbiased, 𝔼[ ̂Δ] = Δ
exp

. Then, for any experimental

data that could come from a fair coin (Δ
exp

= 0) we cannot have ̂Δ > 0 since this

would imply 𝔼[ ̂Δ] =
∑

k(1∕2)n(
n
k ) ̂Δ(k) > 0, where k denotes the number of occur-

rences of heads. On the other hand, any possible number of heads and tails is com-

patible with a fair coin. So, the estimate ̂Δ for any data must be 0. Then in particular

𝔼[ ̂Δ] = 0, which means that ̂Δ is a biased estimator whenever the coin is not fair.

Apart from this theoretical argument, the question arises whether this effect plays

a significant role in practical quantum state reconstruction. Unfortunately, this is

the case and this effect can causes substantial fidelity underestimation or spurious

entanglement detection in realistic scenarios [11]. This problem applies to the estab-

lished schemes for reconstructing a density matrix, in particular to the maximum-

likelihood method [12] and the constrained least-squares method [13]. So, how large

is the bias? For example, in a tomography of a four-qubit GHZ state with fidelity

0.8, when reconstructing from a total number of 8100 samples, the state from a

maximum-likelihood estimate has a fidelity of 0.788 ± 0.010 [11], i.e., the fidelity

is systematically underestimated (see also Fig. 21.2). Such an underestimation may

be considered to be unfortunate, but acceptable. However, it was also demonstrated

that maximum-likelihood and least-square methods tend to overestimate the entan-

glement. In fact, for a clearly separable state the reconstructed states can be always

entangled, thus leading to spurious entanglement detection [11]. This is not accept-

able for many experiments.

A way to avoid the bias is to accept that the reconstructed density matrix is

not always a valid quantum state and can have negative eigenvalues. The simplest

unbiased method is linear inversion explained above. More generally, if Mr|s are
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the operators corresponding to the measurement outcomes in a complete tomo-

graphic measurement scheme, then one can find operators Xr|s such that for all

states 𝜚 =
∑

r|s Xr|sP(r|s; 𝜚) holds, generalizing Eq. (1).
3

The estimate given by lin-

ear reconstruction is then �̂� =
∑

r|s Xr|sFr|s, where Fr|s are the relative frequencies of

the result r for setting s. This estimate is unbiased but it comes with the price that

in all realistic scenarios �̂� has some negative eigenvalues and hence it is not a valid

density matrix. Depending on the intended use of the reconstructed density matrix

this may be problematic, but it was shown in Ref. [11] that entanglement measures

or the Fisher information can still be estimated. In addition, we stress that the eigen-

vectors corresponding to these negative eigenvalues are randomly distributed in the

following sense: If we choose a rank one projection |𝛼⟩⟨𝛼| independently of the data,

then the probability that tr(�̂�|𝛼⟩⟨𝛼|) < −𝜖 is exponentially suppressed, as can be seen

from the inequality in Eq. (3).

Problems with Error Regions

Any report of an experiment has to equip the reported results with error bars. In the

case of a density matrix, this will be a high-dimensional error region. When specify-

ing an error region, one first has to decide between the Bayesian framework and the

frequentistic framework. A Bayesian analysis gives a credible region, which has the

property that with high probability the actual state is in this region. A frequentist’s

analysis gives a confidence region, which is a map from the data to a region in state

space such that with high probability the region contains the actual state. There is a

long debate in mathematical statistics which method is appropriate, but most of the

subsequent discussion is independent of this dispute.

Before discussing the advantages and disadvantages of an error region, it is impor-

tant to remember, that the variance does in general not give an appropriate error

region. This occurs in particular if the underlying distributions are far from being

Gaussian. But for state tomography, the data is sampled from a multinomial distrib-

ution, typically with a very low number of events. Indeed, in many experiments the

number of clicks per measurement outcome is about ten, but sometimes even below

one. Also the method of bootstrapping may yield an inappropriate error region. In

bootstrapping, one uses an estimate �̂� for the state (parametric bootstrapping) or the

empirical distributions of the outcomes of the measurements Fr|s (non-parametric

bootstrapping) in order to estimate the variance of the estimate. This estimate is usu-

ally obtained by Monte Carlo sampling from the corresponding distributions. There

is no particular reason that this should be a good error region, and it was also demon-

strated that the most commonly used schemes yield invalid error regions.

Methods to obtain valid error regions both in the Bayesian [14] and in the frequen-

tistic framework [15] have been suggested, however, they turn out to be notoriously

difficult to compute. But even when it is possible to achieve a proper error region,

3
The new operators Xr|s may be necessary, since the Mr|s can be overcomplete or not orthogonal.
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one has to keep in mind that the size of the error region scales with the dimension

of the underlying Hilbert space, i.e., exponentially with the number of qubits. This

makes it very difficult to perform state tomography of a large system with a rea-

sonable sized error region. Fortunately, in many situations the error region for the

state is not of uttermost importance. Often one is only interested in certain scalar

quantities like a measure of entanglement or the fidelity with the (pure) target state.

In this cases it is possible to infer an appropriate confidence region directly from

the data, without taking the detour over an error region for the density operator.

This is particularly simple, if the quantity of interest is linear in the density matrix,

e.g., the fidelity with a pure state F = ⟨𝜓|𝜚|𝜓⟩. One can again use Hoeffding’s tail

inequality in order to obtain a lower bound ̂Fl on the fidelity. The promise is then

that P( ̂Fl > ⟨𝜓|𝜚exp|𝜓⟩) < 1% for any state 𝜚exp. A general method to provide such

confidence regions for convex functions, like the bipartite negativity or the quantum

Fisher information, has been introduced in Ref. [11].

Analysing Density Matrices

In the last section of this article, we assume that a valid multiparticle density matrix

𝜚 is given and the task is to analyse its properties. Naturally, many questions can

be asked about a density matrix, but we concentrate on two of them. First, we con-

sider the question whether the state is genuinely multiparticle entangled or not. We

explain a powerful approach for characterizing multiparticle entanglement with the

help of so-called PPT mixtures and semidefinite programming. Second, we consider

the problem of characterizing the complexity of a given quantum state and explain

an approach using exponential families. For example, in this approach a state that is

a thermal state of a Hamiltonian with two-body interactions only, is considered to

be of low complexity and the distance to these thermal states can be considered as

a measure of complexity. The underlying techniques also allow to characterize pure

states which are not ground states of a two-body Hamiltonian.

Characterizing Entanglement with PPT Mixtures

Notions of Entanglement

Before explaining the characterization of multiparticle entanglement, we have to

explain some basic facts about entanglement on a two-particle system. The defin-

ition of entanglement is based on the notion of local operations and classical com-

munication (LOCC). If a quantum state can be prepared by LOCC, it is called sep-

arable, otherwise it is entangled. For pure states, this just means that product states

of the form |𝜙⟩ = |𝛼⟩⊗ |𝛽⟩ are separable and all other states (e.g. the singlet state
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|𝜓−⟩ = (|01⟩ − |10⟩)∕
√
2) are entangled. If mixed states are considered, a density

matrix 𝜚 is separable, if it can be written as a convex combination of product states,

𝜚 =
∑

k
pk𝜚kA ⊗ 𝜚

k
B, (7)

where the pk form a probability distribution, so they are non-negative and sum up to

one. Physically, the convex combination means that Alice and Bob can prepare the

global state by fixing the joint probabilities with classical communication and then

preparing the states 𝜚
A
k and 𝜚

B
k separately. The question whether or not a given quan-

tum state is entangled is, however, in general difficult to answer. This is the so-called

separability problem [2, 3].

Many separability criteria have been proposed, but none of them delivers a com-

plete solution of the problem. The most famous separability test is the criterion of

the positivity of the partial transpose (PPT criterion) [16]. For that, one considers

the partial transposition of a density matrix 𝜚 =
∑

ij,kl 𝜚ij,kl|i⟩⟨j|⊗ |k⟩⟨l|, given by

𝜚

TA =
∑

ij,kl
𝜚ij,kl|j⟩⟨i|⊗ |k⟩⟨l|. (8)

In an analogous manner, one can also define the partial transposition 𝜚
TB with respect

to the second system. The PPT criterion states that for any separable state 𝜚 the partial

transpose 𝜚
TA , (and consequently also 𝜚

TB = (𝜚TA )T ) has no negative eigenvalues and

is therefore positive semidefinite. So, if one finds a negative eigenvalue of 𝜚
TA , then

the state 𝜚 must necessarily be entangled. The PPT criterion solves the separability

problem for low dimensional systems (that is, two qubits or one qubit and one qutrit)

[2], but in all other cases the set of separable states is a strict subset of the PPT

states. The entangled states which are PPT are of great theoretical interest: It has

been shown that their entanglement can never be distilled to pure state entanglement,

even if many copies of the state are available. This weak form of entanglement is

then also called bound entanglement and bound entangled states are central for many

challenging questions in quantum information theory.

The characterization of entanglement becomes significantly more complicated, if

more than two particles are involved. Let us consider three particles (A, B, C). First,

a state can be fully separable, meaning that it does not contain any entanglement and

is of the form |𝜙fs⟩ = |𝛼⟩⊗ |𝛽⟩⊗ |𝛾⟩. If a state is entangled, one can further ask

whether only two parties are entangled or all three parties. For instance, in the state

|𝜙bs⟩ = |𝜓−⟩AB ⊗ |𝛾⟩C the parties A and B are entangled, but C is not entangled

with A or B, therefore the state is called biseparable. Alternatively, if all parties are

entangled with each other, the state is called genuine multipartite entangled [3]. For

the simplest case of three two-level systems (qubits) it has been shown that even the

genuine multipartite entangled states can be divided into two subclasses, represented

by the GHZ state |GHZ⟩ = (|000⟩ + |111⟩)∕
√
2 and the W state |W⟩ = (|001⟩ +

|010⟩ + |100⟩)∕
√
3. These subclasses are distinguished by the fact that a single copy
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of a state in one class cannot be converted via LOCC into a state in the other class,

even if this transformation is not required to be performed with probability one [3].

The classification of entanglement for pure states can be extended to mixed states

by considering convex combinations as in Eq. (7). First, a mixed state is fully sepa-

rable, if it can be written as a convex combination of fully separable states

𝜚

fs =
∑

k
pk𝜚kA ⊗ 𝜚

k
B ⊗ 𝜚

k
C, (9)

and a state is biseparable, if it can be written as a mixture of biseparable states, which

might be separable with respect to different partitions,

𝜚

bisep = p1𝜚
sep
A|BC + p2𝜚

sep
B|AC + p3𝜚

sep
C|AB. (10)

The different notions of entanglement in the multipartite case and the different bipar-

titions that have to be taken into account imply that the question whether a given

mixed multipartite state is entangled or not is extraordinarily complicated.

The Approach of PPT Mixtures

A systematic approach for characterizing genuine multiparticle entanglement makes

use of so-called PPT mixtures [17]. Instead of asking whether a state is a mixture of

separable states with respect to different partitions as in Eq. (10), one asks whether

it is a mixture of states which are PPT for the bipartitions

𝜚

pptmix = p1𝜚
ppt
A|BC + p2𝜚

ppt
B|AC + p3𝜚

ppt
C|AB. (11)

Since the separable states are a subset of the PPT states, any biseparable state is also

a PPT mixture. This means that if a state is no PPT mixture, then it must be genuine

multipartite entangled (see also Fig. 21.3).

At first, it is not clear what can be gained by this redefinition of the problem. First,

the condition for PPT mixtures is a relaxation of the definition of biseparability and

it might be that the conditions are relaxed too much, implying that not many states

can be detected by this method. Second, it is not clear how the criterion for PPT

mixtures can be evaluated in practice and whether this is easier than evaluating the

conditions for separability directly. In the following, however, we will see that the

question whether a state is a PPT mixture or not can directly be checked with a

technique called semidefinite programming. Furthermore, the approximation to the

biseparable states is rather tight, and for many families of states the property of being

a PPT mixture coincides with the property of being biseparable.
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Fig. 21.3 Schematic view

of the states which are PPT

mixtures and the biseparable

states for three particles.

There are three possible

bipartitions, and the

corresponding sets of states

which are separable or PPT

for the bipartition. The figure

is taken from Ref. [17].

Evaluation of the Criterion

Let us discuss the evaluation of the condition for PPT mixtures. For that, we need to

introduce the notion of entanglement witnesses. In the two-particle case, an entan-

glement witness  is an observable with the property that the expectation value is

positive for all separable states, tr(𝜚sep) ≥ 0. This implies that a measured negative

expectation value signals the presence of entanglement. In this way, the concept of

an entanglement witness bears some similarity to a Bell inequality, where correla-

tions are bounded for classical states admitting a local hidden variable model, while

entangled states may violate the bound.

How can entanglement witnesses be constructed? For the two-particle case a sim-

ple method goes as follows: Consider an observable of the form

 = P + QTA
, (12)

where P ≥ 0 and Q ≥ 0 are positive semidefinite operators. Using the fact that

Tr(XYTA ) = Tr(XTAY) for arbitrary operators X,Y , we find that for a separable state

Tr(𝜚

sep) = Tr(P𝜚sep) + Tr(Q(𝜚sep)TA) ≥ 0, since 𝜚

sep
has to be PPT. Therefore, the

observable  is an entanglement witness, which may be used to detect the entan-

glement in states that violate the PPT criterion.

This construction can be used to decide whether a given three-particle state is a

PPT mixture or not. For that, consider the optimization problem

minimize ,Pi,Qi
Tr(𝜚)

subject to:  = P1 + QTA
1 = P2 + QTB

2 = P3 + QTC
3 and

Pi ≥ 0 for i = 1, 2, 3 and

1 ≥ Qi ≥ 0 for i = 1, 2, 3. (13)
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The constraints guarantee that the observable  is of the form as in Eq. (12) for any

of the three bipartitions. This means, that if a state is a PPT mixture as in Eq. (11),

the expectation value Tr(𝜚) has to be non-negative. On the other hand, one can

show that if a state is not a PPT mixture, then the minimization problem will always

result in a strictly negative value [17]. In this way, the question whether a state is a

PPT mixture or not, can be transformed into a optimization problem under certain

constraints.

The point is that the optimization problem belongs to the class of semidefinite

programs (SDP). An SDP is an optimization problem of the type

minimize
xi

∑

i
cixi

subject to: F0 +
∑

i
xiFi ≥ 0, (14)

where the ci are real coefficients defining the target function, the Fi are hermitean

matrices defining the constraints and the xi are real coefficients which are varied.

This type of optimization problem has two important features [18]. First, using the

so-called dual problem one can derive a lower bound on the solution of the mini-

mization, which equals the exact value under weak conditions. This means that the

optimality of a solution found numerically can be demonstrated. In this way, one can

prove rigorously by computer whether a given state is a PPT mixture or not. Sec-

ond, for implementing an SDP in practice there are ready-to-use computer algebra

packages available and therefore the practical solution of the SDP is straightforward.

Results

Concerning the characterization of PPT mixtures, the following results have been

obtained:

∙ First, the practical evaluation of the SDP in Eq. (13) can be carried out easily with

standard numerical routines. A free ready-to-use package called PPTMixer is

available online [19], and it solves the problem for up to six qubits on standard

computers. For a larger number of particles, the numerical evaluation becomes

difficult, but analytical approaches are also feasible [17, 20].

∙ For many families of states, the approach of the PPT mixtures delivers the strongest

criterion of entanglement known so far. For many cases it even solves the problem

of characterizing multiparticle entanglement. For instance, three-qubit

permutation-invariant states are biseparable, if and only if they are PPT mixtures

[21]. The same holds for states with certain symmetries, like GHZ diagonal states

or four-qubit states diagonal in the graph-state basis [20, 22].

∙ Nevertheless, the approach of PPT mixtures can not detect all multiparticle entan-

gled states. There are examples of genuinely entangled three-qubit and three-qutrit

states, which are PPT mixtures [23, 24]. For an increasing dimension and number
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of particles one can even show that the probability that a given multiparticle entan-

gled state can be detected by the PPT mixture approach decreases [25]. This find-

ing, however, is in line with the observation that also in bipartite high-dimensional

systems no single entanglement criterion detects a large fraction of states [26].

∙ The value  (𝜚) = −Tr(𝜚), that is, the amount of violation of the witness condi-

tion is a computable entanglement monotone for genuine multiparticle entangle-

ment [20]. It can be called the genuine multiparticle negativity, as it generalizes

the entanglement measure of bipartite negativity.

∙ An interesting feature of the PPT mixer approach is that it can also be evaluated, if

only partial information on the state 𝜚 is available. Namely, if only the expectation

values ⟨Ai⟩ of some observables Ai are known, one can add in the SDP in Eq. (13)

that the witness  should be a linear combination of the measured observables

 =
∑

i 𝜆iAi. It can be shown that this is then still a complete solution of the

problem, meaning that the SDP returns a negative value, if and only if all states

that are compatible with the data ⟨Ai⟩ are not PPT mixtures.

Characterizing the Complexity of Quantum States

Besides the question whether a given multiparticle quantum state is entangled or not,

one may also be interested in other questions about a reconstructed quantum state 𝜚.

For instance, one may ask: Is the given state is a ground state or thermal state of a

simple Hamiltonian? In the following, we will explain how this question can be used

to characterize the complexity of a many-body quantum state.

Exponential Families

First, one can consider the set of all possible two-body Hamiltonians. For multi-qubit

systems they are of the form

H2 =
∑

i,𝛼
𝜆

(i)
𝛼

𝜎

(i)
𝛼

+
∑

i,j,𝛼,𝛽
𝜇

(ij)
𝛼𝛽

𝜎

(i)
𝛼

𝜎

(j)
𝛽

+ 𝜈1, (15)

where 𝜎

(i)
𝛼

is the Pauli matrix 𝜎

𝛼

acting on the ith qubit. This Hamiltonian H2 con-

tains, apart from the identity, single-particle terms and two-particle interactions.

However, no geometrical arrangement of the particles is assumed and the two-

particle interactions are between arbitrary particles and not restricted to nearest-

neighbour interactions. We also denote the set of all two-particle Hamiltonians by

2, and in a similar manner one can define the sets of k-particle Hamiltonians k.

Given the set of k-particle Hamiltonians, we can define the so-called exponential

family of all thermal states

k = {exp{Hk} with Hk ∈ k}, (16)
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where the normalization of the state has been included into the Hamiltonian via the

term 𝜈1.

If a given quantum state is in the family k for small k, then one can consider it to

be less complex, since only a simple Hamiltonian with few parameters are required

to describe the interaction structure. One the other hand, if a state is not in the expo-

nential family, one can consider the distance

Dk(𝜚||k) ∶= inf
𝜂∈k

D(𝜚||𝜂) (17)

with D(𝜚||𝜂) = tr[𝜚 log(𝜚)] − tr[𝜚 log(𝜂)] being the relative entropy, as a measure of

the complexity of the quantum state. The optimal 𝜂 is also called the information

projection 𝜚k and one can show that this 𝜚k is the maximum likelihood approximation

of 𝜚 within the family k [27]. Below, we will explain several further equivalent

characterizations which can help to solve the underlying minimization problem.

This type of complexity measure has been first discussed for the case of classical

probability distributions in the context of information geometry [28]. The measure

D1 is also known as the multi-information in complexity theory [29]. For classical

complex systems, these quantities have been used to study the onset of synchroniza-

tion and chaos in coupled maps or cellular automata [27]. For the quantum case, this

measure and its properties have been discussed in several recent works [30–33].

At this point, it is important to note that in the quantum case as well as in the

classical case the quantity Dk does not necessarily decrease under local operations

[31, 32]. Simple examples for this fact follow from observation that taking a thermal

state of a two-body Hamiltonian and tracing out one particle typically leads to a

state that is not a thermal state of a two-body Hamiltonian anymore. Therefore, the

quantity Dk should not be considered as a measure of correlations in the quantum

state, it is more appropriate to consider it as a measure of the complexity of the state.

Characterizing the Approximation

For the characterization of the information projection 𝜚k, the following result is

quite helpful [31]. First, let 𝜚 be an arbitrary quantum state, and 𝜚k be the informa-

tion projection onto the exponential family k. Furthermore, let Mk be the set of all

quantum states that have the same k-body marginals as 𝜚. Mk is, contrary to k, a lin-

ear subspace of the space of all density matrices (see Fig. 21.4). Then, the following

statements are equivalent:

(a) The state 𝜚k is the closest state to 𝜚 in k with respect to the relative entropy.

(b) The state 𝜚k has the maximal entropy among all states in Mk.

(c) The state 𝜚k is the intersection k ∩Mk.

This equivalence can be used for many purposes. For example, it is useful for

developing an algorithm for computing the information projection [33, 34]. Instead

of minimizing the relative entropy as a highly nonlinear function over k, one can do
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Fig. 21.4 The information

projection 𝜚k of the state 𝜚 is

the closest state to 𝜚 within

the exponential family k.

Mk denotes the set of all

quantum states that have the

same k-body marginals as 𝜚,

and can also be used to

characterize 𝜚k. For arbitrary

states 𝜚
′

within k the

relation D(𝜚||𝜚′) =
D(𝜚||𝜚k) + D(𝜚k||𝜚′) holds,

which resembles the

Pythagorean Theorem. The

figure is taken from

Ref. [33].

the following: One optimizes over all states in k with the aim to make the k-body

marginals the same as for the state 𝜚. The resulting algorithm converges well and

allows the computation of the complexity measure Dk for up to six qubits [33].

Second, from the equivalences it follows that the multi-informationD1 can directly

be calculated, since the closest state to 𝜚 in the family 1 is the product state

𝜚1 = 𝜚1 ⊗ 𝜚2 ⊗ ... ⊗ 𝜚N built out of the reduced single-particle density matrices of

𝜚. Clearly, 𝜚1 has the same marginals as 𝜚 and maximizes the entropy.

A Five-Qubit Example

As a final example, let us discuss how the notion of exponential families can help

to characterize ground states of two-body Hamiltonians. For that, consider the five-

qubit ring-cluster state |R5⟩. This state is defined to be the unique eigenstate fulfilling

|R5⟩ = gi|R5⟩, (18)

where g1 = 𝜎x𝜎z11𝜎z, g2 = 𝜎z𝜎x𝜎z11, g3 = 1𝜎z𝜎x𝜎z1, g4 = 11𝜎z𝜎x𝜎z, and

g5 = 𝜎z11𝜎z𝜎x. Here, the tensor product symbols have been omitted. After appro-

priate local transformations, the ring-cluster state can also be written as

|R5⟩ =
1
√
8

[
|00000⟩ + |00110⟩ − |01011⟩ + |01101⟩ + |10001⟩ − |10111⟩ + |11010⟩ + |11100⟩

]
.

(19)

The ring-cluster state is an example of a so-called graph state, and plays an impor-

tant role in quantum error correction as a codeword of the five-qubit Shor code. It

was known before that the state |R5⟩ cannot be the unique ground state of a two-body

Hamiltonian [35]. This, however, leaves the question open whether it can be approx-

imated by ground states of two-body Hamiltonians. For instance, for three qubits it
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was shown that not all pure states are ground states of two-body Hamiltonians, but

all pure states can be approximated arbitrarily well by such ground states [36].

The characterization of the exponential families from the previous section can

indeed help to prove that the state has |R5⟩ has finite distance to all thermal states of

two-body Hamiltonians. For that, first note that the two-body marginals of the state

|R5⟩⟨R5| are all maximally mixed two-qubit states. Then, one can directly find states

which have the same two-body marginals, but their entropy is larger than the entropy

the state |R5⟩⟨R5|. This last property is, of course, not surprising, since |R5⟩⟨R5| has

as a pure state the minimal possible entropy. According to the previous section, this

already implies that |R5⟩⟨R5| cannot be the thermal or ground state of any two-body

Hamiltonian.

Furthermore, if an arbitrary state 𝜚 has a high fidelity with |R5⟩ then the two-body

marginals will be close to the maximally mixed states, and in addition the entropy of

𝜚 will be small. This implies that one can find again states with the same marginals

and higher entropy. Using these ideas and some detailed calculations one can prove

that if a state fulfils

F = ⟨R5|𝜚|R5⟩ ≥ 31
32

≈ 0.96875 (20)

then it cannot be a thermal state of a two-body Hamiltonian [37]. This shows that

the state |R5⟩ cannot be approximated by thermal states of two-body Hamiltonians.

In principle, this bound can also be used to prove experimentally that a given state

is not a thermal state of a two-body Hamiltonian.

Conclusion

In conclusion we have explained several problems occurring in the analysis of multi-

particle quantum states, ranging from systematic errors of the measurement devices

to the characterization of ground states of two-body Hamiltonians. We believe that

several of the explained topics are important to be addressed in the future. First,

since the current experiments in quantum optics are getting more and more complex,

advanced statistical methods need to be applied in order to reach solid conclusions.

Second, the analysis of ground states and thermal states of simple Hamiltonians is

relevant for quantum simulation and quantum control, so direct characterizations

would be very helpful.
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Chapter 22
Few-Body Entanglement Manipulation

C. Spee, J.I. de Vicente and B. Kraus

Abstract In order to cope with the fact that there exists no single maximally entan-

gled state (up to local unitaries) in the multipartite setting, we introduced in [1] the

maximally entangled set of n-partite quantum states. This set consists of the states

that are most useful under conversion of pure states via Local Operations assisted

by Classical Communication (LOCC). We will review our results here on the maxi-

mally entangled set of three- and generic four-qubit states. Moreover, we will discuss

the preparation of arbitrary (pure or mixed) states via deterministic LOCC transfor-

mations. In particular, we will consider the deterministic preparation of arbitrary

three-qubit (four-qubit) states via LOCC using as a resource a six-qubit (23-qubit)

state respectively.

Introduction

Bell’s theorem states that the predictions of quantum mechanics are not compatible

with any local realistic theory (i.e. any local hidden variable model) [2]. This result

has deep conceptual implications and constitutes a milestone in our understanding

of quantum mechanics. However, 50 years after its discovery, the relevance of this

result goes beyond foundational issues. The development of quantum information

theory [3] in the last decades has taught us that the counter-intuitiveness of quan-

tum mechanics can be exploited to devise technologies beyond what can be reached

classically. Interestingly, it is the correlations present in entangled quantum states

that allow to violate Bell inequalities and it is entanglement what is considered to

be the fundamental ingredient behind many of the applications of quantum informa-

tion processing. Nowadays, entanglement is regarded as a resource and a big effort

has been put up in the last twenty years to develop a theory of entanglement, which

aims at its characterization, manipulation and quantification. Central to this theory is
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the paradigm of Local Operations assisted with Classical Communication (LOCC).

These are the most general operations allowed by the rules of quantum mechanics to

spatially separated parties: each subsystem can undergo any possible form of quan-

tum dynamics at will and the parties can correlate these local protocols via classical

communication. The restriction to LOCC is, thus, a very natural one and at the heart

of many applications. Moreover, as entanglement cannot be created by LOCC alone,

it can be considered to be a resource to overcome the limitations of state manipula-

tion restricted to this class of operations.

Unfortunately, the set of LOCC transformations is mathematically subtle and to

characterize the possible conversions among entangled states is in general a very

hard problem. Entanglement theory is much better established in the bipartite case

than in the multipartite one. This is partly because entanglement manipulation via

LOCC is better understood in the former setting. This has allowed to identify the

bipartite maximally entangled state as the most useful state under LOCC transfor-

mations, to introduce the scenario of entanglement distillation and to define several

operational entanglement measures [4]. On the other hand, not surprisingly, most

bipartite quantum information protocols such as teleportation [5] and cryptography

schemes [6] are optimally implemented by means of the bipartite maximally entan-

gled state. Although several applications are also known for multipartite entangle-

ment (e.g. quantum secret sharing [7] and one-way quantum computation [8]), a

more systematic and profound study of LOCC manipulation in this realm appears

to be of paramount importance. In addition to playing a pivotal role in the theory of

entanglement, this would identify the most useful multipartite states and could lead

to new applications of quantum information in many-body scenarios.

In this paper we review our recent results on the characterization of LOCC trans-

formations over few-body pure states [1]. As a unique maximally entangled state

does not exist in this situation, we introduced the notion of the maximally entangled

set of states, as those that are most useful under LOCC conversions. We character-

ized the maximally entangled set for systems of three and four qubits. In addition

to this, we present LOCC protocols that allow to obtain arbitrary (pure or mixed)

bipartite, three or four-qubit states from a single multipartite state with more subsys-

tems. In particular, we provide a specific six-qubit state that allows to prepare any

three-qubit state by LOCC and the analogous for any four-qubit state with a given

23-qubit state.

Preliminaries

Entanglement is well understood in the bipartite pure state case. In this case it

is well known that any state can be written in Schmidt decomposition [3], i.e. it

can be written as UA ⊗ UB
∑d

i=1

√
𝜆i |ii⟩, where UA and UB are Local Unitaries

(LUs), d is the dimension of the smaller subsystem, 𝜆i ≥ 0,
∑

i 𝜆i = 1 and |i⟩ are

computational basis states. The coefficients

√
𝜆i are called Schmidt coefficients.
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The entanglement properties of a bipartite pure state are completely characterized

by its Schmidt coefficients, as states that are equivalent up to LUs have the same

entanglement. In order to see this consider two states, |Ψ⟩ and |Φ⟩, that are LU-

equivalent, i.e. |Ψ⟩ = V1 ⊗…⊗ Vn |Φ⟩. By applying LUs (which corresponds to

a deterministic LOCC protocol) one can convert |Ψ⟩ to |Φ⟩ and vice versa. As

entanglement is non-increasing under LOCC, one obtains that E(Φ) ≥ E(Ψ) and

E(Φ) ≤ E(Ψ) for any entanglement measure E, i.e. these states have the same entan-

glement (E(Φ) = E(Ψ)). Interestingly, the converse is also true. It has been shown

that if one can transform a pure state |𝜓⟩ via LOCC deterministically to a pure state

|𝜙⟩ and vice versa, then the two states are LU-equivalent [9]. As applying LUs does

not change the entanglement of a state, the entanglement properties of a bipartite pure

state are completely determined by the Schmidt coefficients. Moreover, in this case it

can be shown that any LOCC protocol can be simulated by a (simple) LOCC transfor-

mation where one party performs a POVM measurement and the other party applies

depending on the outcome a LU [10]. As only one-way communication is necessary

this simplifies the study of LOCC transformations and entanglement for the bipartite

case. In fact, LOCC transformations among bipartite pure states have been charac-

terized completely by Nielsen [11]. In particular, it has been shown in [11] that a

state |𝜓⟩ can be transformed via LOCC deterministically to state |𝜙⟩ iff ⃗

𝜆

𝜙

≻

⃗

𝜆

𝜓

,

i.e. ⃗

𝜆

𝜙

majorizes ⃗

𝜆

𝜓

. The vectors ⃗

𝜆

𝜙(𝜓) correspond to d-dimensional vectors con-

taining the squares of the Schmidt coefficients of |𝜙⟩ (|𝜓⟩) respectively. A vector

y⃗ = (y1,… , yd) is said to majorize x⃗ = (x1,… , xd) (i.e. y⃗ ≻ x⃗) if ∀k ∈ {1,… , d − 1}

k∑

i=1
x↓i ≤

k∑

i=1
y↓i (1)

and

d∑

i=1
xi =

d∑

i=1
yi. (2)

Note that ↓ denotes that the components are ordered in non-increasing order (e.g.

x↓d is the smallest and x↓1 is the largest component of x⃗). Note further that in the

two qubit case this result implies that LOCC imposes a total order on the states

with respect to their entanglement. In the case of two d-dimensional systems with

d > 2 the situation changes, as there are states that are incomparable. More precisely,

there exist states, |Ψ⟩ and |Φ⟩, for which it holds that one can neither transform |Ψ⟩
into |Φ⟩ via deterministic LOCC transformations, i.e. ⃗

𝜆Φ ⊁

⃗

𝜆Ψ nor |Φ⟩ into |Ψ⟩,
i.e. ⃗𝜆Ψ ⊁

⃗

𝜆Φ. This shows a clear difference between the two-qubit case and the case

of two d-dimensional systems with d > 2. Nevertheless, in both cases there exists a

single state (up to LUs) that allows to obtain any other state via deterministic LOCC

transformations, namely the state |Φ+⟩d = 1∕
√

d
∑d

i=1 |ii⟩.
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As knowing which LOCC transformations are possible allows to impose a (par-

tial) order on the states with respect to their entanglement it allows to identify entan-

glement measures. To be more precise, the condition that an entanglement measure

E has to fulfill is that it is non-increasing under LOCC. Therefore, any function E
(defined on bipartite pure states) that respects the ordering due to the majorization

condition, i.e. for ⃗

𝜆

𝜙

≻

⃗

𝜆

𝜓

it holds that E(𝜓) ≥ E(𝜙), is an entanglement measure

for pure states. Moreover, using the majorization condition it is easy to identify the

maximally entangled states. As entanglement is non-increasing under LOCC, a max-

imally entangled state can not be obtained via LOCC (excluding LUs) determinis-

tically from any other state. Thus, the condition is that its Schmidt vector does not

majorize any other Schmidt vector. It is easy to see that up to LUs this property is ful-

filled by a single state, namely |Φ+⟩d = 1∕
√

d
∑d

i=1 |ii⟩. Note that any other state can

be reached via LOCC from this state, as its Schmidt vector is majorized by any other

Schmidt vector. Hence, this state is the most useful one concerning applications. If

a protocol is based on another bipartite state with smallest dimension of the subsys-

tems smaller than or equal to d, it can be also implemented using |Φ+⟩d as a resource

by applying the corresponding LOCC protocol beforehand. On the other hand, if a

protocol requires that the parties share a maximally entangled state, then there exists

no other (LU-inequivalent) state that allows to perform the same task. For example,

faithful teleportation [5] requires a maximally entangled state as a resource.

Characterizing LOCC transformations in the multipartite setting is hard, as one

has to deal with several rounds of communication. It has even been proven that some

tasks require infinitely many rounds [12]. Moreover, LOCC is not closed, i.e. there

exist sequences of LOCC protocols {Λ1,Λ2,…} such that limn→∞ Λn is not a LOCC

transformation [13].

Due to these difficulties multipartite LOCC transformations have only been char-

acterized for a few classes of states [1, 14]. Other classifications of multipartite

states with respect to entanglement have been studied such as LU-equivalence [15]

and SLOCC-equivalence [16, 17]. As already argued before, states that are in the

same LU-equivalence class have the same entanglement properties. The problem

of deciding whether two pure n-qubit states are LU-equivalent has been solved in

[15]. By applying LUs a generic state can be brought into its unique standard form.

Two generic states are then LU-equivalent iff their standard forms are the same.

For non-generic states there exists an algorithm that allows to decide whether two

states are LU-equivalent or not [15]. Another classification can be established by

considering Stochastic LOCC (SLOCC) transformations. Two states, |Ψ⟩ and |Φ⟩,

are said to be in the same SLOCC class, if one can transform |Ψ⟩ via LOCC with

non-zero probability into |Φ⟩ and vice versa. Mathematically, this implies that |Ψ⟩
can be written as g |Φ⟩, where g ∈  with  being the set of local invertible opera-

tors, i.e. g = g1 ⊗…⊗ gn
and gi ∈ GL(2) [16]. Note that in contrast to deterministic

LOCC transformations the classification according to SLOCC (or LU) corresponds

to an equivalence relation. States in different SLOCC classes have different kinds

of entanglement but SLOCC does not impose any order with respect to their entan-

glement. For three qubits there are two different truly tripartite entangled SLOCC



22 Few-Body Entanglement Manipulation 369

classes, the W-class and the GHZ-class [16]. As representatives for the GHZ- and

the W-class one can choose the GHZ-state [18], i.e. 1∕
√
2(|000⟩ + |111⟩) and the

W-state [16], i.e. 1∕
√
3(|100⟩ + |010⟩ + |001⟩) respectively. In the four-qubit case it

has been shown that there exist infinitely many SLOCC classes which can be grouped

into 9 different families [17].

As the mathematical study of multipartite LOCC transformations is formidably

hard, other approaches towards the characterization of entanglement have been pur-

sued. They consist of enlarging the set of allowed operations such that one obtains

classes of operations that are easier to deal with mathematically as for example PPT

preserving maps [19] or separable transformations (SEP) (see [20] and references

therein). As it will be important for our discussion we will focus here on SEP. LOCC

is strictly included in SEP [21], i.e. any LOCC transformation corresponds to a com-

pletely positive trace-preserving map Λ whose action on any density matrix 𝜌 can be

written as Λ(𝜌) =
∑

i Xi𝜌X†
i where Xi = x(1)i ⊗ x(2)i …⊗ x(n)i , x (j)

i is a complex matrix

and
∑

i X†
i Xi = 1𝐥. However, there exist SEP transformations that can not be imple-

mented via LOCC deterministically [22]. Note that in order for Λ to correspond to a

LOCC protocol the operators Xi have to fulfill some condition apart from being local,

i.e. each Xi denotes the operation corresponding to one branch of the LOCC proto-

col. To be more precise, x(j)i is a product of operators where each of these operators

originates from the implementation of a POVM and in general there is a dependence

between the implemented POVM and previous measurement outcomes. Obviously,

SEP transformations are mathematically much easier to characterize. Unfortunately,

however, they lack an operational meaning. Nevertheless, the result of [20] on con-

vertibility via SEP transformations has been crucial for determining the maximally

entangled set for three and four qubits as we will explain in the next section.

The Maximally Entangled Set

As argued in the previous section, the entanglement properties of multipartite states

are hard to characterize. This is also reflected in the fact that there exist several dif-

ferent notions of maximally entangled multipartite states in the literature (see e.g.

[23, 24]). Why is it of importance to know which states are maximally entangled?

Apart from fundamental interest, these states are the most useful ones concerning

application. Any protocol that might rely on the parties sharing a state that is not

maximally entangled can also be performed using as resource a maximally entangled

state (by applying the LOCC protocol beforehand that transforms the corresponding

maximally entangled state deterministically into the state that the protocol is based

on), but the converse is not true. Moreover, these states are promising candidates

to discover new applications for multipartite entanglement, as also most bipartite

applications like teleportation [5] and cryptography [6] rely on the parties sharing a

maximally entangled state. In order to characterize maximal entanglement one has

to develop a deeper understanding of multipartite LOCC transformations. Knowing
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which LOCC transformations are possible allows to define new (operational) entan-

glement measures. This is due to the fact that, as mentioned before, the condition

an entanglement measure has to obey is that it is non-increasing under deterministic

LOCC transformations.

As already discussed, it is well known which states are maximally entangled in

the bipartite case. They are those states which correspond up to LUs to |Φ+⟩d ∝
∑d

i=1 |ii⟩, where d denotes the dimension of the smaller subsystem. As the appli-

cation of LUs does not change the entanglement properties of a state and therefore

two states in the same LU-equivalence class are equally useful, we will in the fol-

lowing only consider one representative per LU-equivalence class. Hence, |Φ+⟩d is

the maximally entangled state. Recall that the important property of |Φ+⟩d (and the

reason why it is maximally entangled) is that it can not be reached via deterministic

LOCC transformations from any other state (excluding LU) and that any state can

be obtained deterministically via LOCC from this state [11].

In the multipartite setting there exists no single state (up to LUs) with this prop-

erty. This can already easily be seen in the three-qubit case. Recall that there are

two different truly three-partite entangled SLOCC classes, the W-class and the

GHZ-class. If there would exist a state |Ψ⟩ that can be transformed via a deter-

ministic LOCC transformation to a state in the GHZ-class |
|ΨGHZ⟩ as well as to a

state in the W-class ||ΨW⟩, then it would hold that there exist complex 2× 2 matri-

ces Mi
k,N

i
k such that M1

k ⊗ M2
k ⊗ M3

k |Ψ⟩ = |
|ΨGHZ⟩ and N1

k ⊗ N2
k ⊗ N3

k |Ψ⟩ = |
|ΨW⟩.

As we only consider transformations between truly tripartite entangled states this

implies that the matrices Mi
k and Ni

k have to be invertible for all i and therefore ||ΨGHZ⟩

and |
|ΨW⟩ would be in the same SLOCC class.

1
Thus, deterministic LOCC transfor-

mations among fully-entangled three-qubit state are only possible between states in

the same SLOCC class and so there exists no single three-qubit state that allows to

reach any other state via deterministic LOCC transformations.

In order to cope with the fact that there exists no single maximally entangled state

in the multipartite setting, we introduced in [1] the Maximally Entangled Set (MES)

of n-partite states. The MES of n-partite states, MESn, is defined as the minimal set

of n-partite pure states such that any other truly n-partite entangled pure state can

be reached via LOCC deterministically from one of the states in MESn.
2

To state

it differently, MESn is the set of n-partite states characterized by the following two

properties:

1. No state in MESn can be reached via LOCC (excluding LU) deterministically

from any other n-partite state.

2. For any truly n-partite entangled state |Ψ⟩ ∉ MESn there exists a state |Φ⟩ ∈
MESn such that |Ψ⟩ can be obtained via a deterministic LOCC transformation

from |Φ⟩.

1
Note that this line of argumentation can be easily generalized to the n-qubit case. Thus, determin-

istic LOCC transformations among fully entangled n-qubit states are only possible between states

in the same SLOCC class.

2
Note that MESn is unique (up to LUs).
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Hence, MESn is the minimal set of states that are most useful with respect to any

application. As already explained before, any application that uses a state that is not

in the MES can also be performed by using a state that is in the MES (but not vice

versa). Note that the MES for bipartite d-level systems is given by {|Φ+⟩d}.

Another concept that is important for our study is the one of isolation [1]. Isolated

states are defined as truly n-partite entangled states that can neither be reached nor

can they be converted to any other truly n-partite entangled pure state via LOCC

(excluding LU) in a deterministic way. It is obvious from this definition that isolated

states have to be contained in the MES. The subset of the MES of LOCC convert-

ible states is of particular interest, as it is the only relevant set of states concerning

deterministic entanglement manipulation and therefore will most probably play an

important role in discovering new applications of multipartite entanglement.

In [1] we determined the MES for three-qubit and generic four-qubit states. In

contrast to the two-qubit case where the MES is given by {|Φ+⟩2} the MES for

three qubits, MES3, contains infinitely many states. It is characterized by 3 parame-

ters, whereas an arbitrary three-qubit state is characterized by 5 parameters (up to

LUs) [25, 26]. Therefore, MES3 is of measure zero. Interestingly, no state in MES3 is

isolated (see Fig. 22.1). The picture changes again drastically when going from the

three-qubit to the four-qubit case. For four qubits MES4 is of full measure. This is

due to the fact that almost all states are isolated, i.e. deterministic LOCC transforma-

tions are hardly ever possible among fully entangled four-qubit states. Interestingly,

the subset of non-isolated states in the MES is of measure zero (see Fig. 22.1). As

already mentioned, these states are the only relevant ones for entanglement manip-

ulation.

Let us now present our results on MES3, the MES of three qubits, in more detail.

Due to the existence of two truly tripartite-entangled SLOCC classes for three qubits

[16], the W-class and the GHZ-class, MES3 has to contain at least two states. Recall

that if |Ψ⟩ and |Φ⟩ are in the same SLOCC class, then |Ψ⟩ can be written as g |Φ⟩,

where g = g1 ⊗…⊗ gn
and gi ∈ GL(2). Thus, we can write any state in the GHZ-

class as g |GHZ⟩. Note that the local operator g is not unique, as the two states

g |GHZ⟩ and (gS) |GHZ⟩ coincide if S is a local symmetry of the GHZ-state. Here

and in the following, we denote by S(Ψ) = {S ∈  ∶ S |Ψ⟩ = |Ψ⟩} the local symme-

try group of the state |Ψ⟩. In order to get rid of this ambiguity, we defined in [1] a

standard form for states in the GHZ-class. In particular, we showed that any state in

the GHZ-class can be written up to LUs as

g1x ⊗ g2x ⊗ g3xPz |GHZ⟩ , (3)

where Pz = diag(z, 1∕z) with z ∈ 𝐼𝐶∖0 and gi
x =

√
Gi

x with Gi
x = (gi

x)
†gi

x = 1∕21𝐥 +
𝛾

i
x𝜎x and 0 ≤ 𝛾

i
x < 1∕2. Here and in the following we denote by 1𝐥 and 𝜎w where

w ∈ {x, y, z} the identity operator and the Pauli matrices. Note that the restriction

𝛾

i
x ∈ [0, 1∕2) ensures that the operators gi

x are invertible, as otherwise entanglement

would be destroyed.
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It is well known that any state in the W-class can be written (up to LUs) as g1 ⊗
g2 ⊗ 1𝐥 |W⟩ [16], where |W⟩ ∝ |001⟩ + |010⟩ + |100⟩,

g1 =
(
1 0
0 x1∕x3

)

and g2 =
(

x3 x0
0 x2

)

, (4)

with x1, x2, x3 > 0 and x0 ≥ 0, i.e. x0 |000⟩ + x1 |100⟩ + x2 |010⟩ + x3 |001⟩. Using

this notation we can now present the MES for three qubits [1].

Theorem 1 The MES of three qubits, MES3, is given by

MES3 = {g1x ⊗ g2x ⊗ g3xPz |GHZ⟩ , g1 ⊗ g2 ⊗ 1𝐥 |W⟩}, (5)

where z ∈ {1, i}, no gi
x ∝ 1𝐥 (except for the GHZ-state) and g1 and g2 are diagonal.

The general idea of how to obtain this result will be presented below. Due to The-

orem 1 a state in the GHZ-class is in MES3 iff it is either the GHZ-state or in its

corresponding standard form z ∈ {1, i} and 𝛾

i
x ≠ 0 ∀i. States in the W-class which

are in MES3 have the property that x0 = 0 (see Eq. (4)), i.e. their standard form corre-

sponds to x1 |100⟩ + x2 |010⟩ + x3 |001⟩. All three-qubit states that are not in MES3
can be reached via a LOCC protocol deterministically from some state in MES3.
Interestingly, the states in the set MES3 have a simple description in terms of the

decomposition presented in [26]. Any state in MES3 can be written up to LUs as

|Ψ⟩ = |0⟩ ||Ψs⟩ + |1⟩ Y(𝛽′)⊗ Y(𝛽) ||Ψs⟩}, (6)

where |
|Ψs⟩ = a |00⟩ +

√
1 − a2 |11⟩ and a, 𝛽, 𝛽′ ∈ 𝐼𝑅. In this decomposition it is

easy to see that MES3 is characterized by 3 parameters. As three-qubit states up to

LUs are characterized by 5 parameters (see Eq. (3) and e.g. [25, 26]), MES3 is of

measure zero (see Fig. 22.1). Moreover, one can easily show (by constructing the

corresponding LOCC protocol) that all states in MES3 are non-isolated.

Let us proceed by presenting the results on the MES for generic four-qubits states
3

[1]. A generic four-qubit state belongs to one of the SLOCC classes denoted by Gabcd
in [17]. Its representatives can be chosen to be

|Ψ⟩ = a + d
2

(|0000⟩ + |1111⟩) + a − d
2

(|0011⟩ + |1100⟩)

+ b + c
2

(|0101⟩ + |1010⟩) + b − c
2

(|0110⟩ + |1001⟩), (7)

where a, b, c, d ∈ 𝐼𝐶 with b2 ≠ c2 ≠ d2 ≠ b2, a2 ≠ b2, c2, d2
and the parameters fulfill

the condition that there exists no q ∈ 𝐼𝐶∖1 such that {a2
, b2, c2, d2} = {qa2

, qb2, qc2, qd2}.

The non-trivial symmetries of these states are given by 𝜎

⊗4
w where w ∈ {x, y, z}.

As for the three-qubit case one can define a unique standard form (by sorting the

3
Note that for the non-generic cases similar results can be obtained [28].
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Fig. 22.1 This graphic shows schematically the MES for the bipartite-, three- and four-qubit case.

In (b) and (c) the reachable states are indicated in green, the isolated states in the MES in light red
and the convertible states in the MES in dark red. a Bipartitie case. b Three-qubit case. c Four-qubit

case.

parameters in Eq. (7), using the symmetries to uniquely define g†g and fixing the

LUs). In the following we use the notation gi
w =

√
Gi

w where w ∈ {x, y, z} and

Gi
w = (gi

w)
†gi

w = 1∕21𝐥 + 𝛾

i
w𝜎w with |𝛾 i

w| < 1∕2. Using this notation we can state our

result on which fully-entangled four-qubit states can be reached via a deterministic

LOCC transformation from some other state.

Theorem 2 A generic state, h |Ψ⟩, is reachable via LOCC from some other LU-
inequivalent state iff (up to permutations) either h = h1

⊗ h2w ⊗ h3w ⊗ h4w, for w ∈
{x, y, z} where h1 ≠ h1w or h = h1 ⊗ 1𝐥⊗3 with h1 ∝∕ 1𝐥 arbitrary.

Note that whereas the reachable states are characterized by 12 parameters a

generic state is (up to LUs) described by 18 parameters. Hence, the set of reachable

states is of measure zero. This implies that the MES for four qubits is of full measure.

That is almost all states are in MES4. By investigating which states are convertible via

LOCC it becomes apparent that almost all states are isolated. In the following the-

orem we state which states are convertible via deterministic LOCC transformations

to some other state.

Theorem 3 A generic state g |Ψ⟩ is convertible via LOCC to some other LU-
inequivalent state iff (up to permutations) g = g1

⊗ g2w ⊗ g3w ⊗ g4w with w ∈ {x, y, z}
and g1 arbitrary.

Combining Theorems 2 and 3, one obtains that the non-isolated states in MES4
are given by

g1w ⊗ g2w ⊗ g3w ⊗ g4w |Ψ⟩ , (8)
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where w ∈ {x, y, z} and excluding the case where 𝛾
i
w ≠ 0 for exactly one i. Note that

as these states are characterized by 10 parameters, the subset of LOCC-convertible

states in MES4 is of measure zero. These states are particularly interesting as they

are in the MES and can be converted deterministically to some other states. Thus,

investigating these states could lead to the discovery of new applications.

We will proceed by presenting the general idea of how to prove which states

are reachable (or convertible) via deterministic LOCC transformations. As already

pointed out, it is very hard to characterize LOCC transformations in the multipar-

tite setting. In fact, in the four-qubit case a classification of LOCC protocols is not

known. Nevertheless, the characterization of MES can be achieved as follows. The

fact that LOCC protocols are strictly included in SEP [21] implies that if a state is

not reachable (or convertible) deterministically via SEP it is also not reachable (or

convertible) deterministically via LOCC. Hence, a state that is not reachable via SEP

has to be in the MES. In order to characterize the states that can not be reached (or

converted) via SEP we used the result of [20] where necessary and sufficient con-

ditions for the deterministic convertibility of pure states via SEP have been derived.

With this, we could characterize all three- and generic four-qubit states that are not

reachable (or convertible) via LOCC. Moreover, we showed that all other states can

be reached (or converted) via LOCC by constructing the corresponding LOCC proto-

cols. Interestingly, these protocols turned out to be very simple. Any reachable three-

or generic four qubit state can be obtained from some other state via a LOCC pro-

tocol were just one party performs a non-trivial measurement and the other parties

apply, depending on the measurement outcome, a LU. The detailed proof of which

states are in the MES in the three-qubit and generic four-qubit case can be found in

[1].

We will in the following present the result of [20] and discuss some technical

details. In [20] it has been shown that a state |
|Ψ1⟩ = g |Ψ⟩ can be transformed via

SEP to |
|Ψ2⟩ = h |Ψ⟩ iff there exists a m ∈ N and a set of probabilities,

{pk}m
1 (pk ≥ 0,

∑m
k=1 pk = 1) and local symmetries, Sk ∈ S(Ψ) such that

∑

k
pkS†

kHSk = rG. (9)

Here, we use the notation H = h†h, G = g†g and r = nΨ2
∕nΨ1

with nΨi
= || ||Ψi⟩ ||

2
.

The POVM elements that allow to do this transformation are of the form Mk =√
pk

√
r

hSkg−1. Note that Mk, H, G and Sk are local operators. From Eq. (9) it becomes

apparent that the symmetries of the chosen representative of the SLOCC class play

an important role for the convertibility via deterministic SEP transformations. To be

more precise, deterministic SEP transformations only become possible if there exists

at least one non-trivial symmetry and the symmetries specify which transformations

are possible. Thus, in order to characterize SEP convertibility it is crucial to know

the symmetries of a representative of the corresponding SLOCC class. Moreover, it

is important to note that H and G are not uniquely defined by the states, as the state

g |Ψ⟩ is the same as g̃ |Ψ⟩ = gS |Ψ⟩ for S ∈ S(Ψ). Thus, G and ̃G = S†GS corre-
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spond to the same state. This makes it more complicated to characterize which SEP

transformations are possible as the only information about the initial and the final

state that enters Eq. (9) is (apart from the normalization factor) H and G. In order to

get rid of this ambiguity, we defined for each SLOCC class a standard form, which

also takes into account that we only consider one representative per LU-equivalence

class. In order to get a unique correspondence (up to LUs) between the operator G and

the state g |Ψ⟩, we choose symmetries Si ∈ S(Ψ) such that ̃G = S†
i GSi is of a specific

form which ensures that there exists no symmetry Sj ∈ S(Ψ) such that S†
j
̃GSj is also of

this form. Obviously, it is sufficient to consider only transformations between states

in standard form. As outlined before, using this standard form and Eq. (9) allowed

us to characterize the states that can not be reached (or converted) via LOCC.

Up to now, we discussed deterministic LOCC transformations among pure states.

In the following section we will extend our study to the preparation of mixed states.

Deterministic State Preparation of an Arbitary Two-, Three-
and Four Qubit State (Pure or Mixed)

In this section, we will show that in the bipartite- and three-qubit case having access

to all states in the MES allows to obtain not only all pure fully entangled states but

an arbitrary state (pure or mixed) of the same dimension via deterministic LOCC

transformations. Moreover, we will present a six-qubit state that allows the local

preparation of an arbitrary three-qubit state. Finally, we will discuss the differences

that arise if one tries to extend our discussion to the four-qubit case.

In the bipartite case MES2 contains a single state, namely |Φ+⟩d. Interestingly,

this state is not only a resource to prepare an arbitrary pure states but also to obtain

any mixed bipartite state, 𝜌 =
∑

i pi
|
|Ψi⟩ ⟨Ψi

|
|. The protocol that allows to achieve

this task is the following. With probability pi apply the LOCC protocol that deter-

ministically transforms |Φ+⟩d into |
|Ψi⟩ (see Fig. 22.2b). Thus, |Φ+⟩d is not only the

most useful state among pure states but also among mixed bipartite states.

In the three qubit case the MES, MES3, contains infinitely many states. Having

simultaneous access to all of the states in MES3 allows to obtain any pure or mixed

three-qubit state deterministically via LOCC as we will show in the following. It is

clear from the definition of the MES that any pure fully entangled three-qubit state

can be obtained via LOCC from one of the states in MES3. Moreover, any bipartite

entangled three-qubit state can be obtained from the GHZ-state by performing a

projective measurement in the 𝜎x-basis on the appropriate qubit (to obtain up to LUs

|0⟩ |Φ+⟩2) and then applying the corresponding LOCC protocol to reach the desired

state. It is clear that any product state can be reached from an arbitrary state in MES3
via projective measurements. Thus, having access to all of the states in MES3 allows

to prepare any pure three-qubit state. Interestingly, it also allows to obtain any mixed

three-qubit state as we will show in the following. In order to obtain a mixed three-

qubit state, 𝜌 =
∑

i pi
|
|Ψi⟩ ⟨Ψi

|
|, choose with probability pi the state in MES3 that

allows to reach |
|Ψi⟩ deterministically and apply the corresponding LOCC protocol
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to obtain |
|Ψi⟩. Thus, being able to prepare any state in MES3 and to perform LOCC

transformations does not only allow to obtain any pure but also any mixed three-

qubit state deterministically. This implies that MES3 contains also the most useful

states in the mixed state case.

Interestingly, there exists also a single six-qubit state that allows to obtain an arbi-

trary three-qubit state (pure or mixed) via deterministic LOCC transformations as we

will explain in the following. Thus, this six-qubit state is a resource for three-qubit

state preparation. It has been introduced as a resource state in a different context,

namely Remote Entanglement Preparation (REP) [27]. In REP the aim is that party

A (which can be split into several spatially separated parties) is able to determinis-

tically provide the spatially separated parties Bi with arbitary multipartite entangle-

ment. In the three qubit case it has been shown that a specific eight-qubit state has

to be shared between the parties to provide the parties Bi with an arbitary state up to

LUs. The scenario that we are interested in here is the deterministic preparation of

an arbitrary state in MES3. The corresponding resource has been shown to be the

following six-qubit stabilizer state [27] (see Fig. 22.2a)

|
|Φ3⟩ = Z3(

𝜋

4
)H3Z2(

𝜋

2
)Z6(−

𝜋

4
)Z5(−

𝜋

4
)Z4(−

𝜋

4
)H1S46S56S45S15S35S34S12S23 |+⟩

⊗6
,

(10)

where Sij = |0⟩ ⟨0|⊗ 1𝐥 + |1⟩ ⟨1|⊗ 𝜎z and here and in the following we denote by

Zi1…im(𝛼) a phase gate ei𝛼𝜎i1
z ⊗…⊗𝜎

im
z acting non-trivially on parties i1 … im.

By performing projective local measurement on the qubits 4, 5 and 6 one prepares

the state for qubits 1, 2 and 3. The choice of the measurement basis decides on the

values of the parameters in the following decomposition

|
|Ψ3⟩ = Z13(𝛼4)Z12(𝛼5)(T2 ⊗ T3)Z23(𝛼6) |+⟩

⊗3
, (11)

where T3 = e−i 𝜋4 𝜎x Z(− 𝜋

4
)H and T2 = ei 𝜋4 𝜎y Z( 𝜋

4
)H. Note that any state that can be

given (up to LUs) in the decomposition of Eq. (6) can be written up to LUs also in this

form.
4

Thus, via choosing the measurement basis accordingly one can prepare any

state in MES3 (up to LUs) on the qubits 1, 2 and 3. Let us now present some details of

the protocol. In order to specify the parameters in Eq. (11) qubit 4, 5 and 6 have to be

measured in the basis {𝜎ki
z Z(−𝜃i) |+⟩}ki=0,1 with 𝜃i = 𝛼i for i = 4, 6 and 𝜃5 = ±𝛼5 for

i = 5 where the sign depends on the outcome of the measurement on qubit 6. Thus,

the measurement on qubit 6 that determines the parameter 𝛼6 has to be performed

before the measurement on qubit 5 and depending on the measurement outcome the

basis of the measurement that determines 𝛼5 might have to be adjusted (for outcome

k6 = 1 one has to choose −𝛼5 instead of 𝛼5). Moreover, the state on the qubits 1, 2
and 3 is prepared up to Pauli operators which depend on the measurement outcomes.

4
Note that also any product or biseparable state can be written up to LUs in the decomposition given

in Eq. (11).
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(a)

(b)

Fig. 22.2 a This graphic shows the graph state that is LU-equivalent to the six-qubit state in

Eq. (10). b In this graphic we indicate how any pure or mixed bipartite (three-qubit) state can

be obtained via deterministic LOCC transformations from |Φ+⟩d (the six-qubit state in Eq. (10))

respectively.

More precisely, one obtains the following state (𝜎k4+k5
z ⊗ 𝜎

k5
z 𝜎

k6
y ⊗ 𝜎

k4+k6
z ) ||Ψ3⟩. The

origin of the importance of the order of the measurements, as well as of the fact

that the state is prepared up to Pauli operators is that we used deterministic gate

implementation in order to construct the resource state (for details see [27]). As the

six-qubit state in Eq. (10) allows to obtain any state in MES3, it is a resource for the

preparation of any pure or mixed three-qubit state via deterministic LOCC transfor-

mations (see Fig. 22.2b).

Note that there exists a different six-qubit state, namely |Φ+⟩
⊗3
2 which is shared

among A (who possesses 4 qubits), B (1 qubit) and C (1 qubit), that allows to obtain

any state in MES3 via a projective measurement and application of LUs, i.e. by tele-

porting the corresponding state in MES3 [5]. In fact, any pure (or mixed) three-qubit

state can be obtained from |Φ+⟩
⊗3
2 by performing (with some probability) a corre-

sponding measurement and applying depending on the measurement outcome some

Pauli operators. The important difference to our scheme is that except for fully-

separable states the projective measurement is non-local and therefore it does not

correspond to a LOCC protocol on the 6 qubits.

In the four-qubit case the 23-qubit state that is a resource state for REP can be used

to obtain any pure or mixed four-qubit state, as it allows to prepare, by performing

local projective measurements, an arbitrary pure four-qubit state up to LUs [27].
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Unfortunately, the number of qubits of the resource state for REP in the four qubit

case can not be reduced by requiring only the preparation of states in the MES. The

reason for this is the following. The fact that MES4 is of full measure implies that

(independent of the chosen decomposition) the number of parameters that describe

MES4 and the number of parameters that describe an arbitrary four-qubit state up to

LUs have to be the same. By construction the number of qubits of the resource state

depends on the number of parameters in some decomposition of specific form (see

[27] for details).

Moreover, there is another clear difference to the three-qubit case. In the four-

qubit case having access to all states in the MES does not allow to obtain all bisepera-

ble states via deterministic LOCC transformations. States of the form |𝜙⟩ |𝜓⟩, where

|𝜙⟩ and |𝜓⟩ are truly bipartite entangled, can not be obtained from some state in

MES4. This can be seen as follows. Applying a LOCC protocol to a state |Ψ⟩ ∈ MES4
leads in any branch of the protocol to a state M1

k ⊗ M2
k ⊗ M3

k ⊗ M4
k |Ψ⟩ where Mi

k
are 2× 2 matrices. Clearly, states of the form |𝜙⟩ |𝜓⟩, where |𝜙⟩ and |𝜓⟩ are truly

bipartite entangled, can not be obtained from |Ψ⟩ via a local projective measurement,

i.e. all the matrices Mi
k have to have rank 2 and are therefore invertible. This implies

that |Ψ⟩ and M1
k ⊗ M2

k ⊗ M3
k ⊗ M4

k |Ψ⟩ have to be in the same SLOCC class, which

is not the case for |Ψ⟩ ∈ MES4 and |𝜙⟩ |𝜓⟩, where |𝜙⟩ and |𝜓⟩ are truly bipartite

entangled. Hence, having access to all state in MES4 and being able to perform any

LOCC protocol does not allow to obtain all biseparable states and therefore not all

four-qubit states. As the 23-qubit state that is a resource state for REP allows to obtain

any four-qubit state (including also all biseparable four-qubit states) by performing

the corresponding local measurements this state allows to prepare any mixed or pure

four-qubit state via LOCC.

In summary, we have shown that in the bipartite- and three qubit case the states

that are contained in the MES are the most useful ones among all states (pure or

mixed) of the same dimension. We presented a single six-qubit state from which any

three-qubit state (pure or mixed) can be obtained deterministically by applying the

corresponding LOCC protocol. Moreover, there exists a 23-qubit state that allows to

obtain any pure or mixed four-qubit state via deterministic LOCC transformations.

Summary and Outlook

The characterization of the possible LOCC transformations among quantum states is

a very relevant problem, both in the foundations of entanglement theory and to iden-

tify the most useful states in order to look for new applications of quantum infor-

mation. Although this is in general a very hard task, we have shown that it is in

principle possible to address this question using the tools that characterize the con-

versions under the mathematically more tractable set of SEP operations. Following

this idea, we have characterized the MES of truly entangled three-qubit states and

generic four-qubit states. Interestingly, it turned out that there is a subset of states of
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measure zero which is clearly more relevant for state manipulation and these families

should therefore be good candidates to look for practical applications. MESn allows

to obtain by LOCC any possible n-qubit truly entangled pure state. However, we

have shown that the power of MES3 extends to the preparation of all possible (pure

or mixed) tripartite qubit states but that this is not the case for MES4. As a comple-

ment, we have considered LOCC protocols that allow to obtain all few-body states

from a single state of more parties. We have provided a specific six-qubit (23-qubit)

state that allows to prepare any form of three-qubit (four-qubit) entanglement.

Our results open the door to a systematic and general study of LOCC manipu-

lation in multipartite systems. In the future we will investigate extensions to sys-

tems of higher dimension and/or more parties. Moreover, we will study the case of

more copies and also the more general case of approximate LOCC transformations

in which, contrary to exact LOCC, one allows for a certain error in the output state of

the protocol. Furthermore, the investigation of possible LOCC transformations will

allow, similarly to the bipartite case, to introduce operational entanglement mea-

sures.
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Chapter 23
Search for Hidden Observables in Neutron
Experiments

Helmut Rauch

Here, hidden observables and not hidden variables will be discussed. Neutrons are
proper tools for testing basic laws of quantum physics since they are massive and
can be handled and measured with high efficiency. Suitable post-selection experi-
ments demonstrate coherence features of sub-ensembles even when the whole
ensemble seems to have lost its coherence. All experiments have the capacity to
explain more details by additional pre- and post-selection methods. It will be shown
that specific losses are unavoidable in any interaction. Coherence and decoherence
are intrinsic quantum effects and can shed light on the measurement problem.
Quantum contextuality is a consequence of the entanglement of different degrees of
freedom. This makes quantum phenomena more strongly correlated than classical
ones. Most experiments have been performed with perfect neutron interferometers
and some others by using ultra-cold neutrons and spin-echo systems. An event by
event based interpretation can also be brought into agreement with the experimental
results. In many cases parasitic beams carry the same information as the main beam
and this relates such measurements to “weak” measurements. The coupling and
entanglement of various parameter spaces guide us to a more elaborate discussion
of quantum effects.

Introduction

The ongoing discussion about the interpretation of quantum physics which oscil-
lates between very mystic and more rational interpretations. John Bell contributed
to this discussion and made very useful proposals for related test measurements [2].
In this paper it will be shown that in all experiments there are some kinds of hidden
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observables mainly because not all pre- and post-selection possibilities are utilised
and average values are measured where more detailed investigations would be
possible. In this respect we discuss neutron experiments where the particle and
wave features are essential and where one can show that much more information
can be extracted by using more sophisticated measurement methods. This will be
demonstrated by means of spatial-, momentum-, time- and polarization
post-selection experiments. We will also demonstrate that unavoidable quantum
losses may play an important role in the interpretation of the quantum to classic
transition. These losses can be used as weak measurements to obtain basic infor-
mation about the main object without interacting with it. In some sense the analysis
follows the pragmatic access of [7] who showed how quantum phenomena can be
explained when one follows strictly the state of knowledge one gains from an
experiment starting from a few up to a high number of events and where the
averaging procedure becomes more reliable. In this respect one includes the mea-
surement time, or the number of particles used, into the analysis.

Our approach uses neutron interferometer experiments where two coherent
neutron beams are produced by dynamical Bragg diffraction from a perfect silicon
crystal and they are superposed at the exit crystal plate and exhibit all well-known
interference phenomena (Fig. 23.1; e.g. [14]). Since one deals with a stationary
situation one can use the time-independent Schrödinger equation and gets for the
beams behind the interferometer a superposition of beam I and II which are
transmitted-reflected-reflected ψ trr and reflected-reflected-transmitted ψ rrt respec-
tively. From symmetry follows that they are equal in intensity and phase. A phase
shift χ can be applied, which is given by the index of refraction of any material and
related to a spatial shift Δðχ =Δ.K ⃗Þ.

I0 = jψ I +ψ II j2 = jψ trr +ψ rrte
iχ j2 = jψ0j2 1 + jΓðΔ!Þj cos χ

� �
ð1Þ

Fig. 23.1 Photo of a perfect
crystal neutron interferometer.
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ΓðΔ!Þ denotes the coherence function, which defines the coherence lengths Δ!c

as its characteristic dimension and is related to the size of the wave packets
involved

ΓðΔ!Þ
��� ���= ⟨ψð0ÞψðΔ!Þ⟩

��� ���∝
Z

gðkÞ⃗eiΔk ⃗dk ⃗
����

���� ð2Þ

For Gaussian beams with momentum widths δk one obtains

ΓðΔÞj j= exp − Δ.δkð Þ2 2̸
h i

ð3Þ

where gðkÞ⃗ is the momentum distribution. In an experiment Eq. (1) can be
approximated by

Iexp =Að1+V cosðχ +ϕÞÞ ð4Þ

V denotes the visibility of the interference pattern and ϕ an internal phase caused
by some small deviations from the perfectness of the crystal or due to external
effects like gravity or magnetic fields. In practice high visibilities (up to 95 %) and
high order interferences (up to 200th) have been observed.

Analysis of the Parameters in Eqs. (1)–(4)

All parameters of Eqs. (1)–(4) are average values over the beam cross section, the
momentum distribution and the measurement time. In the following sections we
intend to analyse the various parameters of the equations shown above. We try to
show in the following sections how they can be specified by various post-selection
experiments.

Wave Function—Momentum Post-Selection

The wave function follows from the solution of the time-independent Schrödinger
equation and can be written for free space motion as a wave packet centred around
k0 with a width δk. For Gaussian shaped beams this can be written as

−
ℏ2

2m
Δψ =Eψ ð5Þ
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ψðrÞ∝
Z

aðkÞeikrdk∝
Z

e− ðk− k0Þ2 2̸δk2eikrdk ð6Þ

which is an eigenvalue solution for the freely moving particle. aðkÞ denotes the
amplitudes of the coherently superposed partial waves and aðkÞj j2 the momentum
distribution function as used in Eq. (2). Whereas the wave packet is localized
within a region compatible with its coherence length ðΔcδk≥ 1 2̸Þ the partial waves
are arbitrarily widely spread as shown in Fig. 23.2. That means that information
about the particle exists even far away from the packet. This has to be taken into
account when non-locality effects are discussed e.g. [13]. Proper momentum
post-selection measurements have made these partial waves visible by applying
additional monochromatization [12, 16]. This shows how more information can be
extracted by means of more sophisticated experimentation. Figure 23.3 shows an
arrangement where some of these far reaching components of the wave functions
can be analysed and fringe visibility can be preserved although the beam I0 without
additional monochromator crystals and the artificially summed up intensity ð∑n

1 InÞ
of all measuring channels do not show interference features at all. This means that
one can decide after the measurement whether one is more interested in wave
features (individual channel intensities) or particle features (summed up intensity).
This has to be discussed on the basis of the Greenberger-Englert duality relation
which treats wave and particle properties as a duality system where the particle

k1

k2

k3 

Fig. 23.2 Wave packet (above) and partial waves (below).
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feature is determined by the path distinguishability PDð Þ and the wave features by
the visibility ðVÞ of the interference pattern [9, 6]. This indicates that a single
particle system can exhibit far reaching features outside its wave packet range and
that a two or many body system never separates when it has a common origin.

P2
D +V2 ≥ 1 ð7Þ

Beam Cross Section and Wave Packets—Position
Post-Selection

As mentioned above the size of the wave packet is given by the Fourier transform
of the momentum distribution function (Eq. 6) and can be determined from the
measurement of the coherence function (Eq. 2), i.e. from the decrease of the visi-
bility at high interference order [16]. For a neutron interferometer situation the
coherence lengths are different for the various directions due to the different
momentum distributions Δlongitudinal ≈ 100 A, Δvertical ≈50 A, Δtransvers ≈ 20 μm

� �
,

which are much smaller than a typical beam cross section ≈1 × 2 cmð Þ. When one

Fig. 23.3 Sketch of a feasible momentum post-selection experiment using various monochro-
maters (1, … n) to observe wave features and where the intensities can be summed up to reach I0,
i.e. a situation which permits beam path (particle) information.
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considers the available intensity of about 104 n/s one notices that one deals with
single particle interference and there is no interaction between successive neutrons
besides the fact that they are shaped by the same monochromators, collimators and
crystal reflections. Thus a situation as shown in Fig. 23.4 exists where the wave
packets of the individual neutron do not overlap at all.

The intensity and the coherence features vary across the beam cross section and
therefore the parameters of Eq. (4) vary as well, as shown in Fig. 23.5. This is a
position post-selection result when a position sensitive detector is used to scan the
intensity, the contrast V or ΓðΔÞj jð Þ and the internal phase ðϕÞ of the interference
pattern. One notices that the measured interference pattern depends on the size and
position of the aperture used. One can also measure the momentum distribution at
any position and will notice some differences. This means that the wave-functions
are different at any position of the aperture, but they are similar to each other which
permits the definition of a mean wave-function for any beam. One should keep in

~ 50 m

Source

~ 100Å 

Fig. 23.4 Sketch of wave packets within the neutron flight path.

6
cm

4 cm

Fig. 23.5 Result of a position post-selection experiment showing the contrast (left) and the
internal phase (right) across the beam cross section.
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mind that in any experiment an average is taken over aperture area and various
momentum distributions at any position within the beam cross section. This
underlines that the wave packet features are determined by the apparatus only but
each neutron of the beam experience a similar history which causes common fea-
tures and determine the coherence properties of the beam.

Time—Post-Selection

Neutron choppers can be used to measure the velocity distribution of the beam by
means of time-of-flight methods. These methods are similar to the momentum
post-selection methods discussed in Sect. “Wave Function—Momentum
Post-Selection” [15, 10]. The energy-resolved interference pattern show a higher
visibility than the full beam. A classical analysis of the data is possible as long as
the resolution time of the chopper is larger than the coherence time of the beam
(5 µs compared to 10 ns).

Another method measures the arrival time of each neutron. For a thermal
(Poissonian) beam the probability to measure a neutron within a time interval t after
another neutron has arrived is given by [8]

WðtÞ= Ie− I t ð8Þ

This is shown in Fig. 23.6 [18]. When measuring two neutrons arriving within
short or long time intervals one can achieve a considerably higher contrast and
phase sensitivity than analysing the full beam only. Since arrival time

Fig. 23.6 Arrival times of neutrons and short pair and long pair arrivals (left), measured
interference pattern for the overall beam and the short and long pair arrivals (middle) and the
measured and calculated contrast and sensitivity (right).

23 Search for Hidden Observables in Neutron Experiments 389



measurements can be implemented quite easily this opens a new possibility to
improve experimental results. A more complete analysis has been given on the
basis of a Bayes estimation by [17]. The mean time interval between two arriving
neutrons is given by τ ̄=1 I̸. One notices that for “long” pairs the contrast always
reaches nearly 100 % and that the interference pattern becomes shifted by π.

Unavoidable Losses

In many cases losses during a quantum measurement are neglected and treated as
caused by experimental imperfections only. Here we deal with unavoidable losses
caused by the theory itself. Such losses may become important for the understanding of
quantum decoherence and the quantum measurement process [19, 20, 11]. It will be
shown that not only dissipative interactions cause an irreversible change of the
wave-function, but deterministic ones can cause such a change too. We start with the
phase echo experiment where a large positive phase shift should be compensated by a
large negative one. This has been verified to a high degree [3], but a closer look shows
that each phase shifter causes additional back and forth reflections as indicated in
Fig. 23.7. When the energy of the particle E is much larger than the height of the
barrier ðV ̄Þ and its thickness produces phase shifts larger than the coherence length
of the beam the reflectivity can be written as e.g. [4]

Fig. 23.7 Approximate and complete wave-functions when differently shaped phase shifters are
used (left) and a method to measure these parasitic beams (right).

390 H. Rauch



R ̄≅
1
2

V ̄
2E

� �2

. ð9Þ

For thermal neutrons this is very small (10−10) but unavoidable even when
specially shaped barriers are taken into account. It should be mentioned that the
same information which exists in the main beam (D1) is available in the parasitic
beams (D2–D20). This relates such measurements to “weak” measurements [1, 5].
The measurement period may be much longer but that does not enter the analysis
and there is no method to retrieve all components into the original beam.

Discussion

These measurements and their analysis have shown that many coherence properties
of a beam can be retrieved by various post-selection methods. Nevertheless a
complete retrieval cannot be achieved due to unavoidable losses. These losses need
not be caused by dissipative forces but can also be caused by unavoidable quantum
losses. Thus irreversibility seems to start with the first interaction the system
experiences and can take place at any time scale. In this respect irreversibility and
the related measurement process seems to be part of the quantum formalism as
stated by [7]. Wave and particle features (interference and beam path) are related
according to Eq. (7) and they can be taken as a two level system which can be
entangled in a contextual sense. This shows that quantum physics involves more
entanglements and makes the world and the human being more correlated than
classical physics.

References

1. Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)
2. J.S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press,

1987)
3. R. Clothier, H. Kaiser, S.A. Werner, H. Rauch, H. Wölwitsch, Phys. Rev. A 44, 5357 (1991)
4. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, vol. 1 (Wiley, N.Y., 1977)
5. J. Dressel, M. Malik, F.M. Miatto, A.N. Jordan, Rev. Mod. Phys. 86, 307 (2014)
6. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996)
7. B.-G. Englert, Eur. Phys. J. 67, 238 (2013)
8. R.J. Glauber, Fundamental Problems in Statistical Mechanics, ed. by E.G.D. Cohen (North

Holland, 1968)
9. D.M. Greenberger, A. Yasin, Phys. Lett. 128, 391 (1988)
10. D.L. Jacobson, B.E. Allman, M. Zawisky, S.A. Werner, H. Rauch, J. Phys. Soc. Jpn. A65, 94

(1996)
11. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the

Appearance of a Classical World, 2nd edn. (Springer, Berlin, 2003)

23 Search for Hidden Observables in Neutron Experiments 391



12. H. Kaiser, R. Clothier, S.A. Werner, H. Rauch, H. Wölwitsch, Phys. Rev. A 45, 31 (1992)
13. H. Rauch, Phys. Lett. A 173, 240 (1993)
14. H. Rauch, S.A. Werner, Neutron Interferometry (Oxford University Press, Oxford, 2015)
15. H. Rauch, H. Wölwitsch, R. Clothier, H. Kaiser, S.A. Werner, Phys. Rev. A 46, 49 (1992)
16. H. Rauch, H. Wölwitsch, H. Kaiser, R. Clothier, S.A. Werner, Phys. Rev. A 53, 902 (1996)
17. J. Rehacek, Z. Hradil, M. Zawiska, S. Pascazio, H. Rauch, J. Perina, Phys. Rev. A 60, 473

(1999)
18. M. Zawisky, H. Rauch, Y. Hasegawa, Phys. Rev. A 50, 5000 (1994)
19. H.D. Zeh, Found. Phys. 1, 69 (1970)
20. W.H. Zurek, Phys. Rev. D 24, 1516 (1981)

392 H. Rauch



Chapter 24
What Does Quantum Theory Tell Us?
A Matter-Wave Approach

Yuji Hasegawa

It is my great pleasure and honor to present here a review of our recent experimental
achievements investigating foundations of quantum mechanics with neutrons. We
are doing quantum-optical experiments with neutrons. Neutrons are massive par-
ticles with ½-spin. Matter-wave experiments such as interferometer experiments
with neutrons have been established as an almost ideal tool for tests of quantum
mechanics for the last several decades. In addition, the coupling of neutrons with
the electromagnetic field allows us to manipulate neutron’s spin degrees of freedom
with extremely-high precision. Stationary as well as time-dependent manipulation
scheme is accomplished: Larmor precession is actually involved in the former case
and (total) energy degree of freedom can be affected in the latter case. Here, we
concentrate on three major topics, i.e., entanglement achieved in a single-particle
(neutron) system, quantum Cheshire-Cat and a new error-disturbance uncertainty
relation, which are very great concerns from the fundamental view point of
quantum theory.

Introduction

From the earlier stage of the development of quantum theory, the double–slit
experiment, in particular with single-particles has been serving as the best example
to view central mystery in quantum mechanics [1]. In classical physics, after lots of
trials with particles, the obtained distribution at the screen behind the two opening
slits will be given by the sum of two distributions separately obtained by individual
single-slit openings. This undoubtedly understood by presuming the fact that each
particle can go through merely either one or the other slit so that the final distri-
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bution is the sum of those obtained from two sub-ensembles, one with particle
going through one slit and the other through the other slit. In contrast, in quantum
version of double-slit experiments, when both slits are open and particles like
neutrons, electrons, molecules and so forth are sent, there appears “a fine structure”
in the final distribution at the screen, This fine structure exposed more frequent and
even less frequent occurrences in some places than in cases of individual single-slit
openings: this is explained due to a constructive/destructive interference effect from
a wave model in classical physics. It sounds reasonable if one accepts the situation
where particles, which cannot be divided into pieces, hit both slits simultaneously
and “an effect” from both opening with wave-like property reaches the screen,
exhibiting fringe pattern due to constructive and destructive interference. It is worth
noting here that non-local effects, not in a sense of quantum kinematics observed in
two-particle correlation but in a sense of quantum dynamics described by quantum
equation of motion [2], are clearly observed in quantum version of the double-slit
experiments.

Optical experiments with massive particles such as neutrons, electrons, atoms,
molecules are playing a significant role for tests of peculiar phenomena predicted
by quantum theory: the first and, in some cases, even the second order quantum
interference effects are observed [3]. It is worth noting that such an important
physical issue is sometime easily forgotten but lies beneath that the
(non-relativistic) Schrödinger equation can be directly applied in describing the
time-evolution of quantum state of massive quantum system: de Broglie wave with
the wavelength λ = h/mv, spin quantum numbers with its norm given by
sk k= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs+1Þp
ℏ, canonical commutation relation such as xi, pj

� �
= iℏδij, et cetra

are purely quantum mechanical features and cannot be found in classical
mechanics.

In interferometer experiments, separated coherent beams are produced typically by a
wave-front division, e.g., in Young type, or by an amplitude division, e.g., in
Mach-Zehnder type. These beams are recombined and superposed coherently after
propagating through some regions of space, where phase as well as amplitude can be
manipulated by various interactions. The advent of the perfect crystal neutron inter-
ferometer in 1974 opened up a new era of fundamental studies of quantum mechanics
with matter-waves [4]. Coherent beam split is carried out in the manner of the
amplitude division and optical elements such as beam-splitter/mirror/analyzer, are
attained by the use of (dynamical) diffraction at the perfect crystal slab. A schematic
view of the skew-symmetric neutron interferometer made of a Si perfect-crystal and an
intensity modulation as a function of the relative phase tuned by a phase shifter are
depicted in Fig. 24.1. A monolithic construction allows us alignment-free structure.
Typical beam separation is several centimeters, which enables quantum mechanical
studies in a macroscopic scale. It is to be mentioned here that all perfect-crystal neutron
interferometer experiments up to now concern with self-interference experiment, where
only one particle (neutron) is inside the interferometer at a time, which goes through
two split beam paths, and interference fringes are observed for a certain ensemble:

I0 ∝ ΨIj ⟩ + eiχ ΨIIj ⟩j j2 ∝ 1 + cos χð Þ.
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In typical perfect crystal neutron interferometers, interference patterns between
two coherent sub-beams, ΨI and ΨI, can be observed by tuning the relative phase.
Exploiting ½-spin of neutrons, another interference effects between the spin
eigenstates, e.g., ⇑j ⟩ and ⇓j ⟩ (spin eigenstates parallel and anti-parallel to the
quantization axis), can be observed in a so-called neutron polarimeter: the
polarimeter is a device, typically where a polarized incident neutron beam is sent
through the sample and the spin vector of the exit beam is analyzed subsequently.
For quantum-mechanical investigations, neutron polarimeter is used in the fol-
lowing manner. (i) A coherent superposition of the up- and the down-spin eigen-
state is created by turning the spin vector of the up polarized incident beam by π/2,
⇑j ⟩↦ 1 ̸

ffiffiffi
2

p
⇑j ⟩ + ⇓j ⟩ð Þ. (ii) A relative phase shift between the spin eigenstates is

given: 1 ̸
ffiffiffi
2

p
⇑j ⟩ + ⇓j ⟩ð Þ↦ 1 ̸

ffiffiffi
2

p
⇑j ⟩ + eiα ⇓j ⟩ð Þ. (iii) Finally, the direction of the

spin vector is measured: the direction depends on the relative phase α, e.g.,
P⇑ ∝ 1+ cos αð Þ. This sinusoidal modulation dependent on the relative phase α has
exactly the same origin, i.e., quantum interference, as the intensity modulation observed
in the interferometer experiments. A schematic view of a typical neutron polarimeter
experiment and an intensity modulation as a function of the relative phase α are
depicted in Fig. 24.2. Neutron polarimetry has several advantages compared to perfect
crystal neutron interferometry: we mention here, in particular, higher phase-stability
due to insensitivity to ambient disturbances, larger available space for inserting diverse
optical instruments and apparatus into the superposing beam, wider angular acceptance
range of the beam bringing higher intensity, and higher (>99 %) efficiency of spin
manipulation attaining higher contrast (>98 %) of the final interference fringes.

The main goal of this article is to present tutorial review of the recent fundamental
studies of quantum mechanics explored with neutron’s matter-waves: some recent
experiments with the neutron interferometer and the polarimeter are presented. We
exploited entanglements between degrees of freedom in a single-particle system:
bi-partite and even tri-partite entangled quantum systems are investigated [5–7]. Fur-
thermore, following a recent theory suggesting a separation of the photon and its
polarization in the curious way of quantum mechanics [8], we carried out an experiment
where so-called a quantum Cheshire-cat is observed in neutron interferometer setup: the

Fig. 24.1 Schematic view of the perfect crystal neutron interferometer (left). A typical
interferogram obtained by rotating phase shifter (right).
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experimental results suggest that the system as a whole behaves as if neutron and its
magnetic moment are disembodied and they travel along different beam paths [9]. In the
last part, a new theory concerning the error-disturbance uncertainty relation is tested by
modifying a conventional neutron polarimeter setup [10, 11]: successive measurements
of neutron’s spin exhibits the violation of the naïve error-disturbance relation suggested
by Heisenberg and confirms the validity of a new universally valid error-disturbance
uncertainty relation by Ozawa [12, 13]. A more detailed summary of recent neutron
interferometer and polarimeter experiments is published elsewhere [14].

Entanglement Achieved in a Single-Particle
(Neutron) System

It was Einstein, Podolsky, and Rosen (EPR) [15] and afterwards Bell [16] who shed
light on the non-local properties between subsystems in quantum mechanics (QM).
Bell inequalities are constraints imposed by local hidden-variable theories (LHVTs)
on the results of spacelike separated experiments on distant systems. The conflict
between LHVTs and QM is even more apparent in tri- or multi-partite quantum
systems as analyzed by Greenberger, Horne and Zeilinger (GHZ) [17]: the con-
tradiction arises in contrast to statistical violation in common with Bell-inequalities.

The neutron optical studies exploit properties of bi-partite and even tri-partite
entangled quantum system [5–7]. In our experiments entanglements are achieved
not between particles but between degrees of freedom: this allows investigations
properties not due to quantum non-locality but due to quantum contextuality. It is
worth noting here the fact that local hidden variable theories are a subset of a larger
class of hidden variable theories known as non-contextual hidden variable theories
(NCHVTs). By definition, NCHVTs assume that the result of a measurement of an
observable is predetermined and independent of a previous or simultaneous mea-
surement of any other compatible (commeasurable) observables.

Fig. 24.2 Schematic view of a typical neutron polarimeter experiment (left). Sinusoidal intensity
modulation is obtained by tuning the relative phase between the two spin eigenstates (right).
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The concept of contextuality in quantum mechanics was first analyzed by
Kochen and Specker, which suggests certain constraints on the allowed hidden
variable theories [18]: there appears a contradiction between predictions by
non-contextual hidden variable theories and quantum mechanics. Experimental
tests of quantum contextuality with neutrons started with the study of Bell-like
inequality [5]. In this experiment, the path and the spin degrees of freedom of
neutrons in the interferometer are employed to accomplish the Bell-like state such
as ΨBellj ⟩=1 ̸

ffiffiffi
2

p
⇑j ⟩ ΨIj ⟩+ ⇓j ⟩ ΨIIj ⟩ð Þ, where ⇑j ⟩ and ⇓j ⟩ denote the up-spin and

down-spin states, and ΨIj ⟩ and ΨIIj ⟩ denote the two beam paths in the interfer-
ometer, respectively. The Bell-like inequality is obtained with parameters of the
relative phase χ between the two beams and the direction α of the final spin analysis
as S ≡ E(α1, χ1) + E(α1, χ2) − E(α2, χ1) + E(α2, χ2) and −2 ≤ S ≤ 2. In this
experiment the expectation values of the joint measurement of the path and the spin
E(αj, χk) (j, k = 1, 2) are determined by a combination of count rates with appro-
priate adjustments of α and χ and given by

Eðαj, χkÞ=
Nðαj, χkÞ+Nðα⊥j , χ⊥k Þ−Nðα⊥j , χkÞ−Nðαj, χ⊥k Þ
Nðαj, χkÞ+Nðα⊥j , χ⊥k Þ+Nðα⊥j , χkÞ+Nðαj, χ⊥k Þ

, ð1Þ

with α⊥j = αj + π and χ⊥j = χj + π. A schematic view of the experiment and the
sinusoidal intensity modulations used to determine E(0, 0.79π), E(π, 0.79π),
E(0, 1.79π), and E(π, 1.79π) are shown in Fig. 24.3. A final value of Sexp ≡
E(0, 0.79π) + E(0, 1.79π) – E(π, 0.79π) + E(π, 1.79π) = 2.051 ± 0.019 ≰ 2 was
obtained, which violates the Bell-like inequality by almost three standard devia-
tions. Although this first experiment exhibits only a small violation of the Bell-like
inequality, the violations are more explicit as Sexp = 2.365 ± 0.013 ≰ 2 in the

Fig. 24.3 Schematic view of the experimental setup to demonstrate a violation of the Bell-like
inequality (left). Sinusoidal intensity modulation obtained by tuning the relative phase for various
directions (α) of the final spin analysis [5].
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recent experiments with neutron interferometer with the use of spin-path entan-
glement [19] and as as Sexp = 2.781 ± 0.015 ≰ 2 the polarimeter with spin-energy
entanglement [7]. By the use of the bi-partite spin-path entanglement in a
single-neutron system, Kochen-Specker-like contradictions between NCHVTs and
the quantum-mechanical predictions are studied with neutron interferometric setup
[20–22]. All these experiments confirm quantum contextuality: the result of a
certain measurement in quantum mechanics cannot be ascribed to a definite value
before the measurement but actually depends on, for instance, what is measured
together.

In the first experiment studying the Bell-like inequality, the spin and the path
degrees of freedom in a single-neutron system are entangled. For further investigations,
other degrees of freedom of neutrons were pursued to be manipulated with high fidelity
and entangled. It was already known and used in the neutron optics community that the
total energy of neutrons can be shifted through the spin-flip by the interaction of
neutron’s magnetic moment with a sinusoidally oscillating magnetic field: an interac-
tion represented by a time-dependent Hamiltonian can influence the total energy of the
system. A neutron with the up-spin is suffered by the sinusoidally oscillating magnetic
field B1(ωt) situated in the region with a guide magnetic field B0. By tuning the
strengths of the two magnetic fields and the frequency ω of the oscillation, the neu-
tron’s spin can be flipped: the neutron with the down-spin leaves the instrument. At the
entrance (and exit) of the guide magnetic field, the kinetic energy and the potential
energy of the neutron decrease and increases, respectively so that the total energy,
which is given by the sum of the kinetic and potential energies, is preserved. By the
interaction with the oscillating magnetic field, the neutron’s spin is flipped so that the
potential energy changes with the unaffected kinetic energy: the total energy of the
neutron is shifted through this interaction. (Since typical frequency of the oscillating
magnetic field is some tens of kHz, i.e. a radio frequency, the spin-flipper of this type is
called a radio-frequency/RF spin-flipper.) This interaction can be viewed by the
James-Cummings model [23]: the shift of the total energy of the neutron is attributed to
the photon exchange, i.e. photon emission/absorption [24, 25]. A schematic view of the
spin-flip by the oscillating field together with an energy diagram is shown in Fig. 24.4.

Interferometer experiment accompanied by RF spin-flippers are reported already
in the 1980s: one intended to observe a time-dependent superposition of spinor
wavefunction [26] and a kind of a double-slit experiment with marking the paths by
energy shift of the neutron [27]. In these experiments, however, the contrast of the
interferogram was pretty low due to thermal disturbance to the perfect-crystal
interferometer: a temperature difference even by 0.1° between the interferometer
crystal and the spin-flip device, which is easily and almost inevitably attained by
heat-loads due to electric currents, can considerably reduce the contrast of the
inteferogram. For advanced experiments, a special apparatus was to be developed: a
small box, e.g., several cm3, made of acrylic glass, which is a thermal and electrical
insulator, is fed with temperature-controlled water. A (mini) guide-field and a RF
coil are buried in the cooling-water. An illustration and a picture of this apparatus
are shown in Fig. 24.5.
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By using this new apparatus, we have attained to manipulate (total) energy
degree of freedom coherently with high fidelity [28]. This achievement enabled us
to study properties of tripartite-entangled system, e.g., between spin-path-energy
degrees of freedom. The Greenberger-Horne-Zeilinger-like (GHZ-like) state, given
by ΨGHZj ⟩=1 ̸

ffiffiffi
2

p
⇑j ⟩ ΨIj ⟩ E0j ⟩+ ⇓j ⟩ ΨIIj ⟩ E0 −ℏωj ⟩ð Þ is generated to test quantum

contextuality [6] and the W-like state given by the superposition of
⇓j ⟩ ΨIj ⟩ E0 − 2ℏωj ⟩, ⇑j ⟩ ΨIj ⟩ E0 −ℏωj ⟩, and ⇓j ⟩ ΨIIj ⟩ E0 −ℏωj ⟩ is used to study
evidence of the distinct types of genuine multi-partite entanglement between three
degrees of freedom [29, 30].

The derivation of the Bell’s inequality is based on the combination of two
assumptions of locality and realism, which is violated with certain circumstances
predicted by quantum theory. Taking one step further Leggett proposed in 2003 a
class of hidden variable theories, i.e., crypto-nonlocal, that abandons locality [31].
He showed that predictions of a certain class of this kind of non-local theories are in

Fig. 24.4 Spin-flip accomplished by the interaction between a sinusoidally oscillating magnetic
field and neutron’s spin (left). An energy diagram of the neutron: the total energy is shifted by
going through the RF spin flipper.

Fig. 24.5 An illustration of the RF spin-flipper box equipped with water cooling system and a
mini guide field (a). A picture of the spin-flipper box (b, c).
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conflict with those of quantum mechanics. The first experimental test was carried
out by using a pair of entangled photons [32]: the key issue of the test is correlation
measurements of photon polarization lying not in the same plane but out of plane,
i.e., correlations in 3D instead of in 2D. It is worth noting here that this experiment
demands extremely high contrast of the final interferograms (more than 97.4 %);
such a high contrast is only accessible with polarimeter in neutron optics.

In our polarimetric test [7], we followed the criteria used in the first experimental
study by Gröblacher et al. [32]. In particular, the contextual theory to be tested here
is based on the following assumptions:

(i) All the values of measurements are predetermined.
(ii) States are a statistical mixture of subensembles.
(iii) The expectation values taken for each subensemble obey cosine dependence.

Assumptions (i) and (ii) are common to experimental tests of ordinary
non-contextual theories and assumption (iii) is a peculiarity of this model. Here, the
result of the final measurement of B [A] depends on the setting of the previous
measurement of A [B]: a realistic contextual model is tested in our experiment. The
experimental setup is depicted in Fig. 24.6. Passing through a bent Co-Ti super
mirror array, the beam is highly polarized. The same technique is employed to
analyze the polarization. Two identical radio-frequency (RF) spin rotators are
employed. Both are put in a homogeneous and static magnetic guide field. In the
present experiment, a maximally spin-energy entangled Bell-like state is generated
and affected by successive energy and spin measurements. Initial Larmor-
precession scan exhibit sinusoidal intensity modulations with more than 99 %
contrast. By tuning the rotation angle of RF spin-flipper 1 to π/2, the maximally
entangled Bell-like state is generated.

For the test of alternative model of quantum mechanics à la Leggett, correlation
measurements are required between spin-directions outside the single plane. By
tuning the angle adequately, the maximum discrepancy was observed, as the
obtained value SExp = 3.8387 ± 0.0061 at the upper limit STh = 3.7921: the vio-
lation is more than 7.6 standard deviations. In order to see the tendency of the
violations, the parameter φ is tuned to 8 different values between 0 and 0.226π.

Fig. 24.6 Schematic view of the experimental setup to test alternative model of quantum
mechanics à la Leggett (left). The final results plotted as a function of an experimental parameter φ:
some experimentally determined points, on the red curve according to the quantum theory, are
clearly above the boundary, i.e. black curve predicted by the alternative model (right) [7].
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Figure 24.6 shows a plot of the experimentally determined SExp together with the
limit of the Leggett’s model as well as the quantum mechanical prediction (cal-
culated for the final contrast of 99 %). The experimental values follow the quantum
mechanical prediction, and this clearly confirms the violation of Leggett’s model.

Neutron optical approach for studies of quantum contextuality has exploited
entanglement between several degrees of freedom, i.e. spin, path, and (total) energy.
Even though the ½-spin of neutrons is, in fact, a two-level quantum system, the path
and energy degrees of freedom can be extended to higher-order multi-level quantum
system. For instance, three-level quantum systems, i.e., so-called qutrits, are created
in neutron optical experiments and utilized: a three-path neutron interferometer is
developed to be actually used in some measurements [33] and three energy-levels
are in usage for generations of tripartite entangled systems [30]. It is to be
emphasized here that the energy levels (as well as the path) used in the neutron
experiments are not of natural origin but artificially created. For instance, gaps
between each levels are controlled by the frequency of the time-dependent inter-
action: applying various frequencies for interactions, one can artificially generate
lots of energy levels to be used for, say, quantum information/communication
processing. In this case, the properties of neutrons such as storability in a “bottle”,
less fine-structure and lower decoherence-rate by avoiding electric interactions will
be of help.

Cheshire-Cat in Quantum Mechanics

Quantum theory is one of the most successful theories in physics and its predictions
are verified with high precision in a wide range of the field by experiments. From
the beginning, however, quantum mechanics is providing extraordinary and strange
view of nature, which is different from that in classical physics. For instance, a
particle such as electron, neutron and positron can behave non-locally located
waves: wave-particle duality postulates that all particles exhibit both wave and
particle properties. Furthermore, another paradox known as a Schödinger’s cat is a
good example that quantum mechanics is capable to exhibit counterfactual phe-
nomena. Recently, another counterfactual paradox, called quantum Cheshire-cat,
attracted attention: in a pre- and post-selected circumstances, a cat, i.e. a particle,
spots in one place and her grin, e.g., a spin, does in the other [9, 34]. This situation
is illustrated in Fig. 24.7 on the left side.

The Cheshire-cat featured in a novel “Alice in Wonderland” by Lewis Caroll is a
remarkable creature: Alice says that she sees a cat disappears, leaving its grin
behind. It is contradictory to our ordinary life, since no grin can be found without a
cat. In the quantum world, however, it is possible that an object is separated from its
properties. This is a “quantum Cheshire-cat” which is allowed by quantum theory.
In more detail, according to the law of quantum physics, particles can be in different
states at the same time: this phenomenon is known to be observed in so-called a
double-slit experiment. If, for example, a beam of neutrons is divided into two
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beam paths using a silicon crystal, the individual neutrons can travel along both
beam paths at the same time in a quantum superposition. Neutrons have no electric
charge, but they carry a magnetic moment. They have the spin, which can be
influenced by external magnetic fields. A neutron beam is split into two parts in a
neutron interferometer. Let us see if neutrons and their spin will be found in
difference paths of the neutron interferometer setup depicted in Fig. 24.7 on the
right side. Neutrons enter the interferometer: then the spins of the two beams are
rotated into different directions. The neutron in the upper beam has a spin parallel to
the propagation, the spin of the lower beam points into the opposite direction. After
the two beams are recombined, only those neutrons are selected, which have a spin
parallel to their stream. These procedures are called the pre- and the post-selection,
which are key issues in creation of quantum Cheshire-cat.

For the observation of the quantum Cheshire-cat, two measurements are
required: the measurement of neutron’s population and the measurement of the
location of the neutron’s spin. This is not a trivial task, since the quantum system is
so fragile that conventional measurement procedure in quantum mechanics
unavoidably leads to disturbances on the measured system to prevent further
evolution of the system. Therefore, we decided to use an alternative strategy: not a
strong but a weak coupling of the system with the measurement apparatus allows a
minimum disturbance on the system to extract the information of the system in
between. Since the “signal” of this kind of measurement is so low, the price we
should have paid was to repeat the measurement until enough reliable results are
obtained. In the first measurement, absorbers with pretty high transmissivity (about
80 or 60 %) are inserted in one of the beam paths in the interferometer. Typical
results are shown in Fig. 24.8. The absorbers in the beam path I (lower path) do not
affect the final intensity of the O-beam with a spin-analysis, while final intensity
decreases by inserting the absorbers in the path II (upper path). This suggests that
neutrons are traveling through the interferometer, following the beam path I. Things
get tricky, when the system is put under the second measurement: the spin in one of
the beam paths is rotated slightly (∼15°) by applying a weak magnetic field. Typical
results are shown in Fig. 24.9. The magnetic field in the beam path II (upper path)
does not affect the final intensity of the O-beam with a spin-analysis, while

Fig. 24.7 Illustration of quantum Cheshire-cat: a cat is found in the upper beam path, while her
grin is in the lower path in the Mach-Zehnder interferometer (left). A schematic view of the
experiment setup to demonstrate quantum Cheshire-cat phenomenon: with appropriate pre- and
post-selected states, the neutron itself is detected in one of the beam paths, while its spin is in the
other path in a neutron interferometer (right).
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sinusoidal intensity modulation appears by applying the magnetic field in the path I
(lower path): effective is the magnetic field in the beam path I (lower path)—that is
the path, which the neutrons are actually never supposed to take. These two
measurements together imply that one component of the neutron’s spin is travelling

Fig. 24.8 Results of the measurements of neutron’s population: absorbers with transmissivity,
T = 0.8 and 0.6 are inserted in one of the beam path in the interferometer. The absorbers in the
lower path do not affect the final intensity of the O-beam with a spin-analysis (upper panel).
Intensity decreases by inserting the absorbers in the upper path (lower panel) These results suggest
that neutrons are travelling through the upper beam path.

Fig. 24.9 Results of the measurements of the location of the neutron’s spin: the spin in the upper/
lower beam path is rotated slightly (∼15°) by a weak magnetic field. The magnetic field in the
upper path does not affect the final intensity of the O-beam with a spin-analysis. In contrast,
sinusoidal intensity modulation appears by applying the magnetic field in the lower path—that is
the path, which the neutrons are actually never supposed to take.
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through the interferometer following the beam path II in absence of the neutron,
while the neutron itself is following the beam path I in absence of the spin. These
results are consistent with the theoretical prediction [34]: physical properties can be
disembodied from the object in the interferometer.

A keen reader would ask whether one can view the quantum Cheshire-cat alter-
natively by following the evolution of the neutron’s wave function or not. This
argument is clarified here. Looking at the experimental setup depicted in Fig. 24.7, the
population of the neutrons can be intuitively understood. The spin-analysis behind the
interferometer allows only neutrons with the spin in forward direction to transmit.
These are exactly the neutrons in the upper beam path: the neutrons in the lower beam
path will be filtered out by the spin-analyzer. The first measurement shows exactly this
situation. (See Fig. 24.8) How about the location of the neutron’s spin? In the spin
measurement of the spin, a weak magnetic field is applied: the spin-vector in each beam
paths is rotated. That is, the spin in forward/backward direction is deviated from the
original direction by the angel α, followed by the spin analysis in forward direction.
Since the spin-analysis is described by the projection, the intensities after the
spin-analysis on spins deviated from the parallel and the anti-parallel are proportional to
cos(α/2) and sin(α/2), respectively. (This is analogous to the transmission of the
polarized light through a polarizing filter.) Therefore, the differences in intensity with
and without the weak magnetic field result in cos(α/2) – 1 ≈ –α2/8 (parallel spin in the
upper path) and sin(α/2) – 0 ≈ α/2 (anti-parallel spin in the lower path). This means,
the influence of the magnetic field in the upper path is in the first order of α, while that
in the lower path is in the second order. For the parameter, α ∼ 15° realized in the
experiment, the former becomes 0.13, while the latter is 0.0085: the former is more
than one magnitude larger the latter. This phenomenon is clearly observed in the
interferograms obtained in the second measurement. (See Fig. 24.9) A major change in
the case of the magnetic field in the lower path for small α is attributed to the spin
traveling through the lower path.

Uncertainty Relation for Measurement Error
and Disturbance

The uncertainty principle refers to intrinsic indeterminacy of quantum mechanics
and ranks among the most famous statements of modern physics. It describes the
limitations of simultaneous measurements of certain pairs of observables: there are
physical properties, which can be accessed only with limitation. It was Heisenberg
who first formulated the uncertainty relation as a limitation of accuracies of position
and momentum measurements [35]. He proposed a reciprocal relation for mea-
surement mean-error (nowadays referred to as error) and discontinuous-change
(nowadays referred to disturbance) using the famous γ-ray microscope thought
experiment: “At the instant when the position is determined—therefore, at the
moment when the photon is scattered by the electron—the electron undergoes a
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discontinuous change in momentum. This change is the greater the smaller the
wavelength of the light employed—that is, the more exact the determination of the
position… Thus, the more precisely the position is determined, the less precisely the
momentum is known, and conversely… Let q1 be the precision with which the value
q is known (q1 is, say, the mean error of q), therefore here the wavelength of the
light. Let p1 be the precision with which the value p is determinable; that is, here,
the discontinuous change of p in the Compton effect [35].” Finally, he gave a rather
heuristic estimate for the product of the error of a position measurement q1 and the
disturbance p1 induced on the particle’s momentum, as p1 ⋅ q1 ∼ h. (This relation
is read in modern treatment as ε(Q) ⋅ η(P) ≥ ħ/2 for the error ε(Q) of the position
measurement Q and the disturbance η(P) of the momentum measurement P.)

Later on, the uncertainty relation was reformulated in terms of standard devia-
tions by Kennard [36] and Robertson [37] as σ(Q)) ⋅ σ(P) ≥ ħ/2 for position
(Q)/momentum(P) measurements and σ(A)) ⋅ σ(B) ≥ ½| < Ψ|[A, B]|Ψ > | for
arbitrary A/B measurements. It is worth noting here that the quantities such as σ(A)
σ(B) are logically unrelated with errors/disturbances of measurements; the physical
situations concerned are not simultaneous measurements of A and B but rather the
measurements of one or the other of these dynamical variables on each indepen-
dently prepared representative of the particular state being studied [38]. The relation
in the form with standard deviations describe the limitation in preparing micro-
scopic objects but no direct relevance to the limitation of precision of quantum
measurements. In his famous book, von Neumann wrote “We shall first derive the
most important relation of this type mathematically, and then return to its funda-
mental meaning, and its connection with experiments…With the foregoing con-
siderations, we have comprehended only one phase of the uncertainty relations,
that is, the formal one (sigma-sigma form obtained by Kennard/Robertson, remark
by the author); for a complete understanding of these relations, it is still necessary
to consider them from another point of view: from that of direct physical experi-
ence. For the uncertainty relations bear a more easily understandable and simpler
relation (error-disturbance form suggested by Heisenberg, remark by the author) to
direct experience than many of the facts on which quantum mechanics was origi-
nally based, and therefore the above, entirely formal, derivation does not do them
full justice [39].” In lots of textbooks of quantum mechanics, the Heisenberg’s
uncertainty principle is still referred to be related with the inequality defined for
standard deviations [40].

It was known that the validity of Heisenberg’s original error-disturbance relation
is justified only under limited circumstances; Ozawa introduced the correct form of
a generalized error–disturbance uncertainty based on rigorous theoretical treatments
of quantum measurements as

εðAÞ ⋅ ηðBÞ+ εðAÞ ⋅ σðBÞ+ σðAÞ ⋅ ηðBÞ≥ 1
2
⟨Ψj A,B½ � Ψj ⟩j j, ð2Þ
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and proved its universal validity [12, 13]. Here, ε(A) denotes the root-mean-square
(r.m.s.) error of the measurement for an observable A, η(B) is the r.m.s. disturbance
on the measurement of another observable B induced by the measurement A, and
σ(A) and σ(B) are the standard deviations of the measurement A and B for the state
|ψ>. Note that the additional second and third terms imply a new accuracy limi-
tation, which does not necessarily follow the trade-off relation of error and
disturbance.

It took about a decade after the publication of the theoretical woks [12, 13], that
an experimental test of the new error-disturbance uncertain relation was performed:
a successive spin-measurement of neutrons, i.e. σx and σy, that allows determining
the error of the first x spin-component measurement and the disturbance caused on
another y spin-component measurement [10]. The experimental setup is depicted in
Fig. 24.10. The initial state of the neutron’s spin is tuned to be |+z>. The
observable for the preceding and the following measurements, carried out by M1
and M2, are set as A = σx and B = σy. Consequently, the right term of Eq. (2)
becomes 1: a maximum uncertainty is expected under these circumstances. Then, in
order to investigate behaviors of the error and the disturbance systematically, we
took an approach where the observable of the first measurement OA(ϕ) is
detuned from the observable-to-be (A = σx) on purpose: in practice, OA(ϕ) is set
OA(ϕ) = σx ⋅ cosϕ + σy ⋅ sinϕ. This detuning turned out to be the origin of the
measurement error of the measurement A and was able to reduce the disturbance of
the measurement B. In the Bloch sphere description, the vectors representing these

Fig. 24.10 Illustration of the experimental setup to test the new error-disturbance uncertainty
relation in the successive spin measurements σx and σy [10].
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observables and the state are lying on the equator, which is also depicted in
Fig. 24.10.

The experiment was carried out at the research reactor facility TRIGA Mark II of
the Vienna University of Technology. The monochromatic neutron beam is
polarized crossing a super-mirror polarizer and two other super-mirrors are used as
analyzers. The guide field together with four DC spin rotator coils, induces Larmor
precession to allow state preparation and projective measurements of OA(ϕ) in M1
and B in M2. To test the error-disturbance uncertainty relation given by Eq. (2), the
standard deviations σ(A), σ(B), the error ε(A) and the disturbance η(B) are deter-
mined from the experimentally obtained data. The trade-off relation of the error and
the disturbance is clearly seen. (See Fig. 24.11 on the left) The error-disturbance
uncertainty relations, following the Eq. (2) and the product suggested by Heisen-
berg, are depicted in Fig. 24.11 on the right: the determined values confirm the fact
that the Heisenberg product is always below the calculated limit, and that the
universally valid expression in Eq. (2) is always larger than the limit.

The neutron’s spin-measurement of ours is the first experimental test of the
error-disturbance uncertainty relation. The validity of the new relation (Eq. (2))
proposed as a universally valid error-disturbance relation is demonstrated; more-
over the failure of the old relation as a reciprocal relation between the error and the

Fig. 24.11 Results of the first test of the error-disturbance uncertainty-relation. Trade-off relation
is seen for the error ε(A) and the disturbance error η(B) (left). Plot of the error-disturbance
uncertainty relations (right). The new (orange) term is always above the calculated limit, while the
old term (red) is below the limit.
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disturbance is also illustrated. This experiment stimulated further studies on the
error-disturbance uncertainty relation: in fact, experiments using a photonic system
appeared [41–43]. All measurements concern photon’s polarization, which is
described as a two-level quantum system in the same manner as the ½-spin of
neutrons. Afterwards, a remarkable extension in theory was made; a tighter relation
was obtained [44] and its validity is confirmed by experiments [45, 46]. Now,
uncertainty relations have become again a hot topic in quantum physics, after the
publication of the first account of the uncertainty principle by Heisenberg more than
four decades ago.

In writing the paper, we actually thought, “our result demonstrates that the new
relation solves a long-standing problem of describing the relation between mea-
surement accuracy and disturbance, and sheds light on fundamental limitations of
quantum measurements, for instance on the debate of the standard quantum limit
for monitoring free-mass position [10]”. Nevertheless, ex post facto critical analysis
appeared [47]: for instance, state-dependence of the error and the disturbance by
Ozawa is claimed and state-independent definitions of error and disturbance are
proposed to reconstruct the error-disturbance uncertainty relation in the same form
as the original one proposed by Heisenberg [48]. It turned out that the newly
defined error and disturbance there characterize, for instance, the disturbing power
of the measurement devices for hypothetical state, somehow in a worst case sce-
nario: this is regarded unsuitable in a sense of the disturbance typically associated
with Heisenberg’s microscope [49]. Furthermore, a paper is published which deal
with “operational constraints” on the measures of the error and disturbance [50]: it
is stated that, since “only the change in the measurement statistics can be detected
by the measurement,” “a measurement cannot be treated as disturbed if its outcome
statistics is identical to the one for the perfect measurement.” (underlines given by
the author) The fact that this view does not accomplish its intended purpose is
clearly seen in the first experimental test of ours [10]: as we already emphasized as
“It is worth noting that the mean value of the observable A is correctly reproduced
for any detuning angle ϕ, that is, <+z|OA| + z> = <+z|A| + z>, so that the
projective measurement of OA reproduces the correct probability distribution of A,
whereas we can detect the non-zero r.m.s. error ε(A) for ϕ ≠ 0. [10] ”, it is
physically reasonable that the difference of the observable OA ≠ A for ϕ ≠ 0,
which is realized in the experiment, leads to the error of the measurement, even
though the measurement-results are identical. This is unsurprisingly understood
when one considers, for instance, an apparatus which (is broken and) always gives
the results of the measurement as (+1) and (–1) with a fifty-fifty chance: can one
regard this not a causal but an accidental coincidence as (physically) error-free? As
far as physical consequences are concerned, causal differences, which can appear
even in an operational form, are resources of the measurement error/disturbance;
modern quantum measurement schemes, i.e. process tomography or that in

408 Y. Hasegawa



combination with weak-values, can actually reveal the operational difference. The
functional differences, emerging only in the final results, can be considered as
informational aspects of the measurements. Indeed, another form of
noise-disturbance uncertainty relation in context of information-theoretic approach
is derived [51], where the correlations of the measurement results are considered as
the resource.

Concluding Remarks

In the above sections, recent neutron interferometer and polarimeter experiments are
explained, which exploit fully the properties described in terms of wave-functions and
Schrödinger equations. Correlations between measurements of observables belonging
to different Hilbert space, thus commuting, are observed, which is stronger than the
predictions by models extended simply from classical physics. In addition to the fact
that the results of measurements in quantum mechanics can be foreseen only as
probabilistic numbers following the Born’s rule, quantum contextuality demands that
they cannot have definite values before the measurements. So far, (kinematically)
non-local and non-classical correlations of the quantum measurements are considered
to be a resource for a killer application, e.g. in quantum information and communi-
cation technology. Instead, the way how to build a view to obtain results of mea-
surements in quantum mechanics is unknown and the explanation of what is really
going on in quantum world is still missing. A serious (re)consideration of quantum
dynamics (rather than the results of measurements) is one attempt to explore veiled
mysteries: for instance, dynamical quantum non-locality appearing in the observation of
Aharonov-Bohm (AB) effect is argued [2]. In this procedure, all quantum effects en
route such as superposition, interaction, phase shift and interference, are to be reex-
amined. Last two examples explained in this article can be seen from this view-point:
quantum Cheshire-cat emerges in superposing quantum states in the interferometer and
new (operational) definitions of measurement error and disturbance in quantum
mechanics provide new and deeper insights into error-disturbance uncertainty relation.
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Part VIII
Bell Inequalities—Experiment



Chapter 25
Nonlocality and Quantum Cakes, Revisited

Bradley G. Christensen and Paul G. Kwiat

Abstract Entanglement is a nonintuitive feature of quantum mechanics, leading

to various nonlocal phenomena. For example, entangled states can display nonlo-

cal correlations stronger than allowed by any local realistic theory, violating a Bell

inequality, assuming various experimental loopholes are addressed. The Hardy para-

dox allows us to find a more familiar example of the difference between nonlocality

and classical expectations. Here, we review the Hardy paradox and the “quantum

cakes” example, and present a source of high-quality entangled photons with the

best-to-date violation of this paradox.

Introduction

One of the most shocking aspects of quantum mechanics is that of entanglement. In

their paper predicting the existence of entanglement, Einstein, Podolsky, and Rosen

thought it was so counter-intuitive to how the world should behave that they instead

concluded it was quantum mechanics that is wrong rather than our view of reality [1].

Today, entanglement remains difficult to grasp, even for physicists, and even more

challenging to describe to non-physicists, despite that it is the quintessential quantum

mechanical feature, “the one that enforces its entire departure from classical lines of

thought” [2].

The most natural view of reality is arguably that of local realism. That is, we natu-

rally believe any two non-causal events should have no influence on each other (local-

ity), and that the probability of any outcome of a measurement on a system should

only depend on the state of that system (realism). However, quantum mechanics does

not follow local realism, as noted by Einstein, Podolsky, and Rosen. For some time,

this remained a mere philosophical point, until Bell showed that there are statistical
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differences between predictions of quantum mechanics and that of a local realis-

tic theory, which is quantified in terms of an inequality that local realism must obey

[3]. The most common of these Bell inequalities is the Clauser-Horne-Shimony-Holt

Bell inequality [4], which has now been used to verify the existence of entanglement

in a plethora of systems [5–9], to the extent that now it is even an undergraduate

lab experiment [10]. However, despite the experiments being “simple”, until very

recently there were “loopholes” in every implementation.

Loopholes

Loopholes in Bell inequalities arise from the need to still make assumptions about

the system or source. That is, local realism could still be a viable description if the

assumptions are incorrect. The two most common assumptions made are the fair-

sampling assumption and the no-signaling assumption. The first assumption is that

the detected particles are an accurate representation of all particles emitted from the

source. To close this loophole, one needs system efficiencies over 2/3 (with no back-

ground noise) [11], which is incredibly challenging experimentally. As an example,

when photons are used to test nonlocality, typical detectors will have efficiencies

ranging from 20 to 65 %, which by itself is already too low of a system efficiency to

close this loophole. Instead, transition-edge-sensor (TES) detectors have been used,

as they can have efficiencies exceeding 95 % (at the cost of requiring temperatures

down to 100 mK) [12]. In addition to low detection efficiency, there is additional

loss in the system from optical elements, as well as loss through filtering the correct

wavelengths and spatial modes. The two systems that first closed this loophole with

photons had efficiencies barely over the required threshold [13, 14].

The locality loophole is the statement that the two detection events would have

time to send signals to each other. That is, to test local realism, one needs to make

measurements that are strictly nonlocal. This loophole is challenging to close due to

the distance separation that must occur to keep all relevant events (measurement set-

ting choice and detection of the particle) far enough apart to prevent this loophole.

While this loophole has also been closed [15, 16], the additional loss incurred by

increasing the separation of the detections has made closing both loopholes simul-

taneous a challenge, and only very recently has this been done.

To prevent either of these loopholes requires an impressive amount of effort (both

to collect nearly all of the entangled photons, and to ensure the relevant events are all

space-like separated). But recent advances across many different systems have led

to four loophole-free Bell test experiments using three different sources of entangle-

ment: spins in nitrogen-vacancy centers [17], polarization of photons [18, 19], and

spins of rubidium atoms [20].
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Entanglement Source

Our entanglement source consists of a 355 nm pulsed pump laser incident onto two

orthogonal nonlinear BiBO crystals to produce polarization-entangled photon pairs

at 710 nm, via spontaneous parametric down-conversion [21]: the first crystal has an

amplitude to convert a vertically polarized pump photon into a pair of horizontally

polarized daughter photons, while the second has an amplitude to convert a hori-

zontally polarized pump photon into a vertically polarized pair. Using wave plates to

control the polarization of the pump beam, we can thus control the relative amplitude

(and phase) of the |HH⟩ and |VV⟩ terms [22].

Our source achieves extremely high state quality, once we pre-compensate the

temporal decoherence from group-velocity dispersion in the down-conversion crys-

tals with a birefringent crystal [23], resulting in an interference visibility of 0.997 ±
0.0005 in all bases. The high state quality (along with the capability of creating the

required state) allows us to make measurements very close to the optimal values for

standard Bell tests (e.g., CHSH) and for implementing the Hardy paradox, discussed

below.

For the Bell tests, the local polarization measurements are implemented using a

fixed Brewster angle polarizing beam splitter, preceded by an adjustable half-wave

plate, and followed by single-photon detectors to detect the transmitted photons (see

Fig. 25.1). We have used this source to measure a CHSH Bell value of 2.8261 ±

Fig. 25.1 A diagram of the entanglement source. The laser (L) is prepared in a specific polarization

state by two half-wave plates (HWP1 and HWP2). We compensate for the temporal decoherence

(arising from the group velocity dispersion in the downconversion crystals) by passing through the

laser through a crystal (TC) designed to have the opposite group velocity dispersion. Passing the

pump through a pair of orthogonal nonlinear crystals (NLC) produces the entangled photons. The

measurements are performed using a motorized half-wave plate (HWP3) and a polarizing beam

splitter (PBS). We then spectrally filter (IF) the photons to ensure the collected bandwidth is not

too large, as well as spatially filter the photons using a single-mode fiber (SMF) to remove any

spatial decoherence. Finally, the photons are then detected using transition-edge sensors (TES), the

events of which are recorded on a time-to-digital converter (TDC) and saved on a computer for

analysis.
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0.0004, with the local bound being 2, and the quantum mechanical bound being

2
√
2 ≈ 2.8284.

Quantum Cakes

If the underlying meaning of experiments on nonlocality is difficult to understand,

it is even more difficult to explain. An alternative CHSH-like Bell test, the Hardy

paradox, is a simpler experiment to explain since it can be seen in terms of an “all-

or-nothing” argument [24]. We can write the Hardy paradox as [22]

p12(1, 1|L1,R1) − p12(1, 0|L1,R0) − p12(0, 1|L0,R1) − p12(1, 1|L0,R0) ≤ 0, (1)

where p1,2(m, n|Li,Rj) is the probability of a detection event where one side (here

called “Lucy”) detected outcome m while using setting Li, and the other side

(“Ricardo”) detected outcome n while using setting Rj. Any local realistic theory

must satisfy the inequality, that is, be less than or equal to 0. However, quantum

mechanics (a nonlocal theory) is able to achieve values greater than 0. Here, we

are not interested in the maximal quantum violation attainable with this inequality;

instead we focus on values which make this inequality easy to understand. We choose

to measure the values that are described by the “quantum cakes” example presented

in Ref. [25] (Fig. 25.2 and Table 25.1).

Consider the example depicted in Fig. 25.2. Here, there is a single kitchen with

two opposing doors, out of which come conveyor belts, and on the belts come pairs

of ovens, one to each side. There is an experimenter on each side, Lucy on the left

side and Ricardo on the right, who will make measurements on the ovens; later the

two will come together to compare their results. In particular, there are two types of

(noncommuting) measurements that can be made on a given oven. The tester could

wait until the oven reaches the end of the conveyor belt before opening it. Inside,

he/she finds a cake, which can then be tested to see whether it tastes good or bad.

Fig. 25.2 Lucy and Ricardo use their knowledge of quantum nonlocality to start up a quantum

cakes factory. If Ricardo’s cake rose early ( far right), then Lucy’s cake ( far left) will always taste

Good, and vice versa. Despite the fact 9 % of the time both cakes rise early, they never both taste

Good! Fig. from [25].
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Table 25.1 Raw counts for the Hardy paradox

Probability term Lucy’s singles Coincidences
a

Ricardo’s singles

p(Risen,Risen) 62067 16135 58878

p(Bad,Risen) 150439 205 59481

p(Risen,Bad) 61154 207 147748

p(Good,Good) 92945 252 92878

a
Normalization for the coincidences is 174245; see text for details

This is one observable, the taste of the cake. Alternatively, the tester can open the

oven midway on its journey, to see whether or not the batter has risen early or not

risen early, the second observable. Assuming we have some sort of soufflé, it is easy

to justify why these measurements might be noncommuting, as re-closing the oven

in the middle will cause the cake to collapse, and the result will always be a destroyed

cake. Hence, only one of these qualities can be measured on a given cake.

Each experimenter will randomly decide which measurement they will make, and

record the results obtained. Comparing the records later on will reveal the strange-

ness which arises if the cakes are made using entangled dough. There are three

main classes to consider, depending on whether Lucy and Ricardo both opened their

respective ovens in the middle, one waited until the end to do so, or both did. The

results of the first two types of measurements are:

(a) In cases where Lucy and Ricardo both checked their ovens midway, they find

that 9 % of the time, both cakes rose early.

(b) When Lucy’s cake rose early, Ricardo’s tasted Good; similarly, when Ricardo’s

cake rose early, Lucy’s tasted Good.

Classically, we can make some inference as to the cake’s history, based on the

correlations in (b). That is, when one set of dough rose early, the other cake tasted

Good, so we can guess that the cakes were made perhaps from the same dough (or

the two doughs at least had some interaction in their history) or by the same chef,

and so rising early implies that the (not destroyed) cake will taste Good (though a

cake still can taste Good if the batter did not rise early). Now, we can make further

logically valid predictions of what should happen when both Lucy and Ricardo taste

their respective cakes without checking if they rose early. From (a), we know 9 %

of the time both cakes rise early, and from (b) we know if one person’s cake rises

early, that the other person’s cake will taste Good; consequently, it follows logically

to conclude that at least 9 % of the time both cakes will taste Good. However, if

these two cakes are entangled in a particular way, then Lucy and Ricardo never find

both cakes tasting Good simultaneously, despite the logical conclusion one would

reach assuming local realism. The “flaw” in the classical argument was an implicit

(but quantum mechanically invalid) assumption that getting a particular result on one

side (e.g., cake tastes Good) cannot affect the result on the other side. Such nonlocal

correlations are intrinsic to quantum entanglement. Note, however, that there is still
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no way to control the outcome of the other party—this would enable superluminal

communication and violate causality.

While our technology is currently far from making quantum superpositions of

cakes, we can still do an equivalent demonstration using entangled photons. For

example, we can produce two photons that are nonmaximally entangled with respect

to their polarization (it is important that these photons are nonmaximally entangled

for the paradox to work, which is an interesting topic on its own). In the cake example

we considered measurements of two properties of the cake: the taste and whether it

had risen. In the case of a polarization entangled state, these correspond to measure-

ments of polarization in two different bases. Such a measurement can be performed

by having a rotatable polarizing beamsplitter with two detectors (in our experiment,

and many others, the beamsplitter is “rotated” by rotating the basis it will measure

in with a waveplate instead of physically rotating the beamsplitter), one placed in

each output port. When this polarizing beamsplitter is oriented at one angle (e.g.,

0◦), a click at one detector corresponds to the cake tasting Good and a click at the

other detector corresponds to the cake tasting Bad. When the polarizing beamsplit-

ter is rotated to another angle, a click at one detector corresponds to the cake having

Risen, and a click at the other detector corresponds to the cake Not having Risen.

With these correspondences understood, if we identify, for example, “Good” and

“Bad” with Horizontal (H) 0◦ and Vertical (V) 90◦ polarization, respectively, and

“Risen” and “Not Risen” with linear polarizations at 250.8◦ and 39.2◦, respectively,

the predictions above will all hold exactly if we use the state

|𝜓⟩ = 1∕2|VV⟩ −
√
3∕8(|VH⟩ + |HV⟩). (2)

Note that there is no |HH⟩ contribution, i.e., no “Good-Good” outcome in the cakes

analogy.

Results

Using the source described in Sec. “Entanglement Source”, we make the neces-

sary measurements to show the Hardy paradox. To reference back to the quantum

cakes example, the measurement of both cakes rising early is the probability term

p12(1, 1|L1,R1) (in the quantum cakes example, this is 9 %), and the measurement

of one cake rising early and the other tasting bad corresponds to the p12(1, 0|L1,R0)
and p12(0, 1|L0,R1) terms (in the example this was 0 % since a Risen cake always

implied the other one would taste Good). Finally, both cakes tasting Good is the

p12(1, 1|L0,R0) term; here we expect this to be 0 % quantum mechanically, but 9 %

classically. The classical bound for these measurements is then given by the follow-

ing inequality:
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p(Risen,Risen) − p(Risen,Bad) − p(Bad,Risen) − p(Good,Good) ≤ 0. (3)

As we only detect the transmitted photons, to measure both the 0 and 1 events,

we use two different half-wave plate settings (that correspond to orthogonal polar-

ization measurements). To extract probabilities, we measure each possible setting

and outcome (i.e., p(Bad,Risen) + p(Good,Risen) + p(Bad,NotRisen) + p(Good,
NotRisen)), and use this to normalize all events. Our data is given in Table 25.1.

Applying the normalization, we then measure the Hardy paradox of 9.3% −
0.12% − 0.12% − 0.14% ≤ 0, a clear violation of the paradox, and remarkably

close to 0 % on the three terms. However, we can do even better, as our detec-

tors had poor temporal resolution, so it was rather common to detect an “acci-

dental” coincidence count; i.e., there were events where our detector saw photons

from two different entangled states at the “same” time (according to the detec-

tor). This results in an increase in coincidence counts because uncorrelated pho-

tons were detected within the temporal resolution of the detector. To first order,

these events are given by SLSR𝛥w∕t, where SL(R) is the singles counts on Lucy’s

(Ricardo’s) side, 𝛥w is the coincidence window size (1 µs), and t is the duration for

the measurement (60 s). After accidental correction, we see the Hardy paradox of

9.2% − 0.032% − 0.032% − 0.062% < 0.

Loopholes and Cakes

The Hardy paradox is nice in terms of the potential to explain the results. As an “all-

or-nothing” Bell inequality (that is, one where three of the terms should be 0, which

leads to a logical conclusion that the fourth must also be zero), it lends itself to an

intuitive description of the oddity of entanglement. So far we have neglected any

form of loophole, but it also can be seen from the quantum cakes example how these

loopholes can occur. Just as with standard Bell tests, nonlocality is not required as

an explanation if there are loopholes. For example, if the chef that made the cakes is

spying upon Ricardo, and upon seeing his result has time to alter Lucy’s cake before

she sees the results (either if the cake is Risen or if it tastes Good), then the chef can

make them reach any conclusion he desires. This is the locality loophole. One can

also see how, in a real experiment, it is important to look at as many of the “cakes” as

possible. In the simplest possible argument, if we were to measure only 91 % of the

pairs, and still see no Good-Good events, it is logically possible that the predicted

9 % were just those that we did not measure. Obviously, this would require a rather

peculiar sampling of the cakes, so one often makes a “fair-sampling” assumption,

which leads to the detection loophole discussed earlier.
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Conclusion

We have made measurements of a CHSH Bell inequality, as well as the inequality

viewed as the Hardy paradox. By looking at the CHSH Bell inequality in this para-

doxical way, we can make “all-or-nothing” type measurements (either there is an

probability of a detection event, or there is not). With the source described here, we

have realized measurements extremely close to the theoretically predicted values of

both the Hardy paradox, as well as the quantum mechanical maximum for the CHSH

Bell inequality. In some sense such results have little to do with quantum mechanics

per se, since Bell inequalities refer only to the exclusion of local realistic models. As

such, Bell tests are not limited to quantum mechanics and can be useful to character-

ize nonlocality. For a review of some of the interesting searches these Bell test have

inspired, see, e.g., Ref. [26], and for an experimental exploration of nonlocality, see,

e.g., Ref. [27].
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Chapter 26
An Early Long-Distance Quantum
Experiment

Gregor Weihs

In this essay I would like to describe the history of our long-distance test of Bell’s

inequality experiment [1] from a personal point of view.

For many quantum physicists the series of beautiful experiments by Alain Aspect

and coworkers [2–4] put an end to the debates that raged about entanglement and

realism in quantum physics since the famous declaration by Einstein, Podolsky and

Rosen [5]. For others, Aspect’s experiments had the opposite effect and even rein-

vigorated those debates. Up until the summer of 2015, after the first version of the

present article was written, many a (crypto-) realist still hung on to the last straw

of an unexpected result in a final, decisive test of Bell’s inequality. With the three

loophole-free Bell experiments [6–8] we now know the answer that nature violates

Bell’s inequality and local realism is untenable. Critics are still trying to find flaws

in these latest experiments, but given that they were done independently this seems

very unlikely.

Among those for which the debate was not settled was my then supervisor Anton

Zeilinger, who in one of his lesser known publications [9] pointed out a little flaw

in Aspect’s beautifully constructed and executed last Bell-type experiment, which

involved a distance from the source to each analyzer of 6 m and periodic switching of

their orientations with a period of 20 ns. It so had happened that the switching period

in Aspect’s experiment coincided with the time interval of the photons travelling

from the source to the analyzer. Even before that Alain Aspect had pointed out that

the ultimate goal would be to randomly switch the analyzers, but that this was not

reasonably possible with the technology available at a time.

It was in the early 1990s that I started as a Master’s student in Anton Zeilinger’s

group initially working on Hong-Ou-Mandel interferometry [10]. When I consid-
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ered pursuing a PhD thesis under his supervision, Anton proposed doing a long-

distance test of Bell’s inequality with randomly switched analyzers. Coincidentally,

just in the same year, 1995, Paul Kwiat, a post-doc in Innsbruck at the time, had

built a new much brighter and better source of polarization-entangled photon pairs

[11]. Some quick estimates of the count rates, entanglement quality, and fiber losses

proved encouraging. Switching the analyzers, generating random bits, and record-

ing the data, on the other hand appeared daunting. So in hindsight, my naïvete and

excitement about this opportunity made us embark on a project that turned out well,

but could have failed in many ways. Apart from my supervisors Anton Zeilinger

and Harald Weinfurter this experiment had a lot of help from Thomas Jennewein,

Ulrich Achleitner and Christoph Simon. In the rest of this essay I would like to give

a somewhat personal account of the realization of the long-distance Bell-experiment,

its further uses, subsequent experiments and some consequences

Distance and Channel

The fact that we had a working source of polarization entangled photon pairs at

702 nm wavelength determined many other choices. We never really considered free-

space transmission links for lack of experience with the required alignment and for

fear that the beam quality at the receiver would not be good enough for polariza-

tion modulation. But even optical fibers are not ideal at this wavelength due to their

inherent loss of about 4 dB/km. Even more concern came when Nicolas Gisin told

me that this would never work because of the polarization mode dispersion (PMD)

in optical fiber [12]. This effect is caused by some small, randomly oriented bire-

fringence in single-mode optical fiber. To lowest order this causes a change of the

state of polarization of light that we launch into the fiber. At the exit we will find

that the state has been rotated to an arbitrary other state on the Poincaré sphere. For

a perfectly monochromatic wave this rotation can always be undone, even if it is the

result of a concatenation of many statistically distributed small rotations along the

fiber. However, if the radiation is not monochromatic, different frequency compo-

nents will generally undergo different polarization rotations causing incoherence at

the fiber output. A typical value of the PMD coefficient for standard SMF-28 fiber is

0.1 ps∕
√
km, meaning that at a length of 1 km we expect a dispersion of a pulse of

about 0.1 ps. Given our relatively broad bandwidth this could have adversely affected

the polarization of our photons. Much less was known at the time about the behavior

of single-mode fiber in the visible wavelength range. Again, being somewhat naïve

and bold helped, because it turned out that statistical PMD was almost no issue for

our experiment, except for a slight reduction in the polarization purity after the long

distance. The bigger issue was that the polarization rotation introduced by the fiber

changed over time and had to be recalibrated frequently.

Many tests involving optical fibers are carried out with the long fiber on a spool.

It was clear to us that, in contrast, we would actually have to lay out the optical fiber

to establish a “field” test with the highest possible geometric distance. The distances

that count are measured along the bee-line, straight distances between the source and
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355m

Alice

Bob

Fig. 26.1 Two 500 m long optical fibers connected the source location in an underground instal-

lation room near the center of the Campus Technik in Innsbruck to the two measurement stations

labelled “Alice” and “Bob” at the west and east ends of the campus. The extra length of optical fiber

stayed on spools at the source location.

each of the two end stations and the distance between the end stations. We argued

later, that the fiber on the spool, and the fact that the fiber can hardly ever be installed

in a straight line but has to follow corridors and cable trays merely reduce the effec-

tive speed of the photons, which is not a problem per se in tests of Bell’s inequality.

Eventually, and with a lot of help but also many an argument with our administra-

tion we managed to have our fibers installed as outlined in Fig. 26.1, with walkable

underground connections between all three stations. I then estimated the distances

from the campus plans and arrived at about 400 m end-to-end separation, which is

the number quoted in Ref. [1]. A later measurement carried out using tape measures

and a somewhat haphazard vectorial addition of all the little segments yielded an

actual separation of only 355 m. This didn’t change any of the conclusions from

the experiment, because even the smaller distance is much bigger than the relevant

times (multiplied with the speed of light). Still it was a lesson learned about having

to estimate ones uncertainties accurately.

Basis Switching

The main limiting factor for the distance was originally thought to be the device that

would switch between the two required polarization bases for the Bell inequality

measurement. As it turned out there were very fast devices available, with switching

times of less than one nanosecond, however, these could only be switched at low

repetition rates of a few kHz due to the huge dissipated power. Another subtle detail

was that in order for random switching to work, we could not use a resonant device

but needed a wideband one. Therefore we settled for lower speed (≈10 ns) electro-

optic modulators that we could run continuously. Even at this reduced speed the
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switching of the device would only require a distance of a few ten meters. In the end

it boils down to analyzing the whole measurement chain to determine how long the

measurement takes from the generation of random number to the recording of the

photon detection. In particular, it is difficult to say when the measurement ends. Is it

finished with a classical electrical pulse in a coaxial cable, the data in the memory

of the instrument, the controlling computer, or only when it is saved to the PCs hard

drive? For our experiment the first three possible cuts would have been outside the

other side’s light cone, but not the recording on the hard drive, which occurred on a

much too slow time scale.

Random Number Generation

One of the earliest discussions we had was about how to generate the random bits. It

was clear to us that it would have to be physical random bits and not just pseudoran-

dom ones, in order to go significantly beyond Alain Aspect’s experiments. Because

of Anton’s experience in radioactivity and neutron physics we considered a radioac-

tive source of randomness. We quickly realized, though, that to get a few events

within the estimated few hundred nanosecond time interval, we would need a source

with an activity in excess of 10 MBq, much beyond what would have been permis-

sible and possible to handle. Also, using the light of distant stars appeared to be too

cumbersome so that eventually we settled on random number generation using an

LED and a beam-splitter [13]. This idea of using quantum randomness to generate

physical random numbers has arguably created the most commercially successful

quantum technology so far and has also developed into a field of its own with ques-

tions of certifiability and device independence [14].

Data Acquisition

Perhaps the biggest change compared to all earlier experiments was the idea to collect

data at each end of the experiment, i.e. Alice and Bob locally and perform the corre-

lation analysis later. From our laboratory experiments we knew that in order to avoid

too much background, we would need a coincidence time window, within which an

event at Alice and Bob would be considered simultaneous, of a few nanoseconds. At

the expected source rates we envisioned collection times of at least a few minutes in

order to achieve statistical significance, in which we would simply record the arrival

time of every photon on each side with a resolution of better than 1 ns. We figured

that to gather enough data and thus statistical significance we would need to run the

experiment at least for a few minutes at a time. Devices capable of recording precise

detection times (“time-tagging”) continuously for long or indefinite periods were

difficult to find. Because we had two detectors, two channels were a minimum and

in addition we wanted to record the actual basis modulator voltage. Eventually we
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only got two channels and to record one bit indicating the two possible bases had to

be somehow encoded into the data stream. This encoding proceeded by generating

a double pulse for every “1” setting of the modulator bit and a single pulse for every

“0”. Unfortunately this encoding also made our problem of synchronizing all 16 pos-

sible combinations of detector and basis on both sides even worse, thus making the

experiment a little vulnerable to the coincidence time loophole for extremely short

coincidence windows. Measuring accurate arrival times, for say 100 s demands a rel-

ative clock stability of 1 ns/100 s = 10−11, which is achievable with a good quartz

oscillator. However, the independent data collection at the two points also requires

that the absolute frequencies of the two oscillators are the same with better than 10−11
accuracy, which may be possible with syntonized oven controlled quartz oscillators,

but is easier achievable with Rubidium-based atomic clocks. One could also use

GPS-derived clocks, which are affordable nowadays, but weren’t at the time.

Experiment Control

One of the most important encounters was my first meeting with Alain Aspect when

he visited Innsbruck in 1996. His main message was “automate everything!”, mean-

ing I should make sure that all subsystems of the experiment could run independently

and unsupervised. Thus I set up a system of three computers, on at the source site

and one each at Alice’s and Bob’s stations. For lack of established tools I had to

write my own protocols for controlling the data acquisition at the end stations in a

synchronized but independent way and to have an alignment mode that would allow

me to align the source, and in particular the fiber polarization controllers with live

measurement data from the end stations. Yet, for lack of time and other resources I

couldn’t follow Alain’s advice completely. For example the optical alignment of the

source or the modulators had to be done by hand and, owing to the unsteady envi-

ronmental conditions in our makeshift laboratories in boiler rooms and other quar-

ters, quite frequently too. Ideally the experiment was thus operated by three people

(Thomas Jennewein, Christoph Simon and myself). In addition we operators quite

often had to walk from one point to the other. Not very far, but too far to retrieve

a forgotten screwdriver. Eventually though it was possible that a single person col-

lected data and finally the best data set came about on a very quiet Easter Sunday,

April 12, 1998.

Results and Response

It was a very nice experience to show this campus-spanning experiment to several

very important people, among them His Holiness the 14th Dalai Lama, who was

very curious and excited to “see” entangled photons, but who did not like the ran-

domness they come with. Abner Shimony took a walk with me along the whole setup
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from end to end and was very enthusiastic about the experiment and the clear sep-

aration between the two observers it achieved for the first time. He said: “I didn’t

think that within my lifetime one could do an experiment like this one!” All of these

encounters with giants of the field made it clear that we had broken through another

barrier. We then decided to make raw data from the experiment available online.

The data is still available nowadays, albeit not on the same website, which doesn’t

exist anymore. It turned out that several if not many people had downloaded the data

and performed their own analyses, just as intended. At some point, though, someone

asked me at a conference what I thought about someone else’s published criticism of

my experiment. I had to answer that I was not even aware of the publication. After

this incident we removed the public link and henceforth interested researchers have

to ask for access and agree to alert us before they publish anything. As an advantage

all data sets are available through my new website, not just the one. This ties into

the debate about open access to research raw data, which for some parts of the life

sciences is already established, but is still in its infancy for physics.

Several peculiarities were found through a variety of analyses. People who ana-

lyzed the data include Guillaume Adenier [15], Peter Bierhorst [16], James H.

Bigelow [17], Hans De Raedt [18], Michel Fodje, Donald Graft [19], Alejandro

Hnilo [20], Emanuel Knill, Marian Kupczynski, Franz Kohl, Peter Morgan [21], Dan

Shanahan, and Sandro Sozzo. The most interesting anomalies can be traced back to

timing problems. Various channels not being perfectly temporally aligned and elec-

trical pulse echoes can produce such signatures. In particular the “nonlocality” found

by Adenier and Khrennikov [15] comes about by taking coincidences with a narrow

window, which has the effect of rejecting events dependent on both detection times,

so that even the detection result on one side appears to depend on the setting of the

other side. Needless to say, when analyzed without coincidence filtering there is no

action at a distance, which would indeed be very spooky.

Conclusions

This experiment was the one of the first in a series of long-distance experiments

in our groups and others culminating in the beautiful series of experiments done

between some of the Canary islands [22] and the first long-distance Greenberger-

Horne-Zeilinger experiment [23]. As a consequence new loopholes were discovered

and closed that we had not foreseen [24, 25]. As the experiments got bigger and

bigger so did the teams and collaborations required to run them. Still at this point

at least the terrestrial ones can be run by a local collaboration. Clearly, in going to

space, e.g. on satellites this will no longer be possible. In addition, convincing the

funding and space agencies to support quantum missions is a fulltime job in itself.

Clearly many of us in the foundations community are convinced that doing Bell-

type experiments over distances that permit humans to do a local basis choice is

very important. In addition, though, the same line of experiments can also be used

to explore the interface between quantum physics and relativity, in particular in com-
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munication scenarios with relativistic observers. It appears that in several countries

and through international collaborations space-borne long-distance experiments on

entanglement are now under way. The best result would be if these mammoth tests

would produce as many new questions as they will answer.
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Chapter 27
Quantum Information Experiments
with Free-Space Channels

Yuan Cao, Qiang Zhang, Cheng-Zhi Peng and Jian-Wei Pan

Abstract Satellite based quantum communication is believed to be a feasible way

to achieve global unconditional secure network. Here, we present several free space

experiments towards this direction. We also show that the technology developed in

these experiments provides a platform to test the foundation of quantum theory.

Introduction

In order to test Bell inequality, quantum state generation, transmission, manipula-

tion and detection technology has been developed over the past decades. These tech-

niques, later on, find immediate applications in information science, including secure

communication, quantum teleportation, and quantum computation.

Generally speaking, there are mainly two types of quantum channels, fiber links

and free-space links for quantum information processing. The distance of current

fiber-based experiments are limited to hundreds of kilometers due to the exponen-

tially channel losses and decoherence [1–3]. The quantum repeater scheme [4–6]

presents an efficient way to generate highly entangled states between long distant

locations, hence providing a novel solution to the photon loss and decoherence prob-

lem. However the realization of quantum repeaters remains experimentally challeng-

ing [7]. Meanwhile, for free-space links, the photon losses and decoherence are al-

most negligible in outer space, therefore the satellite-based quantum communication

offers a promising way to run large-scale quantum communication schemes. It has

become a research highlight that studying the feasibility of satellite-based global-
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scale quantum communication by using free-space channels near earth atmosphere.

Along this line, the free-space quantum communication systems have been success-

fully demonstrated over large-scale distances [8–11], or with more practical and

compact systems [12–15].

On the other hand, the technology developed in quantum communication experi-

ment makes more and more gendanken experiments possible. For example, satellite-

based quantum technology provides a platform to test the Bell inequality in the outer

space. One can also perform the experimental probes of quantum phenomena at large

length scales, at which gravitational effects will play a significant role, by utilizing

the future satellites in the free-space channels [16]. Furthermore, by sending astro-

nauts and experimental setups in the space, testing Bell inequality with free will can

be implemented.

Here, we will review a series of experimental works on quantum information

with the free-space channel in recent decade by our group. It is organized as fol-

lows. In section “Test of Bell Inequality over Free-Space Channels”, two quantum

entanglement distribution and Bell inequality test experiments are introduced. In

section “Quantum Teleportation in Free-Space Channels”, quantum teleportation

over 100 km free-space channel is reviewed. In section “Quantum Cryptography in

Free-Space Channels”, we will summarize our efforts on quantum cryptography in

long distance free-space channels. We finally present our experiment of testing the

speed of nonlocal correlations in section “Testing the Speed of Nonlocal Correla-

tions”.

Test of Bell Inequality over Free-Space Channels

There are two main kinds of loopholes in Bell inequality test experiments, the locality

loophole [17] and detection loophole [18]. In order to close the locality loophole, the

correlation measurement events must be space like separate.

In 2005, we report free-space distribution of entangled photon pairs over a noisy

ground atmosphere of 13 km [8] and observe a violation of Bell inequality of

2.45 ± 0.09 [19]. Meanwhile, considering the effective thickness of the aerosphere is

on the order of 5–10 km (i.e., the whole aerosphere is equivalent to 5–10 km ground

atmosphere), it’s the first time to experimentally demonstrate the entanglement can

still survive after both entangled photons have passed through the noisy ground at-

mosphere with a distance beyond the effective thickness of the aerosphere.

The entangled photons at the sender are collected into two single-mode fibers,

which are connected to the two sending telescopes, respectively. Because of the dis-

turbance of the atmosphere, the size and position of the received beam vary ran-

domly, causing a reduction of the collecting efficiency. To solve this problem, we

have used the two sending telescopes to expand the beam diameter to about 12 cm

for long-distance propagation. Moreover, at each receiver a similar telescope is used

to receive the entangled photons. After being focused, entangled photons are cou-

pled into 62.5µmmulti-mode fibers and finally sent to single-photon detectors. With
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Fig. 27.1 Schematic diagram of locations in the experiment. The source of entangled photons

is located at the foot of a high television tower, on the top of Dashu Mountain. Alice is located on

the west campus of USTC, and Bob is located at Feixi, a county of Hefei city. Photons from the

sender to the receivers experience a noisy city environment. Therefore, strongly influenced by the

air pollution and noisy background lights, even after rain with less air pollution, the background

count rate can reach about 30 000 per second at night without using interference filters.

these efforts, we manage to keep the transmission system working stably for a couple

of hours. For example, in the right photograph of Fig. 27.1 we can see at the Alice

side a bright and stable adjusting laser beam from the sender. Since the distances

from the sender to Alice and to Bob are not equal, the two entangled photons will

arrive at each receiver at different times. The air disturbance will cause this time

difference to vary randomly, resulting in a time difference shake 𝛥T. To coincide

the detected events at the two receivers, we have to make sure that the coincident

time window is wider than 𝛥T. However, when we widen the coincident time win-

dow to get the adequate true coincident events, the accidental coincident count rate

also increases and thus results in a reduction of the visibility. In our experiment, we

utilized the method of laser pulse synchronization to achieve time coincidence be-

tween the two receivers. At the sender, Q-switched laser pulses with a wavelength of

532 nm are separated into two parts, and then sent to the receivers, experiencing the

same optical path as the entangled photons. At each receiver, we measure the time

difference between the signal of the single-photon event and the signal of the cor-

responding synchronous laser pulse for the subsequent coincidence via the classical

communication link. Considering other ingredients causing time shake, we set the

time window to 20 ns in our experiment.
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Finally, to minimize the background count rate, the experiment is performed dur-

ing night, and 2.8 nm interference filters are utilized at each receiver to block the

noisy background light. With the filters added, the average background count rate

is about 400 per second. When the weather condition is perfect with a considerably

high visibility (>15 km), the total single-photon count rate is about 40000 per sec-

ond at Bob and about 18000 per second at Alice; the coincident count rate is about

300 per second. At the normal visibility (10 km), the coincident count rate is about

150 per second.

The entangled state prepared at the sender can be expressed as follows:

|𝛹−⟩ = 1
√
2
(|H⟩A|H⟩B − |V⟩A|V⟩B), (1)

where photon A is sent to Alice, photon B is sent to Bob, and H and V represent

horizontal and vertical polarization. The local visibility at the sender is about 98%
in the H∕V basis, and 94 % in the +45∕−45 basis. The observed visibilities between

two separated receivers are 94 % and 89 % in the two bases, respectively. Hence the

average visibility reaches 91 %, which is well beyond 71 % required for a violation of

Bell inequality. In order to further test the quality of the entangled state, we measured

the Clauser-Horne-Shimony-Holt (CHSH) inequality which is one type of the Bell

inequalities [19]. The polarization correlation coefficient is defined as follows:

E(𝜙A, 𝜙B) =
N++ + N−− − N+−N−+

N++ + N−− + N+−N−+
, (2)

where Nij(𝜙A, 𝜙B) are the coincidences between the i channel of polarizer of Alice

set at angle 𝜙A and the j channel of the polarizer of Bob set at angle 𝜙B. In the CHSH

inequality, parameter S is defined as

S = |E(𝜙A, 𝜙B) − E(𝜙A, 𝜙
′
B) + E(𝜙′

A, 𝜙B) + E(𝜙′
A, 𝜙

′
B)|, (3)

In the local realistic view, no matter what angles 𝜙A and 𝜙B are set to, parame-

ter S should be below 2. But in view of the quantum mechanics, S will get to

the maximal value 2
√
2 when the polarization angles are set to (𝜙

′
A, 𝜙

′
A, 𝜙B, 𝜙

′
B) =

(0◦, 45◦, 22.5◦, 67.5◦).

In this experiment, the whole measurement process was completed in 20 s. He

measured result of parameter S is 2.45 ± 0.09, with a violation of the CHSH in-

equality by 5 standard deviations. This result firmly ascertains that entanglement

has been built between the two distant receivers.

Although compared to the previous experiments our experimental results might

seem to be only a modest step forward, the implication is profound. First, our ex-

periment demonstrated for the first time that entanglement can still survive after

penetrating the effective thickness of the aerosphere by showing a violation of the

Bell inequality with space-like separated observers. Obviously, the strong violation
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of the Bell inequality is sufficient to guarantee the absolute security of the quan-

tum cryptography scheme, hence closing the eavesdropping loophole. Second, the

link efficiency of entangled photon pairs achieved in our experiment is about a few

percent, which is well beyond the threshold required for satellite-based free-space

quantum communication. Meanwhile, the methods developed in the present exper-

iment to establish a high stable transmission channel and achieve synchronization

between two distant receivers provide the necessary technology for future experi-

mental investigations of global quantum cryptography and quantum teleportation in

free space.

We further extend the entanglement distribution distance to 100 km at Qinghai

Lake in 2012, in which violation of the Clauser-Horne-Shimony-Holt inequality is

observed without the locality loophole.

In this experiment, we put the entanglement source close to the middle of the

free-space channel, an island in the middle of Qinghai Lake (Haixin, 36◦51′38.7′′N,

100◦8′15.2′′E, Fig. 27.2a). In order to show a two-link entanglement distribution

between two sites, Alice and Bob cannot see each other directly (Fig. 27.2a). Char-

Fig. 27.2 Illustration of the experimental set-up for entanglement distribution. a, Satellite

image of experiment site. b, The receiver, Alice, collects the photon sent by Charlie utilizing a

600 mm Cassegrain telescope. c, The receiver, Bob, collects the photon sent by Charlie utilizing a

400 mm off-axis reflecting telescope. d, The Charlie’s site. The entangled photon pairs are created

by Charlie at the centre island of Qinghai Lake (Haixin) and then distributed to Alice and Bob.
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lie first prepares the entangled photon pairs in the state |𝛷+⟩, which are then sent

to Alice and Bob via two telescopes each mounted on a two-dimensional rotatable

platform (Fig. 27.2b–d). The distances between Charlie and the two receivers are

51.2 km (Alice) and 52.2 km (Bob), and the distance between Alice and Bob is

101.8 km.

Furthermore, this experiment closed the locality loophole. The entangled photon

pairs were distributed along two opposite directions to Alice and Bob: these parties

are separated by 101.8 km, a distance that takes 340µs for light to travel, and the path

difference of the two links is within 1 km, which results in a 3µs delay between the

two measurement events. Thus, the two measurement events on Alice’s and Bob’s

sites are space-like separated. Meanwhile the two receivers used fast EOMs to switch

between the two possible polarization bases. The two EOMs were controlled by two

independent quantum random number generators, each of which generates a random

number every 20µs (less than 340µs). Thus the measurement-setting choices are

also space-like separated. Hence, the locality loophole is closed.

Finally, we obtained 208 coincidences during an effective time of 32,000 s. By

comparison with the counts of our entanglement source, we found that the channel

attenuation varied from 66 to 85 dB with an average value of 79.5 dB. For 20 cm-

aperture satellite optics at an orbit height of 600 km and 1 m-aperture receiving op-

tics, the total loss for a two-downlink channel between a satellite and two ground

stations is typically about 75 dB. The measured correlation functions (shown in

Fig. 27.3) resulted in S = 2.51 ± 0.21, which violates Bell’s inequality by 2.4 stan-

dard deviations.

In contrast to previous long-distance free-space experiments with entangled pho-

ton pairs using only one-link channels [20], our two-link experiment requires track-

ing and synchronization between three different locations. Our two-link experiment—

most comparable with satellite-to-ground quantum entanglement distribution—has

achieved a distance between two receivers that is an order of magnitude larger than

in previous experiments.

Fig. 27.3 Correlation
functions of a CHSH-type
Bell’s inequality for
entanglement distribution.

The measurement setting

(𝜑A, 𝜑B) represents the

measured polarization bases

of photons by Alice and Bob,

respectively. Error bars,

statistical errors (±1 s.d.).
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Quantum Teleportation in Free-Space Channels

Quantum teleportation lies at the heart of a number of quantum protocols, finding

particular use in quantum repeaters, quantum relays and so on, and is central to the

practical realization of quantum communication [4, 21]. Since its initial proposal by

Bennett and colleagues [22], quantum teleportation has triggered significant research

activity and become a focus in the field of quantum-information science.

An optical free-space link is highly desirable for extending the transfer distance,

because of its low atmospheric absorption for certain ranges of wavelength. In 2010,

by following the Rome scheme [23], which allows a full Bell-state measurement, we

reported free-space implementation of quantum teleportation over 16 km, as shown

in Fig. 27.4.

In this experiment, we have followed the Rome scheme to achieve quantum tele-

portation in free space over a distance of 16 km. At that time, this is the longest

reported distance over which photonic teleportation has been achieved, more than

20 times longer than the previous implementation for a fibre channel [24, 25]. Vari-

ous techniques have been developed for accomplishing this goal, including real-time

feedback control of the high-stability interferometer for single-photon BSM, active

feed-forward manipulation of the single-photon state for reconstruction of the initial

teleported qubit, novel design of telescopes tailored for teleportation experiments,

Fig. 27.4 Experimental quantum teleportation in free space. a, A birds-eye view of the 16 km

free-space quantum teleportation experiment. b, Sketch of the experimental system.
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Fig. 27.5 Bird’s-eye view and schematic diagram for free-space quantum teleportation. a,

Satellite image of experiment site. b, Entanglement generation and distribution on Charlies side.

c, Initial state preparation and Bell-state measurement (BSM) on Alice’s side. d, Receiving system

and polarization analysis on Bob’s side.

and so on. The excellent quality of the recovered state with an average fidelity better

than 89% is thereby obtained. The transmission loss of the overall system is gen-

erally at a level of 30 dB. If we use a large-aperture telescope and high-accuracy

ATP (acquisition, tracking and pointing) techniques, the transmission loss between

low-Earth-orbit satellites and ground stations can be well controlled to this level by

theoretical estimation.

Different to the above experiment, in 2011, we teleported independent qubits over

a 97 km one-link free-space channel with multi-photon entanglement [22], as shown

in Fig. 27.5.

Following the original quantum teleportation scheme [22, 26], Alice and Bob

share an entangled photon pair distributed by Charlie. An unknown state can be

teleported from Alice to Bob by performing a joint Bell-state measurement on the

two photons with Alice. Experimentally, we start with an ultra-bright entangled pho-

ton source based on type-II spontaneous parametric down-conversion. On Charlie’s

side (located at Gangcha next to Qinghai Lake; latitude 37◦16′42.4′′N, longitude

99◦52′59.8′′E; altitude 3,262 m; Fig. 27.5), an entangled photon pair 2 and 3 in state

|𝛷+⟩23 = (|HH⟩23 + |VV⟩23)∕
√
2 is created by Charlie and then distributed to Alice

and Bob, Where H(V) represents the horizontal (vertical) polarization of the pho-

tonic state (see Fig. 27.5b). An average twofold coincidence rate of 4.4 × 105s−1 for

the entangled photon source was observed.
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To prepare the unknown state to be teleported, Alice uses an ultraviolet laser to

pump a collinear 𝛽-barium borate (BBO) crystal, which emits photon pairs in |HV⟩14
along the pumping direction (see Fig. 27.5c). After filtering out the pumping laser,

a polarized beam splitter (PBS) splits the photon pair. A twofold coincidence rate

of 6.5 × 105s−1 was observed. A half-wave plate (HWP) and a quarter-wave plate

(QWP) are applied to photon 1 to prepare the initial state |𝜒⟩1=𝛼|H⟩ + 𝛽|V⟩, when

triggered by photon 4. Alice then performs a joint Bell-state measurement on photons

1 and 2 by interfering them on a PBS and performing polarization analysis on the

two outputs. The subsequent coincidence measurements can identify the |𝛷±⟩ Bell

states in our experiment. In the joint Bell-state measurement, the observed visibility

of interference on the PBS was 0.6. Finally, we observed a fourfold coincidence of

2 × 103s−1 locally. Such a brightness supports successful quantum teleportation over

a high channel loss, which can be greater than 50 dB.

Charlie sends photon 3 (by means of a compact transmitting system) through a

97 km free-space channel to Bob (Fig. 27.5b). A 127 mm f∕7.5 (that is, aperture

127 mm, focal length 952.5 mm) extra-low dispersion apochromatic refractor tele-

scope is used as an optical transmitting antenna. For near-diffraction-limited far-field

divergence angles, we have designed our systems to reduce chromatic and spherical

aberrations substantially. The divergence angle of our compact quantum transmitter

is about 20 µrad. On the other side of Qinghai Lake, Bob received photon 3 in a

400 mm-diameter off-axis reflecting telescope. An integrated measurement system,

consisting of an HWP, a QWP and a PBS, is assembled at the telescopes exit for state

analysis. Passing through two band-pass filters (full-width at half-maximum band-

width 𝛥FWHM = 80 nm) and one narrow-band interference filter (𝛥FWHM = 10 nm)

used to reduce background noise, the photons are coupled in multi-mode fibres and

then detected by the single-photon counting modules (SPCMs) with ultra-low dark

counts (< 20 s−1). The noise that we observed, including the dark counts and am-

bient counts, was in total about 160 to 300 s−1, depending on the position of the

Moon.

In this work, we experimentally realized free-space quantum teleportation for in-

dependent qubits over a 35–53 dB-loss one-link channel. We obtained 1, 171 coinci-

dences during an effective time of 14,400 s. Six distinct polarization states, namely,

|H⟩, |V⟩, |±⟩ = (|H⟩ ± |V⟩)/
√
2, |R⟩ = (|H⟩ + i|V⟩)/

√
2 and |L⟩ = (|H⟩ − i|V⟩)/

√
2

were teleported. The experimental fidelities for the six teleported states range from

76 to 89 %, all well beyond the classical limit of 2∕3 [27], with an overall average

fidelity of 80%. In comparison with previous multi-photon experiments, we have

enhanced the transmission distance by two orders of magnitude to 97 km.

Our experiment therefore confirms the feasibility of teleportation-based quantum

communications for satellite-ground applications. Our results show that even with

a high-loss ground-to-satellite uplink channel, quantum teleportation can be real-

ized. Furthermore, our APT system can be used to track an arbitrarily moving object

with high frequency and high accuracy, which is essential for future satellite-based

ultra-long-distance quantum communication. We believe our experiment will help

fundamental tests of the laws of quantum mechanics on a global scale to be achieved.
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Quantum Cryptography in Free-Space Channels

Quantum key distribution (QKD) is one of the most research domain of quantum

communication. QKD provides the only intrinsically unconditional secure method

for communication based on the fundamental principles of quantum mechanics.

There are two types of QKD schemes: one is the prepare-and-measure scheme, such

as the Bennett-Brassard-1984 (BB84) protocol [28] and the Bennett-1992 protocol

[29]; the other is the entanglement-based scheme, such as the Ekert-1991 protocol

[30] and the Bennett-Brassard-Mermin-1992 (BBM92) protocol [31]. Since the first

QKD experimental demonstration in the early 1990s [32], QKD has rapidly devel-

oped towards the stage for real-life applications.

Compared with fibre-based demonstrations, free-space links could provide the

most appealing solution for communication over much larger distances. Despite sig-

nificant efforts, most realizations to date rely on stationary sites. Experimental veri-

fications are therefore extremely crucial for applications to a typical low Earth orbit

satellite. To achieve direct and full-scale verifications of our setup, we have carried

out three independent experiments with a decoy-state QKD system, and overcome all

conditions at Qinghai Lake and reported these experimental results in 2013 [14]. The

system is operated on a moving platform (using a turntable), on a floating platform

(using a hot-air balloon), and with a high-loss channel to demonstrate performances

under conditions of rapid motion, attitude change, vibration, random movement of

satellites, and a high-loss regime. The experiments address wide ranges of all leading

parameters relevant to low Earth orbit satellites. These results pave the way towards

ground-satellite QKD and a global quantum communication network.

We implemented direct and comprehensive verifications for establishing success-

ful quantum cryptography communication via satellites in three independent exper-

iments conducted at night to address every aspect of the above mentioned crucial

issues (as shown in Figs. 27.6 and 27.7). First, quantum communication experiments

using a turntable (the site at 40 km in Fig. 27.6) and a hot-air balloon (the site at 20 km

in Fig. 27.6) were performed to simulate a platform in a rapidly moving orbit as well

as the vibration, random motion and attitude change associated with a satellite in

such orbit. Second, we illustrate the generation of secret keys for a 96 Km free-space

channel with loss of ∼50 dB, which is more severe than the 30–50 dB loss associated

with links between ground stations and a low Earth orbit satellite (LEOS) [33, 34].

Many key technologies, which can be directly used in satellite-ground QKD, were

developed and improved, such as a high-speed and compact QKD source based on

a decoy scheme, an acquisition, tracking and pointing (ATP) system, and tailored

optical transmitters and receivers integrated to be lightweight and portable termi-

nals. The secure distances achieved here are significantly greater than the effective

thickness of the atmosphere (equivalent to ∼8–10 km of ground atmosphere). Our

verification environment has not only incorporated all possible motion modes, but

also applied more extreme situations in relation to vibration, random movement and

attitude change by using a hot-air balloon. Accordingly, our implementations, for the

first time, provide comprehensive and direct verifications for secure key exchanges
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Fig. 27.6 Schematic of experimental set-up. The signal states and decoy states emitted from the

polarization-encoding module pass through a reflecting Cassegrain telescope before transmitting

to the receiver side. Once received by another telescope, they are directed to the detection module

for polarization analysis. The 532 nm and 671 nm beacon light passes through the same channel for

tracking, and the 532 nm light also acts as a synchronization signal. A1 (A2) and B1 (B2) represent

the transmitter and receiver sites for the moving (floating) platform experiments, respectively. Red

lines represent light at 850 nm, green lines and violet lines represent the tracking beacon light of

receiver and transmitter, respectively, and dotted lines represent electric cable. PBS, polarizing

beam splitters; BS, beam splitter; HWP, half-wave plate; MON, monitor window; MIR, mirror;

ATT, attenuator; DM, dichroic mirror; 532LD, 532 nm laser; FSM, fast steering mirror; 671LD,

671 nm laser; 532D, 532 nm detector; IF, interference filter; APD, avalanche photodiode. Inset:

rising and erupting hot-air balloon in the floating platform experiment.

via fast-moving platforms such as satellites or aircraft, and bring global-scale quan-

tum communication closer to fruition.

Aiming to the future satellite-based quantum communication, we spent great ef-

forts on ground testing the feasibility. In 2013, we reported a direct experimental

demonstration of the satellite-ground transmission of a quasi-single-photon source

[35] cooperating with Shanghai Astronomical Observatory. In this experiment, sin-

gle photons (∼0.85 photon per pulse) are generated by reflecting weak laser pulses

back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected

by a 600 mm diameter telescope at the ground station, and finally detected by

single-photon counting modules after 400 km free-space link transmission. With the

help of high accuracy time synchronization, narrow receiver field-of-view and high-

repetition-rate pulses, a signal-to-noise ratio (SNR) of better than 16:1 is obtained,

which is sufficient for a secure quantum key distribution. This experimental results
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Fig. 27.7 Photographs of the QKD receiver and transmitter terminals. a, The receiver ter-

minal has approximate dimensions of 500 mm× 500 mm× 900 mm and is used in experiments

involving the simulation of satellite orbiting and the floating platform provided by a hot-air bal-

loon. It contains the receiver telescope and an optical box. b, The transmitter terminal is mounted

on a turntable and has approximate dimensions of 500 mm× 450 mm× 600 mm. This is used for

performing the experimental simulation of satellite orbiting. When the turntable carries out a com-

plex motion, the transmitter terminal will move accordingly. Therefore, simulation can be achieved

with an angular velocity and angular acceleration larger than that in a typical LEOS.

demonstrate the feasibility of realizing satellite-ground QKD with current technol-

ogy. In the same year, we report another experiment of free-space entanglement-

based quantum key distribution, implementing the biased basis protocol between two

sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are

distributed through two 7.8 km free-space optical links [13]. This experiment sug-

gests that the efficient BB84 protocol [36] is indeed an easy and effective way to

increase the key rate for QKD and can be used in our future plan of quantum science

satellite.

Quantum physics allows for unconditionally secure communication between par-

ties that trust each other. However, when the parties do not trust each other such

as in the bit commitment scenario, quantum physics is not enough to guarantee se-

curity unless extra assumptions are made. Unconditionally secure bit commitment

only becomes feasible when quantum physics is combined with relativistic causal-

ity constraints. We experimentally implemented a quantum bit commitment protocol

with relativistic constraints that offers unconditional security at Shanghai in 2013, as
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Fig. 27.8 a Diagram of the geographical distribution of the parties. The distance between Alice

and Bob, and between A0 and B0 (and A1 and B1) is less than one meter. Alice communicates

with her agents using sending and receiving telescopes. Each site has a global position system

(GPS) for synchronization. b Diagram of Bobs and Alices setup. Triggered by a GPS signal, Bob

attenuates and encodes laser pulses with a BB84 module, which is composed of two Wollason

polarization prisms and a beam splitter, and sends them to Alice. Alices commitment setup consists

of a half wave plate (HWP), a polarization beam splitter (PBS) and silicon avalanched photo-diode

single photon detectors (SPDs). A field programmable gate array (FPGA) board is used to record

the detected signals and communicate with Bob and Alices agents. Alice encodes, amplifies and

sends the measurement results to her agents through telescopes. The four BB84 polarization states

are denoted as |H⟩, |V⟩, |+⟩, and |−⟩. F. A.: fixed attenuator. OTM: optical transmission module.

ORM: optical receiving module. EDFA: erbium-doped fiber amplifiers. APT: acquiring, pointing

and tracking. b Diagram of B0’s and A0’s setup. The one of B1 and A1 is identical. A(0)’s FPGA

board receives and decrypts the detection information, stores it until the last classical signal is

received, and then sends the measurement results to B0. Bob’s agents record the timing of these

signals and send the results to Bob.

shown in Fig. 27.8. The commitment is made through quantum measurements in two

quantum key distribution systems in which the results are transmitted via free-space

optical communication to two agents separated with more than 20 km. The security

of the protocol relies on the properties of quantum information and relativity the-

ory. In each run of the experiment, a bit is successfully committed with less than

5.68 × 10−2 cheating probability. This demonstrates the experimental feasibility of

quantum communication with relativistic constraints.

Our experiment, for the first time, provides unconditionally secure bit commit-

ment between two mutually mistrustful parties, which is also a building block for

many cryptographic primitives, including coin tossing [37, 38], zero-knowledge

proofs [39, 40], oblivious transfer [41, 42] and secure two-party computation [43]. In

future applications, QKD would be the preferable choice to distribute secret keys be-

tween Alice and her agents. However, to cover long distances in this scenario it would
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be necessary to employ either satellite-based links or quantum repeaters. While both

quantum mechanics and relativity have changed our understanding of the Universe,

our experiment together with that of Lunghi et al. [44] show for the first time that

when we combine them, we can solve a fundamental problem with practical appli-

cations, and for which there is no solution using only one of them on their own. Our

work opens a promising new research field with technological applications.

Testing the Speed of Nonlocal Correlations

In their well-known paper, Einstein, Podolsky, and Rosen called the nonlocal cor-

relation in quantum entanglement a “spooky action at a distance.” If the spooky

action does exist, what is its speed? All previous experiments along this direction

have locality and freedom-of-choice loopholes. In 2012, using free-space channels,

we strictly closed the loopholes by observing a 12 h continuous violation of the Bell

inequality and concluded that the lower bound speed of spooky action was 4 orders

of magnitude of the speed of light if Earth’s speed in any inertial reference frame

was less than 103 time the speed of light.

We distributed entangled photon pairs over two sites that were 16 km apart via

a free-space optical link, and implemented a space-like Bell test [17, 19] to close

the locality loophole. Meanwhile, we utilized fast electro-optic modulators (EOMs)

to address the freedom-of-choice. As almost all the photonic Bell experiments, we

utilized the fair sampling assumption to address the detection loophole [18]. This

assumption is justified by J. S. Bell’s comments [45], “...it is hard for me to believe

that quantum mechanics works so nicely for inefficient practical setups and is yet

going to fail badly when sufficient refinements are made. Of more importance, in

my opinion, is the complete absence of the vital time factor in existing experiments.

The analyzers are not rotated during the flight of the particles.”

Our two sites are east-west oriented sites at the same latitude as Eberhard pro-

posed [46]. Takeing advantage of Earth’s rotation, the configuration of our exper-

iment allowed us to determine, for any hypothetically privileged frame, the lower

bound of the spooky action speed by distributing polarization entangled photon pairs

over two exactly east-west oriented sites and observed a 12 h continuous spacelike

Bell inequality violation. It should be noted that, with only two parties one may al-

ways hold the opinion that a real fast enough spooky action could explain quantum

correlations violating Bell inequality without leading to superluminal communica-

tion. Recently, some researchers found that this no longer holds when more parties

are involved [47] (Fig. 27.9).

In this experiment, the developed fast time tagging, long-distance laser tracking,

and synchronizing technology in the experiment can also find immediate applica-

tions in satellite-Earth quantum communication, multiparty quantum communica-

tion, and tests of the space-like GHZ theorem.
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Fig. 27.9 Diagram of experimental setup for testing the speed of spooky action. a, Birds-eye

view of the experiment. We generated entangled photon pairs in the sending point and utilized an

integrated sending system to distribute them into two east-west oriented receiving points A and B.

Receiving site A used an off-axis reflection telescope with 400 mm diameter, and Bused a refraction

telescope with 127 mm diameter. Both receiving sites A and B had polarization analyzing units (the

orange box). b, Entanglement generation setup. A pair of 45◦ mirrors and a dual-wavelength PBS

formed the Sagnac interferometer. A 22.5◦ dual-wavelength HWP was used to swap the horizontal

and vertical polarization. The DM was used to distinguish the pump light and the signal light. The

entangled photons were coupled to SMFs through aspherical lens. c, Active polarization analyzing

unit in receiving site A. A HWP, an EOM, a PBS, and two multimode fiber-coupled single photon

counting modules (SPCMs) constitute an active polarization analyzing unit. A quantum random

number generator (QRNG) and an amplifier were used to drive the EOM. The signals from the

SPCMs combined with the logic module were sent to a time digital converter (TDC). d, Active

polarization analyzing unit in receiving site B.
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Chapter 28
Bell’s Theorem, Bell Inequalities,
and the “Probability Normalization
Loophole”

John F. Clauser

Abstract Fifty years ago in 1964, John Bell [6], showed that deterministic local
hidden-variables theories are incompatible with quantum mechanics for idealized
systems. Inspired by his paper, Clauser, Horne, Shimony and Holt (CHSH) [12] in
1969 provided the first experimentally testable Bell Inequality and proposed an
experiment to test it. That experiment was first performed in 1972 by Freedman and
Clauser [20]. In 1974 Clauser and Horne (CH) [13] first showed that all physical
theories consistent with “Local Realism” are constrained by an experimentally
testable loophole-free Bell Inequality—the CH inequality. These theories were
further clarified in 1976–1977 in “An Exchange on Local Beables”, a series of
papers by Bell, Shimony, Horne, and Clauser [8] and by Clauser and Shimony
(CS) [15] in their 1978 review article. In 2013, nearly fifty years after Bell’s original
1964 paper [6], two groups, Giustina et al. [24] and Christensen et al. [11] have
finally tested the loophole-free CH inequality. Clauser and Shimony (CS) [15] also
showed that the CHSH inequality is testable in a loophole-free manner by using a
“heralded” source. It was first tested this way by Rowe et al. [35] in 2001, and more
convincingly in 2008 by Matsukevich et al. [33]. To violate a Bell Inequality and
thereby to disprove Local Realism, one must experimentally examine a two com-
ponent entangled-state system, in a configuration that is analogous to a
Gedankenexperiment first proposed by Bohm [9] in 1951. To be used, the con-
figuration must generate a normalized coincidence rate with a large amplitude
sinusoidal dependence upon adjustable apparatus settings. Proper normalization of
this amplitude is critical for the avoidance of counterexamples and loopholes that
can possibly invalidate the test. The earliest tests used the CHSH inequality without
source heralding. The first method for normalizing coincidence rates without
heralding was proposed by CHSH [12] in 1969. It consists of an experimental
protocol in which coincidence rates measured with polarizers removed are used to
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normalize coincidence rates measured with polarizers inserted. Very high trans-
mission polarizers are required when using this method. Highly reasonable and very
weak supplementary assumptions by CHSH and by CH allow this protocol to work
in a nearly loophole free manner. A second method for normalizing coincidence
rates was offered by Garuccio and Rapisarda [22] in 1981. As will be discussed
below, it allows experiments to be done more easily, but at a significant cost to the
generality of their results. It was first used in the experiment by Aspect, Grangier,
and Roge [3] in 1982. It uses “ternary-result” apparatuses and allows the use of
highly absorbing polarizers, which would not work with other normalization
methods. It normalizes using a sum of coincidence rates. Gerhardt et al. [23] in
2011 theoretically and experimentally demonstrated counterexamples for tests that
use this normalization method. Their experiments thus obviate the validity of their
counterexamples, and further indicate that very high transmission polarizers are
necessary for convincing tests to be performed.

Introduction to Bell’s Theorem and the Bell Inequalities

Bell’s Theorem is formulated in terms of a set of individually named inequalities,
each with increasing generality and scope. These inequalities are collectively
referred to as the “Bell Inequalities”. They surprisingly follow from very simple
natural assumptions concerning the nature of reality. These assumptions, along with
their associated consequences via Bell’s Theorem, then constitute a minimal
framework for a whole class of theories originally named “Objective Local The-
ories” by Clauser and Horne (CH) [13] in 1974, and subsequently renamed “Local
Realism” by Clauser and Shimony (CS) [15] in 1978. The assumptions underlying
Local Realism are so simple and natural that one of this conference’s organizers,
Anton Zeilinger, recently commented that if Bell’s Theorem had been discovered
before quantum mechanics, it would have been promoted to be considered a law of
nature on its own, whereupon the subsequently discovered quantum mechanics
must obviously be wrong! The assumptions underlying Local Realism are reviewed
in the Appendix.

The essence of Bell’s Theorem is that theories based on Local Realism cannot
give the same prediction for certain “entangled-state” two-component systems as
does the theory of quantum mechanics. Thus, these two opposing theories are
experimentally distinguishable from each other. It is then the task for experimental
physicists to determine which of these two incompatible theories correctly describes
the world in which we live. To refute Local Realism (and/or to refute quantum
mechanics) experimentally, one can perform an experiment whose quantum
mechanical predictions violate a Bell Inequality. The first experiment to do so was
that by Freedman and Clauser [20] in 1972. Their results were then the first to
violate the CHSH inequality (but still leave open the normalization and locality
loopholes). Freedman and Clauser’s experimental results have been overwhelm-
ingly confirmed by many other experiments, some of which are discussed and
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tabulated in the section “Some Experimental Results”. The experiment by Aspect,
Dailbard and Roger [4] again violated the CHSH inequality, and was first to close
the locality loophole, but still leave open the normalization loophole. The
normalization-loophole-free heralded-source CHSH inequality was first tested by
Rowe et al. [35] in 2001, and more convincingly in 2008 by Matsukevich et al.
[33], with both experiments still leaving open the locality loophole. Giustina et al.
[24] and Christensen et al. [11] have finally tested the normalization-loophole-free
CH inequality in 2013. Experiments are currently in progress to finally close both
the normalization loophole and the locality loophole simultaneously in a single
experiment.

The particular entangled-state two-component systems referred to above were
used in a Gedankenexperiment that was first envisaged by David Bohm [9] in 1951.
That entangled-state system was used by John Bell [6] in his now-famous 1964
paper. Bohm’s Gedankenexperiment is described below in the section “Bohm’s
1951 Gedankenexperiment and Its Relation to Bell’s Theorem”. Bohm’s arrange-
ment then provides a prototype configuration for Bell’s Theorem experiments.

The generality and scope of Bell’s Theorem has evolved since its discovery.
John Bell’s 1964 paper [6] introduced the first Bell-Inequality and showed that no
Local Hidden Variables Theory (LHVT) can give the quantum mechanical pre-
diction for Bohm’s idealized Gedankenexperiment. In that paper, however, Bell
made no reference to the experimental status, or even to the experimental testability
of his result. Moreover, Bell’s 1964 [6] Inequality applied only to idealized sys-
tems. To bridge the gap between theory and the real world in which we live,
Clauser, Horne, Shimony, and Holt (CHSH) [12] in 1969 introduced the second
Bell Inequality—the CHSH inequality—and showed that it holds for deterministic
LHVT’s that govern realizable systems. More importantly, unlike Bell’s 1964
result, the CHSH inequality is experimentally testable. CHSH also were the first to
propose an actual experiment to test the Theorem’s predictions.

The extension of Bell’s Theorem to include Objective Local Theories (and Local
Realism) was made by Clauser and Horne (CH) [13] in 1974, and these theories were
renamed Local Realism by Clauser and Shimony [15] in 1978. Clauser and Horne therein
introduced what is now commonly referred to as the CH inequality. It is experimentally
testable and is loophole free, and is what we herein refer to as an “R-inequality” (see
below). A further discussion clarifying the meaning and scope of Bell’s Theorem fol-
lowed CH in “An Exchange on Local Beables” [8]—a series of papers by Bell, Shimony,
Horne and Clauser. A review of the various proofs and interpretations of Bell’s Theorem,
the various Bell Inequalities, and the available modalities for experimental testing is given
by the Clauser and Shimony (CS) [15] review article.

To violate a Bell inequality and thereby to disprove Local Realism, one must
experimentally examine a two component entangled-state system, in a configuration
that is analogous to Bohm’s Gedankenexperiment. The experiment is done with two
widely separated apparatuses. To be used for a test, the configuration must generate
normalized coincidence rates at these two apparatuses with a measured large
amplitude sinusoidal dependence upon the two adjustable apparatus settings. Proper
normalization of the coincidence rates is critical for the avoidance a loophole.
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A loophole exists when a counterexample exists that invalidates the experi-
mental test. Loopholes sometimes arise when technology limits just how closely
one can approach the ideal experiment specified by a Bell Inequality. Various
experimental tricks are then generally used, along with associated supplementary
assumptions to plug these loopholes. These added assumptions generally do not
rely on either locality or realism (or quantum mechanics), although it is highly
desirable that they at least be consistent with these theories. To evaluate the
assumptions, one may examine how reasonable a supplementary assumption is,
along with how contrived the associated counterexample is. Such assumptions thus
become the weak point in any argument claiming an experimental disproof of Local
Realism. The obvious question is always offered—are you testing the fundamental
assumptions behind Local Realism, or are you just testing the supplementary
assumption(s)? Fortunately, recent experiments closing the remaining loopholes are
now rendering this last question moot.

The first identified loophole is the so-called “locality loophole”. Curiously, it
was first noted by Bohm and Aharonov [10] in 1957, prior to Bell’s 1964 paper [6].
Under the locality loophole, a hypothetical collusion between the two separated
apparatuses can possibly occur, whereby the apparatuses communicate their set-
tings to each other. Such communication can then possibly can account for the
strange quantum-mechanical predictions associated with the entanglement of
widely separated particles. This possibility was promoted further by Bell in his
1964 paper [6]. Bohm and Aharonov had suggested that a rapid change of the two
apparatuses of Bohm’s Gedankenexperiment, while the entangled-state particles are
in flight, can thereby exclude any such collusion. While this locality-loophole
counterexample may seem somewhat contrived, it has become particularly
important to close it when Bell’s Inequality experimental results are under attack by
malevolent efforts, as may occur when the experimental outcomes are used for
quantum communication and cryptography, for which malevolent forces are well
known to exist (e.g. by eavesdroppers). The first experiment to close this loophole
was performed in 1982 by Aspect, Dalibard, and Roger [4].

The second identified loophole is what we herein call the “normalization
loophole”. It occurs when the measured large amplitude sinusoidal dependence on
adjustable apparatus settings is less than that required for an actual violation of a
Bell Inequality. The so-called “detection loophole” is one of several examples of
the normalization loophole. The detection (normalization) loophole commonly
occurs when low detection efficiency reduces the measured amplitude of the
coincidence-rate variation to below that needed for a violation of a Bell Inequality.

Sometimes the normalization loophole occurs without it even being recognized.
Indeed, the transition from Bell’s 1964 inequality [6] to the CHSH inequality [12]
involved closure of the first example of a normalization loophole, wherein Bell
assumed and indeed required a perfect apparatus correlation. (See the sections “One
Possible Cause for the Normalization Loophole” and “Bell’s 1964 E-Inequality for
Idealized Binary Result Apparatuses” below.) In general, the normalization loop-
hole can be closed only with highly precise apparatus, and with careful count-rate
normalization. It has only been closed recently. Closure of both the locality
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loophole and the normalization loophole simultaneously in a single experiment has
not yet been done, but experiments now in progress promise to do so soon.

Much of the remainder of this paper addresses the normalization loophole. There
are two known routes to plug it—either violate the CHSH inequality using a
heralded source, as was first suggested by Clauser and Shimony (CS) [15] in 1978,
or directly violate the CH inequality [13]. Both routes have met significant technical
difficulties, and both routes require highly efficient detection schemes and highly
efficient high-transmission analyzers (polarizers).

In the section “Bohm’s 1951 Gedankenexperiment and Its Relation to Bell’s
Theorem”, we describe Bohm’s 1951 Gedankenexperiment [9]. It provides a basic
prototype for Bell’s Theorem experiments. In the section “One Possible Cause for
the Normalization Loophole”, we discuss the origin of the normalization loophole.
The loophole’s nature depends on the nature of the associated Bell Inequality being
tested. In deriving a Bell Inequality, there are at least two ways to proceed. One way
is to start directly from observed quantities, such as the number of observed particle
detections (per unit time), then to calculate probabilities for them, and finally to
derive an inequality constraining them that is consistent with the requirements for
locality and realism. This path was followed by CH. It yields the CH Inequality, and
the experiments that it constrains are then inherently free from the
normalization-loophole. It is described in the section “Normalization-Loophole
Free Clauser-Horne (CH) R-Inequality for Binary-Result Apparatuses”. The CH
inequality uses binary-result apparatuses. The 1978 review article by Clauser and
Shimony (CS) [15] describes a variety of alternative methods for deriving the CH
inequality. The CH inequality directly constrains observed count rates, and is thus,
what we herein call an R-inequality, as an abbreviation for count-Rate-inequality.
An R-inequality directly compares one linear combination of measured count rates
with another.

A second method for deriving a Bell Inequality is that originally followed by
Bell and by CHSH. It requires one to first define “result values” (as discussed in the
section “Result Values and Expectation-Value Inequalities (E-Inequalities)”). That
method then provides inequalities that constrain the expectation values for the
various observed results. We call these “E-inequalities”,1 as an abbreviation for
Expectation-value-inequalities. The first such E-inequality was derived by Bell in
his original 1964 paper [6]. It is discussed in the section “Bell’s 1964 E-Inequality
for Idealized Binary Result Apparatuses”. The second E-inequality was that by
CHSH [12]. It is discussed in the section “Clauser Horne Shimony Holt (CHSH)
E-Inequality for Real Binary Result Apparatuses”. Unfortunately, an E-inequality is
not directly testable, unless it is first converted to an R-inequality. Care must be
exercised when one is performing the conversion in order to avoid unnecessarily
introducing a normalization loophole.

1Historical Note: Both Bell [6] and CHSH [12] use the symbol P rather than E for the expectation
value of the product of the binary result values A and B.Subsequent works generally now use the
symbol E.
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Care must also be exercised in recognizing whether or not one is using
binary-result or ternary-result apparatuses. (See the section “One Possible Cause for
the Normalization Loophole”) Three methods have been used for doing the con-
version. One method, described in section “Clauser Horne Shimony Holt (CHSH)
R-Inequalities for Real Binary-Result Apparatuses via the CHSH Polarizer-Removal
Protocol”, is to use the CHSH polarizer-removal protocol to get a CHSH
R-inequality. It requires the use of binary-result apparatuses, and it was used for all of
the earliest tests of the CHSH E-and R-inequalities. The protocol consists of mea-
suring coincidence rates with polarizers removed as well as measuring coincidence
rates with polarizers inserted. The former measurements are used to normalize the
latter. Very high transmission polarizers are required for this method to work. Highly
reasonable supplementary assumptions by CHSH and by CH allow this protocol to
provide a very reasonable argument for avoidance of the loophole. Clauser and Horne
(CH) [13], however, do provide an ad hoc somewhat contrived counterexample,
discussed in the section “The CH Counterexample”. Thus, a residual normalization
loophole remains with this method, despite the high plausibility of their associated
supplementary assumption and the rather contrived nature of that counterexample.

A second method for converting an E-inequality into an R-inequality is described
in the section “CHSH R-Inequality with Heralding”. It uses a heralded source, and it
was first explicitly suggested by Clauser and Shimony (CS) [15] in 1978. It then
allows one to use the CHSH E-inequality directly to get a loophole-free CHSH R–
inequality. It can use either binary- or ternary-result apparatuses.

A third method for normalizing coincidence rates was first proposed in 1981 by
Garuccio and Rapisarda (GR) [22], and was first used in 1982 in the experiment by
Aspect, Grangier, Roger (AGR) [3]. (See the section “Garuccio and
Rapisarda/Aspect Grangier Roger R-Inequalities for Real Ternary-Result Appara-
tuses”.) It uses “ternary-result” apparatuses only. Notably, it allows the use of
highly absorbing polarizers, whereby a violation of an associated R-inequality is
much easier to achieve experimentally. It normalizes the coincidence rates using a
sum of these coincidence rates, and ignores unobserved (and unobservable) events.
Unlike the CHSH polarizer-removal protocol, no polarizers are removed using this
method, and no additional normalizing data need be taken. It also requires a much
stronger supplementary assumption than that required by the CHSH
polarizer-removal protocol. The GR/AGR supplementary assumption is now
commonly (and gratuitously) referred to as the “fair-sampling assumption”. Ger-
hardt et al. [23] provide a convincing experimental demonstration of the ease by
which it can be countered, especially by malevolent efforts, as may occur in “se-
curity related scenarios” and quantum cryptography. Despite the need for these
strong supplementary assumptions, GR/AGR normalization has been used by many
experiments, presumably because of it’s ease of experimental implementation. Its
use has become sufficiently common that it is often cited (incorrectly) as an integral
necessary part of the CHSH E-inequality, despite strident protestations made by this
author at the first Quantum [Un]speakables conference (Clauser [16]). It is not!

We conclude in the section “Some Experimental Results” with a description and
tabulation of various experimental results that test the predictions made by these
various Bell Inequalities.

456 J.F. Clauser



Bohm’s 1951 Gedankenexperiment and Its Relation to Bell’s
Theorem

Figure 28.1 shows Bohms’s 1951 Gedankenexperiment [9]. It provides the proto-
type for Bell’s-Theorem discussions. It consists of a highly idealized pair of
binary-result apparatuses interacting with a quantum mechanically entangled
two-particle system. In this Gedankenexperiment, a spin-zero particle decays into a
pair of spin-entangled spin-½ particles. Each of these particles, in turn, flies into an
associated rotatable Stern-Gerlach analyzer, where it then follows one of two tra-
jectories, and is detected by one of two associated detectors. For this system, Bohm
[9] and Bell [6] both assume that the following highly idealized requirements hold:

(a) The initial state of the pair is a 100 % pure spin-singlet. (ψ = singlet =
↑↓—↓↑ in any coordinate system)

(b) Both particles enter the collimators.
(c) The system’s collimation is perfect and the propagation is loss-free.
(d) The propagation and spin-state selection are depolarization-free, and
(e) Both detectors have 100 % efficiency.

It is important to note, in passing, that these idealized specifications are, in general,
impossible to realize in practice.

We define the result values (see the section “Result Values and Expectation-Value
Inequalities (E-Inequalities)”) at each apparatus A ≡ ±1, and B ≡ ±1, respec-
tively. With the above idealized specifications, for an ensemble of decaying spin-zero
particles, the quantum mechanical predictions for the probabilities of the four pos-
sible outcomes are

Fig. 28.1 Bohm’s [9] Gedankenexperiment, that provides the prototype for Bell’s-Theorem
discussions.
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probQMðA=1, B=1Þ=1 ̸2 sin2 angða,bÞ ̸2ð Þ,
probQMðA= − 1, B= − 1Þ=1 ̸2 sin2 angða, bÞ ̸2ð Þ,
probQMðA=1, B= − 1Þ=1 ̸2 cos2 angða,bÞ ̸2ð Þ,
probQMðA= − 1, B= − 1Þ=1 ̸2 cos2 angða,bÞ ̸2ð Þ,

ð1Þ

where ang(a, b) is the angle between the two Stern-Gerlach analyzer orientations,
and probQM (A = i, B = j) is the probability (as predicted by quantum mechanics)
that apparatus A will yield the result i, and that apparatus B will yield the result j.

It is the large amplitude sinusoidal dependence of Eqs. (1) that is at the heart of
Bell’s Theorem, and it was Bell’s genius to first note that this dependence cannot be
obtained by any local hidden-variables theory, but instead can only be obtained by
quantum mechanics! Bell thus discovered that the large amplitude sinusoidal
dependence in Eqs. (1) is strictly peculiar to quantum-mechanical entangled-state
systems. He further discovered that virtually any reasonable attempt to model the
behavior of Bohm’s Gedankenexperiment via hidden-variables gave instead, a
strange non-sinusoidal result, and/or a low amplitude result that is very different
from that given by Eqs. (1).

Bell’s observation thus became the inspiration for experimentalists, who, in turn,
wondered if nature really behaves the way quantum mechanics strangely predicts
here. Relaxation of the ideal specifications for this Gedankenexperiment, in turn,
reduces the amplitude of this sinusoidal dependence, whereupon a normalization
loophole can result when the relaxation goes too far. In practice, very little relax-
ation from the ideal can be tolerated.

One Possible Cause for the Normalization Loophole

An important but frequently overlooked feature of Bohm’s Gedankenexperiment is
that each apparatus provides the binary result, ±1. Thus, for the two apparatuses
and a given pair of spin-entangled particles, there are then only four possible
outcomes, and four associated probabilities. For any set of probabilities to be
sensible, and for Bell’s Theorem to obtain, the sum of these four probabilities must
be normalized to one. That is, we must have

∑i =±1 ∑j =±1 prob A(aÞ= i, BðbÞ= jð Þ=1, for all a,b. ð2Þ

We note here that this normalization condition holds for the quantum mechanical
predictions of Eqs. (1).

One can measure the various prob(A(a) = i, B(b) = j) experimentally from
event frequencies. To do so, one needs the total number of i, j events, N(A(a) = i, B
(b) = j), normalized by the total number N of emitted-pair events. Then, if and only
if all events are properly accounted for, the above normalization condition becomes
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∑i =±1 ∑j =±1 N A(aÞ= i, BðbÞ= jð Þ=N, for all a, b. ð3Þ

We further note that if there are missing non-zero terms in these summations, then
the normalization condition of Eq. (3) does not hold.

Now consider any actual realization of Bohm’s Gedankenexperiment. There, we
really have ternary-result rather than binary-result apparatuses. In practice, one or
both of the particles will fail to enter the collimators. Additionally, any real detector
will sometimes fail to detect a particle entering it, and/or will sometimes falsely
detect a particle, even when one is not present (a “dark-count”). As a result, there will
be un-paired detections at the two apparatuses and/or totally missing paired detec-
tions. Correspondingly, for any realization of Bohm’s Gedankenexperiment we
really have the possible outcomes for each apparatus as being one of three possi-
bilities: +1, −1, and No-detection (with no result-value, as yet, assigned to this
possibility). For binary-result apparatuses, there are 4 nonzero terms in the above
double summations. For ternary-result apparatuses, however, there are 9 nonzero
terms. Unfortunately, at most, only 8 of those 9 can be observed by the two appa-
ratuses, since the 9th term is a probability of nothing happening at both apparatuses.

Of course the value of the 9th unobserved term can be determined via an a priori
knowledge of N by using Eq. (3). This latter possibility is now commonly referred to as
“heralding”, wherein the source apparatus signals (heralds) that a particle pair has been
emitted and is ready for analysis and detection. The possible use of said heralding
measurements was first noted by Clauser and Shimony (CS) [15], and was therein given
the name “event-ready detectors”. (The modern term “heralding” had not yet been
invented in 1978.) It is discussed in the section “CHSH R-Inequality with Heralding”.

A simpler alternative to the use of heralding was offered by CH [13]. They avoid
a need for knowing the value of N by producing a Bell Inequality that only involves
ratios of the various N(A(a) = i, B(b) = j), whereupon the unknown value of N
cancels out! Worries about unobserved particles may seem unimportant until one
recognizes that in the earliest realizations of Bohm’s Gedankenexperiment, the
overwhelming majority of emitted pairs were, in fact, wholly or partially unob-
served. The ratio of paired (coincident events) to unpaired detections (“singles
events”) detections was about 10−3, while the ratio of the number of paired (co-
incident events) to the number of emitted particle pairs was about 10−6. Only now,
nearly 5 decades later have experiments evolved to the point where these event rates
are all of comparable orders of magnitude.

Normalization-Loophole Free Clauser-Horne
(CH) R-Inequality for Binary-Result Apparatuses

Clauser and Horne (CH) [13] start from an experimental arrangement that is slightly
different from that of Fig, 28.1. It is shown in Fig. 28.2. It is configured to auto-
matically enforce the above-noted need for binary results. A source at the center
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emits pairs of particles. The source is viewed by two apparatuses, named 1 and 2.
Each apparatus consists of an adjustable attenuating analyzer and an associated
single detector. A particle of the pair can pass through one of the analyzers, wherein
after it is or is not detected by the associated detector. By the design of the
experimental layout, only binary events, i.e. detection or non-detection events, can
occur at each apparatus.

The CH derivation of Bell’s Theorem and of the CH inequality starts by using
directly observed event rates. In the apparatus of Fig. 28.2, one measures an
individual detector’s detection rate, and also simultaneously measures the (“coin-
cident”) paired detection rate of the two detectors. During a long period of time, t,
the source emits say N of the two particle systems of interest. For this period,
denote by N1(a) and N2(b) the number of detections at detectors 1 and 2 respec-
tively, and by N12(a, b) the number of nearly simultaneous (coincident) detections
at the two detectors. From these numbers of detections, when sufficiently large, one
may correspondingly define (measure) the ensemble probabilities

p1ðaÞ=N1ðaÞ ̸N,
p2ðbÞ=N2ðbÞ ̸N,
p12ða,bÞ=N12ða, bÞ ̸N.

ð4Þ

Here, p12 is the probability of joint (coincident) detections by both detectors; p1 is
the probability of a detection by detector 1, independently of what happens at
detector 2; and p2 is the probability of a detection by detector 2, independently of
what happens at detector 1.

CH showed that the probabilities associated with correlated particle pairs that are
described by any Local Realistic Theory (i.e. one that describes pairs of localized
objects—see the Appendix), are constrained by the following inequality:

− 1≤ p12ða,bÞ− p12ða,b, Þ+p12ða, , bÞ+p12ða, , b, Þ− p1ða, Þ− p2ðbÞ≤ 0. ð5Þ

Fig. 28.2 Clauser and Horne’s configuration for Bell’s inequality experiments using binary-result
apparatuses. Figure from Clauser and Shimony [14].
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The left-hand inequality requires careful normalization of these probabilities (i.e. it
requires one to know N), but the right-hand inequality does not! It is independent of
N. Via Eqs. (4) one then has

−N≤N12ða,bÞ−N12ða,b, Þ+N12ða, ,bÞ+N12ða, , b, Þ−N1ða, Þ−N2ðbÞ≤ 0. ð6Þ

Dividing by t finally gives the associated CH R-inequality

−RSource ≤R12ða,bÞ−R12ða, b, Þ+R12ða, ,bÞ+R12ða, ,b, Þ− r1ða, Þ− r2ðbÞ≤ 0,

ð7Þ

where, R12(a,b) is the coincidence detection rate for the two detectors, and r1(a′)
and r2(b) are respectively the individual singles detection rate at detectors 1 and 2.
The quantity RSource is the source rate, which may be used if it has been measured
via heralding. (See the section “CHSH R-Inequality with Heralding”.) For exper-
iments where a heralded source is not employed, one may rewrite the right-hand
side of Ineq. (7) as

R12ða, bÞ−R12ða,b, Þ+R12ða, , bÞ+R12ða, ,b, Þ½ � ̸½r1ða, Þ+ r2ðbÞ�≤ 1. ð7’Þ

Here, the singles rates r1 and r2, are used to normalize the sum of four R12 coin-
cidence rates. The minus sign preceding the second R12 term in the numerator may
be permuted among any of the four terms and Ineq. (7’) still holds.

Inequalities (5)−(7’) are known as the CH inequalities. The CH R-inequality (7’)
is noteworthy in that it gets its normalization by using only the number of singles
events at the two detectors. So doing, it provides a Bell Inequality that does not rely
on the value of N (or RSource), that is usually difficult to measure. Thereby Ineq. (7’)
is self-normalizing. The good news associated with the CH inequality is that the
influence of N (or RSource) vanishes, and the inequality is
normalization-loopholefree. The bad news is that from an experimental viewpoint,
the CH inequality is very difficult to violate. For low detector efficiencies and/or for
small solid-angle collection efficiencies, the singles rates r1 and r2 are typically very
much larger than R12, (by a factor of about 103 for the typical cascade-photon
experiments), Ineq. (7’) is then automatically satisfied, whereupon no
normalization-loophole free experiment can then be done.

For these (and for all other Bell Inequalities), it is generally necessary to perform
a sequence of different experiments and compare their different results. In the
present case there are four required experiments, at each of the respective analyzer
orientation pairs, (a,b), (a,b’), (a’,b), and (a’,b’). Additionally, measurements must
also be taken of the normalizing singles count rates r1 and r2 at angles a’ and b,
respectively, although these measurements are usually already obtained simulta-
neously during the coincidence rate measurements.

The experimental difficulties associated with designing an experiment to violate
Ineq. (7’) were lessened significantly by an observation made by Eberhard [17] in
1993. When the quantum state of the particle pair is maximally entangled, the
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singles rates r1(a’) and r2(b) in Ineq. (7’) are constant, (i.e. independent of a’ and b).
On the other hand, Eberhard noted that there is no need for the normalizing
denominator in Ineq. (7’) to be constant. If the quantum state of the particle pair is
not maximally entangled, then at least one of these two singles rates may be made
small, and Ineq. (7’) is more readily violated. Eberhard’s observation has led to the
recent experimentally observed violations of the CH inequality by Giustina et al.
[24] and by Christensen et al. [11].

Clauser and Shimony [15] show in their review article that the methods of proof
of Bell’s Theorem used by Wigner [41], Bell [7], Belinfante [5], and Holt [26] can
all lead to the CH inequality. CS further note that the CHSH inequality is a special
case of the CH inequality, and that Bell’s 1964 inequality [6] in turn is a special
case of the CHSH inequality.

Result Values and Expectation-Value Inequalities
(E-Inequalities)

Bell’s original 1964 inequality and the CHSH inequality are both in a form that
constrains expectation values for observed “result values”. Herein, we refer to these
as E-inequalities. The expectation values are calculated using previously defined
“result values”. What is a “result value”, and why is it needed? To some extent, for
Bell’s Theorem, result values are only a historical artifact, and, as noted above in
the section “Normalization-Loophole Free Clauser-Horne (CH) R-Inequality for
Binary-Result Apparatuses”, Bell Inequalities can be derived without invoking
them. One may ask, where did they come from?

Bohm was discussing the quantum theory of the measurement process and the
Einstein, Podolsky, and Rosen [19] paradox when he introduced his 1951
Gedankenexperiment of Fig. 28.1. In such a discussion, it is presumably necessary
to assert that something is actually being “measured”. Whatever is being measured,
then should have a “result value” that is to be determined by the “measurement”.
The assumptions underlying Bell’s Theorem, on the other hand, do not depend on
whether or not something is being measured. In fully general LHVT’s or Local
Realistic Theories, one really does not have the faintest idea about what one is
doing on a microscopic level when one performs a given experiment. Indeed, a
dispute over what is happening internally in such an experiment (or indeed, if
anything is happening at all on a microscopic level, as Bohr insisted) is at the very
heart of any fully general theory that is an alternative to or consistent with quantum
mechanics. Recall that the Copenhagen interpretation of quantum mechanics asserts
that there is no possible explanation of the microphysics of Bohm’s Gedankenex-
periment, whereupon it would seem to be highly presumptuous to assert that one
knows what one is measuring! Correspondingly, for a discussion of Bell’s Theo-
rem, the result values A, B ≡ ±1 chosen by Bohm and Bell are perfectly arbitrary.
Mostly, they simply provide names like Tom, Dick, Harry, +1, 0, spin-up, top,
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beauty, and +ħ/2, etc. for the possible experimental outcomes. Indeed, the CH
inequality which governs Local Realism dispenses with the use of result values
altogether!

For a discussion of Bell’s Theorem, however, CHSH and Bell did find some
utility in defining result-values. If the result values have integer numerical values,
then they may be used as indices in summations. Result values also allow one to
construct expectation values for these results, which then lead to E-inequalities.
Additionally, expectation values are readily calculated using quantum mechanics
via matrix elements. Then, as long as care is exercised in converting said
E-inequality into a useful R-inequality, result values serve their purpose.

The expectation value of the product of the binary-result values for A and B is
also known as the correlation function of these two values. For Bohm’s 1951
Gedankenexperiment, it is given by

Eða,bÞ≡ <AB> = ∑i, j =±1 AðaÞBðbÞ prob AðaÞ= i, BðbÞ= jð Þ. ð8Þ

Using Eqs. (1), one can calculate the quantum mechanical prediction for this
correlation function for Bohm’s idealized Gedankenexperiment of Fig. 28.1 as

EQMða,bÞ= − a ⋅ b. ð9Þ

In order to measure E(a, b) for use in the CHSH inequality, one must measure the
various prob(A(a) = i, B(b) = j), for all i and j in a ternary result experiment, i.e. a
realization of Bohm’s 1951 Gedankenexperiment. To do so using event frequencies,
one needs (for sufficiently large N)

prob AðaÞ= i, BðbÞ= jð Þ=N AðaÞ= i, BðbÞ= jð Þ ̸∑all i ∑all j N AðaÞ= i, BðbÞ= jð Þ
ð10Þ

where the double summation in the denominator must be taken over all possible
values of i and j.

As we have noted above, this cannot be done without a knowledge of N. The
possible routes are then

1. Ignore details of a realization of Bohm’s Gedankenexperiment, and thereby
ignore the normalization loophole, as was done by Bell [6], 1964 (See the
section “Bell’s 1964 E-Inequality for Idealized Binary Result Apparatuses”).

2. Use the CH experimental configuration of Fig. 28.2 and define “Detection” and
“NoDetection” to be the binary results needed. This option only works with very
high detection efficiency, and was used first experimentally by Giustina et al.
[24] and by Christensen et al. [11].

3. Use the Bell experimental configuration described in the section “CHSH
R-Inequality With Heralding” and measure N via heralding, as was done
experimentally by Rowe et al. [35] and by Matsukevitch et al. [33].
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4. Use the CH experimental configuration of Fig. 28.2 and the polarizer-removal
protocol given by CHSH, along with the associated CH supplementary
assumption. This option was used by the earliest Bell’s Inequality experimental
tests, the first of which was by Freedman and Clauser [20].

5. Bypass the normalization loophole by employing a supplementary assumption
that is much stronger than that needed by the polarizer-removal protocol. This
method is herein referred to as GR/AGR normalization (See the section
“Garuccio and Rapisarda/Aspect Grangier Roger R-Inequalities for Real
Ternary-Result Apparatuses”). It was first used experimentally by Aspect,
Grangier and Roger (AGR) [3] in 1982.

Bell’s 1964 E-Inequality for Idealized Binary Result
Apparatuses

Bell’s original 1964 paper [6] considered Bohm’s idealized Gedankenexperiment,
and assumed the idealized specifications as listed above in the section “Bohm’s
1951 Gedankenexperiment and Its Relation to Bell’s Theorem”. Given these
specifications, he noted (indeed he required) that the quantum mechanical predic-
tion for parallel analyzers has the value

Eða, aÞ= − 1. ð11Þ

Bell assumed Eq. (11) to hold exactly for at least one value of a. This assumption
thus requires that for that value of a, the Gedankenexperiment must exhibit a perfect
correlation. Using this assumption, he first notes that determinism follows directly
from it for the Gedankenexperiment. In addition, using these assumptions, he goes
on to show that no Local Hidden Variables Theory (LHVT) can give the quantum
mechanical prediction for Bohm’s idealized Gedankenexperiment. He does so by
showing that the inequality

1 +ELHVTðb, cÞ≥ ELHVTða, bÞ−ELHVTða, cÞj j, ð12Þ

holds for any LHVT. Surprisingly, he discovers that the quantum-mechanical
prediction for this system given by Eq. (9) does not satisfy Ineq. (12) for a sig-
nificant range of a and b.

Unfortunately, Bell’s mathematical analysis applies only to totally idealized
systems, as per the discussion of the section “Bohm’s 1951 Gedankenexperiment
and Its Relation to Bell’s Theorem”, above. With even an infinitesimal departure
from the perfect system described in that section, his mathematical arguments fail.
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Here, it is perhaps appropriate to invoke Ben Franklin’s famous observation:

“The only predictions that can be made with certainty are for death and taxes.”

From a physicist’s standpoint, Ben Franklin’s observation can be paraphrased
(interpreted) to mean

If a theoretical argument relies on predictions that must obtain with certainty, but said
predictions can never obtain in reality, then that argument applies only to a vanishing subset
of reality that never occurs, whereupon the argument applies to nothing at all, and thus may
be disregarded.

CHSH noted that Bell’s argument requires Eq. (11) to hold exactly for at least one
value of a. However, since Eq. (11) is not equivalent to either death or taxes, then it
never obtains for any realizable (or real) systems. Correspondingly, Bell’s argument
(as it stands) does not apply to any realizable (or real) systems. Unfortunately,
without the constraint by Eq. (11), for at least one value of a, Bell’s mathematical
argument fails. Fortunately, despite the above paraphrasing of Ben Franklin, Bell’s
mathematical reliance on Eq. (11) by no means implies that Bell’s result may be
disregarded. CHSH show that Eq. (11) is not a necessary requirement for a useful
(but different) Bell Inequality to be derived via an alternative mathematical
argument.

Clauser Horne Shimony Holt (CHSH) E-Inequality for Real
Binary Result Apparatuses

CHSH first showed that for systems that do not comply with the unrealizable
specifications outlined in the section “Bohm’s 1951 Gedankenexperiment and Its
Relation to Bell’s Theorem” for Bohm’s Gedankenexperiment, and especially for
systems that do not comply with the unrealizable restriction of Eq. (11), then an
alternative inequality can be written that does apply to realizable systems. CHSH
show that all deterministic local hidden variable theories are constrained by the
alternative E-inequality for real binary result apparatuses,

Eða, bÞ−Eða, cÞj j≤ 2−Eðb, ,bÞ−Eðb, , cÞ. ð13Þ

Shimony [37] further pointed out that Ineq. (13) can be rewritten as

− 2≤Eða, bÞ−Eða,b, Þ+Eða, , bÞ+Eða, ,b, Þ≤ 2, ð14Þ

wherein the single minus sign may be permuted among the four terms. Unlike
Bell’s original inequality (12), the CHSH Ineq. (14) applies to realizable systems.
The LHVT subscript has been dropped because CH subsequently showed that Ineq.
(14) also holds for the more general theories of Local Realism.
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Clauser Horne Shimony Holt (CHSH) R-Inequalities for Real
Binary-Result Apparatuses via the CHSH Polarizer-Removal
Protocol

Since Bell [6] did not address either the experimental status or the testability of his
results, Clauser Horne Shimony Holt (CHSH) [12] in 1969 pursued those issues.
Armed with Ineq. (14), they first noted that there were no existing experimental data
available for comparison with Ineq. (14). They then proposed a real experiment to
fill this gap and to actually test Ineq. (14). Their proposed experiment was for a
modification of an experiment that had been performed two years earlier by Kocher
and Commins [28].

In the CHSH-proposed experiment, two polarization-entangled photons are
emitted by an atomic-cascade decay. High efficiency linear polarizers are then used
to analyze the entangled photons. These polarizers then replace the Stern Gerlach
analyzers of Bohm’s Gedankenexperiment. To maintain binary-result apparatuses,
CHSH use the apparatus configuration of Fig. 28.2. They first propose using the
associated result values Detection = +1, NoDetection = −1. Unfortunately, with
the technology and detector efficiencies available in 1969, it was still not possible to
violate Ineq. (14) using those definitions. Undeterred, CHSH introduce the
polarizer-removal protocol. Under this protocol, coincidence rates are measured
with both polarizers in place as a function of the polarizer orientations. Addition-
ally, coincidence rates are measured with one polarizer, or the other, or both
polarizers removed. The needed multiplicity of experiments, i.e. experiments with
polarizer(s) removed and with polarizers inserted at the various needed orientations,
are all performed in such a manner that the source rate and the effective detector
acceptance solid-angles remain unchanged among them. CHSH modify the result
definitions from Detection/ No Detection to Passage/ NoPassage of the photons
through the polarizers. CHSH then offer the following supplementary assumption:

Given the emergence of a pair of photons from the associated pair of analyzers, we assume
that the joint detection probability is independent of the analyzer orientations a and b.

Using the polarizer-removal protocol and the CHSH (or CH—see below) sup-
plementary assumption, one can then write for the correlation function

Eða,bÞ=1+ 4 Rða,bÞ− 2Rða,∞Þ− 2Rð∞, bÞ½ � ̸Rð∞,∞Þ, ð15Þ

where the symbol, ∞, denotes the exceptional case when a polarizer has been
removed. The associated measured coincidence detection rates may be abbreviated
as

Rða,∞Þ≡R1ðaÞ,
Rð∞, bÞ≡R2ðbÞ,
Rð∞,∞Þ≡R0.

ð16Þ
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Further, assuming that R1(a) = R1, and that R2(b) = R2 are both measured to be
constant and respectively independent of a and b, then CHSH show that (13)−(16)
can be combined to yield the CHSH R-inequality

Rða,bÞ−Rða, cÞj j+Rðb, ,bÞ+Rðb, , cÞ−R1 −R2 ≤ 0. ð17Þ

Also, when a and b are the scalar angles a and b, as shown in Fig. 28.2, and
when it is experimentally demonstrated that the coincidence rate R(a,b) only
depends on the angle Φ ≡ ang(a,b) between the polarizers, as per

Rða, bÞ=RðΦÞ, ð18Þ

then Ineq. (17) can be written as

−R0 ≤ 3RðΦÞ−Rð3ΦÞ−R1 −R2 ≤ 0. ð19Þ

Freedman [18] further noted that if one takes the optimal value Φ = π/8 for
maximal violation of (19) by cascade-photon experiments, then a particularly
compact form of a Bell R-inequality results, as per

Rðπ 8̸Þ−R 3π 8̸ð Þj j ̸R0 ≤ 1 ̸4. ð20Þ

Here, the coincidence rate with polarizers in place, R (Φ) is normalized by the
coincidence rate with polarizers removed, R0. Significant utility is provided by this
compact form in that only three independent coincidence rates need be measured
for it to be tested, although it is still necessary to verify the required rotational
invariance of R(Φ). Such rotational invariance can be assured, however, by simply
averaging the R(Φ) measurement over common rotations of the pair of analyzers.

Freedman’s version of the CHSH inequality is noteworthy in that it provides a
somewhat graphic measure of the minimum sinusoidal amplitude variation of the
normalized coincidence rate that is needed to violate a Bell Inequality. It also
graphically indicates that if R(Φ) in Ineq. (20) is normalized by a coincidence rate
other than R0, say by a smaller rate, then a larger violation occurs, and a violation
may then occur where it otherwise would not. On the other hand, if the magnitude
of R(Φ) is significantly diminished, say by even modest absorption by the polar-
izers, then no violation of Ineq. (20) can occur, and the experimental configuration
is insufficient to test a Bell Inequality. Thus, violation or no-violation of the CHSH
inequality critically depends on the count-rate’s normalization.

The experimental requirements for a violation of Ineqs. (17), (19) or (20) are
highly demanding upon the required polarizer quality. Those requirements are
specified quantitatively by CHSH for their proposed experiment. That experiment
was first performed by Freedman and Clauser in [20]. They found that the only
available polarizers (in 1972) meeting the requirements for very low absorption
were the pile-of-plates variety. Most other early experiments testing the CHSH
inequality followed their example, and also used pile-of-plates polarizers.
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Clauser and Horne (CH) [13] significantly improve upon the CHSH supple-
mentary assumption. They thus provide a much weaker supplementary assumption
that leads to the same result as that by CHSH. CH call their improved supple-
mentary assumption the “no-enhancement” assumption. It is the following:

We assume that the presence of an analyzer does not somehow enhance (increase) a
particle’s probability of detection, relative to the probability of its detection with the
polarizer absent.

Under the CH no-enhancement assumption, and with the polarizer-removal pro-
tocol, the CH Ineq. (5), discussed in the section “Normalization-Loophole Free
Clauser-Horne (CH) R-Inequality for Binary-Result Apparatuses” above, reduces to
the CHSH R-inequality predictions Ineqs. (17)−(20), whereupon the
Freedman-Clauser experiment [20] refutes Local Realism (but is still, of course,
subject to the locality loophole).

The CH Counterexample

Clauser and Horne [13], provide an ad hoc counterexample that employs
enhancement and that can predict the Freedman-Clauser [20] results. Thus, despite
the high plausibility of the associated CH supplementary assumption, their coun-
terexample shows that the no-enhancement assumption (or some other assumption)
is still needed for experiments that use the polarizer–removal protocol in order to
evade the normalization loophole. Under the CH counterexample, the normalization
loophole is carefully exploited, in a somewhat pathological manner. Low detection
efficiency may be present in the system for a variety of reasons. The CH coun-
terexample carefully exploits the low efficiency produced by absorbing polarizers
and other losses to “collude” with the detectors to generate an anomalous violation
of the CHSH R-inequality by a Local Realistic theory. Under the CH counterex-
ample, some photons passing through a polarizer have diminished detection
probability, i.e. their detection probability is attenuated. Other photons passing
through the polarizer have increased detection probability, i.e. their detection
probability is “enhanced”, or supercharged. Recall that the CH supplementary
assumption (see the section “Clauser Horne Shimony Holt (CHSH) R-Inequalities
for Real Binary-Result Apparatuses via the CHSH Polarizer-Removal Protocol”)
specifies that this latter enhancement process does not occur. In the CH coun-
terexample, the polarizer and detector collude with each other to create an
anomalous violation. While such “collusion” seems pathological, it should be noted
that similar collusion was taken seriously when one considered tests of the locality
loophole, as mentioned above. A major difference here is that the malevolent force
providing the collusion, as mentioned above, now must be nature, herself, rather
than that by a determined cryptography eavesdropper.

Marshal et al. [31] offer a counterexample that is vaguely similar to the CH
counterexample. While the CH counterexample generates an exactly sinusoidal
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variation of the coincidence rate as a function of polarizer orientation, the
Marshal-Santos-Selleri counterexample generates a non-sinusoidal variation that
would have been readily apparent in the experimental data, which they claim “fits
the existing data as closely as the quantum-mechanical model.” Scrutiny of their
model’s prediction, however, reveals their claim to be false, at least for the “existing
data” from the Freedman Clauser [20] experiment.

CHSH R-Inequality with Heralding

Bell in his 1971 paper [7] continued to use Bohm’s ternary-result Gedankenex-
periment that he used in his 1964 paper [6]. In this second paper, he acknowledged
the CHSH assertion that one must account for the failure of one or both of the
apparatuses to detect a particle. To handle this situation, he first showed that the
CHSH E-inequality obtains as long as the result-values A and B are defined such
that |A| ≤ 1 and |B| ≤ 1. Correspondingly, he proposed the definitions,

A, B≡±1 Detections, and 0≡No Detection, ð20Þ

for use with ternary-result apparatuses. Clauser and Horne [13], in their
Appendix B, however, show that Bell’s scheme will not work in an actual exper-
imental context, because it requires measuring events where nothing happens. It
eventually became clear (private communication between CH and Bell) that Bell
was tacitly assuming that “it was already known (by some unspecified means) that a
particle pair was emitted into the associated detector entrance solid angles”,
whereupon accountability of the unobserved events is then possible. Clauser and
Shimony [15] thus clarified Bell’s [7] proposed scheme by depicting “Bell’s con-
figuration”, as shown in Fig. 28.3, and contrasting it with the “CH configuration” of

Fig. 28.3 Bell’ configuration for Bell’s inequality experiments using ternary-result apparatuses
and source heralding. Figure from Clauser and Shimony [14].
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Fig. 28.2. Thus explicitly clarified, Bell’s configuration includes “event-ready”
detectors as a means for specifically knowing that a particle pair has been emitted
into the associated detector entrance solid angles. Subsequently, the term “herald-
ing” has been coined to describe this process.

In order to use heralding and Bell’s [7] result-value definitions in the CHSH
E-inequality (14) with an experiment that uses ternary-result apparatuses, one may
rewrite Eq. (8) for ternary-result apparatuses as

Eða,bÞ≡ <AB> = ∑i = − 1, 0, 1 ∑j = − 1, 0, 1 AðaÞBðbÞ prob AðaÞ= i, BðbÞ= jð Þ.
ð21Þ

The probabilities appearing in Eq. (21) may now be measured using observed
count rates via

prob AðaÞ= i, BðbÞ= jð Þ=R AðaÞ= i, BðbÞ= jð Þ ̸RSource, ð22Þ

where RSource is the source rate, as measured via heralding. To be sure, some of the
needed detection rates in Eqs. (21) and (22) are unmeasured, i.e. those for i = 0
and/or j = 0, and thus are not known. However, since their contributions to
Eq. (21) have zero for their associated coefficients in Eq. (21), their unknown
values are of no importance. The expectation values needed for the CHSH
E-inequality (14) are now fully determined by observed detection rates, and are
given by

Eða,bÞ= R+ , + ða,bÞ+R− , − ða,bÞ−R+ , − ða, bÞ−R− , − ða,bÞ½ � ̸RSource, ð23Þ

where the following shorthand notation is used: Ri, j ≡ R(A(a) = i, B(b) = j).

Garuccio and Rapisarda/Aspect Grangier Roger
R-Inequalities for Real Ternary-Result Apparatuses

Garuccio and Rapisarda (GR) [22] in 1981 proposed a new method for normalizing
coincidence rates for “ternary-result” apparatuses without the associated require-
ment for heralding. Thereby they provide a new R-inequality, that was first tested
experimentally by Aspect, Grangier, Roger (AGR) [3] in 1982. These efforts pro-
ceeded despite known difficulties for ternary-result apparatuses, as found earlier by
CH [13] and by CS [16]. Recall that Bell had originally proposed the use of
ternary-result apparatuses, first, inadvertently, in 1964, and again, advertently, in
1971 [7] (see the section “CHSH R-Inequality with Heralding”). In his 1971 paper,
Bell thus proposed using the ternary-result values (+1, −1, and 0), wherein 0
represents unobserved No-Detection events in the CHSH E-inequality. Unfortu-
nately, he did not offer an associated testable R-inequality. He tacitly assumed that
source heralding was being used, although he did not specifically say so. However,
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CH [13] (see their Appendix B) reanalyzed Bell’s 1971 proposal [7] and found that,
no loophole-free testable R-inequality can be generated for such systems, because
they require the measurement of a probability of nothing happening, which cannot
be done without knowing the associated probability of something happening.
Knowing the latter then requires knowing the source rate, RSource, (e.g. via a her-
alded source). CH show that, alternatively, one may convert each ternary-result
apparatus into a binary-result apparatus, “at the very beginning of the derivation”,
and then use the CH inequality. CH pointed out that such conversion can be
accomplished, for example, by combining the No-Detection “0” channels with say
the –1 Detection channels at each apparatus, and then by looking only at the +1
Detection channels. Such a conversion is tantamount to simply ignoring the –1
detections. CH show that by doing so, one can then generate a CH inequality (using
Bell’s method of proof) that involves only (+1,+1) detections. Actually, depending
upon which pair of channels one chooses to ignore, one can alternatively generate
four independent CH inequalities for each of the (+1,+1), (−1, −1), (−1,+1), and
(+1, −1) channels. Of course, such a conversion destroys any symmetry between
the (+1,+1) channels and the partly unobserved (−1 & 0, −1 & 0) channels. But, of
course, neither locality, nor realism, nor quantum mechanics have any need or
requirement for experiment symmetry.

CH inequalities generated by ignoring channels were still not testable using the
technology available in 1982, i.e. by using low quantum-efficiency photomultiplier
tube detectors and atomic-cascade decay entangled-photon sources. With 1982
technology, some additional experimental protocol and set of supplementary
assumptions was thus still needed for testing ternary-result apparatus experiments.

Despite these known difficulties for ternary-result apparatus experiments,
Aspect, Grangier, Roger (AGR) [3] in 1982 attempted to build a ternary-result
apparatus for testing a Bell Inequality by using a supplementary assumption pro-
posed earlier by Garuccio and Rapisarda [22]. As a starting point, GR/AGR use the
CHSH E-inequality (14),

− 2≤Eða,bÞ−Eða, b, Þ+Eða, ,bÞ+E a, ,b,ð Þ≤ 2. ð14Þ

Their experiment uses the Bell’s configuration of Fig. 28.2, except that it does not
include the “event-ready detectors” used for heralding by that configuration.

In the section “One Possible Cause for the Normalization Loophole” above, we
note that a ternary-result apparatus experiment requires one to know the values of
nine independent coincidence rates, wherein their sum can be used for probability
normalization. In the AGR experiment, however, only four coincidence rates are
measured. Using Bell’s [7] ternary-result values, (+1, −1, and 0), where 0 repre-
sents unobserved No-Detection events, the four coincidence rates measured by
AGR are

R++(a, b) ≡ (A = +1, B = +1) observed coincidence rate,
R– –(a, b) ≡ (A = −1, B = −1) observed coincidence rate,
R+-(a, b) ≡ (A = +1, B = −1) observed coincidence rate,
R-+(a, b) ≡ (A = −1, B = +1) observed coincidence rate.
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The other five (needed) coincidence rates that AGR do not measure are:

R+0(a, b) ≡ (A = +1, B = 0) unobserved “coincidence” rate,
R0+(a, b) ≡ (A = 0, B = +1) unobserved “coincidence” rate,
R-0(a, b) ≡ (A = −1, B = 0) unobserved “coincidence” rate,
R0-(a, b) ≡ (A = 0, B = −1) unobserved “coincidence” rate,
R00(a, b) ≡ (A = 0, B = 0) unobserved “coincidence” rate.

While the first four of these last five could, in fact, have been determined from
the singles rates, that last one of these five, i.e. the (NoDetection, NoDetection)
coincidence rate cannot be measured.

As per the discussion of the section “Result Values and Expectation-Value
Inequalities (E-Inequalities)” above, the appropriate expectation value for use in the
CHSH E-inequality (14) is

ECHSHða,bÞ= R+ + +R− − −R+ − −R− + + 0 × ½R+0 +R− 0 +R0+ +R0− +R00�
R+ + +R− − +R+ − +R− + + ½R+0 +R− 0 +R0+ +R0− +R00�

=
R+ + +R− − −R+ − −R− +

R+ + +R− − +R+ − +R− + + ½R+0 +R− 0 +R0+ +R0− +R00� .

ð24Þ

To make their results testable, AGR use the GR normalization scheme and arbi-
trarily set equal to zero the term in square brackets in the normalizing denominator
that includes the five unobserved rates. So doing, they define

EGR A̸GRða,bÞ≡ R+ + ða, bÞ+R− − ða, bÞ−R+ − ða,bÞ−R− + ða,bÞ
R+ + ða, bÞ+R− − ða, bÞ+R+ − ða,bÞ+R− + ða,bÞ . ð25Þ

The CHSH E-inequality (14) and GR/AGR’s definition (25) are then combined to
produce a new GR/AGR R-inequality, which was then violated by their experi-
mental data.

We note, however, that the deleted term in square brackets in the denominator of
Eq. (24) is very much larger than the remaining terms by a factor of about 106,
when it is used with an experiment that uses an atomic cascade photon source and
photomultiplier tube detectors, as did the AGR [3] experiment. Correspondingly,
omission of that very large term by GR/AGR deserves careful scrutiny, especially
since it represents a dramatic renormalization (by a factor of about 106). Without the
term’s deletion, it would be impossible for EGR/AGR(a,b) as given by Eq. (25), to
violate (14).

GR and AGR state that

…we assume that the ensemble of actually detected pairs is a faithful example of all emitted
pairs. ….
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The GR/AGR assumption is now commonly and “gratuitously” referred to as the
“fair-sampling assumption”. This author’s use of the description “gratuitous” will
now be justified.

Let us examine the implications of GR/AGR’s so-called “fair-sampling
assumption”. An important issue is whether or not it is consistent with the
requirements and/or the assumptions underlying either quantum mechanics and
Local Realism. In particular, one must first consider whether or not this supple-
mentary assumption tacitlyor explicitly assumes/requires that all detected events
have the same a priori probability of detection.

The GR/AGR assumption takes a particle-centric view of wave-particle duality /
wave-particle ambiguity, which asserts an equivalence of the wave and particle
viewpoints in quantum mechanics, but leaves vague and/or ambiguous the mech-
anism providing said equivalence. In a wave-centric viewpoint, the inverse square
law for detected flux versus source-to-detector distance is due to diminished wave
amplitude with increasing distance, and an associated diminished detection prob-
ability with said diminished amplitude. However, in a particle-centric view, it is due
instead to a diminished geometrically diluted particle flux. In a particle centric view,
particle detection probability is always constant, given a particle’s presence at a
detector. On the other hand, in a wave-centric view, particle detection probability is
variable and depends on wave amplitude. Wave amplitude at each detector, in turn,
may depend on the associated analyzer’s orientation.

Consider first an assumption underlying quantum mechanics. Under Born’s rule
for calculating probabilities, a particle’s detection probability is proportional to the
absolute square of its probability amplitude. Particles that pass through polarization
analyzers at differing orientations will have different transmitted probability
amplitudes. Correspondingly, not all particles arriving at a detector will have the
same probability amplitude or the same a priori detection probability. Thus, under a
fundamental requirement by quantum mechanics, different events must be allowed
to have different a priori detection probabilities. Any reasonable supplementary
assumption used for a Bell’s Inequality test must correspondingly allow for and be
consistent with this possibility. GR/AGR instead assume particle detection proba-
bility is always constant, and a fortiori exclude theories with variable detection
probability (including quantum mechanics).

Next consider a straightforward local realistic theory in which a photon is
modeled simply as a short-pulse (or wave packet) of classical electromagnetic
radiation. Under this theory, for example, one may assume that the semiclassical
model for the photoelectric effect proposed by Lamb and Scully [30] holds. Then a
pulse with a large classical amplitude will have a higher probability of generating a
photoelectron, and an associated detectable output pulse of electric current from a
photomultiplier tube, than will one with a small classical amplitude. Again, under
Local Realism, different events must be allowed to have different a priori detection
probabilities.

We thus see that properly testing both quantum mechanics and Local Realism
requires one to allow for a variable detection probability of the detected particles by
the particle detectors. Now, consider the implications of this requirement. Naturally,
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the set of detected particle events will have a preponderance of events with a higher
a priori detection probability than will the set of undetected-particle events, which,
in turn, will be dominated by events with a lower a priori detection probability.
Correspondingly, the ensemble of detected pairs is clearly not “a faithful example
of all emitted pairs” as GR/AGR assert. Instead, it provides an ensemble that is
significantly biased in favor of events with a high a priori detection probability.

One may view the detection process as a competition for detection among the
particles at the detectors. The GR/AGR assumption implies that the winners (the
detected particles) in the competition for detection were no more capable of
“winning the competition” (being detected) than were the losers (the undetected
particles) in the competition. Viewed in this light, one may ask, is the GR/AGR
assumption truly reasonable, and is the sampling truly “fair”? For comparison, note
that in atmost any sports competition, it would be hard to find a winner who didn’t
truly believe that he/she did not “fairly” win the event because of superior ability
(i.e. a higher a priori probability of winning) rather than by simple luck. Such a
sports competitor would thus strongly disagree with the GR/AGR assumption as
being “fair” and reasonable. Correspondingly, an assumption that all of the “win-
ners” in a competition for being detected by a photomultiplier tube were equally
capable of winning the competition, is equivalent to saying that the detected par-
ticles form a representative subset of all of the emitted particles, as far as their
probability for being detected is concerned.

The GR/AGR assumption is thus a very strong assumption, indeed! It even
seems to violate the fundamental premises underlying both Local Realism and
quantum mechanics. Correspondingly, its application to the testing of not only the
above very reasonable Local Realistic model, but also to the testing of quantum
mechanics itself appears to be highly dubious. Clearly then, the appellation “fair
sampling assumption” must be considered gratuitous.

It should also be noted that the GR/AGR assumption is not equivalent to the very
much weaker CH no-enhancement assumption, as coupled to the CHSH
polarizer-removal protocol. By contrast, the expectation that different particles may
have different a priori detection probabilities is explicit in the CH no-enhancement
assumption. CH simply assume that passage of a photon through a (presumably)
attenuating polarizer does not somehow enhance its a priori detection probability.
Moreover, polarizer absorption has a very strong effect when one is using the
CHSH R-inequality (17), (19) or (20) that results from the CHSH polarizer-removal
protocol and the no-enhancement assumption. In such a case, when the polarizer
absorption is even modestly too large, no inequality violation occurs. It also has a
very strong effect on the viability of the CH counterexample. On the other hand,
photon absorption by a polarizer has no effect at all on the resulting numerical value
obtained from using Eq. (25) in (14), and correspondingly has no effect on whether
or not a violation occurs.2

2In defense of the AGR experiment’s polarizer parameters, their parameters do appear to meet the
CHSH transmission requirements, although they are not required to do so in order to violate the
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As suggested in the introduction, in order to evaluate a supplementary
assumption, one may also compare how reasonable it is with how contrived an
associated counterexample is. Given the GR/AGR normalization method’s relative
insensitivity to polarizer absorption, it is not surprising that one can readily build
counterexamples that do not violate the CHSH E-inequality when the
polarizer-removal protocol and no-enhancement assumption is used, but do violate
the CHSH E-inequality when the GR/AGR assumption and protocol are used. (See
Clauser [16].)

Further evidence of just how vulnerable the GR/AGR assumption is to coun-
terexamples was given by Gerhardt et al. [23], who provide both a theoretical and a
convincing experimental demonstration of the ease by which an actual experiment
can be countered, especially in “security related scenarios”. It should be noted that
Gerhardt et al.’s demonstrated violations of a Bell Inequality all use GR/AGR
normalization. Gerhardt et al., however, mistakenly attribute their counterexample’s
existence to a loophole in what they mistakenly refer to as the CHSH inequality,
which instead is really the GR/AGR R-inequality produced by a combining (14)
and (25) above. It should be emphatically noted that Gerhardt et al. do not produce
an experimental (or theoretical) counterexample that employs the CHSH
polarizer-removal protocol. However, they do provide a convincing experimental
demonstration of the ease by which schemes that use GR/AGR normalization can
be countered, especially by malevolent efforts (by “Eve”), as may occur in “security
related scenarios” and quantum cryptography.

GR/AGR normalization and the associated gratuitously named “fair-sampling”
assumption and the GR/AGR-inequality have nonetheless been used by many
experiments, despite the associated proliferation of counterexamples and above
noted shortcomings. (See the section “Some Experimental Results”). One possible
reason for their popularity presumably is their relative ease of experimental
implementation. Beyond allowing the use of strongly absorbing polarizers, no
polarizers are removed under this method, and no additional normalizing data need
be taken. Data collection is thereby expedited. The use of GR/AGR normalization
also avoids a further difficulty associated with ternary-result apparatuses, for which
polarizer removal is not readily possible. For such apparatuses, polarizer removal
necessarily disturbs the collimation geometry of at least one of the channels,
whereupon the polarizer-removal protocol then cannot be used.

Ursin et al. [39] in their test of a Bell’s Inequality go even further than AGR by
using a passive non-polarizing beam-splitter to precede a pair of ternary-result
apparatuses on each side of their experiment. Each composite apparatus then has
five possible results. For each ternary-result apparatus that follows the
beam-splitter, Ursin et al. use a modified GR/AGR normalization scheme, where
the denominator only includes coincidences associated with that ternary-result

(Footnote 2 continued)

CHSH E-inequality using Eq. (25). Subsequent experiments that use GR/AGR normalization,
however, do not always meet these requirements.
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apparatus. The normalization for one ternary result apparatus on one side of the
experiment thus ignores coincidences occurring in the other ternary-result apparatus
on the same side of the experiment. An additional facility is gained here from the
use of GR/AGR normalization. Given that all four apparatus orientations needed for
an evaluation of the GR/AGR R-inequality can be taken in parallel, GR/AGR
normalization then allows greatly expedited data collection and a single experi-
mental run with no required apparatus changes.

It should be noted that there is considerable confusion and misinformation in the
literature on what constitutes the “CHSH inequality”. Many writers mistakenly
appear to believe that GR/AGR normalization is an integral part of the CHSH
inequality, and fail to distinguish the CHSH E-inequality from the CHSH
R-inequalities. For example, Gerhardt et al. [23] say that the CHSH E-inequality’s
use necessarily requires the use of the GR/AGR normalization scheme and its
associated R-inequality. Giustina et al. [24] mistakenly claim that

…[separated apparatuses named] Alice and Bob … each require two detectors for testing a
Clauser-Horne-Shimony-Holt inequality.

The sections “Result Values and Expectation-Value Inequalities
(E-Inequalities)”−“Garuccio and Rapisarda/Aspect Grangier Roger R-Inequalities
for Real Ternary-Result Apparatuses” above all show the falsity of these claims.

Finally, it should also be noted that Christensen et al. [11], mistakenly claim that

…all previous experiments have had to make fair-sampling assumptions that the collected
photons are typical of those emitted (this assumption is demonstrably false (Marshal et al.
[31]) for many of the pioneering experiments using atomic cascades (Freedman and Clauser
[20], and Aspect Dalibard and Roger [4]) and has been intentionally exploited to fake Bell
violations in recent experiments (Gerhardt et al. [23]) ….

Their erroneous statement clearly does not apply to the two cascade photon
experiments they quote, notably to that by Freedman and Clauser [20] and that by
Aspect et al. [4], which both use the CHSH polarizer-removal protocol and CH
no-enhancement assumption, that, in turn, is not demonstrably false.

Some Experimental Results

Table 28.1 lists chronologically some of the experimental tests to date of the var-
ious Bell Inequality predictions. (I apologize to the authors of references omitted
from this table.) The experiment is identified in columns 1 and 2. The entangled
systems and source are given in column 3, along with whether or not locality was
tested. The number of apparatus channels (binary or ternary) is shown in column 4.
The Bell Inequality that was tested is shown in column 5, along with the associated
normalization protocol that was used. Whether an accidental background rate was
subtracted is indicated in column 6, and the magnitude of the observed inequality
violation is shown in column 7.
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All of these experiments except one—that by Holt and Pipkin [27], (see also
Holt [26])—agree with the associated predictions by quantum mechanics. Clauser
[14] repeated the Holt and Pipkin experiment with only a few minor changes and
obtained the opposite results, i.e. results in agreement with quantum mechanics.
The earliest experimental tests by Freedman and Clauser [20], Clauser [14], Fry and
Thompson [21], Aspect, Grangier, and Roger [2], and Aspect, Dalibard, and Roger
[4] all used photons emitted by an atomic cascade, and also used the CHSH
polarizer-removal protocol along with the CH no-enhancement assumption.
GR/AGR normalization via Eq. (25) of the CHSH E-inequality (14) was used in the
experiments by Aspect, Grangier, and Roger [3], Kwiat et al. [29], Weihs et al. [40],
Tittel et al. [38], Ursin et al. [39], and Matsukevich et al. [32].

The experiments by Aspect, Dalibard, and Roger [4], Weihs et al. [40], Tittel
et al. [38] and Ursin et al. [39] all changed the analyzers while the entangled-state
photons were in flight, thereby providing a direct realization of Bohm and Ahar-
onov’s [10] locality-test. The experiment by Tittel et al. [38] is noteworthy in that
the photons use energy-time entanglement, rather than polarization-state
entanglement.

The Fry and Thompson [21] experiment was the first to use tunable laser
excitation of the source atomic cascades, thereby providing a dramatic boost in
count rates over previous experiments. The use of parametric down conversion in a
crystal as a source of entangled-state photons was first offered in 1988 by Shih and
Alley [36], and by Ou and Mandel [34]. It provides a further dramatic boost to
count rates when compared to those emitted by atomic cascade decays. Kwiat et al.
[29] further enhanced count rates via the use of Type II parametric down
conversion.

The experiment by Rowe et al. [31] was the first to violate the “heralded” CHSH
inequality using a heralded source, and thereby to avoid the normalization loophole.
However, in their experiment, light from the two entangled-state Beryllium ions is
commingled indistinguishably in a single detector. By contrast, the basic locality
postulates associated with Bell’s Theorem prototype configurations call instead for
a pair of widely separated independent detectors with no worry about their possible
intercommunication. Unfortunately, the two ions in the Rowe et al. experiment
were seemingly in intimate communication with each other, and even share the
same probe laser light that was used to determine their excitation states. Corre-
spondingly, it is not clear if there were any interfering interference effects (classical,
quantum mechanical, or otherwise) from unresolved light emitted by both, ions.
Interference effects were indeed observed earlier in a similar experiment by Eich-
mann et al. [18]. Rowe et al. do note, however that the ions’ separation was wide
enough that associated Young’s fringes average out. However, this fact does not
rule out some other perhaps non-quantum-mechanical and/or non-classical inter-
fering interference effect. Recall that Bell’s Inequality tests seek to determine
whether or not quantum-mechanics is correct, and/or even whether or not any of the
physics generally assumed to govern the formation of interference fringes is correct.
Thus, given the level of generality required for such tests, such claims of
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independence are not fully reassuring, and such assumed physics cannot be relied
upon here.

The experiment by Ansmann et al. [1] entangled a pair of Josephson phase
qubits to violate the heralded CHSH inequality. Since the entangled qubits were
only 3.1 mm separated, intimately coupled, and indistinguishably probed, this
experiment is subject to similar criticisms to those regarding Rowe et al.

More convincing violations of the CHSH inequality using a heralded source with
well separated apparatuses were subsequently reported by Matsukevich et al. in [33]
in 2008, and by Hofmann et al. [25] in 2012. The experiment by Matsukevich et al.
[33] entangled a pair of Yb+ remotely trapped ions. The experiment by Hofmann
et al. [25] entangled a pair of widely-separated remotely trapped Rubidium atoms.

Finally, the experiment by Giustina et al. [24] was the first to directly violate the
CH inequality. It was followed very shortly by a similar experiment by Christensen
et al. [11]. Closure of both the normalization loophole and the locality loophole
simultaneously in a single experiment has not yet been done.

Appendix: Local Realism

Local Realism was first explicitly defined by Clauser and Horne (CH) [13] in 1974,
and further clarified in a series of papers by Bell et al. [8] in 1976–1977 and by
Clauser and Shimony [15] in 1978. CH originally called the theories governed by it,
“Objective Local Theories”. Clauser and Shimony renamed these theories “Local
Realism”. Local Realism is the combination of the philosophy of realism with the
principle of locality. The locality principle is based on special relativity. It asserts
that nature does not allow the propagation of information faster than light to thereby
influence the results of experiments. Without locality, one must contend with
paradoxical causal loops, as are now popular in science fiction thrillers involving
time travel. Upholding locality is effectively a denial of the reality of causal loops.
Equivalently, it is the assertion that history is single valued. Realism is a philo-
sophical view, according to which external reality is assumed to exist and have
definite properties, whether or not they are observed by someone. Bell’s Theorem,
and the experimental predictions made by the associated CHSH and CH Bell’s
Inequalities, along with the associated experimental tests of these predictions, show
that any theory that combines Realism and locality, must be in observed dis-
agreement with these experiments. Consequently, it can now be asserted with
reasonable confidence that either the thesis of Realism or that of locality (or perhaps
even both) must be abandoned.

Another way of describing what we mean by Realism here is to say that it
specifies that nature consists of “objects”, i.e. stuff with “objective reality”. Realism
assumes that objects exist and have inherent properties on their own. It does not
require that these properties fully determine the results of an experiment locally
performed on said object. Instead, in a possibly non-deterministic world, it simply
allows the properties of an object to influence the probabilities of experiments being
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performed on it. There is also nothing in our specification that prohibits an act of
observation or measurement of an object from influencing, perturbing and/or even
destroying said properties of the object.

Realism thus assumes that an object’s properties determine minimally the
probabilities of the results of experiments locally performed on it. Realism, under
the additional constraint of locality, i.e. Local Realism, then assumes that the results
of said experiments do not depend on other actions performed far away by someone
else, especially when those actions are performed outside of the light-cone of the
local experiment.

Properties, as referred to here, are what John Bell called Beables, and what
Einstein et al. [19] called “elements of reality”. The properties of an object con-
stitute a description of the stuff that is “really there” in nature, independently of our
observation of it. When we perform a “measurement” of these properties, we don’t
really need to know what we are actually doing, or what we are really measuring.
What we are assuming is that what is “really there” somehow influences what we
observe, even if said influence is inherently stochastic and/or perhaps irreproducible
from one measurement to the next.

Recall that Einstein et al. [19] attempted to define an object’s properties as
something that one can measure, but they further required that the measurement
result be predictable with certainty. However, given Ben Franklin’s observation that
the only predictions that are certain in life are for death and taxes (see the section
“Bell’s 1964 E-Inequality for Idealized Binary Result Apparatuses”), said definition
becomes meaningless, because it describes nothing that can ever occur in reality,
(unless, of course, said properties are equivalent to death and taxes). Our definition
is very much looser and requires no predictions with certainty.

Precisely how does one define an object with such extreme generality? For the
purposes of Local Realism and its tests via Bell’s Theorem, a purely operational
definition of an object suffices. An object (or collection of objects) is stuff with
properties that one can put inside a box, wherein one can then perform measure-
ments inside said box and get results whose values are presumably influenced by
the object’s properties. What then is a box? A box is defined as a closed
three-dimensional Gaussian surface,3 inside of which one can perform said mea-
surements of said properties. For Local Realism, such a box becomes a
four-dimensional Gaussian surface consisting of the backward light cone (extending
to t = −∞) enveloping a three dimensional box, that contains the object(s) being
measured, at the time that they are being measured.

Familiar examples of “classical” objects that can be put into boxes are galaxies,
stars, airplanes, shoes, trapped clouds of atoms, single trapped atoms, electrons,
y-polarized photons, a single bit of information, etc. All of these can be put into a
box and have their properties (e.g. color, mass, charge, etc.) measured. Or can they?
Via Bell’s Theorem experiments, one may ask—are there examples of objects that

3Gauss showed that a “Gaussian surface” is one that divides all of space into two disjoint volumes,
wherein one of these volumes may be called the inside, and the other the outside.
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cannot be put inside such boxes?4 If so, such objects cannot be described by Local
Realism. Furthermore, if there are parts of nature that cannot be described by Local
Realism, then Local Realism must be discarded as a description of all of nature.
Sadly, (for Local Realism advocates5) the individual particles comprising a
quantum-mechanically entangled pair of particles are parts of nature that cannot be
described by Local Realism.

Figure 28.4 shows the worst-case set of required elements for a fully
loophole-free Bell’s Inequality experimental test. Two objects and associated
binary-result apparatuses are each contained in associated boxes that are space-like
separated at the time of the measurement events. The apparatuses measure
quantum-mechanically entangled pairs of particles. The boxes are labeled ΣA. and
ΣB in the Figure. Each box contains a signal recorder and signal source. Each signal
source generates via the free-will of an observer an appropriate apparatus parameter
setting. The two settings are respectively called a and b. Each box contains a clock
that permits synchronized measurements in the two boxes of the object pairs, that
were emitted in the past and that have propagated into these boxes at subliminal
speed for measurement by the apparatuses.

Fig. 28.4 Worst-case set of required elements for a Bell’s Inequality experiment. This figure was
first presented by the author at the 1976 International “Ettore Majoranna” Conference in Erice,
Sicily on “Experimental Quantum Mechanics”. The conference was organized by John Bell,
Bernard d’Espagnat, and Antonino Zichichi. With present-day jargon, the characters labeled
“Signal source and recorder” might now be named Alice and Bob.

4The fact that the simplest possible object—a single bit of information—cannot be put into a
“box”, in turn gives rise to the field of quantum information. It also calls into question a claim
often made by general relativists that information is always contained within a given spatial
volume and cannot be destroyed.
5John Bell and I have both confessed to being former advocates of Local Realism.
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An important issue discussed in “An Exchange on Local Beables”, (Bell, Shi-
mony, Horne, and Clauser [8]), is that the apparatus parameters a and b must be
generated independently, for example by the presumed free will of the observers,
and are not to be counted as part of the objective reality being measured.

To derive a Bell Inequality, one then needs to assume the following requirements
for a Local-Realistic theory:

(1) The probability of obtaining the measured result A in box ΣA may depend on
all of the stuff (objects) that are inside the box at the time of the measurement,
including any stuff that may have propagated into the box at a velocity less
than or equal to the speed of light since the beginning of time.

(2) The probability of obtaining the measured result A in box ΣA may depend on
the freely chosen apparatus parameter a.

(3) Locality, however, prohibits the probability of obtaining the measured result A
in box ΣA from depending on the apparatus parameter b that was freely chosen
in the space-like separated box ΣB.

(4) Locality, similarly, prohibits the probability of obtaining the measured result
A in box ΣA from depending on the result B, as measured in box ΣB, which, of
course, is allowed to depend on the parameter b.

(5) Similar reciprocal permissions and prohibitions like (1)−(4) govern the
probability of obtaining the measured result B in box ΣB.

Surprisingly, that’s all you need to derive the CH (and CHSH) inequality and
thereby to constrain and test Local Realism!
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Chapter 29
On Loopholes and Experiments

Marissa Giustina

It is particularly striking that the concept of local realism would allow itself to be

tested in an experiment. Thus in a conference celebrating the theoretical break-

through of Bell’s inequality, it seems fitting to consider the recent progress toward

such a laboratory realization. This essay will follow my brief presentation at the 2014

[Un]Speakables conference, and takes two parts. The first part is an overview and

discussion of the “most important” loopholes. The second part outlines our recent

experiment violating Bell’s inequality with entangled photons, continuing with an

outline of what improvements are needed for such an experiment to close all afore-

mentioned loopholes simultaneously. The pace of this review is significantly slower

than that of the talk. Those who understand Bell’s inequality and the various loop-

holes can comfortably skip the first section; those well acquainted with photonic tests

of Bell’s inequality will likely learn little from reading the second section. However,

to those with only limited background in the field, my hope is that you will find in

this note a concise introduction to the motivations and challenges inherent in the

construction of a “definitive” Bell test using photons.
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On Loopholes

Introduction

Intuition is, for a physicist, perhaps the most prized of senses. To develop a function-

ing theory about a system, the physicist draws on some fundamental intuition about

what he observes in nature and attempts to codify this as simply and generally as

possible with the aid of mathematics. He considers what elements of nature might

be relevant to his description. To improve the theory, the physicist conceives of a

physical situation at the edges of his theory’s credibility, and builds an experiment

there. Armed with valuable new observations he carefully revises his understanding

and perhaps with it, the theory. The cycle continues.

Quantum mechanics may be called a lot of things, but “intuitive” is not among

them. With the advent of quantum mechanics came a fundamental shift in our

approach to physics that seemed to undermine the very specificity to which physics as

a discipline had previously owed such success. The concept of a “complete descrip-

tion”
1

of a system changed dramatically. Precise and decisive statements about any

degree of freedom for any element of any system were replaced by probability distri-

butions and ensemble descriptions with fundamentally limited specificity and preci-

sion.

The concept of an ensemble is familiar from statistical physics, but the statistical

description should not be confused with the quantum ensemble description. In a sta-

tistical theory of gases, for instance, the probability distribution covers an underlying

reality about the state of each individual gas molecule, and even while using the sta-

tistical theory, one continues to envisage individual distinguishable molecules, each

with its own individual properties. For example, the velocity distribution gives the

fraction of molecules that possess each possible value of “velocity”, and is in the

end an elegant way to think or talk about many individually describable molecules

at once. The approach of quantum mechanics is quite different, for it does not per-

mit any element to be considered individually. In the quantum mechanical ensemble,

individual elements are considered truly “indistinguishable”, and each is completely

described only by the probability distribution of the whole ensemble. This is quite

a strong statement especially in light of the observation that the same measurement

performed on multiple (indistinguishable) elements of the quantum ensemble may

give a distribution of different outcomes. It means that although different measure-

ments yield different outcomes, there existed no information before the measurement

by which one element of the ensemble could be differentiated from any other element

(otherwise the description of each element could not have been called complete—

1
Einstein, Podolsky, and Rosen (EPR) [1] define completeness in the following way: In a complete

theory, “every element of the physical reality must have a counterpart in the physical theory”. They

further define, “If without in any way disturbing a system we can predict with certainty (i.e. with
probability equal to one) the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.”.
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it should have included the differentiating information). How does quantum theory

justify such an odd codification of nature?

Actually, these two approaches to the concept of a probability distribution seem

operationally interchangeable: Both offer the same (good) prediction of what out-

comes we will observe if we perform a given measurement on a randomly chosen

collection of ensemble elements. Thus we would be inclined to retain our intuition,

namely that a truly complete description of each element should include information

about which particle will yield which measurement result. We would do away with

the indistinguishability of quantum mechanics, augmenting the quantum mechani-

cal description with so-called hidden variables that are deterministically (or at least

probabilistically) responsible for the individual outcomes of each possible measure-

ment. Only then would we consider the quantum description to be truly complete.

As it turns out, unless we allow some kind of nonlocal behavior, a so-called

“action at a distance” (physical influences exceeding the speed of light), this is impos-

sible. No theory of local hidden variables can reproduce the predictions of quantum

mechanics.

Bell’s Inequality

John Bell’s famous theorem [2] puts a limit on the amount of measurement outcome

correlation that can be predicted for a pair of independent measurements by any the-

ory of local hidden variables. To summarize the above: In such a theory, physical

influences are limited to light speed and measurement outcomes are defined prior

to and independent of measurement. (Note that the inequality may also be derived

for stochastic local hidden variables [3], where the outcomes could be defined proba-

bilistically.) This worldview is often called “local realism.” Bell imagined many pairs

of separated spin-1/2 particles, all identically prepared, and considered the results of

measurements done pairwise with Stern-Gerlach magnets at different rotations (two

different rotational settings were considered per side), recording for each particle

whether it was deflected up or down by the apparatus. When locality is enforced,

that is, when the information about the local rotational setting and measurement

outcome from one side is not accessible to the distant measurement party, and when

one assumes that the individual choices of rotational setting for any given measured

pair are in no way correlated with any of the hypothetical hidden variables, Bell’s

inequality defines a limit on the amount of correlation that can be observed across

the paired measurement results in any local realist world. For certain prepared states

of the particles and certain sets of rotational settings, the quantum mechanical pre-

diction exceeds this limit!

In this way, Bell succeeded to establish a divide between the predictions of local

realism and those of quantum mechanics. It became clear that any attempts to recover

the quantum mechanical theory on a local realist foundation were futile. The inequal-

ity itself, a purely theoretical statement, sheds little light on the “nature of reality”.

However, it provides clear hints about the sort of experiment one should perform
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Fig. 29.1 Idea of the Bell experiment: a source of entangled particles dispatches a pair, sending

one particle each to two observers Alice and Bob. Independently from the rest of the experiment,

Alice and Bob choose a measurement setting with which to measure their particle (for Alice, a1 or

a2; for Bob, b1 or b2), and record one of two possible measurement outcomes (Alice’s and Bob’s

outcomes are denoted A and B). Later, they compile their results to determine a list of which (joint)

measurement settings yielded which (joint) results. The Bell inequality enables them to determine

whether their observations were consistent with local realism.

(see Fig. 29.1). Although the inequality as originally presented was not suitable for

testing, it was later rewritten in a form accessible to experiment by Clauser, Horne,

Shimony and Holt (CHSH) [4, 5]. Gradually, a blueprint was developed for an exper-

iment testing the validity of local realism: a pair of entangled spin-1/2 particles

(or photons, as the case may be) would be dispatched in opposite directions and

measured in two different rotational (polarization) settings. This would be repeated

many times and the results plugged into the inequality. Any experiment satisfying

the inequality could be explained by a local realist theory, while an experiment vio-

lating the inequality shows that “reality”, at least to some extent in some laboratory,

is at odds with local realism.

It is a common misconception that such an experiment “tests quantum mechan-

ics”. The Bell experiment tests local realism, not quantum mechanics; whether the

data agree with quantum mechanics is a separate issue entirely. Indeed, quantum

mechanics predicts a violation of the Bell inequality and, due to its general success

as a theory, can be a useful tool for designing an experiment that hopes to observe

such a violation in the lab. If a carefully considered quantum mechanical model of

the experiment is in good agreement with the observations, that further highlights

the usefulness of quantum mechanics as a theory. Still, one cannot consider this a test

confirming quantum mechanics—according to the scientific method it is not possi-

ble to confirm any theory with finality. In the end, an observed Bell violation must

not be seen as a confirmation of quantum mechanics but rather a refutation of local

realism.

Loopholes

When the first experimental violations of the inequality were reported [6], some

philosophers and physicists alike were startled. Local realism should not be so hastily

abandoned! Surely it would be unreasonable for serious physicists to discard the intu-
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itive local realist worldview in favor of something fraught with quirks and allegations

of fundamental uncertainty. Such measures should be taken only if no alternative

remains!

And so the blueprint was revisited. Of course, the process of mapping a gedanken-

experiment into a laboratory involves some inevitable assumptions. Real laboratories

can approximate gedankenlaboratories only so well. Perhaps, by exploiting one of

these additional assumptions, local realism could after all explain the inequality vio-

lation in any particular experiment. A variety of common experimental assumptions

have been identified, along with corresponding strategies for using local realism to

exploit them and simulate the violation of Bell’s inequality. The latter are known as

“loopholes.”

As the field has developed, many loopholes have been identified and analyzed.

Some can be closed. Some cannot be closed. Some can be closed only part way.

Some are subsets of other loopholes. Perhaps some have not yet been discovered. I

will briefly discuss four of the “most important” loopholes to date and their related

assumptions.

Locality

When assuming that the measurement outcome on one side is not affected by the out-

come or setting choice on the other side, one invokes the locality assumption. Ideally,

the local measurement outcome should depend only on the local measurement set-

ting and information brought with the entangled particle (including any hypothetical

local hidden variables). If a signal at or below the speed of light could carry dis-

tant setting or outcome information to influence the local measurement, this would

exploit the locality loophole. More specifically: if information about the distant out-

come could be transmitted, this violates “outcome independence”; if information

about the distant measurement setting could be transmitted, this violates “setting

independence”.

The standard approach to closing the locality loophole is to space-like separate the

events that must remain independent. That is, the experiment must be constructed in

space-time so that no speed-of-light signal could carry out the forbidden information

transfer. In this case, to ensure outcome independence, the two measurement events

must be space-like separated (see Fig. 29.2). To ensure setting independence as well,

the local measurement must in addition be space-like separated from the choice and

implementation of the distant setting. The act of localizing a setting choice in space-

time is non-trivial, but I will come to this later. For a more detailed discussion of this

loophole, see [7].

Freedom of Choice

One assumption in the derivation of the Bell inequality is that the choice of measure-

ment settings is statistically independent from any hidden variables. If this were not
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(a)

(b) (c)

Fig. 29.2 A poll of the audience augmented with a fair sampling assumption (see third loophole)

suggested that by this point in the [Un]Speakables conference, a startling half of participants pre-

ferred to look at animated flying balls rather than space-time diagrams. As this is a printed essay, I

am limited to space-time diagrams here, which are to be interpreted with (one-dimensional) space

on the x-axis and time on the y-axis. The dotted lines at a 45◦ angle to the axes indicate the speed

of light. The emission event at E marks the birth of the entangled pair. The range of E’s physical

influence (both influence on E by the universe, below the x-axis, and by E on the universe, above
the x-axis) is denoted by the faintly shaded triangular region of spacetime, also known as E’s light-
cone, and extends arbitrarily far into the past and future, with only a limited depiction in the figure.

(a) indicates Alice’s measurement performed at A and Bob’s at B, situated a distance apart with the

emission event between them in space. Since Alice and Bob need the particles emitted at E in order

to make their measurements, A and B will always be within the future lightcone of E. However, in

this configuration, the measurement at A takes place so far in advance of the measurement at B that

outcome independence is not fulfilled: B lies within A’s forward lightcone. (b) resolves this issue

by making measurements A and B at the same time at distant locations–we say they are space-like
separated because neither occupies the other’s light cone. However, we now consider as well the

process of choosing the measurement settings, denoted by a for Alice’s setting choice and b for

Bob’s. If these choices occur too far in the past, Alice’s choice a could be available to Bob’s mea-

surement B (and vice versa), violating setting independence. (c) shows a configuration (including a

range of possibilities for the setting choices) in which both measurement and setting independence

are fulfilled, and thus the locality loophole is closed. (a) Violation of outcome independence. (b)
Violation of setting independence. (c) Closing the locality loophole.

the case, one could imagine a source producing pre-determined states, tailor-made

for the particular settings that are about to be measured, or vice-versa.

To close this loophole, one would like to space-like separate both setting choices

from the production of hypothetical hidden variables (see Fig. 29.3). Since neither a

setting choice nor a hidden variable has a well-defined birth place/time, this loophole

can be closed only within particular assumptions. (Since the locality loophole also

requires space-like separation of setting choices, similar assumptions are required

for its closure as well.) With a reasonable model for the experiment and a reasonable

model for the setting generators, one can identify which events should be space-like

separated.



29 On Loopholes and Experiments 491

(a) (b) (c)

Fig. 29.3 These figures relate to the freedom of choice loophole. We assume that any hypothetical

hidden variables are born with the entangled pair at E. Then if the measurement choices a and b are

determined within the past lightcone of E, as in (a), these choices could influence the emission to

produce a state tailor-made for the settings to be measured. (This configuration also violates setting

independence as discussed above, thus being unsuitable in multiple ways.) (b) indicates another

way to violate the freedom of choice loophole: the settings are chosen in the future lightcone of E.

Finally, the configuration depicted in (c) closes both the locality and freedom of choice loopholes.

(a) Violation of freedom of choice (and setting independence). (b) Violation of freedom of choice.

(c) Closing locality and freedom of choice.

One can make the argument that this loophole is unimportant since it cannot be

decisively closed anyway. However, it can be decisively left open! A conscientious

experimentalist might thus argue that he or she would be remiss not to address the

loophole as far as it is possible. For a more detailed discussion of this loophole,

see [8].

Fair Sampling

Experiments on entangled photon pairs are plagued by losses. This often forces

experimentalists to draw a conclusion about the statistics of an ensemble (of pairs)

based on measurements of only part of that ensemble. In doing so, they assume that

the statistics of the full ensemble are accurately represented by the sub-ensemble.

This so-called “fair sampling assumption” opens another loophole
2
: If the decision

of whether or not a given photon will be detected is allocated to a hidden variable,

it is possible for a local hidden variable model to exploit this assumption and fake a

Bell violation [9–11]. To close the loophole, an experimentalist can either confirm

a high detection efficiency or use a version of the inequality—such as those derived

by Clauser and Horne (CH) and by Eberhard [5, 12]—that does not rely on the fair-

sampling assumption. Such inequalities will be more difficult to violate due to the

high requisite efficiency, however, any violation then automatically ensures closure

of the loophole with no need for any further (efficiency) characterization.

2
Note that this loophole is sometimes called the “detector” loophole. Since it is not clear what ele-

ment of the detector is responsible for the vulnerability, and since even perfectly efficient detectors

could be involved in unfair sampling when they are connected to lossy experiments, I will stick to

the term “fair sampling” for both the assumption and the loophole in this essay.
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Fair Coincidences Assumption/Coincidence-Time Loophole

In continuous wave experiments on entangled photons, photons are identified as

pairs based on closeness in their arrival times. Detector clicks occurring within a

given “coincidence window” are considered “coincident” and thus belong to a pair.

The use of such an assignment protocol in Bell tests carries with it an assumption,

namely that the statistics of identified pairs sufficiently represents the statistics of

all detected pairs if they had been correctly identified. Choosing the wrong coinci-

dence window can result in the misidentification of pairs, resulting in a discrepancy

between the number of pairs for which both photons were detected and the number

of pairs actually identified by the algorithm in use. A hypothetical setting-dependent

timing uncertainty (jitter) in the detector would be one way to exploit the loophole,

which can be closed by using an inequality that does not rely on the assumption of

fair coincidences. For more detail on the loophole, see the seminal paper on it [13];

for more detail on the loophole as it relates to the CH inequality, see [14].

Other Loopholes, Other Thoughts

In addition to these loopholes there exist others, some of which could be categorized

as a variant of one listed here, some of which cannot be closed at all. For example,

a fully deterministic worldview postulates that all events are deterministically trace-

able arbitrarily far back in time, which means that no relevance can be attributed

to any space-like separation. Such a worldview is also inaccessible to the scientific

method.

The following comment is motivated by the term loophole itself. When I first

met the term “loophole”, I rejected it as bad terminology. It seemed much more

reasonable to speak of assumptions than of loopholes, and it seemed each loophole

has a corresponding assumption anyway. When discussing a given Bell test, I thought

it would be much clearer to discuss what assumptions were made rather than starting

a list of assumptions that might have been made but weren’t. However, I overlooked

something in this thinking: there may be more than one approach to closing a given

loophole. In general, one can:

∙ Ensure that the corresponding assumption has not been exploited in the exper-

iment (this does not mean confirming that the assumption is valid–although in

principle that would work too)

∙ Avoid making the corresponding assumption in the first place.

Consider the fair-sampling loophole for an informative example. In massive sys-

tems (atoms, ions, superconducting qubits, NV-centers in diamond), the experi-

menters can be certain of the fate of every pair in their ensemble. They can be certain

that the experiment was not vulnerable to the fair-sampling assumption, and can use

analysis methods that make a fair-sampling assumption, since the assumption can-

not be violated anyway. Photon-based experiments, on the other hand, struggle to

achieve sufficient detection efficiency. They use the second approach: by violating the
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CH inequality, which can be derived without making the fair-sampling assumption

in the first place (and is thus harder to violate), these experiments can also close the

loophole. Thus the term “loophole” offers a linguistic efficiency that should not be

underestimated!

Considering the four loopholes, one can organize them into two general groups

based on how they may be closed. For locality and freedom-of-choice, there is no

hope to construct a Bell inequality without these assumptions, as these are a fun-

damental part of Bell’s derivation. Thus to close the corresponding loopholes, it

is necessary to design and build the setup carefully, space-like separating the rel-

evant events to ensure that these loopholes are not exploited in the experiment.

Furthermore, since both of these loopholes involve space-like separation of setting

choices, they are closable only under some further assumption that gives meaning

to the space-time layout employed. In contrast, the closure of the fair-sampling and

coincidence-time loopholes can be ensured by using the proper data analysis. A skep-

tic needn’t trust that the experimentalists have properly characterized the efficiency

of their experiment if the data violate the CH inequality.

Loopholes represent the biggest impediments to a “definitive” test of local real-

ism. Of course, the idea of a “definitive” test is subjective. Some local realist expla-

nations, such as a fully deterministic worldview, cannot be tested at all. What one

person views as an important loophole might strike another as inconsequential or

unreasonable. Furthermore, there is no way to ensure that a hypothetical experiment

simultaneously closing all loopholes listed here would not be vulnerable to some as-

of-yet undiscovered loophole. Thus we must be satisfied with statements about the

set of local realist theories excluded by a particular test.

On Experiments

With all of this in mind, what kind of experiment could one design to test local

realism as completely as possible?

Accessibility, both to the theorist and to the experimentalist, drives the appeal

of the photon as a test medium. Bohm’s 1951 gedankenexperiment [15] involving

a separated pair of spin-1/2 particles analyzed by rotating Stern-Gerlach magnets

can, with minimal alteration, be rewritten to consider pairs of polarization-entangled

photons analyzed by rotating polarizers. Thus, photon pairs are appealing because

they are easy to think about. For physicists accustomed to considering two-level spin-

1/2 particles, the polarized photon is easy to digest: the familiar function of rotating

Stern-Gerlach magnets can be intuitively mapped to rotatable polarizers.

Furthermore, their (relative) experimental simplicity made pairs of entangled

photons the first system in which a Bell experiment was feasible at all. Already

in 1967, Kocher and Commins [16] were able to observe polarization correlations

between visible photon pairs emitted from calcium atoms. Unlike atoms, supercon-

ducting qubits, and most other massive quantum systems, which involve complicated

traps and/or cryogenic temperatures, photons can be created in any laboratory; sim-
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ple glass or plastic polarizers and well-understood photomultiplier tubes suffice for

analysis and detection. For this reason, the first Bell experiment [6] and indeed an

entire generation of early Bell experiments were carried out on pairs of entangled

photons.

As the experiments developed and began to address the open loopholes, photons

continued to display advantages. Since photons travel at the speed of light, achiev-

ing the space-like separation necessary to address the locality and freedom-of-choice

loopholes was a logical goal for photonic Bell experiments of ever-increasing com-

plexity [7, 8, 17]. Unfortunately, as easy as photons are to send, they are even easier

to lose, and until recently there was no hope for a photon-based experiment free of the

fair-sampling assumption. Here, massive systems (which are much more difficult to

lose) could easily surpass the photon, and a number of experiments ([18–21], among

others) showed Bell violations in which every entangled pair could be counted.

Modern photon pair sources based on spontaneous parametric downconversion

(SPDC) in nonlinear optical crystals bear little resemblance to the atomic cascade

sources of the early Bell tests, whose emission was comparatively dim and scat-

tered in all directions. State-of-the-art sources, in which photons from a pump laser

are converted into pairs of lower-energy entangled photons, can now be designed

so efficiently that in 2013, the first photonic experiments to close the fair-sampling

loophole were published [22, 23]. These experiments, in contrast to their counter-

parts in massive systems, used the CH/Eberhard inequality [5, 12], which can be

derived without the fair-sampling assumption, to ensure the loophole was closed.

Eberhard’s critical improvement on the CH inequality was the observation that by a

careful selection of state and measurement parameters, the detection efficiency nec-

essary for violation can be as low as 2/3 (in the absence of background), which is just

on the edge of achievable for state-of-the-art photon pair sources and detectors. In

addition, neither 2013 experiment was vulnerable to the fair-coincidence assumption

[14]. This made the photon the first system for which all major loopholes have been

closed–albeit in different experiments.

Despite the progress in photon-based Bell tests, a definitive test of local realism

remains an open challenge. The 2013 experiments ensured no space-like separation

in their measurements or setting choices; the task of separating the paired photons

over long distances brings an additional loss, which would have made the require-

ments on the photon detection efficiency even more stringent. In the remainder of

this essay, I will briefly expound on our experiment [22] in order to consider in detail

what is still required to make the experiment “loophole-free.”

A schematic of our experiment, borrowed from [22], is displayed in Fig. 29.4.

The block labeled “Source” depicts the triangular Sagnac interferometer with the

ppKTP (periodically poled potassium titanyl phosphate) downconversion crystal on

the hypotenuse, which is designed to convert a horizontally polarized blue photon

at 405 nm into a pair of orthogonally polarized infrared photons at 810 nm. Ultravi-

olet (UV) light from a continuous wave laser enters the loop at a polarizing beam-

splitter cube, where it is directed based on its polarization to traverse the loop in the

clockwise direction (for vertical or “V” polarized light), the counter-clockwise direc-

tion (for horizontal or “H” polarized light), or both directions (for light of any other
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Fig. 29.4 Experimental construction used for our Bell violation without the fair-sampling assump-

tion (figure borrowed from [22]). See text for more information.

polarization, which can be expressed as a mixture of H and V polarizations). When

a clockwise-traveling UV photon undergoes downconversion, the infrared photons

are emitted such that the top arm contains a V photon, and the bottom arm an H

photon. However, when a counter-clockwise-traveling UV photon undergoes down-

conversion, the infrared photon polarizations are the other way around, with H in the

top arm and V in the bottom arm. By pumping in both directions simultaneously,

it is possible to overlap the (Vtop, Hbottom) with the (Htop, Vbottom) cases. Then, for

any given pair of photons entering the box labeled “a / b”, it is not possible to know

which photon will have what polarization, but in any case, the photons in the two

arms will have opposite polarizations. The polarization is defined for the pair but

not for the individual photons, and we call the photons entangled.

Equipped with a source of polarization-entangled photons, we can consider the

rest of the experiment, in which the photons are passed through polarizers and

detected. We define C(i, j) as the number of identified coincidences when the polar-

izers are set to setting i on Alice’s side with i ∈ {a1, a2} and j on Bob’s side with

j ∈ {b1, b2}. Similarly, SA(i) and SB(j) represent the number of singles counts, that

is, the total number of clicks identified respectively in Alice’s and Bob’s detectors,

for the given polarizer setting. To evaluate the Eberhard inequality [12],



496 M. Giustina

Table 29.1 Recorded counts aggregated over 300 s of recorded data per setting, as reported in [22].

See text for an explanation of the labels. The bolded terms help the violation (contribute negatively

to the parameter J) while the fixed width terms hinder the violation (contribute positively to

J). A non-negative value for J is in agreement with local realism; here we observe a violation.

C(a1b1) SA(a1) C(a1b2) SB(b1) C(a2b1) C(a2b2) J (total)

1069306 1522865 1152595 1693718 1191146 69749 −126715

J = −C(a1b1) + SA(a1) − C(a1b2) + SB(b1) − C(a2b1) + C(a2b2) ≥ 0 (1)

we must collect data at four different joint polarization settings, corresponding to two

different polarization settings per side. This was accomplished by using a half-wave

plate in a rotatable mount followed by a calcite polarizer and a highly efficient single-

photon detector. In particular, we used fiber-coupled transition-edge sensors (TES)

to detect the photons. These superconducting calorimetric detectors must be cooled

to below 100 mK, have timing jitter on the order of 100 ns, and produce an analog

signal which must be interpreted, rather than a series of “clicks” [24]. However,

the detectors also boast the highest known efficiencies for single-photons and are

virtually free of dark counts [25]. Thus, TES detectors are indispensable to photon-

based Bell tests where efficiency and low background are critical parameters.

We recorded a total of three hundred seconds of data in each of the four set-

ting combinations, and identified coincidences by a standard “moving window”

approach: a coincidence is counted when two clicks are separated by less than a

certain amount of time. These counts can be used to evaluate the Eberhard inequal-

ity (1), as shown in Table 29.1, which yielded a clear violation of the inequality.

(For more information, please see [22, 26].) The experiment also violated two other

inequalities, variations on the CH/Eberhard inequality that were derived without the

fair-coincidence assumption [14]. One variation involved analyzing the data in dis-

crete time blocks, where the block, rather than the identified photon pair, becomes the

experimental unit. The other approach was similar to the “moving window” analysis

but with one window enlarged to the sum of the other three.

This experiment indeed closed the fair-sampling and coincidence-time loopholes,

but it did not address locality or freedom-of-choice. In fact, the two detectors sat next

to each other in the same cryostat, and the choice of measurement settings was deter-

mined very far in advance. I have been asked on several occasions what obstacles

prevent us from carrying out a loophole-free test immediately; furthermore, there

seems to exist a misconception that merely separating the detectors to a great dis-

tance would be a sufficient upgrade. Unfortunately, this is not the case (Fig. 29.5).

There are three main issues that must be resolved in order to make this experiment

into a “definitive” test. First, the polarizers and detectors must be physically separated

to a distance at which space-like separation of measurements can be enforced. For

the TES detectors, this implies the procurement of a second cryogenic system and a

second set of readout and recording electronics. (For the first experiment, both detec-

tors could be kept in the same cryostat and monitored with two different channels
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(a) (b)

Fig. 29.5 Space-time diagrams representing (a) Experimental situation in experiments [22], (b)
ideal situation for a “definitive” Bell test.

of the same electronics.) In principle, one would like a very large separation, since

more spatial separation of the measurements corresponds to less stringent require-

ments on their syncrhonization. However, the farther the photons are separated, the

larger the losses due to transit (for instance, optical fiber has an intrinsic loss per

length; efficient free-space links over long distances would require vibrational sta-

bility on each end and ever-larger lenses to collect the diverging beam). Since the

TES detectors are fiber-coupled, one instance of fiber coupling will be required in

any case—and fiber coupling brings more intrinsic losses. All losses associated with

the requisite separation will either compromise the strength of the violation or must

be compensated by improvements in the pair source.

A second issue, related to the space-like separation of the measurements, is the

time duration of the measurement. The TES detectors, like any photon detector, have

an associated timing uncertainty known as jitter. This means that a photon arriving

at a given time may be registered by the detector as arriving at a different time; the

width of this spread quantifies the jitter. To ensure that a local detection event is not

privy to information about the opposite setting, the detection must be confined to a

finite time window. To keep this time window (and thus the requisite distance for

space-time separation) as small as possible, it is desirable to reduce the large timing

jitter of the TES detectors as much as possible.

Finally, it is necessary to ensure that the setting choice is isolated, not only from

the distant choice and measurement, but also from the (hidden variable) source itself.

For this, it is common to employ so-called “Quantum Random Number Generators”

(QRNG). An ideal number generator creates a brand new random variable within

a prescribed time window. This value should have no connection to any other vari-

ables in the experiment and no memory of any past experimental events (including

the history of the number generator itself). In fact, this behavior is not at all repre-

sented by the descriptions “quantum” and “random,” which are neither necessary nor

sufficient for our needs. A sluggish random number that makes its way to all exper-

imental parties before being used for a setting choice cannot be considered space-

like separated from the rest of the experiment—regardless of its possibly quantum

origins. Although quantum processes may provide a good source of random vari-
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ables, there is no inherent reason why a classical process couldn’t be equally well

suited. Finally, there is no requirement that the numbers be perfectly “random”—

even biased numbers can be sufficient for our purposes [27, 28] as long as they are

free of influences from the distant measurement party and any hidden variables. So

in fact what we need could more accurately be described as a “Fast Free Number

Generator” (FFNG).

Unfortunately, there is no way to determine whether a particular number generator

fulfills the ideal of a FFNG. A fully deterministic or superdeterministic worldview

forbids even the existence of such a device. We would like to demand that the gen-

erated values are independent from any hidden variables—but hidden variables are

by definition inaccessible to our characterization. Must we abandon the endeavor?

Certainly not! For while it is impossible to certify any number generator as fully

independent, it is relatively easy to identify some number generators as unsuitable. A

conscientious experimentalist cannot space-like separate the setting choices beyond

the shadow of a doubt, but he or she would be remiss to use a setting generator known

to produce old numbers or numbers that are correlated with known past events in a

predictable way.
3

In other words, one cannot close the loophole with certainty, but

one can leave it open with certainty. The latter should be avoided.

Once the setting choice is determined by some appropriate number generator, it

must be implemented quickly. Electro-optic modulators that behave like switchable

half-wave plates can enable a particular polarization rotation on the order of nanosec-

onds. After this (switchable) rotation comes a fixed polarizer and finally the detector.

However, there is a non-trivial loss associated with the use of such switches, which

have only been well developed for use in free-space. Light in fiber must be coupled

out into free-space, through the polarization switches, and back into fiber (since the

detectors are fiber-coupled). Recall that any added loss must be overcome by further

improvements in the source in order for the experiment to remain feasible.

A final change, unessential but desirable, would be to modify the setup from con-

tinuous operation to a pulsed experiment. Such a change would have two benefits.

Firstly, it would allow the coincidence-time loophole to be closed implicitly, since

the experimental “timeslot” unit would be built into the experiment. In addition, con-

fining the emission event to a known window smaller than the detector jitter reduces

the total time window needed to identify a coincidence (see Fig. 29.6). With the pos-

sible arrival interval confined absolutely in time, one will find a click (if it is there)

by searching in a region defined by the detector jitter around this possible arrival

time. If, however, the search for a coincident photon on one side is triggered by a

detection on the other, then a larger time region must be searched, since the jitter

from both detectors could contribute to the total time offset between the “coinci-

dent” clicks. A shorter measurement duration translates to less physical separation

required to space-like separate A and B. This is particularly relevant because loss

increases with separation distance.

3
A more detailed evaluation of some common photon-based random number generators can be

found in [28].
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Fig. 29.6 This figure illustrates how confining the photon emission to a known time can reduce the

required size of the coincidence window. Time runs vertically. In the situation on the left, the emis-

sion is assumed to be confined to a single instant in time. As a result of detector jitter, the registered

clicks could fall anywhere along the black lines, with a distribution indicated by the grey stripe.

Thus the total time in which to search for a coincidence can be determined based on knowledge of

the emission time and the detector jitter. The situation on the right represents continuous emission.

The detection of a photon on Alice’s side triggers the search for a coincident photon on Bob’s side.

However, since we do not know how the detector jitter affected Alice’s timestamp, it is necessary

to consider a much larger window on Bob’s side in order to find a possible coincident photon.

In total, an experimentalist starting with the laboratory situation described in [22]

now sees the following formidable to-do list:

∙ Separate Alice’s and Bob’s detectors into two distant cryostats

∙ Configure a low-loss optical link between the source and the remote measurement

stations

∙ Lower the jitter in TES detectors

∙ Find and employ suitable number generators, based on processes that are as fast

and free as possible

∙ Implement fast-switching polarization rotations at each remote measurement sta-

tion

∙ Compensate for the losses introduced by the above steps, probably by making

further improvements in the source

∙ (Introduce a pulsed source)

∙ Carefully synchronize the experiment

Assuming the Bell violations are still observed in these extreme conditions, the

first such tests will in fact launch a next generation of Bell tests. Photons are not the

only system in which such a Bell test seems to be just on the horizon. We can hope

that ever more loopholes will be addressed in a variety of systems—photonic and

massive. Improved sources of randomness can further push the limit to which local

realism can explain our experiments [29]. Eventually we may be forced to accept a

reality in which, at least sometimes, local realism can be violated.
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Chapter 30
New Dimensions for Entangled Photons:
The Role of Information

Anton Zeilinger

Introduction

This paper follows very closely the talk given at Quantum (Un)Speakables II: 50
Years of Bell’s Theorem. It will be argued that information plays a central role in
interpreting and understanding real experiments.

The relation of quantum theory to physical reality has been at the core of
discussions since the very first beginnings of quantum mechanics. Just to emphasize
the level of technical development achieved, Fig. 30.1 shows a telescope. It is the
OGS (Optical Ground Station) operated by the European Space Agency on the
Canary Island of Tenerife. This instrument was built for developing and testing
optical communication with satellites. In our experiments, we utilize it for testing
optical quantum communication over large earthbound distances, specifically ca.
150 km between the Canary Islands of La Palma and Tenerife. In that image, one
can see a laser beam which serves as a guiding beacon for continuously adjusting
the sending and the receiving telescopes onto each other in order to reduce the effect
of atmospheric fluctuations.

This setup has served as a workhorse for many experiments on entanglement, some of
which test the ideas of reality put forward by Einstein, Podolsky andRosen in 1935 [1]. It
is actually quite instructive to investigate the number of citations the Einstein-
Podolsky-Rosen paper received (see Fig. 30.2). This paper came out in 1935. In the

A. Zeilinger (✉)
Vienna Center for Quantum Science and Technology (VCQ), 1090 Vienna, Austria
e-mail: Anton.Zeilinger@univie.ac.at

A. Zeilinger
Institute for Quantum Optics and Quantum Information (IQOQI),
Austrian Academy of Sciences, 1090 Vienna, Austria

A. Zeilinger
Faculty of Physics, University of Vienna, 1090 Vienna, Austria

© Springer International Publishing Switzerland 2017
R. Bertlmann and A. Zeilinger (eds.), Quantum [Un]Speakables II,
The Frontiers Collection, DOI 10.1007/978-3-319-38987-5_30

503



beginning, it had very few citations. I would like to remark that these citations were
not so bad. Two of themwere by Schrödinger [2, 3] and one by Bohr [4]. So the paper
immediately attracted attention by leading figures in quantum science. Yet, after that,
there were no citations until the beginning of the 1950s. I would like to remark as a
comment on today’s situation regarding the ways in which careers are often decided
that this paper would not have gotten Einstein a permanent position because of its low
citation numbers. But then, citations took off for two reasons. Slowly, in the 1950s, the
field of the foundations of quantum mechanics started again after it had lain dormant

Fig. 30.2 Number of annual citations of the Einstein-Podolsky-Rosen paper.

Fig. 30.1 Optical Ground Station OGS on the Canary Island of Tenerife. The laser beam shown is
used as a guiding beacon for the quantum optical communication link to the island of La Palma.
(Photo Daniel Padrón).
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for a significant time. And most importantly, in 1964, John Bell showed [5] that the
fundamental concepts of reality and locality, as proposed by Einstein, Podolsky and
Rosen, are in conflict with some predictions of quantum mechanics (for an explicit
formulation of these conditions, see paper [6], which builds on [7]). The other sig-
nificant increase in the number of citations occurred around 2000, when entanglement
and Bell’s theorem proved to be essential to basic concepts and new ideas in quantum
information science. I should mention that, as was often the case in the history of
physics, this development towards future applications was not foreseen by any of the
early pioneers. Both theoretical and experimental work on the foundations of quan-
tum mechanics was originally motivated by nothing but curiosity, and without even
the slightest indication of applications on the horizon.

We will now discuss the specific situation of two entangled photons emitted by a
source (Quelle) in the state Φ+ (Fig. 30.3).

Φ+j ⟩=
1ffiffiffi
2

p Hj ⟩ Hj ⟩+ Vj ⟩ Vj ⟩ð Þ ð1Þ

This is a maximally entangled state, where measurements on the two photons
always show the same linear polarization, horizontal H or vertical V, independent of
the measurement basis chosen, that is, along any direction as long as it is the same
for both photons. Such states today are called “Bell states”.

Albert Einstein most succinctly analyzed the situation in “Remarks to the Essays
Appearing in this Collective Volume”, his reply to the articles in the famous vol-
ume Albert Einstein—Philosopher-Scientist [8]. This volume, which has already
been mentioned by Bertlmann in an earlier chapter of the current volume [9],
contains a great collection of interesting papers relating to many aspects of
Einstein’s work. For example, it contains the famous Gödel paper, where he shows
for the first time that there could be closed time-like curves in the Universe [10].
Many open questions that were raised in these papers, including some in mathe-
matics, have not been resolved to date.

Einstein in his reply basically argues that when performing a measurement on
photon 1, say the one on the left-hand side in Fig. 30.3, we can freely decide along
which direction we measure, for example its linear polarization. If one decides to
measure the polarization along x, then, Einstein argues, one definitely gets an x
polarization eigenstate for photon 2 on the right-hand side. It is certainly unknown

Fig. 30.3 Typical experimental set-up for measurements on polarization-entangled photon pairs.
The source (Quelle) is assumed to emit an entangled pair, say, in the state of Eq. 1. Each photon
path is a two-channel polarizer which may be rotated around the incident beam direction. Then,
one always measures perfect correlations in either horizontal or vertical polarization when the
polarizers are oriented along the same direction. A violation of Bell’s Inequality arises for skewed
angles between two-channel polarizers. (Image Thomas Jennewein)
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and quantum mechanically maximally uncertain whether it will be a +x or a −x
eigenstate, but it definitely is an eigenstate to the x basis and not to the y-basis. On
the other hand, if we decide to measure the polarization of photon 1 along the y
direction, we will definitely get a y eigenstate for the other photon. Again, either +y
or −y (z is the propagation direction). Therefore, the choice of measurement basis
on one photon decides what kinds of eigenstates are permitted for the other photon,
and this is a definite property of the system upon the first measurement. Therefore,
as Einstein said, “the quantum state cannot describe the ‘real factual situation’” [8].
In my opinion, this statement is absolutely correct. The question is, what is its
significance? In my eyes, it can be interpreted that the quantum state is not about a
reality existing prior to or independent of measurement, but it is the representation
of information about possible future measurement results. It allows the maximal set
of, in general probabilistic, predictions of future measurement results.

The essence of Bell’s theorem is that for certain correlations between mea-
surements on both photons, the predictions of quantum mechanics are in conflict
with the philosophical position of local realism, as exposed by EPR. This is sig-
nified by Bell’s inequality.

E11 +E12 +E21 −E22 ≤ 2 ð2Þ

where Eab describes the correlation between measurement results when photon 1 is
measured along direction a and photon 2 is measured along direction b. Without
going into detail, the implication is that the sum of correlations, as expressed in
Eq. 2, between measurements on both sides is limited to 2 in a local realist point of
view. But for quantum mechanics, the sum on the left-hand side can be as high as
2
p
2 for two qubits, a qubit being any quantum mechanical two-state system.
Many contributions to the current conference refer to specific reformulations of

this inequality and its variants, but the essential point is always the same, as
outlined above.

The Role of Information as Underlined by Entanglement
Swapping

The role of information in the understanding of quantum mechanics can most
clearly be discussed for a variation of entanglement swapping [11] as proposed by
Peres [12]. We have two EPR sources (Fig. 30.4), each one producing an entangled
pair of photons. One of the photons of each source, photon 1 and photon 4, is
measured locally. In some polarization bases, each basis is chosen arbitrarily and
independently by Alice or Bob respectively. The results are recorded and printed
out as shown. Photons 2 and 3, one from each source, are then directed to Victor,
who can decide whether he wants to project these two photons onto an entangled
state or whether he wants to measure their polarizations separately. These decisions
can be made by Victor randomly and at any time before or after the outer two
photons have been registered.
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Fig. 30.4 The concept of delayed-choice entanglement swapping. Two entangled pairs—photons
1 and 2 and photons 3 and 4—are produced in the state Ψ−j ⟩12⊗ Ψ−j ⟩34 in the EPR sources I and
II respectively. At first, Alice and Bob perform polarization measurements on photons 1 and 4,
choosing freely the polarization analysis basis among three mutually unbiased bases
(horizontal/vertical Hj ⟩ ̸Vj ⟩, right-circular/left-circular Rj ⟩ ̸Lj ⟩, plus/minus +j ⟩ ̸ −j ⟩, and record
the outcomes. Photons 2 and 3 are sent to Victor, who then subjects them to either an
entangled-state measurement or a separable-state measurement. He projects them randomly into
one of two possible maximally entangled Bell states ( Φ+j ⟩23 or Φ−j ⟩23) or one of two separable
states ( HHj ⟩23 or VVj ⟩23). Victor records the outcome and keeps it to himself. This procedure
projects photons 1 and 4 onto a corresponding entangled ( Φ+j ⟩14 or Φ−j ⟩14) or separable state
( VVj ⟩14 or HHj ⟩14) respectively. According to Victor’s choice and his results, he can sort Alice’s
and Bob’s already recorded data into subsets and can verify that each subset behaves as if it
consisted of either entangled or separable pairs of distant photons, which have neither
communicated nor interacted in the past. From [16].
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We consider the case that when Victor makes his decision and performs the
respective measurement, photons 1 and 4 have long been registered and the results
have been classically recorded. A possible sequence of results is also shown in
Fig. 30.4. The interesting point now is the following. Depending on the measurement
that Victor decides to perform, the already long ago registered records for photon 1
and 4 can be interpreted as confirming the entanglement by using a suitable entan-
glement witness or as being consistent with the factorizable state of photons 1 and 4.
But, clearly, photons 1 and 4 can only be either entangled or in a factorizable state.

Depending on the kind of measurement chosen by Victor, entangled or not, and
depending on the specific measurement result, the sets of data obtained by Alice
and Bob can be separated into four independent data sets in the entangled state case
and into four different independent data sets in the product state case. These four
data sets are very different in the two cases. Interestingly, the data sets obtained by
Alice and Bob are rich enough to allow both divisions into subsets. Therefore, a
consistent interpretation of the recorded data emerges. This is sometimes seen as a
puzzle, as it might appear that the decision by Victor whether to project onto an
entangled state or onto a product state might modify the results already obtained
and classically recorded. Yet this is certainly not the case. The data have been
recorded and are not changed. But their interpretation is missing until Victor has
made his decision and done the measurement. Only after that measurement, Alice’s
and Bob’s already long ago recorded data obtain their proper interpretation. Peres
points out very clearly that there is nothing contradictory about the situation. It is all
consistent with quantum mechanics. In a sense, one might say that the data are
somehow the most primitive and basic concept in a quantum measurement. Their
interpretation can certainly depend on future actions, as is the case here.

In a way to see the situation from the point of view of information, one can say
that the information in the four-photon state is limited. The four photons are only
able to carry a limited amount of information. If this information is information
implying entanglement between 1–2 and 3–4, then it cannot also be information
implying entanglement between 1–4 and 2–3. It can never be both at the same time.
The well-known monogamy of entanglement [13] thus is a consequence of the
limited amount of information a quantum state can carry. It is interesting to see that
the original quantum state of all four photons can be decomposed into sums of four
product states of maximally entangled Bell states,

Ψj ⟩1234 = Ψ−j ⟩12⊗ Ψ−j ⟩34 =
1
2

Ψ+j ⟩14⊗ Ψ+j ⟩23 − Ψ−j ⟩14⊗ Ψ−j ⟩23 − Φ+j ⟩14⊗ Φ+j ⟩23 + Φ−j ⟩14⊗ Φ+j ⟩23ð Þ,

ð3Þ

where

Ψ+ , −j ⟩ab =
1ffiffiffi
2

p Hj ⟩a Vj ⟩b± Vj ⟩a Hj ⟩b,

Φ+ , −j ⟩ab =
1ffiffiffi
2

p Hj ⟩a Hj ⟩b± Vj ⟩a Vj ⟩b.
ð4Þ
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Entanglement swapping can also be seen as teleportation of an entangled state. It
is either the teleportation of the state of photon 2 over to photon 4 or the tele-
portation of photon 3 over to photon 1.

The first experimental realization was done in Vienna [14, 15]. In these exper-
iments, the situation was static, and no special precaution was taken to perform the
Bell measurement after the independent photons had been registered. More
recently, the proposal of Peres was realized [16] by measuring one photon from
each entangled pair separately and sending the other photon from each pair into a
rapidly tunable Mach-Zehnder interferometer (Fig. 30.5).

When the internal phase of the interferometer is set to an integer multiple of π,
registration at the final detectors allows to conclude from which source each of the
photons 2 and 3 came. And thus, in that case, they are projected onto a product
state. In contrast, when the internal phase is set to, say, π/2, no conclusion is
possible about the source of the incoming photons 2 and 3. Thus, they are projected
onto a maximally entangled state. Consequently, also the earlier registered photons
1 and 4 are projected either into a product state or into a maximally entangled state.
It should also be mentioned that the registration, and even the setting of the internal
phase, was done at a time after the other two photons had been registered already.
When photons 2 and 3 were projected onto an entangled state, an entanglement
witness confirmed the existence of entanglement between photons 1 and 4. This
witness was basically a measurement of the correlations in three mutually unbiased
bases. In the case of a projection of photons 2 and 3 onto a product state, polar-
ization correlation of photons 1 and 4 was only observed in one basis, confirming
that there was no entanglement between them.

To analyze the situation from a conceptual point of view, we realize that the
individual polarization registration events of photons 1 and 4 are classical long
before the complete measurement, including photons 2 and 3, is finished. But only
the complete measurement on photons 2 and 3 allows to determine the quantum
state for all four photons, and therefore allows to fully interpret the situation. It is
therefore suggestive that the events are a more fundamental reality than the
quantum states which are only determined in the end.

The Quantum State as Representation of Information

Let us now come back to the famous double-slit experiment [17]. The message
of that experiment is again related to the notion of information. Interference occurs
if, and only if, no path information exists anywhere in the Universe about which of
the two paths the particle took. It is irrelevant whether an observer takes note of
that information. The quantum state then is just a representation of possible
future measurement results or, following Schrödinger [2], an expectation catalogue
(Fig. 30.6).
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Fig. 30.5 Experimental set-up of delayed-choice entanglement swapping. A pulsed laser beam
with a central wavelength of 404 nm, a pulse duration of 180 fs, and a repetition rate of 80 MHz
successively passes through two BBO crystals to generate two polarization-entangled photon pairs
(photons 1 and 2 and photons 3 and 4) through type-II spontaneous parametric down-conversion.
Photons 1 and 4 are directly subjected to the polarization measurements performed by Alice and
Bob (green blocks). Photons 2 and 3 are each delayed with a 104 m single-mode fiber and then
coherently overlapped at the input beam splitter BS1 of a tunable Mach-Zehnder interferometer
acting as a switchable interferometric Bell-state analyzer (purple block). Depending on the internal
phase of the interferometer, it operates either as a Bell-state measurement device or it does not
superpose the amplitudes of the two photons coming from the two down-conversion crystals. In
the first case, photons 2 and 3 are projected onto an entangled state. In the second case, each
photon’s polarization is measured individually by Victor. The choice between the two
measurements is made by a fast quantum random number generator at a time after the twin
photons 1 and 4 have been measured. From [16].
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What is meant by information here is the possibility to obtain knowledge. Here, it
is the possibility to obtain knowledge about the path taken. As long as that possibility
exists, there cannot be any interference. All quantum eraser experiments [18]
and their delayed-choice variants [19] indeed work by erasing just this possibility of
obtaining knowledge about the path, i.e. the particle-like property. Finally, we
remark that this knowledge could be obtained by any observer! It is irrelevant
whether it is a conscious observer or not.

At about the same time when Bell discovered his theorem, Wigner expressed his
position very clearly [20]:

… it is impossible to give a satisfactory description of atomic phenomena (i.e. by quantum
mechanics)1 without reference to the consciousness. … the “reduction of the wave packet”
… takes place when the result of an observation enters the consciousness of the observer …
or, to be even more painfully precise, my own consciousness.

It is clear that this position differs significantly fromBell's view as expressed above.
In contrast, Heisenberg wrote in a letter to Renninger on February 2 1960 [21]:

The act of recording, on the other hand, which leads to the reduction of the state, is not a
physical, but rather, so to say, a mathematical process. With the sudden change of our
knowledge also the mathematical representation of our knowledge undergoes of course a
sudden change.

I interpret Heisenberg’s position—and in that respect, I share his point of view—
in the way that there is no measurement problem. All that happens is a change of
our representation of information, i.e. the quantum state. Concluding, I might
suggest that it is most natural to change the representation of information, that is,
the quantum state, when our knowledge changes because of new information
obtained by measurement.

Fig. 30.6 Young’s double-slit experiment as drawn by Niels Bohr in [17].

1Cursive text in brackets inserted by the author of the current essay.
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Information and Quantum Imaging with Undetected
Photons

Recently, we performed an experiment [22] which brings forth the role of infor-
mation in a very succinct way. Let us first recall that scattering experiments are very
central for physics. In any scattering experiment, the essential idea is the following:
Some radiation interacts with the sample, and one detects the scattered radiation
(certainly including transmission, that is, forward scattering). From the change of
the properties of the scattered radiation compared to the incident radiation one can
make inferences about properties of the scatterer. An important point is that in all
such experiments hitherto, the scattered radiation that interacted with the sample
must be registered somehow, by a film, a detector or another suitable device. This is
even true for holography, where the scattered radiation is superposed with coherent
radiation. But it is not true in the experiment [22] which we will now discuss.

The experiment builds on a beautiful paper by Zou et al. [23]. The paper
acknowledges Jeff Ou for the suggestion of aligning NL1 and NL2 as to make the
idler trajectories coincide. In our review of multi-particle interference in Physics
Today in 1993 [24], Greenberger, Horne and myself called it a ‘mind-boggling’
experiment.

The salient features of the experiment are (Fig. 30.7): Two nonlinear crystals are
pumped by the same pump. In each of the two crystals, photon pairs can be
produced. Let us assume that the pump intensity is such that the production of two
photon pairs is negligible. Consider therefore the case that one pair is produced
either in crystal NL1 or in crystal NL2. Quantum mechanically speaking, the
photon pair is produced in a superposition of both possibilities. The outgoing
modes in each crystal are called idler i and signal s. If now the two modes of the
signal photon are brought back together, there should be no interference in general,
because the idler could be used to find out by which of the two crystals the pair was
produced, thereby revealing path information.

Fig. 30.7 Outline of the interference experiment of Zou, Wang and Mandel. From [23].
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The central idea of the paper was to make the path information carried by the idler
photon disappear. This was done with a very special trick, such that the mode of the
idler coming from the first crystal after passage through the second one is identical to
the idler mode coming directly from the second crystal. That way, no information
about which crystal produced the pair can be found out by looking at the idler. Thus,
no path information for its twin signal photon exists, and interference at the beam
splitter may occur. We note that this situation is very different from a quantum
eraser, which could for example be done by combining the two idler modes also at a
beam splitter. In such a case, the idler would have to be detected to finally erase the
source information. In the new situation, the detection of the idler photon is not
necessary at all. Most importantly, the fringes for the signal occur not in coincidence,
but as singles, in contrast to the usual ghost imaging.

I would suggest calling this phenomenon “coherence by identity”. This is because
the two signals for the idler are coherent for the very reason that the two modes of the
idler are completely identical. Strictly speaking, it is actually wrong to talk about two
modes for the idler. There is only one mode, which emerges from both crystals.
Again, it is the absolute unavailability of information, and thus the impossibility to
obtain path knowledge, which makes coherence and interference possible.

The experiment has various interesting, maybe even counter-intuitive properties.
This can be seen, for example (Fig. 30.8), when inserting a phase-shifter into the
idler mode between NL1 and NL2. The important point is that that phase shift
cannot be attributed to the idler mode alone, even as it is introduced by the
phase-shifter in the idler beam. Rather, it is a nonlocal phase shift experienced by
the total two-photon state emerging from crystal NL1. It can therefore be revealed
as the phase shift between the signal modes c and e meeting at the beam splitter
BS2. Furthermore, if the object has some absorptive properties, full or partial, this
provides path information between the signal modes c and e, which results in a
reduction of the outgoing interference contrast in modes g and h.

We now discuss two imaging experiments which also underline salient features
of the experimental set-up. Before discussing both experiments, we should realize
once more that the idler in that experiment is not registered at all. It is just left to
pass away freely. An experimental situation where the path information is directly
relevant for obtaining the image occurs when an absorptive mass is placed into the
idler beam. The object is a cardboard cut-out of the image of a cat. Light can freely
pass through the cat opening, while outside, light is absorbed. This object is placed
into the idler beam between the two crystals of Fig. 30.8. The image (Fig. 30.9) on
the top left clearly shows that in both outgoing beams of the signal photon after the
beam splitter, the cat image appears. We will now discuss briefly the image itself
and how it relates to information. On the left-hand side, the cat is seen as bright,
namely constructive, interference of the two signal beams. On the right-hand side,
the cat is dark—destructive interference of the two signal beams. This is easily
understood. The beam path was adjusted in such a way that for one of the two
signal beams, constructive interference results, and for the other one, destructive
interference arises. Outside of the cat images, we have a shadow region of the same
brightness in both cases. This simply results from the fact that the idler mode
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between crystal 1 and 2 is absorbed. Therefore, the idler emerging from the
experiment could easily be used to find out that the pair was created in the second
crystal. Likewise, we could consider the absorbing cardboard as a detector which, if
it fires, tells us that the pair was created in the first crystal. Therefore, in that
situation, one has path information outside the cat openings, and thus, no inter-
ference for the signal photon can arise. That is, the outside shady regions simply
represent incoherent summations or incoherent mixtures of the two modes of the
signal photon coming via the two paths. Thus, the existence or nonexistence of path
information is clearly responsible for the production of the image. And, to stress
that point again, that information is carried—or not—by the idler photon, which
need not at all be deleted or erased.

A different physical argument leads to the imaging of phase objects (Fig. 30.10).
There, an object introducing a phase shift of π was inserted into the idler mode
between the two crystals. As discussed above, that phase cannot be considered to be
carried by the idler beam alone. In fact, because the mode of the idler after
emerging from the second crystal is the same whether the idler was created in either
crystal, that phase cannot manifest itself in the emerging idler beam at all. Rather, it
now manifests itself as a phase difference between the two signal modes superposed
at the beam splitter. Again, the picture here is a consequence of firstly the fact that
nowhere in the image, path information is available about where the pair was
created, and secondly, it is a consequence of the fact that in a product state, the
phase shift cannot be assigned to either member of the product.

Fig. 30.8 Schematic of the experiment of quantum imaging with undetected photons. Laser light
(green) splits at beam splitter BS1 into modes a and b. Beam a pumps nonlinear crystal NL1,
where collinear down-conversion may produce a pair of photons of different wavelengths called
signal (yellow) and idler (red). After passing through the object O, the idler reflects at dichroic
mirror D2 to align with the idler produced in NL2, such that the final emerging idler f does not
contain any information about which crystal produced the photon pair. As a consequence, signals
c and e combined at beam splitter BS2 interfere. Consequently, the superposition signal beams
g and h reveal idler transmission properties of object O. From [22].
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Finally, a small remark on entanglement might be in order. It is not irrelevant
that the state used in the experiment is a high-dimensionally entangled state of
superposed pairs created at different locations transversely to the pump beams.

Conclusion

I have given a number of examples which underline the role of information in
quantum mechanics. This is part of an emerging view where it appears that
information has a much more fundamental role in quantum physics than realized
hitherto in general. I am very confident that while John Bell would not have liked
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Fig. 30.9 Which-path imaging. a Inside the cat, constructive and destructive interference are
observed at the two outputs of BS2 when we placed the cardboard cut-out shown in (b) into the
idler path between NL1 and NL2. Outside the cat opening, the idler photon from NL1 is blocked
and therefore the corresponding signal photon does not interfere, resulting in an unstructured
background in both images in (a). c The sum of the outputs gives the intensity profile of the signal
beam, not showing any effect of the absorption. d The subtraction of the outputs leads to an
enhancement of the interference contrast, as outside of the cut-out, the two backgrounds
completely subtract. The image arises because outside of the cut-out area, path information is
available, while inside, this is not the case. From [22].
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Fig. 30.10 Phase imaging of a phase step. The object b is etched into silicon such that it provides
a π phase shift at 1515 nm, the wave length of the idler, or a 2π phase step at 820 nm, the wave
length of the signal. The top picture (top of a) was taken with the object placed in the signal beam
after the nonlinear crystal NL1. No image results. Yet, when the object is placed into the idler
beam between NL1 and NL2, a very well defined phase image is obtained in the emerging signal
beam (bottom of (a)). From [22].

Fig. 30.11 Photograph taken in Amherst, Massachusetts, in 1990. From right to left; John Bell,
Mary Bell, AZ and Arthur Zajonc. In the lower left corner, you can see a beer, held by Mike
Horne. (Photo Kurt Gottfried).
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the emerging increasing role of measurement or information in the interpretation of
quantum mechanics (see e.g. [25]), he would certainly have loved to see the modern
experiments. Such experiments also include quantum interference for higher and
higher quantum numbers, as for example witnessed in the entanglement of orbital
angular momentum states [26]. Since these experiments were performed, the
quantum numbers for entanglement have been raised to beyond 10.000 ħ.

In the end, I would like to emphasize my deep appreciation and admiration of
John Bell. I am very grateful for having met him personally, and having had the
opportunity to discuss with him a couple of times our views of the foundations of
quantum mechanics, even if they differed significantly (Fig. 30.11).

As you know, this is the second conference on Quantum [Un]Speakables. The
first conference took place in 2000, to commemorate the tenth anniversary of John
Bell’s death. The present conference, in 2014, celebrates 50 years of Bell’s theo-
rem. It is therefore natural to see this as the start of a longer series. The next
conference, again in 14 years’ time, will therefore take place in 2028, and we will
commemorate the 100th birthday of John Stewart Bell (Fig. 30.12).

Acknowledgments This work was supported by the Austrian Science Fund (FWF) with SFB F40
(FoQuS).
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Appendix A
Contributions to the Conference

This collection of essays draws on contributions to the conference “Quantum
[Un]Speakables II: 50 Years of Bell’s Theorem”, which was organized by the
editors of this volume and took place June 19–22, 2014.

The contributions at the conference were:

Invited talks1

In chronological order.

Address to the conference participants
Mary Bell
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Putting the scientist into the science
N. David Mermin
Cornell University, NY, USA

Xtreme nonlocality
Bradley G. Christensen and Paul G. Kwiat
University of Illinois at Urbana-Champaign, IL, USA

Quantum correlations in Newtonian space and time: faster than light communi-
cation or nonlocality
Nicolas Gisin
University of Geneva, Switzerland
Nicolas Gisin was unable to present his talk in person due to family reasons.
Valerio Scarani presented the talk in his place.

1Invited speakers are marked in bold.
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Can quantum-mechanical description of causal relations be considered complete?
Caslav Brukner
Austrian Academy of Sciences, Austria

Designing Bell inequalities via Tsirelson bounds
Michael Epping, Hermann Kampermann and Dagmar Bruß,
Heinrich Heine University Düsseldorf, Germany

A GHZ experiment under strict Einstein locality conditions
Gregor Weihs
University of Innsbruck, Austria

On closing loopholes in Bell experiments
Sven Ramelow
Austrian Academy of Sciences, Austria

Search for hidden variables in neutron experiments
Helmut Rauch
Vienna University of Technology, Austria

Testing Bell’s theorem in high energy physics
Beatrix Hiesmayr
University of Vienna, Austria

Quantum optics experiments using satellites
Rupert Ursin
Austrian Academy of Sciences, Austria

A full state in a single number
Valerio Scarani
National University of Singapore, Singapore

Physics above and below the Bell horizon: re-examining quantum foundations and
glimpsing the post-quantum world via photonics
Andrew White
University of Queensland, Australia

Superconducting Xmon qubits with gate fidelity at the surface code threshold
John M. Martinis
University of California at Santa Barbara, CA, USA

The maximally entangled set of multipartite quantum states
Cornelia Spee1, Julio Iñigo de Vicente Majúa2 and Barbara Kraus1
1University of Innsbruck, Austria
2Charles III University of Madrid, Spain
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Some Bell’s theorem test loopholes added in the last 36 years
John F. Clauser
J. F. Clauser and Associates, CA, USA

Entanglement in massive systems: what do we learn?
Markus Aspelmeyer
University of Vienna, Austria

On spatial entanglement wave functions
Michael Horne
Stonehill College, MA, USA

Whose information? Information about what?
Jeffrey Bub
University of Maryland, MD, USA

Magic moments with John Bell: collaboration and friendship
Reinhold Bertlmann
University of Vienna, Austria

Public lecture: From Einstein’s intuition to quantum bits: a new quantum age
Alain Aspect
École supérieure d’optique, France

Analyzing multiparticle quantum states: problems and solutions
Otfried Gühne1, Matthias Kleinmann2 and Tobias Moroder1
1University of Siegen, Germany
2University of the Basque Country, Spain

Quantum non-locality: a resource for information processing
Antonio Acín1,2 and Miguel Navascués3
1The Institute of Photonic Sciences (ICFO), Spain
2Catalan Institution for Research and Advanced Studies (ICREA), Spain
3University of Bilkent, Turkey

On causal explanations of quantum correlations
Robert Spekkens
Perimeter Institute for Theoretical Physics, ON, Canada

Non-locality?—It ain’t necessarily so
Marek Zukowski
University of Gdańsk, Poland
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My struggle to face up to un‐reality
Terence Rudolph
Imperial College London, UK

Heralded entanglement between distant atoms. Towards a loophole free test of
Bell’s inequality?
Harald Weinfurter
Ludwig Maximilian University of Munich, Germany

Quantum correlations: where, how and why
Adán Cabello
University of Sevilla, Spain

Bell violation with entangled photons, free of the fair-sampling assumption
Marissa Giustina1,2, Alexandra Mech1,2, Sven Ramelow1,2, Bernhard
Wittmann1,2, Johannes Kofler1,3, Jörn Beyer4, Adriana Lita5, Brice Calkins5,
Thomas Gerrits5, Sae Woo Nam5, Rupert Ursin1 and Anton Zeilinger1,2
1Austrian Academy of Sciences, Austria
2University of Vienna, Austria
3Max Planck Institute of Quantum Optics (MPQ), Germany
4Physikalisch-Technische Bundesanstalt, Germany
5National Institute of Standards and Technology (NIST), MD, USA

The dynamical roles played by mass and proper time in physics
Daniel Greenberger
City College of New York, NY, USA

Causation and the two Bell’s theorems of John Bell
Howard Wiseman1 and Eric G. Cavalcanti2
1Griffith University, Australia
2University of Sydney, Australia

The freedom of choice assumption and its implications
Renato Renner
Swiss Federal Institute of Technology (ETH), Switzerland

Bell violation with entangled photons, free of the coincidence-time loophole
Jan-Åke Larsson
Linköping University, Sweden

John Bell and quantum information theory
Andrew Whitaker
Queen’s University Belfast, UK
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Steering, and maybe why Einstein didn’t go all the way to Bell’s argument
Reinhard F. Werner
Leibniz University of Hanover, Germany

Quantum mechanics in a new key
Simon B. Kochen
Princeton University, NJ, USA

New dimensions for entangled photons
Anton Zeilinger
Austrian Academy of Sciences, Austria

Poster presentations2

Quantum circuits cannot control unknown operations
Mateus Araújo
University of Vienna, Austria

Probing macroscopic realism via Ramsey correlations measurements
Ali Asadian1, Caslav Brukner2 and Peter Rabl1
1Vienna University of Technology, Austria
2Austrian Academy of Sciences, Austria

Non-locality of the multipartite W state upon loosing parties
Jean-Daniel Bancal1, Tomer Jack Barnea2, Nicolas Brunner3, Péter Diviánszky3,
Nicolas Gisin2, Tamás Vértesi3 and Yeong-Cherng Liang4
1National University of Singapore, Singapore
2University of Geneva, Switzerland
3Hungarian Academy of Sciences, Hungary
4Swiss Federal Institute of Technology (ETH), Switzerland

Tripartite quantum state violating the hidden influence constraints
Tomer Jack Barnea1, Jean-Daniel Bancal2, Yeong-Cherng Liang1,3 and
Nicolas Gisin1
1University of Geneva, Switzerland
2National University of Singapore, Singapore
3Swiss Federal Institute of Technology (ETH), Switzerland

Quantifying the non-locality of experimental qutrits without Bell inequalities
Bänz Bessire1, Marcel Pfaffhauser2, Christof Bernhard1, Alberto Montina2,
André Stefanov1 and Stefan Wolf2
1University of Bern, Switzerland
2University of Lugano, Switzerland

2Presenting authors are marked in bold.
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Compressed simulation of evolutions of the XY-model
Walter L. Boyajian, Valentin Murg and Barbara Kraus
University of Innsbruck, Austria

Fast and efficient detection of atomic states for a conclusive test of Bell’s inequality
Daniel Burchardt, Norbert Ortegel, Kai Redeker, Robert Garthoff, Markus Rau,
Michael Krug, Markus Weber, Wenjamin Rosenfeld and Harald Weinfurter
Ludwig Maximilian University of Munich, Germany
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