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A	 unique	 example	 of	 one	 of	 Feynman’s	 famous	 diagrams,	 inscribed
and	 signed	 by	 Feynman	 himself;	 image	 appears	 courtesy	 of	 Jay	 M.
Pasachoff,	 Field	 Memorial	 Professor	 of	 Astronomy	 at	 Williams
College,	 for	whom	 the	diagram	was	drawn	 in	 the	 front	 pages	 of	 his
first-edition	copy	of	QED.
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Introduction	to	the	2006	Edition

The	 story	 of	 how	 we	 came	 to	 know	 light	 makes	 for	 one	 gripping
drama,	complete	with	twists	and	turns	and	reversals	of	fortune.
The	 photon	 is	 the	 most	 visible	 of	 all	 elementary	 particles:	 place

yourself	in	a	dusty	room	with	one	small	window	open	on	a	sunny	day
and	watch	a	multitude	of	the	little	buggers	hurrying	across	the	room.
Newton	 quite	 naturally	 thought	 that	 light	 consisted	 of	 a	 stream	 of
particles	(“corpuscles”),	but	already	he	had	some	doubts;	even	in	the
seventeenth	century,	the	diffraction	of	light	could	be	readily	observed.
Eventually,	 diffraction	 and	 other	 phenomena	 appeared	 to	 show
without	doubt	that	light	is	an	electromagnetic	wave.	That	monument
of	 nineteenth-century	 physics,	 Maxwell’s	 equations	 of
electromagnetism,	formulated	light	entirely	as	a	wave.	Then	Einstein
came	along	and	explained	the	photoelectric	effect	by	postulating	light
as	the	sum	of	little	packets	(“quanta”)	of	energy.	Thus	were	the	word
“photon”	 and	 the	 quantum	 theory	 of	 light	 born.	 (Here	 I	 will	 not
digress	 and	 recall	 Einstein’s	 famous	 discomfort	 with	 quantum
mechanics,	even	though	he	helped	at	its	birth.)	Meanwhile,	from	the
1920s	through	the	1940s	physicists	worked	out	the	quantum	behavior
of	 matter	 (“atoms”)	 thoroughly.	 Thus,	 it	 was	 all	 the	 more	 puzzling
that	the	quantum	behavior	of	 light	and	its	 interaction	with	electrons
resisted	 the	 efforts	 of	 the	 best	 and	 the	 brightest,	 notably	 Paul	Dirac
and	 Enrico	 Fermi.	 Physics	 had	 to	 wait	 for	 three	 young	 men—
Feynman,	 Schwinger,	 and	 Tomonoga—filled	 with	 optimism	 and
pessimism,	as	the	case	may	be,	 from	their	experiences	 in	World	War
II,	 to	 produce	 the	 correct	 formulation	 of	 quantum	 electrodynamics,
aka	QED.
Richard	 Feynman	 (1918–1988)	 was	 not	 only	 an	 extraordinary

physicist,	 but	 also	 an	 extraordinary	 figure,	 a	 swash-buckling
personality	the	likes	of	which	theoretical	physics	has	not	seen	before
or	hence.	Occasionally	 theoretical	physicists	will	while	away	an	 idle
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moment	 comparing	 the	 contributions	 of	 Feynman	 and	 Schwinger,
both	 nice	 Jewish	 boys	 from	 New	 York	 and	 almost	 exact
contemporaries.	This	senseless	discussion	serves	no	purpose,	but	it	is	a
fact	 that	while	 Julian	Schwinger	was	 a	 shy	and	 retiring	person	 (but
rather	warm	and	good-hearted	behind	his	apparent	remoteness),	Dick
Feynman	 was	 an	 extreme	 extrovert,	 the	 stuff	 of	 legends.	 With	 his
bongo	drums,	showgirls,	and	other	trappings	of	a	carefully	cultivated
image	enthusiastically	nurtured	by	a	 legion	of	 idolaters,	he	 is	 surely
the	best-loved	theoretical	physicist	next	to	Einstein.
The	 brilliant	 Russian	 physicist	 Lev	 Landau	 famously	 had	 a

logarithmic	 scale	 for	 ranking	 theoretical	 physicists,	with	Einstein	 on
top.	 It	 is	also	well	known	that	Landau	moved	himself	up	half	a	 step
after	 he	 formulated	 the	 theory	 of	 phase	 transitions.	 I	 have	my	 own
scale,	one	of	fun,	on	which	I	place	theoretical	physicists	I	know	either
in	 person	 or	 in	 spirit.	 Yes,	 it	 is	 true:	most	 theoretical	 physicists	 are
dull	 as	 dishwater	 and	 rank	 near	 minus	 infinity	 on	 this	 logarithmic
scale.	I	would	place	Schrödinger	(about	whom	more	later)	on	top,	but
Feynman	would	surely	rank	close	behind.	I	can’t	tell	you	where	I	land
on	my	own	scale,	but	I	do	try	to	have	as	much	fun	as	possible,	limited
by	the	amount	of	talent	and	resources	at	my	disposal.
But	what	fun	Feynman	was!	Early	in	my	career,	Feynman	asked	me

to	go	to	a	nightclub	with	him.	One	of	Feynman’s	colleagues	told	me
that	 the	 invitation	 showed	 that	 he	 took	me	 seriously	 as	 a	 physicist,
but	while	I	was	eager	to	tell	Feynman	my	thoughts	about	Yang-Mills
theory,	he	only	wanted	my	opinion	on	the	legs	of	the	dancing	girls	on
stage.	Of	course,	in	the	psychology	of	hero	worship,	nobody	gives	two
hoots	 about	 some	 bozo	 of	 a	 physicist	 who	 plays	 drums	 and	 likes
showgirls.	 So	 all	 right,	my	 scale	 is	 really	 fun	 times	 talent—Landau’s
scale	with	fun	factored	in,	with	the	stock	of	Einstein	falling	and	that
of	Landau	rising	(he	played	some	good	pranks	until	the	KGB	got	him).
Now	some	thirty	years	after	that	night	club	visit,	I	felt	honored	that

Ingrid	Gnerlich	of	Princeton	University	Press	should	ask	me	to	write
an	introduction	to	the	2006	edition	of	Feynman’s	 famous	book	QED:
The	Strange	Theory	of	Light	and	Matter.	First	a	confession:	I	had	never
read	QED	before.	When	this	book	came	out	in	1985	I	had	just	finished
writing	my	first	popular	physics	book,	Fearful	Symmetry,	and	I	more	or
less	adopted	a	policy	of	not	 reading	other	popular	physics	books	 for
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fear	of	their	influencing	my	style.	Thus,	I	read	the	copy	Ingrid	sent	me
with	fresh	eyes	and	deep	appreciation.	I	enjoyed	it	immensely,	jotting
down	my	thoughts	and	critiques	as	I	went	along.
I	was	wrong	not	to	have	read	this	book	before,	because	it	is	not	a

popular	 physics	 book	 in	 the	 usual	 sense	 of	 the	 phrase.	When	 Steve
Weinberg	suggested	in	1984	that	I	write	a	popular	physics	book	and
arranged	for	me	to	meet	his	editor	in	New	York,	he	gave	me	a	useful
piece	 of	 advice.	He	 said	 that	most	 physicists	who	wrote	 such	 books
could	not	resist	the	urge	of	explaining	everything,	while	the	lay	reader
only	wanted	to	have	the	illusion	of	understanding	and	to	catch	a	few
buzzwords	to	throw	around	at	cocktail	parties.
I	 think	 that	Weinberg’s	view,	 though	somewhat	cynical,	 is	 largely

correct.	Witness	the	phenomenal	success	of	Hawking’s	A	Brief	History
of	 Time	 (which	 I	 have	 not	 read	 in	 accordance	 with	 the	 policy	 I
mentioned	 earlier).	 One	 of	 my	 former	 colleagues	 here	 at	 the
University	 of	 California,	 a	 distinguished	 physicist	 who	 now	 holds	 a
chair	at	Oxford,	once	showed	me	a	sentence	from	that	book.	The	two
of	us	tried	to	make	sense	of	it	and	failed.	In	contrast,	I	want	to	assure
all	 the	 puzzled	 readers	 that	 every	 sentence	 in	 this	 book,	 though
seemingly	bizarre	 to	 the	max,	makes	 sense.	But	you	must	mull	 over
each	sentence	carefully	and	try	hard	to	understand	what	Feynman	is
saying	 before	 moving	 on.	 Otherwise,	 I	 guarantee	 that	 you	 will	 be
hopelessly	 lost.	 It	 is	 the	physics	 that	 is	bizarre,	not	 the	presentation.
After	all,	the	title	promises	a	“strange	theory.”
Since	 Feynman	 was	 Feynman,	 he	 chose	 to	 go	 totally	 against	 the

advice	Weinberg	 gave	me	 (advice	 which	 I	 incidentally	 also	 did	 not
follow	completely;	see	my	remark	below	regarding	group	theory).	 In
the	 acknowledgment,	 Feynman	 decried	 popular	 physics	 books	 as
achieving	“apparent	simplicity	only	by	describing	something	different,
something	 considerably	 distorted	 from	 what	 they	 claim	 to	 be
describing.”	Instead,	he	posed	himself	the	challenge	of	describing	QED
to	 the	 lay	reader	without	“distortion	of	 the	 truth.”	Thus,	you	should
not	think	of	this	book	as	a	typical	popular	physics	book.	Neither	is	it	a
textbook.	A	rare	hybrid	it	is	instead.
To	 explain	 what	 kind	 of	 book	 this	 is,	 I	 will	 use	 Feynman’s	 own

analogy,	 somewhat	 modified.	 According	 to	 Feynman,	 to	 learn	 QED
you	 have	 two	 choices:	 you	 can	 either	 go	 through	 seven	 years	 of
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physics	 education	 or	 read	 this	 book.	 (His	 figure	 is	 a	 bit	 of	 an
overestimate;	 these	 days	 a	 bright	 high-school	 graduate	 with	 the
proper	guidance	could	probably	do	it	in	less	than	seven	years.)	So	you
don’t	 really	 have	 a	 choice,	 do	 you?	Of	 course	 you	 should	 choose	 to
read	this	book!	Even	if	you	mull	over	every	sentence	as	I	suggest	you
do,	it	should	not	take	you	seven	weeks,	let	alone	seven	years.
So	how	do	these	two	choices	differ?	Now	comes	my	version	of	the

analogy:	a	Mayan	high	priest	announces	that	for	a	fee	he	could	teach
you,	an	ordinary	Joe	or	Jane	in	Mayan	society,	how	to	multiply	two
numbers,	for	example	564	by	253.	He	makes	you	memorize	a	9-by-9
table	and	then	tells	you	to	look	at	the	two	digits	farthest	to	the	right
in	 the	 two	numbers	you	have	 to	multiply,	namely,	4	and	3,	and	say
what	is	in	the	4th	row	and	3rd	column	of	the	table.	You	say	12.	Then
you	learn	that	you	should	write	down	2	and	“carry”	1,	whatever	that
means.	Next	you	are	 to	 say	what	 is	 in	 the	6th	row	and	3rd	column,
namely,	 18,	 to	 which	 you	 are	 told	 to	 add	 the	 number	 you	 are
carrying.	Of	course,	you’d	have	to	spend	another	year	learning	how	to
“add.”	 Well,	 you	 get	 the	 idea.	 This	 is	 what	 you	 would	 learn	 after
paying	tuition	at	a	prestigious	university.
Instead,	a	wise	guy	named	Feynman	approaches	you	saying,	“Shh,

if	you	know	how	to	count,	you	don’t	have	to	learn	all	this	fancy	stuff
about	carrying	and	adding!	All	you’ve	got	to	do	is	to	get	a	hold	of	564
jars.	Then	you	put	into	each	jar	253	pebbles.	Finally,	you	pour	all	the
pebbles	out	onto	a	big	pile	and	count	them.	That’s	the	answer!”
So	 you	 see,	 Feynman	 not	 only	 teaches	 you	 how	 to	multiply,	 but

also	gives	you	a	deep	understanding	of	what	the	high	priests	and	their
students,	 those	 people	 soon	 to	 have	 Ph.D.s	 from	 prestigious
universities,	 are	 doing!	 On	 the	 other	 hand,	 if	 you	 learn	 to	multiply
Feynman’s	way,	you	couldn’t	quite	apply	for	a	job	as	an	accountant.	If
your	boss	asked	you	to	multiply	big	numbers	all	day	long,	you	would
be	 exhausted,	 and	 the	 students	 who	went	 to	 High	 Priest	 University
would	leave	you	in	the	dust.
Having	written	both	a	textbook	(Quantum	Field	Theory	in	a	Nutshell,

henceforth	 referred	 to	 as	 Nutshell)	 and	 two	 popular	 physics	 books
(including	Fearful	Symmetry,	henceforth	Fearful),	I	feel	that	I	am	quite
qualified	to	address	your	concerns	about	what	kinds	of	books	to	read.
(By	 the	way,	 Princeton	University	 Press,	 the	 publisher	 of	 this	 book,
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publishes	both	Nutshell	and	Fearful.)
Let	me	divide	the	readers	of	this	introduction	into	three	classes:	(1)

students	who	may	be	inspired	by	this	book	to	go	on	and	master	QED,
(2)	 intelligent	 laypersons	 curious	 about	 QED,	 and	 (3)	 professional
physicists	like	myself.
If	you	are	in	class	1,	you	will	be	so	incredibly	inspired	and	fired	up

by	 this	 book	 that	 you	 will	 want	 to	 rush	 out	 and	 start	 reading	 a
textbook	on	quantum	field	 theory	(and	 it	might	as	well	be	Nutshell!)
By	the	way,	these	days	QED	is	considered	a	relatively	simple	example
of	a	quantum	field	 theory.	 In	writing	Nutshell,	 I	contend	that	a	 truly
bright	undergrad	would	have	a	good	shot	at	understanding	quantum
field	theory,	and	Feynman	would	surely	agree	with	me.
But	as	in	the	analogy,	reading	this	book	alone	will	in	no	way	turn

you	 into	 a	 pro.	 You	have	 to	 learn	what	 Feynman	 referred	 to	 as	 the
“tricky,	efficient	way”	of	multiplying	numbers.	In	spite	of	Feynman’s
proclaimed	 desire	 to	 explain	 everything	 from	 scratch,	 he	 noticeably
runs	 out	 of	 steam	 as	 he	 goes	 on.	 For	 example,	 on	 page	 89	 and	 in
figure	56,	he	merely	describes	the	bizarre	dependence	of	P(A	to	B)	on
the	“interval	I”	and	you	just	have	to	take	his	word	for	it.	In	Nutshell,
this	 is	derived.	Similarly	 for	 the	quantity	E(A	 to	B)	described	 in	 the
footnote	on	page	91.
If	you	are	in	class	2,	persevere	and	you	will	be	rewarded,	trust	me.

Don’t	 rush.	Even	 if	you	only	get	 through	 the	 first	 two	chapters,	you
will	have	learned	a	lot.	Why	is	this	book	so	hard	to	read?	We	could	go
back	 to	 the	Mayan	 analogy:	 it	 is	 as	 if	 you	 are	 teaching	 someone	 to
multiply	 by	 telling	 him	 about	 jars	 and	 pebbles,	 but	 he	 doesn’t	 even
know	what	a	 jar	or	a	pebble	 is.	Feynman	is	bouncing	around	telling
you	about	each	photon	carrying	a	little	arrow,	and	about	how	you	add
up	these	arrows	and	multiply	them,	shrinking	and	rotating	them.	It	is
all	 very	 confusing;	 you	 can’t	 afford	 even	 the	 slightest	 lapse	 in
attention.	Incidentally,	the	little	arrows	are	just	complex	numbers	(as
explained	 in	a	 footnote	on	page	63),	and	 if	you	already	know	about
complex	numbers	(and	jars	and	pebbles),	the	discussion	might	be	less
confusing.	 Or	 perhaps	 you	 are	 one	 of	 those	 typical	 lay	 readers
described	 by	 Weinberg,	 who	 are	 satisfied	 with	 “the	 illusion	 of
understanding	 something.”	 In	 that	 case,	you	may	be	 satisfied	with	a
“normal”	popular	physics	book.	Again	 the	Mayan	analogy:	a	normal
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popular	 physics	 book	 would	 burden	 you	 neither	 with	 9-by-9	 tables
and	carrying,	nor	with	jars	and	pebbles.	It	might	simply	say	that	when
given	two	numbers,	the	high	priests	have	a	way	of	producing	another
number.	 In	 fact,	 editors	 of	 popular	 physics	 books	 insist	 that	 authors
write	 like	 that	 in	 order	 not	 to	 scare	 away	 the	 paying	 public	 (more
below).
Finally,	 if	 you	 are	 in	 class	 3,	 you	 are	 in	 for	 a	 real	 treat.	 Even

though	 I	 am	 a	 quantum	 field	 theorist	 and	 know	 what	 Feynman	 is
doing,	 I	 still	 derived	great	pleasure	 from	seeing	 familiar	phenomena
explained	 in	 a	 dazzlingly	 original	 and	 unfamiliar	 way.	 I	 enjoyed
having	Feynman	explain	to	me	why	light	moves	 in	a	straight	 line	or
how	a	focusing	lens	really	works	(on	page	58:	“A	‘trick’	can	be	played
on	 Nature”	 by	 slowing	 light	 down	 along	 certain	 paths	 so	 the	 little
arrows	all	turn	by	the	same	amount!).
Shh.	 I	 will	 tell	 you	 why	 Feynman	 is	 different	 from	most	 physics

professors.	Go	ask	a	physics	professor	to	explain	why,	in	the	reflection
of	light	from	a	pane	of	glass,	it	suffices	to	consider	reflection	from	the
front	 surface	 and	 the	 back	 surface	 only.	 Very	 few	 would	 know	 the
answer	 (see	 page	 104).	 It	 is	 not	 because	 physics	 professors	 lack	 the
knowledge,	but	because	it	has	never	even	occurred	to	them	to	ask	this
question.	 They	 simply	 study	 the	 standard	 textbook	 by	 Jackson,	 pass
the	 exam,	 and	 move	 on.	 Feynman	 is	 the	 pesky	 kid	 who	 is	 forever
asking	why,	WHY,	WHY!
With	 three	 classes	 of	 readers	 (the	 aspiring	 student,	 the	 intelligent

layperson,	 the	 pro),	 there	 are	 also	 three	 categories	 of	 physics	 books
(not	 in	 one-to-one	 correspondence):	 textbooks,	 popular	 books,	 and
what	I	might	call	“extra-difficult	popular	physics	books.”	This	book	is
a	 rare	 example	 of	 the	 third	 category,	 in	 some	 sense	 intermediate
between	a	textbook	and	a	popular	book.	Why	is	this	third	category	so
thinly	 populated?	 Because	 “extra-difficult	 popular	 physics	 books”
scare	 publishers	 half	 to	 death.	 Hawking	 famously	 said	 that	 every
equation	halves	 the	sale	of	a	popular	book.	While	 I	do	not	deny	 the
general	truth	of	this	statement,	I	wish	that	publishers	would	not	be	so
easily	 frightened.	The	issue	 is	not	so	much	the	number	of	equations,
but	whether	 popular	 books	 could	 contain	 an	 honest	 presentation	 of
difficult	 concepts.	 When	 I	 wrote	 Fearful,	 I	 thought	 that	 to	 discuss
symmetry	 in	modern	 physics	 it	would	 be	 essential	 to	 explain	 group
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theory.	 I	 tried	 to	 make	 the	 concepts	 accessible	 by	 the	 use	 of	 little
tokens:	 squares	 and	 circles	 with	 letters	 inside	 them.	 But	 the	 editor
compelled	me	to	water	the	discussion	down	repeatedly	until	there	was
practically	nothing	left,	and	then	to	relegate	much	of	what	was	left	to
an	appendix.	Feynman,	on	the	other	hand,	had	the	kind	of	clout	that
not	every	physicist-writer	would	have.
Let	me	return	to	Feynman’s	book	with	its	difficult	passages.	Many

of	the	readers	of	this	book	will	have	had	some	exposure	to	quantum
physics.	Therefore,	they	may	be	legitimately	puzzled,	for	example,	by
the	absence	of	the	wave	function	that	figures	so	prominently	in	other
popular	discussions	of	quantum	physics.	Quantum	physics	is	puzzling
enough—as	 a	 wit	 once	 said,	 “With	 quantum	 physics,	 who	 needs
drugs?”	Perhaps	the	reader	should	be	spared	further	head	scratching.
So	let	me	explain.
Almost	 simultaneously	 but	 independently,	 Erwin	 Schrödinger	 and

Werner	 Heisenberg	 invented	 quantum	 mechanics.	 To	 describe	 the
motion	 of	 an	 electron,	 for	 example,	 Schrödinger	 introduced	 a	 wave
function	 governed	 by	 a	 partial	 differential	 equation,	 now	 known	 as
the	 Schrödinger	 equation.	 In	 contrast,	 Heisenberg	 mystified	 those
around	 him	 by	 talking	 about	 operators	 acting	 on	 what	 he	 called
“quantum	 states.”	 He	 also	 famously	 enunciated	 the	 uncertainty
principle,	which	states	that	the	more	accurately	one	were	to	measure,
say,	 the	position	of	a	quantum	particle,	 the	more	uncertain	becomes
one’s	knowledge	of	its	momentum,	and	vice	versa.
The	 formalisms	 set	 up	 by	 the	 two	men	were	manifestly	 different,

but	 the	 bottom-line	 result	 they	 obtained	 for	 any	 physical	 process
always	 agreed.	 Later,	 the	 two	 formalisms	 were	 shown	 to	 be
completely	 equivalent.	 Today,	 any	 decent	 graduate	 student	 is
expected	 to	 pass	 from	 one	 formalism	 to	 the	 other	 with	 facility,
employing	 one	 or	 the	 other	 according	 to	 which	 one	 is	 more
convenient	for	the	problem	at	hand.
Six	 years	 later,	 in	 1932,	 Paul	 Dirac	 suggested,	 in	 a	 somewhat

rudimentary	form,	yet	a	third	formalism.	Dirac’s	idea	appeared	to	be
largely	 forgotten	 until	 1941,	 when	 Feynman	 developed	 and
elaborated	this	 formalism,	which	became	known	as	the	path	integral
formalism,	 or	 sum	 over	 history	 formalism.	 (Physicists	 sometimes
wonder	 whether	 Feynman	 invented	 this	 formalism	 completely
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ignorant	of	Dirac’s	work.	Historians	of	physics	have	now	established
that	the	answer	is	no.	During	a	party	at	a	Princeton	tavern,	a	visiting
physicist	named	Herbert	Jehle	 told	Feynman	about	Dirac’s	 idea,	and
apparently	 the	 next	 day	 Feynman	worked	 out	 the	 formalism	 in	 real
time	in	front	of	the	awed	Jehle.	See	the	1986	article	by	S.	Schweber	in
Reviews	of	Modern	Physics.)
It	is	this	formalism	that	Feynman	tries	hard	to	explain	in	this	little

book.	For	example,	on	page	43,	when	Feynman	adds	all	those	arrows,
he	 is	 actually	 integrating	 (which	 of	 course	 is	 calculus	 jargon	 for
summing)	over	 the	amplitudes	associated	with	all	possible	paths	 the
photon	could	follow	in	getting	from	point	S	to	point	P.	Hence	the	term
“path	integral	formalism.”	The	alternative	term	“sum	over	history”	is
also	easy	 to	understand.	Were	 the	rules	of	quantum	physics	 relevant
to	 affairs	 on	 the	 macroscopic	 human	 scale,	 then	 all	 alternative
histories,	 such	 as	 Napoleon	 triumphing	 at	 Waterloo	 or	 Kennedy
dodging	 the	 assassin’s	 bullet,	 would	 be	 possible,	 and	 each	 history
would	 be	 associated	 with	 an	 amplitude	 that	 we	 are	 to	 sum	 over
(“summing	over	all	those	little	arrows”).
It	 turns	 out	 that	 the	 path	 integral,	 regarded	 as	 a	 function	 of	 the

final	 state,	 satisfies	 the	 Schrödinger	 equation.	 The	 path	 integral	 is
essentially	 the	 wave	 function.	 Hence	 the	 path	 integral	 formalism	 is
completely	equivalent	to	the	Schrödinger	and	Heisenberg	formalisms.
In	 fact,	 the	 one	 textbook	 that	 explains	 this	 equivalence	 clearly	 was
written	 by	 Feynman	 and	 Hibbs.	 (Yes,	 Feynman	 has	 also	 authored
textbooks—you	know,	 those	boring	books	 that	actually	 tell	you	how
to	do	 things	 efficiently,	 like	 “carrying”	 and	 “adding.”	Also,	 yes,	 you
guessed	 correctly	 that	Feynman’s	 textbooks	are	often	 largely	written
by	his	coauthors.)
Since	 the	 Dirac-Feynman	 path	 integral	 formalism	 is	 completely

equivalent	to	the	Heisenberg	formalism,	it	most	certainly	contains	the
uncertainty	 principle.	 So	 Feynman’s	 cheerful	 dismissal	 of	 the
uncertainty	principle	on	pages	55	and	56	is	a	bit	of	an	exaggeration.
At	the	very	least,	one	can	argue	over	semantics:	what	did	he	mean	by
saying	that	the	uncertainty	principle	is	not	“needed”?	The	real	issue	is
whether	or	not	it	is	useful.
Theoretical	physicists	are	a	notoriously	pragmatic	lot.	They	will	use

whichever	method	is	the	easiest.	There	is	none	of	the	mathematicians’
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petulant	insistence	on	rigor	and	proof.	Whatever	works,	man!
Given	this	attitude,	you	may	ask,	which	of	the	three	formalisms—

Schrödinger,	 Heisenberg,	 or	 Dirac-Feynman—is	 the	 easiest?	 The
answer	depends	on	the	problem.	In	treating	atoms,	for	example,	as	the
master	himself	admits	on	page	100,	the	Feynman	diagrams	“for	these
atoms	would	involve	so	many	straight	and	wiggly	lines	that	they’d	be
a	 complete	 mess!”	 The	 Schrödinger	 formalism	 is	 much	 easier	 by	 a
long	shot,	and	that	is	what	physicists	use.	In	fact,	for	most	“practical”
problems	 the	 path	 integral	 formalism	 is	 almost	 hopelessly	 involved,
and	in	some	cases	downright	impossible	to	use.	I	once	asked	Feynman
about	one	of	these	apparently	impossible	cases	and	he	had	no	answer.
Yet,	beginning	students	using	the	Schrödinger	 formalism	easily	solve
these	apparently	impossible	cases!
Thus,	 which	 formalism	 is	 best	 really	 depends	 on	 the	 physics

problem,	 so	 that	 theoretical	 physicists	 in	 one	 field—atomic	 physics,
for	 example—might	 favor	 one	 formalism,	 while	 those	 in	 another—
such	 as	 high	 energy	 physics—might	 prefer	 a	 different	 formalism.
Logically	then,	it	may	even	happen	that,	as	a	given	field	evolves	and
develops,	 one	 formalism	 may	 emerge	 as	 more	 convenient	 than
another.
To	be	specific,	 let	me	 focus	on	 the	 field	 I	was	 trained	 in,	namely,

high	energy,	or	particle,	physics,	which	is	also	Feynman’s	main	field.
Interestingly,	in	particle	physics	the	path	integral	formalism	for	a	long
time	 ran	 a	 distant	 third	 in	 the	 horse	 race	 between	 the	 three
formalisms.	(By	the	way,	nothing	says	that	there	could	be	only	three.
Some	 bright	 young	 guy	 could	 very	well	 come	 up	with	 a	 fourth!)	 In
fact,	 the	path	integral	 formalism	was	so	unwieldy	for	most	problems
that	by	the	 late	1960s	 it	almost	 fell	 into	complete	obscurity.	By	that
time,	 quantum	 field	 theory	was	 almost	 exclusively	 taught	 using	 the
canonical	 formalism,	 which	 is	 merely	 another	 word	 for	 the
Heisenberg	formalism,	but	the	very	word	“canonical”	should	tell	you
which	formalism	was	held	in	the	highest	esteem.	To	cite	just	one	case
history	I	happen	to	know	well,	I	had	never	heard	of	the	path	integral
during	 my	 student	 days,	 even	 though	 I	 went	 to	 two	 reasonably
reputable	 universities	 on	 the	 East	 Coast	 for	 my	 undergraduate	 and
graduate	studies.	(I	mention	the	East	Coast	because,	for	all	I	know,	the
path	integral	could	have	been	taught	intensively	in	an	eastern	enclave
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in	Los	Angeles.)	 It	was	not	until	 I	was	a	postdoc	at	 the	 Institute	 for
Advanced	 Study	 that	 I,	 as	 well	 as	 most	 of	 my	 colleagues,	 was	 first
alerted	to	the	path	integral	formalism	by	a	Russian	paper.	Even	then,
various	authorities	expressed	doubts	about	the	formalism.
Ironically,	 it	 was	 Feynman	 himself	 who	 was	 responsible	 for	 this

deplorable	 state	 of	 affairs.	 What	 happened	 was	 that	 students	 easily
learned	 the	 “funny	 little	 diagrams”	 (such	 as	 those	 on	 page	 116)
invented	by	Feynman.	Julian	Schwinger	once	said	rather	bitterly	that
“Feynman	brought	quantum	field	theory	to	the	masses,”	by	which	he
meant	 that	any	dullard	could	memorize	a	 few	“Feynman	rules,”	 call
himself	 or	 herself	 a	 field	 theorist,	 and	 build	 a	 credible	 career.
Generations	 learned	 Feynman	 diagrams	 without	 understanding	 field
theory.	Heavens	to	Betsy,	there	are	still	university	professors	like	that
walking	around!
But	 then,	 almost	 incredibly—and	 perhaps	 this	 is	 part	 of	 the

Feynman	mystique	 that	 gave	 his	 career	 an	 almost	magical	 aura—in
the	 early	 1970s,	 starting	 largely	 with	 that	 Russian	 paper	 I	 just
mentioned,	 the	 Dirac-Feynman	 path	 integral	 made	 a	 roaring
comeback.	 It	quickly	became	the	dominant	way	 to	make	progress	 in
quantum	field	theory.
What	makes	 Feynman	 such	 an	 extraordinary	physicist	 is	 that	 this

“battle	 for	 the	 hearts	 and	minds”	 I	 just	 described	 was	 between	 the
crowd	 using	 Feynman	 diagrams	 versus	 a	 younger	 crowd	 using
Feynman	path	integrals.	I	hasten	to	add	that	the	word	“battle”	is	a	bit
strong:	nothing	prevents	a	physicist	from	using	both.	I	did,	for	one.
I	 believe	 that	my	 recent	 textbook	Nutshell	 is	 one	 of	 the	 few	 that

employ	 the	 path	 integral	 formalism	 right	 from	 the	 beginning,	 in
contrast	 to	 older	 textbooks	 that	 favor	 the	 canonical	 formalism.	 I
started	 the	 second	 chapter	 with	 a	 section	 titled	 “The	 professor’s
nightmare:	 a	 wise	 guy	 in	 the	 class.”	 In	 the	 spirit	 of	 all	 those
apocryphal	 stories	 about	 Feynman,	 I	made	up	 a	 story	 about	 a	wise-
guy	 student	 and	 named	 him	 Feynman.	 The	 path	 integral	 formalism
was	 derived	 by	 the	 rather	 Zen	 procedure	 of	 introducing	 an	 infinite
number	 of	 screens	 and	 drilling	 an	 infinite	 number	 of	 holes	 in	 each
screen,	thus	ending	up	with	no	screen.	But	as	in	the	Mayan	priesthood
analogy,	 after	 this	 Feynmanesque	 derivation,	 I	 had	 to	 teach	 the
student	how	 to	 actually	 calculate	 (“carry”	 and	 “add”)	 and	 for	 that	 I
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had	to	abandon	the	apocryphal	Feynman	and	go	through	the	detailed
Dirac-Feynman	derivation	of	the	path	integral	formalism,	introducing
such	technicalities	as	“the	insertion	of	1	as	a	sum	over	a	complete	set
of	 bras	 and	 kets.”	 Technicality	 is	 what	 you	 do	 not	 get	 by	 reading
Feynman’s	books!
Incidentally,	 in	 case	you	are	wondering,	 the	bras	have	nothing	 to

do	with	the	philandering	Dick	Feynman.	They	were	introduced	by	the
staid	 and	 laconic	 Paul	 Dirac	 as	 the	 left	 half	 of	 a	 bracket.	 Dirac	 is
himself	a	 legend:	I	once	sat	through	an	entire	dinner	with	Dirac	and
others	without	him	uttering	more	than	a	few	words.
I	 chuckled	 a	 few	 times	 as	 Feynman	got	 in	 some	 sly	 digs	 at	 other

physicists.	 For	 example,	 on	 page	 132	 he	 dismissively	 referred	 to
Murray	Gell-Mann,	the	brilliant	physicist	and	Feynman’s	friendly	rival
at	 Caltech,	 as	 a	 “great	 inventor.”	 Going	 somewhat	 against	 his	 own
carefully	cultivated	wise-guy	image,	he	then	deplored	on	page	135	the
general	decline	of	physicists’	 knowledge	of	Greek,	knowing	 full	well
that	Gell-Mann	not	only	coined	the	neologism	“gluon”	but	 is	also	an
accomplished	linguist.
I	also	liked	Feynman’s	self-deprecatory	remarks,	which	are	part	and

parcel	of	his	image.	On	page	149,	when	Feynman	speaks	of	“some	fool
physicist	giv[ing]	a	lecture	at	UCLA	in	1983,”	some	readers	might	not
realize	 that	Feynman	 is	 speaking	of	himself!	Although	 this	 is	 indeed
part	 of	 the	 image,	 I	 find	 it	 refreshing	 as	 we	 theoretical	 physicists
become	 increasingly	 hierarchical	 and	 pompous	 in	 our	 time.	 The
Feynman	whom	 I	 knew—and	 I	 emphasize	 that	 I	 did	 not	 know	 him
well—surely	would	not	like	this	trend.	Afterall,	he	once	caused	a	big
fuss	trying	to	resign	from	the	National	Academy	of	Sciences.
Referring	back	to	the	three	classes	of	potential	readers	I	described

above,	I	would	say	that	those	in	classes	2	and	3	will	enjoy	this	book
enormously,	but	the	book	was	secretly	written	for	those	in	class	1.	If
you	 are	 an	 aspiring	 theoretical	 physicist,	 I	 urge	 you	 to	 devour	 this
book	with	all	the	fiery	hunger	you	feel	in	your	mind,	and	then	go	on
to	 learn	 from	 a	 quantum	 field	 theory	 textbook	 how	 to	 actually
“carry.”
Surely	you	can	master	quantum	field	 theory.	Just	remember	what

Feynman	said:	“What	one	fool	can	understand,	another	can.”	He	was
referring	to	himself,	and	to	you!
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Foreword

The	Alix	G.	Mautner	Memorial	 Lectures	were	 conceived	 in	honor	 of
my	wife	Alix,	who	died	in	1982.	Although	her	career	was	in	English
literature,	 Alix	 had	 a	 long	 and	 abiding	 interest	 in	 many	 scientific
fields.	Thus	it	seemed	fitting	to	create	a	fund	in	her	name	that	would
support	an	annual	lecture	series	with	the	objective	of	communicating
to	an	intelligent	and	interested	public	the	spirit	and	achievements	of
science.
I	 am	delighted	 that	Richard	Feynman	has	 agreed	 to	 give	 the	 first

series	 of	 lectures.	 Our	 friendship	 goes	 back	 fifty-five	 years	 to	 our
childhood	 in	Far	Rockaway,	New	York.	Richard	knew	Alix	 for	about
twenty-two	 years,	 and	 she	 long	 sought	 to	 have	 him	 develop	 an
explanation	 of	 the	 physics	 of	 small	 particles	 that	 would	 be
understandable	to	her	and	to	other	non-physicists.
As	an	added	note,	I	would	like	to	express	my	appreciation	to	those

who	contributed	to	 the	Alix	G.	Mautner	Fund	and	thus	helped	make
these	lectures	possible.

LEONARD	MAUTNER
Los	Angeles,	California
May	1983
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Preface

Richard	Feynman	is	legendary	in	the	world	of	physics	for	the	way	he
looks	 at	 the	 world:	 taking	 nothing	 for	 granted	 and	 always	 thinking
things	 out	 for	 himself,	 he	 often	 attains	 a	 new	 and	 profound
understanding	 of	 nature’s	 behavior—with	 a	 refreshing	 and	 elegantly
simple	way	to	describe	it.
He	 is	 also	 known	 for	 his	 enthusiasm	 in	 explaining	 physics	 to

students.	 After	 turning	 down	 countless	 offers	 to	 give	 speeches	 at
prestigious	 societies	 and	 organizations,	 Feynman	 is	 a	 sucker	 for	 the
student	who	comes	by	his	office	and	asks	him	to	talk	to	the	local	high
school	physics	club.
This	 book	 is	 a	 venture	 that,	 as	 far	 as	 we	 know,	 has	 never	 been

tried.	 It	 is	 a	 straightforward,	honest	 explanation	of	 a	 rather	difficult
subject—the	 theory	of	quantum	electrodynamics—for	a	nontechnical
audience.	It	 is	designed	to	give	the	interested	reader	an	appreciation
for	 the	 kind	 of	 thinking	 that	 physicists	 have	 resorted	 to	 in	 order	 to
explain	how	Nature	behaves.
If	you	are	planning	to	study	physics	(or	are	already	doing	so),	there

is	 nothing	 in	 this	 book	 that	 has	 to	 be	 “unlearned”:	 it	 is	 a	 complete
description,	accurate	in	every	detail,	of	a	framework	onto	which	more
advanced	concepts	can	be	attached	without	modification.	For	those	of
you	who	have	already	studied	physics,	 it	 is	a	revelation	of	what	you
were	 really	 doing	 when	 you	 were	 making	 all	 those	 complicated
calculations!
As	a	boy,	Richard	Feynman	was	 inspired	to	study	calculus	 from	a

book	that	began,	“What	one	fool	can	do,	another	can.”	He	would	like
to	 dedicate	 this	 book	 to	 his	 readers	 with	 similar	 words:	 “What	 one
fool	can	understand,	another	can.”

RALPH	LEIGHTON
Pasadena,	California
February	1985
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without	compromise	by	distortion	of	the	truth.
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1

Introduction

Alix	Mautner	was	very	curious	about	physics	and	often	asked	me	 to
explain	things	to	her.	I	would	do	all	right,	just	as	I	do	with	a	group	of
students	 at	 Caltech	 that	 come	 to	me	 for	 an	 hour	 on	 Thursdays,	 but
eventually	 I’d	 fail	 at	 what	 is	 to	 me	 the	 most	 interesting	 part:	 We
would	always	get	hung	up	on	the	crazy	ideas	of	quantum	mechanics.	I
told	 her	 I	 couldn’t	 explain	 these	 ideas	 in	 an	 hour	 or	 an	 evening—it
would	take	a	long	time—but	I	promised	her	that	someday	I’d	prepare
a	set	of	lectures	on	the	subject.
I	prepared	some	 lectures,	and	 I	went	 to	New	Zealand	 to	 try	 them

out—because	 New	 Zealand	 is	 far	 enough	 away	 that	 if	 they	 weren’t
successful,	 it	 would	 be	 all	 right!	 Well,	 the	 people	 in	 New	 Zealand
thought	 they	 were	 okay,	 so	 I	 guess	 they’re	 okay—at	 least	 for	 New
Zealand!	 So	 here	 are	 the	 lectures	 I	 really	 prepared	 for	 Alix,	 but
unfortunately	I	can’t	tell	them	to	her	directly,	now.
What	I’d	like	to	talk	about	is	a	part	of	physics	that	is	known,	rather

than	a	part	 that	 is	unknown.	People	are	always	asking	 for	 the	 latest
developments	 in	 the	unification	of	 this	 theory	with	 that	 theory,	 and
they	 don’t	 give	 us	 a	 chance	 to	 tell	 them	 anything	 about	 one	 of	 the
theories	that	we	know	pretty	well.	They	always	want	to	know	things
that	we	don’t	know.	So,	rather	than	confound	you	with	a	lot	of	half-
cooked,	 partially	 analyzed	 theories,	 I	would	 like	 to	 tell	 you	 about	 a
subject	 that	 has	 been	 very	 thoroughly	 analyzed.	 I	 love	 this	 area	 of
physics	 and	 I	 think	 it’s	 wonderful:	 it	 is	 called	 quantum
electrodynamics,	or	QED	for	short.
My	main	purpose	in	these	lectures	is	to	describe	as	accurately	as	I

can	the	strange	theory	of	 light	and	matter—or	more	specifically,	 the
interaction	 of	 light	 and	 electrons.	 It’s	 going	 to	 take	 a	 long	 time	 to
explain	all	 the	things	 I	want	 to.	However,	 there	are	 four	 lectures,	so
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I’m	going	to	take	my	time,	and	we	will	get	everything	all	right.
Physics	has	a	history	of	 synthesizing	many	phenomena	 into	a	 few

theories.	 For	 instance,	 in	 the	 early	 days	 there	 were	 phenomena	 of
motion	and	phenomena	of	heat;	 there	were	phenomena	of	 sound,	of
light,	 and	 of	 gravity.	 But	 it	 was	 soon	 discovered,	 after	 Sir	 Isaac
Newton	explained	the	 laws	of	motion,	 that	some	of	 these	apparently
different	 things	 were	 aspects	 of	 the	 same	 thing.	 For	 example,	 the
phenomena	of	sound	could	be	completely	understood	as	the	motion	of
atoms	 in	 the	 air.	 So	 sound	 was	 no	 longer	 considered	 something	 in
addition	 to	motion.	 It	was	 also	discovered	 that	heat	phenomena	are
easily	 understandable	 from	 the	 laws	 of	 motion.	 In	 this	 way,	 great
globs	of	physics	theory	were	synthesized	into	a	simplified	theory.	The
theory	of	gravitation,	on	the	other	hand,	was	not	understandable	from
the	laws	of	motion,	and	even	today	it	stands	 isolated	from	the	other
theories.	Gravitation	 is,	 so	 far,	 not	understandable	 in	 terms	of	 other
phenomena.
After	 the	synthesis	of	 the	phenomena	of	motion,	 sound,	and	heat,

there	 was	 the	 discovery	 of	 a	 number	 of	 phenomena	 that	 we	 call
electrical	 and	magnetic.	 In	 1873	 these	 phenomena	were	 synthesized
with	the	phenomena	of	light	and	optics	into	a	single	theory	by	James
clerk	Maxwell,	who	proposed	 that	 light	 is	 an	 electromagnetic	wave.
So	at	that	stage,	there	were	the	laws	of	motion,	the	laws	of	electricity
and	magnetism,	and	the	laws	of	gravity.
Around	1900	a	theory	was	developed	to	explain	what	matter	was.

It	was	called	the	electron	theory	of	matter,	and	it	said	that	there	were
little	charged	particles	inside	of	atoms.	This	theory	evolved	gradually
to	include	a	heavy	nucleus	with	electrons	going	around	it.
Attempts	 to	 understand	 the	motion	of	 the	 electrons	 going	 around

the	nucleus	by	using	mechanical	laws—analogous	to	the	way	Newton
used	the	laws	of	motion	to	figure	out	how	the	earth	went	around	the
sun—were	 a	 real	 failure:	 all	 kinds	 of	 predictions	 came	 out	 wrong.
(Incidentally,	the	theory	of	relativity,	which	you	all	understand	to	be
a	great	revolution	in	physics,	was	also	developed	at	about	that	time.
But	 compared	 to	 this	 discovery	 that	 Newton’s	 laws	 of	 motion	 were
quite	 wrong	 in	 atoms,	 the	 theory	 of	 relativity	 was	 only	 a	 minor
modification.)	Working	out	another	system	to	replace	Newton’s	 laws
took	a	 long	 time	because	phenomena	at	 the	atomic	 level	were	quite
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strange.	 One	 had	 to	 lose	 one’s	 common	 sense	 in	 order	 to	 perceive
what	 was	 happening	 at	 the	 atomic	 level.	 Finally,	 in	 1926,	 an
“uncommon-sensy”	theory	was	developed	to	explain	the	“new	type	of
behavior”	of	electrons	in	matter.	It	 looked	cockeyed,	but	in	reality	it
was	 not:	 it	 was	 called	 the	 theory	 of	 quantum	mechanics.	 The	word
“quantum”	 refers	 to	 this	 peculiar	 aspect	 of	 nature	 that	 goes	 against
common	sense.	It	is	this	aspect	that	I	am	going	to	tell	you	about.
The	 theory	 of	 quantum	 mechanics	 also	 explained	 all	 kinds	 of

details,	 such	 as	 why	 an	 oxygen	 atom	 combines	 with	 two	 hydrogen
atoms	 to	make	water,	 and	 so	on.	Quantum	mechanics	 thus	 supplied
the	theory	behind	chemistry.	So,	fundamental	theoretical	chemistry	is
really	physics.
Because	 the	 theory	 of	 quantum	 mechanics	 could	 explain	 all	 of

chemistry	 and	 the	 various	 properties	 of	 substances,	 it	 was	 a
tremendous	success.	But	still	there	was	the	problem	of	the	interaction
of	 light	 and	 matter.	 That	 is,	 Maxwell’s	 theory	 of	 electricity	 and
magnetism	had	to	be	changed	to	be	in	accord	with	the	new	principles
of	quantum	mechanics	that	had	been	developed.	So	a	new	theory,	the
quantum	theory	of	the	interaction	of	light	and	matter,	which	is	called
by	 the	 horrible	 name	 “quantum	 electrodynamics,”	 was	 finally
developed	by	a	number	of	physicists	in	1929.
But	the	theory	was	troubled.	 If	you	calculated	something	roughly,

it	would	give	a	reasonable	answer.	But	if	you	tried	to	compute	it	more
accurately,	you	would	find	that	the	correction	you	thought	was	going
to	be	small	 (the	next	 term	 in	a	series,	 for	example)	was	 in	 fact	very
large—in	 fact,	 it	 was	 infinity!	 So	 it	 turned	 out	 you	 couldn’t	 really
compute	anything	beyond	a	certain	accuracy.
By	 the	way,	what	 I	have	 just	outlined	 is	what	 I	call	a	“physicist’s

history	of	physics,”	which	is	never	correct.	What	I	am	telling	you	is	a
sort	 of	 conventionalized	 myth-story	 that	 the	 physicists	 tell	 to	 their
students,	 and	 those	 students	 tell	 to	 their	 students,	 and	 is	 not
necessarily	 related	 to	 the	 actual	 historical	 development,	 which	 I	 do
not	really	know!
At	any	 rate,	 to	continue	with	 this	 “history,”	Paul	Dirac,	using	 the

theory	of	relativity,	made	a	relativistic	theory	of	the	electron	that	did
not	 completely	 take	 into	 account	 all	 the	 effects	 of	 the	 electron’s
interaction	 with	 light.	 Dirac’s	 theory	 said	 that	 an	 electron	 had	 a
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magnetic	moment—something	 like	 the	 force	of	a	 little	magnet—that
had	a	strength	of	exactly	1	in	certain	units.	Then	in	about	1948	it	was
discovered	 in	 experiments	 that	 the	 actual	 number	 was	 closer	 to
1.00118	 (with	 an	 uncertainty	 of	 about	 3	 on	 the	 last	 digit).	 It	 was
known,	 of	 course,	 that	 electrons	 interact	 with	 light,	 so	 some	 small
correction	 was	 expected.	 It	 was	 also	 expected	 that	 this	 correction
would	 be	 understandable	 from	 the	 new	 theory	 of	 quantum
electrodynamics.	But	when	 it	was	calculated,	 instead	of	1.00118	 the
result	was	infinity—which	is	wrong,	experimentally!
Well,	 this	 problem	 of	 how	 to	 calculate	 things	 in	 quantum

electrodynamics	was	 straightened	 out	 by	 Julian	 Schwinger,	 Sin-Itiro
Tomonaga,	 and	 myself	 in	 about	 1948.	 Schwinger	 was	 the	 first	 to
calculate	 this	 correction	 using	 a	 new	 “shell	 game”;	 his	 theoretical
value	 was	 around	 1.00116,	 which	 was	 close	 enough	 to	 the
experimental	number	to	show	that	we	were	on	the	right	track.	At	last,
we	had	a	quantum	theory	of	electricity	and	magnetism	with	which	we
could	calculate!	This	is	the	theory	that	I	am	going	to	describe	to	you.
The	 theory	 of	 quantum	 electrodynamics	 has	 now	 lasted	 for	more

than	fifty	years,	and	has	been	tested	more	and	more	accurately	over	a
wider	 and	 wider	 range	 of	 conditions.	 At	 the	 present	 time	 I	 can
proudly	say	 that	 there	 is	no	significant	difference	between	experiment
and	theory!
Just	 to	give	you	an	 idea	of	how	 the	 theory	has	been	put	 through

the	 wringer,	 I’ll	 give	 you	 some	 recent	 numbers:	 experiments	 have
Dirac’s	number	at	1.00115965221	(with	an	uncertainty	of	about	4	in
the	 last	 digit);	 the	 theory	 puts	 it	 at	 1.00115965246	 (with	 an
uncertainty	of	about	five	times	as	much).	To	give	you	a	feeling	for	the
accuracy	 of	 these	 numbers,	 it	 comes	 out	 something	 like	 this:	 If	 you
were	 to	measure	 the	distance	 from	Los	Angeles	 to	New	York	 to	 this
accuracy,	 it	would	be	exact	 to	 the	 thickness	of	a	human	hair.	That’s
how	delicately	quantum	electrodynamics	has,	 in	 the	past	 fifty	years,
been	 checked—both	 theoretically	 and	 experimentally.	 By	 the	way,	 I
have	chosen	only	one	number	to	show	you.	There	are	other	things	in
quantum	electrodynamics	 that	have	been	measured	with	comparable
accuracy,	 which	 also	 agree	 very	well.	 Things	 have	 been	 checked	 at
distance	 scales	 that	 range	 from	 one	 hundred	 times	 the	 size	 of	 the
earth	 down	 to	 one-hundredth	 the	 size	 of	 an	 atomic	 nucleus.	 These
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numbers	are	meant	to	intimidate	you	into	believing	that	the	theory	is
probably	not	too	far	off!	Before	we’re	through,	I’ll	describe	how	these
calculations	are	made.
I	 would	 like	 to	 again	 impress	 you	 with	 the	 vast	 range	 of

phenomena	that	the	theory	of	quantum	electrodynamics	describes:	It’s
easier	to	say	it	backwards:	the	theory	describes	all	the	phenomena	of
the	physical	world	except	the	gravitational	effect,	the	thing	that	holds
you	 in	 your	 seats	 (actually,	 that’s	 a	 combination	 of	 gravity	 and
politeness,	I	think),	and	radioactive	phenomena,	which	involve	nuclei
shifting	 in	 their	 energy	 levels.	 So	 if	 we	 leave	 out	 gravity	 and
radioactivity	(more	properly,	nuclear	physics),	what	have	we	got	left?
Gasoline	burning	 in	automobiles,	 foam	and	bubbles,	 the	hardness	of
salt	 or	 copper,	 the	 stiffness	 of	 steel.	 In	 fact,	 biologists	 are	 trying	 to
interpret	as	much	as	they	can	about	life	in	terms	of	chemistry,	and	as	I
already	 explained,	 the	 theory	 behind	 chemistry	 is	 quantum
electrodynamics.
I	must	clarify	something:	When	I	say	that	all	the	phenomena	of	the

physical	world	can	be	explained	by	this	theory,	we	don’t	really	know
that.	Most	phenomena	we	are	 familiar	with	 involve	 such	 tremendous
numbers	of	electrons	that	it’s	hard	for	our	poor	minds	to	follow	that
complexity.	In	such	situations,	we	can	use	the	theory	to	figure	roughly
what	 ought	 to	 happen	 and	 that	 is	 what	 happens,	 roughly,	 in	 those
circumstances.	 But	 if	 we	 arrange	 in	 the	 laboratory	 an	 experiment
involving	 just	 a	 few	 electrons	 in	 simple	 circumstances,	 then	 we	 can
calculate	what	might	happen	very	accurately,	and	we	can	measure	it
very	accurately,	too.	Whenever	we	do	such	experiments,	the	theory	of
quantum	electrodynamics	works	very	well.
We	physicists	are	always	checking	to	see	if	there	is	something	the

matter	with	the	theory.	That’s	the	game,	because	if	there	is	something
the	matter,	 it’s	 interesting!	But	so	far,	we	have	found	nothing	wrong
with	the	theory	of	quantum	electrodynamics.	It	is,	therefore,	I	would
say,	the	jewel	of	physics—our	proudest	possession.
The	 theory	 of	 quantum	 electrodynamics	 is	 also	 the	 prototype	 for

new	 theories	 that	 attempt	 to	 explain	nuclear	phenomena,	 the	 things
that	 go	 on	 inside	 the	 nuclei	 of	 atoms.	 If	 one	 were	 to	 think	 of	 the
physical	world	as	a	stage,	then	the	actors	would	be	not	only	electrons,
which	 are	 outside	 the	 nucleus	 in	 atoms,	 but	 also	 quarks	 and	 gluons
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and	 so	 forth—dozens	 of	 kinds	 of	 particles—inside	 the	 nucleus.	 And
though	 these	 “actors”	 appear	 quite	 different	 from	one	 another,	 they
all	act	in	a	certain	style—a	strange	and	peculiar	style—the	“quantum”
style.	At	the	end,	I’ll	tell	you	a	little	bit	about	the	nuclear	particles.	In
the	meantime,	I’m	only	going	to	tell	you	about	photons—particles	of
light—and	electrons,	 to	keep	 it	 simple.	Because	 it’s	 the	way	 they	act
that	is	important,	and	the	way	they	act	is	very	interesting.
So	now	you	know	what	I’m	going	to	talk	about.	The	next	question

is,	 will	 you	 understand	 what	 I’m	 going	 to	 tell	 you?	 Everybody	 who
comes	to	a	scientific	 lecture	knows	they	are	not	going	to	understand
it,	but	maybe	the	lecturer	has	a	nice,	colored	tie	to	look	at.	Not	in	this
case!	(Feynman	is	not	wearing	a	tie.)
What	 I	 am	 going	 to	 tell	 you	 about	 is	what	we	 teach	 our	 physics

students	in	the	third	or	fourth	year	of	graduate	school—and	you	think
I’m	going	to	explain	it	to	you	so	you	can	understand	it?	No,	you’re	not
going	to	be	able	to	understand	it.	Why,	then,	am	I	going	to	bother	you
with	all	 this?	Why	are	you	going	 to	sit	here	all	 this	 time,	when	you
won’t	be	able	to	understand	what	I	am	going	to	say?	It	is	my	task	to
convince	you	not	 to	turn	away	because	you	don’t	understand	it.	You
see,	my	physics	students	don’t	understand	it	either.	That	is	because	I
don’t	understand	it.	Nobody	does.
I’d	 like	 to	 talk	 a	 little	 bit	 about	 understanding.	When	we	 have	 a

lecture,	 there	 are	many	 reasons	 why	 you	might	 not	 understand	 the
speaker.	One	is,	his	language	is	bad—he	doesn’t	say	what	he	means	to
say,	or	he	says	it	upside	down—and	it’s	hard	to	understand.	That’s	a
rather	 trivial	matter,	 and	 I’ll	 try	my	 best	 to	 avoid	 too	much	 of	my
New	York	accent.
Another	possibility,	especially	 if	 the	 lecturer	 is	a	physicist,	 is	 that

he	uses	ordinary	words	in	a	funny	way.	Physicists	often	use	ordinary
words	 such	 as	 “work”	 or	 “action”	 or	 “energy”	 or	 even,	 as	 you	 shall
see,	 “light”	 for	 some	 technical	 purpose.	 Thus,	 when	 I	 talk	 about
“work”	in	physics,	I	don’t	mean	the	same	thing	as	when	I	talk	about
“work”	 on	 the	 street.	 During	 this	 lecture	 I	 might	 use	 one	 of	 those
words	without	noticing	that	 it	 is	being	used	 in	 this	unusual	way.	 I’ll
try	my	best	to	catch	myself—that’s	my	job—but	it	 is	an	error	that	is
easy	to	make.
The	next	reason	that	you	might	think	you	do	not	understand	what	I
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am	telling	you	is,	while	I	am	describing	to	you	how	Nature	works,	you
won’t	 understand	why	 Nature	works	 that	way.	 But	 you	 see,	 nobody
understands	that.	I	can’t	explain	why	Nature	behaves	in	this	peculiar
way.
Finally,	there	is	this	possibility:	after	I	tell	you	something,	you	just

can’t	believe	 it.	You	can’t	 accept	 it.	You	don’t	 like	 it.	A	 little	 screen
comes	down	and	you	don’t	 listen	 anymore.	 I’m	going	 to	describe	 to
you	how	Nature	is—and	if	you	don’t	like	it,	that’s	going	to	get	in	the
way	 of	 your	 understanding	 it.	 It’s	 a	 problem	 that	 physicists	 have
learned	to	deal	with:	They’ve	learned	to	realize	that	whether	they	like
a	 theory	 or	 they	 don’t	 like	 a	 theory	 is	 not	 the	 essential	 question.
Rather,	 it	 is	 whether	 or	 not	 the	 theory	 gives	 predictions	 that	 agree
with	 experiment.	 It	 is	 not	 a	 question	 of	 whether	 a	 theory	 is
philosophically	 delightful,	 or	 easy	 to	 understand,	 or	 perfectly
reasonable	 from	 the	 point	 of	 view	 of	 common	 sense.	 The	 theory	 of
quantum	electrodynamics	describes	Nature	 as	 absurd	 from	 the	point
of	 view	of	 common	 sense.	And	 it	 agrees	 fully	with	 experiment.	 So	 I
hope	you	can	accept	Nature	as	She	is—absurd.
I’m	 going	 to	 have	 fun	 telling	 you	 about	 this	 absurdity,	 because	 I

find	 it	 delightful.	 Please	 don’t	 turn	 yourself	 off	 because	 you	 can’t
believe	Nature	is	so	strange.	Just	hear	me	all	out,	and	I	hope	you’ll	be
as	delighted	as	I	am	when	we’re	through.
How	am	I	going	to	explain	to	you	the	things	I	don’t	explain	to	my

students	until	they	are	third-year	graduate	students?	Let	me	explain	it
by	analogy.	The	Maya	Indians	were	interested	in	the	rising	and	setting
of	 Venus	 as	 a	 morning	 “star”	 and	 as	 an	 evening	 “star”—they	 were
very	 interested	 in	 when	 it	 would	 appear.	 After	 some	 years	 of
observation,	 they	 noted	 that	 five	 cycles	 of	 Venus	 were	 very	 nearly
equal	to	eight	of	their	“nominal	years”	of	365	days	(they	were	aware
that	the	true	year	of	seasons	was	different	and	they	made	calculations
of	that	also).	To	make	calculations,	the	Maya	had	invented	a	system	of
bars	and	dots	to	represent	numbers	(including	zero),	and	had	rules	by
which	 to	 calculate	 and	 predict	 not	 only	 the	 risings	 and	 settings	 of
Venus,	but	other	celestial	phenomena,	such	as	lunar	eclipses.
In	 those	 days,	 only	 a	 few	 Maya	 priests	 could	 do	 such	 elaborate

calculations.	Now,	suppose	we	were	to	ask	one	of	them	how	to	do	just
one	 step	 in	 the	process	of	predicting	when	Venus	will	next	 rise	as	a
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morning	star—subtracting	two	numbers.	And	let’s	assume	that,	unlike
today,	we	had	not	gone	to	school	and	did	not	know	how	to	subtract.
How	would	the	priest	explain	to	us	what	subtraction	is?
He	could	either	teach	us	the	numbers	represented	by	the	bars	and

dots	and	the	rules	for	“subtracting”	them,	or	he	could	tell	us	what	he
was	really	doing:	“Suppose	we	want	to	subtract	236	from	584.	First,
count	out	584	beans	and	put	them	in	a	pot.	Then	take	out	236	beans
and	put	them	to	one	side.	Finally,	count	the	beans	left	in	the	pot.	That
number	is	the	result	of	subtracting	236	from	584.”
You	 might	 say,	 “My	 Quetzalcoatl!	 What	 tedium—counting	 beans,

putting	them	in,	taking	them	out—what	a	job!”
To	which	the	priest	would	reply,	“That’s	why	we	have	the	rules	for

the	 bars	 and	 dots.	 The	 rules	 are	 tricky,	 but	 they	 are	 a	 much	more
efficient	 way	 of	 getting	 the	 answer	 than	 by	 counting	 beans.	 The
important	 thing	 is,	 it	 makes	 no	 difference	 as	 far	 as	 the	 answer	 is
concerned:	we	can	predict	the	appearance	of	Venus	by	counting	beans
(which	 is	 slow,	but	 easy	 to	understand)	 or	 by	using	 the	 tricky	 rules
(which	 is	much	 faster,	 but	 you	must	 spend	 years	 in	 school	 to	 learn
them).”
To	understand	how	subtraction	works—as	long	as	you	don’t	have	to

actually	carry	it	out—is	really	not	so	difficult.	That’s	my	position:	I’m
going	 to	explain	 to	you	what	 the	physicists	are	doing	when	 they	are
predicting	 how	Nature	will	 behave,	 but	 I’m	 not	 going	 to	 teach	 you
any	tricks	so	you	can	do	it	efficiently.	You	will	discover	that	in	order	to
make	 any	 reasonable	 predictions	with	 this	 new	 scheme	 of	 quantum
electrodynamics,	you	would	have	to	make	an	awful	lot	of	little	arrows
on	 a	 piece	 of	 paper.	 It	 takes	 seven	 years—four	 undergraduate	 and
three	 graduate—to	 train	 our	 physics	 students	 to	 do	 that	 in	 a	 tricky,
efficient	 way.	 That’s	 where	 we	 are	 going	 to	 skip	 seven	 years	 of
education	in	physics:	By	explaining	quantum	electrodynamics	to	you
in	 terms	 of	 what	 we	 are	 really	 doing,	 I	 hope	 you	 will	 be	 able	 to
understand	it	better	than	do	some	of	the	students!
Taking	the	example	of	the	Maya	one	step	further,	we	could	ask	the

priest	why	five	cycles	of	Venus	nearly	equal	2,920	days,	or	eight	years.
There	would	 be	 all	 kinds	 of	 theories	 about	why,	 such	 as,	 “20	 is	 an
important	number	in	our	counting	system,	and	if	you	divide	2,920	by
20,	 you	 get	 146,	 which	 is	 one	 more	 than	 a	 number	 that	 can	 be
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represented	by	the	sum	of	two	squares	in	two	different	ways,”	and	so
forth.	But	that	theory	would	have	nothing	to	do	with	Venus,	really.	In
modern	times,	we	have	found	that	theories	of	this	kind	are	not	useful.
So	 again,	we	 are	 not	 going	 to	 deal	with	why	Nature	 behaves	 in	 the
peculiar	way	that	She	does;	there	are	no	good	theories	to	explain	that.
What	I	have	done	so	far	is	to	get	you	into	the	right	mood	to	listen

to	me.	Otherwise,	we	have	no	chance.	So	now	we’re	off,	ready	to	go!
We	begin	with	light.	When	Newton	started	looking	at	light,	the	first

thing	 he	 found	 was	 that	 white	 light	 is	 a	 mixture	 of	 colors.	 He
separated	white	 light	with	 a	prism	 into	various	 colors,	 but	when	he
put	 light	of	one	color—red,	 for	 instance—through	another	prism,	he
found	it	could	not	be	separated	further.	So	Newton	found	that	white
light	is	a	mixture	of	different	colors,	each	of	which	is	pure	in	the	sense
that	it	can’t	be	separated	further.
(In	fact,	a	particular	color	of	light	can	be	split	one	more	time	in	a

different	way,	according	to	its	so-called	“polarization.”	This	aspect	of
light	 is	 not	 vital	 to	 understanding	 the	 character	 of	 quantum
electrodynamics,	 so	 for	 the	 sake	 of	 simplicity	 I	will	 leave	 it	 out—at
the	 expense	of	 not	 giving	you	an	 absolutely	 complete	description	of
the	theory.	This	slight	simplification	will	not	remove,	in	any	way,	any
real	 understanding	 of	 what	 I	 will	 be	 talking	 about.	 Still,	 I	 must	 be
careful	to	mention	all	of	the	things	I	leave	out.)
When	I	say	“light”	in	these	lectures,	I	don’t	mean	simply	the	light

we	can	 see,	 from	 red	 to	blue.	 It	 turns	out	 that	 visible	 light	 is	 just	 a
part	of	a	long	scale	that’s	analogous	to	a	musical	scale	in	which	there
are	notes	higher	 than	you	 can	hear	 and	other	notes	 lower	 than	you
can	hear.	The	scale	of	light	can	be	described	by	numbers—called	the
frequency—and	as	the	numbers	get	higher,	the	light	goes	from	red	to
blue	to	violet	 to	ultraviolet.	We	can’t	see	ultraviolet	 light,	but	 it	can
affect	 photographic	 plates.	 It’s	 still	 light—only	 the	 number	 is
different.	(We	shouldn’t	be	so	provincial:	what	we	can	detect	directly
with	our	own	instrument,	the	eye,	isn’t	the	only	thing	in	the	world!)	If
we	 continue	 simply	 to	 change	 the	 number,	 we	 go	 out	 into	 X-rays,
gamma	 rays,	 and	 so	 on.	 If	 we	 change	 the	 number	 in	 the	 other
direction,	 we	 go	 from	 blue	 to	 red	 to	 infrared	 (heat)	 waves,	 then
television	waves,	and	 radio	waves.	For	me,	all	of	 that	 is	 “light.”	 I’m
going	to	use	just	red	light	for	most	of	my	examples,	but	the	theory	of
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quantum	 electrodynamics	 extends	 over	 the	 entire	 range	 I	 have
described,	and	is	the	theory	behind	all	these	various	phenomena.
Newton	 thought	 that	 light	 was	 made	 up	 of	 particles—he	 called

them	“corpuscles”—and	he	was	right	(but	the	reasoning	that	he	used
to	come	to	that	decision	was	erroneous).	We	know	that	light	is	made
of	 particles	 because	 we	 can	 take	 a	 very	 sensitive	 instrument	 that
makes	clicks	when	light	shines	on	it,	and	if	the	light	gets	dimmer,	the
clicks	remain	just	as	loud—there	are	just	fewer	of	them.	Thus	light	is
something	like	raindrops—each	little	lump	of	light	is	called	a	photon
—and	if	the	light	is	all	one	color,	all	the	“raindrops”	are	the	same	size.
The	human	eye	is	a	very	good	instrument:	it	takes	only	about	five

or	 six	 photons	 to	 activate	 a	 nerve	 cell	 and	 send	 a	 message	 to	 the
brain.	 If	we	were	 evolved	 a	 little	 further	 so	we	 could	 see	 ten	 times
more	sensitively,	we	wouldn’t	have	to	have	this	discussion—we	would
all	 have	 seen	 very	 dim	 light	 of	 one	 color	 as	 a	 series	 of	 intermittent
little	flashes	of	equal	intensity.
You	might	wonder	how	it	is	possible	to	detect	a	single	photon.	One

instrument	 that	 can	 do	 this	 is	 called	 a	 photomultiplier,	 and	 I’ll
describe	briefly	how	it	works:	When	a	photon	hits	the	metal	plate	A	at
the	bottom	 (see	Figure	1),	 it	 causes	 an	 electron	 to	break	 loose	 from
one	of	the	atoms	in	the	plate.	The	free	electron	is	strongly	attracted	to
plate	 B	 (which	 has	 a	 positive	 charge	 on	 it)	 and	 hits	 it	with	 enough
force	 to	 break	 loose	 three	 or	 four	 electrons.	 Each	 of	 the	 electrons
knocked	out	of	plate	B	is	attracted	to	plate	C	(which	is	also	charged),
and	their	collision	with	plate	C	knocks	loose	even	more	electrons.	This
process	 is	 repeated	 ten	 or	 twelve	 times,	 until	 billions	 of	 electrons,
enough	 to	make	 a	 sizable	 electric	 current,	 hit	 the	 last	 plate,	 L.	 This
current	 can	 be	 amplified	 by	 a	 regular	 amplifier	 and	 sent	 through	 a
speaker	 to	make	audible	clicks.	Each	 time	a	photon	of	a	given	color
hits	the	photomultiplier,	a	click	of	uniform	loudness	is	heard.
If	you	put	a	whole	lot	of	photomultipliers	around	and	let	some	very

dim	light	shine	in	various	directions,	the	light	goes	into	one	multiplier
or	another	and	makes	a	click	of	 full	 intensity.	 It	 is	all	or	nothing:	 if
one	photomultiplier	 goes	 off	 at	 a	 given	moment,	 none	of	 the	 others
goes	 off	 at	 the	 same	moment	 (except	 in	 the	 rare	 instance	 that	 two
photons	happened	to	leave	the	light	source	at	the	same	time).	There	is
no	splitting	of	light	into	“half	particles”	that	go	different	places.
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FIGURE	1.	A	photomultiplier	can	detect	a	single	photon.	When	a	photon	strikes	plate	A,	an	electron
is	 knocked	 loose	 and	attracted	 to	 positively	 charged	 plate	B,	 knocking	more	 electrons	 loose.	This
process	continues	until	billions	of	electrons	strike	the	last	plate,	L,	and	produce	an	electric	current,
which	 is	 amplified	 by	 a	 regular	 amplifier.	 If	 a	 speaker	 is	 connected	 to	 the	 amplifier,	 clicks	 of
uniform	loudness	are	heard	each	time	a	photon	of	a	given	color	hits	plate	A.

I	want	 to	emphasize	 that	 light	comes	 in	 this	 form—particles.	 It	 is
very	important	to	know	that	light	behaves	like	particles,	especially	for
those	of	you	who	have	gone	to	school,	where	you	were	probably	told
something	about	light	behaving	like	waves.	I’m	telling	you	the	way	it
does	behave—like	particles.
You	might	say	that	it’s	just	the	photomultiplier	that	detects	light	as

particles,	 but	 no,	 every	 instrument	 that	 has	 been	 designed	 to	 be
sensitive	enough	to	detect	weak	light	has	always	ended	up	discovering
the	same	thing:	light	is	made	of	particles.
I	am	going	 to	assume	that	you	are	 familiar	with	 the	properties	of

light	 in	 everyday	 circumstances—things	 like,	 light	 goes	 in	 straight
lines;	 it	 bends	when	 it	 goes	 into	water;	 when	 it	 is	 reflected	 from	 a
surface	 like	a	mirror,	 the	angle	at	which	 the	 light	hits	 the	surface	 is
equal	 to	 the	 angle	 at	 which	 it	 leaves	 the	 surface;	 light	 can	 be
separated	 into	 colors;	 you	can	 see	beautiful	 colors	on	a	mud	puddle
when	there	is	a	little	bit	of	oil	on	it;	a	lens	focuses	light,	and	so	on.	I
am	going	to	use	these	phenomena	that	you	are	familiar	with	in	order
to	illustrate	the	truly	strange	behavior	of	light;	I	am	going	to	explain
these	 familiar	 phenomena	 in	 terms	 of	 the	 theory	 of	 quantum
electrodynamics.	 I	 told	 you	 about	 the	 photomultiplier	 in	 order	 to
illustrate	 an	 essential	 phenomenon	 that	 you	 may	 not	 have	 been
familiar	with—that	light	is	made	of	particles—but	by	now,	I	hope	you
are	familiar	with	that,	too!
Now,	I	think	you	are	all	familiar	with	the	phenomenon	that	light	is

partly	 reflected	 from	 some	 surfaces,	 such	 as	 water.	 Many	 are	 the
romantic	paintings	of	moonlight	reflecting	from	a	lake	(and	many	are
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the	 times	you	got	yourself	 in	 trouble	because	of	moonlight	 reflecting
from	 a	 lake!).	When	 you	 look	 down	 into	 water	 you	 can	 see	 what’s
below	the	surface	(especially	in	the	daytime),	but	you	can	also	see	a
reflection	 from	 the	 surface.	 Glass	 is	 another	 example:	 if	 you	 have	 a
lamp	on	in	the	room	and	you’re	looking	out	through	a	window	during
the	daytime,	you	can	see	things	outside	through	the	glass	as	well	as	a
dim	reflection	of	the	lamp	in	the	room.	So	light	is	partially	reflected
from	the	surface	of	glass.
Before	 I	 go	 on,	 I	 want	 you	 to	 be	 aware	 of	 a	 simplification	 I	 am

going	 to	 make	 that	 I	 will	 correct	 later	 on:	 When	 I	 talk	 about	 the
partial	reflection	of	light	by	glass,	I	am	going	to	pretend	that	the	light
is	reflected	by	only	the	surface	of	the	glass.	In	reality,	a	piece	of	glass
is	 a	 terrible	 monster	 of	 complexity—huge	 numbers	 of	 electrons	 are
jiggling	about.	When	a	photon	comes	down,	it	interacts	with	electrons
throughout	the	glass,	not	just	on	the	surface.	The	photon	and	electrons
do	some	kind	of	dance,	 the	net	 result	of	which	 is	 the	same	as	 if	 the
photon	hit	only	the	surface.	So	let	me	make	that	simplification	for	a
while.	Later	on,	I’ll	show	you	what	actually	happens	inside	the	glass
so	you	can	understand	why	the	result	is	the	same.
Now	I’d	like	to	describe	an	experiment,	and	tell	you	its	surprising

results.	In	this	experiment	some	photons	of	the	same	color—let’s	say,
red	light—are	emitted	from	a	light	source	(see	Fig.	2)	down	toward	a
block	 of	 glass.	 A	 photomultiplier	 is	 placed	 at	 A,	 above	 the	 glass,	 to
catch	any	photons	that	are	reflected	by	the	front	surface.	To	measure
how	many	photons	get	past	the	front	surface,	another	photomultiplier
is	placed	at	B,	inside	the	glass.	Never	mind	the	obvious	difficulties	of
putting	a	photomultiplier	inside	a	block	of	glass;	what	are	the	results
of	this	experiment?

FIGURE	2.	An	experiment	to	measure	the	partial	reflection	of	light	by	a	single	surface	of	glass.	For
every	100	photons	that	leave	the	light	source,	4	are	reflected	by	the	front	surface	and	end	up	in	the
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photomultiplier	 at	 A,	 while	 the	 other	 96	 are	 transmitted	 by	 the	 front	 surface	 and	 end	 up	 in	 the
photomultiplier	at	B.

For	 every	 100	 photons	 that	 go	 straight	 down	 toward	 the	 glass	 at
90°,	 an	 average	 of	 4	 arrive	 at	 A	 and	 96	 arrive	 at	 B.	 So	 “partial
reflection”	in	this	case	means	that	4%	of	the	photons	are	reflected	by
the	 front	 surface	 of	 the	 glass,	while	 the	 other	 96%	 are	 transmitted.
Already	we	are	 in	great	difficulty:	how	can	 light	be	partly	 reflected?
Each	photon	ends	up	at	A	or	B—how	does	 the	photon	“make	up	 its
mind”	whether	 it	 should	go	to	A	or	B?	(Audience	 laughs.)	That	may
sound	 like	 a	 joke,	 but	 we	 can’t	 just	 laugh;	 we’re	 going	 to	 have	 to
explain	that	in	terms	of	a	theory!	Partial	reflection	is	already	a	deep
mystery,	and	it	was	a	very	difficult	problem	for	Newton.
There	 are	 several	 possible	 theories	 that	 you	 could	 make	 up	 to

account	for	the	partial	reflection	of	light	by	glass.	One	of	them	is	that
96%	of	 the	 surface	of	 the	glass	 is	 “holes”	 that	 let	 the	 light	 through,
while	 the	 other	 4%	 of	 the	 surface	 is	 covered	 by	 small	 “spots”	 of
reflective	 material	 (see	 Fig.	 3).	 Newton	 realized	 that	 this	 is	 not	 a
possible	 explanation.1	 In	 just	 a	moment	we	will	 encounter	 a	 strange
feature	of	partial	reflection	that	will	drive	you	crazy	if	you	try	to	stick
to	a	theory	of	“holes	and	spots”—or	to	any	other	reasonable	theory!
Another	 possible	 theory	 is	 that	 the	 photons	 have	 some	 kind	 of

internal	mechanism—“wheels”	and	“gears”	 inside	that	are	turning	 in
some	 way—so	 that	 when	 a	 photon	 is	 “aimed”	 just	 right,	 it	 goes
through	 the	glass,	 and	when	 it’s	not	aimed	 right,	 it	 reflects.	We	can
check	this	theory	by	trying	to	filter	out	the	photons	that	are	not	aimed
right	by	putting	a	few	extra	layers	of	glass	between	the	source	and	the
first	 layer	 of	 glass.	 After	 going	 through	 the	 filters,	 the	 photons
reaching	the	glass	should	all	be	aimed	right,	and	none	of	them	should
reflect.	 The	 trouble	 with	 that	 theory	 is,	 it	 doesn’t	 agree	 with
experiment:	even	after	going	through	many	layers	of	glass,	4%	of	the
photons	reaching	a	given	surface	reflect	off	it.
Try	as	we	might	to	invent	a	reasonable	theory	that	can	explain	how

a	photon	“makes	up	its	mind”	whether	to	go	through	glass	or	bounce
back,	 it	 is	 impossible	 to	 predict	which	way	 a	 given	 photon	will	 go.
Philosophers	 have	 said	 that	 if	 the	 same	 circumstances	 don’t	 always
produce	the	same	results,	predictions	are	impossible	and	science	will
collapse.	Here	is	a	circumstance—identical	photons	are	always	coming
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down	in	the	same	direction	to	the	same	piece	of	glass—that	produces
different	 results.	 We	 cannot	 predict	 whether	 a	 given	 photon	 will
arrive	 at	A	or	B.	All	we	 can	predict	 is	 that	 out	 of	 100	photons	 that
come	 down,	 an	 average	 of	 4	 will	 be	 reflected	 by	 the	 front	 surface.
Does	 this	mean	 that	physics,	 a	 science	of	 great	 exactitude,	has	been
reduced	 to	 calculating	 only	 the	 probability	 of	 an	 event,	 and	 not
predicting	exactly	what	will	happen?	Yes.	That’s	a	retreat,	but	 that’s
the	way	 it	 is:	 Nature	 permits	 us	 to	 calculate	 only	 probabilities.	 Yet
science	has	not	collapsed.

FIGURE	3.	One	theory	to	explain	partial	reflection	by	a	single	surface	involves	a	surface	made	up
mainly	of	“holes”	that	let	light	through,	with	a	few	“spots”	that	reflect	the	light.

While	partial	reflection	by	a	single	surface	is	a	deep	mystery	and	a
difficult	 problem,	 partial	 reflection	 by	 two	 or	 more	 surfaces	 is
absolutely	mind-boggling.	 Let	me	 show	you	why.	We’ll	 do	 a	 second
experiment,	in	which	we	will	measure	the	partial	reflection	of	light	by
two	surfaces.	We	replace	the	block	of	glass	with	a	very	thin	sheet	of
glass—its	 two	 surfaces	 are	 exactly	 parallel	 to	 each	 other—and	 we
place	 the	 photomultiplier	 below	 the	 sheet	 of	 glass,	 in	 line	with	 the
light	 source.	 This	 time,	 photons	 can	 reflect	 from	 either	 the	 front
surface	or	the	back	surface	to	end	up	at	A;	all	the	others	will	end	up	at
B	(see	Fig.	4).	We	might	expect	the	front	surface	to	reflect	4%	of	the
light	and	the	back	surface	to	reflect	4%	of	the	remaining	96%,	making
a	total	of	about	8%.	So	we	should	find	that	out	of	every	100	photons
that	leave	the	light	source,	about	8	arrive	at	A.

FIGURE	4.	An	experiment	to	measure	the	partial	reflection	of	light	by	two	surfaces	of	glass.	Photons
can	get	to	the	photomultiplier	at	A	by	reflecting	off	either	the	front	surface	or	the	back	surface	of	the
sheet	 of	 glass;	 alternatively,	 they	 could	 go	 through	 both	 surfaces	 and	 end	 up	 hitting	 the
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photomultiplier	at	B.	Depending	on	the	thickness	of	the	glass,	0	to	16	photons	out	of	every	100	get
to	the	photomultiplier	at	A.	These	results	pose	difficulties	 for	any	reasonable	 theory,	 including	the
one	in	Figure	3.	It	appears	that	partial	reflection	can	be	“turned	off”	or	“amplified”	by	the	presence
of	an	additional	surface.

What	 actually	 happens	 under	 these	 carefully	 controlled
experimental	 conditions	 is,	 the	 number	 of	 photons	 arriving	 at	 A	 is
rarely	8	out	of	100.	With	some	sheets	of	glass,	we	consistently	get	a
reading	of	 15	or	 16	photons—twice	 our	 expected	 result!	With	other
sheets	of	glass,	we	consistently	get	only	1	or	2	photons.	Other	sheets
of	 glass	 have	 a	 partial	 reflection	 of	 10%;	 some	 eliminate	 partial
reflection	altogether!	What	can	account	for	these	crazy	results?	After
checking	 the	 various	 sheets	 of	 glass	 for	 quality	 and	 uniformity,	 we
discover	that	they	differ	only	slightly	in	their	thickness.
To	test	the	idea	that	the	amount	of	light	reflected	by	two	surfaces

depends	on	the	thickness	of	the	glass,	let’s	do	a	series	of	experiments:
Starting	out	with	the	thinnest	possible	layer	of	glass,	we’ll	count	how
many	 photons	 hit	 the	 photomultiplier	 at	 A	 each	 time	 100	 photons
leave	 the	 light	 source.	 Then	 we’ll	 replace	 the	 layer	 of	 glass	 with	 a
slightly	thicker	one	and	make	new	counts.	After	repeating	this	process
a	few	dozen	times,	what	are	the	results?
With	the	thinnest	possible	 layer	of	glass,	we	find	that	 the	number

of	 photons	 arriving	 at	 A	 is	 nearly	 always	 zero—sometimes	 it’s	 1.
When	we	 replace	 the	 thinnest	 layer	with	 a	 slightly	 thicker	 one,	 we
find	 that	 the	 amount	 of	 light	 reflected	 is	 higher—closer	 to	 the
expected	 8%.	 After	 a	 few	 more	 replacements	 the	 count	 of	 photons
arriving	at	A	increases	past	the	8%	mark.	As	we	continue	to	substitute
still	 “thicker”	 layers	 of	 glass—we’re	 up	 to	 about	 5	millionths	 of	 an
inch	now—the	amount	of	light	reflected	by	the	two	surfaces	reaches	a
maximum	of	16%,	and	then	goes	down,	through	8%,	back	to	zero—if
the	 layer	of	glass	 is	 just	 the	 right	 thickness,	 there	 is	no	 reflection	at
all.	(Do	that	with	spots!)
With	gradually	thicker	and	thicker	layers	of	glass,	partial	reflection

again	increases	to	16%	and	returns	to	zero—a	cycle	that	repeats	itself
again	and	again	(see	Fig.	5).	Newton	discovered	these	oscillations	and
did	 one	 experiment	 that	 could	 be	 correctly	 interpreted	 only	 if	 the
oscillations	 continued	 for	 at	 least	 34,000	 cycles!	 Today,	 with	 lasers
(which	 produce	 a	 very	 pure,	monochromatic	 light),	we	 can	 see	 this
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cycle	 still	 going	 strong	 after	 more	 than	 100,000,000	 repetitions—
which	 corresponds	 to	 glass	 that	 is	 more	 than	 50	meters	 thick.	 (We
don’t	 see	 this	 phenomenon	 every	 day	 because	 the	 light	 source	 is
normally	not	monochromatic.)
So	 it	 turns	 out	 that	 our	 prediction	 of	 8%	 is	 right	 as	 an	 overall

average	(since	the	actual	amount	varies	in	a	regular	pattern	from	zero
to	16%),	but	 it’s	 exactly	 right	only	 twice	each	cycle—like	a	 stopped
clock	 (which	 is	 right	 twice	a	day).	How	can	we	explain	 this	 strange
feature	of	partial	reflection	that	depends	on	the	thickness	of	the	glass?
How	can	the	front	surface	reflect	4%	of	the	light	(as	confirmed	in	our
first	 experiment)	when,	by	putting	a	 second	 surface	at	 just	 the	 right
distance	 below,	 we	 can	 somehow	 “turn	 off”	 the	 reflection?	 And	 by
placing	 that	 second	 surface	 at	 a	 slightly	 different	 depth,	 we	 can
“amplify”	 the	 reflection	 up	 to	 16%!	Can	 it	 be	 that	 the	 back	 surface
exerts	 some	 kind	 of	 influence	 or	 effect	 on	 the	 ability	 of	 the	 front
surface	to	reflect	light?	What	if	we	put	in	a	third	surface?

FIGURE	5.	The	results	of	an	experiment	carefully	measuring	the	relationship	between	the	thickness
of	a	 sheet	of	 glass	and	partial	 reflection	demonstrate	a	phenomenon	called	“interference,”	As	 the
thickness	 of	 the	 glass	 increases,	 partial	 reflection	 goes	 through	 a	 repeating	 cycle	 of	 zero	 to	 16%,
with	no	signs	of	dying	out.

With	 a	 third	 surface,	 or	 any	 number	 of	 subsequent	 surfaces,	 the
amount	 of	 partial	 reflection	 is	 again	 changed.	 We	 find	 ourselves
chasing	 down	 through	 surface	 after	 surface	 with	 this	 theory,
wondering	if	we	have	finally	reached	the	last	surface.	Does	a	photon
have	 to	do	 that	 in	order	 to	 “decide”	whether	 to	 reflect	off	 the	 front
surface?
Newton	made	some	ingenious	arguments	concerning	this	problem,2

but	 he	 realized,	 in	 the	 end,	 that	 he	 had	 not	 yet	 developed	 a
satisfactory	theory.
For	many	years	after	Newton,	partial	reflection	by	two	surfaces	was

happily	explained	by	a	theory	of	waves,3	but	when	experiments	were
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made	with	very	weak	light	hitting	photomultipliers,	the	wave	theory
collapsed:	as	 the	 light	got	dimmer	and	dimmer,	 the	photomultipliers
kept	 making	 full-sized	 clicks—there	 were	 just	 fewer	 of	 them.	 Light
behaved	as	particles.
The	 situation	 today	 is,	 we	 haven’t	 got	 a	 good	 model	 to	 explain

partial	 reflection	 by	 two	 surfaces;	 we	 just	 calculate	 the	 probability
that	 a	 particular	 photomultiplier	 will	 be	 hit	 by	 a	 photon	 reflected
from	 a	 sheet	 of	 glass.	 I	 have	 chosen	 this	 calculation	 as	 our	 first
example	 of	 the	 method	 provided	 by	 the	 theory	 of	 quantum
electrodynamics.	I	am	going	to	show	you	“how	we	count	the	beans”—
what	 the	 physicists	 do	 to	 get	 the	 right	 answer.	 I	 am	 not	 going	 to
explain	how	the	photons	actually	“decide”	whether	to	bounce	back	or
go	 through;	 that	 is	 not	 known.	 (Probably	 the	 question	 has	 no
meaning.)	I	will	only	show	you	how	to	calculate	the	correct	probability
that	 light	 will	 be	 reflected	 from	 glass	 of	 a	 given	 thickness,	 because
that’s	 the	only	 thing	physicists	know	how	to	do!	What	we	do	 to	get
the	answer	to	this	problem	is	analogous	to	the	things	we	have	to	do	to
get	 the	 answer	 to	 every	 other	 problem	 explained	 by	 quantum
electrodynamics.
You	 will	 have	 to	 brace	 yourselves	 for	 this—not	 because	 it	 is

difficult	to	understand,	but	because	it	is	absolutely	ridiculous:	All	we
do	is	draw	little	arrows	on	a	piece	of	paper—that’s	all!
Now,	 what	 does	 an	 arrow	 have	 to	 do	 with	 the	 chance	 that	 a

particular	event	will	happen?	According	to	the	rules	of	“how	we	count
the	beans,”	 the	probability	of	an	event	 is	 equal	 to	 the	 square	of	 the
length	of	 the	 arrow.	 For	 example,	 in	 our	 first	 experiment	 (when	we
were	 measuring	 partial	 reflection	 by	 the	 front	 surface	 only),	 the
probability	that	a	photon	would	arrive	at	the	photomultiplier	at	A	was
4%.	 That	 corresponds	 to	 an	 arrow	whose	 length	 is	 0.2,	 because	 0.2
squared	is	0.04	(see	Fig.	6).
In	our	second	experiment	 (when	we	were	replacing	 thin	sheets	of

glass	with	slightly	thicker	ones),	photons	bouncing	off	either	the	front
surface	or	the	back	surface	arrived	at	A.	How	do	we	draw	an	arrow	to
represent	this	situation?	The	length	of	the	arrow	must	range	from	zero
to	 0.4	 to	 represent	 probabilities	 of	 zero	 to	 16%,	 depending	 on	 the
thickness	of	the	glass	(see	Fig.	7).
We	 start	by	considering	 the	various	ways	 that	a	photon	could	get
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from	 the	 source	 to	 the	photomultiplier	at	A.	Since	 I	am	making	 this
simplification	that	the	light	bounces	off	either	the	front	surface	or	the
back	 surface,	 there	 are	 two	 possible	ways	 a	 photon	 could	 get	 to	 A.
What	we	do	in	this	case	is	to	draw	two	arrows—one	for	each	way	the
event	can	happen—and	then	combine	them	into	a	“final	arrow”	whose
square	represents	the	probability	of	the	event.	If	there	had	been	three
different	ways	the	event	could	have	happened,	we	would	have	drawn
three	separate	arrows	before	combining	them.

FIGURE	6.	The	strange	feature	of	partial	reflection	by	two	surfaces	has	forced	physicists	away	from
making	 absolute	 predictions	 to	 merely	 calculating	 the	 probability	 of	 an	 event.	 Quantum
electrodynamics	provides	a	method	for	doing	 this—drawing	 little	arrows	on	a	piece	of	paper.	The
probability	of	an	event	is	represented	by	the	area	of	the	square	on	an	arrow.	For	example,	an	arrow
representing	a	probability	of	0.04	(4%)	has	a	length	of	0.2.

FIGURE	7.	Arrows	representing	probabilities	from	0%	to	16%	have	lengths	of	from	0	to	0.4.

Now,	let	me	show	you	how	we	combine	arrows.	Let’s	say	we	want
to	combine	arrow	x	with	arrow	y	(see	Fig.	8).	All	we	have	to	do	is	put
the	head	of	x	against	the	tail	of	y	(without	changing	the	direction	of
either	one),	and	draw	the	final	arrow	from	the	tail	of	x	to	the	head	of
y.	That’s	all	 there	is	to	it.	We	can	combine	any	number	of	arrows	in
this	manner	(technically,	it’s	called	“adding	arrows”).	Each	arrow	tells
you	 how	 far,	 and	 in	 what	 direction,	 to	move	 in	 a	 dance.	 The	 final
arrow	tells	you	what	single	move	to	make	to	end	up	in	the	same	place
(see	Fig.	9).
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FIGURE	8.	Arrows	 that	 represent	 each	 possible	way	 an	 event	 could	 happen	are	 drawn	and	 then
combined	(“added”)	in	the	following	manner:	Attach	the	head	of	one	arrow	to	the	tail	of	another
—without	changing	the	direction	of	either	one—and	draw	a	“final	arrow”	from	the	tail	of	the	first
arrow	to	the	head	of	the	last	one.

Now,	 what	 are	 the	 specific	 rules	 that	 determine	 the	 length	 and
direction	of	 each	arrow	 that	we	 combine	 in	order	 to	make	 the	 final
arrow?	In	this	particular	case,	we	will	be	combining	two	arrows—one
representing	the	reflection	from	the	front	surface	of	the	glass,	and	the
other	representing	the	reflection	from	the	back	surface.
Let’s	take	the	length	first.	As	we	saw	in	the	first	experiment	(where

we	put	the	photomultiplier	inside	the	glass),	the	front	surface	reflects
about	 4%	 of	 the	 photons	 that	 come	 down.	 That	 means	 the	 “front
reflection”	 arrow	 has	 a	 length	 of	 0.2.	 The	 back	 surface	 of	 the	 glass
also	reflects	4%,	so	the	“back	reflection”	arrow’s	length	is	also	0.2.

FIGURE	9.	Any	number	of	arrows	can	be	added	in	the	manner	described	in	Figure	8.

To	 determine	 the	 direction	 of	 each	 arrow,	 let’s	 imagine	 that	 we
have	a	stopwatch	that	can	time	a	photon	as	it	moves.	This	imaginary
stopwatch	 has	 a	 single	 hand	 that	 turns	 around	 very,	 very	 rapidly.
When	a	photon	leaves	the	source,	we	start	the	stopwatch.	As	long	as
the	photon	moves,	the	stopwatch	hand	turns	(about	36,000	times	per
inch	for	red	light);	when	the	photon	ends	up	at	the	photo-multiplier,
we	stop	the	watch.	The	hand	ends	up	pointing	in	a	certain	direction.
That	is	the	direction	we	will	draw	the	arrow.
We	need	one	more	rule	in	order	to	compute	the	answer	correctly:

When	we	are	considering	the	path	of	a	photon	bouncing	off	the	front
surface	 of	 the	 glass,	we	 reverse	 the	 direction	 of	 the	 arrow.	 In	 other
words,	 whereas	 we	 draw	 the	 back	 reflection	 arrow	 pointing	 in	 the
same	 direction	 as	 the	 stopwatch	 hand,	 we	 draw	 the	 front	 reflection
arrow	in	the	opposite	direction.
Now,	let’s	draw	the	arrows	for	the	case	of	light	reflecting	from	an

extremely	thin	 layer	of	glass.	To	draw	the	front	reflection	arrow,	we
imagine	a	photon	leaving	the	light	source	(the	stopwatch	hand	starts
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turning),	 bouncing	 off	 the	 front	 surface,	 and	 arriving	 at	 A	 (the
stopwatch	 hand	 stops).	We	 draw	 a	 little	 arrow	 of	 length	 0.2	 in	 the
direction	opposite	that	of	the	stopwatch	hand	(see	Fig.	10).

FIGURE	10.	In	an	experiment	measuring	reflection	by	two	surfaces,	we	can	say	that	a	single	photon
can	arrive	at	A	 in	 two	ways—via	 the	front	or	back	surface.	An	arrow	of	 length	0.2	 is	drawn	for
each	way,	with	 its	direction	determined	by	 the	hand	of	a	“stopwatch”	 that	 times	 the	photon	as	 it
moves.	The	front	reflection	watch”	that	times	the	photon	as	it	arrow	moves.	The	“front	reflection”
arrow	is	drawn	in	the	direction	opposite	to	that	of	the	stopwatch	hand	when	it	stops	turning.

To	 draw	 the	 back	 reflection	 arrow,	we	 imagine	 a	 photon	 leaving
the	 light	 source	 (the	 stopwatch	 hand	 starts	 turning),	 going	 through
the	front	surface	and	bouncing	off	the	back	surface,	and	arriving	at	A
(the	stopwatch	hand	stops).	This	time,	the	stopwatch	hand	is	pointing
in	almost	the	same	direction,	because	a	photon	bouncing	off	the	back
surface	 of	 the	 glass	 takes	 only	 slightly	 longer	 to	 get	 to	 A—it	 goes
through	the	extremely	thin	layer	of	glass	twice.	We	now	draw	a	little
arrow	of	length	0.2	in	the	same	direction	that	the	stopwatch	hand	is
pointing	(see	Fig.	11).
Now	 let’s	 combine	 the	 two	 arrows.	 Since	 they	 are	 both	 the	 same

length	but	pointing	in	nearly	opposite	directions,	the	final	arrow	has	a
length	of	nearly	zero,	and	its	square	is	even	closer	to	zero.	Thus,	the
probability	 of	 light	 reflecting	 from	 an	 infinitesimally	 thin	 layer	 of
glass	is	essentially	zero	(see	Fig.	12).

FIGURE	11.	A	photon	bouncing	off	the	back	surface	of	a	thin	layer	of	glass	takes	slightly	longer	to
get	to	A.	Thus,	the	stopwatch	hand	ends	up	in	a	slightly	different	direction	than	it	did	when	it	timed
the	 front	 reflection	 photon.	 The	 “back	 reflection”	 arrow	 is	 drawn	 in	 the	 same	 direction	 as	 the
stopwatch	hand.
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FIGURE	12.	The	final	arrow,	whose	square	represents	the	probability	of	reflection	by	an	extremely
thin	layer	of	glass,	is	drawn	by	adding	the	front	reflection	arrow	and	the	back	reflection	arrow.	The
result	is	nearly	zero.

When	we	replace	the	thinnest	layer	of	glass	with	a	slightly	thicker
one,	the	photon	bouncing	off	the	back	surface	takes	a	little	bit	longer
to	 get	 to	A	 than	 in	 the	 first	 example;	 the	 stopwatch	 hand	 therefore
turns	 a	 little	 bit	more	before	 it	 stops,	 and	 the	back	 reflection	 arrow
ends	 up	 in	 a	 slightly	 greater	 angle	 relative	 to	 the	 front	 reflection
arrow.	 The	 final	 arrow	 is	 a	 little	 bit	 longer,	 and	 its	 square	 is
correspondingly	larger	(see	Fig.	13).
As	 another	 example,	 let’s	 look	 at	 the	 case	where	 the	 glass	 is	 just

thick	enough	that	the	stopwatch	hand	makes	an	extra	half	 turn	as	 it
times	 a	 photon	 bouncing	 off	 the	 back	 surface.	 This	 time,	 the	 back
reflection	arrow	ends	up	pointing	in	exactly	the	same	direction	as	the
front	 reflection	 arrow.	When	we	 combine	 the	 two	 arrows,	we	 get	 a
final	 arrow	 whose	 length	 is	 0.4,	 and	 whose	 square	 is	 0.16,
representing	a	probability	of	16%	(see	Fig.	14).
If	 we	 increase	 the	 thickness	 of	 the	 glass	 just	 enough	 so	 that	 the

stopwatch	hand	timing	the	back	surface	path	makes	an	extra	full	turn,
our	two	arrows	end	up	pointing	in	opposite	directions	again,	and	the
final	arrow	will	be	zero	(see	Fig.	15).	This	situation	occurs	over	and
over,	 whenever	 the	 thickness	 of	 the	 glass	 is	 just	 enough	 to	 let	 the
stopwatch	hand	timing	the	back	surface	reflection	make	another	 full
turn.

FIGURE	13.	The	final	arrow	for	a	slightly	thicker	sheet	of	glass	is	a	little	longer,	due	to	the	greater
relative	angle	between	the	front	and	back	reflection	arrows.	This	is	because	a	photon	bouncing	off
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the	back	surface	takes	a	little	longer	to	reach	A,	compared	to	the	previous	example.

FIGURE	14.	When	 the	 layer	of	glass	 is	 just	 thick	enough	 to	allow	 the	 stopwatch	hand	 timing	 the
back	 reflecting	 photon	 to	make	 an	 extra	 half	 turn,	 the	 front	 and	 back	 reflection	 arrows	 end	 up
pointing	in	the	same	direction,	resulting	in	a	final	arrow	of	length	0.4,	which	represents	a	probability
of	16%.

FIGURE	15.	When	the	sheet	of	glass	is	just	the	right	thickness	to	allow	the	stopwatch	hand	timing
the	back	reflecting	photon	to	make	one	or	more	extra	full	turns,	the	final	arrow	is	again	zero,	and
there	is	no	reflection	at	all.

If	the	thickness	of	the	glass	is	just	enough	to	let	the	stopwatch	hand
timing	the	back	surface	reflection	make	an	extra	¼	or	¾	of	a	turn,	the
two	arrows	will	end	up	at	right	angles.	The	final	arrow	in	this	case	is
the	hypoteneuse	of	a	right	triangle,	and	according	to	Pythagoras,	the
square	on	the	hypoteneuse	is	equal	to	the	sum	of	the	squares	on	the
other	two	sides.	Here	is	the	value	that’s	right	“twice	a	day”—	4%	+
4%	makes	8%	(see	Fig.	16).
Notice	that	as	we	gradually	increase	the	thickness	of	the	glass,	the

front	 reflection	 arrow	 always	 points	 in	 the	 same	 direction,	 whereas
the	back	reflection	arrow	gradually	changes	its	direction.	The	change
in	 the	 relative	direction	of	 the	 two	arrows	makes	 the	 final	arrow	go
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through	a	repeating	cycle	of	length	zero	to	0.4;	thus	the	square	on	the
final	arrow	goes	through	the	repeating	cycle	of	zero	to	16%	that	we
observed	in	our	experiments	(see	Fig.	17).

FIGURE	16.	When	the	front	and	back	reflection	arrows	are	at	right	angles	to	each	other,	the	final
arrow	 is	 the	hypoteneuse	 of	 a	 right	 triangle.	Thus	 its	 square	 is	 the	 sum	of	 the	 other	 two	 squares
—8%.

FIGURE	17.	As	thin	sheets	of	glass	are	replaced	by	slightly	thicker	ones,	the	stopwatch	hand	timing
a	photon	reflecting	off	the	back	surface	turns	slightly	more,	and	the	relative	angle	between	the	front
and	back	reflection	arrows	changes.	This	causes	the	final	arrow	to	change	in	length,	and	its	square
to	change	in	size	from	0	to	16%	back	to	0,	over	and	over.

I	have	just	shown	you	how	this	strange	feature	of	partial	reflection
can	be	accurately	calculated	by	drawing	some	damned	little	arrows	on
a	piece	of	paper.	The	technical	word	for	these	arrows	is	“probability
amplitudes,”	and	I	feel	more	dignified	when	I	say	we	are	“computing
the	probability	amplitude	for	an	event.”	I	prefer,	though,	to	be	more
honest,	 and	 say	 that	 we	 are	 trying	 to	 find	 the	 arrow	whose	 square
represents	the	probability	of	something	happening.
Before	 I	 finish	 this	 first	 lecture,	 I	would	 like	 to	 tell	you	about	 the

46



colors	you	see	on	soap	bubbles.	Or	better,	if	your	car	leaks	oil	into	a
mud	 puddle,	 when	 you	 look	 at	 the	 brownish	 oil	 in	 that	 dirty	 mud
puddle,	 you	 see	 beautiful	 colors	 on	 the	 surface.	 The	 thin	 film	of	 oil
floating	on	the	mud	puddle	is	something	like	a	very	thin	sheet	of	glass
—it	reflects	light	of	one	color	from	zero	to	a	maximum,	depending	on
its	 thickness.	 If	 we	 shine	 pure	 red	 light	 on	 the	 film	 of	 oil,	 we	 see
splotches	 of	 red	 light	 separated	 by	 narrow	 bands	 of	 black	 (where
there’s	 no	 reflection)	 because	 the	 oil	 film’s	 thickness	 is	 not	 exactly
uniform.	If	we	shine	pure	blue	light	on	the	oil	film,	we	see	splotches
of	blue	light	separated	by	narrow	bands	of	black.	If	we	shine	both	red
and	 blue	 light	 onto	 the	 oil,	 we	 see	 areas	 that	 have	 just	 the	 right
thickness	 to	 strongly	 reflect	 only	 red	 light,	 other	 areas	 of	 the	 right
thickness	 to	 reflect	only	blue	 light;	 still	other	areas	have	a	 thickness
that	 strongly	 reflects	both	 red	and	blue	 light	 (which	our	eyes	 see	as
violet),	while	 other	 areas	 have	 the	 exact	 thickness	 to	 cancel	 out	 all
reflection,	and	appear	black.
To	understand	this	better,	we	need	to	know	that	the	cycle	of	zero	to

16%	partial	 reflection	by	 two	surfaces	 repeats	more	quickly	 for	blue
light	than	for	red	light.	Thus	at	certain	thicknesses,	one	or	the	other
or	 both	 colors	 are	 strongly	 reflected,	 while	 at	 other	 thicknesses,
reflection	of	both	colors	 is	 cancelled	out	 (see	Fig.	18).	The	cycles	of
reflection	 repeat	at	different	 rates	because	 the	 stopwatch	hand	 turns
around	faster	when	it	times	a	blue	photon	than	it	does	when	timing	a
red	 photon.	 In	 fact,	 that’s	 the	only	 difference	 between	 a	 red	 photon
and	 a	 blue	 photon	 (or	 a	 photon	 of	 any	 other	 color,	 including	 radio
waves,	X-rays,	and	so	on)—the	speed	of	the	stopwatch	hand.
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FIGURE	18.	As	the	thickness	of	a	layer	increases,	the	two	surfaces	produce	a	partial	reflection	of
monochromatic	light	whose	probability	fluctuates	in	a	cycle	from	0%	to	16%.	Since	the	speed	of	the
imaginary	stopwatch	hand	is	different	for	different	colors	of	light,	the	cycle	repeats	itself	at	different
rates.	Thus	when	two	colors	such	as	pure	red	and	pure	blue	are	aimed	at	the	layer,	a	given	thickness
will	 reflect	only	red,	only	blue,	both	red	and	blue	 in	different	proportions	(which	produce	various
hues	of	violet),	or	neither	color	(black).	If	the	layer	is	of	varying	thicknesses,	such	as	a	drop	of	oil
spreading	out	on	a	mud	puddle,	all	of	the	combinations	will	occur.	In	sunlight,	which	consists	of	all
colors,	all	sorts	of	combinations	occur,	which	produce	lots	of	colors.

When	we	shine	red	and	blue	light	on	a	film	of	oil,	patterns	of	red,
blue,	and	violet	appear,	separated	by	borders	of	black.	When	sunlight,
which	 contains	 red,	 yellow,	 green,	 and	 blue	 light,	 shines	 on	 a	mud
puddle	 with	 oil	 on	 it,	 the	 areas	 that	 strongly	 reflect	 each	 of	 those
colors	overlap	and	produce	all	kinds	of	combinations	which	our	eyes
see	as	different	colors.	As	the	oil	film	spreads	out	and	moves	over	the
surface	of	 the	water,	 changing	 its	 thickness	 in	various	 locations,	 the
patterns	of	color	constantly	change.	(If,	on	the	other	hand,	you	were
to	 look	 at	 the	 same	mud	 puddle	 at	 night	with	 one	 of	 those	 sodium
streetlights	 shining	 on	 it,	 you	 would	 see	 only	 yellowish	 bands
separated	by	black—because	those	particular	streetlights	emit	light	of
only	one	color.)
This	 phenomenon	 of	 colors	 produced	 by	 the	 partial	 reflection	 of

white	light	by	two	surfaces	is	called	iridescence,	and	can	be	found	in
many	places.	Perhaps	you	have	wondered	how	the	brilliant	colors	of
hummingbirds	and	peacocks	are	produced.	Now	you	know.	How	those
brilliant	 colors	 evolved	 is	 also	 an	 interesting	 question.	 When	 we
admire	 a	 peacock,	 we	 should	 give	 credit	 to	 the	 generations	 of
lackluster	females	for	being	selective	about	their	mates.	(Man	got	into
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the	act	later	and	streamlined	the	selection	process	in	peacocks.)
In	 the	 next	 lecture	 I	 will	 show	 you	 how	 this	 absurd	 process	 of

combining	 little	 arrows	 computes	 the	 right	 answer	 for	 those	 other
phenomena	 you	 are	 familiar	 with:	 light	 travels	 in	 straight	 lines;	 it
reflects	off	a	mirror	at	 the	same	angle	 that	 it	came	in	(“the	angle	of
incidence	is	equal	to	the	angle	of	reflection”);	a	lens	focuses	light,	and
so	on.	This	new	framework	will	describe	everything	you	know	about
light.

1	How	did	he	know?	Newton	was	a	very	great	man:	he	wrote,	“Because	I	can	polish	glass.”
You	might	wonder,	how	the	heck	could	he	tell	that	because	you	can	polish	glass,	it	can’t	be
holes	 and	 spots?	 Newton	 polished	 his	 own	 lenses	 and	mirrors,	 and	 he	 knew	what	 he	was
doing	with	polishing:	he	was	making	scratches	on	the	surface	of	a	piece	of	glass	with	powders
of	 increasing	 fineness.	 As	 the	 scratches	 become	 finer	 and	 finer,	 the	 surface	 of	 the	 glass
changes	its	appearance	from	a	dull	grey	(because	the	light	is	scattered	by	the	large	scratches),
to	a	transparent	clarity	(because	the	extremely	fine	scratches	let	the	light	through).	Thus	he
saw	 that	 it	 is	 impossible	 to	 accept	 the	proposition	 that	 light	 can	be	 affected	by	very	 small
irregularities	such	as	scratches	or	holes	and	spots;	 in	fact,	he	found	the	contrary	to	be	true.
The	finest	scratches	and	therefore	equally	small	spots	do	not	affect	the	light.	So	the	holes	and
spots	theory	is	no	good.
2	 It	 is	 very	 fortunate	 for	 us	 that	 Newton	 convinced	 himself	 that	 light	 is	 “corpuscles,”

because	we	can	see	what	a	fresh	and	intelligent	mind	looking	at	this	phenomenon	of	partial
reflection	by	two	or	more	surfaces	has	to	go	through	to	try	to	explain	it.	(Those	who	believed
that	light	was	waves	never	had	to	wrestle	with	it.)	Newton	argued	as	follows:	Although	light
appears	 to	be	 reflected	 from	 the	 first	 surface,	 it	 cannot	be	 reflected	 from	 that	 surface.	 If	 it
were,	 then	 how	 could	 light	 reflected	 from	 the	 first	 surface	 be	 captured	 again	 when	 the
thickness	 is	 such	 that	 there	 was	 supposed	 to	 be	 no	 reflection	 at	 all?	 Then	 light	 must	 be
reflected	from	the	second	surface.	But	to	account	for	the	fact	that	the	thickness	of	the	glass
deter-mines	 the	 amount	 of	 partial	 reflection,	Newton	 proposed	 this	 idea:	 Light	 striking	 the
first	surface	sets	off	a	kind	of	wave	or	field	that	travels	along	with	the	light	and	predisposes	it
to	reflect	or	not	reflect	off	the	second	surface.	He	called	this	process	“fits	of	easy	reflection	or
easy	transmission”	that	occur	in	cycles,	depending	on	the	thickness	of	the	glass.
There	are	two	difficulties	with	this	idea:	the	first	is	the	effect	of	additional	surfaces—each

new	surface	affects	 the	 reflection—which	 I	described	 in	 the	 text.	The	other	problem	 is	 that
light	 certainly	 reflects	 off	 a	 lake,	 which	 doesn’t	 have	 a	 second	 surface,	 so	 light	 must	 be
reflecting	off	 the	 front	 surface.	 In	 the	 case	of	 single	 surfaces,	Newton	 said	 that	 light	had	a
predisposition	to	reflect.	Can	we	have	a	theory	in	which	the	light	knows	what	kind	of	surface
it	is	hitting,	and	whether	it	is	the	only	surface?
Newton	 didn’t	 emphasize	 these	 difficulties	 with	 his	 theory	 of	 “fits	 of	 reflection	 and

transmission,”	 even	 though	 it	 is	 clear	 that	 he	 knew	 his	 theory	 was	 not	 satisfactory.	 In
Newton’s	time,	difficulties	with	a	theory	were	dealt	with	briefly	and	glossed	over—a	different
style	 from	what	we	are	used	 to	 in	science	 today,	where	we	point	out	 the	places	where	our
own	theory	doesn’t	fit	the	observations	of	experiment.	I’m	not	trying	to	say	anything	against
Newton;	 I	 just	want	 to	 say	 something	 in	 favor	of	how	we	communicate	with	each	other	 in
science	today.
3	This	idea	made	use	of	the	fact	that	waves	can	combine	or	cancel	out,	and	the	calculations
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based	on	this	model	matched	the	results	of	Newton’s	experiments,	as	well	as	those	done	for
hundreds	 of	 years	 afterwards.	 But	 when	 instruments	 were	 developed	 that	 were	 sensitive
enough	 to	detect	 a	 single	 photon,	 the	wave	 theory	predicted	 that	 the	 “clicks”of	 the	photo-
multiplier	 would	 get	 softer	 and	 softer,	 whereas	 they	 stayed	 at	 full	 strength—they	 just
occurred	 less	 and	 less	 often.	 No	 reasonable	 model	 could	 explain	 this	 fact,	 so	 there	 was	 a
period	 for	a	while	 in	which	you	had	 to	be	clever:	You	had	 to	know	which	experiment	you
were	 analyzing	 in	 order	 to	 tell	 if	 light	was	waves	 or	 particles.	 This	 state	 of	 confusion	was
called	the	“wave-particle	duality”	of	light,	and	it	was	jokingly	said	by	someone	that	light	was
waves	on	Mondays,	Wednesdays,	and	Fridays;	 it	was	particles	on	Tuesdays,	Thursdays,	and
Saturdays,	and	on	Sundays,	we	think	about	it!	It	 is	the	purpose	of	these	lectures	to	tell	you
how	this	puzzle	was	finally	“resolved.”
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Photons:	Particles	of	Light

This	 is	 the	 second	 in	 a	 series	 of	 lectures	 about	 quantum
electrodynamics,	and	since	 it’s	clear	 that	none	of	you	were	here	 last
time	(because	 I	 told	everyone	 that	 they	weren’t	going	 to	understand
anything),	I’ll	briefly	summarize	the	first	lecture.
We	were	talking	about	light.	The	first	important	feature	about	light

is	that	it	appears	to	be	particles:	when	very	weak	monochromatic	light
(light	 of	 one	 color)	 hits	 a	 detector,	 the	 detector	makes	 equally	 loud
clicks	less	and	less	often	as	the	light	gets	dimmer.
The	 other	 important	 feature	 about	 light	 discussed	 in	 the	 first

lecture	is	partial	reflection	of	monochromatic	light.	An	average	of	4%
of	 the	 photons	 hitting	 a	 single	 surface	 of	 glass	 is	 reflected.	 This	 is
already	 a	 deep	 mystery,	 since	 it	 is	 impossible	 to	 predict	 which
photons	will	bounce	back	and	which	will	go	 through.	With	a	 second
surface,	 the	 results	 are	 strange:	 instead	of	 the	 expected	 reflection	of
8%	by	the	two	surfaces,	the	partial	reflection	can	be	amplified	as	high
as	16%	or	turned	off,	depending	on	the	thickness	of	the	glass.
This	strange	phenomenon	of	partial	reflection	by	two	surfaces	can

be	 explained	 for	 intense	 light	 by	 a	 theory	 of	 waves,	 but	 the	 wave
theory	cannot	explain	how	the	detector	makes	equally	 loud	clicks	as
the	light	gets	dimmer.	Quantum	electrodynamics	“resolves”	this	wave-
particle	duality	by	 saying	 that	 light	 is	made	of	 particles	 (as	Newton
originally	thought),	but	the	price	of	this	great	advancement	of	science
is	a	retreat	by	physics	to	the	position	of	being	able	to	calculate	only
the	 probability	 that	 a	 photon	 will	 hit	 a	 detector,	 without	 offering	 a
good	model	of	how	it	actually	happens.
In	 the	 first	 lecture	 I	 described	 how	 physicists	 calculate	 the

probability	 that	 a	 particular	 event	 will	 happen.	 They	 draw	 some
arrows	 on	 a	 piece	 of	 paper	 according	 to	 some	 rules,	 which	 go	 as
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follows:

—GRAND	PRINCIPLE:	The	probability	of	an	event	is	equal	to	the	square
of	 the	 length	 of	 an	 arrow	 called	 the	 “probability	 amplitude.”	 An
arrow	of	 length	0.4,	 for	example,	represents	a	probability	of	0.16,
or	16%.

—GENERAL	 RULE	 for	 drawing	 arrows	 if	 an	 event	 can	 happen	 in
alternative	ways:	Draw	an	arrow	for	each	way,	and	then	combine
the	arrows	(“add”	them)	by	hooking	the	head	of	one	to	the	tail	of
the	 next.	 A	 “final	 arrow”	 is	 then	 drawn	 from	 the	 tail	 of	 the	 first
arrow	to	the	head	of	the	last	one.	The	final	arrow	is	the	one	whose
square	gives	the	probability	of	the	entire	event.

There	were	also	some	specific	rules	for	drawing	arrows	in	the	case	of
partial	reflection	by	glass	(they	can	be	found	on	pages	26	and	27).
All	of	the	preceding	is	a	review	of	the	first	lecture.
What	 I	would	 like	 to	do	now	 is	 show	you	how	 this	model	 of	 the

world,	 which	 is	 so	 utterly	 different	 from	 anything	 you’ve	 ever	 seen
before	(that	perhaps	you	hope	never	 to	see	 it	again),	can	explain	all
the	simple	properties	of	light	that	you	know:	when	light	reflects	off	a
mirror,	the	angle	of	incidence	is	equal	to	the	angle	of	reflection;	light
bends	when	 it	 goes	 from	 air	 into	water;	 light	 goes	 in	 straight	 lines;
light	 can	be	 focused	by	a	 lens,	 and	 so	on.	The	 theory	also	describes
many	other	properties	of	light	that	you	are	probably	not	familiar	with.
In	fact,	the	greatest	difficulty	I	had	in	preparing	these	lectures	was	to
resist	 the	temptation	to	derive	all	of	 the	things	about	 light	 that	 took
you	so	long	to	learn	about	in	school—such	as	the	behavior	of	light	as
it	goes	past	an	edge	into	a	shadow	(called	diffraction)—but	since	most
of	 you	have	not	 carefully	 observed	 such	phenomena,	 I	won’t	 bother
with	 them.	 However,	 I	 can	 guarantee	 you	 (otherwise,	 the	 examples
I’m	going	to	show	you	would	be	misleading)	that	every	phenomenon
about	 light	that	has	been	observed	in	detail	can	be	explained	by	the
theory	 of	 quantum	 electrodynamics,	 even	 though	 I’m	 going	 to
describe	only	the	simplest	and	most	common	phenomena.
We	start	with	a	mirror,	and	the	problem	of	determining	how	light

is	reflected	from	it	(see	Fig.	19).	At	S	we	have	a	source	that	emits	light
of	 one	 color	 at	 very	 low	 intensity	 (let’s	 use	 red	 light	 again).	 The
source	emits	one	photon	at	a	time.	At	P,	we	place	a	photomultiplier	to

52



detect	photons.	Let’s	put	it	at	the	same	height	as	the	source—drawing
arrows	 will	 be	 easier	 if	 everything	 is	 symmetrical.	 We	 want	 to
calculate	the	chance	that	the	detector	will	make	a	click	after	a	photon
has	 been	 emitted	 by	 the	 source.	 Since	 it	 is	 possible	 that	 a	 photon
could	 go	 straight	 across	 to	 the	 detector,	 let’s	 place	 a	 screen	 at	Q	 to
prevent	that.
Now,	we	would	expect	 that	all	 the	 light	 that	 reaches	 the	detector

reflects	 off	 the	middle	of	 the	mirror,	 because	 that’s	 the	place	where
the	 angle	 of	 incidence	 equals	 the	 angle	 of	 reflection.	 And	 it	 seems
fairly	obvious	that	the	parts	of	the	mirror	out	near	the	two	ends	have
as	much	to	do	with	the	reflection	as	with	the	price	of	cheese,	right?
Although	you	might	think	that	the	parts	of	the	mirror	near	the	two

ends	have	nothing	to	do	with	the	reflection	of	the	light	that	goes	from
the	source	to	the	detector,	let	us	look	at	what	quantum	theory	has	to
say.	Rule:	The	probability	that	a	particular	event	occurs	is	the	square
of	a	final	arrow	that	is	found	by	drawing	an	arrow	for	each	way	the
event	could	happen,	and	then	combining	(“adding”)	the	arrows.	In	the
experiment	measuring	 the	partial	 reflection	of	 light	by	 two	 surfaces,
there	 were	 two	 ways	 a	 photon	 could	 get	 from	 the	 source	 to	 the
detector.	In	this	experiment,	there	are	millions	of	ways	a	photon	could
go:	it	could	go	down	to	the	left-hand	part	of	the	mirror	at	A	or	B	(for
example)	and	bounce	up	to	the	detector	(see	Fig.	20);	it	could	bounce
off	the	part	where	you	think	it	should,	at	G;	or,	 it	could	go	down	to
the	 right-hand	 part	 of	 the	 mirror	 at	 K	 or	 M	 and	 bounce	 up	 to	 the
detector.	You	might	 think	 I’m	crazy,	because	 for	most	of	 the	ways	 I
told	you	a	photon	could	reflect	off	the	mirror,	the	angles	aren’t	equal.
But	 I’m	not	 crazy,	because	 that’s	 the	way	 light	 really	goes!	How	can
that	be?
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FIGURE	19.	The	classical	view	of	the	world	says	that	a	mirror	will	reflect	light	where	the	angle	of
incidence	 is	 equal	 to	 the	 angle	 of	 reflection,	 even	 if	 the	 source	 and	 the	 detector	 are	 at	 different
levels,	as	in	(b).

FIGURE	20.	The	quantum	view	of	the	world	says	that	light	has	an	equal	amplitude	to	reflect	from
every	part	of	the	mirror,	from	A	to	M.

To	make	 this	problem	easier	 to	understand,	 let’s	 suppose	 that	 the
mirror	consists	of	only	a	long	strip	from	left	to	right—it’s	just	as	well
that	we	forget,	for	a	moment,	that	the	mirror	also	sticks	out	from	the
paper	 (see	 Fig.	 21).	 While	 there	 are,	 in	 reality,	 millions	 of	 places
where	 the	 light	could	 reflect	 from	 this	 strip	of	mirror,	 let’s	make	an
approximation	 by	 temporarily	 dividing	 the	 mirror	 into	 a	 definite
number	of	little	squares,	and	consider	only	one	path	for	each	square—
our	calculation	gets	more	accurate	(but	harder	to	do)	as	we	make	the
squares	smaller	and	consider	more	paths.
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FIGURE	21.	To	calculate	more	easily	where	the	light	goes,	we	shall	temporarily	consider	only	a	strip
of	mirror	divided	 into	 little	 squares,	with	one	path	 for	each	square.	This	 simplification	 in	no	way
detracts	from	an	accurate	analysis	of	the	situation.

Now,	 let’s	 draw	a	 little	 arrow	 for	 each	way	 the	 light	 could	 go	 in
this	 situation.	 Each	 little	 arrow	 has	 a	 certain	 length	 and	 a	 certain
direction.	 Let’s	 consider	 the	 length	 first.	 You	 might	 think	 that	 the
arrow	we	draw	 to	 represent	 the	path	 that	goes	 to	 the	middle	of	 the
mirror,	at	G,	is	by	far	the	longest	(since	there	seems	to	be	a	very	high
probability	 that	 any	 photon	 that	 gets	 to	 the	 detector	 must	 go	 that
way),	and	the	arrows	for	the	paths	at	the	ends	of	the	mirror	must	be
very	 short.	No,	 no;	we	 should	not	make	 such	 an	 arbitrary	 rule.	 The
right	 rule—what	 actually	 happens—is	 much	 simpler:	 a	 photon	 that
reaches	the	detector	has	a	nearly	equal	chance	of	going	on	any	path,
so	 all	 the	 little	 arrows	 have	 nearly	 the	 same	 length.	 (There	 are,	 in
reality,	some	very	slight	variations	in	length	due	to	the	various	angles
and	 distances	 involved,	 but	 they	 are	 so	 minor	 that	 I	 am	 going	 to
ignore	them.)	So	let	us	say	that	each	little	arrow	we	draw	will	have	an
arbitrary	standard	length—I	will	make	the	length	very	short	because
there	are	many	of	these	arrows	representing	the	many	ways	the	light
could	go	(see	Fig.	22).

FIGURE	22.	Each	way	 the	 light	 can	go	will	be	 represented	 in	our	calculation	by	an	arrow	of	an
arbitrary	standard	length,	as	shown.

Although	it	is	safe	to	assume	that	the	length	of	all	the	arrows	will
be	 nearly	 the	 same,	 their	 directions	will	 clearly	 differ	 because	 their
timing	 is	 different—as	 you	 remember	 from	 the	 first	 lecture,	 the
direction	of	a	particular	arrow	is	determined	by	the	final	position	of
an	 imaginary	 stopwatch	 that	 times	 a	 photon	 as	 it	moves	 along	 that
particular	 path.	When	 a	 photon	 goes	way	 off	 to	 the	 left	 end	 of	 the
mirror,	at	A,	and	 then	up	 to	 the	detector,	 it	clearly	 takes	more	 time
than	a	photon	that	gets	to	the	detector	by	reflecting	in	the	middle	of
the	mirror,	at	G	(see	Fig.	23).	Or,	imagine	for	a	moment	that	you	were
in	a	hurry	and	had	to	run	from	the	source	over	to	the	mirror	and	then
to	 the	detector.	You’d	know	 that	 it	 certainly	 isn’t	 a	 good	 idea	 to	go
way	over	to	A	and	then	all	the	way	up	to	the	dectector;	 it	would	be
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much	faster	to	touch	the	mirror	somewhere	in	the	middle.

FIGURE	23.	While	the	length	of	each	arrow	is	essentially	the	same,	the	direction	will	be	different
because	the	time	it	takes	for	a	photon	to	go	on	each	path	is	different.	Clearly,	it	takes	longer	to	go
from	S	to	A	to	P	than	from	S	to	G	to	P.

To	help	us	calculate	the	direction	of	each	arrow,	I’m	going	to	draw
a	 graph	 right	 underneath	 my	 sketch	 of	 the	 mirror	 (see	 Fig.	 24).
Directly	below	each	place	on	the	mirror	where	the	light	could	reflect,
I’m	going	to	show,	vertically,	how	much	time	it	would	take	if	the	light
went	that	way.	The	more	time	it	takes,	the	higher	the	point	will	be	on
the	graph.	Starting	at	the	left,	the	time	it	takes	a	photon	to	go	on	the
path	that	reflects	at	A	is	pretty	long,	so	we	plot	a	point	pretty	high	up
on	the	graph.	As	we	move	toward	the	center	of	the	mirror,	the	time	it
takes	 for	 a	 photon	 to	 go	 the	 particular	 way	 we’re	 looking	 at	 goes
down,	so	we	plot	each	successive	point	lower	than	the	previous	one.
After	we	pass	the	center	of	the	mirror,	the	time	it	takes	a	photon	to	go
on	each	successive	path	gets	longer	and	longer,	so	we	plot	our	points
correspondingly	higher	 and	higher.	To	aid	 the	 eye,	 let’s	 connect	 the
points:	 they	 form	 a	 symmetrical	 curve	 that	 starts	 high,	 goes	 down,
and	then	goes	back	up	again.
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FIGURE	24.	Each	path	the	light	could	go	(in	this	simplified	situation)	is	shown	at	the	top,	with	a
point	on	the	graph	below	it	showing	the	time	it	takes	a	photon	to	go	from	the	source	to	that	point	on
the	mirror,	and	then	to	the	photomultiplier.	Below	the	graph	is	the	direction	of	each	arrow,	and	at
the	bottom	is	the	result	of	adding	all	the	arrows.	It	is	evident	that	the	major	contribution	to	the	final
arrow’s	 length	 is	made	 by	arrows	E	 through	 I,	whose	 directions	 are	 nearly	 the	 same	 because	 the
timing	of	their	paths	is	nearly	the	same.	This	also	happens	to	be	where	the	total	time	is	least.	It	is
therefore	approximately	right	to	say	that	light	goes	where	the	time	is	least.

Now,	what	 does	 that	mean	 for	 the	 direction	 of	 the	 little	 arrows?
The	direction	of	a	particular	arrow	corresponds	to	the	amount	of	time
it	 would	 take	 a	 photon	 to	 get	 from	 the	 source	 to	 the	 detector
following	 that	particular	path.	 Let’s	draw	 the	arrows,	 starting	at	 the
left.	 Path	A	 takes	 the	most	 time;	 its	 arrow	 points	 in	 some	 direction
(Fig.	24).	The	arrow	for	path	B	points	in	a	different	direction	because
its	time	is	different.	At	the	middle	of	the	mirror,	arrows	F,	G,	and	H
point	in	nearly	the	same	direction	because	their	times	are	nearly	the
same.	After	passing	the	center	of	the	mirror,	we	see	that	each	path	on
the	 right	 side	 of	 the	 mirror	 corresponds	 to	 a	 path	 on	 the	 left	 side
whose	time	 is	exactly	 the	same	(this	 is	a	consequence	of	putting	the
source	and	the	detector	at	the	same	height,	and	path	G	exactly	in	the
middle).	 Thus	 the	 arrow	 for	 path	 J,	 for	 example,	 has	 the	 same
direction	as	the	arrow	for	path	D.
Now,	let’s	add	the	little	arrows	(Fig.	24).	Starting	with	arrow	A,	we

hook	the	arrows	to	each	other,	head	to	tail.	Now,	if	we	were	to	take	a
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walk	using	each	little	arrow	as	a	step,	we	wouldn’t	get	very	far	at	the
beginning,	 because	 the	 direction	 from	 one	 step	 to	 the	 next	 is	 so
different.	But	after	a	while	the	arrows	begin	to	point	in	generally	the
same	direction,	and	we	make	some	progress.	Finally,	near	the	end	of
our	 walk,	 the	 direction	 from	 one	 step	 to	 the	 next	 is	 again	 quite
different,	so	we	stagger	about	some	more.
All	we	have	to	do	now	is	draw	the	final	arrow.	We	simply	connect

the	tail	of	the	first	little	arrow	to	the	head	of	the	last	one,	and	see	how
much	direct	progress	we	made	on	our	walk	(Fig.	24).	And	behold—we
get	 a	 sizable	 final	 arrow!	 The	 theory	 of	 quantum	 electrodynamics
predicts	that	light	does,	indeed,	reflect	off	the	mirror!
Now,	 let’s	 investigate.	What	determines	how	 long	 the	 final	 arrow

is?	We	notice	a	number	of	things.	First,	the	ends	of	the	mirror	are	not
important:	 there,	 the	 little	 arrows	 wander	 around	 and	 don’t	 get
anywhere.	 If	 I	 chopped	 off	 the	 ends	 of	 the	 mirror—parts	 that	 you
instinctively	 knew	 I	 was	 wasting	 my	 time	 fiddling	 around	 with—it
would	hardly	affect	the	length	of	the	final	arrow.
So	 where	 is	 the	 part	 of	 the	 mirror	 that	 gives	 the	 final	 arrow	 a

substantial	 length?	 It’s	 the	part	where	 the	arrows	are	all	pointing	 in
nearly	 the	 same	 direction—because	 their	 time	 is	 almost	 the	 same.	 If
you	look	at	 the	graph	showing	the	time	for	each	path	(Fig.	24),	you
see	that	the	time	is	nearly	the	same	from	one	path	to	the	next	at	the
bottom	of	the	curve,	where	the	time	is	least.
To	summarize,	where	the	time	is	least	is	also	where	the	time	for	the

nearby	paths	is	nearly	the	same;	that’s	where	the	little	arrows	point	in
nearly	 the	 same	 direction	 and	 add	 up	 to	 a	 substantial	 length;	 that’s
where	 the	 probability	 of	 a	 photon	 reflecting	 off	 a	 mirror	 is
determined.	And	that’s	why,	in	approximation,	we	can	get	away	with
the	crude	picture	of	the	world	that	says	that	light	only	goes	where	the
time	 is	 least	 (and	 it’s	 easy	 to	 prove	 that	where	 the	 time	 is	 least,	 the
angle	of	incidence	is	equal	to	the	angle	of	reflection,	but	I	don’t	have
the	time	to	show	you).
So	the	theory	of	quantum	electrodynamics	gave	the	right	answer—

the	middle	of	the	mirror	is	the	important	part	for	reflection—but	this
correct	result	came	out	at	the	expense	of	believing	that	 light	reflects
all	 over	 the	 mirror,	 and	 having	 to	 add	 a	 bunch	 of	 little	 arrows
together	whose	sole	purpose	was	to	cancel	out.	All	that	might	seem	to
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you	to	be	a	waste	of	time—some	silly	game	for	mathematicians	only.
After	all,	 it	doesn’t	 seem	like	“real	physics”	 to	have	something	there
that	only	cancels	out!
Let’s	test	the	idea	that	there	really	is	reflection	going	on	all	over	the

mirror	by	doing	another	experiment.	First,	 let’s	chop	off	most	of	 the
mirror,	and	leave	about	a	quarter	of	it,	over	on	the	left.	We	still	have
a	 pretty	 big	 piece	 of	 mirror,	 but	 it’s	 in	 the	 wrong	 place.	 In	 the
previous	 experiment	 the	 arrows	 on	 the	 left	 side	 of	 the	mirror	 were
pointing	in	directions	very	different	from	one	another	because	of	the
large	difference	 in	 time	between	neighboring	paths	 (Fig.	24).	 In	 this
experiment	I	am	going	to	make	a	more	detailed	calculation	by	taking
intervals	 on	 that	 left-hand	 part	 of	 the	 mirror	 that	 are	 much	 closer
together—fine	 enough	 that	 there	 is	 not	 much	 difference	 in	 time
between	 neighboring	 paths	 (see	 Fig.	 25).	 With	 this	 more	 detailed
picture,	we	see	that	some	of	the	arrows	point	more	or	less	to	the	right;
the	 others	 point	 more	 or	 less	 to	 the	 left.	 If	 we	 add	 all	 the	 arrows
together,	 we	 have	 a	 bunch	 of	 arrows	 going	 around	 in	 what	 is
essentially	a	circle,	getting	nowhere.

FIGURE	25.	To	test	the	idea	that	there	is	really	reflection	happening	at	the	ends	of	the	mirror	(hut	it
is	just	cancelling	out),	we	do	an	experiment	with	a	large	piece	of	mirror	that	is	located	in	the	wrong
place	for	reflection	from	S	to	P.	This	piece	of	mirror	is	divided	into	much	smaller	sections,	so	that
the	timing	from	one	path	to	the	next	is	not	very	different.	When	all	the	arrows	are	added,	they	get
nowhere:	they	go	in	a	circle	and	add	up	to	nearly	nothing.

But	let’s	suppose	we	carefully	scrape	the	mirror	away	in	those	areas
whose	arrows	have	a	bias	 in	one	direction—let’s	 say,	 to	 the	 left—so
that	 only	 those	 places	 whose	 arrows	 point	 generally	 the	 other	 way
remain	 (see	 Fig.	 26).	 When	 we	 add	 up	 only	 the	 arrows	 that	 point
more	or	less	to	the	right,	we	get	a	series	of	dips	and	a	substantial	final
arrow—according	 to	 the	 theory,	 we	 should	 now	 have	 a	 strong
reflection!	And	indeed,	we	do—the	theory	is	correct!	Such	a	mirror	is
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called	a	diffraction	grating,	and	it	works	like	a	charm.
Isn’t	it	wonderful—you	can	take	a	piece	of	mirror	where	you	didn’t

expect	any	reflection,	scrape	away	part	of	it,	and	it	reflects!1

FIGURE	 26.	 If	 only	 the	 arrows	 with	 a	 bias	 in	 a	 particular	 direction—such	 as	 to	 the	 right—are
added,	 while	 the	 others	 are	 disregarded	 (by	 etching	 away	 the	 mirror	 in	 those	 places),	 then	 a
substantial	amount	of	 light	 reflects	 from	 this	piece	of	mirror	 located	 in	 the	wrong	place.	Such	an
etched	mirror	is	called	a	diffraction	grating.

The	particular	grating	 that	 I	 just	 showed	you	was	 tailor-made	 for
red	 light.	 It	wouldn’t	work	 for	blue	 light;	we	would	have	 to	make	a
new	grating	with	the	cut-away	strips	spaced	closer	together	because,
as	 I	 told	 you	 in	 the	 first	 lecture,	 the	 stopwatch	 hand	 turns	 around
faster	when	it	times	a	blue	photon	compared	to	a	red	photon.	So	the
cuts	that	were	especially	designed	for	the	“red”	rate	of	turning	don’t
fall	in	the	right	places	for	blue	light;	the	arrows	get	kinked	up	and	the
grating	doesn’t	work	very	well.	But	as	a	matter	of	accident,	it	happens
that	 if	 we	move	 the	 photomultiplier	 down	 to	 a	 somewhat	 different
angle,	the	grating	made	for	red	light	now	works	for	blue	light.	It’s	just
a	 lucky	 accident,	 a	 consequence	 of	 the	 geometry	 involved	 (see	 Fig.
27).
If	you	shine	white	light	down	onto	the	grating,	red	light	comes	out

at	 one	 place,	 orange	 light	 comes	 out	 slightly	 above	 it,	 followed	 by
yellow,	 green,	 and	 blue	 light—all	 the	 colors	 of	 the	 rainbow.	Where
there	is	a	series	of	grooves	close	together,	you	can	often	see	colors—
for	 example,	 when	 you	 hold	 a	 phonograph	 record	 (or	 better,	 a
videodisc)—under	bright	light	at	the	correct	angles.	Perhaps	you	have
seen	 those	wonderful	 silvery	 signs	 (here	 in	 sunny	 California	 they’re
often	on	the	backs	of	cars):	when	the	car	moves,	you	see	very	bright
colors	 changing	 from	 red	 to	 blue.	 Now	 you	 know	where	 the	 colors
come	from:	you’re	looking	at	a	grating—a	mirror	that’s	been	scratched
in	just	the	right	places.	The	sun	is	the	light	source,	and	your	eyes	are
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the	detector.	I	could	go	on	to	easily	explain	how	lasers	and	holograms
work,	but	I	know	that	not	everyone	has	seen	these	things,	and	I	have
too	many	other	things	to	talk	about.2

FIGURE	27.	A	diffraction	grating	with	grooves	at	the	right	distance	for	red	light	also	works	for	other
colors,	if	the	detector	is	in	a	different	place.	Thus	it	is	possible	to	see	different	colors	reflecting	from
a	grooved	surface—such	as	a	phonograph	record—depending	on	the	angle.

So	a	grating	shows	that	we	can’t	 ignore	the	parts	of	a	mirror	that
don’t	seem	to	be	reflecting;	if	we	do	some	clever	things	to	the	mirror,
we	can	demonstrate	the	reality	of	the	reflections	from	all	parts	of	the
mirror	and	produce	some	striking	optical	phenomena.

FIGURE	 28.	Nature	 has	made	many	 types	 of	 diffraction	 gratings	 in	 the	 form	 of	 crystals.	 A	 salt
crystal	reflects	X-rays	(light	for	which	the	imaginary	stopwatch	hand	moves	extremely	fast—perhaps
10,000	times	faster	than	for	visible	light)	at	various	angles,	from	which	can	be	determined	the	exact
arrangement	and	spacings	of	the	individual	atoms.

More	 importantly,	 demonstrating	 the	 reality	 of	 reflection	 from	all
parts	of	 the	mirror	shows	 that	 there	 is	an	amplitude—an	arrow—for
every	way	an	event	can	happen.	And	in	order	to	calculate	correctly	the
probability	of	an	event	in	different	circumstances,	we	have	to	add	the
arrows	for	every	way	that	the	event	could	happen—not	just	the	ways
we	think	are	the	important	ones!
Now,	 I	 would	 like	 to	 talk	 about	 something	 more	 familiar	 than

gratings—about	 light	 going	 from	 air	 into	water.	 This	 time,	 let’s	 put
the	 photomultiplier	 underwater—we	 suppose	 the	 experimenter	 can
arrange	that!	The	source	of	light	is	in	the	air	at	S,	and	the	dectector	is
underwater,	at	D	(see	Fig.	29).	Once	again,	we	want	to	calculate	the
probability	 that	 a	 photon	 will	 get	 from	 the	 light	 source	 to	 the
detector.	 To	make	 this	 calculation,	we	 should	 consider	 all	 the	ways
the	 light	 could	 go.	 Each	 way	 the	 light	 could	 go	 contributes	 a	 little
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arrow	 and,	 as	 in	 the	 previous	 example,	 all	 the	 little	 arrows	 have
nearly	 the	 same	 length.	We	 can	 again	make	 a	 graph	 of	 the	 time	 it
takes	a	photon	to	go	on	each	possible	path.	The	graph	will	be	a	curve
very	 similar	 to	 the	 one	we	made	 for	 light	 reflecting	 off	 a	mirror:	 it
starts	 up	 high,	 goes	 down,	 and	 then	 back	 up	 again;	 the	 most
important	contributions	come	from	the	places	where	the	arrows	point
in	nearly	the	same	direction	(where	the	time	is	nearly	the	same	from
one	path	to	the	next),	which	is	at	the	bottom	of	the	curve.	That	is	also
where	the	time	is	the	least,	so	all	we	have	to	do	is	find	out	where	the
time	is	least.

FIGURE	29.	Quantum	theory	says	that	light	can	go	from	a	source	in	air	to	a	detector	in	water	in
many	ways.	If	the	problem	is	simplified	as	in	the	case	of	the	mirror,	a	graph	showing	the	timing	of
each	 path	 can	 be	 drawn,	 with	 the	 direction	 of	 each	 arrow	 below	 it.	 Once	 again,	 the	 major
contribution	 toward	 the	 length	 of	 the	 final	 arrow	 comes	 from	 those	 paths	whose	 arrows	 point	 in
nearly	the	same	direction	because	their	timing	is	nearly	the	same;	once	again,	this	is	where	the	time
is	least.

It	turns	out	that	light	seems	to	go	slower	in	water	than	it	does	in	air
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(I	 will	 explain	 why	 in	 the	 next	 lecture),	 which	 makes	 the	 distance
through	water	more	“costly,”	 so	 to	 speak,	 than	 the	distance	 through
air.	It’s	not	hard	to	figure	out	which	path	takes	the	least	time:	suppose
you’re	the	lifeguard,	sitting	at	S,	and	the	beautiful	girl	is	drowning,	at
D	(Fig.	30).	You	can	run	on	land	faster	than	you	can	swim	in	water.
The	problem	 is,	where	do	you	enter	 the	water	 in	order	 to	 reach	 the
drowning	victim	the	fastest?	Do	you	run	down	to	the	water	at	A,	and
then	 swim	 like	hell?	Of	 course	not.	But	 running	directly	 toward	 the
victim	 and	 entering	 the	 water	 at	 J	 is	 not	 the	 fastest	 route,	 either.
While	 it	 would	 be	 foolish	 for	 a	 lifeguard	 to	 analyze	 and	 calculate
under	the	circumstances,	there	is	a	computable	position	at	which	the
time	 is	minimum:	 it’s	 a	 compromise	between	 taking	 the	direct	path,
through	J,	and	taking	the	path	with	the	least	water,	 through	N.	And
so	it	 is	with	light—the	path	of	 least	time	enters	the	water	at	a	point
between	J	and	N,	such	as	L.

FIGURE	 30.	 Finding	 the	 path	 of	 least	 time	 for	 light	 is	 like	 finding	 the	 path	 of	 least	 time	 for	 a
lifeguard	running	and	then	swimming	to	rescue	a	drowning	victim:	the	path	of	least	distance	has	too
much	 water	 in	 it;	 the	 path	 of	 least	 water	 has	 too	 much	 land	 in	 it;	 the	 path	 of	 least	 time	 is	 a
compromise	between	the	two.

Another	phenomenon	of	light	that	I	would	like	to	mention	briefly	is
the	mirage.	When	you’re	driving	along	a	road	that	is	very	hot,	you	can
sometimes	see	what	looks	like	water	on	the	road.	What	you’re	really
seeing	 is	 the	 sky,	 and	when	 you	 normally	 see	 sky	 on	 the	 road,	 it’s
because	the	road	has	puddles	of	water	on	it	(partial	reflection	of	light
by	 a	 single	 surface).	 But	 how	 can	 you	 see	 sky	 on	 the	 road	 when
there’s	 no	 water	 there?	 What	 you	 need	 to	 know	 is	 that	 light	 goes
slower	through	cooler	air	than	through	warmer	air,	and	for	a	mirage
to	be	seen,	the	observer	must	be	in	the	cooler	air	that	is	above	the	hot
air	next	 to	 the	 road	 surface	 (see	Fig.	31).	How	 it	 is	possible	 to	 look
down	and	see	the	sky	can	be	understood	by	finding	the	path	of	 least
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time.	I’ll	let	you	play	with	that	one	at	home—it’s	fun	to	think	about,
and	pretty	easy	to	figure	out.

FIGURE	31.	Finding	the	path	of	least	time	explains	how	a	mirage	works.	Light	goes	faster	through
warm	air	than	through	cool	air.	Some	of	the	sky	appears	to	be	on	the	road	because	some	of	the	light
from	the	sky	reaches	the	eye	by	coming	up	from	the	road.	The	only	other	time	sky	appears	to	be	on
the	road	is	when	water	is	reflecting	it,	and	thus	a	mirage	appears	to	be	water.

In	the	examples	I	showed	you	of	light	reflecting	off	a	mirror	and	of
light	 going	 through	 air	 and	 then	 water,	 I	 was	 making	 an
approximation:	for	the	sake	of	simplicity,	I	drew	the	various	ways	the
light	could	go	as	double	straight	lines—two	straight	lines	that	form	an
angle.	 But	 we	 don’t	 have	 to	 assume	 that	 light	 goes	 in	 straight	 lines
when	 it	 is	 in	 a	 uniform	 material	 like	 air	 or	 water;	 even	 that	 is
explainable	 by	 the	 general	 principle	 of	 quantum	 theory:	 the
probability	of	an	event	is	found	by	adding	arrows	for	all	the	ways	the
event	could	happen.
So	 for	 our	 next	 example,	 I’m	 going	 to	 show	 you	 how,	 by	 adding

little	arrows,	it	can	appear	that	light	goes	in	a	straight	line.	Let’s	put	a
source	 and	 a	 photomultiplier	 at	 S	 and	 P,	 respectively	 (see	 Fig.	 32),
and	 look	 at	 all	 the	ways	 the	 light	 could	 go—in	 all	 sorts	 of	 crooked
paths—to	get	 from	the	source	 to	 the	detector.	Then	we	draw	a	 little
arrow	for	each	path,	and	we’re	learning	our	lesson	well!
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FIGURE	 32.	Quantum	 theory	 can	 be	 used	 to	 show	why	 light	 appears	 to	 travel	 in	 straight	 lines.
When	all	possible	paths	are	considered,	each	crooked	path	has	a	nearby	path	of	considerably	 less
distance	and	therefore	much	less	time	(and	a	substantially	different	direction	for	the	arrow).	Only
the	paths	near	the	straight-line	path	at	D	have	arrows	pointing	in	nearly	the	same	direction,	because
their	timings	are	nearly	the	same.	Only	such	arrows	are	important,	because	it	is	from	them	that	we
accumulate	a	large	final	arrow.

For	each	crooked	path,	such	as	path	A,	there’s	a	nearby	path	that’s
a	little	bit	straighter	and	distinctly	shorter—that	is,	it	takes	much	less
time.	But	where	the	paths	become	nearly	straight—at	C,	for	example
—a	nearby,	straighter	path	has	nearly	the	same	time.	That’s	where	the
arrows	add	up	rather	than	cancel	out;	that’s	where	the	light	goes.
It	 is	 important	 to	 note	 that	 the	 single	 arrow	 that	 represents	 the

straight-line	path,	 through	D	 (Fig.	 32),	 is	 not	 enough	 to	 account	 for
the	 probability	 that	 light	 gets	 from	 the	 source	 to	 the	 detector.	 The
nearby,	 nearly	 straight	 paths—through	 C	 and	 E,	 for	 example—also
make	important	contributions.	So	light	doesn’t	really	 travel	only	in	a
straight	 line;	 it	 “smells”	 the	neighboring	paths	around	 it,	 and	uses	a
small	 core	 of	 nearby	 space.	 (In	 the	 same	way,	 a	mirror	 has	 to	have
enough	size	to	reflect	normally:	if	the	mirror	is	too	small	for	the	core
of	neighboring	paths,	the	light	scatters	in	many	directions,	no	matter
where	you	put	the	mirror.)
Let’s	investigate	this	core	of	light	more	closely	by	putting	a	source

at	 S,	 a	 photomultiplier	 at	 P,	 and	 a	 pair	 of	 blocks	 between	 them	 to
keep	 the	 paths	 of	 light	 from	wandering	 too	 far	 away	 (see	 Fig.	 33).
Now,	 let’s	 put	 a	 second	photo-multiplier	 at	Q,	 below	P,	 and	assume
again,	 for	 the	 sake	 of	 simplicity,	 that	 the	 light	 can	 get	 from	 S	 to	Q
only	by	paths	of	double	straight	lines.	Now,	what	happens?	When	the
gap	 between	 the	 blocks	 is	 wide	 enough	 to	 allow	many	 neighboring
paths	to	P	and	to	Q,	the	arrows	for	the	paths	to	P	add	up	(because	all
the	paths	to	P	take	nearly	the	same	time),	while	the	paths	to	Q	cancel
out	(because	those	paths	have	a	sizable	difference	in	time).	Thus	the
photomultiplier	at	Q	doesn’t	click.
But	 as	we	push	 the	blocks	 closer	 together,	 at	 a	 certain	point,	 the

detector	at	Q	starts	clicking!	When	the	gap	is	nearly	closed	and	there
are	 only	 a	 few	 neighboring	 paths,	 the	 arrows	 to	 Q	 also	 add	 up,
because	 there	 is	 hardly	 any	difference	 in	 time	between	 them,	 either
(see	 Fig.	 34).	 Of	 course,	 both	 final	 arrows	 are	 small,	 so	 there’s	 not
much	light	either	way	through	such	a	small	hole,	but	the	detector	at
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Q	clicks	almost	as	much	as	the	one	at	P!	So	when	you	try	to	squeeze
light	too	much	to	make	sure	it’s	going	in	only	a	straight	line,	it	refuses
to	cooperate	and	begins	to	spread	out.3

FIGURE	33.	Light	travels	 in	not	 just	 the	straight-line	path,	but	 in	the	nearby	paths	as	well.	When
two	blocks	are	separated	enough	to	allow	for	these	nearby	paths,	the	photons	proceed	normally	to	P,
and	hardly	ever	go	to	Q.

FIGURE	34.	When	light	is	restricted	so	much	that	only	a	few	paths	are	possible,	the	light	that	is	able
to	 get	 through	 the	 narrow	 slit	 goes	 to	Q	 almost	 as	much	 as	 to	 P,	 because	 there	 are	 not	 enough
arrows	representing	the	paths	to	Q	to	cancel	each	other	out.

So	 the	 idea	 that	 light	 goes	 in	 a	 straight	 line	 is	 a	 convenient
approximation	to	describe	what	happens	in	the	world	that	is	familiar
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to	 us;	 it’s	 similar	 to	 the	 crude	 approximation	 that	 says	 when	 light
reflects	 off	 a	mirror,	 the	 angle	 of	 incidence	 is	 equal	 to	 the	 angle	 of
reflection.
Just	as	we	were	able	to	do	a	clever	trick	to	make	light	reflect	off	a

mirror	 at	many	 angles,	we	 can	 do	 a	 similar	 trick	 to	 get	 light	 to	 go
from	one	point	to	another	in	many	ways.
First,	to	simplify	the	situation,	I’m	going	to	draw	a	vertical	dashed

line	(see	Fig.	35)	between	the	light	source	and	the	detector	(the	line
means	nothing;	it’s	just	an	artificial	line)	and	say	that	the	only	paths
we’re	going	to	look	at	are	double	straight	lines.	The	graph	that	shows
the	time	for	each	path	looks	the	same	as	in	the	case	of	the	mirror	(but
I’ll	draw	it	sideways,	this	time):	the	curve	starts	at	A,	at	the	top,	and
then	it	comes	in,	because	the	paths	in	the	middle	are	shorter	and	take
less	time.	Finally,	the	curve	goes	back	out	again.

FIGURE	35.	Analysis	of	all	possible	paths	from	S	to	P	is	simplified	to	include	only	double	straight
lines	(in	a	single	plane).	The	effect	is	the	same	as	in	the	more	complicated,	real	case:	there	is	a	time
curve	with	a	minimum,	where	most	of	the	contribution	to	the	final	arrow	is	made.

Now,	let’s	have	some	fun.	Let’s	“fool	the	light,”	so	that	all	the	paths
take	exactly	the	same	amount	of	time.	How	can	we	do	this?	How	can
we	make	the	shortest	path,	through	M,	take	exactly	the	same	time	as
the	longest	path,	through	A?
Well,	 light	 goes	 slower	 in	 water	 than	 it	 does	 in	 air;	 it	 also	 goes

slower	in	glass	(which	is	much	easier	to	handle!).	So,	if	we	put	in	just
the	 right	 thickness	of	glass	on	 the	 shortest	path,	 through	M,	we	can
make	the	time	for	that	path	exactly	the	same	as	for	the	path	through
A.	The	paths	next	to	M,	which	are	just	a	little	longer,	won’t	need	quite
as	much	glass	(see	Fig.	36).	The	nearer	we	get	to	A,	the	less	glass	we
have	 to	 put	 in	 to	 slow	 up	 the	 light.	 By	 carefully	 calculating	 and
putting	in	just	the	right	thickness	of	glass	to	compensate	for	the	time
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along	each	path,	we	can	make	all	the	times	the	same.	When	we	draw
the	 arrows	 for	 each	 way	 the	 light	 could	 go,	 we	 find	 we	 have
succeeded	 in	 straightening	 them	 all	 out—and	 there	 are,	 in	 reality,
millions	 of	 tiny	 arrows—so	 the	 net	 result	 is	 a	 sensationally	 large,
unexpectedly	 enormous	 final	 arrow!	 Of	 course	 you	 know	 what	 I’m
describing;	 it’s	 a	 focusing	 lens.	 By	 arranging	 things	 so	 that	 all	 the
times	are	equal,	we	can	focus	light—we	can	make	the	probability	very
high	 that	 light	will	arrive	at	a	particular	point,	and	very	 low	 that	 it
will	arrive	anywhere	else.

FIGURE	36.	A	“trick”	can	be	played	on	Nature	by	slowing	down	the	light	that	takes	shorter	paths:
glass	of	just	the	right	thickness	is	inserted	so	that	all	the	paths	will	take	exactly	the	same	time.	This
causes	all	of	the	arrows	to	point	in	the	same	direction,	and	to	produce	a	whopping	final	arrow—lots
of	light!	Such	a	piece	of	glass	made	to	greatly	increase	the	probability	of	light	getting	from	a	source
to	a	single	point	is	called	a	focusing	lens.

I	 have	 used	 these	 examples	 to	 show	 you	 how	 the	 theory	 of
quantum	 electrodynamics,	 which	 looks	 at	 first	 like	 an	 absurd	 idea
with	 no	 causality,	 no	 mechanism,	 and	 nothing	 real	 to	 it,	 produces
effects	 that	 you	 are	 familiar	with:	 light	 bouncing	 off	 a	mirror,	 light
bending	when	it	goes	from	air	into	water,	and	light	focused	by	a	lens.
It	also	produces	other	effects	that	you	may	or	may	not	have	seen,	such
as	 the	 diffraction	 grating	 and	 a	 number	 of	 other	 things.	 In	 fact,	 the
theory	continues	 to	be	successful	at	explaining	every	phenomenon	of
light.
I	have	shown	you	with	examples	how	to	calculate	the	probability	of

an	 event	 that	 can	happen	 in	alternative	ways:	we	draw	an	 arrow	 for
each	way	the	event	can	happen,	and	add	the	arrows.	“Adding	arrows”
means	the	arrows	are	placed	head	to	tail	and	a	“final	arrow”	is	drawn.
The	 square	 of	 the	 resulting	 final	 arrow	 represents	 the	probability	 of
the	event.
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In	order	to	give	you	a	fuller	flavor	of	quantum	theory,	I	would	now
like	to	show	you	how	physicists	calculate	the	probability	of	compound
events—events	 that	 can	 be	 broken	 down	 into	 a	 series	 of	 steps,	 or
events	that	consist	of	a	number	of	things	happening	independently.
An	 example	 of	 a	 compound	 event	 can	 be	 demonstrated	 by

modifying	our	first	experiment,	in	which	we	aimed	some	red	photons
at	 a	 single	 surface	 of	 glass	 to	measure	 partial	 reflection.	 Instead	 of
putting	 the	 photomultiplier	 at	 A	 (see	 Fig.	 37),	 let’s	 put	 in	 a	 screen
with	 a	 hole	 in	 it	 to	 let	 the	 photons	 that	 reach	 point	 A	 go	 through.
Then	let’s	put	in	a	sheet	of	glass	at	B,	and	place	the	photomultiplier	at
C.	How	do	we	figure	out	the	probability	that	a	photon	will	get	from
the	source	to	C?
We	 can	 think	 of	 this	 event	 as	 a	 sequence	 of	 two	 steps.	 Step	 1:	 a

photon	 goes	 from	 the	 source	 to	 point	 A,	 reflecting	 off	 the	 single
surface	 of	 glass.	 Step	 2:	 the	 photon	 goes	 from	 point	 A	 to	 the
photomultiplier	at	C,	 reflecting	off	 the	sheet	of	glass	at	B.	Each	step
has	 a	 final	 arrow—an	 “amplitude”(I’m	 going	 to	 use	 the	 words
interchangeably)—that	 can	 be	 calculated	 according	 to	 the	 rules	 we
know	 so	 far.	 The	 amplitude	 for	 the	 first	 step	 has	 a	 length	 of	 0.2
(whose	square	is	0.04,	the	probability	of	reflection	by	a	single	surface
of	glass),	and	is	turned	at	some	angle—let’s	say,	2	o’clock	(Fig.	37).
To	calculate	the	amplitude	for	the	second	step,	we	temporarily	put

the	light	source	at	A	and	aim	the	photons	at	the	layer	of	glass	above.
We	 draw	 arrows	 for	 the	 front	 and	 back	 surface	 reflections	 and	 add
them—let’s	say	we	end	up	with	a	final	arrow	with	a	length	of	0.3,	and
turned	toward	5	o’clock.
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FIGURE	37.	A	compound	event	can	be	analyzed	as	a	succession	of	steps.	In	this	example,	the	path
of	a	photon	going	from	S	to	C	can	be	divided	into	two	steps:	1)	a	photon	gets	from	S	to	A,	and	2)
the	photon	gets	from	A	to	C.	Each	step	can	be	analyzed	separately	to	produce	an	arrow	that	can	be
regarded	in	a	new	way:	as	a	unit	arrow	(an	arrow	of	length	1	pointed	at	12	o’clock)	that	has	gone
through	a	shrink	and	turn.	In	this	example,	the	shrink	and	turn	for	Step	1	are	0.2	and	2	o’clock;	the
shrink	 and	 turn	 for	 Step	 2	 are	 0.3	 and	 5	 o’clock.	 To	 get	 the	 amplitude	 for	 the	 two	 steps	 in
succession,	we	 shrink	and	 turn	 in	 succession:	 the	unit	 arrow	 is	 shrunk	and	 turned	 to	produce	an
arrow	of	 length	0.2	 turned	 to	2	o’clock,	which	 itself	 is	 shrunk	and	 turned	 (as	 if	 it	were	 the	unit
arrow)	 by	 0.3	 and	 5	 o’clock	 to	 produce	 an	 arrow	 of	 length	 0.06	 and	 turned	 to	 7	 o’clock.	 This
process	of	successive	shrinking	and	turning	is	called	“multiplying”	arrows.

Now,	how	do	we	combine	 the	 two	arrows	 to	draw	 the	amplitude
for	 the	 entire	 event?	 We	 look	 at	 each	 arrow	 in	 a	 new	 way:	 as
instructions	for	a	shrink	and	turn.
In	 this	 example,	 the	 first	 amplitude	 has	 a	 length	 of	 0.2	 and	 is

turned	toward	2	o’clock.	If	we	begin	with	a	“unit	arrow”—an	arrow	of
length	 1	 pointed	 straight	 up—we	 can	 shrink	 this	 unit	 arrow	 from	 1
down	to	0.2,	and	 turn	 it	from	12	o’clock	to	2	o’clock.	The	amplitude
for	the	second	step	can	be	thought	of	as	shrinking	the	unit	arrow	from
1	to	0.3	and	turning	it	from	12	o’clock	to	5	o’clock.
Now,	to	combine	the	amplitudes	for	both	steps,	we	shrink	and	turn

in	succession.	First,	we	shrink	the	unit	arrow	from	1	to	0.2	and	turn	it
from	12	to	2	o’clock;	then	we	shrink	the	arrow	further,	from	0.2	down
to	three-tenths	of	that,	and	turn	it	by	the	amount	from	12	to	5—that
is,	we	 turn	 it	 from	2	o’clock	 to	7	o’clock.	The	 resulting	arrow	has	a
length	 of	 0.06	 and	 is	 pointed	 toward	 7	 o’clock.	 It	 represents	 a
probability	of	0.06	squared,	or	0.0036.
Observing	the	arrows	carefully,	we	see	that	the	result	of	shrinking

and	 turning	 two	 arrows	 in	 succession	 is	 the	 same	 as	 adding	 their
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angles	 (2	 o’clock	+	 5	 o’clock)	 and	multiplying	 their	 lengths	 (0.2	 *
0.3).	To	understand	why	we	add	 the	 angles	 is	 easy:	 the	 angle	of	 an
arrow	 is	 determined	 by	 the	 amount	 of	 turning	 by	 the	 imaginary
stopwatch	hand.	So	 the	 total	amount	of	 turning	 for	 the	 two	steps	 in
succession	is	simply	the	sum	of	the	turning	for	the	first	step	plus	the
additional	turning	for	the	second	step.
Why	 we	 call	 this	 process	 “multiplying	 arrows”	 takes	 a	 bit	 more

explanation,	 but	 it’s	 interesting.	 Let’s	 look	 at	 multiplication,	 for	 a
moment,	from	the	point	of	view	of	the	Greeks	(this	has	nothing	to	do
with	 the	 lecture).	 The	Greeks	wanted	 to	 use	 numbers	 that	were	 not
necessarily	 integers,	 so	 they	 represented	 numbers	 with	 lines.	 Any
number	 can	 be	 expressed	 as	 a	 transformation	 of	 the	 unit	 line—by
expanding	it	or	shrinking	it.	For	example,	if	Line	A	is	the	unit	line	(see
Fig.	38),	then	line	B	represents	2	and	line	C	represents	3.
Now,	how	do	we	multiply	3	times	2?	We	apply	the	transformations

in	succession:	starting	with	line	A	as	the	unit	line,	we	expand	it	2	times
and	 then	 3	 times	 (or	 3	 times	 and	 then	 2	 times—the	 order	 doesn’t
make	any	difference).	The	result	is	line	D,	whose	length	represents	6.
What	about	multiplying	1/3	times	1/2?	Taking	line	D	to	be	the	unit
line,	now,	we	 shrink	 it	 to	1/2	 (line	C)	and	 then	 to	1/3	of	 that.	The
result	is	line	A,	which	represents	1/6.

FIGURE	38.	We	can	express	any	number	as	a	transformation	of	the	unit	line	through	expansion	or
shrinkage.	 If	A	 is	 the	unit	 line,	 then	B	represents	2	(expansion),	and	C	represents	3	(expansion).
Multiplying	 lines	 is	 achieved	 through	 successive	 transformations.	 For	 example,	multiplying	3	by	2
means	that	the	unit	line	is	expanded	3	times	and	then	2	times,	producing	the	answer,	an	expansion
of	6	 (line	D).	 If	D	 is	 the	unit	 line,	 then	 line	C	 represents	112	(shrinkage),	 line	B	 represents	113
(shrinkage),	and	multiplying	112	by	113	means	the	unit	line	D	is	shrunk	to	112,	and	then	to	113	of
that,	producing	the	answer,	a	shrinkage	to	1/6	(line	A).

Multiplying	 arrows	 works	 the	 same	 way	 (see	 Fig.	 39).	We	 apply
transformations	to	the	unit	arrow	in	succession—it	 just	happens	that
the	transformation	of	an	arrow	 involves	 two	operations,	a	shrink	and
turn.	To	multiply	arrow	V	times	arrow	W,	we	shrink	and	turn	the	unit
arrow	by	the	prescribed	amounts	for	V,	and	then	shrink	it	and	turn	it
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the	 amounts	 prescribed	 for	 W—again,	 the	 order	 doesn’t	 make	 any
difference.	So	multiplying	arrows	follows	the	same	rule	of	successive
transformations	that	work	for	regular	numbers.4

FIGURE	 39.	Mathematicians	 found	 that	 multiplying	 arrows	 can	 also	 be	 expressed	 as	 successive
transformations	 (for	 our	 purposes,	 successive	 shrinks	 and	 turns)	 of	 the	 unit	 arrow.	As	 in	 normal
multiplication,	 the	 order	 is	 not	 important:	 the	 answer,	 arrow	 X,	 can	 be	 obtained	 by	 multiplying
arrow	V	by	arrow	W	or	arrow	W	by	arrow	V.

Let’s	go	back	to	the	first	experiment	from	the	first	lecture—partial
reflection	 by	 a	 single	 surface—with	 this	 idea	 of	 successive	 steps	 in
mind	 (see	 Fig.	 40).	We	 can	 divide	 the	 path	 of	 reflection	 into	 three
steps:	 1)	 the	 light	 goes	 from	 the	 source	 down	 to	 the	 glass,	 2)	 it	 is
reflected	by	the	glass,	and	3)	it	goes	from	the	glass	up	to	the	detector.
Each	 step	 can	 be	 considered	 as	 a	 certain	 amount	 of	 shrinking	 and
turning	of	the	unit	arrow.

FIGURE	40.	Reflection	by	a	single	surface	can	be	divided	into	three	steps,	each	with	a	shrink	andlor
turn	of	the	unit	arrow.	The	net	result,	an	arrow	of	length	0.2	pointed	in	some	direction,	is	the	same
as	before,	but	our	method	of	analysis	is	more	detailed	now.

You’ll	remember	that	in	the	first	lecture,	we	did	not	consider	all	of
the	ways	the	light	could	reflect	off	the	glass,	which	requires	drawing
and	adding	lots	and	lots	of	little	tiny	arrows.	In	order	to	avoid	all	that
detail,	I	gave	the	impression	that	the	light	goes	down	to	a	particular
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point	 on	 the	 surface	 of	 the	 glass—that	 it	 doesn’t	 spread	 out.	When
light	 goes	 from	 one	 point	 to	 another,	 it	 does,	 in	 reality,	 spread	 out
(unless	it’s	fooled	by	a	lens),	and	there	is	some	shrinkage	of	the	unit
arrow	associated	with	that.	For	the	moment,	however,	I	would	like	to
stick	to	the	simplified	view	that	light	does	not	spread	out,	and	so	it	is
appropriate	 to	 disregard	 this	 shrinkage.	 It	 is	 also	 appropriate	 to
assume	 that	 since	 the	 light	 doesn’t	 spread	 out,	 every	 photon	 that
leaves	the	source	ends	up	at	either	A	or	B.
So:	 in	 the	 first	 step	 there	 is	no	 shrinking,	but	 there	 is	 turning—it

corresponds	 to	 the	 amount	 of	 turning	 by	 the	 imaginary	 stopwatch
hand	as	it	times	the	photon	going	from	the	source	to	the	front	surface
of	the	glass.	In	this	example,	the	arrow	for	the	first	step	ends	up	with
a	length	of	1	at	some	angle—let’s	say,	5	o’clock.
The	second	step	is	the	reflection	of	the	photon	by	the	glass.	Here,

there	 is	 a	 sizable	 shrink—from	 1	 to	 0.2—and	 half	 a	 turn.	 (These
numbers	seem	arbitrary	now:	 they	depend	upon	whether	 the	 light	 is
reflected	 by	 glass	 or	 some	 other	 material.	 In	 the	 third	 lecture,	 I’ll
explain	 them,	 too!)	 Thus	 the	 second	 step	 is	 represented	 by	 an
amplitude	of	length	0.2	and	a	direction	of	6	o’clock	(half	a	turn).
The	last	step	is	the	photon	going	from	the	glass	up	to	the	detector.

Here,	as	in	the	first	step,	there	is	no	shrinking,	but	there	is	turning—
let’s	say	this	distance	is	slightly	shorter	than	in	step	1,	and	the	arrow
points	toward	4	o’clock.
We	now	“multiply”	arrows	1,2,	and	3	in	succession	(add	the	angles,

and	 multiply	 the	 lengths).	 The	 net	 effect	 of	 the	 three	 steps—1)
turning,	2)	a	shrink	and	half	a	turn,	and	3)	turning—is	the	same	as	in
the	 first	 lecture:	 the	 turning	 from	 steps	 1	 and	 3—(5	 o’clock	 plus	 4
o’clock)	is	the	same	amount	of	turning	that	we	got	then	when	we	let
the	 stopwatch	 run	 for	 the	whole	 distance	 (9	 o’clock);	 the	 extra	 half
turn	from	step	2	makes	the	arrow	point	in	the	direction	opposite	the
stopwatch	hand,	as	it	did	in	the	first	lecture,	and	the	shrinking	to	0.2
in	 the	 second	 step	 leaves	 an	 arrow	whose	 square	 represents	 the	 4%
partial	reflection	observed	for	a	single	surface.
In	this	experiment,	there	is	a	question	we	didn’t	look	at	in	the	first

lecture:	 what	 about	 the	 photons	 that	 go	 to	 B—the	 ones	 that	 are
transmitted	by	the	surface	of	the	glass?	The	amplitude	for	a	photon	to
arrive	at	B	must	have	a	length	near	0.98,	since	0.98	*	0.98	=	0.9604,
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which	is	close	enough	to	96%.	This	amplitude	can	also	be	analyzed	by
breaking	it	down	into	steps	(see	Fig.	41).
The	 first	 step	 is	 the	 same	 as	 for	 the	 path	 to	 A—the	 photon	 goes

from	 the	 light	 source	 down	 to	 the	 glass—the	 unit	 arrow	 is	 turned
toward	5	o’clock.
The	 second	 step	 is	 the	 photon	 passing	 through	 the	 surface	 of	 the

glass:	there	is	no	turning	associated	with	transmission,	just	a	little	bit
of	shrinking—to	0.98.

FIGURE	41.	Transmission	by	a	 single	 surface	 can	also	 be	divided	 into	 three	 steps,	with	a	 shrink
and/or	 turn	 for	 each	 step.	 An	 arrow	 of	 length	 0.98	 has	 a	 square	 of	 about	 0.96,	 representing	 a
probabilty	of	transmission	of	96%	(which,	combined	with	the	4%	probability	of	reflection,	accounts
for	100%)	of	the	light).

The	third	step—the	photon	going	through	the	interior	of	the	glass
—involves	additional	turning	and	no	shrinking.
The	net	result	is	an	arrow	of	length	0.98	turned	in	some	direction,

whose	square	represents	the	probability	that	a	photon	will	arrive	at	B
—96%.
Now	let’s	look	at	partial	reflection	by	two	surfaces	again.	Reflection

from	the	front	surface	is	the	same	as	for	a	single	surface,	so	the	three
steps	 for	 front	 surface	 reflection	 are	 the	 same	 as	we	 saw	 a	moment
ago	(Fig.	40).
Reflection	 from	 the	 back	 surface	 can	 be	 broken	 down	 into	 seven

steps	 (see	 Fig.	 42).	 It	 involves	 turning	 equal	 to	 the	 total	 amount	 of
turning	 of	 the	 stopwatch	 hand	 timing	 a	 photon	 over	 the	 entire
distance	 (steps	 1,	 3,	 5,	 and	 7),	 shrinking	 to	 0.2	 (step	 4),	 and	 two
shrinks	 to	 0.98	 (steps	 2	 and	 6).	 The	 resulting	 arrow	 ends	 up	 in	 the
same	direction	as	before,	but	the	length	is	about	0.192	(0.98	*	0.2	*
0.98),	which	I	approximated	as	0.2	in	the	first	lecture.
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FIGURE	42.	Reflection	 from	the	back	surface	of	a	 layer	of	glass	can	be	divided	 into	 seven	steps.
Steps	1,3,5,	and	7	involve	turning	only;	steps	2	and	6	involve	shrinks	to	0.98,	and	step	4	involves	a
shrink	to	0.2.	The	result	is	an	arrow	of	length	0.192—which	was	approximated	as	0.2	in	the	first
lecture—turned	 at	 an	 angle	 that	 corresponds	 to	 the	 total	 amount	 of	 turning	 by	 the	 imaginary
stopwatch	hand.

In	 summary,	 here	 are	 the	 rules	 for	 reflection	 and	 transmission	 of
light	by	glass:	1)	 reflection	 from	air	back	 to	air	 (off	 a	 front	 surface)
involves	a	shrink	to	0.2	and	half	a	turn;	2)	reflection	from	glass	back
to	 glass	 (off	 a	 back	 surface)	 also	 involves	 a	 shrink	 to	 0.2,	 but	 no
turning;	 and	 3)	 transmission	 from	 air	 to	 glass	 or	 from	 glass	 to	 air
involves	a	shrink	to	0.98	and	no	turning	in	either	case.
Perhaps	it	is	too	much	of	a	good	thing,	but	I	cannot	resist	showing

you	a	cute	 further	example	of	how	things	work	and	are	analyzed	by
these	rules	of	successive	steps.	Let	us	move	the	detector	to	a	location
below	 the	glass,	 and	consider	 something	we	didn’t	 talk	about	 in	 the
first	 lecture—the	probability	 of	 transmission	 by	 two	 surfaces	 of	 glass
(see	Fig.	43).
Of	 course	 you	 know	 the	 answer:	 the	 probability	 of	 a	 photon	 to

arrive	at	B	is	simply	100%	minus	the	probability	to	arrive	at	A,	which
we	worked	out	beforehand.	Thus,	if	we	found	the	chance	to	arrive	at
A	is	7%,	the	chance	to	arrive	at	B	must	be	93%.	And	as	the	chance	for
A	 varies	 from	 zero	 through	 8%	 to	 16%	 (due	 to	 the	 different
thicknesses	 of	 glass),	 the	 chance	 for	 B	 changes	 from	 100%	 through
92%	to	84%.
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FIGURE	43.	Transmission	by	two	surfaces	can	be	broken	down	into	five	steps.	Step	2	shrinks	 the
unit	arrow	to	0.98,	step	4	shrinks	 the	0.98	arrow	to	0.98	of	 that	(about	0.96);	steps	1,3,	and	5
involve	turning	only.	The	resulting	arrow	of	length	0.96	has	a	square	of	about	0.92,	representing	a
probability	 of	 transmission	 by	 two	 surfaces	 of	 92%	 (which	 corresponds	 to	 the	 expected	 8%
reflection,	which	is	right	only	“twice	a	day”).	When	the	thickness	of	the	layer	is	right	to	produce	a
probability	 of	 16%	 reflection,	 with	 a	 92%)	 probability	 of	 transmission,	 108%)	 of	 the	 light	 is
accounted	for!	Something	is	wrong	with	this	analysis!

That	 is	 the	 right	 answer,	 but	 we	 are	 expecting	 to	 calculate	 all
probabilities	 by	 squaring	 a	 final	 arrow.	 How	 do	 we	 calculate	 the
amplitude	arrow	for	transmission	by	a	layer	of	glass,	and	how	does	it
manage	to	vary	in	length	so	appropriately	as	to	fit	with	the	length	for
A	 in	 each	 case,	 so	 the	 probability	 for	 A	 and	 the	 probability	 for	 B
always	add	up	to	exactly	100%?	Let	us	look	a	little	into	the	details.
For	a	photon	to	go	from	the	source	to	the	detector	below	the	glass,

at	B,	 five	 steps	are	 involved.	Let’s	 shrink	and	 turn	 the	unit	arrow	as
we	go	along.
The	 first	 three	steps	are	 the	same	as	 in	 the	previous	example:	 the

photon	goes	from	the	source	to	the	glass	(turning,	no	shrinking);	the
photon	 is	 transmitted	 by	 the	 front	 surface	 (no	 turning,	 shrinking	 to
0.98);	the	photon	goes	through	the	glass	(turning,	no	shrinking).
The	fourth	step—the	photon	passes	through	the	back	surface	of	the

glass—is	the	same	as	the	second	step,	as	far	as	shrinks	and	turns	go:
no	turns,	but	a	shrinkage	to	0.98	of	the	0.98,	so	the	arrow	now	has	a
length	of	0.96.
Finally,	 the	 photon	 goes	 through	 the	 air	 again,	 down	 to	 the

detector—that	 means	 more	 turning,	 but	 no	 further	 shrinking.	 The
result	 is	 an	 arrow	 of	 length	 0.96,	 pointing	 in	 some	 direction
determined	by	the	successive	turnings	of	the	stopwatch	hand.
An	 arrow	whose	 length	 is	 0.96	 represents	 a	 probability	 of	 about
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92%	(0.96	squared),	which	means	an	average	of	92	photons	reach	B
out	of	every	100	that	leave	the	source.	That	also	means	that	8%	of	the
photons	are	reflected	by	the	two	surfaces	and	reach	A.	But	we	found
out	 in	 the	 first	 lecture	 that	an	8%	reflection	by	 two	 surfaces	 is	only
right	sometimes	(“twice	a	day”)—that	in	reality,	the	reflection	by	two
surfaces	fluctuates	in	a	cycle	from	zero	to	16%	as	the	thickness	of	the
layer	steadily	increases.	What	happens	when	the	glass	is	just	the	right
thickness	to	make	a	partial	reflection	of	16%?	For	every	100	photons
that	leave	the	source,	16	arrive	at	A	and	92	arrive	at	B,	which	means
108%	of	 the	 light	 has	 been	 accounted	 for—horrifying!	 Something	 is
wrong.
We	neglected	to	consider	all	the	ways	the	light	could	get	to	B!	For

instance,	it	could	bounce	off	the	back	surface,	go	up	through	the	glass
as	 if	 it	were	 going	 to	A,	 but	 then	 reflect	 off	 the	 front	 surface,	 back
down	toward	B	(see	Fig.	44).	This	path	takes	nine	steps.	Let’s	see	what
happens	successively	to	the	unit	arrow	as	the	light	goes	through	each
step	(don’t	worry;	it	only	shrinks	and	turns!).
First	 step—photon	 goes	 through	 the	 air—turning;	 no	 shrinking.

Second	 step—photon	 passes	 through	 the	 glass—no	 turning,	 but
shrinking	 to	 0.98.	 Third	 step—photon	 goes	 through	 the	 glass—
turning;	no	shrinking.	Fourth	step—reflection	off	the	back	surface—no
turning,	 but	 shrinking	 to	 0.2	 of	 0.98,	 or	 0.196.	 Fifth	 step—photon
goes	 back	 up	 through	 the	 glass—turning;	 no	 shrinking.	 Sixth	 step—
photon	bounces	off	front	surface	(it’s	really	a	“back”	surface,	because
the	photon	stays	inside	the	glass)—no	turning,	but	shrinking	to	0.2	of
0.196,	or	0.0392.	Seventh	step—photon	goes	back	down	through	glass
—more	 turning;	 no	 shrinking.	 Eighth	 step—photon	 passes	 through
back	surface—no	turning,	but	shrinking	to	0.98	of	0.0392,	or	0.0384.
Finally,	the	ninth	step—photon	goes	through	air	to	detector—turning;
no	shrinking.
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FIGURE	44.	Another	way	 that	 light	 could	 be	 transmitted	 by	 two	 surfaces	must	 be	 considered	 in
order	to	make	the	calculation	more	accurate.	This	path	involves	two	shrinks	of	0.98	(steps	2	and	8)
and	 two	 shrinks	 of	 0.2	 (steps	 4	 and	6),	 resulting	 in	 an	 arrow	 of	 length	 0.0384	 (rounded	 off	 to
0.04).

The	 result	 of	 all	 this	 shrinking	 and	 turning	 is	 an	 amplitude	 of
length	0.0384—call	 it	0.04,	for	all	practical	purposes—and	turned	at
an	 angle	 that	 corresponds	 to	 the	 total	 amount	 of	 turning	 by	 the
stopwatch	as	it	times	the	photon	going	through	this	longer	path.	This
arrow	represents	a	second	way	that	light	can	get	from	the	source	to	B.
Now	we	have	two	alternatives,	so	we	must	add	 the	two	arrows—the
arrow	for	 the	more	direct	path,	whose	 length	 is	0.96,	and	the	arrow
for	the	longer	way,	whose	length	is	0.04—to	make	the	final	arrow.
The	 two	 arrows	 are	 usually	 not	 in	 the	 same	 direction,	 because

changing	 the	 thickness	 of	 the	 glass	 changes	 the	 relative	direction	of
the	 0.04	 arrow	 to	 the	 0.96	 arrow.	 But	 look	 how	nicely	 things	work
out:	 the	 extra	 turns	made	 by	 the	 stopwatch	 timing	 a	 photon	 during
steps	3	and	5	(on	its	way	to	A)	are	exactly	equal	to	the	extra	turns	it
makes	 timing	a	photon	during	steps	5	and	7	(on	 its	way	to	B).	That
means	 when	 the	 two	 reflection	 arrows	 are	 cancelling	 each	 other	 to
make	 a	 final	 arrow	 representing	 zero	 reflection,	 the	 arrows	 for
transmission	 are	 reinforcing	 each	 other	 to	make	 an	 arrow	 of	 length
0.96	 +	 0.04,	 or	 1—when	 the	 probability	 of	 reflection	 is	 zero,	 the
probability	 of	 transmission	 is	 100%	 (see	 Fig.	 45).	 And	 when	 the
arrows	for	reflection	are	reinforcing	each	other	to	make	an	amplitude
of	 0.4,	 the	 arrows	 for	 transmission	 are	 going	 against	 each	 other,
making	an	amplitude	of	length	0.96	—	0.04,	or	0.92—when	reflection
is	 calculated	 to	 be	 16%,	 transmission	 is	 calculated	 to	 be	 84%	 (0.92
squared).	You	see	how	clever	Nature	 is	with	Her	 rules	 to	make	sure
that	we	always	come	out	with	100%	of	the	photons	accounted	for!5
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FIGURE	45.	Nature	always	makes	sure	100%	of	the	light	is	accounted	for.	When	the	thickness	is
right	for	the	transmission	arrows	to	accumulate,	the	arrows	for	reflection	oppose	each	other;	when
the	arrows	for	reflection	accumulate,	the	arrows	for	transmission	oppose	each	other.

Finally,	 before	 I	 go,	 I	 would	 like	 to	 tell	 you	 that	 there	 is	 an
extension	to	the	rule	that	tells	us	when	to	multiply	arrows:	arrows	are
to	be	multiplied	not	only	for	an	event	that	consists	of	a	succession	of
steps,	 but	 also	 for	 an	 event	 that	 consists	 of	 a	 number	 of	 things
happening	 concomitantly—independently	 and	 possibly
simultaneously.	For	example,	suppose	we	have	two	sources,	X	and	Y,
and	two	detectors,	A	and	B	(see	Fig.	47),	and	we	want	to	calculate	the
probability	for	the	following	event:	after	X	and	Y	each	lose	a	photon,
A	and	B	each	gain	a	photon.

FIGURE	 46.	 Yet	 other	 ways	 the	 light	 could	 reflect	 should	 be	 considered	 for	 a	 more	 accurate
calculation.	In	this	figure,	shrinks	of	0.98	occur	at	steps	2	and	10;	shrinks	of	0.2	occur	at	steps	4,
6,	 and	 8.	 The	 result	 is	 an	 arrow	with	 a	 length	 of	 about	 0.008,	which	 is	 another	 alternative	 for
reflection,	and	should	therefore	be	added	to	the	other	arrows	which	represent	reflection	(0.2	for	the
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front	surface	and	0.192	for	the	back	surface).

In	 this	 example,	 the	 photons	 travel	 through	 space	 to	 get	 to	 the
detectors—they	 are	 neither	 reflected	 nor	 transmitted—so	 now	 is	 a
good	time	for	me	to	stop	disregarding	the	fact	that	light	spreads	out	as
it	 goes	 along.	 I	 now	 present	 you	 with	 the	 complete	 rule	 for
monochromatic	 light	 travelling	 from	 one	 point	 to	 another	 through
space—there	is	nothing	approximate	here,	and	no	simplification.	This
is	all	there	is	to	know	about	monochromatic	light	going	through	space
(disregarding	 polarization):	 the	 angle	 of	 the	 arrow	 depends	 on	 the
imaginary	 stopwatch	hand,	which	 rotates	 a	 certain	number	 of	 times
per	 inch	 (depending	 on	 the	 color	 of	 the	 photon);	 the	 length	 of	 the
arrow	is	inversely	proportional	to	the	distance	the	light	goes—in	other
words,	the	arrow	shrinks	as	the	light	goes	along.6

FIGURE	 47.	 If	 one	 of	 the	 ways	 a	 particular	 event	 can	 happen	 depends	 on	 a	 number	 of	 things
happening	independently,	the	amplitude	for	this	way	is	calculated	by	multiplying	the	arrows	of	the
independent	 things.	 In	 this	 case,	 the	 final	 event	 is:	 after	 sources	 X	 and	 Y	 each	 lose	 a	 photon,
photomultipliers	A	and	B	make	a	click.	One	way	this	event	could	happen	is	that	a	photon	could	go
from	 X	 to	 A	 and	 a	 photon	 could	 go	 from	 Y	 to	 B	 (two	 independent	 things).	 To	 calculate	 the
probability	 for	 this	 “first	 way,	 the	 arrows	 for	 each	 independent	 thing—X	 to	 A	 and	 Y	 to	 B—are
multiplied	to	produce	the	amplitude	for	this	particular	way.	(Analysis	continued	in	Fig.	48.)

Let’s	suppose	the	arrow	for	X	to	A	is	0.5	in	length	and	is	pointing
toward	5	o’clock,	as	is	the	arrow	for	Y	to	B	(Fig.	47).	Multiplying	one
arrow	by	the	other,	we	get	a	final	arrow	of	length	0.25,	pointed	at	10
o’clock.
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FIGURE	48.	The	other	way	the	event	described	in	Figure	47	could	happen—a	photon	goes	from	X	to
B	 and	 a	 photon	 goes	 from	 Y	 to	 A—also	 depends	 on	 two	 independent	 things	 happening,	 so	 the
amplitude	 for	 this	 “second	way”	 is	 also	 calculated	 by	multiplying	 the	 arrows	 of	 the	 independent
things.	The	“first	way”	and	“second	way”	arrows	are	ultimately	added	together,	resulting	in	the	final
arrow	for	the	event.	The	probability	of	an	event	is	always	represented	by	a	single	final	arrow—no
matter	how	many	arrows	were	drawn,	multiplied,	and	added	to	achieve	it.

But	wait!	There	is	another	way	this	event	could	happen:	the	photon
from	X	could	go	to	B,	and	the	photon	from	Y	could	go	to	A.	Each	of
these	 subevents	 has	 an	 amplitude,	 and	 these	 arrows	 must	 also	 be
drawn	and	multiplied	to	produce	an	amplitude	for	this	particular	way
the	event	could	happen	(see	Fig.	48).	Since	the	amount	of	shrinkage
over	 distance	 is	 very	 small	 compared	 to	 the	 amount	 of	 turning,	 the
arrows	from	X	to	B	and	Y	to	A	have	essentially	the	same	length	as	the
other	 arrows,	0.5,	 but	 their	 turning	 is	 quite	different:	 the	 stopwatch
hand	 rotates	 36,000	 times	 per	 inch	 for	 red	 light,	 so	 even	 a	 tiny
difference	in	distance	results	in	a	substantial	difference	in	timing.
The	amplitudes	for	each	way	the	event	could	happen	are	added	to

produce	the	final	arrow.	Since	their	lengths	are	essentially	the	same,	it
is	possible	 for	 the	arrows	to	cancel	each	other	out	 if	 their	directions
are	opposed	to	each	other.	The	relative	directions	of	 the	 two	arrows
can	be	changed	by	changing	the	distance	between	the	sources	or	the
detectors:	 simply	moving	 the	 detectors	 apart	 or	 together	 a	 little	 bit
can	make	 the	 probability	 of	 the	 event	 amplify	 or	 completely	 cancel
out,	just	as	in	the	case	of	partial	reflection	by	two	surfaces:7
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In	this	example,	arrows	were	multiplied	and	then	added	to	produce
a	 final	 arrow	 (the	 amplitude	 for	 the	 event),	 whose	 square	 is	 the
probability	 of	 the	 event.	 It	 is	 to	 be	 emphasized	 that	 no	matter	 how
many	arrows	we	draw,	add,	or	multiply,	our	objective	is	to	calculate	a
single	 final	 arrow	 for	 the	 event.	 Mistakes	 are	 often	 made	 by	 physics
students	 at	 first	 because	 they	 do	 not	 keep	 this	 important	 point	 in
mind.	 They	 work	 for	 so	 long	 analyzing	 events	 involving	 a	 single
photon	that	they	begin	to	think	that	the	arrow	is	somehow	associated
with	 the	 photon.	 But	 these	 arrows	 are	 probability	 amplitudes,	 that
give,	when	squared,	the	probability	of	a	complete	event.8
In	 the	 next	 lecture	 I	 will	 begin	 the	 process	 of	 simplifying	 and

explaining	the	properties	of	matter—to	explain	where	the	shrinking	to
0.2	comes	from,	why	light	appears	to	go	slower	through	glass	or	water
than	through	air,	and	so	on—because	I	have	been	cheating	so	far:	the
photons	don’t	really	bounce	off	the	surface	of	the	glass;	they	interact
with	 the	 electrons	 inside	 the	 glass.	 I’ll	 show	 you	 how	 photons	 do
nothing	but	go	from	one	electron	to	another,	and	how	reflection	and
transmission	are	really	the	result	of	an	electron	picking	up	a	photon,
“scratching	 its	 head,”	 so	 to	 speak,	 and	 emitting	 a	 new	 photon.	 This
simplification	of	everything	we	have	talked	about	so	far	is	very	pretty.

1	 The	 areas	 of	 the	 mirror	 whose	 arrows	 point	 generally	 to	 the	 left	 also	 make	 a	 strong
reflection	(when	the	areas	whose	arrows	point	the	other	way	are	erased).	It’s	when	both	left-
biased	and	right-biased	areas	 reflect	 together	 that	 they	cancel	out.	This	 is	analogous	 to	 the
case	of	partial	reflection	by	two	surfaces:	while	either	surface	will	reflect	on	its	own,	 if	 the
thickness	 is	 such	 that	 the	 two	 surfaces	 contribute	 arrows	 pointing	 in	 opposite	 directions,
reflection	is	cancelled	out.
2	 I	can’t	resist	 telling	you	about	a	grating	that	Nature	has	made:	salt	crystals	are	sodium

and	chlorine	atoms	packed	 in	a	 regular	pattern.	Their	alternating	pattern,	 like	our	grooved
surface,	acts	like	a	grating	when	light	of	the	right	color	(X-rays,	in	this	case)	shines	on	it.	By
finding	the	specific	locations	where	a	detector	picks	up	a	lot	of	this	special	reflection	(called
diffraction),	one	can	determine	exactly	how	far	apart	the	grooves	are,	and	thus	how	far	apart
the	atoms	are	(see	Fig.	28).	It	is	a	beautiful	way	of	determining	the	structure	of	all	kinds	of
crystals	as	well	as	confirming	that	X-rays	are	the	same	thing	as	light.	Such	experiments	were
first	done	in	1914.	It	was	very	exciting	to	see,	in	detail,	for	the	first	time	how	the	atoms	are
packed	together	in	different	substances.
3	This	 is	an	example	of	 the	“uncertainty	principle”:	 there	 is	a	kind	of	“complementarity”

between	knowledge	of	where	the	light	goes	between	the	blocks	and	where	it	goes	afterwards
—precise	knowledge	of	both	is	impossible.	I	would	like	to	put	the	uncertainty	principle	in	its
historical	 place:	 When	 the	 revolutionary	 ideas	 of	 quantum	 physics	 were	 first	 coming	 out,
people	 still	 tried	 to	understand	 them	 in	 terms	of	old-fashioned	 ideas	 (such	as,	 light	goes	 in
straight	lines).	But	at	a	certain	point	the	old-fashioned	ideas	would	begin	to	fail,	so	a	warning
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was	developed	that	said,	in	effect,	“Your	old-fashioned	ideas	are	no	damn	good	when	…”	If
you	get	rid	of	all	the	old-fashioned	ideas	and	instead	use	the	ideas	that	I’m	explaining	in	these
lectures—adding	 arrows	 for	 all	 the	 ways	 an	 event	 can	 happen—there	 is	 no	 need	 for	 an
uncertainty	principle!
4	Mathematicians	have	tried	 to	 find	all	 the	objects	one	could	possibly	 find	that	obey	the

rules	of	algebra	(A	+	B	=	B	+	A,	A	*	B	=	B*A,	and	so	on).	The	rules	were	originally	made
for	positive	integers,	used	for	counting	things	like	apples	or	people.	Numbers	were	improved
with	the	invention	of	zero,	fractions,	irrational	numbers—numbers	that	cannot	be	expressed
as	a	ratio	of	two	integers—and	negative	numbers,	and	continued	to	obey	the	original	rules	of
algebra.	Some	of	 the	numbers	 that	mathematicians	 invented	posed	difficulties	 for	people	at
first—the	idea	of	half	a	person	was	difficult	to	imagine—but	today,	there’s	no	difficulty	at	all:
nobody	has	any	moral	qualms	or	discomforting	gory	feelings	when	they	hear	that	there	is	an
average	 of	 3.2	 people	 per	 square	mile	 in	 some	 regions.	 They	 don’t	 try	 to	 imagine	 the	 0.2
people;	 rather,	 they	 know	what	 3.2	means:	 if	 they	multiply	 3.2	 by	 10,	 they	 get	 32.	 Thus,
some	things	that	satisfy	the	rules	of	algebra	can	be	interesting	to	mathematicians	even	though
they	don’t	always	represent	a	real	situation.	Arrows	on	a	plane	can	be	“added”	by	putting	the
head	 of	 one	 arrow	 on	 the	 tail	 of	 another,	 or	 “multiplied”	 by	 successive	 turns	 and	 shrinks.
Since	 these	arrows	obey	 the	 same	rules	of	algebra	as	 regular	numbers,	mathematicians	call
them	 numbers.	 But	 to	 distinguish	 them	 from	 ordinary	 numbers,	 they’re	 called	 “complex
numbers.”	For	those	of	you	who	have	studied	mathematics	enough	to	have	come	to	complex
numbers,	I	could	have	said,	“the	probability	of	an	event	is	the	absolute	square	of	a	complex
number.	When	an	event	can	happen	in	alternative	ways,	you	add	the	complex	numbers;	when
it	can	happen	only	as	a	succession	of	steps,	you	multiply	the	complex	numbers.”	Although	it
may	sound	more	impressive	that	way,	I	have	not	said	any	more	than	I	did	before—I	just	used
a	different	language.
5	 You’ll	 notice	 that	we	 changed	0.0384	 to	0.04	 and	used	84%	as	 the	 square	 of	 0.92,	 in

order	to	make	100%	of	the	light	accounted	for.	But	when	everything	is	added	together,	0.0384
and	84%	don’t	have	to	be	rounded	off—all	the	little	bits	and	pieces	of	arrows	(representing
all	the	ways	the	light	could	go)	compensate	for	each	other	and	keep	the	answer	correct.	For
those	 of	 you	who	 like	 this	 sort	 of	 thing,	 here	 is	 an	 example	 of	 another	way	 that	 the	 light
could	 go	 from	 the	 light	 source	 to	 the	 detector	 at	A—a	 series	 of	 three	 reflections	 (and	 two
transmissions),	 resulting	 in	 a	 final	 arrow	of	 length	0.98	 *	0.2	 *	0.2	 *	0.2	 *	0.98,	 or	 about
0.008—a	very	tiny	arrow	(see	Fig.	46).	To	make	a	complete	calculation	of	partial	reflection
by	two	surfaces,	you	would	have	to	add	in	that	small	arrow,	plus	an	even	smaller	one	that
represents	five	reflections,	and	so	on.
6	 This	 rule	 checks	 out	with	what	 they	 teach	 in	 school—the	 amount	 of	 light	 transmitted

over	a	distance	varies	inversely	as	the	square	of	the	distance—because	an	arrow	that	shrinks
to	half	its	original	size	has	a	square	one-fourth	as	big.
7	This	phenomenon,	called	the	Hanbury-Brown-Twiss	effect,	has	been	used	to	distinguish

between	a	single	source	and	a	double	source	of	radio	waves	in	deep	space,	even	when	the	two
sources	are	extremely	close	together.
8	Keeping	 this	principle	 in	mind	should	help	 the	 student	avoid	being	confused	by	 things

such	as	the	“reduction	of	a	wave	packet”	and	similar	magic.
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3

Electrons	and	Their	Interactions

This	 is	 the	 third	 of	 four	 lectures	 on	 a	 rather	 difficult	 subject—the
theory	 of	 quantum	 electrodynamics—and	 since	 there	 are	 obviously
more	people	here	tonight	than	there	were	before,	some	of	you	haven’t
heard	 the	 other	 two	 lectures	 and	 will	 find	 this	 lecture	 almost
incomprehensible.	 Those	 of	 you	 who	 have	 heard	 the	 other	 two
lectures	 will	 also	 find	 this	 lecture	 incomprehensible,	 but	 you	 know
that	that’s	all	right:	as	I	explained	in	the	first	lecture,	the	way	we	have
to	describe	Nature	is	generally	incomprehensible	to	us.
In	these	lectures	I	want	to	tell	you	about	the	part	of	physics	that	we

know	 best,	 the	 interaction	 of	 light	 and	 electrons.	 Most	 of	 the
phenomena	you	are	familiar	with	involve	the	interaction	of	light	and
electrons—all	 of	 chemistry	 and	 biology,	 for	 example.	 The	 only
phenomena	 that	 are	 not	 covered	 by	 this	 theory	 are	 phenomena	 of
gravitation	 and	 nuclear	 phenomena;	 everything	 else	 is	 contained	 in
this	theory.
We	 found	 out	 in	 the	 first	 lecture	 that	 we	 have	 no	 satisfactory

mechanism	 to	 describe	 even	 the	 simplest	 of	 phenomena,	 such	 as
partial	 reflection	 of	 light	 by	 glass.	We	 also	 have	 no	way	 to	 predict
whether	a	given	photon	will	be	reflected	or	transmitted	by	the	glass.
All	we	can	do	 is	calculate	 the	probability	 that	a	particular	event	will
happen—whether	 the	 light	 will	 be	 reflected,	 in	 this	 case.	 (This	 is
about	4%,	when	the	light	shines	straight	down	on	a	single	surface	of
glass;	the	probability	of	reflection	increases	as	the	light	hits	the	glass
at	more	of	a	slant.)
When	 we	 deal	 with	 probabilities	 under	 ordinary	 circumstances,

there	 are	 the	 following	 “rules	 of	 composition”:	 1)	 if	 something	 can
happen	 in	 alternative	 ways,	 we	 add	 the	 probabilities	 for	 each	 of	 the
different	 ways;	 2)	 if	 the	 event	 occurs	 as	 a	 succession	 of	 steps—or
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depends	 on	 a	 number	 of	 things	 happening	 “concomitantly”
(independently)—then	 we	 multiply	 the	 probabilities	 of	 each	 of	 the
steps	(or	things).
In	the	wild	and	wonderful	world	of	quantum	physics,	probabilities

are	calculated	as	the	square	of	the	length	of	an	arrow:	where	we	would
have	expected	to	add	the	probabilities	under	ordinary	circumstances,
we	 find	 ourselves	 “adding”	 arrows;	 where	 we	 normally	 would	 have
multiplied	 the	 probabilities,	 we	 “multiply”	 arrows.	 The	 peculiar
answers	 that	 we	 get	 from	 calculating	 probabilities	 in	 this	 manner
match	perfectly	the	results	of	experiment.	I’m	rather	delighted	that	we
must	 resort	 to	 such	peculiar	 rules	 and	 strange	 reasoning	 in	 order	 to
understand	Nature,	and	 I	enjoy	 telling	people	about	 it.	There	are	no
“wheels	 and	 gears”	 beneath	 this	 analysis	 of	 Nature;	 if	 you	 want	 to
understand	Her,	this	is	what	you	have	to	take.
Before	I	go	into	the	main	part	of	this	lecture,	I’d	like	to	show	you

another	 example	 of	 how	 light	 behaves.	 What	 I	 would	 like	 to	 talk
about	 is	very	weak	 light	of	one	color—one	photon	at	a	 time—going
from	a	source,	at	S,	to	a	detector,	at	D	(see	Fig.	49).	Let’s	put	a	screen
in	between	the	source	and	the	detector	and	make	two	very	tiny	holes
a	few	millimeters	apart	from	each	other,	at	A	and	B.	(If	the	source	and
detector	are	100	centimeters	apart,	the	holes	have	to	be	smaller	than
a	tenth	of	a	millimeter.)	Let’s	put	A	in	 line	with	S	and	D,	and	put	B
somewhere	to	the	side	of	A,	not	in	line	with	S	and	D.
When	we	close	the	hole	at	B,	we	get	a	certain	number	of	clicks	at	D

—which	 represents	 the	 photons	 that	 came	 through	 A	 (let’s	 say	 the
detector	 clicks	 an	 average	 of	 one	 time	 for	 every	 100	 photons	 that
leave	S,	or	1%).	When	we	close	the	hole	at	A	and	open	the	hole	at	B,
we	know	from	the	second	lecture	that	we	get	nearly	the	same	number
of	 clicks,	 on	 average,	 because	 the	 holes	 are	 so	 small.	 (When	 we
“squeeze”	 light	 too	much,	 the	 rules	 of	 the	 ordinary	world—such	 as
light	goes	in	straight	lines—fall	apart.)	When	we	open	both	holes	we
get	a	complicated	answer,	because	interference	is	present:	If	the	holes
are	a	certain	distance	apart,	we	get	more	clicks	than	the	expected	2%
(the	maximum	is	about	4%);	 if	 the	 two	holes	are	a	slightly	different
distance	apart,	we	get	no	clicks	at	all.
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FIGURE	49.	Two	tiny	holes	(at	A	and	B)	in	a	screen	that	is	between	a	source	S	and	a	detector	D	let
nearly	the	same	amount	of	light	through	(in	this	case	1%)	when	one	or	the	other	hole	is	open.	When
both	 holes	 are	 open,	 “interference”,	 occurs:	 the	 detector	 clicks	 from	 zero	 to	 4%	 of	 the	 time,
depending	on	the	separation	of	A	and	B—shown	in	Figure	51	(a).

One	 would	 normally	 think	 that	 opening	 a	 second	 hole	 would
always	 increase	 the	amount	of	 light	 reaching	 the	detector,	but	 that’s
not	what	actually	happens.	And	so	saying	 that	 the	 light	goes	“either
one	way	or	the	other”	is	false.	I	still	catch	myself	saying,	“Well,	it	goes
either	 this	way	or	 that	way,”	but	when	 I	 say	 that,	 I	have	 to	keep	 in
mind	that	 I	mean	 in	 the	sense	of	adding	amplitudes:	 the	photon	has
an	amplitude	to	go	one	way,	and	an	amplitude	to	go	the	other	way.	If
the	 amplitudes	 oppose	 each	 other,	 the	 light	 won’t	 get	 there—even
though,	in	this	case,	both	holes	are	open.
Now,	here’s	an	extra	twist	to	the	strangeness	of	Nature	that	I’d	like

to	tell	you	about.	Suppose	we	put	in	some	special	detectors—one	at	A
and	one	at	B	(it	is	possible	to	design	a	detector	that	can	tell	whether	a
photon	went	 through	 it)—so	we	 can	 tell	 through	which	 hole(s)	 the
photon	 goes	 when	 both	 holes	 are	 open	 (see	 Fig.	 50).	 Since	 the
probability	that	a	single	photon	will	get	from	S	to	D	is	affected	only
by	 the	 distance	 between	 the	 holes,	 there	must	 be	 some	 sneaky	way
that	 the	photon	divides	 in	 two	and	 then	comes	back	 together	again,
right?	According	 to	 this	hypothesis,	 the	detectors	at	A	and	B	 should
always	go	off	together	(at	half	strength,	perhaps?),	while	the	detector
at	D	should	go	off	with	a	probability	of	 from	zero	to	4%,	depending
on	the	distance	between	A	and	B.
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FIGURE	50.	When	special	detectors	are	put	 in	at	A	and	B	to	 tell	which	way	the	 light	went	when
both	holes	are	open,	the	experiment	has	been	changed.	Because	a	photon	always	goes	through	one
hole	or	the	other	(when	you	are	checking	the	holes),	there	are	two	distinguishable	final	conditions:
1)	the	detectors	at	A	and	D	go	off,	and	2)	the	detectors	at	B	and	D	go	off.	The	probability	of	either
event	happening	 is	 about	1	%.	The	probabilities	 of	 the	 two	 events	 are	added	 in	 the	normal	way,
which	accounts	for	a	2%	probability	that	the	detector	at	D	goes	off—shown	in	Figure	51(b).

Here’s	what	actually	happens:	the	detectors	at	A	and	B	never	go	off
together—either	A	or	B	goes	off.	The	photon	does	not	divide	in	two;	it
goes	one	way	or	the	other.
Furthermore,	under	such	conditions	the	detector	at	D	goes	off	2%

of	the	time—the	simple	sum	of	 the	probabilities	 for	A	and	B	(1%	+
1%).	 The	 2%	 is	 not	 affected	 by	 the	 spacing	 between	 A	 and	 B;	 the
interference	disappears	when	detectors	are	put	in	at	A	and	B!
Nature	 has	 got	 it	 cooked	 up	 so	we’ll	 never	 be	 able	 to	 figure	 out

how	She	does	it:	 if	we	put	instruments	in	to	find	out	which	way	the
light	goes,	we	can	 find	out,	all	 right,	but	 the	wonderful	 interference
effects	disappear.	But	if	we	don’t	have	instruments	that	can	tell	which
way	the	 light	goes,	 the	 interference	effects	come	back!	Very	strange,
indeed!
To	understand	this	paradox,	let	me	remind	you	of	a	most	important

principle:	 in	order	 to	 correctly	 calculate	 the	probability	of	 an	event,
one	 must	 be	 very	 careful	 to	 define	 the	 complete	 event	 clearly—in
particular,	what	 the	 initial	conditions	and	the	 final	conditions	of	 the
experiment	 are.	 You	 look	 at	 the	 equipment	 before	 and	 after	 the
experiment,	 and	 look	 for	 changes.	 When	 we	 were	 calculating	 the
probability	that	a	photon	gets	from	S	to	D	with	no	detectors	at	A	or	B,
the	event	was,	simply,	the	detector	at	D	makes	a	click.	When	a	click	at
D	was	the	only	change	in	conditions,	there	was	no	way	to	tell	which
way	the	photon	went,	so	there	was	interference.
When	we	 put	 in	 detectors	 at	 A	 and	 B,	 we	 changed	 the	 problem.

Now,	 it	 turns	 out,	 there	 are	 two	 complete	 events—two	 sets	 of	 final
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conditions—that	 are	 distinguishable:	 1)	 the	detectors	 at	A	 and	D	go
off,	or	2)	the	detectors	at	B	and	D	go	off.	When	there	are	a	number	of
possible	 final	 conditions	 in	 an	 experiment,	 we	 must	 calculate	 the
probability	of	each	as	a	separate,	complete	event.
To	calculate	the	amplitude	that	the	detectors	at	A	and	D	go	off,	we

multiply	the	arrows	that	represent	the	following	steps:	a	photon	goes
from	S	to	A,	the	photon	goes	from	A	to	D,	and	the	detector	at	D	goes
off.	The	square	of	the	final	arrow	is	the	probability	of	this	event—1%
—the	same	as	when	the	hole	at	B	was	closed,	because	both	cases	have
exactly	the	same	steps.	The	other	complete	event	is	the	detectors	at	B
and	D	go	off.	The	probability	of	 this	event	 is	 calculated	 in	a	 similar
way,	and	is	also	the	same	as	before—about	1%.
If	we	want	 to	know	how	often	 the	detector	at	D	goes	off	 and	we

don’t	 care	 whether	 it	 was	 A	 or	 B	 that	 went	 off	 in	 the	 process,	 the
probability	 is	 the	simple	sum	of	 the	 two	events—2%.	 In	principle,	 if
there	 is	 something	 left	 in	 the	 system	that	we	could	have	observed	 to
tell	 which	 way	 the	 photon	 went,	 we	 have	 different	 “final	 states”
(distinguishable	 final	 conditions),	 and	 we	 add	 the	 probabilities—not
the	amplitudes—for	each	final	state1.
I	 have	 pointed	 out	 these	 things	 because	 the	 more	 you	 see	 how

strangely	 Nature	 behaves,	 the	 harder	 it	 is	 to	 make	 a	 model	 that
explains	 how	 even	 the	 simplest	 phenomena	 actually	 work.	 So
theoretical	physics	has	given	up	on	that.
We	 saw	 in	 the	 first	 lecture	 how	 an	 event	 can	 be	 divided	 into

alternative	ways	and	how	the	arrow	for	each	way	can	be	“added.”	In
the	 second	 lecture,	 we	 saw	 how	 each	 way	 can	 be	 divided	 into
successive	steps,	how	the	arrow	for	each	step	can	be	regarded	as	the
transformation	of	a	unit	arrow,	and	how	the	arrows	for	each	step	can
be	“multiplied”	by	successive	shrinks	and	turns.	We	are	thus	familiar
with	all	 the	necessary	rules	 for	drawing	and	combining	arrows	 (that
represent	 bits	 and	 pieces	 of	 events)	 to	 obtain	 a	 final	 arrow,	 whose
square	is	the	probability	of	an	observed	physical	event.
It	is	natural	to	wonder	how	far	we	can	push	this	process	of	splitting

events	 into	 simpler	 and	 simpler	 subevents.	 What	 are	 the	 smallest
possible	bits	 and	pieces	 of	 events?	 Is	 there	 a	 limited	number	of	 bits
and	pieces	 that	can	be	compounded	 to	 form	all	 the	phenomena	 that
involve	 light	and	electrons?	 Is	 there	a	 limited	number	of	“letters”	 in
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this	 language	 of	 quantum	 electrodynamics	 that	 can	 be	 combined	 to
form	“words”	 and	 “phrases”	 that	describe	nearly	 every	phenomenon
of	Nature?

FIGURE	51.	When	there	are	no	detectors	at	A	or	B,	there	is	interference—the	amount	of	light	varies
from	 zero	 to	 4%	 (a).	When	 there	 are	 detectors	 at	 A	 and	 B	 that	 are	 100%	 reliable,	 there	 is	 no
interference—the	amount	of	light	reaching	D	is	a	constant	2%	(b).	When	the	detectors	at	A	and	B
are	not	100%	reliable	(i.e.,	when	sometimes	there	is	nothing	left	in	A	or	in	B	that	can	be	detected),
there	are	now	three	possible	final	conditions—A	and	D	go	off,	B	and	D	go	off,	and	D	goes	off	alone.
The	final	curve	is	thus	a	mixture,	made	up	of	contributions	from	each	possible	final	condition.	When
the	detectors	at	A	and	B	are	less	reliable,	there	is	more	interference	present.	Thus	the	detectors	 in
case	(c)	are	less	reliable	than	in	case	(d).	The	principle	regarding	interference	is:	The	probability	of
each	of	 the	different	 possible	 final	 conditions	must	 be	 independently	 calculated	by	adding	arrows
and	squaring	the	length	of	the	final	arrow;	after	that,	the	several	probabilities	are	added	together	in
the	normal	fashion.

The	answer	is	yes;	the	number	is	three.	There	are	only	three	basic
actions	needed	to	produce	all	of	the	phenomena	associated	with	light
and	electrons.
Before	 I	 tell	 you	 what	 these	 three	 basic	 actions	 are,	 I	 should

properly	 introduce	 you	 to	 the	 actors.	 The	 actors	 are	 photons	 and
electrons.	 The	 photons,	 particles	 of	 light,	 have	 been	 discussed	 at
length	in	the	first	two	lectures.	Electrons	were	discovered	in	1895	as
particles:	you	could	count	them;	you	could	put	one	of	them	on	an	oil
drop	 and	measure	 its	 electric	 charge.	 It	 gradually	 became	 apparent
that	the	motion	of	these	particles	accounted	for	electricity	in	wires.
Shortly	 after	 electrons	were	discovered	 it	was	 thought	 that	 atoms

were	like	little	solar	systems,	made	up	of	a	central,	heavy	part	(called
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the	nucleus)	and	electrons,	which	went	around	in	“orbits,”	much	like
the	planets	do	when	 they	go	around	 the	 sun.	 If	 you	 think	 that’s	 the
way	atoms	 are,	 then	you’re	 back	 in	1910.	 In	1924	Louis	De	Broglie
found	 that	 there	was	a	wavelike	character	associated	with	electrons,
and	 soon	 afterwards,	 C.	 J.	 Davisson	 and	 L.	 H.	 Germer	 of	 the	 Bell
Laboratories	 bombarded	 a	 nickel	 crystal	 with	 electrons	 and	 showed
that	 they,	 too,	bounced	off	at	crazy	angles	 (just	 like	X-rays	do),	and
that	these	angles	could	be	calculated	from	De	Broglie’s	formula	for	the
wavelength	of	an	electron.
When	we	 look	at	photons	on	a	 large	 scale—much	 larger	 than	 the

distance	required	for	one	stopwatch	turn—the	phenomena	that	we	see
are	very	well	approximated	by	rules	such	as	“light	travels	in	straight
lines,”	because	 there	are	enough	paths	around	 the	path	of	minimum
time	 to	 reinforce	each	other,	and	enough	other	paths	 to	cancel	each
other	 out.	 But	 when	 the	 space	 through	 which	 a	 photon	 moves
becomes	 too	small	 (such	as	 the	 tiny	holes	 in	 the	screen),	 these	rules
fail—we	discover	that	light	doesn’t	have	to	go	in	straight	lines,	there
are	interferences	created	by	two	holes,	and	so	on.	The	same	situation
exists	 with	 electrons:	 when	 seen	 on	 a	 large	 scale,	 they	 travel	 like
particles,	 on	 definite	 paths.	 But	 on	 a	 small	 scale,	 such	 as	 inside	 an
atom,	 the	 space	 is	 so	 small	 that	 there	 is	 no	main	 path,	 no	 “orbit”;
there	 are	 all	 sorts	 of	 ways	 the	 electron	 could	 go,	 each	 with	 an
amplitude.	The	phenomenon	of	interference	becomes	very	important,
and	we	have	to	sum	the	arrows	to	predict	where	an	electron	is	likely
to	be.
It’s	rather	interesting	to	note	that	electrons	looked	like	particles	at

first,	 and	 their	wavish	 character	was	 later	 discovered.	 On	 the	 other
hand,	 apart	 from	Newton	making	 a	mistake	 and	 thinking	 that	 light
was	 “corpuscular,”	 light	 looked	 like	 waves	 at	 first,	 and	 its
characteristics	as	a	particle	were	discovered	later.	In	fact,	both	objects
behave	somewhat	like	waves,	and	somewhat	like	particles.	In	order	to
save	ourselves	from	inventing	new	words	such	as	“wavicles,”	we	have
chosen	 to	 call	 these	 objects	 “particles,”	 but	 we	 all	 know	 that	 they
obey	these	rules	for	drawing	and	combining	arrows	that	I	have	been
explaining.	 It	 appears	 that	 all	 the	 “particles”	 in	 Nature—quarks,
gluons,	 neutrinos,	 and	 so	 forth	 (which	will	 be	 discussed	 in	 the	 next
lecture)—behave	in	this	quantum	mechanical	way.
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So	now,	I	present	to	you	the	three	basic	actions,	from	which	all	the
phenomena	of	light	and	electrons	arise.

—ACTION	#1:	A	photon	goes	from	place	to	place.
—ACTION	#2:	An	electron	goes	from	place	to	place.
—ACTION	#3:	An	electron	emits	or	absorbs	a	photon.

Each	 of	 these	 actions	 has	 an	 amplitude—an	 arrow—that	 can	 be
calculated	according	to	certain	rules.	In	a	moment,	I’ll	tell	you	those
rules,	or	laws,	out	of	which	we	can	make	the	whole	world	(aside	from
the	nuclei,	and	gravitation,	as	always!).
Now,	the	stage	on	which	these	actions	take	place	is	not	just	space,

it	 is	 space	 and	 time.	 Until	 now,	 I	 have	 disregarded	 problems
concerning	time,	such	as	exactly	when	a	photon	leaves	the	source	and
exactly	when	it	arrives	at	the	detector.	Although	space	is	really	three-
dimensional,	 I’m	going	 to	 reduce	 it	 to	 one	dimension	on	 the	 graphs
that	 I’m	 going	 to	 draw:	 I	will	 show	 a	 particular	 object’s	 location	 in
space	on	the	horizontal	axis,	and	the	time	on	the	vertical	axis.
The	 first	 event	 I	 am	 going	 to	 draw	 in	 space	 and	 time—or	 space-

time,	as	I	might	inadvertently	call	it—is	a	baseball	standing	still	(See
Fig.	52).	On	Thursday	morning,	which	I	will	label	as	T0,	the	baseball
occupies	 a	 certain	 space,	 which	 I	 will	 label	 as	 X0.	 A	 few	 moments
later,	 at	T1,	 it	 occupies	 the	 same	 space,	because	 it’s	 standing	 still.	A
few	moments	later,	at	T2,	the	baseball	is	still	at	X0.	So	the	diagram	of	a
baseball	 standing	 still	 is	 a	 vertical	 band,	 going	 straight	 up,	 with
baseball	all	over	it	inside.

FIGURE	 52.	 The	 stage	 on	 which	 all	 actions	 in	 the	 universe	 take	 place	 is	 space-time.	 Usually
consisting	of	four	dimensions	(three	for	space	and	one	for	time),	space-time	will	be	represented	here
in	 two	dimensions—one	 for	 space,	 in	 the	horizontal	dimension,	and	one	 for	 time,	 in	 the	 vertical.
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Each	 time	we	 look	at	 the	 baseball	 (such	as	at	 time	T3),	 it	 is	 in	 the	 same	place.	This	 produces	a
“band	of	baseball”	going	straight	up,	as	time	goes	on.

What	happens	 if	we	have	a	baseball	drifting	 in	the	weightlessness
of	 outer	 space,	 going	 straight	 toward	 a	 wall?	 Well,	 on	 Thursday
morning	(T0)	it	starts	at	X0	(see	Fig.	53),	but	a	little	bit	later,	it’s	not	in
the	same	place—it	has	drifted	over	a	 little	bit,	 to	X1	As	 the	baseball
continues	 to	 drift,	 it	 creates	 a	 slanted	 “band	 of	 baseball”	 on	 the
diagram	 of	 space-time.	 When	 the	 baseball	 hits	 the	 wall	 (which	 is
standing	still	and	is	therefore	a	vertical	band),	it	goes	back	the	other
way,	exactly	where	it	came	from	in	space	(X0),	but	to	a	different	point
in	time	(T6).

FIGURE	53.	A	baseball	drifting	directly	toward	a	wall	at	right	angles	and	then	bouncing	back	to	its
original	 location	 (shown	 below	 the	 graph)	 is	moving	 in	 one	 dimension	 and	 appears	 as	 a	 slanted
“band	of	baseball.”	At	times	T1	and	T2,	 the	baseball	 is	getting	closer	to	the	wall;	at	T3	 it	hits	 the
wall,	and	begins	to	go	back.

As	for	the	time	scale,	it	is	most	convenient	to	represent	the	time	not
in	seconds,	but	 in	much	smaller	units.	Since	we	will	be	dealing	with
photons	and	electrons,	which	move	very	rapidly,	I	am	going	to	have	a
45°	angle	represent	something	going	the	speed	of	light.	For	example,
for	 a	 particle	 moving	 at	 the	 speed	 of	 light	 from	 X1T1	 to	 X2T2,the
horizontal	 distance	 between	 X1	 and	 X2	 is	 the	 same	 as	 the	 vertical
distance	between	T1	and	T2	(see	Fig.	54).	The	factor	by	which	time	is
stretched	out	(to	make	a	45°	angle	represent	a	particle	going	the	speed
of	 light)	 is	 called	 c,	 and	 you’ll	 find	 c’s	 flying	 around	 everywhere	 in
Einstein’s	 formulas—they	are	 the	 result	 of	 the	unfortunate	 choice	of
the	second	as	the	unit	of	time,	rather	than	the	time	it	takes	light	to	go
one	meter.
Now,	 let’s	 look	 at	 the	 first	 basic	 action	 in	 detail—a	 photon	 goes
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from	place	to	place.	I	will	draw	this	action	as	a	wiggly	line	from	A	to
B	for	no	good	reason.	I	should	be	more	careful:	I	should	say,	a	photon
that	 is	 known	 to	 be	 at	 a	 given	 place	 at	 a	 given	 time	 has	 a	 certain
amplitude	to	get	to	another	place	at	another	time.	On	my	space-time
graph	 (see	 Fig.	 55),	 the	 photon	 at	 point	 A—at	 X1	 and	 T1—has	 an
amplitude	to	appear	at	point	B—X2	and	T2.	The	size	of	this	amplitude
I	will	call	P(A	to	B).

FIGURE	54.	The	time	scale	I	will	use	in	these	graphs	will	show	particles	going	at	the	speed	of	light	to
be	 travelling	at	a	45-degree	angle	 through	 space-time.	The	amount	of	 time	 it	 takes	 light	 to	go	30
centimeters—from	X1	to	X2	or	from	X2	to	X1—is	about	one-billionth	of	a	second.

FIGURE	55.	A	photon	(represented	by	a	wavy	line)	has	an	amplitude	to	go	from	a	point	A	in	space-
time	to	another	point,	B.	This	amplitude,	which	I	will	call	P(A	to	B),	is	calculated	from	a	formula
that	depends	only	on	the	difference	in	location—(X2	–	X1)—and	the	difference	of	the	time—(T2	–
T1).	 In	 fact,	 it’s	 a	 simple	 function	 that	 is	 the	 inverse	 of	 the	 difference	 of	 their	 squares—an
“interval,”	I,	that	can	be	written	as	(X2	–	X1)2	–	(T2	–	T1)2.

There	is	a	formula	for	the	size	of	this	arrow,	P(A	to	B).	It	is	one	of
the	 great	 laws	 of	 Nature,	 and	 it’s	 very	 simple.	 It	 depends	 on	 the
difference	 in	 distance	 and	 the	 difference	 in	 time	 between	 the	 two
points.	 These	 differences	 can	 be	 expressed	mathematically2	 as	 (X2	 –
X1)	and	(T2	–	T1).
The	 major	 contribution	 to	 P(A	 to	 B)	 occurs	 at	 the	 conventional
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speed	of	light—when	(X2	–	X1	is	equal	to	(T2	–	T1)—where	one	would
expect	 it	 all	 to	 occur,	 but	 there	 is	 also	 an	 amplitude	 for	 light	 to	 go
faster	(or	slower)	than	the	conventional	speed	of	light.	You	found	out
that	in	the	last	lecture	that	light	doesn’t	go	only	in	straight	lines;	now,
you	find	out	that	it	doesn’t	go	only	at	the	speed	of	light!
It	may	surprise	you	that	there	is	an	amplitude	for	a	photon	to	go	at

speeds	faster	or	slower	than	the	conventional	speed,	c.	The	amplitudes
for	 these	 possibilities	 are	 very	 small	 compared	 to	 the	 contribution
from	 speed	 c;	 in	 fact,	 they	 cancel	 out	 when	 light	 travels	 over	 long
distances.	However,	when	the	distances	are	short—as	in	many	of	the
diagrams	 I	will	 be	 drawing—these	 other	 possibilities	 become	 vitally
important	and	must	be	considered.
So	 that’s	 the	 first	 basic	 action,	 the	 first	 basic	 law	 of	 physics—a

photon	goes	from	point	to	point.	That	explains	all	about	optics;	that’s
the	 entire	 theory	of	 light!	Well,	 not	quite:	 I	 left	 out	polarization	 (as
always),	and	the	interaction	of	light	with	matter,	which	brings	me	to
the	second	law.

FIGURE	56.	When	 light	 goes	 at	 the	 speed	 C,	 the	 “interval,”	 I,	 equals	 zero,	 and	 there	 is	 a	 large
contribution	in	the	12	o’clock	direction.	When	I	is	greater	than	zero,	there	is	a	small	contribution	in
the	 three	 o’clock	direction	 inversely	 proportional	 to	 I;	when	 I	 is	 less	 than	 zero,	 there	 is	 a	 similar
contribution	 in	 the	nine	o’clock	direction.	Thus	 light	has	an	amplitude	 to	go	faster	or	slower	 than
speed	C,	but	these	amplitudes	cancel	out	over	long	distances.

The	second	action	fundamental	to	quantum	electrodynamics	is:	An
electron	goes	from	point	A	to	point	B	in	space-time.	(For	the	moment
we	will	 imagine	 this	 electron	 as	 a	 simplified,	 fake	 electron,	with	no
polarization—what	 the	 physicists	 call	 a	 “spin-zero”	 electron.	 In
reality,	 electrons	 have	 a	 type	 of	 polarization,	 which	 doesn’t	 add
anything	 to	 the	main	 ideas;	 it	 only	 complicates	 the	 formulas	 a	 little
bit.)	The	 formula	 for	 the	amplitude	 for	 this	 action,	which	 I	will	 call
E(A	 to	 B)	 also	 depends	 on	 (X2	 –	 X1	 and	 (T2	 –	 T1	 (in	 the	 same
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combination	as	described	in	note	2)	as	well	as	on	a	number	I	will	call
“n,”	 a	number	 that,	once	determined,	 enables	all	 our	 calculations	 to
agree	 with	 experiment.	 (We	 will	 see	 later	 how	 we	 determine	 n’s
value.)	 It	 is	a	 rather	complicated	 formula,	and	 I’m	sorry	 that	 I	don’t
know	 how	 to	 explain	 it	 in	 simple	 terms.	 However,	 you	 might	 be
interested	 to	 know	 that	 the	 formula	 for	 P(A	 to	 B)—a	 photon	 going
from	place	to	place	in	space-time—is	the	same	as	that	for	E(A	to	B)—
an	electron	going	from	place	to	place—if	n	is	set	to	zero.3
The	third	basic	action	is:	an	electron	emits	or	absorbs	a	photon—it

doesn’t	make	any	difference	which.	I	will	call	this	action	a	“junction,”
or	“coupling.”	To	distinguish	electrons	from	photons	in	my	diagrams,
I	will	draw	each	electron	going	through	space-time	as	a	straight	line.
Every	coupling,	therefore,	is	a	junction	between	two	straight	lines	and
a	 wavy	 line	 (see	 Fig.	 58).	 There	 is	 no	 complicated	 formula	 for	 the
amplitude	of	an	electron	to	emit	or	absorb	a	photon;	it	doesn’t	depend
on	anything—it’s	just	a	number!	This	junction	number	I	will	call	j—its
value	is	about	–0.1:	a	shrink	to	about	one-tenth,	and	half	a	turn.4
Well,	 that’s	 all	 there	 is	 to	 these	 basic	 actions—except	 for	 some

slight	complications	due	to	this	polarization	that	we’re	always	leaving
out.	Our	next	 job	 is	 to	 put	 these	 three	 actions	 together	 to	 represent
circumstances	that	are	somewhat	more	complicated.

FIGURE	57.	An	electron	has	an	amplitude	to	go	from	point	to	point	in	space-time,	which	I	will	call
“E(A	to	B).”	Although	I	will	represent	E(A	to	B)	as	a	straight	line	between	two	points	(a),	we	can
think	 of	 it	 as	 the	 sum	 of	 many	 amplitudes	 (b)—among	 them,	 the	 amplitude	 for	 the	 electron	 to
change	direction	at	points	C	or	C	on	a	“two-hop”	path,	and	the	amplitude	to	change	direction	at	D
and	E	on	a	“three-hop”	path—in	addition	to	the	direct	path	from	A	to	B.	The	number	of	times	an
electron	can	change	direction	is	anywhere	from	zero	to	infinity,	and	the	points	at	which	the	electron
can	change	direction	on	its	way	from	A	to	B	in	space-time	are	infinite.	All	are	included	in	E	(A	to
B).
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FIGURE	58.	An	electron,	depicted	by	a	straight	 line,	has	a	certain	amplitude	 to	emit	or	absorb	a
photon,	shown	by	a	wavy	line.	Since	the	amplitude	to	emit	or	absorb	is	the	same,	I	will	call	either
case	a	“coupling.”	The	amplitude	for	a	coupling	is	a	number	that	I	will	call	j;	it	is	about	–0.1	for	the
electron	(this	number	is	sometimes	called	the	“charge”).

For	 our	 first	 example,	 let’s	 calculate	 the	 probability	 that	 two
electrons,	at	points	1	and	2	 in	 space-time,	end	up	at	points	3	and	4
(see	Fig.	59).	This	event	can	happen	in	several	ways.	The	first	way	is
that	the	electron	at	1	goes	to	3—computed	by	putting	1	and	3	into	the
formula	E(A	to	B),	which	I	will	write	as	E(1	to	3)—and	the	electron	at
2	 goes	 to	 4—computed	 by	 E(2	 to	 4).	 These	 are	 two	 “subevents”
happening	concomitantly,	so	the	two	arrows	are	multiplied	to	produce
an	arrow	for	this	first	way	the	event	could	happen.	Therefore	we	write
the	formula	for	the	“first-way	arrow”	as	E(1	to	3)	*	E(2	to	4).

FIGURE	59.	To	calculate	 the	probability	 that	electrons	at	points	1	and	2	 in	space-time	end	up	at
points	 3	 and	 4,	 we	 calculate	 the	 “first	 way”	 arrow	 for	 1	 going	 to	 3	 and	 2	 going	 to	 4	with	 the
formula	for	E(A	to	B);	then	we	calculate	the	“second	way”	arrow	for	1	going	to	4	and	2	going	to	3
(a	 “crossover”).	 Finally,	 we	 add	 the	 “first	 way”	 and	 “second	 way”	 arrows	 to	 arrive	 at	 a	 good
approximation	of	the	final	arrow.	(This	is	true	for	the	fake,	simplified	“spin	zero”	electron.	Had	we
included	 the	polarization	of	 the	electron,	we	would	have	 subtracted—rather	 than	added—the	 two
arrows.)

Another	way	this	event	could	happen	is	that	the	electron	at	1	goes
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to	 4	 and	 the	 electron	 at	 2	 goes	 to	 3—again,	 two	 concomitant
subevents.	The	“second-way	arrow”	 is	E(1	 to	4)	*	E(2	 to	3),	and	we
add	it	to	the	“first-way”	arrow.5
This	 is	 a	 good	 approximation	 for	 the	 amplitude	 of	 this	 event.	 To

make	a	more	exact	calculation	 that	will	agree	more	closely	with	 the
results	of	experiment,	we	must	consider	other	ways	 this	event	could
happen.	 For	 instance,	 for	 each	 of	 the	 two	main	ways	 the	 event	 can
happen,	 one	 electron	 could	 go	 charging	 off	 to	 some	 new	 and
wonderful	 place	 and	 emit	 a	 photon	 (see	 Fig.	 60).	 Meanwhile,	 the
other	 electron	 could	go	 to	 some	other	place	 and	absorb	 the	photon.
Calculating	 the	 amplitude	 for	 the	 first	 of	 these	 new	 ways	 involves
multiplying	 the	 amplitudes	 for:	 an	 electron	 goes	 from	 1	 to	 the	 new
and	wonderful	place,	5	(where	it	emits	a	photon),	and	then	goes	from
5	to	3;	the	other	electron	goes	from	2	to	the	other	place,	6	(where	it
absorbs	the	photon),	and	then	goes	from	6	to	4.	We	must	remember	to
include	the	amplitude	that	the	photon	goes	from	5	to	6.	I’m	going	to
write	 the	 amplitude	 for	 this	way	 the	 event	 could	 happen	 in	 a	 high-
class	mathematical	fashion,	and	you	can	follow	along:	E(1	to	5)*j*E(5
to	 3)	 *	 E(2	 to	 6)*j*E(6	 to	 4)	 *	 P(5	 to	 6)—a	 lot	 of	 shrinking	 and
turning.	(I’ll	let	you	figure	out	the	notation	for	the	other	case,	where
the	electron	at	1	ends	up	at	4,	and	the	electron	at	2	ends	up	at	3.)6

FIGURE	60.	Two	“other	ways”	the	event	in	Fig.	59	could	happen	are:	a	photon	is	emitted	at	5	and
absorbed	at	6	for	each	case.	The	final	conditions	of	these	alternatives	are	the	same	as	for	the	other
cases—two	electrons	went	 in,	and	 two	electrons	came	out—and	these	results	are	 indistinguishable
from	 the	 other	 alternatives.	 Therefore	 the	 arrows	 for	 these	 “other	 ways”	 must	 be	 added	 to	 the
arrows	in	Fig.	59	to	arrive	at	a	better	approximation	of	the	final	arrow	for	the	event.

But	wait:	positions	5	and	6	could	be	anywhere	in	space	and	time—
yes,	 anywhere—and	 the	 arrows	 for	all	 of	 those	positions	have	 to	 be
calculated	and	added	together.	You	see	it’s	getting	to	be	a	lot	of	work.
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Not	that	the	rules	are	so	difficult—it’s	like	playing	checkers:	the	rules
are	 simple,	 but	 you	 use	 them	 over	 and	 over.	 So	 our	 difficulty	 in
calculating	comes	from	having	to	pile	so	many	arrows	together.	That’s
why	it	takes	four	years	of	graduate	work	for	the	students	to	learn	how
to	do	 this	 efficiently—and	we’re	 looking	at	 an	 easy	 problem!	 (When
the	problems	get	too	difficult,	we	just	put	them	on	the	computer!)
I	would	 like	 to	 point	 out	 something	 about	 photons	 being	 emitted

and	absorbed:	 if	point	6	 is	 later	 than	point	5,	we	might	say	that	 the
photon	was	emitted	at	5	and	absorbed	at	6	(see	Fig.	61).	If	6	is	earlier
than	 5,	 we	 might	 prefer	 to	 say	 the	 photon	 was	 emitted	 at	 6	 and
absorbed	at	5,	but	we	could	just	as	well	say	that	the	photon	is	going
backwards	 in	 time!	 However,	 we	 don’t	 have	 to	 worry	 about	 which
way	in	space-time	the	photon	went;	it’s	all	included	in	the	formula	for
P(5	 to	 6),	 and	 we	 say	 a	 photon	 was	 “exchanged.”	 Isn’t	 it	 beautiful
how	simple	Nature	is!7
Now,	in	addition	to	the	photon	that	is	exchanged	between	5	and	6,

another	 photon	 could	 be	 exchanged—between	 two	 points,	 7	 and	 8
(see	Fig.	62).	I’m	too	tired	to	write	down	all	the	basic	actions	whose
arrows	have	 to	be	multiplied,	but—as	you	may	have	noticed—every
straight	line	gets	an	E(A	to	B),	every	wavy	line	gets	a	P(A	to	B),	and
every	coupling	gets	a	j.	Thus,	there	are	six	E(A	to	B)’s,	two	P(A	to	B)’s,
and	 four	 j’s—for	every	possible	5,	6,	7,	and	8!	That	makes	billions	of
tiny	arrows	that	have	to	be	multiplied	and	then	added	together!

FIGURE	61.	Since	light	has	an	amplitude	to	go	faster	or	slower	than	the	conventional	speed	of	light,
the	 photons	 in	 all	 three	 examples	 above	 can	 be	 thought	 of	 as	 being	 emitted	 from	 point	 5	 and
absorbed	at	point	6,	even	though	the	photon	in	example	(b)	is	emitted	at	the	same	time	that	it	 is
absorbed,	and	the	photon	in	(c)	is	emitted	later	than	it	is	absorbed—a	situation	in	which	you	might
have	preferred	to	say	that	it	was	emitted	by	6	and	absorbed	by	5;	otherwise,	the	photon	would	have
to	go	backwards	in	time!	As	far	as	calculating	(and	Nature)	is	concerned,	it’s	all	the	same	(and	it’s
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all	possible),	so	we	simply	say	a	photon	is	“exchanged”	and	plug	the	locations	in	space-time	into	the
formula	for	P(A	to	B).

FIGURE	 62.	 Yet	 another	 way	 the	 event	 in	 Fig.	 59	 could	 happen	 is	 that	 two	 photons	 could	 be
exchanged.	Many	diagrams	of	 this	way	are	 possible	 (as	we	will	 see	 in	more	detail	 later);	 one	of
them	is	shown	here.	The	arrow	for	this	way	involves	all	possible	intermediate	points	5,	6,	7,	and	8,
and	is	calculated	with	great	difficulty.	Because	j	is	less	than	0.1,	the	length	of	this	arrow	is	generally
less	than	1	part	in	10,000	(because	there	are	four	couplings	involved)	compared	to	the	“first	way”
and	“second	way”	arrows	in	Fig.	59	that	contained	no	j’s.

It	appears	that	calculating	the	amplitude	for	this	simple	event	is	a
hopeless	business,	but	when	you’re	a	graduate	 student	you’ve	got	 to
get	your	degree,	so	you	keep	on	going.
But	 there	 is	hope	 for	 success.	 It	 is	 found	 in	 that	magic	number,	 j.

The	 first	 two	ways	 the	 event	 could	 happen	 had	 Space	 no	 j’s	 in	 the
calculation;	the	next	way	had	 j*j,	and	the	last	way	we	looked	at	had
j*j*j*j.	Since	j*j	is	less	than	0.01,	it	means	the	length	of	the	arrow	for
this	way	is	generally	less	than	1%	of	the	arrow	for	the	first	two	ways;
an	arrow	with	j*j*j*j	in	it	is	less	than	1%	of	1%—one	part	in	10,000—
compared	to	the	arrows	that	have	no	j.	If	you’ve	got	enough	time	on
the	computer,	you	can	work	out	the	possibilities	that	involve	 j6—one
part	in	a	million—and	match	the	accuracy	of	the	experiments.	That’s
how	 the	 calculations	 of	 simple	 events	 are	 made.	 That’s	 the	 way	 it
works;	that’s	all	there	is	to	it!
Let’s	 look	 at	 another	 event	now.	We	begin	with	 a	photon	 and	an

electron,	 and	we	 end	with	 a	 photon	 and	 an	 electron.	 One	way	 this
event	can	happen	is:	a	photon	is	absorbed	by	an	electron,	the	electron
continues	on	a	bit,	and	a	new	photon	comes	out.	This	process	is	called
the	scattering	of	light.	When	we	make	the	diagrams	and	calculations
for	 scattering,	 we	 must	 include	 some	 peculiar	 possibilities	 (see	 Fig.
63).	For	example,	 the	electron	could	emit	a	photon	before	 absorbing
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one	(b).	Even	more	strange	is	the	possibility	(c)	that	the	electron	emits
a	photon,	then	travels	backwards	in	time	to	absorb	a	photon,	and	then
proceeds	 forwards	 in	 time	 again.	 The	 path	 of	 such	 a	 “backwards-
moving”	 electron	 can	 be	 so	 long	 as	 to	 appear	 real	 in	 an	 actual
physical	 experiment	 in	 the	 laboratory.	 Its	 behavior	 is	 included	 in
these	diagrams	and	the	equation	for	E(A	to	B).

FIGURE	63.	The	scattering	of	light	involves	a	photon	going	into	an	electron	and	a	photon	coming
out—not	necessarily	in	that	order,	as	seen	in	example	(b).	The	example	in	(c)	shows	a	strange	but
real	possibility:	the	electron	emits	a	photon,	rushes	backwards	in	time	to	absorb	a	photon,	and	then
continues	forwards	in	time.

The	 backwards-moving	 electron	 when	 viewed	 with	 time	 moving
forwards	 appears	 the	 same	 as	 an	 ordinary	 electron,	 except	 it’s
attracted	to	normal	electrons—we	say	it	has	a	“positive	charge.”	(Had
I	 included	 the	 effects	 of	 polarization,	 it	would	 be	 apparent	why	 the
sign	of	j	for	the	backwards-moving	electron	appears	reversed,	making
the	 charge	 appear	 positive.)	 For	 this	 reason	 it’s	 called	 a	 “positron.”
The	positron	is	a	sister	particle	to	the	electron,	and	is	an	example	of
an	“anti-particle.”8
This	 phenomenon	 is	 general.	 Every	 particle	 in	 Nature	 has	 an

amplitude	 to	 move	 backwards	 in	 time,	 and	 therefore	 has	 an	 anti-
particle.	When	a	particle	and	its	anti-particle	collide,	 they	annihilate
each	 other	 and	 form	 other	 particles.	 (For	 positrons	 and	 electrons
annihilating,	it	is	usually	a	photon	or	two.)	And	what	about	photons?
Photons	 look	 exactly	 the	 same	 in	 all	 respects	 when	 they	 travel
backwards	 in	 time—as	 we	 saw	 earlier—so	 they	 are	 their	 own	 anti-
particles.	You	see	how	clever	we	are	at	making	an	exception	part	of
the	rule!
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I’d	 like	 to	 show	 you	 what	 this	 backwards-moving	 electron	 looks
like	to	us,	as	we	move	forwards	in	time.	With	a	sequence	of	parallel
lines	 to	 aid	 the	 eye,	 I’m	 going	 to	 divide	 the	 diagram	 into	 blocks	 of
time,	T0	 to	T10	 (see	Fig.	64).	We	start	at	T0	with	an	electron	moving
toward	a	photon,	which	is	moving	in	the	opposite	direction.	All	of	a
sudden—at	T3—the	photon	turns	into	two	particles,	a	positron	and	an
electron.	 The	 positron	 doesn’t	 last	 very	 long:	 it	 soon	 runs	 into	 the
electron—at	 T5,	 where	 they	 annihilate	 and	 produce	 a	 new	 photon.
Meanwhile,	 the	 electron	 created	 earlier	 by	 the	 original	 photon
continues	on	through	space-time.

FIGURE	64.	Looking	at	example	(c)	from	Fig.	63	going	only	forwards	in	time	(as	we	are	forced	to
do	in	the	laboratory),	from	T0	to	T3	we	see	the	electron	and	photon	moving	toward	each	other.	All
of	a	sudden,	at	T3	the	photon	“disintegrates”	and	two	particles	appear—an	electron	and	a	new	kind
of	particle	(called	a	“positron”)	which	is	an	electron	going	backwards	in	time	and	which	appears	to
move	toward	the	original	electron	(itself!).	At	T5	the	positron	annihilates	with	the	original	electron
to	produce	a	new	photon.	Meanwhile,	the	electron	created	by	the	earlier	photon	continues	forwards
in	 space-time.	 This	 sequence	 of	 events	 has	 been	 observed	 in	 the	 laboratory,	 and	 is	 included
automatically	in	the	formula	for	E(A	to	B)	without	any	modification.

The	next	thing	I	would	like	to	talk	about	is	an	electron	in	an	atom.
In	order	to	understand	the	behavior	of	electrons	in	atoms,	we	have	to
add	one	other	feature,	the	nucleus—the	heavy	part	at	the	center	of	an
atom	that	contains	at	least	one	proton	(a	proton	is	a	“Pandora’s	Box”
that	we	will	open	in	the	next	lecture).	I	will	not	give	you	the	correct
laws	 for	 the	 behavior	 of	 the	 nucleus	 in	 this	 lecture;	 they	 are	 very
complicated.	 But	 in	 this	 case,	 where	 the	 nucleus	 is	 quiet,	 we	 can
approximate	its	behavior	as	that	of	a	particle	with	an	amplitude	to	go
from	one	place	to	another	in	space-time	according	to	the	formula	for
E(A	to	B),	but	with	a	much	higher	number	for	n.	Since	the	nucleus	is
so	heavy	compared	to	an	electron,	we	can	deal	with	it	approximately
here	 by	 saying	 that	 it	 stays	 in	 essentially	 one	 place	 as	 it	 moves
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through	time.
The	simplest	atom,	called	hydrogen,	is	a	proton	and	an	electron.	By

exchanging	 photons,	 the	 proton	 keeps	 the	 electron	 nearby,	 dancing
around	it	(see	Fig.	65).9	Atoms	that	contain	more	than	one	proton	and
the	corresponding	number	of	electrons	also	scatter	light	(atoms	in	the
air	 scatter	 light	 from	 the	 sun	 and	 make	 the	 sky	 blue),	 but	 the
diagrams	for	these	atoms	would	involve	so	many	straight	and	wiggly
lines	that	they’d	be	a	complete	mess!

FIGURE	65.	An	electron	 is	kept	within	a	 certain	 range	of	distance	 to	 the	nucleus	of	an	atom	by
photon	exchanges	with	a	proton	(a	“Pandora’s	Box”	that	we	will	look	into	in	Chapter	4).	For	now,
the	proton	can	be	approximated	as	a	stationary	particle.	Shown	here	is	a	hydrogen	atom,	consisting
of	a	proton	and	an	electron	exchanging	photons.

FIGURE	66.	The	scattering	of	light	by	an	electron	in	an	atom	is	the	phenomenon	that	accounts	for
partial	 reflection	 in	 a	 layer	 of	 glass.	 The	 diagram	 shows	 one	 way	 this	 event	 can	 happen	 in	 a
hydrogen	atom.

Now,	I’d	like	to	show	you	a	diagram	of	an	electron	in	a	hydrogen
atom	scattering	light	(see	Fig.	66).	As	the	electron	and	the	nucleus	are
exchanging	photons,	a	photon	comes	from	outside	the	atom,	hits	the
electron	 and	 is	 absorbed;	 then	 a	 new	 photon	 is	 emitted.	 (As	 usual,
there	are	other	possibilities	to	be	considered,	such	as	the	new	photon
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is	emitted	before	the	old	photon	is	absorbed.)	The	total	amplitude	for
all	the	ways	an	electron	can	scatter	a	photon	can	be	summed	up	as	a
single	arrow,	a	certain	amount	of	shrink	and	turn.	(Later,	we	will	call
this	 arrow	 “S.”)	 This	 amount	 depends	 on	 the	 nucleus	 and	 the
arrangement	 of	 the	 electrons	 in	 the	 atoms,	 and	 is	 different	 for
different	materials.
Now,	let’s	look	again	at	the	partial	reflection	of	light	by	a	layer	of

glass.	How	does	it	work?	I	talked	about	light	being	reflected	from	the
front	 surface	 and	 the	 back	 surface.	 This	 idea	 of	 surfaces	 was	 a
simplification	 I	made	 in	 order	 to	 keep	 things	 easy	 at	 the	 beginning.
Light	 is	 really	 not	 affected	 by	 surfaces.	 An	 incoming	 photon	 is
scattered	 by	 the	 electrons	 in	 the	 atoms	 inside	 the	 glass,	 and	 a	 new
photon	comes	back	up	to	the	detector.	It’s	 interesting	that	instead	of
adding	up	all	the	billions	of	tiny	arrows	that	represent	the	amplitude
for	all	the	electrons	inside	the	glass	to	scatter	an	incoming	photon,	we
can	add	 just	 two	arrows—for	 the	 “front	 surface”	and	 “back	 surface”
reflections—and	come	out	with	the	same	answer.	Let’s	see	why.
To	 discuss	 reflection	 by	 a	 layer	 from	 our	 new	 point	 of	 view	 we

must	 take	 into	 account	 the	 dimension	 of	 time.	 Previously,	when	we
talked	 about	 light	 from	 a	 monochromatic	 source,	 we	 used	 an
imaginary	 stopwatch	 that	 times	 a	 photon	 as	 it	 moves—the	 hand	 of
this	 stopwatch	 determined	 the	 angle	 of	 the	 amplitude	 for	 a	 given
path.	In	the	formula	for	P(A	to	B)	(the	amplitude	for	a	photon	to	go
from	 point	 to	 point)	 there	 is	 no	 mention	 of	 any	 turning.	 What
happened	to	the	stopwatch?	What	happened	to	the	turning?
In	 the	 first	 lecture	 I	 simply	 said	 that	 the	 light	 source	 was

monochromatic.	To	correctly	analyze	partial	reflection	by	a	layer,	we
need	 to	 know	 more	 about	 a	 monochromatic	 light	 source.	 The
amplitude	 for	a	photon	 to	be	emitted	by	a	source	varies,	 in	general,
with	the	time:	as	time	goes	on,	the	angle	of	the	amplitude	for	a	photon
to	 be	 emitted	 by	 a	 source	 changes.	 A	 source	 of	 white	 light—many
colors	mixed	together—emits	photons	in	a	chaotic	manner:	the	angle
of	 the	 amplitude	 changes	 abruptly	 and	 irregularly	 in	 fits	 and	 starts.
But	 when	 we	 construct	 a	 monochromatic	 source,	 we	 are	 making	 a
device	 that	 has	 been	 carefully	 arranged	 so	 that	 the	 amplitude	 for	 a
photon	to	be	emitted	at	a	certain	time	is	easily	calculated:	it	changes
its	 angle	 at	 a	 constant	 speed,	 like	 a	 stopwatch	 hand.	 (Actually,	 this
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arrow	 turns	 at	 the	 same	 speed	 as	 the	 imaginary	 stopwatch	we	 used
before,	but	in	the	opposite	direction—see	Fig.	67.)

FIGURE	67.	A	monochromatic	source	is	a	beautifully	constructed	apparatus	that	emits	a	photon	in
a	 very	 predictable	 way:	 the	 amplitude	 for	 a	 photon	 to	 be	 emitted	 at	 a	 certain	 time	 rotates
counterclockwise	as	time	moves	forwards.	Thus	the	amplitude	for	the	source	to	emit	a	photon	at	a
later	 time	has	a	 lesser	angle.	 It	will	be	assumed	 that	all	 the	 light	emitted	 from	 the	 source	goes	at
speed	c	(since	the	distances	are	large).

The	 rate	of	 turning	depends	on	 the	color	of	 the	 light:	 the	amplitude
for	a	blue	 source	 turns	nearly	 twice	as	 fast	 as	 that	 for	a	 red	 source,
just	 as	 before.	 So	 the	 timer	we	 used	 for	 the	 “imaginary	 stopwatch”
was	 the	 monochromatic	 source:—in	 reality,	 the	 angle	 of	 the
amplitude	 for	 a	 given	 path	 depends	 on	 what	 time	 the	 photon	 is
emitted	from	the	source.
Once	a	photon	has	been	emitted,	there	is	no	further	turning	of	the

arrow	 as	 a	 photon	 goes	 from	 one	 point	 to	 another	 in	 space-time.
Although	 the	 formula	 P(A	 to	 B)	 says	 that	 there	 is	 an	 amplitude	 for
light	 to	 go	 from	 one	 place	 to	 another	 at	 speeds	 other	 than	 c,	 the
distance	 from	 the	 source	 to	 the	 detector	 in	 our	 experiment	 is
relatively	 large	 (compared	 to	 an	 atom),	 so	 the	 only	 surviving
contribution	to	P(A	to	B)’s	length	that	counts	comes	from	speed	c.
To	 begin	 our	 new	 calculation	 of	 partial	 reflection,	 let’s	 start	 by

defining	 the	 event	 completely:	 the	 detector	 at	 A	makes	 a	 click	 at	 a
certain	 time,	T.	Then,	 let’s	divide	the	 layer	of	glass	 into	a	number	of
very	thin	sections—let’s	say,	six	(see	Fig.	68a).	From	the	analysis	we
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did	in	the	second	lecture	in	which	we	found	that	nearly	all	the	light	is
reflected	 from	 the	middle	 of	 a	mirror,	we	 know	 that	 although	 each
electron	 is	 scattering	 light	 in	 all	 directions,	when	 all	 the	 arrows	 for
each	section	are	added,	the	only	place	where	they	don’t	cancel	out	is
where	 light	 goes	 straight	 down	 to	 the	 middle	 of	 the	 section	 and
scatters	in	one	of	two	directions—straight	back	up	to	the	detector	or
straight	 down	 through	 the	 glass.	 The	 final	 arrow	 for	 the	 event	 will
thus	 be	 determined	 by	 adding	 the	 six	 arrows	 representing	 the
scattering	 of	 light	 from	 the	 six	 middle	 points—X1	 to	 X6—arranged
vertically	throughout	the	glass.
All	right,	let’s	calculate	the	arrow	for	each	of	these	ways	the	light

could	go—via	the	six	points,	X1	to	X6.	There	are	four	steps	involved	in
each	way	(which	means	four	arrows	will	be	multiplied):

—STEP	#1:	A	photon	is	emitted	by	the	source	at	a	certain	time.
—STEP	#2:	The	photon	goes	 from	 the	 source	 to	one	of	 the	points	 in
the	glass.

—STEP	#3:	The	photon	is	scattered	by	an	electron	at	that	point.
—STEP	#4:	A	new	photon	makes	its	way	up	to	the	detector.
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FIGURE	 68.	We	 begin	 our	 new	 analysis	 of	 partial	 reflection	 by	 dividing	 a	 layer	 of	 glass	 into	 a
number	of	sections	(here,	six),	and	looking	at	the	various	ways	the	light	could	go	from	the	source	to
the	 glass	 and	 back	 up	 to	 the	 detector	 at	 A.	 The	 only	 important	 points	 in	 the	 glass	 (where	 the
amplitudes	for	scattering	light	don’t	cancel	out)	are	located	at	the	middle	of	each	section;	X1	to	X6
are	shown	in	(a)	at	their	physical	location	inside	the	glass,	and	in	(b)	as	vertical	lines	on	the	space-
time	graph.	The	event	whose	probability	we	are	calculating	is:	the	detector	at	A	makes	a	click	at	a
certain	 time,	 T.	 Thus	 the	 event	 appears	 as	 a	 point	 (where	 A	 and	 T	 intersect)	 on	 the	 space-time
graph.
For	each	of	the	ways	the	event	can	happen,	four	steps	must	occur	in	succession,	so	four	arrows

have	to	be	multiplied.	The	steps	are	shown	in	(b):	1)	a	photon	leaves	the	source	at	a	certain	time
(the	arrows	at	T1	 to	T6	 represent	 the	amplitude	 to	do	 that	 for	 six	different	 times);	2)	 the	photon
goes	from	the	source	to	one	of	the	points	in	the	glass	(the	six	alternatives	are	depicted	as	wavy	lines
going	up	to	the	right);	3)	an	electron	at	one	of	the	points	scatters	a	photon	(shown	as	short,	wide
vertical	lines);	and	4)	a	new	photon	goes	to	the	detector	and	arrives	at	the	appointed	time,	T	(shown
as	a	wavy	line	going	up	to	the	left).	The	amplitudes	for	steps	2,	3,	and	4	are	the	same	for	the	six
alternatives,	while	 the	 amplitudes	 for	 step	1	are	 different:	 compared	 to	 a	 photon	 scattered	 by	an
electron	at	the	top	of	the	glass	(at	X1),	a	photon	scattered	deeper	in	the	glass—at	X2,	for	example—
must	leave	the	source	earlier,	at	T2.
When	 we	 are	 finished	 multiplying	 the	 four	 arrows	 for	 each	 alternative,	 the	 resulting	 arrows,

shown	 in	 (c),	 are	 shorter	 than	 those	 in	 (b);	 each	 has	 been	 turned	 90°	 (in	 accordance	 with	 the
scattering	characteristics	of	electrons	in	glass).	When	these	six	arrows	are	added	together	in	order,
they	form	an	arc;	the	final	arrow	is	its	chord.	The	same	final	arrow	can	be	obtained	by	drawing	two
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radius	arrows,	shown	in	(d),	and	“subtracting”	them	(turning	the	“front	surface”	arrow	around	in
the	 opposite	 direction	 and	 adding	 it	 to	 the	 “back	 surface”	 arrow).	 This	 shortcut	 was	 used	 as	 a
simplification	in	the	first	lecture.

We	will	say	the	amplitudes	for	steps	2	and	4	(a	photon	goes	to	or	from
a	point	in	the	glass)	involve	no	shrinking	or	turning,	because	we	can
assume	 that	 none	 of	 the	 light	 gets	 lost	 or	 spread	 out	 between	 the
source	and	the	glass	or	between	the	glass	and	the	detector.	For	step	3
(an	 electron	 scatters	 a	 photon)	 the	 amplitude	 for	 scattering	 is	 a
constant—a	 shrink	 and	 a	 turn	 by	 a	 certain	 amount,	 S—and	 is	 the
same	everywhere	in	the	glass.	(This	amount	is,	as	I	mentioned	before,
different	 for	 different	 materials.	 For	 glass,	 the	 turn	 of	 S	 is	 90°.)
Therefore,	of	the	four	arrows	to	be	multiplied,	only	the	arrow	for	step
1—the	 amplitude	 for	 a	 photon	 to	 be	 emitted	 from	 the	 source	 at	 a
certain	time—is	different	from	one	alternative	to	the	next.
The	 time	at	which	a	photon	would	have	 to	have	been	emitted	 to

reach	the	detector	A	at	time	T	(see	Fig.	68b)	is	not	the	same	for	the
six	different	paths.	A	photon	scatterd	by	X2	would	have	to	have	been
emitted	 slightly	 earlier	 than	 a	 photon	 scattered	 by	 X1	 because	 that
path	is	 longer.	Thus	the	arrow	at	T2	 is	turned	slightly	more	than	the
arrow	 at	 T1	 because	 the	 amplitude	 for	 a	 monochromatic	 source	 to
emit	a	photon	at	a	certain	time	rotates	counterclockwise	as	time	goes
on.	The	same	goes	for	each	arrow	down	to	T6:	all	six	arrows	have	the
same	length,	but	they	are	turned	at	different	angles—that	is,	they	are
pointing	 in	 different	 directions—because	 they	 represent	 a	 photon
emitted	by	the	source	at	different	times.
After	shrinking	the	arrow	at	T1	by	the	amounts	prescribed	in	steps

2,	3	and	4—and	 turning	 it	 the	90°	prescribed	 in	 step	3—we	end	up
with	arrow	1	(see	Fig.	68c).	The	same	goes	for	the	arrows	2	through
6.	Thus	arrows	1	through	6	are	all	 the	same	(shortened)	 length,	and
are	 turned	 relative	 to	 each	other	 in	 exactly	 the	 same	amount	as	 the
arrows	at	T1	through	T6.
Next,	we	add	arrows	1	to	6.	Connecting	the	arrows	in	order	from	1

to	6,	we	get	something	like	an	arc,	or	part	of	a	circle.	The	final	arrow
forms	 the	 chord	 of	 this	 arc.	 The	 length	 of	 the	 final	 arrow	 increases
with	 the	 thickness	 of	 the	 glass—thicker	 glass	 means	 more	 sections,
more	 arrows,	 and	 therefore	 more	 of	 a	 circle—until	 half	 a	 circle	 is
reached	(and	the	 final	arrow	is	 its	diameter).	Then	the	 length	of	 the
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final	 arrow	 decreases	 as	 the	 thickness	 of	 the	 glass	 continues	 to
increase,	and	the	circle	becomes	complete	to	begin	a	new	cycle.	The
square	of	 this	 length	 is	 the	probability	of	 the	event,	 and	 it	varies	 in
the	cycle	of	zero	to	16%.
There	 is	 a	mathematical	 trick	we	can	use	 to	get	 the	 same	answer

(see	Fig.	68d):	If	we	draw	arrows	from	the	center	of	the	“circle”	to	the
tail	 of	 arrow	1	and	 to	 the	head	of	 arrow	6,	we	get	 two	 radii.	 If	 the
radius	arrow	from	the	center	to	arrow	1	is	turned	180°	(“subtracted”),
then	 it	 can	be	 combined	with	 the	other	 radius	 arrow	 to	 give	us	 the
same	 final	 arrow!	That’s	what	 I	was	doing	 in	 the	 first	 lecture:	 these
two	radii	are	the	two	arrows	I	said	represented	the	“front	surface”	and
“back	surface”	reflections.	They	each	have	the	famous	length	of	0.2.10
Thus	we	 can	 get	 the	 correct	 answer	 for	 the	 probability	 of	 partial

reflection	 by	 imagining	 (falsely)	 that	 all	 reflection	 comes	 from	 only
the	front	and	back	surfaces.	In	this	intuitively	easy	analysis,	the	“front
surface”	 and	 “back	 surface”	 arrows	 are	 mathematical	 constructions
that	give	us	the	right	answer,	whereas	the	analysis	we	just	did—with
the	space-time	drawing	and	the	arrows	forming	part	of	a	circle—is	a
more	 accurate	 representation	 of	 what	 is	 really	 going	 on:	 partial
reflection	is	the	scattering	of	light	by	electrons	inside	the	glass.
Now,	 what	 about	 the	 light	 that	 goes	 through	 the	 layer	 of	 glass?

First,	there	is	an	amplitude	that	the	photon	goes	straight	through	the
glass	 without	 hitting	 any	 electrons	 (see	 Fig.	 69a).	 This	 is	 the	 most
important	 arrow	 in	 terms	 of	 length.	 But	 there	 are	 six	 other	 ways	 a
photon	could	reach	the	detector	below	the	glass:	a	photon	could	hit	X1
and	 scatter	 the	 new	 photon	 down	 to	 B;	 a	 photon	 could	 hit	 X2	 and
scatter	 the	 new	 photon	 down	 to	 B,	 and	 so	 on.	 These	 six	 arrows	 all
have	 the	 same	 length	 as	 the	 arrows	 that	 formed	 the	 “circle”	 in	 the
previous	example:	their	length	is	based	on	that	same	amplitude	of	an
electron	in	the	glass	to	scatter	a	photon,	S.	But	this	time,	all	six	arrows
point	 in	 the	 same	direction,	 because	 the	 length	 of	 all	 six	 paths	 that
involve	 one	 scattering	 is	 the	 same.	 The	 direction	 of	 these	 minor
arrows	is	at	right	angles	to	the	main	arrow	for	transparent	substances
such	as	glass.	When	 the	minor	arrows	are	added	 to	 the	main	arrow,
they	 result	 in	 a	 final	 arrow	 that	 has	 the	 same	 length	 as	 the	 main
arrow,	but	 is	 turned	 in	a	 slightly	different	direction.	The	 thicker	 the
glass,	the	more	minor	arrows	there	are,	and	the	more	the	final	arrow
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is	turned.	That’s	how	a	focusing	lens	really	works:	the	final	arrows	for
all	the	paths	can	be	made	to	point	in	the	same	direction	by	inserting
extra	thicknesses	of	glass	into	the	shorter	paths.

FIGURE	 69.	The	 largest	 amplitude	 for	 light	 that	 is	 transmitted	 through	 the	 layer	 of	 glass	 to	 the
detector	 at	 B	 comes	 from	 the	 part	 that	 represents	 no	 scattering	 by	 the	 electrons	 inside	 the	 glass,
shown	in	(a).	To	this	arrow	we	add	six	small	arrows	that	represent	the	scattering	of	light	from	each
of	the	sections,	represented	by	points	X1	to	X6.	These	six	arrows	have	the	same	length	(because	the
amplitude	for	scattering	is	the	same	anywhere	in	the	glass)	and	point	in	the	same	direction	(because
the	 length	of	 each	path	 from	 the	 source	 through	any	point	X	 to	B	 is	 the	 same).	After	adding	 the
small	arrows	to	the	large	one,	we	find	the	final	arrow	for	the	transmission	of	light	through	a	layer	of
glass	 is	 turned	more	 than	what	we	would	 have	 expected	 if	 the	 light	 came	 only	 directly.	 For	 this
reason	 it	 appears	 to	 us	 that	 light	 takes	 longer	 to	 go	 through	 glass	 than	 it	 takes	 to	 go	 through	 a
vacuum	 or	 through	 air.	 The	 amount	 of	 turning	 by	 the	 final	 arrow	 caused	 by	 the	 electrons	 in	 a
material	is	called	the	“index	of	refraction.”
For	transparent	materials,	the	little	arrows	are	at	right	angles	to	the	main	arrow	(they	actually

curve	 around	when	we	 include	 double	 and	 triple	 scatterings,	 keeping	 the	 final	 arrow	 from	 being
longer	than	the	main	arrow:	Nature	always	has	it	worked	out	so	we	never	get	more	light	out	than
we	put	in).	For	materials	that	are	partially	opaque—that	absorb	light	to	an	extent—the	little	arrows
point	toward	the	main	arrow,	resulting	in	a	final	arrow	that	is	significantly	shorter	than	expected,
shown	 in	 (b).	 This	 shorter	 final	 arrow	 represents	 a	 reduced	 probability	 of	 a	 photon	 being
transmitted	through	partially	opaque	material.

The	same	effect	would	appear	if	photons	went	slower	through	glass
than	 through	 air:	 there	 would	 be	 extra	 turning	 of	 the	 final	 arrow.
That’s	why	I	said	earlier	that	light	appears	to	go	slower	through	glass
(or	water)	 than	 through	 air.	 In	 reality,	 the	 “slowing”	 of	 the	 light	 is
extra	 turning	 caused	by	 the	 atoms	 in	 the	 glass	 (or	water)	 scattering
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the	light.	The	degree	to	which	there	is	extra	turning	of	the	final	arrow
as	 light	 goes	 through	 a	 given	 material	 is	 called	 its	 “index	 of
refraction.”11
For	substances	that	absorb	light,	the	minor	arrows	are	at	less	than

right	 angles	 to	 the	main	 arrow	 (see	 Fig.	 69b).	 This	 causes	 the	 final
arrow	 to	 be	 shorter	 than	 the	 main	 arrow,	 indicating	 that	 the
probability	of	a	photon	going	through	partially	opaque	glass	is	smaller
than	through	transparent	glass.
Thus	 it	 is	 that	 all	 the	 phenomena	 and	 the	 arbitrary	 numbers

mentioned	in	the	first	two	lectures—such	as	partial	reflection	with	an
amplitude	of	0.2,	the	“slowing”	of	light	in	water	and	glass,	and	so	on
—are	explained	 in	more	detail	by	 just	 the	 three	basic	actions—three
actions	that	do,	in	fact,	explain	nearly	everything	else,	too.
It	 is	 hard	 to	 believe	 that	 nearly	 all	 the	 vast	 apparent	 variety	 in

Nature	results	from	the	monotony	of	repeatedly	combining	just	these
three	basic	actions.	But	it	does.	I’ll	outline	a	bit	of	how	some	of	this
variety	arises.
We	may	 start	with	 photons	 (see	 Fig.	 70).	What	 is	 the	 probability

that	two	photons,	at	points	1	and	2	in	space-time,	go	to	two	detectors,
at	points	3	and	4?	There	are	two	main	ways	this	event	could	happen
and	 each	 depends	 on	 two	 things	 happening	 concomitantly:	 the
photons	could	go	directly—P(1	to	3)*P(2	to	4)—or	they	could	“cross
over”—P(1	 to	 4)*P(2	 to	 3).	 The	 resulting	 amplitudes	 for	 these	 two
possibilities	 are	 added,	 and	 there	 is	 interference	 (as	 we	 saw	 in	 the
second	lecture),	making	the	final	arrow	vary	in	length,	depending	on
the	relative	location	of	the	points	in	space-time.
What	 if	we	make	 3	 and	 4	 the	 same	 point	 in	 space-time	 (see	 Fig.

71)?	Let’s	say	both	photons	end	up	at	point	3,	and	see	how	this	affects
the	probability	of	the	event.	Now	we	have	P(1	to	3)*P(2	to	3)	and	P(2
to	 3)*P(1	 to	 3),	which	 result	 in	 two	 identical	 arrows.	When	 added,
their	sum	is	twice	the	length	of	either	one,	and	produces	a	final	arrow
whose	square	is	four	times	the	square	of	either	arrow	alone.	Be-cause
the	 two	 arrows	 are	 identical,	 they	 are	 always	 “lined	 up.”	 In	 other
words,	 the	 interference	 doesn’t	 fluctuate	 according	 to	 the	 relative
separation	between	points	1	and	2;	it	 is	always	positive.	If	we	didn’t
think	 about	 the	 always	positive	 interference	of	 the	 two	photons,	we
should	 have	 thought	 that	 we	 would	 get	 twice	 the	 probability,	 on
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average.	Instead,	we	get	four	times	the	probability	all	the	time.	When
many	 photons	 are	 involved,	 this	 more-than-expected	 probability
increases	even	further.

FIGURE	70.	Photons	at	points	1	and	2	in	space-time	have	an	amplitude	to	arrive	at	points	3	and	4
in	space-time	that	is	approximated	by	considering	two	main	ways	the	event	could	happen:	P(1	to	3)
*	P(2	to	4)	and	P(1	to	4)	*	P(2	to	3),	shown	above.	Depending	on	the	relative	locations	of	points	1,
2,	3,	and	4,	there	are	varying	degrees	of	interference.

FIGURE	71.	When	points	4	and	3	are	made	to	converge,	the	two	arrows—P(1	to	3)	*	P(2	to	3)
and	P(2	to	3)	*	P(1	to	3)—are	identical	in	length	and	direction.	When	they	are	added	they	always
“line	up”	and	form	an	arrow	with	twice	the	length	of	either	arrow	alone,	with	a	square	four	times	as
large.	Thus	photons	tend	to	go	to	the	same	point	in	space-time.	This	effect	is	magnified	even	more	by
more	photons.	This	is	the	basis	of	a	laser’s	operation.

This	 results	 in	 a	 number	 of	 practical	 effects.	 We	 can	 say	 that
photons	 tend	to	get	 into	 the	same	condition,	or	“state”	(the	way	the
amplitude	to	find	one	varies	in	space).	The	chance	that	an	atom	emits
a	photon	 is	 enhanced	 if	 some	photons	 (in	 a	 state	 that	 the	 atom	can
emit	 into)	 are	 already	 present.	 This	 phenomenon	 of	 “stimulated
emission”	was	discovered	by	Einstein	when	he	launched	the	quantum
theory	proposing	the	photon	model	of	light.	Lasers	work	on	the	basis
of	this	phenomenon.
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FIGURE	72.	If	two	electrons	(with	the	same	polarization)	try	to	go	to	the	same	point	in	space-time,
the	interference	is	always	negative	because	of	the	effects	of	polarization:	the	two	identical	arrows—
E(1	to	3)	*	E(2	to	3)	and	E(2	to	3)	*	E(1	to	3)—are	subtracted	to	make	a	final	arrow	of	no	length.
The	 aversion	 of	 two	 electrons	 to	 occupy	 the	 same	 place	 in	 space-time	 is	 called	 the	 “Exclusion
Principle,”	and	accounts	for	the	great	variety	of	atoms	in	the	universe.

If	we	made	the	same	comparison	with	our	fake,	spin-zero	electrons,
the	same	thing	would	happen.	But	in	the	real	world,	where	electrons
are	polarized,	something	very	different	happens:	the	two	arrows,	E(1
to	 3)	 *	 E(2	 to	 4)	 and	 E(1	 to	 4)	 *	 E(2	 to	 3),	 are	 subtracted—one	 of
them	is	turned	180°	before	they	are	added.	When	points	3	and	4	are
the	same,	the	two	arrows	have	the	same	length	and	direction	and	thus
cancel	 out	 when	 they	 are	 subtracted	 (see	 Fig.	 72).	 That	 means
electrons,	 unlike	 photons,	 do	 not	 like	 to	 go	 to	 the	 same	 place;	 they
avoid	 each	 other	 like	 the	 plague—no	 two	 electrons	 with	 the	 same
polarization	 can	 be	 at	 the	 same	 point	 in	 space-time—it’s	 called	 the
“exclusion	principle.”
This	 exclusion	 principle	 turns	 out	 to	 be	 the	 origin	 of	 the	 great

variety	 of	 chemical	 properties	 of	 the	 atoms.	One	 proton	 exchanging
photons	 with	 one	 electron	 dancing	 around	 it	 is	 called	 a	 hydrogen
atom.	Two	protons	in	the	same	nucleus	exchanging	photons	with	two
electrons	 (polarized	 in	 opposite	 directions)	 is	 called	 a	 helium	 atom.
You	see,	the	chemists	have	a	complicated	way	of	counting:	instead	of
saying	 “one,	 two,	 three,	 four,	 five	 protons,”	 they	 say,	 “hydrogen,
helium,	lithium,	beryllium,	boron.”
There	are	only	two	states	of	polarization	available	to	electrons,	so

in	an	atom	with	three	protons	in	the	nucleus	exchanging	photons	with
three	electrons—a	condition	called	a	lithium	atom—the	third	electron
is	farther	away	from	the	nucleus	than	the	other	two	(which	have	used
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up	 the	 nearest	 available	 space),	 and	 exchanges	 fewer	 photons.	 This
causes	the	electron	to	easily	break	away	from	its	own	nucleus	under
the	 influence	 of	 photons	 from	 other	 atoms.	 A	 large	 number	 of	 such
atoms	 close	 together	 easily	 lose	 their	 individual	 third	 electrons	 to
form	a	sea	of	electrons	swimming	around	from	atom	to	atom.	This	sea
of	electrons	reacts	to	any	small	electrical	force	(photons),	generating	a
current	 of	 electrons—I	 am	 describing	 lithium	 metal	 conducting
electricity.	Hydrogen	and	helium	atoms	do	not	lose	their	electrons	to
other	atoms.	They	are	“insulators.”
All	 the	atoms—more	 than	one	hundred	different	kinds—are	made

up	of	a	certain	number	of	protons	exchanging	photons	with	the	same
number	 of	 electrons.	 The	 patterns	 in	 which	 they	 gather	 are
complicated	 and	 offer	 an	 enormous	 variety	 of	 properties:	 some	 are
metals,	some	are	insulators,	some	are	gases,	others	are	crystals;	there
are	soft	things,	hard	things,	colored	things,	and	transparent	things—a
terrific	 cornucopia	 of	 variety	 and	 excitement	 that	 comes	 from	 the
exclusion	 principle	 and	 the	 repetition	 again	 and	 again	 and	 again	 of
the	 three	 very	 simple	 actions	 P(A	 to	 B),	 E(A	 to	 B),	 and	 j.	 (If	 the
electrons	 in	 the	 world	 were	 unpolarized,	 all	 the	 atoms	 would	 have
very	similar	properties:	the	electrons	would	all	cluster	together,	close
to	the	nucleus	of	their	own	atom,	and	would	not	be	easily	attracted	to
other	atoms	to	make	chemical	reactions.)
You	might	wonder	how	such	simple	actions	could	produce	such	a

complex	world.	 It’s	because	phenomena	we	see	 in	 the	world	are	 the
result	of	an	enormous	intertwining	of	tremendous	numbers	of	photon
exchanges	and	 interferences.	Knowing	 the	 three	 fundamental	actions
is	 only	 a	 very	 small	 beginning	 toward	 analyzing	 any	 real	 situation,
where	there	is	such	a	multitude	of	photon	exchanges	going	on	that	it
is	 impossible	 to	 calculate—experience	 has	 to	 be	 gained	 as	 to	which
possibilities	are	more	important.	Thus	we	invent	such	ideas	as	“index
of	refraction”	or	“compressibility”	or	“valence”	to	help	us	calculate	in
an	 approximate	 way	 when	 there’s	 an	 enormous	 amount	 of	 detail
going	on	underneath.	 It’s	 analogous	 to	knowing	 the	 rules	of	 chess—
which	are	 fundamental	 and	 simple—compared	 to	being	able	 to	play
chess	 well,	 which	 involves	 understanding	 the	 character	 of	 each
position	 and	 the	 nature	 of	 various	 situations—which	 is	 much	 more
advanced	and	difficult.
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The	branches	of	physics	that	deal	with	questions	such	as	why	iron
(with	26	protons)	is	magnetic,	while	copper	(with	29)	is	not,	or	why
one	gas	 is	 transparent	and	another	one	 is	not,	are	called	“solid-state
physics,”	or	“liquid-state	physics,”	or	“honest	physics.”	The	branch	of
physics	that	found	these	three	simple	little	actions	(the	easiest	part)	is
called	 “fundamental	 physics”—we	 stole	 that	 name	 in	 order	 to	make
the	other	physicists	feel	uncomfortable!	The	most	interesting	problems
today—and	 certainly	 the	 most	 practical	 problems—are	 obviously	 in
solid-state	physics.	But	someone	said	there	is	nothing	so	practical	as	a
good	theory,	and	the	theory	of	quantum	electrodynamics	is	definitely
a	good	theory!
Finally,	I	would	like	to	return	to	that	number	1.00115965221,	the

number	 that	 I	 told	 you	 about	 in	 the	 first	 lecture	 that	 has	 been
measured	 and	 calculated	 so	 carefully.	 The	 number	 represents	 the
response	 of	 an	 electron	 to	 an	 external	 magnetic	 field—something
called	the	“magnetic	moment.”	When	Dirac	first	worked	out	the	rules
to	calculate	this	number,	he	used	the	formula	for	E(A	to	B)	and	got	a
very	 simple	 answer,	 which	 we	 will	 consider	 in	 our	 units	 as	 1.	 The
diagram	 for	 this	 first	 approximation	 of	 the	magnetic	moment	 of	 an
electron	is	very	simple—an	electron	goes	from	place	to	place	in	space-
time	and	couples	with	a	photon	from	a	magnet	(see	Fig.	73).

FIGURE	73.	The	 diagram	 for	Dirac’s	 calculation	 of	 the	magnetic	moment	 of	 an	 electron	 is	 very
simple.	The	value	represented	by	this	diagram	will	be	called	1.

After	some	years	it	was	discovered	that	this	value	was	not	exactly
1,	 but	 slightly	 more—something	 like	 1.00116.	 This	 correction	 was
worked	out	for	the	first	time	in	1948	by	Schwinger	as	j*j	divided	by	2
pi,	and	was	due	to	an	alternative	way	the	electron	can	go	from	place
to	 place:	 instead	 of	 going	 directly	 from	 one	 point	 to	 another,	 the
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electron	 goes	 along	 for	 a	 while	 and	 suddenly	 emits	 a	 photon;	 then
(horrors!)	 it	 absorbs	 its	 own	 photon	 (see	 Fig.	 74).	 Perhaps	 there’s
something	“immoral”	about	that,	but	the	electron	does	it!	To	calculate
the	 arrow	 for	 this	 alternative,	we	 have	 to	make	 an	 arrow	 for	 every
place	in	space-time	that	the	photon	can	be	emitted	and	every	place	it
can	be	absorbed.	Thus	there	will	be	two	extra	E(A	to	B)’s,	a	P(A	to	B)
and	 two	 extra	 j’s,	 all	multiplied	 together.	 Students	 learn	 how	 to	 do
this	 simple	calculation	 in	 their	elementary	quantum	electrodynamics
course,	in	their	second	year	of	graduate	school.

FIGURE	 74.	 Laboratory	 experiments	 show	 that	 the	 actual	 value	 of	 the	 magnetic	 moment	 of	 an
electron	is	not	1,	but	a	little	bit	more.	This	is	because	there	are	alternatives:	the	electron	can	emit	a
photon	 and	 then	 absorb	 it—requiring	 two	 extra	 E(A	 to	 B)’s,	 a	 P(A	 to	 B),	 and	 two	 extra	 j’s.
Schwinger	calculated	the	adjustment	that	takes	this	alternative	into	account	to	be	 j*j	divided	by	2
pi.	Since	this	alternative	is	 indistinguishable	experimentally	from	the	original	way	the	electron	can
go—an	electron	starts	at	point	1	and	ends	up	at	point	2—the	arrows	for	 the	 two	alternatives	are
added,	and	there	is	interference.

But	wait:	 experiments	have	measured	 the	behavior	of	 an	 electron
so	accurately	 that	we	have	 to	consider	 still	other	possibilities	 in	our
calculations—all	 the	 ways	 the	 electron	 can	 go	 from	 place	 to	 place
with	 four	 extra	 couplings	 (see	 Fig.	 75).	 There	 are	 three	 ways	 the
electron	 can	 emit	 and	 absorb	 two	 photons.	 There’s	 also	 a	 new,
interesting	possibility	 (shown	at	 the	 right	 of	 Fig.	 75):	 one	photon	 is
emitted;	 it	makes	a	positron-electron	pair,	 and—again,	 if	you’ll	hold
your	 “moral”	 objections—the	 electron	 and	 positron	 annihilate,
creating	 a	 new	 photon	 that	 is	 ultimately	 absorbed	 by	 the	 electron.
That	possibility	also	has	to	be	figured	in!
It	 took	 two	 “independent”	 groups	 of	 physicists	 two	 years	 to

calculate	this	next	term,	and	then	another	year	to	find	out	there	was	a
mistake—experimenters	 had	 measured	 the	 value	 to	 be	 slightly
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different,	 and	 it	 looked	 for	 awhile	 that	 the	 theory	didn’t	 agree	with
experiment	 for	 the	 first	 time,	but	no:	 it	was	a	mistake	 in	arithmetic.
How	could	two	groups	make	the	same	mistake?	It	turns	out	that	near
the	end	of	the	calculation	the	two	groups	compared	notes	and	ironed
out	the	differences	between	their	calculations,	so	they	were	not	really
independent.

FIGURE	 75.	 Laboratory	 experiments	 became	 so	 accurate	 that	 further
alternatives,	 involving	 four	extra	couplings	 (over	all	possible	 intermediate
points	in	space-time),	had	to	be	calculated,	some	of	which	are	shown	here.
The	 alternative	 on	 the	 right	 involves	 a	 photon	 disintegrating	 into	 a
positron-electron	pair	(as	described	in	Fig.	64),	which	annihilates	to	form	a
new	photon,	which	is	ultimately	absorbed	by	the	electron.

The	 term	with	 six	 extra	 j’s	 involves	 even	more	 possible	ways	 the
event	can	happen,	and	I’ll	draw	a	few	of	them	for	you	now	(see	Fig.
76).	 It	 took	 twenty	 years	 to	 get	 this	 extra	 accuracy	 figured	 into	 the
theoretical	value	of	 the	magnetic	moment	of	an	electron.	Meanwhile
the	experimenters	made	even	more	detailed	experiments	and	added	a
few	more	digits	onto	 their	number—and	the	theory	still	agreed	with
it.
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FIGURE	76.	Calculations	are	presently	going	on	to	make	the	theoretical	value	even	more	accurate.
The	next	 contribution	 to	 the	amplitude,	which	 represents	 all	 possibilities	with	 six	 extra	 couplings,
involves	 something	 like	70	diagrams,	 three	 of	which	are	 shown	here.	As	 of	 1983,	 the	 theoretical
number	 was	 1.00115965246,	 with	 an	 uncertainty	 of	 about	 20	 in	 the	 last	 two	 digits;	 the
experimental	 number	was	1.00115965221,	with	an	uncertainty	of	 about	4	 in	 the	 last	 digit.	This
accuracy	is	equivalent	to	measuring	the	distance	from	Los	Angeles	to	New	York,	a	distance	of	over
3,000	miles,	to	within	the	width	of	a	human	hair.

So,	to	make	our	calculations	we	make	these	diagrams,	write	down
what	 they	correspond	to	mathematically,	and	add	the	amplitudes—a
straightforward,	 “cookbook”	 process.	 Therefore,	 it	 can	 be	 done	 by
machines.	Now	that	we	have	super-duper	computers,	we	have	begun
to	 compute	 the	 term	 with	 eight	 extra	 j’s.	 At	 the	 present	 time	 the
theoretical	 number	 is	 1.00115965246;	 experimentally,	 it’s
1.00115965221,	 plus	 or	minus	 4	 in	 the	 last	 decimal	 place.	 Some	 of
the	uncertainty	 in	 the	 theoretical	 value	 (about	4	 in	 the	 last	 decimal
place)	 is	 due	 to	 the	 computer’s	 rounding	 off	 numbers;	 most	 of	 it
(about	20)	is	due	to	the	fact	that	the	value	for	j	is	not	exactly	known.
The	 term	 for	 eight	 extra	 j’s	 involves	 something	 like	 nine	 hundred
diagrams,	 with	 a	 hundred	 thousand	 terms	 each—a	 fantastic
calculation—and	it’s	being	done	right	now.
I	 am	 sure	 that	 in	 a	 few	 more	 years,	 the	 theoretical	 and

experimental	numbers	for	the	magnetic	moment	of	an	electron	will	be
worked	out	to	still	more	places.	Of	course,	I	am	not	sure	whether	the
two	values	will	 still	 agree.	That,	 one	 can	never	 tell	 until	 one	makes
the	calculation	and	does	the	experiments.
And	 so	 we	 have	 come	 full	 circle	 to	 the	 number	 I	 chose	 to

“intimidate”	you	with	at	 the	beginning	of	 these	 lectures.	 I	hope	you
understand	 the	 significance	 of	 this	 number	 much	 better	 now:	 it
represents	 the	 extraordinary	 degree	 to	which	we’ve	 been	 constantly
checking	 that	 the	 strange	 theory	 of	 quantum	 electrodynamics	 is
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indeed	correct.
Throughout	these	lectures	I	have	delighted	in	showing	you	that	the

price	of	gaining	such	an	accurate	theory	has	been	the	erosion	of	our
common	 sense.	 We	 must	 accept	 some	 very	 bizarre	 behavior:	 the
amplification	and	suppression	of	probabilities,	light	reflecting	from	all
parts	of	a	mirror,	 light	 travelling	 in	paths	other	 than	a	 straight	 line,
photons	going	 faster	or	 slower	 than	 the	 conventional	 speed	of	 light,
electrons	 going	 backwards	 in	 time,	 photons	 suddenly	 disintegrating
into	a	positron-electron	pair,	and	so	on.	That	we	must	do,	in	order	to
appreciate	 what	 Nature	 is	 really	 doing	 underneath	 nearly	 all	 the
phenomena	we	see	in	the	world.
With	 the	 exception	 of	 technical	 details	 of	 polarization,	 I	 have

described	 to	 you	 the	 framework	 by	 which	 we	 understand	 all	 these
phenomena.	We	draw	amplitudes	 for	every	way	an	event	can	happen
and	 add	 them	 when	 we	 would	 have	 expected	 to	 add	 probabilities
under	 ordinary	 circumstances;	 we	 multiply	 amplitudes	 when	 we
would	have	expected	to	multiply	probabilities.	Thinking	of	everything
in	terms	of	amplitudes	may	cause	difficulties	at	first	because	of	their
abstraction,	but	after	a	while,	one	gets	used	to	this	strange	language.
Underneath	 so	 many	 of	 the	 phenomena	 we	 see	 every	 day	 are	 only
three	basic	actions:	one	is	described	by	the	simple	coupling	number,	j;
the	other	two	by	functions—P(A	to	B)	and	E(A	to	B)—both	of	which
are	closely	related.	That’s	all	there	is	to	it,	and	from	it	all	the	rest	of
the	laws	of	physics	come.
However,	 before	 I	 finish	 this	 lecture,	 I	would	 like	 to	make	 a	 few

additional	 remarks.	 One	 can	 understand	 the	 spirit	 and	 character	 of
quantum	 electrodynamics	 without	 including	 this	 technical	 detail	 of
polarization.	 But	 I’m	 sure	 you’ll	 all	 feel	 uncomfortable	 unless	 I	 say
something	 about	 what	 I’ve	 been	 leaving	 out.	 Photons,	 it	 turns	 out,
come	in	 four	different	varieties,	called	polarizations,	 that	are	related
geometrically	 to	 the	 directions	 of	 space	 and	 time.	 Thus	 there	 are
photons	polarized	in	the	X,	Y,	Z,	and	T	directions.	(Perhaps	you	have
heard	somewhere	that	light	comes	in	only	two	states	of	polarization—
for	 example,	 a	 photon	 going	 in	 the	 Z	 direction	 can	 be	 polarized	 at
right	 angles,	 either	 in	 the	X	 or	Y	 direction.	Well,	 you	 guessed	 it:	 in
situations	where	the	photon	goes	a	long	distance	and	appears	to	go	at
the	speed	of	light,	the	amplitudes	for	the	Z	and	T	terms	exactly	cancel
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out.	But	for	virtual	photons	going	between	a	proton	and	an	electron	in
an	atom,	it	is	the	T	component	that	is	the	most	important.)
In	a	 similar	manner,	 an	electron	can	be	 in	one	of	 four	 conditions

that	 are	 also	 related	 to	 geometry,	 but	 in	 a	 somewhat	 more	 subtle
manner.	We	can	call	 these	conditions	1,	2,	3,	and	4.	Calculating	 the
amplitude	for	an	electron	going	from	point	A	to	point	B	in	space-time
becomes	 somewhat	 more	 complicated,	 because	 we	 can	 now	 ask
questions	such	as,	“What	is	the	amplitude	that	an	electron	liberated	in
condition	2	at	the	point	A	arrives	in	condition	3	at	the	point	B?”	The
sixteen	 possible	 combinations—coming	 from	 the	 four	 different
conditions	 an	 electron	 can	 start	 in	 at	 A	 and	 the	 four	 different
conditions	it	can	end	up	in	at	B—are	related	in	a	simple	mathematical
way	to	the	formula	for	that	E(A	to	B)	I	told	you	about.
For	 a	 photon,	 no	 such	 modification	 is	 necessary.	 Thus	 a	 photon

polarized	 in	 the	 X	 direction	 at	 A	 will	 still	 be	 polarized	 in	 the	 X
direction	at	B,	arriving	with	the	amplitude	P(A	to	B).
Polarization	 produces	 a	 large	 number	 of	 different	 possible

couplings.	We	could	ask,	for	example,	“What	is	the	amplitude	that	an
electron	in	condition	2	absorbs	a	photon	polarized	in	the	X	direction
and	 thereby	 turns	 into	 an	 electron	 in	 condition	 3?”	All	 the	 possible
combinations	 of	 polarized	 electrons	 and	 photons	 do	 not	 couple,	 but
those	that	do,	do	so	with	the	same	amplitude	7,	but	sometimes	with
an	additional	turn	of	the	arrow	by	some	multiple	of	90°.
These	 possibilities	 for	 the	 different	 kinds	 of	 polarization	 and	 the

nature	 of	 the	 couplings	 can	 all	 be	 deduced	 in	 a	 very	 elegant	 and
beautiful	manner	from	the	principles	of	quantum	electrodynamics	and
two	 further	 assumptions:	 1)	 the	 results	 of	 an	 experiment	 are	 not
affected	 if	 the	 apparatus	with	which	 you	 are	making	 experiments	 is
turned	 in	 some	 other	 direction,	 and	 2)	 it	 also	 doesn’t	 make	 any
difference	if	the	apparatus	is	in	a	spaceship	moving	at	some	arbitrary
speed.	(This	is	the	principle	of	relativity.)
This	elegant	and	general	analysis	shows	that	every	particle	must	be

in	one	or	another	class	of	possible	polarizations,	which	we	call	spin	0,
spin	 1/2,	 spin	 1,	 spin	 3/2,	 spin	 2,	 and	 so	 on.	 The	 different	 classes
behave	in	different	ways.	A	spin	0	particle	is	the	simplest—it	has	just
one	 component,	 and	 is	 not	 effectively	 polarized	 at	 all.	 (The	 fake
electrons	 and	photons	 that	we	have	been	 considering	 in	 this	 lecture

119



are	spin	0	particles.	So	far,	no	fundamental	spin	0	particles	have	been
found.)	A	real	electron	is	an	example	of	a	spin	1/2	particle,	and	a	real
photon	 is	an	example	of	a	 spin	1	particle.	Both	 spin	1/2	and	 spin	1
particles	 have	 four	 components.	 The	 other	 types	 would	 have	 more
components,	such	as	spin	2	particles,	with	ten	components.
I	 said	 that	 the	 connection	 between	 relativity	 and	 polarization	 is

simple	 and	 elegant,	 but	 I’m	 not	 sure	 I	 can	 explain	 it	 simply	 and
elegantly!	(It	would	take	me	at	least	one	additional	lecture	to	do	it.)
Although	the	details	of	polarization	are	not	essential	to	understanding
the	 spirit	 and	 character	 of	 quantum	 electrodynamics,	 they	 are,	 of
course,	 essential	 to	 the	 correct	 calculation	 of	 any	 real	 process,	 and
often	have	profound	effects.
In	 these	 lectures	we	have	been	concentrating	on	 relatively	 simple

interactions	between	electrons	and	photons	at	very	small	distances,	in
which	only	a	few	particles	are	involved.	But	I	would	like	to	make	one
or	 two	 remarks	 about	 how	 these	 interactions	 appear	 in	 the	 larger
world,	 where	 very,	 very	 large	 numbers	 of	 photons	 are	 being
exchanged.	On	such	a	large	scale,	the	calculation	of	arrows	gets	very
complicated.
There	 are,	 however,	 some	 situations	 that	 are	 not	 so	 difficult	 to

analyze.	There	 are	 circumstances,	 for	 example,	where	 the	 amplitude
to	 emit	 a	 photon	 by	 a	 source	 is	 independent	 of	 whether	 another
photon	 has	 been	 emitted.	 This	 can	 happen	when	 the	 source	 is	 very
heavy	 (the	 nucleus	 of	 an	 atom),	 or	 when	 a	 very	 large	 number	 of
electrons	are	all	moving	 the	 same	way,	 such	as	up	and	down	 in	 the
antenna	of	a	broadcasting	 station	or	going	around	 in	 the	coils	of	an
electromagnet.	Under	 such	circumstances	a	 large	number	of	photons
are	emitted,	all	of	exactly	the	same	kind.	The	amplitude	of	an	electron
to	absorb	a	photon	in	such	an	environment	is	independent	of	whether
it	or	any	other	electron	has	absorbed	other	photons	before.	Therefore
its	entire	behavior	can	be	given	by	just	this	amplitude	for	an	electron
to	absorb	a	photon,	which	depends	only	on	the	electron’s	position	in
space	 and	 time.	 Physicists	 use	 ordinary	 words	 to	 describe	 this
circumstance.	They	say	the	electron	is	moving	in	an	external	field.
Physicists	use	the	word	“field”	to	describe	a	quantity	that	depends

on	position	in	space	and	time.	Temperatures	in	the	air	provide	a	good
example:	 they	 vary	 according	 to	 where	 and	 when	 you	 make	 your
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measurements.	 When	 we	 take	 polarization	 into	 account,	 there	 are
more	 components	 to	 the	 field.	 (There	 are	 four	 components—
corresponding	to	the	amplitude	to	absorb	each	of	 the	different	kinds
of	polarization	(X,	Y,	Z,	T)	the	photon	might	be	in—technically	called
the	 vector	 and	 scalar	 electromagnetic	 potentials.	 From	combinations
of	these,	classical	physics	derives	more	convenient	components	called
the	electric	and	magnetic	fields.)
In	 a	 situation	where	 the	 electric	 and	magnetic	 fields	 are	 varying

slowly	 enough,	 the	 amplitude	 for	 an	 electron	 to	 travel	 over	 a	 very
long	distance	depends	on	 the	path	 it	 takes.	As	we	saw	earlier	 in	 the
case	of	light,	the	most	important	paths	are	the	ones	where	the	angles
of	the	amplitudes	from	nearby	paths	are	nearly	the	same.	The	result	is
that	the	particle	doesn’t	necessarily	go	in	a	straight	line.
This	brings	us	all	the	way	back	to	classical	physics,	which	supposes

that	there	are	fields	and	that	electrons	move	through	them	in	such	a
way	as	to	make	a	certain	quantity	least.	(Physicists	call	this	quantity
“action”	 and	 formulate	 this	 rule	 as	 the	 “principle	 of	 least	 action.”)
This	 is	 one	 example	 of	 how	 the	 rules	 of	 quantum	 electrodynamics
produce	 phenomena	 on	 a	 large	 scale.	 We	 could	 expand	 in	 many
directions	from	here,	but	we	have	to	limit	the	scope	of	these	lectures
somewhere.	 I	 just	wanted	to	remind	you	that	 the	effects	 that	we	see
on	a	 large	scale	and	the	strange	phenomena	we	see	on	a	small	scale
are	 both	 produced	 by	 the	 interaction	 of	 electrons	 and	 photons,	 and
are	 all	 described,	 ultimately,	 by	 the	 theory	 of	 quantum
electrodynamics.

1	The	complete	story	on	this	situation	is	very	interesting:	if	the	detectors	at	A	and	B	are	not
perfect,	and	detect	photons	only	 some	of	 the	 time,	 then	 there	are	 three	distinguishable	 final
conditions:	1)	the	detectors	at	A	and	D	go	off;	2)	the	detectors	at	B	and	D	go	off,	and	3)	the
detector	at	D	goes	off	alone,	with	A	and	B	unchanged	(they	are	left	in	their	initial	state).	The
probabilities	for	the	first	two	events	are	calculated	in	the	way	explained	above	(except	that
there	will	be	an	extra	step—a	shrink	for	the	probability	that	the	detector	at	A	[or	B]	goes	off,
since	the	detectors	are	not	perfect).	When	D	goes	off	alone,	we	can’t	separate	the	two	cases,
and	Nature	plays	with	us	by	bringing	 in	 interference—the	 same	peculiar	 answer	we	would
have	had	if	there	were	no	detectors	(except	that	the	final	arrow	is	shrunk	by	the	amplitude
that	 the	detectors	 do	not	 go	 off).	 The	 final	 result	 is	 a	mixture,	 the	 simple	 sum	of	 all	 three
cases	(see	Fig.	51).	As	the	reliability	of	the	detectors	increases,	we	get	less	interference.
2	In	these	lectures,	I	am	plotting	a	point’s	location	in	space	in	one	dimension,	along	the	x-

axis.	To	locate	a	point	in	three-dimensional	space,	a	“room”	has	to	be	set	up,	and	the	distance
of	the	point	 from	the	floor	and	from	each	of	two	adjacent	walls	(all	at	right	angles	to	each
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other)	has	to	be	measured.	These	three	measurements	can	be	labeled	Xl	Y1	and	Z1.	The	actual
distance	 from	 this	point	 to	a	 second	point	with	measurements	X2,	Y2,	Z2	 can	be	calculated
using	a	“three-dimensional	Pythagorean	Theorem”:	the	square	of	this	actual	distance	is

(X2	–	X1)2	+	(Y2	–	Y1)2	+	(Z2	–	Z1)2.

The	excess	of	this	over	the	time	difference,	squared—

(X2	–	X1)2	+	(Y2	–	Y1)2	+	(Z2	–	Z1)2	–	(T2	–	T1)2

—is	 sometimes	 called	 “the	 Interval,”	 or	 I,	 and	 is	 the	 combination	 that	 Einstein’s	 theory	 of
relativity	says	that	P(A	to	B)	must	depend	on.	Most	of	the	contribution	to	the	final	arrow	for
P(A	to	B)	is	just	where	you	would	expect	it—where	the	difference	in	distance	is	equal	to	the
difference	in	time	(that	is,	when	I	is	zero).	But	in	addition;	there	is	a	contribution	when	I	is
not	zero,	 that	 is	 inversely	proportional	 to	 I:	 it	points	 in	the	direction	of	3	o’clock	when	 I	 is
more	than	zero	(when	light	is	going	faster	than	c),	and	points	toward	9	o’clock	when	I	is	less
than	zero.	These	later	contributions	cancel	out	in	many	circumstances	(see	Fig.	56).
3	The	formula	for	E(A	to	B)	is	complicated,	but	there	is	an	interesting	way	to	explain	what

it	 amounts	 to.	 E(A	 to	 B)	 can	 be	 represented	 as	 a	 giant	 sum	 of	 a	 lot	 of	 different	 ways	 an
electron	could	go	from	point	A	to	point	B	in	space-time	(see	Fig.	57):	the	electron	could	take
a	“one-hop	flight,”	going	directly	from	A	to	B;	it	could	take	a	“two-hop	flight,”	stopping	at	an
intermediate	point	C;	it	could	take	a	“three-hop	flight,”	stopping	at	points	D	and	E,	and	so	on.
In	such	an	analysis,	the	amplitude	for	each	“hop”—from	one	point	F	to	another	point	G—is
P(F	 to	G),	 the	 same	as	 the	amplitude	 for	 a	photon	 to	go	 from	a	point	 F	 to	 a	point	G.	The
amplitude	for	each	“stop”	is	represented	by	n2,	n	being	the	same	number	I	mentioned	before
which	we	used	to	make	our	calculations	come	out	right.
The	formula	for	E(A	to	B)	is	thus	a	series	of	terms:	P(A	to	B)	[the	“one-hop”	flight]	+	P(A

to	C)*n2*P(C	to	B)	[“two-hop”	flights,	stopping	at	C]	+	P(A	to	D)*n2*P(D	to	E)	*	n2*P(E	to	B)
[“three-hop”	flights,	stopping	at	D	and	E]	+	…	for	all	possible	intermediate	points	C,	D,	E,	and
so	on.
Note	 that	when	n	 increases,	 the	nondirect	paths	make	a	greater	contribution	 to	 the	 final

arrow.	When	n	is	zero	(as	for	the	photon),	all	terms	with	an	n	drop	out	(because	they	are	also
equal	to	zero),	leaving	only	the	first	term,	which	is	P(A	to	B).	Thus	E(A	to	B)	and	P(A	to	B)
are	closely	related.
4	This	number,	the	amplitude	to	emit	or	absorb	a	photon,	is	sometimes	called	the	“charge”

of	a	particle.
5	Had	 I	 included	 the	 effects	 of	 the	 polarization	 of	 the	 electron,	 the	 “second-way”	 arrow

would	 have	 been	 “subtracted”—turned	 180°	 and	 added.	 (More	 on	 this	 comes	 later	 in	 this
lecture.)
6	The	final	conditions	of	the	experiment	for	these	more	complicated	ways	are	the	same	as

for	the	simpler	ways—electrons	start	at	points	1	and	2	and	end	up	at	points	3	and	4—so	we
cannot	distinguish	between	 these	alternatives	and	 the	 first	 two.	Therefore	we	must	add	 the
arrows	for	these	two	ways	to	the	two	ways	just	previously	considered.
7	Such	an	exchanged	photon	that	never	really	appears	in	the	initial	or	final	conditions	of

the	experiment	is	sometimes	called	a	“virtual	photon.”
8	 Dirac	 proposed	 the	 reality	 of	 “anti-electrons”	 in	 1931;	 in	 the	 following	 year,	 Carl

Anderson	 found	 them	experimentally	 and	 called	 them	 “positrons.”	Today,	 positrons	 can	be
easily	made	(for	example,	by	making	two	photons	collide	with	each	other)	and	kept	for	weeks
in	a	magnetic	field.
9	 The	 amplitude	 for	 the	 photon	 exchange	 is	 (–j)	 *	 P(A-B)	 *	 j—two	 couplings	 and	 the

amplitude	 for	 a	 photon	 to	 go	 from	 place	 to	 place.	 The	 amplitude	 for	 a	 proton	 to	 have	 a
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coupling	with	a	photon	is	–j.
10	 The	 radius	 of	 the	 arc	 evidently	 depends	 on	 the	 length	 of	 the	 arrow	 for	 each	 section,

which	 is	 ultimately	 determined	 by	 the	 amplitude	 S	 that	 an	 electron	 in	 an	 atom	 of	 glass
scatters	a	photon.	This	radius	can	be	calculated	using	the	formulas	for	the	three	basic	actions
for	the	multitude	of	photon	exchanges	involved	and	summing	up	the	amplitudes.	It	is	a	very
difficult	 problem,	 but	 the	 radius	 has	 been	 calculated	 for	 relatively	 simple	 substances	 with
considerable	success,	and	the	variation	of	the	radius	from	substance	to	substance	is	fairly	well
understood	using	these	ideas	of	quantum	electrodynamics.	It	must	be	said,	however,	that	no
direct	calculation	from	first	principles	 for	a	substance	as	complex	as	glass	has	ever	actually
been	 done.	 In	 such	 cases,	 the	 radius	 is	 determined	 by	 experiment.	 For	 glass,	 it	 has	 been
determined	 from	 experiment	 that	 the	 radius	 is	 approximately	 0.2	 (when	 the	 light	 shines
directly	onto	the	glass	at	right	angles)
11	Each	of	the	arrows	for	reflection	by	a	section	(that	form	a	“circle”)	has	the	same	length

as	each	of	the	arrows	that	make	the	final	arrow	from	transmission	appear	to	turn	more.	Thus
there	is	a	relationship	between	the	partial	reflection	of	a	material	and	its	index	of	refraction.
It	 appears	 that	 the	 final	 arrow	has	 become	 longer	 than	 1,	which	means	 that	more	 light

comes	out	 through	 the	glass	 than	went	 into	 it!	 It	 looks	 that	way	because	 I	disregarded	 the
amplitudes	 for	a	photon	 to	go	down	 to	one	 section,	a	new	photon	 to	 scatter	up	 to	another
section,	 and	 then	 a	 third	 photon	 to	 scatter	 back	down	 through	 the	 glass—and	other,	more
complicated	possibilities—which	 result	 in	 the	 little	 arrows	 curving	around	and	keeping	 the
length	of	the	final	arrow	between	0.92	and	1	(so	the	total	probability	of	light	being	reflected
or	transmitted	by	the	layer	of	glass	is	always	100%).
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4

Loose	Ends

I	am	going	 to	divide	 this	 lecture	 into	 two	parts.	First,	 I	am	going	 to
talk	 about	 problems	 associated	 with	 the	 theory	 of	 quantum
electrodynamics	 itself,	 supposing	 that	 all	 there	 is	 in	 the	 world	 is
electrons	and	photons.	Then	I	will	talk	about	the	relation	of	quantum
electrodynamics	to	the	rest	of	physics.
The	 most	 shocking	 characteristic	 of	 the	 theory	 of	 quantum

electrodynamics	 is	 the	 crazy	 framework	 of	 amplitudes,	 which	 you
might	think	indicates	problems	of	some	sort!	However,	physicists	have
been	fiddling	around	with	amplitudes	for	more	than	fifty	years	now,
and	 have	 gotten	 very	 used	 to	 it.	 Furthermore,	 all	 the	 new	 particles
and	 new	 phenomena	 that	 we	 are	 able	 to	 observe	 fit	 perfectly	 with
everything	that	can	be	deduced	from	such	a	framework	of	amplitudes,
in	 which	 the	 probability	 of	 an	 event	 is	 the	 square	 of	 a	 final	 arrow
whose	length	is	determined	by	combining	arrows	in	funny	ways	(with
interferences,	 and	 so	 on).	 So	 this	 framework	 of	 amplitudes	 has	 no
experimental	doubt	about	it:	you	can	have	all	the	philosophical	worries
you	 want	 as	 to	 what	 the	 amplitudes	 mean	 (if,	 indeed,	 they	 mean
anything	at	 all),	 but	because	physics	 is	 an	 experimental	 science	 and
the	framework	agrees	with	experiment,	it’s	good	enough	for	us	so	far.
There	 is	a	 set	of	problems	associated	with	 the	 theory	of	quantum

electrodynamics	 that	 has	 to	 do	 with	 improving	 the	 method	 of
calculating	 the	 sum	 of	 all	 the	 little	 arrows—various	 techniques	 that
are	 available	 in	 different	 circumstances—that	 take	 the	 graduate
students	 three	 or	 four	 years	 to	 master.	 Since	 they	 are	 technical
problems,	 I	 am	not	 going	 to	 discuss	 them	here.	 It’s	 just	 a	matter	 of
continuously	improving	the	techniques	for	analyzing	what	the	theory
really	has	to	say	in	different	circumstances.
But	 there	 is	 one	 additional	 problem	 that	 is	 characteristic	 of	 the
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theory	of	quantum	electrodynamics	itself,	which	took	twenty	years	to
overcome.	 It	 has	 to	 do	 with	 ideal	 electrons	 and	 photons	 and	 the
numbers	n	and	j.

FIGURE	77.	When	we	calculate	 the	amplitude	for	an	electron	to	go	from	point	 to	point	 in	space-
time,	 we	 use	 the	 formula	 for	 E(A	 to	 B)	 for	 the	 direct	 path.	 (Then	 we	 make	 “corrections”	 that
include	one	or	more	photons	being	emitted	and	absorbed.)	E(A	to	B)	depends	on	(X2	–	X1),	(T2	–
T1)	and	n,	a	number	we	stick	into	the	formula	to	make	the	answer	come	out	right.	The	number	n	is
called	 the	“rest-mass”	of	an	“ideal”	electron,	and	cannot	be	measured	experimentally	because	 the
rest-mass	 of	 a	 real	 electron,	 m,	 includes	 all	 the	 “corrections.”	 There	 is	 a	 certain	 difficulty	 in
calculating	the	n	to	be	used	in	E(A	to	B),	that	took	twenty	years	to	overcome.

If	electrons	were	ideal,	and	went	from	point	to	point	in	space-time
only	by	the	direct	path	(shown	at	the	left	in	Fig.	77),	then	there	would
be	no	problem:	n	would	simply	be	the	mass	of	an	electron	(which	we
can	 determine	 by	 observation),	 and	 j	 would	 simply	 be	 its	 “charge”
(the	amplitude	for	 the	electron	to	couple	with	a	photon).	 It	can	also
be	determined	by	experiment.
But	 no	 such	 ideal	 electrons	 exist.	 The	 mass	 we	 observe	 in	 the

laboratory	is	that	of	a	real	electron,	which	emits	and	absorbs	its	own
photons	 from	 time	 to	 time,	 and	 therefore	depends	on	 the	 amplitude
for	coupling,	 j.	And	the	charge	we	observe	is	between	a	real	electron
and	 a	 real	 photon—which	 can	 form	 an	 electron-positron	 pair	 from
time	to	time—and	therefore	depends	on	E	(A	to	B),	which	involves	n
(see	Fig.	78).	Since	the	mass	and	charge	of	an	electron	are	affected	by
these	and	all	other	alternatives,	the	experimentally	measured	mass,	m,
and	 the	 experimentally	 measured	 charge,	 e,	 of	 the	 electron	 are
different	from	the	numbers	we	use	in	our	calculations,	n	and	j.
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FIGURE	78.	The	 experimentally	measured	 amplitude	 for	 an	 electron	 to	 couple	with	 a	 photon,	 a
mysterious	number,	e,	is	a	number	determined	by	experiment	that	includes	all	the	“corrections”	for
a	photon	going	from	point	to	point	in	space-time,	of	which	two	are	shown	here.	When	calculating,
we	need	a	number,	 j,	 that	 does	 not	 include	 these	 corrections,	 but	 includes	 only	 the	 photon	 going
directly	from	point	to	point.	A	difficulty	exists	with	computing	this	j	that	is	similar	to	the	difficulty	in
computing	the	value	of	n.

If	 there	were	a	definite	mathematical	connection	between	n	and	 j
on	 the	one	hand,	and	m	 and	e	 on	 the	other,	 there	would	 still	be	no
problem:	we	would	simply	calculate	what	values	of	n	and	j	we	need	to
start	with	in	order	to	end	up	with	the	observed	values,	m	and	e.	(If	our
calculations	didn’t	agree	with	m	and	e,	we	would	jiggle	the	original	n
and	j	around	until	they	did.)
Let’s	 see	how	we	actually	 calculate	m.	We	write	a	 series	of	 terms

that	is	something	like	the	series	we	saw	for	the	magnetic	moment	of
the	 electron:	 the	 first	 term	 has	 no	 couplings—just	 E	 (A	 to	 B)—and
represents	 an	 ideal	 electron	 going	 directly	 from	 point	 to	 point	 in
space-time.	 The	 second	 term	 has	 two	 couplings	 and	 represents	 a
photon	being	emitted	and	absorbed.	Then	come	terms	with	four,	six,
and	eight	couplings,	and	so	on	(some	of	these	“corrections”	are	shown
in	Fig.	77).
When	 calculating	 terms	 with	 couplings,	 we	 must	 consider	 (as

always)	all	the	possible	points	where	couplings	can	occur,	right	down
to	cases	where	the	two	coupling	points	are	on	top	of	each	other—with
zero	distance	between	them.	The	problem	is,	when	we	try	to	calculate
all	the	way	down	to	zero	distance,	the	equation	blows	up	in	our	face
and	gives	meaningless	answers—things	like	infinity.	This	caused	a	lot
of	 trouble	 when	 the	 theory	 of	 quantum	 electrodynamics	 first	 came
out.	 People	 were	 getting	 infinity	 for	 every	 problem	 they	 tried	 to
calculate!	(One	should	be	able	to	go	down	to	zero	distance	in	order	to
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be	mathematically	consistent,	but	that’s	where	there	is	no	n	or	 j	that
makes	any	sense;	that’s	where	the	trouble	is.)
Well,	 instead	 of	 including	 all	 possible	 coupling	 points	 down	 to	 a

distance	 of	 zero,	 if	 one	 stops	 the	 calculation	 when	 the	 distance
between	coupling	points	is	very	small—say,	10-30	centimeters,	billions
and	billions	of	times	smaller	than	anything	observable	in	experiment
(presently	10-16	centimeters)—then	there	are	definite	values	for	n	and
j	that	we	can	use	so	that	the	calculated	mass	comes	out	to	match	the
m	 observed	 in	 experiments,	 and	 the	 calculated	 charge	 matches	 the
observed	 charge,	 e.	 Now,	 here’s	 the	 catch:	 if	 somebody	 else	 comes
along	 and	 stops	 their	 calculation	 at	 a	 different	 distance—say,	 10-40
centimeters—their	values	for	n	and	 j	needed	to	get	the	same	m	and	e
come	out	different!
Twenty	 years	 later,	 in	 1949,	 Hans	 Bethe	 and	 Victor	 Weisskopf

noticed	something:	if	two	people	who	stopped	at	different	distances	to
determine	n	and	j	from	the	same	m	and	e	then	calculated	the	answer
to	 some	 other	 problem—each	 using	 the	 appropriate	 but	 different
values	 for	 n	 and	 j—when	 all	 the	 arrows	 from	 all	 the	 terms	 were
included,	 their	 answers	 to	 this	 other	 problem	 came	 out	 nearly	 the
same!	 In	 fact,	 the	 closer	 to	 zero	 distance	 that	 the	 calculations	 for	n
and	j	were	stopped,	the	better	the	final	answers	for	the	other	problem
would	 agree!	 Schwinger,	 Tomonaga,	 and	 I	 independently	 invented
ways	 to	make	definite	calculations	 to	confirm	that	 it	 is	 true	 (we	got
prizes	 for	 that).	 People	 could	 finally	 calculate	 with	 the	 theory	 of
quantum	electrodynamics!
So	 it	 appears	 that	 the	 only	 things	 that	 depend	 on	 the	 small

distances	 between	 coupling	 points	 are	 the	 values	 for	 n	 and	 j
—theoretical	numbers	that	are	not	directly	observable	anyway;	everything
else,	which	can	be	observed,	seems	not	to	be	affected.
The	 shell	 game	 that	we	 play	 to	 find	 n	 and	 j	 is	 technically	 called

“renormalization.”	 But	 no	matter	 how	 clever	 the	 word,	 it	 is	 what	 I
would	call	a	dippy	process!	Having	to	resort	to	such	hocus-pocus	has
prevented	 us	 from	 proving	 that	 the	 theory	 of	 quantum
electrodynamics	 is	mathematically	 self-consistent.	 It’s	 surprising	 that
the	theory	still	hasn’t	been	proved	self-consistent	one	way	or	the	other
by	 now;	 I	 suspect	 that	 renormalization	 is	 not	 mathematically
legitimate.	 What	 is	 certain	 is	 that	 we	 do	 not	 have	 a	 good
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mathematical	way	to	describe	the	theory	of	quantum	electrodynamics:
such	a	bunch	of	words	to	describe	the	connection	between	n	and	j	and
m	and	e	is	not	good	mathematics.1
There	is	a	most	profound	and	beautiful	question	associated	with	the

observed	 coupling	 constant,	 e—the	 amplitude	 for	 a	 real	 electron	 to
emit	 or	 absorb	 a	 real	 photon.	 It	 is	 a	 simple	 number	 that	 has	 been
experimentally	determined	to	be	close	to	–0.08542455.	(My	physicist
friends	won’t	recognize	this	number,	because	they	like	to	remember	it
as	 the	 inverse	of	 its	 square:	about	137.03597	with	an	uncertainty	of
about	2	in	the	last	decimal	place.	It	has	been	a	mystery	ever	since	it
was	 discovered	 more	 than	 fifty	 years	 ago,	 and	 all	 good	 theoretical
physicists	put	this	number	up	on	their	wall	and	worry	about	it.)
Immediately	 you	 would	 like	 to	 know	 where	 this	 number	 for	 a

coupling	 comes	 from:	 is	 it	 related	 to	 pi,	 or	 perhaps	 to	 the	 base	 of
natural	 logarithms?	 Nobody	 knows.	 It’s	 one	 of	 the	 greatest	 damn
mysteries	 of	 physics:	 a	 magic	 number	 that	 comes	 to	 us	 with	 no
understanding	by	man.	You	might	say	 the	“hand	of	God”	wrote	 that
number,	and	“we	don’t	know	how	He	pushed	His	pencil.”	We	know
what	 kind	 of	 a	 dance	 to	 do	 experimentally	 to	measure	 this	 number
very	accurately,	but	we	don’t	know	what	kind	of	a	dance	to	do	on	a
computer	 to	 make	 this	 number	 come	 out—without	 putting	 it	 in
secretly!
A	good	 theory	would	 say	 that	 e	 is	 the	 square	 root	of	3	over	2	pi

squared,	 or	 something.	 There	 have	 been,	 from	 time	 to	 time,
suggestions	as	 to	what	e	 is,	but	none	of	 them	has	been	useful.	First,
Arthur	Eddington	proved	by	pure	logic	that	the	number	the	physicists
like	 had	 to	 be	 exactly	 136,	 the	 experimental	 number	 at	 that	 time.
Then,	as	more	accurate	experiments	showed	the	number	to	be	closer
to	 137,	 Eddington	 discovered	 a	 slight	 error	 in	 his	 earlier	 argument,
and	showed	by	pure	logic	again	that	the	number	had	to	be	the	integer
137!	 Every	 once	 in	 a	 while,	 someone	 notices	 that	 a	 certain
combination	of	pi’s	and	e’s	 (the	base	of	 the	natural	 logarithms),	and
2’s	and	5’s	produces	the	mysterious	coupling	constant,	but	it	is	a	fact
not	 fully	 appreciated	 by	 people	 who	 play	 with	 arithmetic	 that	 you
would	be	surprised	how	many	numbers	you	can	make	out	of	pi’s	and
e’s	 and	 so	 on.	 Therefore,	 throughout	 the	 history	 of	modern	 physics,
there	has	been	paper	after	paper	by	people	who	have	produced	an	e	to
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several	 decimal	 places,	 only	 to	 have	 the	 next	 round	 of	 improved
experiments	disagree	with	it.
Even	 though	 we	 have	 to	 resort	 to	 a	 dippy	 process	 to	 calculate	 j

today,	 it’s	 possible	 that	 someday	 a	 legitimate	 mathematical
connection	between	 j	and	e	will	be	 found.	That	would	mean	 that;	 is
the	 mysterious	 number,	 and	 from	 it	 comes	 e.	 In	 such	 a	 case	 there
would	 doubtless	 be	 another	 batch	 of	 papers	 that	 tell	 us	 how	 to
calculate	 j	 “with	our	bare	hands,”	 so	 to	 speak,	 proposing	 that	 j	 is	 1
divided	by	4	*	pi,	or	something.
That	 exposes	 all	 the	 problems	 associated	 with	 quantum

electrodynamics.
When	 I	 planned	 these	 lectures,	 I	 intended	 to	 concentrate	 only	 on

the	part	of	physics	that	we	know	very	well—to	describe	it	fully	and	to
say	 no	 more.	 But	 now	 that	 we’ve	 come	 this	 far,	 being	 a	 professor
(which	means	having	the	habit	of	not	being	able	to	stop	talking	at	the
right	 time),	 I	 cannot	 resist	 telling	 you	 something	 about	 the	 rest	 of
physics.
First,	I	must	immediately	say	that	the	rest	of	physics	has	not	been

checked	 anywhere	 nearly	 as	 well	 as	 electrodynamics:	 some	 of	 the
things	I’m	going	to	tell	you	are	good	guesses,	some	are	partly	worked-
out	 theories,	 and	 others	 are	 pure	 speculation.	 Therefore	 this
presentation	 is	 going	 to	 look	 like	 a	 relative	 mess,	 compared	 to	 the
other	 lectures;	 it	 will	 be	 incomplete	 and	 lacking	 in	 many	 details.
Nevertheless,	 it	 turns	 out	 that	 the	 structure	 of	 the	 theory	 of	 QED
serves	as	an	excellent	basis	for	describing	other	phenomena	in	the	rest
of	physics.
I’ll	 begin	 by	 talking	 about	 protons	 and	 neutrons,	which	make	 up

the	nuclei	of	atoms.	When	protons	and	neutrons	were	first	discovered
it	 was	 thought	 that	 they	 were	 simple	 particles,	 but	 very	 soon	 it
became	clear	that	they	were	not	simple—simple	in	the	sense	that	their
amplitude	to	go	from	one	point	to	another	could	be	explained	by	the
formula	 E	 (A	 to	 B),	 but	with	 a	 different	 number	 for	n	 stuck	 in.	 For
example,	the	proton	has	a	magnetic	moment	that,	if	calculated	in	the
same	 way	 as	 for	 the	 electron,	 should	 be	 close	 to	 1.	 But	 in	 fact,
experimentally	it	comes	out	completely	crazy—2.79!	Therefore	it	was
soon	realized	that	something’s	going	on	inside	the	proton	that	 is	not
accounted	for	 in	the	equations	of	quantum	electrodynamics.	And	the
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neutron,	 which	 should	 have	 no	 magnetic	 interaction	 at	 all	 if	 it	 is
really	 neutral,	 has	 a	 magnetic	 moment	 of	 about	 –1.93!	 So	 it	 was
known	 for	 a	 long	 time	 that	 something	 fishy	 is	 going	 on	 inside	 the
neutron	as	well.
There	was	also	the	problem	of	what	holds	the	neutrons	and	protons

together	 inside	 the	 nucleus.	 It	was	 realized	 right	 away	 that	 it	 could
not	 be	 the	 exchange	 of	 photons,	 because	 the	 forces	 holding	 the
nucleus	 together	were	much	 stronger—the	 energy	 required	 to	 break
up	a	nucleus	is	much	greater	than	that	required	to	knock	an	electron
away	 from	an	 atom	 in	 the	 same	proportion	 that	 an	 atomic	 bomb	 is
more	 destructive	 than	 dynamite:	 exploding	 dynamite	 is	 a
rearrangement	 of	 the	 electron	 patterns,	 while	 an	 exploding	 atomic
bomb	is	a	rearrangement	of	the	proton-neutron	patterns.
To	 find	 out	 more	 about	 what	 holds	 the	 nuclei	 together,	 many

experiments	 were	 made	 in	 which	 protons	 with	 higher	 and	 higher
energies	were	smashed	into	nuclei.	It	was	expected	that	only	protons
and	 neutrons	 would	 come	 out.	 But	 when	 the	 energies	 became
sufficiently	large,	new	particles	came	out.	First	there	were	pions,	then
lambdas,	and	sigmas,	and	rhos,	and	they	ran	out	of	the	alphabet.	Then
came	particles	with	numbers	(their	masses),	such	as	sigma	1190	and
sigma	1386.	It	soon	became	clear	that	the	number	of	particles	in	the
world	was	open-ended,	and	depended	on	the	amount	of	energy	used
to	break	apart	the	nucleus.	There	are	over	four	hundred	such	particles
at	 present.	 We	 can’t	 accept	 four	 hundred	 particles;	 that’s	 too
complicated!2
Great	inventors	like	Murray	Gell-Mann	nearly	went	crazy	trying	to

figure	 out	 the	 rules	 by	which	 all	 these	 particles	 behave,	 and	 in	 the
early	 1970s	 they	 came	 up	 with	 the	 quantum	 theory	 of	 strong
interactions	(or	“quantum	chromo-dynamics”),	whose	main	actors	are
particles	called	“quarks.”	All	of	the	particles	made	of	quarks	come	in
two	classes:	some,	like	the	proton	and	neutron,	are	made	out	of	three
quarks	(and	go	by	the	horrible	name	of	“baryons”);	others,	such	as	the
pions,	 are	 made	 of	 a	 quark	 and	 an	 anti-quark	 (and	 are	 called
“mesons”).
Let	me	make	 a	 table	 of	 the	 fundamental	 particles	 as	 they	 appear

today	(see	Fig.	79).	I’ll	begin	with	the	particles	that	go	from	point	to
point	according	to	the	formula	E(A	to	B)—modified	by	the	same	kind
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of	polarization	 rules	as	an	electron—called	 “spin	1/2”	particles.	The
first	of	these	particles	is	the	electron,	and	its	mass	number	is	0.511	in
units	that	we	use	all	the	time,	called	MeV.3

FIGURE	79.	Our	list	of	all	the	particles	in	the	world	begins	with	“spin	1/2”	particles:	the	electron
(with	a	mass	of	0.511	MeV),	and	two	“flavors”	of	quarks,	d	and	u	(both	with	a	mass	of	about	10
MeV).	 Electrons	 and	 quarks	 have	 a	 “charge”—that	 is,	 they	 couple	with	 photons	 in	 the	 following
amounts	(in	terms	of	the	coupling	constant,	–j):	–1,	–1/3,	and	+2/3.

Under	the	electron	I	will	leave	a	space	(to	be	occupied	later),	and
under	that	I	will	list	two	types	of	quarks—the	d	and	the	u.	The	mass	of
these	quarks	is	not	exactly	known;	a	good	guess	is	around	10	MeV	for
each	 one.	 (The	 neutron	 is	 slightly	 heavier	 than	 the	 proton,	 which
seems	 to	 imply—as	 you	 will	 see	 in	 a	 moment—that	 the	 d	 quark	 is
somewhat	heavier	than	the	u	quark.)
Next	to	each	particle	I	will	list	its	charge,	or	coupling	constant,	in

terms	 of	 –j,	 the	 number	 for	 couplings	 with	 photons	 with	 its	 sign
reversed.	This	makes	the	charge	for	the	electron	–1,	consistent	with	a
convention	 started	by	Benjamin	Franklin	 that	we’ve	been	stuck	with
ever	since.	For	the	d	quark	the	amplitude	to	couple	with	a	photon	is	–
1/3,	and	for	the	u	quark	 it	 is	+2/3.	(Had	Benjamin	Franklin	known
about	quarks,	he	might	have	at	 least	made	the	charge	of	an	electron
-3!)
Now,	the	charge	of	a	proton	is	+1,	and	a	neutron’s	charge	is	zero.

With	some	fiddling	about	with	the	numbers,	you	can	see	that	a	proton
—made	of	three	quarks—must	be	two	u’s	and	a	d,	while	a	neutron—
also	made	of	three	quarks—must	be	two	d’s	and	a	u	(see	Fig.	80).
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FIGURE	80.	All	particles	made	of	quarks	come	in	one	of	only	two	possible	classes:	those	made	of	a
quark	and	an	anti-quark,	and	those	made	of	three	quarks,	of	which	the	proton	and	the	neutron	are
the	most	common	examples.	The	charge	of	the	d	and	u	quarks	combine	to	make	+1	for	the	proton
and	zero	for	the	neutron.	The	fact	that	the	proton	and	neutron	are	made	of	charged	particles	going
around	inside	 them	gives	a	clue	as	 to	why	the	proton	has	a	magnetic	moment	higher	 than	1,	and
why	the	supposedly	neutral	neutron	has	a	magnetic	moment	at	all.

What	holds	 the	quarks	 together?	 Is	 it	 the	photons	going	back	and
forth?	(Because	a	d	quark	has	a	charge	of	–1/3	and	a	u	quark	has	a
charge	 of	 +2/3,	 quarks,	 as	 well	 as	 electrons,	 emit	 and	 absorb
photons.)	 No,	 these	 electrical	 forces	 are	 far	 too	 weak	 to	 do	 that.
Something	 else	 has	 been	 invented	 to	 go	 back	 and	 forth	 and	 hold
quarks	together;	something	called	“gluons.”4	Gluons	are	an	example	of
another	type	of	particle	called	“spin	1”	(as	are	photons);	they	go	from
point	 to	 point	 with	 an	 amplitude	 determined	 by	 exactly	 the	 same
formula	 as	 for	 photons,	 P(A	 to	 B).	 The	 amplitude	 for	 gluons	 to	 be
emitted	or	absorbed	by	quarks	is	a	mysterious	number,	g,	that	is	much
larger	than	j	(see	Fig.	81).

FIGURE	81.	“Gluons”	hold	quarks	together	to	make	protons	and	neutrons,	and	indirectly	account
for	the	fact	that	protons	and	neutrons	hold	themselves	together	in	the	nucleus	of	an	atom.	Gluons
hold	 quarks	 together	 with	 forces	 much	 stronger	 than	 electrical	 forces.	 The	 coupling	 constant	 of
gluons,	g,	is	much	larger	than	j,	which	makes	the	calculation	of	terms	with	couplings	in	them	much
more	difficult:	the	best	accuracy	that	can	be	hoped	for	so	far	is	only	10%.
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The	 diagrams	 we	 make	 of	 quarks	 exchanging	 gluons	 are	 very
similar	to	the	pictures	we	draw	for	electrons	exchanging	photons	(see
Fig.	 82).	 So	 similar,	 in	 fact,	 that	 you	 might	 say	 that	 the	 physicists
have	 no	 imagination—that	 they	 just	 copied	 the	 theory	 of	 quantum
electrodynamics	 for	 the	 strong	 interactions!	 And	 you’re	 right:	 that’s
what	we	did,	but	with	a	little	twist.

FIGURE	 82.	The	 diagram	 of	 one	way	 that	 two	 quarks	 can	 exchange	 a	 gluon	 is	 so	 similar	 to	 a
diagram	of	 two	electrons	 exchanging	a	photon	 that	you	might	 think	 the	physicists	 just	 copied	 the
theory	of	quantum	electrodynamics	for	the	“strong	 interactions”	holding	the	quarks	 inside	protons
and	neutrons.	Well,	they	did—almost.

The	 quarks	 have	 an	 additional	 type	 of	 polarization	 that	 is	 not
related	to	geometry.	The	idiot	physicists,	unable	to	come	up	with	any
wonderful	Greek	words	anymore,	call	this	type	of	polarization	by	the
unfortunate	name	of	 “color,”	which	has	nothing	 to	do	with	 color	 in
the	normal	sense.	At	a	particular	time,	a	quark	can	be	in	one	of	three
conditions,	 or	 “colors”—R,	 G,	 or	 B	 (can	 you	 guess	what	 they	 stand
for?).	 A	 quark’s	 “color”	 can	 be	 changed	 when	 the	 quark	 emits	 or
absorbs	a	gluon.	The	gluons	come	in	eight	different	 types,	according
to	 the	 “colors”	 they	 can	 couple	 with.	 For	 example,	 if	 a	 red	 quark
changes	 to	green,	 it	 emits	a	 red-antigreen	gluon—a	gluon	 that	 takes
the	 red	 from	 the	 quark	 and	 gives	 it	 green	 (“antigreen”	 means	 the
gluon	is	carrying	green	in	the	opposite	direction).	This	gluon	could	be
absorbed	by	a	green	quark,	which	changes	to	red	(see	Fig.	83).	There
are	 eight	different	possible	 gluons,	 such	as	 red-antired,	 red-antiblue,
red-antigreen,	 and	 so	 on	 (you’d	 think	 there’d	 be	 nine,	 but	 for
technical	reasons,	one	is	missing).	The	theory	is	not	very	complicated.
The	 complete	 rule	 of	 gluons	 is:	 gluons	 couple	 with	 things	 having
“color”—it	 just	 requires	 a	 little	 bookkeeping	 to	 keep	 track	 of	where
the	“colors”	go.
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FIGURE	83.	Gluon	 theory	differs	 from	electrodynamics	 in	 that	gluons	couple	with	 things	 that	are
“colored”	 (in	one	of	 three	 possible	 conditions—“red,”	 “green,”	and	 “blue”).	Here,	 a	 red	u	quark
changes	to	green	by	emitting	a	red-antigreen	gluon	that	is	absorbed	by	a	green	d	quark	changing	to
red.	(If	the	“color”	is	being	carried	backwards	in	time,	it	takes	the	prefix	“anti.”)

There	 is,	 however,	 an	 interesting	 possibility	 created	 by	 this	 rule:
gluons	 can	 couple	 with	 other	 gluons	 (see	 Fig.	 84).	 For	 instance,	 a
green-antiblue	 gluon	meeting	 a	 red-antigreen	 gluon	 results	 in	 a	 red-
antiblue	 gluon.	 Gluon	 theory	 is	 very	 simple—you	 just	 make	 the
diagram	and	follow	the	“colors.”	The	strengths	of	the	couplings	in	all
the	diagrams	is	determined	from	the	coupling	constant	for	gluons,	g.
Gluon	 theory	 is	 really	 not	 a	 great	 deal	 different	 in	 form	 from

quantum	 electrodynamics.	 How,	 then,	 does	 it	 compare	 with
experiment?	 For	 example,	 how	does	 the	 observed	magnetic	moment
of	the	proton	compare	with	the	value	calculated	from	the	theory?
The	 experiments	 are	 very	 accurate—they	 show	 the	 magnetic

moment	to	be	2.79275.	At	the	very	best,	the	theory	can	only	come	up
with	2.7	plus	or	minus	0.3—if	you’re	sufficiently	optimistic	about	the
accuracy	of	your	analysis—an	error	of	10%	which	is	10,000	times	less
accurate	 than	 experiment!	We	have	 a	 simple,	 definite	 theory	 that	 is
supposed	to	explain	all	the	properties	of	protons	and	neutrons,	yet	we
can’t	calculate	anything	with	it,	because	the	mathematics	is	too	hard
for	 us.	 (You	 can	 guess	 what	 I’m	 working	 on,	 and	 I’m	 not	 getting
anywhere.)	 The	 reason	 we	 can’t	 calculate	 to	 any	 great	 accuracy	 is
because	the	coupling	constant	for	gluons,	g,	is	so	much	larger	than	for
electrons.	Terms	with	 two,	 four,	 and	 even	 six	 couplings	 are	not	 just
minor	corrections	to	the	main	amplitude;	they	represent	considerable
contributions	 that	 can’t	 be	 ignored.	 Thus	 there	 are	 arrows	 from	 so
many	 different	 possibilities	 that	 we	 haven’t	 been	 able	 to	 organize
them	in	a	reasonable	way	to	find	out	what	the	final	arrow	is.
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FIGURE	84.	Since	gluons	are	 themselves	“colored,”	 they	can	couple	 to	each	other.	Here	a	green-
antiblue	gluon	couples	with	a	red-antigreen	gluon	to	form	a	red-antiblue	gluon.	Gluon	theory	is	easy
to	understand—you	just	follow	the	“colors.”

In	books	 it	 says	 that	science	 is	simple:	you	make	up	a	 theory	and
compare	 it	 to	 experiment;	 if	 the	 theory	 doesn’t	 work,	 you	 throw	 it
away	 and	make	 a	 new	 theory.	 Here	 we	 have	 a	 definite	 theory	 and
hundreds	of	experiments,	but	we	can’t	compare	them!	It’s	a	situation
that	has	never	before	existed	in	the	history	of	physics.	We’re	boxed	in,
temporarily,	unable	 to	come	up	with	a	method	of	calculation.	We’re
snowed	under	by	all	the	little	arrows.
Despite	 our	 difficulties	 in	 calculating	 with	 the	 theory,	 we	 do

understand	some	things	qualitatively	about	quantum	chromodynamics
(strong	interactions	of	quarks	and	gluons).	The	objects	made	of	quarks
that	we	see	are	“colored”	neutral:	groups	of	three	quarks	contain	one
quark	 of	 each	 “color,”	 and	 quark-antiquark	 pairs	 have	 an	 equal
amplitude	 to	 be	 red-antired,	 green-antigreen,	 or	 blue-antiblue.	 We
also	 understand	 why	 quarks	 can	 never	 be	 produced	 as	 individual
particles—why,	no	matter	how	much	energy	is	used	to	hit	a	nucleus
against	a	proton,	instead	of	seeing	individual	quarks	come	out,	we	see
a	 jet	 of	 mesons	 and	 baryons	 (quark-antiquark	 pairs	 and	 groups	 of
three	quarks).
Quantum	chromodynamics	and	quantum	electrodynamics	aren’t	all

there	 is	 to	 physics.	 According	 to	 them,	 a	 quark	 cannot	 change	 its
“flavor”:	once	a	u	quark,	always	a	u	quark;	once	a	d	quark,	always	a	d
quark.	But	Nature	behaves	differently,	sometimes.	There	is	a	form	of
radioactivity	 that	happens	slowly—the	kind	that	people	worry	about
leaking	out	of	nuclear	 reactors—called	beta	decay,	which	 involves	a
neutron	 changing	 into	 a	 proton.	 Since	 a	 neutron	 consists	 of	 two	 d’s
and	a	u-type	quark	while	a	proton	 is	made	of	 two	u’s	and	a	d,	what
really	happens	is	that	one	of	the	neutron’s	d-type	quarks	changes	into
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a	u-type	quark	(see	Fig.	85).	Here’s	how	it	happens:	the	d	quark	emits
a	new	thing	like	a	photon	called	a	W,	which	has	a	coupling	with	an
electron	 and	 with	 another	 new	 particle	 called	 an	 anti-neutrino,	 a
neutrino	going	backwards	 in	 time.	The	neutrino	 is	 another	 spin	1/2
type	particle	(like	the	electron	and	the	quarks),	but	it	has	no	mass	and
no	charge	(it	does	not	interact	with	photons).	It	also	does	not	interact
with	gluons;	it	only	couples	with	the	W	(see	Fig.	86).

FIGURE	85.	When	a	neutron	disintegrates	into	a	proton	(a	process	called	“beta	decay”),	the	only
thing	that	changes	is	the	“flavor”	of	one	quark—from	d	to	u—with	an	electron	and	an	anti-neutrino
coming	 out.	 This	 process	 happens	 relatively	 slowly,	 so	 an	 intermediate	 particle	 (called	 a	 “W-
intermediate-boson”)	with	a	very	high	mass	(about	80,000	MeV)	and	a	charge	of	–1	was	proposed.

The	W	is	a	spin	1	type	particle	(like	the	photon	and	the	gluon),	that
changes	 the	 “flavor”	 of	 a	 quark	 and	 takes	 away	 its	 charge—the	 d,
charged	–1/3,	changes	into	a	u,	charged	+2/3,	a	difference	of	–1.	(It
doesn’t	 change	 the	 quark’s	 “color.”)	 Because	 the	 W-	 takes	 away	 a
charge	 of	 –1	 (and	 its	 anti-particle,	 the	W+,	 takes	 away	 a	 charge	 of
+1),	it	can	also	couple	with	a	photon.	Beta	decay	takes	much	longer
than	the	interactions	of	photons	and	electrons,	so	it	is	thought	that	the
W	must	have	a	very	high	mass	(about	80,000	MeV),	unlike	the	photon
and	gluon.	We	have	not	been	able	to	see	the	W	by	itself	because	of	the
very	high	energy	required	to	knock	loose	a	particle	with	such	a	very
high	mass.5
There	is	another	particle,	which	we	could	think	of	as	a	neutral	W,

called	 Z0.	 The	 Z0	 does	 not	 change	 the	 charge	 of	 a	 quark,	 but	 does
couple	with	a	d	quark,	a	u	quark,	an	electron,	or	a	neutrino	(see	Fig.
87).	 This	 interaction	has	 the	misleading	 name	of	 “neutral	 currents,”
and	 caused	 a	 lot	 of	 excitement	when	 it	was	 discovered	 a	 few	 years
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ago.

FIGURE	86.	The	W	couples	with	the	electron	and	neutrino	on	the	one	hand,	and	the	d	and	u	quark
on	the	other.

The	 theory	 of	W’s	 is	 nice	 and	 neat	 if	 you	 allow	 for	 a	 three-way
coupling	between	 the	 three	 types	of	W’s	 (see	Fig.	88).	The	observed
coupling	constant	for	W’s	is	much	the	same	as	that	for	the	photon—in
the	neighborhood	of	 j.	Therefore	 the	possibility	 exists	 that	 the	 three
W’s	and	the	photon	are	all	different	aspects	of	the	same	thing.	Stephen
Weinberg	 and	 Abdus	 Salam	 tried	 to	 combine	 quantum
electrodynamics	 with	 what’s	 called	 the	 “weak	 interactions”
(interactions	with	W’s)	into	one	quantum	theory,	and	they	did	it.	But
if	 you	 just	 look	 at	 the	 results	 they	 get	 you	 can	 see	 the	 glue,	 so	 to
speak.	 It’s	 very	 clear	 that	 the	 photon	 and	 the	 three	 W’s	 are
interconnected	 somehow,	 but	 at	 the	 present	 level	 of	 understanding,
the	connection	is	difficult	to	see	clearly—you	can	still	see	the	“seams”
in	 the	 theories;	 they	 have	 not	 yet	 been	 smoothed	 out	 so	 that	 the
connection	 becomes	 more	 beautiful	 and,	 therefore,	 probably	 more
correct.
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FIGURE	87.	When	there	is	no	change	in	the	charge	of	any	of	the	particles,	the	W	also	has	no	charge
(it	 is	 called	Z0	 in	 this	 case).	Such	 interactions	are	called	“neutral	 currents.”	Two	possibilities	are
shown	here.

FIGURE	88.	A	coupling	between	a	W-1,	its	anti-particle	(a	W+1,	and	a	neutral	W	(Z0)	is	possible.
The	coupling	constant	for	W’s	is	in	the	neighborhood	of	j,	suggesting	that	W’s	and	photons	may	be
different	aspects	of	the	same	thing.

So	 there	 you	 are:	 quantum	 theory	 has	 three	 main	 types	 of
interaction—the	“strong	interactions”	of	quarks	and	gluons,	the	“weak
interactions”	of	 the	W’s,	and	 the	“electrical	 interactions”	of	photons.
The	only	particles	in	the	world	(according	to	this	picture)	are	quarks
(in	 “flavors”	 u	 and	 d	 with	 three	 “colors”	 each),	 gluons	 (eight
combinations	 of	 R,	 G,	 and	 B),	W’s	 (charged	±	1	 and	 0),	 neutrinos,
electrons,	 and	 photons—about	 twenty	 different	 particles	 of	 six
different	 types	 (plus	 their	 anti-particles).	 That’s	 not	 so	 bad—about
twenty	different	particles—except	that’s	not	all.
As	nuclei	were	hit	with	protons	of	higher	and	higher	energies,	new

particles	kept	coming	out.	One	such	particle	was	the	muon,	which	is
in	every	way	exactly	the	same	as	the	electron,	except	that	its	mass	is
much	 higher—105.8	 MeV,	 compared	 to	 0.511	 for	 the	 electron,	 or
about	 206	 times	 heavier.	 It’s	 just	 as	 if	 God	 wanted	 to	 try	 out	 a
different	number	for	 the	mass!	All	of	 the	properties	of	 the	muon	are
completely	 describable	 by	 the	 theory	 of	 electrodynamics—the
coupling	constant	j	is	the	same	and	E(A	to	B)	is	the	same;	you	just	put
in	a	different	value	for	n.6
Because	 the	 muon	 has	 a	 mass	 about	 200	 times	 higher	 than	 the
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electron,	 the	 “stopwatch	 hand”	 for	 a	 muon	 turns	 200	 times	 more
rapidly	than	that	of	an	electron.	This	has	enabled	us	to	test	whether
electrodynamics	still	behaves	according	to	the	theory	at	distances	200
times	 smaller	 than	 we’ve	 been	 able	 to	 test	 before—although	 these
distances	 are	 still	 more	 than	 eighty	 decimal	 places	 larger	 than	 the
distances	 at	 which	 the	 theory	 alone	 might	 run	 into	 trouble	 with
infinities	(see	footnote	on	p.	129).

FIGURE	89.	 In	 the	 process	 of	 bombarding	 nuclei	with	 protons	 of	 higher	 and	 higher	 energy,	 new
particles	appear.	One	of	 these	particles	 is	 the	muon,	or	heavy	 electron.	The	 theory	describing	 the
muon’s	 interactions	 is	 exactly	 the	 same	 as	 for	 the	 electron,	 except	 that	 you	 just	 put	 in	 a	 higher
number	for	n	into	E(A	to	B).	The	magnetic	moment	of	a	muon	should	be	slightly	different	than	that
of	 an	 electron	 because	 of	 two	 particular	 alternatives:	 when	 the	 electron	 emits	 a	 photon	 that
disintegrates	into	an	electron-positron	or	muon-antimuon	pair,	the	disintegration	creates	a	pair	that
is	close	to	or	much	heavier	in	mass	than	the	electron.	On	the	other	hand,	when	the	muon	emits	a
photon	 that	 disintegrates	 into	 a	muon-antimuon	 or	 positron-electron	 pair,	 this	 pair	 is	 close	 to	 or
much	lighter	in	mass	than	the	muon.	Experiments	confirm	this	slight	difference.

We	have	learned	that	an	electron	can	couple	with	a	W	(see	Fig.	85).
When	a	d-quark	changes	into	a	u-quark,	emitting	a	W,	can	the	W	then
couple	 with	 a	muon	 instead	 of	 an	 electron?	 Yes	 (see	 Fig.	 90).	 And
what	 about	 the	 anti-neutrino?	 In	 the	 case	 of	 the	W	 coupling	with	 a
muon,	a	particle	called	a	mu-neutrino	takes	the	place	of	the	ordinary
neutrino	 (which	we	will	now	call	an	electron	neutrino).	So	now	our
table	of	particles	has	two	additional	particles	next	to	the	electron	and
the	neutrino—the	muon	and	the	mu-neutrino.
What	about	 the	quarks?	Very	early	on,	particles	were	known	that

had	 to	 be	made	 of	 heavier	 quarks	 than	 u	 or	 d.	 Thus	 a	 third	 quark,
called	 s	 (for	 “strange”)	 was	 included	 in	 the	 list	 of	 fundamental
particles.	 The	 s	 quark	 has	 a	 mass	 of	 about	 200	 MeV,	 compared	 to
about	10	MeV	for	the	u	and	d	quarks.
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FIGURE	90.	The	W	has	an	amplitude	 to	 emit	a	muon	 instead	of	an	electron.	 In	 this	 case	a	mu-
neutrino	takes	the	place	of	an	electron-neutrino.

For	many	years	we	thought	that	there	were	just	three	“flavors”	of
quarks—u,	 d,	 and	 s—but	 in	 1974	 a	 new	 particle	 called	 a	 psi-meson
was	discovered	that	could	not	be	made	out	of	the	three	quarks.	There
was	 also	 a	 very	 good	 theoretical	 argument	 that	 there	 had	 to	 be	 a
fourth	quark,	coupled	to	the	s	quark	by	a	W	in	the	same	way	that	the
u	and	d	quark	are	coupled	(see	Fig.	91).	The	“flavor”	of	this	quark	is
called	c,	and	I	haven’t	got	the	guts	to	tell	you	what	c	stands	for,	but
you	may	have	read	it	in	the	newspaper.	The	names	are	getting	worse
and	worse!
This	 repetition	 of	 particles	 with	 the	 same	 properties	 but	 heavier

masses	is	a	complete	mystery.	What	is	this	strange	duplication	of	the
pattern?	 As	 Professor	 I.	 I.	 Rabi	 said	 of	 the	 muon	 when	 it	 was
discovered,	“Who	ordered	that?”
Recently	 another	 repetition	 of	 the	 list	 has	 begun.	 As	 we	 go	 to

higher	 and	 higher	 energies,	 Nature	 seems	 to	 keep	 piling	 on	 these
particles	as	if	to	drug	us.	I	have	to	tell	you	about	them	because	I	want
you	 to	 see	 how	 apparently	 complicated	 the	 world	 really	 looks.	 It
would	 be	 very	misleading	 if	 I	were	 to	 give	 you	 the	 impression	 that
since	we’ve	solved	99%	of	the	phenomena	in	the	world	with	electrons
and	photons,	that	the	other	1%	of	the	phenomena	will	take	only	1%
as	many	additional	particles!	It	turns	out	that	to	explain	that	last	1%,
we	need	ten	or	twenty	times	as	many	additional	particles.
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FIGURE	91.	Nature	seems	to	be	repeating	the	spin	1/2	particles.	In	addition	to	the	muon	and	mu-
neutrino,	 there	are	 two	new	quarks—s	and	c—that	have	 the	same	charge	but	higher	masses	 than
their	counterparts	in	the	next	column.

So	 here	 we	 go	 again:	 with	 even	 higher	 energies	 used	 in	 the
experiments,	 an	 even	 heavier	 electron,	 called	 the	 “tau,”	 has	 been
found;	it	has	a	mass	of	about	1,800	MeV,	heavy	as	two	protons!	A	tau-
neutrino	has	 also	been	 inferred.	And	now	a	 funny	particle	 has	 been
found	 implying	 a	 new	 “flavor”	 of	 quark—this	 time	 it’s	 “b,”	 for
“beauty,”	and	it	has	a	charge	of	–1/3	(see	Fig.	92).	Now,	I	want	you	to
become	high-class,	 fundamental	 theoretical	 physicists	 for	 a	moment,
and	predict	 something:	a	new	flavor	of	quark	will	be	 found,	called__
(for	 “____”),	 with	 a	 charge	 of__,	 a	 mass	 of__	 MeV—and	 we	 certainly
hope	it’s	true	that	it’s	there!7
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FIGURE	92.	Here	we	go	again!	Another	repetition	of	the	spin	1/2	particles	has	begun	at	even	higher
energies.	This	repetition	will	be	complete	if	a	particle	with	the	right	properties	to	imply	the	existence
of	a	new	flavor	of	quark	is	found.	Meanwhile,	preparations	are	underway	to	look	for	the	beginning
of	 yet	 another	 repetition	 at	 even	 higher	 energies.	 What	 causes	 these	 repetitions	 is	 a	 complete
mystery.

Meanwhile,	experiments	are	being	done	to	see	if	the	cycle	repeats
yet	again.	At	the	present	time	machines	are	being	built	to	look	for	an
even	 heavier	 electron	 than	 the	 tau.	 If	 the	 mass	 of	 this	 supposed
particle	 is	 100,000	 MeV,	 they	 won’t	 be	 able	 to	 produce	 it.	 If	 it	 is
around	40,000	MeV,	they	might	make	it.
Mysteries	like	these	repeating	cycles	make	it	very	interesting	to	be

a	theoretical	physicist:	Nature	gives	us	such	wonderful	puzzles!	Why
does	She	repeat	the	electron	at	206	times	and	3,640	times	its	mass?
I’d	like	to	make	one	last	remark	to	make	things	absolutely	complete

about	the	particles.	When	a	d	quark	coupling	to	a	W	changes	into	a	u
quark,	it	also	has	a	small	amplitude	to	change	into	a	c	quark	instead.
When	a	u	 quark	goes	 to	 a	d	 quark,	 it	 also	has	 a	 small	 amplitude	 to
change	into	an	s	quark,	and	an	even	smaller	amplitude	to	change	into
a	b	quark	(see	Fig.	93).	Thus	the	W	“screws	things	up”	a	little	bit	and
allows	 quarks	 to	 change	 from	 one	 column	 of	 the	 table	 to	 another.
Why	the	quarks	have	these	relative	proportions	for	their	amplitude	to
change	to	another	type	of	quark	is	utterly	unknown.

FIGURE	93.	A	d	quark	has	a	small	amplitude	to	change	into	a	c	quark	instead	of	a	u	quark,	and
an	s	quark	has	a	small	amplitude	to	change	into	a	u	quark	instead	of	a	c	quark,	with	the	emission
of	a	W	in	both	cases.	Thus	the	W	seems	to	be	able	to	change	a	quark’s	flavor	from	one	column	of
the	table	to	another	(see	Fig.	92).

So	 that’s	 everything	 about	 the	 rest	 of	 quantum	 physics.	 It’s	 a
terrible	mix-up,	and	you	might	say	it’s	a	hopeless	mess	physics	has	got
itself	 worked	 into.	 But	 it	 has	 always	 looked	 like	 this.	 Nature	 has
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always	looked	like	a	horrible	mess,	but	as	we	go	along	we	see	patterns
and	 put	 theories	 together;	 a	 certain	 clarity	 comes	 and	 things	 get
simpler.	The	mess	I	just	showed	you	is	much	smaller	than	the	mess	I
would	 have	 had	 to	make	 ten	 years	 ago,	 telling	 you	 about	 the	more
than	 four	 hundred	 particles.	 And	 think	 about	 the	 mess	 at	 the
beginning	 of	 this	 century,	 when	 there	 was	 heat,	 magnetism,
electricity,	 light,	 X-rays,	 ultraviolet	 rays,	 indices	 of	 refraction,
coefficients	 of	 reflection	 and	 other	 properties	 of	 various	 substances,
all	 of	 which	 we	 have	 since	 put	 together	 into	 one	 theory,	 quantum
electrodynamics.
I	would	like	to	emphasize	something.	The	theories	about	the	rest	of

physics	 are	 very	 similar	 to	 the	 theory	 of	 quantum	 electrodynamics:
they	all	involve	the	interaction	of	spin	1/2	objects	(like	electrons	and
quarks)	 with	 spin	 1	 objects	 (like	 photons,	 gluons,	 or	W’s)	 within	 a
framework	of	amplitudes	by	which	the	probability	of	an	event	is	the
square	of	the	length	of	an	arrow.	Why	are	all	the	theories	of	physics
so	similar	in	their	structure?
There	 are	 a	 number	 of	 possibilities.	 The	 first	 is	 the	 limited

imagination	of	physicists:	when	we	see	a	new	phenomenon	we	try	to
fit	 it	 into	 the	 framework	 we	 already	 have—until	 we	 have	 made
enough	 experiments,	 we	 don’t	 know	 that	 it	 doesn’t	 work.	 So	 when
some	fool	physicist	gives	a	lecture	at	UCLA	in	1983	and	says,	“This	is
the	way	it	works,	and	look	how	wonderfully	similar	the	theories	are,”
it’s	 not	 because	 Nature	 is	 really	 similar;	 it’s	 because	 the	 physicists
have	only	been	able	to	think	of	the	same	damn	thing,	over	and	over
again.
Another	possibility	is	that	it	is	the	same	damn	thing	over	and	over

again—that	Nature	has	only	one	way	of	doing	things,	and	She	repeats
her	story	from	time	to	time.
A	 third	 possibility	 is	 that	 things	 look	 similar	 because	 they	 are

aspects	 of	 the	 same	 thing—some	 larger	 picture	 underneath,	 from
which	things	can	be	broken	into	parts	that	look	different,	like	fingers
on	 the	 same	hand.	Many	physicists	 are	working	 very	hard	 trying	 to
put	 together	 a	 grand	 picture	 that	 unifies	 everything	 into	 one	 super-
duper	model.	 It’s	 a	delightful	game,	but	at	 the	present	 time	none	of
the	speculators	agree	with	any	of	the	other	speculators	as	to	what	the
grand	picture	is.	I	am	exaggerating	only	slightly	when	I	say	that	most
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of	 these	 speculative	 theories	have	no	more	deep	 sense	 to	 them	 than
your	guess	about	the	possibility	of	a	t	quark,	and	I	guarantee	you	that
they	are	no	better	at	guessing	the	mass	of	a	t	quark	than	you	are!
For	example,	it	appears	that	the	electron,	the	neutrino,	the	d	quark,

and	the	u	quark	all	go	together—indeed,	the	first	two	couple	with	the
W,	as	do	the	last	two.	At	present	it	 is	thought	that	a	quark	can	only
change	 “colors”	or	 “flavors.”	But	perhaps	 a	quark	 could	disintegrate
into	a	neutrino	by	coupling	with	an	undiscovered	particle.	Nice	idea.
What	would	happen?	That	would	mean	protons	are	unstable.
Somebody	makes	up	a	theory:	The	proton	is	unstable.	They	make	a

calculation	 and	 find	 that	 there	would	be	no	protons	 in	 the	universe
anymore!	 So	 they	 fiddle	 around	with	 the	 numbers,	 putting	 a	 higher
mass	into	the	new	particle,	and	after	much	effort	they	predict	that	the
proton	will	decay	at	a	rate	slightly	less	than	the	last	measured	rate	the
proton	has	been	shown	not	to	decay	at.
When	 a	 new	 experiment	 comes	 along	 and	 measures	 the	 proton

more	carefully,	the	theories	adjust	themselves	to	squeeze	out	from	the
pressure.	The	most	recent	experiment	showed	that	the	proton	doesn’t
decay	at	a	 rate	 that	 is	 five	 times	 slower	 than	what	was	predicted	 in
the	 last	 stand	 of	 the	 theories.	 What	 do	 you	 think	 happened?	 The
phoenix	 just	 rose	 again	with	 a	 new	modification	 of	 the	 theory	 that
requires	 even	 more	 accurate	 experiments	 to	 check	 it.	 Whether	 the
proton	decays	or	not	is	not	known.	To	prove	that	it	does	not	decay	is
very	difficult.
In	all	of	these	lectures	I	did	not	discuss	gravitation.	The	reason	is,

gravitational	influence	between	objects	is	extremely	small:	it	is	a	force
that	 is	 weaker	 by	 1	 followed	 by	 40	 zeros	 than	 the	 electrical	 force
between	two	electrons	(perhaps	it’s	41	zeros).	In	matter,	nearly	all	of
the	 electrical	 forces	 are	 spent	 holding	 the	 electrons	 close	 to	 the
nucleus	of	their	atom,	creating	a	finely	balanced	mixture	of	pluses	and
minuses	 that	 cancel	 out.	 But	 with	 gravitation,	 the	 only	 force	 is
attraction,	and	it	keeps	adding	and	adding	as	there	are	more	and	more
atoms	 until	 at	 last,	 when	we	 get	 to	 these	 ponderously	 large	masses
that	 we	 are,	 we	 can	 begin	 to	 measure	 the	 effects	 of	 gravity—on
planets,	on	ourselves,	and	so	on.
Because	the	gravitational	force	is	so	much	weaker	than	any	of	the

other	 interactions,	 it	 is	 impossible	 at	 the	 present	 time	 to	make	 any
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experiment	 that	 is	 sufficiently	 delicate	 to	 measure	 any	 effect	 that
requires	 the	precision	of	 a	 quantum	 theory	of	 gravitation	 to	 explain
it.8	Even	though	there	is	no	way	to	test	them,	there	are,	nevertheless,
quantum	 theories	 of	 gravity	 that	 involve	 “gravitons”	 (which	 would
appear	 under	 a	 new	 category	 of	 polarizations,	 called	 “spin	 2”),	 and
other	 fundamental	 particles	 (some	with	 spin	3/2).	The	best	 of	 these
theories	 is	 not	 able	 to	 include	 the	 particles	 that	 we	 do	 find,	 and
invents	a	lot	of	particles	that	we	don’t	find.	The	quantum	theories	of
gravity	also	have	infinities	in	the	terms	with	couplings,	but	the	“dippy
process”	 that	 is	 successful	 in	getting	 rid	of	 the	 infinities	 in	quantum
electrodynamics	 doesn’t	 get	 rid	 of	 them	 in	 gravitation.	 So	 not	 only
have	we	 no	 experiments	 with	 which	 to	 check	 a	 quantum	 theory	 of
gravitation,	we	also	have	no	reasonable	theory.
Throughout	 this	 entire	 story	 there	 remains	 one	 especially

unsatisfactory	feature:	the	observed	masses	of	the	particles,	m.	There
is	 no	 theory	 that	 adequately	 explains	 these	 numbers.	 We	 use	 the
numbers	 in	 all	 our	 theories,	 but	 we	 don’t	 understand	 them—what
they	are,	or	where	they	come	from.	I	believe	that	from	a	fundamental
point	of	view,	this	is	a	very	interesting	and	serious	problem.
I’m	sorry	 if	all	 this	 speculation	about	new	particles	confused	you,

but	I	decided	to	complete	my	discussion	of	the	rest	of	physics	to	show
you	 how	 the	 character	 of	 those	 laws—the	 framework	 of	 amplitudes,
the	diagrams	 that	 represent	 the	 interactions	 to	be	calculated,	and	so
on—appears	 to	 be	 the	 same	 as	 for	 the	 theory	 of	 quantum
electrodynamics,	our	best	example	of	a	good	theory.

Note	Added	in	Proofreading,	November	1984:

Since	 these	 lectures	 were	 given,	 suspicious	 events	 observed	 in
experiments	 make	 it	 appear	 possible	 that	 some	 other	 particle	 or
phenomenon,	 new	 and	 unexpected	 (and	 therefore	 not	mentioned	 in
these	lectures),	may	soon	be	discovered.

Note	Added	in	Proofreading,	April	1985:

At	this	moment,	the	“suspicous	events”	mentioned	above	appear	to	be
a	false	alarm.	The	situation	no	doubt	will	have	changed	again	by	the
time	you	read	this	book.	Things	change	faster	 in	physics	 than	 in	the
book	publishing	business.
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1	Another	way	of	describing	this	difficulty	is	to	say	that	perhaps	the	idea	that	two	points
can	be	infinitely	close	together	is	wrong—the	assumption	that	we	can	use	geometry	down	to
the	last	notch	is	false.	If	we	make	the	minimum	possible	distance	between	two	points	as	small
as	10-100	centimeters	(the	smallest	distance	involved	in	any	experiment	today	is	around	10-16
centimeters),	 the	 infinities	 disappear,	 all	 right—but	 other	 inconsistencies	 arise,	 such	 as	 the
total	probability	of	an	event	adds	up	to	slightly	more	or	less	than	100%,	or	we	get	negative
energies	 in	 infinitesimal	 amounts.	 It	 has	 been	 suggested	 that	 these	 inconsistencies	 arise
because	we	haven’t	taken	into	account	the	effects	of	gravity—which	are	normally	very,	very
weak,	but	become	important	at	distances	of	10-33	cm.
2	 Although	many	 particles	 come	 out	 of	 the	 nucleus	 in	 high-energy	 experiments,	 in	 low-

energy	 experiments—in	 more	 normal	 conditions—the	 nuclei	 are	 found	 to	 contain	 only
protons	and	neutrons.
3	An	MeV	is	very	small—appropriate	to	such	particles—about	1.78	*	10-27	grams.
4	Notice	the	names:	“photon”	comes	from	the	Greek	word	for	light;	“electron”	comes	from

the	Greek	word	for	amber,	the	beginning	of	electricity.	But	as	modern	physics	has	progressed,
the	 names	 of	 the	 particles	 have	 shown	 a	 deteriorating	 interest	 in	 classical	 Greek	 until	 we
make	up	such	words	as	“gluons.”	Can	you	guess	why	they’re	called	“gluons?”	in	fact,	d	and	u
stand	 for	words,	 but	 I	 don’t	want	 to	 confuse	 you—a	d	 quark	 is	 no	more	 “down”	 than	 a	u
quark	is	“up.”	Incidentally,	the	d-ness	or	u-ness	of	a	quark	is	called	its	“flavor.”
5	After	these	lectures	were	given,	high	enough	energies	were	achieved	to	produce	a	W	by

itself,	and	its	mass	was	measured	to	be	very	close	to	the	value	predicted	by	the	theory.
6	The	magnetic	moment	of	a	muon	has	been	measured	very	accurately—it	has	been	found

to	be	1.001165924	(with	an	uncertainty	of	9	in	the	last	digit),	while	the	value	for	the	electron
is	1.00115965221	(with	an	uncertainty	of	3	in	the	last	digit).	You	might	be	curious	as	to	why
the	magnetic	moment	 of	 the	muon	 is	 slightly	 higher	 than	 that	 of	 the	 electron.	One	 of	 the
diagrams	 we	 drew	 had	 the	 electron	 emitting	 a	 photon	 that	 disintegrates	 into	 a	 positron-
electron	 pair	 (see	 Fig.	 89).	 There	 is	 also	 a	 small	 amplitude	 that	 the	 emitted	 photon	 could
make	 a	 muon-antimuon	 pair,	 which	 is	 heavier	 than	 the	 original	 electron.	 This	 is
unsymmetrical,	 because	when	 the	muon	 emits	 a	 photon,	 if	 that	 photon	makes	 a	 positron-
electron	 pair,	 that	 pair	 is	 lighter	 than	 the	 original	 muon.	 The	 theory	 of	 quantum
electrodynamics	 accurately	 describes	 every	 electrical	 property	 of	 the	 muon	 as	 well	 as	 the
electron.
7	Since	 these	 lectures	were	given,	 some	evidence	has	been	 found	 for	 the	existence	of	a	 t

quark	with	a	very	high	mass—around	40,000	MeV.
8	When	Einstein	and	others	tried	to	unify	gravitation	with	electrodynamics,	both	theories

were	classical	approximations.	In	other	words,	they	were	wrong.	Neither	of	these	theories	had
the	framework	of	amplitudes	that	we	have	found	to	be	so	necessary	today.
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mass(es):	calculated	(n),	127;	of	heavier	particles,	145;	of	muon,	143;	number,	133;	observed
(m),	151–52;	of	t	quark,	147;	of	tau,	146;	of	W,	140

material:	opaque,	108;	reflective,	18
mathematicians,	63
matter,	electron	theory	of,	4
Mautner,	Alix,	3
Maxwell,	James	Clerk,	4;	theory,	5
Maya	Indians,	11
mesons,	132
MeV,	133
mirage,	52
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mirror,	15,	38;	etched,	47
monochromatic	source,	101–102,	106
motion,	phenomena	of,	4
mu-neutrino,	144
muon(s),	143–44;	mass	of,	143;	W	coupling	with	a,	144
muon-antimuon	pair,	143–44

n,	125
n	and	j,	calculated	numbers,	125
Nature:	analysis	of,	78;	 laws	of,	89;	particle	 in,	98;	phenomenon	of,	84;	 strangeness	of,	80;
variety	in,	110

neutral	currents,	141,	142
neutral	W,	141
neutrino,	electron,	144,	145
neutrons,	131
New	Zealand,	3
Newton,	Sir	Isaac,	5,	13–14,	18,	21–23,	37,	85
nuclear:	forces,	131;	particles,	9,	131;	phenomena,	8,	77;	physics,	8;	reactors,	139
nucleus,	5;	atomic,	7;	exchanging	photons,	113
number(s):	 complex,	 63;	 irrational,	 63;	 junction	 (j),	 91;	 mass	 (m),	 133;	m	 and	 e,	 126–28;
mysterious,	126,	130,	135;	n	and	j,	125–30

oil	film,	33,	35
opaque	material,	108
optical	phenomena,	49

P	(A	to	B),	formula	for,	88,	90
pair(s):	muon-antimuon,	 143,	 144;	 positron-electron,	 116,	 119,	 126,	 143;	 quark-antiquark,
139

partial	 reflection,	 15–25,	36,	 47,	 64,	 66,	 69,	 72,	 75,	 77,	 100–110;	 colors	produced	by,	 33;
depending	on	thickness	of	glass,	22,	34;	of	many	surfaces,	22;	suggested	theories	for,	18;	by
two	surfaces,	24;	wave	theory	of,	22

particle(s):	fundamental,	132,	145,	151;	individual,	139;	intermediate,	140;	of	light,	36;	light
behaves	 like,	13,	15;	 in	Nature,	98;	nuclear,	9,	131;	 repetition	of,	145;	 spin	1,	140;	 spin
1/2,	121,	133,	140,	146–47;	stationary,	100;	undiscovered,	150

path(s):	definite,	85;	of	least	time,	52;	neighboring,	45,	53–55,	123;	straight-line,	53–55
patterns:	electron,	132;	proton-neutron,	132
peacocks,	34
phenomena:	at	the	atomic	level,	5;	celestial,	11;	familiar,	16,	38;	of	heat,	4;	of	motion,	4;	of
Nature,	 84;	 nuclear,	 8,	 77;	 optical,	 49;	 that	 QED	 theory	 describes,	 7;	 radioactive,	 8;
simplest,	82;	of	sound,	4

philosophical	worries,	124
phonograph	record,	48
photographic	plates,	13
photomultiplier,	14
photon,	14,	36;	bouncing,	28–29;	detecting	a	single,	14;	divides,	80;	emitted,	143;	exchanges,
95,	 100,	 107,	 113–14,	 136;	 front	 reflection,	 29;	 identical,	 19;	 incoming,	 101;	 model	 of
light,	112;	reflecting,	30–31;	relation	to	W’s,	142;	virtual,	95,	120

physical:	event,	observed,	83;	location,	105;	world,	8
physicist(s),	theoretical,	129,	147–48
physics:	classical,	123;	is	probabilistic,	19;	liquid-state,	114;	nuclear,	8;	quantum,	55,	78,	148;
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solid-state,	114;	students	of,	9,	75;	theoretical,	82
pions,	132
points,	coupling,	127–28
polarization,	13,	120;	of	electrons,	120;	of	photons,	120
positron,	98
positron-electron	pair,	116–17,	119,	143
predictions,	absolute,	25
probability(ies):	 amplitude,	33,	 37;	 calculating,	 78;	 essential	 in	quantum	physics,	 19;	 of	 an
event,	37,	63;	as	the	square	of	an	amplitude,	24,	37

proton(s),	 131;	 exchanging	 photons,	 113;	 and	 neutrons,	 theory	 of,	 138;	 observed	magnetic
moment	of,	138;	stability	of,	150

proton-neutron	patterns,	132
psi-meson,	145
Pythagoras,	31
Pythagorean	Theorem,	three-dimensional,	89

QED,	4
quantum	chromodynamics,	132,	139
quantum	 electrodynamics	 theory:	 accuracy	 of,	 7;	 experiments	 to	 test,	 8;	 shocking
characteristic	of,	124;	structure	of,	131;	unsatisfactory	feature	of,	151

quantum	mechanical	behavior,	85
quantum	mechanics,	ideas	of,	3,	5,	40
quantum	physics,	55,	78,	148
quantum	theory,	7,	39,	50,	53;	calculating	probabilities	in,	24;	of	electricity	and	magnetism,
7;	of	gravity,	151;	of	strong	interactions,	132

quark(s),	132;	b,	148;	c,	148;	“color”	of,	136;	coupling	to	a	W,	148;	d,	133–41,	145,	148,	150;
exchanging	 gluons,	 136;	 “flavor”	 of,	 135;	 heavier,	 144;	 isolated	 individual,	 139;	 s,	 145,
148;	t,	147,	150;	u,	133–41,	144,	148,	150

quark-antiquark	pairs,	139

Rabi,	I.	I.,	145
radio	waves,	13,	34,	75
radioactive	phenomena,	8,	144
radius	arrow,	106
rays:	gamma,	13;	ultraviolet,	149;	X-,	13
reactions,	chemical,	114
reduction,	of	a	wave	packet,	76
reflection:	arrow,	28–32,	71;	back,	29;	front,	28;	front	surface,	66;	partial,	16–25,	36,	47,	64,
66,	69,	72,	75,	77,	100–110;	surface,	31,	60

reflective	material,	18
refraction,	49
relativistic	theory	of	the	electron,	6
relativity:	Einstein’s	theory	of,	5,	87,	89;	principle	of,	121
renormalization,	128
repetition	of	particles,	145
rho	meson,	132
rules:	that	fail,	85;	peculiar,	78;	for	quantum	calculations,	37

s	quark,	145,	148
Salam,	Abdus,	142
salt	crystal,	48–49
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scattering,	100,	105–107
Schwinger,	Julian,	6,	15,	116,	128
sigma	particle,	132
soap	bubbles,	33
sodium:	atoms,	48;	streetlights,	35
solar	systems,	84
sound,	phenomena	of,	4
space,	three-dimensional,	89
space-time,	85–86,	99,	110;	drawing,	107;	graph,	88,	105
spin,	121
spin	1	particles,	135,	140
spin	1/2	particles,	133,	140,	146–47,	149
spin	2	particles,	122
spin	3/2	particles,	151
spin-zero:	electrons,	112;	particles,	93
square:	absolute,	63;	of	an	amplitude,	37
steps,	successive,	64,	67,	82
stopwatch,	imaginary,	27,	101–102
subevents:	concomitant,	93;	simpler,	83
successive:	steps,	64,	67,	82;	transformations,	62,	63;	turnings,	69;	turns,	63
surface(s):	back,	105,	107;	front,	105,	107;	grooved,	48–49;	reflection,	31;	partial	reflection
by	two	or	more,	19;	transmission	through,	17

t	quark,	147,	150
tau,	mass	of,	146
television	waves,	13
theory(ies):	Dirac’s,	6;	electron,	4;	gluon,	137–38;	of	gravitation,	4;	of	gravity,	quantum,	151;
of	holes	and	spots,	18;	of	the	interaction	of	light	and	matter,	6;	Maxwell’s,	5;	quantum,	see
quantum	 theory;	 of	 quantum	 electrodynamics,	 see	 quantum	 electrodynamics	 theory;	 of
quantum	mechanics,	 5;	 relativistic,	 6;	 of	 relativity,	 5,	 87,	 89;	 similarity	 of	 various,	 149;
speculative,	150;	of	strong	interactions,	138;	unification	of,	150;	of	W’s,	141;	wave,	23,	26;
of	weak	and	electromagnetic	fórces,	142

time:	curve,	57;	difference,	88–89;	path	of	least,	52;	scale,	87–88;	on	the	vertical	axis,	86
Tomonaga,	Sin-Itiro,	6,	128
transformations,	successive,	62–63
transmission:	arrows,	71;	through	a	surface,	17
transparent	materials,	108,	110,	113
turn(s):	half,	29–30,	65;	successive,	63

u	quark,	133–41,	144,	148,	150
ultraviolet	light,	13,	149
uncertainty	principle,	55–56
understanding,	8–10
unification	of	theories,	150
unified	theory	of	weak	and	electromagnetic	interaction,	142

value(s):	of	j,	91;	of	m	and	e,	127
Venus,	11
virtual	photon,	95,	120

W(s),	139–45,	148,	150;	couplings,	141–42,	144,	148;	mass	of,	140;	and	photon	interrelation,
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142;	types	of,	141
water,	light’s	speed	in,	51
wave(s):	electromagnetic,	4;	packet,	reduction	of	a,	76;	radio,	13,	34,	75;	television,	13
wave	theory,	23,	36;	of	partial	reflection,	22
wavelike	character	of	electrons,	84
wave-particle	duality,	23,	37
Weinberg,	Stephen,	142
Weisskopf,	Victor,	128
white	light,	35,	102
world:	complex,	114;	physical,	8

X-rays,	13,	34,	49,	84,	149

yellowish	bands,	35

Z	particle,	141
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