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To my Teachers



Preface

Why a ‘Shortcut’?

The idea for writing this book originated from my experience over the past few
years of teaching a one-semester course to graduate students in the Department of
Electric Engineering of Capitol Technology University (Laurel, Maryland).
I noticed that the students were always interested in learning (typically, from
scratch) about both superconductivity and COMSOL Multiphysics. The problem,
however, was not only that they had very little knowledge of solid-state physics and
quantum physics (since they had been prepared for careers in engineering). Most
importantly, they had very little time for reading textbooks on these subjects; almost
all of them were supporting their studies (and families) with part-time or even
full-time jobs. My task was to deliver the knowledge to them so clearly and con-
cisely that whatever they understood in the classroom would stay with them for the
rest of their lives. I glossed over trivial content, such as coefficients in formulas; my
goal was never to cover everything, but rather to introduce the unusual concepts of
superconductivity in the most 'user friendly' and transparent manner, always taking
shortcuts to essentials.

The Google dictionary defines ‘shortcut’ as a shorter alternative route or an
accelerated way of doing or achieving something. A similar meaning is provided by
the Oxford English dictionary: an accelerated way of doing or achieving some-
thing. The Cambridge English dictionary agrees with that: a quicker way of doing
something in order to save time or effort. These definitions pinpoint our goal and
should resonate with the reader’s intention: to achieve professionalism in super-
conductivity faster than expected. Paradoxically, the more developed a society is,
the less time is left for fundamental studies: too many temptations are around. The
accelerated progress of science aggravates the situation even more: the volume of
knowledge becomes increasingly large, and researchers should digest all of it for
their own new findings to occur, which of course increases this volume further… It
is hard to imagine what could have happened if computers and the Internet would
not give us a hand. Each time I am finding unbelievable to find answers at the
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Internet, I recall my version of a common Western adage: “God created mean equal;
the Internet made them equal!”. In view of Internet, there is no list of references in
Part I of this book: the readers are advised to use Google.

Computer power does miracles for those who tame it. Many young people have
computer addiction. Regretfully, many waste their time by playing computer
games. Access to a finite element modeling software, the COMSOL basic package,
will let them switching to a big fan with a real science, the science of supercon-
ductivity with this book. Their time will be used much more productively when new
scientific results will start coming out under their fingers on keyboards!

There is another, older group of very serious people involved in science and
technology. They already have understood the value of superconductivity, but have
no time to devote for learning the sophisticated mathematical background of this
rather unusual area of condensed matter physics. Nor have they time to learn
COMSOL. Even if they do, COMSOL has no superconductivity module to help in
their effort. It has many other modules, for example, the thermoelectricity module,
the optics module, but not yet a superconductivity one. Thus we provide a detailed
description of how to use the mathematical module of the basic COMSOL package
to model certain, sometimes rather sophisticated superconducting tasks, and elevate
the results to the level of animations. These animations are very exciting: they look
similar to visualized laboratory experimental results obtained without spending
many months of time and tons of money. Moreover, you can watch the picosecond-
scale dynamics on timescales convenient to human eyes, and understand the details
of evolution…

Our treatment of superconductivity in Part I culminates with the application of
time-dependent Ginzburg-Landau (TDGL) equations to various dynamic effects
important for superconducting electronics. They also allow us to trace the evolution
of superconducting state under the influence of various fields. COMSOL knowl-
edge is not assumed. The codes are described step by step in the book. Also, the
readers can download these codes, except the very last one, from the Springer
website, create shortcuts and use them in direct accordance with the shortcut’s
‘computer science’ meaning as a quick way to start or use a computer program.
Pretty soon they will be able to explore yet unexplored problems in the areas of
superconducting electronics, publish articles and share the results with the third
parties. If they do not have the COMSOL package, they can make use of COMSOL
exe-files, which also come with this book, and run them on any PC. Those who
prefer to deal directly with the animations without changing physical parameters
of the solutions, can just download and play the avi-files.

At this point I feel obligated to warn the readers that the word ‘shortcut’ has one
more facet: a method or means of doing something more directly and quickly than
and often not so thoroughly as by ordinary procedure (the Merriam-Webster dic-
tionary). This warning is for those who would like to deepen studying of super-
conductivity for reaching advanced level of knowledge. They are invited into Part II
of this book, which contains the full palette of the traditional theory of supercon-
ductivity, culminating with the derivation of the full set of time-dependent
Ginzburg-Landau equations for finite-gap superconductors. Its simplified form is

viii Preface



used in Part I as the instrument of superconductivity exploration. One last remark:
in a book with about 1000 equations, it is difficult to avoid typos and occasional
mistakes. Rely on the book, but also on your intuition and judgment.

To all those who would like to start enjoying the beauties of quantum nature
of the world: Welcome to the ‘Shortcut to Superconductivity’!

Burtonsville/Laurel, MD, USA
February 2020

Armen Gulian
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Part I
Mastering Superconductivity with
Computers via Time-Dependent

Ginzburg-Landau Equations



Chapter 1
Basics

This Chapter will introduce, in a simple way, the basic concepts of superconductivity
required to start modeling of superconducting electronics devices. Also, the first very
basic COMSOL example will be given in full details—no preliminary knowledge of
COMSOL is required. From a conceptual point of view, the most important goal is
to understand what makes superconductors the quantum objects. From the practical
point of view we will learn (i) what is replacing Ohm’s law in superconductors; (ii)
how to understand Meissner effect in Londons’ approach; (iii) what is the magnetic
field screening length; (iv) how to describe superconductors in a gauge-invariantway;
(v) Ginzburg–Landau Ψ -function approach to superconductivity and the role of the
Ψ -function phase; (vi) flux quantization and related hint on electron pairing (Cooper
condensation) in superconductors; (vii) difference between Cooper and Bose con-
densates; (viii) Josephson effects, and (ix) SQUIDSs. This Chapter will introduce the
simplified version of the time-dependent Ginzburg–Landau (TDGL) equations valid
for so-called gapless superconductors. In analogy with the Schrödinger equation,
these equations will be postulated without derivation for solving practical tasks in
the next chapter. The rigorous quantum mechanical derivation of TDGL equations
will require all of Part II of this book.

Two seminar-type discussions are added to this Chapter. One of them discusses
magneticmoment of rotating superconducting ball—the so-calledLondon’smoment.
This example, though very useful educationally, is absent in usual textbooks. The
second seminar discusses how high the superconducting transition temperature can
be—this is one of the topics which I have found to always be interesting for curious
students.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-23486-7_1) contains supplementary material, which is
available to authorized users.
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A. Gulian, Shortcut to Superconductivity,
https://doi.org/10.1007/978-3-030-23486-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23486-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-23486-7_1
https://doi.org/10.1007/978-3-030-23486-7_1
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1.1 What is a Superconductor?

Do not be afraid of the most straightforward answer: a conductor with no resistance.
This, a bit naive, definition will lead us to many logical puzzles, and we will decipher
them one by one.

What does it mean ‘a conductor with no resistance’? The resistance R of a conduc-
torwith a length L and a cross section S is characterized by thewell-knownexpression
R = ρL/S,where ρ is the resistivity, an intrinsic property of the material. In general,
ρ depends on temperature T . We will recall that in metals, resistivity ρ(T ) typically
increases when the temperature goes up; in semiconductors, it increases when the
temperature goes down. In dielectrics, ρ is very large, and ρ(T ) makes no sense; the
conductivity σ ≡ 1/ρ is taken to be zero: σ = 0. For superconductors, as was just
declared, R = 0, which means ρ = 0. That creates problems when working with the
Ohm’s law. We recall that on the microscopic scale this law can be written as

j = σE, (1.1)

where j is the current density,which is related to the electric fieldEby the conductivity
σ. Then σ = ∞ at ρ ≡ 1/σ = 0. How should one handle the infinitely large current
density (1.1)? It appears that for superconductors, the relation (1.1) should be replaced
by a more appropriate one. Let us determine this expression.

1.2 London Brothers Approach

When a constant electric field E is applied to a metal, electrons begin drifting in this
metal, and a stationary flow is possible because of the viscous nature of this drift.
Indeed, the equation of viscous motion for an electron is:

ẍ = eE/m − γẋ (1.2)

(herem is the electron mass, e is its charge, γ is the damping coefficient, and x is the
coordinate of the electron – for simplicity, we consider motion along this coordinate
only). This is Newton’s Second law with damping taken into account. From (1.2),
it follows that the stationary drift velocity (ẍ = 0, ẋ = const) is proportional to the
acting force:

ẋ = eE/(γm). (1.3)

This result corresponds to theAristotelian notion that amotionwith constant velocity
requires a constant force—that statement is true in viscousmedia. The electric current
density can now be written as:
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j = enẋ = e2n

γm
E (1.4)

(where n is the number of electrons per unit volume). One can notice by comparing
(1.1) and (1.4) that we have derived the expression for conductivity:

σ = ne2τ/m, (1.5)

where τ = 1/γ is the characteristic damping time of electrons motion. Equation
(1.5) is valid for normal metals. In superconductors, the electronic motion has no
damping: γ = 0, τ → ∞, so that

σ |τ→∞ = ∞. (1.6)

At γ = 0, (1.2) converts into ẍ = eE/m, i.e., into a purely Newtonian motion: the
acceleration is proportional to the acting force. To deal with it further, we need to
recall the definition of the electric field via the potentials A and ϕ:

E = −1

c
Ȧ − ∇ϕ. (1.7)

Temporarily, let us choose a vanishing scalar potential ϕ. Then, substituting (1.7)
into (1.2) and integrating with the condition ẋ = 0 at A = 0 (i.e., no motion if no
field), we find:

ẋ = − e

mc
A (1.8)

and thus, by analogy with (1.4),

j = enẋ = −e2n

mc
A. (1.9)

Equations (1.8) and (1.9) are the famous “Londons’ equations”, which were intro-
duced by Fritz and Heinz London brothers in 1935 to explain experimental findings
by Meissner and Ochsenfeld, to be discussed below. To be precise, the Londons
represented (1.8) and (1.9) in a somewhat different form. Namely, taking the time
derivative of (1.8), using (1.7) with the dropped scalar potential and (1.9), one obtains

j̇=e2n

m
E. (1.10)

Taking curl of (1.9), one can have

curl v = − e

mc
B. (1.11)
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These (1.10) and (1.11), have been suggested originally by the Londons. The Lon-
dons’ equations have crucial importance in the physics of superconductivity, since
these replace the Ohm’s law for superconductors. We will discuss these equations
and their generalization further on.

Problem 1. Using (1.9), consider the penetration of a magnetic field into a
superconductor.

Tip: Consider a half-space occupied by a superconductor and apply (1.9) together
with the Maxwell equations.

Problem 2. Prove that screening of a magnetic field in superconductors takes
place at the shortest possible distance.

Tip: Consider the plasma frequency of metals and compare with the London
penetration depth.

Problem 3. Estimate the characteristic length of magnetic field penetration
into a bulk superconductor.

Tip: Use the result of Problem 2.

Solution to Problem 1
Let us consider a superconductor occupying the half-space x > 0; the region x < 0
is empty (Fig. 1.1). The surface of the sample is the (y, z)-plane.

Then, both the magnetic field B and the current j in the superconductor depend
only on the x-coordinate. TheMaxwell equations required for this task can bewritten
as:

curlB(x) = 4π

c
j(x), (1.12)

divB(x) = 0. (1.13)

Arbitrary direction of magnetic field can always be decomposed into two vectors:
one to be perpendicular to the sample surface B(x) = (Bx , 0, 0), and the other to be
tangential to that surface (see Fig. 1.1). In the first case, from (1.13) it follows that
∂B/∂x = 0, so that Bx is constant. Now, let us take the curl of the Londons’ equation
(1.9); recalling that curlA = B, we get curl j= −[e2n/(mc)]B. Substituting in it j
from (1.12), we find

curlcurlB = −4πe2n

mc2
B. (1.14)

Clearly, for a constant B, the l.h. side of (1.14) is zero, so B = 0 (and also, as
follows from (1.12), j = 0). This signifies that there should be no B-field component
perpendicular to the surface, i.e., the magnetic field should always align tangentially
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Fig. 1.1 Superconducting
half-space (at x > 0) facing
vacuum with the magnetic
field B

to the surface of superconductor: B(x) = (0, By, Bz). In that case, (1.13) is always
satisfied. To simplify further consideration, we can rotate the local reference frame
aligning its z-axis along B so that B(x) = (0, 0, Bz). Then, only the y-component of
curlB is non-zero: curlB = (0, curl B |y, 0)

curlB |y= −∂Bz

∂x
, (1.15)

and, according to (1.12), the current is directed along the y-axis: j = (0, jy, 0).
Substitution of (1.15) into (1.14) yields

∂2B
∂x2

= 4πne2

mc2
B. (1.16)

Of the two solutions B = B0 exp
[
±√

4πne2/(mc2) x
]
of (1.16), we should choose

the exponentially decreasing one since only that solution is finite inside the supercon-
ductor. Thus, the externally applied magnetic field exponentially falls to zero inside
of the bulk superconductor; i.e., the superconductor screens off the magnetic field.
The characteristic length λL of this screening is defined by the relation:

1

λ2
L

= 4πne2

mc2
. (1.17)
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Comment This quantity, λL , is called the “London penetration depth”, and
the expulsion of magnetic field from the depth of a superconductor is called
the “Meissner effect”.

Solution to Problem 2
The highest frequencywhich electrons can possess inmetals is the plasma frequency:
ωpl = √

4πne2/m. One can notice from (1.17) the relation λL = c/ωpl . The time
τ ∼ 1/ωpl is the shortest possible time for the collective motion of electrons in
metals, and the speed of light, c , is the fastest possible in nature. Thus, the magnetic
field screening in superconductors takes place at the shortest possible distance.

Solution to Problem 3
Using λL = c/ωpl and substituting c ∼ 3 · 1010 cm/s and the value ωpl ∼ 1016 s−1,
we find λL ∼ 3 · 10−6 cm, i.e., about ∼30nm as a typical value.

Comment Obviously, this quantity is material-dependent: both n, the density
of electrons, and m, the effective mass of electrons, depend on the material.
In high-temperature superconductors, like Y Ba2Cu3O6+δ, n can be smaller
than 1021 cm−3, while in elemental superconductors, like Al, n can be close
to 1024 cm−3. The effective mass of electrons can be both smaller or larger
than the mass of a bare electron (i.e., the rest mass of electron in vacuum).
For example, in the so called “heavy-fermion” superconductors, m is factor
of thousand greater than the bare electron mass. Thus, λL may vary among
metals to a large extent. Note also that c in metals is smaller than in vacuum
by a factor of 3.

1.3 Superconducting Disk in a Magnetic Field: COMSOL
Example

As the first application of COMSOL Multiphysics, let us consider the expulsion of
a magnetic field from a thin superconducting disk in stationary conditions within
Londons’ approach.

In the case of magnetostatics we have two of Maxwell equations in the form

divB = 0, (1.18)

curlB = 4πj, (1.19)

where B is the magnetic induction
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B = curlA, (1.20)

and j is the current density. Substituting (1.20) into (1.19), we have

curl curlA ≡ grad divA − ∇2A = 4πj. (1.21)

At this point, we will make a choice of the gauge, assuming divA = 0. This is the
so-called “London gauge”. Substituting (1.9) into (1.21), we get

∇2A = 1

λ2
L

A. (1.22)

where the relation (1.17) for λL is used.

Remark When deriving (1.22), we used the Londons’ relation j ∝ −A. That
means that (1.22) is equivalent to

∇2j = 1

λ2
L

j. (1.23)

We should note in passing that from (1.19), using (1.18), it also follows that:

∇2B = 1

λ2
L

B. (1.24)

Later in this book, we will see that the derivation of (1.23) and (1.24) does
not require choosing any particular gauge while that of (1.22) does. That is
why they would say that the simple relation j ∝ −A is valid only in London’s
gauge.

To take advantage of chosen gauge for solving (1.22), we notice that its free term
is proportional to the current j, which can be non-zero only in the superconductor.
Thus, (1.22) can be re-written as

∇2A = I (r)

λ2
L

A, (1.25)

where I (r) = 1 inside of superconductor, and I (r) = 0 outside of it.Wewill consider
the external magnetic field to be homogeneous and perpendicular to the disk surface.
The problem then is convenient to treat in the cylindrical coordinates:A = A(r,ϕ, z)
with H||ẑ. Then A = Aϕ̂, where the scalar A depends only on coordinates (r, z).
Thus, the vectorial equation (1.25) is reduced to a simpler scalar equation
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∇2A = I (r, z)

λ2
L

A. (1.26)

As soon as the scalar A is known, the magnetic induction can be found as

B = curlA = −∂A

∂z
r̂ + 1

r

∂(r A)

∂r
ẑ. (1.27)

This relation and the symmetry of the problem allow us to formulate boundary con-
ditions for A. Indeed, from the symmetry, theB-field cannot possess an r̂-component
on ẑ-axis. That means, as it follows from (1.27),

∂A

∂z

∣∣∣∣
r=0

= 0. (1.28)

Far from the disk, the field should remain homogeneous, with B = H, i.e., Bϕ and
Br are absent, and Bz = H . Again, from (1.27), one can deduce

A|r−→∞ = A(r), i.e., A cannot depend on z, (1.29)

and

A|z−→±∞ = A(r) = Hr

2
. (1.30)

For a numerical approach to the problem, the infinities in (1.29) and (1.30) should be
replaced by some finite values (we will denote them, accordingly, R0 and H0, with
the assumption that these values should be much larger than the sizes r0 and h0 of
the disk). As soon as an increase of R0 and H0 at fixed values of r0 and h0 does not
affect the solutions inside and around the disk, the infinities are indeed “infinite”.

Let us now implement thefinite elementmodelingof this problemusingCOMSOL
Multiphysics.1 In this book, we will be using its version 5.4, which was available at
the time of the manuscript preparation.

Open COMSOL, and click on Model Wizard. Select 2D Axisymmetric Space
Dimension. Next window is Select Physics. Double click onMathematics, then dou-
ble click on PDE Interfaces, and then double click on Coefficient Form PDE(c). That
choice will become visible in the Added Physics Interfaces window. At this point, it
is a good idea to save the file. Then click on Study button. Select Study will come
in; choose Stationary by double clicking. Model Builder will open, and you can
start building it. Click on Parameters, and start filling in the parameters in Settings
window. We will start with the parameters shown in Fig. 1.2.

Now we can choose the geometry. Right click on Geometry, and twice choose
rectangles from the pop-up window. Click once on the Rectangle 1 and then in
Settings window call it Disk. Do the same with Rectangle 2 and call it Box. Appro-

1Our treatment follows, with some modufications, the approach suggested by J.-G.Caputo et al.,
axrXiv:1308.2204v1 [cond-mat.supr-con] 9 Aug 2013.
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Fig. 1.2 Possible choice of parameters

priately, insert the values of r0 and R0 for their Width in Settings window, and h0
and H0 for their heights. Then click on Build All Objects, and on Zoom Extents in
Graphics window. You will see the picture shown in Fig. 1.3.
To locate Disk and Box symmetrically relative to the y-axis in Settings window,

under Position choose z = −h0/2 and z = −H0/2 correspondingly. Press Build All
Objects and Zoom Extents. Figure1.4 shows the resultant picture.

Nowwecan specify theCoefficient Form PDE.Double click on Coefficient Form
PDE (c) and click on Coefficient Form PDE 1 in Model Builder. Then click on
Equation in Settings window. The equation with coefficients will be displayed as
in Fig. 1.5.

Weobserve that da should be turned to zero, aswell as the free term f (their default
values are 1). The variable u corresponds here to our function A. Coefficients α,
β, and γ are zero by default. For this equation to coincide with (1.26), coefficient a
should be equal to I (r, z)/λ2

L . The function I (r, z) can be defined in COMSOL via
Boolean operators:

I (r, z) = (r < r0) ∗ (z2 < h20/4). (1.31)

COMSOL will assign (r < r0) = 1 if r < r0 is true, and zero otherwise. Similarly
with the second multiplier in (1.31). Thus the expression for a in Fig. 1.5 should be
as shown in Fig. 1.6.

Now we can take care of boundary conditions. The default boundary condition
is Zero Flux, which should be replaced, as was discussed above, by the relations
which follow from (1.27). Far from the disk, the field should remain homogeneous,
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Fig. 1.3 Half disk and half box shown with the symmetry axis (left)

Fig. 1.4 Half disk in the half box—symmetric placement
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Fig. 1.5 Equation and coefficients

Fig. 1.6 Expression for the coefficient a

with B = H ≡ B0, i.e., Bϕ and Br are absent, Bz = B0. Again, from (1.27), one can
deduce

A|r=R0
= HR0/2, (1.32)

A|z=±H0/2 = Hr

2
, (1.33)

and
A|r=0 = 0. (1.34)

The last condition is less general than (1.28), which is equivalent to A|r=0 =
const. However, the choice of const = 0 matches (1.33). To implement con-
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Fig. 1.7 Defining Dirichlet condition for the far vertical boundary

Fig. 1.8 Dirichlet conditions on the far horizontal boundaries

ditions (1.32)–(1.34), right click on Coefficient Form PDE (c) and then click on
Dirichlet Boundary Condition; repeat it three times for (1.32)–(1.34) correspond-
ingly. They will appear in Model Builder window just after Initial Values line. Click
on the first one. Corresponding Settings window will open. We would like the pre-
scribed value of u to be B0 ∗ R0/2 on the far vertical boundary. To accomplish this
task, insert this value as shown in Fig. 1.7, then move mouse onto the Graphics panel,
and click onto the vertical line. Hovering mouse on the line will make it red colored,
and after clicking, it will become blue, and the number corresponding to it will appear
in the Boundary selection window, as shown in Fig. 1.7. Second boundary condition,
(1.33), should be inserted for the two long horizontal boundaries in the same manner
(Fig. 1.8). At last, we should implement the boundary condition (1.34) on the r = 0
axis. In the Model Builder window, click on Dirichlet Boundary Condition 3, then
hover mouse consecutively on three vertical lines at r = 0, and click on them. Their
red color will convert into blue, and the numbers of boundaries, 1, 3 and 5 will appear
in the Settings window. Save the file, and run computation via =Compute button at
Home. The result will look like Fig. (1.9).

Click on Color Black in Settings window to make contours of the disk more
visible. To have more a informative picture, it is worth it to plot not the vector
potential, which is what Fig. 1.9 displays, but rather (1.27), the magnetic field B. For
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Fig. 1.9 Intermediate result with the scalar A displayed

that in Results of Model Builder, right-click on 2D Plot1, and choose in the pop-up
windowArrow Surface. In accordance to Fig. 1.9, in the Expression of Settings insert
−uz for the R component, and (u + r ∗ ur)/r for the Z component. Then click Plot
in Settings. Youwill see the vectorB-field on top of the scalar A-field. Scroll down to
the scale factor and increase the scale factor to make the arrows more visible. We still
need to replace the scalar field A by the value of B2 = (∂u/∂z)2 + (u/r + ∂u/∂r)2.
For that, click on Surface in 2D Plot Group 1 in the Model Builder and replace u by
(uz)̂2 + (u/(r + 0.0000001) + ur )̂2, which is B2 in COMSOL notations.We added
a very small constant in the denominator to avoid division by zero when plotting the
figure. The result is shown in Fig. 1.10.

This plotting may be more accurate if a smaller mesh size is chosen: double-click
on Component 1, click on Mesh, and in Settings window, switch Element size from
Normal to Extra fine.

Another much more essential improvement in plotting may be achieved by
representing it in 3D format: the fact that we solved 2D-axisymmetric prob-
lem does not mean that we abandoned its 3D nature. All that required here
is the postprocessing of the result. For that, double click on Data Sets under
Results, and choose Revolution 2D 1. In Revolution Layers choose start angle−180
and Revolution angle 180. Right-click on Results and call-in 3D Plot Group. Then
right click on 3D Plot Group and call in Volume. In Settings window, in Expression
replace u by sqrt ((uz)̂2 + (u/(r + 0.000001) + ur )̂2), which is the modulus of the
magnetic vector. We again added infinitesimal quantity in the denominator so that
the plot will be possible to construct. If you would like to visualize the contours
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Fig. 1.10 Meissner effect in superconducting disk in Londons’ approximation via COMSOL

of the disk better, click on 3D Plot Group and under enabled Plot data set edges,
change color from Black to White. We may also want to see the vectors of magnetic
field. So again right click on 3D Plot Group, and call in Arrow Volume. Then click
on Arrow Volume, and insert the same components as we did for Arrow Surface of
2D Plot Group 1. These are−uz for R component, and u/r + ur for Z component.
Do not forget to insert 0 for PH I component, otherwise the code will not run. The
arrows corresponding to the vector of magnetic field as of now will be masked off by
the colorwhichwe assigned to the volume points. Tomake themvisible, you can click
on Transparency icon in Graphics window. But even that will not be a good enough
visualization (try it!). To improve on this, for the Y grid points in Arrow positioning
of Settings window, switch Number of points to Coordinates, and choose 0 there;
remove Transparency. You may want to make more data points along the x-axis,
which we made equal 20. We left 7 points for Z untouched. The final 3D result is
shown in Fig. 1.11.

You can now drag the image with your mouse and rotate to look at it for different
angles. You can also try other plotting and modeling options as soon as you learned
the rules of the game: the restricting factor is only your imagination. For example,
you can try to find configuration of magnetic field when instead of a disk you have
a washer. Or two washers of different size, etc.
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Fig. 1.11 Meissner effect in Londons’ approximation visualized via COMSOL

1.4 Seminar 1. Rotating Superconductor: London’s
Moment

TheMeissner effect is very famous, and all relevant textbooks contain it: it represents
a crucial signature of superconducting state. However, there is another effect, of the
same quantum nature, which is called the London moment. Unfortunately, it is not
described in textbooks, though it characterizes the superconducting state equally
well. We will consider it now.

When dealing with superfluids, an interesting question is: what will happen if
we rotate a superconducting ball? The matter is that the external mechanical action
is engaging into rotation mainly the solid part of the body, i.e., the ionic lattice.
Electrons, which move frictionlessly, should not be directly engaged in motion, so
one should expect a large electric current (caused by the charged ionsmoving through
the electronic liquid) and an associated largemagneticmoment. In reality, this picture
sustains only for a very short amount of time. As soon as the aforementioned current
builds up, it generates a magnetic field which grows synchronously with the current.
A time-dependent magnetic field, in accordance to Maxwell equations, generates
electric field, which accelerates frictionless electrons, and they start moving together
with the lattice. Only a very thin layer near the surface of the body, with the thickness
of the London penetration depth λL is maintaining superconducting current. So the
magnetic moment is actually small yet quite detectable, as we will see. The basic
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cornerstone of our consideration in the assumption that Londons’ equations (1.10)
and (1.11) are valid in any reference frames, i.e., they are applicable even for moving
superconductors. So we will write them for a rotating ball:

curl v = − e

mc
h, (1.35)

v̇ = e

m
e, (1.36)

Here, the velocity v describes the motion of superconducting electrons in the ball, h
and e are local values of the magnetic and electric field vectors. They are unknown
and should be determined further on. What is known is that v0 = v0(x, y, z, t), the
local velocity of the body. We will consider a rotating sphere with radius R and
angular velocity ω. Consideration is in spherical coordinates r , θ, ϕ. Rotation is
along the polar axis, θ = 0. Then

v0 = [ω × r] . (1.37)

The current is j = ens(v − v0), i.e., if all electrons are moving with the ions, there
is no current. Substituting j into the Maxwell equation curl h = (4π/c)j where the
displacement current is dropped, we have:

curl h = 4πnse

c
(v − v0). (1.38)

At the start of rotation, the normal electrons will participate in the relative motion,
but when the rotation is stabilized, they move with the body, and so we can neglect
their presence. Substituting (1.35) into (1.38), we find:

curl curl v = −4πnse2

mc2
(v − v0). (1.39)

Since curl v0 = 2ω and curl curl v0 = 0, we can represent (1.39) as

curl curl (v − v0) = − 1

λ2
L

(v − v0), (1.40)

where we used expression (1.17) for the London penetration length λL . We can also
substitute (1.38) in (1.35), which yields

curl curl h = − 1

λ2
L

(
h + 2mc

e
ω

)
. (1.41)

For the outside of the sphere, r > R, the differential equations are
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div h = 0 (1.42)

and
curl h = 0. (1.43)

These equations do not preclude having a field outside of the sphere. Symmetry
assumes that the field will be dipolar, with the dipole direction along the axis of
rotation. Such a field may have the form

hr = 2M

r3
cos θ,

hθ = M

r3
sin θ, (1.44)

hϕ = 0.

This dipolar field requires a bit of an explanation. As we know, no magnetic
monopoles (i.e., elementary magnetic charges qm) have been detected. For such a
monopole, in analogy with the electric charges and fields, the magnetic field would
be

H = qm
r3

r. (1.45)

Then the dipole field can be imagined as

Hd = qm
r3+

r+ − qm
r3−

r− (1.46)

where r± = r ∓ d/2, r points from the center of the dipole (in our case at r = 0) to
the point of interest, and d points from the negative to the positive magnetic charge.
In the limit d/r → 0,

Hd = 3(M · r̂)r̂−M
r3

, (1.47)

whereM = qmd is the dipole moment. If in Cartesian coordinatesM||ẑ, then in the
spherical coordinate system:

Hd |r = [
3(M · r̂)r̂−M

] · r̂/r3=2M cos θ/r3,

Hd |θ = [
3(M · r̂)r̂−M

] · θ̂/r3=M sin θ/r3, (1.48)

Hd |ϕ = [
3(M · r̂)r̂−M

] · ϕ̂/r3=0/r3,

as in (1.44).
The rest is just a technical task. The value of the constant M (i.e., of the magnetic

dipole moment) should be determined from the boundary conditions.We need to first
determine the field inside the sphere.Wewill try a current having only aϕ-component
which is proportional to sin θ, because v0 in (1.37) has only a ϕ-component which
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is proportional to sin θ :
v0ϕ = ωr sin θ. (1.49)

Then one can assume

vϕ − v0ϕ = f (r) sin θ → vϕ = [ωr + f (r)] sin θ, (1.50)

and from (1.40) we have

f ′′ + 2

r
f ′ −

(
2

r2
+ 1

λ2
L

)
f = 0. (1.51)

Its general solution has a form:

f = C1

r2

(
sinh

r

λL
− r

λL
cosh

r

λL

)
+ C2

r2

(
cosh

r

λL
− r

λL
sinh

r

λL

)
. (1.52)

Here C1 and C2 are constants. The regular solution (i.e., the one which is finite at
r = 0) corresponds to C2 = 0. Then

vϕ =
[
ωr + C1

r2

(
sinh

r

λL
− r

λL
cosh

r

λL

)]
sin θ. (1.53)

For the next step, we substitute this function into h = − (mc/e) curl v, which follows
from (1.35), and compute components of the curl in spherical coordinates for r ≤ R:

hr = mc

e

1

r sin θ

∂

∂θ
(sin θ vϕ)

= mc

e

[
2ω + 2C1

r3

(
sinh

r

λL
− r

λL
cosh

r

λL

)]
cos θ, (1.54)

hθ = −mc

e

1

r

∂

∂r
(r vϕ)

= mc

e

{
−2ω + C1

r3

[(
1 + r2

λ2
L

)
sinh

r

λL
− r

λL
cosh

r

λL

]}
sin θ, (1.55)

hϕ = 0. (1.56)

Continuity of solutions (1.44) and (1.54)–(1.56) at the boundary r = R delivers two
equations for two unknowns M and C1:
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2M = mc

e

[
2ωR3 + 2C1

(
sinh

R

λL
− R

λL
cosh

R

λL

)]
, (1.57)

M = mc

e

{
−2ωR3 + C1

[(
1 + R2

λ2
L

)
sinh

R

λL
− R

λL
cosh

R

λL

]}
. (1.58)

The results are:

C1 = 3ωRλ2
L

sinh (R/λL)
(1.59)

and

M = mcω

e
R3

(
1 + 3λ2

L

R2
− 3λL

R
coth

R

λL

)
. (1.60)

Thus the field outside (1.44) and inside (1.54)–(1.56) of sphere is found, as well as
the current distribution inside of the sphere (1.53). Let us consider the current first.
From (1.53) and (1.59) it follows that j = ens(v − v0) has components:

jθ = jr = 0, (1.61)

jϕ = ens(vϕ − vϕ0)

= 3ensωRλ2
L

sinh (R/λL)

1

r2

(
sinh

r

λL
− r

λL
cosh

r

λL

)
sin θ

≈ −3ensωλL exp

(
− R − r

λL

)
sin θ. (1.62)

In writing the last line in (1.62), we made use of the fact that current flows only at the
thin layer ∼λL of the surface of the sphere. Inside of the sphere, except for this thin
surface layer, the magnetic field is homogeneous. Indeed, with exponential accuracy,
for R − r  λL :

hz = hr cos θ|θ=0 = 2mcω

e
. (1.63)

For ω � 104 s−1 (rotational speed of typical turbopumps) this field is on the order
of a milligauss. Of interest is also the magnetic moment, which in accordance with
(1.60) can be represented as

M ≈ mcω

e
R3. (1.64)
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Remark 1 Our derivation followed that of Fritz London. He himself took
advantage of the previous study by Becker et al. (1933), where all the math-
ematical expressions were obtained. What was not done, and that was where
the genius of London revealed itself, was to understand that the uniqueness
of the solutions based on (1.35) and (1.36) does not depend on the history of
reaching this state. The magnetic momentum of a superconducting ball will
appear not only when the ball is first cooled and then rotated, but also when the
ball is first rotated (so that all the electrons are moving with the lattice), and
then cooled. As soon as the temperature goes below the superconducting tran-
sition temperature, the electrons at the surface layer of the rotating sphere will
reduce their rotational speed and current will set up, causing the observational
magnetic moment. This is quite similar to the Meissner effect, which has the
same independence of the history. Both effects have no classical explanation
and are due to the quantum nature of the superconducting state.

Remark 2Very interestingly, experimentswith various superconductingmate-
rials revealed that the mass m which enters the expressions (1.63) and (1.64)
is the bare electron mass m0 as opposed to the effective electron mass mef f

one deals with in solid-state physics. These experiments included so-called
heavy-fermion superconductorswithmef f ∼ 103m0, and all these experiments
revealed m = m0. Thus, the common belief that in all experiments, as soon
as an electron is in the crystalline lattice, it becomes a dressed particle and
behaves not like a bare electron, should be corrected for inertial experiments.
Another example of this type is presented by the well-known Tolman–Stuart
experiments, which are also inertial experiments.

Remark 3 Since only the crust of the ball is participating in the build-up of
the current, and, accordingly, in the build-up of the magnetic moment, one
can replace the bulk superconducting ball by a superconducting shell or by a
dielectric ball covered by a thin superconducting layer.

Remark 4 Such dielectric (quartz) balls covered by a very thin Niobium super-
conductor film indeed were used by NASA in cooperation with Stanford Uni-
versity for the successful space mission Gravity Probe B to test predictions of
Einstein’s General Relativity. Rotating balls were serving as gyroscopes and
the orientation of the magnetic moment M (which we described above) was
monitored by a SQUID sensor. These balls (see Fig. 1.12) when I saw them in
person at a local exhibition while visiting the Gravity Probe group at Stanford
University a couple of years ago, were the most perfect spheres ever made by
mankind.
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Fig. 1.12 Superconducting ball of Gravity Probe B mission consisted of fused silica ball (left)
covered by Nb film (right). Four balls were used in the instrument for navigation gyroscopes. Their
rotation-caused London magnetic moments were indicating the gyroscope orientation. Manufactur-
ing of balls and development of gyroscope required years of effort. The London moment of rotating
superconductor was instrumental for the mission success

1.5 Ginzburg and Landau Approach

Above, we took advantage of the expression (1.9), which has the structure

j ∝ −A (1.65)

and explained the Meissner effect, an experimental fact. That means that one can
rely on expression (1.65), at least in certain cases. However, in classical physics,
observables cannot be proportional to the vector potential. There is a simple reason for
that: vector potential is not a gauge-invariant quantity.What does thatmean? Suppose
we started fromMaxwell’s equations for some physical problem.We converted these
equations using the relations

E = −Ȧ − ∇ϕ (1.66)

and
curlA = B (1.67)

to equations for A and ϕ and solved them. (An observant reader will notice that
we dropped the factor 1/c in expression (1.66 ), cf. (1.7). In the context of current
discussion this factor is not essential. We will be dropping unessential coefficients
without further notice in Part I of this book from time to time, to draw attention
to essentials.) Then one can add to the solution for A the gradient of an arbitrary
function χ(r, t) without affecting B, since

B = curlA ≡ curl(A + ∇χ) (1.68)
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(the curl of gradient is identically zero). At this process, care should be taken not to
change E in (1.66). For that purpose, one should add to ϕ the function −χ̇, so that

E = − ∂

∂t
(A + ∇χ) − ∇(ϕ − χ̇) ≡ −Ȧ − ∇ϕ, (1.69)

as in (1.66). This operation that involves simultaneous transformation of the val-
ues of A and ϕ is known as the gauge transformation. Thus, the potentials of the
electromagnetic field in classical (Maxwellian) physics are defined up to the gauge
transformation, i.e., are not defined uniquely. However, the experimentally measur-
able current (1.65) should be uniquely defined. Yet it is not! This means that we are
missing a term in (1.65), which we will call temporarily “something”. Then the
correct expression is

j ∝ −A+ something (1.70)

This “something” should behave at gauge transformations in a very certain way:
the addition of ∇χ to A should add the same ∇χ to this something, so that these
additions will cancel each other in (1.70). In quantum physics, luckily, there is a
quantity which acquires χ at the gauge transformation. That quantity is the phase θ
of the wave function Ψ = |Ψ | exp(iθ) of the charged particle: θ → θ + χ.

Remark This fact is crucial for further considerations. We will prove it here
for curious readers in a simple spatially homogeneous case.

If the potential ϕ is nonzero, we should incorporate it into the Hamiltonian
as a potential energy. Thus, the Schrödinger equation has the form:

i
∂

∂t
Ψ = (Ĥ0 + ϕ)Ψ (1.71)

Suppose that the solution of this equation at ϕ = 0 is Ψ0 = |Ψ0| exp(iθ0). We
will seek the solution at ϕ �= 0 in the form Ψ = Ψ0 exp[iθ(t)] . Then

i
∂

∂t
Ψ = i

∂

∂t
[Ψ0 exp(iθ)] = i exp(iθ)

∂Ψ0

∂t
− Ψ0 exp(iθ) θ̇

≡ exp(iθ) i
∂Ψ0

∂t
− Ψ θ̇ (1.72)

If θ does not depend on coordinate x , then Ĥ0Ψ = exp(iθ) Ĥ0Ψ0 and (1.72)
yields

i
∂

∂t
Ψ = (Ĥ0 − θ̇)Ψ. (1.73)

Comparing (1.73) with (1.71) yields:
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θ̇ = −ϕ, (1.74)

or, in the integral form,

θ = −
∫

ϕdt + const ≡ χ. (1.75)

Thus, subtraction of χ̇ from ϕ, (1.69), is associated with adding χ to θ.
This provides us thegrounds to express a hypothesis: in (1.70), something ↔

∇θ, i.e.,

j ∝ −A+ ∇θ. (1.76)

The expression (1.76) is gauge-invariant: the gauge function gradient added to
Awill be compensated by the contribution from∇θ.We also have a hint that the
missing coefficient in (1.76) should be |Ψ |2. Indeed, in quantum mechanics,
the expression for the current density is

j = −A|Ψ |2 +
(
i

2
Ψ ∇Ψ ∗ + c.c.

)
≡ −(A − ∇θ)|Ψ |2, (1.77)

which will match with (1.76). This Ginzburg-Landau expression for current
(1.77),which ismore general than (1.9), should thus be used for the explanation
of the Meissner effect without any contradiction with the gauge invariance.

This conclusion is very deep and far reaching. It tells us that superconductiv-
ity is a quantumphenomenon, and that superconductors aremacroscopic quan-
tum objects. Readers may be surprised here: typically we associate the quantum-
mechanical wave function with the objects in microworld, such as electrons and pho-
tons. Moreover, we learned that macroscopic objects, like pieces of metal, should
behave as classical entities in common life. This is not the casewith superconductors!
Here,Ψ stands for the whole piece of themetal, and that needs an explanation. Below
the critical “transition” temperature, the electrons in superconductors become paired
into so-called “Cooper pairs”. Pairing causes their spins to constitute a whole num-
ber (recall that individual electrons have a spin 1/2), i.e., 0 or 1. In both cases, these
Cooper pairs have quantum statistics different from the single-electron statistics:
instead of Fermi-statistics, they now acquire Bose-statistics, and can be condensed
below a certain “critical” temperature Tc into a condensate that is a relative to the
Bose-condensates (though in this case it is called the “Cooper condensate”).

Problem 4. Determine the difference between Cooper condensate and Bose-
condensate.

Tip: estimate the size of theCooper pair and compare it with inter-atomic distance.
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Solution to Problem 4
Suppose that Cooper pairs have a size ξ. Then, quantum-mechanical uncertainty
relates this size with the momentum δ p × ξ ∼ h , where h is Planck’s constant.
The related energy should be comparable with the transition temperature Tc (since
at this temperature, thermal fluctuations are breaking the pairs). Thus:

(δ p)2

2m
∼ h2

2mξ2
∼ Tc, and ξ ∼ h

√
2m

Tc
. (1.78)

This can be compared with the inter-atomic distance a ∼ h(2m/εF )1/2, where εF is
the characteristic energy of an electron in the metal. Then

ξ ∼ a

√
εF

Tc
, (1.79)

which means, that ξ/a  1. Indeed, typical values of εF are 105 K, and at Tc ∼
10K we thus will have ξ/a ∼ 100. That means that the Cooper pair condensate
is constituted of “particles” which have spatial dimensions much larger than the
distance between single electrons inmetals.Wewill remind the reader that the density
of electrons in metals is approximately equal to the density of ions, and therefore
the inter-electron distance coincides with the inter-atomic distance. Thus, Cooper
pairs greatly overlap in the the Cooper condensate, while in the Bose-condensate,
the size of particles is much smaller than the inter-particle distance, and there is no
overlapping. It is worth noting that there could be systems with low density of charge
carriers where a crossover between Bose and Cooper pair condensates takes place.
Such situations are currently being considered at the frontiers of scientific research.

Remark This is an important difference, but not the only between Cooper and
Bose condensates. We refer interested readers to Sect. 3.3 of Part II for more
information on this topic.

Problem 5. Consider a hollow superconducting cylinder, and prove that the
magnetic flux is quantized in it.

Tip: Take advantage of your knowledge of the Meissner effect.

Solution to Problem 5
Wewill write (1.77), dropping for amoment the constant |Ψ |2. Then, on the trajectory
shown by the dotted line in Fig. 1.13 the value of the current

j = A − ∇θ (1.80)
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Fig. 1.13 Cross section of
hollow cylinder with its axis
parallel to H

is zero (it is also zero on any other trajectory C in the bulk of superconductor; the
“bulk” here means away from the boundary by more than λL ). Then

∮

C

j · dl = 0 = −
∮

C

A · dl+
∮

C

∇θ · dl, (1.81)

or

0 = −
∫

S

curlA · dS +
∮

C

∇θ · dl. (1.82)

Then ∫

S

curlA · dS =
∫

S

B · dS = Φ =
∮

C

∇θ · dl = 2πn, (1.83)

where n = 0,±1,±2, etc. If proper coefficients are used (see for details Sect. 3.4.5
in Part II), then

Φ = φ0n, where n = 0,±1,±2, etc. (1.84)

where

φ0 = hc

2e
≈ 2 × 10−15Weber.

This value is correct for superconductors, and we use it below when considering
SQUIDs. Historically, quantization of flux in superconductors was predicted by Fritz
London, who had no idea about pairing, and thus concluded that one should expect

φ0 = hc

e
(1.85)

In reality, we have a double charge 2e because of Cooper pairing (1 and 2 in the figure
above denote two electrons in the pair). That 2e-factor was almost simultaneously
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confirmed experimentally by two groups after the appearance of BCS theory. As
a matter of fact, the original Ginzburg and Landau theory was developed before
BCS theory, and its authors also had no idea about pairing, so the charge doubling
in their theory was not taken into account. Based on BCS theory, Lev Gor’kov
derived the correct expression for the superconducting current in the Ψ -theory of
superconductivity in the form

j = −(2A − ∇θ)|Ψ |2, (1.86)

with explicit doubling of the charge.

Problem 6. Is the flux always quantized?

Tip: Consider a cylinder with a very thin wall.

Solution to Problem 6
Quantization of the magnetic flux requires existence of a trajectory in the bulk of
superconductorwhere the current density is zero (see Problem5).When the thickness
of the cylinder wall is comparable to the London penetration depth, such trajectories
are absent, and so is the quantization of the flux.

Remark Suppose that we placed a solenoid in a hollow superconducting cylin-
der which generates the field H in its core, as shown in Fig. 1.13. By tuning
the current in the solenoid, this H -field can externally introduce any flux, not
just a quantized one. However, the bulk superconductor will react with a cur-
rent generated in its internal wall surface so that the total resultant flux will
become quantized. F. London called this total flux a “fluxon”. In this language,
we should say that “fluxon” (but not flux!) is quantized in superconductors.

1.6 Josephson Effects

Now, let us draw some conclusions from (1.77) for the current in superconductors.
The current consists of two contributions: the A -part, and the ∇θ-part. Three com-
ponents of the vector potential A plus the scalar ϕ are redundant for the definition
of three components of the vectors B and E. This redundancy can be removed by
the choice of the gauge. We can do that to eliminate one of the scalars. Three scalar
functions are enough for the 3D-case, two scalars are enough for the 2D-case, and
one scalar is enough for the 1D-case.

Let us start from the simplest 1D-case. Suppose we have a superconducting wire
along the x-direction. In that case, we can write jx = −Ax , or, in another gauge,
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j = ∇θ. (We drop |Ψ |2 for simplicity, assuming it is constant for the time being.)
In the latter case, for the current to be constant, its phase θ = const × x . Let us
understand this better.

If there is no current, then the phase is not x-dependent; it is just a constant, so
its gradient (i.e., its derivative over x in this case) is zero. When there is a constant
current in the wire (Fig. 1.14), in accordance with the derivative’s definition

jx = lim
Δθ

Δx
|Δx→0 = const (1.87)

the phase increases linearly from point to point along the wire, i.e., the current is
associated with the phase-change along the trajectory of the current. Obviously, the
current is positive when the phase is increasing, and negative when it is decreasing.

Now consider two pieces of superconducting wire with no current in them
(Fig. 1.15). Each piece has its own wave-function:

Ψle f t = |Ψ | exp(iθle f t ) and Ψright = |Ψ | exp(iθright ) . (1.88)

Since there is no current in either one of them, the phases are constant. If the pieces
had a superconducting transition independent from one another, their phases would
not necessarily be equal. At the same time, we consider |Ψ | to be similar for both
pieces—that is possible because in quantum physics |Ψ |2 is the density of particles
(in our case, paired electrons) and we can consider both pieces of wire to be made of
the same metal. What will happen if we bring them in contact, as shown in Fig. 1.16?
Obviously, there will be a phase difference across the boundary line between the
pieces. That means there will be a current between these pieces with no voltage
applied! The current should be limited in value (any physical border has a finite
thickness, so the denominator in (1.87) is finite). It should also be antisymmetric as
a function of phase difference θle f t − θright ≡ θ. The current should be zero if θ is
zero. It should be periodic with argument θ, with a period of 2π. The last statement
follows from the fact that exp[i(θ + 2πn)] = exp(iθ) and from the structure of the

Fig. 1.14 Current in 1D
wire. In the 1D case current
I is simply proportional to j

Fig. 1.15 Two pieces of
superconducting wire
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Fig. 1.16 Two
superconducting wires in
contact

Fig. 1.17 Voltage applied to
superconductors junction

functions in (1.88). So one would not be mistaken with a statement that the current
should have the form:

j = j0 sin θ, (1.89)

and generally should be non-zero when two superconductors are brought in contact.
This statement constitutes the first so-called “stationary” Josephson effect.

Current between superconductorswill flow, of course, until the electric charging of
pieces will stop it. Alternatively, we need an attached source and a sink for electrons.

Problem 7.What will happen if we apply a constant voltage across this super-
conducting junction (Fig. 1.17)?

Hint: consider one of the superconductors to be at ϕ = 0 and apply ϕ = ϕ0 to
the other superconductor. Use arguments established via gauge-invariance consid-
eration to find the relation between θ and ϕ.

Solution to Problem 7
Non-zero scalar potential in a superconductor can be introduced by performing a
gauge transformation with a function χ̇ = −ϕ. That will also add a function χ to the
phase θ(t), so that θ(t) = −ϕt + θ0 [see (1.74) and (1.75)]. After substitution into
(1.89), we have

j = j0 sin(ϕt − θ0) (1.90)

One can associate ϕ with V , the potential difference between the superconductors.
Also, the phase −θ0 at t = 0 can be dropped if t is shifted in time. Since the super-
conducting wave function is associated with Cooper pairs, the pre-factor should be
changed to 2: V = 2eϕ. Restoring all the units to the conventional ones, we can write
the final result as:

j = j0 sin(ωt), where ω = 2eV/�. (1.91)
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Remark This is a very unusual result. Indeed, it tells us that at a constant
voltage (or potential difference) between superconductors, the current oscil-
lates in time! It was confirmed experimentally soon after its prediction. It is
called the second, or “non-stationary”, Josephson effect. Josephson predicted
his effects when he was a graduate student and received a Nobel prize for his
prediction. It is surprising that these effects were not predicted even before
the microscopic theory of superconductivity, say, by Ginzburg and Landau, or
even by F. London! Here we have an example of even a genius’ imagination
being restricted. It is also important to mention that there is always more in
the theory than its originators have noticed. We will consider SQUIDs in the
next section which will illustrate this statement further.

From the practical point of view, it is very important that the oscillation frequency
in (1.91) contains fundamental constants e and �. This fact was used to determine
these constants with higher accuracy than they were known before. It was also used
for time and voltage standards - the junction can be placed in a resonator in which
the resonant frequency is known with very high accuracy, and determine at which
frequency a resonance is taking place at varying voltage across the junction. Recip-
rocally, you can keep the voltage constant, and vary the geometry of the resonator
to determine the value of voltage from the occurring resonance. Josephson junctions
have many other applications, constituting one of the pillars of superconducting
electronics.

1.7 SQUIDs

We will consider now two Josephson junctions, “a” and “b” in the loop, as shown
in Fig. 1.18. This configuration is called a DC SQUID, the abbreviation standing for
“Superconducting Quantum Interference Device”. There may be a magnetic flux in
the loop, andwe are interested in themaximum superconducting current vs. magnetic
flux in the loop. The current is supposed to be connected to the loop (current j is
depicted by the white arrows). We will neglect all variation of |Ψ | in the loop and use
the formula (1.77) derived above for the current j = −(A − ∇|θ|)|Ψ |2. Because of
theMeissner effect,we expect the current to be zero inside of the bulk superconductor,
say, on the dashed line loop. So, let us integrate this zero current density along that
line:

∮
j · dl = 0 = −

∮
A(r) · dl +

∮
∇θ · dl, (1.92)

or
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Fig. 1.18 Current through
DC SQUID

∮
A(r) · dl =

∮
∇θ · dl. (1.93)

Obviously,

∮
∇θ · dl =

3∫

1

∇θ · dl+
2∫

4

∇θ · dl, (1.94)

which means that
∮

A(r) · dl = θ3 − θ1 + θ2 − θ4. (1.95)

And the same via Stokes’ theorem provides:
∮

A(r) · dl =
∫

S

curlA · dS =
∫

S

H · dS = Φ, (1.96)

where the magnetic flux Φ is:

Φ = θ3 − θ1 + θ2 − θ4 = θa − θb (1.97)

(the absent coefficients will be restored later on), where we denoted

θa = θ2 − θ1 and θb = θ4 − θ3 (1.98)

for the phase jumps on the barriers “a” and “b”, Fig. 1.18. In view of our previ-
ous knowledge of Josephson junctions, we can expect the current across these two
junctions to be:

Ia = I 0a sin(θ2 − θ1) and Ib = I 0b sin(θ4 − θ3) (1.99)

Then, the total current is:
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Fig. 1.19 Maximum current
through DC SQUID vs.
magnetic flux is a periodic
function of Φ

I = Ia + Ib = I 0 (sin θa + sin θb)

= I 0
[
2 sin

(
θa + θb

2

)
cos

(
θa − θb

2

)]
. (1.100)

Here, we consider symmetric junctions for simplicity:

I 0a = I 0b ≡ I 0. (1.101)

Now, we will make simple mathematical transformations and substitutions for Φ

using (1.97):

I = I 0
[
2 cos

(
Φ

2

)
sin

(
θa − θb + 2θb

2

)]

= I 0
[
2 cos

(
Φ

2

)
sin

(
Φ

2
+ θb

)]
(1.102)

At a given value of Φ, the phase θb is still adjustable, so that sin (...) = 1, and thus
the maximum current is:

Imax = 2I 0
∣∣∣∣cos

(
Φ

2

)∣∣∣∣ , (1.103)

which is shown in Fig. 1.19. To understand the importance of SQUIDs, we will now
restore the units in the expression above. To make Φ unitless, we need to divide it
by φ0, the flux quantum. Then
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Imax = 2I0

∣∣∣∣cos
πΦ

φ0

∣∣∣∣ , where φ0 = hc

2e
= π�c

e

≈ 2 × 10−15Weber = 2 × 10−7Gauss × cm2 (1.104)

(appearance of the number π in the argument of the cosine function is related to the
definition of φ0; see Problem 7 below). The sensitivity of SQUIDs is related with
the smallness of this flux quantum. When the current exceeds Imax, there is a voltage
along the current path. This can be used for determining Imax. At a given magnetic
field, or a given flux in the SQUID, we can determine Imax(Φ), and thus determine
the field with very high accuracy. This accuracy stayed unmatched in physics for
decades and only recently has been challenged by other quantum phenomena.

1.8 Time-Dependent Ginzburg–Landau (TDGL) Theory

At this point, it became evident that superconductors should be described by the quan-
tum physics wave function, Ψ = |Ψ | exp(iθ). The “quantum” part of superconduc-
tors, the system of non-dissipative current-carrying electrons, is called Cooper-pair
condensate, and it is this condensate that is described by theΨ -function. However, all
conductivity electrons are paired intoCooper-pairs only at absolute zero temperature,
T = 0. At finite temperatures, T �= 0, a certain amount of unpaired, or “normal”,
electrons exists. Correspondingly, the current consists of a quantum-mechanical,
non-dissipative part and of a normal, dissipative part:

j|total = −(2A − ∇θ)|Ψ |2(non − dissipative current)

+σ

(
∂A
∂t

+ ∇ϕ

)
(dissipative current). (1.105)

Because of electric neutrality (or Coulomb interaction), the dissipative and non-
dissipative electronic motions strongly interact. The most important corollary of this
interaction is that the equation for theΨ -functionno longer looks like the Schrödinger
equation:

i
∂Ψ

∂t
= ĤΨ. (1.106)

It actually turns out that the right equation has a structure similar to (1.106), but with
imaginary conjugated Hamiltonian! It took a long time and an intense effort to derive
this equation in the theory of nonequilibrium superconductivity for a physically
plausible range of parameters. The whole second part of this book is devoted to the
derivation of the system of time-dependent Ginzburg–Landau (TDGL) equations,
and readers interested in this topic are advised to go through this very detailed
background material. For now, in Part I, we will be studying the solutions of these
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equations, considering the equation for the Ψ -function:

− π

8Tc

(
∂

∂t
+ 2iϕ

)
Ψ

+ π

8Tc

[
D (∇ − 2iA)2

]
Ψ +

[
Tc − T

Tc
− 7ζ(3)

8(πTc)2
| Ψ |2

]
Ψ = 0. (1.107)

as given. This is the simplest, so-called “gapless form” of this equation. In (1.107)
ζ(3) = ∑∞

n=1 n
−3 ≈ 1.2 is the Riemann zeta function, D is the diffusion coefficient,

and Tc is the critical temperature. The most important change here compared to
the quantum mechanical equation (1.106) is the disappearance of the imaginary
coefficient “i” in front of the time derivative, and its replacement by a real coefficient.
While (1.106) is a wave equation, (1.107) is of a relaxation type.

Problem 8. Prove the second part of the statement above.

Tip: Consider spatially homogeneous state with no electric or magnetic fields,
and introduce a small deviation to the steady state solution of (1.107).

Solution to Problem 8
In absence of external fields: A = 0, ϕ = 0, and for the homogeneous state (Ψ -real,
∇|Ψ | = 0) (1.107) is:

− π

8Tc

∂

∂t
Ψ +

[
Tc − T

Tc
− 7ζ(3)

8(πTc)2
Ψ 2

]
Ψ = 0. (1.108)

Its nontrivial steady-state solution (Ψ0 �= 0) follows from the equation:

Tc − T

Tc
− 7ζ(3)

8(πTc)2
Ψ0

2 = 0. (1.109)

If Ψ = Ψ0 + δΨ (t), and |δΨ |�| Ψ0|, then from (1.108) one can derive

− π

8Tc

∂

∂t
(δΨ ) +

[
Tc − T

Tc
− 7ζ(3)

8(πTc)2
(Ψ0 + δΨ )2

]
(Ψ0 + δΨ ) = 0. (1.110)

Using (1.109) and neglecting smaller (δΨ )2-terms, we represent (1.110) in the form

π

8Tc

∂

∂t
(δΨ ) = − 7ζ(3)

8(πTc)2
(2Ψ 2

0 )(δΨ ). (1.111)
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From here we see that if δΨ = Ψ − Ψ0 > 0 then ∂(δΨ )/∂t < 0. Reciprocally, if
δΨ < 0, then ∂(δΨ )/∂t > 0. That means that small fluctuations will relax to zero,
so that a weakly perturbed Ψ -function will relax to its steady-state value. In more
formal language, (1.111) has a relaxational solution Ψ (t) = δΨ |t=0 exp(−t/t0),
with a characteristic relaxation time t0 = π3Tc/[14ζ(3)Ψ 2

0 ] ≈ 0.5Tc/Ψ 2
0 .

Remark The relaxation time t0 is temperature-dependent, since Ψ0 = Ψ0(T ).

Ψ0 is small near the transition temperature, and larger at T << Tc. Larger Ψ0

means shorter relaxation time t0. This reflects the property ofBose-condensates
(which are close relatives of Cooper-condensates): they have ability to success-
fully fight small fluctuations and heal themselves. That is why the supercon-
ducting state is much “quieter” than the normal metal state.

Problem 9. Prove the gauge invariance of TDGL equations.
Tip: Consider (1.105) and (1.107), and take into the account that at gauge trans-

formation of the electric field E = −∂A/∂t − ∇ϕ and themagnetic fieldH = curlA
with an arbitrary function χ(x, y, z, t) :

Anew → Aold + (1/2)∇χ, (1.112)

ϕnew → ϕold − (1/2)∂χ/∂t, (1.113)

θnew → θold + χ. (1.114)

Solution to Problem 9
Let us demonstrate the gauge invariance of the current expression first. For that, it is
useful to make a transformation in (1.105):

1

2i
Ψ ∇Ψ ∗ + c.c. = 1

2i
|Ψ | exp(iθ)∇[|Ψ | exp(−iθ)] + c.c.

= ∇|Ψ |2
4i

− |Ψ |2∇θ

2
+ c.c = −|Ψ |2∇θ, (1.115)

so that the current density is equal to

j = −(A − ∇θ)|Ψ |2 + σ

(
∂A
∂t

+ ∇ϕ

)
. (1.116)

Substitution of (1.112)–(1.114) into (1.116) confirms that the gauge function χ
straightforwardly cancels out:
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jnew = −(Anew − ∇θnew)|Ψ |2 + σ

(
∂Anew

∂t
+ ∇ϕnew

)

= − (
Aold − ∇θold

) |Ψ |2 + σ

(
∂Aold

∂t
+ ∇ϕold

)
≡ jold , (1.117)

so that the current density (1.105) is gauge-invariant.
We will consider next its counter part, (1.107) for the Ψ -function. Our strategy

here is to demonstrate that in (1.107), after application of gauge transformation, the
factor exp(iχ) comes out as a free-standing multiplier, so that we can divide by that
factor and eliminate it. For the time derivative term:

(
∂

∂t
+ 2iϕ

)
Ψ →

→
[

∂

∂t
+ 2i(ϕ − χ̇/2)

]
Ψ exp (iχ) =

= ∂

∂t

[
Ψ exp (iχ)

] + [2i(ϕ − χ̇/2)]Ψ exp (iχ) =

= exp (iχ)
∂

∂t
Ψ + Ψ

∂

∂t
{exp[i(χ)]} + [2i(ϕ − χ̇/2)]Ψ exp (iχ) =

= exp (iχ)

{
∂

∂t
Ψ + iΨ χ̇ + [2i(ϕ − χ̇/2)]Ψ

}
=

= exp (iχ)

(
∂

∂t
+ 2iϕ

)
Ψ. (1.118)

For the spatial derivative term:

[
(∇ − 2i A)2

]
Ψ = (∇ − 2i A) (∇ − 2i A) Ψ →

→ [∇ − 2i (A + ∇χ/2)] [∇ − 2i (A + ∇χ/2)]
[
Ψ exp(iχ)

] =
= [∇ − 2i (A + ∇χ/2)]

{∇ [
Ψ exp(iχ)

] − 2i
[
Ψ exp(iχ)

]
(A + ∇χ/2)

} =
= [∇ − 2i (A + ∇χ/2)] exp(iχ) {[∇Ψ + iΨ (∇χ)] − 2iΨ (A + ∇χ/2)} =

= [∇ − 2i (A + ∇χ/2)] {exp(iχ) [(∇ − 2i A) Ψ ]} =
= exp(iχ) [i(∇χ) (∇ − 2i A) Ψ + ∇ (∇ − 2i A) Ψ − 2i (A + ∇χ/2) (∇ − 2i A) Ψ ] =

= exp(iχ) [∇ (∇ − 2i A) Ψ − 2i A (∇ − 2i A) Ψ ] =
= exp(iχ)

[
(∇ − 2i A)2 Ψ

]
. (1.119)

Conclusion: indeed, at gauge transformation the exp(iχ) appears as a common mul-
tiplier in the time and spatial derivative terms of (1.107). Trivially, the same thing
happens with the last group of terms (those without derivatives). We also notice that
exp(iχ) �= 0, so we are not dividing by zero when factoring it out of the equation.
Thus, the gauge transformation leaves the system of (1.107) and (1.105) unchanged,
which proves the gauge-invariance of TDGL equations.
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Remark 1 Gauge transformation simplifies the search for the solutions. For
example, one can choose a gauge with χ = −θ, so that θnew → θold + χ = 0
(see (1.114)) and the Ψ -function is real. However, as soon as the gauge is
chosen, and the procedure of solving the mathematical problem has started,
the gauge can not be changed anymore. So any specific solution is obtained in
a specific gauge.

Remark2The reader should be alerted that the sameΨ -function enters (1.105)
and (1.107) which constitute a system of TDGL equations. That means that
the Ψ -function should have the same normalization in both equations which
currently is not the case. Normalization does not matter for proving gauge
invariance, but it does matter when solving TDGL equations. As shown in
Chap.7, the expression for the current density which has the same normaliza-
tion for Ψ -function as (1.105) has the form:

j = −πσn

4T
|Ψ |2 (2A − ∇θ) + σnE. (1.120)

This form for the current density will be used in the next chapter.

1.9 Seminar 2. When will We Have Superconductors at
Ambient Conditions?

Since the discovery of superconductivity, there was an ever growing effort to raise
the transition temperature of superconductivity (also called the critical temperature
Tc) in novel materials. It was not an easy task, especially because the mechanism of
superconductivity was stubbornly nondisclosive for almost a half-century after its
discovery. Many giant minds, including Einstein, Bohr, Heisenberg, Landau, Feyn-
man (to name a few) failed to decipher themechanismof superconductivity.However,
experimental facts were accumulating, and theoreticians were narrowing the circle
of possible options during the years of effort. In 1957, a trio Bardeen, Cooper and
Schrieffer brilliantly solved the problem (Nobel Prize, 1972). Their theory explained
many experimental facts quantitatively. Curiously, neither one of the explained facts
explicitly included dependence on the so-called “BCS potential”. This potential ζ in
BCS theory plays a crucial role in determining the value of Tc :

Tc ≈ 1.13ωD exp

[
− 1

|ζ| N (0)

]
(1.121)

[see Sect. (3.3) for details]. Its negative value corresponds to the indirect attraction
between electrons. Why do electrons attract each other? It is not a simple question.
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Indeed, electrons interact with each other via the Coulomb force, and this Coulomb
interaction is repulsive in vacuum. (Landau used to say: “Nobody has abrogated the
Coulomb law”.) How does the presence of ion lattice change the situation? Let us
start with analyzing this crucial point. In vacuum, the Coulomb interaction between
two electrons at a distance r is:

V (r) = e2

r
. (1.122)

In a dielectric medium, the repulsion is screened, as described by the dielectric
function ε(r, t):

V (r, t) = 1

ε

e2

r
, (1.123)

so that the repulsion is weaker if ε > 1. As we will see now, the situation is much
more complex in metals.

1.9.1 Dielectric Function

For homogeneous solids, it is convenient to work with Fourier transforms, so (1.123)
becomes

V (q,ω) = 4πe2

ε(q,ω)q2
. (1.124)

The dielectric function is defined according to Maxwell’s electrodynamics by the
relation:

D = ε(q,ω)E, (1.125)

where
divE = 4πρtotal, (1.126)

and
divD = 4πρext. (1.127)

Also
ρtotal = ρe + ρi + ρext (1.128)

where the abbreviations ρe, ρi , and ρext are the charge densities of the electron gas,
of the lattice ions, and of the external charge, respectively. “External” in this context
means “free to manipulate” while ρe and ρi are “bound” charges, participating in
the build-up of the electron and ion plasma oscillation modes2 with frequencies:

2Plasma frequency was already mentioned in relation to the solution of Problem 2.
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ωep =
(
4πn2ee

2

m

)1/2

, (1.129)

ωi p =
(
4πn2i z

2e2

M

)1/2

, (1.130)

where m and M are electron and ion masses, ze is the effective ion charge, and ne
and ni are the electron and ion densities. To determine the value of ε(q,ω), we need
to calculate

ε(q,ω) = ρext

ρe + ρi + ρext
(1.131)

as follows from (1.125)–(1.127). For this task, we will note that the motion of ions
is governed by the equation

ω2ρi = ω2
i pρtotal. (1.132)

To make sure this is indeed the case, one can start with Newton’s law for the ionic
motion:

M
∂vi
∂t

= z |e|E, (1.133)

and transform it into the equation for current density ji = ni z |e| vi :

∂ji
∂t

= ni z2e2

M
E. (1.134)

Combining (1.134) with the continuity equation

∂ρi

∂t
+ div ji = 0 (1.135)

and substituting for the wave perturbation a plane-wave in the form

E = E0e
−iωt+iqr (1.136)

we justify (1.132) after simple algebra.
We can now look at the electron system. Since ωep  ωi p (typically, ωep/ωi p ∼

1016/1013), electrons adiabatically follow ionic motion. Electrons have one more
characteristic frequency: εF/�, where εF is the Fermi-energy which has the same
scale as ωep. The Fermi energy is related to the unperturbed electron density noe via
the expression:

εF = �
2

2m
(3π2n0e)

2/3. (1.137)

From (1.137):
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ne0 = 1

3π2

[
2m

�2
εF

]3/2

. (1.138)

Homogeneous perturbation of the electron density: δne = ne − n0e changes globally
the Fermi-energy by − |e| ϕ, where ϕ is the (negative, if δne > 0) local electrostatic
potential:

ne = n0e + δne = 1

3π2

[
2m

�2
(εF − |e| ϕ)

]3/2

. (1.139)

Taking into account that |eϕ| � εF , after simple algebra, one can find from (1.133)
and (1.134):

δne = −n0e
3

2

|e| ϕ
εF

, (1.140)

or, in terms of ρe = − |e| δne:

ρe = −3

2

n0ee
2ϕ

εF
. (1.141)

Now we can use the Poisson equation:

∇2ϕ = −4πρtotal (1.142)

and substitute (1.141) into (1.142). For the plane-wave motion Fourier component
we get

q2ϕ = 4πρtotal. (1.143)

and, after substitution into (1.141),

ρe = −6n0ee
2

q2εF
ρtotal = −k2T F

q2
ρtotal (1.144)

Here kT F ≡ (6π2n0ee
2/εF )1/2 is the Thomas-Fermi wave vector. We can now calcu-

late ε(q,ω). Obviously, (1.131) could be presented as

ε(q,ω) = ρtotal − ρi − ρext

ρtotal
, (1.145)

and then:

ε(q,ω) = 1 − ω2
i p

ω2
+ k2T F

q2
= ω2(q2 + k2T F ) − ω2

i pq
2

ω2q2
. (1.146)
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1.9.2 BCS Attraction

Thus, the screened Coulomb interaction (1.123) takes the form:

V (q,ω) = 4πe2

q2 + k2T F − ω2
i pq

2/ω2
. (1.147)

This is crucial for the explanation of superconductivity. For high frequencies (ω >

ωi p) we have just the screened Coulomb potential:

V (q,ω) ≈ 4πe2

q2 + k2T F

, (1.148)

or, in the coordinate space:

V (r) = e2

r
e−kFr (1.149)

which is clearly a repulsive potential (sometimes called “Yukawa potential”). Let us
consider q ∼ 1/a, where “a” is the interatomic distance (which is also the interelec-
tronic distance since in a typical metal there is one conducting electron per ion). For
q > kTF and ω < ωi p:

V (q,ω) ≈ −4πe2ω2

q2ω2
i p

, (1.150)

so that the attraction dominates in the net interaction for this range of frequencies and
wave vectors. This mechanism justifies the BCSmodel of superconductivity. Indeed,
the negative interelecronic potential is themajor cornerstone of the BCS-mechanism.
We can roughly approximate ωi p by the lattice Debye frequency ωD , so the attraction
takes place at frequencies below ωD , in accordance to the BCS suggestion.

1.9.3 Phonon Resonance

Small frequenciesmean enough lapsed time. Thatmeans that inter-electron attraction
takes place not immediately, but with a delay thanks to the presence of the lattice.
Overall sign change and negativity in the expression (1.147) looks like a resonant
effect (see Fig. 1.20), so one may say: “because of the resonance, tiny electrons are
able to move heavy ions thus yielding the mechanism of attraction.” And on the other
hand, at short time scales (high frequencies) the interaction is repulsive (1.148).
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Fig. 1.20 The V (q,ω) behavior at certain values of q (in units of a−1, where “a” is interatomic
distance). We also used e2 = 1, ωD = 5, and kT F = 0.1

Fig. 1.21 Comparison of the BCSmodel potential, the Coulomb potential added (“two square well
model”, rectangular curve), with the resonant model (1.147) (diverging curves)

1.9.4 Coulomb Potential and Tolmachov Logarithm

The choice of q in Fig. 1.20 (from 0.1 to 2) was for illustrative purposes only. For
simple metals, interatomic and interelectronic distances have the same mean values,
so we will put q ≈ 1 to move forward with our analysis. Figure1.21 shows this case.
For comparison, we also plotted the BCS approximation for the negative (attractive)
potential at |ω| <ωD (taken ωD = 5) and positive (repulsive) approximation for the
Coulomb part of interaction. (Sometimes, it is called the “two square well model.”)
In analytical form the model potential can be written as:
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V (ω) =
⎧⎨
⎩

−Vp + Vc,

+Vc,

0,

|ω| < ωD

ωD < |ω| < ωc

|ω| > ωc

, (1.151)

where ωc is the cut-off frequency for Coulomb interaction and typically has the order
ofωep. Wewill see now how this potential works in the BCSmodel, where the energy
gap is determined by the well-known self-consistency equation [see Section (3.3.9)
in Part II of this book]:

Δ(ξ) = −
∫

V (ξ − ξ
′
)
Δ(ξ

′
)N (ξ

′
)

2ε′

[
1 − 2 f (ε

′
)
]
dξ

′
, (1.152)

where ε = √
ξ2 + Δ2, N (ξ) is the electron density of states, and f (ε) is the electron

distribution function. In the simplest approximation (as we did above), N (ξ) is taken
to be constant in the whole range of integration:

N (ξ) ≈ N (0) (1.153)

and Δ(ξ) is represented as:

Δ(ξ) =
⎧
⎨
⎩

Δ1, ξ ≤ ωD

Δ2, ωD ≤ ξ ≤ ωc

0, ξ ≥ ωc

. (1.154)

Accordingly, integration in (1.152)will be split into two parts, yielding two functions:

M1 = −
∫ ωD

0

dξ
′

ε′

[
1 − 2 f (ε

′
)
]
, (1.155)

M2 = −
∫ ωc

ωD

dξ
′

ε′

[
1 − 2 f (ε

′
)
]
. (1.156)

Then (1.152) becomes:
(

Δ1

Δ2

)
=

(
M11 M12

M21 M22

)(
Δ1

Δ2

)
. (1.157)

Here

M11 ≈ (μ − λ)M1

M12 ≈ μM2

M21 ≈ μM1

M22 ≈ μM2

, (1.158)
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where we denoted λ = N (0)Vp and μ = N (0)Vc. For the linear homogeneous equa-
tion (1.157) to have non-trivial solutions, the determinant should be equal to zero:

∣∣∣∣
M11 − 1 M12

M21 M22 − 1

∣∣∣∣ = 0, (1.159)

or, using (1.158):

− μλM1M2 − μM2 − μM1 + λM1 + 1 = 0. (1.160)

Substituting into (1.160)

μ = μ∗

1 + μ∗M2
, (1.161)

we get:
(λ − μ∗)M1 = −1. (1.162)

Using the relation [1 − 2 f (ε)] = tanh(ε/2T ), and the fact that at the transition tem-
perature Δ1,2/Tc � 1, we have:

M1 ≈ − ln
(
1.13

ωD

T

)
, (1.163)

M2 ≈ − ln(ωc/ωD). (1.164)

Then, from (1.162) and (1.163), one can determine

Tc = 1.13ωD exp

[
−

(
1

λ − μ∗

)]
, (1.165)

where, as it follows from (1.161) and (1.164),

μ∗ = μ

1 − μM2
= μ

1 + μ ln(ωc/ωD)
. (1.166)

(This logarithmic factor reducing the strength of the Coulomb repulsion is sometimes
called “Tolmachov’s logarithm.”) Typically, μ ∼= 1 and is material dependent, as is λ
(see their definitions above and the discussion below). However, since ωc/ωD  1
(say, ωc/ωD ≈ 102÷3), ln(ωc/ωD) ∼ 4 ÷ 6, μ∗ is almost independent on μ:

μ∗ ≈ ln−1(ωc/ωD) ∼ 0.15 − 0.2. (1.167)

This universal value for μ∗ is used customarily in scientific literature.
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1.9.5 Superconductivity at μ > λ, but λ > μ∗.

As follows from (1.165), the Coulomb repulsion reduces the value of Tc compared to
the case when it is absent (μ = 0). What is even more important: superconductivity
is remarkably present even in cases when the repulsion prevails at all frequencies: it
is tolerable to have

μ > λ (1.168)

and yet Tc > 0 as soon as λ > μ∗. This means that the condition ε(q,ω) < 0 is not
mandatory for superconductivity. However, for somemetals the detailed calculations
show that it is negative for certain values of q and ω: we will discuss it later. For
now, one can consider effective λ defined by the Coulomb renormalization taken
into account, i.e., λe f f = λ − μ∗, so that (1.165) has the same form as (1.121). This
redefinition of Tc is valid in the so-called weak-coupling approximation: λe f f � 1.
It is interesting to explore how high the critical temperature can be in the weak-
coupling approximation. The exponential factor in this case is obviously small. High
values of Tc can then be delivered only by the large values of the pre-exponential
factor. Recalling the elasticity theory, the frequency of ionic oscillation is given by
the relation

ω2 = k

M
, (1.169)

where k is the rigidity coefficient related to the elastic forces reversing the ionic
excursion from the equilibrium position at oscillations, and M is the ionic mass. The
smallest mass among chemical elements corresponds to hydrogen, H . At ambient
conditions, as we know, hydrogen is a gas. However, it was predicted by Wigner
and Huntington in 1935 that at high pressures, hydrogen will convert into a metal.
In accordance with (1.169) ωD of the metallic hydrogen may be very high, and
correspondingly Tc may be high enough to reach room-temperature level. Moreover,
there are expectations that themetallic state of hydrogen ismetastable. A good insight
here is provided by diamond, which is a metastable state of carbon. If you heat a
diamond to high enough temperatures, it will come out of the metastable state and
readily convert into graphite, which has lower free energy. Reversing this conversion
is much harder: you should heat graphite to very high temperatures and squeeze it
before cooling it down momentarily to reach and keep the metastable diamond state.
One way of doing this is an arc-melting of graphite with droplets falling into water.
Another way is the pulsed laser processing of graphite. (These experiments may
deliver some small diamond specimens, but you will never get back your original
diamond so please do not risk it!)

Experiments with metallic hydrogen have not yet reached much fruition: the
required pressures are too high and yet to be conquered.3 However, squeezed

3At the time of preparation of the manuscript of the book a report appeared on achieving this
milestone at about 4 million atm pressure [P. Loubeyre, F. Occelli, and P. Dumas, Synchrotron
infrared spectroscopic evidence of the probable transition to metal hydrogen, Nature, 577, 631–635
(2020)].
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hydrogen-rich materials have been tried, and Eremets’ group reported in 2015 on
203K superconductivity in H2S, and then on 250K superconductivity in LaH10 (in
2019). This class of materials is called Superhydrides. Two International Workshops
have been held on these materials: one in Rome, in 2016, and one in Los Angeles, in
2017. There is a remarkably good agreement between the properties of these materi-
als calculated from first principles, and experimental results. This success is pawing
the road to room-temperature superconductors. The major problem with them is to
recognize which superhydrides may possess metastable superconducting states, and
then reach these states experimentally. There is no guarantee that it will be possible;
however, there is no show-stopper either. Meanwhile, the most important corollary
of this breakthrough to almost room-temperature superconductivity is in demonstra-
tion that superconductivity can win the competition over other instabilities, such as
charge density waves, spin density waves, etc. These and other instabilities have
been detected experimentally, and were considered as major prohibitions for occur-
ring superconductivity at the variation of solid state properties via various methods,
or for the success of mechanisms other than the BCS-mechanism, one of which we
will consider now.

1.9.6 Little’s Model of High-Tc Superconductors and
Interplay Between ω, μ and λ

In an attempt to increase the pre-factor in the expression for Tc of weak-coupling
superconductors above ωD , a remarkable idea was expressed by Little almost imme-
diately after the BCS work. He found a way to justify the replacement of the ionic
mass M in (1.169) by the (much smaller) electronic mass m, thus reaching much
higher values for pre-exponential factor of Tc. To follow Little’s idea, one should
recall that the above-discussed mechanism of resonant agitation of ions by electrons
in physics language means “lattice polarization by electronic motion”. However, in
certain situations, electronic motion can polarize the environment just electronically.
Consider, for example, a metallic nanotube decorated periodically by metallic nano-
islands (Fig. 1.22). Electrons of conductivity moving along the nanotube will repulse
electrons in the nano-islands, temporarily polarizing them due to their electronic
motion. Then, another conductivity electron in the nanotube will be attracted to the
first electron via this island polarization, thus creating a Cooper pair in the system.4

One can expect then much higher values of Tc in accordance with the expression

Tc � ω̄ exp

(
− 1

λe f f

)
. (1.170)

4Actually, Little considered a quasi-1D molecular structure with periodic placement of molecular
rings along the tranjectory of the conductivity electron; this nanotube example was brought to my
attention by Dr. A. Harutyunyan (Honda Research Institute USA, Inc.).



48 1 Basics

Fig. 1.22 Decorated nanotube as an example illustrating Little’s model

where ω̄ is orders of magnitude higher thanωD in (1.165) [for simplicity, we dropped
the numerical coefficient in the pre-factor in (1.170)]. However, one should notice
that for the given values of λ and μ, the increase of ω̄ implies the increase of μ∗:

μ∗ = μ

1 + μ ln(ωc/ω̄)
, (1.171)

and this dependence of λe f f on ω̄ reduces the Tc for large enough values of ω̄. To
obtain the maximum of Tc, one should substitute (1.171) into (1.170) subject to
λe f f = λ − μ∗, and determine its maximum as a function of ω̄. Suppose that ω̄ is as
large as εF . From the condition dTc(ω̄)/dω̄ = 0, it follows that:

ω̄Tmax
c = εF exp

[
−

(
2

λ
− 1

μ

)]
. (1.172)

What is very important is that the maximum of Tc(ω̄) does not correspond to the
maximum of ω̄, which in this case, is of the order of ωc ≈ εF . Rather, it is given by
(1.172), which is significantly smaller. Substituting (1.172) into (1.170) and (1.171)
subject to ωc ≈ εF yields μ∗ = λ/2, and we have

Tmax
c = εF exp

[
−

(
4

λ
− 1

μ

)]
. (1.173)

How high can this temperature be? We should keep in mind that (1.173) was
derived in the weak coupling limit: λ � 1. Substituting λ ∼ 0.3 and μ ∼ 0.3 into
(1.173) we find Tmax

c ≤ εF exp(−12), i.e., if εF ≈ 105 K, we get Tmax
c ≤ 0.6 K.

This interesting conclusion was derived by Cohen and Anderson (1971). Because
of the weak coupling limitation, we cannot choose higher values of λ. If we were
able to substitute λ ∼ 1 into (1.173) and still keep μ ∼ 0.3, then we would arrive
at Tmax

c = εF/ exp(−1)—much higher than room temperature! This indicates how
important it is to have a valid expression for Tc beyond the weak coupling approx-
imation. Such a generalization is made based on the so-called Eliashberg model5

of superconductivity. In this model, as was revealed by McMillan (1968), the most

5This model in the weak coupling limit will be discussed in Sect. 5.1 of Part II.
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essential change occurs in the exponent of the expression for Tc, which, in the first
approximation, we can represent as

T McM
c = ω̄ exp

{
−

[
1 + λ

λ − μ∗(1 + λ)

]}
. (1.174)

Introducing the renormalized interaction constantλ∗ = λ/(1 + λ), one can represent
(1.174) in the form

T McM
c = ω̄ exp

[
−

(
1

λ∗ − μ∗

)]
. (1.175)

Since λ∗ does not depend on ω̄, there is no need to take the derivative again to find
the maximum of T McM

c (ω̄); one can just substitute λ∗ for λ in (1.172) and (1.173)
which yields:

ω̄Tmax
c McM = εF exp

[
−

(
2

λ
− 1

μ
+ 2

)]
, (1.176)

and correspondingly:

TmaxMcM
c = εF exp

[
−

(
4

λ
− 1

μ
+ 4

)]
. (1.177)

If we substitute now λ = 1 and μ = 0.3 into (1.177), we find Tmax
c /εF = exp(−5) ≈

6.7 × 10−3. Thus, at εF = 105 K, we can expect above room-temperature supercon-
ductivity!

There is one related aspect we would like to discuss here: the possible range for
the parameters λ and μ. For Coulombic interaction, as soon as μ exceeds the value of
1, one can expect ferromagnetism, according to Stoner’s criterion (in reality, ferro-
magnetismmay occur even for smaller values of μ). For electron-phonon interaction,
λ may be more than 1 for some metals, as shown in the table below.6

Metal Hg AmPb0.45Bi0.55 Pb
λ 1.6 2.66 1.55

These metals are not ferromagnets, but rather superconductors, which implies
μ < 1. Interestingly, in the physics of metals, there is a relation

μ − λ =
∫

dq
4πe2

q2ε(q, 0)
, (1.178)

6L.P. Gor′kov and V.Z. Kresin, Colloquium: High pressure and road to room temperature super-
conductivity, Rev. Mod. Phys. 90, 011001 (2018) [arXiv:1802.02296].
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from which one can deduce that, for these superconductors, the static dielectric
function ε(q,ω = 0) should be negative for some values of q. At first glance, one
may conclude that “the crystal would be unstable to spatial deformations”. However,
Kirzhnits proved in 1976 that such negativity does not lead to lattice instability.
Moreover, direct calculations by Dolgov and Maksimov (1978) revealed negative
values of ε(q,ω = 0) for certain superconducting metals. One can reciprocate this
philosophy and look for negative values of static dielectric function in prospective
high Tc materials. Ab-initio computations of decorated nanotubes performed by our
research group at Chapman U. (2018) can be regarded as first steps in the right
direction. We refer also to other studies, in particular by Smolyaninova’s group,
based on the same philosophy.

One last remark: McMillan’s formula of the type (1.174) works fine for λ � 1.5.
For larger values of λ’s microscopic equations yield one more interesting limit for
Tc:

Tc = 0.18ω̄

(
λ

1 + 2.58μ∗

)1/2

. (1.179)

This expression was derived by Allen and Dynes (1975) via numerical calculations
(for μ∗ = 0). Analytical treatment was performed by Kresin et al. (1984).

Thus, even leaving aside the opportunity-rich cuprate high-temperature supercon-
ductors, which are still “objects for themselves” despite the fact theywere discovered
decades ago, we conclude that for the superconductivity based on traditional bosonic-
exchange mechanism, there is no actual limit on Tc from a theoretical point of view.
Experiments are bringing us closer and closer to superconductivity at ambient con-
ditions. I have almost no doubts that current generation of students will work with
room-temperature superconductors.



Chapter 2
Exploring Superconductivity with
COMSOL via TDGL Equations

In this Chapter, we will apply two very powerful tools to tackle rather serious,
advancedproblems:COMSOLbasic package andTDGLequations.Ourfirst problem
will be exploring theMeissner effect in a superconductingdisk.Dependingon a single
parameter in TDGL equations, the dynamics of superconductors in magnetic fields
will be quite different: we will realize the existence of two types of superconductors.
Abrikosov vortices will come in almost effortlessly at COMSOL modeling. Two
different ways of treating 2D-models will be explained in detail. The secondwaywill
allow simple-enough generalization to 3D tasks. Using it, we will consider dynamic
pattern of penetration of magnetic field into a 3D washer. All these problems will be
related to superconducting objects in an externally applied magnetic field. The next
group of problems will be related to current carrying superconducting strips. First,
we will consider the dynamics of phase slippage in thin superconducting wires: the
oscillatory regime at the DC current flow will be discovered and explored. Then,
we will treat the flow of current through a thin-finite width superconducting strip:
we will observe generation, propagation and annihilation of Abrikosov vortices and
anti-vortices. It will be shown that annihilation of vortices generates electric field
pulses. The next task will be related with the a close relative of Josephson junctions:
we will consider a Superconductor-Normal metal-Superconductor (SNS) junction in
a DC-mode and realize a state with periodic single-flux quantum (SFQ) generation.
The last task will be cloning of the SFQ pulses: application of an SFQ pulse to SNS
junction in the DC-mode will generate a single flux quantum propagating along the
junction and generate an SFQ pulse when leaving it.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-23486-7_2) contains supplementary material, which is
available to authorized users.

© Springer Nature Switzerland AG 2020
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2.1 General Notions of TDGL Equations

Let us analyzeTDGLequations, (1.107) and (1.120), a little further before using them
for practical needs. In solving these equations we can use the most convenient gauge:
the choice of any gauge function χ(x, y, z, t) shall not influence any physical results
since the equations are gauge-invariant (see Problem 9). From (1.113) it follows that
one can always choose a hypothetical gauge function χ(x, y, z, t) in such a way that
ϕ ≡ 0, i.e., ϕ will drop out from (1.107) and (1.120) and we will end up with a
system:

π

8Tc

∂Ψ

∂t
− πD

8Tc
(∇ − 2iA)2 Ψ −

[
Tc − T

Tc
− 7ζ(3) |Ψ |2

8(πTc)2

]
Ψ = 0, (2.1)

and
j = − πσ

4Tc
|Ψ |2 (2A − ∇θ) − σnȦ. (2.2)

As always in numerical computations, it is convenient to represent these equations
in a dimensionless form. Dividing (2.1) by η = (Tc − T )/Tc, we have

π

8ηTc

∂Ψ

∂t
− πD

8ηTc
(∇ − 2iA)2 Ψ −

(
1 − |Ψ |2

Ψ0
2

)
Ψ = 0, (2.3)

whereΨ0 = √
8π2Tc(Tc − T )/[7ζ(3)]. Fromhere it is obvious that timewill become

conveniently dimensionless if measured in units t0 = π/(8ηTc), and the same will
happen with distance if measured in units

√
πD/(8ηTc). The latter unit is called

coherence length: ξ ≡ √
πD/[8(Tc − T )], since it characterizes spatial decay of the

Ψ -function, which in turn describes coherent behavior of electrons in the Cooper
condensate. Thus, we will pass to the dimensionless time τ = t/t0, but we will not
use the coherence length ξ for the similar purposewith the spatial coordinates. Taking
this into account, and denoting Ψ ≡ Ψ/Ψ0, we can write:

∂ψ

∂τ
− (ξ∇ − 2iξA)2 ψ − (

1 − |ψ|2) ψ = 0. (2.4)

The reason for keeping ξ in (2.4) is that the Ginzburg–Landau set of equations has
more than one characteristic scale for spatial variation of parameters characterizing
superconducting state. We will use the second such scale, which is the unit charac-
terizing the variation of the vector potential, i.e., the London penetration depth λL .
This characteristic length will follow from the current density equation (2.2). Using
Maxwell’s equation (in Gaussian units with c = 1): curl B = 4πj = ∇ × ∇ × A,
and substituting this into (2.2), we find, temporarily dropping electric field term
(∝ Ȧ) and assuming Ψ = Ψ0 (i.e., ψ ≡ 1):
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∇ × ∇ × A = −
(
2π2σΨ 2

0

Tc

)
A. (2.5)

Comparing (2.5) with (1.22), we can deduce that

1

λ2
L

= 2π2σΨ 2
0

Tc
= 16π4σ(Tc − T )

7ζ(3)
. (2.6)

We notice in passing that λL(T ) diverges at T → Tc, i.e., at that point the magnetic
field penetrates into the metal unrestrictedly. From now on, we will assume that λL

is defined by (2.6). [The quantity defined by (1.17) is typically called λL(0).] We
can thus represent (2.2) in the form:

∇ × ∇ × A = − 1

λ2
L

|ψ|2 (A − ∇θ/2) − 4πσȦ. (2.7)

Introducing dimensionless spatial derivatives via ∇̃ = λL∇, we can represent (2.7)
in the form:

∇̃ × ∇̃ × A = −|ψ|2
[
A − ∇̃θ/(2λL)

]
− 4πλ2

LσȦ. (2.8)

Next steps involve denoting Ã ≡2ξA, multiplying (2.8) by 2ξ and obtaining

∇̃ × ∇̃ × Ã = −|ψ|2
[
Ã− 1

κ
∇̃θ

]
− 4πλ2

Lσ
∂Ã
∂t

, (2.9)

where κ ≡ λL/ξ is the so-called Ginzburg–Landau parameter. At this point, we can
also introduce the dimensionless time in (2.9), so that

4πλ2
Lσ

∂Ã
t0∂τ

= 4π
7ζ(3)

16π4σ(Tc − T )
σ
8ηTc

π

∂Ã
∂τ

, (2.10)

i.e.,

4πλ2
Lσ

∂Ã
t0∂τ

= 14ζ(3)

π4

∂Ã
∂τ

≡ σ̃
∂Ã
∂τ

, (2.11)

so that (2.9) is representable as

∇̃ × ∇̃ × Ã = −|ψ|2
(
Ã− 1

κ
∇̃θ

)
− σ̃

∂Ã
∂τ

. (2.12)

Turning back to (2.4), we can represent it now, for the 2D-case, in the form:
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∂ψ

∂τ
−

[
(ξ/λL)∇̃ − iÃ

]2
ψ − (

1 − |ψ|2) ψ = 0, (2.13)

or, equivalently, as

∂ψ

∂τ
+

(
i

κ
∇̃ + Ã

)2

ψ − (
1 − |ψ|2) ψ = 0. (2.14)

Finally, dropping all tildes, and considering all variables and coefficients dimension-
less, we can present the system of equations in a form convenient for COMSOL:

∂ψ

∂τ
= −

(
i

κ
∇ + A

)2

ψ + (
1 − |ψ|2)ψ, (2.15)

and

σ
∂A
∂τ

= −∇ × ∇ × A − |ψ|2
(
A− 1

κ
∇θ

)
. (2.16)

Since ψ is a complex function, (2.15) consists of two equations for two scalars: |ψ|
and θ, or, alternatively, real and imaginary parts of ψ:

ψ = ψ1 + iψ2 = Reψ + iImψ. (2.17)

The latter is more convenient for solving these equations. So we need to separate
the real and the imaginary parts of the ψ-function. Then, in the 1D-case (space ≡ x ,
Ax ≡ A), one can represent the system of equations as

ψ̇1 = 1

κ2
(ψ1.xx )

+ 2

κ
(Aψ2.x ) + ψ2

κ
(A.x ) − ψ1

(
A2) + ψ1 − ψ1

(
ψ2
1 + ψ2

2

)
, (2.18)

ψ̇2 = 1

κ2
(ψ2.xx )

− 2

κ
(Aψ1.x ) − ψ1

κ
(A.x ) − ψ2

(
A2

) + ψ2 − ψ2
(
ψ2
1 + ψ2

2

)
, (2.19)

σ Ȧ = − 1

κ
(ψ2ψ1.x − ψ1ψ2.x ) − (

ψ2
1 + ψ2

2

)
A − j0, (2.20)

where j0 is 4π×(current density).
For the 2D-case (Ax ≡ A1, Ay ≡ A2), the equations are:
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ψ̇1 = 1

κ2

(
ψ1.xx + ψ1.yy

) + 2

κ

(
A1ψ2.x + A2ψ2.y

) + ψ2

κ

(
A1.x + A2.y

)
−ψ1

(
A2
1 + A2

2

) + ψ1 − ψ1
(
ψ2
1 + ψ2

2

)
, (2.21)

ψ̇2 = 1

κ2

(
ψ2.xx + ψ2.yy

) − 2

κ

(
A1ψ1.x + A2ψ1.y

) − ψ1

κ

(
A1.x + A2.y

)
−ψ2

(
A2
1 + A2

2

) + ψ2 − ψ2
(
ψ2
1 + ψ2

2

)
, (2.22)

σ Ȧ1 = − 1

κ
(ψ2ψ1.x − ψ1ψ2.x ) − (

ψ2
1 + ψ2

2

)
A1 + A1.yy − A2.xy, (2.23)

σ Ȧ2 = − 1

κ

(
ψ2ψ1.y − ψ1ψ2.y

) − (
ψ2
1 + ψ2

2

)
A2 + A2.xx − A1.xy . (2.24)

In the 1D-case, the current density is a parameter of the problem (it cannot
change along the superconducting wire and is given by boundary conditions which
can be time-dependent), while in the case of higher spatial dimensionality, the cur-
rent density can vary in space, so j should be determined by the Maxwell equation
j = curlB =curl curlA. For example, in the 2D-case, the x- and y-components of
curl curlA are substituted into (2.23) and (2.24) instead of j0 in (2.20). Naturally,
boundary and initial conditions should be specified to solve these equations.

2.2 Disk in a Magnetic Field: Ginzburg–Landau Approach

Let us re-consider the problem which was solved in the previous chapter: a disk in
a homogeneous external magnetic field orthogonal to the disk’s surface. This time,
based on TDGL, we will be able to track its dynamics. It will deliver astonishingly
more information compared to London’s approach.

Go to Model Wizard and Select Space Dimension 2D. Next, in Select Physics
window, double click on Mathematics, double click on PDE Interfaces, and then on
General Form PDE(g). You will see the Field name: u in Review Physics Interface.
Sincewehave four equations for four variables, you can chooseNumber of dependent
variables 4. That will lead to a matrix form representation of equations. It is sim-
pler to keep the scalar form of representation, and to keep the default value 1
in the window. Double click on General Form PDE (g) four times. Then click on
Study and choose Time Dependent, and click on Done. The Model Builder will
come up. Let us introduce Parameters in Global Definitions. Since the (2.21)–(2.24)
are dimensionless, we can ignore dimensionality specifications while doing this
(that will cause some formulas in COMSOL be colored yellow, which, unlike red
colored ones, are tolerable). Insert R0 = 5 as the disk radius, kappa = 4 as the
Ginzburg–Landau parameter κ, sigma = 1 as the conductivity σ of normal elec-
trons, Ba = 0.9 as the external field value, and t0 = 200 as the calculation time.
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Right click on Geometry, and choose Circle. In the Radius window of Settings
insert R0. Click Build Selected. The file is now ready for insertion of (2.21)–(2.24).
Click on the General Form PDE 1 in General Form PDE (g) area. Then click and
open the Equation in Settings window. Recognize that in our notations ψ1 = u,
ψ2 = u2, A1 = u3, and A2 = u4. Insert (2.21) as shown in Fig. 2.1. Similarly insert
equations (2.22)–(2.24), as shown in Figs. 2.2, 2.3, and 2.4. Now, when equations are
in order, we need to deal with boundary conditions. Physically, the following con-
ditions should be imposed. There should be no current crossing the boundary of the
disk. Not only total current density, but both superconducting js and normal jn current
densities should not have normal components at the boundary of the disk with vac-
uum. That means js · n|C = 0 and jn · n|C = 0 on the boundary C of the disk. One
more condition is that magnetic field should be continuous, i.e., curl curlA|z = Ba .
This last condition is satisfied by our choice of Γ -matrices in equations PDE 3(g3)
and PDE 4(g4) and Zero Flux default boundary conditions since z-component of
curl curlA is ∂Ay/∂x − ∂Ax/∂y. Let us discuss boundary conditions in the first two
equations. Conservative flux in PDE (g) and PDE 2 (g2) is equal to const · ∇ψ1, and
const · ∇ψ2 correspondingly. So in view of Zero Flux default boundary conditions,
jointly theywill satisfy the equation∇ψ · n = 0. Obviously from here one can expect
(ψ∗∇ψ − ψ∇ψ∗) · n = 0. For js · n|C = 0, as follows from (1.115) and (1.116),
one should require also A · n|C = 0. That requirement will automatically satisfy the
condition jn · n|C = 0. Indeed, in our gauge E = −∂A/∂t . Also, jn = σE. Then
A · n|C = 0 imposes ∂A/∂t ·n|C = 0 and E · n|C = 0, so that jn · n|C = 0. Thus,
implementing A · n|C = 0 will yield satisfaction of physically reasonable require-
ments on superconducting and normal currents. The problem is that we used already
all the entries for boundary conditions in our equations. For that purpose a trick was
invented by researchers,1 which we will use now. It involves entering one more equa-
tion of the type of the previous four equations, and accordingly, the fifth variable u5.
To fulfill this goal click on Physics tab, then on Add Physics. On the right side of the
screen, Add Physics window will open. Double click on Mathematics, then double
click on PDE Interfaces, and then on General Form PDE (g). A fifth equation will
appear in the Model Builder. You can close the Add Physics window now. Under
General Form PDE 5 (g5) click on General Form PDE 1. In the definition of the Γ -
vector insert instead of default −u5x and −u5y correspondingly u3 and u4. That
will enforce the condition A · n|C = 0. Insert u3x + u4y + u5 for f , and change
default value of da to zero. It is then a stationary equation of the type u5 = 0 for
u5, with matching initial value 0, so the trivial u5 ≡ 0 will always be its solution.
At this point the created code should be able to generate solutions. Save the file.
Try to press Run. The program will not run! That is because after adding the fifth
equation the Study Time Dependent should be inserted again. Click on Study tab,
it will open in the right side of the screen, choose Time dependent by double click-
ing, so that it will appear in the Model Builder. Then the Study option will become
available. But the solutions will stay at zero level. That is because all the initial

1To the best of my knowledge, this approach was first described by T.S. Alstrφm et al. [Acta Appl.
Math. 115(1), 63–74, 2010].
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Fig. 2.1 Equation for the real part (= u) of the wave function ψ in COMSOL

conditions by default are zero. So let us change one of them, making the real part
of ψ in General Form PDE 1 equal to one: ψ1 = 1 at t = 0. Let us also change one
more default: in Study 1 in Model Builder, click on Step 1, Time Dependent, and
then in Settings, in Times, replace in the range last 1 by t0, so that it reads now
range(0, 0.1, t0). If you run Study now, it will generate nonzero results. However,
all default five plotGroupswill plot correspondingly functions u, u2, . . . , u5. Rather,
we would like to plot density of Cooper pairs, which is ψ2

1 + ψ2
2. To reach this goal,

double click on 2D Plot Group 1 in the Model Builder, then click on Surface. Find
Expression in Settings window, and replace u by uˆ2 + u2ˆ2. Click on Home tab,
and then on Compute command. After the computation is successful, change time
in Settings window. For different values of time, you will see evolving pattern of
single flux vortices, so-called Abrikosov vortices.2 The quality of the solution can
be enhanced by choosing a finer mesh. Double click on Mesh 1 in Model Builder,
and switch Normal to Extra fine. It will be a bit longer run, but most computers can
do it fast. To view the result for a desired time, go again to 2D Plot Group 1, then in
Settings choose the required time (the default will be 0). The plot at Time (s): 100 is
shown in Fig. 2.5.

2In 2003, Alexey Abrikosov received a Nobel Prize for this remarkable result which he obtained
analytically decades before. With the help of COMSOL you can replicate Nobel Prize results in
less than an hour! Interestingly, L. D. Landau, Abrikosov’s supervisor, initially did not believe that
the solution is physically plausible, and for years the results remained unpublished.
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Fig. 2.2 Equation for the imaginary part of the wave function ψ (=u2)

Sincewe have determined thewhole set of variablesψ andA, we can nowplot also
the current density vectors. For that right click on 2D Plot Group 1 inModel Builder,
and choose Arrow Surface from the pop-up window. Then click on Arrow Surface 2
and start working in Settingwindow. You need to insert curl curlA for the j-function.
The components view of that is shown in Fig. 2.6. Corresponding plot after zooming
in is displayed in Fig. 2.7. At this point, one should pay attention: the current vectors
have opposite signs at the circumference of the disk and around the vortices. This is
because of a topological difference: on the circumference, they screen the interior of
a superconductor from the external field, and in the case of vortices, they screen the
superconducting exterior from the internal field.

We can now create an animation which will show the dynamics of the vortex
creation, propagation and set-up of the stationary state. Click on 2D Plot Group 1.
In the right corner of the screen, click on Animation icon and choose File. Then,
in Setting window click on Output and choose AVI. Click on Browse and insert a
file name, then save it. Scroll down to the Frames section and change then number
of frames to 500. At the very bottom of the Setting window, open Advanced, and
uncheck Synchronize scales between frames. After that, click Export at the top part
of Settings. That will create a video for you which you can play via Windows player.
You can always make a higher quality animation by changing the settings in Settings
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Fig. 2.3 Equation for Ax (=u3)

window—that needs no comments here. This is a very useful tool for exploring
the results of your modeling. Alternatively, you can command COMSOL to show
you the results of computation during the computation. For that double click on
Study 1 in Model Builder, and then click on Time Dependent. Move to Settings
window, click on Results While Solving and enable Plot. Click Compute. You will
see the evolving solution on your screen. Though it will take longer to accomplish the
task. To minimize the time, reset the Times in Settings: replace range(0, 0.1, t0) by
range(0, 1, t0). That will have no influence on accuracy of solutions (COMSOLuses
its internal time steps for finding solutions and time steps in range(0, t imestep, t0)
to generate visual frames), but will accelerate the overall execution of modeling.

After the code is tested, you can start exploring superconductivity. The following
two problems will be steps in that direction, but you can do much more if you are
creative.

Problem 11 Make sure that the vortex feature shown in Fig. 2.5 only occurs
when the Ginzburg–Landau parameter kappa is large enough. Find the crit-
ical value of kappa below which vortices do not form. Find the dependence
of that critical value on the disk radius.

Tip: for an infinitely large disk, the value of kappa is 1/
√
2. See Part II of the

book, Sect.3.2.4.
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Fig. 2.4 Equation for Ay (=u4)

Fig. 2.5 Vortex pattern at time = 100
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Fig. 2.6 Components of current density jx = u3yy − u4xy and jy = u4xx − u3xy and resulting
plot at T ime = 100 s

Fig. 2.7 Opposite rotational direction of current density vectors
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Remark Superconductors with κ < 1/
√
2 are called Type I superconductors.

Superconductors with κ > 1/
√
2 are called Type II superconductors.

Problem 12 For a given value of kappa, find out what happens when the
magnetic field Ba is increasingly larger. Is there a difference between Type I
and Type II superconductors?

Tip: start with small values of Ba << 1 and reach values greater than 1.

2.3 Disk in a Magnetic Field: Simpler Approach to
Boundary Conditions

The reader probably concluded from the previous section that equations are pretty
straightforward to write down for a given problem. At the same time, the boundary
conditions are more subtle and require higher level of effort. Using the same simple
example of a superconducting disk, we will introduce now another approach with
TDGL and COMSOL which evades the major problems with boundary conditions.
The equations themselves will take the burden of treating the formalities at the
superconducting boundary.

Imagine a superconducting volume surrounded by a non-superconducting, non-
magnetic material, which has very poor conductivity. The presence of this surround-
ing material will have no influence on the physical effects that the magnetic field will
generate in the superconductor. We will require that the ψ-function be zero in the
non-superconducting material by setting appropriate coefficients in TDGL equations
to be zero:

∂ψ

∂τ
= vol(x, y, z)

[
−

(
i

κ
∇ + A

)2

+ 1 − |ψ|2
]

ψ, (2.25)

where the vol-function is defined as

vol(x, y, z) =
{
1, i f (x, y, z) ε superconductor

0 otherwise
. (2.26)

Boundary conditions for the ψ-function at the outer surface will naturally be set to
zero via Dirichlet boundary condition

ψ|external surface = 0. (2.27)

The A-function will be non-zero everywhere, and the only boundary condition for it
will be the continuity of the magnetic field at the outer surface:
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Fig. 2.8 Parameters

curlA|external surface = Ba (2.28)

For simplicity, we will consider a superconducting disk with a radius r , and a sur-
rounding material with a circular symmetry with radius R, though they both may
have arbitrary shapes—that is not an issue for COMSOL at all.

Let us now implement this strategy with COMSOL. Again, open and save a
COMSOL file with four time-dependent general equations repeating the initial steps
described in the previous Section. However, in Parameters, insert both superconduct-
ing disk radius r , and external box radius R (Fig. 2.8).

In Model Builder, under Component 1, right click on Definitions, and in the pop-
up window, choose Functions and click on Analytic. In the Setting window, Label it
Volume Factor for SC and give it the Function name vol (of course, choices here are
arbitrary). Then define it via Boolean operator in the Expression window, as shown
in Fig. 2.9. You can now use this function in the first two equations, for u = Reψ
and u2 = Imψ (Fig. 2.10).

Next, we should deal with initial and boundary conditions. Initial values should
be set to zero for all functions except u, which should be taken equal to vol(x, y).
For boundary conditions, we should set up Dirichlet conditions (2.27) for the ψ-
function. For that, in Model Builder window right click on General Form PDE (g),
and in the pop-up window, choose Dirichlet Boundary Condition. It will come with
default value u = 0, which is what we need, but you should still specify to which
boundaries it should be applied in Settings window. For that, hover the mouse arrow
over each quarter of the external circumference in the Graphics window, and as soon
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Fig. 2.9 Definition of the vol-function

Fig. 2.10 One of TDGL equations with the vol-function inserted. The second one is processed
similarly

as the color of the line becomes red, click on it. It will change color to blue, and the
number will appear in Boundary Selection window in Settings. You should get there
boundary numbers 1, 2, 5, and 8. The same procedures should be performed for the
second equation, for u2. For the last two equations, nothing should be done: default
zero Initial Values and Zero Flux conditions at the boundaries 1, 2, 5, and 8 will do
the job. Before clicking Compute, do not forget to set up the computation time to
100 or 200 by clicking on Step 1: Time Dependent under Study 1 in Model Builder.
Also, in Results, under 2D Plot Group 1, in Surface change the Expression u by
uˆ2 + u2ˆ2 to plot the density of Cooper pairs. The resultant pattern is shown in
Fig. 2.11 for Physics-Controlled Extra fine mesh.
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Fig. 2.11 Evolution of vortices at Time = 200

In this case also you can make an animation, add current density vectors, etc.,
in the same manner as was done in the previous Section. This approach is even
more useful for higher complexity problems, like penetration of magnetic field into
a 3D-washer, which we will consider next.

2.4 Penetration of Vortices into 3D Washer

We will consider now a 3D superconducting washer with height h0, radius r0, and
a cylindrical cavity with radius r1, surrounded by a poorly conducting nonmagnetic
substance (cylinder with height Z0 and radius R0), Fig. 2.12.

Magnetic vector of the external field is along the z-axis and is equal toB0
z . London

penetration depth corresponds to the unit of length: λL = 1. For this task, we will
use the same approach outlined in (2.25) and (2.26). Naturally, (2.21)–(2.24) should
be “upgraded” to the 3D-case. Upgrading is straightforward:
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Fig. 2.12 Geometry of 3D washer surrounded by a nonsuperconducting medium. Some boundary
surfaces are removed to expose internal details

ψ̇1 = 1

κ2

(
ψ1.xx + ψ1.yy + ψ1.zz

)

+ 2

κ

(
A1ψ2.x + A2ψ2.y + A3ψ2.z

) + ψ2

κ

(
A1.x + A2.y + A3.z

)
−ψ1

(
A2
1 + A2

2 + A2
3 − 1 + ψ2

1 + ψ2
2

)
, (2.29)

ψ̇2 = 1

κ2

(
ψ2.xx + ψ2.yy + ψ2.zz

)

− 2

κ

(
A1ψ1.x + A2ψ1.y + A3ψ1.z

) − ψ1

κ

(
A1.x + A2.y + A3.z

)
−ψ2

(
A2
1 + A2

2 + A2
3 − 1 + ψ2

1 + ψ2
2

)
, (2.30)

σ Ȧ1 = − 1

κ
(ψ2ψ1.x − ψ1ψ2.x )

− (
ψ2
1 + ψ2

2

)
A1 + A1.yy − A2.xy − A3.xz + A1.zz, (2.31)

σ Ȧ2 = − 1

κ

(
ψ2ψ1.y − ψ1ψ2.y

)
− (

ψ2
1 + ψ2

2

)
A2 + A2.xx − A1.xy − A3.yz + A2.zz, (2.32)

σ Ȧ3 = − 1

κ
(ψ2ψ1.z − ψ1ψz)

− (
ψ2
1 + ψ2

2

)
A3 + A3.xx − A1.xz + A3yy − A2.yz . (2.33)
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These equations should be used for COMSOLmodeling of the problem. We will use
the coefficient form PDE system for ψ1 and ψ2, and general form PDE system for
the components (A1, A2, A3) of the vector potential. The vol(x, y, z)-function will
be used similarly to the previous task.

Open a newCOMSOLfile. OpenModel Wizard and Select Space Dimension 3D.
In Select Physics, double click on Mathematics and then on PDE Interfaces. Then
double click on Coefficient Form PDE (c). In Review Physics Interface, set the
Number of dependent variables to 2. Then, go back to Select Physics and dou-
ble click on General Form PDE (g), and in Review Physics Interface change the
Number of dependent variables to 3. Then, click on Study, and choose
Time Dependent. Click on Done. By clicking in Model Builder on Coefficient Form
PDE 1 and on General Form PDE 1, you can make sure that in the Settings win-
dow the variables are u1 and u2 (for ψ1 and ψ2) and u3, u4, and u5 (for A1, A2,
and A3). Save the file before continuing. It is a good idea to keep saving it period-
ically for not losing the job by accidental crushing. Next, insert Parameters under
Global Definitions, as shown in Fig. 2.13.

We now need to introduce geometrical objects for modeling. Right click on
Geometry1 under Component1 and call-in Cylinder three times. Then click on
Cylinder1 and insert r0 and h0 for its radius and height in Settings window. Also
replace 0 by −h0/2 in the z entry field under Position for the center of the cylin-
der to be at the center of the coordinate system—not mandatory, but worthwhile.
For the Cylinder2 and Cylinder3 insert in a similar way R0, Z0 and −Z0/2 and
correspondingly r1, h0 and −h0/2. Next, we need to create the hole to have a
washer. For that, right-click on Geometry1, highlight Boolean and Partitions, and
click on Difference. This will open two windows in Settings: Objects to add and
Objects to subtract. Obviously, we need to subtract cyl3 from cyl1. However, if you
hover the mouse over the drawings in the Graphics window, the boundaries of the
external cylinder will shutter the view of the internal cylinders, and you will not be
able to choose them. There are different ways to overcome this obstacle. For exam-
ple, you can click on Select All button in the raw over the graphic, or, alternatively,
click on the background of the Graphics window and use the “Ctr+A” command on
the keyboard. You will see all three cylinders appear in the Objects to add window.
Highlight cyl2 and click on “−” in the right column. Do the samewith cyl3. Next, go
to Objects to subtract, andmake it active by clicking on the left mouse button. Again,
click on the Graphics background, and use “Ctr+A” command. Delete cyl1 and cyl2.
Click Build All Objects: you have now the washer defined as a difference. To see the
washer click the Transparency button in the Graphics window (see Fig. 2.14). There
is, however, another way which is more effective, and will serve to more goals, so
we will introduce it now. In the Graphics window, deselect Transparency, and also
click on Select None. Then, in the same window, click on Click and Hide so that it
will become active, then click on Select Boundaries. Hover the mouth over the top
lid of the cylindrical box (it will change color) and click on it (it will disappear—if
not, then click on View Unhidden). You can consecutively click on other boundaries
to remove as many as you want, and when done, deselect Click and Hide by clicking
on that icon again. After that you can grab the picture by the mouse and rotate it to
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Fig. 2.13 Parameters for modeling

the most informative angle, see, e.g., Fig. 2.15. You have access now to all domains,
so that if necessary, you can addObjects to the Difference1 bymakingObjects to add
active and clicking on the plotting.

We are now at the stage where we can start inserting equations. First, we
need to introduce the vol(x, y, z)-function discussed above. For that right-click
on Definitions under Components in Model Builder, select Functions, and click on
Analytic. In the Settings window Label it Volume1 and type in the Function name
vol. Set it up by a Boolean expression, as shown in Fig. 2.16. Also, type inArguments
x, y, z and set Manual derivatives to zero as shown in the same figure. Now we can
insert all the required coefficients in the first and second matrix equations, as shown
in Figs. 2.17 and 2.18. One can notice that we added a small number epsi = 0.01 to
the time derivative coefficient da in the General Form PDE, which will allow com-
putations in regular manner outside of the superconductor volume. The coefficient
da in the poor conducting material can be arbitrarily small but finite. You can reduce
parameter “epsi” (Fig. 2.13) until no influence on solutions is noticeable.

We need to deal now with boundary conditions, which we will do in a way similar
to the previously considered disk’s case. In the Coefficient Form Equation, we will
introduce Dirichlet boundary condition, and require ψ to be zero on the external
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Fig. 2.14 Visualizing superconducting washer inside its inclusion is via transparency mode

Fig. 2.15 Optimizing the viewing angle

boundary. All we need to do is to right-click on Coefficient Form PDE (c) and then
click on Dirichlet Boundary Condition—by default it comes in with zero values at
boundaries, but we need to specify these boundaries. Go to the Graphics window
and click on visible boundaries first; you will get 3, 11 and 16 in the boundary
selection window. Then click on the icon View Hidden Only and you will add hidden
boundaries also. You may now click on View Unhidden icon to come to the display
shown in Fig. 2.15.

We can proceed now to the second system. Our task is to set up such boundary
conditions for the volume that, in absence of the superconducting washer, the field
will be homogeneous and directed along z-axis. This can be done with the boundary
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Fig. 2.16 Introducing the vol-function

Fig. 2.17 First two equations in the system
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Fig. 2.18 Next three equations in the system

conditions for the A-potential: A1 = −B0
z y/2, A2 = B0

z x/2, A3 = 0. These values
should be included into the Dirichlet boundary conditions, which should be called-in
as in the previous case, with the same choice of boundaries. The resulting layout in
this case is shown in Fig. 2.19.

Initial conditions are simple. As in the case of the 2D-disk, we will choose
ψ1 = vol(x, y, z), and ψ2 = 0. For theA-function, all the initial values can be taken
to be zero. They are zero by default, so all we need to do is to insert Initial Values
in the first system and keep the second one untouched. Let us deal next with Mesh.
Find it in Model Builder, right-click on it, and delete. Start building it from scratch:
right-click on Component1 and click Add Mesh. Then click on Element Size and
switch from Normal to Finer. Then click Build All to see the results. It is prefer-
able to make smaller mesh sizes on the superconducting disk. Right-click on Mesh1,
and call-in Free Tetrahedral, then rename it Superconductor for clarity. Right-click
on Superconductor and call-in Size which will appear as Size1. Click on Size 1
and switch entire geometry to Domain. We need to choose domain 2. For that
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Fig. 2.19 Boundary
conditions for the
vector-potential A

change Geometry entity level from Entire geometry to Domain, then from Manual
to All domains, and delete domain 1. Remaining domain 2 will become blue out-
lined in Graphics window. Now change Normal to Extra fine in the Element Size.
Click Build All to see the results (Fig. 2.20). Click on Superconductor to make sure
that it has Geometric entity level Remaining. Save the file and run it to make sure
if nothing is wrong with it. If no errors are coming up, then you inserted every-
thing correctly, and now can fine-tune your code. Note that when the program ends
running, in Results section of Model Builder two groups appear: 3D Plot Group 1
and 3D Plot Group 2. Delete or Disable Group 2, and modify Group 1 to exhibit
info which is more informative than the default Slicing. Double click on Group 1
and delete Slice 1. Then right-click on Group 1, and call-in Surface. In Settings
window, under Expression, insert u21 + u22, i.e., density of Cooper pairs; you may
want to insert that title into the Label window instead of Surface1. Then click
Plot. You may want also to see the configuration of magnetic induction B = curlA
on the same plot. Right-click on 3D Plot Group1 and call-in Arrow Volume. Insert
expressions for Bx = u5y − u4z, By = −u5y + u3z and Bz = u4x − u3y intowin-
dows for X , Y and Z components. You may also be interested in the current den-
sity distribution j = curl curlA in superconductor. Right-click on 3D Plot Group 1,
and call-in one more Arrow Volume. Insert jx = u4xy − u3yy + u5xz − u3zz,
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Fig. 2.20 Fine meshing of superconducting washer

jy = −u4xx + u3xy + u5yz − u4zz, jz = −u5xx + u3xz − u5yy + u4yz for the
corresponding components in Settings window.We also recommend you increase the
number of grid points to 25, 25, 17. Click Plot to obtain the picture shown in Fig. 2.21.
To have titles as in Fig. 2.21, click on Title for each subentry in 3D Plot Group1,
switch Automatic to Manual, and enter the relevant text. We can extend now the evo-
lution time to see the vortex dynamics. In Study, click on Step1: Time Dependent,
and change range in Times to range(0, 0.01, 50). After the run is finished (it may
take hours), you can create an animation in the regular way described previously.
The animation, as well as this COMSOL file, can be downloaded from the Springer
website for this book. The website also contains a COMSOL Executable file, which
you can run on your computer (Windows or Linux), change parameters, and explore
solutions without having COMSOL installed. The final picture corresponding to
Time t = 50 is shown in Fig. 2.22. Running this file will require at least 16 Gb of
RAM.

2.5 Dynamics in Current-Carrying Superconducting Wires

We accumulated enough knowledge in COMSOL and superconductivity to be able
to easily consider the current-carrying states in superconducting 1D wires. In the 1D
case, the equations, as we mentioned above, are (2.18)–(2.20) for the variables ψ1,
ψ2, and A, with j0 as a parameter.

Open Model Wizard, Select Space Dimension 1D, open Mathematics,
PDE Interfaces, and double-click on General Form PDE (g) three times. Then click
on Study, and choose Time Dependent in Select Study. Click on Done to get
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Fig. 2.21 Modeling solution after trial run for time = 1

Fig. 2.22 Penetration of magnetic flux in 3D-washer
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to Model Builder. Right-click on Geometry and insert an Interval. In Settings
for Interval, insert Coordinates −L0, L0. In Parameters insert L0 = 10. Ignore
units everywhere, since our equations are dimensionless. Insert also other param-
eters, as shown in Fig. 2.23. Start composing equations. In General Form PDE 1
insertΓ = − ux/kappaˆ2 and f = 2 ∗ (u3 ∗ u2x)/kappa + (u2 ∗ u3x)/kappa −
u ∗ (u3)ˆ2 + u − u(uˆ2 + (u2)ˆ2). In General Form PDE insert Γ = − u2x/
kappaˆ2 and f = − 2 ∗ (u3 ∗ ux)/kappa − (u ∗ u3x)/kappa−u2 ∗ (u3)ˆ2+u2 −
u2(uˆ2 + (u2)ˆ2). In the third equation, set Γ = 0, f = (−u2 ∗ ux + u ∗ u2x)/
kappa − (uˆ2 + u2ˆ2) ∗ u3 − j0, and da = sigma. Initial Values may be set to
u = 1, u2 = 0, and u3 = 0. That corresponds to the absence of current at the
initial moment. The boundary conditions depend on the material of the banks to
which the wire is touching with its ends. In the case of massive superconduct-
ing banks, we will consider |ψ| = 1, and the normal current ∝ Ȧ equals zero at
the end-points. Correspondingly, we will choose Dirichlet boundary conditions:
u = 1 and u2 = 0 in the first two equations3, and u3 = − j0 in the third equa-
tion. The latter follows from (2.20). To implement these conditions right-click
on General form PDE 1 (g) and choose Dirichlet Boundary Condition in the pop-
up menu. Then in Graphics window hover the mouse over the end points, and
as soon as they change color to red, click on them: they will become blue, and
1 and 2 will appear in the Boundary Selection window at Settings. Do the same
in General form PDE 2 (g2). Similarly, insert − j0 in the prescribed value of u3
in Settings for Dirichlet Boundary Condition for General Form PDE 3 (g3). Next,
click on the Mesh and switch Normal mesh to Extra fine. Now, we can test run
it, after saving the file. If no mistakes, it will run for a short time (we have not
yet set the evolution time to t0). After checking for mistakes, click on Study 1,
Step 1: Time Dependent, and in Settings, set range to range(0, 0.1, t0). Before run-
ning, go to Results, double-click on 1D Plot Group 1, and click on Line Graph 1,
then, in Settings window, change Expression to uˆ2 + u2ˆ2, i.e., to Cooper pairs
density. The result of computation is shown in Fig. 2.24. This obviously requires
some analysis. To start the analysis, let us create an animation. Click on Results tab,
then click on Animation and choose File. In Settings window switch GIF to AVI.
Then Browse and choose the name of the file and its location. In Frames per second,
insert 20. Number of frames set to 500. Finally, click on Export. Be patient: typi-
cally, the animation takes longer time than the computation itself. When it is done,
watch the video. It immediately becomes clear that a time of 300 is not long enough;
make it 1000 and repeat the computation and animation. You do not need to create
a new animation, just click on Animation 1 in Results after computation is over.
Clearly, the density of Cooper pairs periodically turns to zero at the middle of the
wire. Another way to see more oscillations during shorter time-span is to increase
the current; no need to increase by much, as changing j0 from the chosen value 0.4
to 0.41 will make a significant difference.

It makes sense to trace the behavior of superconducting current simultaneously
with the dynamics of pair density. Instead of supercurrent, it is easier to deal with

3Alternatively, and more accurately from a physics standpoint, one should choose u′ = u2′ = 0.
Try this option by using the default boundary conditions.
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Fig. 2.23 Initial set of problem parameters

Fig. 2.24 Modulus square of the wave function ψ at different moments of time
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the dynamics of normal current jn = −σ Ȧ. Knowing jn will immediately pro-
vide information on js , since js = j0 − jn . To implement this, double-click on
1D Plot Group 2, then click on Line Graph 1 under it. In the Expression window
in Settings insert −sigma ∗ u3t . By default, after computation, COMSOL will
plot 1D Plot Group 1. So click on 1D Plot Group 2 to see the normal current plot,
Fig. 2.25. The spikes in this figure reveal insufficiency of the mesh size: it should
be smaller in size. Click on the Mesh. In Settings window you will see that it
is Physics-controlled (by default). Above we switched it to Extra fine which was
enough for the Cooper pair density description. However, it will not be enough
for a description of the current even if you switch it to Extremely fine size. You
can try it: the picture will still have these unphysical spikes. Don’t give up. Switch
Sequence type in Settings to User-controlled mesh. In Model Builder click on Size
under Mesh 1, and then in Settings set the Maximum element size to 0.02. Also,
set maximum element growth rate to 1. The result of Computing after that action
is shown in Fig. 2.26. What is interesting here is that the values of the normal cur-
rent exceed 0.4, the value of total current j0, Fig. 2.23. As follows from Fig. 2.26,
jn exceeds 0.45 at some moments of time in the center of the wire. That means
that, at these moments of time at these spatial points, the superconducting current is
negative, i.e., the supercurrent flows in a direction opposite to the direction of total
current! It is worthwhile to plot js and jn together, animate them, and display syn-
chronously with |ψ|2. To implement this, right-click on 1D Plot Group 2, and call-in
Line Graph. Insert in the Expression j0 + sigma ∗ u3t (which is the js), and also
in the x-Axis Data change the default Arc length to Expression, and insert x for
Expression. Then click Plot. You will get the plot shown in Fig. 2.27.

Animation should be done for the 1D Plot Group 2.Youprobably noticed thatwith
this mesh, the plotting requires a rather long time. Someshing should be improved so
as to havemajorly smooth curveswith satisfactorily fast speed.You can consecutively
increase the mesh size and reveal that even for a mesh size as large as 0.1, the quality
of the current curves is still satisfactory. Youmaywant to use thatmesh for animation.
To fulfill our task of plotting both currents and theCooper pair density, we need to add
one more curve to the plotting, i.e., the curve corresponding to ψ2

1 + ψ2
2. This could

be done in the manner with which we added js to 1D Plot Group 2. However, there
is an easier way: since 1D Plot Group 1 already contains the desired curve, highlight
it with your mouse, then drag it and drop in 1D Plot Group 2. After that, you can
even delete the empty 1D Plot Group 1, so that COMSOL will plot 1D Plot Group 2
after the next computation is over. The excerpts from the animation4 at different
moments of time are shown in Fig. 2.28. In Fig. 2.28, we have chosen j0 = 0.41 and
t0 = 150; other parameters are similar to those in Fig. 2.23. To see the results while
computing, open Study, click on Time Dependent, then, in Settings window, open

4Sometimes you may have problems with the animation: the software may complain that at least
one frame is required for animation and rejects your Export request. When that happens, in Settings
window, in Time selection, instead of All there will be From list, without available option of
changing it to All. In such cases delete the Animation under Export in Model Builder, and construct
animation from scratch again.
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Fig. 2.25 Unphysical spikes indicating insufficient accuracy ofmodeling. Comparewith next figure

Fig. 2.26 Quality is good for this choice of mesh
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Fig. 2.27 Normal and superconducting currents at different moments of time. Superconducting
current becomes negative in the central region of the wire for some moments of time

Results While Solving, and enable Plot.After that, click on the Plot Groupwhichwill
be visible in the Graphics window, and in the Settings window, under Time selection,
switch from All to Last. Then you can compute. One more small secret: to see the
time which corresponds to the plots, you need to click on one of the Line Graphs
under the 1D Plot Group, then, in Settings window under Legends, make sure Show
legends is enabled, Legend itself is Automatic, and Solution is checked in. As soon
as the Computation is started, legend will indicate the time variable. Keep in mind
that the 1D Plot Group you are interested in plotting should also be chosen in Study,
Time Dependent: under Results While Solving, choose the appropriate Plot group.
You should have no problem with plotting then. You can also choose the place in
the graph where the time label appears: click on 1D Plot Group of interest, then in
Settings window open Legend, and under Show legends (which should be enabled)
choose the desired Position.

Problem 13 Using COMSOL, compute the voltage across the thin supercon-
ducting wire in oscillatory regime considered above and plot it as a function
of time.

Tip. Use the fact that in our choice of gauge with ϕ = 0, the electric field E is
−∂A/∂t .

Solution to Problem 13
InResults ofModel Builder right-click onDerived values, and in the pop-upmenu go
to Integration, and choose Line Integration. In the Graphics window, hover mouse
over the line, and click on it to get number 1 to appear in the Active window of
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Fig. 2.28 Dynamics of PSC dash-dotted line—|Ψ |2, dashed line— js , solid line— jn

Settings. In the Expression window below it, leave only one entry: make it −u3t ,
which corresponds to E = −∂A/∂t . Since the line integral

∫
Edl corresponds to the

voltage across the line, we can now plot it as a function of time to reach our goal.
First, click on Evaluate to compute its values. That operation will create Table1,
which in principle you can export and plot, say, by Origin. However you can plot it
within COMSOL directly. For that there are two ways. The fastest is to locate the
icon Table Graph in the Graphics window. Below it you can see the Table1 itself.
Double-click on that icon, and the desired plot will appear. You will also notice
the appearance of a new 1D Plot Group, with Table Graph 1 inside. Alternatively,
you could have called it by clicking, say, on 1D Plot Group 3, which by default is
for the variable u3, then delete Line Graph 1 under it, right-click on it, and call-in
a Table Graph from the pop-up menu. You will obtain the same plot as before as
soon as you click on Plot in Settings window. Keep in mind that the table should be
visible under the Graphics window; if not—you need to first Compute the data. The
resultant voltage is shown in Fig. 2.29.

Remark 1We can see from Fig. 2.29 that voltage is an oscillating function of
time despite the current is kept constant. Moreover its average value is non-
zero—that’s why sometimes these states are called “resistive superconducting
state”. You may be interested to see how it depends on the applied current.
You can find the answer using COMSOL.
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Fig. 2.29 Periodic voltage oscillations. Visually there are two oscillation frequencies: high and
low. One can perform Fourier transformation to prove that. Both high and low frequencies were
observed experimentally

Remark 2 We used the gauge with ϕ = 0. Also Ay and Az were taken to
be zero. Instead of these three gauge conditions, in 1D-case one can use
Ax = Ay = Az = 0. In that case, superconducting current js as follows from
(2.2) is proportional to |Ψ |2∇θ. As was clear from previous discussions, the
quantity ∂θ/∂t − ϕ, called the gauge-invariant scalar potential, sometimes
denotedμ, is gauge-invariant, and in nonequilibrium situationsmay be nonzero
(see Part II of this book). When a thin wire touches massive superconduc-
tive banks, μ = 0 at the boundary. Having average in time V = ϕ1 − ϕ2 > 0
implies ∂/∂t (θ1,2) > 0. This means that the phase difference between the ends
of wire, θ1,2 = θ2 − θ1, is growing unlimited. That will result in unrestricted
values for ∇θ, and therefore for the superconducting current. But in the super-
conducting state, the current cannot exceed a critical value, or, otherwise,
superconductivity will be destroyed. It indeed happens in the middle of the
wire, where |ψ| has the smallest value. When the phase difference, and conse-
quently ∇θ, grow enough that js exceeds the critical value, then |ψ| = 0, and
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the phase difference jumps back by the value of 2π. For an instant, this causes
an infinitely large phase gradient at the location of this jump, but the current
|Ψ |2∇θ stays constant since |Ψ |2=0. So-called “phase-slippage” takes place.

Problem 14 Find out the phase behavior in our representation.

Tip: COMSOL has built in function atan2(y, x) which corresponds to the phase
angle of a complex number x + iy.

Solution to Problem 14
In the file we were working on, right-click on 1D Plot Group 1, and call-in one
more Line Graph. In Settings select All domains, so that 1 will appear in the
Active window. In the y-Axis Data insert Expression (1/(2 ∗ pi)) ∗ atan2(u2, u). In
the x-Axis Data, choose Expression in the Parameter window, and for Expression,

insert x . In accordance with Fig. 2.28, the |ψ|2-function first takes on a value of
zero at t ≈ 27 − 28. So click on 1D Plot Group 1, and in Settings window, choose
From list in Time selection. Then, scroll down to 27 − 28 in the list of Time (s), con-
trol click on certain values, and then click on Plot. The result is shown in Fig. 2.30.
From here, one can deduce that at the center of the wire we have phase discontinuity
at the time t = tcrit ≈ 27.44. This discontinuity in reality corresponds to the phase
difference across the central point of the wire becoming more than 2π: COMSOL
plots atan2(x, y) by modulus 2π. For continuity, one should replot the curves as
shown in Fig. 2.31. The continuity is restored by adding (−2π) phase difference
across the central point x = 0 for t ≥ tcrit: the phase “slips down” by 2π. The jump
is exactly 2π. Quantum states with the phase θ and θ + 2π are indistinguishable:
ψ = |ψ| exp [i(θ + 2π)] = |ψ| exp(iθ), since exp(2πi) ≡ 1. At the very moment
t = tcrit, ∇θ = ∞ at x = 0. However, this fact is not causing any problem, since
the physical quantity, the supercurrent js , is proportional to |ψ|2 ∇θ, and |ψ|2 itself
equals zero at t = tcrit, so that js stays finite. After this “phase slippage” the gradient
slowly decreases over the time by absolute value (see Fig. 2.32), until the second
phase slippage starts taking place. This second event, which again is related with the
touching of zero by |ψ|, is even more interesting. After some time, the reduced gradi-
ent curves near x = 0 will go horizontal, and then will cross the y = ±0.5 lines both
left (y = −0.5) and right (y = 0.5) of x = 0. The function atan2(x, y) will imme-
diately split the curve, as shown in Fig. 2.33. This splitting will evolve with some
bending of the horizontal parts. Bending will be maximal just before |ψ| touches
zero (Fig. 2.34). At |ψ|2 = 0, phase slippage again becomes possible, Fig. 2.35. As
we did in the case of the first phase slip (Fig. 2.31 above), we can make again these
plots continuous, which will demonstrate the second down-slipping, Fig. 2.36, of the
phase at tcrit = 51.6. One can make sure that the third phase slip will take place quite
similarly to the first one, without preceded splitting, and the fourth one will occur
similar to the second one, with splitting, and so on with each of the next odd and
even events.

Thus we can conclude that at t = tcrit when |ψ| = 0, the phase “slips” by 2π,
so that a qualitative change occurs with the phase pattern, and the phase difference
increases by 2π.
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Fig. 2.30 The phase at moment of time preceeding |ψ| = 0 (time = 28) and succeeding it

Fig. 2.31 Continuous phase function
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Fig. 2.32 Evolution of phase curves between the first and second slips

Fig. 2.33 Phase curve splitting at the points when it crosses horizontal lines y = ±0.5. At this
moment of time (t = 51.15), |ψ(x, t)| is still far from zero at x = 0
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Fig. 2.34 Evolution of split curve

Fig. 2.35 Second phase slippage at t = 51.6
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Fig. 2.36 Second jump by 2π at x = 0 results in total phase difference 4π between the ends of the
wire

Remark The difference between our chosen gauge with ϕ = 0 and the case
with the gauge A = 0 discussed above is that in our gauge, the slippage adds
one full (counterclockwise for positive values of j0) turn to the wave function
while in the other gauge, it reduces phase difference by 2π. In both cases, the
supercurrent on average stays constant since in our case, the growth of the
phase difference is compensated by the counter growth of the vector potential
(readers can explore that themselves!), while in case of ϕ �= 0 gauge, the
vector potential is dropped and the phase difference is constant on average.
Both gauges are quite legitimate for solving procedures.

2.6 Current Flow in Thin Superconducting Strips:
Annihilation of Abrikosov Vortices

We will consider now the flow of an electric current through a thin film of a
superconductor.OpenModel Wizard, Select Space Dimension 2D. InSelect Physics
double-click Mathematics, then double click PDE Interfaces, and double click
General Form PDE (g) four times. We need four equations: two for the real and
imaginary parts of the ψ-function, (2.21) and (2.22), and two for the Ax and
Ay components of the vector potential, (2.23) and ( 2.24). Then click on Study
and in Select Study choose Time Dependent. Click Done to get to Model Builder.
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Fig. 2.37 Parameters and film geometry

Right-click on Geometry and choose Rectangle for our thin film. Insert L0 and
h0 as the Width and Height of the rectangle, with Base: Center at 0, 0. Go to
Global Definitions, and inParameters insert L0 = 20 andh0 = 8.Also enter sigma =
10, kappa = 4, and j0 = 0.65—these parameters will be used for model building.
Click Build All, and then click on Zoom Extents in Graphics window to visualize
the film, Fig. 2.37. We can now set up the equations. In the first equation, for the
function u, as usual, type in −ux/kappaˆ2 and −uy/kappaˆ2 for x and y compo-
nents of Conservative Flux Γ . For the Source Term f, type in 2 ∗ (u3 ∗ u2x + u4 ∗
u2y)/kappa + u2 ∗ (u3x+u4y)/kappa−u ∗ (u3ˆ2+u4ˆ2)+u ∗ (1−uˆ2 − u2ˆ2).
Leave other coefficients unchanged. The second equation, for the function u2,
should have −u2x/kappaˆ2 and −u2y/kappaˆ2 for x and y components of
Conservative Flux Γ . The Source Term f is −2 ∗ (u3 ∗ ux + u4 ∗ uy)/kappa −
u ∗ (u3x + u4y)/kappa − u2 ∗ (u3ˆ2 + u4ˆ2)+u2 ∗ (1 − uˆ2−u2ˆ2). Leaveother
coefficients unchanged. In the third equation, for u3, insert 0 and u4x − u3y for x
and y components of Conservative Flux Γ . Also, change Damping Coefficient da
to sigma. In the fourth equation, for u4, insert −u4x + u3y and 0 for x and y
components of Conservative Flux Γ , and change Damping Coefficient da to sigma.

Next, we need to take care of boundary and initial conditions. Let us start with
the ψ-function, i.e., with u and u2 functions. Since there is no current across
the horizontal boundaries of the superconductor, we will impose zero flux on
them. On the vertical boundaries, we will impose Dirichlet boundary conditions:
ψ|±L0/2 ≡ 0, since we assume the superconductor is contacting the normal metal
banks. To implement this plan, right-click on General Form PDE (g) and choose
Dirichlet Boundary Condition in the pop-up window. In Settings window, we need
to indicate which boundaries this condition refers to. Go to Graphics window, hover
the mouse over the vertical boundary, it will change its color to red, click on it, its
number will appear in the Selection window of Settings. Do the same thing for the
second vertical boundary. Numbers 1 and 4 will appear in Selection window, and the
lines will change their color to blue. You can click now on the Zero Flux 1 and make
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Fig. 2.38 Current flow in superconductors causes vortice pattern

sure that boundaries 1 and 4 are overridden in Selection. The same action should
be carried out for the second equation, for u2. Initial Values for these two functions
should be compatible with the boundary conditions. For example, u and u2 equal to
0 are compatible with them, but if we start with such a zero state we risk the solutions
to stay at 0 forever, which would correspond to normal state (non-superconducting)
solution. So instead, wewill start with u = cos(pi ∗ x/L0), and u2 = 0 initial values
which will guarantee non-zero solutions. We need now to insert boundary and initial
values for the vector potential. By default, we have Zero Flux conditions−n · Γ = 0
for u3 and u4 on all boundaries. That should be changed. In the equation for u3,
right-click on General Form PDE 3(g) and insert Flux/Source: −n · Γ = g − qu3,
and substitute−Ba for g. Leave q = 0. This condition is related to horizontal bound-
aries. So hover mouse on them, and click them in as we did in case of theψ-equations
above. In the equation for u4, right-click on General Form PDE 4(g) and insert
Dirichlet Boundary Condition: u4 = r, r = 0. This condition is related to vertical
boundaries. So hover mouse on them, and click them in as above. Save the program
and run it. If no errors, then go toStudy, time dependent and change computation time
to 100: range(0, 0.1, 100). Click Compute. After Computation is complete, you
will find four 2D Plot Groups in Results of Model Builder. Double-click on the first
one, and click on Surface 1. In Settings window, change the Expression from u to
u2 + u2ˆ2, i.e., Cooper condensate density. To have higher quality output change
mesh to Extremely fine. You will see the vortex structure shown in Fig. 2.38. Prior to
continuing our analysis we should explain the logic behind the boundary conditions
which are used above.

The total current I through the strip is governed by the external source, and
it is constant through any cross section of the strip: I = I0 (in view of div j = 0
in good metals, including superconductors). Flow of current through the metallic
lead generates a magnetic field with circular field lines around it at far distance.
If the current lead has a circular cross section, the field lines are circular at any
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distance from the lead. If the lead is flat, then the field line geometry deviates from
circularity to ellipticity near the lead, and its proper form may be defined by proper
consideration, for example, using the COMSOL DC Module. However, the most
important aspect for our modeling feature can be deduced without computation, just
from the symmetry of the problem: for thin films the magnetic field lines at the edges
of the film should be orthogonal to the film surface. Moreover, they should have
opposite directions at opposite longitudinal edges of the film strip. There is a one-to-
one correspondence between the parameter I0 and the value of B at the longitudinal
boundaries of the strip. Thus, instead of setting the value of I0 via boundary conditions
at the vertical facets of the strip, one can set the value of B on the lateral boundaries.
This simplifies the finding of numerical solutions, and was suggested and repeatedly
used by researchers. From this condition

Bz = ∇ × A|z = ∂Ay

∂x
− ∂Ax

∂y
≡ u4x − u3y (2.34)

and for the symmetric distribution of current density relative to the x- axis (which
indeed follows from calculations), we can write u4x − u3y = Ba on the top bound-
ary and u4x − u3y = −Ba on the bottom boundary. The value of B(≡ Ba) is pro-
portional to the total current through the cross section of the strip: B = β I , where

I =
∫ h0/2

−h0/2
j · dh. (2.35)

The function β should be determined self-consistently from the current constancy:
I = I0, if I is calculated via (2.35) with j following from the boundary condition
(2.34). In the case of a homogeneous normal metal strip β = 1/2, so that B = Ba =
I0/2. For homogeneous superconductors, as in Fig. 2.37, the current distribution
inside the strip is inhomogeneous due to the Meissner effect and the strip’s finite
length (Fig. 2.38). However, if the current density distribution is still symmetric
relative to the x-axis, the same value of β holds for the superconducting case.

Prior to formulating the full set of boundary conditions in the case of a super-
conducting strip, let us first consider a homogeneous stationary (DC) current flow
in a normal metal strip. Bearing in mind the standard relation j = σE = σ∇ϕ, one
scalar function (ϕ) is enough to determine this current. Since we chose the gauge
ϕ = 0, the electric field is determined by the relation E = −∂A/∂t . Thus, one com-
ponent (Ax ) of the vector potential suffices for this task. The second component (Ay)
will effectively be zeroed if we choose zero initial conditions, and zero boundary
values for it. Then (2.34), where the ∂Ay/∂x term is dropped, will serve as the lateral
boundary condition for Ax . On the vertical facets of the strip, one can use the Dirich-
let boundary condition: Ax = 0. Also, the initial condition Ax = 0 can be applied
without loss of generality.

For a superconducting strip in contact with the normal leads, the boundary
conditions and the initial condition for the function A1 are the same as above.
However, the current density j is not distributed homogeneously inside of the
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strip, and the function Ay does not vanish here. We can still apply the Dirich-
let condition Ay = 0 both on the vertical and the horizontal facets. This condi-
tion on the vertical facets follows from the relation at the boundary with the nor-
mal metal: j|x = ±L0/2 = jn , where jn is orthogonal to the facet. The condition
on the horizontal facets follows from the fact that the y-component of supercur-
rent js |y=±h0/2 = (ψ∗∇ψ − ψ∇ψ∗)/(2iκ) − |ψ|2 A is absent. Taken together with
the Neumann boundary condition for the ψ-function: ŷ · ∇ψ|y=±h0/2 = 0, it yields
Ay|y=±h0/2 = 0. The boundary condition for the ψ-function on the vertical facets is
of Dirichlet type: ψ|x=±L0/2 = 0. This condition neglects the proximity effect (see
Part II of this book), which is unimportant for the effects described in this section.
This is because the details regarding the current density distribution near these ver-
tical facets of the strip are essential at distances ≤ ξ and are not critical to solutions
for strips with a length greatly exceeding this distance.

Remark Recall that we explore the case κ = λL/ξ >> 1, and the length is in
λL -units.

Problem 15 Using COMSOL, demonstrate that the annihilation of vortex-
antivortex pairs yields spikes of an electric field, i.e., causes electromagnetic
radiation. Also plot the current vectors and show that vortex and antivortex
have opposite clockwiseness.

Tip: use the tip to Problem 13.

Solution to Problem 15
As soon as the functions u3 and u4 are known, the electric field can be straight-
forwardly plotted as Ex = −u3t and Ey = −u4t . In Results, right-click on 2D Plot
Group 1 and call-in Arrow Surface from the pop-up window. Replace ux by −u3t
and uy by u4t in the Expression window for X and Y components. Change Color to
Green, and click Plot. You may also want to adjust the scale factor to see the arrows
better. Compute the simulation with Plot checked on in Results While Solving at
Step 1: Time Dependent in Study to see the effect while computing goes on. Typical
spike generation is shown in Fig. 2.39.

For visualization of current vectors, we should again do the same procedures as
above; however, ux should be replaced by −(u3yy − u4xy), and uy by −(u4xx −
u3xy). We can disable the electric vector plot to have a more distinct pattern. How-
ever, as the readers can check themselves, the picture of the current plots is not
what we expect it to be. The reason is in insufficient accuracy of solutions. Solutions
are enough accurate for the functions themselves (Fig. 2.38), and even for derivatives
(Fig. 2.39) but not for higher order derivatives,which describe the current density vec-
tors. We need to enhance the mesh. Click on Mesh in Model Builder, and in Settings
window, Sequence type, switch Physics-controlled mesh to User-controlled mesh.
Then go back to Model Builder, and click on Size under Mesh 1. In Settings win-
dow, select Custom instead of Predefined. This will allow you to change mesh sizes.
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Fig. 2.39 Annihilation of vortex-antivortex pair results in a spike of an electric field (green arrows)

Fig. 2.40 Current distribution in current-carrying superconducting strip with vortices and antivor-
tices as second derivative of vector potential

ReduceMaximum element size from 0.2 to 0.05, andmaximum element growth rate
to 1. The result after computing, which naturally will take a longer time is shown in
Fig. 2.40. This looks much more convincing!
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Fig. 2.41 Two circular
motions in opposite direction
create lower pressure
between them

Remark 1 To better understand the physics of vortices, it is useful to make
an analogy to tornados. The air flow may be laminar at small velocities. For a
higher speed of air, turbulence prevails. You probably have noticed how leaves
are engaged by an autumn wind and move fast rotationally around a vertical
axis. This motion is viscous naturally, and the leaves drop quickly because of a
dissipation of rotationalmotion energy.However, if energy of rotationalmotion
is very large, like in tornadoes, the dissipation is negligible, and tornadoes can
move distances much larger than their sizes without any noticeable change.
This is like the superfluid motion of Cooper pair condensate in vortices. The
analogy to tornadoes can explain why a vortex and an antivortex attract each
other. If you have two circular motions of air mass in opposite directions, and
you will bring them close, they will facilitate air motion between them, since
both are driving air between them in the same direction (Fig. 2.41).

Thus, one can expect lower pressure between tornado-antitornado pair in
accordance with the Bernoulli law. In case of realization of this event in nature
catastrophic consequenceswill far exceed the consequences of a single tornado
action, since the pair will dissipate locally all its energy, as vortex-antivortex
do. Typical in literature explanation of vortex-antivortex attraction is by the
Lorentz force; however the Bernoulli force is sometimes also mentioned, and
it is more vivid.

Remark 2 To continue analogy with the circular air motion, let us recall that
turbulence is easier to observe when you have some obstacle to the blowing
wind. For example, at the corner of a building, the wind is muchmore turbulent
than in an open space. This means that dents in the superconducting strip may
cause generation of vortices.

Problem 16 Consider a strip with two triangular dents in the middle, both at
the top and bottom (Fig. 2.42) and analyze the vortex-antivortex generation
by them at DC current flow.

Tip: At the edge of the dent, magnetic field is stronger than in an undented area—
neglect this small effect, and just take into account the geometry.
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Fig. 2.42 The proposed
geometry of the strip for
initiating “turbulent”
superfluid motion

Solution to Problem 16
Let us start with modifying the geometry of the strip in the file which we were
using above. Save it under a different name. Right-click on Geometry, and click-in
Square 1, then, in similarway, Square 2 . For bothof them, change in Settings Position
Base to Center. Then change their y-coordinates to h0/2 and −h0/2 respectively.
For both of them, change in Rotational Angle to Rotation 45 degree. Then right-
click on Geometry, choose Booleans and Partitions, and click on Difference. Setting
window will open, where you should insert Rectangle 1 (r1) in the Objects to add
window, and Square 1 (sq1) and Square 2 (sq2) in the Objects to subtract window.
By default, Objects to add is Active. Hover the mouse over the strip, it will change
color, click on it, and r1 will appear in the Objects to add. Then click and make
active Objects to subtract. Then hover the mouse over the rotated squares, click
on them, so that sq1 and sq2 will appear in Objects to subtract window. Click on
Build All Objects, and you will see the final geometry as shown in Fig. 2.43. The
equations stay the same, but we need to modify the boundary conditions. Mag-
netic field at the area of dents will be somewhat stronger than average value,
but we will neglect that fact for now, and will come back to it in Remark 1
below. What is more important is that the n-vector in the dented area of the film
edges has both nx and ny components, and they are less than 1. Thus, we need
to take care of keeping the value of curlA = B on dents which can be done
in the following manner. In the Flux/Source 1 entry in General Form PDE 3 (g3),
replace −Ba by −Ba(sign(y) ∗ ny) ∗ (t > t0). This will take care of changed
values of ny on the boundary. Also, we would like to switch on the current with
some delay, so we added a Boolean condition, and the stationary superconduct-
ing state will set up in the film prior to switching on the current at t = t0. In the
General Form PDE 4 (g4), we need to take into account that at the dented area the
n-vector has x-component. Thus, right click on General Form PDE 4 (g4) and click-
in Flux/Source, then hover the mouse over the dents segments and click on them,
so that their numbers 4, 5, 6 and 7 appear in the Settings window. Then, in the
Boundary Flux/Source, insert −(−u4x + u3y) ∗ nx for g. These boundary ele-
ments will be overridden in Zero Flux window. Since we used t0 for the switch-
ing of the current, in the Parameters you need to insert t1, which should then
be introduced in Study, Time Dependent, Times range (0, 0.1, t1) as the computa-
tion time limit of Settings window. You can start studies with t1 = 100 to grasp
what is going on, Fig. 2.44. At calculations, User Defined Mesh was used, with
Maximum element size 0.1, minimum element size 0.01, andmaximum growth rate
1 in Custom Element Size Parameters.
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Fig. 2.43 Setting up the geometry of superconducting film with dents

Fig. 2.44 Dents facilitate vortex creation
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Remark 1 Above, we neglected the increase of Ba near the dent edge. If that
effect had been taken into account, the disturbance created by the dent, and
consequently, the origination of vortices would be further intensified.

Remark 2 The disturbing role of the edge roughness which we modeled via a
pair of dents can play very negative role in superconducting devices. Indeed,
as we now know, the pair of vortices can annihilate and create an electric pulse
which will mimic SFQ pulse (considered below), which is a cornerstone of
certain class of superconducting electronics. The considered example demon-
strates how important the quality of lithographic patterning is in these devices.

2.7 Generation of SFQ Pulses in SNS Junctions

We will consider now an SNS junction. It consists of two superconductors with
a normal metal layer in between them (Fig. 2.45). This junction is similar to the
Josephson junction, where a very thin tunnel barrier is replaced by a much thicker
normal metal layer. When the superconductor and normal metal are brought into
contact with each other, Cooper pairs can propagate a finite distance into the normal
metal. Thus, a thin layer of the normalmetal that is in contact with the superconductor
behaves like a weaker superconductor. This is called the “proximity” effect, which
we neglected in the previous section. In the current case, it plays an important role.
“Weaker” in the context of the proximity effect means the ψ-function modulus in the
normal layer is somewhat smaller than that of a genuine superconductor.

If biased as shown in Fig. 2.45, the supercurrent, while moving along the junction,
squeezes through the proximitized normal metal and gradually reduces its amplitude
in the direction from the left of Fig. 2.45 to the right. Motion of charge carriers
should create magnetic field around the SNS-junction. It is easy to conclude that
the distribution of the magnetic field should qualitatively correspond to the picture
shown in Fig. 2.45. For the parameters of a homogeneous junction we can assume

Fig. 2.45 Superconductor-Normal metal-Superconductor junction
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linear behavior of magnetic field: Bz = B0(L0/2 − x)/L0, where L0 is the length of
the junction, and the coordinate system is located at junction’s center, with x-axis
along it, y-axis is directed vertically, and z-axis is towards us. As in the previous
section, the current will be determined via the boundary conditions involving Bz .

We will consider the junction as a whole piece of the superconductor, which, in
absence of the current, has ψ-function weaker around the horizontal median line.
That could be done with the help of the p-function introduced in Part II. Then (2.15)
will take a form:

∂ψ

∂τ
= −

(
i

κ
∇ + A

)2

ψ + (
1 − |ψ|2 + p

)
ψ, (2.36)

so that (2.21) and (2.22) will correspondingly be modified as:

ψ̇1 = 1

κ2

(
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) + 2
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(
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) + ψ2

κ

(
A1.x + A2.y

)
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(
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)
, (2.37)

ψ̇2 = 1
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(
ψ2
1 + ψ2

2

)
, (2.38)

As follows from (2.36), negative values of p = p(y) reduce locally critical tem-
perature mimicking the proximitized N -layer (reasonable value p = −0.3 is used
in the example below). To understand why this happens one can notice that in the
spatially homogeneous stationary case, the non-zero values of |ψ| are equal to 1 + p
in accordance with (2.36), i.e., are weaker than in the superconductor layers.

Problem 17 Using COMSOL, consider a Superconductor-Normal Metal-
Superconductor (SNS) junction in DC-mode. Realize a state with periodic
single-flux quantum (SFQ) generation.

Tip: Represent the p-function via the Boolean condition: p(y) ≡ p ∗ (y/2)ˆ2 <

0.02, which corresponds to normal metal layer of thickness ≈ λL .

Solution to Problem 17
The character of this problem has analogy with the disk in a magnetic field that we
solved in Sect. 2.2. So it will save us time to save the resultant COMSOL file under
a different name and start modifying it. First, delete in Geometry Circle 1 by right-
clicking on it, then insert Rectangle by right-clicking on Geometry. Set up Width
L0 and Height h0, with Base: Center. They will come out red, because we have not
yet entered them in parameters. Click on Parameters 1 under Global Definitions and
delete R; insert L0 = 5 and h0 = 4.You can see now that inGeometry 1, Rectangle 1
the red color is gone. Click on Build Selected to visualize the junction. Then click
on Zoom Extents icon in Graphics window to optimize its plotted size.
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Next, let us modify the equations. Double-click on General Form PDE (g), then
on General Form PDE 1 and transform the f -function to (u3x + u4y) ∗
u2/kappa + 2 ∗ (u3 ∗ u2x + u4 ∗ u2y)/kappa − (u3ˆ2 + u4ˆ2) ∗ u + (1 + p ∗
((y/2)ˆ2 < 0.02) − uˆ2 − u2ˆ2) ∗ u. Then go to the second equation and transform
the f -function to −(u3x + u4y) ∗ u/kappa − 2 ∗ (u3 ∗ ux + u4 ∗ uy)/kappa −
(u3ˆ2 + u4ˆ2) ∗ u2 + (1 + p ∗ ((y/2)ˆ2 < 0.02) − uˆ2 − u2ˆ2) ∗ u2. In the third
equation, the expression for Γ should be modified. As was discussed above the
magnetic field should linearly decrease to zero at the right end of the junction,
being maximal at the left end. So the y-component of Γ should be written as:
u4x − u3y − Ba ∗ (L0/2 − x)/L0. The equation for the junction domain will not
change, but the boundary condition will correspond to a linear decrease of Bz with
respect to the x-coordinate. Similarly, the x-component of Γ in the fourth equa-
tion should become −u4x + u3y + Ba ∗ (L0/2 − x)/L0. This generates the cor-
rect boundary condition, but also changes the equation in the domain, unless we add
a term −Ba/L0 to the f -term. For all the equations, we will keep the boundary and
initial conditions. Before saving the file, insert also the parameter p = −0.3 into the
Parameters1 of Global definitions. You may also want to visualize the results during
the computation; to do so, click on Step 1: Time Dependent, and then in Settings
window, click on Results While Solving, and check in Plot. It is a good idea to start
at relatively small values of Ba, say, 0.45, and increase it step by step.

Figure2.46 shows what happens when the current through the junction is above
the certain critical value.

Problem 18 Explore the generation of electric field at SFQ leaving the SNS
junction.

Tip: Plot the vectors of electric field using the solution obtained for Problem 17.

Solution to Problem 18
The electric field is given by the relation E = −∂A/∂t . Thus, right-click on 2D Plot
Group 1, and call-in Arrow Surface. In Settings, insert −u3t for x component and
−u4t for y component. Click Plot. Regulate the length of E-vectors by Scale factor:
you can highlight the number and type in your suggested value, then click Plot.
You can plot the Graphs at different moments of time. At leaving the junction, the
amplitude of electric field is maximum (see Fig. 2.47), which corresponds to the
generation of an electric field pulse. On the left-hand side of the junction we have
electrodes supplying a DC current. If we attach electrodes on the right-hand side of
the junction plates, we will detect periodic voltage pulses!

2.8 Cloning of SFQ Pulses

We introduced above the SFQ pulses generated by the SNS junction. For the needs
of superconducting electronics, sometimes it is required to clone SFQ pulses. That
is, to regenerate a single flux quantum using a propagating voltage pulse. That could
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Fig. 2.46 When current exceeds some critical value a single vortex enters the junction (t = 10).
While it propagates along the junction, the second vortex is in (t = 20). At t = 38 we have three
vortices, and the initial one begins to leave the junction. A little later, it is gone, and a new one is
entering the junction (t = 53)

Fig. 2.47 At the moment of leaving the junction, SFQ generates an electric pulse
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Fig. 2.48 If current is below certain critical value, the SQF pulse will not be generated. In the case
shown here, the amplitude of B-field is Ba = 0.45, at t = 10 the junction state is all set, and will
stay indefinitely long if no external parameter changes

be achieved by applying an SFQ pulse to a DC-biased SNS junction. Let us model
such a process. For accomplishing this task let us recall that demonstrated above
periodic generation of SFQ pulses at DC bias took place for overthreshold applied
current. If current is below the threshold, then there is no SFQ generation, Fig. 2.48.
If the junction is in that mode, application of a voltage pulse to it will instantaneously
increase the current, and for a short period of time the conditions for generation of
a vortex will be satisfied, so we will see a propagating vortex, and when leaving the
junction it will generate an SFQ pulse itself.

Problem 19 Using COMSOL, consider SNS junction in a stationary DC-
mode. Apply an SFQ pulse to generate an SFQ propagating along the junc-
tion.

Tip: Pulsing of current will create pulsing of magnetic field surrounding the junc-
tion. Thus, the appropriate boundary conditions should become time-dependent.

Solution to Problem 19
Let us modify the code which was created for Problem 15. Save that file under a
different name. Increase of the magnetic field should start when the stationary condi-
tion has been well-established. So Compute it and make sure that at given values of
parameters at t = 20 it is stationary. Let us effectively double the amplitude Ba of
magnetic field using mathematical expression (1 + exp(−(t − 20)ˆ2/25)) ∗ Ba (as
before, we use here COMSOL notations). This modification should be performed in
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Fig. 2.49 Regeneration (cloning) of the SFQ via applied SFQ pulse to the DC-biased SNS junction

the expression for Γ both in the third and fourth equations. Don’t forget to renor-
malize by this multiplier Ba in the equation for the Source Term f for the fourth
equation. Start Compute with the value of Ba = 0.45. In five units of time, it will
be doubled at around t = 20. As you may see, with rather simple means we were
able to visualize a rather complex physical phenomenon: cloning of the SFQ pulses,
Fig. 2.49.

2.9 Discovering New Effects with COMSOL-TDGL

In this final example, we will demonstrate how to discover new features of known
phenomena using COMSOL and TDGL equations. We will consider a very old task,
well-described in textbooks: a superconducting ring in a magnetic field. The state-
ment made in textbooks is that the flux through the superconducting ring should stay
constant while the external magnetic field is changing. The proof of this fact is pretty
simple (see, for example, the section Superconducting Current in Electrodynamics
of Continuous Media by Landau and Lifshitz). Consider a ring in a magnetic field
and apply Maxwell’s equation

∂B
∂t

= −curlE (2.39)

for the description of a temporal evolution of the flux through it. Integrating (2.39)
on the equatorial plane of the ring, we have:
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∂

∂t

∫
B·ds = −

∫
curl E·ds, (2.40)

where s is normal to the surface. Limiting the integration inside of the ring opening,
we have:

∂

∂t
Φring = −

∫
E·dl, (2.41)

where l is tangential to the internal line along which the plane is crossing the ring.
The r.h.s. of (2.41) in textbooks is assumed to be zero based on arguments that the
tangential component of E on the surface of conductors should be a continuous
function, and inside the superconductors E is zero. This delivers the relation

∂

∂t
Φring = 0, (2.42)

i.e., flux through the ring remains constant regardless of any changes in the external
magnetic field. In particular, if the ring is cooled into the superconducting state in the
absence of a magnetic field, the appearance of the magnetic field should not change
this zero value. (To avoid any confusion, we should stress that we consider a weak
enough magnetic field to avoid destruction of superconductivity or appearance of
vortices in it.) Let us now determine how correct is this statement using COMSOL
modeling based on TDGL equations. Be ready to discover some new features!

Let us create the code Ring from scratch, though we can also modify the
Washer-3D file. Open Model Wizard, and Select Space Dimension 3D. In Select
Physics go to Mathematics and open PDE Interfaces. Double-click on Coefficient
Form PDE(c). In Number of dependent variables insert 2 (for real and imaginary
parts of theΨ -function). Then double-click onGeneral Form PDE (g) and inNumber
of dependent variables insert 3 (for three components of the vector potential). Then
click on Study and choose Time Dependent. Then click on Done. Next, let us con-
struct a cylindric box and a ring in it. Right-click onGeometry 1 and chooseCylinder.
Then right-click again, open More Primitives and choose Torus. We should now
define the sizes of the introduced domains. We recall that in our TDGL computa-
tional scheme we set up the unit size to be equal to λL , the London penetration
depth. The rings can be of size much larger than that. However, in superconducting
nanoelectronics sizes may be comparable to λL . We will take sizes larger than λL ,
but not much larger to make the computations affordable for ordinary computers. Let
us choose the major radius of the torus r = 10 (in λL units), the minor radius of the
torus r1 = 2, the cylinder radius R0 = 15, and its height Z0 = 10. Insert them into
Parameters under Global Definition. Then click on Cylinder 1 inModel Builder, and
in Settings insert R0 forRadius, and Z0 forHeight. Do the appropriate similar actions
on Torus under Geometry 1. Then click onBuild All Objects in Settings. Objects will
become invisible in the Graphics window. So click there on Zoom Extents icon and
the visibility will be restored. However, the ring is still hidden under the walls of the
cylinder. To visualize the ring, we can do what we did previously for the Washer-3D
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problem: activate Select Boundaries, then activate Click and Hide icon. Hover the
mouse over those cylinder edges which you would like to hide. They will change
color. Click on them, and they will disappear. The picture you see will look like in
Fig. 2.50. Obviously, you should move the external cylinder down by its half-height.
Click on Cylinder 1 under Geometry 1, and in Position in Settings window insert
−Z0/2 for z. Click Build All Objects to normalize the relative arrangement. We can
now insert the equations. They are similar to the ones in the Washer-3D case, so
we will omit a detailed description. The only difference is that now, the function
vol(x, y, z) should correspond to a torus, not to a washer. The boolean expression
which follows from the analytical geometry for the torus, defining the torus volume
with chosen parameters, is (r0 − (xˆ2 + yˆ2)ˆ(1/2) + zˆ2) < (r1)ˆ2. Right-click
on Definitions under Component 1, select Functions and click on Analytic. Label it
Volume 1 inSettings, andgive it Function name:vol, then insert the above-mentioned
Boolean expression into Expression window, and set Arguments: x, y, z. You have
now the function vol(x, y, z) ready for use. And this works finewhen the geometrical
objects are easy for analytical description. However, there is a more universal and
powerful way of dealing with this task which we will describe as an alternative. The
issue is that the Boolean function vol(x, y, z) has two values: 0 and 1 depending on
whether or not its arguments are outside of the domain. Action of the same type can
be performed by a dual-value variable, which will be equal to 1 inside the domain
and 0 outside. To use this opportunity, first disable the function vol(x, y, z) under
Definitions. Then right-click on Definitions, and call-in Variables. Variable 1 will
arrive. Go to Settings and change Geometry Entity Selection to Domain. We need
to choose a domain that corresponds to the torus. In Selection switch to All domains.
1 and 2 will appear in the window. To understand which domain corresponds to the
torus, click on these numbers. From the color change, you will easily recognize that
it is domain 2. Leave both domains in the window—that is the operational space of
Variable 1. In the Name under Variables insert vol, in the next Expression insert
1 ∗ (dom == 2) − the coefficient here can have any value. This will act now as a
step function. The resultant picture is in Fig. 2.51. To use this function instead of
vol(x, y, z) just go to the equations and convert everywhere (including boundary
and initial conditions) vol(x, y, z) into vol. Compared to the case of the Washer-3D
problem, we would like to introduce one more change: to switch the magnetic field
gradually after the superconductivity is settled in the ring, say at t = t0, and thengrad-
ually decrease it to zero at t = t1. Hyperbolic tangent may work nicely for this task.
In Dirichlet Boundary Condition for General Form PDE 1, in Prescribed value of
u3 and u4 append the multiplier ((t > t0) ∗ tanh(omega1 ∗ (t − t0)) − (t > t1) ∗
tanh(omega2 ∗ (t − t1))) to −Bz0 ∗ y/2 and to Bz0 ∗ x/2 correspondingly, as
shown in Fig. 2.52. Insert next the computational time t2 into Parameters 1 under
Global Definitions. That time should also be inserted into Step 1 under Study 1 in
Settings Times window to have range(0, 0.1, t2). Insert also other parameters of the
problem, as shown in Fig. 2.53. Save it and run it to make sure everything was
done correctly. You can customize the Mesh similarly to how it was done for the
Washer-3D case—no need for additional instructions. We would rather focus on the
exploration ofmodeling results. Let us visualize the density of Cooper pairs, themag-
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netic field lines, and the current vectors. Go to the 3D Plot Group 1 in Results and
delete Slice 1.Also delete 3D Plot Group 2.Right-click on 3D Plot Group 1 and call-
in Surface. Rename the Surface 1 label to Density of Cooper Pairs. Correspondingly,
in Expression window of Settings, replace u1 by u1ˆ2 + u2ˆ2. Plot it. Next, right-
click on 3D Plot Group 1 and two times click-inArrow Volume. Rename one of them
toMagnetic field, and the other one toCurrent density.Magnetic field is calculated as
curlA, and current density as curl curlA. These plots are shown in Fig. 2.54. We can
next compute the net current through the ring cross section as a function of time. For
that right-click on Data Sets under Results in Model Builder and click-in Cut Plane.
Cut Plane 1 will appear. We will later need one more, so repeat and get Cut Plane 2.
Click on Cut Plane 1, go to Settings and define it as ZX-planes. Next click Plot,
and make sure that current through the cross section is along the y-direction. Now,
right-click on Derived Values and in Integration choose Surface Integration. In the
Expression for Surface Integration 1 there are three entry lines. Delete two of them,
and keep only one. You need the y-component of the current. Go to Current density
under 3D Plot Group 1, and copy and paste (−u4xx + u3xy + u5yz − u4zz) ∗ vol
from the expression in Settingswindow.This expression contains vol-variable,which
restricts integration within the ring cross section. It is interesting to know how much
does the artificial conductance of the environment contribute to the screening current.
For that we can insert one more similar integration, but without vol variable. Before
pressing the Evaluation icon in Settings window, we need to add one more factor to
the integrand Expressions. The matter is that currents in these two cross sections are
in opposite directions, so we need to multiply the integrands by sign(x) and divide
by 2. Next, you should indicate where this integration should take place. For that,
click and highlight each of Surface Integration 1 and 2, go to Settings window, and
in Data set choose Cut Plane 1. Finally, you can click on Evaluate for each of them.
Evaluation creates tables under Tables icon, which you can see by double-clicking
on it. You can plot these data in COMSOL, or export them using bottom icons in the
Graphics window. However, plotting can be done better via Group plotting. Right-
click onResults, and click-in 1D Plot Group. Then click on it, and in Settingswindow
choose Cut Plane 1 in Data set. Then right-click on 1D Plot Group 2, and call-in
twice Table Graph. Then click on Table Graph 1, and in Settings window choose
Table1. Do the same with Table Graph 2, and choose Table2. That will allow you to
see the time evolution of the current, as well as to notice the parasitic contribution
of the artificial low-conductance environment, Fig. 2.55. An important feature of the
superconducting state is noticeable from this graph: as soon as the magnetic field
is off, the current is also gone. This illustrates a well-known fact in the theory of
superconductivity: by simply introducing and removing the magnetic field, it is not
possible to generate a sustainable current in superconducting closed contours. More
sophisticated actions are required: you can find their description elsewhere.

We can now undertake the final steps in exploring the behavior of the flux through
the ring. For this, click on the prepared Cut Plane 2. In Settings window, choose
XY-planes. By default it will be at z = 0, and serve as an equatorial plane for the
ring.Now, insert as above another Surface Integration, click onSurface Integration 3,
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Fig. 2.50 Positioning of external cylinder: it should be shifted down via changing its z-coordinate
from default 0 to −Z0/2

Fig. 2.51 Introducing the vol-variable

Fig. 2.52 Using hyperbolic tangent function for switching magnetic field on at t = t0 and off at
t = t1
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Fig. 2.53 Parameters which correspond to the the performed calculations and plotted figures

Fig. 2.54 Magnetic flux density lines (red arrows) and superconducting current (green lines)
induced by the external magnetic field
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Fig. 2.55 Temporal behavior of the total current through the ring cross section. Its initial and final
values are zero in accordance with experiments and theoretical predictions: the external field sets
it up and removes it when it is off at arbitrary speeds. Two values of omega1 are used (1-green
curves and 2-red curves). Omega2 is the same in both cases. Thick curves correspond to the case
when the artificial conducting environment’s contribution to current is included: this proves that it
is negligible

and in Settings delete two lines under the Expression. In the remaining line, we need
to insert z-component of curlA, i.e., u4x − u3y. Integration should be restricted by
the interior surface of the ring with radius (r0 − r1). Thus, the integrand should
be (u4x − u3y) ∗ ((xˆ2 + yˆ2) < (r0 − r1)ˆ2). As above, before evaluation, one
should choose Cut Plane 2 in the Data set of Settings window. After evaluation is
finished, Table3 will appear under Tables in Model Builder. Right-click on Results,
call-in 1D Plot Group, right-click on1D Plot Group 3, and call-inTable Graph.Click
on Table Graph 1, and in Settings, choose Table3. Then you can plot it. You will see
from this plot (Fig. 2.56) that the flux is not a flat line, i.e., the compensation is not
100%. That means you are able to discover results that are overlooked in textbooks!
I leave any further exploration of the properties of this state to you. You can plot the
dependence of the flux as a function of distance from the equatorial plane: for that,
all you need is to change the parameter Z-coordinate in the horizontal Cut Plane 2. It
is better to introduce a new one, which is called Cut Plane 3, and generate associated
Table4 with the corresponding Table Graph 2 under 1D Plot Group 3. The corre-
sponding flux is also shown in Fig. 2.56. If you explore the problem deep enough,
you will find that when the radii r0 and r1 of the ring become larger, the result (2.42)
becomes more and more accurate. You may ask: what was wrong with its textbook
derivation? Obviously, Maxwell’s equation (2.39) is not something to question. The
Stokes’ theorem which allowed us to perform the transformation from the surface
integral to a linear one is also beyond the doubts. The reason lies in the used boundary
condition. When the external magnetic field is changing, the flux through the ring
changes, and in accordance with Faraday’s induction law, an electromotive force is
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Fig. 2.56 Incomplete zeroing of the flux through the opening of a microsize ring (blue curve).
Green curve indicates temporal behavior of the flux away from the ring (computed at the coordinate
close to Z0/2). With the increase of the ring sizes (r0 and r1), zeroing is coming in

generated in the ring. The integral
∫
E·dl is this electromotive force, which during

the flux variation is non-zero, contrary to the assumption made at the derivation of
the relation (2.42). Indeed, for some moments in time, the electric field in the super-
conductor is not zero.5 For macroscopic sizes, the overall effect is negligible, but it
turns out to be important for sizes in the realm of nanoelectronics!

2.10 Final Remarks on COMSOL Modeling

At this point, we conclude the COMSOL examples in this book. Actually, one can
generate endless set of such examples based on TDGL equations. We should empha-
size, however, that we used in this Chapter TDGL equations corresponding to the
so-called gapless superconductors. More exact correspondence with experimental
results can be obtained with the TDGL equations valid for finite gap superconduc-
tors. These equations have a similar structure, but are a bit more mathematically
complicated. Chapter 7 of Part II of this book explains them. These equations can be
combined with COMSOL in the same manner as we described above. At this point,
you have gained enough expertise for doing that yourself and, combining creativity
and patience, you can obtain many useful enjoyable results. For your convenience,

5Interested readers can be directed to Sect. 7.4 “Longitudinal Electric Field in Superconductors” of
Part II.
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and to accelerate your progress, all the COMSOL files described in this book, except
the very last one, can be downloaded from the Springer website of this book.

In total, there are 10 uploaded examples. Each of them is in its own folder. The
folder contains original COMSOL code (with the extension .mph), as well as the
animation in the .avi format (except example 1_DiskLondon which is static). Exe-
files for Windows and sh-files for Linux are located in the dedicated folders. These
online files generally correspond to the material considered in the book. However,
they may slightly differ from the exact files described and constructed in the text.
The .mph files require COMSOL Multiphysics version 5.4 or higher to run them.
The files in Windows and Linux folders are executable files, which can operate
on corresponding platforms. They include both the codes and COMSOL runtime
files and thus do not require COMSOL itself to be installed on your computer.
When running them, you will have the opportunity to change certain characteristic
parameters and obtain your own solutions and create animations. For example, you
will be able to switch between superconductors of Type I and Type II. You also will
be able to share these files with any other computer users.

Examples of animations are included as well. You can increase the study time
and obtain animations which run for a much longer time. One should keep in mind
two issues related with the dynamic output of the modeling. (1) Initial pattern as a
rule is not yet accurate since the initial conditions are in most of cases impossible
to introduce correctly. Thus, the system adjusts itself to correct values based on the
equations themselves, and it takes a certain amount of time for that process to finish.
Thus, typically, there is an initial disturbance in the system which is unphysical. (2)
During computation, the processor cannot compute with an ideal accuracy. There is
a small error in solutions, and with time that error accumulates. If you are negligent,
the results may become artifacts. So an increase of time should be accompanied with
additional steps that account for this fact, for example, refining the mesh.

I will provide some advice for each of the exe-files now.

1_DiskLondon. Default values of geometrical parameters, when changed,
sometimes may cause homogeneous blue color of the background. That is
related with plotting procedure (occasional division by zero at x = 0). That is
a minor drawback which I had no opportunity to fix. Keep changing parame-
ters, and the proper coloring scheme will come back.

2_MeissnerTDGL. Click Compute after downloading. When computation
is over, you can also generate and export an animation. You can choose the
number of frames, and Frames per second. Do not forget to arrange a path for
recording in the Filename window. You can change the value of kappa and
enjoy the difference between Type I and Type II superconductors.

3_Meissner4Eqs. This is the same problem, with different mathematical
approach to the solving procedure as described in the text.
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4_Washer-3D. This example may require more computer resources. How-
ever, 16Gb of RAM should be enough. Also, computation will take a longer
time.

5_PSC. This is demonstration of phase-slip oscillations in a 1Dwire. Please
note that there is an artificial weak point (called “inhomogeneity”) in the code.
Its negative values (-p) correspond to weakening of superconductivity. If you
choose its amplitude to be 0 instead of the default −0.3, the oscillations will
take place at the middle point of the wire. Otherwise, they are shifted towards
the inhomogeneity. Have fun!

6_CurrentStrip. Current flows through the strip and generates vortex-
antivortex pairs, which annihilate. You can change almost all the relevant
parameters and watch the consequences.

7_PhononBasic. This illustrates my statement that the initial pattern often
contains an unphysical disturbance which will soon disappear. You will see
then how the annihilation of the vortex-antivortex pair creates a spike of the
electric field, i.e., generates electromagnetic radiation. Default evolution time
is a bit short: increase it to above 150 to see the annihilation event. Keep
in mind that the normalized color scale depicts the modulus square of the
wave-function, i.e., the Cooper pair density. The file name contains the word
“phonon” because there is a phonon flux in the middle of strip orthogonal to
the flow of current, weakening superconductivity as in the case of Example
#5. You can regulate its effect by changing its amplitude p.

8_StripWithDents. This example illustrates how the imperfect edges of the
strip, say, defects created by inaccurate nanolithography, may cause problems
in superconducting electronics. Increase the evolution time, and generate your
own avi-file to see the annihilation of vortex-antivortex pair. Recall that in
accordance with the previous example, such processes generate (unexpected
for the electronics engineer!) spikes of voltages.

9_SFQgenerator. Passage of DC current through the SNS junction creates
a vortex, and the vortex moves and leaves the junction. SNS junction itself
is created by the same “phonon weakening” as above. Leaving the junction
creates a voltage spike during this event. SFQ pulse generation is at the heart
of superconducting electronics. Unlike previous examples, this one can be
regulated.Youmay change the applied current amplitude and find the threshold
needed to move the vortex. That tells us that the pulses can be generated on
demand by the applied current.

10_SFQcloning. In this case, the initial current whose presence ismimicked
by the magnetic field, is not enough for the excitation of a moving vortex. At
some moment in time, at the “Arrival time of SFQ” an additional current pulse
is applied. That creates overthreshold conditions and the vortex starts moving,
eventually leaving the junction, creating a voltage spike, and thus cloning the
SFQ which triggered its motion. You can increase the Arrival time to make the
process more distinct.
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All these resources are available to everyone, even those who do not possess the
COMSOL package. The websites for downloading are mentioned at the bottom of
the first pages of Chap. 1 and this Chapter. Needless to say, having basic COMSOL
package will allow you to do much more; you can download and use these mph-files,
and create your own, perhaps even better, examples. Good luck!
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Chapter 3
Stationary Ginzburg–Landau Equations

Starting with this Chapter, we will consecutively introduce the basic framework
whichwill eventually allow us to present the derivation of time-dependent Ginzburg–
Landau equations. This chapter will deal with static phenomena. After preliminary
notions, some of which are repeated for self-consistency from the material already
introduced in Part I, we will first derive the set of stationary Ginzburg–Landau equa-
tions following the original phenomenological approach. Then, BCS theory will be
introduced, using Gor’kov’s Green’s function formulation. On the basis of this the-
ory, the phenomenological Ginzburg–Landau equations will be justified, and their
phenomenological parameters will be computed from the microscopic theory.

3.1 Introductory Concepts

The first main property of superconductors—the flow of electric current without
resistance—was discovered by Kamerlingh-Onnes [1] in 1911. For more than 20
years this phenomenon was interpreted as superfluidity, or lossless motion of the
electron liquid in metals. The second main property—the total expulsion of the
magnetic field out of the bulk superconductor’s interior—was discovered byMeissner
and Ochsenfeld in 1933. Their half-page report [2] immediately led to very deep
insights into the nature of the phenomenon of superconductivity, which eventually
allowed bridging the properties of superconductors with quantum mechanics.

We start with a brief discussion of the main superconducting properties. In this
section, we sacrifice the historical chronology of superconductivity in favor of intro-
ducing some major concepts which will be used in later sections of the book without
special explanation.
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3.1.1 Infinite Conductivity

In an attempt to understand ideal (infinite) conductivity, one can first refer to Ohm’s
law j = σE, and try to handle the infinitely large values of σ. To reach this goal,
it is necessary to go back to Ohm’s law and eliminate the dissipative term at the
initial stage of its derivation. Then one would get “Newton’s law” describing the
lossless motion of the charge carrier: mv̇ = eE. Combining it with the relation E =
−(1/c) (∂A/∂t), and performing the integration, we find:

mv = −e

c
A (3.1)

(here the constant of integration is chosen to be zero owing to the appropriate ini-
tial condition; also full time derivative in Newton’s law is replaced by partial time
derivative). To avoid for the moment the difficulties related to the arbitrariness of
the gauge for A in (3.1), one should take a curl of (3.1), bearing in mind the rela-
tions curl A = B, and j = env, where n is the carrier density. From this follow the
gauge-invariant relations (� = m/e2n):

∂�j
∂t

= E, and c curl �j = −B, (3.2)

first introduced by London and London [3], which should replace Ohm’s law for
superconductors.

3.1.2 Ideal Diamagnetism

Let us now move to the second main property of the superconducting state, namely,
to ideal diamagnetism, which is frequently called the Meissner effect. At first glance
there is nothing especially surprising in this phenomenon: we know, that application
of magnetic field causes the screening currents, which shunt the interior of the con-
ductor and can persist infinitely, if the conductivity is ideal. However, the experiment
withmagnetic field repulsionmay be performed in a different way: themagnetic field
is applied initially at sufficiently high temperatures (in the normal state) and after the
screening currents have died out, the temperature is lowered below the superconduct-
ing transition point T = Tc. Such experiments have shown that in superconductors
the screening currents arise again after cooling down through Tc and this distinguishes
superconductors from ideal conductors. Thus these currents cannot be explained on
the basis of classical concepts because the static magnetic field of classical electro-
dynamics cannot perform work, and consequently cannot produce the circulating
screening currents. Formally the Meissner effect can be explained by the relations
(3.2)—we already discussed that in Part I of the book. As we concluded there, both
ideal conductivity and the Meissner effect are related to the proportionality of the
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current j to the vector potential A. This contradicts the classical electrodynamics,1

in which the current is proportional to the electric field E, and provides fair grounds
to assign quantum properties to superconductors.

3.1.3 Energy Gap

In 1935 London published insightful arguments elucidating how the Meissner effect
is coupled with the possible existence of the gap in the energy spectrum of the charge
carriers [7]. Namely, within the quantum mechanical description the current

j = �e

2im
(ψ∇ψ∗ − ψ∗∇ψ) − e2

mc
A|ψ|2 (3.3)

(here � is Planck’s constant h divided by 2π) consists of two components: the term,
containing ∇ψ (the “paramagnetic” term) and the term, explicitly proportional to
A (the “diamagnetic” term). If A �=0, the ψ-function in normal metals acquires
dependence on A as well, so these two components are of the same order and usually
cancel each other to a large extent, so that a weak dia- or paramagnetism occurs,
depending on the details of the electronic structure. If one assumes that there is a gap
in the energy spectrum associated with the transition to the superconducting state,
then in the magnetic field the electronic spectrum of the system will not be changed;
the wave function ψ of the state will behave as “rigid”: ψ = ψo = ψ(A = 0), so that
the paramagnetic term should continue to be zero (as in the case of A = 0), while
the diamagnetic term should provide the main response.

The presence of a gap in the energy spectrum will make the creation of single-
particle excitations impossible, providing the non-dissipative motion alike of
described by (3.1).

In normal metals the spectrum of elementary excitations of electrons with
momenta in the vicinity of pF has the form

ξp = vF (p − pF ), (3.4)

which follows straightforwardly in the parabolic band approximation ξp = p2/2m −
εF ,where εF is the Fermi energy: εF = p2F/2m = mv2

F/2 (the same type of relation
as (3.4) can be justified in more general cases). Evidently, for normal Fermi-liquids
there is no gap in the energy spectrum. Let us suppose that in superconducting state

1Classical electrodynamics is based on Faraday’s concept of local influence of the electromagnetic
fields on charges. Meanwhile, for a long enough solenoid (one can even realize “infinitely long”
option in the toroidal geometry—the magnetic field H outside of the solenoid is absent though in
a wire looping the solenoid a current will start flowing when the loop will be cooled down to the
superconducting state! As was pointed out by Aharonov and Bohm [4] (see also [5]), the quantum
objects can “sense” the field potentials A and ϕ while the values of E and H are zero. That fact
allowed Feynman to declare that the real physical fields are not E and H, but rather A and ϕ [6].
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the excitation spectrum possesses a gap-like peculiarity:

εp =
√

ξp
2 + |Δ|2. (3.5)

In the presence of this gap |Δ| the birth of single excitations with small energies
is impeded. In Sect. 3.3 we will see that the microscopic theory indeed leads to the
spectrum of the type (3.5). Here we discuss some of the consequences that follow
from (3.5).

3.1.4 Bogolyubov–De Gennes Equations: Analogy with
Relativistic Quantum Theory

The spectrum (3.5) has an analog in the relativistic quantum theory [8], where the

electron energy is Ep =
√

p2 + m2
0 (m0 is the electron rest mass, c = 1). One can

try to reconstruct the wave function of the particle having the spectrum (3.5), by
writing down the stationary Schrödinger equation (using the equivalent Hamiltonian
method; this is sometimes called the equivalent mass approach) [9]:

ε̂(−i�∇)ψ = εψ. (3.6)

As was done by Dirac in the relativistic quantum theory (see, e.g., [10]), one can
extract the square root from the operator by linearizing it (here and below � = 1):

ε̂(−i∇) = α̂

(
− 1

2m
∇2 − εF

)
+ β̂|Δ| (3.7)

where α̂ and β̂ are somemathematical objects to be identified by squaring the operator
(3.7). In the absence of external fields we should obtain the spectrum (3.5). This leads
to the relations

α̂2 = 1, β̂2 = 1, (3.8)

α̂β̂ + β̂α̂ = 0. (3.9)

In the simplest case α̂ and β̂ are not numbers, but they may be expressed as super-
positions of the Pauli matrices [the unity matrix 1̂ does not participate in these linear
combinations, as is seen from (3.9)]:

α̂ =
∑′

ai σ̂i ; β̂ =
∑′

bk σ̂k , (3.10)

where the prime denotes i �= k according to (3.9), and (3.8) gives
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∑
a2i =

∑
b2k = 1. (3.11)

Thus the wave function in (3.6) is a one-column matrix:

ψ̂ =
(U
V
)

. (3.12)

One can demand now, that in the case of normal metal (Δ = 0) the components
U and V should become decoupled. This means that in the composition (3.10) for α̂
only the coefficient at the matrix

σ̂z =
(
1 0
0 −1

)
(3.13)

will not vanish. In view of relations (3.10) and (3.11), this leads to

β̂ =
(

0 eiθ

e−iθ 0

)
, (3.14)

where θ is the (real) phase factor. Introducing the notation

Δ = |Δ|eiθ (3.15)

we represent (3.6) in the form

ε U = −
(∇2

2m
+ εF

)
U + Δ V, (3.16)

ε V =
(∇2

2m
+ εF

)
V + Δ∗ U . (3.17)

In the presence of a magnetic field2 these equations become

εU(r) =
[

1

2m

(
−i

∂

∂r
− e

c
A
)2

− εF

]
U(r) + ΔV(r), (3.18)

εV(r) = −
[

1

2m

(
−i

∂

∂r
+ e

c
A
)2

− εF

]
V(r) + Δ∗U(r). (3.19)

2The magnetic field may be introduced by generalization of the standard method [11]. One can start
from theLagrangian L̂(r, ṙ) = α̂mṙ2/2 − β̂|Δ| + α̂eṙ · A/c. The scalar potentialϕ can be included
in εF . This Lagrangian gives the correct expression for the Lorenz force acting on the electron in nor-
mal metal (whenΔ = 0). Thus in presence of a magnetic field we have the Hamiltonian Ĥ = p·ṙ −
L̂ , where p = ∂ L̂/∂ṙ = α̂(mṙ + eA/c), i.e., Ĥ = α̂(α̂p − 1̂ eA/c)2/2m − α̂εF + β̂|Δ|, which
yields (3.18) and (3.19).
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This system of (3.18) and (3.19) is called the Bogolyubov–De Gennes equations
[12].

3.1.5 Andreev Reflection

For stationary stateswe consider thewave function in the Schrödinger representation,
which includes the factor exp(−iεt). Separating also the fast-oscillating factors in
the wave function:

ψ̂(r, t) = exp(−iεt)ψ̂pF (r) exp(ipF · r) = ψ̂pF (r, t) exp(ipF · r) (3.20)

and restoring the time-differentiation operators, one can transform (3.18), (3.19) to
the form:

(
i

∂

∂t
− α̂eϕ

)
ψ̂pF (r, t)

=
(

−i α̂v· ∂

∂r
+ e

c
v · A

)
ψ̂pF (r, t) + |Δ|β̂ψ̂pF (r, t). (3.21)

Thus the analogy between the particle spectra has led to an apparent parallel
between (3.18), (3.19) and the Dirac equation [8, 10]. There are numerous conse-
quences from (3.21) [or, equivalently, from (3.18) and (3.19)] that are analogous to
relativistic quantum effects.3 We consider the most prominent of them: the so-called
Andreev reflection.

In the absence of external fields, the ψ̂-function may be taken as real (without loss
of generality), and using the normalization

Tr ψ̂2 = U2+V2 = 1, (3.22)

one finds from (3.22), (3.16), and (3.17):

U2 = 1

2

(
1 + ξ

ε

)
, V2 = 1

2

(
1 − ξ

ε

)
. (3.23)

According to (3.22), the charge carrier with spectrum (3.5) is in a superposition
of states, having the probability amplitudes U and V . As follows from (3.23), this
superposition is essential in the energy range ξ ∼ |Δ|. For ξ � |Δ| we have from
(3.22) and (3.23): ψ2

p>pF ≈ U2; this is an electron-like excitation. For ξ 	 −|Δ|

3We note that there is not a one to one correspondence between effects in superconductors described
by the Bogolyubov–DeGennes equations and the physics of theDirac equation. Even formally there
are pronounced differences between these equations. Due to them, for example, the quasiparticle
has no magnetic moment associated with “zitterbewegung” [13] of electrons in superconductors.
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we have ψ2
p<pF ≈ V2; this is a hole-like excitation. Because the charges of these

excitations have the opposite signs, one has for the charge of quasiparticles, described
by the ψ̂-function (3.12), the expression [14]:

q∗ = U2 − V2 = ξ/ε (3.24)

(the electron charge is unity). It follows that quasiparticle charge, as well as its group
velocity

vg = ∂ε

∂p
= ξ

ε

p
m

= q∗v, (3.25)

vanishes (and reverses its sign) at p = pF .
Consider now the propagation of such a particle in a medium, where |Δ(r)| is a

spatially inhomogeneous function. For instance, |Δ(r)|may increase smoothly from
zero toΔ0 at the boundary between normal and superconducting phases. Let the parti-
cle be moving from a normal to a superconducting region, with its energy ξp obeying
the relation 0 < εp = ξp < Δ0 in the normal region. In the superconducting region,
as can be seen from (3.5), somewhat smaller values of ξp′ and consequently smaller
values of p′, correspond to the same energy εp. At the point where |Δ(r)| = εp,

we have p = pF , and according to (3.24) and (3.25), the particle should stop and
be reflected. The group velocity in this case reverses its sign, but the momentum
retains. This means that the reflected particle reverses its charge [see (3.24)], i.e.,
the reflected electron excitation becomes a hole. In the relativistic theory, this phe-
nomenon is known as the Klein paradox [15]. In the superconductivity theory, it
corresponds to the Andreev reflection [16]. The Andreev reflection takes place when
a current flows across the boundary between a normal metal and a superconductor.
This process was demonstrated experimentally by the radio-frequency size effect
[17]. As can be seen from Fig. 3.1, the specifics of such a reflection allow one to fit
the electron’s trajectory (having a diameter D in presence of a magnetic field H0)
within the normal metal layer of thickness d = D/2. Evidently if the film borders a
vacuum, theminimal value of the field is H = H0, but for a film deposited on a super-
conductor (see Fig. 3.1) the closed trajectory is achievable in the field H = H0/2 [17].
This example demonstrates one of the remarkable kinetic properties caused by the
nature of superconductivity.4

3.1.6 Electron Density of States

There are two additional points. The first relates to the density of the energy levels
of quasiparticles having the spectrum of (3.5). In a description of normal metals, the

4It is recognized nowadays that the Andreev reflection plays a major role in “our ability to insert
current into a superconductor” [18]. The related physics is very important for various fundamental
and applied problems of superconductivity [19–28].
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Fig. 3.1 Experimental
evidence for Andreev
reflection: scattering on the
normal-metal
(N )−superconductor (S)
boundary transforms
“electron” into “hole” and
vice versa. Closed
trajectories are possible at
half amplitudes of the
applied magnetic field H
compared with the case of a
free-standing single film

density of the levels can be obtainedwhenone passes from themomentumsummation
to the energy integration:

Σ(. . .) →
∫

(. . .)
d3p

(2π)3
≈ mpF

2π2

∫
(. . .)dξ ≡ N (0)

∫
(. . .)dξ, (3.26)

so for the momenta p ≈ pF , the levels’ density is a constant N (0) = mpF/2π2.
However, in superconductors, the levels’ density is a singular function

N (0)
∫

(. . .)dξ → N (0)
∫

(. . .)
∂ξ

∂ε
dε = N (0)

∫
(. . .)

εθ(ε2 − |Δ|2)√
ε2 − |Δ|2 dε. (3.27)

Thus, when there is a gap in the excitation spectrum, the energy levels (or states) of
quasiparticles are pushed out from the intra-gap into the gap-edge region of energies
|ε| � |Δ|. This singularity of superconducting energy levels will play an important
role in further discussions.

3.1.7 Coherence Factors

The second point relates to the coherence factors. The form of the wave function
(3.12) indicates that in calculations of the matrix elements connected with the tran-
sition of quasiparticles from level ε to level ε′, combinations of the type

U(ε)V(ε′) ± V(ε)U(ε′), U(ε)U(ε′) ± V(ε)V(ε′) (3.28)

would appear, depending on the form of the interaction operator. The squared quanti-
ties (which define the corresponding transition probabilities) would be, for example,
(UU ′ + VV ′)2. For the last quantity one obtains, after a simple calculation taking
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into account (3.23):

[U(ε)U(ε′) + V(ε)V(ε′)
]2 = 1

2

(
1 + ξξ′

εε′ + |Δ|2
εε′

)
. (3.29)

Other combinations in (3.28) lead to analogous relations, differing only in the signs
in the parentheses in (3.29). These factors are called “coherence factors”. They renor-
malize the transition matrix elements in superconductors relative to those in normal
metals.

For the processes that are symmetric over the electron-hole excitation branches,
the odd terms in ξξ′ in (3.29) disappear and the coherence factors are of only two
types:

(1 + |Δ|2/εε′) and (1 − |Δ|2/εε′). (3.30)

Note that for ε, ε′ ∼ |Δ|, the transition probability doubles for the first factor and
vanishes for the second one. This is important, because the states with ε ∼ |Δ| play
an essential role in kinetic processes, as may be expected from the peculiarity in the
density of states (3.27).

3.2 Phenomenological GL Theory: Triumph and Limits of
Human Imagination

The Ginzburg–Landau (GL) theory permits a deep insight into the phenomenon
of superconductivity in the case of thermodynamic equilibrium and provides the
most transparent technique for investigating this phenomenon. Developed before the
microscopic theory of superconductivity, its predictive power is tremendous and can
be qualified as the triumph of human imagination. However, it is puzzling that the
authors did not make one more step, and discover the Josephson effects in the way
we did in Part I. Even a genius’ imagination is sometimes limited! We continue our
discussion with the presentation of this theory [29].

In formulating this theory, the experimental knowledge that the superconducting
transition is a second order phase transition was used. We will remind that the first
order phase transitions (e.g., melting of crystals or evaporation of liquids) are related
with the discontinuities of thermodynamic potentials (such as the free energy). In case
of the first order phase transitions the derivatives of thermodynamic potentials are
divergent at the transition temperature. In case of second order phase transitions the
thermodynamic functions are continuous while their derivatives are discontinuous.
Accordingly, GL assumed that below the phase transition temperature Tc all the
electrons of the superconducting metal can be characterized by a superconducting
order parameter Ψ �= 0 at T < Tc and Ψ = 0 at T > Tc. On intuitive grounds, the
order parameterΨ was considered as the “effectivewave function of superconducting
electrons”.
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3.2.1 Free Energy Functional

According to the theory of second order phase transitions [30] the free energy of
superconducting state in the vicinity of Tc may be presented as a functional of the
complex variable Ψ , permitting the expansion (we make for a moment H = 0 ):

F0
s = F0

n + α |Ψ |2 + β

2
|Ψ |4 + · · · (3.31)

(the terms proportional to Ψ and Ψ ∗ do not enter this expansion in view of the gauge
invariance of the free energy). In expression (3.31) F0

n is the free energy of the normal
phase. At fixed temperature T < Tc, the free energy (3.31) is minimized by the value
of |Ψ (T )|, which can be found from equation

∂F0
s

∂|Ψ |2 = 0, (3.32)

subject to the condition
∂2F0

s

(∂|Ψ |2)2 > 0. (3.33)

From (3.32) and (3.31) one finds

|Ψ |2 ≡ |Ψ0|2 = −α

β
, (3.34)

i.e., the factors α and β have opposite signs at T < Tc. From the condition (3.33) it
follows that

βc = β(Tc) > 0 (3.35)

and combining this with (3.34), we find

αc = α(Tc) = 0. (3.36)

According to this for temperatures near Tc it could be written

α(T ) =
(
dα

dT

)

Tc

(T − Tc), (3.37)

β(T ) = βc. (3.38)

Based on these expressions one can conclude that in the case of thermodynamic
equilibrium at T ≤ Tc
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|Ψ0|2 = − 1

βc

(
dα

dT

)

Tc

(T − Tc), (3.39)

F0
s = F0

n − α2

2β
= F0

n − 1

2βc

(
dα

dT

)2

Tc

(T − Tc)
2. (3.40)

Let us now consider a superconductor that is placed in a static magnetic field
H(r). The free energy FH

S must have an additional term that is equal to the field
energy B2/8π. Accordingly, the critical magnetic field in a spatially homogeneous
case may be found from the equation

H 2
c

8π
= F0

n − F0
s = α2

2β
. (3.41)

Generally, one must also take into account the energy, which is proportional to
the inhomogeneity of the wave function |∇Ψ |2. Thus at small gradients,

FH
s = F0

s + B2

8π
+ const |∇Ψ |2. (3.42)

The last term in (3.42) corresponds to quantum-mechanical kinetic energy. Hence
there are reasons to represent it in the form

�
2

2m∗
|∇Ψ |2 = 1

2m∗
| − i�∇Ψ |2, (3.43)

where m∗ is some coefficient having the dimensionality of a mass. To include the
magnetic field in the scheme, it is necessary to make in (3.43) the usual quantum-
mechanical substitution

− i�∇ −→ −i�∇ − e∗
c

A, (3.44)

which enables one to obtain the gauge invariant equations. Here A is the magnetic
field’s vector-potential, and e∗ is the charge of the carrier, represented by the wave
function Ψ . Thus, the free energy density may be written in the form

FH
s = F0

s + B2

8π
+ 1

2m∗

∣∣∣−i�∇Ψ − e∗
c

AΨ

∣∣∣
2
. (3.45)

Demanding the minimum for the total free energy

F H =
∫

V0

FH
s d3r (3.46)
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(V0 is the system’s volume), one can obtain the equation for Ψ . Varying (3.46) by
Ψ ∗ gives

δF H =
∫

V

{
1

2m∗

(
−i�∇ − e∗

c
A
)2

Ψ + αΨ + β|Ψ |2Ψ
}

δΨ ∗d3r

+ �
2

2m∗

∫

S
δΨ ∗

(
∇Ψ − ie∗

�c
AΨ

)
· ds (3.47)

(S is the metal’s surface). Because δΨ ∗ is arbitrary, we find from (3.47) an equation
for the order parameter

1

2m∗

(
−i�∇ − e∗

c
A
)2

Ψ + αΨ + β|Ψ |2Ψ = 0 (3.48)

and also the boundary condition

n
(
−i�∇Ψ − e∗

c
AΨ

)
= 0 (3.49)

(here n is a vector normal to the metal surface). The variation of (3.46) by A yields
the Maxwell equation

curl curl A = 4π

c
j, (3.50)

where the current

j = − ie∗�
2m∗

(Ψ ∗∇Ψ − Ψ ∇Ψ ∗) − e2∗
m∗c

|Ψ |2A (3.51)

has a typical quantum-mechanical form (3.3).
Expressions (3.48) and (3.51) comprise theGinzburg–Landau systemof equations

describing the behavior of superconductors in a static magnetic field. Presenting the
complex function Ψ in the form

Ψ = |Ψ |eiθ, (3.52)

one can rewrite the expression for the current:

j = �e∗
m∗

|Ψ |2
(
∇θ − e∗

�c
A
)

= e∗Nsvs . (3.53)

Here |Ψ |2 is the “density of superconducting electrons” in the Ginzburg–Landau
normalization, |Ψ |2 ≡ Ns , and the superconducting velocity vs is equal to
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vs = �

m∗

(
∇θ − e∗

�c
A
)

. (3.54)

Putting B = curl A, one can easily prove that (3.53) coincides with the London
equation3

curl j = −e2∗Ns

m∗c
B. (3.55)

Substituting into (3.55) the Maxwell equation

curl B = 4π

c
j (3.56)

and taking into account that
divB = 0 (3.57)

we obtain the equation

∇2B = 4πe2∗Ns

m∗c2
B. (3.58)

3.2.2 London Penetration Depth

Equation (3.58) subject to condition (3.57) describes the expulsion of amagnetic field
from superconductor’s interior (the Meissner effect). Let us consider the distribution
of a magnetic field in a superconductor near its surface, assuming the latter to be
a plane. The characteristic parameter, which has the dimension of a length, in this
situation is

λL =
(
4πe2∗Ns

m∗c2

)−1/2

, (3.59)

as may be seen from expression (3.58). In the case considered here, the field distri-
bution depends on one (say, x) coordinate only. Then

d2B
dx2

= B

λ2
L

(3.60)

with the boundary condition
dBx

dx
= 0, (3.61)

which follows from (3.57). From the expressions (3.61) and (3.57) one can conclude
that the vector of induction B in the depth of the superconductor has the form

B(x) = B0e
−x/λL , (3.62)
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where B0 is a tangential component of the external field. The characteristic length
λL (3.59) is called the “London penetration depth”.

3.2.3 Coherence Length

The Ginzburg–Landau set of equations has one more characteristic scale, which has
the dimensionality of the length. Its value [usually marked ξ(T )], as may be seen
from the (3.48), characterizes the scale of spatial evolution of Ψ -function and is
given by

ξ−2(T ) = 2m∗|α(T )|
�2

. (3.63)

The temperature dependence of ξ(T ) in the vicinity of Tc is found using the formula
(3.37):

ξ(T ) = �

{
2m∗

(
dα

dT

)

Tc

(Tc − T )

}−1/2

. (3.64)

We are able also to obtain the temperature dependence of λL = λL(T ). Indeed,
in the vicinity of Tc one can substitute (3.39) into (3.59) with the result:

λL(T ) =
{

m∗c2βc

4πe2∗(dα/dT )Tc(Tc − T )

}1/2

. (3.65)

The ratio of these two characteristic lengths

κ = λL(T )

ξ(T )
= m∗c

�e∗
β
1/2
c

(2π)1/2
(3.66)

is temperature independent and, as we have seen in Part I, is an important parameter
of a superconductor, defining its behavior in a magnetic field. We will understand
the reasons now.

3.2.4 Sign of Surface Energy

Let us consider the surface energy of the flat boundary between normal and super-
conducting phases, which may exist in a magnetic field. In the normal phase, the free
energy density, including the field energy, is equal to F0

n + H 2
c /(8π). In the region

whereΨ �= 0, the free energy density is FH
s (3.42). Near the boundary one must take

into account the energy associated with the magnetization of a superconductor
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M = B − H
4π

. (3.67)

In the depth of the normal phase, the equation B = H = Hc holds (the second of
these equations is also valid in the depth of bulk superconducting region, because
of c curl M = j). Thus the surface energy

σns =
∫ {

FH
s (z) − B(z)−Hc

4π
Hc − F0

n − B2

8π

}
dz (3.68)

taking into account (3.45), is equal to

σns =
∫ {

αΨ 2 + βΨ 4

2
+ α2

2β
+ �

2

2m∗

(
∂Ψ

∂z

)2

+ e2∗
2m∗c2

A2Ψ 2 + B2

8π
− HcB

4π

}
dz. (3.69)

[according to (3.41), α2/2β = H 2
c /(8π)]. In (3.69), the Ψ -function was assumed

to be real, because the term iA · ∇Ψ vanishes owing to the condition Az = 0. The
analogous term also disappears from (3.48) for the order parameter, so (3.53) for the
current acquires the form

j = − e2∗
m∗c

Ψ 2A. (3.70)

It is expedient to use the variables

z = z

λL
, Ψ = Ψ

(
β

|α|
)1/2

, A = A

HcλL
, B = dA

dz
= B

Hc
. (3.71)

Removing the bars above the symbols to simplify the notation, we present (3.48) in
the form

Ψ
′′ = κ2

[(
1

2
A2 − 1

)
Ψ + Ψ 3

]
(3.72)

and write expression (3.69) as

σns = λL H 2
c

8π

∫ ∞

−∞

[
2

κ2
(Ψ ′)2 + (A2 − 2)Ψ 2 + Ψ 4 + (A′ − 1)2

]
dz. (3.73)

Integrating the first term in (3.73) by parts, using the conditionΨ ′(±∞) = 0, one
can reduce (3.73) to the form

σns = λL H 2
c

8π

∫ ∞

−∞
[(A′ − 1)2 − Ψ 4]dz. (3.74)
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Expression (3.74) vanishes if the integrand is identical to zero: A′ − 1 = ±Ψ 2. Since
B = A′ and B must decrease with increasing z, then

A′ − 1 = −Ψ 2. (3.75)

From (3.50) and (3.70) it follows that

A′′ = AΨ 2. (3.76)

Taking the derivative of (3.75) and introducing it into (3.76), we find

Ψ ′ = −1

2
AΨ. (3.77)

Substituting Ψ ′ (3.77) and A′ (3.75) into (3.72) shows that (3.72) is fulfilled iden-
tically at κ = 1/

√
2. One can also see, that the condition (3.75) which was used

earlier does not contradict the boundary conditions: A′ = 1 at z = −∞ and A = 0
at z = ∞. Thus we arrive at a very important conclusion: at κ = 1/

√
2 the solu-

tion of order parameter equation causes the surface energy to vanish (this criterion
was established numerically by Ginzburg and Landau [29] and proven analytically
[12] by the Sarma method; the alternative method we used here is by Lifshitz and
Pitaevskii [31]). Generally, σns may have an arbitrary sign [32]. To see this we will
once again use (3.73), as well as the first integral of (3.72) subject to (3.76), which
has the form5

2(Ψ ′)2

κ2
+ (2 − A2)Ψ 2 − Ψ 4 + (A′)2 = const = 1. (3.78)

As a result we find

σns = λL H 2
c

4π

∫ ∞

−∞

[
2

κ2
(Ψ ′)2 + A′(A′ − 1)

]
dz. (3.79)

Note that the second term in (3.79) is always negative, because the field B = A′
which penetrates into the superconductor, is always smaller than the critical one:
A′ ≤ 1 (or, otherwise, superconductivity will vanish). The first term in (3.79) is
always positive, but its value and consequently the sign of σns are determined by the
magnitude of κ [see (3.66)]. Superconductors, in which

λL < ξ/
√
2 (3.80)

are called type-I superconductors, or Pippard superconductors. In these supercon-
ductors, as we have seen, σns > 0. Superconductors, in which

5The last identity here follows from the equation (3.76) and boundary conditions Ψ (−∞) = 0,
A′(−∞) = 1; Ψ (∞) = 1, A′(∞) = 0.
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λL > ξ/
√
2 (3.81)

are called type-II superconductors, or London superconductors. In these supercon-
ductors surface energy is negative: σns < 0. This explains our modeling results in
Part I. Appearance of vortices with normal cores introduces internal ns−boundaries
thus reducing the free energy of superconductors at values of κ > 1

√
2.

3.3 BCS-Gor’kov Theory

The basic cornerstone of the microscopic theory of superconductivity was laid down
by Cooper [33] in 1956. Cooper considered the indirect (mediated by the phonon
exchange) interaction between electrons in metals; this is a process of the second
order in electron-phonon interaction. As is known from perturbation theory, the
second order correction to the energy of the ground state is always negative (see,
e.g., [34]), i.e., the Cooper interaction is attractive. Because the Fermi sphere at low
temperatures is almost completely occupied, the motion of conducting electrons in
the momentum space is quasi-two-dimensional. This means that any weak attraction
between electrons produces the bound state, or leads to electrons pairing. In the
absence of total current, the electrons with opposite momenta have the largest pairing
probabilities. The paired electrons become bosons, with the spin equal to 0 or 1. The
electron system must have rearranged itself (because the paired state is energetically
preferable), forming the Bose condensate of paired electrons (the Cooper”, or “pair”
condensate). The properties of the Cooper condensate are typical for all the Bose
condensates. In particular, at temperatures lower than the condensation temperature
Tc, the occupation number of paired states with zero momentum is macroscopically
large. This means that in presence of the pair condensate, the anomalous components
of Green’s functions should be introduced into the theoretical description. Such a
generalization of the theoretical scheme was made by Belyayev [35] in the theory of
superfluidity, and the concept of off-diagonal long-range order was developed even
earlier (see discussion in [36]). In the theory of superconductivity, this generalization
was introduced by Gor’kov [37] and in a slightly different way by Nambu (see, e.g.,
[38]). The microscopic description of the superconductor in terms of these formulas
is fully adequate to BCS theory and, being considerably simpler, allows one to avoid
all the problems connected with the gauge-invariance of the theoretical scheme.

3.3.1 Equations for Ψ -Operators

We start with the BCS-Gor’kov model, considering first the case of T = 0. The
model Hamiltonian has the form (c = � = 1):
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Ĥ =
∑
αβ

∫ {
−
[
Ψ †

α (r)
(∇2

2m
+ εF

)
Ψα(r)

]

+ζ

2

[
Ψ †

α (r)Ψ †
β (r)Ψβ(r)Ψα(r)

]}
d3r, (3.82)

where Ψ (r) and Ψ †(r) are the field operators in the Schrödinger representation
(from now on the repeated spin indices imply summation and the symbol

∑
will be

omitted). The BCS-potential ζ corresponds to the indirect interaction of electrons.
Let us move to the Heisenberg representation, where operators Ψ and Ψ † are the
functions of x ≡ (r, t) and obey the equations

{
i

∂

∂t
+ ∇2

2m
+ εF

}
Ψα(x) − ζ

(
Ψ

†
β (x)Ψβ(x)

)
Ψα(x) = 0, (3.83)

{
i

∂

∂t
− ∇2

2m
− εF

}
Ψ †

α (x) + ζΨ †
α (x)

(
Ψ

†
β (x)Ψβ(x)

)
= 0. (3.84)

Here we have used the usual equations for the field operators

− i
∂Ψ (x)

∂t
= [

Ĥ , Ψ (x)
]
− , (3.85)

and the commutation rules for the Schrödinger operators

[
Ψα(r), Ψ †

β (r′)
]

+
= δαβδ(r − r′), (3.86)

[
Ψα(r), Ψβ(r′)

]
+ =

[
Ψ †

α (r), Ψ †
β (r′)

]
+

= 0. (3.87)

Green’s functions for superconductor are defined by familiar [39] expressions

Gαβ(x, x ′) = −i〈T
(
Ψα(x)Ψ †

β (x ′)
)
〉, (3.88)

and from (3.169) and (3.84), and (3.86) and (3.87), we get

{
i

∂

∂t
+ ∇2

2m
+ εF

}
Gαβ(x, x ′)

+iζ
〈
T
((

Ψ †
γ (x)Ψγ(x)

)
Ψα(x)Ψ †

β (x ′)
)〉

= δ(x − x ′)δαβ . (3.89)

According to Wick’s theorem, the T -product of Ψ -operators may be presented
as the averaged product of binary field operators. Owing to the presence of the pair
condensate in the system, the T -product may be written in the form
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〈
T
(
Ψ †

γ (x)Ψγ(x)Ψα(x)Ψ †
β (x ′)

)〉

≈ − 〈
T
(
Ψα(x)Ψγ(x

′)
)〉 〈

T
(
Ψ †

γ (x)Ψ †
β (x ′)

)〉
(3.90)

(here the electrons’ scattering processes and the renormalization of their chemical
potential are neglected).

3.3.2 Off-Diagonal Long-Range Order

We can now introduce the anomalous, nondiagonal Green’s functions

F+
αβ(x, x ′) =

〈
T
(
Ψ †

α (x)Ψ †
β (x ′)

)〉
, Fαβ(x, x ′) = 〈

T
(
Ψα(x)Ψβ(x ′)

)〉
. (3.91)

Their presence indicates that the quantum states with N and N ± 1 paired parti-
cles (Cooper pairs) are indistinguishable. The last circumstance is connected with
the abovementioned macroscopic occupation of the paired states, and allows one to
neglect the fluctuations in the number of pairs. It is convenient to write the propaga-
tors, which describe the superconducting state, in a matrix form

Ĝαβ(x, x ′) =
(

Gαβ(x, x ′) Fαβ(x, x ′)
−Fαβ(x, x ′) Gαβ(x, x ′)

)
, (3.92)

where the function Gαβ(x, x ′) = Gβα(x ′, x) corresponds to the Feynman diagram
with the reversed direction of arrows. The appearance of F-functions, which are non-
diagonal in the Hilbert space of single-particle states, is connected with the phase
coherence of the superconducting electrons [the “off-diagonal long-range order”,
introduced by Landau (see discussion by Ginzburg [40]) and independently by Pen-
rose and Onsager [41].

Note that in a spatially homogeneous and stationary state the propagators (3.92)
depend on the difference (x − x ′) only. Introducing in this case the notation

Fαβ(0+) = lim
r→r′t→t ′+0

Fαβ(x − x ′), (3.93)

one can rewrite the equation (3.89) in the form

{
i

∂

∂t
+ ∇2

2m
+ εF

}
Gαβ(x, x ′) − iζFαγ(0+)F+

γβ(x − x ′) = 1̂αβδ(x − x ′). (3.94)

The equation for F+
αβ(x − x ′) follows analogously:

{
i

∂

∂t
− ∇2

2m
− εF

}
F+

αβ(x, x ′) + iζF+
αγ(0+)Gγβ(x − x ′) = 0. (3.95)
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3.3.3 Spin-Singlet Pairing

We can now exclude the dependence on the spin variables (this is permitted in the
case of interactions, which do not depend explicitly on the spins of particles). Green’s
functions may be presented in this case as the products of orbital and spin parts. The
diagonal Green’s function Gαβ(x − x ′) is proportional to the unity matrix 1̂ ≡ δαβ :

Gαβ(x − x ′) = G(x − x ′)δαβ, (3.96)

whereas the off-diagonal functions F+ and F are proportional to the matrix, which
is antisymmetric in the spin indices

F+
αβ(x − x ′) = IαβF

+(x − x ′), (3.97)

Fαβ(x − x ′) = −IαβF(x − x ′), (3.98)

where Iαβ = i(σy)αβ is related to the second of the Pauli matrices:

σ̂x =
(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (3.99)

This antisymmetry characterizes the singlet pairing of the electrons, assumed in the
BCS-model, and wewill adopt it in further analysis. [In the case of triplet pairing, the
choice of Iαβ is ambiguous (see, e.g., [42, 43]) and leads to states with different free
energies]. The system of general equations for the superconductors now acquires the
form

{
i

∂

∂t
+ ∇2

2m
+ εF

}
G(x − x ′) − iζF(0+)F+(x − x ′)

= δ(x − x ′), (3.100){
i

∂

∂t
− ∇2

2m
− εF

}
F+(x − x ′) + iζF+(0+)G(x − x ′) = 0, (3.101)

where F+(0+) = F(0+)∗.

3.3.4 Solutions in Momentum Representation

In the momentum space, (3.100), (3.101) may be rewritten as (P = p, ε):

{
ε − p2/2m + εF

}
G(P) − iζF(0+)F+(P) = 1, (3.102)

{
ε + p2/2m − εF

}
F+(P) + iζF+(0+)G(P) = 0. (3.103)
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or, counting the energy ξp from the Fermi energy level εF , ξp = p2/2m − εF ≈
vF (p − pF ) : {

ε − ξp
}
G(P) − iζF(0+)F+(P) = 1, (3.104)

{
ε + ξp

}
F+(P) + iζF+(0+)G(P) = 0. (3.105)

The solution of (3.104), (3.105) has the form

G(p, ε) = ε + ξp

ε2 − ξp − |Δ|2 , F+(p, ε) = − Δ∗

ε2 − ξp − |Δ|2 , (3.106)

where
Δ = −iζF(0+), Δ∗ = iζF+(0+). (3.107)

[one should bear in mind that since the case of T = 0 is being considered here,
Δ = Δ0 = Δ(T = 0)].

The rules to bypass the poles in (3.106) are defined by the Landau theorem (see,
e.g., [39]), using which one can obtain

G(p, ε) = ε + ξp

(ε − εp + iδ)(ε + εp − iδ)
, (3.108)

F+(p, ε) = − Δ∗

(ε − εp + iδ)(ε + εp − iδ)
, (3.109)

where ξp is the excitation spectrum of the superconductor

εp =
√

ξp + |Δ|2 (3.110)

with a gap |Δ|.

3.3.5 Self-Consistency Equation

To find the value of the gap, definition (3.107) may be used. Substituting (3.109) into
(3.107), one arrives (with |Δ| �= 0) at the self-consistency equation

1 = − ζ

2(2π)3

∫
d3p√

ξ2p + |Δ|2
. (3.111)

Integration in (3.111) over the angles and energy leads to divergence of the integral
at large energies. Integrating in symmetric limits over ξp, one finds
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1 = − ζ

2π2
mpF ln

2ε

|Δ| , (3.112)

where ε is some boundary value of |ξp|, which depends on the model assumptions.
From (3.112) it follows that

Δ0 = Δ(T = 0) = 2εe−1/ζ0 , (3.113)

where

ζ0 = |ζ|mpF
2π2

= |ζ|N (0). (3.114)

In (3.114) N (0) denotes the density of energy levels for the electrons on the Fermi-
surface in a normal metal.

3.3.6 Isotope Effect

In the model based on the Hamiltonian (3.82), the value of Δ0 (and, as we will
see further, the critical temperature of transition, Tc ∝ Δ0) may be arbitrary large if
there is no restriction on the value of ε. In the traditional BCS model, it was assumed
that only the electrons in the “Debye crust” near the Fermi surface take part in the
pairing interaction, since the interaction is mediated by phonons. We will accept this
assumption and put ε = ωD in the expressions (3.112), (3.113) and further on. Since
ωD ∝ M−1/2, whereM is the lattice ionmass, it follows that Tc ∝ Δ0 ∝ M−1/2. This
leads to the difference in Tc between the samemetals of different isotope composition,
which is well confirmed experimentally for the usual superconductors.6

3.3.7 Gauge Invariance

Gauge invariance is an important property of Gor’kov’s equations. Electromagnetic
fields may be introduced into the system of (3.100) and (3.101) by the usual operator
replacement

∇ → ∇ − ieA or ∇ → ∇ + ieA, (3.115)

depending on whether the space derivatives apply to the function Ψ or Ψ †, respec-
tively (in the same manner the time derivation operator gains the addition of ±ieϕ).
The equations for G and F+ may be written as

6We should notice that there are exclusions from this rule even for the case of phonon-mediated pair-
ing, e.g., in the case of PdH alloy, where the effects of the phonon anharmonicity are essential [44].
The situation with high-temperature superconductors is more complicated, and both anharmonicity
and some additional effects may be significant there [45, 46].
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{
i

∂

∂t
+ eϕ + 1

2m

(
∂

∂r
− ieA

)2

+ εF

}
G(x, x ′) + ΔF+(x, x ′) = δ(x − x ′),

(3.116)

{
i

∂

∂t
− eϕ − 1

2m

(
∂

∂r
+ ieA

)2

− εF

}
F+(x, x ′) + Δ∗(x, x ′)G(x, x ′) = 0.

(3.117)
The functions G, F and F+ in the presence of an external field depend on each of
the variables x, x ′, and under the gauge transformation

ϕ → ϕ − ∂χ

∂t
, A → A + ∇χ (3.118)

they transform according to the rules

G(x, x ′) → G(x, x)eie{χ(r)−χ(r′)}, F(x, x ′) → F(x, x)eie{χ(r)+χ(r′)}. (3.119)

which follow from the transformation rules for the field operators Ψ and Ψ †.
The transformation rules for F+(x, x ′) and, consequently, for Δ∗ and Δ, are also

defined by (3.119). So, the gauge invariance of (3.117) is straightforward. It must
be stressed that in certain cases it becomes possible to make the value of Δ real by
special choice of the gauge. In such cases this value coincides with the parameter
in the excitation spectrum, which was introduced in the pioneering BCS theory.
But in general, Δ = Δ(x) is a complex variable and contains additional physical
information. This circumstance is one of the important consequences of the Gor’kov
theory, as we will see later in Sect. 3.4.

3.3.8 Description at Finite Temperatures

We now generalize the theory to the case of finite temperatures. To do this, it is
necessary to apply the Matsubara technique [39], which introduces the imaginary
time coordinate τ . The emerging equations are analogous to (3.100) and (3.101):

{
− ∂

∂τ
+ ∇2

2m
+ εF

}
G(x − x ′) + ΔF+(x − x ′) = δ(x − x ′), (3.120)

{
∂

∂τ
+ ∇2

2m
+ εF

}
F+(x − x ′) + Δ∗G(x − x ′) = 0, (3.121)
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where
Δ = |ζ|F(0+), Δ∗ = |ζ|F+(0+). (3.122)

Using discrete imaginary frequencies

ε = εn = i(2n + 1)πT, n = 0,±1,±2, . . . , (3.123)

according to relations of the type

F+(x − x ′) = T
∑
n

e−εnτ

∫
d3p

(2π)3
eiprF+

ε (p) (3.124)

[and analogously forF(x − x ′) andG(x − x ′)], one canfind from (3.120) and (3.121)
the system of equations

(ε − ξp)Gε(p) + ΔF+
ε (p) = 1, (3.125)

(ε + ξp)F
+
ε (p) + Δ∗Gε(p) = 0. (3.126)

They have the solutions

Gε(p) = ε + ξp

ε2 − ξ2p − |Δ|2 , (3.127)

F+
ε (p) = −Δ∗

ε2 − ξ2p − |Δ|2 . (3.128)

3.3.9 Weak-Coupling Ratio 2Δ(T = 0)/Tc

The value |Δ| may be defined from any of the relations (3.122) and with the help of
(3.128) one can obtain at |Δ| �= 0 an equation

1 = |ζ|T
(2π)3

∑
n

∫
d3p

−ε2n + ξ2p + |Δ|2 . (3.129)

The summation over the frequencies may be carried out using the expression

∞∑
n=−∞

[
(2n + 1)2π2 + a2

]−1 = 1

2a
tanh

a

2
. (3.130)

As a result we obtain from (3.129) the self-consistency equation
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1 = ζ0

∫ ωD

0

dξp√
ξ2p + |Δ|2

tanh

√
ξp + |Δ|2
2T

, (3.131)

which determines the at arbitrary temperatures. Note that (3.131) may be presented

in more transparent form (ε =
√

ξ2p + |Δ|2):

1 = ζ0

∫ ωD

|Δ|
dε(1 − 2n0ε)√

ε2 − |Δ|2 , (3.132)

where the distribution function of Fermi excitations is given by the formula

n0ε = 1

exp(|ε|/T ) + 1
. (3.133)

Setting T = 0, one obtains from (3.132) the relation (3.111) for the gap |Δ0|. At
T = Tc the gap |Δ| vanishes and (3.132) reduces to the equation defining Tc:

1 = ζ0

∫ ωD

0

dε

ε
tanh

ε

2Tc
, (3.134)

from which one obtains
Tc = 2

γ

π
ωDe

−1/ζ0 , (3.135)

where γ is the Euler constant: γ ≈ 1.78.
Comparing the quantities (3.113) and (3.135), we find

2|Δ(T = 0)|
Tc

= 2π

γ
≈ 3.53. (3.136)

This relation provides an empirical criterion of quantitative validity of the BCS
model. It is fulfilled for most superconductors with weak electron-phonon coupling,
for which

ζ0 	 1. (3.137)

The BCS theory describes quite satisfactorily many phenomena occurring in super-
conductors at thermodynamic equilibrium, even in cases,where the inequality (3.137)
is violated. In these phenomena, the BCS interaction potential does not reveal itself
directly. The inelastic collisions, which were omitted in the simplified BCS pic-
ture, are also not important for this class of phenomena. We note now that the
BCS-Gor’kov model may be modified to remove these shortcomings. The Migdal–
Eliashberg model, which is more realistic and better applicable to the problems of
nonequilibrium superconductivity, is considered in detail in Chap. 5.
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3.4 Self-Consistent Pair-Field: Microscopic Justification of
G–L Equations

Initially, the idea that the gap in the energy spectrum of superconductors may serve
as the superconducting order parameter of the phenomenological Ginzburg–Landau
theory, was contained in the foundational work of Bardeen, Cooper, and Schrieffer
[47]. This idea was confirmed by Gor’kov [48], whose work has assigned the status
of microscopic theory to the Ginzburg–Landau study. In the next section we follow
the derivation presented by Gor’kov [48].

3.4.1 Iterated Equations

The microscopic equations of superconductivity considered in the preceding section
may be written in the form

{
ε + 1

2m

(
∂

∂r
− ieA(r)

)2

+ εF

}
Gε(r, r′)

+Δ(r)F+
ε (r, r′) = δ(r, r′), (3.138){

−ε + 1

2m

(
∂

∂r
− ieA(r)

)2

+ εF

}
F+

ε (r, r′)

−Δ∗(r)Gε(r, r′) = 0. (3.139)

The parameter Δ∗ (and analogously Δ) is connected with an anomalous Green’s
function by the relation

Δ∗(r) = |ζ|T
∑

ε

F+
ε (r, r′), (3.140)

where a summation over the frequencies ε = iπT (2n + 1) spreads up to |ε| < ωD .
Making iterations over Δ in (3.138) and (3.139), one can obtain the result, which is
convenient to display diagrammatically:

(3.141)

(3.142)

Here the right arrow corresponds to the normal state functionG0, the left arrow—

to G
0
, the vertex Δ corresponds to Δ(r) or Δ∗(r), depending on the convergence

or divergence of neighboring arrows. Additionally, the sign of the diagram changes,
if the vertex Δ enters the diagram twice. This rule should be followed constantly;
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however, we omit the sign (−) on the diagram. Taking into account all the terms in
the expansions of (3.141) and (3.142) allows us to present the equations (3.138) and
(3.139) in the integral form:

Gε(r, r′) = G0
ε(r, r′) −

∫
G0

ε(r, r1)Δ(r1)F+
ε (r1, r′)d3r1, (3.143)

F+
ε (r, r′) =

∫
G

0
ε(r, r1)Δ∗(r1)Gε(r1, r′)d3r1, (3.144)

though only the first terms of this expansion, depicted in (3.141) and (3.142), are
needed. The appropriate expressions are

Gε(r, r′) = G0
ε(r, r′)

−
∫

G0
ε(r, r1)Δ(r1)G

0
ε(r, r2)Δ∗(r2)G0

ε(r2, r′) d3r1d3r2, (3.145)

F+
ε (r, r′) =

∫
G

0
ε(r, r1)Δ∗(r1)G0

ε(r1, r′)d3r1

−
∫

G
0
ε(r, r1)Δ∗(r1)G0

ε(r1, r2)Δ(r2)G
0
ε(r2, r3)Δ∗(r3)

×G0
ε(r3, r′) d3r1d3r2d3r3. (3.146)

For further calculations one must know the function G0
ε(r, r′). We will find it first

in the absence of the magnetic field, putting A = 0 and denoting the corresponding
Green’s function by G00

ε (r).
Using the definition of G00

ε (r) and making straightforward calculations, one
obtains

G00
ε (r) =

∫
d3p

(2π)3
eip·r 1

ε − εp

=
∫ ∞

0

∫ 1

−1

p2 dp d cos θ

(2π)2
eipr cos θ 1

ε − εp

= −i
∫ ∞

0

p dp

(2π)2r

(
eipr − e−i pr

) 1

ε − εp

= − m

2πr
exp

{
i pFr

ε

|ε| − |ε|
vF

r

}
. (3.147)

In deriving (3.147) the relations

pdp = mdξp, p = pF + ξp

vF
. (3.148)

were used.
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3.4.2 Magnetic Field Inclusion

In presence of a magnetic field, the functionG0 differs fromG00 by the phase factor
ϕ(r, r′)

G0
ε(r, r′) = e−ϕ(r,r′)G00

ε (|r − r′|), (3.149)

where ϕ(r, r) = 0. The function ϕ(r, r′) obeys the equation

∂ϕ

∂r
·∂G

00

∂r
= eA·∂G

00

∂r
, (3.150)

which may be established from (3.149), (3.138) by taking into account the qua-
siclassic conditions: |r − r′| � 1/pF , pF � eA ∼ eHλL . Because of the spatial
homogeneity of G00

ε , the relation follows from (3.150):

n· ∂

∂r
ϕ(r, r′) = en · A, n = r − r′

|r − r′| , (3.151)

which would be used further.

3.4.3 Slow Variation Hypothesis

As is evident from (3.147), the function G00
ε (and consequently G0

ε) decreases over
distances on the order of ξ0 ∼ vF/|ε|. However, the field A near Tc varies over
distances greatly exceeding ξ0 : A(r) ∼ HλL ∼ (1 − T/Tc)−1/2. This allows us to
present the function ϕ in the form

ϕ(r, r′) = eA(r) · (r − r′). (3.152)

Now we are able to derive the equation for parameter Δ. Substituting (3.146) into
(3.140) we find

Δ∗(r) = |V |T
∑

ε

∫
G

0
ε(r, r1)Δ∗(r1)G0

ε(r1, r) d3r1 − |ζ|T
∑

ε

∫
G

0
ε(r, r1)

× Δ∗(r1)G0
ε(r1, r2)Δ(r2)G

0
ε(r2, r3)Δ∗(r3)G0

ε(r3, r) d3r1 d3r2 d3r3. (3.153)

Let us suppose that the pair field Δ∗(r) weakly varies over distances comparable
with ξ0 (this supposition, as we will see, would be confirmed). In the integrand of
the first term in (3.153) one can make a series expansion over the parameter Δ∗(r)

Δ∗(r′) = Δ∗(r) + ∂Δ∗(r)
∂r

(r′ − r) + 1

2

∂2Δ∗(r)
∂r2

(r′ − r)2 + · · · , (3.154)
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and also keep only the first item in the analogous expansion of the second term in
(3.153). Substitution of (3.154) into (3.153) taking into account expressions (3.149)
and (3.152), which also could be expanded in powers of the vector-potential A(r),
yields the expression

Δ∗(r) = |ζ|T
∑

ε

{Δ∗(r)
∫

G
00
ε (r1)G

00
ε (r1)d

3r1

+1

6

(
∂

∂r
+ 2ieA(r)

)2

Δ∗(r)
∫

G
00
ε (r1)G

00
ε (r1)r

2
1 d

3r1

−|Δ|2Δ∗(r)
∫

G
00
ε (|r − r1|)G00

ε (|r1 − r2|)

×G
00
ε (|r2 − r3|)G00

ε (|r3 − r|)d3r1 d3r2 d3r3. (3.155)

By direct summation over the discrete frequencies it can be established that

T
∑

ε

G
00
ε (r)G00

ε (r) = m2T

(2πr)2
/ sinh

2πTr

vF
, (3.156)

and owing to this, the first of the integrals in (3.155) would diverge, if one does not
take into account “the smearing” of the coordinate r over the distances r � ξ0. In
the momentum space one can cut off the summation in (3.155) (at |ε| < ωD), which
corresponds to this smearing. Using this circumstance, one may write

T
∑

ε

∫
G

00
ε (r ′)G00

ε (r ′) d3r′ = T
∑

ε

∫
d3p

(2π)3

1

(ξp + ε)(ξp − ε)

= mpF
2π2

T
∑

ε

∫ ωD

0

dξp

ξp − ε2

= mpF
2π2

∫ ωD

−ωD

dξp

ξp
tanh

ξp

2T
= mpF

2π2

(
1 + ln

Tc
T

)
. (3.157)

The last equality here is obtained by taking into account (3.134) for the critical
temperature. The second integral in (3.155) may be evaluated, using the formula
(3.156):

T
∑

ε

∫
r21G

00
ε (r1)G

00
ε (r1) d

3r1 = 7

8

mpF
2π2

ζ(3)v2
F

(πT )2
, (3.158)

where ζ(3) is the Riemann zeta-function. The third integral is also not too difficult
to evaluate:
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T
∑

ε

∫
d3r1 d3r2 d3r3 G00

ε (r − r1)G00
ε (r1 − r2)G00

ε (r2 − r3)G00
ε (r3 − r)

= mpF
2π2

T
∑

ε

∫
dξp

1

(ξ2p − ε2)2
=

(mpF
2π2

) 7ζ(3)

8(πT )2
. (3.159)

Gathering the results, one obtains after complex conjugation the equation for Δ:

{
− 1

4m

(
−i

∂

∂r
− 2eA(r)

)2

+
(

7ζ(3)

6(πTc)2
εF

)−1

×
[
T − Tc
Tc

+ 7ζ(3)

8(πTc)2
|Δ(r)|2

]}
Δ(r) = 0. (3.160)

The BCS potential disappears from the final result, which has the form of the
Ginzburg–Landau equation for the wave function (3.48) if one associates Δ with
ψ.

3.4.4 Computation of Phenomenological Parameters

Microscopic derivation permits one to determine the phenomenological parameters
in (3.48). First, the doubled value of the electron’s charge should be noticed in (3.160):
e∗ = 2e, this is the consequence of the Cooper pairing. For this reasonm∗ = 2m was
chosen in (3.160) and as may be found in comparison with (3.37),

(
∂α

∂T

)

Tc

= 6π2Tc
7ζ(3)εF

. (3.161)

The value of the coefficient β is sensitive to the normalization of the Ψ -function.
In Sect. 3.2 we have adopted a normalization, with |Ψ |2 corresponding to the density
of pairs [see (3.53)]:

j = 2eNsvs . (3.162)

The microscopic treatment is based on the initial expression for the current

j = lim
r→r′τ→−0

2

{
ie

2m
(∇r − ∇r′) + e2

m
A(r)

}
T
∑

ε

Gε(r, r′)e−ετ . (3.163)

Substituting here Gε(r, r′) from (3.145), and using the quasiclassical conditions
mentioned above (for details see [39]), one can find:

j = 7ζ(3)N

16(πTc)2

{
− ie

m

(
Δ∗ ∂Δ

∂r
− Δ

∂Δ∗

∂r

)
− 4e2|Δ|

m
A(r)

}
, (3.164)
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where N is the total density of electrons, which coincides with the normal state value.
Comparing (3.164) with (3.51) one can find a relation between Ψ and Δ:

Ψ =
[
7ζ(3)N

8(πTc)2

]1/2
Δ. (3.165)

Now the parameter β may be obtained with the help of (3.160), (3.165), and (3.48):

β = 6

7

(πTc)2

ζ(3)NεF
. (3.166)

Another relation to be noted is

Ns = 7ζ(3)|Δ|2
8(πTc)2

N , (3.167)

which follows from (3.162) and (3.165) and connects the density of pairs, Ns , near
Tc with the total density of electrons in a normal metal, N .

Thus, the microscopic theory not only laid the foundation for the Ginzburg–
Landau theory, but also defined the phenomenological coefficients entering it. In
particular, the temperature-dependent coherence length ξ(T ) and the penetration
depth λL(T ) may be calculated. One can ascertain now the self-consistency of the
assumptions made earlier, that at temperatures T ≈ Tc these lengths greatly exceed
the correlation length ξ0 ∼ vF/Tc. For theLondon superconductors these expressions
are still valid for temperatures below Tc, though they fail quickly for the Pippard
superconductors, if the temperature falls. It must be noted that a large class of a
superconducting metals, containing nonmagnetic impurities, may be attributed to
the London-type superconductors, as we will see in Chap.4. Hence, the area of
applicability of the Ginzburg–Landau equations actually is rather wide.

3.4.5 Flux Quantization

In their basic paper [29] Ginzburg and Landau acknowledged that they have no
reasons to assume that e∗ is different from the electron’s charge e. As we discussed
above, microscopic theory by Bardeen, Cooper, and Schrieffer (BCS) [47] assumes
that current in superconductors is due to the Cooper pairs and Gor’kov was able to
prove that e∗ = 2e. In contrast to the massm∗, which in GL system of equations may
be changedby a simple renormalization ofΨ , the charge e∗ enters the equations (3.48)
and (3.51) additively and its magnitude cannot be chosen arbitrarily. Moreover, its
value can be determined in experiments. In Part I of this book we demonstrated how
the value of the flux in superconductors is becoming quantized (see Problem3.5).
Here we will consider the phenomenon of magnetic flux quantization quantitatively.
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Fig. 3.2 A hollow
superconducting cylinder in
a magnetic field. C—the
contour of integration,
λL—the penetration depth

Let us imagine a massive superconductor with a cylindrical cavity placed in a
magnetic field H, which is parallel to the cylinder’s axis. Consider a contour C (see
Fig. 3.2) that encloses the cavity and lies entirelywithin the depth of the superconduc-
tor. Owing to the Meissner effect, the superconducting current vanishes at distances
from the surface essentially larger than the London penetration depth λL . Thus, as
follows from (3.51), on the contour C one has

j = �e∗
m∗

|Ψ |2∇θ − e2∗
m∗c

Ψ 2A = 0. (3.168)

Integrating j along this contour and using (3.168), we find

∮
∇θ · dl = e∗

�

∮
A · dl. (3.169)

It must be taken into account that
∮

A·dl =
∫

curl A·ds =
∫

B·ds = Φ, (3.170)

where Φ is the total magnetic flux existent in the cavity. The first of the integrals
(3.169) is the phase difference acquired while going around the contour C and it
must be a multiple to 2π: ∮

∇θ · dl = 2πn (3.171)

because the Ψ -function is single-valued [n is an integer in (3.171)]. As a result, one
finds from (3.169)–(3.171)

Φ = hc

e∗
n = φ0n, (3.172)
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or, in other words, the magnetic flux in the cavity of a superconductor is quantized
and may change only in portions φ0 = hc/e∗. This phenomenon was predicted first
by London [7] and later confirmed experimentally by Deaver and Fairbank [49] and
also by Doll and Näbauer [50], who found the value of e∗ in (3.172) to be equal to
twice the electronic charge: e∗ = 2e. Had the doubling of the carrier’s charge been
known in 1950, the analysis of the Ginzburg–Landau equation for the “quantum
mechanical function” ψ of superconducting electrons might significantly accelerate
the subsequent development of themicroscopic theory of superconductivity: the idea
of pairing would become evident much before the BCS approach.

3.4.6 Failure of “Quantum-Mechanical Generalization” for
Time-Dependent Problems

In the vicinity of a critical temperature Tc, the solutions of the Ginzburg–Landau
equations are fully equivalent to the solutions of theBCS equations. At the same time,
the Ginzburg–Landau technique is considerably simpler. As we have seen, the “wave
function of superconducting electrons”Ψ (r) is closely connectedwith the fieldΔ(r),
which characterizes the Cooper pair condensate. If one ignores the nonlinear term in
(3.128), then the equation forΨ (r) formally coincides with the Schrödinger equation
for the particle with the charge 2e and the mass 2m. The simplicity and transparency
of such an analogy has lead to attempts of using the Schrödinger-type equation to
describe the dynamic properties of superconductors in nonstationary fields: A =
A(r, t). At first glance, the “natural” extension of (3.128) for the nonstationary case
may be obtained by the “quantum-mechanical” generalization:

i
∂Ψ (r, t)

∂t
=

{
− 1

4m
(∇ − 2ieA(r, t))2

− 6(πTc)2

7ζ(3)εF

[−Tc
Tc

+ 1

N
|Ψ |2

]}
Ψ (r, t). (3.173)

Such a generalization, however, may immediately lead to a contradiction (mentioned
by Eliashberg [51]). Indeed, the “continuity equation”

∂|Ψ |2
∂t

∝ div

{
|Ψ |2

(
A − 1

2e
∇θ

)}
(3.174)

follows in the usual manner from (3.173). However, such an equation is inconsistent
with the action of nonstationary fields on superconductors. Indeed, based on Gauss’
theorem, one can derive from (3.174) that at an action of the time-dependent field
A(t), |Ψ |2 inside of any finite volume of superconductor can change only because
of the flow of the currents j through the surrounding surface, which is obviously
incorrect physically. Tobreak this conservationof particles (i.e., theCooper pairs), the
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Schrödinger-type equation should possess a non-Hermitian Hamiltonian. Indeed, as
wewill see in the next chapters, the correct equation has the structure of Schrödinger-
type equation with a conjugated imaginary Hamiltonian, which breaks the particle
conservation: in nonstationary fields the Cooper pairs will be allowed to convert into
the single-particle excitations and vice versa.
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Chapter 4
Superconductors with Impurities

In this Chapter, wewill continue our field-theoretical description of superconductors,
taking into consideration ordinary andmagnetic impurities. The inclusion of ordinary
impurities will simplify the dynamic description of superconductivity in many ways.
First of all, the isotropic Fermi-liquid model of metals will become valid. Second,
superconductors will become “Londonized”, i.e., their dynamics will become local.
The inclusion of magnetic impurities will deliver a surprising result: gapless super-
conductivity, which will shine additional light onto the essence of Bose-condensate
of Cooper pairs. For this type of superconductor, it will become possible to derive
the time-dependent Ginzburg–Landau equations. This is the simplest case of validity
for these equations, which we exclusively used in Part I. It contains almost all the
essential features of more general TDGL equations which will be derived in Chap.7.

4.1 Scattering on Ordinary Impurities

4.1.1 Magnetic and Nonmagnetic Impurities

The interaction Hamiltonian of electrons with impurity atoms may be written as

̂Hint =
∑

α

∫

Ψ +(x)̂BV (r − rα)Ψ (x) d3r, (4.1)

where α indicates the impurity atoms, and the potential ̂B is

̂B(r) = u1(r) + u2(r)(S·σ̂). (4.2)

In expression (4.2) the potentials u1(r) and u2(r) stand for the exchange interac-
tions of electrons with nonmagnetic and magnetic impurities, respectively; σ̂ is the
spin matrix of the electron; S is the magnetic moment of the impurity atom.

© Springer Nature Switzerland AG 2020
A. Gulian, Shortcut to Superconductivity,
https://doi.org/10.1007/978-3-030-23486-7_4

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23486-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-23486-7_4


150 4 Superconductors with Impurities

4.1.2 Diagram Expansion and Spatial Averaging for Normal
Metals

A diagram technique for the scattering of electrons on impurity atoms may be con-
structed in the usual manner–by the series expansion of the S-matrix. We use here
the approach developed by Abrikosov and Gor’kov [1–3]. It is convenient to con-
sider the properties of this diagram expansion on the example of normal metal, using
in (4.2) ̂B = u1. Using an × (cross) to mark the interaction vertex of electrons with
impurities, we obtain the diagram series

(4.3)

or in analytic form1

G(p,p′) = δ(p − p′)G0(p)

+
∑

α

G0(p)

∫

u(p − p′′)ei(p−p′′)·rαG(p′′,p′)
d3p′′

(2π)3
(4.4)

[the combinationu(q)eiq·rαδ(ε − ε′)with summingoverα corresponds to the interac-
tion vertex, where q is themomentum transferred, and u(q) is the Fourier-component
of the potential u1]. Equation (4.4) should be averaged over the impurity coordinates,
assuming their chaotic spatial distribution. The averaged values will be denoted by
bars above the symbols. Because the averaging procedure is applied to a large volume
with many impurity atoms,

G(p,p′) = G(p)δ(p − p′). (4.5)

After the averaging, diagram 2 in the series (4.3) becomes proportional to the poten-
tial u(p′′ − p′)u(p − p′′)ei(p−p′′)·rα+i(p′′−p′)·rβ , and the averaging yields an expression
analogous to the one from diagram 1 in all cases, except when rα = rβ and p = p′.
As a result, the averaging of diagram 2 gives

G(2)(p,p′) = G0(p)
∑

α

ei(p−p′)·rα

∫

d3p′′

(2π)3
u(p − p′′)u(p′′ − p′)G0(p′′)G0(p′)

= n
∫

|u(p − p′)|2G0(p′)
d3p′

(2π)3

[

G0(p)
]2

δ(p − p′), (4.6)

where n = Ni/V0 is the density of impurity atoms. Using the explicit expression for
G0(p, ε) = [ε − ξp + iδ sign(ξp)

]−1
, one can find from (4.6)

1Because the impurity field is a static one, we omit in this Section the variable ε in propagators
G(p,p′, ε), G0(p, ε) etc., showing this variable explicitly only when its presence is essential.
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G(2)(p, ε) = [G0(p, ε)
]2 i sign(ε)

2τ
, (4.7)

where
1

τ
= nmpF

(2π)2

∫

|u(θ)|2dΩ (4.8)

is the electron elastic scattering time. Thus the main contribution arises from the
diagrams containing crosses, which correspond to the same atoms. It is convenient to
link these crosses by broken lines. The diagrams with three crosses provide nothing
new. The fourth order of the perturbation theory generally is represented by the
diagram

(4.9)

A comparison of contributions from the diagrams

(4.10)

shows that the diagrams with intersected broken lines contain a small parameter
1/(εFτ ) ∼ 1/(pFl), where l is the electron’s mean free path. Indeed, for the first of
the diagrams in (4.10) we have

G(4)
1 ∼

∑

α,γ

∫

u(p − p1)ei(p−p1)·rαG0(p1)u(p1 − p2)ei(p1−p2)·rα

× G0(p2)u(p2 − p3)ei(p2−p3)·rγG0(p3)ei(p3−p′)·rγu(p3 − p′)

× d3p1d3p2d3p3
(2π)9

. (4.11)

After the averaging over the impurity positions, this transforms to

G(4)
1 =

∑

α,γ

∫

u(p − p1)ei(p−p2)·rαei(p2−p′)·rγG0(p1)G0(p2)

× G0(p3)u(p1 − p2)u(p2 − p3)u(p3 − p′)
d3p1 d3p2 d3p3

(2π)9
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= (2π)6

V 2
0

∑

α,γ

∫

|u(p − p1)|2G0(p1)G0(p)G0(p3)|u(p′ − p3)|2 d
3p1 d3p3
(2π)6

× δ(p − p′) ∼ G0(p)
1

τ 2
δ(p − p′). (4.12)

At the same time, the third of the diagrams in (4.10) yields

G(4)
3 ∼

∑

α,γ

∫

u(p − p1)ei(p−p1)·rαG0(p1)u(p1 − p2)ei(p1−p2)·rγ

× G0(p2)u(p2 − p3)ei(p2−p3)·rα

×G0(p3)ei(p3−p′)·rγu(p3 − p′)
dp1 dp2 dp3

(2π)9
, (4.13)

or, after averaging over the impurities,

G(4)
3 ∼ (2π)6

V 2
0

∑

α,γ

∫

δ(p − p1 + p2 − p3)δ(p1 − p2 + p3 − p′)

× G0(p1)G
0(p2)G

0(p3)u(p − p1)u(p1 − p2)u(p2 − p3)u(p3 − p′)

× d3p1d3p2d3p3
(2π)9

= (2π)6

V 2
0

∑

α,γ

∫

|u(p1 − p2)|2|u(p − p1)|2G0(p1)

× G0(p2)G
0(p − p1 + p2)

d3p1 d3p2
(2π)9

δ(p − p′). (4.14)

Restrictions that follow from the angle integration in (4.14) require that one of the
G-functions be of the order G ∼ 1/εF . Meanwhile in expression (4.13) the same
function is of the order G ∼ τ in the region important for integration. This cir-
cumstance confirms the statement on diagrams with intersections. The situation is
analogous to the case of the second and third diagrams (4.10).

4.1.3 Born’s Approximation

Apart from the diagrams considered (4.10) there is another one of the fourth order:

(4.15)

The contribution of such diagrams is essential in the case of non-Born scattering. We
consider the opposite situation

p3F

∫

u(r)d3r � εF , (4.16)
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where one can omit contributions such as Exp. (4.15)2.
Let us sum now the selected diagrams. We have

(4.17)

It is not difficult to see that the result of graphical summation of series (4.17) may
be depicted as

(4.18)

or in analytic form

G(p) = G0(p) + nG0(p)

∫

|u(p − p′)|2G(p′)
d3p′

(2π)3
G(p). (4.19)

The solution of Dyson’s equation (4.19), as usual, may be presented in the form

G(p, ε) = 1
[

G0(p, ε)
]−1 − Σ imp

, (4.20)

where, since it follows from (4.19) and (4.10), the self-energy part Σ imp is defined
by the equation

Σ imp = n
∫

d3p′

(2π)3
|u(p − p′)|2 1

[

G0(p, ε)
]−1 − Σ imp

. (4.21)

2This assumption is satisfactory for our immediate purposes. However, when we discuss electron
scattering by magnetic impurities later, keeping this assumption results in a failure to predict the
Kondo effect [4] and its very interesting consequences for transport phenomena inmetals, especially
in the case of thermoelectricity [5–10].
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Assuming Σ imp is purely imaginary, Σ imp = −iβ, we find in analogy with (4.7):

β = sign(β)

2τ
. (4.22)

Comparing (4.22) with the limiting case G → G0, one finds β = sign(ε)/2τ and,
consequently,

G(p, ε) = 1

ε − ξp + i
2τ sign(ε)

. (4.23)

Moving now from (4.23) to the coordinate representation:

G(r, t) =
∫

eipr−iεtG(p, ε)
dε d3p
(2π)4

(4.24)

and taking into account formula (3.148), we rewrite (4.24) in the form

G(r, t) = m

i(2π)2r

∫ ∞

−∞
dε

2π
e−iεt

∫ ∞

−∞
dξp

ε − ξp + i sign(ε)/2τ

×
[

exp

{

i

(

pF + ξP

vF

)

r

}

− exp

{

−i

(

pF + ξP

vF

)

r

}]

. (4.25)

Closing the integration contour over ξp in the upper and lower half-planes for the
first and second integrals in (4.25), respectively, and noting that the first integral is
nonzero at ε > 0 and the second at ε < 0 only, we find

G(r, t) = − m

2πr
e−r/2l

{∫ ∞

0

dε

2π
e−iεt eipFr+iεr/vF +

∫ 0

−∞
dε

2π
e−iεt e−i pFr−iεr/vF

}

= e−r/2l

{∫ ∞

−∞
dε

2π
e−iεt m

2πr

[

ei(pF+ε/vF )r sign(ε)
]

}

= e−r/2lG0(r, t), (4.26)

where l = vFτ is the electrons mean free path.

4.1.4 Equations for a Superconducting State

For superconductors we have the system of equations

(4.27)
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(4.28)

in analogy with (4.18) (here we set ̂B = u1). Let us make the series expansion
in (4.27) and (4.28) in powers of the Bose-field Δ, for example, in an equation for
G-function:

(4.29)

Separating the free line in this diagrams, we obtain a remaining series

plus a class of diagrams with even numbers
of Δ, which enter the sum after the sign of the cross (we do not distinguish here

between Δ and Δ∗): . Two options are possible when the
external broken line is separated from such a diagram: there is either an even or an
odd number of vertices Δ in the inner and in the outer regions of this broken line.
Summation of these two classes of diagrams yields

and (4.30)

Thus, we get the equation for the G-function

G−1
0 G = 1 − ΔF+ + Σ

imp
1 G − Σ

imp
2 F+ (4.31)

(we have used here the rule concerning the diagram signs mentioned in Sect. 3.4).
In the same manner one can obtain for F+ the expansion

(4.32)

Again, the left free line may be separated, which is followed by the vertex Δ

or by a cross. Summing the first class of diagrams, one obtains ΔG. If a vertex

follows an arrow , one can separate the first external broken

line: (in the inner part of the diagram series there are broken lines
and vertices Δ). If there is an even number of Δ in the inner part, then summation
of the diagrams gives the function Σ

imp
1 , and the function F+ obviously emerges in

the outer part. If the broken line embraces the odd numbers of Δ, then this class of
diagrams yields the function Σ

+ imp
2 , and the function G emerges in the outer part.
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Thus
(

G0
)−1

F+ = Δ∗G + Σ
imp
1 F+ + (Σ+

2

)imp
G, (4.33)

where G0 = (ε + ξp)
−1. Taking into account the definition of functions Σ

imp
1 and

Σ
+imp
2 :

Σ
imp
1 = n

∫

|u(p − p′)|2G(p′)
d3p′

(2π)3
, (4.34)

Σ+
2
imp = n

∫

|u(p − p′)|2F+(p′)
d3p′

(2π)3
, (4.35)

and analogously for other two elements of the ̂Σ-matrix (3.92), we obtain the system
of equations for superconductors with impurities:

(

ξ − ε − Σ
imp
1 −(Δ + Σ

imp
2 )

Δ∗ + Σ
+imp
2 ξ + ε − Σ

imp
1

)

(

G F
−F+ G

)

p

=̂1. (4.36)

The self-energy matrix here is:

̂Σ imp =
(

Σ1 Σ2

−Σ+
2 Σ1

)imp

= 1

2πτ

2π2

mpF

∫

d3p
(2π)3

̂G(p, ε), (4.37)

as follows from (4.34), (4.35), and (4.8).

4.1.5 Anderson’s Theorem

The solution of (4.36) and (4.37) may be found in the same manner as done above
for the normal state. It gives the same formal result: the appearance of exponential
factors e−|r−r′ |/2l in the Green’s functions. However, the gap in the energy spectrum
of the superconductor is subject to the self-consistency (3.122), which includes the
superconducting propagator at r = r′. So evidently nonmagnetic impurities do not
influence the thermodynamics of a superconductor. This result is called “the Ander-
son theorem” [11].

4.1.6 “Londonization” by Elastic Scattering

Another important consequence follows from the comparison of (3.147) and (4.26).
At l < vF/Tc, the electron correlation radius in superconductors becomes less than
ξ0. We have mentioned this circumstance in Chap.3 as the “Londonization” of super-
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conductors by the elastic scattering on impurities. This aspect of the influence of
impurities is important for superconductors, making their electrodynamics local.

4.2 Magnetic Impurities

When the paramagnetic part of the potential ̂B(r) (4.2) is “switched on”, the inter-
action becomes explicitly dependent on the electrons’ spins. Consequently, the spin
variables should be preserved in the intermediate calculations of Sect. 4.1. Using the
Hamiltonian

̂H = −
∫ {

−
(

Ψ †(r)
∇2

2m
Ψ (r)

)

+ ζ

2

(

Ψ †(r)
(

Ψ †(r)Ψ (r)
)

Ψ (r)
)

+ (Ψ †(r)̂BΨ (r)
)}

d3r, (4.38)

the following equations of motion for the Heisenberg operators Ψ (x) and Ψ †(x) can
be obtained:

{

i
∂

∂t
− ∇2

2m

}

Ψ †
α (x) + ζΨ †

α (x)
(

Ψ †(x)Ψ (x)
)+ Ψ

†
β σβα = 0 (4.39)

{

i
∂

∂t
+ ∇2

2m

}

Ψα(x) − ζ
(

Ψ †(x)Ψ (x)
)

Ψα(x) − Ψβσαβ = 0 (4.40)

[as earlier, x = (r, t); we have included the summation over impurities and the
exchange potential in σαβ]. Starting from the definition of Green’s functions, taking
the derivative of (3.88) and account of (4.38) and using Gor’kov’s decoupling (3.90),
one obtains the equation

{

i
∂

∂t
+ ∇2

2m
+ εF

}

Gαβ(x, x ′) − σαγGγβ(x, x ′)

− iζFαγ(x, x)F
+
γβ(x, x ′) = δαβδ(x − x ′), (4.41)

where the function F+
αβ(x, x ′) = 〈TΨ †

α (x)Ψ †
β (x ′)〉 obeys the equation

{

i
∂

∂t
− ∇2

2m
− εF

}

F+
αβ(x, x ′) + σ†

αγF
+
γβ(x, x ′) + iζF+

αδ(x, x)Gδβ(x, x ′) = 0.

(4.42)
Now, making the series expansion for the functions G and F+ on the basis of (4.39)
and (4.40), one can see that σ enters into the diagrams ,
whereas σtr enters into the diagrams .



158 4 Superconductors with Impurities

4.2.1 Averaging over Spin Directions

Let us return now to the definition of functions

(4.43)

(see Sect. 4.1). Besides averaging over the spatial distribution of impurities, one
must also average over the spin directions, assuming their random orientation. In
the absence of impurities it follows that Gαβ = Gδαβ . If the dashed line is spin
dependent, then

Gαβ = σαγGγδσδβ = Gσαγδγδσδβ = Gδαβ . (4.44)

Thus, the averaging of diagrams for G-functions adds the term u22S(S + 1)/3 to the
potential u21. The situation with functions F and F+ is different. The corresponding
diagrams contain an additional factor Δ and a line , for example,

(4.45)

As a result, the part of the diagram represented by a dashed line and containing
σtr
̂Δσ will have a sign opposite to ̂Δ. Indeed, ̂Δαβ = ΔIαβ (see 3.97 and 3.98). But

I−1σtr I = −σ, and this causes a chain of relations: σtr I = −Iσ; σtr Iσ = −Iσ2 =
−I.

4.2.2 Spin-Flip Time τS

The ”magnetic” part in the averaged diagrams for F and F+ has a sign opposite to
the part produced by the usual impurities. Accounting for this, the value τ−1 in the
diagonal components of ̂Σ in (4.37) is replaced by

τ−1
1 = nmpF

(2π)2

∫ {

|u1(θ)|2 + |u2(θ)|2 1
3
S(S + 1)

}

dΩ, (4.46)

and in nondiagonal components by

τ−1
2 = nmpF

(2π)2

∫ {

|u1(θ)|2 − |u2(θ)|2 1
3
S(S + 1)

}

dΩ. (4.47)

The difference in values (4.46) and (4.47) is due exclusively to the magnetic part of
the interaction and defines the reciprocal spin-flip time τ−1

S :
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τ−1
1 − τ−1

2 = 2τ−1
S . (4.48)

4.2.3 Reduction of Transition Temperature

Let us now consider the influence of paramagnetic impurities on the thermodynamic
properties of superconductors. The initial equations (prior to the impurity averaging)
in the representation of the imaginary discrete frequencies ε = εn = iπT (2n + 1)
have the form

{

ε + ∇2

2m
+ εF

}

̂Gε(r, r′) − ̂BGε(r, r′) + ̂Δ(r)̂F+
ε (r, r′) =̂1 · δ(r − r′),

(4.49)
{

ε − ∇2

2m
− εF

}

̂F+
ε (r, r′) + ̂Btr

̂F+
ε (r, r′) + ̂Δ∗(r)̂Gε(r, r′) = 0, (4.50)

̂Δ∗(r) = |ζ|T
∑

ε

̂F+
ε (r, r′). (4.51)

As before, we use the potential ̂B (4.2). It will be shown now that the critical tem-
perature remains unchanged if u2 = 0 and diminishes if u2 �= 0.

Since the temperatures close to the critical one are of interest, in the expansion of
F+ in powers of the field Δ it is sufficient to retain only the lowest-order diagram:

(4.52)

Substituting the corresponding analytic expression into the self-consistency (4.51),
we find

Δ∗
αβ(r) = |ζ|T

∑

ε

∫

Gαγ(r, r′)Δ∗
γδ(r

′)Gδβ(r′, r)d3r′. (4.53)

The equation forΔ∗ must have a nonzero solution at the critical temperature. Averag-
ing (4.53) over the impurity positions and taking into account that Δ(r) is a smooth
function and G(r) is rapidly oscillating one, one may write

Δ∗
αβ(r) = |ζ|T

∑

ε

∫

Δ∗
γδ(r

′)Gαγ(r, r′)Gδβ(r′, r)d3r′. (4.54)

The averaging procedure in (4.54) produces the broken lines connecting the
crosses not only on the same propagation line, but also on different lines (recall
that the potential ̂Btr corresponds to crosses on the G-function’s line). In the first
case, we have σαγσγβ = δαβ , and a factor |u1(q)|2 + 1

3 S(S + 1)|u2(q)|2 arises for
the diagram. This leads to the substitution l → l1 = vFτ1 in expression (4.26):
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Gε(r − r′) = G0
ε(r − r′) exp

(

−|r − r′|
2l1

)

. (4.55)

Correspondingly, the Fourier component of (4.55) has the form [compare (4.23)]:

˜Gε(p) = 1

εη1 − ξp
, η1 = 1 + 1

2τ1|ε| . (4.56)

In the second case, one must calculate in (4.54) a “ladder” diagram of “dressed”
functions:

(4.57)

It is expedient to introduce the functions Kαβ(p1,p2) by the relation

Gαγ(r, r′′)IγδGδβ(r′′, r) =
∫

Kαβ(p1,p2)eip1·(r−r′′)−ip2·(r′′−r′) d
3p1d3p2
(2π)6

. (4.58)

Then (4.57) can be presented in the form

Kαβ(p1,p2) = ˜Gε(p1)
˜Gε(p2)

{

Iαβ + n
∫

d3p
(2π)3

[|u1|2

+1

3
S(S + 1)|u2|2σαδσ

tr
λβKδλ(p′

1,p
′
2)

]}

, (4.59)

where p′
2 is defined from the momentum conservation law: p1 + p2 = p′

1 + p′
2. The

spin part of Kαβ can be separated further: Kαβ = IαβK . After that, a combination of
the type σαδσλβ Iδλ appears on the right hand side of (4.59), which, as noted earlier,
is equal to (−Iαβ). So one can write (4.59) in the form

K (p1,p2) = ˜G(p1)
˜G(p2) {1 + Lε} , (4.60)

where

Lε = n
∫ [

|u1|2 − 1

3
S(S + 1)|u2|2

]

K (p′
1,p

′
2)

d3p′

(2π)3
. (4.61)

Multiplying (4.60) by n
[|u1|2 − 1

3 S(S + 1)|u2|2
]

/(2π)3 and integrating over d3p1,
we obtain

Lε = (1 + Lε)n
∫ [

|u1|2 − 1

3
S(S + 1)|u2|2

]

˜G(p1)
˜G(p2)

dp1
(2π)3

. (4.62)

Keeping in mind the self-consistency (4.53), we put p1 = p2 in (4.62) and obtain
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Lε = 1

2τ2εηS
, ηS = 1 + 1

2τS|ε| , (4.63)

taking into account (4.48) and (4.56).
We return now to (4.54) and move the factor Δ

∗
out from under the integral

operator (as in Sect. 4.4, in what follows we will discard the bar above the symbol
Δ). Using the expressions (4.58)–(4.63) we find in this way

Δ∗(r) = Δ∗(r)|ζ|T
∑

ε

∫

K (p − p1)
d3p1
(2π)3

= Δ∗(r)|ζ|T
∑

ε

∫ (

1 + 1

2ετ2ηS

)

˜G(p1)
˜G(p1)

d3p1
(2π)3

, (4.64)

from which the equation for the critical temperature Tc follows:

1 = |ζ|Tc
∑

ε

∫

(η1/ηS)

ξ2p + (η1|ε|)2
d3p

(2π)3
. (4.65)

One can see from this expression that Tc will not change in the absence of magnetic
impurities. Indeed, at u2 = 0, τ2 = τ , ηS = 1, (4.65) transforms to

1 = |ζ| mpF
(2π)2

Tc
∑

ε

∫

η1dξp
|ε|2η2

1 + ξ2p
. (4.66)

Making in (4.66) the replacement (ξp η1) → ξp, we arrive at (4.37) determining Tc,
which corresponds to a “pure” sample, η1 = 1. This verifies the unshifted value of
Tc.

The situation is different for u2 �= 0 when

ηS = 1 + 1

2τ1|ε| − 1

2τ2|ε| = 1 + 1

τS|ε| > 1. (4.67)

Restricting ourselves to a crude approximation, we take ηS as a constant.3 In this
approximation one arrives at the equation

1 = |ζ|
ηS

Tc
∑

ε

∫

η1d3p
ξ2p + (η1|ε|)2 , (4.68)

which coincides with (4.66), but with a smaller interaction constant and hence [see
(3.135)] with smaller Tc.

3The exact calculations [2] lead to the following expression for the critical temperature Tc :
ln(Tco/Tc) = ψ(1/2 + ρ/2) − ψ(1/2) where ψ is the logarithmic derivative of the �-function,
ρ = 1/(πτs Tc), Tco is the critical temperature in absence of impurities.
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4.2.4 Energy-Gap Suppression

In the presence of impurities, the single-particle spectrum of the system is not a well-
defined quantity, because p is a bad quantum number. So, wewill try to determine the
value of a gap on the base of reasonings, that are principally different from those used
in Sect. 3.3. Namely, we return to the expression for Green’s function of a “pure”
superconductor at temperature T = 0. We present (3.108) in the form (P indicates
the principal value)

G = P ε + ξp

ε2 − ε2p
− iπδ

[

ε −
√

Δ2 + ξ2psign(ξp)
]

. (4.69)

The imaginary part of Green’s function in (4.69) is determined by the δ-function.
The first excited state in the system (at ξp → 0) may be found as the minimal positive
value of ε at which Green’s function acquires an imaginary part. This conclusion, as
was shown by Migdal and Galitzkiy [12], remains valid in the general case.

Solving the system (4.36) and (4.37) with the help of (4.46) and (4.47), one can
find for Gε(p) and Fε(p) (in a real order parameter gauge, Δ∗ = Δ) the expressions:

Gε(p) = ε + ξp

ε2 − ξ2 − Δ
2 , Fε(p) = Δ

ε2 − ξ2 − Δ
2 . (4.70)

Here

ε = ε + i

2τ1

u√
1 − u2

, Δ = Δ + i

2τ2

u√
1 − u2

, u = ε

Δ
. (4.71)

The equation for the function u(ε) follows from (4.71):

ε

Δ
= u

(

1 − 1

τSΔ
√
1 − u2

)

. (4.72)

At τSΔ > 1 and for sufficiently small values of ε, both functions u and ε are real.
The right-hand side of (4.72) has the maximum at

u0 = [1 − (1/τSΔ)2/3
]1/2

(4.73)

at the corresponding value

ε0 = Δ
[

1 − (1/τSΔ)2/3
]3/2

. (4.74)

For larger ε, the solutions u are complex and the quantityG(ε) acquires an imaginary
part. So the quantity ε0 (4.74) determines the value of the gap in superconductors
with paramagnetic impurities.
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4.2.5 Gapless Superconductivity

As follows from (4.74), the value of the gap vanishes at

τSΔ = 1, (4.75)

which is possible forΔ �= 0. This means that for superconductors with paramagnetic
impurities, the order parameter Δ does not coincide with the value of the gap.

Let us now determine, at what concentration of impurities Δ vanishes. The self-
consistency equation for the order parameter may be written in the form

F(0) =
∫

Fε(p)
dεd3p
(2π)4

. (4.76)

Integrating (4.76) with the help of (4.71)–(4.73) and (3.107) (for details see [2]) we
arrive at the expression (Δ0 is the gap in a “pure” superconductor):

ln
Δ

Δ0
=

⎧

⎪

⎨

⎪

⎩

−π/ (4τSΔ0) at τSΔ ≥ 1,

− ln
[(

1 +√1 − (τSΔ)2
)

/ (τSΔ)
]

− [1/ (2τSΔ)] arcsin τSΔ +√1 − (τSΔ)2/2 at τSΔ < 1.

(4.77)

Setting Δ → 0 in (4.77), we have

ln
Δ

Δ0
= ln

τSΔ

1 +√1 − (τSΔ)2
. (4.78)

It follows from (4.78) that the critical concentration of impurities at which the super-
conducting order parameter vanishes is determined by the relation

1

τS

∣

∣

∣

∣

Δ=0

= Δ0

2
. (4.79)

At the same time, as follows from (4.77) and (4.75), the gap vanishes when

1

τS

∣

∣

∣

∣

ε0=0

= Δ0 exp
(

−π

4

)

. (4.80)

Because e−π/4 < 1/2, one can conclude that superconducting correlations remain in
the superconductor while the gap has disappeared. Hence, there is a certain interval
of paramagnetic impurity concentration in which “gapless superconductivity” can
be realized. In this gapless superconductors, the quantum correlations in the self-
consistent are strong enough to maintain the superfluid nature of the condensate
motion (or, in other words, to maintain discussed above “off-diagonal long-range
order”) despite the absence of the gap in single-electron excitation spectrum.
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If the impurity concentration is increased, the gap singularity in a single-particle
density of states smears out simultaneously with vanishing of the gap, as may be
seen from (4.70) and (4.72) (detailed calculations may be found in [13] and the
corresponding figures—in [14]). This property permits us to derive the nonstationary
equations of the Ginzburg–Landau type for alloys with magnetic impurities.

4.3 Nonstationary Ginzburg–Landau Equations

As in a stationary case (see Sect. 3.4), the self-consistency equation

Δ∗
ω(k) = |ζ|T

∑

n

∫

d3p
(2π)3

F+
εε−ω(p1,p − k), ω = 2nπT i (4.81)

may serve as a starting point for derivation of nonstationary equation for the order
parameter Δ(r, t). The idea of calculations in a nonstationary situation is to present
F+

εε−ω as a series expansion in powers ofΔω andΔ∗
ω and in powers of electromagnetic

field potentials, considering all these Bose fields as classical. As a result, an equation
would follow from (4.81):

Δ∗
ω = B(1)(ω)Δ∗

ω +
∑

ω′+ω′′+ω′′′=ω

B(3)(ω′,ω′′,ω′′′)Δ∗
ω′Δω′′Δ∗

ω′′′ + . . . (4.82)

where the coefficients B(i) represent the response of the system to the action of the
classical field Δ.

4.3.1 Causality Principle and Nonlinear Problems

In nonequilibrium conditions, an equation of the kind (4.81) may be obtained in a
real-time representation using the Keldysh technique [15]. The same result may be
obtained by the Gor’kov–Eliashberg technique [16], which is a generalization of the
usual procedure of analytical continuation to the nonlinear case. The underlying prin-
ciple at the base of this technique asserts that the response of system (4.82) in a real-
time representation must contain the values of the field Δ in the moments preceding
the current time. This demand can be satisfied if the coefficients B(i)(ω′,ω′′, . . . ,ωi ),
which are determined in the Matsubara technique on the imaginary axis, are analyti-
cally continued onto the upper half-plane for all the frequencies ω′,ω′′, . . . ,ωi . One
can verify this assertion in a manner analogous to the case of linear response (e.g., in
the case of derivation of the Kramers–Krönig relations). In the next section we trace
the calculations of Gor’kov and Eliashberg [16].
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4.3.2 Equations on Imaginary Axis

Allowing for the time-dependence of the fields, the Gor’kov equations can be repre-
sented in the form [ε = (2n + 1)πT i,ω = 2mπT i]

⎛

⎜

⎝

1
2m

(

−i ∂
∂r

)2 + H1 − εF − ε − Δω(r)

Δ∗
ω(r) 1

2m

(

−i ∂
∂r

)2 + H1 − εF + ε

⎞

⎟

⎠

(

G F

−F+ G

)

=̂1 · (2π)4δ(r − r′)δ(ω),

(4.83)
where the function Δ∗

ω(r) is defined by equation (4.81). In expression (4.83) the
values of H1 and H 1 are given by the relations:

H1 = −e

c
(v · Aω(r)) + eϕω(r), H 1 = e

c
(v · Aω(r)) + eϕω(r). (4.84)

Equation (4.83) and the expressions for the current and the density of particles

jω(k) = −2e

m
T
∑

ε

∫

d3p
(2π)3

pGεε−ω(p+,p−) − e2

mc2
(NA)ω,k, (4.85)

Nω(k) = −2T
∑

ε

∫

d3p
(2π)3

Gεε−ω(p+,p−), p± = p±k
2

(4.86)

are basic for further calculations.4 Using (4.83), one can establish the diagram expan-
sions for the functions G and F+:

(4.87)

(4.88)

or in analytic form

Gεε−ω(p,p′) =
(2π)4

δ(p − p′)δ(ω)

ξp − ε
+ e

mc

p′ · Aω(p − p′)
ξp − ε

1

ξp′ − ε + ω
+ . . . (4.89)

F+
εε−ω(p,p′) = 1

ξp + ε
Δ∗

ω−ω′(p − p′)
1

ξp′ − ε
− . . . (4.90)

4 Notice the difference in signs between (4.83) and its static analogue (3.120), (3.121). In both cases
we have retained the notation of the original works [17, 18] to maintain the connection between
these equations and many other original investigations. The difference in propagators’ signs is
unimportant here.
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[the summation in (4.89) and (4.90) includes all the intermediate energies and inte-
gration over all the intermediate momenta]. Note that to derive the nonstationary
Ginzburg–Landau equations (as in the static case), one may keep only the first
few terms of the decomposition (4.88), with subsequent substitution into (4.81)
and (4.85). However, it is expedient to consider the problem from a more general
point of view, retaining all terms in (4.89) and (4.90).

4.3.3 Analytical Continuation Procedure

In expressions (4.81), (4.85) and (4.86), it is necessary to carry out analytical contin-
uation over ω from the upper half-plane onto the real axis. Note, that the analytical
structure of diagrams is insensitive to the directions of arrows and to the presence of
vertices Δωi and H1ωi . Let us consider a general term of the series:

T
∑

ε

GεGε−ω1Gε−ω1−ω2 . . .Gε−ω, (4.91)

where the summation is also assumed over the internal frequencies, subject to the
condition

∑

ωi = ω. The procedure of analytical continuation of (4.89) over all ωi

onto the real axis should not depend on the order in which the continuation over
each of the frequencies proceeds. Then the problem of analytical continuation of the
whole structure will be solved.

Let us transform the sum in (4.89) into the contour integral

T
∑

n

GεnGεn−ω1 . . .Gεn−ω =
∮

C

dz

4πi
tanh

z

2T
GzGz−ω1 . . .Gz−ω, (4.92)

where the contour C encloses all the poles of the hyperbolic tangent and does not
contain the poles of theG-functions (Fig. 4.1). Consider a diagram of the N th power
of the field and make the cuts between the singularities of the integrand in (4.92)
produced by the functions Gz,Gz−ω1 and so on. Transform the integration contour
C into a new one C ′, which goes along the banks of the cut (Fig. 4.1) and along the
arcs of large circles. The contributions from the latter disappear [owing to the factor
(1/z)N+1] in all the diagrams, except the zero-order one for the G-function (which
does not depend explicitly on the time variable). On horizontal parts of the integration
we have z = ωi + ε where ε is a real variable and ωi is a fixed imaginary frequency.
Shifting the integration variable and taking into account that tanh(x + iπn) = tanh x ,
we can write
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Fig. 4.1 Transformation of
the integration contour:
dashed lines indicate cuts in
the z-plane (in absence of the
cut, e.g., at Im z = 0, the
total contribution over lines
a and b equals to zero)

∮

dz

4πi
tanh

z

2T
GzGz−ω1 . . .Gz−ω =

∫ ∞

−∞
dε

4πi
tanh

ε

2T

{(

GR
ε − GA

ε

)

Gε−ω1 . . .Gε−ω

+ Gε+ω1

(

GR
ε − GA

ε

)

Gε−ω2 . . .Gε−ω+ω1

+Gε+ω1+ω2Gε+ω2

(

GR
ε − GA

ε

)

Gε−ω3 . . .Gε−ω+ω1+ω2

+Gε+ωGε+ω−ω1 . . .
(

GR
ε − GA

ε

)}

, (4.93)

where the functions GR and GA have the well known analytical properties:

(−)

GR
ε =

[

ξp
(+)− (ε + iδ)

]−1

,

(−)

GA
ε =

[

ξp
(+)− (ε − iδ)

]−1

, δ → +0. (4.94)

Such representation allows us to determine analytical properties for all factors to
the left and to the right of GR and GA, if all the frequencies ωi belong to the same
half-plane. In particular, if all the frequencies ωi belong to the upper half-plane
(which corresponds to the general causality principle mentioned earlier), then all the
functions in (4.93) to the left of the factor (GR

ε − GA
ε ) would be retarded, and those

to the right would be advanced. Indicating these functions by the letters R and A, we
can now move to the real frequencies ωi → ωi + iδ, δ > 0.
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4.3.4 Anomalous Propagators and Dyson Equations

We have formulated the procedure of analytical continuation, which is independent
of the ordering in ωi . The final result may be written after once again shifting the
integration variable in the integrands:

T
∑

ε

GεGε−ω1 . . .Gε−ω =
∫ ∞
−∞

4πi
{

− tanh
ε

2T
GA

ε G
A
ε−ω1

. . .GA
ε−ω

+ GR
ε GR

ε−ω1
. . .GR

ε−ω tanh
ε − ω

2T
+ GR

ε

(

tanh
ε

2T
− tanh

ε − ω1

2T

)

GA
ε−ω1

. . .GA
ε−ω

+ GR
ε GR

ε−ω1

(

tanh
ε − ω1

2T
− tanh

ε − ω1 − ω2

2T

)

GA
ε−ω1−ω2

. . .GA
ε−ω

+ GR
ε GR

ε−ω1
. . .GR

ε−ω+ω1

(

tanh
ε − ω + ω1

2T
− tanh

ε − ω

2T

)

GA
ε−ω

}

. (4.95)

This expression may be rewritten as

T
∑

ε

Gεε−ω →
∫ ∞

−∞
dε

4πi
Gεε−ω, (4.96)

where
Gεε−ω = GR

εε−ω tanh
ε − ω

2T
− tanh

ε

2T
GA

εε−ω + G(a)
εε−ω. (4.97)

The regular functionsGR(A) in (4.95) and (4.97) are determined from diagram expan-
sions in which all the functions are retarded (or advanced). On the contrary, the
analytic structure of the “anomalous” function G(a) is much more complicated. Tak-
ing into account the directions of arrows in the diagrams, one can find for G(a) the
graphical expression

(4.98)

where all the field vertices are multiplied by {tanh [(ε − ω1) /(2T )] − tanh [(ε − ω1
−ω2) /(2T )]}. The retarded propagator corresponds to the line lying to the left of
the vertex, and the advanced propagator corresponds to the line lying to the right. In
analytic form we have

G(a)
εε−ω(p1, p − k) =

∫∫

dω1dω2

(2π)2

∫∫

d3k1
(2π)3

d3k2
(2π)3

(

tanh
ε − ω1

2T
− tanh

ε − ω1 − ω2

2T

)

×
{

−GRΔF+A − FRΔ∗GA − GRH1G
A + FRH1F

+A
}

, (4.99)

where
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{

GRΔF+A
} ≡ GR

εε−ω1
(p1,p − k1)Δω2(k2)F

+A
ε−ω1−ω2,ε−ω(p − k1 − k2,p − k).

(4.100)
The expressions for nondiagonal Green’s functions may be found analogously. For
F+ (a)

εε−ω we obtain

F+ (a)
εε−ω =

∫∫

dω1dω2

(2π)3

∫∫

d3k1
(2π)3

d3k2
(2π)3

(

tanh
ε − ω1

2T
− tanh

ε − ω1 − ω2

2T

)

×
{

−G
R
H 1F

+A − F+RH1G
A + G

R
Δ∗GA − F+RΔF+A

}

. (4.101)

The Dyson equations may also be found for anomalous functions. A graphic
representation is useful for this purpose. Let us present (4.98) in the form

(4.102)
Here the upper lines correspond to the retarded propagator, and the lower ones to
the advanced propagators; the right vertices are multiplied by (tanh ε

2T − tanh ε−ω
2T ),

where ε, ε − ω are the frequencies corresponding to adjacent lines. Specifying these
diagrams, say, in the following way

(4.103)
and detaching the upper free-line (ξp − ε − iδ)−1 (shown by a dashed line), one
obtains the following Dyson-type equation

(ξp − ε)G(a)
εε−ω(p,p − k) = −

∫

d4k1
(2π)4

{[

H1(k1)G
A(p − k1, p − k)

+Δ(k1)F
+A(p − k1, p − k)

]

(

tanh
ε

2T
− tanh

ε − ω1

2T

)

+H1(k1)G
(a)(p − k1, p − k) + Δ(k1)F

+(a)(p − k1, p − k)
}

. (4.104)

Using the Dyson equations (which the functions GR(A) and F+R(A) obey) and def-
initions like (4.97), one can exclude from consideration the anomalous functions
obtaining the closed equation for G-function:

(ξ − ε)Gεε−ω = −
∫

d4k1
(2π)4

[

H1(k1)Gε−ω1ε−ω + Δ(k1)F
+
ε−ω1ε−ω

]

, (4.105)
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or in a concise notation

(ξ − ε)Gεε−ω = − {H1G + ΔF+}
εε−ω

. (4.106)

This equation coincides in form with the equations for retarded and advanced prop-
agators. Being homogeneous, these equations to some extent are deficient without
certain additional conditions. We will consider one called a “normalization condi-
tion” in Chap.5.

4.3.5 Regular Terms

Returning now to the problem of derivation of the Ginzburg–Landau type dynamic
equations, we substitute an expression

F+
εε−ω = F+R

εε−ω tanh
ε − ω

2T
− tanh

ε

2T
F+A

εε−ω + F+(a)
εε−ω (4.107)

into the self-consistency equation, which now acquires the form

Δ∗
ω(k) = |ζ|

∫ ωD

−ωD

dε

4πi

d3p
(2π)3

F+
εε−ω(p,p − k). (4.108)

Because the functions F+R and F+A are analytical in the upper and lower half-
planes correspondingly, respectively, one can move again to the summation over
εn = iπT (2n + 1) in the first two (“regular”) terms. As a result we obtain

Δ∗
ω(k) = |ζ|T

[

∑

n≥0

∫

d3p
(2π)3

F+
εn+ω εn

(p,p − k) +
∑

n<0

∫

d3p
(2π)3

F+
εn εn−ω(p,p − k)

]

+|ζ|
∫ ωD

−ωD

dε

4πi

d3p
(2π)3

F+(a)
εε−ω(p,p − k) (4.109)

(ω is real now!). Further manipulations of the regular terms in (4.109) are similar to
those considered in Sect. 3.4 for the static case. As follows from that discussion, it
is enough to consider only the diagrams

(4.110)
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Unlike the static case, the field vertices in (4.110) are time-dependent (e.g.,Δ = Δω),
so the diagrams explicitly depend on time. We will discuss the most simple and
important case of alloys with paramagnetic impurities, when the impurity concen-
tration is sufficiently high (ΔτS � 1), so ε ∼ ω ∼ Δ2τS � Δ. In this case the time
dependence may be kept only in the first diagram on the right-hand side of (4.110),
inserting in the others ω = 0 and returning to the static case. Simultaneously, only
the first (linear) term may be kept in this selected diagram in its expansion over ω.
Substituting these expressions into (4.109), one finds for the regular contribution
from the first diagram (4.110):

Δ∗(1)
ω (r) = |ζ|T

{

∑

n≥0

∫

d3r1
[

Gεn+ω(r − r1)Δ∗
ω(r1)Gεn (r − r1)

]

+
∑

n<0

∫

d3r1
[

Gεn (r − r1)Δ∗
ω(r1)Gεn−ω(r − r1)

]

}

, (4.111)

where the G-functions are defined according to (3.147). The series over n arising
in (4.111) may be summed, yielding

Δ∗(1)
ω (r) = |ζ|T

∫

d3r1Δ∗(r1) exp
{

iω
|r − r1|

vF

}

m2

(2π|r − r1|)2 sinh 2πT |r−r1|
vF

.

(4.112)
As is clear from (4.112), the expansion of the exponent would occur in powers of the
factor ω/Tc. In addition to the terms obtained in Sect. 3.4, we will obtain the term

Δ∗(1)
ω (r) = iω

|ζ|T
vF

Δ∗
ω(r)

∫

d3r1
m2

(2π)2|r − r1| sinh 2πT |r−r1|
vF

, (4.113)

which is integrable in analytic form.
It should be noted that the scalar potentialϕ escapes from the regular terms’ contri-

butions, as one may verify calculating the second and third diagrams in (4.110). (We
will not present here these straightforward but sufficiently tedious calculations.) Note
also, that the imaginary unit i in (4.113) causes (after the Fourier-transformation)
the dynamic equation to be of the diffusion type (thus the difficulty described at the
end of Chap.3 is avoided). In writing down this equation, the presence of impuri-
ties makes it necessary to take into account a renormalization of regular terms. This
procedure also renormalizes the coefficients5 of the static (3.160). As a result, the
equation for the order parameter acquires the form

5We omit here the details of the calculations, and trace only the principal issues of derivation of
time-dependent Ginzburg–Landau equations (one can find certain details in [16]). The more general
case will be considered in detail in Chap.7.
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∂Δ∗

∂t
+ τS

3
{[−π2(T 2

c − T 2) + |Δ|2
2

]Δ∗ − v2Fτ1

τS
(∇ + 2ie

c
A2)Δ∗} − 2ieΔ∗Φ = 0,

(4.114)

Φ = − i

eΔ∗τS
2π2

|ζ|mpF

∫

d3k
(2π)3

dω

2π
eikx−iωt

∫ ∞

−∞
dε

4πi

∫

d3p
(2π)3

F (a)(p, p − k) = 0.

(4.115)

4.3.6 TDGL Equations for Gapless Superconductors

Wemust account now for the contribution to (4.114) from the anomalous part F (a) in
(4.115). In analogy to (4.102), the equation for F (a)

εε−ω can be written in a form:

(4.116)
The expression

F (a)
εε−ω =

∫

dε1 dω1

(2π)2

(

tanh
ε1

2T
− tanh

ε1 − ω1

2T

)

FR
εε1

Δω1F
A
ε1−ω1 ε−ω (4.117)

corresponds to the last diagram in (4.116). For pure superconductors at Δ � T,

ω1 � T and ε, ε1 � T , one may write in (4.117):

tanh
ε1

2T
− tanh

ε1 − ω1

2T
≈ ω1

2T
cosh−2 ε1

2T
≈ ω1

2T
(4.118)

and consequently:

Φ(t) ∼ F (a)(r1r; t1t) ∼
∫

d3r1 dt1 FR(r1r; t1t)Δ(t1, r1)F A(r1r; t1t). (4.119)

Further transformation of (4.119) seems to be impossible, because the functions FR,A

oscillate in time with frequency |Δ|.
In the presence of paramagnetic impurities, the situation differs qualitatively. In

this case Green’s functions decay exponentially for times t1 − t ∼ τS , the kernels of
the integral equations for Δ become local in time and that makes it possible to use
a technique, analogous to the static case. Without further calculations we note only
that at sufficiently high concentration of paramagnetic impurities, the result has the
form Φ = −ϕ. Then the equation for Δ may be written as6

6Similar equation for superconductors was originally derived on less rigorous basis by Schmid [19].
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(

∂

∂t
+ 2iϕ

)

Δ∗ + τS

3

{

[

−π2 (T 2
c − T 2)+ |Δ|

2

]

Δ∗ − vFτ1

τS

(

∇ + 2ie

c
A
)2

Δ∗
}

= 0.

(4.120)
The expression for the current in the gapless superconductors has a form charac-

teristic for a two-fluid model:

j = js + jn, js = 2στS

c
|Δ|2Q, jn = σE, (4.121)

where E = −ieȦ − ∇ϕ is the electric field strength and Q = 2mvs is the super-
fluid’s momentum, which is related to the superfluid velocity (3.54). In the case of
superconductors with a finite gap, some additional terms arise in the current that
correspond to the interference of normal and superfluid motions (see Chap. 7).

Thus the dynamic generalization of the Ginzburg–Landau equation for the order
parameter has the form of a diffusion-type equation. Clearly, there is an essential
difference between (4.120) and the diffusion equation (or the equation for the heat
transfer), because in the case of superconductivity (4.120) is connected with (4.121)
and with the Maxwell equations that comprise a strongly non-linear set of equations.
The solutions of these equations (as we have seen in Chap.2) can be periodic in space
and time, revealing the remarkable properties of nonequilibrium superconductors.
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Chapter 5
General Equations for Nonequilibrium
States

The traditional theory of superconductivity relies on electron-phonon interaction.
Explicitly, this was introduced into the theory of superconductivity by Eliashberg on
the basis of Fröhlich’s Hamiltonian and Migdal’s theorem . We will use Eliashberg’s
model in the weak-coupling limit to derive kinetic equations, where both electrons,
pairs and phonons are out of thermal equilibrium. Two methods are equally applica-
ble for this task: the method of analytical continuation and Keldysh’s technique. We
will demonstrate both methods in this Chapter. The final kinetic equations will be
expressed via the energy-integrated Green’s functions, which in the case of equilib-
rium problems are called Eilenberger functions. This corresponds to a quasiclassical
approximation in nonequilibrium superconductivity of superconductors that have
finite gaps. The interaction of Cooper pairs with the electrons and phonons plays an
important role in the action of external fields, determining both the behavior of the
order parameter and the nonequilibrium effects in the electron-phonon system.

5.1 Migdal–Eliashberg Phonon Model

5.1.1 Fröhlich’s Hamiltonian

The interaction of electrons with phonons in metals will be considered in this book
within the isotropic model [1]. The oscillations of the ionic lattice produce lattice
polarization. The interaction energy of electrons with the lattice is

− e
∫ ∫

n(r)K (r − r′) divP(r) d3r d3r′ (5.1)

where n(r) is the density of electrons at the point r,P(r) is the polarization vector, and
K (r − r′) is the interaction, having a Coulomb dependence at small distances and
vanishing, owing to screening effects, at distances exceeding the lattice parameters
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176 5 General Equations for Nonequilibrium States

of a crystalline cell. Denoting these by a single distance parameter (a), the function
K (r − r′) may be approximated as K (r − r′) ≈ a2δ(r − r′). As to the polarization
vector, it is proportional to the displacement q(r) of crystalline ions 1

P(r) = Cq(r) ≡ Ze
N

V0
q(r), (5.2)

where N/V0 is the number of ions in a unite volume; and Ze is the ionic charge. We
expand the displacement vector q(r, t) in plane-waves

q(r, t) = 1√
V

∑
k

k
|k|
{
qke

i(k·r−ω0(k)t) + q†
ke

−i(k·r−ω0(k)t)
}

(5.3)

and introduce the operators bk, b
†
k, connected with qk, q

†
k by relations

qk = bk√
2ρω0(k)

, q†
k = b†k√

2ρω0(k)
, (5.4)

where ρ is the mass density of medium, and ω(k) is the phonons dispersion law.
Taking into account that ρq̇(r, t) is the momentum density of the medium, and

also the quantum-mechanical commutation rule

ρ
[
q̇i (r, t), qk(r′, t)

]
− = −iδ(r − r′)δik, (5.5)

one can verify that the quantities bk and b†k (5.4) are Bose operators. Because the
kinetic energy operator is

Wkin = ρ

2

∫
[q̇i (r, t)]2 d3r (5.6)

and the mean kinetic energy of oscillations is equal to the mean potential energy, we
have

H = 2W kin =
∑
k

ω0(k)

(
Nk + 1

2

)
, (5.7)

where Nk = 〈b†kbk〉. The operator of a free phonon field is defined by the relation

ϕ(x) = 1√
V0

∑
k

√
ω(k)

2

{
bke

i(k·r−ω0(k)t) + b†ke
−i(k·r−ω0(k)t)

}
. (5.8)

1Because the interaction energy is proportional to divP ∝ divq, one may conclude that (in the
isotropic model only!) the electrons interact with longitudinal phonons only.
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Note that ϕ is a real quantity [in the Debye model the summation in (5.8) is restricted
by the condition |k| < kD]. The Hamiltonian of the electron-phonon interaction may
then be written as

He−ph = g

∫
Ψ †

α (r)Ψα(r)ϕ(r)d3r, (5.9)

where the interaction constant g is defined by

g = ea2C

u0
√

ρ
, (5.10)

and u0 = ω0(k)/k is the sound velocity. The Hamiltonian (5.9) in the theory of
metals is usually called “the Fröhlich Hamiltonian”.

5.1.2 Migdal Diagram Expansion

The interaction of electrons with phonons in normal metals was considered in the
diagram approach by Migdal [2], who used the Fröhlich Hamiltonian (5.9). In this
approach, the Dyson equation for Green’s function for electrons has the form

(5.11)

As shown by Migdal, even in the case of strong electron-phonon interaction the
vertex remains “bare”2

Γ = Γ0

(
1 + O

√
m

M

)
, (5.12)

where M is the ionic mass in the crystalline lattice. If one starts from the Green
function G0 for noninteracting electrons and uses for the free phonon field Green’s
function

D0(x1 − x2) = −i〈T (ϕ(x1)ϕ(x2))〉, (5.13)

where ϕ(x) is defined by (5.8), then based on (5.11) and a corresponding equation
for the D-function

(5.14)

2This point was critically reconsidered by Alexandrov and Ranninger [3]. They have developed an
approach (the so-called bipolaron theory of superconductivity), based on violation of (5.12), which
was accepted and developed further by other investigators. We will not consider this possibility, see
references in [4].
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one obtains the renormalized expressions for electron and phonon spectra and also
for the damping of electron and phonon excitations. These renormalizations become
important when the dimensionless interaction parameter

λ = mpF
2π2

g2 (5.15)

is of the order of unity. The experiment shows that the renormalizations indeed
occur in an electron system, whereas they are almost unobservable in a phonon
system (at εF � ωD). Some doubts were expressed in this connection concerning
the adequacy of the Fröhlich Hamiltonian for this problem. Aswas shown further [5],
the renormalization of the phonon spectrum in the above calculation scheme would
correspond to the double counting of interaction between electrons and phonons.
Unlike the electron system, the phonons in the “adiabatic approximation” are well-
defined. The same is valid for the electron system if the parameter λ (5.15) is small.

We will consider further only metals with a weak electron-phonon interaction,
assuming

λ 	 1 (5.16)

and neglecting the renormalization effects. Applicability of the results to metals
with strong electron-phonon coupling should be analyzed separately. The effects of
renormalization are not very essential for the kinetics and can be taken into account
in the initial equilibrium state.

5.1.3 Eliashberg Equations in Weak-Coupling Limit

All the conclusions concerning the vertex renormalization (Γ ) remain valid in the
superconducting state, because only the excitations with large energies are essential
for renormalization processes. The superconducting scale of energies is much less
than these high energies. In the bare vertex approximation (Γ0)we have the following
system for electrons in superconductors

(5.17)

(5.18)

For the phonon Green function in (5.17) and (5.18), the equation may
also be written:

(5.19)
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Equations (5.17)–(5.19) were first formulated and solved by Eliashberg [6].

5.1.4 Comparison with BCS-Gor’kov Model

One may note a similarity between (5.17) and (5.18) and (3.100), (3.101), or (3.125)
and (3.126), which can be made more transparent, if (5.17) and (5.18) are written in
the momentum representation [ε = εn = 2(n + 1)πT i]:

(εn − ξ − Σ1ε)Gε(p) + Σ2εF
+
ε (p) = 1, (−εn − ξ − Σ1ε)F

+
ε (p) + Σ+

2εGε(p) = 0,
(5.20)

where

Σ1(εn,p) = T
∑
n′

∫
d3p′

(2π)3
G(εn′ ,p′)D(εn − εn′ ;p − p′), (5.21)

Σ+
2 (εn,p) = T

∑
n′

∫
d3p′

(2π)3
F+(εn′ ,p′)D(εn − εn′ ;p − p′). (5.22)

The interaction matrix element is incorporated into the definition of the D-function;
hence the bare phonon Green function has the form

D0(ωn,q) = g2
2ω2

q

ω2
q − ω2

n

ωq = u|q|, ωn = 2πnT i. (5.23)

The above-mentioned similarity becomes more complete if one neglects the renor-
malization of the electron spectrum, letting

ξ + Σ1 ≈ ξ + Σ1 ≈ ξ. (5.24)

After that, the self-consistency equation (3.122) acquires the form

Δ = Σ2 = T
∑
n′

∫
d3p′

(2π)3
F(εn′ ,p′)D(εn − εn′ ;p − p′). (5.25)

Thus, it is clear that all the equilibrium results of the BCS-Gor’kov theory are con-
tained in the phonon model of superconductors. At the same time, the latter model is
much richer and may serve as a basis for the study of electron and phonon kinetics in
real superconductors. Besides, in the Migdal–Eliashberg model , the critical param-
eters of a superconductor are expressed in terms of the parameters of a normal metal.
In particular, the critical temperature in the weak coupling phonon model (5.17),
(5.18) is given by the relation, analogous to (3.135), where ζ0 is replaced by the
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parameter λ (5.15). The same replacement occurs in the expression (3.113) for the
gap at zero temperature, and in addition ε̄ is replaced by ωD .3

5.2 Equations for Nonequilibrium Propagators

5.2.1 Phonon Heat-Bath: Applicability

We continue theoretical study of nonequilibrium superconductivity with the simplest
case, where the phonons play the role of a heat-bath for the electron system. In
what cases is this phonon heat-bath model applicable? We examine this question in
the particular case of a thin film with thickness d. Let us assume d ∼ ξ0 ∼ vF/Tc.
Because thewavelength of the phonon isλph ∼ u/T , where u is the velocity of sound,
then at T ∼ Tc we have λph 	 d so that the “geometric-acoustical” approximation
could be used to describe the phonon’s propagation. (Note that this approximation
becomes invalid at T → 0.) If the “acoustical densities” ρu of the film and ρ ′u′ of its
environment coincide, then phonons in the superconductor lose their energy at each
collision with the specimen’s walls [8]. (Evidently, if ρu = ρ ′u′, the phonons leave
thefilmwithout reflection at the boundary.)However, aswas shown in [2], the lifetime
of thermal phonons, owing to their interaction with the conduction electrons in the
metal, is τph−e ∼ vF/(uT ) and consequently the scattering length of the phonon is
L ∼ vF/T, which has an order of ξ0. Thus (if d < ξ0) the nonequilibrium phonons,
emitted during the relaxation processes by electrons have enough time to leave the
film without producing an influence back on the electron system. It must be stressed,
that the phonon heat-bath model can be used in various situations. In each case
an analysis of its applicability is required. For example, at T 	 |Δ| and for weak
external pumping, the number of excess electron excitations is small and the electrons
shift the phonons from equilibrium only slightly, even in thick films. In the case
of massive superconductor placed in an external electromagnetic field, the picture
is spatially inhomogeneous. There diffusion plays the main role in the relaxation
processes in single-electron systems. The phonons remain in equilibrium if their
scattering length exceeds the diffusion length of electron excitations.

5.2.2 Expansion over External Field Power

We pass now to a formal description of superconductor electrodynamics on the basis
of Eliashberg equations in the framework of the phonon heat-bath model. In a static
case [A = A(r)] the initial equations in the spatial representation have the form

3These expressions for Tc andΔ(0), as well as their ratio change significantly in the strong coupling
limit (see, e.g., [7]).
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⎛
⎝ 1

2m

(̂
p − e

cA
)2
r − εF − ε − Σ1 − Σ2

Σ+
2

1
2m

(̂
p + e

cA
)2
r + εF + ε − Σ1

⎞
⎠
(

G F

−F+ G

)
= 1̂ · δ(r − r′), (5.26)

and the self-energy parts are defined by relations

Σ̂ε,r,r′ =
(

�1 �2
−�+2 �1

)
ε′,rr′

= T
∑
ε′

Dε−ε′

(
G F

−F+ G

)
ε′,rr′

, (5.27)

where ε = εm ≡ (2m + 1)πT i and thematrix product is understood as a convolution
over the internal variables, e.g.:

ΣG =
∫

d3r1Σ(r, r1)G(r, r1). (5.28)

The phonon propagator in (5.27) is taken as an equilibrium one (5.23):

D(ωn,q) → D0(ωn,q). (5.29)

5.2.3 Analytical Continuation: Causal Propagators

Using the technique of analytical continuation, introduced in Sect. 4.3, we will first
obtain the expressions for the functions Σ R(A)

ε , analytical in the upper (and, corre-
spondingly, in the lower) half-plane. For this purpose we represent Σ̂ε (5.27) in the
form

Σ̂ε = T
∑
ε′

Dε−ε′Ĝε′ = T
∑

ω

DωĜε−ω =
∮
C

dz

4π i
coth

z

2T
DzĜε−z, (5.30)

where the contour C encloses the poles of a hyperbolic cotangent and does not
include the singularities of the function DzGε−z in the z-plane. Making cuts in this
plane along the lines Im z = 0 and Im(ε − z) = 0, one can transform the integration
contour C into another one, going along the arcs of large circles and along the banks
of these cuts (Fig. 4.1). Taking into account the fact that the integrals along the arcs
of large circles vanish when the radii tend to infinity, we obtain, using Fig. 4.1, the
result

Σ̂ R(A)
ε (r, r1) =

∫ ∞

−∞
dε′

4π i

{
coth

ε′ − ε

2T
(DR − DA)ε′−εG

R(A)
ε′

+DA(R)
ε′−ε tanh

ε′

2T

(
Ĝ R

ε′ − Ĝ A
ε′
)}

rr′
. (5.31)
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The hyperbolic tangent appears in (5.31) owing to the shift of the integration vari-
able by the imaginary frequency ε. Because the analytical properties of propagators
entering (5.31) are now definite, the variable ε′ may be considered as real .

5.2.4 Phonon Heat-Bath: Consequences

Let us study the phonon propagators in detail. As follows from (5.19),

D(q) = D0(q) + D0(q)�(q)D(q), (5.32)

where �(q) is the polarization operator. We can rewrite (5.32) in the form

Dω(q) = 1[
D0

ω(q)
]−1 − �ω(q)

. (5.33)

The real part of the polarization operator Re�(q) is connected with the renormal-
ization of the sound velocity. It is governed by the total mass of electrons; the range
of temperature smearing of the Fermi-step gives a correction ∝ T/εF . Corrections,
connected with the superconducting transition, have the same smallness, ∝ |Δ|/εF .
This is also true for renormalization caused by an electromagnetic field. As noted
in Sect. 5.1, these renormalizations could be assumed as being already made. How-
ever, the imaginary part Im�ω(q) is wholly defined by the vicinity of Fermi surface
and thus is very sensitive to the distribution of electron excitations. To realize the
assumption concerning the phonon equilibrium, it would be necessary in deriving the
dynamic equations to take into consideration in an explicit form a sink for the relax-
ation of phonons that is stronger than the source producing the deviation of phonons
from equilibrium, which is caused by processes in the electron system. However,
one can use the following artificial method: maintain the equilibrium distribution
of phonons by keeping the initial presentation of discrete phonon frequencies and
completely neglecting collisions of phonons with electrons in the equations for the
phonon propagator.

Such an approach was proposed by Eliashberg [9] and we outline it here.
We will generalize the discussion, assuming the external field in (5.26) and in

Green’s functions there to depend on r, t: A = A(r, t). Consequently, on the right
side of (5.26) the additional factor δ(τ − τ ′) appears and Green’s functions will
acquire dependence on τ and τ ′.

Themodified system (5.26) can be expanded in a series over the external field. The
diagrams consist of transit lines with different directions of arrows, containing field

vertices and phonon insertions . As in Sect. 4.3, the directions
of the arrows are not important for the procedure of analytical continuation.

Consider a diagram of Nth power in the external field for Green’s function of
electrons. Two types of diagrams may arise, depending on whether the diagram
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Fig. 5.1 Diagrams for
electron propagator without
(a) and with (b) the phonon
insertion

contains the phonon insertions (Fig. 5.1). Anydiagramwill dependon the frequencies
of its extreme lines ε and ε − ω and of the field vertices ωl .

The analytical structure ofG(N ) as the function of the variable ε at fixed ωl should
be found. Owing to the causality principle considered in Chap. 4, the necessary
analytical continuation must be made over all ωl from the upper half-plane, so in all
the expressions of the type ωl = 2lπT i we will make ωl > 0. First, we will consider
the diagrams withoutΣ-insertions (as in Fig. 5.1a). The analytical properties of such
diagrams are described by a simple composition:

G
(N )
εε−ω ∝ GεGε−ω1Gε−ω1−ω2 . . . Gε−ω, (5.34)

and their singularities (the poles) lay on the lines Im ε = 0, Im ε = ω1, Im ε = ω1 +
ω2,..., Im ε = ω, which are parallel to the abscissa. We will ascertain that these lines
are singular for the arbitrary type of diagram ImG(N ). For this purpose it is sufficient
to verify that the function Σ

(N )
εε−ω, as the function of its external argument ε, has the

same analytical structure as ImG(N )
εε−ω, if the same set of field vertices is included. In

other words, the singularities of Σ are determined by the singularities of its internal
electron Green function. To see this, we again transform the sum over frequencies in
(5.27) to the contour integral over the singularities of the hyperbolic tangent. Shifting
the integration contour along the banks of the cuts, one obtains (in the same manner
as in Section 4.3) the expression:

Σ
(N )
εε−ω =

∫ ∞

−∞
dz

4π i

{
coth

z

2T

(
DR − DA

)
z G

(N )
z+ε,z+ε−ω

+ tanh
z

2T

[
Dz−εδ1(G

(N )) + . . . + Dz−ε+ωδN+1(G
(N ))
]}

. (5.35)

In (5.35) δl(G
(N )) is the jump of the function G(N ) at the bank l. Because in (5.35) z

is real, one can see thatΣεε−ω contains ε in the same combinations withωl asGεε−ω,
and this proves the above statement concerning the analytic structure of an arbitrary
type diagram.
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5.2.5 Analytical Continuation: Anomalous Functions

Now we can carry out the analytical continuation of (5.35). Continuing analytically
onto the real axis from the upper bank of the uppermost cut, we obtain the function
[Σ(N )]R , and continuing from the lower bank of the lowermost cut, we get [Σ(N )]A.
(In these cases all the functions have definite signs of imaginary parts, hence the
subsequent continuation over each ωl does not depend on the value of ωl > 0.)
Thus, making Im ε > ω (Im ε < 0), shifting the integration variable to restore the
initial notation of the arguments, summing over N and denoting

Gεε−ω =
∞∑
N=0

N+1∑
l=1

δl(G
(N )) tanh

εl

2T
, (5.36)

where εl = ε − ω1 − ω2 − . . . − ωl−1, we arrive at

Σ̂
R(A)
εε−ω =

∫ ∞

−∞
dε′

4π i

{
coth

ε′ − ε

2T

(
DR − DA

)
ε′−ε

Ĝ R(A)
ε′ε′−ω + DA(R)

ε′−ε Ĝε′ε′−ω

}
. (5.37)

The static limit of (5.37) [at Ĝεε−ω = 2πδ(ω)Ĝε, where Ĝε = (Ĝ R − Ĝ A)ε tanh
(ε/2T ) ] coincides with (5.31). Because all the self-energy functions and propagators
composing Ĝ R(A), are retarded (or advanced), the equation that determines Ĝ R(A)

has a form (see also Sect. 4.3):

⎧⎨
⎩
⎛
⎝

1
2m

(̂
p − e

cA
)2
ω,r − εF − ε + eϕ − Σ1 − Σ2

Σ+
2

1
2m

(̂
p + e

cA
)2
ω,r + εF + ε + eϕ − Σ1

⎞
⎠
(

G F
−F+ G

)⎫⎬
⎭

R,A

ε,ε−ω

= 1̂ · 2πδ(ω)(r − r′), (5.38)

where, as earlier,

(ΣG)εε−ω,rr′ ≡
∫

dω1

2π

∫
d3r1Σεε−ω1(r, r1)Gε−ω1,ε−ω(r1, r′). (5.39)

As for the functions Ĝεε−ω defined by the relation (5.36), one can obtain the equation
for them in a manner used earlier in the Gor’kov’s model. For this purpose the terms
corresponding to the upper bank of the uppermost cut and the lower bank of the
lowermost cut must be separated:

Ĝεε−ω = Ĝ R
εε−ω tanh

ε − ω

2T
− tanh

ε

2T
Ĝ A + Ĝ(a)

εε−ω. (5.40)

For Ĝ(a)
εε−ω the diagrams are analogous to (4.98), although the vertices Δ and Δ∗

are replaced now by the functions Σ
(a)
2 and Σ

+(a)
2 , and the field vertices
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have additional terms Σ
(a)
1 or Σ

(a)

1 . Because the functions Σ(a) contain the factors
[tanh(ε/2T ) − tanh ((ε − ω)/2T )], it is convenient to introduce a function hεε−ω =
{tanh(ε/2T ) − tanh[(ε − ω)/2T ]}H1(ω). In doing so, (−h + Σ

(a)
1 )will correspond

to the vertices , and (−h + Σ
(a)

1 ) to . Taking into account that
the products, such as FF+ or Σ+

2 F , change the sign of the diagram, one can write:

G(a)
εε−ω =

{
GR(−h + Σ

(a)
1 )GA − GRΣ

(a)
2 F+A − FRΣ

+(a)
2 G

A − FR(−h + Σ
(a)
1 )F+}

εω−ε
,

(5.41)
where the notation

{ABC}εε−ω =
∫ ∫

dω1dω2

(2π)2
Aεε−ω1Bε−ω1ε−ω2Cε−ω2ε−ω (5.42)

is used. In the same manner one has

F(a)
εε−ω =

{
GR
(
−h + Σ

(a)
1

)
F A + GRΣ

(a)
2 G

A + FR
(
−h + Σ

(a)
1

)
G

A − FRΣ
+(a)
2 F A

}
εε−ω

,

(5.43)

F+(a)
εε−ω =

{
G

R
(
−h + Σ

(a)

1

)
F+A + F+R

(
−h + Σ

(a)
1

)
GA

+G
R
Σ

+(a)
2 GA − F+RΣ

(a)
2 F+A

}
εε−ω

, (5.44)

G
(a)

εε−ω =
{
G

R
(
−h + Σ

(a)

1

)
G

A − F+R
(
−h + Σ

(a)
1

)
F A

+G
R
Σ

+(a)
2 F A − F+RΣ

(a)
2 GA

}
εε−ω

. (5.45)

The elements of Σ̂(a) are found from the definition of Σ̂ :

Σ̂εε−ω =
∞∑
N=0

N+1∑
l=1

δl
(
Σ̂(N )

)
tanh

εl

2T
, (5.46)

from which, in analogy with (5.40),

Σ̂εε−ω = Σ̂ R
εε−ω tanh

ε − ω

2T
− tanh

ε

2T
Σ̂ A

εε−ω + Σ̂
(a)
εε−ω. (5.47)
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5.2.6 Complete Set of Equations

We will find now the explicit form of the dependence between Σ and G. We will
use representation (5.35) for Σ

(N )
εε−ω and calculate directly the sum (5.46). Taking

into account that the phonon propagator has poles at Im(ε − ωi ) = 0, writing the

expression for δi

(
Σ

(N )
εε−ω

)
and shifting the integration variable (subject to tanh[(z +

ωi )/(2T )] = tanh[z/(2T )]); multiplying the result by tanh(εl/2T ) and also taking
into account the identity

coth(x − x ′) tanh x = − tanh x tanh x ′ + coth(x − x ′) tanh x ′ + 1 (5.48)

and summing first over i and then over all the orders of the perturbation theory, we
find the expression

Σ̂εε−ω =
∫ ∞

−∞
dε′

4π i

{
coth

ε′ − ε

2T
Ĝε′ε′−ω −

(
Ĝ R − Ĝ A

)
ε′ε′−ω

}(
DR − DA

)
ε′−ε

. (5.49)

To complete the set of equations, it is necessary to establish the equation for the Ĝ-
function, defined by the relation (5.36). The method to be used here was described in
Chap.4. Starting from the diagram expansion forG-function and separating there the
line corresponding to the bare propagator of electrons, we find from the 11−element
of Ĝ-matrix:

[
1

2m

(̂
p − e

c
A
)2 + eϕ − εF − ε

]
G(a)

εε−ω

=
{(

−h + Σ
(a)
1

)
GA − Σ

(a)
2 F+A

}
εε−ω

+
{
Σ R

1 G(a) − Σ R
2 F+(a)

}
εε−ω

. (5.50)

Using the definitions (5.46), (5.40), and also (5.38) for the causal Green’s functions,
one can obtain on the basis of (5.50) the equation

⎛
⎝ 1

2m

(̂
p − e

cA
)2 + eϕ − εF − ε − Σ R

1 − Σ R
2

Σ+R
2

1
2m

(̂
p + e

cA
)2 + eϕ − εF + ε − Σ

R
1

⎞
⎠
(

G F
−F+ G

)

=
(

Σ1 Σ2

−Σ+
2 Σ1

)(
GA F A

−F+A G
A

)
, (5.51)

or in the integral form:
Ĝ = Ĝ R Σ̂ Ĝ A. (5.52)

Thus the closed system of (5.37), (5.38), (5.49) and (5.51) is derived for the functions
Ĝ, Ĝ R , Ĝ A and Σ̂ , Σ̂ R , Σ̂ A, which describes the behavior of nonequilibrium super-
conductors in the phonon heat-bath model. The temperature enters these equations
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explicitly only in equations for Σ and Σ R(A) as the characteristic of the phonon
heat-bath.

5.2.7 Keldysh Technique Approach

Note that one can obtain the same results by a completely differentmethod, developed
by Keldysh [10] to describe nonequilibrium states . In that case the electron Green’s
function is defined in the following way (we use here the notations of Volkov and
Kogan [11]):

Gik
μν(1, 2) = −i〈TΨμ(1i)Ψ †

ν (2k)〉. (5.53)

Here 1 = (r1, t1); and μ and ν are the Nambu indices of the field operators

Ψ1(1i) ≡ Ψ↑(1i), Ψ2(1i) ≡ Ψ
†
↓ (1i). (5.54)

The Keldysh indices i, k are the signs minus or plus, according to the position of the
time coordinate of the Ψ -operators on each of two time-axes (−∞,∞ or ∞,−∞)

[10]. The time on the second axis (the index +) is greater than any time on the first
axis (the index −). For functions G, GR and GA, which are defined as in the case of
a normal metal (see, e.g., [12]),

(
0 GA

GR G

)
= Û−1ĜÛ , Ĝ = (G)ik, Û = 1̂ + i σ̂y

2
, (5.55)

one can obtain the equations coinciding with (5.51) and (5.38). This coincidence of
the results obtained by the Gor’kov–Eliashberg and the Keldysh techniques, will be
demonstrated further on, when the phonon kinetics in superconductors are consid-
ered.

5.3 Quasiclassical Approximation

The equations obtained in the preceding Section may be simplified further when the
phenomena occurring in superconductors involve electrons localized in the momen-
tum space near the vicinity of the Fermi surface. (In other words, when microscopic
processes of interest may be considered as macroscopic on the atomic scales of
space and time.) Such a situation is typical for most of the phenomena occurring
in nonequilibrium superconductors. In this case one can use a generalization of the
method introduced by Eilenberger [13] for equilibrium superconductors.
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5.3.1 Eilenberger Propagators

The essence of this approach may be elucidated in terms of the electron’s wave-
function of the superconductor. The wave-function of an electron with a momen-
tum in the vicinity of the Fermi-surface oscillates rapidly in space and time. Under
the influence of external quasiclassical perturbation, the wave-function’s amplitude
becomes weaklymodulated. The information of interest is contained in the “envelop-
ing curve” of the modulated signal. This allows us to ignore the “carrying” frequency
and to use only the “enveloping curve”.4 In the Green’s functions technique, this pro-
cedure is equivalent to the integration over the values of |p| or ξ = vF (p − pF ).

Consider one of the equations for the self-energy functions, for example, for Σ R

(5.37). In the momentum representation we have

Σ̂ R(P, P − K ) =
∫ ∞

−∞
dε′

4π i

∫
d3p′

(2π)3

{
coth

ε′ − ε

2T
(DR − DA)(P ′ − P)Ĝ R(P ′, P ′ − K )

+DA(P ′ − P)Ĝ(P ′, P ′ − K )
}

. (5.56)

Here P = {ε,p}, K = {ω,k}. If the external momentum in (5.56) is close to the
Fermi surface: p ∼ pF , ε and ε′ < ωD , then the main contribution to integral (5.56)
is provided by the region |p − p′| 	 pF (the integration over p′ in the regions remote
from the Fermi surface renormalizes the chemical potential, which is insensitive to
details of the electron distribution in the vicinity of pF ). The D-function nowdepends
only on the angle θ between p and p′: |p − p′|2 ≈ 2p2F (1 − cos θ). Using the chain
of equalities

d3p
(2π)3

= p2dpdΩp

(2π)3
=dΩp

2

pdp2

(2π)3
≈

mpF
2π2

dξ
dΩp

4π
, (5.57)

it is easy to establish that Σ̂ R is expressed by Green’s functions, integrated over the
energy variable :

ĝ(R,A)
εε−ω (p,k) =

∫ ∞

−∞
dξ Ĝ(R,A)(P, P − K ), ĝ(R,A) =

(
g f
− f + g

)(R,A)

. (5.58)

Similar conclusions follow for other self-energy functions, so that one has:

Σ̂
R(A)
εε−ω(p,k) =

∫ ∞

−∞
dε′

4π i

∫
dΩp′

4π

{
coth

ε′ − ε

2T
(DR − DA)ε′−ε(θ) ĝR(A)

ε′ε′−ω(p′,k)

+DA(R)
ε′−ε (θ) ĝε′ε′−ω(p′,k)

}
, (5.59)

4Analogous procedure is applied in passing from the Bogolyubov-De Gennes equations to the
Andreev equations (see Sect. 3.1).
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Σ̂εε−ω(p,k) =
∫ ∞

−∞
dε′

4π i

∫
dΩp′

4π

{
coth

ε′ − ε

2T
ĝε′ε′−ω(p′,k)

−(̂gR − ĝA)ε′ε′−ω(p′,k)
}
(DR − DA)ε′−ε(θ). (5.60)

5.3.2 Eliashberg Kinetic Equations

Now let us transform (5.51). Ignoring the quadratic terms in A, and moving to the

quantities H1 and H 1, one finds by multiplying (5.52) by [GR]−1 from the left and

by [GA]−1 from the right:
(

ξ − ε + H1 0
0 ξ + ε + H 1

)
Ĝ = Σ̂ RĜ + Σ̂ Ĝ A, (5.61)

Ĝ

(
ξ − vk − ε + ω + H1 0
0 ξ − vk + ε − ω + H 1

)
= ĜΣ̂ A + Ĝ RΣ̂, (5.62)

where v = p/m. Subtracting (5.61) from (5.62) and integrating the result over ξ , we
find the equation for the ĝ-function ( 5.58):

(
(ω − vk)g (2ε − ω − vk) f
(2ε − ω + vk) f + −(ω + vk)g

)
=
(
H1 0
0 H1

)
ĝ − ĝ

(
H1 0
0 H1

)

+ĝΣ̂ A − Σ̂ R ĝ + ĝRΣ̂ − Σ̂ ĝA. (5.63)

The set of arguments of the ĝ-functions entering this equation is analogous to that
of electron distribution function. By this reason (5.63) may be called the generalized
kinetic equation. The quantity

Î = ĝΣ̂ A − Σ̂ R ĝ + ĝRΣ̂ − Σ̂ ĝA (5.64)

is the collision integral (at present, between electrons and phonons). The equation
for the function ĝR(A) [which may be obtained from (5.38) by the procedure used
above] is similar to (5.63), although the quantity Î must be replaced by Î R(A):

Î R(A) = ĝR(A)Σ̂ R(A) − Σ̂ R(A)ĝR(A). (5.65)

In the equilibrium case, when the field A is absent:

(̂gR − ĝA)ε = 2π i

(
ε Δ

−Δ∗ −ε

)
signε√

ε2 − |Δ|2 θ(ε2 − |Δ|2), (5.66)

i.e., (̂gR − ĝA)ε is proportional to the density of single-particle excitation’s states
(for this reason ĝR, ĝA are called “spectral functions”).
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As to the functions ĝεε−ω, from (5.58) in the equilibrium case, the relation follows

ĝε = (̂gR − ĝA)ε tanh
ε

2T
= (̂gR − ĝA)ε(1 − 2nF

ε )signε, (5.67)

where nF
ε is the distribution function of the electron-like (ε > 0) and hole-like (ε <

0) Fermi excitations. In the nonequilibrium case, as we will see, nε in general does
not necessarily coincide with n−ε. However, the correct generalization of (5.67)
cannot be achieved by the trivial replacement 1 − 2nF

ε → 1 − nε − n−ε, as might
be thought. Such a replacement would retain gε as an odd function in ε, whereas in
general case gε can have an even in ε part also. The necessary generalization can
be obtained with the help of the normalization condition for g-functions, as was
shown for the equilibrium case by Eilenberger [13] and for the nonequilibrium case
by Larkin and Ovchinnikov [14].

5.3.3 Normalization Condition

In a real-time representation [see (5.53)], this condition has the form5

ğ ∗ ğ = const · 1̆, (5.68)

where

ğ =
(
ĝR ĝ
0̂ ĝA

)
, 1̆ =

(
1̂ 0̂
0̂ 1̂

)
, (5.69)

and the symbol ∗ is the convolution in time according to

A ∗ B =
∫

A(t1, t2)B(t3, t2)dt3. (5.70)

The normalization condition (5.68) is satisfied identically by the following substi-
tution

ĝ = ĝR ∗ â − â ∗ ĝA, (5.71)

where â is an arbitrary 2 × 2−matrix function of ε,which may be represented as the
sum of the Pauli matrices, the diagonal matrices only participating in this decompo-
sition:

â = f1̂1 + f2σ̂z . (5.72)

5To avoid breaking the presentation, we will prove this statement in Chap.7. It is worth to notice,
that in the theory of superconductivity the normalization condition is proved only on the “physical
level” of rigor.
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The functions f1 and f2 are linked with the distribution function of electron-hole
excitations nε. Before showing this relation, we consider some general properties of
f1 and f2 and establish their gauge transformation laws.

5.3.4 Gauge Transformation Rules

The basic gauge transformation law for a field operator Ψ (r, t) under the transfor-
mation of scalar potential ϕ → ϕ − χ̇/2 is

Ψ (r, t) → exp [iχ(r, t)/2]Ψ (r, t) (5.73)

(where χ is an arbitrary function). From (5.73) and (5.53) it follows that the propa-
gator ĝ (as well as the spectral functions ĝR and ĝA) is transformed according to

ĝ → exp
[
i σ̂zχ/2

] ∗ ĝ ∗ exp
[−i σ̂zχ/2

]
. (5.74)

In the quasiclassical limit, when the propagators are fast varying functions of a
difference variable (t1 − t2) and slow varying functions of a sum t = (t1 + t2)/2, the
expression (5.70) may be presented in the form

A ∗ B = AB + i

2
{A,ε Ḃ − ȦB,ε} − 1

8
{A,εε B̈ − 2 Ȧ,ε Ḃ,ε + ÄB,εε} + ... . (5.75)

In (5.75) the following notations are used: A,ε ≡ ∂A/∂ε, Ȧ ≡ ∂A/∂t , and the fre-
quency ε corresponds to the Fourier-transform over the difference argument (t1 − t2).
From (5.74) and (5.75) a transformation law follows for diagonal components of
propagators6:

ĝdiag → ĝdiag + χ̇

2
ĝdiag,ε + χ̇2

2
ĝdiag,εε . (5.76)

Hereafter the terms proportional to χ̈ are omitted owing to the assumed quasiclassical
character of ϕ.

At the same time, one can make a gauge transformation of the function, defined
by (5.71). Taking into account that the functions ĝRand ĝA transform in analogy to
(5.74), one can demand the coincidence of the corresponding result with (5.76). This
provides the transformation laws for functions f1 and f2 :

6At this stage it becomes clear, that the expression (5.74) is an equivalent form of the usual relation
for theGreen’s function:G → G exp[iχ(t1)/2 − iχ(t2)/2] at the gauge transformation. Expanding
the exponent over the “fast” time (t1 − t2) and finding the Fourier-transforms over the difference
variable, one can obtain the expression (5.76) for the appropriate matrix component.
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f1(2) → f1(2) +
(χ̇/2) ( f1 + f2 ),ε +

(
χ̇2/8

)
[( f1 + f2 ),εε + 2

(
N1,ε/N1

)
( f1 + f2 ),ε]

2 + χ̇N1,ε/N1 + χ̇2N1,εε/4N1

+(−)
− (χ̇/2) ( f1 − f2 ),ε +

(
χ̇2/8

)
[( f1 − f2 ),εε + 2

(
N1,ε/N1

)
( f1 − f2 ),ε]

2 − χ̇N1,ε/N1 + χ̇2N1,εε/4N1
. (5.77)

The functions N1 and N 1 in (5.77) are defined by the relations

N1 = gR − gA

2π i
, N 1 = gR − gA

2π i
. (5.78)

If ϕ → ϕ − χ̇/2, we have in accordance with (5.71), (5.74) and (5.78)

N1 → N1 + χ̇

2
N1,ε + χ̇2

8
N1,εε, (5.79)

N 1 → N 1 − χ̇

2
N 1,ε + χ̇2

8
N 1,εε . (5.80)

Note that, owing to (5.77) and (5.79), the functions f1and f2 (in analogy with N1

and N2) are functions of a general type. They have definite parity only in the absence
of external fields.

5.3.5 Electron and Hole Distribution Functions

In the absence of external fields, as may be seen from the definition of these functions
and (5.63), f1(ε) and N2(ε) are odd functions of ε, while f2(ε) and N1(ε) are even
functions of ε. Introducing an arbitrary function nε (here −∞ < ε < ∞), we can
write (making ϕ = 0)

f (ε1) = a1(nε + n−ε − 1), f2(ε) = a2(nε − n−ε) (5.81)

Because the function nε should be determined further from the kinetic equations,
there is still an arbitrariness in the choice of coefficients a1 and a2. It is convenient
to choose them in the form

a1 = signε, a2 = −u−1
ε signε (5.82)

where

uε = |ε|θ(ε2p − |Δ|2)√
ε2p − |Δ|2

(5.83)

Then the expressions for ĝR(A) take the form
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ĝε = −2π i

(
uεβε + αε vεβε

−vεβε −uεβε + αε

)
, (5.84)

(̂gR − ĝA)ε = 2π i

(
uε vε

−vε −uε

)
, (5.85)

where

vε = |Δ|θ(ε2p − |Δ|2)√
ε2p − |Δ|2

signε, (5.86)

βε = (nε + n−ε − 1)θ(ε2p − |Δ|2)signε, (5.87)

αε = (nε − n−ε)θ(ε2p − |Δ|2)signε . (5.88)

The constant in the expression (5.68) may be chosen to be −π2. Without a loss
of generality, this ensures a limiting transition to expressions (5.66), (5.67) in the
absence of imbalance, and simultaneously assigns to the function nε a transparent
meaning of the energy distribution function in ”pure” superconductors (this will be
shown below). At the same time, it might be noted that the description of supercon-
ductor in terms of ĝ-functions integrated over ξ -variable is also valid in cases when
the concept of the energy spectrum turns deficient and ξ becomes a bad quantum
number (e.g., in the case of superconductors containing very many impurities).

5.3.6 Kinetic Equations: Keldysh Option

As shown by Keldysh [10], in a nonequilibrium system, the Green’s function tech-
nique allows us to formulate kinetic equations without integrating over energies. In
such cases, the energy distribution function of excitations is connected to Green’s
functions, integrated over the frequency variable. If the energy spectrum is well-
defined, these two methods are usually adequate.7

For the causal Green’s function G−−
11 , using the definition (5.53) and solving

at ε 	 ωD the Dyson equations by analogy to the normal metal case (cf. [12]), we
have:

G−−
11 (ε,p) = U2

p

(
np

ε − εp − iδ
+ 1 − np

ε − εp + iδ

)
+ V2

p

(
n−p

ε + εp + iδ
+ 1 − n−p

ε + εp − iδ

)
,

(5.89)

7We have already noticed the advantage of energy integrated functions for ”dirty” superconductors.
At the same time, this technique fails when considering processes far from the Fermi surface, e.g.,
at the description of high-energy particle cascading in superconductors. In such situations usual
(Keldysh’) formulation of the kinetic scheme is preferable.
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where the factors U2
p and V2

p are defined by the relation (1.23), εp− by (1.132), and
np corresponds to the distribution function of electron-like (ξp > 0) and hole-like
(ξp < 0) excitations.

Following Aronov and Gurevich [15], one can introduce a spectral representation
for the causal function

G−−
11 (ε,p) =

∫ ∞

−∞
dε

′

2π i

[
G−+

11 (ε′,p)

ε − ε′ − iδ
− G+−

11 (ε′,p)

ε − ε′ + iδ

]
. (5.90)

Comparing (5.89) and (5.90), one can find

G−+
11 (ε,p) = 2π i

[U2
pnpδ(ε − εp) + V2

p(1 − n−p)δ(ε + εp)
]
, (5.91)

G+−
11 (ε,p) = −2π i

[U2
p (1 − np)δ(ε − εp) + V2

pn−pδ(ε + εp)
]
. (5.92)

In the same manner

G−−
12 (ε, p) = UpVp

(
np

ε − εp − iδ
+ 1 − np

ε − εp + iδ
− n−p

ε + εp + iδ
− 1 − n−p

ε + εp − iδ

)
, (5.93)

G+−
12 (ε, p) = −2π iUpVp

[
(1 − np)δ(ε − εp) − n−pδ(ε + εp)

]
, (5.94)

G+−
21 (ε, p) = G−+

21 (−ε, −p). (5.95)

Using these relations one can obtain the canonical forms of the collision integrals
in superconductors [15] in a manner completely analogous to the case of a normal
metal [12]. We will obtain the same kind of collision integrals (in ε−, rather than
in ξ− representation) in the next Chapter by employing the propagators integrated
over energies. When both representations are applicable, these collision integrals are
adequate to each other.

5.3.7 Expressions for Charge and Current

In general, the technique of the energy-integrated Green’s functions is more con-
venient for those problems, where the kinetic processes occur in the vicinity of the
Fermi-surface. In these cases it provides a powerful tool for the study of both pure
and dirty superconductors. On the contrary, if the main processes occur in the regions
remote from the Fermi surface, a straightforward application of this technique may
lead to erroneous results. This difficulty may be overcome by properly accounting
for the contribution that results from the equilibrium Green’s function technique.
Consider, for example, an expression for the electron charge in a superconductor. In
the representation of the discrete imaginary frequencies, one can write (4.86) for the
number of electrons in superconductors as
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Nω(k) = −Tr

{
T
∑

ε

∫
d3p

(2π)3
Gεε−ω(p,p − k)

}
. (5.96)

We will separate in this expression the contribution supplied by zero order Green’s
functionG0

ε(p) = (ξ − ε)−1,where ξ = p2/(2m) − εF − eϕ includes the quasiclas-
sical scalar potential in the system. The deviation in the number of particles induced
by the potential ϕ (in the first order in ϕ) has the form

δN (ϕ) = 2T
∑

ε

∫
d3p

(2π)3

1

(ξ − ε)2
eϕ = −∂N (0)

∂εF
eϕ = mpF

π2
eϕ, (5.97)

where N (0) is the equilibrium electron density. Thus, the electron density in nonequi-
librium superconductors is

Nω(k) = N (0)(2π)4δ(ω)δ(k) − mpF
π2

[eϕ +
∫ ∞

−∞
dε

4π i

∫
dΩp

4π
g′

εε−ω] (5.98)

g′
εε−ω = gεε−ω − 2π i tanh(ε/2T ) [the prime in (5.98) may be omitted, if the inte-
gration over ε is assumed in symmetrical limits]. From (5.98) the relation follows
for a charge in nonequilibrium conditions:

ρω(k) = e[Nω(k) − N (0)(2π)4δ(ω)δ(k)]. (5.99)

The situation with the expression (4.85) for the electric current is analogous.
The correct accounting of the contribution, supplied by the regions remote from the
Fermi surface, results in the disappearance of the contribution from the second term
in (4.85), which must be absent, if the ĝ-function technique [9] is used.
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Chapter 6
Electron and Phonon Collision Integrals

This Chapter is mainly devoted to the study of inelastic collision integrals of elec-
trons with phonons, with each other, and with photons. Canonical forms of colli-
sion integrals will be derived. In the case of photon fields, for a large number of
monochromatic photons, the electron-photon collision integral corresponds to the
classical field terms derived by Eliashberg. Out of research curiosity, we derive the
generalized collision integrals by the Keldysh’s method as well. The results coincide
with the results of the previous Chapter. An important feature of collision integrals
is the nondiagonal channel of inelastic scattering. This yields the so-called branch
imbalance in nonequilibrium superconductors and is specific for the superconduct-
ing state: no branch imbalance occurs in normal metals. In parallel with the kinetic
equations for electrons, we introduce the kinetic equation for phonons. A coupled
system of these equations, together with the self-consistency equation for the super-
conducting Cooper-pair condensate, serve as the basis for the next, final stage of the
TDGL equations derivation.

6.1 Collision Integral Derivation

6.1.1 Spatially Homogeneous States

The generalized kinetic equations for integrated Green’s functions ĝεε−ω provide
initial relations for constructing the canonical forms of collision integrals. As was
shown in the preceding chapter, the matrix function ĝεε−ω obeys (5.63), which in the
spatially homogeneous case can be written as

(

ωg (2ε − ω) f
(2ε − ω) f + −ωg

)

= ̂H1ĝ − ĝ ̂H1 + ̂I , (6.1)
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where

̂I = ĝ̂Σ A − ̂Σ R ĝ + ĝR
̂Σ − ̂Σ ĝA, (6.2)

ĝR(A) =
(

g f
− f + g

)R(A)

, ̂Σ R(A) =
(

Σ1 Σ2

−Σ+
2 Σ1

)R)A)

, (6.3)

̂H =
(

H1 0
0 H 1

)

, H1 = −e

c
v · A + eϕ, H 1 = e

c
v·A + eϕ, v = vF .(6.4)

The retarded (advanced) functions in (6.1)–(6.3) are determined from the diagram
expansion in which all the propagators and self-energies are retarded (advanced)
(Sect. 5.2). For these functions equations of type (6.1) follow, where ̂I R(A) =
ĝR

̂Σ R(A) − ̂Σ R(A)ĝR . The self-energy matrices ̂Σ R(A) in (6.2) are additive func-
tions1:

̂Σ = ̂Σ(imp) + ̂Σ(e−ph) + ̂Σ(e−e) + ̂Σ(T)..., (6.5)

they correspond to the interaction of electrons with impurities, phonons, each other,
tunneling, etc. Some of the self-energy parts will be examined in detail in subsequent
sections.

6.1.2 Separation of Real and Virtual Processes

Separating in (6.2) the terms corresponding to the electron-phonon interaction, we
will detach the virtual processes. Omitting the renormalization terms
(

Σ R
1 + Σ A

1

)(e−ph)
and introducing a superconducting order parameter [2]

Δ = 1

2

(

Σ R
1 + Σ A

1

)(e−ph)
, (6.6)

one finds for the 11-component of (6.2) the following expression

Iεε−ω = {− f Δ∗ + Δ f +
εε−ω} + {−i(gγ + γg) + i(− f δ+ + δ f +) + gRΣ

(e−ph)
1

−Σ
(e−ph)
1 gA − f RΣ

+(e−ph)
2 + Σ

(e−ph)
2 f +A}εε−ω + I ′

εε−ω, (6.7)

where the quantities

2iγεε−ω = (

Σ R
1 − Σ A

1

)(e−ph)
, 2iδεε−ω = (

Σ R
2 − Σ A

2

)(e−ph)
, (6.8)

1In principle, the interference between different physical processes, described by (6.5), is possible.
Such interference was considered, e.g., by Reizer and Sergeev [1].
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as well as Σ
(e−ph)
1,2 , represent the real interactions between electrons and phonons,

which are essential for the kinetics, and I ′
εε−ω no longer contains Σ(e−ph) explicitly.

6.1.3 Nondiagonal Channel

The dissipation function γ in (6.7) (as well as δ and Σ
(e−ph)
1,2 ) has a characteristic

magnitude of the order of the energy damping of electron excitations. In normal
metals γ ∼ T 3/ω2

D; in a superconducting state γ is even smaller, since a significant
part of the electron-phonon interaction (the virtual processes) was already taken
into account as being responsible for the superconducting transition. The γ function
is less by orders of magnitude than the modulus of the order parameter Δ almost
at all temperatures. Hence, before moving to the kinetic equation in (6.7), we must
account exactly for the first expression in braces, using equations for the nondiagonal
components of ĝ-functions following from (6.1) (the nondiagonal channel, cf. [3]).
From these equations it follows

(2ε − ω)( f − f +)εε−ω = {i( f γ + γ f +) − i(γ f + f +γ) + i(δ+g − gδ)

+ i(gδ+ − δg) + (gΔ − Δ∗g) + (gΔ∗ − Δg) + f RΣ1 + f +RΣ1 − Σ1 f
A

− Σ1 f
+A + gRΣ2 − Σ2g

A + gRΣ+
2 − Σ+

2 gA}εε−ω + I ′′
εε−ω. (6.9)

As in the derivation of relation (6.7), we have separated in the braces in (6.9) the
virtual processes, which explicitly represent the electron-phonon interaction, while
I ′′
εε−ω contains [in analogy to I ′

εε−ω in (6.7)] all other processes. For the last quantity
we have from (6.1):

I ′′ = gΣ A
2 + f Σ

A
1 − Σ R

1 f − Σ R
2 g + gRΣ2 + f RΣ1 − Σ1 f

A − Σ2g
A

+ f +Σ A
1 + gΣ+A

2 − Σ+R
2 g − Σ

R
1 f + + f +RΣ1 + gRΣ+

2 − −Σ+
2 gA − Σ1 f

+A. (6.10)

(Here all external and internal arguments are omitted; in this notation the order of
the co-factors is important).

6.1.4 Impurities

Here we consider thin-film superconductors with a thickness on the order of super-
conducting correlation length. Such specimens always contain a number of electron
elastic scattering centers (such as nonmagnetic impurities and lattice defects). If the
number of these centers is sufficiently large, the superconducting films would be
“dirty” and the mean free path of electrons would be shorter than the other lengths,
which characterize their motion in superconductors. This circumstance allows one
to make significant simplifications. In particular, one may ignore anisotropy effects,
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the non-locality of electrodynamics, the reflection of electrons from the boundaries,
etc.

In the presence of impurities the self-energy matrix in (6.5) has the form (see
Sect. 4.1)

Σ
(imp)R(A)
εε−ω = 1

2πτ

∫

dΩp

4π
ĝR(A)

εε−ω, Σ
(imp)
εε−ω = 1

2πτ

∫

dΩp

4π
ĝεε−ω. (6.11)

If paramagnetic impurities are also present, then (as follows from the analysis in
Sect. 4.1) different factors 1/τ1 and 1/τ2 correspond to the functions g, g and f, f +
respectively.

Having inmind the case of nonmagnetic impurities, in (6.1) we perform averaging
over the angular variable, taking into account (6.7), (6.9) and (6.10). The self-energy
parts, which correspond to the interaction of electrons with impurities, are eliminated
owing to the isotropy of this interaction.

6.1.5 Effective Collision Integral

Before the derivation of the collision integrals in terms of the distribution function
of electron (nε) and hole (n−ε) type excitations, we examine the relation between
n±ε and ĝε, where

ĝεε−ω = 2πδ(ω)̂gε. (6.12)

The required relation was established in Sect. 5.2. Using (5.64)–(5.70), one finds

u(ε)ṅε = − 1

8πi
{(ġε − ġ−ε) + u(ε) (ġε − ġ−ε)} signε, (6.13)

where the dot designates the time derivative. Thus, the right side of (6.2) is expressed
in terms of the 11-component of (6.1). Taking into account the nondiagonal channel,
the effective collision integral becomes

Ieff(ε) = I (e−ph)
eff (ε) + I (e−e)

eff (ε) + I (T)
eff (ε), (6.14)

where the last two terms have the structure

Ieff(ε) = I ′
eff(ε) − |Δ|

2ε
I ′′
eff(ε) = gΣ A

1 − f Σ+A
2 − Σ R

1 g + Σ R
2 f +

+ gRΣ1 − f RΣ+
2 − Σ1g

A + Σ2 f
+A − |Δ|

2ε
{gΣ A

2 + f Σ
A
1 − Σ R

1 f

− Σ R
2 g + gRΣ2 + f RΣ1 − Σ1 f

A − Σ2g
A + f +Σ A

1 + gΣ+A
2

− Σ+R
2 g − Σ

R
1 f + + f +RΣ1 + gRΣ+

2 − Σ+
2 gA − Σ1 f

+A}. (6.15)

A similar expression follows for I (e−ph)
eff , which contains the quantities γ, δ, etc.
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6.2 Inelastic Electron-Electron Collisions

To find the collision integral in canonical form [3, 4] we will use the general relations
(6.13)–(6.15). First, it is necessary to specify the self-energy parts in them.

6.2.1 Diagram Evaluation of Electron-Electron Self-Energy

The diagrams corresponding to inter-collisions of two electrons are depicted in
Fig. 6.1. The presence of pair condensate in the system, as usual, is responsible
for the matrix structure of ̂Σ . The contribution to Σ1 from the first graph in Fig. 6.1
is shown in Fig. 6.2. In the representation of discrete imaginary frequencies, the ele-
ments of matrix ̂Σ may be written (omitting for a moment unessential indices) in
the form

Σ1(P, P − K ) = T 2
∑

ε1ε2

∫ ∫

d3p1 d3p2
(2π)6

{

AG1G2G3 − BF1F
+
2 G3

}

, (6.16)

Σ2(P, P − K ) = T 2
∑

ε1ε2

∫ ∫

d3p1 d3p2
(2π)6

{

BG1G2F3 − AF1F2F
+
3

}

. (6.17)

Here the 4-momentum variables of propagators are defined by the “decay” conserva-
tion laws P = P1 + P2 + P3 and K = K1 + K2 + K3. The quadratic forms A and
B are related to the scattering amplitudes of two normal excitations on the Fermi
surface. Using Fig. 6.1 the following expressions may be derived in Born’s approxi-
mation:

A = −2|Vp−p2 |2 + Vp−p2Vp−p1 , (6.18)

B = −2|Vp1+p2 |2 + Vp−p1Vp−p2 + Vp1+p2Vp−p2 + Vp−p1Vp1+p2 , (6.19)

where Vq is the interaction potential.

Fig. 6.1 Diagrams
determining the self-energy
functions (6.16) and (6.17).
Wavy lines correspond to the
electron-electron interaction
potential

Fig. 6.2 Diagrams for
11-component of self-energy
matrix (6.16) which
corresponds to the first
skeleton diagram in Fig. 6.1
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6.2.2 Analytical Continuation

From expressions (6.16) and (6.17), written in the discrete imaginary frequency
representation, we move to the expressions on the real axis, using the Gor’kov-
Eliashberg technique. To do this, consider the N th order diagram of perturbation
theory as the function of the complex variable ε at fixed imaginary frequencies of
the field vertices. The analytical continuation over each of the frequencies must be
made from the upper half-plane onto the real axis. The cuts lying between the lines
Imε = 0 and Im(ε − ω) = 0 correspond to this diagram. Assuming that the cuts are

Im(ε1 − ω1i ) = Im(ε2 − ω2k) = Im(ε3 − ω3l) = 0, (6.20)

we transform the sum over frequencies in (6.16) and (6.17) into a double integral.
Because the directions of the arrows do not influence the procedure of analytical
continuation, one can present (6.16) and (6.17) in the form (temporarily omitting
unessential symbols)

Σ = T 2
∑

ε1ε2

Gε1Gε2Gε−ε1−ε2 =
∮∮

dε1dε2
(4πi)2

tanh
ε1

2T
tanh

ε2

2T
Gε1Gε2Gε−ε1−ε2 ,

(6.21)
where the contours of integration enclose all the poles of hyperbolic tangents. Further
step-by-step transformation of (6.21) to an integration over the real axis gives the
result

Σ =
∫ ∫

dz1dz2
(4πi)2

⎧

⎨

⎩

tanh
z1
2T

tanh
z2
2T

∑

i,k

δi
(

Gz1+ω1i

)

δk
(

Gz2+ω2k

)

Gε−z2−z1−ω1i−ω2k

−
∑

k,l

Gε+z1−ω2k−ω3l δk
(

Gz2+ω2k

)

δl
(

G−z2−z1+ω3l

)

coth
z1
2T

tanh
z2
2T

+
∑

k,l

Gε+z1−ω2k−ω3l δk
(

Gz2−z1+ω2k

)

δl
(

G−z2+ω3l

)

coth
z1
2T

tanh
z2
2T

−
∑

i,l

δi
(

Gz1+ω1i

)

Gε+z2−z1−ω1i−ω3l δl
(

G−z2+ω3l

)

tanh
z1
2T

tanh
z2
2T

⎫

⎬

⎭

. (6.22)

Here the external variable ε and the field frequencies remain imaginary. Continu-
ing (6.22) over ε from the region Im(ε − ω) > 0 (Imε < 0) and next over all the
frequencies onto the upper half-plane, one finds for Σ R(A) the expression

Σ R(A) =
∫ ∞

−∞
dε1dε2
(4πi)2

{

G1G2G
R(A)
3 + G1G

R(A)
2 G3 + GR(A)

1 G2G3

+ GR(A)
1 GR(A)

3 GR(A)
2 − GR(A)

1 GR(A)
2 GA(R)

3

−GR(A)
1 GA(R)

2 GR(A)
3 − GA(R)

1 GR(A)
2 GR(A)

3

}

. (6.23)
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Using the definition of Σ in a form, analogous to (5.46)

Σεε−ω =
∞
∑

N=0

N+1
∑

k=1

δk

(

Σ
(N )
εε−ω

)

tanh
ε − Ωk

2T
, (6.24)

where Ωk is some combination of field vertex frequencies, one finds from (4.22):

Σ =
∫ ∞

−∞
dε1dε2
(4πi)2

{G1G2G3 + G1(G
R − GA)2(G

R − GA)3

+ (GR − GA)1G2(G
R − GA)3 + (GR − GA)1(G

R − GA)2G3}. (6.25)

The expressions for the quantities Σ R(A) and Σ , which define the collision integral,
follow from (6.16), (6.17) and (6.23), (6.25).

6.2.3 Transition to Energy-Integrated Propagators

Before writing down the corresponding results, we will integrate (6.16) and (6.17)
over the variables ξ = vF (p − pF ); this is possible because the effective interaction
is short range, so the amplitudes A and B depend on angle variables only. Hence one
can write

∫ ∫

d3p1d3p2
(2π)6

AG1G2G3

=
(

mpF
2π2

2
)∫ ∫

dΩp1 dΩp2

(4π)2
A
∫ ∫ ∫

dξ1dξ2dξ3 δ(ξ3 − vF (p3 − pF ))G1G2G3.

(6.26)

The δ-function here restricts mainly the angle integration, requiring p3 = |p − p1 −
p2| ≈ pF and thus

∫ ∫

d3p1d3p2
(2π)6

AG1G2G3 =
(

mpF
2π2

)2 1

2εF

∫ ∫

dΩp1dΩp2
(4π)2

δ

(

p3
pF

− 1

)

Ag1g2g3.

(6.27)
Gathering the results, we have

Σ R
1 − Σ A

1 = ̂L
[

A
{

g1g2g3
}(R−A) − B

{

f1 f
+
2 g3

}(R−A)
]

, (6.28)

Σ1 = ̂L
[

A
{

g1g2g3
} − B

{

f1 f
+
2 g3

}]

, (6.29)

Σ R
2 − Σ A

2 = ̂L
[

B
{

g1g2 f3
}(R−A) − A

{

f1 f2 f
+
3

}(R−A)
]

, (6.30)

Σ2 = ̂L
[

B
{

g1g2 f3
} − A

{

f1 f2 f
+
3

}]

. (6.31)

The notations {. . .} and {. . .}(R−A) are used:
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{g1g2g3}(R−A) = g1g2
(

gR
3 − gA

3

) + g1
(

gR
2 − gA

2

)

g3 + (

gR
1 − gA

1

)

g2g3

+ (

gR
1 − gA

1

) (

gR
2 − gA

2

) (

gR
3 − gA

3

)

, (6.32)

{g1g2g3} = g1g2g3 + g1
(

gR
2 − gA

2

) (

gR
3 − gA

3

) + (

gR
1 − gA

1

)

g2
(

gR
3 − gA

3

)

+ (

gR
1 − gA

1

) (

gR
2 − gA

2

)

g3, (6.33)

and the operator ̂L is defined as

̂L =
(mpF
2π2

)2 1

2εF

∫ ∞

−∞

∫ ∞

−∞
dε1dε2
(4πi)2

∫∫

dΩp1dΩp2

(4π)2
δ

(

p3
pF

− 1

)

. (6.34)

6.2.4 Derivation of the Canonical Form

Substituting expressions (6.16) and (6.17), subject to (6.32) and (6.33) and (5.81) to
(5.85), into formula (6.15), we find

Ieff(ε) = 2π4
̂L{−A(−uu1u2u3ββ1β2 − uu2u3ββ2α1 − uu1u3βα2β1

− uu3βα1α2 − uu1u2u3ββ1β3 − uu2u3ββ3α1 + uu1u2ββ1α3

+ uu2βα1α3 − uu1u2u3ββ2β3 − uu1u3ββ3α2 + uu1u2ββ2α3

+ uu1βα2α3 − uu1u2u3β − u1u2u3β1β2α − u2u3β2αα1

− u1u3β1αα2 − u3αα1α2 − u1u2u3β1β3α − u2u3β3αα1

+ u1u2β1αα3 + u2αα1α3 − u1u2u3β2β3α − u1u3β3αα2

+ u1u2β2αα3 + u1αα2α3 − u1u2u3α) + B(uu3v1v2ββ1β2

+ uu3v1v2ββ1β3 + uv1v2ββ1α3 + uv1v2u3ββ2β3 + uv1v2ββ2α3

+ uu3v1v2β + u3v1v2β1β2α + u3v1v2β1β3α + v1v2β1αα3

+ u3v1v2β2β3α + v1v2β2αα3 + u3v1v2α) − B(u1u2vv3ββ1β2

+ u2vv3ββ2α1 − u1vv3ββ1α2 − vv3βα1α2 + u1u2vv3ββ1β3

+ u2vv3ββ3α1 + u1u2vv3ββ2β3 − u1vv3ββ3α2 + u1u2vv3β)

− A(vv1v2v3ββ1β2 + vv1v2v3ββ1β3 + vv1v2v3ββ2β3 + vv1v2v3β)

− A(uu1u2u3β1β2β3 − uu1u2β1β2α3 + uu2u3β2β3α1 − uu2β2α1α3

+ uu1u3β1β3α2 − uu1β1α2α3 + uu3β3α1α2 − uα1α2α3

+ uu1u2u3β1 + uu2u3α1 + uu1u2u3β2 + uu1u3α2 + uu1u2u3β3

− uu1u2α3) − B(uu3v1v2β1β2β3 + uv1v2β1β2α3 + uu3v1v2β1

+ uu3v1v2β2 + uu3v1v2β3 + uv1v2α3) + B(u1u2vv3β1β2β3

+ u2vv3β2β3α1 − u1v3vβ1β3α2 − vv3β3α1α2 + u1u2vv3β1

+ u2vv3α1 + u1u2vv3β2 − u1vv3α2 + u1u2vv3β3)

+ A(vv1v2v3β1β2β3 + vv1v2v3β1 + vv1v2v3β2 + vv1v2v3β3)
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− |Δ|
ε

[−A(−u2u3ββ2α1 − u1u3vββ1α2 − u2u3vββ3α1 + u1u2vββ1α3

− u1u3vββ3α2) + B(vv1v2ββ1α3 + vv1v2ββ2α3) − B(v3αα1α2

− u1u2v3β3α − u2v3β3αα1 − u1u2v3β2β3α − u1u2u3β1β2α

− u2v3β2αα1 + u1v3β1αα2 + u1v3β3αα2 − u1u2v3α)

+ A(v1v2v3β1β2α + v1v2v3β1β3α + v1v2v3β2β3α + v1v2v3α)

− A(u2u3vβ2β3α1 + u1u3vβ1β3α2 − u1u2vβ1β2α3 − vα1α2α3

+ vu2u3α1 + u1u3vα2 − u1u2vα3) − B(vv1v2β1β2α3 + vv1v2α3)]}. (6.35)

[Here u = u(ε), u1 = u(ε1), etc.] Reversing the sign of ε in this expression and sub-
stituting the values of I (ε) and I (−ε) into (6.13),weobtain, subject to relations (5.86)
to (5.88), the following canonical form for the inelastic electron-electron collision
integral:

J (e−e) (n±ε) = 1

16εF
√

ε2 − |Δ|2
∫ ∞
|Δ|

∫ ∞
|Δ|

∫ ∞
|Δ|

dε1dε2dε3
√

ε21 − |Δ|2
√

ε22 − |Δ|2
√

ε23 − |Δ|2
× {E1δ (ε − ε1 − ε2 − ε3) + E2δ (ε + ε1 − ε2 − ε3) + E3δ (ε + ε2 + ε3 − ε1)} ,

(6.36)

in which the factors Ei have a form

E1 = M1
1 {[(1 − n±ε)nε1nε2nε3 − n±ε(1 − nε1)(1 − nε2)(1 − nε3)]

+ [(1 − n±ε)nε1n−ε2n−ε3 − n±ε(1 − nε1)(1 − n−ε2)(1 − n−ε3)]}
+ M2

1 {[(1 − n±ε)n−ε1nε2nε3 − n±ε(1 − n−ε1)(1 − nε2)(1 − nε3)]
+ [(1 − n±ε)n−ε1n−ε2n−ε3 − n±ε(1 − n−ε1)(1 − n−ε2)(1 − n−ε3)]}
+ 2M3

1 [(1 − n±ε)nε1n−ε2nε3 − n±ε(1 − nε1)(1 − n−ε2)(1 − nε3)]
+ 2M4

1 [(1 − n±ε)n−ε1n−ε2nε3 − n±ε(1 − n−ε1)(1 − n−ε2)(1 − nε3)], (6.37)
E2 = M1

2 {[nε2nε3(1 − n±ε)(1 − nε1) − (1 − nε2)(1 − nε3)n±εnε1 ]
+ [n−ε2n−ε3(1 − n±ε)(1 − nε1) − (1 − n−ε2)(1 − n−ε3)n±εnε1 ]}
+ M2

2 {[nε2nε3(1 − n±ε)(1 − n−ε1) − (1 − nε2)(1 − nε3)n±εn−ε1 ]
+ [n−ε2n−ε3(1 − n±ε)(1 − n−ε1) − (1 − n−ε2)(1 − n−ε3)n±εn−ε1 ]}
+ 2M3

2 [n−ε2nε3(1 − n±ε)(1 − nε1) − (1 − n−ε2)(1 − nε3)n±εnε1 ]
+ 2M4

2 [n−ε2nε3(1 − n±ε)(1 − n−ε1) − (1 − n−ε2)(1 − nε3)n±εn−ε1 ], (6.38)
E3 = M1

3 {[nε1(1 − n±ε)(1 − nε2)(1 − nε3) − (1 − nε1)n±εnε2nε3 ]
+ [nε1(1 − n±ε)(1 − n−ε2)(1 − n−ε3) − (1 − nε1)n±εn−ε2n−ε3 ]}
+ M2

3 {[n−ε1(1 − n±ε)(1 − nε2)(1 − nε3) − (1 − n−ε1)n±εnε2nε3 ]
+ [n−ε1(1 − n±ε)(1 − n−ε2)(1 − n−ε3) − (1 − n−ε1)n±εn−ε2n−ε3 ]}
+ 2M3

3 [nε1(1 − n±ε)(1 − n−ε2)(1 − nε3) − (1 − nε1)n±εn−ε2nε3 ]
+ 2M4

3 [n−ε1(1 − n±ε)(1 − n−ε2)(1 − nε3) − (1 − n−ε1)n±εn−ε2nε3 ]. (6.39)
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Coefficients M j
i , entering (6.37) to (6.39), are given by the following relations:

M1
1 = a(εε1ε2ε3 − |Δ|4 − εε1

√

ε22 − |Δ|2
√

ε23 − |Δ|2

±
√

ε2 − |Δ|2
√

ε21 − |Δ|2ε2ε3 ∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2
√

ε22 − |Δ|2

×
√

ε23 − |Δ|2 ) + b|Δ|2(εε3 − ε1ε2 +
√

ε22 − |Δ|2
√

ε23 − |Δ|2

±
√

ε2 − |Δ|2
√

ε21 − |Δ|2 ), (6.40)

M2
1 = a(εε1ε2ε3 − |Δ|4 − εε1

√

ε22 − |Δ|2
√

ε23 − |Δ|2

∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2ε2ε3 ±
√

ε2 − |Δ|2
√

ε21 − |Δ|2
√

ε22 − |Δ|2

×
√

ε23 − |Δ|2 ) + b|Δ|2(εε3 − ε1ε2 +
√

ε22 − |Δ|2
√

ε23 − |Δ|2

∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2 ), (6.41)

M3
1 = a(εε1ε2ε3 − |Δ|4 + εε1

√

ε21 − |Δ|2
√

ε23 − |Δ|2

±
√

ε2 − |Δ|2
√

ε21 − |Δ|2ε2ε3 ±
√

ε2 − |Δ|2
√

ε21 − |Δ|2
√

ε22 − |Δ|2

×
√

ε23 − |Δ|2 ) + b|Δ|2(εε3 − ε1ε2 +
√

ε22 − |Δ|2
√

ε23 − |Δ|2

±
√

ε2 − |Δ|2
√

ε21 − |Δ|2 ), (6.42)

M4
1 = a(εε1ε2ε3 − |Δ|4 + εε1

√

ε22 − |Δ|2
√

ε23 − |Δ|2

∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2ε2ε3 ∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2
√

ε22 − |Δ|2

×
√

ε23 − |Δ|2 ) + b|Δ|2(εε3 − ε1ε2 +
√

ε22 − |Δ|2
√

ε23 − |Δ|2

∓
√

ε2 − |Δ|2
√

ε21 − |Δ|2 ). (6.43)

The quantities M j
2 and M j

3 are defined by the expressions

M j
2 = −M j

1 (ε,−ε1, ε2, ε3) − M j
1 (ε, ε2,−ε1, ε3) − M j

1 (ε, ε3, ε2,−ε1) , (6.44)

M j
3 = M j

1 (ε, ε1,−ε2,−ε3) + M j
1 (ε,−ε2, ε1,−ε3) + M j

1 (ε,−ε3,−ε2, ε1) .

(6.45)

Factors a and b, entering (6.40) to (6.43), are numbers (of an order of unity) and are
connected with A and B by relations of the type

a = −2π
(mpF
2π2

)2
∫ ∫ ∫

dΩpdΩp1dΩp2

(4π)2
δ

( |p − p1 − p2|
pF

− 1

)

A. (6.46)
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6.2.5 Essence of Elementary Acts

The meaning of the elementary acts, described by the collision operator (6.36), is
quite transparent. Consider, for example, the term in E1 that is proportional to M1

1 .
With a positive sign of ε, the first component in this term describes the merger of
three electron excitations into a single electron-type excitation. With a negative sign
of ε, three merging electron excitations create an excitation on the hole branch. Thus
in the first case the difference in the number of electrons and holes changes by 2,
while in the second case it changes by 4. Analogous processes are described by other
items in this term. It vanishes in the case of a normal metal (M1

1 = 0 when |Δ| = 0);
hence the channel of homogeneous relaxation of electron-hole imbalance is closed
in a normal metal [5].

Note that the collision integral (6.36) has obtained such a transparent meaning,
owing to the specific selection of the form of the functions n±ε in the expressions for
ĝ(R,A) (5.81) to (5.88).

6.3 Kinetic Equation for Phonons

6.3.1 Application of Keldysh Technique

The phonon Green-Keldysh function [6] is introduced in the usual manner2:

Dik
ν (1, 2) = −i〈T ϕ̂ν(1i)ϕ̂ν(2k)〉, 1 ≡ X ≡ (r, t) (6.47)

The Keldysh indices i, k are the signs minus or plus, according to the location of the
time coordinate on each of the two time axes (∞,+∞ and +∞,−∞). Recall, that
the time on the second axis (with the sign plus) is greater than any time on the first
axis (with the sign minus), and the T -ordering on the second axis proceeds in the
reversed order. The free phonon field operators are real (ϕ̂† = ϕ̂, see Sect. 5.1):

ϕ̂(x) = 1√
V0

∑

k

√

ω0(k)

2

{

bke
i(k·r−ω0(k)t) + b†ke

−i(k·r−ω0(k)t)
}

. (6.48)

Here V0 is the volume of the system; ω0(k) is the dispersion of phonons in normal
metal; b†k and bk are the phonon creation and annihilation operators.

The “bare” Green-Keldysh functions, defined by (6.47) and (6.48), may be easily
found in the homogeneous and stationary cases. For instance, the expression forD−+

0
is:

2We omit below the index ν of phonon polarization. It may be restored in the final expressions.
As was mentioned in Sect. 4.3, in the isotropic model of metals the electrons interact only with
longitudinal acoustic phonons. Such interaction is implied in this Chapter.
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D−+
0 (r, t) = − i

2

∫

d3k
(2π)3

ω0(k)eik·r [Nke
−iω0(k)t + (1 + N−k)e

iω0(k)t
]

, (6.49)

where Nk = 〈b†kbk〉 is the nonequilibrium phonon distribution function [6].
In addition, we introduce an operator D−1

01(2), which acts on the first (second)
argument of the phonon propagator (u is the phonon’s velocity):

D−1
01(2) = ∂2

∂t21(2)
− u2∇2

1(2), (6.50)

where
D−1

01(2)Dik
0 (1, 2) = u2σ̂ik

z δ(t1 − t2)∇1(2)Δ(r1 − r2), (6.51)

and σ̂z is the third of the Pauli-matrices σ̂x , σ̂y , σ̂z .
In the general case the phonon function obeys the Dyson equation

̂D(1, 2) = ̂D0(1, 2) +
∫

̂D0(1, 4)̂Π(4, 3)̂D(3, 2)d4x3d
4x4, (6.52)

or
̂D(1, 2) = ̂D0(1, 2) +

∫

̂D(1, 3)̂Π(3, 4)̂D0(4, 2)d
4x3d

4x4, (6.53)

where all the functions are matrices in Keldysh indices. Note that owing to their
definition (6.47), the Green-Keldysh functions are linear dependent (D−− + D++ −
D−+ − D+− = 0) and, consequently, the polarization operators are also linear depen-
dent: (Π−− + Π++ + Π−+ + Π+− = 0).

The electron Green-Keldysh-Nambu function is defined analogously:

Gik
μν(1, 2) = −i〈Tψμ(1i)ψ

†
ν(2k)〉 (6.54)

as mentioned in Sect. 5.2. Here μ = 1, 2 and ν = 1, 2 are the Nambu indices of the
field operators

ψ1(1i) ≡ ψ↑(1i), ψ2(1i) ≡ ψ†
↓(1i). (6.55)

The Green’s function thus introduced (in absence of interactions, which depend
explicitly on spin variables) has the symmetry property

(

Gik
μν

)∗ = (−1)μ+νGik
μν, (6.56)

where the bar above the index means its reversion [i.e., 1 = 2; (−) = (+)]. From
(6.54) and (6.56) it follows that:
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Gik
μν(1, 2) = − (

Gik
νμ(2, 1)

)∗ = (−1)μ+ν+1Gik
νμ (fori �= k), (6.57)

Gii
μν(1, 2) = − (

Gii
νμ(2, 1)

)∗ = (−1)μ+ν+1Gii
νμ. (6.58)

The functions G, GR , and GA are defined according to the relations (5.55):

G + GR + GA = 2G−−, (6.59)

G + GR − GA = 2G+−, (6.60)

G − GR + GA = 2G+−, (6.61)

G − GR − GA = 2G++, (6.62)

from which [taking into account (6.57) and (6.58)] equalities follow:

Gμν(1, 2) = −G∗
νμ(2, 1) = (−1)μ+ν+1Gνμ(2, 1), (6.63)

GR
μν(1, 2) = GA∗

νμ (2, 1) = (−1)μ+ν+1GA
νμ(2, 1), (6.64)

GA
μν(1, 2) = GR

νμ(2, 1) = (−1)μ+ν+1GR
νμ(2, 1). (6.65)

6.3.2 Quasiclassical Approximation

In homogeneous and stationary cases, the Green-Keldysh functions depend on the
difference of space-time coordinate. If the evolution of the phonon system is taking
place sufficiently slow, one can assume that all the quantities depend only weakly on
the summary variable (1 + 2) and are the functions mainly of the difference variable
(1 − 2). Separating these variables [weuse the notations of the type1 ≡ x1 ≡ (r1, t1),
etc.]

̂D(x1, x2) = ̂D
(

x1 + x2 + (x1 − x2)

2
; x1 + x2 − (x1 − x2)

2

)

, (6.66)

one canperform theFourier-transformation over the difference variablesR = r1 − r2
and Θ = t1 − t2:

Dik(q,ω; r, t) =
∫

Dik(r, t; R,Θ)eiq·R+iωΘd3RdΘ, (6.67)

where, obviously, r = (r1 + r2)/2, t = (t1 + t2)/2. Acting by the operator D−1
01 on

(6.52) and by D−1
02 on (6.53), and subtracting, we obtain the result for the (−+)-

component:



210 6 Electron and Phonon Collision Integrals

(D−1
02 − D−1

01

)D−+(x1, x2) = −
∫

d4x3d
4x4{[D−−(1, 3)Π−+(3, 4)

+ D−+(1, 3)Π++(3, 4)]δ(t2 − t4)∇2
2δ(r4 − r2) + [Π−−(4, 3)D−+(3, 2)

+ Π−+(4, 3)D++(3, 2)]δ(t1 − t4)∇2
1δ(r1 − r4)}. (6.68)

Consider first the right side of (6.68) and transform it with the help of quasiclas-
sical conditions. For the phonon system, these conditions mean that the quantities
characterizing its evolution in time (Δt) and space (Δr), must be large in comparison
with the characteristic phonon reciprocal frequencies ω(q)−1 and wave numbers q−1

(� = 1), i.e.:
ω(q)Δt � 1, qΔr � 1. (6.69)

This is a good approximation when the perturbation of the phonon system is caused
by the superconducting electron system. The condition (6.69) permits us to simplify
in the usual manner (cf., e.g., [6]) the left side of (6.68). Taking into account that the
operator

(D−1
02 − D−1

01

)

in the left side of (6.68) may be presented in the form

D−1
02 − D−1

01 = − ∂2

∂t∂Θ
+ u2

∂2

∂r∂R
, (6.70)

and carrying out the Fourier-transformation of (6.68), we obtain the expression

2

(

iω
∂D−+

∂t
+ iu2q· ∂

∂r
D−+

)

= − (u · q)2
(

Π−+D+− − D−+Π+−) . (6.71)

[the arguments of all the functions in parentheses are (q,ω; r, t); we have used here
the linear interdependence of Dik and also of Π ik , mentioned earlier].

6.3.3 Phonon Distribution Function

To obtain the kinetic equation in terms of the distribution function N (q, r, t), it is
necessary to find a relation between functions N and D. In the quasiclassical case,
such a relationmay be found rather simply. As noted in Sect. 5.1, the superconducting
transition negligibly influences [because Δω0(q)/ω0(q) ∼ 10−4] the bare phonon
spectrum: ω0(q) ≈ ω(q). Implying the quasiclassical condition for the phonons, we
assume that N (q, r, t) and ̂D(ω,q, r, t) obey the relation

D−+(ω,q, r, t) = − i

2
ω(q){[1 + N (−q; r, t)]δ[ω + ω(q)]

+ N (q, r, t)δ[ω − ω(q)]}. (6.72)
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For acoustic phonons (only these are important in the isotropic case) and formomenta
that are small compared with the extreme value in the crystal, the following relation
is valid:

q = ∂ω(q)

∂u
≈ ω(q)

u2
u. (6.73)

Using also the property

D+−(ω,q; r, t) = D−+(−ω,−q; r, t) (6.74)

[which follows from (6.47)], substituting (6.72) to (6.74) into (6.71) and integrating
over ω within the limits (0,∞), one obtains the following kinetic equation:

∂N (q, r, t)
∂t

+ u·∂N (q, r, t)
∂r

= I (N ), (6.75)

where the quantity

I (N ) = i
ω(q)

2

{

Π−+ (q, ω(q); r, t) [1 + N (q, r, t)
] − Π+− (q, ω(q); r, t) N (q, r, t)

}

(6.76)
is the inequilibrium source.
Note that expression (6.76) may also be presented in a somewhat different form,

if one makes the standard transformation (cf. [6]) from the Π ik matrix [in analogy
with (5.55)] to the linearly independent functions Π , Π R , Π A:

I (N ) = iω(q)

2

{

(

Π R − Π A
)

N − 1

2

[

Π − (Π R − Π A)
]

}

. (6.77)

Now we specify the polarization operators in (6.77).

6.3.4 Polarization Operators in Keldysh’s Technique

In the Keldysh-Nambu technique, the polarization operator is represented by a dia-
gram expansion:

(6.78)

Regular Feynman rules [7] are applied; the only difference is that all the quantities,
including the vertices, arematrices in Keldysh-Nambu indices. Since the transition to
the superconducting state (as well as the interaction with an external electromagnetic
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field) affects only a minor smeared region (∼ T/εF , |Δ|/εF ) at the Fermi surface, we
can set (as in Sect. 5.1) the total vertex Γ in the polarization operator equal to Γ0 ∼ g
with adiabatic accuracy ∼ u/vF . The electron functions Gik

μν [the bold lines in the
l.h.s. of (6.78)] are considered as exact functions [they contain electron interactions
between themselves, with the external field, phonons, impurities, etc., symbolically
depicted by the wavy lines in (6.78); wavy lines on the bottom parts in the r.h.s.
are also assumed but not shown]. Because in this technique the vertices Γ have the
matrix structure [8]:

Γ
i j,k
αβ ∝ σ̂i j

z δ jk σ̂
αβ
z , (6.79)

we obtain (g is the electron-phonon interaction constant)

Π kk ′ = −g2(−1)k+k ′ [
Gkk ′

11 G
k ′k
11 − Gkk ′

12 G
k ′k
21 − Gkk ′

21 G
k ′k
12 + Gkk ′

22 G
k ′k
22

]

. (6.80)

However, it is more convenient to deal with linearly-independent quantities G, GR

andGA (5.55). Moving simultaneously toΠ ,Π R , andΠ A and omitting components
like GA

11(1, 2)G
A
11(2, 1) (which are identically zero), we obtain

Π A(R)(1, 2) = −1

2
g2[GA(R)

11 (1, 2)G11(2, 1) + G11G
R(A)
11 + GA(R)

22 G22

+ G22G
R(A)
22 − GA(R)

12 G21 − G12G
R(A)
21 − GA(R)

21 G12 − G21G
R(A)
12 ], (6.81)

and correspondingly

Π(1, 2) = − i

2
g2[G11(1, 2)G11(2, 1) + G22G22 − G21G12 − G12G21 + GA

11G
R
11

+GR
11G

A
11 + GA

22G
R
22 + GR

22G
A
22 − GA

12G
R
21 − GR

12G
A
21 − GA

21G
R
12 − GR

21G
A
12].(6.82)

Expressions (6.81) and (6.82) allow one to obtain the collision integral for the
phonon kinetic equation in a superconducting system. All the influence of the elec-
tromagnetic field is contained in Green’s functions for electrons, which are exact and
also account for the impurities and other fields acting on the electron system.

As required by the kinetic equation, written in the form of (6.75), we should
move to the (x, p)-representation. It is clear that the polarization operators can be
expressed in terms of the energy-integrated Green’s functions. Before making this
transformation,wewill derive the expressions for the polarization operators in (6.77),
using the analytical continuation technique.
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6.3.5 Polarization Operators: Analytical Continuation
Technique

In a discrete imaginary frequency representation [εn = (2n + 1)πT i ,ωm = 2mπT i]
we have the following expression for the polarization operator

Πωω−ω′(p,p − p′) = g2T
∑

ε1

∫

d3p1
(2π)3

{Gε1Gω−ε1 + Gε1Gω−ε1

− Fε1F
+
ω−ε1

− F+
ε1
Fω−ε1}. (6.83)

For brevity we omit the second arguments of Green’s functions (Gε1ε2 , etc.), which
may be reconstructed from the “decay” conservation law for internal variables:

ε1 + ε2 = ω, ω1 + ω2 = ω′. (6.84)

Rule (6.84) is responsible for the appearance ofG-functions in (6.83), which differs
from G by the reversed directions of the arrows in the diagrams. In addition, the
FF+ pair in (6.83) is accompanied (as in Sect. 3.4.1) by a change in the diagram’s
sign. Starting the analytic continuation of the polarization operator, we consider
each component in (6.83) as the infinite sum of the diagrams of various orders in
the external field. The entire procedure is analogous to that used earlier in deriving
the analytically continued self-energy parts of electron-electron collisions. The only
difference is that the external frequencies here are Bose frequencies (and, naturally,
there are two electron lines). Since the directions of arrows in the diagrams do not
influence the analytic continuation process, we will consider only the expression

Πωω−ω′ = T
∑

ε1

Gε1ε1−ωGω−ε1ω−ε1+ω1−ω′ . (6.85)

For simplicity of notation, we omit the signs of internal frequency integration and
summation at the vertices of interaction with the external field and phonons. Remem-
ber that expression (6.85) corresponds to the diagram series of perturbation theory
and contains the sum of the various diagrams up to the infinite order; Green’s func-
tions for electrons in the polarization loops contain the phonon self-energy insertions
that in turn contain field vertices of an arbitrary order. The diagram of a specific order
in the external field (considered as a function of the complex variable ω) has a cut
on the line Im(ω − Ωm) = 0 for fixed imaginary frequencies of the field vertices,
which goes between the uppermost ant lowermost banks:

0 ≤ Imω ≤ Imω′. (6.86)

As in the case of the electron-electron self-energy parts, the quantities Ωm represent
certain combinations of the field vertex frequencies; here the set of these combina-
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tions and their total number depend on the distribution of vertices along the electron
lines. Assuming that the cuts with Im(ε1 − ω1i ) = 0, Im(ε2 − ω2k) = 0 correspond
to these lines, we transform the frequency sum in (6.85) to the contour integral

πωω−ω′ =
∮

C

dz

4πi
tanh

z

2T
GzGω−z′ , (6.87)

whereC is the contour shown in Fig. 4.1. Deforming the contourC toC ′, which goes
along the banks of the cut, and noting that for the diagrams of any order the integrals
along the big arcs vanish, when the corresponding radii tend to infinity, after some
straightforward calculations we obtain:

πωω−ω′ =
∑

i,k

∫

dz

4πi
{δi

(

Gz+ω1i

)

Gω−z−ω1i tanh
z

2T

− Gz+ω−ω2kδk
(

G−z+ω2k

)

tanh
z

2T
}, (6.88)

where δi,k(G) is the jump in the Green’s function at the corresponding cut line. The
external variable ω and the field frequencies remain imaginary. Their combination
determines the set of cuts for the given diagram. Assuming in all diagrams ω > ω′
(the upper bank of the uppermost cut line), shifting the integration variable in all
diagram expressions (as was done in Sects. 4.3 and 6.2) and summing over all orders
of the perturbation series, we obtain

πR
ωω−ω′ =

∫ ∞

−∞
dz

4πi

(

GzG
R
ω−z + GR

z Gω−z
)

, (6.89)

where the G-function is determined as

Gεε−ω =
∞
∑

N=0

N+1
∑

i=1

δi
(

G(N )
)

tanh
ε − ω1i

2T
, (6.90)

while the functions GR(A) are determined directly from the diagram expansion (or
the Dyson equation), where all the Green’s functions for electrons are retarded
(advanced) and their entire set {G,GR,GA} coincides with the functions figuring in
Sect. 4.3. The expression for ω < 0 also follows from (6.88) for ω ≤ 0 (the lower
bank of the lowermost cut line):

πA
ωω−ω′ =

∫ ∞

−∞
dz

4πi

(

GzG
A
ω−z + GA

z Gω−z
)

. (6.91)

Using forΠωω−ω′ an expression analogous to (6.90), but with the external frequencies
representing now the Bose field, i.e.:
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πωω−ω′ =
∞
∑

N=0

N+1
∑

k=1

δk
(

Π(N )
)

coth
ω − Ωk

2T
, (6.92)

we obtain after the substitution of (6.88) into (6.92):

πωω−ω′ =
∑

i,k

{∫ ∞

−∞

[

δi
(

Gz+ω1i

) (

Gω−z−ω1i

)

tanh
z

2T
coth

ω − ωik − ω2k

2T

−δi
(

Gz+ω−ω2k

)

δk
(

Gz+ω2k

)

tanh
z

2T
coth

ω − ω2k − ω1i

2T

]}

. (6.93)

Shifting the integration variable in each of the terms in the first integral z + ω1i → z
and z + ω − ω2k → z in the second integral, and using the identity (5.98), one gets

πωω−ω′ =
∑

i,k

∫

dz

4πi
δi (Gz) δk (Gω−z)

[

1 + tanh
z − ω1i

2T
tanh

ω − z − ω2k

2T

]

.

(6.94)
Summing in (6.94) all orders of perturbation theory and accounting for the definition
of (6.89), we finally obtain

πωω−ω′ =
∫

dz

4πi

[

GzGω−z + (

GR
z − GA

z

) (

GR
ω−z − GA

ω−z

)]

. (6.95)

Thus, for polarization operator (6.83), the complete set of functionsΠ ,Π R ,Π A is
found, which describes the nonequilibrium case. One can show that they are identical
to those obtained earlier on the basis of the Keldysh technique.

6.3.6 Equivalence of Keldysh and Eliashberg Approaches

Consider for this purpose anyone of the components in Πωω−ω′ , which follows
from (6.83), for example,

Π1
ωω−ω′(p,p − p′) = g2

2i

(∫

dε1
2π

Gε1Gω−ε1

)

≡ g2

2i

∫

dε1dω1d3p1d3k
(2π)8

×Gε1ε1−ω (p1,p1 − k)Gω−ε1,ω−ε1+ω1−ω′
(

p − p1p − p1 + k − p′) , (6.96)

and make a Fourier transformation to the spatial and temporal variables. As a result,
one obtains

Π1(x1, x2) = − ig2

2
G(x1x2)G(x1x2). (6.97)
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Nowwewrite downall the termsΠ(x1, x2)obtained from the analytical continuation.
Taking into account (6.83) and (6.97) one finds

Π(1, 2) = − ig2

2
{G(1, 2)G(1, 2) + GG − FF+ − F+F

+ (G
R − G

A
)(GR − GA) + (GR − GA)(G

R − G
A
)

− (FR − F A)(F+R − F+A) − (F+R − F+A)(FR − F A)}. (6.98)

To compare this with result (6.82) obtained by the Keldysh technique, we must make
the substitution (1, 2) → (2, 1) in the second multiplier of each of the components
either in braces in (6.98) or in brackets in (6.82). In the latter case, this should be
done using the relations (6.63) to (6.65). We use the first possibility, noting that the
Eliashberg functions have the properties

GR(1, 2) = G
A
(2, 1), G(1, 2) = G(21), FR(1, 2) = F A(2, 1), F(1, 2) = F(2, 1).

(6.99)
[in the absence of the spin-dependent interactions Gαβ = δαβG, Fαβ = i (̂σy)αβF].

After removing theparentheses certain components vanish [for example,G
A
(1, 2)G

A

(2, 1) ≡ 0], so (6.98) can be reduced to the form

Π = ig2

2
{G(1, 2)(2, 1) + GG − FF+ − F+F + G

R
G

A + G
A
G

R + GRGA

+ GAGR − FRF+A − F AF+R − F+RF A − F+AF R}. (6.100)

Comparing this expression with (6.82), we see that they coincide, if the functions

GR(A), G
R(A)

, FR(A), and F+R(A) are replaced by GR(A)
11 , GR(A)

22 , GR(A)
12 , and GR(A)

21 .
Because these functions coincide up to the sign,3 the polarization operators (which
are quadratic in Green’s functions) coincide identically.

6.3.7 Transition to Energy-Integrated Propagators

Consider now an arbitrary component [e.g., the first one in the expression for
Πωω−ω′(p,p − p′)], which follows from (6.83), taking into account (6.94). In this
expression we can move from the integration over d3p1 to angle and energy integra-
tions, based on the relation

d3p1
(2π)3

≈ mpF
2π2

dΩp1

4π
dξ1. (6.101)

3 These functions coincide for nondiagonal components of ̂G-matrix and differ in sign for diagonal
ones. The reason is the sign difference between “bare” propagators of the normal state, mentioned
in Sect. 4.3.2.



6.3 Kinetic Equation for Phonons 217

Using the auxiliary δ-function: δ(ξ2 − ξ1 − q · p1/m), wemay integrate with respect
to the variable ξ2. This makes it possible to express the quantity

mpF
2π2

∫

dΩp1

4π

∫ ∫

dξ1dξ2 δ(ξ2 − ξ1 + q · p1/m)G1G2 (6.102)

in terms of energy-integrated functions, determined by a relation of the type

gεε−ω(p,k) =
∫ ∞

−∞
dξ Gεε−ω(p,p − k), (6.103)

since the δ-function in (6.102) restricts mainly the angular integration and hence it
may be factored out of the ξ-integral. Thus we have

∫

d3p1
(2π)3

G1G2 = mpF
2π2

1

2qvF

∫

dΩp1

4π
δ

(

q · p1
qp1

)

g1g2. (6.104)

To shorten the notations we introduce the operator

M̂ = g2

2i

mpF
2π2

1

2qvF

∫

dε1dω1d3k
(2π)5

dΩp1

4π
δ

(

q · p1
qp1

)

. (6.105)

and the convention

[A, B]+ = Aε1ε1−ω1(p1,k)Bω−ε1ω−ε1+ω1−ω′(p − p1,p′ − k) + BA, (6.106)

obtaining thus the final expressions for the Fourier components of the quantities,
which define the inequilibrium source in the phonon kinetic equation:

Πωω−ω′ = ̂M{[gAg]+ − [ f, f +]+ + [gR − gA, gR − gA]+
− [ f R − f A, f +R − f +A]+}, (6.107)

(Π R − Π A)ωω−ω′ = M{[g, gR − gA]+ + [gA, gR − gA]+
− [ f, f +R]+ − [ f +, f R − f A]+}. (6.108)

Before bringing the equation for phonons to the canonical form, we will obtain the
expression for the collision integral of electrons with phonons.

6.4 Inelastic Electron-Phonon Collisions

The self-energy functions for an electron-phonon interactionwere derived in Sect. 5.2
assuming an equilibrium phonon distribution. We will consider now the general case
when the phonon system is not in equilibrium.
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Fig. 6.3 Self-energy
function of the
electron-phonon interaction

6.4.1 Electron-Phonon Self-Energy Parts

In the representation of discrete imaginary frequencies [P = {ε,p}, K = {ω,k},
ω = 2mπT i , ε = (2n + 1)πT i, m and n are integers], we have:

̂Σ(P, P − K ) = T
∑

ε′

d3p′

(2π)3
D(P ′ − P, P ′ − P − K ′ + K )̂G(P ′, P ′ − K ′),

(6.109)
which corresponds to the diagram of Fig. 6.3. The functions ̂G (as well as D)

in (6.109) are assumed to be complete, including both external field and the self-
energy parts and polarization operators. Assuming that initially in the absence of an
external field the system is in equilibrium, we expand ̂G and D in a power series
over the field and consider the analytical structure of the N th order diagram as the
function of the complex variable ε at fixed imaginary frequencies ωl (ωl = 2mlπT i ,
∑

l ωl = ω). The manifold of cuts in the object under consideration consists of the
cuts of the internal G-function and theD-function. We denote this manifold by Ωn .
These cutsmay be considered as situated on the lines Im(ε − Ωn) = 0 in the complex
plane ε between the uppermost line Im(ε − ω) = 0 and the abscissa (as was assumed
earlier in accordance with the causality principle). The combinations of ωl , which
constitute Ωn , are defined by the distribution of the field vertices over the internal
lines of the diagram ̂Σ(N ). Let us assume that manifolds of cuts Im(ε′ − ω1i ) = 0
and Im(ε′ − ε − ω2k) = 0 correspond to ̂G and D-functions. Replacing in (6.109)
the summation over ε′ by contour integration and shifting as usual the integration
contour to the banks of the cuts, we find the resulting expression

̂Σ(N ) =
∑

i,k

∫

dz

4πi

{

tanh
z

2T
δi
(

̂Gz+ω1i

)

Dz−ε+ω1i

+ ̂Gz+ω2k+ε coth
z

2T
δk
(

Dz+ω2k

)

}

, (6.110)

where δi
(

Gz+ω1i

)

and δk
(

Dz+ω2k

)

are the jumps in Green’s functions on the corre-
sponding cuts (hereafter for brevity we omit second indices of Green’s functions).
Continuing now analytically in (6.110) over ε from the upper bank of the uppermost
cut (the lower bank of the lowermost cut), we obtain (after returning to real ωi,k ,
shifting the integration variable, summing over all the orders of perturbation theory,
and integrating over the energy ξ) the expression

̂Σ R(A) =
∫ ∞

−∞
dε′

4πi

{

ĝε′DA(R)
ε′−ε + Dε′−εĝ

R(A)
ε′

}

, (6.111)



6.4 Inelastic Electron-Phonon Collisions 219

in which the D-function is defined as

Dω =
∞
∑

N=0

N+1
∑

k=1

coth
ω − ωk

2T
δk
(

D(N )
)

. (6.112)

Introducing ̂Σεε−ω as

̂Σεε−ω =
∞
∑

N=0

N+1
∑

k=1

δk
(

̂ΣN
εε−ω

)

tanh
ε − Ωk

2T
, (6.113)

we obtain, starting from (6.110), the expressions for the matrix elements of ̂Σ , which
may be presented in the form (omitting for simplicity the second arguments)

Σ1 =
∫ ∞

−∞
dε′

4πi

∫

dΩp′

4π

[Dε′−εgε′ − (gR − gA)ε′(DR − DA)ε′−ε

]

, (6.114)

Σ R
1 − Σ A

1 = 2iγ =
∫ ∞

−∞
dε′

4πi

∫

dΩp′

4π

[Dε′−ε(g
R − gA)ε′ − gε′(R−DA)ε′−ε

]

,

(6.115)

Σ2 = Σ1
(

gR(A) → f R(A)
)

, δ = γ
(

gR(A) → f R(A)
)

. (6.116)

In the diagonal over frequencies (quasiclassical) approximation, the phonon prop-
agators may be expressed through the function Nωq :

Dε′−ε = (

1 + 2Nωp′−p

)

sign(ε′ − ε)(DR − DA)ε′−ε, (6.117)

DR(A)
ε′−ε = λ

2ω2
p′−p

ω2
p′−p −

(

ε′ − ε +
(−) iδ

)2 . (6.118)

6.4.2 Canonical Form for Electron-Phonon Collisions

Using the relations (6.114) to (6.118), (5.83) to (5.88), (6.7), (6.9), and (6.13), one
arrives at the following form of the electron-phonon collision integral:

J (e−ph)(n±ε) = πλ

4(upF )2

∫ ∞

0
ω2
qdωq

∫ ∞

|Δ|
dε′[p1δ(ε′ − ε − ωq)

+ p2δ(ε − ε′ − ωq) + p3δ(ε + ε′ − ωq)], (6.119)

where the factors p1−3 are
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p1 = (uεuε′ − vεvε′ ± 1)
[

nε′(1 − n±ε)(1 + Nωq ) − n±ε(1 − nε′)Nωq

]

+ (uεuε′ − vεvε′ ∓ 1)
[

n−ε′(1 − n±ε)(1 + Nωq ) − n±ε(1 − n−ε′)Nωq

]

, (6.120)

p2 = (uεuε′ − vεvε′ ± 1)
[

nε′(1 − n±ε)Nωq − n±ε(1 − nε′)(1 + Nωq )
]

+ (uεuε′ − vεvε′ ∓ 1)
[

n−ε′(1 − n±ε)Nωq − n±ε(1 − n−ε′)(1 + Nωq )
]

, (6.121)

p3 = (uεuε′ + vεvε′ ∓ 1)
[

(1 − n±ε)(1 − nε′)Nωq − n±εnε′(1 + Nωq )
]

+ (uεuε′ + vεvε′ ± 1)
[

(1 − n±ε)(1 − n′
−ε)Nωq − n±εn−ε′(1 + Nωq )

]

. (6.122)

Expression (6.119) describes, besides the energy relaxation of electrons, inelastic
collision processes that produce the relaxation of electron-hole population imbalance
in superconductors. The situation here is fully analogous to that discussed in Sect. 6.2
and requires no further comments.

Having ascertained that the function Nωq , introduced by (6.117), plays the role
of a phonon nonequilibrium distribution function, we will now obtain the kinetic
equation for this quantity. We start from expression (6.112) for Dωω−ω′ and (6.92)
for a polarization operator Πωω−ω′ . Separating the anomalous parts D(a) and Π(a),
one obtains

Dωω−ω′ = DR
ωω−ω′ coth

ω − ω′

2T
− DA

ωω−ω′ coth
ω

2T
+ D(a)

ωω−ω′ , (6.123)

Πωω−ω′ = Π R
ωω−ω′ coth

ω − ω′

2T
− Π A

ωω−ω′ coth
ω

2T
+ Π

(a)
ωω−ω′ . (6.124)

Regular functions in (6.123) and (6.124) (for example, the advanced function DA)

can be determined by the diagram expansion, in which all the functions (propagators
and polarization operators) are advanced ones. Separating in the diagram expansion
for D(a)

ωω−ω′ the left free line DR
ω , we have the equation

(D0
ω

)−1 D(a)
ωω−ω′ = {

Π RD(a) + Π(a)DA
}

ωω−ω′ , (6.125)

where the following notation is used

{AB}ωω−ω′ =
∫

dω1

2π
Aωω−ω1Bω−ω1ω−ω′ (6.126)

(an integration over internal momentum or a coordinate variable is also assumed).
Separating the right free line DA

ωω−ω′ in the same as above manner, subtracting the
result from (6.125), and using formulae (6.123) and (6.124) together with the expres-
sion for regular DR,A functions, one obtains the relation

[

(D0
ω

)−1 − (D0
ω−ω′

)−1
]

Dωω−ω′ = {

Π RD − ΠDA − DΠ A − DRΠ
}

ωω−ω′ ,

(6.127)
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which is the desired general form of the kinetic equation for phonons. Expres-
sions (6.75) and (6.77) follow from (6.127) after integration over the positive half-axis
ω in quasiclassical limit.

Note that at this stage the “bath” temperature T , which enters into imaginary fre-
quencyvariables of initial equations, is eliminated both from (6.127) and from (6.114)
to (6.116). The situation here is fully equivalent to that obtained by the Keldysh tech-
nique. In the technique of analytical continuation, the bath temperature plays a role
of equilibrium density matrix in Keldysh’s method—this matrix is also eliminated
from the final expressions.

6.4.3 Canonical Form for Phonon-Electron Collisions

The canonical form of the phonon-electron collision integral follows from (6.75),
(6.77), (6.107), (6.108), and (5.83) to (5.88):

I
(

Nωq

) = πλ

8

ωD

εF

∫ ∞

Δ

∫ ∞

Δ

dεdε′ {δ(ε + ε′ − ωq)s1 + 2δ(ε − ε′ − ωq)s2
}

,

(6.128)

s1 = (uεuε′ + vεvε′ + 1)
{[

(Nωq + 1)nεn−ε′ − Nωq (1 − nε)(1 − n−ε′)
]

+ [

(Nωq + 1)n−εnε′ − Nωq (1 − n−ε)(1 − nε′)
]}

+ (uεuε′ + vεvε′ − 1)
{[

(Nωq + 1)nεnε′ − Nωq (1 − nε)(1 − nε′)
]

+ [

(Nωq + 1)n−εnε′ − Nωq (1 − n−ε)(1 − n−ε′)
]}

, (6.129)

s2 = (uεuε′ − vεvε′ − 1)
{[

(Nωq + 1)nε(1 − n−ε′) − Nωq (1 − nε)n−ε′
]

+ [

(Nωq + 1)n−ε(1 − nε′) − Nωq (1 − n−ε)nε′
]}

+ (uεuε′ − vεvε′ + 1)
{[

(Nωq + 1)nε(1 − nε′) − Nωq (1 − nε)nε′
]

+ [

(Nωq + 1)n−ε(1 − nε′) − Nωq (1 − n−ε)n−ε′)
]}

. (6.130)

6.5 Seminar 3. Cooling by Heating

The effects which we will consider now have no direct relationship to TDGL deriva-
tion. However, they are typical for nonequilibrium superconductivity. Learning about
them will facilitate better understanding of the apparatus in use for our general task.

6.5.1 Gap Enhancement

Let us consider a stationary state caused by the action of a high-frequency electro-
magnetic field on a thin superconducting film.Our direct interest is in determining the
distribution function of electrons, which we will assume to be symmetric: nε = n−ε.
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This assumption is justified if the frequency of the field is small: ω � 2Δ (we will
assume Δ real). The stationary solution for nε can then be found from the kinetic
equation

0 = J (e−phonon)(nε) + J (e−photon)(nε). (6.131)

Here the first collision integral, of electrons with phonons, is given by (6.119)–
(6.122), while J (e−photon)(nε) must be derived. For that, let us first simplify
J (e−phonon)(nε) using the condition nε = n−ε:

J (e−phonon)(nε) = πλ

2(upF )2

∫ ∞

0
ω2
qdωq

∫ ∞

|Δ|
dε′ εε′

√
ε2 − Δ2

√
ε′2 − Δ2

{(

1 − Δ2

εε′

)

[

nε′(1 − nε)(1 + Nωq ) − nε(1 − nε′)Nωq

]

δ(ε′ − ε − ωq)

+
(

1 − Δ2

εε′

)

[

nε′(1 − nε)Nωq − nε(1 − nε′)(1 + Nωq )
]

δ(ε − ε′ − ωq)

+
(

1 + Δ2

εε′

)

[

(1 − nε)(1 − nε′)Nωq − nεnε′(1 + Nωq )
]

δ(ε + ε′ − ωq)

}

(6.132)

In this equation, Nωq is the phonon distribution function, which we will assume to
be an equilibrium one, at the phonon heatbath temperature T :

Nωq ≈ N (0)
ωq

= 1

e
ωq
T − 1

(6.133)

This assumptionmeans that the phonon heatbathmodel is valid. Practically, a phonon
heatbath can be reached in thin enough films. The collision integral of electrons with
photons will have the same structure as (6.132) if we describe photons in Fock’s
representation where photons are represented by their occupation numbers N p

ω . The
differencewill be in coherence factors. The coherence factors

(

1 ± Δ2/εε′) in (6.132)
correspond to a longitudinal acoustic phonon field. The photon field is transverse,
so the coherence factors will have the opposite internal sign:

(

1 ∓ Δ2/εε′), see [9]
for details. Also the interaction constant λ should be replaced by the fine structure
constant e2/hc. The overall coefficient will be different from that of (6.132). We will
call it Q0. Then

J (e−photon)(nε) = Q0

∫ ∞
0

ω2dω
∫ ∞
|Δ|

dε′ εε′
√

ε2 − Δ2
√

ε′2 − Δ2
{(

1 + Δ2

εε′

)

[

nε′ (1 − nε)(1 + N p
ω ) − nε(1 − nε′ )N p

ω

]

δ(ε′ − ε − ω)

+
(

1 + Δ2

εε′

)

[

nε′(1 − nε)N
p
ω − nε(1 − nε′)(1 + N p

ω )
]

δ(ε − ε′ − ω)
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+
(

1 − Δ2

εε′

)

[

(1 − nε)(1 − nε′ )N p
ω − nεnε′ (1 + N p

ω )
]

δ(ε + ε′ − ω)

}

. (6.134)

We are interested in a classical limit of this quantum expression, which is the case
when the occupation numbers are large: N p

ω � 1. Then (6.134) can be transformed
into

J (e−photon)(nε) = Q0

∫ ∞

0
N p

ω ω2dω
∫ ∞

|Δ|
dε′ εε′

√
ε2 − Δ2

√
ε′2 − Δ2

{(

1 + Δ2

εε′

)

(nε′ − nε) δ(ε′ − ε − ω)

+
(

1 + Δ2

εε′

)

(nε′ − nε) δ(ε − ε′ − ω)

+
(

1 − Δ2

εε′

)

(1 − nε − nε′)δ(ε + ε′ − ω)

}

. (6.135)

We will next assume that the electromagnetic field is monochromatic: N p
ω = N 0

× δ(ω − ω0). That will allow immediate integration in (6.135), so that it will acquire
the form

J (e−photon)(nε) = Q0

∫ ∞

|Δ|
dε′ εε′

√
ε2 − Δ2

√
ε′2 − Δ2

{(

1 + Δ2

εε′

)

(nε′ − nε) δ(ε′ − ε − ω0)

+
(

1 + Δ2

εε′

)

(nε′ − nε) δ(ε − ε′ − ω0)

+
(

1 − Δ2

εε′

)

(1 − nε − nε′)δ(ε + ε′ − ω0)

}

. (6.136)

Here, the factor Q0 contains both the occupation number of photons, and their density
of states∝ ω2

0; it is proportional to the intensity of the classical electromagnetic field
∣

∣Eω0

∣

∣

2
. Using the remnant δ-functions,we can nowperform the integration in (6.136),

and obtain:

J (e−photon)(nε) = Q0
ε√

ε2 − Δ2
θ(ε − Δ)

{

ε + ω0
√

(ε + ω0)2 − Δ2

(

1 + Δ2

ε(ε + ω0)

)

(

nε+ω0 − nε

)

+ ε − ω0
√

(ε − ω0)2 − Δ2

(

1 + Δ2

ε(ε − ω0)

)

(

nε−ω0 − nε

)

θ(ε − ω0 − Δ)
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+ ω0 − ε
√

(ω0 − ε)2 − Δ2

(

1 − Δ2

ε(ω0 − ε)

)

(1 − nε − nω0−ε)θ(ω0 − ε − Δ)

}

,

(6.137)

or, after simple transformations,

J (e−photon)(nε) = Q0

⎧

⎨

⎩

−
[

ε(ε + ω0) + Δ2
]

θ(ε − Δ)
√

[

(ε + ω0)2 − Δ2
]

(ε2 − Δ2)

(

nε − nε+ω0

)

+
[

(ε − ω0)ε + Δ2
]

θ(ε − ω0 − Δ)
√

[

(ε − ω0)2 − Δ2
]

(ε2 − Δ2)

(

nε−ω0 − nε

)

+
[

ε (ω0 − ε) − Δ2
]

θ(ω0 − ε − Δ)θ(ε − Δ)
√

(ω0 − ε)2 − Δ2
(1 − nε − nω0−ε)

}

. (6.138)

This so-called “Eliashberg field term” with Q0 = 2D(e/c)2Aω0 A−ω0 [2] is the driv-
ing term in (6.131). Here D is the diffusion coefficient D = v2

Fτimp/3, where τimp

is the scattering time of electrons on impurities.4 It is responsible for breaking the
Cooper pairs and generating single-electron quasiparticles from the condensate (in
case of ω0 > 2Δ) as well as the nonequilibrium redistribution of existing quasiparti-
cles. In contrast, the electron-phonon term in (6.131) is responsible for the relaxation
of the excited quasiparticles towards the thermal equilibrium described by the func-
tion n0ε = 1/

[

exp (ε/T ) + 1
]

. In the relaxation-time approximation this term can be
written as

J (e−phonon)(nε) ≈ −2γ
ε√

ε2 − Δ2
δnε (6.139)

where γ is the damping coefficient proportional to the average number of phonons
and electron-phonon coupling: it has the same value as in the normal-metal state:
∼ max

(

T 3/ω2
D, T 2/εF

) ; and δnε = nε − n0ε . We will analyze the action of (6.138)
for ω0 � 2Δ, so that only the first two terms in braces of (6.138) are non-zero:

J (e−photon)(nε) = Q0
[

Uεε−ω0(nε−ω0 − nε) −Uε+ω0ε(nε − nε+ω0)
]

(6.140)

where we denoted

Uεε−ω0 =
[

(ε − ω0)ε + Δ2
]

θ(ε − ω0 − Δ)
√

[

(ε − ω0)2 − Δ2
]

(ε2 − Δ2)

. (6.141)

4We should mention that in absence of impurities, or, in a more general sense, of scattering centers,
free electrons cannot absorb single photons.
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Fig. 6.4 Nonequilibrium
deviation of electron
quasiparticles δnε.
Parameters are the same as in
Fig. 6.5 below

The dimensionless ratio Q0/γ which characterizes the level on external electro-
magnetic pumping, may be both smaller and larger than unity. In case Q0/γ � 1 we
can consider the linearized solution of (6.131):

δnε = Q0

2γ

[

Uεε−ω0(n
0
ε−ω0

− n0ε) −Uε+ω0ε(n
0
ε − n0ε+ω0

)
]

√
ε − Δ

ε
(6.142)

This solution is plotted in Fig. 6.4.
To analyze it analytically it is convenient to perform a series expansion in (6.142)

and represent it as

δnε = Q0

2γ

{

−ω0
∂n0ε
∂ε

(

Uεε−ω0 −Uε+ω0ε

)

+ ω2
0

2

∂2n0ε
∂ε2

(

Uεε−ω0 +Uε+ω0ε

)

}

, (6.143)

Both the first and second derivatives of the electron distribution function are changing
in the range of ε of the order of T . Meanwhile, the first term in the braces of (6.143)
is nonzero in the range ε ∼ Δ. If T � Tc, then Δ � T, and in the vicinity of the gap
edge, the solution (6.143) can be approximated by

δnε = Q0

2γ

[ ω0

4T
cosh−2

( ε

2T

)

(

Uεε−ω0 −Uε+ω0ε

)

]

√
ε2 − Δ2

ε
. (6.144)

This solution (also plotted in Fig. 6.4) should be substituted into the self-consistency
equation

1 = λ

∫ ωD

Δ

dε√
ε2 − Δ2

(1 − 2nε). (6.145)
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Its equilibrium solution at nε = n0ε will be denoted as Δ0. At δnε = nε − n0ε �= 0,
one can transform (6.145) into

δΔ = −T 2

Δ

(

8π2

7ζ(3)

)∫ ωD

Δ

dε√
ε2 − Δ2

δnε. (6.146)

Substituting (6.144) into (6.146), we find

δΔ = a0T

(

Q0ω
2
0

2γΔ2

)

, (6.147)

where

a0 = 8π2

7ζ(3)
ln

8Δ

ω0
∼ 1. (6.148)

Since Q0 ≤ γ for the application of our approach, and also ω2
0 � Δ2, we see that

δΔ � T, as one should expect. However, the most important feature of solution
(6.147) is its positive sign: the energy gap, and superconductivity itself are enhanced
by the action of the (weak) electromagnetic field.

Indeed, the enhanced values of the critical currents were revealed by initial exper-
imental measurements [10, 11] performed on microbridges and attempts were made
to explain them by involving spatial inhomogeneities. It was not until 1970 that
Eliashberg [12] recognized that this enhancement is caused by the effective cool-
ing of electrons by high frequency electromagnetic fields. This specific mechanism
which we described was further elaborated for cases when the “heating” energy was
supplied by electromagnetic [13–18] and acoustic [19] fields, as well as the tunneling
process [20–23]. Experiments [19, 24–30] confirmed these predictions. Interestingly,
the “gap enhancement” effect should be accompanied by a “phonon deficit effect”
[31], which will constitute the second half of our Seminar.

6.5.2 Negative Phonon Fluxes

Let us now calculate the phonon fluxes, which correspond to the same physical
“phonon heat-bath” model in which the electronic distribution has been derived
above. As we already mentioned, in the nonequilibrium “dressed” phonon Green’s
function, the polarization operators will differ from the “bare” equilibrium values,
and contain information on the phonon fluxes, which leave the superconductor.
After transferring to representation, that information is encoded now in the col-
lision integrals (6.128)–(6.130). Let us rewrite these equations for the symmetric
case: nε = n−ε
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I
(

Nωq

) = πλ

2

ωD

εF

∫ ∞

Δ

∫ ∞

Δ

dεdε′ {δ(ε + ε′ − ωq)s1 + 2δ(ε − ε′ − ωq)s2
}

,

(6.149)

s1 = (uεuε′ + vεvε′)
[

(Nωq + 1)nεnε′ − Nωq (1 − nε)(1 − nε′)
]

s2 = (uεuε′ − vεvε′)
[

(Nωq + 1)nε(1 − nε′) − Nωq (1 − nε)n−ε′
]

To find the phonon fluxes leaving the superconductor in conditions of free phonon
exchange with the external world (thermostat) we substitute into (6.149) the equi-
librium phonon distribution function (6.133), and the function (6.142) for nε. As we

will see, the collision integral then is not zero: I
(

N (0)
ωq

)

�= 0. Since the canonical

collision integrals define influx and outflux of the particles per unit time,

dNωq

dt
= I (N (0)

ωq
) = ∂Nωq

∂t
+ ∂r

∂t

∂Nωq

∂r
�= 0. (6.150)

In a stationary regime ∂Nωq/∂t = 0, and v · ∇Nωq corresponds to the phonon flux
from the superconducting volume. We are interested in the collisional integral of
these phonons, I (N (0)

ωq
), which describes the outcome of phonons leaving the super-

conductor at a constant rate. As soon as it is obtained, the number of phonons leaving
the superconductor per unit time can be computed as the integral of the distribution
function times the density of states over their frequencies:

N =
∫ ∞

0
dωq

[

ω2
q I (N

(0)
ωq

)
]

. (6.151)

Alternatively, one can find the energy outflux:

E =
∫ ∞

0
dωq

[

ω3
q I (N

(0)
ωq

)
]

. (6.152)

Thus, the quantity of primary interest is I (N (0)
ωq

). To compute this function, it is
convenient to integrate over one of the variables using δ−functions. We will then
have:

I
(

N (0)
ωq

)

= πλ

2

ωD

εF
{θ(ωq − 2Δ)

∫ ωq−Δ

Δ

dε
ε(ωq − ε)√

ε2 − Δ2
√

(ωq − ε)2 − Δ2

×
[

1 + Δ2

ε(ωq − ε)

]

[(N (0)
ωq

+ 1)nεnωq−ε − N (0)
ωq

(1 − nε)(1 − nωq−ε)]

+2
∫ ∞

Δ

dε′
(

ε′ + ωq
)

ε′
√

(

ε′ + ωq
)2 − Δ2

√
ε′2 − Δ2

[

1 − Δ2

(

ε′ + ωq
)

ε′

]

×[(N (0)
ωq

+ 1)n(ε′+ωq)(1 − nε′) − N (0)
ωq

(1 − n(ε′+ωq))nε′ ]} (6.153)
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Fig. 6.5 MathCAD code with a plot of the result of numeric computation of (6.153)
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This expression where the function nε is given by (6.142) can be easily evaluated
numerically. It also can be evaluated analytically using the linearized approximation
(6.144) for nε. We will describe the results of the numeric approach. The readers
interested in the analytical approach are referred to [32]. The numerical computa-
tion of (6.153) is easy to perform by any numerical solver. We used MathCAD, and
the code and results are shown in Fig. 6.5. As can be noticed, the phonon source
is becoming negative in a narrow range above the gap-edge 2Δ. Negative phonon
source means negative phonon fluxes in the outlined range of phonon frequencies:
2Δ ≤ ωq ≤ 2Δ + ω0. This becomes possible because of the violation of detailed
equilibrium by the external field action: absorbing photons are enforcing the drift
of existing thermal excitations away from the Fermi surface/gap edge. As a result,
phonons with energy slightly above the threshold value will break the Cooper pairs
more effectively than the reciprocal process of recuperation of broken Cooper pairs
takes place with the emission of phonons at the same frequency. Thus, the number
of phonons at the frequency range 2Δ ≤ ωq ≤ 2Δ + ω0 becomes less than in equi-
librium, rising the influx of external phonons influx to eliminate the phonon deficit.
This “phonon deficit effect” was proposed for cryogenic cooling. If one will compute
the total energy balance of the phonon exchange with the thermostat, it is positive, as
should be expected from the energy conservation law. However, by phonon filtering
one can prohibit propagation of higher-energy phonons, thus making the net cooling
effect via this mechanism potentially achievable in more complex systems. Details
on the suggested design of the “phonon deficit”-based coolers could be found in [33].
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Chapter 7
Time-Dependent Ginzburg–Landau
(TDGL) Equations

The Initial microscopic derivation of TDGL equations was successfully performed
by Eliashberg and Gor’kov. However, their theory, elucidated in Chap.4 corresponds
to the so-called gapless regime, where depairing factors (like magnetic impurities)
squeeze the gap to zero, while leaving the Cooper condensate alive. Its quantum
behavior is governed by this set of “gapless” TDGL equations. However, later devel-
opments demonstrated that as soon as the electron-phonon interaction smears, to a
certain extent, the BCS-peculiarity in the electronic density of states (which occurs
at a local equilibrium between Cooper pairs, electrons and phonons), the kinetic
equations and the self-consistency equation converge into a closed system of TDGL
equations, closely resembling the gapless TDGL equations. Using the tools devel-
oped in previous chapters, we demonstrate in this Chapter how the set of TDGL
equations in the “local-equilibrium approximation” comes out. An interesting dif-
ference between gapless and local-equilibrium approximations is the presence of
interference current in the latter, more general, case. Another important feature of
finite-gap TDGL equations is related to the fact that the electron-phonon system is
no longer decoupled as it was in the gapless case. This makes the class of physical
systems which can be described by the resultant TDGL equations much more broad.

7.1 Order Parameter, Electron Excitations, and Phonons

The external fields acting on a superconductor may lead to nonstationary phenomena
that have to be described by dynamic equations. However, as was shown in the previ-
ous chapters, the set of nonstationary equations in the general case is very complicated
and in addition to the equations for the main parameters, characterizing supercon-
ductivity (such as |Δ|,μ,Q), it includes generalized kinetic equations for distribution
functions (see Sect. 5.3). In the vicinity of the critical temperature (in analogywith the
stationary case, Sect. 3.3), one can simplify the general time-dependent equations by

© Springer Nature Switzerland AG 2020
A. Gulian, Shortcut to Superconductivity,
https://doi.org/10.1007/978-3-030-23486-7_7

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23486-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-23486-7_7


232 7 Time-Dependent Ginzburg–Landau (TDGL) Equations

considering the gapless case (Sect. 4.2). For finite gap superconductors, the attempt
to simplify the general scheme encounters serious difficulties connected with the
non-local kernels of the integral equations, governing the order parameter. To derive
the equations for such superconductors, one needs to account simultaneously for the
condensate, the excitations, and the interaction between them. The success achieved
in this direction [1–6] is due to progress in the kinetic description of single-particle
excitations in nonequilibrium superconductors (see the review articles [7–10]). The
dynamic equations for the order parameterwere obtained in theirmost complete form
byWatts-Tobin et al. [6]. But in some respects the theory still had some deficiencies,
which we have tried to fix up [11].

In many situations, the possible deviation of the phonon system from equilibrium
should be taken into account. The role of phonons in the problem considered is
twofold. First, the nonequilibrium in the phonon system may be essential for the
dynamics of the order parameter. Second, the time variations of the order parameter
modulus might lead to excess phonon generation and to phonon exchange between
a superconductor and its environment.

7.1.1 Basic Kinetic Equations

We will use here the generalized kinetic equations [12, 13] for energy-integrated
Green-Gor’kov functions. As was shown in Chap.5, these equations are still valid
also in the case where the phonon system is not at equilibrium. In a real-time approx-
imation,1 the equations may be written in a very compact form:

iv·∂ğ

∂r
+ i σ̆z

∂ğ

∂t1
+ i

∂ğ

∂t2
σ̆z = H̆(t1)ğ − ğ H̆(t2)

+
∫ ∞

−∞
dt3
{
Σ̆(t1t3)ğ(t3t2) − ğ(t1t3)Σ̆(t3t2)

}
. (7.1)

Here

ğ = ğ(t1, t2, r,pF ), ğ =
(

ĝR ĝ
0̂ ĝA

)
, ĝ(R,A) =

(
g f

− f + g

)(R,A)

, (7.2)

Σ̆ = Σ̆(t1, t2, r,pF ), Σ̆ =
(

Σ̂ R Σ̂

0̂ Σ̂ A

)
, Σ̂(R,A) =

(
Σ1 Σ2

−Σ+
2 Σ1

)(R,A)

, (7.3)

H̆1(t) = vA(t)σ̆z − 1̆ · ϕ(t), 1̆ =
(
1̂ 0̂
0̂ 1̂

)
, σ̆z =

(
σ̂z 0̂
0̂ σ̂z

)
, (7.4)

1In (7.1) the integration over the intrinsic coordinate (or, depending on representation, over the
momentum variable) is assumed.
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where pF = mvF = mv is the Fermi momentum, and r is the quasiclassical coordi-
nate, the Fourier-transform of which is denoted by k. In (7.1) (A,ϕ) are the electro-
magnetic field potentials (e = � = c = 1).

7.1.2 Normalization Condition

Equation (7.1) must be supplemented by the normalization condition, which allows
us to select the necessary solution of homogeneous (relative to the ğ-functions)
equations (7.1):

∫ ∞

−∞
dt3 ğ(t1, t3, r,pF )ğ(t3, t2, r,pF ) = −π21̆ · δ(t1 − t2). (7.5)

We wrote this condition in Sect. 5.3 (see 5.68). It may be proven in the following
way (see, e.g., [5]). Equation (7.1) may be presented in the form

[
Z̆ ∗ ğ

]
−

=
[
Z̆ ∗ ğ − ğ ∗ Z̆

]
= 0, (7.6)

where the operator Z̆ , as follows from (7.6) and (7.1), is

Z̆ = i σ̆z
∂

∂t1
δ(t1 − t2) − H̆(t1) + 1̆iv· ∂

∂r
− Σ̆. (7.7)

Since the convolution ∗ is commutative [which follows directly from its definition in
(5.70)], it is easy to see that the condition

ğ ∗ ğ = const · 1̆ (7.8)

is compatible with the equation

[
Z̆∗, ğ ∗ ğ

]
−

= 0, (7.9)

which follows from (7.6). The value of a constant in (7.8) can be obtained by con-
sidering (7.8) either in a superconducting region that is in an equilibrium state, or
in a normal area, where |Δ| = 0. The latter option is simpler, and it is possible to
calculate the constant immediately. Larkin and Ovchinnikov [13] introduced the nor-
malization in which const = 1. Because a particular value of this constant is of no
importance, we will retain the normalization const = −π2, used earlier.
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7.1.3 Definition of Order Parameter

We will now use the results obtained in Chaps. 5 and 6. The self-energy function Σ

is an additive quantity that contains certain terms corresponding to the interaction of
electrons with impurities, with phonons, with each other, and so on. The nonequi-
librium order parameter Δ in a weak-coupling limit λ � 1 (λ is the dimensionless
electron-phonon coupling parameter) is defined by the formula

Δ = 1

2

(
Σ R

2 + Σ A
2

)(e−ph)
, (7.10)

where the self-energy function representing the interaction of electrons with phonons
is (see Sect. 6.4):

(
Σ

R(A)
2

)(e−ph) =
∫ ∞

−∞
dε′

4πi

∫
dΩp′

4π

{
fε′ DA(R)

ε′−ε + Dε′−ε f
R(A)
ε′

}
. (7.11)

The phonon propagator is expressed in terms of the nonequilibrium phonon distri-
bution function Nωq by the relations:

Dε′−ε = (
1 + 2Nωp−p′

)
sign(ε′ − ε)

(
DR − DA

)
ε′−ε

, (7.12)

DR(A)
ε′−ε = λ

2ω2
p′−p

ω2
p′−p − (ε′ − ε +

(−)
iδ)2

. (7.13)

When phonons are in equilibrium, the contribution of the second term in (7.11) is
small by the parameter (T/ωD)2, so to find Δ one can use the simplified equation
that follows from (7.10) to (7.13):

Δω(k) = λ

∫ ωD

−ωD

dε

4πi

∫
dΩp

4π
fεε−ω(p,k). (7.14)

If the phonon distribution function Nωq is localized at energies ωq � ωD and has no
singularities as a function of a real argument ωq (this will be assumed further), (7.14)
may be applied to the situations with nonequilibrium phonons.

7.1.4 Nondiagonal Collision Channel

To obtain the propagator fεε−ω(p,k), one can use the equation that follows from (7.1)
for the nondiagonal “Keldysh” component. Separating in (7.1) the virtual processes
(see Sect. 6.1), which lead to (7.14), and ignoring the renormalization terms, one
finds the expression for the Î -matrix (6.2):
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Î =
(

(− f Δ∗ + Δ f +) + K11 (gΔ − Δg) + K12

(−gΔ∗ − Δ∗g) + K21 (− f +Δ − Δ∗ f ) + K22

)
, (7.15)

where the coefficients Ki j are connected with the self-energy functions [the defini-
tion of these quantities follows from comparison of (7.15) with (6.2)]. Taking into
account the nondiagonal channel in the kinetic equation for the electron-hole dis-
tribution function nε [14, 15], we get the canonical form of the collision integral.
We recall here that the general expression for the ĝ-function, which satisfies the nor-
malization condition (7.8), was discussed in Sect. 5.3, where the functions f1 and f2
where introduced [see (5.72)]. These functions connect Green’s functions with the
distribution functions of electron-like (nε) and hole-like (n−ε) excitations.

7.1.5 Spectral Functions R1, R2, N1, and N2

According to (5.77), (5.79), and (5.80), the functions f1 and f2 (as well as N1, N 1)
are of general type, i.e., they have definite ε-parity only in absence of an external
electromagnetic field. In the latter case they are equal to

N1 = −N 1 = Re

(
ε + iγ√

(ε + iγ)2 − |Δ|2
)

, (7.16)

f1 = signε (1 − nε − n−ε), (7.17)

f2 = − signε

N1
(nε − n−ε), (7.18)

where γ is the energy damping of electrons. Introducing also the functions

R1 = Im

(
ε + iγ√

(ε + iγ)2 − |Δ|2
)

, (7.19)

R2 = Re

(
|Δ|√

(ε + iγ)2 − |Δ|2
)

, (7.20)

N2 = − Im

(
|Δ|√

(ε + iγ)2 − |Δ|2
)

, (7.21)

we can express the ĝ-function as
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(
g f

− f + g

)
= 2πi

{(
N1 R2eiθ

−R2e−iθ N 1

)
f1 +

(
N1 i N2eiθ

−i N2e−iθ −N 1

)
f2

+1

2

[
∂ f1
∂ε

∂

∂t

(
R1 −N2eiθ

N2e−iθ −R1

)
− ∂ f1

∂t

∂

∂ε

(
R1 −N2eiθ

N2e−iθ −R1

)]}
. (7.22)

In expression (7.22), only the lowest convolution corrections are kept (the contribu-
tion from the f2-function is negligible).

7.1.6 Gap-Control Term

Separating in (7.14) the equilibrium part and making standard calculations (see
Sect. 3.4) we get an equation for the order parameter near Tc:

− π

8Tc

[
∂

∂t
− D(∇ − 2iA)2

]
Δ +

[
Tc − T

Tc
− 7ζ(3)

8(πTc)2
|Δ|2

]
Δ + κ(t) = 0,

(7.23)
where D = lvF/3 is the diffusion constant and κ(t) is the so-called “gap-control”
term:

κ(r,t) =
∫ ∞

−∞
dε

4πi

{[ f1(ε) − f 01 (ε)]( f R − f A)ε − f2(ε)( f
R + f A)ε

}
, (7.24)

where f 01 (ε) = tanh(ε/2T ). The nonequilibrium functions f1 and f2 should be found
from the kinetic equation (7.1), where one can assume the phonon system to be
initially in equilibrium. Note that the terms generated by N1,ε make insignificant
contributions to (7.23) because the function N1,ε is non-zero at ε ∼ |Δ|. Only the
values of ε ∼ T play a major role in the integrand of (7.24). For this reason, one can
neglect the terms proportional to N1,ε/N1 in (5.77), which then take the form

f1 → f1 + 1

2
χ̇ f2,ε + 1

8
χ̇2 f1,εε, f2 → f2 + 1

2
χ̇ f1,ε + 1

8
χ̇2 f2,εε . (7.25)

From the kinetic equations for f1 and f2 in the absence of the potential ϕ in the local
equilibrium approximation, it follows that

f1 = f 01 − f 01,ε
R2

N1
τε

∂|Δ|
∂t

, f2 = N2τε|Δ|
N1 + 2τε|Δ|N2

θ̇ f 01,ε . (7.26)

Wewill briefly follow the derivation procedure of these relations to clarify the essence
of local equilibrium approximation.
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7.1.7 Local-Equilibrium Approximation

If the characteristic frequencies and gradients of the electron system perturbation
obey the relations2

(Dk2,ω) � γ, (7.27)

where γ is the damping caused by inelastic processes in the electron system, then in
the kinetic equations [(7.1) and (5.63)] that define the functions f1 and f2, one can
neglect the left hand sides and the terms connected with the Hamiltonian Ĥ1. This
means that the functions f1 and f2 do not depend explicitly on the space coordinate
r and time t . Only implicit dependence on r and t remains through the parameter
Δ(r, t), which enters into (7.1). This means that owing to effective inelastic colli-
sions, the behavior of single-particle electron excitations in an external field is fully
determined by the evolution of the order parameter that governs the formation of the
distribution function nε (and does not depend, e.g., on the diffusion mechanism). In
other words, local equilibrium between the system of single-particle excitations and
the pair-condensate is taking place.

7.1.8 Determination of f1-Function

In this approximation from the diagonal components of (5.63), the equation for the
function f1 follows:

0 = {− f Δ∗ + Δ f +}
εε−ω

+ {− f +Δ + Δ∗ f
}

εε−ω
+ K11 + K22

≈ −Δω f +
,ε − Δ∗ω f,ε + K11 + K22 (7.28)

[the series expansion of functions fε−ω and f +
ε−ω in (7.28) may be restricted to the

first terms owing to the quasiclassical conditions]. Inserting (7.22) into (7.28) and
omitting convolution corrections, one finds

0 = f 01,εR2
∂|Δ|
∂t

+ 1

4π
(K11 + K22), (7.29)

where the transformation rule (iω � ∂/∂t) is used and the inequalities

( f1 − f 01 ),ε � f 01,ε, f2,ε � f 01,ε . (7.30)

have been taken into account. The functions K11 + K22 are expressed through the
collision operators J (n±ε), obtained in Chap.6:

2We assume also the quasiclassical character of external fields A(r, t) and ϕ(r, t).
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K11 + K22 = 4πsignε
[
J (nε) + J (n−ε)

]
. (7.31)

Furthermore, we will assume that the electron-phonon collisions provide the most
effective channel of inelastic relaxation and represent J (n±ε) ≈ J (n±ε)

(e−ph) in the
form

J (n±ε)
(e−ph) = πλ

4(upF )2

∫ ∞

0
ω2
qdωq

∫ ∞

|Δ|
dε′{p1(n±ε)δ(ε

′ − ε − ω)

+ p2(n±ε)δ(ε − ε′ − ω) + p3(n±ε)δ(ε + ε′ − ω)}, (7.32)

where

p1(n±ε) = (uεuε′ − vεvε′ ± 1)
[
nε′(1 − n±ε)(1 + Nωq ) − n±ε(1 − nε′)Nωq

]
+ (uεuε′ − vεvε′ ∓ 1)

[
n−ε′(1 − n±ε)(1 + Nωq ) − n±ε(1 − n−ε′)Nωq

]
, (7.33)

p2(n±ε) = p1(Nωq ⇔ Nωq + 1), (7.34)

p3(n±ε) = (uεuε′ + vεvε′ ∓ 1)
[
(1 − n±ε)(1 − nε′)Nωq − n±εnε′(1 + Nωq )

]
+ (uεuε′ + vεvε′ ± 1)

[
(1 − n±ε)(1 − n−ε′)Nωq − n±εn−ε′(1 + Nωq )

]
. (7.35)

In (7.33)–(7.35), the function Nωq is the distribution function of phonons, which as
yet is assumed to be an equilibrium one:

Nωq = N 0
ωq

= exp
[
(ωq/T ) − 1

]−1
. (7.36)

In the vicinity of critical temperature, where T � |Δ|, for the collision integral
the relaxation-time approximation may be used3

J (n±ε)
(e−ph) ≈ −2γuε(n±ε − n0ε), (7.37)

where

n0ε = exp

( |ε|
T

+ 1

)−1

, γ = (2τ−1
ε ) ≈ 7πλζ(3)T 3

(upF )2
. (7.38)

Using (7.31), (7.32), and (7.37), we find from (7.29) the first expression in (7.26).

3This opportunity emerges because the perturbation of the distribution function nε is localized in
the energy range smaller than the temperature diffusion scale. Due to this, the term, containing
nonequilibrium distribution function nε in the integral form, is smaller than the “free” term. We
stress this circumstance, because it remains valid also in derivation of the function f2(see below).
However, sometimes the τ -approximation is criticized and, moreover, negated (see, e.g., [6]) as
violating a condition, related to the particle number conservation. In our calculation scheme the
missing term automatically appears from the gauge-transformation rules for the functions f1 and
f2, which were established in Sect. 5.3.
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7.1.9 Determination of f2-Function

Let us now determine the function f2. The nondiagonal elements of (5.63) and (7.15)
are essential, because the first term (proportional to f1) in Green’s functions f and
f + (7.22) does not contribute to the equation

0 = −2 fεΔ
∗ − 2Δ f +

ε − Δω f +
,ε + Δ∗ω f,ε + K11 − K22. (7.39)

Accounting for this, one finds

0 = 2|Δ|N2

(
f2 − 1

2
θ̇ f 01,ε

)
+ 1

4π

(
K11 − K22 +

[
−Δ∗

ε
K12 + Δ

ε
K21

])
.

(7.40)
The same approximations are used here as in deriving (7.28). Using the relation

K11 − K22 −
[
Δ∗

ε
K12 + Δ

ε
K21

]
= 4π

N1
signε {J (nε) − J (n−ε)} , (7.41)

one obtains from (7.37), (7.40), and (7.41) the second expression in (7.26).
The potential ϕ may be restored now in (7.26) with the help of (7.25), where

one should make χ̇/2 = −ϕ. Omitting the term proportional to θ̇ϕ [its contribution
to (7.26) is small], one finds

f1 = f 01 − f 01,ε
R2

N1
τε

∂|Δ|
∂t

+ ϕ2

2
f 01,εε. (7.42)

As for the function f2, the term quadratic in ϕ may be omitted—it is proportional to
f 01,εεε. The linear term, which takes into account the transformation rule for θ, gives
the equation

f2 = −ϕN1 f 01,ε − τε|Δ|N2θ̇ f 01,ε
N1 + 2τε|Δ|N2

. (7.43)

7.1.10 Order Parameter Equation

Utilizing (7.42) and (7.43), the equation for an order parameter [(7.23) and (7.24)]
takes the final form

− π

8Tc

1√
1 + (2τε|Δ|)2

[
∂

∂t
+ 2iϕ + 2τ2ε

∂|Δ|2
∂t

]
Δ

+ π

8Tc

[
D(∇ − 2iA)2

]
Δ +

[
Tc − T

Tc
− 7ζ(3)

(|Δ|2 + 2μ2)

8(πTc)2
+ P(|Δ|)

]
Δ = 0. (7.44)
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The function P(|Δ|) in (7.44) is due to the contribution of nonequilibrium phonon
sub-system.

7.1.11 Contribution of Nonequilibrium Phonons

We will now trace the origin of P(|Δ|). If the phonons are shifted from equilibrium,
the collision integral (7.37) acquires the contribution

δJ (n±ε)
(e−ph) = uεΓ (ε), (7.45)

as follows from (7.32). The factor Γ (ε) is the functional, and is linked with the
deviation of the phonon distribution function from the equilibrium δNωq = Nωq −
N 0

ωq
:

Γ (ε) = πλ

2(upF )2

∫ ∞

0
ω2
qdωq

∫ ∞

|Δ|
dε′δ(ε′ + ε − ωq)(uεuε′ + vεvε′)

× (1 − nε − nε′)δNωq . (7.46)

This leads to the redefinition of the function f1 (7.42), which now has the form

f1 = f 01 − f 01
R2

N1
τε

∂|Δ|
∂t

+ ϕ2

2
f 01,εε − 2signε τεΓ (ε). (7.47)

The function f2 (7.43) remains unchanged. Substituting (7.47) into (7.24), one finds
for P(|Δ|) a form

P(Δ) = −2τε Re
∫ ∞

0
dε

Γ (ε)√
(ε + iγ)2 − |Δ|2 . (7.48)

In section (7.1.13) we will discuss the contribution to (7.44), introduced by P(|Δ|).

7.1.12 Galayko’s µ2-Term

Another peculiarity of (7.44), compared with [2–6], is the additional term,4 which
is proportional to μ2. Such a term was obtained by Galayko [16] in a static limit of
the dynamic equations. The presence of the nonlinear μ term in (7.44) is principally

4This term is presented in a form, which guarantees the gauge-invariance of (7.44), i.e., we have
replaced ϕ2 by μ2. We have resorted to this procedure, because at the derivation of (7.44) the higher
time-derivatives were not kept. At more consecutive calculations the term ϕ2 might be replaced,
for instance, by the operator [−1/4(∂/∂t + 2iϕ)2].
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important. If μ = 0, the relation for the gap follows from (7.44):

|Δ| = ΔBCS = Δ0, Δ0 = Tc

[
8π2

7ζ(3)

(
1 − T

Tc

)]1/2
. (7.49)

However, if μ �= 0, the expression for the gap |Δ| in a spatially homogeneous and
stationary case is found from the equation

|Δ| =
√

Δ2
0 − 2μ2. (7.50)

Hence the initial static pattern cannot exist at μ ≥ Δ0/
√
2 (this was first pointed out

by Galayko [17]).
Based on the assumption that the behavior of superconductors in a nonstationary

steady-state has a close analogy with the usual thermodynamics (this principle was
discussed in [18] for superconductors; see also [19] for more general cases), one
can write the free energy functional of the Ginzburg–Landau type for the (7.44)
discarding the first (dynamic) term. Considering μ as a parameter in this functional,
it is easy to verify that the absolute minimum of the functional is obtained at μ = 0.
Thus in thermodynamic equilibrium, the value of μ vanishes.

7.1.13 Phonons and Order Parameter Dynamics

Now we return to the definition (7.44) of the function P(|Δ|), which contains the
nonequilibrium addition δNωq to the phonon distribution function. Substituting the
value δNωq ∼ N 0

ωq
into (7.44), one would find the value of P(|Δ|) to be an order of

unity that greatly exceeds all other terms in (7.44). In reality, however, the value of
δNωq must be determined from the phonon kinetic equation, which has the form

d

dt
(δNωq) = I (Nωq) + L(Nωq), (7.51)

where I (Nωq) is the phonon-electron collision integral, and L(Nωq) is the operator
describing the phonon exchange of a superconductor with its environment (the heat-
bath). In the simplest approximation [20, 21], the latter may be defined as

L(Nωq ) ≈ −δNωq

τes
, (7.52)

where τes ∼ d/u is the phonon escape time (into the heat-bath), and d is the charac-
teristic dimension of the superconductor. The inelastic collision integral I (Nωq) =
I (Nωq)

(ph−e) was derived in Sect. 6.4 in the form
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I (Nωq)
(ph−e) = πλ

8

ωD

εF

∫ ∞

|Δ|

∫ ∞

|Δ|
dεdε′ {δ(ε + ε′ − ωq)s1 + 2δ(ε − ε′ − ωq)s2

}
.

(7.53)
Moving in this expression to the functions f1 and f2 in the local equilibrium approx-
imation (7.47) and (7.43) [omitting the term with ϕ2 in (7.47)], and expressing uε

and vε through N1 (7.16) and R2 (7.20), respectively, one arrives at

I (Nωq)
(ph−e) ≈ πλ

2

ωD

εF

{
2N 0

ωq

[
∂|Δ|
∂t

τε

T
η1 + η3

]
− η2δNωq

}
, (7.54)

where the functions η1, η2, and η3 are defined by relations

η1 = 1

4

∫ ∞

0
dε

P(ε)R2(ε)

N1(ε) cosh2(ε/2T )

−1

4

∫ ∞

0
dε Q(ε)

{
R2(ε + ωq )

N1(ε + ωq ) cosh2[(ε + ωq )/2T ] − R2(ε)

N1(ε) cosh2(ε/2T )

}
, (7.55)

η2 =
∫ ∞

0
dε P(ε) tanh

ε

2T
+
∫ ∞

0
dε Q(ε)

(
tanh

ε + ωq

2T
− tanh

ε

2T

)
, (7.56)

η3 = τε

{∫ ∞

0
dε P(ε)Γ (ε) +

∫ ∞

0
dε Q(ε)

[
Γ (ε + ωq) − Γ (ε)

]}
(7.57)

with

P(ε) = N1(ε)N1(ωq − ε) + R2(ε)R2(ωq − ε) , (7.58)

Q(ε) = N1(ε)N1(ωq + ε) − R2(ε)R2(ωq + ε) . (7.59)

These relations subject to (7.46) allow one to find δNωq(t) and to study the inter-
play between the dynamics of the order parameter and nonequilibrium phonons. We
will define a “generalized local equilibrium approximation” (between the pair con-
densate, electron excitations, and phonons) as the approximation in which (besides
the fulfillment of the conditions of the local equilibrium approximation) the charac-
teristic frequencies (and wave vectors) of variations of Nωq are small compared with
λωDT/εF , so the left side of (7.51) may be neglected. In this case the function δNωq

depends on r and t implicitly, through Δ(r, t). From (7.51) to (7.59) it follows that

δN =
{
πλ

ωD

εF
N 0

ωq

[
∂|Δ|
∂t

τε

T
η1 + η3

]}
/

(
η2

πλωD

2εF
+ τ−1

es

)
. (7.60)

The solution of the integral equation (7.60) may be sought in the form

δNωq = K (ωq)
∂|Δ|
∂t

. (7.61)
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In doing this, (7.60) transforms into the equation

K (ωq) =
{
πλ

ωD

εF
N 0

ωq

[τε

T
η1 + η4

]}
/ +

(
η2

πλωD

2εF
+ τ−1

es

)
, (7.62)

where η4 = η3[δNωq → K (ωq)]. The function K (ωq) depends on |Δ|, γ, and τes
parametrically andmaybe found from (7.62) by numericalmethods. Rough estimates
based on (7.62) show that

δNωq ∼ |Δ|
γT

N 0
ωq

. (7.63)

Substituting (7.63) into (7.46) and (7.48), one can see that the quantity P(|Δ|)
in (7.44) significantly renormalizes the term, which is proportional to ∂|Δ|/∂t (this
term changes by its order of magnitude at τes → ∞). The accurate evaluation of this
term is outside the scope of this analysis. A detailed investigation is necessary for
situations where the conditions of the generalized local equilibrium approximation
are violated; in those cases, the value in (7.63) may turn out to be underestimated.

Consider now the limiting case τes → 0, when according to (7.51) and (7.52)
δNωq → 0. This condition is fulfilled when d < ξ0; for example, in the case of
a superconducting film or filament (see the discussion in Sect. 5.2). The phonon
radiation from the superconductor into the surrounding medium (the heat-bath) is
then determined by (7.52).

According to the results of our Seminar 3, the intensity of the phonon flux emitted
by the volume V in a spectral range dωq is

dWωq = I (N 0
ωq

)(ph−e)ρ(ωq)dωq , (7.64)

where ρ(ωq) = Vω3
q/(2π

2u3). Using expression (7.52) for I (Nωq)
(ph−e), one obtains

dWωq = πλ

2

ωD

εF

{
2
∂|Δ|
∂t

τε

T
N 0

ωq
η1

}
ρ(ωq)dωq . (7.65)

Thus, any variation in the order parameter modulus is accompanied by the
exchange of phonons between the superconductor and the heat-bath (i.e., the emis-
sion or absorption of phonons is taking place).

7.2 Interference Current

An expression for a nonstationary current enters the set of TDGL-equations. As we
will see in this section, the current in nonequilibrium superconductors in the vicinity
of Tc consists of superfluid, normal, and interference components.
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7.2.1 Usadel Approximation

The expression for the currentmay be derived from (4.85) by themethod of analytical
continuation (see the discussion at the end of Sect. 5.3). In our notation it has the
form

j(r, t) = −1

2
N (0)

∫ ∞

−∞
dε

4πi

∫
dΩp

4π

p
m
Tr
[
σ̂z

p
m

·̂gp(r, t)
]

= i
N (0)p2F
12πm2

∫ ∞

−∞
dεTr

[̂
σz ĝp(r, t)

]
, (7.66)

where ĝp(r, t) is the Keldysh vector-part of the energy-integrated matrix Green-
Gor’kov ğ function (7.2). In the Usadel approximation [22], the ğ function may be
assumed to be in the form (ğS is the isotropic part of ğ)

ğ = ğS + p
m

·ğp. (7.67)

Because the self-energy parts of the interaction of electrons with impurities may be
written as (see Sect. 4.1):

Σ̂
R(A)
imp = 1

2πτ

∫
dΩp

4π
ĝR(A), (7.68)

where τ is the transport mean free path time, one can show that in the adopted
normalization (7.8) the solution of kinetic equation (7.1) for the vector harmonic ğp

is expressed as

ğp = − i

π
τ
(
ğS ∗ ∂̆ ∗ ğS + π2∂̆

)
, (7.69)

where

∂̆ = 1̆
∂

∂r
− i σ̆zA, (7.70)

and the isotropic part ğS in (7.69) obeys the relations

ğS ∗ ğS = −π2 · 1̆, (7.71)

[
ğS ∗ ğp

]
− = 0̆. (7.72)

On the base of (7.66) to (7.72) we have

j = −N (0)D

4π2

∫ ∞

−∞
dεTr σ̂z {̂gR ∗ ∂̂ ∗ ĝR ∗ â − ĝR ∗ ∂̂ ∗ â ∗ ĝA

+ ĝR ∗ â ∗ ∂̂ ∗ ĝA − â ∗ ĝA ∗ ∂̂ ∗ ĝA}, (7.73)
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where

∂̂ = 1̂ · ∂

∂r
− iAσ̂z, (7.74)

and the spectral functions ĝR(A) (5.66), according to (7.16), and (7.19) to (7.21), are5

ĝR(A) = +
(−)

iπ√
(ε +

(−)
iγ)2 − |Δ|2

(
ε +

(−)
iγ Δ

−Δ∗ −(ε +
(−)

iγ)

)

≡ +
(−)

(
N1

+
(−)

i R1 eiθ(R2
−

(+)
i N2)

e−iθ(R2
−

(+)
i N2) −(N1

+
(−)

i R1)

)
. (7.75)

In further transformations it is assumed that T is close to Tc, so the following inequal-
ities are held:

(γ, |Δ|) � T . (7.76)

Thismeans in particular that the function γ does not depend on ε.We also assume that
the functions f1 and f2 do not explicitly depend on time, the termswith the derivatives
Ri,ε, Ni,ε, ∇ f1,ε and terms with higher order derivatives and their products (whose
contributions to the current are small) are omitted. The symmetry properties of the
integrand are taken into account (Ri is an odd function of ε, and Ni is an even
function of ε). Note also that in calculating the trace in (7.73) several of the terms
can be reduced to total differentials, which vanish upon integration. Furthermore, as
follows directly from (7.76), the following identities hold:

N 2
1 + N 2

2 − R2
1 − R2

2 = 1, R1N1 + R2N2 = 0. (7.77)

On the basis of the above arguments, one finds the resulting expression for the
significant (even in ε) part of the trace in (7.73):

Tr(. . .) = −4π2

{
(A − 1

2
∇θ)

[
4R1N1 f1 − f1,ε(Ṙ

2
2 − Ṅ 2

2 )
]

−(Ȧ − 1

2
∇θ̇) f1,ε(N

2
1 + R2

2) + (∇ f2 − 1

2
f1,ε∇θ̇)(N 2

1 + N 2
2 )

}
, (7.78)

where the upper dot denotes partial time derivative, and ȧ2 ≡ ∂(a2)/∂t . Defining the
superfluid momentum by the usual relation

Q = 2mvs = ∇θ − 2A, (7.79)

5In writing the spectral functions (7.75) we have completely ignored the influence of external fields
A and ϕ, thus the expression (7.75) corresponds actually to the gauge ϕ = 0. For an arbitrary gauge
with ϕ �= 0 the function ĝ(R,A) (and, in particular, N1) alter (see Sect. 5.3). This, however, produces
no substantial changes in the expression for the current in quasiclassical approximation.
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the expression for the current can be presented as

j = σn

∫ ∞

−∞
dε

{
QR2N2 f1 + 1

4
Q(N 2

1 + N 2
2 ) f1,ε

+1

2
(N 2

1 + N 2
2 )(∇ f2 − 1

2
f1,ε∇θ̇) + 1

4
f1,ε

∂

∂t

[
Q(R2

2 − N 2
2 )
]}

, (7.80)

where the normal conductivity σn is

σn = 2N (0)D = 2

3
N (0)v2

Fτ . (7.81)

At this stage we see that in the gauge θ̇ = 0 expression (7.80) coincides with
Schmid’s result [9]. The last term in (7.80) with the time derivative (which was
omitted in [2–6]) vanishes, if the dispersion dependence of f1,ε is ignored. Substi-
tuting the equilibrium value f1 = f 01 (ε) into this term produces a nonzero result,
which contains an additional small factor |Δ|/T . Since this term is also proportional
to another small parameter ω/T , we omit it below. Expression (7.80) is funda-
mental for further analysis. Because it has been derived here in an arbitrary gauge,
one can be assured that the calculation scheme is self-consistent. The functions
f1(ε) = (1 − nε − n−ε)signε and f2(ε) = −signε (nε − n−ε)/N1 in (7.80) should
generally be determined from the kinetic equation for the distribution of the nonequi-
librium electron-hole excitations nε. In many cases, however, it is sufficient to sub-
stitute the equilibrium function n0ε into (7.80). As was noticed in [23] this procedure
was not carried out in [2–6, 9] sufficiently correct. Thus, certain terms whose contri-
bution is sometimes not small were omitted from the final equation for the current.
We will analyze the situation in more details below.

To transform the terms containing θ̇ and ∇ f2 in (7.80), we use the definitions of
the gauge-invariant potential

μ = 1

2
θ̇ + ϕ (7.82)

and the associated electric field

E = −Ȧ − ∇ϕ = 1

2
Q̇ − ∇μ. (7.83)

As it follows from (5.77), in the presence of a potential ϕ, the function f2 is nonzero
and for ε � |Δ| is equal to

f2 = −ϕ f1,ε. (7.84)

Substitution of (7.84) into (7.14) leads to

j = σn

∫ ∞

−∞
dε

{
QR2N2 f1 + 1

2
f1,ε(N

2
1 + N 2

2 )E
}

. (7.85)
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In equilibrium theory, the current in dirty superconductors is given by the first term
in (7.85), where one should make f1 = f 01 (ε) = tanh(ε/2T ) (i.e., in an equilibrium
situation, the term, which is proportional to T , vanishes). In the nonequilibrium case,
two additional groups of terms arise if one inserts the equilibrium function f 01 (ε)
into (7.85). The reason for this is the relation:

N 2
1 + N 2

2 = 1

2

⎧⎨
⎩1 +

[
1 −

(
2ε|Δ|

ε2 + γ2 + |Δ|2
)2
]−1/2

⎫⎬
⎭ , (7.86)

which follows directly from (7.16) and (7.10) to (7.21). The integral (7.85), taking
into account (7.86) and inequalities in (7.76), can be evaluated in analytic form. In
the time-dependent theory, it is necessary to evaluate this integral for an arbitrary
ratio of |Δ| and γ. The equilibrium value of |Δ| in a “finite-gap” superconductor is
large in comparison with γ, but in the dynamic case |Δ(r, t)| may sometime vanish
at some points!

Wewill inspect the integrals in (7.85) in more details. If γ � |Δ|, the factor R2N2

acts in fact as the δ-function of the argument (ε ± |Δ|):

N2R2 ≈ π

2
|Δ|εδ(ε2 − |Δ|2), (7.87)

and thus the first term in (7.85) gives

σnQ
∫ ∞

−∞
dε R2N2 f

0
1 ≈ σπ

4T
Q|Δ|2 (7.88)

(this result does not depend on γ/|Δ| and holds for arbitrary |Δ| and γ, even if δ-
function becomes “smeared”). The second term in (7.85), taking into account (7.86),
takes the form

σnE
2

∫ ∞

−∞
dε f 01,ε(N

2
1 + N 2

2 ) = σE
2T

∫
dε [ε2 + (γ2 + |Δ|2)]

cosh2(ε/2T )[ε4 + 2ε2(γ2 − |Δ|2) + (γ2 + |Δ|2)2]1/2 .

(7.89)
Expression (7.89) can be treated as the sum of two integrals

σnE
2T

{∫ ε∗

0
dε M(ε) +

∫ ∞

ε∗
dε M(ε)

}
, (7.90)

M(ε) = ε2 + γ2 + |Δ|2
cosh2(ε/2T )[ε4 + 2ε2(γ2 − |Δ|2) + (γ2 + |Δ|2)2]1/2 , (7.91)

where ε∗ satisfies the relation (recall, that T � |Δ|, γ):

(γ2 + |Δ|2)1/2 � ε∗ � T . (7.92)



248 7 Time-Dependent Ginzburg–Landau (TDGL) Equations

Using the relation (7.92), one can expand cosh2(ε/2T ) in the first integral in (7.90),
keeping only the lowest order term in a small parameter ε/2T , and use for another
integral the approximation

ε2 + γ2 + |Δ|2
[ε4 + 2ε2(γ2 − |Δ|2) + (γ2 + |Δ|2)2]1/2 ≈ 1, ε∗ ≤ ε < ∞. (7.93)

Thus the second term in (7.85) takes the form

σnE
2

∫ ∞

−∞
dε f 01,ε(N

2
1 + N 2

2 )

= σnE
2T

{∫ ε∗

0

dε[ε2 + γ2 + |Δ|2]
[ε4 + 2ε2(γ2 − |Δ|2) + (γ2 + |Δ|2)2]1/2 +

∫ ∞

ε∗

dε

cosh2(ε/2T )

}
.

(7.94)

One can now integrate (7.94) directly and find for (7.95):

j = πσn

4T
Q|Δ|2 + σnE

{
1 +

√|Δ|2 + γ2

2T

[
K

(
|Δ|√|Δ|2 + γ2

)
− E

(
|Δ|√|Δ|2 + γ2

)]}
.

(7.95)
where K(x) and E(x) are the complete elliptic integrals of the first and second type,
respectively. In the limiting case they have the following asymptotic forms:

x � 1 : K(x) � π
2

(
1 + x2

4 + · · ·
)

,

E(x) � π
2

(
1 − x2

4 + · · ·
)

,
(7.96)

and

x � 1 : K(x) � ln 4√
1−x2

+ · · · ,

E(x) � 1 − 1
2 (1 − x) ln(1 − x) + · · · .

(7.97)

A good approximation for the difference function is:

K(x) − E(x) ∼= ln(1 + x) − ln(1 − x)

2
+ (1 − x) ln(1 − x) (7.98)

≡ ln(1 − x2)

2
− x ln(1 − x).

This is illustrated in Fig. 7.1.
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Fig. 7.1 Logarythmic
approximation (7.98) to
exact difference of elliptic
functions

7.2.2 Normal Flow Contribution to Interference Current

Expression (7.95) may now be written in the form

j = js + jn + jint, (7.99)

where the superfluid and normal components of the current are given by the standard
relations

js = πσn

4T
Q|Δ|2, jn = σnE, (7.100)

and the “interference” component is

jint = σnE

√|Δ|2 + γ2

2T

[
K

(
|Δ|√|Δ|2 + γ2

)
− E

(
|Δ|√|Δ|2 + γ2

)]
. (7.101)

The quantity jint (7.101) has properties of both the superconducting condensate and
the normal excitations. In fact, it describes some interference of two types of motion
occurring in the electron subsystem of the superconductor.

A comparison of (7.101) with (7.100) shows that the interference component of
the current is not always negligible. Using the asymptotic forms (7.96) and (7.97)
of the elliptic integrals, one can easily show that (7.95) takes the following forms in
the specified limiting cases

j = πσn

4T
|Δ|2Q + σnE

{
1 + |Δ|

2T

(
ln

4|Δ|
γ

− 1

)}
, γ � |Δ|, (7.102)

j = πσn

4T
|Δ|2Q + σnE, γ � |Δ|. (7.103)
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Equation (7.103) is similar to the expression for a gapless superconductor [see
(4.121)]; in this case the current consists of the normal and superconducting com-
ponents only. Thus, the interference term in the “finite-gap” superconductor stems
from the strong correlation between the system of single-particle excitations and the
pair condensate. This correlation vanishes in a gapless regime.

Using (7.102) and (7.103), we can represent (7.101) in the following approxima-
tion:

jint = σnE
|Δ|
2T

[
ln(1 − x2)

2x
− ln(1 − x)

]
, x = |Δ|√|Δ|2 + γ2

. (7.104)

This approximation is convenient for practical calculations.
Note, that a logarithmic renormalization of conductivity, analogous to (7.102),

appears in the theory of both linear [24, 25] and nonlinear [26, 27] responses of a
superconductor in a time-varying external electromagnetic field of the frequency ω;
for example,

σ∗(ω0) = σn

(
1 + |Δ|

2T
lnΛ

)
, Λ = max(ω0τimp,

ω0

|Δ| ). (7.105)

Such a logarithmic renormalization of conductivity also reflects the interference
between normal and superfluid motions. Although the parameter |Δ|/T near Tc is
small, the corrections might be not negligible, because the logarithmic factor can, in
principle, be large. We should also mention that the interference described above is
closely related to the “dragging” process, investigated by Shelankov [28].

7.2.3 Condensate Contribution to Interference Current

We used above the equilibrium approximation for the functions f1 and f2. To find
these functions [(7.42) and (7.43)] in the time-dependent theory, the nonequilibrium
contributions must be taken into account. They may be expressed in the form

f1 = f 01 (ε) + δ f1(ε), δ f1(ε) = − f 01,ε
R2

N1

2

γ

∂|Δ|
∂t

, (7.106)

f2 = −ϕ f 01 (ε) + δ f2(ε), δ f2(ε) = −2μ
N2τε|Δ|

N1 + 2N2τε|Δ| f
0
1,ε. (7.107)

The current component due to the function δ f2(ε) in (7.85) is vanishingly small and
can be ignored. However, the function δ f1(ε), whose contribution though small in
comparison with js , is dissipative. In general, this component need not be small in
comparison with jn . The resulting current is given by the following expression in the
“local equilibrium approximation”:
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j = πσn

4T
Q
(

|Δ|2 − ∂|Δ|2
γ∂t

)

+ σnE

{
1 +

√|Δ|2 + γ2

2T

[
K

(
|Δ|√|Δ|2 + γ2

)
− E

(
|Δ|√|Δ|2 + γ2

)]}
. (7.108)

This expression should be used in the Ginzburg–Landau equations instead of those
presented in [2–6].

Thus, in the expression for current in the Ginzburg–Landau regime

j = js + jn + jint, (7.109)

in addition to nondissipative quantum electronic motion

js = πσn

4T
Q|Δ|2, (7.110)

and dissipative normal motion of electrons

jn = σnE, (7.111)

we havemotion of chargeswhich has interference of quantum features and dissipative
features:

jint = −πσn

4T

Q
γ

∂|Δ|2
∂t

+ σnE

√|Δ|2 + γ2

2T

[
K

(
|Δ|√|Δ|2 + γ2

)
− E

(
|Δ|√|Δ|2 + γ2

)]
.

(7.112)
This current (7.109) enters the Maxwell set of equations, which should supplement
the equation for the order parameterΔ, (7.44).After separating the real and imaginary
parts of (7.44) one finds6:

− π

8Tc

√
1 + (2τε|Δ|)2 ∂|Δ|

∂t
+ π

8Tc
D(∇2 − Q2)|Δ|

+
[
Tc − T

Tc
− 7ζ(3)

|Δ|2 + 2μ2

8(πTc)2

]
|Δ| = 0, (7.113)

− 2|Δ|2√
1 + (2τε|Δ|)2 μ + D div(Q|Δ|2) = 0. (7.114)

Note that in the equilibrium Ginzburg–Landau scheme (7.114) coincides with the
continuity equation because μ ≡ 0, j ≡ js, and ρ̇ ≡ 0 in that case. In nonequilib-
rium conditions, (7.114) and the continuity equation div j + ρ̇ = 0 are independent.
In the waste majority of cases we still can consider ρ̇ ≡ 0 (since any charge deviation
equilibrates to ρ = 0 at time scales defined by the plasma frequency, while the super-

6We omit further the term P(|Δ|).
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conducting time scales are much longer) and approximate the continuity equation
by

div j = 0. (7.115)

By the same reason, one can drop the displacement current and present the Maxwell
equation as

curl B = 4πj. (7.116)

In both of these equations j enters in the form of (7.109).

7.2.4 Boundary Conditions

This set of equations must be supplemented by the boundary conditions, which may
differ in various problems. For instance, at the boundary between a superconductor
and a normal metal, one can write

∂Δ

∂n

∣∣∣∣
S

= βΔ|S , (7.117)

where β is some constant, usually taken as β = (αξ0)
−1 (α ≈ 0.81 in equilibrium

approximation, ξ0 is the coherence length). In nonequilibrium conditions, αmay dif-
fer from this value (see [29]), but remains of an order of unity. At the superconductor-
vacuum boundary, the following conditions are reasonable:

∂Δ

∂n
= 0, Qn = 0, En = 0, (7.118)

where n is the vector normal to the superconductor’s surface. One should also require
the continuity of the magnetic field B and of the tangential component of electric
field E [30]. Other boundary conditions are also plausible.

We conclude this section by mentioning that in the gapless (τε → 0) case the
interference current disappears. Then the structure of TDGL equations coincides
with that of the equations derived in Chap.4 (with somewhat different coefficients).
This limit, τε → 0, was used for solutions in Part I of this book.

7.3 Fluctuations

Wewill consider here some characteristic features of fluctuational correction to self-
consistent treatments of superconductivity, such as GL or BCS theory. This reveals
the applicability limits of the self-consistent approach.
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7.3.1 Ginzburg’s Number

To elucidate the role of fluctuations, we will go back to the free energy functional
considered in Sect. 3.2. For simplicity we will perform calculations at T � Tc for
the normal phase, where the equilibrium value is Ψ0 ≡ 0. Then it is convenient to
denote the fluctuating value of the order parameter as Ψ . The fluctuation probability
is governed by the expression

W ∝ exp(−δF/T ), (7.119)

where δF is defined by (3.46), (3.45), and (3.31), with F0
n = 0. Since we expect the

fluctuations to be small, it is sufficient to keep the second order expansion terms in
the free energy functional:

δF =
∫
V0

{
α |Ψ |2 + �

2

2m∗

∣∣∣∣∂Ψ

∂r

∣∣∣∣
2
}
d3r. (7.120)

Both terms are positive in (7.120), since T > Tc.
Let us now make a Fourier expansion of the fluctuating quantities in the volume

V0 (for simplicity we will take V0 ≡ 1 below):

|Ψ (r)| =
∑
k

Ψke
ikr,

∣∣∣∣∂Ψ

∂r

∣∣∣∣ =
∑
k

ikΨke
ikr. (7.121)

Since |Ψ (r)| is real, Ψ−k = Ψ ∗
k . Substituting (7.121) into (7.120) and integrating

over the volume, we find (εk ≡ �
2k2/2m∗):

δF =
∑
k

(α + εk) |Ψk|2 ≡
∑
k

δFk. (7.122)

As follows from (7.122), (7.119), and (7.122), fluctuations with different values of
k are statistically independent.

Let us consider now the sum over states (a “partition function”), caused by the
fluctuations:

Z f l =
∑
Ψk

exp(−δF/T ). (7.123)

This yields the fluctuational contribution to the free energy of the system:

F f l = −T ln Z f l = −T ln
∑
Ψk

exp

(−∑k(α + εk) |Ψk|2
T

)
. (7.124)

Performing straightforward transformations, we obtain:
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F f l = −T ln
∏
k

∫ ∞

0
exp

(
− (α + εk) |Ψk|2

T

)
d ImΨk d ReΨk

= −T
∑
k

ln

[
π

∫ ∞

0
exp

(
− (α + εk) |Ψk|2

T

)
d |Ψk|2

]

= −T
∑
k

ln
πT

(α + εk)
(7.125)

[inwriting (7.125)we took into account the relationd ImΨk d ReΨk =2π |Ψk| d |Ψk|].
To evaluate the role of the order parameter fluctuations, one can calculate the fluc-
tuational contribution to the heat capacity C f l , which is defined via the general
relation

C = −T (∂2F/∂T 2). (7.126)

Since in (7.125) in a variation of T the most important contribution comes from the
temperature dependence of α, one can write:

C f l
≈ −Tc

(
∂α

∂T

)2

Tc

∂2F f l

∂α2
, (7.127)

or, taking into account (7.125):

C f l
≈

[
Tc

(
∂α

∂T

)
Tc

]2∑
k

1

(α + εk)
2 =

[
Tc (∂α/∂T )Tc

]2
(2π)3

∫
d3k

(α + εk)
2

= const

[
Tc (∂α/∂T )Tc

]3/2
(�2/2m∗)3/2

|ε|−1/2 , ε ≡
(
T − Tc
Tc

)
, (7.128)

where the constant is a number∼1. [One should note that the long-wavelength fluctu-
ations play themost important role in (7.128). Also, hereafter wewill use the absolute
values of δT → |T − Tc|. The symmetry of the behavior of fluctuating quantities
within this Ornstein-Zernicke description can be confirmed by direct calculations at
T � Tc].

We can now compare C f l with some characteristic equilibrium value, such as the
jump in heat capacity δC = CS − CN at the transition point from a superconducting
to a normal state. Using (7.126), (3.40), and (3.46), one can calculate

δC = 2
[
Tc (∂α/∂T )Tc

]2
βTc

. (7.129)

Thus the fluctuations are small if
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Gi ≡ C f l

δC
� m3β2Tc

�6 (∂α/∂T )Tc
� |ε| � 1. (7.130)

As follows from (7.130), themean-field theory has an applicability range only at small
values of the parameter Gi (usually called the “Ginzburg number”). Fortunately, the
Gi-number is very small for conventional, low temperature superconductors, and
thus the mean-field theory is well applicable even very close vicinity of Tc. Indeed,
using for “clean” superconductors the values of (∂α/∂T )Tc and β, which follow from
(3.161) and (3.166), we find

Giclean �
(
Tc
εF

)4

(7.131)

[in writing (7.131) we used (3.166), in which the density N of electrons may be
expressed as N = 2[(4/3)π p3F ]/(2π�)3 = p3F/3π2

�
3]. Usually (Tc/εF ) ∼ 10−3, so

that Ginzburg’s number is incredibly small for superconductors. To estimate Gi in
the case of “dirty” superconductors, we again need the microscopic values of phe-
nomenological parameters (3.36) and (3.38). For these values wewill compare (3.48)
and (3.51) with (7.44) and (7.100), respectively. It follows then [for completeness we
also provide here the relationship between Ψ and Δ, which is analogous to (3.165)
for the “dirty” case] that:

(
∂α

∂T

)
Tc

= 6

π

�

τimp

m

p2F
= 2�

πmD
, (7.132)

(∂α/∂T )Tc

β
= 2π2

7ς(3)

τimp

�
N , (7.133)

Ψ (r) = (π/4)1/2(Nτimp/�Tc)
1/2Δ(r), (7.134)

and for Gi we obtain

Gidirty �
(

�

τimp

)3 Tc
ε4F

, (7.135)

which is also very small, so that usually the range of temperature fluctuations is not of
practical importance. It is worth mentioning once again that the smallness of the Gi-
parameter permits us to apply the Ginzburg–Landau type approach to the description
of superconductors. At the same time, it is wrong to conclude that the smallness of
Gi rules out the possibility of experimental observation of fluctuational phenomena
in superconductors: fluctuations may reveal themselves in one- or two-dimensional
samples [31–33]. We will treat different mechanisms of resistivity fluctuations in the
next Section.
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7.3.2 Paraconductivity

Let us suppose that T � Tc and there is a constant electric field E applied to the
metal. One can expect then that spontaneous fluctuations of the order parameter
create droplets of finite superfluid density, which will be accelerated by the electric
field, raising the normal conductivity σn . Actually, the change of the conductivity is
small: δσ � σn , but the temperature dependence δσ(T ) is peculiar and thus could be
detected. Fluctuations of the order parametermay lead also to the specific temperature
dependence of the heat capacity in small superconducting particles [34].

Following Schmid [35], we first treat the average (in thermodynamic sense) cur-
rent, coupled to the applied field, via the relation:

〈j〉 = σSE, (7.136)

where (still hypothetical) conductivity equals to

σS = e2∗NSτ
0

m∗
. (7.137)

In (7.137) NS is the density of electrons fluctuating between normal and supercon-
ducting states: NS = 〈|Ψ |2〉 , and τ 0 is the lifetime of electrons in the superconducting
state. As noted, fluctuations at different wavelengths that contribute to the free energy
(7.122) are statistically independent. In view of that7:

〈|Ψk|2
〉 =

∫∞
0 |Ψk|2 exp

[−(α + εk) |Ψk|2 /T
]
d |Ψk|2∫∞

0 exp
[−(α + εk) |Ψk|2 /T

]
d |Ψk|2

= T

(α + εk)
. (7.138)

To obtain the value of τ 0 one should consider TDGL equation (7.42). In the fluc-
tuational regime, τε |Δ| � 1. Thus all the nonlinear terms, including contributions
from the vector potential, as well as the phonon term P(|Δ|), could be neglected,
yielding

η0

(
∂

∂t
+ i

e∗
�

ϕ

)
Ψ − (α− �

2

2m∗
∇2)Ψ = 0, (7.139)

where η0 = [Tc(∂α/∂T )Tc ](π/8Tc) = (4mD)−1 for “dirty” superconductors. Since
in the linear approximation the relaxation time should not depend on the electric field
applied, one can discard the scalar potential ϕ in (7.139), and obtain for the Fourier

7Actually, there is a degeneracy in the system described by (7.122): the states with k and −k are
physically identical. Thus in the expression (7.119) for fluctuational probability of |Ψk|2 the value
of δF doubles. This causes the value of amplitude

〈|Ψk|2
〉
in (7.138) to be two times smaller:〈|Ψk|2

〉 = T/2(α + εk) (cf., e.g., [36]). To use the explicit form (7.138), one should perform in
expressions like (7.153), (7.154) the subsequent integration over k over a single hemisphere of its
values (cf. [37]).
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component Ψk the equation:

η0
∂

∂t
Ψk = − (εk + α) Ψk. (7.140)

For the relaxation time of fluctuating components it follows then that:

τ 0
k = η0

εk + α
. (7.141)

To find the value of σS (7.137), one should compute

NSτ
0 =

∑
k

〈|Ψk|2
〉
τ 0
k (7.142)

As was demonstrated by Aslamazov and Larkin [38], the result of this summation
depends on the samples dimensionality. Indeed, since the minimal distance (the “unit
length”) in this scheme of calculation is restricted by the coherence length ξ(T ), the
values of

{
kx ,ky,kz

}
in (7.142) are restricted by the condition

ki

(
≡ 2π

Li
n

)
� ξ(T )−1, (7.143)

(n is an integer) and when the characteristic length Li along the i-axis is smaller than
ξ(T ), only the term n = 0 contributes substantially (|Ψk|2 is homogeneous along
that direction). Thus for bulk samples

σS ∝ NSτ
0 =

∫ ∞

0

d3k
(2π)3

Tγ0

(α + εk)
2 ∝ |ε|−1/2 ≡

∣∣∣∣Tc − T

Tc

∣∣∣∣
−1/2

, (7.144)

while for thin films

σS ∝ 1

L

∫ ∞

0

d2k
(2π)2

Tγ0

(α + εk)
2 ∝ |ε|−1 ≡

∣∣∣∣Tc − T

Tc

∣∣∣∣
−1

, (7.145)

so that in samples with smaller dimensionality, the fluctuations near Tc are more
pronounced. For the one-dimensional case:

σS ∝ |ε|−3/2 ≡
∣∣∣∣Tc − T

Tc

∣∣∣∣
−3/2

. (7.146)

This phenomenon is called “paraconductivity” and was first described theoreti-
cally by Aslamazov and Larkin [38]. The Green’s function technique was used and
the diagram for the current-current correlation function (shown in Fig. 7.2a) was con-
sidered. Later Maki [39, 40] and Thompson [41] took into account another diagram



258 7 Time-Dependent Ginzburg–Landau (TDGL) Equations

Fig. 7.2 Diagrams leading
to Aslamazov-Larkin (a) and
Maki-Thompson (b)
contributions

(shown in Fig. 7.2b), which yields a different contribution that is dominant in some
conditions. We will consider both mechanisms without referring to these slightly
mysterious diagrams, but to the much more transparent TDGL-scheme.

7.3.3 Aslamazov-Larkin Mechanism

The physics of the fluctuations outlined by (7.136) is rather transparent. At the same
time, an important question still remains open, namely: how to justify (7.136) itself?
The fact is that in thermodynamic equilibrium the superconducting current has a form
(3.54), which is associated with the vector Q ∝ vs rather than with the vector E. To
proceed with this problem one should bear in mind the relation (3.51). In view of
the gauge A = 0, adopted earlier for (7.139), it becomes clear that both the modulus
|Ψ | and the phase θ of the wave function are fluctuating, so that 〈∇θ〉 is proportional
to E.8

One can rewrite (3.51) in the form:

jS = − ie∗�
2m∗

〈
Ψ ∗∇Ψ − Ψ ∇Ψ ∗〉 =∑

k

e∗k
m∗

〈|Ψk|2
〉

(7.147)

Following Abrikosov [36], one can represent Ψk in the form

Ψk = Ψ
(0)
k + Ψ

(1)
k (7.148)

and then use the TDGL equation in the form (7.139) to derive the value ofΨ (1)
k based

on the known value of Ψ
(0)
k (7.138). For homogeneous electric field, ϕ = −E · r.

Since the field E is a static one, only low frequency fluctuations contribute to the
response, so one can omit the time derivative in (7.139). Taking into account that at
the Fourier transformation rΨ (r) � i(∂Ψk/∂k), one obtains from (7.139):

Ψ
(1)
k = − γ0e∗

α + εk
E·∂Ψ

(0)
k

∂k
, (7.149)

so that

8A good insight into this problem was made by Abrahams and Woo [42].
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j = Tγ0e2∗
m2∗

∑
k

k
k · E

(α + εk)3
≡ E

∑
k

σAL(k). (7.150)

Wewill focus our attention to themost interesting case of “dirty” superconductors.
Considering first the case of bulk samples, one can write

σAL(3D) =
∫

d3k
(2π)3

σAL(k). (7.151)

Using the values for α and η0 [see (7.139), (7.132), and (3.37)], we arrive at

σAL(k) = 2πe2ξ4k2 cos2 θ /[|ε| + (ξk)2]3, (7.152)

where ξ = (πD/8Tc)1/2, � ≡ 1, and θ is the angle between the vectors k and E. For
the bulk sample we obtain

σAL(3D) =
∫ 1

0
d cos θ

∫
k2dk

4π2
σAL(k) = (e2/32ξ) |ε|−1/2 (7.153)

in accordance with [41, 43]. For thin films the result is completely independent of
the material parameters

σAL(2D) = 1

L

∫
d2k

(2π)2
σAL(k) = 1

L

∫ π

0

dθ

2π

∫
dk2

4π
σAL(k)

= (e2/16L) |ε|−1 (7.154)

and is determined only by the value of thefilm’s thickness and the closeness to the crit-
ical temperature.9 We should note here the accord between (7.144) and (7.145), and
(7.153) and (7.154), respectively. It is interesting tomention that in the 2-dimensional
case, a consideration [35] based on (7.136) and (7.137) provides the same numerical
coefficient as the proper diagrammatic treatment! [38].

7.3.4 Maki-Thompson Mechanism

In the preceding consideration of the mechanism of paraconductivity we referred to
the superfluid component of the current (7.147),which resulted in a term, proportional
to E.

9We refer to the following values of integrals

∫ ∞

0
dxx4(1 + x2)−3 = (3π/16) and

∫ ∞

0
dxx(1 + x)−3 = 1/2,

arising at the calculation of (7.153) and (7.154).
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Meanwhile, [44], an expression of the same type follows directly from the inter-
ference term in the nonequilibrium current (7.112). Indeed, one can rewrite (7.112)
in the fluctuational limit |Δ| � γ as

jint = E

{
γ

2T c
σn

[
K

(
|Δ|√|Δ|2 + γ2

)
− E

(
|Δ|√|Δ|2 + γ2

)]}

∼= Eσn
π

8Tcγ
|Δ|2. (7.155)

The physical meaning of this term is, as was discussed in Sect. 7.2, in the interference
between normal and superfluid motions of the electrons. As a result of the interfer-
ence, the normal motion described by the relation jn = σnE, acquires an addition
[cf. (7.142)]:

〈jint〉 = Eσn
π

8Tcγ

〈|Δ|2〉 = E
(

σn
π

8Tc

)∑
k

〈|Δ(k)|2〉
γk

. (7.156)

In accordance with Sect. 7.2, the parameter γ, which smears out the BCS-singularity
in the single-particle density of states, should be taken as the maximum of possible
depairing factors related to 1/2τε, Dk2/2, τ−1

S , etc. Taking γ � Dk2/2 (cf. [4]), and
using (7.134) for the case of “dirty” superconductors, we arrive at

〈jint〉 = E
(

σn

DNτimp

)∑
k

〈|Ψk|2
〉

k2
. (7.157)

Substituting (7.137) into (7.157), one can confirm that the resulting expression has
exactly the same form10

〈jint〉 = E
e2π

2

∑
k

1

[ε + (ξk)2]k2 , (7.158)

as was used by Thompson [41]. It was pointed out in [44] that this leads to the Maki-
Thompson conductivity σMT. Moving from (7.158) to integration over all values of
k (as was done in [41]), we will get for the bulk sample:

σ
dirty
MT (3D) = (e2/8ξ) |ε|−1/2 , (7.159)

which means that in this case11

10To make the comparison easier one should replace in the expression (19) of Thompson [41] the
derivative of digamma function by its numerical value: ψ′(1/2) = π2/2.
11In view of the footnote (Sect. 7.3.2) the values of σMT should be twice smaller than given below
for both 3D and 2D cases.
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σ
dirty
MT (3D) = 4σdirty

AL (3D). (7.160)

For the samples of lower dimensionality, the value of σ
dirty
MT , which follows from

(7.158), is divergent: for thin films one should deal with expressions of the type

σMT(2D) = e2

4L

∫ ∞

k(→0)

dk

k[(T − Tc)/Tc + (ξk)2] , (7.161)

which demands a low-momentum cutoff kmin = k0. In view of this factor, one can
obtain [41]:

σ
dirty
MT (2D) = 2σdirty

AL (2D) ln{[ξ−2 |ε| + k0]/k0}. (7.162)

Generally, the cutoff may be caused by internal or external pair-breaking, owing
for example, to inelastic energy relaxation (Dk2/2 → τ−1

ε ), or the influence of the
magnetic field [Dk2/2 → (4eDH/c)(n + 1/2), n = 0,±1,±2, . . .]. In the case of
small cutoff (ξ2k20 � |T − Tc| /Tc), the value of (7.161) may exceed (7.153) by an
order of magnitude. In the opposite limit of strong pair breaking (or very close to
Tc), σMT tends to zero, as follows from (7.160). One might expect such behavior
since in the gapless regime the interference current components disappear in the
general TDGL description. It is important to note that the regularization procedure
for the case of restricted dimensionality is not trivial, even in absence of external
pair breaking: Keller and Korenman [45] and Patton [46] came to the conclusion
that the dominant contribution to this cutoff mechanism comes from the nonlinear
self-influence of the fluctuations of the pair-field. The related scattering of electrons
is more effective here, than the inelastic single-particle scattering. Later the corre-
sponding process got an analog in localization theory [47], from where the electron
phase-relaxation time τφ (so that k20 ≡ π/8ξ−2Tcτφ) migrated into this area. We will
not consider this problem in more detail, nor different limiting cases for more com-
plicated physical situations (see, in particular [48–82]). Instead, we refer the reader
to the very interesting discussion presented by Reizer [83].

7.4 Longitudinal Electric Field in Superconductors

The appearance of new physical quantity μ introduces a new characteristic length
into the theory of nonequilibrium superconductivity. Recall that in Chap.3, in dis-
cussing the static description of superconductors, two characteristic lengths were
mentioned—the penetration length of themagnetic fieldλL , and the coherence length
ξ(T ), which characterizes the spatial variation of the order parametermodulus.Anew
characteristic value related to the presence of μ determines the penetration length of
the longitudinal electric field E in a nonequilibrium superconductor. We emphasize
that the field E is not incorporated in the equilibrium theory, so such a feature does
not arise there.
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7.4.1 Tinkham-Clark Gauge-Invariant Potential

As was shown in Sect. 5.3, the Fourier-transform of the charge density in supercon-
ductors has the form12 (here e = 1):

ρω(k) = −N (0)

[
2ϕω(k) + 1

2
Tr
∫ ∞

−∞
dε

4π

dΩp

4π
ĝεε−ω(p,k)

]
. (7.163)

Using (5.99), (5.77), (5.79), and (5.80), one can establish that in superconductors the
charge density (7.163) must have the form

ρ = −2N (0)

{
ϕ + 1

4

∫ ∞

−∞
dε
[
N1( f1 + f2) + N 1( f1 − f2)

]}
(7.164)

which is explicitly gauge-invariant. [Note that in [2–6] less general expression for
ρ is given; it can be obtained from (7.164) if N1 = −N 1, which is not fulfilled at
ϕ �= 0]. We recall now the gauge-invariant potential μ:

μ = ϕ + θ̇

2
, (7.165)

where θ is the phase of the complex order parameter

Δ = |Δ| exp(iθ). (7.166)

In case of the gauge transformation (3.118), θ transforms as θ → θ + χ. The con-
dition of the superconductor’s charge neutrality, ρ = 0, taking into account (7.164),
provides the relation (in the first order in |Δ|/εF ):

ϕ = −1

4

∫ ∞

−∞
dε
[
N1( f1 + f2) + N 1( f1 − f2)

]
. (7.167)

Writing (7.167) in the θ = 0, using the relation (7.165) and iterating over ϕ, one
finds in the first approximation

μ =
∫ ∞

|Δ|
(nε − n−ε) dε. (7.168)

This is a familiar expression for the experimentally observed potential μ, intro-
duced by Tinkham [84]. This formula, as is clear from the derivation above, is only

12To avoid misunderstanding we emphasize the difference between notations for the Fourier com-
ponent of the charge density ρω(k) and the function ρ(ωk) related to the photon density of states.
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the first approximation to more general equations of the theory.13 At the same time,
treating (−θ̇/2) in the expression (7.165) as the chemical potential of the paired
electrons and referring to ϕ as the chemical potential of normal electrons, one can
interpret μ, in general, as the difference between the potentials of the normal and
superfluid components of the electron liquid.

7.4.2 Normal Metal–Superconductor Interface

As in the cases of lengths λL and ξ(T ), we turn to the Ginzburg–Landau equations
(generalized for nonstationary problems), and study the process of current flowacross
the boundary between the superconductor and a normal metal (this problem was
considered by Rieger et al. [86]).

We will consider first the case of a gapless superconductor. The equation for an
order parameter in this case has the form (see Sect. 4.3):

− 12τ0

(
∂

∂t
+ 2iϕ

)
Δ + ξ2(T )∇2Δ +

(
1 − |Δ|2

Δ2
0

)
Δ = 0, (7.169)

where
τ0 = (2τsΔ

2
0)

−1, Δ2
0 = 2π2(T 2

c − T 2). (7.170)

Let the superconductor occupy the region x > 0, and the normal metal x < 0
(Fig. 7.3). The equation for |Δ| in the stationary case of interest coincides with the
static Ginzburg–Landau equation:

ξ2(T )
∂2|Δ(x)|

∂x2
+ |Δ(x)|

(
1 − |Δ(x)|2

Δ2
0

)
= 0. (7.171)

Its solution, obeying the boundary condition |Δ(x = 0)| = 0, is the function

|Δ(x)| = Δ∞ tanh
x√

2ξ(T )
, (7.172)

where Δ∞ is the value of the order parameter modulus |Δ(x)| at x = ∞. The imag-
inary part of (7.169) coincides with the continuity equation, which has the form

12σμ
|Δ(x)|2

Δ2
0

= ξ2(T )
∂ js
∂x

= −ξ2(T )
∂ jn
∂x

(7.173)

13Using the substitution ξ = √ε2 − |Δ|2signε, the expression (7.168) may be presented in a form
μ = ∫∞

0 dξ(nξ − n−ξ)ξ/ε. Because the value of ξ/ε is commonly identified with the excitation’s
charge in superconductors (see Sect. 3.1), usually the gauge-invariant potential is related to the
charge-imbalance [85].
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Fig. 7.3 Appearance of an
electric field in the
superconductor boundaring a
normal metal: the
NS-junction. a—current
flowing across the
NS-boundary; b—the
electric field E and the order
parameter modulus |Δ| as
functions of the x-coordinate
for the current flow in the
gapless superconductors;
c—the same for finite-gap
superconductors

in the gauge θ̇ = 0 [in this gauge, according to (7.165), μ = ϕ]. In deriving (7.173),
the expression for total current density in a superconductor was used:

j = jn + js, (7.174)

subject to (4.121):

js = σn

4ieτ0Δ2
0

(
Δ∗ ∂Δ

∂x
− Δ

∂Δ∗

∂x

)
. (7.175)

Using the relation (4.121) for jn:

jn = σn E = −σn
∂ϕ

∂x
= −σn

∂μ

∂x
(7.176)

and the dependence (7.172) for |Δ(x)|, one finds at x > 0 the equation for the
potential μ:

12 tanh2
(

x

ξ(T )
√
2

)
μ = ξ2(T )

∂2μ

∂x2
. (7.177)

We will not seek the explicit solutions of the equation (7.177).14 The form of this
equation itself shows that the potential μ and the related electric field E descend at
a distance an order of ξ(E). Hence the characteristic length of electric field descend
(usually denoted as lE ) for gapless superconductors is of the order

lE ∼ ξ(T ). (7.178)

14The exact solution is given via the hypergeometric function [87].
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7.4.3 New Characteristic Length in Superconductors

We will estimate now lE for finite gap superconductors. To tackle this problem, we
have to use the set of dynamic Ginzburg–Landau type equations for pure supercon-
ductors, which are derived in Sect. 7.1. Separating in (7.44) the real and imaginary
parts in analogy with (7.171) and (7.173), one obtains:

− π

8Tc

√
1 + (2τε|Δ|)2 ∂|Δ|

∂t
+ π

8Tc
D(∇2 − Q2)|Δ|

×
[
Tc − T

Tc
− 7ζ(3)

(|Δ|2 + 2μ2)

8(πTc)2

]
|Δ| = 0, (7.179)

2|Δ|2√
1 + (2τε|Δ|)2 μ − D div(|Δ|2Q) = 0. (7.180)

We emphasize that in the present case the continuity equation

div j + ρ̇ = 0 (7.181)

and (7.180) are independent. Also, using the expressions (7.109)–(7.112) for the cur-
rent j, and considering the stationary case, when ∂|Δ|/∂t ≡ 0, one finds an equation
for the potential μ in the form15

2|Δ|2√
1 + (2τε|Δ|)2 μ − D

4T

π

∂2μ

∂x2
= 0. (7.182)

Because we are interested in the case of finite-gap superconductors, we can put
in (7.182)

τε|Δ| � 1. (7.183)

[Recall, that τ−1
ε in (7.182) is the energy damping of single-electron excitations,

which in the case of interest must be significantly less than the gap |Δ| in the electron
energy spectrum.] Thus (7.182) may be presented in the form

l2E
∂2μ

∂x2
= μ, (7.184)

where

lE =
√
Dτε

4T

π|Δ| . (7.185)

15We neglect here the contribution provided by the interference current, since the parameter |Δ|/T
is considered very small.
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Hence, the penetration depth of an electric field into the superconductor lE in vicinity
of Tc exceeds the length of the energy relaxation of electron excitations,

lE � lε
(
≡ √Dτε

)
, (7.186)

which in its turn may be substantially larger than ξ(T ) and λL (Fig. 7.3).16

Because (7.185) contains |Δ(T )| in the denominator, lE → ∞ at T → Tc, and
hence the electric field penetrates further and further into the bulk superconductor.
Thus a natural transition from a superconducting to a normal state occurs at T = Tc.

Concluding this section, we would like to emphasize that in accordance with
definition (7.165), which is the basic one for the value μ, both the single-particle
electron excitations and the Cooper condensate contribute to the creation of the
electric field in superconductors. It would be wrong to state that the potential μ
arises as a consequence of the branch population imbalance only, as would follow
from (7.168). This expression was derived in a fixed gauge and is a consequence
of the assumptions made in Sect. 7.4. Note also, that in thermodynamic equilibrium
μ = 0: this value corresponds to the absolute minimum of the free energy.

7.4.4 Carlson-Goldman Modes

The existence of weakly decaying collective excitations in superconductors came
under discussion immediately after the appearance of the BCS microscopic theory.
In particular, the weakly damping oscillations of the order parameter, which have a
sound-like spectrum in a neutral Fermi-liquid, were discussed by Bogoljubov (see,
e.g., [88]) and Anderson [89, 90]. Later it was realized that these oscillations are con-
nected with the vibrations of electron density. So it became necessary to account for
the Coulomb interaction. The Coulomb interaction shifts these oscillations into the
range of plasma frequency. Consequently, the specific superconducting characteris-
tics can not be important to these oscillations, because the scale of superconducting
energies is much less than the plasma one.

In the two-fluid hydrodynamics of superfluid helium, certain kinds of weakly
damping collective excitations are known [91]. Among them the first, second and
fourth sounds represent three-dimensional oscillations with sound-like spectra.

In superfluid helium, the first sound is connected with the density oscillations of
normal and superfluid components. In the charged superfluid system, the frequency
of these oscillations, alongside with the Bogoljubov-Anderson modes, would be dis-
placed toward the plasma frequency region. The same occurs with the fourth sound,
which is connected with the oscillations of the superfluid component. The second
sound represents the oscillations of temperature (entropy), not the density oscilla-
tions of the electron liquid and, in principle, might be detected in superconductors.

16For example, in aluminum τε ∼ 10−8 s and thus in a pure metal lE ∼ 1mm.
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However, as the investigations of Ginzburg [92] and Bardeen [93] have shown, the
damping of the second sound is very large in practically any real experimental con-
ditions.

The appearance of the potential μ (and of the related electric field) in super-
conductors brings into existence a new type of a sound mode that has no anal-
ogy in superfluid helium. Such collective oscillations, reported first by Carlson and
Goldman [94], reveal themselves in the high-frequency range

ω � τ−1
ε . (7.187)

During such oscillations the total current density equals zero, i.e., the normal and
superconducting currents are oppositely directed. The zero value of the total current
and hence of the magnetic field, makes it possible for these oscillations to exist in
the depth of a superconductor, because there are now no restrictions related to the
Meissner effect. With the Carlson-Goldman oscillations, the longitudinal electric
field

E = −∇μ + ∂Q
∂t

(7.188)

appears in the superconductor, although the value of E is small: E � |∇μ|—this
ensures the weak damping of oscillations.

7.4.5 Dispersion of Charge-Imbalance Mode

A simple description of the Carlson-Goldman oscillating mode, which is based on
the generalized dynamic equation (7.180), was introduced by Schmid [9] and Schön
[95]. We will reproduce this approach in some detail. In the limit of finite-gap super-
conductors, (7.180) takes the form

− 1

τε
μ + 1

|Δ|D div(|Δ|2Q) = 0. (7.189)

The dynamic equation (7.189)was obtained on the assumption of small characteristic
frequencies

ωτε � 1. (7.190)

In the opposite to (7.190) limit, it may be rewritten as

− ∂μ

∂t
+ 1

|Δ|D div(|Δ|2Q) = 0. (7.191)

As before, we assume the condition ω � |Δ|, which was used in deriving of (7.189).
Taking into account expressions (7.111) for js and (7.112) for jn , and also the above-
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mentioned relation
js + jn = 0, (7.192)

we find from (7.191) a dispersion equation [9, 95] for the Carlson-Goldman mode

ωq = −1

2
iΓ ±

√
a2q2 − Γ 2/4, (7.193)

which corresponds to propagation of the wave exp
[−i(ωq t − qx)

]
with the velocity

a and the damping Γ :

a2 = Ns

N

4T

π|Δ|
v2
F

3
, Γ = Ns

N

1

τimp
. (7.194)

We note that the velocity of propagation of the Carlson-Goldman mode is greater
than the velocity of the second sound by the factor (4T/π|Δ|)1/2.

Concluding Remark Collective modes in superconductors described above
are relatively high-frequency phenomena. To describe phenomena in this range
of frequencies, one should go beyond the limits of TDGL equations. How-
ever, in their range of applicability, TDGL equations are fully adequate for
describing a great variety of phenomena taking place in superconductors. Two
examples, Maki-Thompson and Aslamazov-Larkin mechanisms considered in
Section “Paraconductivity” demonstrate the equivalence of TDGL approach
with first-principle calculations based on Green’s functions technique. In gen-
eral, combination of TDGL with COMSOL promises numerous results of
modeling of real practical tasks, and elucidates the essence of ongoing physi-
cal processes.
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