
In The Quantum Theory of Fields Nobel Laureate Steven Weinberg com- 
bines his exceptional physical insight with his gift for clear exposition to 
provide a self-contained, comprehensive, and up-to-date introduction to 
quantum field theory. 

Volume I introduces the foundations of quantum field theory. The 
development is fresh and logical throughout, with each step carefully 
motivated by what has gone before, and emphasizing the reasons why 
such a theory should describe nature. After a brief historical outline, the 
book begins anew with the principles about which we are most certain, 
relativity and quantum mechanics, and the properties of particles that 
follow from these principles. Quantum field theory then emerges from this 
as a natural consequence. 

The classic calculations of quantum electrodynamics are presented in a 
thoroughly modern way, showing the use of path integrals and dimensional 
regularization. The account of renormalization theory reflects the changes 
in our view of quantum field theory since the advent of effective field 
theories. 

The book's scope extends beyond quantum electrodynamics to ele- 
mentary particle physics and nuclear physics. It contains much original 
material, and is peppered with examples and insights drawn from the 
author's experience as a leader of elementary particle research. Problems 
are included at the end of each chapter. 

A second volume will describe the modern applications of quantum 
field theory in today's standard model of elementary particles, and in 
some areas of condensed matter physics. 

This will be an invaluable reference work for all physicists and mathe- 
maticians who use quantum field theory, as well as a textbook appropriate 
to graduate courses. 



 



The Quantum Theory of Fields 

Volume I 
Foundations 



 



The Quantum Theory of Fields 

Volume I 
Foundations 

I- 
. -  .---- 

Steven Weinberg 
University of Texas at Austin 

CAMBRIDGE 
UNIVERSITY PRESS 



Published by the Press Syndicate of the University of Cambridge 
The Pitt Building, Trumpington Street, Cambridge CB2 1RP 
40 West 20th Street, New York, NY 1001 1-421 1, USA 
10 Stamford Road, Oakleigh, Melbourne 3166, Australia 

@ Steven Weinberg 1995 

First published 1995 

Printed in the United States of America 

A catalogue record for this book is available from the British Library 

Library of Congress cataloguing in publication data 

Weinberg, Steven, 1933- 
The quantum theory of fields / Steven Weinberg. 

p. cm. 
Includes bibliographical reference and index. 
Contents: v. 1. Foundations. 
ISBN 0-521-55001-7 
1. Quantum field theory. I. Title. 
QC 174.45.W45 1995 
530.1'434~20 95-2782 CIP 

ISBN 0 521 55001 7 

TAG 



To Louise 



 



Contents 

Sections marked with an asterisk are somewhat out of the book's main line of 
development and may be omitted in a first reading. 

PREFACE xx 

NOTATION xxv 

1 HISTORICAL 1NTRODUCTION 1 

1 Relativistic Wave Mechanics 3 

De Broglie waves 0 Schrodinger-Klein-Gordon wave equation 0 Fine structure 
0 Spin 0 Dirac equation 0 Negative energies 0 Exclusion principle 0 Positrons 
n Dirac equation reconsidered 

1,2 The Birth of Quantum Field Theory 15 

Born, Heisenberg, Jordan quantized field 0 Spontaneous emission 0 Anticom- 
mutators Heisenberg-Pauli quantum field theory Ll Furry- -0ppenheimer quan- 
tization of Dirac field 0 Pauli-Weisskopf quantization of scalar field 0 Early 
calculations in quantum electrodynamics 0 Neutrons 0 Mesons 

1.3 The Problem of Infinities 3 1 

Infinite electron energy shifts Vacuum polarization n Scattering of light by light 
lnfrared divergences C3 Search for alternatives 0 Renormalization U Shelter 

Island Conference 0 Lamb shift D Anomalous electron magnetic moment 0 
Schwinger, Tornonaga, Feynman, Dyson formalisms Why not earlier? 

Bibliography 

References 

2 RELATIVISTIC QUANTUM MECHANlCS 49 

2.1 Quantum Mechanics 

Rays Scalar products 0 Observables 0 Probabilities 



x Contents 

2.2 Symmetries 50 
Wiper's theorem 0 Antilinear and antiunitary operators Observables 0 Group 
structure Representations up to a phase Superselection rules U Lie groups 
a Structure constants 0 Abelian symmetries 

2.3 Quantum Lorentz Transformations 

Lorentz transformations Quantum operators O Inversions 

2.4 The Poincark Algebra 58 

Jpv and Pp Transformation properties 0 Commutation relations EI Conserved 
and non-conserved generators Finite translations and rotations 0 hanu-  
Wiper  con traction Galilean algebra 

2.5 Oneparticle States 62 

Transformation rules U Boosts Little groups 0 Normalization 0 Massive 
particles Massless particles 0 Helicity and polarization 

2.6 Space Inversion and Time-Reversal 74 

Transformation of J p v  and Pp o P is unitary and T is antiunitary Massive 
particles Massless particles 0 Kramers degeneracy Electric dipole moments 

2.7 Projective Representations* 81 

Two-cocyles CI Central charges 0 Simply connected groups 0 No central charges 
in the Lorentz group Double connectivity of the Lorentz group Covering 
groups 0 Superselection rules reconsidered 

Appendix A The Symmetry Representation Theorem 

Appendix B Group Operators and Homotopy Classes 

Appendix C Inversions and Degenerate Multiplets 

Problems 

References 

3 SCATTERING THEORY 107 

3.1 'In' and LO~t '  States 107 

Multi-particle states Wave packets IJ Asymptotic conditions at early and late 
times U Lippmann- Schwinger equations Principal value and delta functions 

3.2 The S-matrix 113 

Definition of the S-matrix o The T-matrix Born approximation U Unitarity 
of the S-matrix 

3.3 Symmetries of the S-Matrix 116 

Lorentz invariance 0 Sufficient conditions 0 Internal symmetries 0 Electric 
charge, strangeness, isospin, S U ( 3 )  0 Parity conservation 0 Intrinsic parities 0 



Contents xi 

Pion parity O Parity non-conservation a Time-reversal invariance EI Watson's 
theorem 0 PT non-conservation 0 C, CP, GPT Cl Neutral K-mesons 0 CP non- 
conservation 

3.4 Rates and Cross-Sections 134 

Rates in a box E l  Decay rates Cross-sections 0 Lorentz invariance Phase 
space Dalitz plots 

3.5 Perturbation Theory 141 

Old-fashioned perturbation theory 0 Time-dependent perturbation theory 0 
Time-ordered products U The Dyson series Lorentz-invariant theories Dis- 
torted wave Born approximation 

3.6 implications of Unitarity 147 

Optical theorem Diffraction peaks 0 CPT relations Particle and antiparticle 
decay rates 0 Kinetic theory 0 Boltzmann H-theorem 

3.7 Partial-Wave Expansions* 151 

Discrete basis 0 Expa.nsion in spherical harmonics Total elastic and inelastic 
cross-sections Phase shifts Threshold behavior: exothermic, endothermic, 
and elastic reactions EI Scattering length High-energy elastic and inelastic 
scattering 

3.8 Resonances' 159 

Reasons for resonances: weak coupling, barriers, complexity 0 Energy- 
dependence 0 Unitarity 0 Breit-Wigner formula Unresolved resonances 0 
Phase shifts at resonance Ramsauer-Townsend effect 

Problems 165 

References 166 

4 THE CLUSTER DECOMPOSITION PRINCIPLE 169 

4.1 Bosons and Fermions 170 

Permutation phases Bose and Ferrni statistics 0 Normalization for identical 
particles 

4.2 Creation and Annihilation Operators 173 

Creation operators C1 Calculating the adjoint CI Derivation of cornmutation/ 
anticommutation relations ri Representation of general operators Free-particle 
Hamiltonian 0 Lorentz transformation of creation and annihilation operators 0 
C, P, T properties of creation and annihilation operators 

4.3 Cluster Decomposition and Connected Amplitudes 177 

Decorrelation of distant experiments Connected amplitudes 0 Counting delta 
functions 



xii Contents 

4.4 Structure of the Interaction 182 

Condition for cluster decomposition 0 Graphical analysis U Two-body scattering 
implies thrce-body scattering 

Problems 189 

References 189 

5 QUANTUM FIELDS AND ANTIPARTICLES 191 

5.1 Free Fields 191 

Creation and annihilation fields U Lorentz transformation of the coefficient func- 
tions Construction of the coefficient functions 0 Implementing cluster decom- 
position Lorcntz invariance requires causality 0 Causality requires antiparticles 
0 Field equations 0 Normal ordering 

5.2 Causal Scalar Fields 20 1 

Creation and annihilation fields 0 Satisfying causality LI Scalar fields describe 
bosons 0 Antiparticles 0 P, C ,  T transformations 0 7c0 

5.3 Causal Vector Fields 207 

Creation and annihilation fields El Spin zero or spin one 0 Vector fields describe 
bosons 0 Polarization vectors Satisfying causality 0 Antiparticles 0 Mass zero 
limit P, C ,  T transformations 

5.4 The Dirac Formalism 213 

Clifford representations of the Poincare algebra Transformation of Dirac matri- 
ces 0 Dimensionality of Dirac matrices Explicit matrices 0 1;5 0 Pseudounitarity 

Complex conjugate and transpose 

5.5 Causal Dirac Fields 219 

Creation and annihilation fields 0 Dirac spinors Satisfying causality 0 Dirac 
fields describe fennions 0 Antiparticles 0 Space inversion 0 intrinsic parity of 
particleantiparticle pairs 0 Charge-conjugation 0 Intrinsic C-phase of particle- 
antiparticle pairs Majorana fermions 0 Time-reversal 0 Bilinear covariants 0 
Beta decay interactions 

5.6 General Irreducible Representations of the Homogeneous Lorentz 
Group' 229 

Isomorphism with S U ( 2 )  @ S U ( 2 )  [3 (A ,  B) representation of familiar fields 0 
Rarjta-Schwinger field 0 Space inversion 

5.7 General Causal Fields* 233 
Constructing the coefficient functions Scalar Hamiltonian densities 0 Satisfying 
causality O Antiparticles 0 General spin-statistics connection 0 Equivalence of 
different field types U Space inversion D Intrinsic parity of general particle- 
antiparticle pairs Charge-conjugation 0 Intrinsic C-phase of antiparticles Ci 



. . 
Contents ~ 1 1 1  

Self-charge-conjugate particles and reality relations Time-reversal 0 Problems 
for higher spin? 

5.8 The CPT Theorem 244 

CPT transformation of scalar, vector, and Dirac fields 0 CPT transformation of 
scalar interaction density 0 CPT transformation of general irreducible fields 0 
CPT invariance of Hamiltonian 

5.9 Massless Particle Fields 246 
Constructing the coefficient functions No vector fields for helicity &l 0 Need 
for gauge invariance Antisymmetric tensor fields for helicity ?I Cl Sums over 
helicity C,onstructing causal fields for helicity kl 0 Gravitons 0 Spin 2 3 U 

General irreducible massless fields 0 Unique helicity for (A ,  3) fields 

Problems 255 

References 256 

6 THE FEYNMAN RULES 259 

6.1 Derivation of the Rules 2 59 

Pairings 0 Wick's theorem 0 Coordinate space rules a Combinatoric factors 0 
Sign factors O Examples 

6.2 Calculation of the Propagator 274 

Numerator polynomial Feynman propagator for scalar fields 0 Dirac fields 
0 General irreducible fields 0 Covariant propagators U Non-covariant terms in 
time-ordered products 

6.3 Momentum Space Rules 280 

Conversion to momentum space 0 Feynman rules Counting independent 
momenta Ci Examples 0 Loop suppression factors 

6.4 Off the Mass Shell 286 

Currents 0 Off-shell amplitudes are exact matrix elements of Heisenberg-picture 
operators Proof of the theorem 

Problems 290 

References 291 

7 THE CANONICAL FORMALISM 292 

7. I Canonical Variables 293 
C,anonicd commutation relations 0 Examples: real scalars, complex scalars, 
vector fields, Dirac fields U Free-particle Hamiltonians Free-field Lagrangian 

Canonical formalism for interacting fields 



xiv Contents 

7.2 The Lagmngian Formalism 298 

Lagrangian equations of motion Action Lagrangian density Euler- 
Lagrange equations 0 Reality of the action 0 From Lagrangians to Hamiltonians 
0 Scakar fields revisited CI From Heisenberg to interaction picture Auxiliary 
fields a Integrating by parts in the action 

7.3 Global Symmetries 3 06 

Noether's theorem 0 Explicit formula for conserved quantities 0 Explicit formula 
for conserved currents 0 Quantum symmetry generators o Energy-momentum 
tensor Momentum 0 Internal symmetries 0 Current commutation relations 

7.4 Lorentz Invariance 3 14 

Currents A f ' p W  Generators JPv 0 Belinfante tensor 0 Lorentz invariance of 
S-matrix 

7.5 Transition to Interaction Picture: Examples 3 18 
Scalar field with derivative coupling Vector field 0 Dirac field 

7.6 Constraints and Dirac Brackets 325 

Primary and secondary constraints 0 Poisson brackets 0 First and second class 
constraints Dirac brackets Example: real vector field 

7.7 Field Redefinitions and Redundant Couplings* 331 

Redundant pararne ters Field redefinitions Example : real scalar field 

Appendix Dirac Brackets from Canonical Commutators 

Problems 

References 

8 ELECTRODYNAMICS 3 39 

8.1 Gauge Invariance 3 39 
Need for coupling to conserved current 0 Charge operator Local symmetry 0 
Photon action Field equations fl Gauge-invariant derivatives 

8.2 Constraints and Gauge Conditions 343 
Primary and secondary constraints 0 Constraints are first class O Gauge fixing 
0 Coulomb gauge U Solution for AO 

8.3 Quantization in Coulomb Gauge 3 46 
Remaining constraints are second class CaIculation of Dirac brackets in 
Coulomb gauge 0 Construction of Hamiltonian n Coulomb interaction 

8.4 Electrodynamics in the Interaction Picture 3 50 
Free-field and interaction Hamiltonians 0 Interaction picture operators 0 Normal 
mode decomposition 



Con tents 

8.5 The Photon Propagator 3 53 

Numerator polynomial D Separation of non-covariant terms Cancellation of 
non-covariant terms 

8.6 Feynrnan Rules for Spinor Electrodynamics 3 55 
Feynman graphs 0 Vertices 0 External lines 0 Internal lines 0 Expansion in 
u/4n CI Circular, linear, and elliptic polarization EI Polarization and spin sums 

8.7 Compton Scattering 362 
S-mauix 0 Differential cross-section Ct Kinematics 0 Spin sums 0 Traces 0 

Klein-Nishina formula D Polarization by Thornson scattering 0 Total cross- 
section 

8.8 Generalization : p-form Gauge Fields* 3 69 
Motivation p-forms Exterior derivatives 0 Closed and exact p-forms El 
p-form gauge fields 0 Dual fields and currents in D spacetime dimensions 0 
p-form gauge fields equivalent to ( D  - p - 2)-form gauge fields 0 Nothing new in 
four spacetime dimensions 

Appendix Traces 

Problems 

References 

9 PATH-INTEGRAL METHODS 376 

9.1 The General Path-Integral Formula 378 
Transition amplitudes for infinitesimal intervals Transition amplitudes for finite 
intervals 0 Interpolating functions Matrix elements of time-ordered products 
0 Equations of motion 

9.2 Transition to the S-Matrix 

Wave function of vacuum 0 if terms 

9.3 Lagrrmngian Version of the Path-lntegral Formula 389 

Integrating out the 'momenta' 0 Derivatively coupled scalars O Non-linear sigma 
model 0 Vector field 

9.4 Path-Integral Derivation of Feynman Rules 395 

Separation of free-field action 0 Gaussian integration 0 Propagators: scalar 
fields, vector fields, derivative coupling 

9.5 Path Integrrtls for Fermions 399 
Anticommu ting c-numbers 0 Eigenvectors of canonical operators 0 Summing 
states by Berezin integration 0 Changes of variables 0 Transition amplitudes for 
infinitesimal intervals II Transition amplitudes for finite intervals 0 Derivation 
of Feynman rules 0 Ferrnion propagator 0 Vacuum amplitudes as determinants 



xvi Contents 

9.6 Path-Integral Formulation of Quantum Electrodynamics 413 

Path integral in Coulomb gauge 0 Reintroduction of a' 0 Transition to covariant 
gauges 

9.7 Varieties of Statistics* 41 8 

Preparing 'in' and 'out' states 0 Composition rules 0 Only bosons and fermions 
in 2 3 dimensions U Anyons in two dimensions 

Appendix Gaussian Multiple Integrals 

Problems 

References 

10 NON-PERTURBATWE METHODS 425 

10.1 Symmetries 

Translations 0 Charge conservation Furry's theorem 

10.2 Polology 428 

Pole formula for general amplitudes 0 Derivation of the pole formula 0 Pion 
exchange 

10.3 Field and Mass Renormalization 436 

LSZ reduction formula Renormalized fields Propagator poles No radiative 
corrections in external lines O Counterterms in self-energy parts 

10.4 Renormalized Charge and Ward Identities 442 

Charge operator 0 Electromagnetic field renormalization 0 Charge renormaliz- 
ation 0 Ward-Takahashi identity 0 Ward identity 

105 Gauge Invariance 448 

Transversality of multi-photon amplitude-s Schwinger terms Gauge terms in 
photon propagator Structure of photon propagator Zero photon renormal- 
ized mass 0 Calculation of Z 3  Radiative corrections to choice of gauge 

10.6 Electromagnetic Form Factors and Magnetic Moment 452 

Matrix elements of J O  0 Fom fxtors  of Jc': spin zero 0 Form factors of Jd'; 
spin f 0 Magnetic moment of a spin $ particle Measuring the form factors 

10.7 The KHllemLehmann Representation* 457 

Spectral functions 0 Causality relations 0 Spectral representation 0 Asymptotic 
behavior of propagators Poles 0 Bound on field renormalization constant LI 

Z = 0 for composite particles 

10.8 Dispersion Relations" 462 

History Analytic properties of massless boson forward scattering amplitude 



Contents xvii 

Subtractions O Dispersion relation Crossing symmetry O Pomeranchuk's 
theorem O Regge asymptotic behavior 0 Photon scattering 

Problems 

References 

11 ONELOOP RADIATIVE CORRECTIONS IN QUANTUM 
ELECTRODYNAMICS 47 2 

1 Counterterms 472 

Field, charge, and mass renormalization 0 Lagrangian counterterms 

1 1.2 Vacuum Polarization 473 

One-loop integral for photon self-energy part 0 Feynman parameters 0 Wick 
rotation 0 Dimensional regularization U Gauge invariance ci Calculation of Z3 
Cancellation of divergences Vacuum polarization in charged particle scattering 
0 Uehling effect 0 Muonic atoms 

11.3 Anomalous Magnetic Moments and Charge Radii 485 

One-loop formula for vertex function 0 Calculation of form factors 0 Anomalous 
lepton magnetic moments to order u Cl Anomalous muon magnetic moment to 
order z2 ln(mp/lm,) 0 Charge radius of leptons 

11.4 Electron Self-Energy 493 

One-loop formula for electron self-energy part 0 Electron mass renormalization 
0 Cancellation of ultraviolet divergences 

Appendix Assorted Integrals 

Problems 

References 

12 GENERAL RENORMALIZATION THEORY 499 

12.1 Degrees of Divergence 500 

Superficial degree of divergence 0 Dimensional analysis Renormalizability 0 

Criterion for actual convergence 

12.2 Cancellation of Divergences 505 
Subtraction by differentiation o Renormalization program Renormalizablc 
theories 0 Example: quantum electrodynamics 0 Overlapping divergences 
BPHZ renormalization prescription Changing the renormalization point : 44 
theory 

12.3 Is Renormalizability Necessary? 516 



xviii Contents 

Renorrnalizable interactions cataloged No renormalizable theories of gravita- 
tion 0 Cancellation of divergences in non-renormalizable theories 0 Suppression 
of non-renormalizabie interactions U Limits on new mass scales C1 Problems with 
higher deriva ti yes? 0 Detection of non-renormalizable interactions Low-energy 
expansions in non-renormalizable theories D Example: scalar with only derivative 
coupling Saturation or new physics? Effective field theories 

12.4 The Floating Cutoff 525 

Wilson's approach 0 Renormalization group equation 0 Polchinski's theorem 0 
Attraction to a stable surface 0 Floating cutoff vs renormalization 

12.5 Accidental Symmetries* 529 

General renormatizable theory of charged leptons 0 Redefinition of the lepton 
fields 0 Accidental conservation of lepton flavors, P, C, and T 

Problems 

References 

13 INFRARED EFFECTS 534 

13.1 Soft Photon Amplitudes 534 

Single photon emission 0 Negligible emission from internal lines 0 Lorentz 
invariance implies charge conservation 0 Single graviton emission 0 Lorentz 
invariance implies equivalence principle D Multi-photon emission 0 Factorization 

13.2 Virtual Soft Photons 539 

Effect of soft virtual photons Radiative corrections on internal lines 

13.3 Real Soft Photons; Cancellation of Divergences 544 

Sum over helicities Integration over energies 0 Sum over photon number 
Cancellation of infrared cutoff factors U Likewise for gravitation 

13.4 General Infrared Divergences 548 

Massless charged particles 0 Infrared divergences in general 0 Jets U Lee-Nau- 
enberg theorem 

13.5 Soft Photon Scattering* 553 

Poles in the amplitude 0 Conservation relations Universality of the low-energy 
limit 

13.6 The Exterr~al Field Approximation* 556 
Sums over photon vertex permutations 0 Non-relativistic limit Crossed ladder 
exchange 

Problems 562 

References 562 



Contents xix 

14 BOUND STATES 1N EXTERNAL FlELDS 564 

14.1 The Dirac Equation 565 

Dirac wave functions as field matrix elements 13 Anticommutators and complete- 
ness 0 Energy eigenstates 0 Negative energy wave functions Orthonormaliza- 
tion 'Large' and 'small' components 0 Parity Spin- and angle-dependence 0 
Radial wave equations 0 Energies O Fine structure 0 Non-relativistic approxi- 
mations 

14.2 Radiative Corrections in External Fields 572 
Electron propagator in an external field 0 Inhomogeneous Dirac equation 
Effects of radiative corrections 0 Energy shifts 

14.3 The Lamb Shift in Light Atoms 578 
Separating high and low energies 0 High-energy term 0 Low-energy term U 
Effect of mass renormalization 0 Total energy shift k = 0 % f 0 Numerical 
results 0 Theory vs experiment for classic Lamb shift 0 Theory vs experiment 
for Is energy shift 

Pwblems 594 

References 596 

AUTHOR INDEX 597 

SUBJECT INDEX 602 

OUTLINE OF VOLUME I1 

NON-ABELIAN GAUGE THEORIES 

BACKGROUND FIELD METHODS 

RENORMALIZATION GROUP METHODS 

OPERATOR PRODUCT EXPANSIONS 

SPONTANEOUSLY BROKEN GLOBAL SYMMETRIES 

SPONTANEOUSLY BROKEN LOCAL SYMMETRIES 

ANOMALIES 

TOPOLOGICALLY COMPLICATED FIELDS 

SUPERCONDUCTIVITY 



Preface To Volume I 

Why another book on quantum field theory? Today the student of 
quantum field theory can choose from among a score of excellent books, 
several of them quite up-to-date. Another book will be worth while only 
if it offers something new in content or perspective. 

As to content, although this book contains a good amount of new ma- 
terial, I suppose the most distinctive thing about it is its generality; I have 
tried throughout to discuss matters in a context that is as general as pos- 
sible. This is in part because quantum field theory has found applications 
far removed from the scene of its old successes, quantum electrodynamics, 
but even more because I think that this generality will help to keep the 
important points from being submerged in the technicatities of specific 
theories. Of course, specific examples are frequently used to illustrate gen- 
eral points, examples that are chosen from contemporary partide physics 
or nuclear physics as well as from quantum electrodynamics. 

It is, however, the perspective of this book, rather than its content, that 
provided my chief motivation in writing it. 1 aim to present quantum field 
theory in a manner that will g v e  the reader the clearest possible idea of 
why this theory takes the form it does, and why in this form it does such 
a good job of describing the real world. 

The traditional approach, since the first papers of Heisenberg and Pauli 
on general quantum field theory, has been to take the existence of fields for 
granted, relying for justification on our experience with electromagnetism, 
and 'quantize' them --- that is, apply to various simple field theories 
the rules of canonical quantization or path integration. Some of this 
traditional approach will be found here in the historical introduction 
presented in Chapter 1. This is certainly a way of getting rapidly into 
the subject, but it seems to me that it leaves the reflective reader with 
too many unanswered questions. Why should we believe in the rules of 
canonical quantization or path integration? Why should we adopt the 
simple field equations and Lagrangians that are found in the literature? 
For that matter, why have fields at all? It does not seem satisfactory to 
me to appeal to experience; after all, our purpose in theoretical physics is 
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not just to describe the world as we find it, but to explain - in terms of 
a few fundamental principles - why the world is the way i t  is. 

The point of view of this book is that quantum field theory is the way 
it is because (aside from theories like string theory that have an infinite 
number of particle types) it is the only way to reconcile the principles 
of quantum mechanics (including the cluster decomposition property) 
with those of special relativity. This is a point of view T have held for 
many years, but it is also one that has become newly appropriate. We 
have learned in recent years to think of our successful quantum field 
theories, including quantum electrodynamics, as 'effective field theories,' 
low-energy approximations to a deeper theory that may not even be a 
field theory, but something different like a string theory, On this basis, the 
reason that quantum field theories describe physics at accessible energies 
is that m y  relativistic quantum theory will look at sufficiently low energy 
like a quantum field theory. It is therefore important to understand the 
rationale for quantum field theory in terms of the principles of  relativity 
and quantum mechanics. Also, we think differently now about some of 
the problems of quantum field theories, such as non-renormalizability and 
'triviality,' that used to bother us when we thought of these theories as 
truly fundamental, and the discussions here will reflect these changes. This 
is intended to be a book on quantum field theory for the era of effective 
field tlt eories. 

The most immediate and certain consequences of relativity and quan- 
tum mechanics are the properties of particle states, so here particles come 
first - they are introduced in Chapter 2 as ingredients in the repre- 
sentation of the inhomogeneous Lorentz group in the Hilbert space of 
quantum mechanics. Chapter 3 provides a framework for addressing the 
fundamental dynamical question: given a state that in the distant past 
looks like a certain collection of free particles, what will it look like in the 
future? Knowing the generator of time-translations, the Hamiltonian, we 
can answer this question through the perturbative expansion for the array 
of transition amplitudes known as the S-matrix. In Chapter 4 the princi- 
ple of cluster decomposition is invoked to describe how the generator of 
time-translations, the Hamiltonian, is to be constructed horn creation and 
annihilation operators. Then in Chapter 5 we return to Lorentz invariance, 
and show that it requires these creation and annihilation operators to be 
grouped together in causal quantum fields. As a spin-off, we deduce the 
CPT theorem and the connection between spin and statistics. The formal- 
ism is used in Chapter 6 to derive the Feynman rules for calculating the 
S-matrix. 

It is not until Chapter 7 that we come to Lagrangians and the canonical 
formalism. The rationale here for introducing them is not that they have 
proved useful elsewhere in physics (never a very satisfying explanation) 
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but rather that this formalism makes it easy to choose interaction Hamil- 
tonians for which the S-matrix satisfies various assumed symmetries. In 
particular, the Lorentz invariance of the Lagrangian density ensures the 
existence of a set of ten operators that satisfy the algebra of the Paincar6 
group and, as we show in Chapter 3, this is the key condition that we need 
to prove the Lorentz invariance of the $-matrix. Quantum electrodynam- 
ics finally appears in Chapter 8, Path integration is introduced in Chapter 
9, and used to justify some of the hand-waving in Chapter 8 regarding 
the Feynrnan rules for quantum electrodynamics. This is a somewhat later 
introduction of path integrals than is fashionable these days, but it seems 
to me that although path integration is by far the best way of rapidly 
deriving Feynman rules from a given Lagrangian, it rather obscures the 
quan t urn mechanical reasons under1 ying these calculations. 

Volume I concludes with a series of chapters, 10-14, that provide 
an introduction to the cakulation of radiative corrections, involving loop 
graphs, in general field theories. Here too the arrangement is a bit unusual; 
we- start with a chapter on non-perturbative methods, in part because the 
results we obtain help us to understand the necessity for field and mass 
renormalization, without regard to whether the theory contains infinities 
or not. Chapter 11 presents the classic one-loop calculations of quantum 
chromodynamics, both as an opportunity to explain useful calculational 
techniques (Feynman parameters, Wick rotation, dimensional and Pauli- 
Villars regularization), and also as a concrete example of renormalization 
in action. The experience gained in Chapter 11 is extended to all orders 
and general theories in Chapter 12, which also describes the modern view 
of non-renormalizability that is appropriate to effective field theories. 
Chapter 13 i s  a digression on the special problems raised by massless 
particles of low energy or parallel momenta. The Dirac equation for an 
electron in an external electromagnetic field, which historically appeared 
almost at the very start of relativistic quantum mechanics, is not seen here 
until Chapter 14, on bound state problems, because this equation should 
not be viewed (as Dirac did) as a relativistic version of the Schrodinger 
equation, but rather as an approximation to a true relativistic quantum 
theory, the quantum field theory of photons and electrons. This chapter 
ends with a treatment of the Lamb shift, bringing the confrontation of 
theory and experiment up to date. 

The reader may feel that some of the topics treated here, especially in 
Chapter 3, could more properly have been left to textbooks on nuclear 
or elementary particle physics. So they might, but in my experience these 
topics are usually either not covered or covered poorly, using specific 
dynamical models rather than the general principles of symmetry and 
quantum mechanics. I have met string theorists who have never heard of 
the relation between time-reversal invariance and final-state phase shifts, 
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and nuclear theorists who do not understand why resonances are governed 
by the Breit-Wigner formula. So in the early chapters I have tried to err 
on the side of inclusion rather than exclusion. 

Volume 11 will deal with the advances that have revived quantum field 
theory in recent years: non-Abelian gauge theories, the renormalization 
group, broken symmetries, anomalies, instantons, and so on. 

1 have tried to give citations both to the classic papers in the quantum 
theory of fields and to useful references on topics that are mentioned 
but not presented in detail in this book. T did not always know who was 
responsible for material presented here, and the mere absence of a citation 
should not be taken as a claim that the material presented here is original. 
But some of it is. I hope that I have improved on the original literature or 
standard textbook treatments in several places, as for instance in the proof 
that symmetry operators are either unitary or antiunitary; the discussion 
of superselection rules; the analysis of particle degeneracy associated 
with unconventional representations of inversions; the use of the cluster 
decomposition principle; the derivation of the reduction formula; the 
derivation of the external field approximation; and even the calculation 
of the Lamb shift. 

I have also supplied problems for each chapter except the first. Some of 
these problems aim simply at providing exercise in the use of techniques 
described in the chapter; others are intended to suggest extensions of the 
results of the chapter to a wider class of theories. 

In teaching quantum field theory, I have found that each of the two 
volumes of this book provides enough material for a one-year course 
for graduate students. I intended that this book should be accessible to 
students who are familiar with non-relativistic quantum mechanics and 
classical electrodynamics. I assume a basic knowledge of complex analysis 
and matrix algebra, but topics in group theory and topology are explained 
where they are introduced. 

This is not a book for the student who wants immediately to begin cal- 
culating Feynman graphs in the standard model of weak, electromagnetic, 
and strong interactions. Nor is this a book for those who seek a higher 
level of mathematical rigor. Indeed, there are parts of this book whose 
lack of rigor will bring tears to the eyes of the mathematically inclined 
reader. Rather, I hope it will suit the physicists and physics students who 
want to understand why quantum field theory is the way it is, so that 
they will be ready for whatever new developments in physics may take us 
beyond our present understandings. 

Much of the material in this book I learned from my interactions over 
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the years with numerous other physicists, far too many to name here. 
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Phil Candelas, Bryce DeWitt, Cede  DeWitt-Morette, Jacques Distler, 
Willy Fischler, Josh Feinberg, Joaquim Gomis, Vadim Kaplunovsky, Joe 
Polchinski, and Paul Shapiro. I owe thanks for help in the preparation 
of the historical introduction to Gerry Holton, Arthur Miller, and Sam 
Schweber. Thanks are also due to Alyce Wilson, who prepared the 
illustrations and typed the I4TG input files until I learned how to do it, 
and to Terry Riley for finding countless books and articles. I am grateful 
to Maureen Storey and Alison Woallatt of Cambridge University Press 
for helping to ready this book for publication, and especially to my editor, 
Rufus Neal, for his friendly good advice. 

Austin, Texas 
October, 1994 

STEVEN WEIN BERG 



Notation 

Latin indices 1, j, k, and so on generally run over the three spatial coordi- 
nate labels, usually taken as 1, 2, 3. 

Greek indices p, v, etc, generally run over the four spacetime coordinate 
labels 1, 2, 3, 0, with x0 the time coordinate. 

Repeated indices are generally summed, unless otherwise indicated. 

The spacetime metric qpr is diagonal, with elements qll = 922 = ~ 1 3  = 

1, = -1, 

The dl~lembertian is defined as U 3 q''82/lax'2xv = v2 - 8*/df2, where 
v2 is the Laplacian t?2/d.xi8xi. 

The 'Levi-Civita tensor' @'PU is defined as the totally antisymmetric 
quantity with (.012" +I .  

Spatial three-vectors are indicated by letters in boldface. 

A hat over any vector indicates the corresponding unit vector: Thus, 
f = v/lvl. 

A dot over any quantity denotes the time-derivative of that quantity. 

Dirac matrices 7, are defined so that yil-yl! 4- j.lyyP = 2qpY. Also, 75 = 
i 7 o ~ ~ ~ ~ 7 3 ,  and = iyo. 

The step function H ( s )  has the value +I  for s > 0 and 0 for s < 0. 

The complex conjugate, transpose, and Hermitian adjoint of a matrix or 
vector A are denoted A", A ~ ,  and A+ = A * ~ ,  respectively. The Hermitian 
adjoint of an operator 0 is denoted d, except where an asterisk is used 
to emphasize that a vector or matrix of operators is not transposed. tW.c. 
or +LC. at the end of an equation indicates the addition of the Hermitian 

XXV 



xxvi fiiation 

adjoint or complex conjugate of the foregoing terms. A bar on a Dirac 
spinor u is defined by ii = u t ~ .  

Except in Chapter 1, we use units with A and the speed of light taken to 
be unity. Throughout -e is the rationalized charge of the electron, so that 
the fine structure constant is o! = e2/47c CY 1/137. 

Numbers in parenthesis at the end of quoted numerical data give the 
uncertainty in the last digits of the quoted figure. Where not otherwise 
indicated, experimental data are taken from 'Review of Particle Properties,' 
Phys. Rev. DSO, 11 73 (1994). 



Historical Introduction 

Our immersion in the present state of physics makes it hard for us to 
understand the difficulties of physicists even a few years ago, or to profit 
from their experience. At the same time, a knowledge of our history is a 
mixed blessing - it can stand in the way of the logical reconstruction of 
physical theory that seems to be continually necessary. 

I have tried in this book to present the quantum theory of fields in 
a logical manner, emphasizing the deductive trail that ascends from the 
physical principles of special relativity and quantum mechanics. This 
approach necessarily draws me away from the order in which the subject 
in fact developed. To take one example, it is historically correct that 
quantum field theory grew in part out of a study of relativistic wave 
equations, including the Maxwell, Klein-Gordon, and Dirac equations. 
For this reason it is natural that courses and treatises on quantum field 
theory introduce these wave equations early, and give them great weight. 
Nevertheless, it has long seemed to me that a much better starting point is 
Wigner's definition of particles as represen tations of the in homogeneous 
Lorentz group, even though this work was not published until 1939 and 
did not have a great impact for many years after. In this book we start 
with particles and get to the wave equations later. 

This is not to say that particles are necessarily more fundamental than 
fields. For many years after 1950 it was generally assumed that the 
laws of nature take the form of a quantum theory of fields. I start 
with particles in this book, not because they are more fundamental, but 
because what we know about particles is more certain, more directly 
derivable from the principles of quantum mechanics and relativity. If it 
turned out that some physical system could not be described by a quantum 
field theory, it would be a sensation; if it turned out that the system did 
not obey the rules of quantum mechanics and relativity, it would be a 
cataclysm. 

In fact, lately there has been a reaction against looking at quantum 
field theory as fundamental. The underlying theory might not be a theory 
of fields or particles, but perhaps of something quite different, like strings. 
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From this point of view, quantum electrodynamics and the other quantum 
field theories of which we are so proud are mere 'effective field theories,' 
low-energy approximations to a more fundamental theory. The reason that 
our field theories work so well is not that they are fundamental truths, 
but that any relativistic quantum theory will look like a field theory when 
applied to particles at sufficiently low energy. On this basis, if we want to 
know why quantum field theories are the way they are, we have to start 
with particles, 

13ut we do not want to pay the price of altogether forgetting our past. 
This chapter will therefore present the history of quantum field theory 
from earliest times to 1949, when it finally assumed its modern form. In 
the remainder of the book I will try to keep history from intruding on 
physics. 

One problem that I found in writing this chapter is that the history of 
quantum field theory is from the beginning inextricably entangled with 
the history of quantum mechanics itself, Thus, the reader who is familiar 
with the history of quantum mechanics may find some material here that 
he or she already knows, especially in the first section, where I discuss the 
early attempts to put together quantum mechanics with special relativity. 
In this case I can only suggest that the reader should skip on to the less 
familiar parts. 

On the other hand, readers who have no prior familiarity with quantum 
field theory may find parts of this chapter too brief to be altogether clear. 
I urge such readers not to worry. This chapter i s  not intended as a 
self-contained introduction to quantum field theory, and is not needed as 
a basis for the rest of the book. Some readers may even prefer to start 
with the next chapter, and come back to the history later. However, for 
many readers the history of quantum field theory should serve as a good 
introduction to quantum field theory itself. 

I should add that this chapter is not intended as an original work 
of historical scholarship. T have based it on books and articles by real 
historians, plus some historical reminiscences and original physics art ides 
that I have read. Most of these are listed in the bibliography given at the 
end of this chapter, and in the list of references. The reader who wants 
to go more deeply into historical matters is urged to consult these listed 
works. 

A word about notation. In order to keep some of the flavor of past 
times, in this chapter I will show explicit factors of ti and c (and even 
h), but in order to facilitate comparison with modem physics literature, 
I will use the more modern rutionalized electrostatic units for charge, so 
that the fine structure constant cr 2: 1 / 137 is e2/4xtac. In subsequent 
chapters I will mostly use the 'natural' system of units, simply setting 
h = c = l .  
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1.1 Relativistic Wave Mechanics 

Wave mechanics started out as relativistic wave mechanics. Indeed, as 
we shall see, the founders of wave mechanics, Louis de Broglie and 
Erwin Schrudinger, took a good deal of their inspiration from special 
relativity. It was only later that it became generally clear that relativistic 
wave mechanics, in the sense o f  a relativistic quantum theory of a fixed 
number of particles, is an impossibility. Thus, despite its many successes, 
relativistic wave mechanics was ultimately to give way to quantum field 
theory. Nevertheless, relativistic wave mechanics survived as an important 
element in the formal apparatus of quantum field theory, and it posed a 
challenge to field theory, to reproduce its successes. 

The possibility that material particles can like photons be described in 
terms of waves was first suggested1 in 1923 by Louis de Broglie. Apart 
from the analogy with radiation, the chief clue was Lorentz invariance: if 
particles are described by a wave whose phase at position x and time t 
is of the form ~ X ( K  x - v t ) ,  and if this phase is to be Lorentz invariant, 
then the vector PE and the frequency t7 must transform like x and #, and 
hence like p and E. In order for this to be possible K and v must have the 
same velocity dependence as p and E,  and therefore must be proportional 
to them, with the same constant of proportionality. For photons, one had 
the Einstein relation E = hv, so it was natural to assume that, for material 
particles, 

just as for photons. The group velocity 8 v / i k  of the wave then turns 
out to equal the particle velocity, so wave packets just keep up with the 
particle they represent. 

By assuming that any closed orbit contains an integral number of 
particle wavelengths A = l/lul, de Broglie was able to derive the old 
quantization conditions of Niels Bohr and Arnold Sommerfeld, which 
though quite mysterious had worked well in accounting for atomic spectra. 
Also, both de Broglie and Walter ~ l s a s se6  suggested that de Broglie's 
wave theory could be tested by looking for interference effects in the 
scattering of electrons from crystals; such effects were established a few 
years later by Clinton Joseph Davisson and Lester H. ~ e r m e r . ~  However, 
it was still unclear how the de Broglie relations (1.1.1) should be modified 
for non-free particles, as for instance for an electron in a general Coulomb 
field. 

Wave mechanics was by-passed in the next step in the history of 
quantum mechanics, the development of matrix mechanics4 by Werner 
Heisenberg, Max Born, Pascual Jordan and Wolfgang Pauli in the years 
1925-1926. At least part of the inspiration for matrix mechanics was the 
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insistence that the theory should involve only observables, such as the 
energy levels, or emission and absorption rates. Heisenberg's 1925 paper 
opens with the manifesto: 'The present paper seeks to establish a basis 
for theoretical quantum mechanics founded exclusively upon rdationships 
between quantities that in principle are observable.' This sort of positivism 
was to reemerge at various times in the history of quantum field theory, 
as for instance in the introduction of the S-matrix by John Wheeler and 
Heisenberg (see Chapter 3) and in the revival of dispersion theory in the 
1950s (see Chapter 101, though modern quantum field theory is very far 
from this ideaI. It would take us too far from our subject to describe 
matrix mechanics in any detail here. 

As everyone knows, wave mechanics was revived by Erwin SchrBdinger. 
In his 1926 series of papers,5 the familiar non-relativistic wave equation 
is suggested first, and then used to rederive the results of matrix mechan- 
ics. Only later, in the sixth section of the fourth paper, is a relativistic 
wave equation offered. According to ~ i r ac ,6  the history is actually quite 
different: Schrijdinger first derived the relativistic equation, then became 
discouraged because it gave the wrong fine structure for hydrogen, and 
then some months later realized that the non-relativistic approximation 
to his relativistic equation was of value even if the relativistic equation 
itself was incorrect! By the time that Schrodinger came to publish his 
relativistic wave equation, it had already been independently rediscovered 
by Oskar ~ l e i n ~  and Walter   or don,^ and for this reason it is usually 
called the 'Klein-Gordon equation.' 

Schriidinger's relativistic wave equation was derived by noting first 
that, for a 'Lorentz electron' of mass m and charge e in an externaI vector 
potential A and Coulomb potential #, the Hamiltonian I.I and momentum 
p are related by* 

For a free particle described by a plane wave exp { 2 n i ( ~  x - v t ) } ,  the de 
Broglie relations (1.  I . I )  can be obtained by the identifications 

where P1 is the convenient symbol (introduced later by Dirac) for h/2nr. 
By an admittedly formal analogy, Schrodinger guessed that an electron 
in the external fields A, 4 would be described by a wave function y(x,t) 
satisfying the equation obtained by making the same replacements in 

This is Lorentz invariant, because the quantities A and # havc the same Lorentz trmsfarmation 
p r q x r h  as cp and fi. SEhrijdinger actually wrote H and p in terms of partial derivatives of an 
action function, but this makes no difference to our present discussion. 
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In particular, for the stationary states of hydrogen we have A = 0 and 
4 = e/4nr, and y has the time-dependence exp(-iEt/A), so (1.1.4) becomes 

Solutions satisfying reasonable boundary conditions can be found for the 
energy valuesg 

where a = e2/4dic is the 'fine structure constant,' roughly 1/137; n is a 
positive-definite integer, and t ,  the orbital angular momentum in units of 
A, is an integer with 0 I G 5 n - 1. The a2 term gave good agreement 
with the gross features of the hydrogen spectrum (the Lyman, Balmer, 
etc. series) and, according to ~i r ac ,6  it was this agreement that led 
Schriidinger eventually to develop his non-relativistic wave equation. On 
the other hand, the a4 term gave a fine structure in disagreement with 
existing accurate measurements of Friedrich ~aschen . ' ~  

It is instructive here to compare Schriidinger's result with that of Arnold 
~arnmerfeld,'~- obtained using the rules of the old quantum theory: 

where rn is the electron mass. Here k is an integer between 1 and n, which 
in Sommerfeld's theory is given in terms of the orbital angular momentum 
Cti as k = t + 1. This gave a fine structure splitting in agreement with 
experiment: for instance, for n = 2 Eq. (1.1.7) gves two levels (k = 1 
and k = 21, split by the observed amount d m c 2 / 3 2 ,  or 4.53 x lop5 eV. In 
contrast, Schrodinger's result (1.1.6) gives an n = 2 fine structure splitting 
a4mc2/12, considerably larger than observed. 

Schrijdinger correctly recognized that the source of this discrepancy 
was his neglect of the spin of the electron. The splitting of atomic 
energy levels by non-inverse-square electric fields in alkali atoms and by 
weak external magnetic fields (the so-called anomalous Zeeman effect) 
had revealed a multiplicity of states larger than could be accounted for 
by the Bohr-Sommerfeld theory; this led George Uhlenbeck and Samuel 
~oudsmit"  in 1925 to suggest that the electron has an intrinsic angular 
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momentum h/2. Also, the magnitude of the Zeeman splittingI2 allowed 
them to estimate further that the electron has a magnetic moment 

It was clear that the electron's spin would be coupled to its orbital 
angular momentum, so that Schrijdinger's relativistic equation should not 
be expected to give the correct fine structure splitting. 

Indeed, by 1927 several authors13 had been able to show that the 
spin-orbit coupling was able to account for the discrepancy between Sch- 
rodinger's result (1.1.6) and experiment. There are really two effects here: 
one is a direct coupling between the magnetic moment (1.1.8) and the 
magnetic field felt by the electron as it moves through the electrostatic 
field of the atom; the other i s  the relativistic 'Thomas precession' caused 
{even in the absence of a magnetic moment) by the circular motion of 
the spinning electron.14 Together, these two effects were found to lift the 
level with total angular momentum j = P + to the energy (1.1.7) given 

1 by Sommerfeld for k = f + 1 = j + f, while the level with j = k - was 
lowered to the value given by Sommerfeld for k = C = j + 4. Thus the 
energy was found to depend only on n and j, but not separately on t; 

By accident Sommerfeld's theory had gven the correct magnitude of the 
splitting in hydrogen ( j  + like k runs over integer values from 1 to n) 
though it was wrong as to the assignment of orbital angular momentum 
values G to these various levels. In addition, the multiplicity of the fine 
structure levels in hydrogen was now predicted to be 2 for j = f and 
2(2j + 1) for j > f (corresponding to 6 values j f 1, in agreement with 
experiment. 

Despite these successes, there still was not a thorough relativistic theory 
which incorporated the electron's spin from the beginning. Such a theory 
was discovered in 1928 by Paul Dirac. However, he did not set out 
simply to make a relativistic theory of the spinning electron; instead, he 
approached the problem by posing a question that would today seem 
very strange. At the begnning of his 1928 he asks 'why Nature 
should have chosen this particular model for the electron, instead of 
being satisfied with the point charge.' To us today, this question is like 
asking why bacteria have only one cell; having spin fi/2 is just one of 
the properties that define a particle as an electron, rather than one of the 
many other types of particles with various spins that are known today. 
However, in 1928 it was possible to believe that all matter consisted 
of electrons, and perhaps something similar with positive charge in the 
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atomic nucleus. Thus, in the spirit of the times in which it was asked, 
Dirac's question can be restated ; 'Why do the fundamental constituents 
of matter have to have spin h/2? 

For Dirac, the key to this question was the requirement that probabilities 
must be positive. It was known16 that the probability density for the non- 
relativistic Schriidinger equation is lljl 1 2 ,  and that this satisfies a continuity 
equation of the form 

so the space-integral of l V ? l 2  is time-independent. On the other hand, 
the only probability density p and current J, which can be formed from 
solutions of the relativistic Schrijdinger equation and which satisfy a 
conservation law, 

are of the form 

with N an arbitrary constant. It is not possible to identify p as the 
probability density, because (with or without an external potential 4) p 
does not have definite sign. To quote Dirac's  reminiscence^'^ about this 
problem 

i remember once when I was in Copenhagen, that Bohr 
asked me what T was working on and I told him I was trying 
to get a satisfactory relativistic theory of the electron, and Bohr 
said 'But Klein and Gordon have already done that!' That 
answer first rather disturbed me. Bohr seemed quite satisfied 
by Klein's solution, but I was not because of the negative 
probabilities that i t  led to. I just kept on with it, worrying about 
getting a theory which would have only positive probabilities. 

According to George ~ a r n o w , ' ~  Dirac found the answer to this problem 
on an evening in 1928 while staring into a fireplace at St John's College, 
Cambridge. He realized that the reason that the Klein-Gordon (or 
relativistic Schriidinger) equation can give negative probabilities is that 
the p in the conservation equation (1.1.10) involves a time-derivative of the 
wave function. This in turn happens because the wave function satisfies 
a differential equation of s ~ c n n d  order in the time. The problem therefore 
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was to replace this wave equation with another one of first order in time 
derivatives, like the non-relativistic SchriSdinger equation. 

Suppose the electron wave function is a multi-component quantity y,(x), 
which satisfies a wave equation of the form, 

where 2 is some matrix function of space derivatives. In order to have a 
chance at a Lorentz-invariant theory, we must suppose that because the 
equation is linear in time-derivatives, it is also linear in space-derivatives, 
so that %' takes the form: 

where q, ar2, a ~ ,  and a4 are constant matrices. From (1.1.13) we can derive 
the second-order equation 

{The summation convention is in force here; a' and j run over the values 
1, 2, 3, or x, y,  2.) But this must agree with the free-field form of the 
relativistic Schriidinger equation (1.1.4), which just expresses the relativistic 
relation between momentum and energy. Therefore, the matrices a and a4 
must satisfy the relations 

where J i j  is the Kronecker delta (unity for i = j ;  zero for i f j )  and 1 is 
the unit matrix. Dirac found a set of 4 x 4 matrices which satisfy these 
relations 
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To show that this formalism is Lorentz-invariant, Dirac multiplied 
Eq. (1.1.13) on the left with ad, so that it could be put in the form 

where 

(The Greek indices p, v ,  etc. will now run over the values 1, 2, 3, 0, with 
x0 = ct. Dirac used xq = k t ,  and correspondingly y4 = a4.) The matrices 
y" satisfy the anticornmutation relations 

Dirac noted that these anticommutation relations are Lorentz-invariant, 
in the sense that  they are also satisfied by the matrices AjL,,yv, where A is 
any Lorentz transformation. He concluded from this that Ali,,y' must be 
related to y f l  by a similarity transformation : 

It follows that the wave equation is invariant if, under a Lorentz transfor- 
mation x p  + N , x V ,  the wave function undergoes the matrix transforma- 
tion ly -P S(A)y. (These matters are discussed more fully, from a rather 
different point of view, in Chapter 5 . )  

To study the behavior of electrons in an arbitrary external electromag- 
netic field, Dirac followed the 'usual procedure' of making the replacements 

as in Eq. (1.1.4). The wave equation j1.1.13) then takes the form 

Dirac used this equation to show that in a central field, the conservation 
of angular momentum takes the form 

where X is the matrix differential operator (1.1.14) and u is the 4 x 4 
version of the spin matrix introduced earlier by paulilg 
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Since each component of CJ has eigenvalues +I, the presence of the extra 
term in (1.1.24) shows that the electron has intrinsic angular momentum 
h/2.  

Dirac also iterated Eq. (1. lZ), obtaining a second-order equation, 
which turned out to have just the same form as the Klein-Gordon equation 
(1.1.4) except for the presence on the right-hand-side of  two additional 
terms 

For a slowly moving electron, the first term dominates, and represents a 
magnetic moment in agreement with the value ( 1 . 1  .a) found by Goudsmit 
and ~hbnbeck."  As Dirac recognized, this magnetic moment, together 
with the relativistic nature of the theory, guaranteed that this theory 
would give a fine structure splitting in agreement {to order a4mc2) with 
that found by Heisenberg, Jordan, and Charles G. l3arwin.I3 A little later, 
an 'exact' formula for the hydrogen energy levels in Dirac's theory was 
derived by I3arwin2O and ~ o r d a n ~ l  

The first three terms of a power series expansion in a2 agree with the 
approximate result (1 .U). 

This theory achieved Dirac's primary aim: a relativistic formalism with 
positive 

with 

so that 
density, 
another 

For a 

probabilities. From (1.1.13) we can derive a continuity equation 

the positive quantity l y r 1 2  can be interpreted as a probability 
with constant total probability J lp12d3x. However, there was 
difficulty which Dirac was not immediately able to resolve. 
given momentum p, the wave equation (1.1.13) has four solutions 

of the plane wave form 

Two solutions with E = +dp2c2 + m2c4 correspond to the two spin states 
of an electron with Jz = +h/2. The other two solutions have E = 
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- v'W, and no obvious physical interpretation. As Dirac pointed 
out, this problem arises also for the relativistic Schriidinger equation : for 
each p, there are two solutions of the form (1.1.30), one with positive E 
and one with negative E. 

Of course, even in classical physics, the relativistic relation 
E~ = p2c2 + m2c4 has two solutions, E = kdp2c2 + m2c4 . However, 
in classical physics we can simply assume that the only physical particles 
are those with positive E .  Since the positive solutions have E > me2 and 
the negative ones have E < -mc2, there is a finite gap between them, 
and no continuous process can take a particle from positive to negative 
energy. 

The problem of negative energies is much more troublesome in rela- 
tivistic quantum mechanics. As Dirac pointed out in his 1928 paper,15 the 
interaction of electrons with radiation can produce transitions in which a 
positive-energy electron falls into a negative-energy state, with the energy 
carried off by two or more photons. Why then is matter stable? 
In 1930 Dirac offered a remarkable solution.22 Dirac's proposal was 

based on the exclusion principle, so a few words about the history of this 
principle are in order here. 
The periodic table of the elements and the systematics of X-ray spec- 

troscopy had together by 1924 revealed a pattern in the population of 
atomic energy levels by electrons:23 The maximum number N ,  of electrons 
in a shell characterized by principal quantum number n is given by twice 
the number of orbital states with that n 

Wolfgang ~ a u l i ~ ~  in 1925 suggested that this pattern could be understood if 
N ,  is the total number of possible states in the nth shell, and if in addition 
there is some mysterious 'exclusion principle' which forbids more than one 
electron from occupying the same state. He explained the puzzling factor 
2 in (1.1.31) as due to a 'peculiar, classically non-describable duplexity' of 
the electron states, and as we have seen this was understood a little later 
as due to the spin of the electron." The exclusion principle answered a 
question that had remained obscure in the old atomic theory of Bohr and 
Sommerfeld: why do not all the electrons in heavy atoms fall down into 
the shell of lowest energy? Subsequently Pauli's exclusion principle was 
formalized by a number of authors25 as the requirement that the wave 
function of a multi-electron system is antisymmetric in the coordinates, 
orbital and spin, of all the electrons. This principle was incorporated into 
statistical mechanics by Enrico ~ e r m i * ~  and ~ i r a c , ~ '  and for this reason 
particles obeying the exclusion principle are generally called 'fermions,' 



just as particles like photons for which the wave function is symmetric 
and which obey the statistics o f  Bose and Einstein are called 'bosons.' The 
exclusion principle has played a fundamental role in the theory of metals, 
white dwarf and neutron stars, etc., as well as in chemistry and atomic 
physics, but a discussion of these matters would take us too far afield 
here. 

Dirac's proposal was that the positive energy electrons cannot fall down 
into negative energy states because 'all the states of negative energy are 
occupied except perhaps a few of small velocity.' The few vacant states, 
or 'holes,' in the sea of negative energy electrons behave like particles with 
opposite quantum numbers: positive energy and positive charge. The only 
particle with positive charge that was known at that time was the proton, 
and as Dirac later recalled,27a 'the whole climate of opinion at that time 
was against new particles' so Dirac identified his holes as protons; in fact, 
the title of his 1930 article22 was 'A Theory of Electrons and Protons.' 

The hole theory faced a number of immediate difficulties. One obvi- 
ous problem was raised by the infinite charge density of the ubiquitous 
nega the-energy electrons : where is their electric field? Dirac proposed to 
reinterpret the charge density appearing in Maxwell's equations as 'the 
departure from the normal state of electrification of the world.' An- 
other problem has to do with the huge dissimilarity between the observed 
masses and interactions of the electrons and protons. Dirac hoped that 
Coulomb interactions between electrons would somehow account for these 
differences but Hermann ~ e y 1 ~ ~  showed that the hole theory was in fact 
entirely symmetric between negative and positive charge. Finally, ~ i r a c "  
predicted the existence of an electron-proton annihilation process in which 
a positive-energy electron meets a hole in the sea of negative-energy elec- 
trons and falls down into the unoccupied level, emitting a pair of gamma 
ray photons. By itself this would not have created difficulties for the hole 
theory; it was even hoped by some that this would provide an explana- 
tion, then lacking, of the energy source of the stars. However, it was 
soon pointed out29 by Julius Robert Oppenheimer and Igor Tamm that 
electron-proton annihilation in atoms would take place at much too fast 
a rate to be consistent with the observed stability of ordinary matter. For 
these reasons, by 193 1 Dirac had changed his mind, and decided that the 
holes would have to appear not as protons but as a new sort of positively 
charged particle, of the same mass as the electron.2gu 

The second and third of these problems were eliminated by the discovery 
of the positron by Carl D. ~ n d e r s o n , ~ ~  who apparently did not know of 
this prediction by Dirac. On August 2, 1932, a peculiar cosmic ray track 
was observed in a Wilson cloud chamber subjected to a 15 kG magnetic 
field. The track was observed to curve in a direction that would be 
expected for a pnsitiudy charged particle, and get its range was at least 



1.1 Relativistic Wave Mechanics 13 

ten times greater than the expected range of a proton! Both the range 
and the specific ionization of the track were consistent with the hypothesis 
that this was a new particle which differs from the electron only in the 
sign of its charge, as would be expected for one of Dirac's holes. (This 
discovery had been made earlier by P.M.S. Blackett, but not immediately 
published by him. Anderson quotes press reports of evidence for light 
positive particles in cosmic ray tracks, obtained by Blackett and Giuseppe 
Occhialini.) Thus it appeared that Dirac was wrong only in his original 
identification of the hole with the proton. 

The discovery of the more-or-less predicted positron, together with the 
earlier successes of the Dirac equation in accounting for the magnetic 
moment of the electron and the fine structure of hydrogen, gave Dirac's 
theory a prestige that it has held for over six decades. However, although 
there seems little doubt that Dirac's theory will survive in some form in 
any future physical theory, there are serious reasons for being dissatisfied 
with its original rationale: 

(i) Dirac's analysis of the problem of negative probabilities in Sch- 
rodinger's relativistic wave equation would seem to rule out the existence 
of any particle of zero spin. Yet even in the 1920s particles of zero spin 
were known - for instance, the hydrogen atom in its ground state, and 
the helium nucleus. Of course, it could be argued that hydrogen atoms 
and alpha particles are not elementary, and therefore do not need to 
be described by a relativistic wave equation, but it was not (and still is 
not) clear how the idea of elementarity is incorporated in the formalism 
of relativistic quantum mechanics. Today we know of a large number 
of spin zero particles - z mesons, K mesons, and so on -- that are 
no less elementary than the proton and neutron. We also know of spin 
one particles - the W* and Z O  - which seem as elementary as the 
electron or any other particle. Further, apart from effects of the strong 
interactions, we would today calculate the fine structure of 'mesonic 
atoms,' consisting of a spinless negative z or K meson bound to an 
atomic nucleus, from the stationary solutions of the relativistic Klein- 
Gordon-Schrodinger equation! Thus, it is difficult to agree that there is 
anything fundamentally wrong with the relativistic equation for zero spin 
that forced the development of the Dirac equation - the problem Simply 
is that the electron happens to have spin A/2, not zero. 
(ii) As far as we now know, for every kind of particle there is an 
'antiparticle' with the same mass and opposite charge. (Some purely 
neutral particles, such as the photon, are their own antiparticles.) But 
how can we interpret the antiparticles of charged bosons, such as the 
a' mesons or W* particles, as holes in a sea of negative energy states? 
For particles quantized according to the rules of Bose-Einstein statistics, 
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there is no exclusion principle, and hence nothing to keep positive-energy 
particles from falling down into the negative-energy states, occupied or 
not. And if the hole theory does not work for bosonic antiparticles, why 
should we believe it for ferrnions'? 1 asked Dirac in 1972 how he then felt 
about this point; he told me that he did not regard bosons like the pion 
or W &  as 'important.' In a lecture"" a few years later, Dirac referred 
to the fact that for bosons 'we no longer have the picture of a vacuum 
with negative energy states filled up: and remarked that in this case 'the 
whole theory becomes more complicated.' The next section will show 
how the development of quantum field theory made the interpretation of 
antiparticles as holes unnecessary, even though unfortunately it lingers 
on in many textbooks. To quote Julian S c h ~ i n g e r , ~ ~ ~  'The picture of an 
infinite sea of negative energy electrons is now best regarded as a historical 
curiosity, and forgotten.' 

jiii) One of the great successes of the Dirac theory was its correct 
prediction of the magnetic moment of the electron. This was particularly 
striking, as the magnetic moment (1.1.8) is twice as large as would be 
expected for the orbital motion of a charged point particle with angular 
momentum h / 2 ;  this factor of 2 had remained mysterious until Dirac's 
theory. However, there is really nothing in Dirac's line of argument that 
leads unequivocally to this particular value for the magnetic moment. At 
the point where we brought electric and magnetic fields into the wave 
equation (1.1.23), we could just as well have added a 'Pauli term'31 

with arbitrary coefficient K .  (Here F,,, is the usual electromagnetic field 
strength tensor, with F ' ~  = B3, FOI = E l ,  etc.) This term could be 
obtained by first adding a term to the free-field equations proportional 
to pi', yv](d2/axh?xY)W, which of course equals zero, and then making 
the substitutions (1.1.22) as before. A more modern approach would be 
simply to remark that the term (1.1.32) is consistent with a11 accepted 
invariance principles, including Loren tz invariance and gauge invariance, 
and so there is no reason why such a term should not be included in the 
field equations. (See Section 12.3.) This term would give an additional 
contribution proportional to K to the magnetic moment of the electron, so 
apart from the possible demand for a purely formal simplicity, there was 
no reason to expect any particular value for the magnetic moment of the 
electron in Dirac's theory. 

As we shall see in this book, these problems were all eventually to be 
solved (or at  least clarified) through the development of quantum field 
theory. 
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1.2 The Birth of Quantum Field Theory 

The photon is the only particle that was known as a field before it was 
detected as a particle. Thus it is natural that the formalism of quantum 
field theory should have been developed in the first instance in connection 
with radiation and only later applied to other particles and fields. 

In 1926, in one o f  the central papers on matrix mechanics, Born, 
Heisenberg, and ~ o r d a n ~ ~  applied their new methods to the free radiation 
field. For simplicity, t bey ignored the polarization of electromagnetic 
waves and worked in one space dimension, with coordinate x running 
from 0 to L; the radiation field u{x, t) if constrained to vanish at these 
endpoints thus has the same behavior as the displacement of a string with 
ends fixed at x = 0 and x = L. By analogy with either the case or a string 
or the full electromagnetic field, the Hamiltonian was taken to have the 
form 

In order to reduce this expression to a sum of squares, the field zd was 
expressed as a sum o f  Fourier components with u = 0 at bath x = 0 and 
x = L :  

CC 

U ( X ,  t) -- q k ( t )  sin 
k = l  (y) 

so that 

Thus the string or field behaves like sum oC independent harmonic oscilla- 
tors with angular frequencies cok ,  as had been anticipated 20 years earlier 
by Paul ~ h r e n f e s t . ~ ~ "  

In particular, the 'momentum' pk(t) canonically conjugate to q k ( t )  is 
determined, as in particle mechanics, by the condition that if H is expressed 
as a function of the ps and g s, then 

This yields a 'momentum' 
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so the canonical commutation relations may be written 

Also, the time-dependence of qk(r) is governed by the Harniltonian equa- 
tion of motion 

The form of the matrices defined by Eqs. (1.2.6)-(1.2.8) was already 
known to Born, Heisenberg, and Jordan through previous work on the 
harmonic oscillator. The q-matrix is given by - 

with an a timeindependent matrix and al its Hermitian adjoint, satisfying 
the commutation relations 

The rows and columns of these matrices are labelled with a set of positive 
integers nl ,  n2, . . . , one for each normal mode. The matrix elements are 

For a single normal mode, these matrices may be written explicitly as 

It is straightforward to check that (1.2.12) and (1.2.13) do satisfy the 
commutation relations (1.2.10) and (1.2.1 1). 

The physical interpretation of a column vector with integer components 
 PI^, ~ 2 , ; .  . is that it represents a state with nk quanta in each normal mode 
k.  The matrix a k  or a; acting on such a column vector will respectively 

a =  

- 0  0 o . . * -  
0 0 o . . ,  
0 0 o & . .  
0 O 0 O . . .  

- - 

, u t =  

- 0 0 0 0  . . . -  
JT 0 0 0  . . .  
0 0 0  . . .  
0 0 0 .  

. . 

. . 
q .  - 
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lower or raise nr, by one unit, leaving ail nt with G # k unchanged; they 
may therefore be interpreted as operators which annihilate or create one 
quantum in the kth normal mode. In particular, the vector with all nk 
equal to zero represents the vacuum; it is annihilated by any uk. 

This interpretation is further borne out by inspection of the Hamilto- 
nian. Using (1.2.9) and (1.2.10) in (1.2.4) gives 

The Harniltonian is then diagonal in the n-representation 

We see that the energy of the state is just the sum of energies hwk for 
each quantum present in the state, plus an infinite zero-point energy 
ED = En Auk Applied to the radiation field, this formalism justified the 
Bose method of counting radiation states according to the numbers nk of 
quanta in each normal mode. 

Born, Heisenberg, and Jordan used this formalism to derive an expres- 
sion for the r.m.s. energy fluctuations in black-body radiation. (For this 
purpose they actually only used the commutation relations ( 1.2.6)-(1.2.7).) 
However, this approach was soon applied to a more urgent problem, the 
calculation of the rates for spontaneous emission of radiation. 

In  order to appreciate the difficulties here, it is necessary to go back 
in time a bit. In one of the first papers on matrix mechanics, Born and 
~ o r d a n ~ ~  had assumed in effect that an atom, in dropping from a state 
p to a lower state a, would emit radiation just like a classical charged 
oscillator with displacement 

where 

and rp. is the p, u element of the matrix associated with the electron 
position. The energy E of such an oscillator is 

A straightforward classical calculation then gives the radiated power, and 
dividing by the energy hv per photon gives the rate of photon emission 
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However, it was not at all clear why the formulas for emission of radiation 
by a classicai dipole should be taken over in this manner in dealing with 
spontaneous emission. 

A little later a more convincing though even less direct derivation was 
given by ~ i r a c . ~ ~  By considering the behavior of quantized atomic states 
in an oscillating cla.wiual electromagnetic field with energy density per 
frequency interval la at frequency {1.2.17), he was able to derive formulas 
for the rates uB(a + /I> and uB(P + M )  for absorption or induced 
emission : 

(Note that the expression on the right is symmetric between states a 
and /I, because r,p is just ra,'.)   in stein^^ had already shown in 1917 
that the possibility of thermal equilibrium between atoms and black-body 
radiation imposes a relation between the rate A(P + ol) of spontaneous 
emission and the rates uB for induced emission or absorption: 

Using (1.2.20) in this relation immediately yields the Born-Jordan result 
(1.2.19) for the rate of spontaneous emission. Nevertheless, it still seemed 
unsatisfactory that thermodynamic arguments should be needed to derive 
formulas for processes involving a single atom. 

Finally, in 1927 ~ i r a c "  was able to give a thoroughly quantum me- 
chanical treatment of spontaneous emission. The vector potential A(x, l )  
was expanded in normal modes, as in Eq. (1.2,2), and the coefficients were 
shown to satisfy commutation relations like (1.2.6). In  consequence, each 
state of the free radiation field was specified by a set of integers nk, one 
for each normal mode, and the matrix elements of the electromagnetic 
interaction er A took the form of a sum over normal modes, with matrix 
coefficients proportional to the matrices ak and af defined in Eqs  (1.2.10)- 
(1.2.13). The crucial result here is the factor in Eq. (1.2.13); the 
probability for a transition in which the number of photons in a normal 
mode k rises from nk to nk + 1 is proportional to the square of this factor, 
or nk + I .  But in a radiation field with nk photons in a normal mode k ,  
the energy density u per frequency interval is 

so the rate for emission of radiation in normal mode k is proportional to 
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The first term is interpreted as the contribution of induced emission, and 
the second term as the contribution of spontaneous emission. Hence, 
without any appeal to thermodynamics, Dirac could conclude that the 
ratio of the rates d3 for induced emission and A for spontaneous emission 
is given by the Einstein relation, Eq. ( 1.2.2 1). Using his earlier result (1.2.20) 
for B, Dirac was thus able to rederive the Born-Jordan formula33 (1.2.19) 
for spontaneous emission rate A. A little later, similar methods were 
used by Dirac to give a quantum mechanical treatment of the scattering 
of radiation and the lifetime of excited atomic states,36 and by Victor 
Weisskopf and Eugene Wigner to make a detailed study of spectral line 
shapes.'& Dirac in his work was separating the electromagnetic potential 
into a radiation field A and a static Coulomb potential A', in a manner 
which did not preserve the manifest Lorentz and gauge invariance of 
classical electrodynamics. These matters were put on a firmer foundation 
a little later by Enrico ~ermi.'" Many physicists in the 1930s learned 
their quantum electrodynamics from Fermi's 1932 review. 

The use of canonical commutation relations for q and p or a and at 
aIso raised a question as to the Lorentz invariance of the quantized theory. 
Jordan and ~ a u l i ~ ~  in 1928 were able to show that the commutators of 
fields at different spacetime points were in fact Lorentz-invariant. (These 
commutators are calculated in Chapter 5 . )  Somewhat later, Bohr and 
Leon ~ o s e n f e l d 3 ~  used a number of ingenious thought experiments to 
show that these commutation relations express limitations on our ability 
to measure fields at spacetime points separated by time-like intervals. 

It was not long after the successful quantization of the electromagnetic 
field that these techniques were applied to other fields. At first this was 
regarded as a 'second quantization'; the fields to be quantized were the 
wave functions used in one-particle quantum mechanics, such as the Dirac 
wave function of the electron. The first step in this direction seems to 
have been taken in 1927 by Jordan.39 In  1928 an essential element was 
supplied by Jordan and ~ i g n e r . "  They recognized that the Pauli exclusion 
principle prevents the occupation number nk of electrons in any normal 
mode k (counting spin as well as position variables) from taking any values 
other than 0 or 1.  The electron field therefore cannot be expanded as a 
superposition of operators satisfying the commutation relations (1.2. lo), 
(1.2.1 21, because these relations require nk to take all integer values from 
0 to E. Instead, they proposed that the electron field should be expanded 
in a sum of operators at,  al  satisfying the anticommututim relations 

The relations can be satisfied by matrices labelled by a set of integers 



nl, n2, - .  . , one for each normal mode, each integer taking just the values 
zero and one: 

1 n; = 0, ni, = 1, n; = y for j # k 
(ak hi ,ni ,..., q ,n2 ,... 0 otherwise , (1.2.24) 

t 1 4 = 1, nk = O r  n'= nj for j f k 
( a k l ~ l , ~ i  ,..., U,,U~ ,... J 

0 otherwise. (1.2.25) 

For instance, for a single normal mode we have just two rows and two 
columns, corresponding to the values unity and zero of nt and n;  the u 
and at matrices take the form 

The reader may check that (1.2.24) and (1.2,25) do satisfy the anticommu- 
tation relations (1.2.22) and (1.2.23 j. 

The interpretation of a column vector characterized by integers n l ,  nl, , . . 
is that it represents a state with nk quanta in each normal mode k, just as 
for bosons. The difference is, of course, that since each nk takes only the 
values 0 and 1, there can be at most one quantum in each normal mode, 
as required by the Pauli exclusion principle. Again, ak destroys a quantum 
in normal mode k if there is one there already, and otherwise gives zero; 
also, a: creates a quantum in normal made k unless there is one there 
already, in which case it gives zero. Much later it was shown by Fjerz 
and paulia that the choice between commutation and anticommu tation 
relations is dictated solely by the particle's spin: commutators must be 
used for particles with integer spin like the photon, and anti'commutators 
for particles with half-integer spin like the electron. (This will be shown 
in a different way in Chapter 5.) 

The theory of general quantum fields was first laid out in 1929, in a 
pair of comprehensive articles by Weisenberg and ~ a u l i . 4 ~  The starting 
point of their work was the application of the canonical formalism to 
the fields themselves, rather than to the coefficients of the normal modes 
appearing in the fields. Heisenberg and Pauli took the Lagrangian L as 
the space-integral of a local function of fields and spacetime derivatives 
of fields; the field equations were then determined from the principle 
that the action J L d t  should be stationary when the fields are varied; 
and the commutation relations were debermined from the assumption 
that the variational derivative of the Lagrangian with respect to any 
field's time-derivative behaves like a 'momentum' conjugate to that field 
(except that commutation relations become anticommutation relations for 
fermion fields). They also went on to apply this general formalism to the 
electromagnetic and Dirac fields, and explored the various invariance and 
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conservation laws, including the conservation of charge, momentum, and 
energy, and Lorentz and gauge invariance. 

The Heisenberg-Pauli formalism is essentially the same as that described 
in our Chapter 7,  and so for the present we can limit ourselves to a single 
example which will turn out to be useful later in this section. For a free 
complex scalar field @(x) the Lagrangian is taken as 

If we subject $(x) to an infinitesimal variation d$(x), the Lagrangian i s  
changed by the amount 

It is assumed in using the principle of stationary action that the variation 
in the fields should vanish on the boundaries of the spacetime region of 
integration. Thus, in computing the change in the action J Ldr, we can 
immediately integrate by parts, and write 

But this must vanish for any 6 4  and 64t, so 4 must satisfy the familiar 
relativistic wave equation 

and its adjoint. The 'momenta' canonically conjugate to the fields # and 
#f are gven by the variational derivatives of L with respect to d, and $7, 
which we can read off from (1.2.27) as 

These field variables satisfy the usual canonical commutation relations, 
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with a delta function in place of a Kronecker delta 

[nk t), n(y, t)] = [nt(x, t), nt(y, I)] = [ ~ ( x ,  t ) ,  n'(y, t)]  = 0 , (1.2.33) 

[$(% r). $(Y. t )]  = [gt(x, t). $'(y, t)] = [#(x, t) .  $t(y, t)] = 0 . (1.2.34) 

The Hamiltonian here is given (just as in partick mechanics) by the 'sum' 
of all canonical momenta times the time-derivatives of the corresponding 
fields, minus the Lagrangian: 

or, using (1.2.261, (1.2.29), and (1.2.30): 

After the papers by Heisenberg and Pauli one element was still missing 
before quantum field theory could reach its final pre-war form: a solution 
to the problem of the negative-energy states. We saw in the last section 
that in 1930, at just about the time of the Heisenberg-Pauli papers, Dirac 
had proposed that the negative-energy states of the electron were all filled, 
but with only the holes in the negative-energy sea observable, rather than 
the negative-energy electrons themselves. After Dirac's idea was seeming1 y 
confirmed by the discovery of the positron in 1932, his 'hole theory' was 
used to calculate a number of processes to the lowest order of perturbation 
theory, including electron-positron pair production and scattering. 

At the same time, a great deal of work was put into the development 
of a formalism whose Lorentz invariance would be explicit. The most 
influential effort was the 'many-time' formalism of Dirac, Vladimir Fock, 
and Boris ~odolsky?' in which the state vector was represented by a 
wave function depending on the spacetime and spin coordinates of all 
electrons, positive-energy and negative-energy. In this formalism, the total 
number of electrons of either positive or negative energy is conserved; 
for instance, production of an electron-positron pair is described as the 
excitation of a negative-energy electron to a positive-energy state, and the 
annihilation of an electron and positron is described as the corresponding 
deexcitation. This many-time formalism had the advantage of manifest 
Lorentz invariance, but it had a number of disadvantages: In particular, 
there was a profound difference between the treatment of the photon, 
described in terms of a quantized electromagnetic field, and that of the 
electron and positron. Not all physicists felt this to be a disadvantage; 
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the electron field unlike the electromagnetic field did not have a classical 
limit, so there were doubts about its physical significance. Also, 13iracdh 
conceived of fields as the means by which we observe particles, so that 
he did not expect particles and fields to be described in the same terms. 
Though I do not know whether i t  bothered anyone at the time, there was 
a more practical disadvantage of the many-time formalism: it would have 
been difficult to use it to describe a process like nuclear beta decay, in 
which an electron and antineutrino are created without an accompanying 
positron or neutrino. The successful calculation by ~errnj" of the electron 
energy distribution in beta decay deserves to be counted as one of the 
early triumphs of quantum field theory. 

The essential idea that was needed to demonstrate the equivalence of 
the Dirac hole theory with a quantum field theory of the electron was 
provided by ~ u ~ k ~ ~ ~  and by Wendell Furry and oppenheirnerd4 in 19334. 
To appreciate this idea from a more modern standpoint, suppose we try 
to construct an electron field in analogy with the electromagnetic field or 
the Born-Heisenberg-Jordan field (1.2.2). Since electrons carry a charge, 
we would not like to mix annihilation and creation operators, so we might 
try to write the field as 

where uk (x)e-"*' are a complete set of orthonormal plane-wave solutions 
of the Dirac equation (1.1.13) (with k now labelling the three-momentum, 
spin, and sign of the energy) : 

and ak are the corresponding annihilation operators, satisfying the Jordan- 
Wigner anticommutation relations (1 2.22)-( 1.2.23). According to the 
ideas of 'second quantization' or the canonical quantization procedure 
of Heisenberg and ~ a u l i , ~ '  the Hamiltonian is formed by calculating the 
'expectation value' of X with a 'wave function' replaced by the quantized 
field ( 1.2.37) 

The trouble is, of course, that this is not a positive operator - half the ok 
are negative while the operators aLak take only the positive eigenvalues 
1 and 0. (See Eqs. (1.2.24) and (1.2.25j.) In order to cure this disease, 
Furry and Oppenheimer picked up Dirac's idea42 that the positron is the 
absence of a negative-energy electron; the an ticommutation relations are 



symmetric between creation and annihilation operators, so they defined 
the positron creation and annihilation operators as the corresponding 
annihilation and creation operators for negative-energy electrons 

where the label k on b denotes a positive-energy positron mode with 
momenta and spin opposite to those of the electron mode k. The Dirac 
field (1.2.37) may then be written 

y (x) = '+)akuk (x) + 1 '-'b: uk (x) , 

where (+) and (-1 indicate sums over normal modes k with C O ~  > O 
and rrlk < 0, respectively, and uk{x)  = ~ ~ { x ) e - ' ~ k ~ .  Similarly, using the 
anticommutation relations for the hs, we can rewrite the energy operator 
(1.2.41) as 

where Eo is the infinite c-number 

In  order for this redefinition to be more than a mere formality, it is 
necessary also to specify that the physical vacuum is a state Yo containing 
no positive-energy electrons or positrons: 

Hence (1.2.44) gives the energy of the vacuum as just Eo. I T  we measure 
all energies relative to the vacuum energy Eo, then the physical energy 
operator is H - E o ;  and Eq. (1.2.44) shows that this is a positive operator. 

The problem of negative-energy states for a charged spin zero particle 
was also resolved in 1934, by Pauli and ~ e i s s k o ~ f $ ~  in a paper written 
in part to challenge Dirac's picture of filled negativeenergy states. Here 
the creation and annihilation operators satisfy commutation rather than 
anticommutation relations, so it is not possible to interchange the roles of 
these operators freely, as was the case for fermions. Instead we must return 
to the Heisenberg-Pauli canonical formalism4' to decide which coefficients 
of the various normal modes are creation or annihilation operators. 

Pauli and Weisskopf expanded the free charged scalar field in plane 
waves in a cube of spatial volume V - L>: 
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with the wave numbers restricted by the periodicity condition, that the 
quantities k j L / 2 ~  for j = 1,2,3 should be a set of three positive or 
negative integers. Similarly the canonically conjugate variable ( 1.2.29) was 
expanded as 

The minus sign i s  put into the exponent here so that (1.2.29) now becomes: 

p(k. t) = $(k,  t )  - (1.2.50) 

The Fourier inversion formula gives 

and therefore the canonical commutation relations (1 -2.3 1 )-(I .ZM) yield 
for the q s  and ps:  

[p(k, I), q(1, t )]  = $ d3x eik~'e-"~ = -ifidkl 

$(l, 01 = [ p k  t), 14, t)] = [p(k, t), pt(l, t ) ]  

together with other relations that may be derived from these by taking 
their Hermitian adjoints. By inserting (1.2.48) and (1.2.49) in the formula 
(1.2.36) for the Hamiltonian, we can also write this operator in terms of 
p s  and q s :  

where 

The time-derivatives of the p s  are then given by the Hamiltonian equation 

(and its adjoint), a result which in the light of Eq. (1.2.50) is just equivalent 
to the Klein-Gordon-Schriidinger wave equation (1.2.28). 

We see that, just as in the case of the 1926 model of Born, Heisenberg, 
and ~ c i r d a n , ~  the free field behaves like an  infinite number of coupled 
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harmonic oscillators. Pauli and Weisskopf could construct p and q op- 
erators which satisfy the commutation relations {l.2.53)-(1.2.54) and the 
'equations of motion' (1.2.50) and ( 1  .I57 ), by introducing annihilation 
and creation operators u, b, at, b' of two different kinds, corresponding 
to particles and antiparticles: 

where 

I t  is straightforward to check that these operators do satisfy the desired 
relations (1.2.53), (l.2.$4), ( 1  .Z.$O), and (1.2.57). The field (1.2.48) may he 
written 

-ht(-k) exp(-ik . x + iokt)] 

and the Hamiltonian (1.2.55) takes the form 

or, using (1.2.60)-( 1.2.62) 

where Eo is the infinite c-number 

The existence of two different kinds of operators a and b, which appear 
in precisely the same way in the Hamiltonian, shows that this is a theory 
with two kinds of particles with the same mass. As emphasized by Pauli 
and Weisskopf, these two varieties can be identified as particles and the 
corresponding antiparticles, and if charged have opposite charges. Thus, 



as we stressed above, bosons of spin zero as well as fermions of spin 1/2 
can have distinct antiparticles, which for bosons cannot be identified as 
holes in a sea of negative energy particles. 

We now can tell whether a and h or at and bt are the annihilation 
operators by taking the expectation values of commutation relations in 
the vacuum state 'Yo. For instance, if a: were an annihilation operator 
it would give zero when applied to the vacuum state, so the vacuum 
expectation value of (1.2.60) would give 

in conflict with the requirement that the left-hand side must be negative- 
definite. In  this way we can conclude that it is ak and bk that are the 
annihilation operators, and therefore 

This is consistent with a11 commutation relations, Thus, the canonical 
formalism forces the coefficient of the etiUt in the field (1.2.58) to be a 
creation operator, as it also is in the Furry-Oppenheimer formalism44 for 
spin 1/2. 

Equations (1.2.64) and (1.2.47) now tell us that Eo is the energy of the 
vacuum state. If we measure all energies relative to Eo, then the physical 
energy operator is H - Eo, and (1.2.64) shows that this again is positive. 

What about the problem that served Dirac as a starting point, the 
probiem of negative probabilities? As Dirac had recognized, the only 
probability density p, which can be formed from solutions of the Klein- 
Gordon-Schrodinger free scalar wave equation {1,2.28), and which satisfies 
a conservation law of the form {1.1.10), must be proportional to the 
quantity 

and therefore is not necessarily a positive quantity. Similarly, in the 
'second-quantized' theory, where q5 is given by Eq. (1,2.63), p is not a 
positive operator. Since bt(x) does not commute with #(x) here, we can 
write (1.2.68) in various forms, which differ by infinite c-numbers; it proves 
convenient to write it as 

The space-integral or this operator is then easily calculated to be 

and clearly has eigenvalues of either sign. 
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However, in a sense this problem appears in quantum field theory for 
spin 112 as well as spin zero. The density operator ytyl of Dirac is 
indeed a positive operator, but in order to construct a physical density 
we ought to subtract the contribution of the filled electron states. In 
particular, using the plane-wave decomposition j1.2.43), we may write the 
total number operator as 

N = / d'x  r t y ~  = (+)a'(k)a(k} + (-)b(k)bt(k) . 

The anticommutation relations for the bs allow us to rewrite this as 

where No is the infinite constant 

According to Eqs. (1.2.46) and (1.2.47), No is the number of particles 
in the vacuum, so Furry and Oppenheimer reasoned that the physical 
number operator is N - No, and this now has both negative and positive 
eigenvalues, just as for spin zero. 

The solution to this problem provided by quantum field theory is that 
neither the y of Furry and Oppenheirner nor the 4 of Pauli and Weisskopf 
are probability amplitudes, which would have to define conserved positive 
probability densities. Instead, the physical Hilbert space is spanned by 
states defined as containing definite numbers of particles and/or antipar- 
ticles in each mode. If Q, are a complete orthonormal set of such states, 
then a measurement of particle numbers in an arbitrary state ly will yield 
a probability for finding the system in state Q,, given by 

where (@,, Y) is the usual Hilbert space scalar product. Hence, no question 
as to the possibility of negative probabilities will arise for any spin. The 
wave fields #, y ,  etc, are not probability amplitudes at all, but operators 
which create or destroy particles in the various normal modes. It would 
be a good thing if the misleading expression 'second quantization' were 
permanent1 y retired. 

In particular, the operators N and N - No of Eqs. (1.2.70) and (1.2.71) 
are not to be interpreted as total probabilities, but as number operators: 
specifically, the number of particles minus the number o f  antiparticles. For 
charged particles, the conservation of charge forces the charge operators to 
be proportional to these number operators, so the minus signs in (1.2.70) 
and- (1.2.71) allow us immediately to conclude that particles and antipar- 
ticles have opposite charge. In this field-theoretic formalism, interactions 
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contribute terms to the Hamiltonian which are of third, fourth, or higher 
order in field variables, and the rates of various processes are given by 
using these interaction operators in a time-dependent perturbation theory. 
The conceptual framework described in the above brief remarks will serve 
as the basis for much of the work in this book, 

Despite its apparent advantages, quantum field theory did not imme- 
diately supplant hole theory; rather, the two points of view coexisted for 
a while, and various combinations of field-theoretic and hole-theoretic 
ideas were used in calculations of physical reaction rates. This period saw 
a number of calculations of cross sections to lowest order in powers of 
e2 for various processes, such as e- + 5: + r + 4 in 1929 by Klein and 
!NishinaP6 eC + e- + 2y in 1930 by ~i rac ; "  7- + r i e + e  in 1932 by 
~ $ l l e r ; ~ '  e-+Z -+ e- + y  +Z and y + Z  + r++e- +Z (where Z denotes 
the Coulomb field of a heavy atom) in 1934 by Bethe and H ~ i t l e r ; ~ '  and 
e+ +c- + e + +a- in 1936 by ~ h a b h a . ~ ~  (Rules for the calculation of such 
processes are given in Chapter 8, and worked out in detail there for the 
case of electron-photon scattering.) These lowest-order calculations gave 
finite results, in reasonable agreement with the experimental data. 

Nevertheless, a general feeling of dissatisfaction with quantum field 
theory (whether or not in the form of hole theory) persisted throughout 
the 1930s. One of the reasons for this was the apparent failure of 
quantum electrodynamics to account for the penetrating power of the 
charged particles in cosmic ray showers, noted in 1936 by Oppenheimer 
and Franklin ~ a r l s o n . ~ ~ ~  Another cause of dissatisfaction that turned 
out to be related to the first was the steady discovery of new kinds 
of particles and interactions. We have already mentioned the electron, 
photon, positron, neutrino, and, of course, the nucleus of hydrogen, the 
proton. Throughout the 1920s it was generally believed that heavier nuclei 
are composed of protons and electrons, but it was hard to see how a light 
particle like the electron could be confined in the nucleus. Another severe 
difficulty with this picture was pointed out in 1931 by Ehrenfest and 
~ppenhe imer :~ '  the nucleus of ordinary nitrogen, N ' ~ ,  in order to have 
atomic number 7 and atomic weight 14, would have to be composed of 
14 protons and 7 electrons, and would therefore have to be a fermion, in 
conflict with the result of molecular spectro~copy"~ that N ' ~  is a boson. 
This problem (and others) were solved in 1932 with the discovery of the 
neutron,53 and by Heisenberg's subsequent suggestions4 that nuclei are 
composed of protons and neutrons, not protons and electrons. It was 
clear that a strong non-electromagnetic force of short range would have 
to operate between neutrons and protons to hold nuclei together. 

After the success of the Fermi theory of beta decay, several authorssh 
speculated that nuclear forces might be explained in this theory as due 
to the exchange of electrons and neutrinos. A few years later, in 1935, 
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Hideki Yukawa proposed a quite different quantum field theory of the 
nuclear force.55 In an essentially classical calculation, he found that the 
interaction of a scalar field with nucleons (protons or neutrons) would 
produce a nucleon-nucleon potential, with a dependence on the nucleon 
separation r given by 

instead of the l / r  Coulomb potential produced by electric fields. The 
quantity A was introduced as a parameter in Yukawa's scalar field equation, 
and when this equation was quantized, Yukawa found that it described 
particles of mass hilt. The observed range of the strong interactions 
within nuclei led Yukawa to estimate that h i / c  is of the order of 200 
electron masses. In 1937 such 'mesons' were discovered in cloud chamber 
experiments5' by Seth Neddermeyer and Anderson and by Jabez Curry 
Street and Edward Carl Stevenson, and it was generally believed that 
these were the hypothesized particles of Yu kawa. 

The discovery of mesons revealed that the charged particles in cosmic 
ray showers are not all electrons, and thus cleared up the problem with 
these showers that had bothered Oppenheimer and Carlson. At the same 
time, however, it created new difficulties. Lothar ~ o r d h e i m ~ ~  pointed 
out in 1939 that the same strong interactions by which the mesons are 
copiously produced at high altitudes (and which are required in Yukawa's 
theory) should have led to the mesons' absorption in the atmosphere, a 
result contradicted by their copious appearance at lower altitudes. In 1947 
it was shown in an experiment by Marcello Conversi, Ettore Pancini, and 
Oreste ~ i a i o n i ' ~  that the mesons which predominate in cosmic rays at  
low altitude actually interact weakly with nucleons, and therefore could 
not be identified with Yukawa's particle. This puzzle was cleared up by 
a theoretical suggestion?%nd its subsequent experimental c ~ n f i r m a t i o n ~ ~  
by Cesare Lattes, Occhialini, and Cecil Powell - there are two kinds 
of mesons with slightly different masses: the heavier (now called the ~s 

meson or pion) has strong interactions and plays the role in nuclear force 
envisaged by Yukawa; the lighter (now called the p meson, or muon) has 
only weak and electromagnetic interactions, and predominates in cosmic 
rays at sea level, being produced by the decay of n mesons. In the same 
year, 1947, entirely new kinds of particles (now known as K mesons and 
hyperons) were found in cosmic rays by George Rochester and Clifford 
~utler." From 1947 until the present particles have continued to be 
discovered in a bewildering variety, but to pursue this story would take 
us outside the bounds of our present survey. These discoveries showed 
clearly that any conceptual framework which was limited to photons, 
electrons, and positrons would be far too narrow to be taken seriously as 
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a fundamental theory. But an even more important obstacle was presented 
by a purely theoretical problem the problem of infinities. 

1.3 The Problem of Infinities 

Quantum field theory deals with fields 147(x) that destroy and create parti- 
cles at a spacetime point x. Earlier experience with classical electron theory 
provided a warning that a point electron will have infinite electromagnetic 
self-mass; this mass is e 2 / 6 m $  for a surface distribution of charge with 
radius a, and therefore blows up for a + 0. Disappointingly this problem 
appeared with even greater severity in the early days of quantum field 
theory, and although greatly ameliorated by subsequent improvements in 
the theory, it remains with us to the present day. 

The problem of infinities in quantum field theory was apparently first 
noted in the 1929-30 papers of Heisenberg and ~ a u l i . ~ '  Soon after, the 
presence of infinities was confirmed in calculations of the electromagnetic 
self-energy of a bound electron by Clppenheirner,6' and of a free electron 
by Ivar They used ordinary second-order perturbation theory, 
with an intermediate state consisting of an electron and a photon: for 
instance, the shift of the energy E, of an electron in the nth energy level 
of hydrogen is given by 

where the sums and integral are over a11 intermediate electron states 
m, photon helicities A, and photon momenta k, and H f  is the term in 
the Hamiltonian representing the interaction of radiation and electrons. 
This calculation gave a self-energy that is formally infinite; further; if 
this infinity is removed by discarding all intermediate states with photon 
wave numbers greater than l / u ,  then the self-energy behaves like I/$ 
as a -+ 0. Infinities of this sort are often called ultraviolet divergences, 
because they arise from intermediate states containing particles of very 
short wavelength. 

These calculations treated the electron according to the rules of the 
original Dirac theory, without filled negative-electron states. A few years 
later Weisskopf repeated the calculation of the electron self-mass in the 
new hole theory, with all negative-energy states full. In  this case another 
term appears in second-order perturbation theory, which in a non-hole- 
theory language can be described as arising from processes in which the 
electron in its final state first appears out of  the vacuum together with 
a photon and a positron which then annihilate along with the initial 
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electron. Initially Weisskopf found a l/a2 dependence on the photon 
wave-number cutoff l/a. The same calculation was being carried out (at 
the suggestion of Bohr) at that time by Carlson and Furry, After seeing 
Weisskopf s results, Furry realized that while Weisskopf had included an 
electrostatic term that he and Carlson had neglected, Weisskopf had made 
a new mistake in the calculation of the magnetic self-energy. After hearing 
from Furry and correcting his own error, Weisskopf found that the l/a2 
terms in the total mass shift cancelled! However, despite this cancellation, 
an infinity remained: with a wave-number cutoff l/a, the self-mass was 
found to be63 

The weakening of the cut-off dependence, to lna as 
classical l /a  or the early quantum 1/u2, was mildly 
time and turned out to be of great importance later, 
of renormalization theory. 

compared with the 
encouraging at the 
in the development 

An infinity of quite a different kind was encountered in 1933, apparently 
first by ~ i r a c . ~ ~  He considered the effect of an external static nearly 
uniform charge density ~ ( x )  on the vacuum, i.e., on the negative-energy 
electrons in the filled energy levels of hole theory. The Coulomb interaction 
between E ( X )  and the charge density of the negative-energy electrons 
produces a 'vacuum polarization,' with induced charge density 

The constant B is finite, and of order a. On the other hand, A is 
logarithmically divergent, of order or In a, where l / a  is the wave-number 
cutoff. 

Infinities also seemed to occur in a related problem, the scattering of 
light by light. Hans Euler, Bernard Kackel, and Heisenberg6bhowed in 
1935-6 that these infinities could be eliminated by using a more-or-less ar- 
bitrary prescription suggested earlier by ~ i r a c 6 ~  and ~ e i s e n b e r ~ ~ ~ .  They 
calculated an effective Lagrangian density for the non-linear electrody- 
namic effects produced by virtual electron-positron pairs: 

valid for frequencies v << m,c2/h. Soon after, Nicholas Kemmer and 
weisskopP8 presented arguments that in this case the infinities are spuri- 
ous, and that Eq. (1.3.4) can be derived without any subtraction prescrip- 
tion. 

One bright spot in the struggle with infinities was the successful treat- 
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ment of infrared divergences, those that arise from the low-energy rather 
than the high-energy part of the range of integration. In 1937 it was 
shown by Felix Bloch and Arne ~ o r d s i e c k @ ~  that these infinities cancel 
provided one includes processes in which arbitrary numbers of low-energy 
photons are produced. This will be discussed in modern terms in Chapter 
13. 

Yet another infinity turned up in a calculation by Sidney Michael 
~anco f f "  in 1939 of the radiative corrections to the scattering of electrons 
by the static Coulomb field of an atom. The calculation contained a 
mistake (one of the terms was omitted), but this was not realized until 
later.69a 

Throughout the 1930s, these various infinities were seen not merely as 
failures of specific calculations. Rather, they seemed to indicate a gap 
in the understanding of relativistic quantum field theory on the most 
fundamental level, an opinion reinforced by the problems with cosmic 
rays mentioned in the previous section. 

One of the symptoms of this uneasy pessimism was the continued 
exploration throughout the 1930s and 1940s of alternative formalisms. 
As Julian ~ c h w i n g e r ~ ~ ~  later recalled, 'The preoccupation of the majority 
of involved physicists was not with analyzing and carefully applying the 
known relativistic theory of coupled electron and electromagnetic fields 
but with changing it '  Thus in 1938 kleisenberg70 proposed the existence 
of a fundamental length L, analogous to the fundamental action h and 
fundamental velocity c. Field theory was supposed to work only for 
distances larger than L, so that all divergent integrals would effectively 
be cut off at distances L, or momenta ?I/ L. Several specific  proposal^'^ 
were made for giving field theory a non-local structure. Some theorists 
began to suspect that the formalism of state-vectors and quantum fields 
should be replaced by one based solely on observable quantities, such 
as the S-matrix introduced by John Archibald wheeler" in 1937 and 
~ e i s s n b e r g ~ ~  in 1943, whose elements are the amplitudes for various 
scattering processes. As we shall see, the concept of the S-matrix has now 
become a vital part of modern quantum field theory, and for some theorists 
a pure S-matrix theory became an ideal, especially as a possible solution 
to the problems of the strong  interaction^.'^ In yet another direction, 
Wheeler and Richard ~ e ~ n r n a n ~ ~  in 1945 attempted to eliminate the 
electromagnetic field, deriving electromagnetic interactions in terms of an 
interaction at a distance. They were able to show that a pure retarded (or 
pure advanced) potential could be obtained by taking into account the 
interaction not only between source and test charges, but also between 
these charges and all the other charges in the universe. Perhaps the 
most radical modification of quantum mechanics suggested during this 
period was the introduction by ~ i r a c ~ ~  of states of negative probability, 



as a means of cancelling infinities in sums over states. This idea, of an 
'indefinite metric' in Hilbert space, has also flourished in quantum field 
theory, though not in the form originally suggested. 

A more conservative idea for dealing with the infinities was also in 
the air during the 1930s. Perhaps these infinities could all be absorbed 
into a redefinition, a 'renormalization' of the parameters of the theory. 
For instance, it was already known that in any Lorentz-invariant classical 
theory the electromagnetic self-energy and self-momentum of an electron 
must take the form of corrections to the mass of the electron; hence the 
infinities in these quantities can be cancelled by a negative infinity in the 
'bare' nm-electromagnetic mass of the electron, leaving a finite measurable 
'renormalized' mass. Also, Eq. (1.3.3) shows that the vacuum poiarization 
changes the charge of the electron, from e = J d3x E, to 

Vacuum polarization gives finite results in lowest order if observables like 
scattering cross-sections are expressed in terms of eToTAL rather than e .  
The question was, whether all infinities in quantum field theory could be 
dealt with in this way. In  1936 ~ e i s s k q f  76 suggested that this is the case, 
and verified that known infinities could be eliminated by renormalization 
of physical parameters in a variety of sample calculations. However, i t  
was impossible with the calculational techniques then available to show 
that infinities could always be eliminated in this way, and Dancoff's 
c a l c u l a t i ~ n ~ ~  seemed to show that they could not. 

Another effect of the appearance of infinities was a tendency to believe 
that any effect which turned out to be infinite in quantum field theory 
was actually not there at all. In particular, the 1928 Dirac theory had 
predicted complete degeneracy of the levels of hydrogen to 
all orders in a ;  any attempt at a quantum electromagnetic calculation 
of the splitting of these two levels ran into the problem of the infinite 
self-energy of a bound electron; therefore the existence of such a splitting 
was generally not: taken seriously. Later ~ e t h e "  recalled that 'This shift 
comes out infinite in all existing theories, and has therefore always been 
ignored.' This attitude persisted even in the late 1930s, when spectroscopic 
experiments77 began to indicate the presence of a 2 ~ ~ / ~ - 2 p ~ / ~  splitting of 
order 1000 MHz. One notable exception was Edwin Albrecht ~ e h l i n ~ , ' ~  
who realized that the vacuum polarization effect mentioned earlier would 
produce a 2 ~ ~ / ~ - 2 ~ ~ / ~  splitting; unfortunately, as we shall see in Chapter 
14, this contribution to the splitting is much smaller than 1000 MHz, and 
of the wrong sign. 

The gloom surrounding quantum field theory began to lift soon after 
World War 11. On June 14 ,  1947, the Conference on the Foundations of 
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Quantum Mechanics at Shelter Island, NY brought theoretical physicists 
who had been working on the problems of quantum field theory through 
the 1930s together with a younger generation of theorists who had started 
scientific work during the war, and - of crucial importance - a few 
experimental physicists. The discussion leaders were Hans Kramers, Op- 
penheimer, and Weisskopf. One of the experimentalists (or rather theorist 
turned experimentalist), Willis Lamb, described a decisive rnea~urernent~~ 
of the 2 ~ ~ / ~ - 2 p ~ ~ ~  shift in hydrogen. A beam of hydrogen atoms from an 
oven, many in 2s and 2 p  states, was aimed at a detector sensitive only to 
atoms in excited states. The atoms in 2p states can decay very rapidly to 
the Is ground state by one-photon (Lyman a) emission, while the 2s states 
decay only very slowly by two-photon emission, so in effect the detector 
was measuring the number of atoms in the metastable 2s state. The 
beam was passed through a magnetic field, which added a known Zeeman 
splitting to any 23,  ,2-2p1/2 splitting naturally present. The beam was 
also exposed to a microwave-frequency electromagnetic field, with a fixed 
frequency v .- 10 GHz. At a certain magnetic field strength the detector 
signal was observed to be quenched, indicating that the microwave field 
was producing resonant transitions from the metastable 2s state to the 2p 
state and thence by a rapid Lyman a emission to the ground state. The 
total (Zeeman plus intrinsic) 2s-2p splitting at this value of the magnetic 
field strength would have to be just hv, from which the intrinsic splitting 
could be inferred. A preliminary value of 1000 MHz was announced, 
in agreement with the earlier spectroscopic  measurement^.^^ The impact 
of this discovery can be summarized in a saying that was current in 
Copenhagen when I was a graduate student there in 1954: 'Just because 
something is infinite does not mean it is zero!' 

The discovery of the Lamb shift aroused intense interest among the 
theorists at Shelter Island, many of whom had already been working on 
improved formalisms for calculation in quantum electrodynamics. Kra- 
mers described his work on mass renormalization in the classical electro- 
dynamics of an extended ele~tron,"~ which showed that the difficulties 
associated with the divergence of the self-energy in the limit of zero radius 
do not appear explicitly if the theory is reexpressed so that the mass pa- 
rameter in the formalism is identified with the experimental electron mass. 
Schwinger and Weisskopf (who had already heard rumors of Lamb's re- 
sult, and discussed the matter on the trip to Shelter Island) suggested that 
since the inclusion of intermediate states involving positrons was known 
to reduce the divergence in energy level shifts from l/a2 to In a, perhaps 
the djflerences of the shifts in atomic energy levels might turn out to be 
finite when these intermediate states were taken into account. (In fact, 
in 1946, before he learned of Lamb's experiment, Weisskopf had already 
assigned this problem to a graduate student, Bruce French.) Almost im- 
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mediately after the conference, during a train ride to Schenectady, Hans 
I3etheS0 carried out a nan-relativistic calculation, still without including 
the effects of intermediate states containing positrons, but using a simple 
cutoff at virtual photon momenta of order m,c2 to eliminate infinities, He 
obtained the encouraging approximate value of 1040 MHz. Fully rela- 
tivistic calculations using the renormalization idea to eliminate infinities 
were soon thereafter carried out by a number of other authors,81 with 
excellent agreement with experiment. 

Another exciting experimental result was reported at Shelter Island by 
Isidor I, Rabi. Measurements in his laboratory of the hyperfine structure 
of hydrogen and deuterium had suggesteds2 that the magnetic moment 
of the electron is larger than the Dirac value eA/2mc by a factor of 
about 1.0013, and subsequent measurements of the gyromagnetic ratios in 
sodium and gallium had given a precise values3 

Learning of these results, Gregory Breit suggestedg3" that they arose from 
an order a radiative correction to the electron magnetic moment. At Shel- 
ter Island, both Breit and Schwinger described their efforts to calculate this 
correction. Shortly after the conference Schwinger completed a successful 
calculation of the anomalous magnetic moment of the electrong4 

in excellent agreement with observation. This, together with Bethe's 
calculation of the Lamb shift, at last convinced physicists of the reality of 
radiative corrections. 

The mathematical methods used in this period presented a bewilder- 
ing variety of concepts and formalisms. One approach developed by 
~ c h w i n ~ e r ~ ~  was based an operator methods and the action principle, 
and was presented by him at a conference at Pocono Manor in 1948, 
the successor to the Shelter Island Conference. Another Lorentz-invariant 
operator formalism had been developed earlier by Sin-Itiro Tomonagag6 
and his co-workers in Japan, but their work was not at first known in the 
West. Tomonaga had grappled with infinities in Yukawa's meson theory 
in the 1930s. In 1947 he and his group were still out of the loop of 
scientific communication; they learned about Lamb's experiment from an 
article in Newsweek. 

An apparently quite different approach was invented by ~ e ~ n r n a n , ' ~  
and described briefly by him at the Pocono Conference. Instead of in- 
troducing quantum field operators, Feynman represented the S-matrix as 
a functional integral of exp ( i ~ ) ,  where W is the action integral for a 
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set of Dirac particles interacting with a cdassical electromagnetic field, 
integrated over all Dirac particle trajectories satisfying certain initial and 
final conditions for t 4 f m. One result of great practical importance that 
came out of Feynman's work was a set of graphical rules for calculating 
S-matrix elements to any desired order of perturbation theory. Unlike 
the old perturbation theory of the 1920s and 1930s, these Feynman rules 
automatically lumped together particle creation and antiparticle annihi- 
lation processes, and thereby gave results that were Lorentz-invariant at 
every stage. We have already seen in WeisskopPs early c a l ~ u l a t i o n ~ ~  of the 
electron self-energy, that it is only in such calculations, including particles 
and antiparticles on the same footing, that the nature of the infinities 
becomes transparent. 

Finally, in a pair of papers in 1949, Freeman tr son^^ showed that the 
operator formalisms of Schwingcr and Tomonaga would yield the same 
graphical rules that had been found by Feynman. Dyson also carried out 
an analysis of the infinities in general Feynman diagrams, and outlined a 
proof that these are always precisely the sort which could be removed by 
renormalization. One of the most striking results that could be inferred 
from Dyson's analysis was a criterion for deciding which quantum field 
theories are 'renormalizable', in the sense that all infinities can be absorbed 
into a redefinition of afinite number of coupling constants and masses. 
In particular, an interaction like the Pauli term (1.1.32), which would have 
changed the predicted magnetic moment of the electron, would spoil the 
renorrnalizability of quantum electrodynamics. With the publication of 
Dyson's papers, there was at last a general and systematic formalism that 
physicists could easily learn to use, and that would provide a common 
language for the subsequent applications of quantum field theory to the 
problems of physics. 

I cannot leave the infinities without taking up a puzzling aspect of 
this story. Clppenheimer6' in 1930 had already noticed that most of the 
ultraviolet divergence in the self-energy of a bound electron cancels when 
one takes the difference between the shifts of two atomic energy levels, 
and weisskopP3 in 1934 had found that most of the divergence in the 
self-energy of a free electron cancels when one includes intermediate states 
containing positrons. It would have been natural even in 1934 to guess 
that including positron intermediate states and subtracting the energy 
shifts of pairs of atomic states would eliminate the ultraviolet divergence 
in their relative energy shift.* There was even experimental evidence77 for 

In fact, this guess would have been wrong. As discussed in Sechn  14.3, radiative corrections to 
the electron mass sect atomic energy levels not only through a shift in the electron rest energy, 
which is the same in all atomic energy levels, but also through a change in the clcctron kinetic 
energy, that varies from one level to another. 
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a energy difference of order 1000 MHz. So why did no one 
before 1947 attempt an numericd estimate of this energy difference? 

Strictly speaking, there was one such attempts" in 1939, but it focused 
on the wrong part of the problem, the charge radius of  the proton, which 
has only a tiny effect on hydrogen energy levels. The calculation gave 
a result in rough agreement with the early experiments.77 This was a 
mistake, as shown in 1939 by ~arnb."' 

A fully relativistic calculation of the Lamb shift including positrons in 
intermediate states could have been attempted during the 1930s, using the 
old non-relativistic perturbation theory. As long as one keeps all terms up 
to a given order, old-fashioned non-relativistic perturbation theory gives 
the same results as the manifestly relativistic formalisms of Feynman, 
Schwinger, and Tomonaga. In fact, after Bethe's work, the first precise 
calculationsa1 of the Lamb shift in the USA by French and Weisskopf and 
Norman Kroll and Lamb were done in just this way, though Tomonoga's 
group 81 in Japan was already using covariant methods to solve this and 
other problems. 

The one missing element was confidence in renormalization as a means 
of dealing with infinities. As we have seen, renormalization was widely 
discussed in the late 1930s. But it had become accepted wisdom in 
the 1930s, and a point of view especially urged by ~ ~ ~ e n h e i r n e r : ~  that 
quantum electrodynamics could not be taken seriously a t  energies of more 
than about 100 MeV, and that the solution to its problems could be found 
only in really adventurous new ideas. 

Several things happened at Shelter Island to change this expectation. 
One was news that the problems concerning cosmic rays discussed in 
the previous section were beginning to be resolved; Robert Marshak 
presented the hypothesisSR that there were two types of 'meson' with 
similar masses; the muons that had actually been observed, and the pions 
responsible for nuclear forces. More important was the fact that now there 
were reliable experimental values for the Lamb shift and the anomalous 
magnetic moment that forced physicists to think carefully about radiative 
corrections. Probably equally important was the fact that the conference 
brought together theorists who had in their own individual ways been 
thinking about renormalization as a solution to the problem of infinities. 
When the revolution came in the late 1 9 4 0 ~ ~  it was made by physicists 
who though mostly young were playing a conservative role, turning away 
from the search by their predecessors for a radical solution. 
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Relativistic Quantum Mechanics 

The point of view of this book is that quantum field theory is the way 
it is because (with certain qualifications) this is the only way to reconcile 
quantum mechanics with special relativity. Therefore our first task is 
to study how symmetries like Lorentz invariance appear in a quantum 
setting. 

2.1 Quantum Mechanics 

First, some good news: quantum field theory is based on the same 
quantum mechanics that was invented by Schrijdinger, Heisenberg, Pauli, 
Born, and others in 1925-26, and has been used ever since in atomic, 
molecular, nuclear, and condensed matter physics. The reader is assumed 
to be already familiar with quantum mechanics; this section provides 
only the briefest of summaries of quantum mechanics, in the generalized 
version of I3irac.l 

(i) Physical states are represented by rays in Hilbert space. A Hilbert 
space is a kind of complex vector space; that is, if 0 and yl are vectors 
in the space [often called 'state-vectors') then so is <@ + qY, for arbitrary 
complex numbers e, u y .  It has a norm* : for any pair of vectors there i s  a 
complex number (@, Y), such that 

The norm (Y,yl) also satisfies a positivity condition: (Y!,Y) 2 0, and 
vanishes if and only if Y = 0. (There are also certain technical assumptions 
that allow us to take limits of vectors within Hilbert space.) A ray is a 

We shali often use the Dirac bra-ke~ nutation: instead of (Y Y?), we may write (1 12). 
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set of normalized vectors (k, (Y, Y) = 1) with Y and Y' belonging to 
the same ray if Y' = <Y, where { is an arbitrary complex number with 
It1 = 1- 

(ii) Observables are represented by Hermitian operators. These are map- 
pings Y -+ AY of Hilbert space into itself, linear in the sense that 

A I t Y  + v @ )  = tAY + q A @  (2.1.4) 

and satisfying the reality condition A~ = A, where for any linear operator 
A the adjoint A? is defined by 

(There are also technical assumptions about the continuity of AYI as a 
function of Y.) A state represented by a ray .%' has a definite value .Y for 
the observable represented by an operator A if vectors !I-' belonging to this 
ray are eigenvectors of A with eigenvalue ,z: 

AY = aY for yl in .# . (2.1.6) 

An elementary theorem tells us that for A Hermitian, .% is real, and 
eigenvectors with different rxs are orthogonal, 

(iii) If a system is in a state represented by a ray A?, and an experiment 
is done to test whether it is in any one of the different states represented 
by mutually orthogonal rays 21, 22,. . . (for instance, by measuring one or 
more observables) then the probability of finding it in the state represented 
by .3?, is 

where Y! and Y, are any vectors belonging to rays 8 and 9,, respectively, 
(A pair of rays is said to be orthogonal if the state-vectors from the two 
rays have vanishing scalar products.) Another elementary theorem gives 
a total probability unity: 

if the state-vectors CY, form a complete set+ 

A symmetry transformation is a change in our point of view that does not 
change the results of possible experiments. If an observer 0 sees a system 
in a state represented by a ray .% or g1 or g2. .  . , then an equivalent 
observer 0' who looks at the same system will observe it in a different 
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state, represented by a ray 1' or 9; or 3;. . . , respectively, but the two 
observers must find the same probabilities 

(This is only a necessary condition for a ray transformation to be a 
symmetry; further conditions are discussed in the next chapter.) An 
important theorem proved by wigner2 in the early 1930s tells us that for 
any such transformation 8 + 9' of rays we may define an operator U 
on Hilbert space, such that if Y is in ray .% then UY is in the ray .@, 
with U either zluailury and l i n ~ a r  

Wigner's proof omits some steps. A more complete proof is given at the 
end of this chapter in Appendix A. 

As already mentioned, the adjoint of a linear operator L is defined by 

This condition cannot be satisfied for an antilinear operator, because in 
this case the right-hand side of Eq. (2.2.6) would be linear in @, while 
the left-hand side i s  antilinear in a. Instead, the adjoint of an antilinear 
operator A is defined by 

With this definition, the conditions for unitarity or antiunitarity both take 
the form 

There is always a trivial symmetry transformation -9 4 ,@, represented 
by the identity operator U = I. This operator is, of course, unitary 
and linear. Continuity then demands that any symmetry (like a rotation 
or translation or Lorentz transformation) that can be made trivial by 
a continuous change of some parameters (like angles or distances or 
velocities) must be represented by a linear unitary operator U rather 
than one that is antilinear and antiuni tary, (Symmetries represented by 
antiunitary antilinear operators are less prominent in physics; they all 
involve a reversal in the direction of time's flow. See Section 2.6.) 

In particular, a symmetry transformation that is infinitesimally close 
to being trivial can be represented by a linear unitary operator that is 
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infinitesimally close to the identity: 

with F a real infinitesimal. For this to be unitary and linear, t must be 
Hermitian and linear, so it is a candidate for an observable. Indeed, most 
(and perhaps all) of the observables of physics, such as angular momentum 
or momentum, arise in this way from symmetry transformations. 

The set of symmetry transformations has certain properties that define 
it as a group. If TI is a transformation that takes rays ~2, into gh, and Tz 
is another transformation that takes 92; into B:, then the result of per- 
forming both transformations is another symmetry transformation, which 
we write T2T1, that takes 9, into .%:, Also, a symmetry transformation 
T which takes rays 8, into 41; has an inverse, written T - I ,  which takes 
A?; into 9,, and there is an identity transformation, T = 1, which leaves 
rays unchanged. 

The unitary or antiunitary operators U{ T )  corresponding to these sym- 
metry transformations have properties that mirror this group structure, 
but with a complication due to the fact that, unlike the symmetry trans- 
formations themselves, the operators U(T) act on vectors in the Hilbert 
space, rather than on rays. If TI takes .9, into WL, then acting on a vector 
Y, in the ray 9,, U ( T 2 )  must yield a vector U(T1)YI, in the ray %;, and 
if Tz takes this ray into g:, then acting on U(Tl)YC, it must yield a vector 
U(T2)U(Tl)Y,  in the ray W:. But U(T2Tl)Y, is also in this ray, so these 
vectors can differ only by a phase 4,(T2, TI) 

Furthermore, with one significant exception, the linearity (or antilinearity) 
of U ( T )  tells us that these phases are independent of the state Y,. Here 
is the proof Consider any two different vectors YA,YB, which are not 
proportional to each other. Then, applying Eq. (2.2.10) to the state 
YAs = Y A  + Ys,  we have 

Any unitary or antiunitary operator has an inverse (its adjoint) which 
is also unitary or antiunitary. Multiplying (2.2.11) on the left with 
U-' (TzTl ) ,  we have then 

the upper and lower signs referring to U ( T 2 T 1 )  unitary or antiunitary, 
respectively. Since Y A  and YB are linearly independent, this is only 
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possible if 

So as promised, the phase in Eq. (2.2.10) is independent of the state-vector 
Y,, and therefore this can be written as an operator relation 

For 4 = 0, this would say that the U ( T )  furnish a representation of the 
group of symmetry transformations. For general phases d(T2, TI), we 
have what is called a projective representation, or a representation 'up to 
a phase'. The structure of the Lie group cannot by itself tell us whether 
physical state-vectors furnish an ordinary or a projective representation, 
but as we shall see, it can tell us whether the group has any intrinsically 
projective representations at all. 

The exception to the argument that led to Eq. (2,2.14) is that it may 
not be possible to prepare the system in a state represented by Y A  + Ys. 
For instance, it is widely believed to be impossible to prepare a system in 
a superposition of two states whose total angular momenta are integers 
and half-integers, respectively. In such cases, we say that there is a 
'superselection rule' between different classes of  state^,^ and the phases 
$(Tz, TI) may depend on which of these classes of states the operators 
U(T2)U(Tl) and U(T2,  T I  ) act upon. We will have more to say about 
these phases and projective representations in Section 2.7. As we shall 
see there, any symmetry group with projective representations can always 
be enlarged (without otherwise changing its physical implications) in such 
a way that its representations can all be defined as nowprojective, with 
4 = 0. Until Section 2.7, we will just assume that this has been done, and 
take 4 = 0 in Eq. (2.2.14). 

There is a kind of group, known as a connected Lie group, of special 
importance in physics. These are groups of transformations T ( 6 )  that are 
described by a finite set of real continuous parameters, say Oa,  with each 
element of the group connected to the identity by a path within the group. 
The group multiplication law then takes the form 

with p(O, 0) a function of the 8 s and Os, Taking Oa = 0 as the coordinates 
of the identity, we must have 

As already mentioned, the transformations of such continuous groups 
must be represented on the physical Hilbert space by unitary (rather than 
antiunitary) operators U ( T ( 8 ) ) .  For a Lie group, these operators can be 



represented in at least a finite neighborhood of the identity by a power 
series 

u ( ~ ( 0 ) )  = l + i0'r. + $ O ~ O ~ Q ,  + . . . , (2.2.17) 

where t,, tb ,  = ~ ~ b ,  etc. are Hermitian operators independent of  the 
0s. Suppose that the U ( T ( 8 ) )  form an ordinary (i.e., not projective) 
representation of this group of transformations, i-e., 

Let us see what this condition looks like when expanded in powers of 
0" and 0". According to Eq. (2.2.161, the expansion of f " ( 0 ,B )  to second 
order must take the form 

f"(R,e) = e" + B" + fuhCBhsc + . . . (2.2.19) 

with real coefficients fuhc. (The presence of any terms of order O2 or o2 
would violate Eq. (2.2.16)) Then Eq. (2.2.18) reads 

The terms of order 1,0,i),fl2, and H 2  automatically match on both sides 
of Eq. (2.2.20), but from the 00 terms we obtain a non-trivial condition 

This shows that if we are given the structure of the group, i.e., the 
function f(O, d), and hence its quadratic coefficient f ab,., we can calculate 
the second-order terms in UjT(O)) from the generators t, appearing in the 
first-order terms. However, there is a consistency condition: the operator 
lhc must be sympnetric in b and c (because it is the second derivative of 
U(T(0)) with respect to tIb and 8') so Eq. (2.2.21) requires that 

where Cab, are a set of real constants known as structure csonsmrs 

Cube -f uhr + f u(:h . (2.2.23) 

Such a set of commutation relations is known as a Lie algebra. In Section 
2.7 we will prove in effect that the commutation relation (2.2.22) is the 
single condition needed to ensure that this process can be continued: the 
complete power series for U ( T ( 8 ) )  may be calculated from an infinite 
sequence of relations like Eq. (2.2.211, provided we know the first-order 
terms, the generators t,. This does not necessarily mean that the operators 
U ( T ( 8 ) )  are uniquely determined for all 0" if we know the t,, but it 
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does mean that the U(T(B))  are uniquely determined in at least a finite 
neighborhood of the coordinates 8" = 0 of the identity, in such a way that 
Eq. (2.2.15) is satisfied if U, a, and f (8,8) are in this neighborhood- The 
extension to all 0" i s  discussed in Section 2.7. 

There is a special case of some importance, that we will encounter again 
and again. Suppose that, the function f ( O , @  (perhaps just for same subset 
of the coordinates H a )  is simply additive 

This i s  the case for instance for translations in spacetime, or for rotations 
about any one fixed axis (though not for both together). Then the 
coefficients fab, in Eq. (2.2.19) vanish, and so do  the structure constants 
(2.2.23). The generators then all commute 

Such a group is called Abelian. In this case, it is easy to calculate U(T{O)) 
for all 6)'. From Eqs. (2.2.18) and (2.2.241, we have for any integer iV 

Letting N + yr;, and keeping only the first-order term in U ( T ( B / N ) ) ,  we 
have then 

and hence 

2.3 Quan turn Lorentz Transformations 

Einstein's principle of relativity states the equivalence of certain 'inertial' 
frames of reference. It is distinguished from the Galilean principle of rela- 
tivity, obeyed by Newtonian mechanics, by the transformation connecting 
coordinate systems in different inertial frames. If xp are the coordinates in 

2 3 one inertial frame (with xl,x , x  Cartesian space coordinates, and x0 = t 
a time coordinate, the speed of light being set equal to unity) then in any 
other inertial frame, the coordinates i~ '  must satisfy 

or equivalently 
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Here rl,, is the diagonal matrix, with elements 

and the summation convention is in force: we sum over any index like p 
and v in Eq. (2.3.21, which appears twice in the same term, once upstairs 
and once downstairs. These transformations have the special property 
that the speed of light is the same (in our units, equal to unity) in all 
inertial frames;' a light wave travelling at unit speed satisfies Jdx/dtJ = 1, 
or in other words q,,dxfidrv = d x 2  - dr2 = 0, from which it follows that 
also q,,,d~'Pdx'~ = 0, and hence Idxl/dt'l = 1. 

Any coordinate transformation xti + x'p that satisfies Eq. (2.3.2) is 
linear3" 

with up arbitrary constants, and a constant matrix satisfying the 
conditions 

For some purposes, it is useful to write the Lorentz transformation 
condition in a different way. The matrix g,, has an inverse, written 
qp", which happens to have the same components: it is diagonal, with 

1 1 -  2 2 -  3 3 =  = -1, q - q - 9 +l .  Multiplying Eq, (2.3.5) with f 7 A K ,  and 
inserting parentheses judiciously, we have 

Multiplying with the inverse of the matrix q,,Ap, then gives 

These transformations form a group. If we first perform a Lorentz 
transformation (2.3.41, and then a second Lorentz transformation x'fi + 
x"P, with 

then the effect is the same as the Lorentz transformation xp + x"P, with 

(Note that if APv and A" both satisfy Eq. (2.331, then so does rT",M,, SO 

this is a Lorentz transformation. The bar is used here just to distinguish 

' There is a larger class of cmrdinate transformations, known as crrnfirmal transformations, for 
which tji,,, dx'fidr'~ is proportional though generally not equal to q,, dxPdxv, and which therefore 
also leave the speed or light invariant. Conformal invarianoe in two dimensions has provcd 
enormously important in string theory and statistical mechanics, but the physical relevance of 
the= cmformal transformations in four spacetime dimensions is not yet clear. 



one Lorentz transformation from the other.) The transformations T(A, a) 
induced on physical states therefore satisfy the composition rule 

r[k,a)~(A,a) - T(AA,Au + a ) .  (2.3.8) 

Taking the determinant of Eq. (2.3.5) gives 

so As, has an inverse, (A- ' )~ ,  which we see from Eq. (2.3.5) takes the 
form 

- 1 ~  ) Y - A P =  - v - ~ v p ~ p f l ~ p ~  (2.3.10) 

The inverse of the transformation T(A,a) is seen from Eq. (2.3.8) to be 
T(A-', A - ' a ) ,  and, of course, the identity transformation is Tj1,O). 

In accordance with the discussion in the previous section, the transfor- 
mations T(A,  a) induce a unitary linear transformation on vectors in the 
physical Hilber t space 

The operators U satisfy a composition rule 

(As already mentioned, to avoid the appearance of a phase factor on the 
right-hand side of Eq. (2.3.11), it is, in general, necessary to enlarge the 
Lorentz group. The appropriate enlargement is described in Section 2.7.) 

The whole group of transformations T(A,a )  is properly known as the 
inhumogeneows Lvrentz g r w p ,  or Poinc~11"i group. It has a number of 
important subgroups. First, those transformations with u p  = 0 obviously 
form a subgroup, with 

T(A, 0) 7 (A, 0) = T(AA, o), (2.3.12) 

known as the homogeneous Lorentz group. Also, we note from Eq. (2.3.9) 
that either DetA = +1 or DetA = -1; those transformations with 
DetA = +1 obviously form a subgroup of either the homogeneous or 
the inhomogeneous Lorentz groups. Further, from the 00-components of 
Eqs. (2.3.5) and (2.3.61, we have 

with l' summed over the values 1,2, and 3. We see that either Aoo 2 +1 or 
noo 5 -1. Those transformations with hao 2 +I form a subgroup. Note 
that if AiL, and A!', are two such As, then 

But Eq. (2.3.13) shows that the three-vector ( A I ~ ,  hZo, has length 
d m ,  and similarly the three-vector (no1, hoz, no3) has length 
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\ / ( A O ~ ) Z  - 1, SO the scalar product of these two three-vectors is bounded 
by 

and so 

The subgroup of Lorentz transformations with DetA = +1 and hoo 2 +1 
is known as the proper orthochruraous Lorentz group. Since it is not 
possible by a continuous change of parameters to jump from Det A = 

t.1 to DetA = -1, or from noo 2 +1 to Aoo -1, any Lorentz 
transformation that can be obtained from the identity by a continuous 
change of parameters must have DetA and Aoo of the same sign as for 
the identity, and hence must belong to the proper orthochronous Lorentz 
group. 

Any Lorentz transformation is either proper and orthochronous, or 
may be written as the product of an element of the proper orthochronous 
Lorentz group with one of the discrete transformations r9 or ,F or PF, 
where P is the space inversion, whose non-zero elements are 

and 9- is the time-reversal matrix, whose non-zero elements are 

Thus the study of the whole Lorentz group reduces to the study of its 
proper orthochronous subgroup, plus space inversion and time-reversal. 
We will consider space inversion and time-reversal separately in Section 
2.6, Until then, we will deal only with the homogeneous or inhomogeneous 
proper ort hochronous Lorentz group. 

2.4 The Poincari! Algebra 

As we saw in Section 2.2, much of the information about any Lie symmetry 
group is contained in properties of the group elements near the identity. 
For the inhomogeneous Lorentz group, the identity is the transformation 
A/', = P,, d': = 0, so we want to study those transformations with 

both w", and &"being taken infinitesimal. The Lorentz condition (2.3.5) 
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reads here 

We are here using the convention, to be used throughout this book, that 
indices may be lowered or raised by contraction with g , , ,  or q p '  

Keeping only the terms of first order in UI in the Lorentz condition (2-3.51, 
we see that this condition now reduces to the antisymmetry of w,,,, 

A n  antisymmetric second-rank tensor in four dimensions has (4 x 3) /2  = 
6 independent components, so including the four components of ep, 

an inhomogeneous Lorcntz transformation js described by 6 + 4 = 10 
parameters. 

Since U{l,O) carries any ray into itself, it must be proportional to the 
unit operator,* and by a choice of phase may be made equal to it. For an 
infinitesimal Lorentz transformation (2.4.11, UjI + w,  F;-) must then equal 
1 plus terms linear in w,,, and 6,. We write this as 

Here Jf'" and PP are o- and €-independent operators. and the dots denote 
terms of higher order in rfl and/or 6. In order for U(l  +o, E )  to be unitary, 
the operators Jiafl and PP must be Hermitian 

Since m,,, is antisymmetric, we can take its coefficient Jfn to be antisym- 
metric also 

As we shall see, P ', P I ,  and ~ b r e  the components of the momentum 
operators, J*" p3', and J ' ~  are the components of the angular momentum 
vector, and P O  is the energy operator, or Hanailtonian.*' 

* In thc absence of supersclcction rules. the possibility that the proportionality factor may depend 
on the slate on which 1;(1,0) acts can be ruled out by thc same reasuning that we used in  Section 
2.2 Lo rule out the possibility that the phase5 in projective represcntations of symmetry groups 
may depend on the states on which the symmetries acL. Whcrc superselection rules apply, i t  may 
be necessar) to rcdefine U(1.0) by phase factors that dcpend on the sector on which it acts. 

" We will see that lhis identification uf the angular-rnomenlurn generators is forced on us by the 
ccrmmu~.atiim relations d the J"? On the other hand. thc cornmulation rclat~ons do not allow 
us to distinguish between PI' and -Yv.  su the sign for the epPrl tcrm i n  (2.4.3) is  a matler of 
convention. The consistency of the choice in (2.4.3) with the usual definition of the Ilarnilhnian 
P O  is shown in Seclion 3.1. 
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We now examine the Lorentz transformation properties of JPG and PP. 
We consider the product 

where Apt, and aF are here the parameters of a new transformation, 
unrelated to w and F. According to Eq. 2 . 3 ,  the product 
U ( A - I ,  -Apia) UjA, a )  equals U(1, O), so u(A1', -h-'a) is the inverse 
of U(A, a). It follows then from (2.3.1 1) that 

To first order in CL) and F,  we have then 

Equating coefficients of w,, and F, on both sides of this equation (and 
using (2.3.10)), we find 

For homogeneous Lorentz transformations (with & =  O), these transfor- 
mation rules simply say that JPv is a tensor and P p  is a vector. For pure 
translations (with Ap, = P,), they tell us that PP is translation-invariant, 
but J P u  is not. In particular, the change of the space-space components 
of JPu under a spatial translation is just the usual change of the angular 
momentum under a change of the origm relative to which the angular 
momentum is calculated. 

Next, let's apply rules (2.4.81, (2.4.9) to a transformation that is itself 
infinitesimal, i.e., Apt, = P, +wPy and a p  = .+, with infinitesimals up, and 
ehnrelated to the previous w and e. Using Eq. (2.4.31, and keeping only 
terms of first order in c d l ,  and FP,  Eqs. (2.4.8) and (2.4.9) now become 

Equating coefficients of (up, and F ,  on both sides of these equations, we 
find the commutation rules 

This is the Lie algebra of the Poincark group. 
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In quantum mechanics a special role is played by those operators 
that are conserved, i.e., that commute with the energy operator H = PO. 
Inspection of Eqs. (2.4.13) and (2.4.14) shows that these are the momentum 
three-vector 

P = { P I ,  ~ 2 ,  P} (2.4.1 5 )  

and the angular-momentum three-vector 
23 31 12 J = { J  , J  , J  } 

and, of course, the energy P O  itself, The remaining generators form what 
is called the 'boost' three-vector 

K = ( J ' ~ , J ~ ~ , J ' ~ )  , (2.4.17) 

These are not conserved, which is why we do not use the eigenvalues of K 
to label physical states. In  a three-dimensional notation, the commutation 
relations (2.4.l2), (2.4.13), (2.4. t 4) may be written 

where i, j , k ,  etc. run over the values 1, 2, and 3, and F i j k  is the totally 
antisymmetric quantity with €123 = + l .  The commutation relation (2.4.18) 
will be recognized as that of the angular-momentum operator. 

The pure translations T(1,a) form a subgroup of the inhomogeneous 
Lorentz group with a group multiplication rule given by (2.3.7) as 

~ ( l , a ) T ( l , a )  = T(1,iif a). (2.4.25) 

This is additive in the same sense as (2.2.24), so by using (2.4.3) and 
repeating the same arguments that led to (2.2.26), we find that finite 
translations are represented on the physical Hilbert space by 

In exactly the same way, we can show that a rotation Ro by an angle (81 
around the direction of 8 is represented on the physical Hilbert space by 

It is interesting to compare the Poincare algebra with the Lie algebra 
of the symmetry group of Newtonian mechanics, the Galilean group. We 
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could derive this algebra by starting with the transformation rules of the 
Galilean group and then following the same procedure that was used 
here to derive the Poincare algebra. However, since we already have 
Eqs. (2.4.18)-(2.4.241, it is easier to obtain the Galilean algebra as a 
low-velocity limit of the Poincark algebra, by what is known as an InKm- 
Wgner contraction4J. For a system of particles of typical mass m and 
typical velocity tl, the momentum and the angular-momentum operators 
are expected to be of order J - 1, P - mu. On the other hand, the energy 
operator is H = M -t W with a total mass M and non-mass energy W 

? (kinetic plus potential) of order M -- rn, W - ma-. inspection of Eqs. 
(2.4.18)<2.4.24) shows that these commutation relations have a limit for 
v << 1 of the form 

with K of order l / v .  Note that the product of a translation x 4 x + a 
and a 'boost' x + x + vt should be the transformation x -, x + vt + a, but 
this is not true for the action of these operators on Hilbert space: 

exp(iK - v )  exp(-iP . a)  = exp{iMa . v/2) exp (l(K v - P a)) . 

The appearance of the phase factor exp(iMa , v/2) shows that this is a 
projective representation, with a superselection rule forbidding the super- 
position of states of different mass. In this respect, the mathematics of the 
Poincark group is simpler than that of the Galilean group. However, there 
is nothing to prevent us from formally enlarging the Galilean group, by 
adding one more generator to its Lie algebra, which commutes with all 
the other generators, and whose eigenvahes are the masses of the various 
states. In this case physical states provide an ordinary rather than a 
projective representation of the expanded symmetry group. The difference 
appears to be a mere matter of notation, except that with this reinterpre- 
tation of the Galilean group there is no need for a mass superselection 
rule. 

2.5 One-Particle States 

We now consider the ~Iassification of one-particle states according to their 
transformation under the inhomogeneous Loren tz group. 

The components of the energy-momentum four-vector all commute with 
each other, so it is natural to express physical state-vectors in terms of 
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eigenvectors of the four-momentum. Introducing a label rr to denote all 
other degrees of freedom, we thus consider state-vectors Y,-, with 

For general states, consisting for instance of several unbound particles, 
the label 17 would have to be allowed to include continuous as well as 
discrete labels. We take as part of the definition of a one-particle state, 
that the label o is purely discrete, and will limit ourselves here to that 
case. {However, a specific bound state of two or more particles, such 
as the lowest state of the hydrogen atom, is to be considered as a one- 
particle state. It is not an elementary particle, but the distinction between 
composite and elementary particles is of no relevance here.) 

Eqs. (2.5.1) and (2.4.26) tell us how the states Y p ,  transform under 
translations: 

We must now consider how these states transform under homogeneous 
Lorentz transformations. 

Using (2.4-91, we see that the effect of operating on Y , ,  with a quantum 
homogeneous Lorentz transformation U(A,O) = U(A) is to produce an 
eigenvector of the four-momentum with eiganvalue Ap 

Hence U ( A ) Y p ,  must be a linear combination of the state-vectors 

~ ~ w ' , ~  = x Cnro(A, ~ ) ' b p , d  . (2.5.3) 
a' 

In general, it may be possible by using suitable linear combinations of 
the Y,, to choose the 0 labels in such a way that the matrix C,r,(A, p) 
is block-diagonal; i n  other words, so that the .VP, with a within any 
one block by themselves furnish a representation of the inhomogeneous 
Lorentz group. It is natural to identify the states of a specific particle 
type with the components of a representation of the inhamogeneous 
Lorentz group which is irreducible, in the sense that it cannot be further 
decomposed in this way." Our task now is to work out the structure of the 

Of course, different particle species may correspond to representations that are isomorphic, i.e., 
thal hare matrices Cu~,(A.p) that are either idenlical, or identical up lo a similarity transrorma- 
Lion. In some cases i t  may hc convenienl to definc particle types as irreducible representations 
of larger groups that contain the inhomogeneous proper urthochronous lo rent^ group as a sub- 
group; for instance, as we shall sec, for massless particies whose interactions respect the symmetry 
of space inversion i t  is customary to treat all the components of an irreducible representation d 
the inhomugeneous Lorentz group including space inversion as a single particle typc. 
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coefficients C,), (A, p)  in irreducible representations of the inhomogeneous 
Lorentz group. 

For this purpose, note that the only functions of pp that are left invariant 
by a 1  proper orthclchronous Lorentz transformations A" are the invariant 
square I qpvp'pv, and for p2 5 0, also the sign of Hence, for each 
value of p2, and (for p2 5 0) each sign of we can choose a 'standard' 
four-momentum, say kp, and express any p p  of this class as 

where L p ,  is some standard Lorentz transformation that depends on pp, 
and also implicitly on our choice of the standard k p .  We can then defZne 
the states V , ,  of momentum p by 

where N ( p )  is a numerical normaIiratian factor, to be chosen later. Up to 
this point, we have said nothing about how the o labeIs are related for 
different momenta; Eq. (2.5.5) now fills that gap. 

Operating on (2.5.5) with an arbitrary homogeneous Lorentz transfor- 
mation U(A), we now find 

The point of this last step is that the Lorentz transformation L - ~ ( A ~ ) A L ( ~ )  
takes k to L(p)k = p, and then to Ap, and then back to k ,  so it belongs 
to the subgroup of the homogeneous Lorentz group consisting of Lorentz 
transformations W p ,  that leave k)' invariant: 

This subgroup is called the little For any W satisfying Eq. (2.5,7), 
we have 

u( W ) y t . ~  Ddr(W)vk,d . (2.5.8) 
of 

The coefficients D ( W )  furnish a representation of the little group; that is, 
for any elements W, W we have 

and so 
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In  particular, we may apply Eq. (2.5.8) to the little-group transformation 

and then Eq. (2.5.6) takes the form 

Apart from the question of normalization, the problem of determining the 
coefficients C,!, in the transformation rule (2.5.3) has been reduced to the 
problem of finding the representations of the little group. This approach, 
of deriving representations of a group like the inhomogeneous Lorentz 
group from the representations of a little group, is called the method of 
indu~ed representatiom6 

Table 2.1 gves a convenient choice of the standard momentum k p  and 
the corresponding little group for the various classes of four-momenta. 

Of these six classes o f  four-momenta, only (a), (c) ,  and (f)  have any 
known interpretations in terms of physical states. Not much needs to 
be said here about case If)  - p p  = 0; it describes the vacuum, which 
is simply left invariant by U(A). In what follows we will consider only 
cases (a) and (c), which cover particles of mass M > 0 and mass zero, 
respectively. 

This is a good place to pause, and say something about the normal- 
ization of these states. By the usual orthonormalization procedure of 
quantum mechanics, we may choose the states with standard momentum 
k P  to be orthonormal, in the sense that 

(The delta function appears here because Y k ,  and Yk~,a~ are eigenstates 
of a Hemitian operator with eigenvalues k and kf, respectively.) This has 
the immediate consequence that the representation of the little group in 
Eqs. (2.5.8) and (2.5.1 1) must be unitary** 

Now, what about scalar products for arbitrary momenta? Using the 
unitarity of the operator UjA) in Eqs. (2.5.5) and (2.5.1 I), we find for the 

** The little groups SU(2.1) and S O ( 3 ,  1) for p2 > O and $' = 0 have no non-trivial finite- 
dimensimal unitary representations, so if there were any states with a given momentum @' with 
p2 > O or p" = O that transform non-trivially under the little group, there would have to be an 
infinite number of them. 
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Table 2.1. Standard momenta and the corresponding little group for various 
classes of four-momenta* Here K is an arbitrary positive energy, say I eV. 
The little groups are mostly pretty obvious: S U ( 3 )  is the ordinary rotation 
group in three dimensions (excluding space inversions), because rotations are the 
only proper orthochronous Lorentz transformations that leave at rest a particle 
with zero momentum, while S0(2,1) and SO(3,l)  are the Lorentz groups in 
(2 + 1)- and (3 + 1)-dimensions, respectively. The group l S O ( 2 )  is the group of 
Euclidean geometry, consisting of rotations and translations in two dimensions. 
Its appearance as the little group for p2 - O is explained below. 

Standard kp Little Group 

scalar product : 

where kr = L - ' ( ~ ) ~ ' .  Since also k = L - ' ( ~ ) ~ ,  the delta function S3(k - k'j 
is proportional to 63(p - p'). For p' = p, the little-group transformation 
here is trivial, w ( L - ~ ( ~ ) ,  p )  = I ,  and so the scalar product is 

It remains to work out the proportionality factor relating h3(k - kr) and 
4Tp - p'). Note that the Lorentz-invariant integral of an arbitrary scalar 
function f I p )  over four-momenta with -p2 -- M~ L 0 and > 0 (i.e., 



Slates 

cases (a) or (c)) may be written 

(8(# j is the step function: O(x) = 1 for x 2 0, B(x) = 0 for x: < 0.) We 
see that when integrating on the 'mass shdl' p2 + M' = 0, the invariant 
volume element is 

d3p/dp2 + M~ . 
The delta function is defined by 

so we see that the invariant delta function is 

Since p' and p are related to kt  and k respectively by a Lorentz transfor- 
mation, L(p) ,  we have then 

$63(p' - p) = k067(k' - k) 

and therefore 

The normalization factor N ( p )  is sometimes chosen to be just N ( p )  = 1, 
but then we would need to keep track of the f ' /k0  factor in scalar 
products. Instead, I will here adopt the more usual convention that 

We now consider the two cases of physical interest: particles of mass 
M > 0, and particles of zero mass. 
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The little group here is the three-dimensional rotation group. Its unitary 
representations can be broken up into a direct sum of irreducible unitary 
representations7 D $ ~ ( R )  of dimensionality 2 j+ 1, with j = 0, f , 1, . - -. These 
can be built up from the standard matrices for infinitesimal rotations 
Kk = dik 4- Oik, with Oik = -Oki infinitesimal: 

with t~ running over the values j ,  j - I,  , .  . , - j .  For a particle of mass 
M > 0 and spin j, Eq. (2.5.1 1 )  now becomes 

with the little-group element W ( A , p )  (the Wigner rotation5) given by Eq. 
(2.5.10) : 

To calculate this rotation, we need to choose a 'standard boost' L(p) 
which carries the four-momentum from kt' = (O,O,O,  M )  to pp. This is 
conveniently chosen as 

It is very important that when Ag, is an arbitrary three-dimensional 
rotation .%, the Wigner rotation W ( A ,  p) is the same as 2 for all p. To see 
this, note that the boost (2.5.24) may be expressed as 

where R($)  is a rotation (to be defined in a standard way below, in Eq. 
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(2.547)) that takes the three-axis into the direction of p, and 

Then for an arbitrary rotation 2 

But the rotation ~ - ' ( 8 $ ) 9 R ( f i )  takes the three-axis into the direction A 
and then into the direction &$, and then back to the three-axis, so it must 
be just a rotation by some angle 0 around the three-axis 

Since R(0) commutes with B(lpl), this now gives 

and hence 

as was to be shown. Thus states of a moving massive particle (and, 
by extension, multi-particle states) have the same transformation un- 
der rotations as in non-relativistic quantum mechanics. This is  another 
piece of good news - the whole apparatus of spherical harmonics, 
Clebsch4ordan coefficients, etc. can be carried over wholesale from 
non-relativistic to relativistic quantum mechanics. 

Mass Zero 

First, we have to work out the structure of the little group, Consider 
an arbitrary little-group element WP,, with WP,,kv = k p ,  where k p  is  
the standard four-momentum for this case, k p  = (Q0, I, 1). Acting on a 
time-like four-vector $ = (0,0,0,1), such a Lorentz transformation must 
yield a four-vector W t  whose length and scalar product with Wk = k are 
the same as those of t :  

Any four-vector that satisfies the second condition may be written 
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and the first condition then yields the relation 

It follows that the effect of W p ,  on tv is the same as that of the Lorentz 
transformation 

This does not mean that W equals S(cc,P),  but. it does mean that 
S-I  (a, p )  W is a Lorentz transformation that leaves the time-like four- 
vector (0,0,0,1) invariant, and is therefore a pure rotation. Also, S", like 
Wit, leaves the light-like four-vector (0,0,1,1) invariant, so s-'(u, b)  W 
must be a rotation by some angle 0 around the three-axis 

S-' (a, p )  W = ~ ( 0 )  , (2.5.27) 

where 

The most general element of the little group is therefore of the form 

What group is this? We note that the transformations with B = 0 or 
with cc = 0 = 0 form subgroups : 

These subgroups are Abelian - that is, their elements all commute with 
each other. Furthermore, the subgroup with 8 = 0 is invariant, in the 
sense that its elements are transformed into other dements of the same 
subgroup by any member of the group 

From Eqs. (2.5.29)42.5.31) we can work out the product of any group 
elements. The reader will recognize these multiplication rules as those 
of the group I S 0 ( 2 ) ,  consisting of translations (by a vector (a, P ) )  and 
rotations (by an angle 0) in two dimensions. 

Groups that do not have invariant Abelian subgroups have certain 
simple properties, and for this reason are called semi-simple. As we have 
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seen, the little group iSO(2) like the inhomogeneous Lorentz group is not 
semi-simple, and this leads to interesting complications. First, let's take 
a look at the Lie algebra of ISO(2) .  For O,a,P infinitesimal, the general 
group element is 

From (2.4.31, we see then that the corresponding Hilbert space operator is 

where A and 3 are the Hermitian operators 

and, as before, J3 = J12, Either from (2.4.1 8)-(2.4.20), or directly from 
Eqs. (2.5.29) - (2.5.311, we see that these generators have the commutators 

[JLA]  = +iB , 
[ J 3 ,  B ]  = -iA , 

[A, B ]  = 0 .  

Since A and 3 are commuting Hermitian operators they (like the momen- 
tum generators of the inhomogeneous Lnrentz group) can be simultane- 
ously diagonalized by states Yk,,, 

The problem is that if we find one such set of non-zero eigenvalues of 
A,B ,  then we find a whole continuum. From Eq. (2.5.321, we have 

U[R(O)]A U-'   ti)] = A cos 0 - B sin O , 
U[R(I) )]B UP'  [R(O)] = A sin 0 + B cos B , 

and so, for arbitrary 8, 

where 
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Massless particles are not observed to have any continuous degree of 
freedom like 0 ;  to avoid such a continuum of states, we must require 
that physical states (now called YA,~ )  are eigenvectors of A and B with 
a = b = O :  

These states are then distinguished by the eigenvalue of the remaining 
generator 

Since the momentum k is in the three-direction, a gives the component of 
angular momentum in the direction of motion, or helicity. 

We are now in a position to calculate the Lorentz transformation 
properties of general massless particle states. First note that by use of the 
general arguments of Section 2.2, Eq. (2.5.32) generalizes for finite .% and 
D to 

U(S(M, f i ) )  = exp(ictA + ipB) (2.5.40) 

and for finite 9 to 

An arbitrary element W of the little group can be put in the form (2.5281, 
so that 

U( W)Yk, ,  = exp(iaA + $3) e ~ p ( i 8 ~ ~ ) ~ ~ , ,  = e ~ p j i O a ) Y ~ , ~  

and therefore Eq. (2.5.8) gives 

Dalu( W )  e ~ p ( i 0 0 ) J ~ l ~  , 
where B is the angle defined by expressing W as in Eq. (2.5.28). The 
Lorentz transformation rule for a massless particle of arbitrary helicity is 
now given by Eqs. (2.5.11) and (2.5.18) as 

with O(A, p) defined by 

We shall see in Section 5.9 that electromagnetic gauge invariance arises 
from the part of the little group parameterized by a and B. 

At this point we have not yet encountered any reason that would forbid 
the helicity of a massless particle from being an arbitrary real, number. 
As we shall see in Section 2.7, there are topolqycal considerations that 
restrict the allowed values of 0 to integers and half-integers, just as for 
massive particles. 



To calculate the little-group element (2.5.43) for a given A and p, (and 
also to enable us to calculate the effect of space or time inversion on these 
states in the next section) we need to fix a convention for the standard 
Lorentz transformation that takes us from kil = (O ,O ,  IC, PC) to pi1. This may 
conveniently be chosen to have the form 

where B ( M )  is a pure boost along the three-direction: 

and R@) is a pure rotation that carries the three-axis into the direction 
of the unit vector fi. For instance, suppose we take fi to have polar and 
azimuthal angles B and 4:  

p = (sin 8 cos 4, sin0 sin @, cos 8 )  . (2.5.46) 

Then we can take R@) as a rotation by angle O around the two-axis, 
which takes (0,0,1) into (sin 8, 0, cos 91, followed by a rotation by angle 
# around the three-axis: 

where 0 5 8 n, 0 < 4 < 271. (We give U(R(p)) rather than RIP), 
together with a specification of the range of 4 and 8, because shifting 
0 or 4 by 27c would give the same rotation R(p), but a different sign 
for U ( R ( 6 ) )  when acting on half-integer spin states.) Since (2.5.47) is a 
rotation, and does take the three-axis into the direction (2.5.46), any other 
choice of such an R(p) would differ from this one by at most an initial 
rotation around the three-axis, corresponding to a mere redefinition of the 
phase of the one-particle states. 

Note that the helicity is Lorentz-invariant; a massless particle of a 
given helicity a looks the same (aside from its momentum) in all inertial. 
frames. Indeed, we would be justified in thinking of massless particles 
of each different helicity as different species of particles. However, as 
we shall see in the next section, particles of opposite helicity are related 
by the symmetry of space inversion. Thus, because electromagnetic and 
gravitational forces obey space inversion symmetry, the massless particles 
of helicity f 1 associated with electromagnetic phenomena are both called 
photons, and the massless particles of helicity 5 2  that are believed to 
be associated with gravitation are both called gruoitons. On the other 
hand, the supposedly massless particles of helicity +1/2 that are emitted 
in nuclear beta decay have no interactions (apart from gravitation) that 
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respect the symmetry of space inversion, so these particles are given 
different names: neutrinos for helicity +1/2, and antr'nezdtriplos for helicity 
-1/2. 

Even though the helicity of a massless particle is Lorentz-invariant, the 
state itself is not. In  particular, because of the helicity-dependent phase 
factor expjirr H )  in Eq. (2.5.42), a state formed as a linear superposition of 
one-particle states with opposite helicities will be changed by a Lorentz 
transformation into a different superposition. For instance, a general 
one-photon state of bur-momenta may be written 

where 

The generic case is one of elliptic polarizatb'on, with I r+  - I both non-zero and 
unequal. Circular polarization is the limiting case where either .r+ or r-  
vanishes, and linear polarizativla is the opposite extreme, with 182+1 = 12-1. 

The overall phase of a+ and a- has no physical significance, and for linear 
polarization may be adjusted so that a- = a;, but the relative phase is 
still important. Indeed, for linear polarizations with a- = a;, the phase 
of a+ may be identified as the angle between the plane of polarization 
and some fixed reference direction perpendicular to p. Eq. (2.5.42) shows 
that under a Lorentz transformation A@,, (his angle rotates by an amount 
%(A,p). Plane polarized gravitons can be defined in a similar way, and 
here Eq. (2.542) has the consequence that a Lorentz transformation A 
rotates the plane of polarization by an angle 20(A,p). 

2.6 Space Inversion and Time-Reversal 

We saw in Section 2.3 that any homogeneous Lorentz transformation is 
either proper and orthochronous (ix., DetA = +1 and 2 +1)  or 
else equal to a proper orthochronous transformation times either .9 or 
9 or 99, where 9 and .F are the space inversion and time-reversal 
transformations 

I t  used to be thought self-evident that the fundamental multiplication rule 
of the Poincari: group 
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would be valid even if A and/or A involved factors of b or F or BY. 
In particular, it was believed that there are operators corresponding to 9 
and .F themselves: 

such that 

for any proper orthochronous Lorentz transformation Ap, and translation 
up.  These transformation rules incorporate most of what is meant when 
we say that P or T are 'conserved'. 

In 1956-57 it became understood8 that this is true for P only in the 
approximation in which one ignores the effects of weak interactions, such 
as those lhat produce nuclear beta decay. Time-reversal survived for a 
while, but in  1964 there appeared indirect evidence4 that these properties 
of T are also only  approximately satisfied. {See Section 3.3.) In what 
follows, we will make believe that operators P and T satisfying Eqs. (2.6.1) 
and (2.6.2) actually exist, but it should be kept in mind that this is only 
an approximation. 

Let us apply Eqs. (2.6.1) and (2.6.2) in the case of an infinitesimal 
transformation, i.e., 

with O J ~ ,  = -m,,, and F~ both infinitesimal. Using (2.4.3), and equating 
coefficients of m,, and t-, in Eqs. (2.6.1) and (2.6.21, we obtain the P and 
T transformation properties of the Poincari generators 

p i ~ ~ g p - 1  = i g  I ) y v U J P v  
P ? (2.6.3) 

p j p " p '  = b'y PpP 
fi ? (2.6.4) 

T i JVT-~ = i .T,P~F,'J~'~ , (2.6.5) 

T i PPT-' = i .F,PPY (2.6.6) 

This is much like Eqs. (2.4.8) and (2.4.91, except that we have not cancelled 
factors of i on both sides of these equations, because at this point we have 
not yet decided whether P and T are linear and unitary or antilinear and 
antiunitary. 

The decision is an easy one. Setting p = 0 in Eq. (2.6.4) gives 

where H - P O  is the energy operator. If P were antiunitary and antilinear 
then it would anticommute with i, so PHP-' = -H. But then for any 
state Y of energy E z 0, there would have to be another state P-"3' of 
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energy -E  < 0. There are no states of negative energy (energy less than 
that of the vacuum), so we are forced to choose the other alternative: P 
is linear and unitary7 and commutes ruther than aniicommutes with H ,  
On the other hand, setting p = 0 in Eq. (2.6.6) yields 

If we supposed that T is linear and unitary then we could simply cancel 
the is, and find THT-I = -H, with the again disastrous conclusion that 
for any state V of energy E there is another state T-IY! of energy -E. 
To avoid this, we are forced here to conclude that T is adinear  and 
anl imitmy.  

Now that we have decided that P is linear and T is antilinear, we 
can conveniently rewrite Eqs. (2.6.3)-(2.6.6) in terms of the generators 
(2.4.15)-(2.4.17) in a three-dimensional notation 

and, as shown before, 

It is physically sensible that P should preserve the sign of J, because at 
least the orbital part is a vector product r x p of two vectors, both of which 
change sign under an inversion of the spatial coordinate system. On the 
other hand, T reverses J, because after time-reversal an observer will see 
all bodies spinning in the opposite direction. Note by the way that Eq. 
(2.6.10) is consistent with the angular-momentum commutation relations 
J x J = i J ,  because T reverses not only J, but also i .  The reader can easily 
check that Eqs. (2.6.7)-(2.6.13) are consistent with aH the commutation 
relations (2.4.1 8)<2.%24). 

Let us now consider what P and f do to one-particle states: 
P:M>O 
The one-particle states T k , ,  are defined as eigenvectors of P,H, and J 3  
with eigenvalues 0, M, and a, respectively. From Eqs. (2.6.7), (2.691, and 
{2.6.13), we see that the same must be true of the state PYk,,r, and therefore 
(barring degeneracies) these states can only differ by a phase 

with a phase factor ( lqj = 1) that may or may not depend on the spin rr. 
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To see that r, is a-independent, we note from (2.5.81, (2.5.20), and 12.5.21) 
that 

(JI + i ~ z ~ t , .  = J( j  T aNj k 0 + 1) W p * i  , (2.6.14) 

where j is the particle's spin. Operating on both sides with P, we find 

and so q, is actually independent of 0.  We therefore write 

P ~ , u  = F~,u (2.6.3.5) 

with q a phase, known as the intrinsic parily, that depends only on the 
species of particle on which P acts. 

To get to finite momentum states, we must apply the unitary operator 
U ( L ( p ) )  corresponding to the 'boost' (2.5.24): 

ypc = \ lM/p0  WW? yr.. . 
We note that 

PL(~)B-' = L ( 9 p )  

g p  = (-p, d m )  
so using Eqs. (2.6.1) and (2.6151, we have 

or in other words 

T : M > O  
From Eqs. (2.6.10), (2.6.121, and (2.6.1 31, we see that the effect of T on the 
zero-momentum one-particle state ylk,= is to yield a state with 

and so 

T y k , a  = cay&,-a 7 

where 5 ,  is a phase factor. Applying the operator T to (2.6.141, and 
recalling that T anticommutes with J and i, we find 

(-A f i J2)cn%-u = J( j  T aj(j  _+ a + ~ ) C , + I  ~ k , - ~ , ,  . 
Using Eq. (2.6.14) again on the left, we see that the square-root factors 
cancel, and so 

4 0  = L * l  
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We write the solution as c, = ; ( - ) j p " ,  with another phase that depends 
only on the species of particle: 

However, unlike the 'intrinsic parity' q, the time-reversal phase 5 has no 
physical significance. This is because we can redefine the one-particle 
states by a change of phase 

r l / Z  
T k , O  + = 4 Y k , n  - 

in such a way that the phase i: is eliminated from the transformation rule 

In what follows we will keep the arbitrary phase 5 in Eq. (2.6.17), just to 
keep open our options in choosing the phase of the one-particle states, 
but it should be kept in mind that this phase is of no real importance. 

To deal with states of finite momentum, we again apply the 'boost' 
(2.5.24). Note that 

(That is, changing the sign of each element of Lp, with an odd number 
of rime-indices is the same as changing the signs of elements with an odd 
number of space-indices.) Using Eqs. (2.6.2) and (2.5.5), we have then 

TYPqg = [(-) ' - 'Y~~,-~ . (2.6.18) 

P:M=O 
Acting on a state Yk,fl ,  that is defined as an eigenvector of PtL with 
eigenvalue k p  = (0,O, K ,  K )  and an eigenvector of J3  with eigenvalue 0, the 
parity operator P yields a state with four-momentum (.Yk)p = (0, 0, - K ,  K )  

and J3 equal to 0. Thus it takes a state of helicity {the component of spin 
along the direction of motion) a into one of helicity -u. As mentioned 
earlier, this shows that the existence of a space-inversion symmetry re- 
quires that any species of massless particle with non-zero helicity must be 
accompanied with another of opposite helicity. Because P does not leave 
the standard momentum invariant, it is convenient to consider instead 
the operator u(R,')P, where Rz is a rotation that also takes k to .Yk, 
conveniently chosen as a rotation by -1 80' around the two-axis 

Since u(R;') reverses the sign of J 3 ,  we have 
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with q, a phase factor. Now, ~ ; ' b  commutes with the Lorentz 'boost' 
(2.5.451, and .P commutes with the rotation R@) which takes the three- 
direction into the direction of p, so by operating on (2.5.5) with P, we find 
for a general four-momentum @' 

Note that R@)& is a rotation that takes the three-axis into the direction of 
-$, but U ( R ( $ ) R l )  is not quite equal to U(R(-p)). According to (2.5.47), 

with azimuthal angle chosen as # + x or # - n according to whether 
0 5 q5 < 7~ or 7~ I 4 < 271, SO that it remains in the range of 0 to 271. Then 

But a rotation of +180° around the three-axis reverses the sign of J2 ,  so 

Also, R( -$)B( lp l /k )  is just the standard boost L(.Yp)  in the direction 
9 p  = (-plpO), We have then finally 

with the phase -m or +m according to whether the two-component of 
p is positive or negative, respectively. This peculiar change of sign in the 
operation of parity for massless particles of half-integer spin is due to the 
convention adopted in Eq. (2.5.47) for the rotation used to define massless 
particle states of arbitrary momentum. Because the rotation group is not 
simply connected, some discontinuity of this sort is unavoidable. 
T : M = O  
Acting on the state Yk,o, which has values k p  = (O,O, K ,  r c )  and CJ for 
P p  and J3, the time-reversal operator T yields a state which has values 
(9%)" = (0, 0, - K ,  K )  and -0 for Pp and J3. Thus T does not change the 
helicity J . k, and by itself has nothing to say about whether massless 
particles of one helicity a are accompanied with others of helicity -a. 
Because T like P does not leave the standard four-momentum k invariant, 
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it is convenient to consider the genemtor u(R;')T, where R2 is the rotation 
(2.6.19), which also takes k into Pk. This commutes with J 3 ,  so 

~ ( 5 ~ )  T 'Yk,n = -L'J%,D (2.6.23) 

with (, another phase. Since ~ 7 ' 6  commutes with the boost {2.5.45), and 
9 commutes with the rotation R(j ) ,  operating with T on the state (2.5.5) 
gives 

Using Eq. (2.6.211, this yields finally 

Again, the top or bottom sign applies according to whether the two- 
component of p is positive or negative, respectively. 

It is interesting that the square T~ of the time-reversal operator has a 
very simple action on both massive and massless one-particle states. Using 
Eq. (2.6.181, and recalling that 7 is antiunitary, we see that for massive 
one-particle states : 

j -  - jtdy 
= - - -  = * -  i( 1 p,O 

or in other words 

T ~ Y , ,  = ( - ) ? j ~ ~ . ~  . (2.6.26) 

We get the same result for massless particles. If the two-component of p 
is positive then the two-component of 9 p  is negative, and vice-versa, so 
Eq. (2.6.25) gives 

As long as o is an integer or half-integer, this can be written 

By the 'spin' of a massless particle, we usually mean the absolute value of 
the helicity, so Eq. (2.6.27) is the same as Eq. (2.6.26). 

This result has an interesting consequence. When T~ acts on any state 
Y of a system of non-interacting particles, either massive or massless, 
it yields a factor (-j2j or ( - ) 2 1 n  for each particle. Hence if the state 
contains an odd number of particles of half-integer spin or helicity (plus 
any number of particles of integer spin or helicity), we get an overall 
change of sign 



If we now 'turn on' various interactions, this result will be preserved, 
provided these interactions respect invariance under time-reversal, even if 
they do not respect rotational invariance. (For instance, these arguments 
will apply even if our system is subjected to arbitrary static gravitational 
and electric fields.) Now, suppose that Y is an eigenstate of the Hamil- 
tonian. Since T commutes with the Harniltonian, TY will also be an 
eigenstate of the Hamiltonian. Is it the same state? If so, then T Y  can 
differ from Y only by a phase 

but then 

in contradiction with Eq. (2.6.28). We see that any energy eigenstate 
Y satisfying Eq. (2.6.28) must be degenerate with another eigenstate 
of the same energy. This is known as a 'Kramers degeneracy.'l0 Of 
course, this conclusion is trivial if the system is in a rotationally invariant 
environment, because the total angular-momentum j of any state of this 
system would have to be a half-integer, and there would therefore be 
2 j  + I = 2,4, . . . degenerate states. The surprising result is that at least 
a two-fold degeneracy persists even if rotational invariance is perturbed 
by external fields, such as electrostatic fields, as long as these fields 
are invariant under T. In particular, if any particle had an electric or 
gravitational dipole moment then the degeneracy among its 2 j  + 1 spin 
states would be entirely removed in a static electric or gravitational field, 
so such dipole moments are forbidden by time-reversal invariance. 

For the sake of completeness, it should be mentioned that P and T can 
have more complicated effects on multiplets of particles with the same 
mass. This possibility will be considered in Appendix C of this chapter. 
No physically relevant examples are known. 

2.7 Projective Representations* 

We now return to the possibility mentioned in Section 2.2, that a group 
of symmetries may be represented projectively on physical states; that is, 
the elements T, F ,  etc. of the symmetry p u p ' r n a y  be represented on 
the physical Hilbert space by unitary operators U ( T ) ,  u(?'), etc., which 

' This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 
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satisfy the composition rule 

with 4 a real phase. (A bar is used here just to distinguish one symmetry 
operator from another.) The basic requirement that any phase 4 in 
Eq. (2.7.1) would have to satisfy is the associativity condition 

which imposes on q5 the corresponding condition 

Of course, any phase of the form 

will automatically satisfy Eq. (2.7.21, but a projective representation with 
such a phase can be replaced with an ordinary representation by replacing 
U ( T )  with 

for which 

Any set of functions $ ( T ,  T )  that satisfy Eq. (2.7.21, and that differ only 
by functions Ad(T, 7 )  of the form (2.7.3), is called a 'two-cocycle'. A 
trivial cocycle is one that contains the function q5 = 0, and hence consists 
of functions of the form (2.7.31, which can be eliminated by a redefinition 
of U ( T ) .  We are interested here in whether a symmetry group allows any 
non-trivial two-cocyles; that is, whether it may have a representation on 
the physical Hilbert space that is irzfrinsicaHy projective, in the sense that 
the phase 4(T ,  7 )  cannot be eliminated in this way. 

In order to answer this question, it is useful first to consider the effect 
of a phase 4 in Eq. (2.7.1) on the commutation relations of the generators 
of infinitesimal transformations. When either T or T is the identity, the 
phase q5 must clearly vanish 

When both T and T are near the identity the phase must be small, Using 
coordinates 8" to parameterize group elements (as in Section 2.21, with 
T ( 0 )  = 1, Eq. (2.7.4) tells us that the expansion of @( T(0) ,  T ( O ) )  around 
61 = 8 = 0 must start with terms of order #a: 



where f U b  are real numerical constants. Inserting this expansion in the 
power series expansion of Eq. (2.7-11, and repeating the steps that led to 
(2.2.22), we now have 

where Cb, is the antisymmetric coefficient 

The appearance of terms on the right-hand side of the commutation 
relation proportional to the unit element (so-called central charges) is the 
counterpart for the Lie algebra of the presence of phases in a projective 
representation of a group. 

The constants Cbr as well as Cuhc are subject to an important constraint, 
which follows from the Jacobi identity. Taking [he commutator of (2.7.6) 
with t d ,  and adding the same expressions with b, c, d replaced with c, d, b 
and d ,  b, c, the sum of the three double-commutators on the left-hand side 
vanishes identically, and so 

and also 

Eq. (2.7.9) always has one obvious class of non-zero solutions for Cub : 

where 4 p  is an arbitrary set of real constants. For these solutions, we 
can eliminate the central charges from Eq. (2.7.6) by a redefinition of the 
generators 

The new generators then satisfy the commutation relations without central 
charges 

A gven  Lie algebra may or may not allow solutions of Eq. (2.7.9) other 
than Eq. (2.7.10). 

We can now state the key theorem that governs the occurrence of 
intrinsically projective representations. The phase of any representation 
U ( T )  of a given group can be chosen so that q5 = 0 in Eq. (2.7.1), if two 
conditions are met: 

(a) The generators of the group in this representation can be redefined 
(as in Eq. (2.7.11)), so as to eliminate all central charges from the 
Lie algebra. 
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(b) The group is simply connected, is,, any two group elements may be 
connected by a path lying within the group, and any two such paths 
may be continuously transformed into one another. (An equivalent 
statement is that any loop that starts and ends at the same group 
element may be shrunk continuously to a point.) 

This theorem is proved in Appendix I3 of this chapter, which also 
offers comments about the case of groups that are not simply connected. 
It shows that there are just two (not exclusive) ways that intrinsically 
projective representations may arise: either algebraically, because the 
group is represented projectively even near the identity, or topologically, 
because the group is not simply connected, and hence a path from 1 to 
T and then from T to 7 may not be continuously deformable into some 
other path from 1 to T T .  In the latter case, the phase # in Eq. (2.7.1) 
depends on the particular choice of standard paths, leading from the origin 
to the various group elements, that are used to define the corresponding 
U-operators. 

Let's now consider each of these possibilities in turn for the special case 
of the inhomogeneous Lorentz group. 

( A )  Algebra 

With central charges, the commutation relations of the generators of the 
inhomogeneous Lorentz group would read 

in place of Eqs. (2.4.12)-(2.4.14). We see that the Cs also satisfy the 
antisymmetry conditions 

We will now show that all these constants have additional algebraic 
properties that allow them to be eliminated by shifting the definitions of 
Jp' and PJ' by constant terms. (This corresponds to redefining the phase 
of the operators U(A,a).) To derive these properties, we apply the Jacobi 



2.7 Projective Representat ions 8 5 

(The Jacobi identity involving three P s is automatically satisfied, and 
hence yields no further information.) Using Eqs. (2.7.1 3)+2.7.16) in 
Eqs. (2.7.20)-(2.7.22), we obtain algebraic conditions on the C s  

Contracting Eq. (2.7.23) with q Y ,  gives 

On the other hand, the constants CJ'~" and CPoJL" are not necessarily 
zero, but their algebraic structure is simple enough so that they can 
be eliminated by shifting the definitions of Pp  and PV, respectively. 
Contracting Eq. (2.7.24) with q,, yves 

Also, contracting (2.7.25) with g,,, gives 

(These expressions automatically satisfy Eqs. (2.7.24) and (2.7.251, so there 
is no further information to be gained from the Jacobi identities.) We now 
see that if the C s are not zero, they can be eliminated by defining new 
generators 
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and the commutation relations are then what they would be for an 
ordinary representation 

~ ~ F v , J P ~ I  = , v ~ j W  - v ~ J ~ m  - g OF-PV J + 9v" , (2.7.33) 

(2.7.34) 
(2.7,35) 

in the form Eqs. (2.7.33 j The commutation relations will always be taken 
(2.7.351, but with tildas dropped. 

Incidentally, the fact that there is no central charge in the algebra 
of the P' could have been immediately inferred from the fact that this 
algebra is of the type known as 'semi-simple'. (Semi-simple Lie algebras are 
those that have no 'invariant Abelian' subalgebra, consisting of generators 
that commute with each other and whose commutators with any other 
generators also belong to the subalgebra.) There is a general theorem" 
that any central charges in semi-simple Lie algebras may always be 
removed by a redefinition of generators, as in Eq. (2.7.32). On the other 
hand, the full Poincari algebra spanned by P" and P p  is not semi-simple 
(the Pfi form an invariant Abelian subalgebra), and we needed a special 
argument to show that its central charges can also be eliminated in this 
way. Indeed, the non-semi-simple Galilean algebra discussed in Section 
2.4 does allow a central charge, the mass M. 

We see that the inhomogeneous Lorentz group satisfies the first of the 
two conditions needed to rule out intrinsically projective representations. 
How about the second? 

To explore the topology of the inhomogeneous Lorentz group, it is very 
convenient to represent homogeneous Lorentz transformations by 2 x 2 
complex matrices. Any real four-vector VjL can be used to construct an 
Hermitian 2 x 2 matrix 

where a, are the usual Pauli matrices with 00 1. Conversely any 2 x 2 
Hermitian matrix can be put in this form, and therefore defines a real 
four-vector V p .  

The property of Hermiticity will be preserved under the transformation 

with A. an arbitrary complex 2 x 2 matrix. Furthermore, the covariant 
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square of the four-vector is 

and this determinant is preserved by the transformation (2.7.37) provided 
that 

Each complex 2 x 2 matrix satisfying Eq. (2.7,39) thus defines a real linear 
transformation of Vfi  that leaves Eq. (2.7.38) invariant, i s . ,  a homogeneous 
Lorentz transformation A()'.) : 

Furthermore, for two such matrices A and 1, we have 

and so 

However, two 2s  that differ only by an overall phase have the same effect 
on t. in Eq. (2.7.371, and so correspond to the same Lorentz transformation. 
I t  is therefore convenient to adjust the phase of the i s  so that 

Det A = 1, (2.7.42) 

which is consistent with Eq. (2.7.41). The 2 x 2 complex matrices with 
unit determinant form a group, known as SL(2,C) .  (The S L  stands 
for 'special linear', with 'special' denoting a unit determinant, while C 
stands for 'complex'.) The group elements depend on 4 - 1 = 3 complex 
parameters, or 6 real parameters, the same number as the Lorentz group. 
However, SL(2, C) is not the same as the Lorentz group; if A is a matrix 
in SL(2 ,C) ,  then so is -i, and both 1 and -A produce the same Lorentz 
transformation in Eq, (2.7.37). Indeed, it is easy to see that the matrix 

produces a Lorentz transformation A(ijt))) which is just a rotation by 
an angle 8 around the three-axis, and hence ,i = -1 produces a rotation 
by an angle 27~. The Lorentz group is not the same as SL(2,C),  but 
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rather" SL(2, C)/Z2, which is the group of complex 2 x 2 matrices with 
unit determinant, and with 1. identified with -,?. 

Now, what is the topology of the Lorentz group? By the polar decom- 
position theorem", any complex non-singular matrix i may be written in 
the form 

where u is unitary and h is Hermitian 

Since Det u is a phase factor, and Det exp b = exp Tr h is real and positive, 
the condition (2.7.42) requires both 

Det za = 1, 

Tr h = 0. 

(The factor u simply provides the rotation subgroup of the Lorentz group; 
if u is unitary then Tr (wut) = Tr v ,  so V' = f ~r v i s  left invariant by A(u).) 
Furthermore, this decomposition is unique, so SL(2,C)  is topologically 
just the direct product (i.e., the set of pairs of points) of the space of all 
us and the space of all hs. Any Hermitian traceless 2 x 2 matrix Cs can be 
expressed as 

h = (  c a - i b  
a +  ib -c 

with a, b, c real but otherwise unconstrained, so the 
topologically the same as ordinary three-dimensional 

space of all hs  is 
flat space, R3. On 

the other hand, any unitary 2 x 2 matrix with unit determinant can be 
expressed as .= ( d + i @  feig 

-f +ig L i e  

with d , e ,  f ,g  subject to the single non-linear constraint 

d 2 + e 2 + f 2 + g 2 = 1 ,  

so the space SU(2) of all us is topologically the same as Sj, the three- 
dimensional surface of a spherical ball in flat four-dimensional space. 
Thus SL(2, C) is topologically the same as the direct product R2 x S3. This 
is simply connected: any curve connecting two points of R3 or S3 can be 
deformed into any other, and the same is true of the direct product. (All 

" The group Z2 consists of just elements + I  and -1. In general, when we write C / H .  with H an 
invariant subgroup of C, we mean the group G with elements g and g h  identified if g r G and 
A F H. The subgroup Zz is trivially invariant because its elcments commute with all elements of 
SL(2. C). 
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spheres S, except the circle S1 are simply connected.) However, we are 
interested in SL(2, C)/Zz, not SL(2, C). Identifying A with -3. is the same 
as identifying the unitary factors u and -u (because eh is always positive), 
so the Lorentz group has the topology of R3 x S3/Z2, where S 3 / Z 2  is 
the three-dimensional spherical surface with opposite paints of the sphere 
identified. This is nut simply connected; for instance, a path on S3 from u 
to u' cannot be continuously deformed into a path on S3 from u to -uT, 
even though these two paths link the same points of S3/Z2. In fact, S3/Z2 
is doubly connected; the paths between any two points fall into two classes, 
depending on whether or not they involve an inversion u -, -u, and any 
path in one class can be deformed into another path of that class. An 
equivalent statement is that a double loop, that goes twice over the same 
path from any element back to itself, may be continuously contracted to 
a point. (As discussed in Appendix B, this is summarized mathematically 
in the statement that the fundamental group, or first homotopy group, of 
S3/Zz is Z2.) Similarly, the inhomogeneous Lorentz group has the same 
topology as & x R3 x S3/Z2, and is therefore also doubly connected. 

Because the Lorentz group (homogeneous or inhomogeneous) is not 
simply connected, it does have intrinsically projective representations. 
However, because the double loop that goes twice from 1 to A to AA and 
then back to 1 can be contracted to a point, we must have 

and hence the phase e ' ~ ( A h ~  is just a sign 

Likewise, for the inhomogeneous Lorentz group 

These 'representations up to a sign' are familiar; they are just the states 
of integer spin, for which the signs in Eqs. (2.7.43) and (2.7.44) are always 
+I, and the states of half-integer spin, for which these signs are +1 or -1 
according to whether the path from 1 to A to AA and then back to 1 is 
or is not contractible to a point, This difference arises because a rotation 
of 271 around the three-axis acting on a state with angular-momentum 
three-component a produces a phase e2in", and thus has no effect on a 
state of integer spin and produces a sign change when acting on a state 
of haif-integer spin. (These two cases correspond to the two irreducible 
representations of the first homotopy group, Z2.) Thus Eq. (2.7.43) or 
Eq. (2.7.44) imposes a superselection rule; we must not mix states of 
integer and half-integer spin. 

For finite mass, the limitation to integer or half-integer spin was pre- 
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viously derived by purely algebrrtic means from the well-known repre- 
sentations of the generators of the little group, which here are just the 
angular-momentum matrices j ( j )  with j integer or half-integer. On the 
other hand, for zero mass the action of the little group on physical one- 
particle states is just a rotation around the momentum, and here there 
is no algebraic reason for a limitation to integer or half-integer helicity. 
There is, however, a tupohgical reason: a rotation by an angle 47~ around 
the momentum can be continuously deformed into no rotation at all, so 
the factor exp(4niu) must be unity, and hence a must be an integer or 
half-in tege r. 

Instead of working with projective representations and imposing a su- 
perselection rule, we can just as well expand the Lorentz group, taking 
it as SL(2, C) itself, instead of SL(2, C)/Z2 as before. Ordinary rotation 
invariance forbids transitions between states of integer and half-integer 
total spin, so the only difference is that now the group is simply-connected, 
and it therefore has only ordinary representations, not projective represen- 
tations, so that we cannot infer a superselection rule. This does not mean 
that we actually can prepare physical systems in linear combinations of 
states of integer and half-integer spin, but only that the observed Lorentz 
invariance of nature cannot be used to show that such superpositions are 
impossible. 

Similar remarks apply to any symmetry group. If its Lie algebra 
involves central charges, then we can always expand the algebra to include 
generators that commute with anything, and whose eigenvalues are the 
central charges, just as we did when we added a mass operator to the Lie 
algebra of the Galilean group at the end of Section 2.4. The expanded 
Lie algebra is then, of course, free of central charges, so the part of the 
group near the identity has only ordinary representations. and does not 
require any superselection rule. Likewise, even though a Lie group G 
may not be simply connected, it can always be expressed as C / H ,  where 
C is a simply connected group known as the 'universal covering group' 
of G ,  and H is an invariant subgroupt of C. In general, we may just 
as well take the symmetry group as C instead of G, because there is no 
difference in their consequences, except that G implies a superselection 
rule, while C does not. In short, the issue of superselection rules is a bit of 
a red herring; it may or il may nol be possible to prepare physical systems 
in carbitwry superpositions oJ' states, but one cannot settle the qu~s t inn  by 

The first hurnotopy group of. C / I I  is H.  We have seen that the covering group of the homogeneous 
Lorentz group is SL(2,C), and the cwcring group of the Ihree-diinensinnal rotation group is 
SW(2). This connection with S L  and S U  groups is special to Lhe case of three, four, or six 
dimensions: for gcneral dimensions d the covering gruup of S O ( d )  i s  given a spccial name, 
'Spinrd)'. 



Appendix A Symrne try Rcpresentat ion Theorem 9 1 

reference to symmetry principies, hecat~se whatever one thinks the syrnrnelry 
group of nature map be, there is alwcsys another group whose colasequences 
are iden~ical except Jhr the rrbsence uf supersrlr~ction rules. 

Appendix A The Symmetry Representation Theorem 

This appendix presents the proof of the fundamental theorem of wiper2 
that any symmetry transformation can be represented on the Hilbert 
space of physical states by an operator that is either linear and unitary 
or antilinear and antiunitary. For our present purposes, the property of 
symmetry transformations on which we chiefly rely is that they are ray 
transformations T that preserve transition probabilities, in the sense that 
if and Y!2 are state-vectors belonging to rays 21 and 92 then any 
state-vectors Yi and Y!; belonging to the transformed rays T.@] and T9f2 
satisfy 

We also require that a symmetry transformation should have an inverse 
that preserves transition probabilities in the same sense. 

To start, consider some complete orthonormal set of state-vectors YJk 
belonging to rags &, with 

and let YL be some arbitrary choice of statevectors belonging to the 
transformed rays T9k.  From Eq. (2.A.11, we have 

I{'Y;,T;)I~ = ~(vkry!)~~ = ski. 

But (Yk, Y'k) is automatically real and positive, so this requires that it 
should have the value unity, and therefore 

i t  is easy to see that these transformed states V T i  also form a complete 
set, for if there were any non-zero state-vector Y f  that was orthogonal to 
all of the Yb, then the inverse transform of the ray to which Yf belongs 
would consist of non-zero state-vectors Y" for which, for all k :  

which is impossible since the Vk were assumed t o  form a complete set. 
We must now establish a phase convention for the states YL. For this 

purpose, we single out one of the Y k ,  say Y1, and consider the state-vectors 
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belonging to some ray Yk, with k f 1. Any state-vector Ti belonging to 
the transformed ray T Y k  may be expanded in the state-vectors Yi, 

From Eq. (2.A. 1) we have 
1 

and for 1 # k and l + 1 : 

For any given k, by an appropriate choice of phase of the two state- 
vectors Yk and Y i  we can clearly adjust the phases of the two non-zero 
coefficients ckk and ckl so that both coefficients are just 1 1 8 .  From now 
on, the state-vectors TL and Y ;  chosen in this way will be denoted UTk 
and UYk. As we have seen, 

1 1 
U - [ v k  + vI] = UYk = - [UTk + U y l ]  . 
Js $ 

(2.A.5) 

However, it still remains to define UY for general state-vectors Y. 
Now consider an arbitrary state-vector Y! belonging to an arbitrary ray 
9, and expand it in the Y k :  

Any state Y" that belongs to the transformed ray T W  may similarly be 
expanded in the complete orthonormal set UYk: 

The equality of ( Y k ,  y)12 and I(UYLk, yf)12 tells us that for all k (including 
k = 1): 

1412 = lcLl2, (2.A.8) 

while the equality of i(Yk, Y)1 and  LIT^, Y!')12 tells us that for all k # 1 : 

The ratio of Eqs. (2.A.9) and (2.A.8) yields the formula 

which with Eq. (2.A.8) also requires 
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and therefore either 

or else 

Furthermore, we can show that the same choice must be made for each 
k .  (This step in the proof was omitted by Wigner.) To see this, suppose 
that for some k ,  we have Ck/C1 = Ci /C; ,  while for some I # k, we have 
instead CI/CI = (C;/C;)*. Suppose also that both ratios are complex, so 
that these are really different cases. (This incidentally requires that k # 1 
and I # 1, as well as k # I.) We will show that this is impossible. 

Define a state-vector (D = [V1 + Yk + Yi]. Since all the ratios of the 
,. 3 

coefficients in this state-vector are real, we must get the same ratios in 
any state-vector @' belonging to the transformed ray; 

where a is a phase factor with lcll = 1. But then the equality of the 
transition probabilities I(@, CY)I and I(@', lyl ) l  requires that 

and hence 

This is only possible if 

or, in other words, if 

Hence either Ck/C1 or CI/C1 must be real for any pair k ,  1, in contra- 
diction with our assumptions. We see then that for a given symmetry 
transformation T applied to a given state-vector CkYlk, we must have 
either Eq. (2.A. 12) for all k, or else Eq. (2.A.13) for all k. 

Wigner ruled out the second possibility, Eq. (2.A.13), because as he 
showed any symmetry transformation for which this possibility is realized 
would have to involve a reversal in the time coordinate, and in the proof 
he presented he was considering only symmetries like rotations that do 
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not affect the direction of time. Here we are treating symmetries involving 
time-reversal on the same basis as all other symmetries, so we will have 
to consider that, for each symmetry T and state-vector Ck CkVk, either 
Eq, (2.A.12) or Eq. (2.A.13) may apply. Depending on which of these 
alternatives is realized, we will now define UY to be the particular one of 
the state-vectors Y' belonging to the ray T B  with phase chosen so that 
either C1 = C; or CI = c;', respectively. Then either 

or else 

It remains to be proved that for a given symmetry transformation, 
we must make the same choice between Eqs. (2.A.14) and (2.A.15) for 
arbitrary values of the coefficients Ck. Suppose that Eq. (2.A. 14) applies 
for a state-vector Ck AkYk while Eq. (2.A.15) applies for a state-vector 
Ck BkVk. Then the invariance of transition probabilities requires that 

or equivalently 

1m (A;Al) lm (B,'BI) = 0 . (2.A. 16) 
.k I 

We cannot rule out the possibility that Eq. (2.A.14) may be satisfied for 
a pair of state-vectors Ck AkYk and Ck &YE; belonging to different rays. 
However, for any pair of such state-vectors, with neither Ak nor Bk all of 
the same phase (so that Eqs. (2.A.14) and (2.A.15) are not the same), we 
can always find a third state-vector '& Ck Yk for which* 

and also 

* If Eor some pair k, l  both A; A, and B; Br arc complex, then ct~onsc all C s to vanish excepl Tor Ck 
and C l ,  and chouse these twn coefficients to hsvc dineren1 phases. If Aidr i s  cumplex but B'BI 
is real for some pair k , l ,  then there must be some othcr pair m,n (possibly a h h  either m or n b u ~  
nnl both equal to k or I )  tor which B i B ,  ic complex. If a h  A i A ,  is complex, then choose all 
Cs to vanish except for I;, and Cn, and choose these two coefficients Lo have diffcrcnt phase. 
If AkA, is rcal, Lhen choose all Cs to vanish except for CL, Cf ,C'm, and C,, and choose thcsc 
four coefficients all to have djfTercnt phases. The case whcrc BiB1 is complex but A;Al  i s  r e d  is 
handled in just the samc way. 
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As we have seen, it follows from Eq. (2.A.17) that the same choice between 
Eqs. (2.A. 14) and (2.A.15) must be made for Ck AkYk and Ck CkYk, and 
it follows from Eq. (2.A.18) that the same choice between Eqs. (2.A.14) 
and (2.A.15) musl be made for Ck BkYk and Ck CkYk, SO the same choice 
between Eqs. (2.A.14) and (2.A.15) must also be made for the two state- 
vectors Ck AkVk and Ck BkYk with which we started. We have thus 
shown that for a given symmetry transformation T either a11 state-vectors 
satisfy Eq. (2.A.14) or else they all satisfy Eq. (2.A. 15). 

I t  is now easy to show that as we have defined it, the quantum mechan- 
ical operator U is either linear and unitary or antilinear and antiunitary. 
First, suppose that Eq. (2.A.14) is satisfied for all state-vectors Ck CkYk. 
Any two stale-vectors Y and @ may be expanded as 

and so, using Eq. (2.A.141, 

Using Eq. (2.A. 14) again, this gives 

so U is linear. Also, using Eqs. (2.A.2) and (2.A.3), the scalar product of 
the transformed states is 

and hence 

so U is unitary. 
The case of a symmetry that satisfies Eq. (2.A.15) for all state-vectors 

may be dealt with in much the same way. The reader can probably 
supply the arguments without help, but since antilinear operators may be 
unfamiliar, we shall give the details here anyway. Suppose that Eq. (2.A- 15) 
is satisfied for all state-vectors CkYlk. Any two state-vectors Y and @ 
may be expanded as before, and so: 
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Using Eq. (2.A.15) again, this gives 

so U is antilinear. Also, using Eqs. (2.A.2) and (2.A.31, the scalar product 
of the transformed states is 

and hence 

(UY, UO) = (Y!, a))', 

Appendix B Group Operators and Homotopy Classes 

In this appendix we shall prove the theorem stated in Section 2.7, that the 
phases of the operators U ( T )  for finite symmetry transformations T may 
be chosen so that these operators form a representation of the symmetry 
group, rather than a projective representation, provided (a) the generators 
of the group can be defined so that there are no central charges in the Lie 
algebra, and (b) the group is simply connected. We shall also comment on 
the projective representations encountered for groups that are not simply 
connected, and their relation to the homotopy classes of the group. 

To prove this theorem, let us recall the method by which we construct 
the operators corresponding to symmetry transformations. As described 
in Section 2.2, we introduce a set of real variables Oa to parameterize 
these transformations, in such a way that the transformations satisfy the 
composition rule (2.2.15): 

We want to construct operators U(T(B) )  = U[O] that satisfy the corre- 
sponding conditionm 

To do this, we lay down arbitrary 'standard' paths O$(s) in group pa- 
rameter space, running from the origin to each point 8, with OE(0) = 0 
and @;(I) = 8". and define U s [ s )  along each such path by the differential 

Square brackets arc used here to distinguish U operators construckd as functions of the group 
parameters from those expressed as functions of Ihe group transformations themselves. 
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equation 

with the initial condition 

Uo(0) = 1, 

where 

We are eventually going to identify the operators U[B] with Ua(l), but 
first we must establish some of the properties of Us(s). 

In order to check the composition rule, consider two points O1 and 02, 
and define a path 9 that runs from 0 to O1 and thence to f ( B 2 ,  01): 

At the end of the first segment, we are at LIP( f )  = U O I ( l )  TO evaluate 
U&) along the second segment, we need the derivative of fQ(@e,(2s - 
I), 8,) .  For this purpose, we use the fundamental associativity condition: 

Matching the coefficients of 05 in the limit O3 + 0 yields the result: 

Along the second segment the differential equation (2.B.2) for Ua(s) is thus 
the same as the differential equation for UH2 (2s - 1). They satisfy different 
initial conditions, but U ~ ( S ) U B , ' ( ~ )  also satisfies the same differential 
equation as Ue,(2s - I ) ,  and in addition the same initial condition: at 
s = f ,  both are unity, We therefore conclude that for 1 4-s-g 1, 

and in particular 

However, this does not say that Ue{l) satisfies the desired composition 
rule (2.B,1), because although the path Oy(sj runs from 0" = 0 to P = 

fu(t92,01), in general it will not be the same as whatever 'standard' path 
Of(n,,o,j we have chosen to run directly from 8" = 0 to Ba = fa(&, O1). We 
need to show that Ue(l)  is independent of the path from 0 to 0 in order 
to be able to identify UIB] as Ue(l). 
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For this purpose, consider the variation S L i  of UH(s )  produced by a 
variation 60js) in the path from 0 to 0. Taking the variation of Eq. (2.B.2) 
gives the differential equation 

where hab,  = hah/ZO'. Using the Lie commutation relations (2.2.22) 
(without central charges) and rearranging a bit, this gives 

However, by taking the limit 03,02 + 0 in the associativity condition 
(2.B.6), we find for all 8 :  

where f L;, is the coefficient defined by (2.2.19). Antisymmetrizing in h and 
c shows that the last term in Eq. (2.B.9) vanishes 

Eq. (2.B.9) thus tells us that the quantity 

is constant along the path B(s) .  It follows that UHjl) is stationary under 
any infinitesimal variation of the path that leaves the endpoints 0 (0)  = O 
and @ ( I )  = 8 (and Uo@) = I) fixed. But assumption (b) tells us that any 
path from O(0) = 0 to @(I) = O can be continuously deformed into any 
other, so we may now regard U8(1) as a path-independent function of 0 
alone : 

In  particular, since the path 9 leads from 0 to f (&,dl ), we have 

so that Eq. (2.B.8) shows that U[B] satisfies the group multiplication law 
(2.B. I ) ,  as was to be proved. 

Now that we have constructed a non-projective represen tation U [fl], 
it remains to prove that any projective representation D[u] of the same 
group with the same representation generators t. can only diRer from 
U[B] by a phase: 
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so that the phase 4 in the multiplication law for 0[8]: 

0 [o'] 0 [o] = ei~(":'~ D L~(H', 811 
can be removed by a simple change of phase of Q [ O ] .  To see this, consider 
the operator 

Because U [ i l ]  and 0 [ 0 ]  have the same generators, the derivative of the 
left-hand side with respect to Bra vanishes at 0' = 0, and so 

where 

Differentiating this result with respect to OC and antisymmetrizing in b 
and c gives immediately 

A familiar theoremi3 tells us that in a simply connected space, this requires 
that 4i, is just a gradient of some function /i : 

Thus the quantity ~ [ 0 ] - ' ~ ( 0 ] c ' f i ( * )  is actually constant in 8. Setting it 
equal to i ts  value at f l  = 0, we see that 0 is just proportional to U: 

as claimed above. 
* * *  

The above analysis provides some information about the nature of the 
phase factors that can appear in the group multiplication law when the Lie 
algebra is free of central charges but the group is not simply connected. 
Suppose that the path 9 from zero to 0 to f(8,O) cannot be deformed into 
the standard path we have chosen to go from zero to fro, Q ) ,  or in other 
words, that the loop from zero to 0 to f (8, B )  and then back to zero is not 
continuously deformable to a point. Then U - I  (f (d2, BI )) U ( 0 2 )  U (0' ) can 
be a phase factor exp(i#(dz, d l ) )  # 1, but 4 will be the same for all other 
loops into which this can be continuously deformed. The set consisting 
of all loops that start and end at the origin and that can be continuously 
deformed into a given loop is known as the homotopy classi4 of that loop; 
we have thus seen that q5(02, 01) depends only on the homotopy class of 
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the loop from zero to 8 to f (& 0) and then back to zero. The set of 
homotopy classes forms a group; the 'product' of the homotopy class for 
loops Y1 and Y2 is the homotopy class of the loop formed by going 
around and then LZ2; the 'inverse' of the hornotopy class of the loop 
Y is the homotopy class of the loop obtained by going around Y in the 
opposite direction; and the 'identity' is the homotopy class of loops that 
can be deformed into a point at the origin. This group is known as the 
first homotopy group or fundamental group of the space -in question. It is 
easy to see that the phase factors form a representation of this group: if 
going around loop Y gives a phase factor elm, and going around loop 
E gives a phase factor e'm, then going around both loops gives a phase 
factor eideJ. Hence we can catalog all the possible types of projective 
representations of a given group Y {with no central charges) if we know 
the one-dimensional representations of the first homotopy group of the 
parameter space of 9. Homotopy groups will be discussed in greater detail 
in Volume II. 

Appendix C Inversions and Degenerate Multiplets 

It is usually assumed that the inversions T and P take one-partide states 
into other one-particle states of the same species, perhaps with phase 
factors that depend on the particle species. In Section 2.6 we noted in 
passing that inversions might act in a more complicated way than this 
on degenerate muhiplets of one-particle states, a possibility that seems to 
have been first suggested by Wigner15 in 1964. This appendix will explore 
generalized versions of the inversion operators, in which finite matrices 
appear in place of the inversion phases, but without making some of 
Wigner's limiting assumptions. 

Let us start with time-reversal. Wigner limited the possible action of 
the inversion operators by assuming that their squares are proportional 
to the unit operator. Because T is antiunitary, it is easy to see that the 
corresponding proportionality factor for TI can only be t l ,  perhaps with 
different signs for su bspaces separated by superselec tion rules. When the 
sign for T~ on the space of states with even or odd values of 2 j is opposite 
to the sign ( - - ~ ) ~ j  found in Section 2.6, the physical states involved must 
furnish representations of the operator T that are more complicated than 
that assumed so far. But if we are willing to admit this possibility, 
there does not seem to be any good reason to impose Wigner's condition 
that T~ is proportional to unity. It is not convincing to appeal to the 
structure of the extended Poincark group; the only useful definition of 
any of the inversion operators is one that makes the operator exactly or 
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approximately conserved, and this may not be the definition that makes 
T~ proportional to the unit operator. 

To explore more general possibilities for time-reversal, let us assume 
that on a massive one-particle state it has the action 

where p, j, and a are the particle's momentum, spin, and spin 2-component, 
and n, m are indices labelling members of a degenerate multiplet of particle 
species. {The appearance of the factor (-l)j-u and the reversal of p and 
a are deduced in the same way as in Section 2.6.) The matrix .F,, is 
unknown, except that because T is antiunitary, Y must be unitary. 

Now let us see how we can simplify this transformation by an ap- 
propriate choice of basis for the one-particle states. Defining new states 
by the unitary transformation = C, 4,Yp0,,, we find the same 
transformation (2,C,l), with the matrix f,, changed to 

We cannot in general make F' diagonal by such a choice of basis of the 
oneparticle states, as we could if T were unitary. But we can instead make 
it block-diagonal, with the blocks either 1 x 1 phases, or 2 x 2 matrices of 
the form 

where the # are various real phases. 
(Here is the proof. First, note that Eq. (2.C.2) gives 

This is a unitary transformation, so ir can be chosen to diagonalize the 
unitary matrix YF*. Assuming this to have been done, and dropping 
primes, we have 

where D is a unitary diagonal matrix, say with phases eidm along the main 
diagonal. One immediate consequence is that the diagonal component 
F,, vanishes unless 89. = 1. Furthermore, if e i4n  = 1 but pi4n # 1, then 
Eq. (2.C.4) tells us that F,, = Y,, = 0. By listing first all rows and 
columns for which = 1, the matrix 9 is put in the form 

where d is symmetric as well as unitary, and the diagonal elements of a 
all vanish. Because d is symmetric, it can be expressed as the exponential 
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of a symmetric anti-Hermitian matrix, so it can be diagonalized by a 
transformation (2.C.2) acting only on ,d, with the corresponding submatrix 
of real and hence orthogonal. It is therefore only necessary to consider 
the submatrix 9 that connects the rows and columns for which ei$n # 0. 
For n # m, Eq. (2.C.4) gives Y,, = e'".~,, and ."T,,, = e ' b . ~ , , ,  so 
Ynm = ~ ' ~ ~ e ' ~ m ~ , ,  and also F, = p i 4 m e i + m ~ n l n -  Hence Fnm = 3 mn = O  
unless ei4.ei4m = 1. If we list first all rows and columns of (# with a given - 

phase ei*l # 1, and then all rows and columns with the opposite phase, 
and then all rows and columns with some other phase 892 # 1 not cqual 
to and then all rows and columns with opposite phase, and so on, 
the matrix .g becomes of block diagonal form 

where 

Furthermore, the unitarity of .F and hence of .YB requires that ~ i @  = 

%'!$fi = 1, and hence qi is square and unitary. By applying a transfotma- 
tion j2.C.2) with % block-diagonal in the same sense as 3, and with the 
matrix in the ith block of form 

with Vi and Wi unitary, the submatrices %fi are subjected to the transfor- 
mations Qi 4 v;'%~w;, so we can clearly choose this transformation to 
make gi = 1. This establishes a correspondence between pairs of individ- 
ual rows and columns within each block with phases e*i and e-'dii. To put 
the matrix .g into block-diagonal form with 2 x 2 blocks of form (2.C.3), 
it is now only necessary to rearrange the rows and columns so that within 
the ith block we list rows and columns with phase pi$' alternating with 
the corresponding rows and columns with phase e-'+j.) 

I t  is important to note that where pi$ # 1, it is not possible to choose 
states to diagonalize the time-reversal transformation. If we have a pair 
of states CY,,,* on which T acts with a matrix (2.C.3), then 

Then on an arbitrary linear combination of these states, time-reversal 
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Far c+YRCr,+ + c-YPPb,- to be transformed under T by a phase i, it is 
necessary that 

&b/Z C+ * - - AC- . c-i9/2 * C- = AT+ - 

But combining these equations gives e*i4/2c; - = ~ 1 ~ c > c f ' # f " ,  - which is 
impossible unless either c+ = c- = 0 or eib is unity. Thus for eie # 1, 
time-reversal invariance imposes a two-fold degeneracy on these states, 
beyond that associated with their spin. 

Of course, if there is an additional 'internal' symmetry operator S which 
subjects these states to the transformation 

then we can redefine the time-reversal operator as T' = SPIT, and this 
operator would not mix the states Vp,,+ with one another. I t  is only in 
the case where no such internal symmeG exists that we can attribute the 
doubling of particle states to time-reversal itself. 

Let's come back now to the question of the square of T. Repeating the 
transformation (2.C.8) gives 

If we were to assume with Wigner that T~ is proportional to the unit 
operator, then we would have to have rid = ePi# ,  and since the phase is 
then real i t  would have to be +1 or -1. The choice ei$ = -1 would still 
require a two-fold degeneracy of one-particle states beyond that associated 
with their spin, and under Wigner's assumptions all particles would show 
this doubling, But there is no reason not to take a general phase 4 in 
Eq. (2.C.81, one that may vanish for some particles and not for others. 
Thus the fact that observed particles do not show the extra two-fold 
degeneracy does not rule out the possibility that others might. 

We may also consider the possibility of more complicated representa- 
tions of the parity operator P, with 

Pypp.n = C @ n r n ~ - ~ , o , m  1 2 . ~ .  10) 
wi 

with a unitary but otherwise unconstrained matrix 9. Unlike the case of 
time-reversal, here we may always diagonalize this matrix by a choice of 
basis for the states. But this choice of basis may not be the one in which 
time-reversal acts simply, so, in principle, P and T together can impose 
additional degeneracies that would not be required by P or T alone. 

As discussed in Chapter 5, any quantum field theory is expected to 
respect a symmetry known as CPT, which acts on one-particle states as 
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where nC denotes the antiparticle (or 'charge-conjugate') of particle rr. No 
phases or matrices are allowed in this transformation (though of course 
we could always introduce such phases or matrices by combining CPT 
with good internal symmetries.) It follows that 

so the possibility suggested by Wigner of a sign - ( - ~ ) ~ j  in the action of 
(CPT)~ does not arise in quantum field theory. 

To the extent that T is a good symmetry of same class of phenomena, 
so is the inversion CP = (CPT)T-I. For the states that transform under T 
in the conventional way 

the CP operator also acts conventionally 

The operator C = CPP-I then just interchanges particles and antiparticles 

OR the other hand, where T has the unconventional representation (2.C.8), 
Eq. (2.C. 1 1) gives 

In particular, it is possible that the degeneracy indicated by the label 
1 may be the same as the particle-antiparticle degeneracy, so that the 
antiparticle (as defined by CPT) of the state Y* is YT. In this case, CP 
would have the unconventional property of not interchanging particles 
and antiparticles. As far as these particles are concerned, CP and T would 
be what are usually called P and CT. But this is not merely a matter of 
definition; on other particles CP and T would still have their usual effect. 

No examples are known of partides that furnish unconventional repre- 
sentations of inversions, so these possibilities will not be pursued further 
here. From now on, the inversions will be assumed to have the conven- 
tional action assumed in Section 2.6. 

Problems 

1. Suppose that observer 19 sees a W-boson (spin one and mass m # 0) 
with momentum p in the y-direction and spin z-component 0. A 
second observer O' moves relative to the first with velocity u in the 
z-direction. How does 6' describe the W state? 
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2. Suppose that observer O sees a photon with momentum p in the 
y-direction and polarization vector in the z-direction. A second 
observer 6' moves relative to the first with velocity v in the z- 
direction. How does 0' describe the same photon? 

3. Derive the commutation relations for the generators of the Galilean 
group directly from the group multiplication law (without using 
our results for the Lorentz group). Include the most general set 
of central charges that cannot be eliminated by redefinition of the 
group generators. 

4. Show that the operators P, P p  and W, W h o m m u t e  with all Lorentz 
transformation operators U(A, a), where W,, = E , , , ~ J ~ P P " .  

5. Consider physics in two space and one time dimensions, assuming 
invariance under a 'Lorentz' group SU(2, l ) .  How would you describe 
the spin states of a single massive particle? How do they behave under 
Lorentz transformations? What about the inversions P and T? 

6. As in Problem 5, consider physics in two space and one time di- 
mensions, assuming invariance under a 'Larentz' group 0 (2,l). How 
would you describe the spin states of a single masskss particle? How 
do they behave under Lorentz transformations? What about the 
inversions P and T? 
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Sea ttering Theory 

The general principles of relativistic quantum mechanics described in the 
previous chapter have so far been applied here only to states of a single 
stable particle. Such one-particle states by themselves are not very exciting 
- i t  is only when two or more particles interact with each other that any- 
thing interesting can happen. But experiments do not generally follow the 
detailed course of events in particle interactions. Rather, the paradigmatic 
experiment (at least in nuclear or elementary particle physics) is one in 
which several particles approach each other from a macroscopically large 
distance, and interact in a microscopically small region, after which the 
products of the interaction travel out again to a macroscopically large dis- 
tance. The physical states before and after the collision consist of particles 
that are so far apart that they are effectively non-interacting, so they can be 
described as direct products of the one-particle states discussed in the pre- 
vious chapter. In such an experiment, all that is measured is the probability 
distribution, or 'cross-sections', for transitions between the initial and final 
states of distant and effectively non-interacting particles. This chapter will 
outline the formalism' used for calculating these probabilities and cross- 
sections. 

3.1 'In' and 'Out' States 

A state consisting of several non-interacting particles may be regarded as 
one that transforms under the inhomogeneous Lorentz group as a direct 
product of one-particle states. To label the one-particle states we use their 
four-momenta p p ,  spin z-component (or, for massless particles, helicity) 
c, and, since we now may be dealing with more than one species of 
particle, an additional discrete label n for the particle type, which includes 
a specification of its mass, spin, charge, etc. The general transformation 
rule is 
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where W(A,p )  is the Wigner rotation (2.5.10), and W)  are the con- 
ventional ( 2 j  + 1)-dimensional unitary matrices representing the three- 
dimensional rotation grou (This is for massive particles; for any mass- 8 less particle, the matrix Do,,( W7[A,p)) is replaced with d,?, exp(id(A,p)), 
where B is the angle defined by Eq. (2.5.431.) The states are normalized as 
in Eq. (2.5.19) 

with the term '+ permutations' included to take account of the possibility 
that it is some permutation of the particle types n;,ni, . .  . that are of the 
same species of the particle types n l ,  PZZ; .. (AS discussed more fully in 
Chapter 4, its sign is -1 if this permutation includes an odd permutation 
of half-integer spin particles, and otherwise +I. This will not be important 
in the work of the present chapter.) 

We often use an abbreviated notation, letting one Greek letter, say a, 
stand for the whole collection pl, 01, rzl ; p2,cq, n2 ; . . +, In this notation, 
Eq. (3.1.2) is written simply 

with 6(ar - u)  standing for the sum of products of delta functions and 
Kronecker deltas appearing on the right-hand side of Eq. (3.1.2). Also, in 
summing over states, we write 

In  particular, the completeness relation for states normalized as in 
Eq. (3.1 3) reads 

The transformation rule (3.1.1) is only possible for particles that for 
one reason or another are not interacting. Setting A+, = hp,t  and = 

(0,0,0, z), for which U(A, a) = exp(iHz), Eq. (3.1.1) requires among other 
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things that V,  be an energy eigenstate 

with an energy equal to the sum of the one-particle energies 

and with no interaction terms, terms that would involve more than one 
particle at a time. 

On the other hand, the transformation rule (3.1.1) does apply in scat- 
tering processes at times t + kco. As explained a t  the beginning of 
this chapter, in the typical scattering experiment we start with particles 
at time t -+ -m so far apart that they are not yet interacting, and end 
with particles at t + +zo so far apart that they have ceased interacting. 
We therefore have not one but two sets of states that transform as in 
Eq. (3.1.1) : the 'in' and 'nut' srrzres* CY,+ and Y,- will be found to contain 
the particles described by the label a if abser~ations are made at t + -m 
or t + +m, ~especfively. 

Note how this definition is framed. To maintain manifest Lorentz 
invariance, in the formalism we are using here, sta te-vectors do not change 
with time - a state-vector Y describes the whole spacetime history of a 
system of particles. (This is known as the Heismberg picture, in distinction 
with the Schrijdinger picture, where the operators are constant and the 
states change with time.) Thus we do nos say that Y,* are the limits at 
t + Jco of a time-dependent state-vector Yjt). 

However, implicit in the definition of the states is a choice of the inertial 
frame from which the observer views the system; different observers see 
equivalent state-vectors, but not the same state-vector. In particular, 
suppose that a standard observer O sets his or her clock so that t = 0 
is at some time during the collision process, while some other observer 
O' at rest with respect to the first uses a clock set so that t' = 0 is at 
a time t = T; that is, the two observers' time coordinates are related by 
t' = t - r. Then if 6 sees the system to be in a state Y?, 9' will see 
the system in a state U(1,  -z)V = exp(--iHz)Y. Thus the appearance 
of the state long before or long after the collision (in whatever basis is 
used by 05,) is found by applying a time-translation operator expl-iHz) 
with z -, -ca or z + +a, respectively. Of course, if the state is really 
an energy eigenstate, then it cannot be localized in time - the operator 
exp(4H.r) yields an inconsequential phase factor exp(-iE,z). Therefore, 
we must consider wave-packets, superpositions Jda  gja)ly, of states, with 
an amplitude g(a)  that is non-zero and smoothly varying over some finite 

' The labels '+' and '- ' for 'in' and 'out' states may seem backward, but rhey seem to have become 
traditional. They arise from the signs in Eq. (3.1.16). 



range AE of energes. The 'in' and 'out' states are defined so that the 
superposition 

has the appearance of a corresponding superposition of free-particle states 
for z << -1/AE or z >> + l / d E ,  respectively. 

To make this concrete, suppose we can divide the time-translation gen- 
erator H into two terms, a free-particle Hamiltonian Ho and an interaction 
v , 

in such a way that Ho has eigenstates @, that have the same appearance 
as the eigenstates Y: and Y; of the complete Hamiltonian 

Note that Ho is assumed here to have the same spectrum as the full 
Hamiltonian H .  This requires that the masses appearing in Ho be the 
physical masses that are actually measured, which are not necessarily the 
same as the 'bare' mass terms appearing in H ;  the difference if there is 
any must be included in the interaction V, not Ho. Also, any relevant 
bound states in the spectrum of H should be introduced into Ho as if they 
were elementary particles.** 

The 'in' and 'out' states can now be defined as eigenstates of H ,  not Ho, 

which satisfy the condition 

for z 4 -m or z + +x, respectively. 
Eq. (3.1.12) can be rewritten as the requirement that: 

for z + -a or z + +w, respectively. This is sometimes rewritten as a 
formula for the 'in' and 'out' states: 

" Allernatlvely, in non-rclativislic problems we can include the binding putential in Ho. I n  thc 
application or this method to 'rearrangcmenl culhsiuns,' where some bound states appear in the 
initial state but not the final state, or vice-versa, one must use a different split of H into Ho and 
V in Ihe initial and final states. 
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where 

However, it should be kept in mind that Cl(Tm) in Eq. (3.1.13) gives 
meaningful results only when acting on a smooth superposition of energy 
eigenstates. 

One immediate consequence of the definition (3.1.12) is that the 'in' and 
'out' states are normalized just like the free-particle states. To see this, 
note that since the left-hand side of Eq. (3.1.12) is obtained by letting the 
unitary operator e x p ( - i H z )  act on a time-independent state, its norm is 
independent of time, and therefore equals the norm of its limit for T + x, 
i.e., the norm of the right-hand side of Eq. (3.1.12): 

Since this is supposed to be true for all smooth functions g(a), the scalar 
products must be equal 

I t  is useful for some purposes to have an explicit though formal solution 
of the energy eigenvalue equation (3.1.11) satisfying the conditions (3.1.12). 
For this purpose, write Eq. (3.1.1 I) as 

+ ( E ,  - &)Y,& = VV,- . 

The operator E, - Hn is not invertible; it annihilates not only the free- 
particle state @,, but also the continuum of other free-particle states 4.3 of 
the same energy. Since the 'in' and 'out' states become just @, for V -+ 0, 
we tentatively write the formal solutions as @, plus a term proportional 
to v: 

or, expanding in a complete set of free-particle states, 

with E. a positive infinitesimal quantity, inserted to give meaning to the 
reciprocal of E, - Ho. These are known as the Lippmann-Suhwinger 
equations.'" We shall use Eq. (3.1 . I  7) at the end of the next section to gve 
a slightly less unrigarous proof of the orthonormality of the 'in' and 'out' 
states. 
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It remains to be shown that Eq. (3.1.17), with a t i e  or -k in the 
denominator, satisfies the condition (3.1.12) for an 'in' or an 'out' state, 
respectively. For this purpose, consider the superpositions 

We want to show that Y,+(t) and Y,-(t) approach Qg(f) for t --r -m and 
t +m, respectively. Using Eq. (3 . l . l7 )  in Eq. (3.1.19) gives 

Let us recklessly interchange 
the integrals 

the order of integration, and consider first 

For t -+ -co, we can close the contour of integration for the energy 
variable E, in the upper half-plane with a large semi-circle, with the 
contribution from this semi-circle killed by the factor expi-iE,t), which 
is exponentially small for t -+ -a and Im E, > 0. The integral is then 
given by a sum over the singularities of the integral in the upper half- 
plane. The functions g(a) and T ~ , &  may, in general, be expected to have 
some singularities at values o f  E ,  with finite positive imaginary parts, 
but just as for the large semi-circle, their contribution is exponentially 
damped for t -+ -m. (Specifically, -t must be much greater than both 
the time-uncertainty in the wave-packet g(r) and the duration of the 
collision, which respectively govern the location of the singularities of 
g(a) and ~~,f- in the complex E,  plane.) This leaves the singularity in 
( E .  E p  & Q)-', which is in the upper half-plane for . a b  but not 48+. 
We conclude then that Jp+ vanishes for t -x. In the same way, for 
t -+ +oc we must close the contour of integration in the lower half-plane, 
and so ,YP- vanishes in this limit. We conclude that yg*(t) approaches 
@,(t) for t + Tx, in agreement with the defining condition (3.1.12). 

For future use, we note a convenient representation of the factor ( E ,  - 
Ep f k)-I in Eq. (3.1.17). In general, we can write 
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where 

The function (3.1.23) i s  just 1/E for IEl >> c, and vanishes for E -t 0, so 
for F + 0 it behaves just like the 'principal value function' Y / E ,  which 
allows us to give meaning to integrals of 1/E times any smooth function 
of E, by excluding an infinitesimal interval around E = 0. The function 
(3.1.24) is of order F for [E  1 >> e, and gives unity when integrated over 
all E, so in the limit e + 0 it behaves just like the famiIiar delta function 
4 E ) .  With this understanding, we can drop the label E in Eq. (3.1.22), 
and write simp1 y 

3.2 The S-matrix 

An experimentalist generally prepares a state to have a definite particle 
content at t + -x , and then measures what this state looks like at 
t + +w. If the state is prepared to have a particle content a for t + -LC, 

then it is the 'in' state Yx+, and if it is found to have the particle content 
p at t + +m, then it is the 'out' state The probability amplitude for 
the transition cl - p i s  thus the scalar product 

This array of complex amplitudes is known as the ~-rnatrix.~ i f  there were 
no interactions then 'in' and 'out' states would be the same, and then Sg,  
would be just d(a - fi), The rate for a reaction a + /3 is thus proportional 
to ISp. - 6(a - j)12. We shall see in detail in Section 3.4 what S p  has to 
do with measured rates and cross-sections. 

Perhaps it should be stressed that 'in' and 'out' states do not inhabit 
two different HiIbert spaces. They differ only in how they are labelled: 
by their appearance either at t -+ -co or i + +x. Any 'in' state can be 
expanded as a sum of 'out' states, with expansion coefficients given by the 
$-matrix (3.2.1). 

Since Sb, is the matrix connecting two sets of orthonormal states, it 
must be unitary. To see this in greater detail, apply the completeness 
relation (3.1.5) to the 'out' states, and write 



Using (3.1. I 51, this gives 

J dp s~.,,s~. = fi(y - a) 

or in brief, S ~ S  = 1. In the same way, completeness for the 'in' states 
gwes* 

or, in other words, SS? = I. 
It is often convenient instead of dealing with the S-matrix to work with 

an operator S ,  defined to have matrix elements between free-particle states 
equal to the corresponding elements uf the S-matrix: 

The explicit though highly formal expression (3.1.13) for the 'in' and 'out' 
states yields a formula for the S-operator: 

where 

This will be used in the next section to examine the Lorentz invariance 
of the S-matrix, and in Sec. 3.5 to derive a formula for the $-matrix in 
time-dependent perturbation theory. 

The methods of the previous section can be used to derive a useful 
alternative formuIa for the S-matrix. Let's return to Eq. (3.1.21) for the 
'in' state V+, but this time take t + +x. We must now close the contour 
of integration for E, in the lower half-E,-plane, and although as before 
the singularities in Tp,+ and g(c) make no contribution for t -t +w, we 
now do pick up a contribution from the singular factor ( E ,  - E p  + i6)-'. 
The contour runs from E ,  = -LC to E, = +m, and then back to E, = -cc, 

on a large semi-circle in the lower half-plane, so it circles the singularity 
in a clockwise direction. By the method of residues, this contribution to 
the integral over E, is given by the value of the integrand at E ,  = Eg - i ~ ,  
times a factor -2iz. That is, in the limit F 4 Ot, for t + +ou the integral 
over cc in (3.1.21) has the asymptotic behavior 

' An altcrnativc proof is given at thc cnd of this scct im. Notc that for infinitc 'matrices,' the 
unitarity conditions S+S=I and S S +  = 1 are not equitalent. 
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and hence, for t + +w, 

But expanding (3.1.19) for Y,+ in a complete set of 'out' states gives 

Since Sg, contains a factor 6 ( E g  - En) ,  this may be rewritten 

and, using the defining property (3.1.12) for 'out' states, this has the 
asymptotic behavior for t -t +LC 

Comparing this with our previous result, we find 

or in other words 

This suggests a simple approximation for the S-matrix: for a weak 
interaction V, we can neglect the difference between 'in' and free-particle 
states in (3.1.1 81, in which case Eq. (3.2.7) gives 

This is known as the Born ~~~rnxirnation.~ Higher-order terms are dis- 
cussed in Section 3.5. 

We can use the Lippmann-Schwinger equations (3.1.16) Tor the 'in' and 
'out' states to g v e  a proof4 of the orthonormality of these states and 
the unitarity of the $-matrix, as well as Eq. (3.2.7), without having to 
deal with limits at 1 + Tea. First, by using (3.2.16) on either the left- or 
right-hand side of the matrix element (Y;, v l $ )  and equating the results, 
we find that 

Summing over a complete set @;, of intermediate states, this gives the 
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equation: 

To prove the orthonormality of  the 'in' and 'out' states, divide Eq. (3.2.9 
by E, - Ep + 2k. This gives 

The 2 ~ s  in the denominators on the left-hand side can be replaced with 
FS,  since the only Important thing is that these are positive infinitesimals. 
We see then that d(P - a)  + T D , * / ( ~ B  - El f ie) i s  unitary. With (3.1.17). 
this is just the statement that the 'P,* form two orthonormal sets of 
state-vectors. The unitarity of the S-matrix can be proved in a similar 
fashion by multiplying (3.2.9) with 6 ( E g  - E r )  instead of ( E m  - Ep & 2ie)-l. 

3.3 Symmetries of the S-Matrix 

In this section we will consider both what is meant by the invariance of 
the S-matrix under various symmetries, and what are the conditions on 
the Hamiltonian that will ensure such invariance properties. 

Lorentz inuarionce 

For any proper orthochronous Lorentz transformation x + Ax + a, we 
may define a unitary operator U(A,a) by specifying that it acts as in 
Eq. (3.1.1) on either the 'in' or the 'out' states. When we say that a theory 
is Lorentz-invariant, we mean that the same operator U(A,a)  acts as in 
(3.1.1)  on both 'in' alad 'out' states. Since the operator U(A, u )  is unitary, 
we may write 

so using (3.1,1), we obtain the Lorentz invariance (actually, covariance) 
property of the S-matrix : for arbitrary Lorentz transformations A/', and 
translations up, 
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X SApr a nr . np; nr , , , , 2 ,  2 +  , Ap1,5i,n1;Ap2,62,n2;... (3.3.1) 

(Primes are used to distinguish final from initial particles; bars are used 
to distinguish summation variables.) In particular, since the left-hand side 
is independent of ap,  so must be the right-hand side, and so the S-matrix 
vanishes unless the four-momentum i s  conserved. We can therefore write 
the part of the S-matrix that represents actual interactions among the 
particles in the form: 

(However, as we will see in the next chapter, the amplitude M J ,  itself 
contains terms that involve further delta function factors.) 

Eq. (3.3.1) should be regarded as a definition of what we mean by the 
Lorentz invariance of the S-matrix, rather than a theorem, because it is 
only for certain special choices of Hamiltonian that there exists a unitary 
operator that acts as in (3.1.1) on both 'in' and 'out' states. We need to 
formulate conditions on the Hamiltonian that would ensure the Lorentz 
invariance of the S-matrix. For this purpose, it will be convenient to work 
with the operator S defined by Eq. (3.2.4): 

As we have defined the free-particle states @, in Chapter 2, they furnish 
a representation of the inhomogeneous Lorentz group, so we can always 
define a unitary operator UojA, a )  that induces the transformation (3.1.1) 
on these states: 

@hpl,r( ,nl ; Ap2,0 i ,q ;  ... 

Eq. (3.3.1) will thus hold if this unitary operator commutes with the 
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This condition can also be expressed in terms of infinitesimal Lorentz 
transformations. Just as in Section 2.4, there will exist a set of Hermitian 
operators, a momentum Po, an angular momentum Jo, and a boost 
generator KO, that together with Ho generate the infinitesimal version 
of inhomogeneous Lorentz transformations when acting on free-particle 
states. Eq, (3 .3 .1)  is equivalent to the statement that the S-matrix is 
unaffected by such transformations. or in other words, that the S-operatar 
commutes with these generators: 

Because the operators Ho, Po, Jo, and Ko generate infinitesimal inhomo- 
geneous Lorentz transformations on the @,, they automatically satisfy the 
commutation relations (2.4.18).-.-(2.4.24) : 

[J; ,J$  = i f i j &  , (3.3.4) 
k [Jb, K { ]  = i cijkKo , (3.3.5) 

[K!), K;]  = -i ~ i j k ~ ;  , (3.3.6) 

[J;, pi] = i cijkp,k , (3.3.7) 

[K;, pi]  = iH06, ,  , (3,331 

[J ; ,  Ho] = [P& Ho] = [PA,  f';] = 0 , (3.3.9) 

[K;, Ha] = i P A ,  (3.3.10) 

where i, j , k ,  etc. run over the values 1, 2, and 3, and Eijk is the totally 
antisymmetric quantity with €123 = t l .  

Tn the same way, we may define a set of 'exact generators,' operators P, J, 
K that together with the full Hamiltonian H generate the transformations 
(3.1.1) on, say, the 'in' states. (As already mentioned, what is not obvious 
is that the same operators generate the same transformations on the 'out' 
states.) The group structure tells us that these exact generators satisfy the 
same commutation relations: 
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In virtually all known field theories, the effect of interactions is to add an 
interaction term V to the Hamiltonian, while leaving the momentum and 
angular momentum unchanged: 

(The only known exceptions are theories with topologically twisted fields, 
such as those with magnetic monopoles, where the angular momentum of 
states depends on the interactions.) Eq. (3.3.18) implies that the commu- 
tation relations (3.3.1 I), (33.141, and (3.3.16) are satisfied provided that 
the interaction commutes with the free-particle momentum and angular- 
momentum operators 

It is easy to see from the Lippmann-Schwinger equation (3.1.16) or 
equivalently from (3.1.1 3) that the operators that generate translations 
and rotations when acting on the 'in' (and 'out') states are indeed simply 
Po and Jo. Also we easily see that PO and JII commute with the operator 
U(t ,  to) defined by Eq.(3.2.6), and hence with the S-operator U(m, - X I .  
Further, we already know that the S-operator commutes with Ho, because 
there are energy-conservation delta functions in both terms in (3.2.7). This 
leaves just the boost generator KO which we need to show commutes with 
the S-operator. 

On the other hand, it is not possible to set the boost generator K 
equal to its free-particle counterpart KO, because then Eqs. (3.3.15) and 
(3.3.8) would give H = Ho, which is certainly not true in the presence of 
interactions. Thus when we add a n  interaction V to Ho, we must also add 
a correction W to the boost generator: 

Of the remaining commutation relations, let us concentrate on Eq. (3.3.17), 
which may now be put in the form 

By itself, the condition (3.3.21) is empty, because for any V we could 
always define W by giving its matrix elements between H-eigenstates Y,  
and Ylr as -(Yo, {KO, V]Y! , ) / (EB - E,). Recall that the crucial point in 
the Lorentz invariance of a theory is not that there should exist a set 
of exact generators satisfying Eqs. (3.3.1 l)-(3.3.17), but rather that these 
operators should act the same way on 'in' and 'out' states; merely finding 
an operator K that satisfies Eq. (3.3.21) is not enough. Eq. (3.3.21) does 
become significant if we add the requirement that matrix elements of 
W should be smooth functions of the energies, and in particular should 
not have singularities of the form ( E p  - EJ1. We shall now show that 
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Eq. (3.3.211, together with an appropriate smoothness condition on W, 
does imp1 y the remaining Lorentz invariance condition [KO, S ]  = 0. 

To prove this, let us consider the commutator of KO with the operator 
U(t, to) for finite z and to. Using Eq. (3.3.10) and the fact that Po commutes 
with Ho yields: 

[KO, exp(iHo t ) ]  = -tPo exp(iHot) 

while Eq. (3.3.21) (which is equivalent to Eq. (3.3.17)) yields 

The momentum operators then cancel in the commutator of KO with U, 
and we find : 

[KO, U{z, T O ) ]  = - w i ~ ) U ( z ,  t o )  + u(r, TO W I z a )  , (3.3.22) 

where 

W(t) = exp{i&t)W expl-iHot). (3.3.23) 

If the matrix elements of W between Ho-eigenstates are sufficiently smooth 
functions of energy, then matrix elements of W(t) between smooth super- 
positions of energy eigenstates vanish for + +m, so Eq. (3.3.22) gives in 
effect : 

0 = [KO, U(m, - 4 1  = [KO, Sl, (3.3.24) 

as was to be shown. This is the essential result: Eq. (3.3.21) together 
with the smoothness condition on matrix elements of W that ensures that 
W(t) vanishes for t 4 f m provides a sufficient condition for the Lorentz 
invariance of the S-matrix. This smoothness condition is a natural one, 
because it i s  much like the condition on matrix elements of V that is 
needed to make V ( t )  vanish for t -, &GO, as required in order to justify 
the very idea of an S-matrix. 

We can also use Eq.(3.3.22) with r = 0 and .to = Tco to show that 

where !2{Tco) is according to (3.1.13) the operator that converts a free- 
particle state @, into the corresponding 'in' or 'out' state !?!,*. Also, it 
follows trivially from Eqs. (3.3.18) and (3.3.19) that the same is true for 
the momentum and angular momentum: 

PQ(Tm) = n(Tm)Po, (3.3.26) 

Finally, since all @, and Y,' are eigenstates of Hu and H respectively 
with the same eigenvalue E,, we have 

H Q { T ~ )  = i q p n ) ~ ~  . (3.3.28) 
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Eqs. (3.3.25)-(3.3.28) show that with our assumptions, 'in' and 'out' states 
do transform under inhomogeneous Lorentz transformations just like the 
free-particle states. Also, since these are similarity transformations, we 
now see that the exact generators K, P, J, and W satisfy the same com- 
mutation relations as KO, Po, Jo, and Ho. This is why it turned out to be 
unnecessary in proving the Lorentz invariance of the S-matrix to use the 
other commutation relations (3.3.121, (3.3.131, and (3.3.1 5) that involve K. 

Internad Symmetries 

There are various symmetries, like the symmetry in nuclear physics under 
interchange of neutrons and protons, or the 'charge-conjugation' symmetry 
between particles and antiparticles, that have nothing directly to do with 
Lorentz invariance, and further appear the same in all inertial frames. 
Such a symmetry transformation T acts on the Hilberr space of physical 
states as a unitary operator U(T), that induces linear transformations on 
the indices labelling particle species 

In accordance with the general discussion in Chapter 2, the U (  T )  must 
satisfy the group multiplication rule 

where T T  is the transformation obtained by first performing the trans- 
formation T, then some other transformation T. Acting on Eq. (3.3.29) 
with u(T) ,  we see that the matrices 9 satisfy the same rule 

Also, taking the scalar product of the states obtained by acting with U ( T )  
on two different 'in' states or two different 'out' states, and using the 
normalization condition (3.1.2), we see that 9 j T )  must be unitary 

Finally, taking the scalar product of the states obtained by acting with 
U ( T )  on one 'out' state and one 'in' state shows that 9 commutes with 
the S-matrix, in the sense that 
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Again, this is a definition of what we mean by a theory being invari- 
ant under the internal symmetry T, because to derive Eq, (3.3.33) we 
still need to show that the same unitary operator U ( T )  will induce the 
transformation (3.3.29) on both 'in' and 'out' states. This will be the case 
if there is an 'unperturbed' transformation operator U o ( T )  that induces 
these transformations on free-particle states, 

and that commutes with both the free-particle and interaction parts of 
the Harniltonian 

From either the Lippmann-Schwinger equation (3.1.1 7) or from (3.l.l3), 
we see that the operator Uo( T )  will induce ihe transformations (3.3.29) 
on 'in' and 'out' states as well as free-particle states, so that we can derive 
Eq. (3.3.29) taking U ( T )  as Lro(T). 

A special case of great physical importance is that of a one-parameter 
Lie group, where T is a function of a single parameter 0,  with 

As shown in Section 2.2, in this case the corresponding Hilbert-space 
operators must take the form 

with Q a Hermitian operator. Likewise the matrices $(TI take the form 

where q, are a set of real species-dependent numbers. Here Eq. (3.3.33) 
simply tells us that the q s are conserved: Sfi, vanishes unless 

The classic example of such a conservation law is that of conservation of 
electric charge. Also, all known processes conserve baryon number (the 
number of baryons, such as protons, neutrons, and hyperons, minus the 
number of their antiparticles) and lepton number (the number of leptons, 
such as electrons, muons, z particles, and neutrinos, minus the number of 
their antiparticles) but as we shall see in Volume 11, these conservation 
laws are believed to be onIy very good approximations. There are other 
conservation laws of this type that are definitely only approximate, such 
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as the conservation of the quantity known as strangeness, which was in- 
troduced to explain the relatively long life of a class of particles discovered 
by Rochester and I3utler5 in cosmic rays in 1947. For instance, the mesons 
now called' K +  and K O  are assigned strangeness +1 and the hyperons A', 
Z+, C', Z- are assigned strangeness -1, while the more familiar protons, 
neutrons, and 7~ mesons (or pions) are taken to have strangeness zero. The 
conservation of strangeness in strong interactions explains why strange 
particles are always produced in association with one another, as in reac- 
tions like n+ + pz + Kf + AU, while the relatively slow decays of strange 
particles into non-strange ones such as A' + p + n and K +  + n+ + d' 
show that the interactions that do not conserve strangeness are very weak. 

The classic example of a 'non-Abelian' symmetry whose generators 
do not commute with one another is isotopic spin symmetry, which 
was suggested6 in 1937 on the basis of an experiment7 that showed the 
existence of a strong proton-proton force similar to that between protons 
and neutrons. Mathematically, the group is  S U ( 2 ) ,  like the covering group 
of the group of three-dimensional rotations; its generators are denoted t i ,  
with i = 1 ,2 ,3 ,  and satisfy a commutation relation like (2.4.18) : 

To the extent that isotopic spin symmetry is respected, it requires particles 
to form degenerate mu1 tiplets labelled with an integer or ha1 f-integer T 
and with 2T + 1 components distinguished by their t 3  values, just like 
the degenerate spin multiplets required by rotational invariance. These 

1 include the nucleons g and n with T = f and tl = ?, -f ; the pions n+, 
no, and r- with T = 1 and t~ = +1,0,-1 ; and the h0 hyperon with 
T = 0 and t j  = 0. These examples illustrate the relation between electric 
charge Q, the third component of isotopic spin 1 3 ,  the baryon number B,  
and the strangeness S :  

This relation was originally inferred from observed selection rules, but 
it was interpreted3 by Gell-Mann and Ne'eman in 1960 to be a conse- 
quence of the embedding of both the isospin ? and the 'hypercharge' 
Y = B + S in the Lie algebra of a larger but more badly broken non- 
Abelian internal symmetry, based on the non-Abelian group SU(3) .  As 
we will see in Volume 11, today both isospin and SU(3) symmetry are 
understood as incidental consequences of the small masses of the two or 
three lightest quarks in the modern theory of strong interactions, quantum 
chromody namics. 

* Superscripki denote eleclric charges in units of thc absolute value of the eledronic chargc. A 
'hyperon* is any pnrticlc carrying non-zero strangeness m d  unit baryon number. 
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The implications of isotopic spin symmetry for reactions among strongly 
interacting particles can be worked out by the same familiar methods that 
were invented for deriving the implications of rotational invariance. In 
particular, for a two-body reaction A + B + C f D, Eq. (3.3.33) requires 
that the S-matrix may be put in the form {suppressing all but isospin 
labels) : 

where Cjl ,> (jrr ; o 1 oz) is the usual Clebsch-Gordan coefficientg for form- 
ing a spin j with three-component a from spins jl and j 2  with three- 
components and g2, respectively; and ST i s  a 'reduced' S-matrix 
depending on T and on all the suppressed momentum and spin variables, 
but not on the isospin three-components t ~ 3 ,  t83, t ~ ~ , t ~ 3  . Of course, this, 
like all of the consequences of isotopic spin invariance, is only approx- 
imate, because this symmetry is not respected by electromagnetic (and 
other) interactions, as shown for instance by the fact that different mem- 
bers of the same isospin multiplet like p and ra have different electric 
charges and slightly different masses. 

To the extent that the symmetry under the transformation x 4 -x is 
really valid, there must exist a unitary operator P under which both 'id 
and 'out' states transform as a direct product of single-particle states : 

where g, is the intrinsic parity of particles of species n, and 9 reverses the 
space components of JP. (This is for massive particles; the modification 
for massless particles is abvious.) The parity conservation condition for 
the $-matrix is then: 

Just as for internal symmetries, an operator P satisfying Eq. (3.3.41) will 
actually exist if the operator Po which is defined to act this way on 
free-particle states commutes with V as well as Ho. 

The phases q, may be inferred either from dynamical models or from 
experiment, but neither can provide a unique determination of the q s. 
This is because we are always free to redefine P by combining it with 
any conserved internal symmetry operator. For instance, if P is conserved, 
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then so is 

P' = P exp(iclB + iPL + iy Q), 

where B,  L, and Q are respectively baryon number, lepton number, and 
electric charge, and a, P ,  and y are arbitrary real phases; hence either P or 
P' could be called the parity operator. The neutron, proton, and electron 
have different combinations of values for 3, L, and Q, so by judicious 
choice of the phases a, P ,  and y we can define the intrinsic parities of all 
three particles to be +I .  However, once we have done this the intrinsic 
parities of other particles like the charged pion (which can be emitted in a 
transition n + p + rr-)  are no longer arbitrary. Also, the intrinsic parity of 
any particle like the neutral pion no which carries no conserved quantum 
numbers is always meaningful. 

The foregoing remarks help to clarify the question of whether intrinsic 
parities must always have the values f I. It is easy to say that space 
inversion P has the group multiplication law p2 = 1 ;  however, the parity 
operator that is conserved may not be this one, but rather may differ 
from it by a phase transformation of some sort. In any case, whether 
or not p2 = 1, the operator p2 behaves just like an internal symmetry 
transformation ; 

If this internal symmetry is part of a continuous symmetry group of 
phase transformations, such as the group of multiplication by the phases 
exp(irjlB + iPL + i y Q )  with arbitrary values of a, f l ,  and y ,  then its inverse 
square root must also be a member of this group, say lp, with 1:p2 = 1 
and [Ip,P] = 0. (For instance, if p2 = exp(iaB + s m  m ) ,  then take l p  = 
exp(-; i a 3  + . - -1.) We can then define a new parity operator P' = PIp 
with pJ2 = 1. This is conserved to the same extent as P, so there is no 
reason why we should not call this the parity operator, in which case the 
intrinsic parities can only take the values f 1. 

The only sort of theory in which it is not necessarily possible to define 
parity so that all intrinsic parities have the values is one in which 
there is some discrete internal symmetry which is not a member of any 
continuous symmetry group of phase  transformation^.'^ For instance, it is 
a consequence of angular-momentum conservation that the total number 
F of all particles of half-integer spin can only change by even numbers, 
so the internal symmetry operator (-1)' is conserved. All known particles 
of half-integer spin have odd values of the sum B + L of baryon number 
and lepton number, so as far as we know, (-llF = ( - l lBfL.  If this is 
true, then (-1)' is part of a continuous symmetry group, consisting of 
the operators exp(iol(3 + L) )  with arbitrary real a, and has an inverse 
square root exp(-in(l3 + L) /2 ) .  In this case, if p2 = (-lIF then P can be 
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redefined so that all intrinsic parities are +I. However, if there were to be 
discovered a particle of half-integer spin and an even value of B + L (such 
as a so-called Majorana neutrino, with j = f and B + L = O),  then it 
would be possible to have P' = (-1 )li without our being able to redefine 
the parity operator itself to have eigenvalues & I .  In this case, of course, 
we would have p4 = 1, so all particles would have intrinsic parities either 
I I  or (like the Majorana neutrino) ki. 

It follows from Eq. (3.3.42) that if the product o f  intrinsic parities in the 
final state is equal to the product of intrinsic parities in the initial state, or 
equal to minus this product, then the S-matrix must be respectively even 
or odd overall in the three-momenta. For instance, it was observed" in 
I951 that a pion can be absorbed by a deuteron from the L' = 0 ground 
state of the n-d atom, in the reaction T- + d J la + n. (As discussed 
in Section 3.7, the orbital angular-momentum quantum number C can be 
used in relativistic physics in the same way as in non-relativistic wave 
mechanics.) The initial state has total angular-momentum j = 1 (the pion 
and deuteron having spins zero and one, respectively), st, the final state 
must have orbital angular-momentum f = 1 and total neutron spin s = 1. 
(The other possibilities P = 1, s = 0 ; G = 0, s = 1 ; and r* = 2, s = 1, 
which are allowed by angular-momentum conservation, are forbidden by 
the requirement that the final state be antisymmetric in  the two neutrons.) 
Because the final state has t = 1, the matrix element is odd under reversal 
of the direction of all three-momenta, so we can conclude that the intrinsic 
parities of the particles in this reaction must be related by: 

The deuteron is known to be a bound state of a proton and neutron 
with even orbital angular-momentum {chiefly d = O), and as we have seen 
we can take the neutron and proton to have the same intrinsic parity, 
so * = 9:, and we can conclude that y,- = - I  ; that is, the negative 
pion is a pseudoscalar particle. The K' and no have also been found to 
have negative parity, as would be expected from the symmetry (isospin 
invariance) among these three particles. 

The negative parity of the pion has some striking consequences. A 
spin zero particle that decays into three pions must have intrinsic parity 
s: = -1, because in the Lorentz frame in which the decaying particle is 
at rest, rotational invariance only allows the matrix element to depend on 
scalar products of the pion momenta with each other, all of which are 
even under reversal of all momenta. (The triple scalar product p l .  (p2 x p3) 
formed from the three pion momenta vanishes because pl + pz + p~ = 0.) 
For the same reason, a spin zero particle that decays into two pions must 
have intrinsic parity rj: = +I. In particular, among the strange particles 
discovered in the late 1940s there seemed to be two different particles of 



zero spin (inferred from the angular distribution of their decay products): 
one, the z, was identified by its decay into three pions, and hence was 
assigned a parity -1, while the other, the 0, was identified by its decay 
into two pions and was assigned a parity + 1. The trouble with all this was 
that as the z and H were studied in greater detail, they seemed increasingly 
to have identical masses and lifetimes. After many suggested solutions 
of this puzzle, Lee and Yang in 1956 finally cut the Gordian knot, and 
proposed that the z and D are the same particle, (now known as the K * )  
and that parity is simply not conserved in the weak interactions that lead 
to its decay.12 

As we shall see in detail in the next section of this chapter, the rate for a 
physical process u + fi (with a # p )  is proportional to s~,(~, with propor- 
tionality factors that are invariant under reversal of all three-momenta. 
As long as the states r and ,G contain definite numbers of particles of 
each type, the phase factors in Eq. (3.3.42) have no effect on  IS^.^^, so 
Eq. (3.3.42) would imply that the rate for a -+ f l  is invariant under the 
reversal of direction of all three-momenta. As we have seen, this is a 
trivial consequence of rotational invariance for the decays of a K meson 
into two or three pions, but it is a non-trivial restriction on rates in more 
complicated processes. For example, following theoretical suggestions by 
Lee and Yang, Wu together with a group at the National Bureau of Stan- 
dards measured the angular distribution of the electron in the final state 
of the beta decay CO" -+ ~ i ~ '  + e- + v with a polarized cobalt source.'" 
(No  attempt was made in this experiment to measure the momentum 
of the antineutrino or nickel nucleus,) The electrons were found to be 
preferentially emitted in a direction opposite to that of the spin of the 
decaying nucleus, which would, of course, be impossible if the decay rate 
were invariant under a reversal of all threemomenta. A similar result 
was found jn the decay of a positive muon (polarized in its production in 
the process i~+ + p+ + V )  into a positron, neutrino, and antineutrino.14 
In this way, it became clear that parity is indeed not conserved in the 
weak interactions responsible for these decays. Nevertheless, for reasons 
discussed in Section 12.5, parity is conserved in the strong and electro- 
magnetic interactions, and therefore continues to play an important part 
in theoretical physics. 

Time-Reversal 

We saw in Section 2.6 that the time-reversal operator T acting on a 
one-particle state Ypq,,, gives a state Ygp,-,, with reversed spin and 
momentum, times a phase [,(- 1 A multi-particle state transforms 
as usual as a direct product of one-particle states, except that since this 
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is a time-reversal transformation, we expect 'in' and 'out' states to be 
interchanged: 

(Again, this is for massive particles, with obvious modifications being 
required for massless particles.) It will be convenient to abbreviate this 
assumption as 

T TY$ = 'Y,, , 
where F indicates a reversal of sign of three-momenta and spins as well 
as multiplication by the phase factors shown in Eq. (3.3.43). Because T is 
antiunitary, we have 

so the time-reversal invariance condition for the S-matrix is 

or in more detail 

s+i-;d, ; p ;n ;n ; ; -  , p1v,u, ; p p 2 n * ; . , .  

- - cdl(-ljji - f l ' , ~ f l ~ ( - l ~ j ~ - 4 . .  . c *  (-1p - O I ~ *  ( - l ) h - ~ .  . . 
n 1 fl2 

X -", n I ; ~ p 2  -": ":;- , ap; -.I .;;;yp; -.; .;;- . (3.3.47) 

Note that in addition to the reversal of momenta and spins, the role 
of initial and final states is interchanged, as would be expected for a 
symmetry involving the reversal of time. 

The S-matrix will satisfy this transformation rule if the operator To that 
induces t i m e r e k a l  transformations on free-particle states 

commutes not only with the free-particle Hamiltonian (which is automatic) 
but also with the interaction: 

In this case we can take T = To, and use either (3.1.13) or (3.1.16) to show 
that time-reversal transformations do act as stated in Eq. (3.3.44). For 
instance, operating on the Lippmann-Schwinger equation (3.1.16) with T 
and using Eqs. (3.3.48 j(3.3.50), we have 
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with the sign of k i e  reversed because T is antiunitary. This is just 
the Lippmann-Schwinger equation for Y$,, thus justifying Eq. (3.3.44). 
Similarly, because T is antiunitary it changes the sign of the i in the 
exponent of S1(t), so that 

again leading to Eq. (3.3.44). 
In contrast with the case of parity conservation, the time-reversal in- 

variance condition (3.3.46) does not in general tell us that the rate for 
the process a + /I is the same as for the process F a  + 9-/?. However, 
something like this is true in cases where the S-matrix takes the form 

where is small, while s { O )  happens to have matrix element zero for 
some particular process of interest, though it generally has much larger 
matrix elements than ~ ( ~ 1 .  (For instance, the process might be nuclear beta 
decay, N + N' + e- + v, with s(O) the S-matrix produoed by the strong 
nuclear and electromagnetic interactions alone, and s'') the correction to 
the S-matrix produced by the weak interactions. Section 3.5 shows how 
the use of the 'distorted-wave Born approximation' leads to an S-matrix 
of the form (3.3.51) in cases of this type. In  some cases s(') is simply 
the unit operator.) To first order in ~ ( ' 1 ,  the unitarily condition for the 
S-operator reads 

Using the zeroth-order relation S(O'~S(O)  = I, this gives a reality condition 
for ~ ( ~ 1 :  

If as well as satisfies the time-reversal condition (3.3.461, then this 
can be put in the form 

Since ,Sia) is unitary, the rates for the processes a + P and F a  + Fb 
are thus the same if summed over sets 9 and .F of final and initial states 
that are complete with respect to (By being 'complete' here is meant 
that if is non-zero, and either a or a' are in .%, then both states are 
in 9' ; and similarly for F.) In the simplest case we have 'complete' sets 
.% and .F consisting of just one state each; that is, both the initial and 
the final states are eigenvectors of s(O) with eigenvalues e2i6n and e2"p, 
respectively. (The S, and Sg( are called 'phase shifts'; they are real because 
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~ ( ' 1  is unitary.) In this case, Eq. (3.3.53) becomes simply: 

and it is clear that the absolute value of the S-matrix for the process 
a + 11 is the same as for the process F c l  + Sfi. This is the case 
for instance in nuclear beta decay (in the approximation in which we 
ignore the relatively weak Coulomb interaction between the electron and 
nucleus in the final state), because both the initial and final states are 
eigenstates of the strong interaction S-matrix (with 8, = 4 = 0). Thus if 
time-reversal invariance is respected, the differential rate for a beta decay 
process should be unchanged if we reverse both the momenta and the spin 
z-components 0 of aU particles. This prediction was not contradicted in 
the 1956 experiments13*" that discovered the non-conservation of parity; 
for instance, time-reversal invariance i s  consistent with the observation 
that electrons from the decay co6' 4 ~i~~ + e- + v are preferentially 
emitted in a direction opposite to that of the coho spin. As described 
below, indirect evidence against time-reversal invariance did emerge in 
1964, but it remains a useful approximate symmetry in weak as well as 
strong and electromagnetic interactions. 

In  some cases we can use a basis of states for which :Fa = r and 
.Ffi = f l ,  for which Eq. (3.3.54) reads 

which just says that is;:! has the phase 8. + dB mod a. This is known 
as Watson's thr~rern.'~ The phases in Eqs. (3.3.54) or (3.3.55) may be 
measured in processes where there is interference between different final 
states. For instance, in the decay of the spin 1/2 hyperon A into a nu- 
cleon and a pion, the final state can only have orbital angular-momentum 
G = 0 or G = I ;  the angular distribution of the pion relative to the A 
spin involves the interference between these states, and hence according 
to Watson's theorem depends on the difference 6, - 6, of their phase shifts. 

Although the 1957 experiments on parity violation did not rule out time- 
reversal invariance, they did show immediately that the product PT is 
not conserved. If conserved this operator would have to be antiunitary 
for the same reasons as for T, so in processes like nuclear beta decay its 
consequences would take the form of relations like Eq. (3.3.54): 
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where +YF reverses the signs of all spin z-components but not any rno- 
menta. Neglecting the final-state Coulomb interaction, it would then 
follow that there could be no preference for the electron in the decay 
coM' + N?' + c + r; to be emitted in the same or the opposite direction 
to the corn spin, in contradiction with what was observed. 

C, CP, and CPT 

As already mentioned, there is an internal symmetry transformation, 
known as charge-conjugation, which interchanges particles and antiparti- 
cles. Formally, this entails the existence of a unitary operator C, whose 
effect on multi-particle states is: 

where nc is the antiparticle of particle type n, and (,, is yet another phase. 
If this is true for both 'in' and 'out' states then the S-matrix satisfies the 
invariance conditions 

As with other internal symmetries, the S-matrix will satisfy this condition 
if the operator Cn that is defined to act as stated in Eq. (3.3.56) on free- 
particle states commutes with the interaction V as well as Ho;  in this case, 
we take C = Cam 

The phases [, are called charge-conjugation parities. Just as for the 
ordinary parities vn, the t, are in general not uniquely defined, because 
for any operator C that is defined to satisfy Eq. (3.3.561, we can find 
another such operator with different {, by multiplying C with any internal 
symmetry phase transformation, such as exp(irl3 + ifiL + iy  Q) ; the only 
particles whose charge-conjugation parities are individually measurable 
are those completely neutral particles like the photon or the neutral pion 
that carry no conserved quantum numbers and are their own antiparticles. 
In reactions involving only completely neutral particles, Eq. (3.3,57) tells us 
that the product of the charge-conjugation parities in the initial and final 
states must be equal; for instance, as we shall see the photon is required by 
quantum electrodynamics to have charge-conjugation parity qy  = -1, SO 

the observation of the neutral pion decay no + 27 requires that q,e = +1; 
it then follows that the process no + 317 should be forbidden, as is in 
fact known to be the case. For these two particles, the charge-conjugation 
parities are real, either +I or -1. Just as for ordinary parity, this will 
always be the case if all internal phase transformation symmetries are 



members of continuous groups of phase transformations, because then we 
can redefine C by multiplying by the inverse square root of the internal 
symmetry equal to c2, with the result that the new C satisfies c2 = 1. 

For general reactions, Eq. (3.3.57) requires that the rate for a process 
equals the rate for the same process with particles replaced with their 
corresponding antiparticles. This was not directly contradicted by the 
1957 experiments on parity non-conservation (it will be a long time before 
anyone is able to study the beta decay of anticobalt), but these experiments 
showed that C is not conserved in the theory of weak interactions as 
modified by Lee and yangI2 to take account of parity non-conservation. 
(As we shall see below, the observed violation of TP conservation would 
imply a violation of C conservation in any field theory of weak interactions, 
not just in the particular theory considered by Lee and Yang.) I t  is 
understood today that C as well as P is not conserved in the weak 
interactions responsible for processes like beta decay and the decay of the 
pion and muon, though both C and P are conserved in the strong and 
electromagnetic interactions. 

Although the early experiments on parity nun-conservation indicated 
that neither C nor P are conserved in the weak interactions, they left 
open the possibility that their product CP is universally conserved. For 
some years it was expected (though not with complete confidence) that CP 
would be found to be generally conserved. This had particularly important 
consequences for the properties of the neutral PC mesons. In 1954 Gell- 
Mann and I?aisL6 had pointed out that because the K O  meson is not its 
own antiparticle (the K O  carries a non-zero value for the approximately 
conserved quantity known as strangeness) the particles with definite decay 
rates would be not K O  or KO, but the linear combinations K O  + K'o. 
This was originally explained in terms of C conservation, but with C not 
conserved in the weak interactions, the argument may be equally well be 
based on CP conservation. If we arbitrarily define the phases in the CP 
operator and in the K O  and K O  states so that 

and 

then we can define self-charge-conjugate one-particle states 

and 
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which have CP eigenvalues + I  and -1, respectively. The fastest available 
decay mode of these particles is into two-pion states, but CP conservation 
would allow this only" for the KI,  not the K2.  The X! would thus be 
expected to decay only by slower modes, into three pions or into a pion, 
muon or electron, and neutrino. Nevertheless, it was found by Fitch and 
Cronin in 1964 that the long-lived neutral K-meson does have a small 
probability for decaying into two The conclusion was that GP is 
not exactly conserved in the weak interactions, although it seems more 
nearly conserved than C or P individually. 

As we shall see in Chapter 5, there are good reasons to believe that 
although neither C nor CP is strictly conserved, the product CPT is 
exactly conserved in all interactions, at least in any quantum field theory. 
It is CPT that provides a precise correspondence between particles and 
antiparticles, and in particular it is the fact that CPT commutes with 
the Hamiltonian that tells us that stable particles and antiparticles have 
exactly the same mass. Because CPT is antiunitary, it relates the S-matrix 
for an arbitrary process to the S-matrix for the inverse process with all 
spin t hree-componen ts reversed and particles replaced with antiparticles. 
However, in cases where the S-matrix can be divided into a weak term 
~ ( ~ 1  that produces a given reaction and a strong term s(O) that acts in 
the initial and final states, we can use the same arguments that were used 
above in studying the implications of T conservation to show that the rate 
for any process is equal to the rate for the same process with particles 
replaced with an tiparticles and spin t hree-corn ponen t s reversed, provided 
that we sum over sets of initial and final states that are complete with 
respect to s ( O ) .  In particular, although the partial rates for decay of the 
particle into a pair of final states PI, plz with s;b2 # 0 may differ from the 
partial rates for the decay of the antiparticle mto the corresponding final 
states WPFP1 and %P9f12, we shall see in Section 3.5 that (without any 
approximations) the total decay rate of any particle is equal to that of its 
antiparticle. 

We can now understand why the 1957 experiments on parity violation 
could be interpreted in the context of the existing theory of weak interac- 
tions as evidence that C conservation as well as P conservation are badly 
violated but CP is not. These theories were field theories, and therefore 
automatically conserved CPT. Since the experiments showed that PT con- 
servation but not T conservation is badly violated in nuclear beta decay, 
any theory that was consistent with these experiments and in which CPT is 
conserved would have to also incorporate C but not CP non-conservation. 

" The neutral X-mcsons have spin zero, so the iwo-pion final stale has P -. 0, and hence P = +1. 
furl he^. C = +l  for two nos because the no has C = $1, and also for an P = 0 TC+ n- slate 
because C interchanges !he lwo pions. 
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Similarly, the observation in 1964 of small violations of CP conservation 
in the weak interactions together with the assumed invariance of all 
interactions under CPT allowed the immediate inference that the weak 
interactions also do not exactly conserve T. This has since been verified18 
by more detailed studies of the KO-ko system, but it has so far been 
impossible to find other direct evidence of the failure uf invariance under 
time-reversal. 

3.4 Rates and Cross-Sections 

The S-matrix Slru is the probability amplitude for the transition ol + f i ,  
but what does this have to do with the transition rates and crass-sections 
measured by experimentalists? In  particular, (3.3.2) shows that Sb, has 
a factor S4(pp - p,), which ensures the conservation of the total energy 
and momentum, so what are we to make of the factor [64(pp - p,)j2 
in the transition probability S ~ , I ~ ?  The proper way to approach these 
problems is by studying the way that experiments are actually done, using 
wave packets to represent particles localized far from each other before 
a collision, and then following the time-history of these superpositions of 
multi-particle states, In what follows we will instead gve  a quick and 
easy derivation of the main resulk, actually more a mnemonic than a 
derivation, with the excuse that (as far as I know) no interesting open 
problems in physics hinge on getting the fine points right regarding these 
matters. 

We consider our whole system of physical particles to be enclosed in a 
large box with a macroscopic volume V. For instance, we can take this 
box as a cube, but with points on opposite sides identified, so that the 
single-valuedness of the spatial wave runction requires the momenta to be 
quantized 

where the nf are integers, and L" V .  Then all three-dimensional delta- 
functions become 

where d , , ~ , ~  is an ordinary Kronecker delta symbol, equal to one if the 
subscripts are equal and zero otherwise. The normalization condition 
(3.1.2) thus implies that the states we have been using have scalar products 
in a box which are not just sums of products of Kronecker deltas, but 
also contain a factor [v / (2r) ' lN,  where N is the number of particles in 
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the state. To calculate transition probabilities we should use states of unit 
norm, so let us introduce states normalized approximately for our box 

with norm 

where da, is a product of Kronecker deltas, one for each three-momentum, 
spin, and species label, plus terms with particles permuted. Correspond- 
ingly, the $-matrix may be written 

where S ~ F  is calculated using the states (3.4.3). 
Of course, if we just leave our particles in the box forever, then every 

possible transition will occur again and again. To calculate a meaningful 
transition probability we also have to put our system in a 'time box'. 
We suppose that the interaction is turned on for only a time T .  One 
immediate consequence is that the energy-conservation delta function is 
replaced with 

The probability that a multi-particle system, which is in a state a before 
the interaction is turned on, is found in a state #i after the interaction is 
turned off, is 

This is the probability for a transition into one specific box state p.  The 
number of one-particle box states in a momentum-space volume d3p is 
~ d ' ~ l ( 2 n ) ~ .  because this is the number of triplets of integers nl ,  m, n~ 
for which the momentum (3.4.1) lies in the momentum-space volume d 3 p  
around p. We shall define the final-state interval dB as a product of d3p 
for each final particle, so the total number of states in this range is 

Hence the total probability fbr the system to wind up in a range dB of 
final states i s  
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We will restrict our attention throughout this section to final states f l  that 
are not only different (however slightly) from the initial state a, but that 
also satisfy the more stringent condition, that no subset of the particles 
in the state f l  (other than the whole state itself) has precisely the same 
four-momentum as some corresponding subset of the particles in the state 
a. (In the language to be introduced in the next chapter, this means that 
we are considering only the connected part of the S-matrix.) For such 
states, we may define a delta function-free matrix element MP, : 

Our introduction of the box aIlows us to interpret the squares of delta 
functions in  IS^,^^ for /3 # a as 

2 
[Wir - &I] = 6dEb - E s ) h ~  (0) = &-(Ep - E,T)T/2r , 

so Eq. (3.4.9) gives a differential transition probability 

If we let V and T be very large, the delta function product here may 
be interpreted as an ordinary four-dimensional delta function 64(pa - p.). 
i n  this limit, the transition probability is simply proportional to the time 
T during which the interaction is acting, with a coefficient that may be 
interpreted as a differential transition rote: 

where now 

This is the master formula which is used to interpret calculations of S -  
matrix elements in terms of predictions for actual experiments. We will 
come back to the interpretation of the factor d4(p, - p g ) d a  later in this 
section. 

There are two cases of special importance: 
N y l :  
Here the volume V cancels in Eq. (3.4.11), which gives the transition rate 
for a single-particle state r to decay into a general multi-particle state P 
as 
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Of course, this makes sense only if the time T during which the interaction 
acts is much less than the mean lifetime z, of the particle a, so we cannot 
pass to the limit T + clc: in &(E,  - Eb)-  There is an unremovable width 
AE -- 1/T 2 l / ~ ,  in this delta function, so Eq. (3.4.13) is only useful 
if the total decay rate l /z ,  is much less than any of the characteristic 
energies of the process. 
& = 2 :  
Here the rate (3.4.11) is proportional to 1 /V,  or in other words, to the 
density of either particle at the position of the other one. Experimentalists 
generally report not the transition rate per density, but the rare per f lux, 
also known as the cross-section. The flux of either particle at the position 
of the other particle is defined as the product of the density 1 / V  and the 
relative velocity u, : 

(A general definition of u, is given below; for the moment we will content 
ourselves with specifying that if either particle is at rest then u, is defined 
as the velocity of the bther.) Thus the differential cross-section is 

Even though the cases N ,  = 1 and N ,  = 2 are the most important, 
transition rates for N, 2 3 are all measurable in principle, and some of 
them are very important in chemistry, astrophysics, etc. (For instance, in 
one of the main reactions that release energy in the sun, two protons and 
an electron turn into a deuteron and a neutrino.) Section 3.6 presents 
an application of the master transition rate formula (3.4.11) for general 
numbers N ,  of initial particles. 

We next take up the question of the Lorentz transformation properties of 
rates and cross-sections, which will help us to give a more general definition 
of the relative velocity u, in Eq. (3.4.15). The Lorentz transformation 
rule (3.3.1) for the S-matrix is complicated by the momentum-dependent 
matrices associated with each particle's spin. To avoid this complication, 
consider the absolute-value squared of (3.3.1) (after factoring out the 
Lorentz-invariant delta function in Eq. (3.4.12)), and sum over all spins. 
The unitarity of the matrices DE( W) (or their analogs for zero mass) 
then shows that, apart from the energy fctors in {3.3.1), the sum is 
Lorentz-invariant. That is, the quantity 

spins B " 
is a scalar function of the four-momenta of the particles in states a and P. 
(By n, E and np E is meant the product of all the single-particle energies 

= for the particles in the states r and j3.) 
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We can now write the spin-summed single-particle decay rate (3.4.13) 

The factor dp/ nB E may be recognized as the product of the Lorentz- 
invariant momentum-space volume elements (2.5.151, so it is Larentt- 
invariant. So also are Rp, and d4(pP - p,) ,  leaving just the non-invariant 
factor l/E,, where E, is the energy of the single initial particle. Our 
conclusion then is that the decay rate has the same Lorentz transformation 
property as 1 / E , .  This is, of course, just the usual, special-relativistic time 
dilation - the faster the particle, the slower it decays. 

Similarly, our result ( 3Al5 )  for the spin-summed cross-section may be 
written as 

where El and E2 are the energies of the two particles in the initial state 
r ~ .  It is conventional to define the cross-section to be (when summed 
over spins) a Lorentz-invariant function of four-momenta. The factors 
Rpt, S4(pa - p x ) ,  and df i /  np E are already Lorentz-invariant, so this 
means that we must define the relative velocity u, in arbitrary inertial 
frames so that u,EI E2 is a scalar. We also mentioned earlier that in the 
Lorentz frame in which one particle (say, particle 1 )  is at rest, u, is the 
velocity of the other particle. This uniquely determines ra, to have the 
value in general Lorentz frames* 

where pl , pl and r n l  , m2 are the four-momenta and mass of the two particles 
in the initial state a. 

As a bonus, we note that in the 'center-of-mass' frame, where the total 
three-momentum vanishes, we have 

P ~ = C P ~ E I ) ,  pz=(--p,E2) : 

and here Eq. (3.4.17) gives 

' Eq. (3.4.17) makes it  obvious Ihal E1E2u, i s  a scalar, Also, when particle 1 is at rest, wc have 
p1 = 0, El = ml, so pl - pr = -ml E:, and so Eq. (3.4.17) givcf 

which is just the velocity of- particle 2. 
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as might have been expected for a relative velocity. However, in this frame 
u, is not really a physical velocity; in particular, Eq. (3.4.18) shows that 
for extremely relativistic particles, it can take valoes as large as 2. 

We now turn to the interpretation of the so-called phase-space factor 
d4(plr - pa)@, which appears in the general formula (3.4.1 1) for transition 
rates, and also in Eqs. (3.4.13) and (3.4.15) for decay rates and cross- 
sections. We here specialize to the case of the 'center-of-mass' Lorentz 
frame. where the total three-momentum of the initial state vanishes 

(For N ,  = 1, this is just the case of a particle decaying at rest.) If the final 
state consists of particles with momenta p ',, p i, - - ., then 

where E - E,  is the total energy of the initial state. Any one of the 
p i  integrals, say over p;, can be done trivially by just dropping the 
momentum delta function 

with the understanding that wherever p i  appears (as in E ; )  it must be 
replaced with 

We can similarly use the remaining delta function to eliminate any one of 
the remaining integrals. 

In  the simplest case, there are just two particles in the final state. Here 
(3.4.2 1) gives 

In  mare detail, this is 

(3.4.23) 
where 

and di2 - sin2 8 dtl d$ is the solid-angle differential for pl '. This can be 
simplified by using the standard formula 

where f ix)  is an arbitrary real function with a single simple zero at x = xo. 
In  our case, the argument E; + E; - E of the delta function in Eq. (3.4.23) 
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has a unique zero at Ip; I = kt ,  where 

with derivative 

We can thus drop the delta function and the differential 
Eq. (3.4.231, by dividing by (3.4.271, 

with the understanding that k',Ei,  and E i  are given everywhere by 
Eqs. (3.4.24 j(3.4.26). In particular, the differential rate (3.4.13) for decay 
of a one-particle state of zero momentum and energy E into two particles 

and the differential cross-section for the two-body scattering process 1 2 + 
1'2' is given by Eq. (3.4.15) as 

where k = Ipl ]  = Ip21. 
The above case Np = 2 is particularly simple, but there is one nice 

result for N g  = 3 that is also worth recording. For hrD = 3, Eq. (3.4.21) 
gives 

3 1  3 '  d401p - P&W + d P2 d P s  

We write the momentum-space volume as 



where $a3 is the differential element of solid angle for p;, and uz3 and 
423 are the polar and azimuthal angles of p i  relative to the p i  direction. 
The orientation of the plane spanned by p i  and p; is specified by 423 
and the direction of p;, with the remaining angle 823 fixed by the energy- 
conservation condition 

The derivative of the argument of the delta function with respect 
is 

: E .  

to cos 823 

so we can do the integral over cos 013 
and dividing by this derivative 

, by just dropping the delta function 

Replacing momenta with energies, this is finally 

But recall that the quantity (3.4.161, obtained by summing 1 M~~~ over 
spins and multiplying with the product of energes, is a scalar function 
of four-momenta. If we approximate this scalar as a constant, then 
Eq. (3.4.31) tells us that for a fixed initial state, the distribution of events 
plotted in the Ei,  E; plane is uniform. Any departure from a uniform 
distribution of events in this plot thus provides a useful clue to the 
dynamics of the decay process, including possible centrifugal barriers or 
resonant intermediate states. This is known as a Dalitz plot,'9 because of 
its use by Dalitz in 1953 to analyze the decay K +  4 r+ + n+ + TC-. 

3.5 Perturba tian Theory 

The technique that has historically been most useful in calculating the 
S-matrix is perturbation theory. an expansion ir) powers of the interaction 
term V in the Hamiltonian H = Ho + V .  Eqs. (3.2.7) and (3.Ll8) give the 
S-matrix as 
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where Y,+ satisfies the Lippmann-Schwinger equation (3.1.17): 

Operating on this equation with V and taking the scalar product with Qp 
yields an integral equation for TS 

where 

Vfix E V @ d ,  (3.5.2) 

The perturbation series for Tg,+ is obtained by iteration from Eq. (3.5.1) 

The method of calculation based on Eq. (3.5.31, which dominated 
calculations of the S-matrix in the 1930s, is today known as olrl-Jiashioaed 
perturbation rheory. Its obvious drawback i s  that the energy denominators 
obscure the underlying Lorentz invariance of the S-matrix. It still has some 
uses, however, in clarifying the way that singularities of the S-matrix arise 
from various intermediate states. For the most part in this book, we 
will rely on a rewritten version of Eq. (3.5.3), known as time-dependent 
perturbation theory, which has the virtue of making Lorentz invariance 
much more transparent, while somewhat obscuring the contribution of 
individual intermediate states. 

The easiest way to derive the time-ordered perturbation expansion is to 
use Eq. (3.2.5), which gives the S-operator as 

where 

U ( t ,  q) = exp(iHo~) exp(-~H(T - zo)) exp(-iHozo). 

Differentiating this formula for U(z,ro) with respect to t gives the differ- 
ential equation 

where 
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(Operators with this sort of time-dependence are said to be defined in 
the interaction picture, to distinguish their time-dependence from the time- 
dependence OH ( t )  = exp(iHt)OH exp(-iH t )  required in the Heisenberg 
picture of quantum mechanics.) Eq. (3.5.4) as well as the initial condition 
U(TO, q) = 1 is obviously satisfied by the solution of the integral equation 

By iteration of this integral equation, we obtain an expansion for U ( z ,  rn) 
in powers of V 

Setting z = w and = -m then gives the perturbation expansion for the 
S-operator : 

This can also be derived directly from the old-fashioned perturbation 
expansion (3.5.3), by using the Fourier representation of the energy factors 
in Eq. (3.5.3) : 

with the understanding that such integrals are to be evaluated by inserting 
a convergence factor e-" in the integrand, with E. + O+. 

There is a way of rewriting Eq. (3.5.8) that proves very useful in 
carrying out manifestly Lorentz-invariant calculations. Define the time- 
ordered product of any time-dependent operators as the product with 
factors arranged so that the one with the latest time-argument is placed 
leftmost, the next-latest next to the leftmust, and so on. For instance, 

and so on, where Ojz) is the step function, equal to +1 for T > 0 and to 
zero for T < 0. The time-ordered product of n V s  is a sum over all n! 
permutations of the Vs, each of which gives the same integral over all 
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tl - - . f,, so Eq. (3.5.8) may be written 

This is sometimes known as the Dyson series.20 This series can be summed 
if the V ( t )  at different times all commute; the sum is then 

Of course, this is not usually the case; in general (3.5.10) does not even 
converge, and is at best an asymptotic expansion in whatever coupling 
constant factors appear in V. However Eq. (3.5.10) is sometimes written 
in the general case as 

S = T exp (--i dr ~ ( r ) )  

with T indicating here that the expression is to be evaluated by tirne- 
ordering each term in the series expansion for the exponential. 

We can now readily find one large class of theones for which the S- 
matrix is manifestly Lorentz-invariant. Since the elements of the S-matrix 
are the matrix elements of the S-operator between free-particle states 
@,, @b, etc., what we want is that the S-operator should commute with 
the operator Uo{A,a) that produces Lorentz transformations on these 
free-particle states, Equivalently, the S-operator must commute with the 
generators of &(A, a); Ho, Po Joy and KO. To satisfy this requirement, 
let's try the hypothesis that V ( t )  is an integral over three-space 

with Z ( x )  a scalar in the sense that 

Uo(A, a)A?(x) u&' (A, a)  = %(AX + a). (3.5.12) 

(By equating the coefficients of a0 for infinitesimal transformations it can 
be checked that #(x) has a time-dependence consistent with Eq, (3.5.5).) 
Then S may be written as a sum of four-dimensional integrals 

Everything is now manifestly Lorentz invariant, except for the time- 
ordering of the operator product. 

Now, the time-ordering of two spacetime points xl,x:! is Lorentz- 
invariant unless xl - x2 is space-like, ie., unless (xl - x2j2 > 0, so 
the time-ordering in Eq. (3.5.13) introduces no special Lorentz frame if 
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(though not only if) the #jx) all commute at space-like or light-like* 
separations ; 

[X(x), i F ( x l ) ]  = 0 for (x - x'12 2 0. (3.5.14) 

We can use the results of Section 3.3 to give a formal non-perturbative 
proof that an interaction (3.5.1 1) satisfying Eqs. (3.5.12) and (3.5.14) does 
lead to an S-matrix with the correct Lorentz transformation properties. 
For an infinitesimal boost, Eq, (3.5.12) gives 

a 
t [KO, X(X, t)] = # V X ( X ,  t )  + x-~#)(x, f) , (3.5.15) 

dt 

so integrating over x and setting t = 0, 

where 

If (as is usually the case) the matrix elements of #(x,O) between eigen- 
states of Ho are smooth functions of the energy eigenvalues, then the same 
is true of V, as is necessary for the validity of scattering theory, and also 
true of W, which is necessary in the proof of Lorentz invariance. The 
other condition for Lorentz invariance, the commutation relation (3.3.211, 
is also valid if and only if 

This condition would follow from the 'causality' condition (3.5.14), but 
provides a somewhat less restrictive sufficient condition for Lorentz in- 
variance of the $-matrix. 

Theories of this class are not the only ones that are Lorentz invariant, 
but the most general Lorentz invariant theories are not very different. In 
particular, there is always a commutation condition something like (3.5.14) 
that needs to be satisfied. This condition has no counterpart for non- 
relativistic systems, for which time-ordering is always Galilean-invariant. 
It  is this condition that makes the combination of Lorentz invnriclnce and 
quantum ~nechunics so restrictive. 

We write the condition on r and r' here as (x - x'12 2 0 instead of (x - x'12 > 0, because as 
we shall wc in Chapter 6, Lorentz invatiance can be disturbed by troublesome singularities a1 
X = x'.  
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The methods described so far in this section are useful when the 
interaction operator V is sufficiently small. There is also a modified version 
of this approximation, known as the distorted-wave Born upproximation, 
that is usefil when the interaction contains two terms 

with Vw weak but Vs strong. We can define Y,,xk as what the 'in' and 'out' 
states would be if Vs were the whole interaction 

We can then write (3.1.16) as 

and so 

The second term on the right-hand side is just what T~{,+ would be in the 
presence of strong interactions alone 

(For a proof of Eq. (3.5.22), just drop Vw everywhere in the derivation of 
Eq. (3.5.21).) Eq. (3.5.21) is most useful when this second term vanishes: 
that is, when. the process a 4 f l  cannot be produced by the strong 
interactions alone. (For example, in nuclear beta decay we need a weak 
nuclear force to turn neutrons into protons, even though we cannot ignore 
the presence of the strong nuclear force acting in the initial and final 
nuclear states.) For such processes, the matrix element (3.5.22) vanishes, 
so Eq. (3.5.21) reads 

So far, this is all exact. However, this way of  rewriting the T-matrix 
becomes worthwhile when Vu7 is so weak that we may neglect its effect 
on the state YaS in Eq. (3.5.231, and hence replace Y,+ with the state 
Y!,,+, which takes account only of the strong interaction Vs. In this 
approximation, Eq. (3.5.23) becomes 

This is valid to first order in V,, but to all orders in Vs.  This approximation 
is ubiquitous in physics; for instance, the S-matrix element for nuclear 



beta or gamma decay is calculated using Eq. (3.5.24) with Vs the strong 
nuclear interaction and V ,  respectively either the weak nuclear interaction 
or the electromagnetic interaction, and with Ysp- and Y,,+ the final and 
initial nuclear states. 

3.6 Implications of Unitarity 

The unitarity of the S-matrix imposes an interesting and useful condition 
relating the amplitude M,, for forward scattering in an arbitrary multi- 
particle state o! to thc total rate for all reactions in that state. Recall that 
in the general case, where the state P may or may not be the same as the 
state r, the S-matrix may be written as in (3.3.2): 

The unitarity condition then gives 

Cancelling the term 6(y - r )  and a factor ~ n 6 ~ ( ~  - p,), we find that for 
P;J = P.u 

This is most useful in the special case cc = y ,  where it reads 

Using Eq. (3.4.11), this can be expressed as a formula for the total rate 
for all reactions produced by an initial state 'x in a volume V 

In particular, where o: is a two-particle state, this can be written 

where u, is the relative velocity (3.4+17) in state '2, and a, is the total 
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cross-section in this state, given by (3.4.15) as 

o, = d p  da(a 4 /?)/dB = (2n) dfl 1 M ~ , ~ ~ s ~ ( ~ ~  - p,).  (3.6.5) J 
This i s  usually expressed in a slightly different way, in terms of a scattering 
amplitude f (3 -. p).  Eq. (3.4.30) shows that the differential cross-section 
for two-body scattering in the center-of-mass frame is 

where k' and k are the magnitudes of the momenta in the initial and final 
states. We therefore define the scattering amplitude as* 

that the differential cross-section is simply 

particular, for elastic two-body scattering, we have 

Using (3.4.18) for the relative velocity u,, the unitarity prediction (3.6.3) 
now reads 

This form of the unitarity condition (3.6.3) is known as the optical theor- 
em.22 

There is a pretty consequence of the optical theorem that tells much 
about the pattern of scattering at high energy. The scattering amplitude 
f may be expected to be a smooth function of angle, so there must be 
some solid angle AR within which ~f l 2  has nearly the same value (say, 
within a factor 2 )  as in the forward direction. The total cross-section is 
then bounded by 

' The phase o f f  is conventional, and is motivated by the wave mechanical intcrpretation2' of 
f as the coefficient of the outgoing wave in the solution of the time-independent Schriidinger 
equation. Thc normalization o f f  used here is slightly unconventional for inelastic scattering; 
usually f is defined so that a ratio o€ final and initial velocities appears in the formula for the 
differential cross-section. 



Using Eq. (3.6.10) then yields an upper bound on AR 

As we shall see in the next section, total cross-sections are usually expected 
to approach constants or grow slowly at high energy, so Eq. (3.6.11) 
shows that the solid angle around the forward direction within which the 
differential cross-section is roughly constant shrinks at least as fast as l /k2 
for k + a. This increasingly narrow peak in the forward direction at high 
energies is known as a di'raclion peak. 

Returning now to the general case of reactions involving arbitrary 
numbers of parttcles, we can use Eq. (3.6.2) together with CPT invariance 
to say something about the relations for total interaction rates of particles 
and antiparticles, Because CPT is antiunitary, its consenration does not 
in general imply any simple relation between a process a + and the 
process with particles replaced with their antiparticles. Instead, it provides 
a relation between a process and the i ~ v e r s e  process involving antiparticles ; 
we can use the same arguments that allowed us to deduce (3.3.46) from 
time-reversal invariance to show that CPT invarianm requires the S-matrix 
to satisfy the condition 

where V9.F indicates that we must reverse all spin 2-components, change 
all particles into their corresponding antiparticles, and multiply the matrix 
element by various phase factors for the particles in the initial state and 
by their complex conjugates for the particles in the final state. Since 
CPT invariance also requires particles to have the same masses as their 
corresponding antiparticles, the same relation holds for the coefficient of 
S4@E - pp)  in spa  : 

M p ,  a = M w ~ ~ , w w f i  . (3.613) 

In particular, when the initial and final states are the same the phase 
factors all cancel, and Eq. (3.6.13) says that 

Mplarnl ;p2um; , -  ,plainr ;psaznz; . , -  
- 

Mgl-olni;p2-a2n;;-. , pl-clni;pl-c-zn::.- I (3.6.141 

where a superscript c on n indicates the antiparticle of n. The generalized 
optical theorem (3.6.2) then tells us that the total reaction rare from an 
initial state consisting of some set of particles is the same as for an initial 
state consisting of the corresponding antiparticles with spins reversed : 

- 
r p l o l a l :  p:o*nl;- - rpI -oln;; pl -o?n;; - -  . (3.6.15) 

In particular, applying this to one-particle states, we see that the decay 
rate of any particle equals the decay rate of the antiparticle with reversed 
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spin. Rotational invariance does not allow particle decay rates to depend 
on the spin 2-component of the decaying particle, so a special case of the 
general result (3.6.15) is that unstable partides and their corresponding 
antiparticles have precisely the same lifetimes. 

The same argument that led from the unitarity condition S ~ S  = 1 to 
our  result (3.6.2) also allows us to use the other unitarity relation SS' = 1 
to derive the result 

Putting this together with Eq. (3.6.2) then yields the reciprocity relation 

or in other words 

This result can be used in deriving some of the most important results 
of kinetic theory.?' If P,dx is the probability of finding the system in a 
volume dcx of the space of multi-particle states Q,, then the rate o f  decrease 
in P, due to transitions to all other states is P, Jd[J dJ(z + j)/dP, while 
the rate of increase of P, due to transitions from all other states is 
J d,6 Pp dT(P + a) /da;  the rate of change of P, is then 

It follows immediately that f P,dol is time-independent. (Just interchange 
the labelling of the integratibn variables in the integral in the second term 
in Eq. (3.6.19).) On the other hand, the rate of change of the entropy 
- ,[ da P, In P, i s  

Interchanging the labelling of the integration variables in the second term, 
this may be written 

Now, for any positive probabilities P, and Pfi ,  the function ln(Pp/P,) 
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satisfies the inequality** 

The rate of change of the entropy is thus bounded by 

or interchanging variables of integration in the second term 

But the unitarity relation (3.6.18) tells us that the integral over a on the 
right-hand side vanishes, so we may conclude that the entropy always 
increases: 

This is the 'Boltzmann H-theorem.' This theorem is often derived in 
statistical mechanics textbooks either by using the Born approximation, 
for which \ M ~ ~ \ *  is symmetric in a and P so that dr(fi  + z)/da = 

dT(a + P ) / d P ,  or by assuming time-reversal invariance, which would tell 
us that I M ~ , ~ ~  is unchanged if we interchange n and and also reverse 
all momenta and spins. Of course, neither the Born approximation nor 
time-reversal invariance are exact, so it is a good thing that the unitarity 
result (3.6.18) is all we need in order to derive the H-theorem. 

The increase of the entropy stops when the probability P, becomes 
a function only of conserved quantities such as the total energy and 
charge. In this case the conservation laws' require dr(P -, cl) /da to 
vanish unless Pa: = Pp,  so we can replace Pb with P, in the first term of 
Eq. (3.6.19). Using Eq. (3.6.18) again then shows that in this case, P, is 
time-independent. Here again, we need only the uni tarity relation (3.6.l8), 
not the Born approximation or time-reversal invariance. 

3.7 Part ial-Wave Expansions* 

I t  is often convenient to work with the S-matrix in a basis of free-particle 
states in which all variables are discrete, except for the total momentum 

" The differenoc bctwcen Ihe lefi- and right-hand sidcs approaches Lhe positive quantity (Pz - 
P , ~ ) ' ~ Z P ~  LII P, -t Pit. and has a derivative with respect to P ,  that is positive- o r  negative- 
dcfiriitc for all P, > Fb: or Px < Pu, rcspcctively, 
Thi) section lies somcwhnt oul ol'the huok's maill line of dcvcloymcnt, and may be omitted in 
a first reading. 
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and energy. This is possible because the components of the momenta 
PI,- ,pn in an n-particle state of definite total momentum p and total 
energy E form a (3n - 4)-dimensional compact space; for instance, for 
n = 2 particles in the center-of-mass frame with p = 0, this space is a 
two-dimensional spherical surface. Any function on such a compact space 
may be expanded in a series of generalized 'partial waves', such as the 
spherical harmonics that are commonly used in representing functions on 
the two-sphere. We may thus define a basis for these n-particle states that 
apart from the continuous variables p and E is discrete: we label the free- 
particle states in such a basis as m E P ~ ,  with the index N incorporating 
all spin and species labels as well as whatever indices are use to label the 
generalized partial waves. These states may conveniently be chosen to be 
normalized so that their scalar products are; 

The S-operator then has matrix elements in this basis of the form 

where SN~,N is a unitary matrix. Similarly, the T-operator, whose free- 
particle matrix elements (ag, T 8 , )  are defined to be the quantities Tp,+ 
defined by Eq. (3.1.18), may be expressed in our new basis (in accordance 
with Eq. (3.4.12)) as 

and the relation (3.2.7) is now an ordinary matrix equation: 

We shall use this general formalism in the following section; fur the 
present we will concentrate on reactions in which the initial state involves 
just two particles. 

For example, consider a state consisting of two non-identical particles 
of species n1, n2 with non-zero masses MI, M2 and arbitrary spins sl, 
s2. In this case, the states may be labelled by their total momentum 
p = pl + p2, the energy E, the species labels rzl, n2, the spin z-components 
al, 02 ,  and a pair of integers d,  m (with 5 f )  that specify the depen- 
dence of the state on the directions of, say, pl. Alternatively, we can 
form a convenient discrete basis by using ClebschGordan coefficientsg 
to combine the two spins to give a total spin s with 2-component p, and 
then using Clebsch-Gordan coefficients again to combine this with the 
orbital angular momentum L with three-component na to form a total 
angular momentum j with three-component G. This gives a basis of states 
@ E ~ ~ ~ ~ ~ ~  (with n a 'channel index' labelling the two particle species' pzl, 

n2), defined by their scalar products with the states of definite individual 
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momenta and spin three-components: 

where YT are the usual spherical The factor (Ipl I E~ E ~ / E ) - ' / '  
is inserted so that in the center-of-mass frame these states will be properly 
normalized : 

For identical particles to avoid double counting we must integrate only 
over half of the two-particle momentum space, so an extra factor 4 
should appear in the scalar product (3.7.6). 

In the center-of-rnass frame the matrix elements of any momentum- 
conserving and rotationalIy-invariant operator O must take the form: 

(The fact that this is diagonal in j and D follows from the commutation 
of 0 with J~ and J 3 ,  and the further fact that the coefficient of h, ,~  is 
independent of a follows from the commutation of 0 with J1 &iJ2. This is 
a special case of a general result known as the Wigner-Eckart theorem.2s) 
Applying this to the operator Ad whose matrix elements are the quantities 
Mps, i t  follows that the scattering amplitude (3.6.7) in the center-of-mass 
system takes the form 

The differential scattering cross-section is 1 f 1 2 .  We will take the direction 
of the initial momentum k to be along the three-direction, in which case 
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Integrating I f 2  over the direction of the final momentum k' and respec- 
tively summing and averaging over final and initial spin three-components 
gives the total cross-section" for transitions from channel n to n':  

2 
x 1&r6,?,dnl. - ~ f . ~ , , ~ , ~ ~ ~ ( ~ ) l  . (3.7.10) 

Summing (3.7.10) over all two-body channels gives the total cross-section 
for all elastic or inelastic two-body reactions; 

7T C l r (n + n'; E )  = CVi + 1) 
n1 k 2 ( h  + 1 U ~ 2  + 1) j l - y  

For comparison, Eqs. (3.7.8), (3.7.9), 13-7-41, and the Clebsch-Gordan sum 
rules" give the spin-averaged forward scattering amplitude as 

The optical theorem (3.6.10) then gives the total cross-section as 

If only two-body channels can be reached from the channel n at energy E, 
then the matrix ~j(t:) (or at least some submatrix that includes channel 
n) is unitary, and thus 

[(l - S J ( E ) ) ~ ( I  - s ~ ( E ) ) ]  / s n J  . s t 1  = 2 Re [l - , (3.7.13) 

so (3.7.12) and (3.7.1 I )  are equal. On the other hand, if channels involving 
three or more particles are open, then the difference of (3.7.12) and (3.7.1 1 ) 

" In derivlng this result, we use standard sum rulcsg for the Clehsch-Gordan cneflicien~s: first 
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gives the total cross-section for producing extra particles: 

and this must be positive. 
The partial wave expansion is particularly useful when applied to pro- 

cesses where the relevant part of the $-matrix is diagonal. This is the case, 
for instance, if the initial channel n contains just two spinless particles, 
and no other channels are open at this energy, as in n+ - 7 ~ +  or n+ - 7~' 
scattering at energies below the threshold for producing extra pions (pro- 
vided one ignores weak and electromagnetic interactions). For a pair of 
spinless particles we have j = d, and angular momentum conservation 
keeps the S-matrix diagonal. I t  is also possible for the S-matrix to be 
diagonal in certain processes involving particles with spin; for instance in 
pion-nucleon scattering we can have j = C + f or j = t - 4, but for a 
given j these two states have opposite parity, so they cannot bk connected 
by non-zero S-matrix elements. In any case, if for some n and E the 
S-matrix elements SNlajf.q,t{E, 0) all vanish unless N' is the two-body state 
j, d ,  s, n, then unitarity requires that 

where Sjr, ,(E) is a real phase, commonly known as the phas~  slzijl. This 
formula is also often used where the two-body part of the S-matrix is 
diagonal but channels containing three or more particles are also open; 
in such cases the phase shift must have a positive imaginary part, to keep 
(3.7.14) positive. For real phase shifts, the elastic and total cross-sections 
are then given by Eq. (3.7.10) or Eq. (3.7.12) as: 

This familiar result is usually derived in non-relativistic quantum me- 
chanics by studying the coordinate space wave function for a particle in 
a potential. The derivation given here is offered both to show that the 
partial wave expansion applies for elastic scattering even at relativistic ve- 
locities, and also to emphasize that it depends on no particular dynamical 
assumptions, only on unitarity and invariance principles. 

It is also often useful to introduce phase shifts in dealing with problems 
where several channels are open, forming a few irreducible representations 
of some internal symmetry group. The classic example of such an internal 
symmetry is isotopic spin symmetry, for which the channel index n includes 
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a specification of the isospins TI, T2 of the two particles together with 
their three-components t l ,  t;!; the states in channel n may be expressed as 
linear combinations of the tth components of irreducible representations 
T, with coefficients given by the familiar Clebsch-Gordan coefficients 
CT, T 2 ( T ,  : i l ,  t 2 ) .  Suppose that for the channels and energy of interest 
the S-matrix is diagonal in G and s as well as j, T ,  and t. Unitarity and 
isospin symmetry then allow us to write the S-matrix as 

with S j f s T ( E )  a real phase shift, t-independent according to the Wigner- 
Eckart theorem. The partial cross-sections can again be calculated from 
Eq. (3.7.10), and the total cross-section is given by Eq. {3.7,12) as 

For instance, in pion-pion scattering we have phase shifts BICO T ( E )  with 
T = 0 or T = 2 for each even G and T = 1 for each odd L, while for 
pion-nucleon scattering we have phase shifts hjjki ; r with T = f or 

3 T = 2. 

We can gain some useful insight about the threshold behavior of the 
scattering amplitudes and phase shifts from considerations of analyticity 
that are nearly independent of any dynamical assumptions. Unless there 
are special circumstances that would produce singularities in momentum 
space, we would expect the matrix element Mkf ,; -k g; d, ka, -Loo to be 

an analytic function? of the three-mornenta k and k' near k = 0 or 
k' = 0 or (for elastic scattering) k = kt = 0. Turning to the partial wave 
expansion (3.7.8) for M, we note that k"~~"(k)  is a simple polynomial 
function of the threevector k, so in order for Mr .; -p 4 .., oi o2 to be 
an analytic function of the three-momenta k and k1 near k = 0 or k' = 0, 

J the coefficients MitdnrJsn  or equivalently 6n6d,vSw~n - must go as 

kC+)kfbf :  when k and/or k' go to zero. Hence for small k and/or kt ,  
it is only the Iowest partial waves in the initial and/or final state that - 

contribute appreciably 
cases : 

to the scattering amplitude. We have three possible 

For instance, in the Born approximation {3.2.K), M is proportional to the Fourier transform of 
the coordinate space matrix elements of Lhe interaction, and hence is analytic at zero momenta as 
long as these matrix elements fall off suficiently rapidly at large separations. The chief exception 
is for scattering involving long-distance forccs, such as the Coulomb form. 



3.7 Partial- Waoe Expalasinns 

Exothermic reactions 

Here k' approaches a finite value as k + 0, and in this limit GL~CGb~sd f l~n  - 

i Scff,, (,, goes as k";. The cross-section (3.7.1 1) in this case goes as k2'-I, 
whe& C is here the lowest orbital angular momentum that can lead to the 
reaction. In the most usual case t = 0, so the reaction cross-section goes 
as l / k .  (This is the case, for instance, in the absorption of slow neutrons 
by complex nuclei, or for the annihilation of electron-positron pairs into 
photons at low energy, aside from the higher-order effects of Coulomb 
forces.) The reaction rate is the cross-section times the flux, which goes 
like k ,  so the rate for an exothermic reaction behaves like a constant for 
k -, 0. However, it is the cross-section rather than the reaction rate that 
determines the probability of absorption when a beam crosses a given 
thickness of target material, and the factor l /k  makes this probability 
very high for slow neutrons in an absorbing material like boron. 

Endothermic Reue&ions 

Here the reaction is forbidden until k reaches a finite threshold value, 
where k' = 0. Just above this threshold 6rt6,Tf,6,t, - S ~ , , n , , f , s ,  goes as 

( k ' ) ~ ~ + f .  The cross-section (3.7.1 1) in this case goes as (k'j2"+l, where C' 
is here the iowesr orbital angular momentum that can be produced at 
threshold. In the most usual case 4' = 0, so the reaction cross-section 
rises above threshold like k', and hence like J E  - EOreshol& (This is the 
case, for instance, in the associated production of strange particles, or the 
production of electron-positron pairs in the scattering of photons.) 

Elastic Reactions 

Here k = k', so k and kf go to zero together. (This is the case where n' = n, 
or where n' consists of particles in the same isotopic spin multjplets as 
are those in n.)  In elastic scattering the partial waves with G = 8' = 0 
are always present, so in the limit k -+ 0 the scattering amplitude (3.7.8) 
becomes a constant : 

where a is a constant, known as the stuttering length, defined by the limit 
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for k = k' + 0. Summing 4z(f l2 over final spins and averaging over initial 
spins gives the total cross-section for the transition n -t n' at k = kt  = 0: 

The classic instance of the use of this formula is in neutron-proton 
scattering, where there are two scattering lengths, with the spin singlet 
length a0 considerably larger than the spin triplet length a ,  

The partial wave expansion can also be used to make a crude guess 
about the behavior of cross-sections at high energy. With decreasing 
wavelengths, we may expect scattering to be described more or less 
classically: a particle of momentum k and orbital angular momentum 
t would have an impact parameter {/k, and will therefore strike a disk of 
radius R if G 5 kR.  This can be interpreted as a statement about S-matrix 
elements : 

where R, is some sort of interaction radius for channel H. For a given 
G >> s, there are 2s + 1 values of j, all close enough to t! to approximate 
2 j  +- 1 CY 2d + I ,  so the sum over j and s in Eq. (3.7.12) merely gives a 
factor of order 

The total cross-section is then given for k ,> I/& by Eq. (3.7.12) as 

In exactly the same way, Eq. (3.7.10) gives the elastic scattering cross- 
section 

The difference between Eqs. (3.7.23) and (3,724) gives an inelastic cross- 
section a#, which is what we would expect for collisions with an opaque 
disk of radius R,. (The somewhat surprising elastic scattering cross-section 
n# may be attributed to diffraction by the disk.) On the other hand, if 
we assume along with Eq. (3.7.22) that $/,,,,, is complex only for impact 
parameters d / k  within a small range of width A,, << R, around d / k  = R,, 
then using the inequality IIm (1 - s),,,,,) 5 2, the same analysis gives a 
bound on the real part of the forward scattering amplitude 

1Re f'(n;Ej[ 5 2k &A, < [Im f {n;E)1  . (3.7.25) 
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The smallness of the real part of the fonvard scattering amplitude at high 
energy is confirmed by experiment. 

So far we have not said anything about whether the interaction radius 
R, itself may depend on energy. As a very crude guess, we may take 
R, as the distance at which the factor exp(-p~) in the Yukawa potential 
(1.2.74) takes a value proportional to some unknown power of E, in 
which case R, goes as log E for E -t m,, and the cross-sections go as 
{log E ) ~ .  As it happens, i t  has been rigorously shown2' on the basis of 
very general assumptions that the total cross-section can grow no faster 
than (log E ) ~  for E -t and in fact the observed proton-proton total 
cross-section rises something like (log ~ ) % t  high energies, so this rough 
picture of high-energy scattering does seem to have some correspondence 
with reality. 

3.8 Resonances' 

It often happens that the particles participating in a multi-particle collision 
can form an intermediate state consisting of a single unstable particle R, 
that eventually decays into the particles observed as the final state. If the 
total decay rate of R is small the cross-section exhibits a rapid variation 
(usually a peak), known as a resonance, at  the energy of the intermediate 
state R. 

We shall see that the behavior of the cross-sections near a resonance is 
pretty much prescribed by the unitarity conditibn alone, which is a good 
thing since there are a number or very different mechanisms that can 
produce a nearly stable state: 

(a) The simplest possibility is that the Hamiltonian can be decomposed 
into two terms, a 'strong' Hamiltonian Ho + V5, which has the particle 
R as an eigenstate, plus a weak perturbation V,, which allows R to 
decay into various states, including the initial and final states ,x,P of our 
collision process. For instance there is a neutral particle, the z', with 
j = I and mass 91 GeV, that would be stable in the absence of the 
electroweak interactions. These interactions allow the Z O  to decay into 
electron-positron pairs, muon-antimuon pairs, etc., but with a total decay 
rate that is much less than the Z O  mass. In  1989 the 2' particle was seen 
as a resonance** in electron-positron collisions at CERN and Stanford, 

This scction lics sorncwhat out of thc hook's main line nf dcvclopment, and may be omitted in 
a first reading. 

" Incidentally, [his example shows that a resonant statc only necds to decay relatively slowly; the 
Z O  lifetime is 2.6 x seconds, which is not long enough for a Z O  travelling near the speed 
uf hght to cross an :~tornic oucleus. What is impurtxnt is that the decay rate is 36 limes smaller 
than thc rarc h / M z  of oscillation of thc ~ " a v c  function in its rest frame. 
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in the reactions et + e -+ Z O  + ei + e-, e+ + e- -, Z O  + I(+ + p-, 
e tc. 

(b) In some cases a particle is long-lived because there is a potential 
barrier that nearly prevents its constituents from escaping. The classic 
example is nuclear alpha decay: it may be energetically possible for a nu- 
cleus to emit an alpha particle (a ~e~ nucleus) but the strong electrostatic 
repulsion between the alpha particle and the nucleus creates a barrier 
region around the daughter nucleus, which the alpha partide is classically 
forbidden to enter. The decay then can proceed only by quantum me- 
chanical barrier penetration, and is exponentially slow. Such an unstable 
state shows up as a resonance in the scattering of the alpha particle on 
the daughter nucleus. For instance, the lowest-energy state of the F3e8 
nucleus is unstable against decay into two alpha particles, and is seen as a 
resonance in ~ e ~ - ~ e ~  scattering. (In addition to Coulomb barriers, there 
are also centrifugal barriers that help lengthen the life of alpha-, beta-, 
and gamma-unstable nuclei of high spin.) 

(c) It is possible for complicated systems to be nearly unstable for 
statistical reasons, without the presence of any potential barriers or weak 
interactions. For instance, an excited state of a heavy nucleus may be 
able to decay only if, through a statistical fluctuation, a large part of its 
energy is concentrated on a single neutron. This state will then show up 
as a resonance in the scattering of a neutron on the daughter nucleus. 

These mechanisms for producing long-lived states are so different that it 
is truly fortunate that most of the properties of resonances follow from 
unitarity alone, without regard to the dynamical mechanism that produces 
the resonance. 

First, let's consider the energy dependence of the matrix element for a 
reaction near a resonance. A wave packet J dcc g(cc)Y,+ exp(-iE,t) of 'in' 
states has a time-dependence given by (3.1.19) 

As mentioned in Section 3.1, a pole in the function Tb,+ in the lower-half 
complex E, plane would make a contribution to the second term that 
decays exponentially as t + m. Specifically, a pole at E,  = ER - ir/2 
yields a term in the amplitude that behaves like exp(-iERt - Tt/2), so 
it corresponds to a state whose probability decays like exp(-rt). We 
conclude then that a long-lived state of energy ER with a slow decay rate 
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r produces a term in the scattering amplitude that varies as 

Tpaf -- (E, - ER + irj2)-I + constant . (3.8. I) 

To go further, it will be convenient to adopt as a basis the orthonormal 
discrete multi-particle states QpEN discussed in the previous section; p and 
E are the total momentum and energy, and N is an index that takes only 
discrete (though infinitely many) values. In this basis, the S-matrix may 
be written 

Near a resonance, we expect the center-of-mass frame amplitude S(0, E) - 
Y ( E )  to have the form 

where ;iPo and @ are approximately constant at least over the relatively 
small range of energies IE - ERI 5 r. 

In this basis, the unitarity of the S-matrix is an ordinary matrix equation 

Y ( E ) + Y ( E )  = 1 . (3.8.4) 

Applied to Eq. (3.8,3), this tells us that the non-resonant background 
S-matrix is unitary 

. Y ~ ~ . Y ~  = 1 , (3.8.5) 

and also that the residue matrix 9 satisfies the two conditions 

1 
- -r~J,g + h + s q ,  + +*a = o . 

2 
(3.8.7) 

2 
These conditions can be put in a more transparent form by setting 

9? = -iT.d.Yo . (3.83) 

The unitarity conditions on the matrix A? are then simply 

.dt = .d , d 2 = ~ d ,  (3.8.9) 

Any such Hermitian idempotent matrix is called a projection matrix. Such 
matrices can always be expressed as a sum of dyads of orthonormal 
vectors uir) : 

The discrete part of the S-matrix is then 
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Each term in the sum over r can be thought of as arising from a different 
resonant state, all these states having the same values for E R  and T. 

What has this to do with rates and cross-sections? For simplicity let's 
now ignore the non-resonant background scattering, setting YJoNIN equal 
to dNfN ; we will come back to the more general case a little later. Then 
for the two-body discrete center-of-mass states described in the previous 
section, Eq. (3.8.1 1) reads: 

In all cases the label r will include an index c q  giving the z-component of 
the total angular momentum of the resonant state; for a resonant state of 
total angular momentum jR, a~ takes 2jR + 1 values. If there is no other 
degeneracy, then r just labels the value of a ~ ,  and 

where ul,, are a set of complex amplitudes that (because of the Wigner- 
Eckart theorem) are independent of 6. Now Eq. (3.8.12) gives the ampli- 
tude ~j defined by Eq. (3.7.7) as 

Also, Eq. (3.8.10) now reads 

with the dots representing the positive contribution of  any states contain- 
ing three or more particles. As we shall see, the quantities ~tl~,,l~ have the 
interpretation of branching ratios for the decay of the resonant state into 
the various accessible two-body states. 

Eq. (3.7.12) now gives the total cross-section for all reactions in channel 
n: 

where 

This is a version of the celebrated Breit-Wigner single-level formula,27 
We can also use these results to calculate the cross-section for resonant 
scattering from an initial two-body channel r~ to a final two-body channel 
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n'. Using Eq. (3.8.14) in Eq. (3.7.10) gives 

[ ~ ( n  + la'$) = 
N 2 j ~  + 11 r n  rn/ (3.8.18) 

k2(2.sl + 1)(2s2 + 1) ( E  - ~ n j '  +.r2/4 ' 

This shows that the probabilities that the resonant state will decay into 
any one of the final two-body channels n' are proportional to the T,I.  
According to Eq. (3.8.151, the sum of the T, (including contributions from 
final states containing three or more particles) is just equal to the total 
decay rate T, so we can conclude that T, is just the rate for the decay of 
the resonant state into channel n. 

We see in Eqs. (3.8.16) and (3.8.18) the characteristic resonant peak at 
energy EK, with a width (the full width at half maximum) equal to the 
decay rate T. ( The individual T, are often called partial widths.) Since 
r, I r, the total cross-section at the peak of the resonance is roughly 
bounded by one square wavelength, {27r/k)2. This rule, that cross-sections 
at a single resonance are roughly bounded by a square wavelength, is 
universally applicable even in classical physics [where energy conservation 
plays the role played here by unitarity), as for instance in the resonant 
interaction of sound waves with bubbles in the sea, or gravitational waves 
with gravitational wave antennae. (In the latter case, the branching 
ratio for oscillations in any laboratory mass to lose their energy through 
gravitational radiation is tiny, so the cross-section even at a resonance 
peak is vastly less then a square ~avelength.~ ' )  

Incidentally, it often happens that a resonance is detected, but energy 
measurements are jnsuficiently precise to resolve its width. In this case, 
what is measured experjmentally is the integral of the cross-section over 
the resonant peak, For the total cross-section (3.8.141, this is 

2n2{2jR + l)r, / ot,t.l(n: E M E  = (33,191 
kE(2s1 + 1)(2sz + I )  ' 

Such experiments can reveal only the partial width for decay of the 
resonant state into the initial particles, not the total width or branching 
ratios. 

This formalism can also be applied when the resonant states with 
a given spin 2-component form a multiplet related by some symmetry 
group. For instance, to the extent that isospin symmetry is respected, for a 
resonance of total isospin TR the index r labelling resonant states includes 
a specification not only of the angular-momentum z-component a ~ ,  but 
also of an isospin three-component t ~ ,  taking values - TR, - TR + 1, . . - TR. 
In this case there is no change in the above results for the total and partial 
cross-sections, because each two-body channel n has definite values r l ,  t 2  of 
the isospin z-components of the two particles, and hence can only couple 
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to the resonant state with the singIe value t l  + t 2  for t ~ .  The partial widths 
r, here depend on tl and t 2  only through factors CT,,T2 (TR,  lR  ; t l ,  t2j2* 

The presence of a resonance shows itself in a characteristic behavior of 
phase shifts near the resonance. Returning to the general formula (3.8.11) 
(but still taking 90 = I), we see from Eq. 3.8.10) that for each individual 
resonant state r, there is an eigenve~tor u b  of P w f r ( E )  with sigenvaluc 

or, in other words, 

tan 6 ( ' ) ( ~ )  = - 
r/ 2 

E - E R '  
We see that over an energy range of order r centered around the resonant 
energy, the the 'eigenphase' 6 ( ' ) ( ~ )  jumps from a value vn (with v a positive 
or negative integer) below the resonanu to (v + 1)n above it. However, 
in order to use this result to say something about reaction rates, we need 
to know the eigenvectors u?, which, in general, have components with 
arbitrary numbers of particles with various momenta, spin, and species. 

These results are much more useful in those special cases when the 
particles in a particular channel N are forbidden (usually by conservation 
laws) from making a transition to any other channel. With this assumption, 
it is not difficult to include the effects of a non-resonant background 
scattering matrix Po in the general result (3.8.11). In order for YNfN to 
vanish for some particular N and all N' # N, it is necessary that the same 
is true of Y ' o N I N ,  and also true of u!$ for any r for which u i )  # 0. The 
unitarity requirement (3.8.5) then requires that for this N 

and Eq. (3.8.10) requires that 

so that there can be only one term r in Eq. (3.8.11) for which u$' # 0. In 
this case, Eq. (3.8.11) gives 

with total phase shift 

We see that over an energy range of order r entered around the resonant 
energy ER, the phase shift dN(E) jumps from a value aON below the 



resonance to hON + n above it. For instance, as we saw in the previous 
section, these assumptions are satisfied in various two-body reactions such 
as pion-pion and pion-nucleon scattering at energies below the threshold 
for producing extra pions, with N incorporating the total and orbital 
angular-momenta j, L (with j = G for pion-pion scattering) and the total 
angular-momentum 2-component D, as well as the total isospin T and its 
three-component I. The Wigner-Eckart theorem allows the phase shifts to 
depend only on j, 1P, and T ,  not on t or u. There are famous resonances in 
these channels: in pion-pion scattering there is a resonance at 770 MeV 
called p with j = G = 1, T = 1 ,  and r = 150 MeV; in pion-nucleon 
scattering there is a resonance at 1232 MeV called A with j = i, f = 1, 

3 T = I and r = 110 to 120 MeV, 
Inspection of Eq. (3.7.12) or Eq. 13-7-18] shows that the total cross- 

section reaches a peak when the resonant phase shift passes through n/2 
(or odd-integer multiples of n/2.) The non-resonant phase shifts are 
typically rather small, so as we saw earlier, a,,,l will exhibit a sharp 
peak when the phase shift 6( goes through n/2, at an energy close to ER. 
However, it sometimes happens that the non-resonant background phase 
shift aON is near n/2,  in which case the cross-section will exhibit a sharp dip 
as the phase shift rises through n near ER, due to destructive interference 
between the resonance and the non-resonant background amplitude. Such 
dips were first observed by Ramsauer and  owns send^' in 1922, in the 
scattering of electrons by noble gas atoms. 

Problems 

1. Consider a theory with a separable interaction; that is, 

where g is a real coupling constant, and ec, is a set of complex 
quantities with 

Use the Lippmann-Schwinger equation (3.1-16) to find explicit solu- 
tions for the 'in' and 'out' states and the S-matrix. 

2. Suppose that a resonance of spin one is discovered in e+-e- scattering 
at a total energy of 150 GeV and with a cross-section (in the center- 
of-mass frame, averaged over initial spins, and summed over final 
spins) for elastic es-e- scattering at the peak of the resonance equal 
to cm2. What is the branching ratio for the decay of the 
resonant state R by the mode R + e- + e+? What is the total 
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cross-section for ef-c- scattering at the peak of the resonance? 
(In answering both questions, ignore the non-resonant background 
scattering.) 

3. Express the differential cross-section for two-body scattering in the 
laboratory frame, in which one of the two particles is initially at rest, 
in terms of kinematic variables and the matrix element Adpa. (Derive 
the result directly, without using the results derived in this chapter 
for the differential cross-section in the center-of-mass frame.) 

4. Derive the perturbation expansion (3.5.8) directly from the expansion 
13.5.3) of old-fashioned perturbation theory. 

5. We can define 'standing wave' states Y,' by a modified vcrsion of 
the Lippmann-Schwinger equation 

Show that the matrix K p ,  -- nd(El, - EN) (ap, V Y , ~ )  is Hermitian. 
Show how to express the S-matrix in terms of the K-matrix. 

6.  Express the differential cross-section for elastic n+-proton and f -  
proton scattering in terms of the phase shifts for states of definite 
total angular momentum, parity, and isospin. 

7. Show that the states aEpjrrsn defined by Eq. (3.7.5) are correctly 
normalized to have the scalar products (3.7.6). 
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The Cluster 
Decomposition Principle 

U p  to this point we have not had much to say about the detailed structure 
of the Harniltonian operator H. This operator can be defined by giving 
all its matrix elements between states with arbitrary numbers of particles. 
Equivalently, as we shall show here, any such operator may be expressed 
as a function of certain operators that create and destroy single particles. 
We saw in Chapter 1 that such creation and annihilation operators were 
first encountered in the canonical quantization of the electromagnetic field 
and other fields in the early days of quantum mechanics. They provided 
a natural formalism for theories in which massive particles as well as 
photons can be produced and destroyed, beginning in the early 1930s with 
Fermi's theory of beta decay. 

However, there is a deeper reason for constructing the Hamiltonian out 
of creation and annihilation operators, which goes beyond the need to 
quantize any pre-exis ting field theory like electrodynamics, and has no thing 
to do with whether particles can actually be produced or destroyed. The 
great advantage of this formalism is that if we express the Hamiltonian 
as a sum of products of creation and annihilation operators, with suitable 
non-singular coefficients, then the S-matrix will automaticaIly satisfy a 
crucial physical requirement, the cluster decomposition principle,l which 
says in effect that distant experiments yield uncorrelated results. Indeed, it 
is for this reason that the formalism of creation and annihilation operators 
is widely used in non-relativistic quantum statistical mechanics, where the 
number of particles is typically fixed. In relativistic quantum theories, the 
cluster decomposition principle plays a crucial part in making field theory 
inevitable. There have been many attempts to formulate a relativistically 
invariant theory that would not be a local field theory, and it is indeed 
possible to construct theories that are not field theories and yet yield 
a Lorentz-invariant S-matrix for two-particle scattering? but such efforts 
have always run into trouble in sectors with more than two particles: either 
the three-particle S-matrix is not Lorentz-invariant, or else it violates the 
cluster decomposition principle. 

In this chapter we will first discuss the basis of states containing ar- 
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bitrary numbers of basons and fermions, then define the creation and 
annihilation operators, and finally show how their use facilitates the 
construction of Hamiltonians that yield S-matrices satisfying the cluster 
decomposition condition 

4.1 Bosons and Fermions 

The Hilbert space of physical states is spanned by states containing 0, 
1, 2, . - . free particles. These can be free-particle states, or 'in' states, or 
'out' states; for definiteness we shall deal here with the free-particle states 
QPi a, nl,pz az ,:,..., but all our results will apply equally to 'in' or 'out' states. 
As usual, labels spin z-components (or helicities, for massless particles) 
and n labels particle species. 

We must now go into a matter that has been passed over in Chapter 3; 
the symmetry properties of these states. As far as we know, all particles 
are either bosons or#ermiupzs, the difference being that a state is unchanged 
by the interchange of two identical bosons, and changes sign under the 
interchange of two identical fermions. That is 

with an upper or lower sign if n is a boson or a fermion, respectively, 
and dots representing other particles that may be present in the state. 
(Equivalently, this could be stated as a condition on the 'wave functions,' 
the coefficients of these multi-particle basis vectors in physically allowable 
state-vectors.) These two cases are often referred to as Bose or Fermi 
'statistics'. We will see in the next chapter that Bose and Fermi statistics 
are only possible for particles that have integer or half-integer spins, re- 
spectively, but we shall not need this information in the present chapter. In 
this section we shall offer a non-rigorous argument that all particles must 
be either bosons or fermium, and then set up normalization conditions 
for multi-boson or multi-fermion states. 

First note that if two particles with spins and momenta p, CT and pt,a' 
belong to identical species n, then the state-vectors Q..  p a n  ... praf ... and 
@ ..., 1.1, ... pr,  represent the same physical state; if this were not the case 
then the particles would be distinguished by their order in the labelling 
of the state-vector, and the first listed would not be identical with the 
second. Since the two state-vectors are physically indistinguishable, they 
must belong to the same ray, and so 

where r, is  a complex number of unit absolute value. We may regard this 
as part of the definition of what we mean by identical particles. 
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The crux of the matter is to decide on what the phase factor a, may 
depend. Ifi t  depends only un the species index n, then we are nearly done. 
Interchanging the two particles in Eq. (4.1.2) again, we find 

so that a: = 1, yielding Eq. (4.1.1) as the only two possibilities. 
On what else could cl, depend? It might depend on the numbers 

and species of the other particles in the state (indicated by dots in 
Eqs. (4.1.1) and (4.1.2)), but this would lead to the uncomfortable result 
that the symmetry of state-vectors under interchange of particles here on 
earth may depend on the presence of particles elsewhere in the universe. 
This is the sort of thing that is ruled out by the cluster decomposition 
principle, to be discussed later in this chapter. The phase .g, cannot 
have any non-trivial dependence on the spins of the two particles that 
are interchanged, because then these spin-dependent phase factors would 
have to furnish a representation of the rotation group, and there are 
no non-trivial representations of the three-dimensional rotation group 
that are one-dimensional - that is, by phase factors. The phase r ,  
might conceivably depend on the momenta of the two particles that are 
interchanged, but Lorentz invariance would require a, to depend only on 
the scalar dpr , ;  this is symmetric under interchange of particles 1 and 2, 
and therefore such dependence would not change the argument leading 
to the conclusion that a: = 1. 

The logical gap in the above argument is that (although our notation 
hides the fact) the states O,, gl n,P2 62 n,--. may carry a phase factor that 
depends on the path through momentum space by which the momenta 
of the particles are brought to the values pl, pz, etc. Tn this case the 
interchange of two particles twice might change the state by a phase 
factor, so that a: f 1. We will see in  Section 9.7 that this is a real 
possibility in two-dimensional space, but not for three or more spatial 
dimensions. 

What about interchanges of particles belonging to different species? If 
we like, we can avoid this question by simply agreeing from the begmning 
to label the state-vector by listing all photon momenta and helicities first, 
then all electron momenta and spin z-components, and so on through the 
table of elementary particle types. Alternatively, we can allow the particle 
labels to appear in any order, and define the state-vectors with particle 
labels in an arbitrary order as equal to the state-vector with particle 
labels in some standard order times phase factors, whose dependence 
on the interchange of particles of different species can be anything we 
like. In order to deal with symmetries like isospin invariance that relate 
particles of different species, it is convenient to adopt a convention that 
generalizes Eq. (4.1.1): the state-vector will be taken to be symmetric 
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under interchange of any bosons with each other, or any bosons with 
any fermions, and antisymmetric with respect to interchange of any two 
fermions with each other, in all cases, whether the particles are of the 
same species or not.* 

The normalization of these states must be defined in consistency with 
these symmetry conditions. To save writing, we will use a label q to 
denote all the quantum numbers of a single particle: its momentum, p, 
spin 2-component (or, for massless particles, helicity) u, and species n. The 
N-particle states are thus labelled @ql . . . q~ (with N = 0 for the vacuum 
state Qo.) For N = 0 and N = 1 the question of symmetry does not arise: 
here we have 

and 

where &q'-q) is a product of all the delta functions and Kronecker deltas 
for the particle's quantum numbers, 

3 Wd - d -- 8 (P - P) &f&n. (4.1.5) 

On the other hand, for N = 2 the states aqiq; and Qq;,; are physically the 
same, so here we must take 

the sign f being - if both particles are ferrnions and + otherwise. This 
obviously is consistent with the above stated symmetry properties of the 
states. More generally, 

The sum here is over all permutations .P of the integers 1, 2;. . , N. (For 
instance, in the first term in Eq, (4.1.6), 9 is the identity, 9 1  = 1, 9 2  = 2, 
while in the second term 9 1  = 2, P 2  = 1.) Also, dP is a sign factor equal 
to -1  if 9 involves an odd permutation of fermions (an odd number of 
fermion interchanges) and +1 otherwise. It is easy to see that Eq. (4.1.7) 
has the desired symmetry or antisymmetry properties under interchange 
of the 4,. and also under interchange of the q;. 

' In fact, by the same reasoning, the symmetry or antisymmetry of the state-vector under inter- 
change of particles of the same species but different hellcities or spin z-components is purely 
conventional, because we could haw agreed from the beginning to list first the momenta of 
photons of helicity f I ,  then the momenta of all photons of helicity -1, then the momenta of 
all electrons of spin z-component f l ,  and so on. We adopt the conurntion that the state-vector 
is symmetric or anlisymmetric under interchange of identical bosons or fernions of different 
helicilies or spin z-components in order to facilitate the use of rotational invariance. 
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4 2  Creation and Annihilation Operatots 

Creation and annihilation operators may be defined in terms of their effect 
on the normalized multi-particle states discussed in the previous section. 
The creutim operator at(q) (or in more detail, at(p, G, n))  is defined as the 
operator that simply adds a particle with quantum numbers q at the front 
of the list of particles in the state 

In particular, the N-particle state can be obtained by acting on the vacuum 
with N creation operators 

It is conventional for this operator to be called at(g); its adjoint, which 
is then called a(q), may be calculated from Eq. (4.1.7). As we shall 
now show, n ( q )  removes a particle from any state on which it acts, and 
is therefore known as an cznnihilatiov operator. In particular, when the 
particles q ql , - - q~ are either all bosom or all fermions, we have 

with a +1 or -1 sign for bosons or fermions, respectively . (Here is the 
proof. We want to calculate the scalar product of a(q}@,,,, ...,, with an 
arbitrary state CTJ~;...~~. Using Eq. (4.2.11, this is 

We now use Eq. (4.1.7). The sum over permutations 9 of 1,2; m a  , N  
can be written as a sum over the integer u that is permuted into the 
first place, i.e. Pr = 1, and over mappings @ of the remaining integers 
1,. . . , r - 1, r + 1,. . + ,  N into I ,  - .  , N - 1. Furthermore, the sign factor is 

with upper and lower signs for bosons and fermions, respectively. Hence, 
using Eq. (4.1.7) twice, 
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Both sides of Eq. (4.2.3) thus have the same matrix element with any state 
@q~. .a ; ,  and are therefore equal, as was to be shown.) As a special case 
of bq. (4.231, we note that for both bosons and ferrnions, u(q) annihilates 
the vacuum 

As defined here, the creation and annihilation operators satisfy an im- 
portant commutation or anticommutation relation. Applying the operator 
a(qr) to Eq. (4.2.1) and using Eq. (4.2.3) gives 

(The sign in the second term is (f)'+l because q, is in the (r + 1)-th place 
in Oq,i,.,,,v.) On the other hand, applying the operator a'(q) to Eq. (4.2.3) 
gives 

Subtracting or adding, we have then 

But this holds for all states @,, ...,, (and may easily be seen to hold also 
for states containing both bosons and fermions) and therefore implies the 
operator relation 

In addition, Eq. (4.2.2) gives immediately 

As always, the top and bottom signs apply for bosons and fermions, 
respectively. According to the conventions discussed in the previous 
section, the creation and/or annihilation operators for particles of  two 
different species commute if either particle is a boson, and anticommute 
if both are fermions. 

The above discussion could have been presented in reverse order (and 
in most textbooks usually is). That is, we could have started with the 
commutation or anticommu tation relations Eqs. (4.2.5j(4.2.7), derived 
from the canonical quantization of some given field theory. Multi-particle 
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states would have then been defined by Eq. (4.2.21, and their scalar 
products Eq. (4.1.7) derived from the commutation or anticommutation 
relations. In fact, as discussed in Chapter 1, such a treatment would be 
much closer to the way that this formalism developed historically. We 
have followed an unhistorical approach here because we want to free 
ourselves from any dependence on pre-existing field theories, and rather 
wish to understand why field theories are the way they are. 

We will now prove the fundamental theorem quoted at the begmning 
of this chapter: any operator &: may be expressed as a sum of products of 
creation and annihilation operators 

That is, we want to show that the CNM coefficients can be chosen to give 
the matrix elements of this expression any desired values. We do this by 
mathematical induction. First, i t  is trivial that by choosing Coo properly, 
we can give (m0, CNDo) any desired value, irrespective of the values of CNM 
with N > U and/or M > 0. We need only use Eq. (4.2.4) to see that 
Eq. (4.2.8) has the vacuum expectation value 

Now suppose that the same is true for all matrix elements of i5 between 
N- and M-particle states, with N < L, M I K or N I L, M < K ; that 
i s ,  that these matrix elements have been given some desired values by 
an appropriate choice of the corresponding coefficients CNM. TO see that 
the same is then also true of matrix elements of fl between any L- and 
K-particle states, use Eq. (4.2.8) to evaluate 

Whatever values have already been given to C N M  with N < L, M 5 K 
or N I L, M < K ,  there is clearly some choice of CLK which gives this 
matrix element any desired value. 

Of course, an operator need not be expressed in the form (4.2.81, with 
all creation operators to the left of all annihilation operators. (This 
is often called the 'normal' order of the operators.) However, if  the 
furmula for some operator has the creation and annihilation operators 
in some other order, we can always bring the creation operators to the 
lert of the annihilation operators by repeated use of the commutation or 
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anticornmutation relations, picking up new terms from the delta function 
in Eq. (4.2.5). 

For instance, consider any sort of additive operator F (like momentum, 
charge, etc.) for which 

F@q1-.qN = (f(q11 + . . - + f ( q ~ ) ) @ q I . - q N  (4.2.9) 

Such an operator can be written as in Eq. (4.2.81, but using only the term 
with N = M = 1: 

In particular, the free-particle Hamiltmian is always 

where E ( q )  is the singlc-particle energy 

We will need the transformation properties of the creation and annihila- 
tion operators for various symmetries. First, let's consider inhomogeneous 
proper ort hochronous Lorentz transformations. Recall that the N-particle 
states have the Lorentz transformation property 

Here is the three-vector part of Ap, D!;(R) is the same unitary spin-j 
representation of the three-dimensional rotation group as used in Section 
2.5, and W ( A , p )  is the particular rotation 

where L(p) is the standard 'boost' that takes a particle of mass m from rest 
to four-momentum f .  (Of course, m and j depend on the species label n. 
This is all for rn # 0; we will return to the massless particle case in the 
following chapter.) Now, these states can be expressed as in Eq. (4.2.2) 

where a. is the Lorentz-invariant vacuum state 
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In  order that the state (4.2.2) should transform properly, it i s  necessary 
and sufficient that the creation operator have the transformation rule 

In the same way, the operators C, P, and T, that induce cha.rge-conjugation, 
space inversion, and time-reversal transformations on free particle states* 
transform the creation operators as: 

As mentioned in the previous section, although we have been dealing 
with operators that create and annihilate particles in free-particle states, 
the whole formalism can be applied to 'in' and 'out' states, in which case 
we would introduce operators din and a,,, defined in the same way by 
their action on these states. These operators satisfy a Lorentz transforma- 
tion rule just like Eq. (4.2.12), but with the true Lorentz transformation 
operator U(A, a) instead of the free-particle operator UO(A, a). 

4.3 Cluster Decomposition and Connected Amplitudes 

It is one of the fundamental principles of physics {indeed, of all science) 
that experiments that are sufficiently separated in space have unrelated 
results. The probabilities for various collisions measured at Fermilab 
should not depend on what sort of experiments are being done at CERN 
at the same time. If this principle were not valid, then we could never 
make any predictions about any experiment without knowing everything 
about the universe, 

In  S-matrix theory, the cluster decomposition principle states that if 
multi-particle processes oil + pl,az 4 p2,. . ,cll4? + P.,v are studied in Jf 
very distant laboratories, then the S-matrix element for the overall process 

' We omit the subscript '0' on these operabrs, beciause in virtually all cases where C, P, and/or 
T are conserved, the oprators that induce t h e e  transformations on 'in' and 'out' states are the 
same as those dcfined by their action on freeparticle states. This is not the case for continuous 
Lorentz transformations. for which it is necessary to distinguish between the operators U(A, a )  
and UdA, a) .  
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factorizes. That is,* 

if for all i # j, all of the particles in states ai and Pi  are at a great spatial 
distance from all of the particles in states aj and / I j .  This factorization of S -  
matrix elements will ensure a factorization of the corresponding transition 
probabilities, corresponding to uncorrelated experimental results. 

There is a cumbinaturic trick that allows us to rewrite Eq. (4.3.1) in 
a mare transparent way. Suppose we define the colanccred part of the 
S-matrix, s;~, by the formula" 

PART 

Here the sum is over a11 different ways of partitioning the particles in 
the state 9 into clusters al,ol2, - .  ., and likewise a sum over all ways of 
partitioning the particles in the state P into clusters Pi, p2,. . ., not counting 
as different those that merely arrange particles within a given cluster 
or permute whole clusters. The sign is + or - according to whether 
the rearrangements ol + a122 . - and -+ PIP2 .  . . involve altogether 
an even or an odd number of fermion intertihanges, respectively. The 
term 'connected' is used because of the interpretation of sf, in terms of 
diagrams representing different contributions in perturbation theory, tu 
be discussed in the next section. 

This is a recursive definition. For each a and f l ,  the sum on the right- 
hand side of Eq. (4.3.2) consists of a term S& plus a sum X' over products 
of two or more s"-matrix elements, with a total number of particles in 
each of the states x j  and f l j  that is less than the number of particles in 

' Wc arc hcrc returning to thc notation uscd in  Chapter 3; Greek letters a or /i' stand for a 
collection of particles. including for each particle a specification uf its momentum, spin, and 
species. Alsu. rl + a ?  + .  . .  + a  + is the slate lbrmed by combining all the particlcs in thc states 
q,q; .. , and Kt., and likewise Tor Dl + /Iz + .  . . -t ,Kt... 

" This decomposition has been used in classical stalislical mechanics by Ursel, Mayer, and others, 
and in q u a n u n  stalistical mechanics by Lcc and Yanp and others3 It has also been used 
to calculate many-body ground state energies by  olds stone^ and ~ u ~ e n h o l t z . ~  In all of these 
applications the purpose of isolating the connected parts of Green's functions, partition functions, 
resolvent$, etc., is to deal with nbjec~s with a simplc volume dependence. This is essentially our 
purpose tm, because a s  we shall see, the crucial property of the connected parls c l l  the S-mainx 
1s that they are proportional to a single momentum-conservation delta function, and in a bnx the 
delta funcliun becurnes a Kronecker delta times ~ h c  volume. The cluster decomposition is also 
thc samc formal device as that uscd in thc theory of noise6 to decompose the correlation functiun 
of several random variables into its 'cumulants'; if' the random variable rcccives contributions 
from a large number N of independcnt fluctuations. then each cumulant is proportional to N. 
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the states 3~ and (3 

PART 

Suppose that the s['-matrix elements in this sum have already been chosen 
in such a way that Eq. (4.3.2) is satisfied for states 0, clr containing together 
fewer than, say, N particles. Then no matter what values are found in this 
way for the S-matrix elements appearing in the sum C', we can always 
choose the remaining term SL so that Eq. (4.3.2) is also satisfied for 

states a, containing a total of N particles.t Thus Eq. (4.3.2) contains no 
information in itself; it is merely a definition of sC. 

If the states a and p each consist of just a single particle, say with 
quantum numbers q and y' respectively, then the only term on the right- 
hand-side of Eq. (4.3.2) is just S& itself, so for one-particle states 

(Apart from possible degeneracies, the fact that S,!, is proportional to 
S(q '  - q )  follows from conservation laws. The absence of any proportion- 
ality factor in Eq. (4.3,3) is based on a suitable choice of the relative phase 
of 'in' and 'out' states.) We are here assuming that single-particle states 
are stable, so that there are no transitions between single-particle states 
and any others, such as the vacuum. 

For transitions between two-particle states, Eq. (4.3.2) reads 

(We are here using Eq. (4.3.3).) The sign + is - if both particles are 
fermions, and otherwise +. We recognize that the two delta function 
terms just add up to the norm (4.1.61, so here s;~ is just (S - 1 )F. But the 
general case is more complicated. 

For transitions between three- particle or four-particle states, Eq. (4.3.2) 
reads 

7 A technicality should be rnentloned here. This argumcm works only if we neglect the possibility 
that fur one wr more nf the connec~ed S-matrix elements in Eq. (43.21, the states Y, and pi both 
cwtain no prrriiclcs a 1 all. We must therefhe define [he cmnectcd vacuum-vacuum ekment S& 
to be zero. We d o  not ux Eq. (4.3.2) for the vacuum kacuum S-matrix So.*, which in the absence 
of timc-varying external fields is simply defined to be unity, S Q : ~  = 1. We will haw mnre tn say 
aboul the vacuum vacuum amplitude in thc presence of external fields in Volume 11. 



(Taking account of all permutations, there are a total of 1 + 9 + 6 = 16 
terms in Eq. (4.3.5) and 1 + 18 + 16 + 72 + 24 = 131 terms in Eq. (4.3.6). 
If we had not assumed that one-particle states are stable, there would 
be even more terms.) As explained previously, the definition of is 
recursive: we use Eq. (4.3.4) to define SE for two-particle states, then use 
this definition in Eq. (4.3.5) when we define S& for three-particle states, 
then use both of these definitions in Eq. (4.3.6) to obtain the definition of 
S& for four-particle states, and so on. 

The point of this definition of the connected part of the S-matrix is 
that the cluster decomposition principle is equivalent to the requirement 
that s;~ must vanish when any one or more of the particles in the states f l  
and/or or are far away in space from the others.$ To see this, suppose that 
the particles in the states f l  and a are grouped into clusters j1,p2, - .  . and 
r l ,  22, rn , and that all particles in the set a, + Bi are far from all particles 
in the set d j  + P j  for any j # i. Then if SF,, vanishes if any particles in 
b' or a' are far from the others, it vanishes if any particles in these states 
are in different clusters, so the definition (4.3.2) yields 

where x ( ~ I  is a sum over all different ways of partitioning the clusters f i j  
and aj into subclusters pjl, Pj2 ,  - . . and ~ l j l ,  aj2, . -. BU t referring back to 
Eq. (4.3.21, this is just the desired factorization property (4.3.1). 

t 1 1 1  For instance, suppose that in the four-particle reaction 1234 + 1 2 3 4, 
we let particles 1,2, l ' ,  and 2' be very far from 3,4,3', and 4'. Then if 
sC, vanishes when any particles in /? and/or a are far from the others, 
t g e only terms in Eq. (4.3.6) that survive (in an even more abbreviated 
notation) are 

$ In order to give a meaning to 'fa< we will have to Fouricr transform s', so that each three- 
momentum label p i s  replaced with a spatial coordinate three-vector x. 
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$1'2'3'#,1 234 ~~2~, lZs$4~ ,34 ' .14  

+ (fi1'1fi21 * S 1 ' ~ S 2 1 1 ) s ~ ~ ~ , 3 4  

+ @ 3 ' 1 b 4  * ~ Y 4 h F F 2 ) , 1 2  

+ ( 6 1 ~ 1 6 2 ~ 2  k d1'282'1){83'3b4'4 * 63'4fi4'33 

Comparison with Eq. (4.3.4) shows that this is just the required factoriza- 
tion condition (4.3.1) 

We have formulated the cluster decomposition principle in coordinate 
space, as the condition that s ~ C ,  vanishes if any particles in the states B 
or M are far from any others. It is convenient for us to reexpress this in 
momentum space. The coordinate space matrix elements are defined as a 
Fourier transform 

{We are here temporarily dropping spin and species labels, which just 
go along with the momentum or coordinate labels.) If ;...,p2.., 1 were 
sufficiently well behaved (to be specific, if it were Lebesgue integrable) then 
according to the Riemann-Lebesgue theorem7 the integral (4.3.8) would 
vanish when any combination of spatial coordinates goes to infinity. Now, 
this is certainly too strong a requirement. Translational invariance tells 
us that the connected part of the S-matrix, like the S-matrix itself, can 
only depend on differences of coordinate vectors, and therefore does not 
change at all if all of the x, and x; vary together, with their differences 
held constant. This requires that the elements of sC in a momentum 
basis must, like those of S ,  be proportional to a three-dimensional delta 
function that ensures momentum conservation (and makes  IS^^^...^^^^.., I 
not Lebesgue integrable), as well as the energy-conservation delta function 
required by scattering theory. That is, we can write 

PIP2..- 
= 63(p; + P; + - - . - - p2 - . . 

x S(E{ + E i + . d m - E l  - E 2 - . - -  ~ C ~ ; ~ i . - . ~ , ~ : . ~  . (43.9) 

This is no problem: the cluster decomposition principle only requires that 
Eq. (4.3.8) vanish when the diflerences among some of the xi and/or xi 
become large, However, if C itself in Eq. (4.3.9) contained additional delta 
functions of linear combinations of the three-momenta, then this principle 
would not be satisfied. For instance, suppose that there were a delta func- 
tion in C that required that the sum of the pi and - p j  for some subset of 
the particles vanished. Then Eq. (4.3.8) would not vary if all of the xi and 
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x,i for the particles in that subset moved together (with constant differ- 
ences) away from all the other x i  and xt, in contradiction to the cluster 
decomposition principle. Loosely speaking then, the cluster decomposition 
principle simply says that the aonneczed paPt of the S-matrix, unlike the 
S-matrix i t sd f :  cantuins just a single momentum-colaseraa~ion deltafurxtion. 

In order to put this a bit more precisely, we can say that the coefficient 
function CpTp; ..., .... in Eq. (4.3.9) is a smooth lunction of its momentum 
labels. But how smooth? It would be most straightforward if we could 
simply require that C,;,; ...,,,,,... be analytic in all of the momenta at p ; = 

p = - . . = pl = p2 = . . . = 0. This requirement would indeed guarantee 
that s:,, , ? . ' . , x ~ x ~ - '  vanishes exponentially fast when any of the x and x' is 
very distant from any of the other x and x'. However, an exponential fall- 
off of S' is not an essential part of the duster decomposition principle. 
and, in fact, the requirement of analyticity is not met in all theories. Most 
notably, in theories with massless particles, sC can have poles at certain 
values of the p and p '. For instance, as we will see in Chapter 10, if a 
massless particle can be emitted in the transition 1 -+ 3 and absorbed in the 
transition 2 + 4, then ~ 2 : ~ ~  will have a term proportional to l/(pl - p312. 
After Fourier transforming, such poles yield terms in s:~ ...,xlx2... 

I ?  
that fall 

oB only as negative powers of coordinate differences.' There is no need 
to formulate the cluster decomposition principle so stringently that such 
behavior is ruled out. Thus the 'smoothness' condition on S' should be 
understood to aHow various poles and branch-cuts at certain values of the 
p and p f ,  but not singularities as severe as delta functions. 

4.4 Structure of the Interaction 

We now ask, what sort of Hamiltonian will yield an S-matrix that sat- 
isfies the cluster decomposition principle? It is here that the formalism 
of creation and annihilation operators comes into its own. The answer is 
contained in the theorem that the S-matrix satisfies the cluster decompo- 
sition principle if (and as far as I know, only if) the Hamiltonian can be 
expressed as in Eq* (4.2.8): 

with coefficient functions hhiM that contain just a sing!e three-dimensional 
momentum-conservation delta function (returning here briefly to a more 



explicit notation) 

where hRm contains no delta function factors. Note that Eq. (4.4.1) by 
itself has no content -- we saw in Section 4.2 that any operator can be 
put in this form. It is only Eq. (4.4.1) combined with the requirement that 

has only the single delta function shown in Eq. (4.4.2) that guarantees 
that the S-matrix satisfies the cluster decomposition principle. 

The validity of this theorem in perturbation theory will become obvious 
when we develop the Feynman diagram formalism in Chapter 6. The 
trusting reader may prefer to skip the rest of the present chapter, and 
move on to consider the implications of this theorem in  Chapter 5.  
However, the proof has some instructive features, and will help to clarify 
in what sense the field theory of the next chapter is inevitable. 

To prove this theorem, we make use of perturbation theory in its time- 
dependent form. (One of the advantages of time-dependent perturbation 
theory is that it  makes the combinatorics underlying the cluster decom- 
position principle much more transparent; if E is a sum of one-particle 
energies then ePiEt is a product of functions of the individual energies, 
while [E - E ,  + ic]-' is not.) The S-matrix is given by Eq. (3.5.10) as' 

/ 

where the Hamiltonian is split into a freeparticle part Ho and an interac- 
tion V, and 

Now, the states @ ,  and Bp may be expressed as in Eq. (4.2.2) as products 
of creation operators acting on the vacuum a0, and V ( t )  is itself a sum of 
products of creation and annihilation operators, so each term in the sum 
(4.4.3) may be written as a sum of vacuum expectation values of products 
of creation and annihilation operators. By using the commutation or 
anticommutation relations (4.2.5) we may move each annihilation operator 
in turn to the right past all the creation operators. For each annihilation 
operator moved to the right past a creation operator we have two terms, 
as shown by writing Eq. (4.2.5) in the form 

' We are now adopting the convention that for n = 0, the time-ordered producl in Eq. (4.4.3) is 
taken as Lhe umL opesalur, s o  the n = 0 term in the sum just yields the term b(f l  - z) in Sp.z. 
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Moving other creation operators past the annihilation operator in the first 
term generates yet more terms. But Eq. (4.2.4) shows that any annihilation 
operator that moves all the way to the right and acts on @o gives zero, so 
in the end all we have left is the delta functions. In this way, the vacuum 
expectation value of a product of creation and annihilation operators is 
given by a sum of different terms, each term equal to a product of delta 
functions and f signs from the commutators or anticornmutators. It 
follows that each term in Eq. (4.4,3) may be expressed as a sum of terms, 
each term equal to a product of delta functions and * signs from the 
commutators or anticommutators and whatever factors are contributed 
by V(r), integrated over all the times and integrated and summed over the 
momenta, spins, and species in the arguments of the delta functions. 

Each of the terms generated in this way may be symbolized by a 
diagram. (This i s  not yet the full Feynman diagram formalism, because 
we are not yet going to associate numerical quantities with the ingredients 
in the diagrams; we are using the diagrams here only as a way of keeping 
track of three-momentum delta functions.) Draw n points, called verfices, 
one for each V ( t )  operator. For each delta function produced when 
an annihilation operator in one of these V ( t )  operators moves past a 
creation operator in the initial state Ox, draw a line coming into the 
diagram from below that ends at the corresponding vertex. For each delta 
function produced when an annihilation operator in the adjoint of the 
final state QB moues past a creation operator in one of the V ( t ) ,  draw 
a line from the corresponding vertex upwards out of the diagram. For 
each delta function produced when an annihilation operator in one V ( t )  
moves past a creation operator in another V ( l )  draw a line between the 
two corresponding vertices. Finally, for each deIta function produced 
when an annihilation operator in the adjoint of the final state moves 
past a creation operator in the initial state, draw a line from bottom to 
top, right through the diagrams. Each of the delta functions associated 
with one of these lines enforces the equality of the momentum arguments 
of the pair of creation and annihilation operators represented by the 
line. There is also at least one delta function contributed by each of the 
vertices, which enforces the conservation of the total three-momentum a t  
the vertex, 

Such a diagram may be connected (every point connected to every 
other by a set of lines) and if not connected, it breaks up into a number 
of connected pieces. The V ( t )  operator associated with a vertex in one 
connected component effectively commutes with the V(t) associated with 
any vertex in any other connected component, because for this diagram, 
we are not including any terms in which an annihilation operator in one 
vertex destroys a particle that is produced by a creation operator in the 
other vertex -- if we did, the two vertices would be in the same connected 
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component. Thus the matrix element in Eq. (4.4.3) can be expressed as a 
sum over products of contributions, one from each connected component: 

Here the sum is over all ways of splitting up the incoming and outgoing 
particles and V ( t )  operators into v clusters (including a sum over v from 
1 to n) with the n, operators V ( t j , ) .  Y ( t j , )  and the subsets of initial 
particles U j  and final particles f l j  all in the j th  cluster. Of course, this 
means that 

and also the set cw is the union of all the particles in the subsets rl, 012,. . . a,, 
and likewise for the final state. Some of the clusters in Eq. (4.4.5) may 
contain no vertices at all, i.e., nj  = 0; for these factors, we must take the 
matrix element factor in Eq. (4.4.5) to vanish unless Pi and a, are both 
one-particle states (in which case it is just a delta function 6(a j  - Bj ) ) ,  
because the only connected diagrams without vertices consist of a single 
line running through the diagram from bottom to top. Most important, 
the subscript C in Eq, (4.4.5) means that we exclude any contributions 
corresponding to disconnected diagrams, that is, any contributions in 
which any V( t )  operator or any initial or final particle is not connected 
to every other by a sequence of particle creations and annihilations. 

Now let us use Eq. (4.4.5) in the sum (4.4.3). Every time variable is 
integrated from -m to +m, SO if makes no difference which of the t1,. . . t, 
are sorted out into each cluster. The sum over clusterings therefore yields 
a factor n!/nl!n2! . -  -n,, t, equal to the number of ways of sorting out n 
vertices into v clusters, each containing n ~ ,  ~12 ,  . . vertices: 

The first sum here is over all ways of partitioning the particles in the 
initial and final states into clusters X I  . . - a, and Dl . + p, (including a sum 
over the number v of clusters). The factor n! here cancels the l/n! in 
Eq. (4,4,3), and the factor (-i)" in the perturbation series for (4.4.5) can 
be written as a product (4)"' . - - (-i)'fv, so instead of summing over n and 
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then summing separately over nl, . .  n, constrained by nl + . . + n, = n, 
we can simply sum independently over each r a l ,  . n,. This gives finally 

Comparing this with the definition (4.2.2) of the connected matrix elements 
S& we see that these matrix elements are just given by the factors in the 
product here 

dtl - . - dt, (@p T { v ( ~  I )  . ~ ( t . ) ) @ ~ ) ~  . (4.4.6) 
n=O 

(The subscript j is dropped on all the t s  and ns, as these are now mere 
integration and summation variables.) We see that ~h is calculated by a 
very simple prescription: is rhe sum uf all contrihutiuns to rhe S-mutrix 
that are connected, in the sense  hat we drop all terms in which any initial 
orfinal particle or any operam V(t) is not connected to a11 the others hj) a 
sequewe of particle cwutions and annihihions, This justifies the adjective 
'connected' for sC. 

As we have seen, momentum is conserved at each vertex and along 
every line, so the connected parts of the S-matrix individually conserve 
momentum : S; contains a factor 6'(pfi - pa}. What we want to prove is 
that s:~ contains no other delta functions. 

We now make the assumption that the coefficient fractions hNM in the 
expansion (4.4.1) of the Hamiltmian in terms of creation and annihilation 
operators are proportional to a single three-dimensional delta function, 
that ensures momenta conservation. This is automatically true for the 
free-particle Hamiltonian Ho, so i t  is also then true separately for the 
interaction I/. Returning to the graphical interpretation of the matrix 
elements that we have been using, this means that each vertex contributes 
one three-dimensional delta function. (The other delta functions in matrix 
elements Ki6 simply keep the momentum of any particle that is not created 
or annihilated at the corresponding vertex unchanged.) Now, most of these 
delta functions simply go to fix the momentum of intermediate particles. 
The only momenta that are left unfixed by such delta functions are those 
that circulate in loops of internal lines. (Any line which if cut leaves the 
diagram disconnected carries a momentum that is fixed by momentum 
conservation as some linear combination of the momenta of the lines 
coming into or going out of the diagram. If the diagram has L lines 
that can all be cut at  the same time without the diagram becoming 
disconnected, then we say it has L independent loops, and there are L 



momenta that are not fixed by momentum conservation.) With V vertices, 
I internal lines, and L loops, there are V delta functions, of which I - L 
go to fix internal momenta, leaving V - I + L delta functions relating the 
momenta of incoming or outgoing particles, But a well-known topoloycal 
identity** tells that for any graph consisting of C connected pieces, the 
numbers of vertices, internal lines, and loops are related by 

Hence for a connected matrix element like s&, which arises from graphs 
with C = I ,  we find just a single three-dimensional delta function 63(pp - 
p,), as was to be proved, 

It was not important in the above argument that the time variables 
were integrated from -m to +,a. Thus exactly the same arguments can 
be used to show that if the coefficients hN,M in the Harniltonian contain 
just single delta functions, then U ( t ,  t o )  can also be decomposed into 
connected parts, each containing a single momentum-conservation delta 
function factor. On the other hand, the connected part of the S-matrix 
also contains an energy-conservation delta function, and when we come to 
Feynman diagrams in Chapter 6 we shall see that sCn contains only a single 
energy-conservation delta function, 6 ( E I ,  - E J ,  w ile U(t,  to)  contains no 
energy-conservation delta functions at all. 

R 
It should be emphasized that the requirement that hNM in Eq. (4.4.1) 

should have only a single three-dimensional momentum conservation delta 
function factor is very far from trivial, and has far-reaching implications. 
For instance, assume that V has non-vanishing matrix elements between 
two-particle states. Then Eq. (4.4.1) must contain a term with N = M = 2, 
and coefficient 

(We are here temporarily dropping spin and species labels.) But then the 
matrix element of the interaction between three-particle states is 

. A graph consisting of a single vertex has V = 1, L = 0, and C = 1. If we d d  V - 1 vcrtices 
with just enough internal lines to keep the graph connccted. we have I = V - 1 ,  L = 0, and 
C = 1. Any addilic~nal internal lines a~tachcd (without new vertices) to the same connected graph 
produce an equal numbcr of loops, so I - V + L - 1 and C = 1.  If a disconnected graph cnnsists 
of L' such connected parts, the sums of I, V ,  and I .  in cach connected parL will than satisfy 
E l  =CV+CL-C. 
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As mentioned at the beginning of this chapter, we might try to make a 
relativistic quantum theory that is not a field theory by choosing u2,2 so 
that the t wo-body S-matrix is Lorentz-invariant, and adjusting the rest of 
the Hamiltonian so that there is no scattering in states containing three 
or more particles. We would then have to take v3,3 to cancel the other 
terms in Eq. (4.4.9) 

3 r ~ ~ J ( P ; P ~ P ; , P I  p2 ~ 3 )  = v ~ . ~ ( P ; P ; , P ~ P ~ )  6 ( ~ 3  - ~ 3 )  3 permutations* 
(4.4.10) 

However, this would mean that each term in u3,3 contains fwo delta 
3 function factors (recall that q Z ( p  ;pi, plp2) has a factor d (p I + p 2 - pl - 

p2) ) and this would violate the cluster decomposition principle. Thus 
in a theory satisfying the cluster decomposition principle, the existence 
of scattering processes involving two particles makes processes involving 
three or more particles inevitable. 

* * *  
When we set out to solve three-body problems in quantum theories 

that satisfy the cluster decomposition principle, the term v3,3 in Eq. (4.4.9) 
gives no particular trouble, but the extra delta function in the other terms 
makes the Lippmann-Schwinger equation difficult to solve directly. The 
problem is that these delta functions make the kernel [Ex  - E p  + ic]-I Vp., 
of this equation not square-integrable, even after we factor out an overall 
momentum conservation delta function. In consequence, it cannot be 
approximated by a finite matrix, even one of very large rank. To solve 
problems involving three or more particles, it is necessary to replace the 
Lippmann-Schwinger equation with one that has a connected right-hand 
side. Such equations have been developed for the scattering of three or 
more parti~les,87~ and in non-relativistic scattering problems they can be 
solved recursively, but they have not turned out to be useful in relativistic 
theories and so will not be described in detail here. 

However, recasting the Lippmann-Schwinger equation in this manner 
is useful in another way. Our arguments in this section have so far 
relied on perturbation theory. 1 do not know of any non-perturbative 
proof of the main theorem of this section, but it has been shown9 that 
these reformulated non-perturbative dynamical equations are cmsisten~ 
with the requirement that LJC(t, to) (and hence sC) should also contain 
only a single momentum-conservation delta function, as required by the 
cluster decomposition principIe, provided that the Hamiltonian satisfies 
our condition that the coeficient functions b Z N , M  each contain only a single 
momentum-conservation delta function. 



Problems 

1. Define generating functionals for the S-matrix and its connected 
part: 

C 
%; -4;. PI -/IM dq; --d&dql - d q M .  

Derive a formula relating F[r:] and F' [l;]. (You may consider the 
purely bosonic case.) 

2. Consider an interaction 

where g is a real constant and a(p) is the annihilation operator of a 
spinless boson of mass M > 0. Use perturbation theory to calculate 
the S-matrix element for scattering of these particles in the center- 
of-mass frame to order g2. What is the corresponding differential 
cross-section ? 

3. A coherent state @A is defined to be an eigenstate of the annihilation 
operators a(q)  with eigenvalues A(q) .  Construct such a state as a 
superposition of the multi-particle states Qq142...YN- 
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Quantum Fields and Antiparticles 

We now have all the pieces needed to motivate the introduction of quan- 
tum fields.' In the course of this construction, we shall, encounter some of 
the most remarkable and universal consequences of the union of relativity 
with quantum mechanics: the connection between spin and statistics, the 
existence of antiparticles, and various relationships between particles and 
antiparticles, including the celebrated CPT theorem. 

5.1 Free Fields 

We have seen in Chapter 3 that the S-matrix will be Lorentz-invariant if 
the interaction can be written as 

where ,#' is a scalar, in the sense that 

and satisfies the additional condition; 

As we shall see, there are more general possibilities, but none of them 
are very different from this. (For the present we are leaving it as an open 
question whether A here is restricted to a proper orthochronous Lorentz 
transformation, or can also include space inversions.) In order to facilitate 
also satisfying the cluster decomposition principle we are going to con- 
struct X ( x )  out of creation and annihilation operators, but here we face 
a problem: as shown by Eq. (4.2.121, under Lorentz transformations each 
such operator is multiplied by a matrix that depends on the momentum 
carried by that operator. How can we couple such operators together 
to make a scalarL? The solution is to build .Y(x) out of j d d s  - both 
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annihilation fields I,u:(x) and creation fields ip;(x):  

with coefficients* u f ( x ;  p, a, n) and vt(x; p, 0,  n) chosen so that under 
Lorentz transformations each field is multiplied with a position-inde- 
pendent matrix ; 

{We might, in principle, have different transformation matrices DL for the 
annihilation and creation fields, but as we shall see, it is always possible 
to choose the fields so that these matrices are the same.) By applying a 
second Lorentz transformation A, we find that 

so taking A1 = (A)-' and A1 = (A)-', we see that the D-matrices furnish 
a representation of the homogeneous Lorentz group: 

There are many such representations, including the scalar D(A) = 1, the 
vector D(A)jL, = and a host of tensor and spinor representations. 
These particular representations are irreducible, in the sense that it is not 
possible to by a choice of basis to reduce all D(A) to the same block- 
diagonal form, with two or more blocks. However, we do not require at 
this point that D(A) be irreducible; in general it is a block-diagonal matrix 
with an arbitrary array of irreducible representations in the blocks. That 
is, the index G here includes a label that runs over the types of particle 
described and the irreducible representations in the different blocks, as 
well as another that runs over the components of the individual irreducible 
representations. Later we will separate these fields into irreducible fields 
that each describe only a single particle species {and its antiparticle) and 
transform irreducibly under the Lorentz group. 

' A reminder: the labels n and o run over all dilferent particle species and spin t-componenis, 
respectively. 
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Once we have learned how to construct fields satisfying the Lorentz 
transformation rules (5.1.6) and (5.1.7), we will be able to construct the 
interaction density as 

and this will be a scalar in the sense of Eq, (51.2) if the constant coefficients 
&; -&, L, ,++, are chosen to be Lorentz covariant, in the sense that for all 
A :  

(Note that we do not include derivatives here, because we regard the 
derivatives of components of these fields as just additional sorts of field 
components.) The task of finding coefficients gl; ..,r r , . . . f ,  that satisfy 
Eq. (5.1.10) is no different in principle (and not &ch more difficult 
in practice) than that of using ClebschGordan coefficients to couple 
together various representations of the three-dimensional rotation group 
to form rotational scalars. Later we will be able to combine creation 
and annihilation fields so that this density also commutes with itself at 
space-like separations. 

Now, what shall we take as the coefficient functions up(x ;  p, 0, r a )  and 
vP(x ;  p, (T, n)? Eq. (4.2.12) and its adjoint give the transformation rules*' 
for the annihilation and creation operators 

where j, is the spin of particles of species n, and p~ is the three-vector 
part of Ap. (We have used the unitarity of the rotation matrices Il;ii to 
put both Eqs. (5.1.11) and (5.1.12) in the form shown here.) Also, as we 
saw in 'Section 2.5 the volume element d3p/p0 is Lorentz-invariant, so we 

*' Th~s  IS [or massive particles. The case of 2ro  mass will he taken up in Seclion 5.9. 
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can replace d 3 p  in Eqs. (5.1.4) and (5.1.5) with d 3 ( ~ p ) p 0 / ( ~ p ) !  Putting 
this all together, we find 

and 

We see that in order for the fields to satisfy the Lorentz transformation 
rules (5.1.6) and (51.71, it is necessary and sufficient that 

and 

These are the fundamental requirements that will allow us to calculate 
the UL and t:c coefficient hnctions in terms of a finite number of free 
parameters. 
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We will use Eqs. (5.1.13) and (5.1 .l4) in three steps, considering in turn 
three different types of proper orthochronous Lorentz transformation: 

First we consider Eqs. (5.1.13) and (5.1.14) with A = 1 and h arbitrary. 
We see immediately that up(x ;  p, n, n) and v,(x ; p, 0, n)  must take the form 

W k P A n j  = ( 2 d  - 3 / l e i p , x  W(P, 0, n) , (5.1-15) 

so the fields are Fourier transforms: 

and 

(The fxtors ( 2 7 ~ ) - ~ f '  could be absorbed into the definition of u, and I![, 

but it is conventional to show them explicitly in these Fourier integrals.) 
Using Eqs. (5.1.15) and (5.1.16), we see that Eqs. (5.1.13) and (5.1.14) are 
satisfied if and only if 

and 

+@A, 6. .ID::'* (M'(A, = Z llir(~),l& a, I I )  . (I, I 20) 
u (APY 

for arbitrary homogeneous Lorentz transformations A. 

Next take p = 0 in Eqs. (5.1.19) and (51.201, and let A be the standard 
boost L(q) that takes a particle of mass m from rest to some four- 
momentum @. Then L{p) = 1, and 

W(A,p) = L - ' ( A ~ ) A L ( ~ )  = L - ' ( ~ ) L ( ~ )  = I . 

Hence in this special case, Eqs. (5.1.19) and (5.1.20) give 
0 1/2 

u i h ,  a, 4 = ( 4 ' 4  1 C &(mN ucvk 0 9 4  (5-1.21 1 
f 
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and 

In other words, if we know the quantities esp(O,a,n) and vc@, c, n )  for zero 
momentum, then for a given representation D(A) of the homogeneous 
Lorentz group, we know the functions uc(p, a, n )  and z;&, 0,  n) for all p. 
(Explicit formulas for the matrices D f f ( L ( q ) )  will be given for arbitrary 
representations of the homogeneous Lorentz group in Section 5.7.) 

Rotations 

Next, take p = 0, but this time let A be a Lorentz transformation with 
PA = 0; that is, take A as a rotation R. Here obviously W ( A , p )  = R, and 
so Eqs. (5.1.19) and (5.1.20) read 

and 

or equivalently 

and 

where ~ i j ?  and $ are the angular-momentum matrices in the represen- 
tations D ( ~ ) ( R )  and D{R) ,  respectively. Any representation D(A) of the 
homogeneous Lorentz group obviously yields a representation of the ro- 
tation group when A is restricted to rotations R ;  Eqs. 15-1-25] and (5.1.26) 
tell us that if the field t&x) is to describe panicles of some particular spin 
j, then this representation D(R)  must contain among its irreducible com- 
ponents the spin-j representation D{J?(R),  with the coefficients q ( 0 ,  a, n) 
and v&a, ra) simply describing how the spin-j representation of the ro- 
tation group is embedded in D(R).  We shall see in Section 5.5 that each 
irreducible representation of the proper orthochronous Lorentz group con- 
tains any given irreducible representation of the rotation group at most 
once, so that if the fields v:(x)  and p;(x) trinsform irreducibly, then 
they are unique up to overall scale. ~ o i e  generally, the number of free 
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parameters in the annihilation or creation fields (including their overall 
scales) is equal to the number of irreducible representations in the field. 

It is straightforward to show that coefficient functions ur(p ,a ,n)  and 
vL(p ,  Q, n) given by Eqs. (5.1.21) and (5.1.22), with up(O,o, H) and vf{O, c, n) 
satisfying Eqs. (51.23) and (5.1.24), will automa tically satisfy the more 
general requirements (5.1.19) and (5.1.20). This is left as an exercise for 
the reader. 

Let us now return to the cluster decomposition principle. Inserting 
Eqs. (5.1.17) and (5.1.18) in Eq. (5.1.9) and integrating over x, the interac- 
tion Hamiltonian is 

with coefficient functions g v e n  by 

where 

This interaction is manifestly of the form that will guarantee that the 
S-matrix satisfies the cluster decomposition principle: -YNM has a single 
delta function factor, with a coefficient p N M  that (at least for a finite 
number of field types) has at most branch point singularities at zero par- 
ticle momenta. In fact, we could turn this argument around; any operator 
can be written as in Eq. (5.1.271, and the cluster decomposition principle 
requires that the coefficient VN,I.I may be written as in Eq. (5.1.28) as the 
product of a single momentum-conservation delta function times a smooth 
coefficient function. Any sufficiently smooth function (but nut one con- 
taining additional delta functions) can be expressed as in Eq. (5.1.29).t~he 
cluster decomposition principle logether with Loreutz invariance thus makes 
it natural that the intemction density should be oonstruc~ed out o f f h e  anni- 
hilation nnd creation fields. 

For general functions the indices C and C' may have tu run over an infinite range. The reasons for 
restricling C and f' to a finite range have to do with the principle of renormalizability, discussed 
in Chapter 12. 
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If all we needed were to construct a scalar interaction density that 
satisfied the cluster decomposition principle, then we could combine an- 
nihilation and creation operators in arbitrary polynomials (51.91, with 
coupling coefficients g,; . . p  , /, . . . f ,  subject only to the invariance condition 
(5.1.10) (and a suitable &lity condition). However, for the Lorentz in- 
variance of the $-matrix it is necessary also that the interaction density 
satisfy the commutation condition (5.1.3). This condition is not satisfied 
for arbitrary functions of the creation and annihilation fields because 

(with the sign f indicating a commutator or anticommutator if the parti- 
cles destroyed and created by the components yi: and yr are bosom or 
fermions, respectively,) and in general this does not vanish even for x - y 
space-like. It is obviously not possible to avoid this problem by making 
the interaction density out of creation or annihilation fields alone, for then 
the interaction could not be Hermitian. The only way out of this difficulty 
is to combine annihilation and creation fields in linear combinations: 

with the constants rc and ;l and any other arbitrary constants in the fields 
adjusted so that for x - y space-like 

We will see in subsequent sections of this chapter how to do this for various 
irreducibly transforming fields. (By including explicit constants rc and ;1 in 
Eq. (5.1.31) we are leaving ourselves free to choose the overall scale of the 
annihilation and creation fields in any way that seems convenient.) The 
Hamiltmian density X ( x )  will. satisfy the commutation condition (5.1.3) 
if it is constructed out of such fields and their adjoints, with an even 
number or  any field components that destroy and create fermions. 

The condition (5.1.32) is often described as a causalily condition, because 
if x - y is space-like then no signal can reach y from x, so that a 
measurement of at point x should not be able to interfere with a 

t rneasurament of tpp or yt, at point y. Such considerations of causality 
are plausible for the electromagnetic field, any one of whose components 
may be measured at a given spacetime point, as shown in a classic 
paper of Bohr and ~osenfeld. '  However, we will be dealing here with 
fields like the Dirac field of the electron that do not seem in any sense 
measurable. The point of view taken here is that Eq. (5.1.32) is needed for 
the Lurentz invariance of the S -matrix, without any ancillary assumptions 
about measurability or causality. 

There is an obstacle to the construction of fields (5.1.31) satisfying 
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(5.1.32). Tt may be that the particles that are destroyed and created by 
these fields carry non-zero values of one or more conserved quantum 
numbers like the electric charge. For instance, if particles of species n 
carry a value q(n) for the electric charge Q, then 

In order that Z j x )  should commute with the charge operator Q (or some 
other symmetry generator) it is necessary that it  be formed out of fields 
that have simple commutation relations with Q : 

for then we can make H(x) commute with Q by constructing it as a sum 
of products of fields ylr,ly{, . and adjoints I& I& . . + such that 

qr1 + qt, + - . - q,, - qm2 - . . . = Om 

Now, Eq. (5.1.33) is satisfied for one particular component v~:(x) of the 
annihilation field if and only if all particle species n that are destroyed 
by the field carry the same charge q(n) = q(,  and it is satisfied for one 
particular component v ~ ~ ( x )  of the creation field if and only if all particle 
species n that are created by the field carry the charge q@) = -qf. We 
see that in order for such a theory to conserve quantum numbers like 
electric charge, there must be a doubling of particle species carrying non- 
zero values of such quantum numbers: if a particular component of the 
annihilation field destroys a particle of species n, then the same component 
of the creation field must create particles of a species A, known as the 
antiparticks of the particles of species n, which have opposite values of 
all conserved quantum numbers. This is the reason .for antiparticles. 

If the representation D(A) is not irreducible, then we can adopt a basis 
for the fields in which D(A) breaks up into blocks along the main diagonal, 
such that fields that belong to different blocks do not transform into 
each other under Lorentz transformations. Also, Lorentz transformations 
have no effect on the particle species. Therefore, instead of considering 
one big field, including many irreducible components and many particle 
species, we shall from now on restrict our attention to fields that destroy 
only a single type of particle (dropping the label n) and create only 
the corresponding antiparticle, and that transform irreducibly under the 
Lorentz group (which as mentioned above may or may not be supposed 
to include space inversion), with the understanding that, in general, we 
shall have to consider many different such fields, some perhaps formed as 
the derivatives of other fields. In the following sections we are going to 
finish the determination of the coefficient functions up& a) and t.{(p, G), 
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fix the relative values of the constants K and A, and deduce the relations 
between the properties of particles and antiparticles first for fields that 
belong to the simplest irreducible representations of the Lorentz group, 
the scalar, vector, and Dirac spinor representations. After that we will 
repeat the analysis for a completely general irreducible represen tation. 

A word about field equations. Inspection of Eqs. (5.1.31), (5.1.171, and 
(5.1.18) shows that all the components of a field of definite mass m satisfy 
the Klein-Gordon equation: 

Some fields satisfy other field equations as well, depending on whether 
or not there are more field components than independent particle states. 
Traditionally in quantum field theory one begins with such field equations, 
or with the Lagrangian from which they are derived, and then uses them 
to derive the expansion of the fields in terms of one-particle annihilation 
and creation operators. In the approach followed here, we start with the 
particles, and derive the fields according to the dictates of Lorentz invari- 
ance, with the field equations arising almost incidentally as a byproduct 
of thk construction. 

A technicality must be mentioned here. According to the theorem 
proved in Section 4.4, the condition that guarantees that a theory will 
satisfy the cluster decomposition principle is that the interaction can be 
expressed as a sum of products of creation and annihilation operators, 
with all creation operators to the left of all annihilation operators, and 
with coefficients that contain only a single momentum-conservation delta 
function. For this reason, we should write the interaction in the 'normal 
ordered' form 

the colons indicating that the enclosed expression is to be rewritten 
(ignoring non-vanishing commutators or anticommutators, but including 
minus signs for permutations of fermionic operators) so that all creation 
operators stand to the left of all annihilation operators. By using the 
commutation or anticommutation relations of the fields, any such normal- 
ordered function of the fields can just as well .be written as a sum of 
ordinary products of the fields with c-number coefficients. Rewriting 
: 9 : in this way makes it obvious that despite the normal ordering, 
: ~ ( t ~ ( x ) , t ~ ~ ( x ) )  : will commute with : s ( ~ ( ~ ) , ~ ~ ( ~ ) )  : when x - y is 
space-like, if it is constructed out of fields that satisfy Eq. (5.1.32), with 
even numbers of any fermionic field components. 
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5.2 Causal Scalar Fields 

We first consider one-component annihilation and creation fields t#+(x) 
and 4-(x) that transform as the simplest of all representations of the 
Lorentz group, the scalar, with DjA) = 1. Restricted to rotations, this is 
just the scalar representation of the rotation group, for which 9 = 0, so 
Eqs. (5.1.25) and (5.1.26) have no solutions except for j = 0, in which case 
a, a take only the value zero. Thus a scalar field can only describe particles 
of zero spin. Assuming also for the moment that the field describes only 
a single species of particle, with no distinct antiparticle (and dropping 
the species label n as well as the spin label a and the field label 61, the 
quantities E C ~ ( O Q P I )  and t r f ( O m z )  are here just the numbers u(O) and ~(0). It 
is conventional to adjust the overall scales of the annihilation and creation 
fields so that these constants both have the values (2m)-'/2. Eqs. (5.1.21) 
and (5.1.22) then &ve simply 

and 
0 -112 VCP) = VP 1 - (5.2.2) 

The fields (5.1.17) and (5.1.18) are then, in the scalar case, 

and 

A Hamiltonian density X { x )  that is formed as a polynomial in $+(x) 
and #-(x) will automatically satisfy the requirement (5.1.91, that it trans- 
form as a scalar. It remains to satisfy the other condition for the Lorentz 
invariance of the S-matrix, that 2 ( x )  commute with H(y)  at space-like 
separations x - y. If X'(X) were a poIynomia1 in #+(x) alone, there would 
be no problem. All annihilation operators commute or anticommute, 
so d+(x) either commutes or anticommutes with $+ (y) for all x and y, 
according to whether the particle is a boson or fermion, respectively: 

Hence any Z ( x )  formed as a polynomial in 4+(x) (or, for fermions, 
any such even polynomial) will commute with X(y) for all x and y. 
The problem, of course, is that, in order to be Hermitian, X ( x )  must 
involve d+t(x) = $-{XI as well as Qf (x), and 4+ (x) does not commute 
or anticammute with # - ( y )  for general space-like separations. Using the 
commutation (for bosom) or anticommutation (for fermions) relations 
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(4.2.51, we have 

which collapses to the single integral 

[++bb  @-b')] = A+(x - Y )  , 

where A+ is a standard function: 

This is manifestly Lorentz-invariant, and therefore for space-like x it can 
depend only on the invariant square x2 > 0. We can thus evaluate A+(x)  
for space-like x by choosing the coordinate system so that 

x 0 = o ,  1x1 = ,/z 
Eq. (5.2.7) then gives 

Changing the variable of integration to zs - p/m, this is 

or, in terms of a standard Hankel function, 

This isn't zero, so what are we to do with it? Note that even though 
A+(x) is not zero, for x2 > 0 it is even in xP, instead of using only 4+(x), 
suppose we try to construct X ( x )  out of a linear combination 

Using Eq. (52.61, we have then for x - y space-like 
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Both of these will vanish if and only if the particle is a boson (i-e., it is the 
top sign that applies) and K and 1. are equal in magnitude 

We can change the relative phase of K and ?. by redefining the phases 
of the states so that a(p) -t ei"a(p) , af(p) -+ e-'aat(p), and hence K + 

~ e ' ~  , I + lei'. Taking a = i ~ r ~ ( l / ~ ) ,  we can in this way make K and 
II  equal in phase, and hence equal. 

Redefining $(x) to absorb the overall factor K = R, we have then 

The interaction density X ( x )  will commute with X ( y )  at space-like sepa- 
rations x - y if formed as a normal-ordered polynomial in the self-adjoint 
scalar field $(x). 

Even though the choice of the relative phase of the two terms in 
Eq. (5.2.10) is a matter of convention, it is a convention that once adopted 
must be used wherever a scalar field for this particle appears in the 
interaction Hamiltonian density. For instance, suppose that the interaction 
density involved not only the field (52.101, but also another scalar field 
for the same particle 

with n an arbitrary phase. This 4, like 4,  would be causal in the sense 
that $(XI commutes with $ ( y )  when x - y is space-like, but &x) would 
not commute with $(y) at spacelike separations, and therefore we cannot 
have both of these fields appearing in the same theory. 

If the particles that are destroyed and created by $(x) carry some 
conserved quantum number like electric charge, then X ( x )  will conserve 
the quantum number if and only if each term in H(x)  contains equal 
numbers of operators u(p) and a(p)'. But this is impossible if H(x)  is 
formed as a polynomial in $(x) - $+(XI + $+?(XI. To put this another 
way, in order that #(x) should commute with the charge operator Q (or 
some other symmetry generator) it is necessary that it be formed out of 
fields that have simple commutation relations with Q. This is true for 
#+ (x) and its adjoint, for which 

but not for the self-adjoint field (5.2.8). 
i n  order to deal with this problem, we must suppose that there are 

two spinless bosons, with the same mass m, but charges +q and -q, 
respectiveIy. Let t$+ (x) and $+'((x) denote the annihilation fields for these 
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two particles, so that' 

Define 4(x) as the linear combination 

which manifestly has the same commutator with Q as t#+(x) alone 

The commutator or anticommutator of $(x) with its adjoint is then, at 
space-like separation 

while &x) and $(y) automatically commute or anticommute with each 
other for all x and y because #+ and #+'' destroy and create different 
particles. In deriving this result, we have tacitly assumed that the particle 
and antiparticle have the same mass, so that the commutators or anticom- 
rnutators involve the same function A+(x - y). Fermi statistics is again 
ruled out here, because it is not possible that 4jx) should anticommute 
with gt (y )  at space-like separations unless K = 1 = 0, in which case the 
fields simply vanish. So a spinless particle must be a boson. 

For Bose statistics, in order that a complex #(x) should commute with 
#t(y) at space-Iike separations, it is necessary and sufficient that 1x1~ = l I R 2 ,  
as well as for the particle and antiparticle to have the same mass. By 
redefining the relative phase of states of these two particles, we can again 
give rc and R. the same phase, in which case k- = I .  This common factor 
can again be eliminated by a redefinition of the field $, so that 

or in more detail 

This is the essentially unique causal scalar field. This formula can be used 
both for purely neutral spinless particles that are their own antiparticles 
(in which case we take aC(p) = a(p)), and for particles with distinct 
antiparticles (for which aC(p) # a(p)). 

' The label 'c' denotes 'charge conjugate'. It should be kept in mind that a particle that carries no 
conserved quantum numbers may or may not be its own antiparticle, with aC(p) = a(p). 
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For future use, we note here that the commutator of the complex scalar 
field with its adjoint is 

where 

Let's now consider the effect of the various inversion symmetries on 
this field. First, from the results of Section 4.2, we can readily see that 
the effect of the space-inversion operator on the annihilation and creation 
operators is :** 

where q and qc are the intrinsic parities of the particle and antiparticle, 
respectively. Applying these results to the annihilation field (5.2.3) and the 
charge-conjugate of the creation field (52.41, and changing the variable of 
integration from p to -p, we see that 

where as before P x  = (-x,xO). We see that in general applying the spa= 
inversion to the scalar field #(x) = #'(XI + #+Ct(x) would give a different 
field # p  = q*q5+ + ycq5+ct- Both fields are separately causal, but if # 
and 4; appear in the same interaction then we are in trouble, because 
in general they do not commute at space-like separations. The only way 
to preserve Lorentz invariance as well as parity conservation and the 
hermiticity of the interaction is to require that g5p be proportional to #, 
and hence that 

That is, the intrinsic parity qqC of a state containing a spinless particle and 
its antiparticle is even. We have now simply 

" We arcomitting the subscript 0 on inversion opcrators P, C, and T, because in virtually all cues 
where these inversions are good symmetries, the same operators induce inversion transformations 
on 'id and 'out' states and on free-particle states. 
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These results also apply when the spinless partide is its own antiparticle, 
for which gC = q, and imply that the intrinsic parity of such a particle i s  
real: g = *I. 

Charge-conjugation can be handled in much the same way. From the 
results of Section 4.2, we have 

where and iC are the phases associated with the operation of charge- 
conjugation on one-particle states. It follows then that 

c +t ~$''~(x)C-l = t # (x) . (5.2.23) 

In order that C ~ ~ ( X ) C - ~  should be proportional to the field $f(x) with 
which it commutes at space-like separations, it is evidently necessary that 

= (* , (5.2.24) 

Just as for ordinary parity, the intrinsic charge-conjugation parity (cC of 
a state consisting of a spinless particle and its antiparticle is even. We 
now have simply 

Qb(x)c-' = <*#(x) . (5.2.25) 

Again, these results apply also in the case -where the particle is its own 
antiparticle, where CC = <. In this case the charge-conjugation parity like 
the ordinary parity must be real, 4: = +I. 

Finally we come to time-reversal. From Section 4.2 we have 

Recalling that T is antiunitary, and again changing the variable of inte- 
gration from p to -p, we find that 

T&+(x)T-' = S"+(-PX) (5.2.28) 

T ~ + ~ + ( X ) T - '  = C ~ # + ~ ~ ( - P X )  . (5.2.29) 

In order for T#I(x)T-~ to be simply related to the field q5 at the time- 
reversed point - 9 x ,  we must have 

cc = p* (5.2.30) 



5.3 Causal Vector FicrJd.9 207 

5.3 Causal Vector Fields 

We now take up the next simplest kind of field, which transforms as a 
four-vector, the simplest non-trivial representation of the homogeneous 
Lorentz group. There are massive particles, the W* and zD, that at 
low energies are described by such fields and that play an increasing 
role in modern elementary particle physics, so this example is not merely 
of pedagogical interest, (Also, although we are here considering only 
massive particles, one approach to quantum electrodynamics is to describe 
the photon in terms of a massive vector field in the limit of very small 
mass). For the moment we will suppose that only one species of particle 
is described by this field (dropping the species label r a ) ;  then we shall 
consider the possibility that the field describes both a particle and a 
distinct antiparticle. 

In the four-vector representation of the Lorentz group, the rows and 
columns of the representation matrices DjA) are labelled with four-com- 
ponent indices p , ~ ,  etc., with 

The annihilation and creation parts of the vector field are written: 

The coefficient functions uP(p, a) and vp(p, D )  for arbitrary momentum are 
given in terms of those for zero momentum by Eqs. (5.1.21) and (5,1.22), 
which here read: 

[We are using the usual summation convention for spacetime indices p, v ,  
etc.) Also, the coefficient functions at zero momentum are subject to the 
conditions (5.1.25) and (5.1.26): 

and 
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The rotation generators #p, in the four-vector representation are gven 
by Eq. (5.3.1) as 

( f k ) '  j = - i ~ i j k  7 (5.3-9) 

with i, j ,k  here running over the values 1, 2, and 3. We note in particular 
that y2 takes the form 

(y2)O0 = ( f Z ) O i  = ( f ) 'o  = 0, (5.3.10) 

($-2)i = 2si . 
From Eqs. (5.3.6) and (5.3.7) it follows then that 

uO@, a)(~(j');, = 0 , 
f7 

and 

vl(O, a)(~(j) ' ) :~ = 2vi(0, a) . (5.3.15) 
3 

Also, we recall the familiar result that (J~J ) ) ; ,  = j ( j  + l)dag. From 
Eqs. (5.3.12)+5.3.15) we see that there are just two possibilities for the 
spin of the particle described by the vector field: either j = 0, for which 
at p = 0 only rro and v o  are non-zero, or else j = 1 (so that j ( j  + 1) = 21, 
for which at p = 0 only the space-components ui and vi are non-zero. Let 
us look in a little more detail at each of these two possibilities. 

Spin Zero 

By an appropriate choice of normalization of the fields, we can take the 
only non-vanishing component of up@) and v P ( 0 )  to have the conventional 
values : 

$(0) = i (w1/2) ' /~ 

v O ( o )  = -i(m/2)'I2 . 
(The label t~ here takes only the single value zero, and is therefore 
dropped.) Then Eqs. (5.3.4) and (5.3.5) yield for general momenta 
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and 
0 -1/2 vP(p) = - i f ( 2 p  ) . 

The vector annihilation and creation fields here are nothing but the 
derivatives of the scalar annihilation and creation fields #' for a spinless 
particle that were defined in the previous section: 

It is obvious that the causal vector field for a spinless particle is also just 
the derivative of the causal scalar field: 

Hence we need not explore this case any further here. 

Spin One 

From Eqs. (5.3.6) and (5.3.7) we see immediately that the vectors ui(O,O) 
and vi(O,O) for cr -- 0 are in the 3-direction. By a suitable normalization 
of the fields, we can take these vectors to have the values 

with four-vector components listed always in the order 1, 2, 3, 0. To find 
the other components, we use Eqs. (5.3.6), (5.3.7), and (5.3.9) to calculate 
the effect of the raising and lowering operators J!') & i ~ f )  on u and v .  
This gives: 

1 
1 

u'(O,+1) = -uqo,  -1) = - - ( 2 ~ ) - ~ / ~  JZ [!I7 (5.3.21) 

Applying Eqs. (5.3.4) and (5.3.5) now yields 

uY (p, O) = up* (p, (T) = (2p0)-1/2d((p, b) (5.3.23) 
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with 

The annihilation and creation fields (5.3.2) and (5.3.3) here. are 

The fields 4+ti{x) and 4+"(y) of course commute (or anticommute) for all 
x and y, but #+''(x) and q5-"(y) do not. Their commutator (for bosom) 
or anticommutator (for fermians) is 

where 

A straightforward calculation using Eq. (5.3.25) shows that WY(0) is 
the projection matrix on the space orthogonal to the time-direction, and 
Eq. (5.3.24) then shows that W'(p) is the projection matrix on the space 
orthogonal to the four-vector pp : 

The commutator (or anticommutator) (5.3.27) may then be written in 
terms of the A+ function defined in the previous section, as 

For our present purposes, the important thing about this expression is 
that for x - y space-like it does not vanish and is wen in x - y. We 
can therefore repeat the reasoning of the previous section in seeking to 
construct a causal field: we form a linear combination of annihilation and 
creation fields 

for which, Tor x - y spacelike, 
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and 

In  order for both to vanish for space-like x-y, it is necessary and sufficient 
that the spin one particles be bosom and that )KI  = 1121. By a suitable 
choice of phase of the one-particle states we can give K and ;E the same 
phase, so that K = 2, and then drop the common factor tc by redefining 
the overall normalization of the field. After all this, we find that the causal 
vector field for a massive particle of spin one is 

We note that this is real: 

However, if the particles it describes carry a non-zero value of some 
conserved quantum number Q, then we cannot construct an interaction 
that conserves Q out of such a field. Instead, we must suppose that there 
is another boson of the same mass and spin which carries an opposite 
value of Q, and construct the causal field as 

or in more detail 

where the superscript c indicates operators that create the antiparticle that 
is charge-conjugate to the particle annihilated by $+a(x). This again is a 
causal field, but no longer real. We can also use this formula for the case 
of a purely neutral, spin one particle that is its own antiparticle, by simply 
setting aC(p) = n(p). In either case, the commutator of a vector field with 
its adjoint is 

where A(x - y) is the function (5.2.13). 
The real and complex fields we have constructed for a massive, spin one 

particle satisfy interesting field equations. First, since pv in the exponential 
in Eq. (5.3.26) satisfies p2 = -m{ the field satisfies the Klein-Gordon 
equation : 
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just as for the scalar field. In addition, since Eq. (5.3.24) shows that 

we now have another equation 

In the limit of small mass, Eqs. (5.3.36) and (5.3.38) are just the equations 
for the potential four-vector of electrodynamics in what is called Lorentz 
gauge. 

However, we cannot obtain electrodynamics from just any theory of 
massive spin one particles by letting the mass go to zero. The trouble can 
be seen by considering the rate of production of a spin one particle by an 
interaction density A@ = J p v p ,  where J ,  is an arbitrary four-vector current. 
Squaring the matrix element and summing over the spin z-components of 
the spin one particle gives a rate proportional to 

where p is the momentum of the emitted spin one particle, and < J p  > 
is the matrix element of the current (say, at x = 0) between the initial 
and final states of all other particles. The term p"v/m2 in W V ( p )  will, in 
general, cause the emission rate to blow up when m + 0. The only way 
to avert this catastrophe is to suppose that < J ,  > p p  vanishes, which 
in coordinate space is just the statement that the current J p  must be 
conserved, in the sense that d,Jp = 0. Indeed, the need for conservation 
of the current can be seen by simply counting states. A massive spin one 
particle has three spin states, which can be taken as the states with helicity 
+l ,  0, and -1, while any massless, spin one particle like the photon can 
only have helicities + 1 and - 1 : the current conservation condition just 
ensures that the helicity zero states of the spin one particle are not emitted 
in the limit of zero mass. 

The inversions can be dealt with in much the same way as for the scalar 
field discussed in the previous section. To evaluate the effect of space 
inversion, we need a formula for e"(-p, a). Using P, (-p) = B",Lp,(p)bT, 
and Eq. (5.3.241, we have 

#(-p, a) == -Pp,ev(p, a). (5.3.39) 

Also, to evaluate the effect of time-reversal we need a formula for 
(-l)'+"epe(-p,-a). Using e" *(-G)- -@(a) and the above formula 
for Lrl,(-p), we find 

(- l)I+"$* I-p, -0 )  = W,, e"(p, a). (5.3.40) 

Using these results and the transformation properties of the annihila- 
tion and creation operators given in Section 4.2, it is straightforward to 



5.4 The Dirac Formalism 213 

work out the inversion transformation properties of the annihilation and 
creation fields. Once again we find that, in order for causal fields to 
be transformed into other fields with which they commute at space-like 
separations, it is necessary that the intrinsic space inversion, charge- 
conjugation, and time-reversal phases for spin one particles and their 
antiparticles be related by 

(In particular all phases must be real if the spin one particle is its own 
antiparticle.) With these phase conditions satisfied, our causal vector field 
(5.3.34) has the inversion transformation properties 

In particular, the minus sign in Eq. (5.3.44) means that a vector field that 
transforms as a polar vector, with no extra phases or signs accompanying 
the matrix W,, describes a spin one particle with intrinsic parity q = -1. 

5.4 The Dirac Formalism 

Among all the representations of the homogeneous Lorentz group, there 
is one that plays a special role in physics. As we saw in Section 1.1, this 
representation was introduced into the theory of the electron by ~ i r a c , )  
but as so often happens it was already known to mathematicians: because 
it provides the basis of one of the two broad classes of representations 
of the rotation or Lorentz groups (actually, of their covering groups - 
see Section 2.7) in any number of dimensions. From the point of view 
we are following here, the structure and properties of any quantum field 
are dictated by the representation of the homogeneous Lorentz group 
under which it transforms, so it will be natural for us to describe the 
Dirac formalism as it first appeared in mathematics, rather then as it was 
introduced by Dirac. 

By a representation of the homogeneous Lorentz group, we mean a set 
of matrices D(A) satisfying the group multiplication law 
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Just as for the unitary operators U ( A ) ,  we can study the properties of 
thwe matrices by considering the infinitesimal case, 

A P C  = SP,, + up v , (54.1) 

for which 

with $pY = -fvlC a set of matrices satisfying the commutation relations 
(2.4.12): 

To find such a set of matrices, suppose we first construct matrices y p  

that satisfy the anticommu tation relations 

(-y, f )  = 2q9Y (5.4.5) 

and tentatively define 

I t  is elementary, using Eq. (5.4.5), to show that 

and from this we easily see that Eq. (5.4.6) does indeed satisfy the desired 
commutation relation Eq. (5.4.4). We shall further assume that the matrices 
"J are irreducible; that is, that there is no proper subspace that is left 
invariant by all these matrices. Otherwise we could choose some smaller 
set of field components, which would transform as in Eqs. (5.4.3) and 
(5.4.6), with an irreducible set of 7,,s. 

Any set of matrices satisfying a relation like Eq. (5.4.5) (or its Euclidean 
analog, with q,, replaced with a Kronecker delta) is called a Cliflord 
algebra. The importance in mathematics of this particular representation 
of the homogeneous Lorentz group {or, more accurately, its covering 
group) arises from the fact (shown in Section 5.6) that the most general 
irreducible representation of the Lorentz group is either a tensor, or a 
spinor transforming as in Eqs. (54.3) and (5.4.6), or a direct product of a 
spinor and a tensor. 

The commutation relation (5.4.7) can be summarized by saying that y p  

is a vector, in the sense that Eq. (5.4.3) satisfies 

In  the same sense, the unit matrix is trivially a scalar 

D(A) 1 D - I  (A)  = 1 (5.4.9) 
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and Eq. (5.4.4) shows that 3t1" is an antisymmetric tensor 

The matrices yp can be used to construct other totally antisymmetric 
tensors 

The brackets here are a standard notation, indicating that we are to 
sum over a l  permutations of the indices within the brackets, with a plus 
or minus sign for even or odd permutations, respectively. For instance, 
Eq. (5.4.1 1) is shorthand for 

By repeated use of Eq. (5.4.5) we can write any product of y s  as a sum 
of antisymmetrized products of ys  times a product of metric tensors, so 
the totally antisymmetric tensors form a complete basis for the set of all 
matrices that can be constructed from the Dirac matrices, 

This formalism automatically contains a parity transformation, conven- 
tionally taken as 

Applied to the Dirac matrices, this gives 

(We here label indices so that p runs over values 0,1,2; . .) The same 
similarity transformation, applied to any product of ?-matrices, then yields 
just a plus or minus sign, according to whether the product contains an 
even or an odd number of ys with space-like indices, respectively. 'In 
particular, 

Everything so far in this section applies in any number of spacetime 
dimensions and for any 'metric' qcr,.. In four spacetime dimensions, how- 
ever, there is a special feature, that no totally antisymmetric tensor can 
have more than four indices, so the sequence of tensors 1, yP, 2P*, rdPgT, . - . 
terminates with the tensor (5.4.12). Furthermore, each of these tensors 
transforms differently under Lorentz and/or parity transformations so 
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they are all linearly independent.' The number of linearly independent 
components of these tensors is one for 1, four for yP, six for YP", four 
for d P u T ,  and one for Pp"p, or 16 independent components in all. (The 
general rule is that a totalIy antisymmetric tensor with n indices in d di- 
mensions has a number of independent components equal to the binomial 
coefficient d ! / n ! ( d  - n) !) There are at most v 2  independent v x v matrices, 
so they must have at least fl= 4 rows and columns. Dirac matrices of 
the minimum dimensionality are necessarily irreducible; if reducible, the 
subspace left invariant by these matrices would furnish a representation of 
lower dimensionality. We shall therefore take the yp to be 4 x 4 matrices. 

(More generally, in any even number d of spacetime dimensions, one 
can form antisymmetric tensors with 0,1, . - , d indices, which contain 
altogether a number of independent components equal to 

d d !  
n!(d  - n)! 

= 2d , 
n=O 

so the y-matrices must have at least 2d/2 rows and columns. In spaces or 
spacetimes with odd dimensionality, the totally antisymmetric tensors of 
rank n and d - n can be linearly related by the conditions" 

for r = 0,1,2, ..., d - 1, with ~fl1f l2- ' -Fd totally antisymmetric, and the left- 
hand side taken as the unit matrix for r = 0. Under these conditions there 
are only 2d-1 independent tensors, requiring 7-matrices of dimensionality 
at least 2id-1)/2.) 

Returning now to four spacetime dimensions, we shall choose an explicit 
set of 4 x 4 y-matrices. One very convenient choice is 

where 1 is the unit 2 x 2 matrix, and the components of a are the usual 

' Alternatively, these matrices can be shown to be linearly independerit by noting that they form 
an orthogonal set, with the scalar product of two matrices defined by the trace of their product. 
Note that none of these matrices can vanish, because each component of each of these tensors is 
proportional to a prduct of different y-matrices. and such a product has a square equal to plus 
or minus the product of the corresponding squares, and hence equal to f 1. . . This constraint does not interfere with the inclusion of space inversion in the Dirac representation 
of the Lorenh group in odd-dimensional spacetime, because here the tensor c"JQl"'pd is even 
under inversion of space coordinates. If & don7 care about space inversion, we can also 
construct 2~d-11'2-dimensional irreducible representations of the proper clrthochronous Lorentz 
group in even spacetime dimensions by imposing the above condition relating antisymmetrized 
products of r and d-r Dirac matrices. An example is provided by the submatrices in Eqs. (5.4.19) 
and (5.420) below. 
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Pauli matrices 

{The oi are just the 2 x 2 y-matrices in three dimensions.) I t  can be 
shown5 that any other irreducible set of y-matrices are related to these by 
a similarity transformation. From Eq. (54.171, we can easily calculate the 
Lorentz group generators (5.4.6): 

(Here eijk is the totally antisymmetric tensor in three dimensions, with 
€123 = +I.) We note that these are block-diagonal, so the Dirac ma- 
trices provide a reducible representation of the proper orthochronous 
Lorentz group, the direct sum of two irreducible representation with 

ij - +if.. &kO. f - - !,k 
It is convenient to write the totally antisymmetric tensors (5.4.1 1) and 

(5.4.12) in a somewhat simpler way. The matrix (5.4.12) is totally antisym- 
metric, and therefore proportional to the pseudotensor @"", defined as a 
totally antisymmetric quantity with 8i23 = f l .  Setting p , a , ~ ,  q equal to 
0,1,2,3, respectively, we see that 

where 

The matrix 75 is a pseudoscalar in the sense that 

~ p u , ~ d  = 0 ,  (5.4.23) 

Similarly, &Po' must be proportional to contracted with some matrix 
d,, and by setting p,a,z equal in turn to 0,1,2 or 0,1,3 or 0,2,3 or 1,2,3, 
we find 

& P"' = 3 i EPc'q Y s Y ~  (5.4.25) 
The 16 independent 4 x 4 matrices can therefore be taken as the com- 
ponents of the scalar 1, the vector y P ,  the antisymmetric tensor y p u ,  the 
'axial' vector 'J~"J, and the pseudoscalar ys.  It is easy to see that the matrix 
7s has unit square 
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and anticommutes with all yp 

The notation 75 is particularly appropriate, because the anticommuta- 
tion relations (5.4.26) and (5.4.271, together with Eq. (5.4.5) show that 

0 1 2 1  , y , y , y -  , y5 provide a Clifford algebra in five spacetime dimensions. 

For the particular 4 x 4 representation (5.4.17) of the y-matrices, the 
matrix 75 is 

This representation is convenient because it reduces 9 p 5  and ys to block- 
diagonal form. As we shall see, this makes it particularly useful for dealing 
with particles in the ultra-relativistic limit, tl 4 c. (It is not, however, the 
representation described in Section 1.1 that was originally introduced by 
Dirac, because Dirac was mostly interested in electrons in atoms where 
v << c, and in this case it is more convenient to adopt a representation 
for which yo rather than y s  is diagonal.) 

The representation of the homogeneous Lorentz group we have con- 
structed here is not unitary, because the generators f P u  are not all 
represented by Hermitian matrices. In  particular, in the representation 
(5.4.17) we have /'j Hermitian, but bio i s  anti-Hermitian. Such reality 
conditions can conveniently be written in a manifestly Lorentz-invariant 
fashion by introducing the matrix ,!I = iy! of Eq. {5.4.13), which in the 
representation (5.4.17) takes the form 

Inspection of Eq. (5.4.17) shows that 

and it follows then that 

Hence, though not unitary, the matrices D(A) satisfy the pseudounitarity 
relation 

Also, ys is Hermitian and anticommutes with P' so 

and it  follows that 
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The Dirac and related matrices also have important symmetry proper- 
ties. inspection of Eqs. (5.4.17) and (5.4.18) shows that y, is symmetric 
for p = 0,2 and antisymmetric for p = 1,3, so 

where T denotes a transpose, and 

It follows immediately that 

/EV = -59 f ,,%-I , (5.4.37) 

These signs will prove significant when we consider the charge-conjugation 
properties of various currents in the next section. Of course, we can 
combine our results for adjoints and transposes to obtain the complex 
conjugates of the Dirac and allied matrices: 

5.5 Causal Dirac Fields 

We now want to construct particle annihilation and antiparticle creation 
fields that transform under the Lorentz group according to the Dirac 
representation of this group, discussed in the previous section. In general 
these take the form given in Eqs. (5.1.17) and (5.1.18): 

and 
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with the particle species label omitted here. In order to calculate the 
coefficient functions u&, c) and vG{p,o) appearing in these formulas, 
we must first use Eqs. (5.1.25) and (5.1.26) to find ul and uf for zero 
momentum, and then apply Eqs. (5.1.21) and (5.1.22) to calculate them 
for arbitrary momenta, with Dzl(A) in both cases taken as the 4 x 4 
Dirac representation of the homogeneous Lorentz group discussed in the 
previous section. 

Using Eq. (5.4.19), the zero-momentum conditions (5.1.25) and (5.1.26) 
read* 

and 

a m 

In other words, if we regard u ~ , ( O , O )  and u,f(O,a) 
of  matrices U* and V*, we have in matrix notation 

u + J ~ ' =  - fa& 

and 

- V+J(~]* - = iGvk. 

as the m , ~  elements 

(5.5.3) 

Now, the ( 2 j  + 1)-dimensional matrices ~ ( j )  and - J ( ~ I *  and the 2 x 2 
matrices l a  all provide irreducible representations of the Lie algebra of 
the rotation group. A general theorem of group theory known as Schur's 
lemma6 tells us that when a matrix like Ui or Vk connects two such 
representations as in Eqs. (5.5.3) and (5.5.4), the matrix must either vanish 
(a possibility of no interest here) or else be square and non-singular. 
Hence the Dirac field can only describe particles of spin j = f (so that 
2 j  + 1 = 2) and the matrices J ( ~ / ~ )  and -J('/~)* must be the same as $0 

up to a similarity transformation. In fact, in the standard representation 
1 (2.5.21), (2.5.22) of the rotation generators, we have J('/') = ?a and 

- J ( ~ / ~ ) *  = 102m2. 2 It follows then that [Ir and Viol must commute with 
a, and hence must be proportional to the unit matrix: 

' We are here dropping the species label n, and replacing the four-component index C with a 
pair of indices, one 2-valued index m labelling the rows and columns of the submatrices ia Eqs. 
(5.4.19) and (5.4.20), and a second index taking values f ,  labelling the rows and columns of the 
supermatrix in Eqs. (5.4.19) and (5.4.20). 



In other words 

.(a, ;) = 

and the spinors at finite momentum are 

It now only remains to say something about the constants c* and d*. In 
general, these are quite arbitrary - we could even choose c- and d- or c+ 
and d+ to be zero if we liked, so that the Dirac field would have only two 
non-vanishing components. The only physical principle that could tell us 
anything about the relative values of the c* or the d+ is the conservation 
of parity. We recall that under a space inversion, the particle annihilation 
and antiparticle creation operators undergo the transformations: 

o ) F 1  = tlcact(-p, a) 

and so 

P ~ ~ ' ( X ) P - ~  = q C ( ~ n ) - 3 / 2  z 1 d 3 p  q(-p,  a)e -ip.Jlxact (R O )  

u 

Also, Eqs. (5.4.16), {5.1.21), and (5.1.22) give 

(Since b2 = 1, we are no longer making a distinction between #3 and P-l.) 

In order that the parity operator should transform the annihilation and 
creation fields at the point x into something proportional to these fields 
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at Px ,  it is necessary that /Ies(O,o) and flv(O,a) be proportional to u(0, a) 
and v(0,  a), respectively: 

f i @ ,  0) = hd.40, d , a) = b,v@, a) , (5.5.14) 

where b, and b, are sign factors, h i  = ha = 1. In this case, the fields have 
the simple spacainversion properties: 

By adjusting the overall scales of the fields, we can choose 
functions at zero momentum to have the form : 

(5.5.15) 

(5.5.16) 

the coefficient 

, (5.5.17) 

Now let's try to put together the annihilation and creation fields in a 
linear combination 

that commutes or anticommutes with itself and its adjoint at space-like 
separations. A straightforward calculation gives 

By using either the eigenvalue conditions (5.5.14) or the explicit formulas 
(5.5.17) and (5.5.1&), we find at zero momentum: 
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and 
2 Iut b, = +111~b. . (5.5.3 1 )  

Clearly Eq. (5.5.30) is only possible if we choose the bottom sign, T = +; 
that is, the particles described by a Diracjeld pnMsr be ferrnions. It is also 
then necessary that 1 ~ 1 ~  = 11212 and bu = 4,. Just as for scalars we have 
the freedom to redefine the relative phase of the creation and annihilation 
operators to make the ratio K / A  real, in which case K = A, and by adjusting 
the overall scale and phase of the field ty we may then take 

r c : = A = I ,  (5.5.32) 

Finally if we like we can replace w with y g ~ ,  which changes the sign of - 

both b, and b,, so we can always take 

h" = -bp = +1. 

For future use, we record here that the Dirac field is now 

while the coefficient functions at zero momentum are 

The spin sums are 

st, the anticommutator is given by Eq. (5.5.20) as 

Now let's return to the requirement that under a space inversion the 
field yjx) must transform into something proportional to y(9x). For this 
to be possible the phases in Eqs. (5.5.15) and (5.5.16) must be equal, and 
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so the intrinsic parities of particles and their antiparticles must be related 
by 

qC = -vr . (5.5.40) 

That is, the intrinsic parity qqC of a state consisting of a spin particle 
and its mtiparticle is odd. It is for this reason that negative parity mesons 
like the and J/y can be interpreted as s-wave bound states of quark- 
antiquark pairs. Eqs. (5.5.15) and (5.5.16) now give the transformation of 
the causal Dirac field under space inversion as 

Before going on to the other inversions, this is a good place to mention 
that Eqs. (5.5.141, (5.5.33), and (5.5.26) show that u(p,o) and v(p,a) are 
eigenvectors of -ippyp/na with eigenvalues +l and -1,  respectively: 

( i f l y r  + ~ ) M ( P ,  U) = 0 ,  ( - i p p y p  + m)v(p, 0 )  = 0 - (5.5.42) 

If follows then that the field (5.5.33) satisfies the differential equation 

( y p d ,  + m ) y ( x )  = 0 . (5.5.43) 

This is the celebrated Dirac equation for a free particle of spin f. From the 
point of view adopted here, the free-particle Dirac equation is nothing but 
a Lorentz-invariant record of the convention that we have used in putting 
together the two irreducible representations of the proper orthochronous 
Lorentz group to form a field that transforms simply also under space 
inversion. 

In order to work out the charge-conjugation and time-reversal properties 
of the Dirac field, we will need expressions for the complex-conjugates 
of the u and u coefficient functions. These functions are real for zero 
momentum, but to obtain the coefficient functions at finite momentum we 
have to multiply with the complex matrix D(L(p)) .  From Eq. (5.4.41) we 
see that for general real a,, : 

In order for the field to transform under charge-conjugation into another 
field with which it commutes at space-like separations, it is necessary 
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again that the charge conjugation parities of the particle and antiparticle 
be related' by 

In this case, the field transforms as 

(We are calling the Hermitian adjoint of the field on the right-hand side 
tp* instead of v t  to emphasize that this is still a column vector, not a row.) 

Although we have been distinguishing particles from their antiparticles, 
we have not ruled out the possibility that the two are actually identical. 
Such spin i particles are called Majomna ferrnions. Following the same 
reasoning that led to Eq. (5.5471, the Dirac field of such a particle must 
satisfy the reality condition 

tp (x) = -P%p * (x) . (5.5.48) 

For Majorana fermions the intrinsic space-inversion parity must be imag- 
inary, q = ki, while the charge-conjugation parity must be real, < = f 1. 

There is an important difference between fermions and bosons in the 
intrinsic charge-conjugation phase of states consisting of a particle and 
its antiparticle. Such a state may be written 

where Qo is the vacuum state. Under charge-conjugation, this state is 
transformed into 

Interchanging the variables of integration and summation and using the 
anticommutation of the creation operators and Eq. (5.5.461, we can rewrite 
this as 

That is, the intrinsic charge-csrrjugatdo parity of a stute consisling of a 
particle described by a Dir~ac j d d  and its antiparticle is odd, in the sense 
that if the wave function ;C of the state is even or odd under interchange 
of the momenta and spins of the particle and antiparticle, then the 
charge-conjugation operator applied to such a state gives a sign -1 or 
+1, respectively. The classic example here is positronium, the bound 
state of an electron and a positron. The two lowest states are a pair 
of nearly degenerate s-wave states with total spin s = 0 and s = 1, 
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known respectively as para- and ortho-positronium. The wave function 
for these two states is even under interchange of momenta and odd or 
even respectively under interchange of spin z-components, so para- and 
ortho-positronium have C = +l and C = -1, respectively. These values 
are dramatically confirmed in the decay modes of positroniurn: para- 
positronium decays rapidly into a pair of photons (each of which has 
C = -11, while ortho-positronium can only decay much more slowly 
into three or more photons. In the same way, single and w0 mesons 
are produced as resonances in high-energy electron-positron annihilation 
through a one-photon intermediate state, so they must have C = -1, 
which is consistent with their interpretation as quark-antiquark bound 
states with orbital angular momentum zero and total quark spin one. 

Now we come to time-reversal. Recall the transformation properties 
of the particle annihilation and antiparticle creation operators given by 
Eq. (4.2.15): 

1 
- [ ~ ( - 1 ) r - y + ( - ~ ,  - D )  . T&(~ ,  o)T-' - (5.5.50) 

Time-reversal of the field (5.5.34) thus gives 

In order to put this back in the form gwen for zy, we shall redefine 
the variables of integration and summation as -p and -a, so we need 
formulas for u;(-p, -aj and u;(-p, -0) in terms of uc(p,o) and uP(p.o),  
respectively. For this purpose, we can use the fact that 2'' anticommutes 
with fi and commutes with ys together with our former result for D(L(p))* 
to write 

Also, Eqs. (5.4.36) and (5.535)-(5.5.36) gwe 
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We see then that in order for time-reversal to take the Dirac field into 
something proportional to itself at the time-reversed point (with which 
it would anticornmute at space-like separations) it is necessary that the 
intrinsic timereversal phases be related by 

cC = (5.5.53) 

and in this case 

Now let us consider how to construct scalar interaction densities out 
of the Dirac fields and their adjoints. As already mentioned the Dirac 
representation is not unitary, so ry'v is not a scalar. To deal with this 
complication it is convenient to define a new sort of adjoint: 

ql - y?ffi. (5.5.55) 

Using the pseudounitarity condition (5.4.321, we see that the fermion 
bilinears constructed with @ have the Lorentz transformation property 

Also, under a space inversion 

Taking the matrix A1 as 1, yp, f p ' ,  y#, or y5 yields a biIinear ~ M t y  
that transforms as a scalar, vector, tensor, axial vector, and pseudoscalar, 
respectively. (The terms 'axial' and 'pseudo' indicate that these have space- 
inversion properties opposite to those of ordinary vectors and scalars: a 
pseudoscalar has negative parity, while the space and time components 
of an axial vector have positive and negative parity, respectively.) These 
results apply also when the two fermion fields in the bilinear refer to 
different particle species, except that in this case a space inversion also 
yields a ratio of the intrinsic parities. 

For instance, the original Fermi theory of beta decay involved an inter- 
action density proportional to @ p y ' ~ n  @ e ~ p ~ v .  Later it was realized that 
the most general Lorentz-invarian t and pari ty-conserving non-derivative 
beta decay interaction takes the form of a linear combination of products 
like this, with Y, replaced with any one of the five covariant types of 4 x 4 
matrices 1, y p ,  f p v ,  y5yp,  or 75- (AS discussed in Chapter 2, we are defin- 
ing the space-inversion operator so that the proton, neutron, and electron 
all have parity +l. If the neutrino is massless then its parity may also 
be defined as +I, if necessary by replacing the neutrino field with y5vY .) 
When Lee and yang7 called parity conservation into question in 1956, 
they expanded the list of possible non-derivative interactions to include 
ten terms proportional to @,Mt,o, q e M y V  and also v p M y ,  ~ , M Y ~ V + , ,  with 
M running over the matrices 1, yf i ,  f p v ,  y#, or ~ 5 .  
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It is also of some interest to study the charge-conjugation properties of 
these bilinears. Using Eqs. (5.5.47) and (5.4.35)45.4.39), we have 

I 
the sign in the last expression being + for the matrices I,  ysy,, and 75, 

and - for y, and f,,. (The minus sign in the first line arises from Fermi 
statistics. We ignore a c-number anticommutator.) A boson field that 
interacts with the current ipMy must therefore have C = +I for scalars, 
pseudascalars, or axial vectors, and C = -1 for vectors or antisymmetric 
tensors This is one way of seeing that the no (which couples to pseu- 
doscalar or axial-vector nucleon currents) has C = +1, while the photon 
has C = -1. 

5 General Irreducible Representations of the Homogeneous 
Loren tz Group* 

We shall now generalize from the special cases of vector and Dirac fields 
to the case of a field that transforms according to a general irreducible 
representation of the homogeneous Lorentz group. All fields may be 
constructed as direct sums of these irreducible fields. 

A general representation of the proper orthochrmous homogeneous 
Lorentz group (or, more properly, its infinitesimal part) is provided by a 
set of matrices $p ,  satisfying the same commutation relations (5.4.4) as 
the generators of the group 

(Of course, y,, = -yVp, and indices on f,, are as usual raised or 
lowered by contraction with qpv or g,,.) To see how to construct such 
matrices, first divide the six independent components of $,, into two 
three-vectors: an angular momentum matrix 

and a boost 

Eq. (5.6.1) then reads 

This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 
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where i, J, k run over the values 1,2,3, and € i j k  is the totally antisymmetric 
quantity with €123 = + l .  Eq. (5.4.4) just says that the matrices 3 generate 
a representation of the rotation subgroup of the Lorentz group, and 
Eq. (5.6.5) just represents the fact that X is a three-vector. The minus 
sign in the right-hand side of Eq. (5.6.6) arises from the fact that goo = -1, 
and plays a crucial role in what follows. 

It is very convenient to replace the matrices 9 and X with two 
decoupled spin three-vectors, writing 

It is easy to see that the commutation relations (5.6.4)-(5.6.6) are equivalent 
to 

We find matrices satisfying Eqs. (5.6.9 j (S.6.11) in the same way that we 
find matrices representing the spins of  a pair of uncoupled particles - as 
a direct sum. That is, we label the rows and columns of these matrices 
with a pair of integers and/or half-integers 0, b, running over the values 

a = - A , - A +  I , . . - , + A ,  (5.6.12) 
b = 4, -B + 1, - . . , +B (5.6.13) 

and take*' 
(4 

(&)arbf,ub = S W ~ J  J a l o  9 (5.6.14) 
Jrw 

W ) d h r , d  = h brb (5.6.15) 

where J [ ~ )  and ~ ( ~ 1  are the standard spin matrices for spins A or B :  

* * There is an alternative formalism,' hascd on thc fact that the spin j rep~esentatim o f  the rntatim 
group can be written as the symmetrized direct product of 2 j  spin 1/2 representations - i.e., as 
a symmetric S U ( 2 )  tensor with 2 j  two-valued indices. We can Lherehrt: write fields belunging to 
the (A, B) representation with 2A two-valued (1  /2,0) indices and 2 8  two-valued (0,1/2) indices, 
the latter written with dots tu distinguish them fiom the former. 
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and likewise for ~ ( ~ 1 .  The representation is labelled by the values of the 
positive integers andlor half-integers A and 3. We see that the (A,  B )  
representation has dimensionality ( 2A  + 1)(23 + I). 

The finite-dimensional representations of the homogeneous Lore-ntz 
group are not unitary, because d and are Hermitian, and therefore 
3 is Hermitian but N is onti-Hermitian. This is because of the i in 
Eqs. (5.6.7) and (5.6.81, which is required by the minus sign in (5.6.6), 
and hence stems from the fact that the homogeneous Lorentz group is 
not the same as the four-dimensional rotation group SO(4), a compact 
group, but instead is the non-compact group known as SO(3, l ) .  It is only 
compact groups that can have finite-dimensional unitary representations 
{aside from representations in which the non-compact part is represented 
trivially, by the identity). There is no problem in working with non-unitary 
representations, because the objects we are now concerned with are fields, 
not wave functions, and do not need to have a Lorentz-invariant positive 
norm. 

In contrast, the rotation group is represented unitarily, with its genera- 
tors represented by the Hermitian matrices 

By the usual rules of vector addition, we can see that a field that transforms 
according to the ( A ,  B )  representation o f  the homogeneous Lorentz group 
has components that rotate like objects of spin j, with 

This is enough to identify the (A,B) representations with the perhaps 
more familiar tensors and spinors. For instance, a (0,O) field is obviously 
scalar, with only a single j = 0 component. A ( f , 0) or (0, f ) field can only 

1 have j = +?; these are the top {i.e., 75 = +1) and bottom {ys = -1) two 
components of the Dirac spinor. A ( f , f ) field has components with j = 1 
and j = 0, corresponding to the spatial part v and time-component vo of 
a four-vector UP. More generally, an (A,A)  field contains terms with only 
integer spins 2A, 2A - 1 ,  + ,0, and corresponds to a traceless symmetric 
tensor of rank 2A. (Note that the number of independent components of 
a symmetric tensor of rank 2A in four dimensions is 

and the tracelessness condition reduces this to 

as expected for an ( A ,  A) field.) One more example: a (1 ,O)  or @,I) field 
can only have j = 1, and corresponds to an antisymmetric tensor FpYhat 
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satisfies the further irreducibility 'duality' conditions 

for ( 1 , O )  and (0,l) fields, respectively. Of course, it is only in four 
dimensions that an antisymmetric two-index tensor F p v  can be divided 
into such 'self-dual' and 'anti-self-dual' parts. 

A general tensor of rank N transforms as the direct product of N (f, f )  
four-vector representations. It can therefore be decomposed (by suitable 
symmetrizations and antisymmetrizations and extracting traces) into irre- 
ducible terms (A,B) with A = N / 2 ,  N / 2 -  1,. . .  and B = N / 2 ,  N / 2 -  1 , .  . a .  

In this way, we can construct any irreducible representation ( A , B )  for 
which A + B is an integer. The spin representations, for which A + 3 is 
half an odd integer, can similarly be constructed from the direct product 
of these tensor representations and the Dirac representation {f ,0) $ (0,j). 
For instance, taking the direct product of the vector (4, f.) representation 
and the Dirac ($,(I) b (0.1) representation gives a spinar-vector YP, that 
transforms according to the reducible representation 

The quantity y,,tpP would transform as an ordinary ( f , ~ )  @ (0, f ) Dirac 

field, so we can isolate the (4, 1) b (1, i) repsentation? by requiring that 
y,yP = 0. This is the Rarita-Schwinger field? 

So far in this section we have only considered the representations of 
the proper orthochronous Lorentz group. In any representation of the 
Lorentz group including space inversion? there must be a matrix P which 
reverses the signs of tensors with odd numbers of space indices, and in 
particular 

In terms of the matrices (5.6.7) and (5.681, this is 

Thus an irreducible (A, 3) representation of the proper orthochronous 
homogeneclus Lorentz group does not provide a representation of the 
Lurentz group including space inversion unless A = B. As we have seen, 
these (A ,A)  representations are the scalar, the vector, and the symmetric 
traceless tensors. For A # B, the irreducible representations of the Lorentz 

f Acmrding to Eq. (5.6.18). such a field transforms under ordinary rotations as a direct sum of two 
j = 3/2 and two j = components. The doubling is eliminated by imposing the Dirac equation 
['lVZp + m]y' = 0, and the remaining j = $ component is eliminated by requiring that d,,lyP = 0. 
With these conditions, the field describes a single particle of spin j = 3/2. 
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group including space inversion are the direct sums (A, B )  $ (B, A), of 
dimensionality 2(2A + 1)(2B + I). One of these is the ( f  ,o) @ (0,;) Dirac 
representation discussed in Section 5.4. The 4 x 4 matrix (5.4.29) provides 
the !-matrix for this representation. Another familiar example is the 
{l ,O)@(O, 1) representation, which as we have seen is just the antisymmetric 
tensor of second rank, including both self-dual and anti-self-dual parts. 

5.7 General Causal Fields' 

We now proceed to construct causal fields that transform according to 
the general irreducible (A, 3 )  representations described in the previous 
section. The index G is replaced here with a pair of indices n, b, running 
over the ranges (5.6.12), (5.6.131, so the fields are now written as 

with K and A arbitrary constants. We are here leaving open the possibility 
that this particle is its own antiparticle, in which case ac(p,a) = a(p,o). 

Our first task is to find the zero-momentum coefficient functions uab{O, 0 )  

and vrrA(O, 0). The fundamental conditions (5.1.25)-(5.1.26) on u(0,o) and 
u(O,a) read here 

or using Eqs. (5.6.14)-(5.6.15) 

But Eq. (5.7.2) is the defining condition for the Clebsch4ordan coeffi- 
cients CAB(jg ; ab) ! These coefficients are defined by the requirement that 

This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 
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if Yab are states that under an infinitesimal rotation transform as 

then, under the same rotation, the state 

transforms as 

Inspection of Eq. (5.7.2) shows that this requirement is satisfied by the 
coefficients ~ ~ ~ ( 0 ,  (T), and therefore, up to a possible proportionality factor, 
t&O, s) is just CAB(jo;abj. This constant i s  conventionally chosen so that 

This result is unique because each irreducible (A,  8 )  representation of the 
homogeneous Lorentz group contains a given spin j representation of the 
rotation group at most once. Similarly, inspection of Eqs. (5.6.16)-(5.6.l7) 
shows that the complex conjugates of the angular momentum matrices 
are 

Therefore if we write Eq. (5.7.3) in terms of (-l)-f-uc,b(p, -c), it takes the 
same form as Eq. (5.7.2). With a suitable adjustment of a constant factor, 
the unique solution for v(0,a) is 

We must now perform a boost tu calculate the coefficient functions for 
finite momentum. For a fixed direction p = p/lpl, we can write the boost 
(2.5.24) as a function of a parameter 8 defined by 

The advantage of this parameterization is that 

For infinitesimal 8, we have [ L ( O ) ] ~ ,  + P, + w",, where do = ooi = f i iO 
and ru i j  = woo = 0. Following the same reasoning that led from Eq. 
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(2.2.24) to Eq. (2.2.26), it follows then that 

This is for any representation of the homogeneous Lorentz group; for the 
irreducible (A,  B ) representations, Eqs. (5.6.7) and (5.6.8) give 

and since d and &? are commuting matrices 

In more detail, using Eqs. (5.6.14) and (5.6.15) 

Eqs. (5.7.4) and (5.7.6) then give the coefficient functions at finite momen- 
tum as 

and 

These results give the field explicitly for a given trattsformation type {A, B), 
so the field (5.1.31) of this type is unique up to the choice of the constant 
factors K and 3.. 

It is vary easy in this formalism to construct Lorentz scalar interaction 
densities. The ( A , B )  representation of the homogeneous Lorentz group 
i s  just the direct product of the (A,O) and (Q3) representations, so the 
general Lorentz transformation rules (5.1 A), (5.1.7) read here 

Furthermore, Eqs. (5.6.14) and (5.6.15) show that the matrix generators 
of the (A,O) and (0 ,B)  representations are just the spin matrices for spin 
A and B, respectively. Thus we can construct scalars of the form 

by simply taking g ,,,,...,, ;h ,h  2 . . .  b, as the product of a coefficient for coupling 
spins Al ,  A2,.  An to make a scalar and a coefficient for coupling spins 
Bi, B2,-' ' Bn to make a scalar. (Even though we do not explicitly consider 
interactions involving derivatives, we will in this way obtain the most 
general interaction involving n fields, because the derivative of a field of 
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type ( A , B )  can always be decomposed into fields of other types without 
derivatives.) For instance, the most general Lorentz scalar formed from 
a product of three fields of transformation types (A1,  B1), (Az,&),  and 
(A31 B3) is 

with a single free parameter g. This is the most general three-field inter- 
action. (The brackets in (5.7.17) denote the Wigner "three-j" 

which describe the coupling of three spins to make a rotational scalar.) 
For the $-matrix to be Lorentz-invariant it is not enough that the 

interaction density X ( x )  be a scalar like (5.7.18); it is also necessary that 
X ( x )  should commute with X ( y )  at space-like separations x - y. To see 
how to satisfy this condition, consider the commutator or anticommutator 
of two fields for the same particle species, a field I,U of type (A ,  B) ,  and the 
adjoint qt of a field Q of type (A,  B). We find 

where x(p) is the spin sum 

and as usual, the top and bottom signs are for bosom and fermions, 
respectively. (We allow here for different coefficients R and 2 in the $3 
field.) In more detail 

The function ~ ( p }  has been calculated explicitly.11 What concerns us 
here is the fact that it turns out to be the mass-shell value of a polynomial 
function P of p and p O :  
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and that P is even or odd according to whether 2A + 2B is an even or 
odd integer 

We 
the 

shall check this here for just one particular direction of p. Taking p in 
three-direction, (5.7.21) gves  

The Clebsch-Gordan coefficients vanish unless G = a + b and = 5 + 6, 
so we can replace 

We can write exp(+8) as (# p3) /m,  so here 

where r d m .  We see that n(p) can indeed be written as the 
mass-shell value of a polynomial P (p, Also, 2h - 20 equals 28 + 2A 
minus an even integer, so the polynomial satisfies the reflection condition 
(5.7.23). 

Any polynomial in p and can be written in a form linear 
in (by expressing even powers of 2,- in terms of p} so 
x(p) can be written 

x n h p 6 ( ~ )  = P o b , & ( ~ )  f z\/P + m 2 Q o h , a ~ ( ~ )  7 (5.7.24) 

where P and Q are now polynomials in p alone, with 

For x - y space-like, we can adopt a Lmentz frame in which xo = and 
write Eq. (5.7.19) as 
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Now let us consider the special case where y, and 8 are the same, so in 
particular A = A and B = B. (It is unavoidable that such commutators 
or anticommutators wiU appear in [ M ( r ) , X ( y ) ] ,  because the hermiticity 
of the Hamiltonian requires that if X ( x )  involves y ~ ,  it also involves I,U?.) 

In  this case, Eqs. (5.7.27) gives 

This is possible if and only if 

and 

Of course, 2A + 2B differs from 2 j  by an even integer, so Eq. (5.7.28) says 
that our partiede is a boson or fermion according to  wherher 2 j  is e w n  or 
odd. This is the general relation between spin and statistics,12 of which 
we have already seen special examples for particles described by scalar, 
vector, or Dirac fields. 

Now let's return to the general case, where the fields ly and (5 may be 
different. Using Eq. (5.7.271, and dividing both sides by j i l 1 2  = $12, we 
have 

It follows that, for any field, 

where c is the same factor for all fields of a given particle. Furthermore, 
Eq. (5.7.29) shows that c is just a phase, Icl = I .  We can therefore 
eliminate c for all fields by a redefinition of the relative phase of the 
operators a(p, a) and ~ " ( ~ , a ) ,  so that c = 1, and hence I = ( - ) 2 B ~ .  Also, 
the factor K for each field type may be eliminated by a redefinition of the 
over-all scale of the field. We emerge from all this with a formula for the 
(A, B )  field of a given particle, that is unique up to overall scale 

The different fields for a given particle do not really represent possibil- 
ities that are physically distinct. For instanw, the possible fields for j = 0 
are those of type (A ,  A )  (because the triangle inequality ( A - B \  I j A + B  
here requires A = B ) .  Starting with a (0,O) scalar field #, we can easily 
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construct such (A,A)  fields from the 2Ath derivative 

" The only possible flaw in this argument would be if same d the { A , B )  fields obtained in 
this way actually vmished. But in this case, the ',0) field q, would satisfy a field equation z, M,(r?/2x)rpW{r) = 0 and hence, for each 8. M,(ip)u,(p,C) = 0. For the ( j , a )  repre- 
sentahon the ClebschGordan coefficient C f l ( j a ; a  C IS just the Kronecker symbol he,, so this 
would require zb Mo( ip )Dbb~(L(p ) )=O.  which is impossible unlcss all the M,(ip) vanish, since 
D(A) has an inverse D{A-I) .  The ( j ,  0) fields rp,(x) thus satisfy no field equation other than the 
Klein-Gordon equation (U - m') rp,(x) = 0, and therefore none of the ( A , B )  fields obtained 
from (5.7.33) can vanish. 

where ()  here denotes the traceless part; for instance 

{Recall that a traceless symmetric tensor of rank N transforms according 
to the ( N / 2 ,  N / 2 )  representation.) But Eq. (5.7.31) represents the unique 
causal (A,  B )  field for a given particle of spin j, so the (A,  A) fields (5.7.31) 
for j = 0 can be nothing but linear combinations of the 2Ath derivatives 
(5.7.32) of a scalar field. 

More generally, any field { A , B )  for a given particle of spin j can be 
expressed as a differential operator of rank 2 3  acting on the field13 rp,(x) 
of type ( j , O )  (or a differential operator of rank 2A acting on the field of 
type (0, j ) ) .  To see this, consider the field 

This transforms as the direct product of the representations ( B , B )  and 
( j , O ) ,  and hence by the usual rules of vector addition, it can be decomposed 
into fields transforming according to all the irreducible representations 
(A, B) with. I j - BI I A I j + B ,  or equivalently IA - 31 5 j 5 A + B .  
Since Eq. (5.7.31) represents the unique field of type ( A , B )  for a gven 
particle of spin j ,  it can be nothing" but the ( A , B )  field obtained from 
the derivatives (5.7.33). 

Now let us consider the behavior of these fields under inversions, 
beginning with space inversion. Using the results of Section 4.2, the space- 
inversion properties of the particle annihilation and antiparticle creation 
operators are: 

where q and qc are the intrinsic parities for the particle and antiparticle, 
respectively. The general causal (A, B) field (5.7.31) thus transforms under 
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the parity operator P into 

We want to change the integration variable from p to -p, and for this 
purpose we will need to evaluate uab(-p, u)  and vab(-p, a). To do this, 
we need only glance back at (5.7.14) and (5.7.151, and use the symmetry 
property of the Clebsch-Gordan c~efficient'~ 

CAB( jo ;  ab) = ( - ) A + B - ~ ~ ~ ~ ( j o ;  ba). (5.7.37) 

This gives 

where, as before, b x  = (-x,xo). This is the causal field tp:: evaluated at 
.Px, except that the coefficients of the annihilation and creation terms may 
not be the same as called for in Eq. (5.7.31). But these coefficients must be 
the same up to an overall constant factor as in Eq. (5.7.31) because, aside 
from scale, Eq. (5.7.31) is the unique causal field of any type. Hence the 
ratio of the coefficients of the two terms in Eq. (5.7.40) must be the same 
as in Eq. (5.7.31) (but with 3 replaced with A because this is supposed to 
be a ( B ,  A )  field) : 

But A - 3 differs from the spin j by only an integer, so this gives 

We saw special cases of this result in Sections 5.2, 5.3, and 5.5, where j = 0, 
j = 1 ,  and j = i, respectively. We now see that the result is general; the 
intrinsic parity qcq of a particle-antipnrticle pair is +I for bosons, and -1 
for fermions. Using Eq. (5.7.42) in Eq. {5.7.40), our final result for space 
inversion is 

Let's see how this applies to the Dirac field. For the top ( f l O )  and 
bottom (0, f )  components of the Dirac field, the sign (-I)~+'-J  is just 
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+1, so the parity operator simply takes x into -x; reverses the top and 
bottom components; and multiplies the field with q*. The reversal of the 
top and bottom components of the Dirac field is accomplished by the 
matrix in (5.5.41). 

Now let us consider charge-conjugation. Its effect on the particle 
annihilation and antiparticle creation operators is 

Ca(p, a) C-' = t* oc(p, a), (5.7.44) 

cac?(p, o )  c-I = {cot(p, 6) , (5.7.45) 

where 5 and tC are the charge-conjugation parities of the particle and 
antiparticle, respectively. Applying this transformation to the field (57.311, 
we find 

x t ~ ) e ~ ~ ' ~  + 5C(-)28at(p, -o)(-) j-a ,-ipx ] . (5.7.46) 
It is useful to compare this formula for the charge-conjugate of an (A, B )  
field with the adjoint of the (3, A) field for the same particle: 

To calculate the td*, we use our previous result 
J(JP = -gj(d~-l , Qao~(-ly'-"63,-G. 

The Clebsch-Gordan coefficient in Eq. (5.7.14) is real, so 

x ( - )u ' -" ( - )b t -b~sr (  jo ; b'd) . 
We use the reflection property of the Clebsch-Gordan coefficien ts14 

CB A ( j ,  -0 ; - b', -0') = C A ~  (ja ; arb') (5.7.48) 

and the fact that those coefficients vanish unless a' + b' = a, to write 
8 A 

U- ,_ , (p ,  -o)* = Uab (P, 4 (5.7.49) 

The field adjoint (5.7.47) is then (replacing a -, -a, b -+ -b, CT 4 -a) 



242 5 Quantum Fields and Anliparticles 

Using the sign relation ( - ) - 2 A - j  = (-)2e+j, this is 

In  order that C y : E ( ~ )  6 - I  should commute or anticommute with all 
ordinary fields at space-like separations, it is necessary that it be propor- 
tional to W"ya(x), because this is the adjoint of the unique causal field of 
transformation type (&A). Comparing Eq. (5.7.50) with Eq. (5.7.46), we 
see that this i s  only possible if the charge-conjugation parities are related 
by 

in which case 

We have already encountered the relation (5.7.51) for spins 0, 1, and 
f in Sections 5.2, 5.3, and 5.5, and noted some of its implications for 
electron-positron and quark-antiquark states in Section 5.5. 

In particular, for a particle that is its own antiparticle, Eq. (5.7.52) is 
satisfied without any charge-conjugation operator on the left-hand side or 
phase < *  on the right: 

We have already seen an example of this sort of reality condition for 
Majorma spin f particles in Section 5.5. 

Finally we come to time-reversal. Applied to particle annihilation and 
antiparticle creation operators, this gives 

The irreducible field (5.7.3 1 )  thus has the transformation property 

To calculate the complex conjugate of the coefficient function, we use Eq. 
(5.7.14) and the standard formulaI4 
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and find: 

Changing the variables of integration and summation in Eq. (5.7.56) to 
-p and -(T, we find that in order for an ( A , B )  field to be transformed 
by timereversal into something proportional to another ( A ,  B )  field, it is 
necessary that 

It should be mentioned that from time to time various difficulties 
have been reported15 in the field theory of particles with spin j 2 3/2. 
Generally, these are encountered in the study of the propagation of a 
higher spin field in the presence of c-number external field. Depending on 
the details of the theory, the difficulties encountered include non-causality, 
inconsistency, unphysical mass states, and violation of unitarity. I will not 
go into details about these problems here, because it seems to me that 
they are not relevant to the calculational scheme described in this chapter, 
for the following reasons: 

(1 )  The fields tpDb(x) have been constructed here directly from the cre- 
ation and annihilation operators for physical particles, so no question of 
inconsistency or unphysical mass states can arise. These are free fields, 
but by incorporating them into an interaction Harniltonian density in the 
interaction picture, we can use perturbation theory to calculate S-matrix 
elements that automatically satisfy the cluster decomposition principle. 
As long as the interaction Hamiltonian is Hermitian, there can be no 
difficulty with unitarity. Lorentz invariance is guaranteed in perturbation 
theory as long as we add appropriate local but non-covariant terms in 
the Hamiltonian density; though a rigorous proof is lacking, there is no 
reason to doubt that this is always possible. Thus any difficulties with 
higher spin can only arise when we try to go beyond perturbation theory. 
(2) As discussed in Section 13.6, the solution of field equations in the pres- 
ence of a c-number background field (the context where all the problems 
with higher spin have been found) does go beyond perturbation theory, 
in that the results correspond to summing an infinite subset of terms in 
the perturbation series. This partial summation is justified, even for weak 
external fields, if the fields are sufficiently slowly varying, the smallness of 
energy denominators making up for the weakness of the fields. But the 
results obtained in this way depend on all the details of the interaction 
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of the high-spin particle with the external fields: not only the multipole 
moments of the particle but also possible terms in the interaction that are 
non-linear in the external fields. The problems reported15 with higher spin 
have been encountered only for higher-spin particles that have been arbi- 
trarily assumed to have only very simple interactions with external fields. 
No one has shown that the problems persist for arbitrary interactions, 
and as we shall see in Chapter 12, particles of higher spin are expected to 
have interactions of aH possi bie types allowed by symmetry principles. 
(3) In fact, there are good reasons to believe that the problems with 
higher spin disappear if the interaction with external fields is suficiently 
complicated. For one thing, there is no doubt about the existence of higher- 
spin particles, including various stable nuclei and hadronic resonances. If 
there is any problem with higher spin, it can only be for 'point' particles, 
that is, those whose interactions with external fields are particularly simple. 
It should be kept in mind that the requirement of simplicity depends on 
the choice of which field we choose to represent the higher-spin particle. 
Remember that any free field types for a given particle can be expressed as 
a derivative operator acting on any other field type, so in the interaction 
picture any interaction with external fields may be written in terms of 
any field types we like, but interactions that are simple when expressed 
in terms of a field of one type may look complicated when expressed in 
terms of a field of another type. So the requirement of simplicity does not 
seem to have any objective content. 
(4) Also, both higher-dimensional 'Kaluza-Klein' theories and string theo- 
ries provide examples of consistent theories of a charged massive particles 
of spin two interacting with a electromagnetic background field.16 (It was 
found that the consistency of the theory depends on the assumption of 
realistic external fields that satisfy the field equations, a point generally ne- 
glected in earlier work.) Reformulating this work in the interaction picture, 
the spin two particle is represented by a (1,l) free field, but as mentioned 
above, the interactions may be reexpressed in the interaction picture in 
terms of any field type ( A , B )  that contains the j = 2 representation of the 
rotation group. 

5.8 The CPT Theorem 

We have seen that the demands of relativity combined with quantum 
mechanics require the existence of antiparticles. Not only is it necessary 
that every particle have an antiparticle (which may for a purely neutral 
particle be itself); there is a precise relation between the properties of 
particles and antiparticles, that can be summarized in the statement that 
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fur an appropriate choice of inversion phases, the product CPT of all the 
inversions is conserved. This is the celebrated CPT theorem.' 

As a first step in the proof, let us work out the effect of the product 
CPT on free fields of various types. For a scalar, vector, or Dirac field the 
results of Sections 5.2, 5.3, and 5.5 give 

CPT #(x) [CPT]-' = [*{*tl*4t(-x) , (5.8.1) 

CPT y(x) [cPT]-' = - ~ ' ~ * ~ ' y s p * ( - x )  . (5.8.3) 

(Of course, the phases [, <, and q depend on the species of particle 
described by each field.) We are going to choose the phases so that for all 
particles 

Then any tensor &,..,,, formed from any set of scalar and vector fields 
and their derivatives transforms into 

(Any complex numerical coefficient appearing in these tensors is trans- 
formed into its complex conjugate because CPT is antiunitary.) We can 
easily see that the same transformation rule applies to tensors formed 
from bilinear combinations of Dirac fields. Applying Eq. (5.8.3) to such a 
bilinear gives 

{A minus sign from the anticommutation of p and y s  is cancelled by 
the minus sign from the anticommutation of fermionic operators.) If 
the bilinear i s  a tensor of rank n, then M is a product of n modulo 2 
Dirac matrices, so ysMys = (--1)"M, and the bilinear therefore satisfies 
Eq. (5.8.5). 

A Hermitian scalar interaction density X ( x )  must be formed from 

The original pmofs of this theorem were by Liiders and Pa~l1i.l~ It has been proved ngoromly in 
axiomatic field theory,'' by using commutativity assumptions to extend the Lorenu invariance 
of the theory to the complex Lorentz group, then using complex Lorentz transformations to 
prove a reflection property of vacuum expectation values of products of fields, and then using 
Ihis reflection property to infer the existence of an antiunitary operator that induces CPT 
transformations on the fields. 
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tensors with an even total number of spacetime indices, and therefore 

CPT Z ( x )  [CPT]-' = X(-x)  . (5.8.7) 

More generally (and somewhat more easily) we can see that the same is 
true for Hermitian scalars formed from the fields y~,Ab(x) belonging to one 
or more of the general irreducible representations of the homogeneous 
Lorentz group. Putting together our results in the previous section for the 
effects of inversions on such fields, we find 

23 ABt 
CPT y,Abe(x) [CPTJ-' = (-1) %b (-x) . 

(For the Dirac field the factor ( - 1 1 ~ ~  is supplied b the matrix ys in J -41 I Eq. (5.8.3).) In order to couple together a product vnlh, (x) tpt;$(x) - .  . to 
form a scalar Z ( x ) ,  it is necessary that both A1 + A2 + . and B1 +B2 +. . . 
be integers, so (-l)2B1+2B2+" = 1, and so a Hermitian scalar X ( x )  will 
automatically satisfy Eq. (5.8.7). 

From Eq. (5.8.7) it follows immediately that CPT commutes with the 
interaction V = J d3x &(k, 0) : 

CPT V [CPT' = V . (5.8.9) 

Also, in any theory CPT commutes with the free-particle Hamiltonian Ho. 
Thus the operator CPT, which has been defined here by its operation on 
free-particle operators, acts on 'in' and 'out' states in the way described 
in Section 3.3. The physical consequences of this symmetry principle have 
already been discussed in Sections 3.3 and 3.6. 

5.9 Massless Particle Fields 

Up to this point we have dealt only with the fields of massive particles. 
For some of these fields, such as the scalar and Dirac fields discussed in 
Sections 5.2 and 5.5, there is no special problem in passing to the limit 
of zero mass. On the other hand, we saw in Section 5.3 that there is  a 
dificulty in taking the zero-mass limit of the vector field for a particle of 
spin one: at least one of the polarization vectors blows up in this limit. 
In fact, we shall see in this section that the creation and annihilation 
operators for physical massless particles of spin j 2 1 cannot be used to 
construct all of the irreducible (A ,B)  fields that can be constructed for 
finite mass. This peculiar limitation on field types will lead us naturally to 
the introduction of gauge invariance. 

Just as we did for massive particles, let us attempt to construct a 
general free field for a massless particle as a linear combination of the 
annihilation operators a(p,o) for particles of momentum p and helicity a, 
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and the corresponding creation operators aCt(p, IT) far the antiparticles:* 

where now -- Ip/. The creation operators transform just like the one- 
particle states in Eq. (2.5.42) 

and hence also 

where ph II Ap, and O is the angle defined by Eqs, (2.5.43). Hence if we 
want the field to transform according to some representation DjA} of the 
homogeneous Lorentz group 

then we must take the coefficient functions u and r, to satisfy the relations 

in place of Eqs. (5.1.19) and (5.1.20). (Again, p~ = Ap.) As in the massive 
particle case, we can satisfy these requirements by setting (in place o f  

We &ed here with only a single species of particle, and drop the species label n. Also, K and A 
are constant coefficients to be determined by the requirement of causality with some convenient 
choice of normalization of the coefficient €unctions ut and u l .  
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Eqs. (5.1.21) and (5.1.22)) 

where k is a standard momentum, say (O,O, k) ,  and 9(p) is a standard 
Lorentz transformation that takes a massless particle from momentum k 
to momentum p. Also, in place of Eqs. (5.1.23) and (5.1.241, the coefficient 
functions at the standard momentum must satisfy 

where Wk', is an arbitrary element of the 'little group' fbr four-momentum 
k = (k, Ikl), i t . ,  an arbitrary Lorentz transformation that leaves this four- 
momentum invariant. 

We can extract the content of Eqs. (5.9.10) and (5.9.11) by considering 
separately the two kinds of little-group elements in Eq. (2.5.28). For a 
rotation R(B) by an angle 0 around the z-axis, given by Eq. (2.5.271, 

1 0  0 O l J  
we find from Eqs. (5.9.10) and (5.9.1 1) 

For combined rotations and boosts S(ol, /3) in the x - y plane, given by 
(2.5.261, 
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Eqs. (5.9.10) and (5.9.11) give 

Eqs. (5.9.12)-(5.9.15) are the conditions that determine the coefficient 
functions u and v at the standard momentum k;  Eqs. (5.9.8) and (5.9.9) 
then give them at arbitrary momenta. The equations for v are just the 
complex conjugates of the equations for u, so with a suitable adjustment 
of the constants rc and A we may normalize the coefficient functions so 
that 

The problem is that we cannot find a us that satisfies Eq. (5.9.14) for 
general representations of the homogeneous Lorentz group, even for those 
representations for which it is possible to construct fields for particles of 
a given helicity in the case m # 0. 

To see what goes wrong here, let's try to construct the four-vector 
[( f , f I] field for a massless particle of helicity +I. In the four-vector 
representation, we have simply 

It is conventional to write the coefficient function u, here in terms of a 
'polarization vector' e, : 

0 -1/2 
UJP, 4 - UP ) ~ J P ,  4 , (5.9.17) 

so that Eq. (5.9.8) gives 

eyp, 4 = ~ ( P ) ~ , Q ~  (k, 0) . (5,9.18) 

Also, Eqs. (5.9.12) and (5.9.14) read here 

P(k, o) eiue = R(0)r,ev(k, CT) , (5.9.19) 

d'(k, a) = SIN,  b)pl?ev (k, u) . (5.9.20) 

Eq. (5.9.19) requires that (up to a constant which can be absorbed into 
the coefficients u and A), 

9 ( k , + l )  = (1,&i,40),/&' . (5.9.21) 

But then Eq. (5.9.20) would require also that cc ia = 0, which is impos- 
sible for general real a, We therefore cannot satisfy the fundamental 
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requirement (5.9.14) or (5.9.10); instead, we have here 

We have thus come to the conclusion that no four-vector field can be 
constructed from the annihilation and creation operators for a particle of 
mass zero and helicity +I. 

Let's temporarily close our eyes to this difficulty, and go ahead anyway, 
using Eqs. (5.9.18) and (5.9.21) to define a polarization vector for arbitrary 
momentum, and take the field as 

x [e,(p, a)e'p'xa(p, 0) + eJp, a)*e-'p'Xact(p, -o) ]  . (5.9.23) 
a=kl 

We will come back later to consider how such a field can be used as an 
ingredient in a physical theory. 

The field (5.9.23) of course satisfies 

Other properties of the field follow from those of the polarization vector. 
(We shall need these properties of the polarization vector later when we 
come to quantum electrodynamics.). Note that the Lorentz transformation 
Y ( p )  that takes a massless particle momentum from k to p may be written 
as a 'boost' ,@{lpI) along the z-axis which takes the particle from energy 
Ikl to energy [pi, followed by a standardized rotation R@) that takes the 
z-axis into the direction of p. Since e"(k, + l )  is a purely spatial vector 
with only x and y components, it is unaffected by the boost along the 
z-axis, and so 

ep(p, + 1) = R(i)p, ev(k, k1) . (5.9.25) 

In particular, eo(k, f 1) = 0 and k . e(k, & I )  = 0 so 

e"(p, f 1) = 0 (5.9-26) 

and 

p . e ( p , + l ) = O .  

It follows that 

and 
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As we shall see in Chapter 9, these are the conditions satisfied by the 
vacuum vector potential of electrodynamics in what is called Coulomb or 
radiation gauge. 

The fact that a'' vanishes in all Lorentz frames shows vividly that up 
cannot be a four-vector. Instead, Eq. (5.9.22) shows that for a general mo- 
mentum p and a general Lorentz transformation A, in place of Eq. (5.9.6) 
we have 

so that under a general Lorentz transformation 

u ( ~ ) a , ( x )  UP' (A) = Av,a, (Ax) + d,Q(x, A} , (5.9.31) 

where fl(x,A) is a linear combination of annihilation and creation op- 
erators, whose precise form will not concern us here. As we will see in 
more detail in Chapter 8, we will be able to use a field like d ( x )  as an 
ingredient in Loren tz-invariant physical theories if the couplings of ap(x) 
are not only formally Lorentz-invariant (that is, invariant under formal 
Lorentz transformations under which afi -, Ap, nv), but are also invariant 
under the 'gauge' transformations a, -+ a,, + 6,Q. This is accomplished by 
taking the couplings of a, to be of the form a p j p ,  where j p  is a four-vector 
current with d , j p  = 0. 

Although there is no ordinary four-vector field for massless particles of 
helicity f 1, there is no problem in constructing an antisymmetric tensor 
field for such particles. From Eq. (5.922) and the invariance of k p  under 
the little group we see immediately that 

This shows that the coefficient function that satisfies Eq. (5.9.6) for the 
antisymmetric tensor representation of the homogeneous Lorentz group 
is (with an appropriate choice of normalization) 

where eF(p,+l) is gven by Eq. (5.9.25). Using this together with 
Eq. (5.9.23) gives the general antisymmetric tensor field for massless par- 
ticles of helicity &1 in the form 

Note that this is a tensor even though u p  is not a four-vector, because 
the extra term in Eq. (5.9.31) drops out in Eq. (5.9.34). Note also that 
Eqs. (59.341, (5.9.24), (5.9.28), and (5.929) show that f p V  satisfies the 
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vacuum Maxwell equations: 

To calculate the commutation relations for the tensor fields we need 
sums over helicities of the bilinears @ev*. The explicit formula (5.9.21) 
gives 

and so, using Eq. (59.251, 

A straightforward calculation gives then 

This clearly vanishes for xo = y"f and only if 

in which case since fp, is a tensor the commutator also vanishes for all 
space-like separations. Eq. (5.9.39) also implies that the commutator of 
the ap vanishes at equal times, and as we shall see in Chapter 8 this is 
enough to yield a Lorentz-invariant S-matrix. The relative phase of the 
creation and annihilation operators can be adjusted so that K = A; the 
fields are then Hermitian if the particles are their own charge-conjugates, 
as is the case for the photon. 

Why should we want to use fields like &(x) in constructing theories of 
massless particles of spin one, rather than being content with fields like 
f"(x) with simple Lorentz transformation properties? The presence of the 
derivatives in Eq. (5.9.34) means that an interaction density constructed 
solely from f,, and its derivatives will have matrix elements that vanish 
more rapidly for small massless particle energy and momentum than one 
that uses the vector field a,. Interactions in such a theory will have 
a correspondingly rapid fall-off at large distances, faster than the usual 
inverse-square law. This is perfect 1 y possible, but gauge-invariant theories 
that use vector fields for massless spin one particles represent a more 
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general class of theories, including those that are actually realized in 
nature. 

Paralkl remarks apply to gravitons, massless particles of helicity +2. 
From the annihilation and creation operators for such particles we can 
construct a tensor RpPT with the algebraic properties of the Riemann- 
Christoffel curvature tensor: antisymmetric within the pairs fi,v and p,a, 
and symmetric between the pairs. However, in order to incorporate the 
usual inverse-square gravitational interactions we need to introduce a field 
h,, that transforms as a symmetric tensor, up to gauge transformations 
of the sort associated in general relativity with general coordinate trans- 
formations. Thus in order to construct a theory of massless particles of 
helicity f 2 that incorporates long-range interactions, it is necessary for 
it to have a symmetry something like general covariance. As in the case 
of electromagnetic gauge invariance, this is achieved by coupling the field 
to a conserved 'current' Orv,  now with two spacetime indices, satisfying 
d,Bpv = 0. The only such conserved tensor is the energy-momentum 
tensor, aside from possible total derivative terms that do not affect the 
long-range behavior of the force produced.** The fields of massless parti- 
cles of spin j z 3 would have to couple to conserved tensors with three 
or more spacetime indices, but aside from total derivatives there are none, 
so high-spin massless particks cannot produce long-range forces. 

The problems we have encountered in constructing four-vector fields for 
helicities f 1 or s yrnmetric tensor fields for helicity $2 are just special cases 
of a more general limitation, To see this, let's consider how to construct 
fields for massless particles belongng to arbitrary representations of the 
homogeneous Lorentz group. As we saw in Section 5.6, any representation 
D(A) of the homogeneous Lorentz group can be decomposed into (2A + 
1)(2B + 1)-dimensional representations (A, B ) ,  for which the generators of 
the homogeneous Lorentz group are represented by 

where ~ ( j )  are the angular-momentum matrices for spin j. For 8 infinites- 

" If 8fil."" is a tensor current satisfying Jpl % P I . ' ' P N  = 0, then d 3 x  BO''...fl# is a conserved quantity 
that transfoms like a tensor of rank N - I. The only such conserved tensors are the scalar 
'charges' associated with various continuous symmetries, and the energy-momentum four-vector. 
The conservation of any other four-vector, or any tensor of higher rank, would forbid all but 
forward collisions. 
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irnal, D ( R ( 0 ) )  = 1 f i j z 3 8 ,  so Eqs. (5.9.12) and (5.9.13) give 

and so unh(k, 0 )  and vab(k, u) must vanish unless a = la + b and a = -a - b, 
respectively. Also, letting r and /I become infinitesimal in Eq. (5.9.14) gives 

or more simply 

These require that uabj k, c) vanishes unless 

and the same is obviously also true of aab(k,a). Putting this together, we 
see that a field of type (A,B)acan be formed only from the annihilation 
operators for a massless particle of helicity o and the creation operators 
for the antipartide of helicity -a, where 

For instance, the ( $,0) and (0, j) parts of the Dirac field for a massless 
particle can only destroy particles of helicity - 4 and -t 4 respectively, 
and create antiparticles of helicity + 4 and - 4, respectively. In the 'two- 
component' theory of the neutrino, there is only a ( i , O )  field and its 
adjoint, so neutrinos have helicity - 4 and antineutrinos helicity + in 
this theory. 

By the same methods as in Section 5.7, it can be shown that the ( j ,  0) and 
(0, j )  fields for massless particles of spin j (i.e., helicity f j )  commute with 
each other and their adjoints at space-like separations if the coefficients 
of the annihilation and creation terms in Eq. (5.9.1) satisfy Eq. (5.9.39). 
The relative phase of the annihilation and creation operators may then be 
adjusted so that these coefficients are equal. It is -easy to see that the fields 
for a massless particle of spin j of type (A, A + j )  or ( B  + j, 3 )  are just 
the 2Ath or 2Bth derivatives of fields of type (0, j )  or ( j , O ) ,  respectively, 
so these more general fields do not need to be considered separately here. 

We can now see why it was impossible to construct a vector field for 
massless particles of helicity f 1. A vector field transforms according to 



the ( f ,  { )  representation, and hence according to Eq. (5.9.19) can only 
describe helicity zero. (It is, of course, possible to construct a vector field 
for helicity zero - just take the derivative d,q5 of a massless scalar field 
4.) The simplest covariant massless field for helicity &1 has the Lorentz 
transformation type (1,O) $ (0,l);  that is, it is an antisymmetric tensor 
f,,. Similarly, the simplest covariant massless field for helicity +2 has the 
Lorentz transformation type (2,O) EI (0,2): a fourth rank tensor which like 
the Riemann-ChristofTel curvature tensor i s  antisymmetric within each 
pair of indices and symmetric between the two pairs. 

The discussion of the inversions P, C, T given in the previous section can 
be carried over to the case of zero mass with only obvious modifications. 

Problems 

1. Show that if the zero-momentum coefficient functions satisfy the 
conditions (51.23) and (5.1.24), then the coefficient functions (5.1.21) 
and (5.1.22) for arbitrary momentum satisfy the defining conditions 
Eqs. (5.1.19) and (5.1.20). 

2. Consider a free field I&(x) which annihilates and creates a self- 
charge-conjugate particle of spin : and mass rn # 0. Show how 
to calculate the coefficient functions uFjp,o), which multiply the 
annihilation operators a(p,a) in this field, in such a way that the 
field transforms under Lorentz transformations like a Dirac field 
y)( with an extra four-vector index p. What field equations and 
algebraic and reality conditions does this field satisfy? Evaluate the 
matrix P"Y(p), defined (for g2 = -m2) by 

What are the commutation relations of this field? How does the field 
transform under the inversions P, C, T? 

3. Consider a free field h p v ( x )  satisfying h ~ " ( x )  = h"pY(x) and hp,(x) = 0, 
which annihilates and creates a particle of spin two and mass m # 
0. Show how to calculate the coefficient functions uPbf(p, u), which 
multiply the annihilation operators a(p, g) in this field, in such a way 
that the field transforms under Lorentz transformations like a tensor. 
What field equations does this field satisfy? Evaluate the function 
~ f l ~ - " " ~ ) ,  defined by 
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What are the commutation relations of this field? How does the field 
transform under the inversions P, C, T? 

4. Show that the fields for a massless particle of spin j of type (A, A +  j )  
or (B f j, B )  are the 2Ath or 2Bth derivatives of fields of type (0, j) 
or (j, O), respectively, 

5. Work out the transformation properties of fields of transformation 
type ( j ,  0) + (0, j) for massless particles of helicity +j  under the 
inversions P, C, T. 

6. Consider a generalized Dirac field y, that transforms according to 
the (j, 0) + (0, j )  representation of the homogeneous Lorentz group. 
List the tensors that can be formed from products of the components 
of and y t .  Check your result against what we found for j = $. 

7. Consider a general field y,b describing particles of spin j and mass 
m # 0, that transforms according to the (A, B) representation of the 
homogeneous Lorentz group. Suppose it has an interaction Hamil- 
tonian of the form 

where jab is an external c-number current. What is the asymptotic 
behavior of the matrix element for emitting these particles for energy 
E > rn and definite helicity? {Assume that the Fourier transform of 
the current has values for different a, b that are of the same order of 
magnitude, and that do not depend strongly on E . )  
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The Feynman Rules 

In previous chapters the use of covariant free fields in the construction 
of the Hamiltonian density has been motivated by the requirement that 
the S-matrix satisfy Lorentz invariance and cluster decomposition con- 
ditions. With the Hamiltonian density constructed in this way, it makes 
no difference which form of perturbation theory we use to calculate the 
S-matrix; the results will automatically satisfy these invariance and clus- 
tering conditions in each order in the interaction density. Nevertheless, 
there are obvious practical advantages in using a version of perturba- 
tion theory in which the Lorentz invariance and cluster decomposition 
properties of the S-matrix are kept manifest at every stage in the calcu- 
lation. This was not true for the perturbation theory used in the 1930s, 
now known as 'old-fashioned perturbation theory', described a t  the begin- 
ning of Section 3.5. The great achievement of Feynman, Schwingcr, and 
Tomonaga in the late 1940s was to develop perturbative techniques for 
calculating the S-matrix, in which Lorentz invariance and cluster decom- 
position properties are transparent throughout. This chapter will outline 
the diagrammatic calculational technique first described by Feynman at 
the Pocunos Conference in 1948. Feynman was led to these diagrammatic 
rules in part through his development of a path-integral approach, which 
will be the subject of Chapter 9. In this chapter, we shall use the ap- 
proach described by ~ ~ s o n l  in 1949, which until the 2970s was the basis 
of almost all analyses of perturbation theory in quantum field theory, 
and still provides a particularly transparent introduction to the Feynman 
rules. 

6.1 Derivation of the Rules 

Our starting point is a formula for the S-matrix, obtained by putting 
together the Dyson series (3.510) with expression (4.2.2) for the free- 
particle states; 
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As a reminder: p, a, and ~1 label particle momenta, spin, and species; 
primes denote labels for particles in the final state; Qo is the, free-particle 
vacuum state; a and at are annihilation and creation operators; T in- 
dicates a time-ordering, which puts the S j x )  in an order in which the 
arguments xo decrease from left to right; and X ( x )  is the interaction 
Hamiltonian density, taken as a polynomial in the fields and their adjoints 

each term Xi being a product of definite numbers of fields and field 
adjoints of each type. The field of a particle of species n that transforms 
under a particular representation of the homogeneous Lorentz group (with 
or without space inversions) is given by 

Here nC denotes the antiparticle of the species n, and exp(&ip + x) is 
calculated with set equal to The coefficient functions u l  
and vc depend on the Lorentz tra'nsformation properties of the field and 
the spin of the particle it describes; they were calculated in Chapter 
5. (For instance, in the scalar field the tq for a particle of energy E 
is simply ( 2 ~ ) - ' / ~ ,  while in a Dirac field u, and v l  are the normalized 
Dirac spinors introduced in Section 5.5.) The index G on the field should 
here be understood to indicate the particle type and the representation of 
the Lorentz group by which the field transforms, as well as including a 
running index labelling the components in this representation. There is no 
need todeal separately with interactions that involve derivatives of fields; 
from our point of view, the derivative of a field (6.1.3) is just another 
field described by (6.1.31, with different q and vf .  We will here make a 
distinction between some particle species that we arbitrarily call 'particles', 
for instance electrons, protons, etc., and those we call 'antiparticles', such 
as positrons and antiprotons. The field operators that destroy particles and 
create antiparticles are called simply 'fields'; their adjoints, which destroy 
antiparticles and create particles, are called 'field adjoints'. Of course, 
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some particle species like the photon and x0 are their own antiparticles; 
for these the field adjoints are proportional to the fields. 

We now proceed to move all annihilation operators to the right in 
Eq. (6.1, I), repeatedly using for this purpose the commutation or anti- 
commutation relations: 

(and likewise for antiparticles), the & sign on the right being - if both 
particles n, n' are ferrnions, and f if either or both are bosom. Whenever 
an annihilation operator appears on the extreme right (or a creation 
operator on the extreme left), the corresponding contribution to Eq. (6.1.1) 
vanishes, because these operators annihilate the vacuum state: 

The remaining contributions to Eq. (6.1.1) are those arising from the delta 
function terms on the right-hand side of Eq, (6.1.4), with every creation 
and annihilation operator in the initial or final states or in the interaction 
Hamiltonian density paired in this way with some other annihilation or 
creation operator. 

In this way, the contribution to Eq. (6.1.1) of a given order in each of 
the terms AYi in the polynomial X ( y ~ ( x ) , ~ ~ ( x ) )  is gven by a sum, aver 
all ways of pairing creation and annihilation operators,2 o f  the integrals 
of products of factors, as follows: 

(a) Pairing of a final particle having quantum numbers p',ur,n' with a 
field adjoint v!(xj in =XYi(x) yields a factor 

(b) Pairing of a final antiparticle having quantum numbers ', d ,  n" Ari th 
a field ve(x) in Xi(x) yields a factor 

(c) Pairing of an initial particle having quantum numbers p,o ,n  with a 
field ve(x) in Xi(x) ylelds a factor 
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(d) Pairing of an initial antiparticle having quantum numbers p,a,nc 
with a field adjoint ly:(x) in -Si(x) yields a factor 

(e) Pairing of a final particle (or antiparticle) having numbers p',a',nr 
with an initial particle (or antiparticle) having quantum numbers p, a, pl 
yields a factor . 

(f) Pairing of a field y r ( x )  in X i ( x )  with a field adjoint I,O;(~) in iPjBl"i(y) 
yields a factor* 

where I,U+ and IJ.- are the terms in y that destroy particles and create 
antiparticles, respectively : 

Recall that 8(x - y) is a step function, equal to + 1 for xo > yo and zero 
for xo < These step functions appear in Eq. (6.1.14) because of the 
time-ordering in Eq. (6.1.1) ; we can encounter a pairing of an annihilation 
field y+(x )  in X(X) with a creation field ly+t(y) in #(y)  only if X ( x )  
was initially to the left of X ( y )  in Eq. (6.1.1), i.e., if xo z yo; similarly, 
we encounter a pairing of an annihilation field y-+(y) in X ( y )  with a 
creation field yl-(x) in Z ( x )  only if X ( y )  was initially to the left of #(x) 
in Eq. (6.1.11, ie., if yo > xO. (The + sign in the second term in (6.1.14) will 
be explained a little later.) The quantity (6.1.14) is known as a propagator; 
it is calculated in the following section. 

The S-matrix is obtained by multiplying these factors together, along 
with additional numerical factors to be discussed below, then integrating 
over xl . xw, then summing over all pairings, and then over the numbers 
of interaction of each type. Before filling in all the details, it will be 
convenient first to describe a diagrammatic formalism for keeping track 
of a 1  these pairings. 

If  the interaction &'(XI is written in the normal-ordered form, as in Eq. {5.1.33), then there is no 
pairing of fields and field adjoin15 in the same inkraction. Otherwise some sort of regulari7ation 
is needed to give meaning to Ak,(0). 
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&'nfE 

Figure 6.1. Graphical representation of pairings of operators arising in the 
coordinate-space evaluation of the S-matrix. The expressions on the right are the 
factors that must bc included in the coordinate-space integrand of the S-matrix 
for each line of the Fcynman diagram. 

The rules for calculating the S-matrix are conveniently summarized in 
terms of Feynrnan diag~ams, (See Figure 6.1.) The diagrams consist of 
points called vertices, each representing one of the Xi (x) ,  and lines, each 
representing the pairing of a creation with an annihilation operator. More 
specifically : 

{a) The pairing of a final particle with a field adjoint in one of the H(x)  
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is represented by a line running from the vertex representing that H ( x )  
upwards out of the diagram, carrying an arrow pointed upwards. 
(b) The pairing of a final antiparticle with a field in one of the X ( x )  is 
also represented by a line running from the vertex representing that &'(XI 
upwards out of the diagram, but carrying an arrow pointed downwards. 
(Arrows are omitted throughout for particles like y,  no, etc. that are their 
own antiparticles.) 
(c) The pairing of an initial particle with a field in one of the #(x) is 
represented by a line running into the diagram from below, ending in the 
vertex representing that X'(x), carrying an arrow pointed upwards. 
(d) The pairing of an initial antiparticle with a field in one of the 
.#(XI is also represented by a line running into the diagram from below, 
ending in the vertex representing that H(x),  but carrying an arrow pointed 
downwards. 
(e) The pairing of a final particle or antiparticle with an initial particle 
or antiparticle is represented by a line running clear through the diagram 
from bottom to top, not touching any vertex, with an arrow pointed 
upwards or downwards for particles or antiparticles, respectively. 
(f) The pairing of a field in X ( x )  with a field adjoint in X { y )  is 
represented by a line joining the vertices representing .@(XI and X ( y ) ,  
carrying an arrow pointing from y to x. 

Note that arrows always point in the direction a particle is moving, 
and opposite to the direction an antiparticle is moving. (As mentioned 
above, arrows should be omitted for particles like photons that are their 
own antiparticles.) The arrow direction indicated in rule jf) is consistent 
with this convention because a field adjoint in Z j ( y )  can either create a 
particle destroyed by a field in Hi(x), or destroy an antiparticle created 
by a field in Hi(x).  Note also that since every field or field adjoint in 
Hi{x) must be paired with something, the total number of lines at a 
vertex of type i, corresponding to a term X'i(~) in Eq. (6.1.21, is just equal 
to the total number of field or field adjoint factors in Z i (x ) .  Of these 
lines, the number with arrows pointed into the vertex or out of it equals 
the number of fields or field adjoints respectively in the corresponding 
interaction term. 

To calculate the contribution to the S-matrix for a given process, of a 
given order Ni in each of the interaction terms 2fi(x) in Eq. (6.1.2), we 
must carry out the following steps: 

(i) Draw all Feynman diagrams containing Ni vertices of each type 
i, and containing a line coming into the diagrams from below for each 
particle or antiparticle in the initial state, and a line going upwards out 
of the diagram for every particle or antiparticle in the final state, together 
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with any number of internal lines running from one vertex to another, 
as required to give each vertex the proper number of attached lines. The 
lines carry arrows as described above, each of which may point upwards 
or downwards. Each vertex is labelled with an interaction type i and 
spacetime coordinate xfl. Each internal or external line is labelled at the 
end where it runs into a vertex with a field type t' (corresponding to the 
field rpr(x) or Wt(x) that creates or destroys the particle or antiparticle at 
that vertex), and each external line where it enters or leaves the diagram 
is labelled with the quantum numbers p, 0, n or p', a', n' of the initial or 
final particle (or antiparticle), 
(ii) Far each vertex of type i, include a factor -i (from the ( - i l N  
in Eq. (6.1.1)) and a factor gi (the coupling constant multiplying the 
product of fields in JP~(x ) ) .  F Q ~  each line running upwards out of the 
diagram, include a factor (6.1.9) or (6.1.10), depending on whether the 
arrow is pointing up or down. For each line running from below into the 
diagram, indude a factor (6.1.1 I )  or (6.1.121, again depending on the arrow 
direction. For each line running straight through the diagram include a 
factor (6.1.13). For each internal line connecting two vertices include a 
factor (6.1.14). 
(iii) Integrate the product of all these factors over the coordinates 
XI, x2, - . + of each vertex. 
(iv) Add up the results obtained in this way from each Feynman diagram. 
The complete perturbation series for the $-matrix is obtained by adding 
up the contributions of each order in each interaction type, up to whatever 
order our strength permits, 

Note that we have not included the factor 1/N! from Eq. (6.1 . I)  in 
these rules, because the time-ordered product in Eq. (6. I .  1) is a sum over 
the hi ! permutations of xl xz . - XN, each permutation giving the same 
contribution to the final result. To put this another way, a Feynman 
diagram with N vertices is one of N! identical diagrams, which differ only 
in permutations of the labels on the vertices, and this yields a factor of 
N !  which cancels the 1/N! in Eq. (6.1.1 ). ('There are exceptions to this 
rule, discussed below.) For this reason, henceforth we do not include more 
than one of a set of Feynman diagrams that differ only by relabelling the 

'. 
vertices. 
In some cases, there are additional combinatoric factors or signs that 

must be included in the contribution of individual Feynrnan diagrams: 

(v) Suppose that an interaction & i ( ~ )  contains (among other fields and 
field adjoints) M factors of the same field. Suppose that each of these 
fields is paired with a field adjoint in a different interaction (different for 
each one), or in the initial or final state. The first of these field adjoints 
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Figure 6.2. Example of a graph requiring extra cornbinatoric factors in the 
S-matrix. For an interaction involving, say, three fxtors of some field (as well 
as other fields) we usually include a factor 1/3! in the interaction Hamiltonian, 
to cancel factors arising from sums over ways of pairing these fields with their 
adjoints in other interactions, But in this diagram there are two such factors of 
1 /3!  and only 3 ! different pairings, so we are left with an extra factor of 1/3 !. 

can be paired with any one of the M identical fields in LFi(x); the second 
with any one of the remaining M - 1 identical fields; and so on, yielding 
an extra factor uf M!. To compensate for this, it is conventional to define 
the coupling constants gi so that an explicit factor 1 / M! appears in any 
,%i(~) containing M identical fields (or field adjoints.) For instance, the 
interaction of Mth order in a scalar field &(x) would be written g t $ M / ~ ! .  

(More generally, one often also displays an explicit factor of  1 / M !  when 
the interaction involves a sum of M factors of fields from the same 
symmetry multiplet, or when for this or any other reason the coupling 
coefficient i s  totally symmetric or antisymmetric under permutations of 
Ad boson or fermion fields.) 

However, this cancellation of M! factors is not always complete. For 
instance, consider a Feynman diagram in which the M identical fields 
in one interaction % i ( ~ )  are paired with M corresponding field adjoints 
in a single other interaction Y j ( y ) .  (See Figure 6.2.) Then by following 
the above analysis, we find only M !  different pairings (since it makes 
no difference which of the field adjoints we call the first, second, ,.,), 
cancelling only one of the two factors of 1/M! in the two different 
interactions. In this case, we would have to insert an extra factor of l/M! 
'by hand' into the contribution of such a Feynman diagram. 

Other combinatoric factors arise when some of the permutations of 
vertices have no effect on the Feynman diagram. We noted earlier that the 
factor l /N!  in the series (6.1 . I )  is usually cancelled by the sum over the 
N! diagrams that differ only in the labelling of the N vertices, However, 
this cancellation is incomplete when relabelling the vertices does not 
yield a new diagram. This happens most commonly in the calculation 
of vacuum-to-vacuum S-matrix elements in a theory with a quadratic 
interaction jy. = vjA4fryr, where M may depend on external fields. (The 
physical significance of such vacuum fluctuation diagrams is discussed 
in detail in Volume 11,) The Feynman diagram of Nth order in .# is a 
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ring with N corners. (See Figure 6.3.) There are only ( N  - I)! different 
diagrams here because a permutation of labels that moves each label to 
the next vertex around the ring yields the same diagram. Hence such a 
graph is accompanied with a factor 

(vi) In theories involving fermion fields, the use of Eqs. (6.1.4)-(6.1.6) to 
move annihilation and creation operators to the right and left introduces 
minus signs into the contribution of various pairings. To be specific, we 
get a minus sign wherever the permutation of the operators in Eq. (6.1.1) 
that is required to put all paired operators adjacent to one another (with 
annihilation operators just to the left of the paired creation operators) 
involves an odd number of interchanges of fermion operators. (This is 
because to compute the contribution of a certain pairing, we can first 
permute all operators in Eq. (6.1.1) so that each annihilation operator 
is just to the left of the creation operator with which it  is paired, ig- 
noring all commutators and anticommutators of unpaired operators, and 
then replace each product of paired operators with their commutators or 
anticommutators.) One immediate consequence is to produce the minus 
sign in the relative sign of the two terms in Eq. (6.1.14) for the fermion 
propagator. Whatever permutation puts the annihilation part v~+(x )  of a 
field in &(x) just to the left of the creation part y,ft(y) of a field adjoint 
in %(y), the permutation that puts the annihilation part I J - ~ ( ~ )  of the 
field adjoint just to the left of the creation part yl-(x) of the field involves 
one extra interchange of fermion operators, yielding the minus sign in the 
second term of Eq. (6.1.14) for fermions. 

In addition, minus signs can rise in the contribution of whole Feynman 
diagrams. As an example, let us take up a theory in which the sole 
interaction of fermions takes the form 

where gtmk are general constants, ylb(x)  are a set of complex fermion fields, 
and &,(x) are a set of real bosonic (but not necessarily scalar) fields. (Not 
only quantum electrodynamics, but the whole 'standard model' of weak, 
electromagnetic, and strong interactions, has fermionic interactions that 
can all be put in his form.) Let us first take up the process of fermion- 
fermion scattering, 12 -t 1'2', to second order in 2'. The fermion operators 
in the second-order term in Eq. (6 , l . l )  appear in the order (with obvious 
abbreviations) 

There are two connected diagrams to this order, corresponding to the 
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Figure 6.3. An eighth-order graph for the vacuum-to-vacuum amplitude with 
particles interacting only with an external field. In this diagram the external field 
is represented by wiggly lines. There are 7 ! such diagrams, differing only by 
relabelling the vertices, and not counting as different those labellings that simply 
rotate the ring. The factor I / $ !  from the Dyson formula (6.1.1) is therefore not 
entirely cancelled here, leaving us with an extra factor 1/8. 

pairings 

and 

(See Figure 6.4.) To go from (6.1.19) to (6.1.20) requires an euen permuta- 
tion of fermionic operators. (For instance, move y(x) past three operators 
to the right, and then move ~ ( 1 ' )  past one operator to the right.) Thus 
there is no extra minus sign in the contribution of the pairing (6.1.20). 
This in itself is not so important; the overall sign of the S-matrix does not 
matter in transition rates, and in any case depends on sign conventions 
fur the initial and final states. What i s  important is that the contributions 
of pairings (6.1.20) and (6.1.21) have opposite sign, as can be seen most 
easily by noting that the only difference between these two pairings is 
the interchange of two ferrnjonic operators, ~ ( 1 ' )  and 42'). In fact, this 
relative minus sign is just what is required by Fermi statistics: it makes 
the scattering amplitude antisymmetric under the interchange of particles 
1' and 2' {or 1 and 2) .  

However, it must not be thought that all sign factors can be related in 
such a simple way to the antisymmetry of the final or initial states, even in 
the lowest order of perturbation theory. To illustrate this point, let's now 
consider fermion-antifermion scattering, 12' -+ 1'2IC, to second order in 
the same interaction (6.1.18). The fermionic operators in the second-order 
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Figure 6.4. The connected second-order diagrams for fermion-ferrnion scattering 
in a theory with interaction (6.1.18). Here straight lines represent fermions ; dotted 
lines are neutral bosom. There is a minus sign difference in the contributions of 
these two diagrams, arising from an extra interchange of fermion operators in 
the pairings represented by the second diagram. 

term in Eq. (6.1.1) appear in the order: 

Here again there are two Feynman diagrams to this order, corresponding 
to the pairings 

and 

[ 4 2 ' c ) ~ ( 4 1  [a( l')lpr (Y)I hw4 111 [ ~ ~ ( x ) a ~ ( 2 ~ 1 1  . (6.1.24) 

(See Figure 6.5.) To go from (6.1.22) to (6.1.23) requires an even permu- 
tation of fermionic operators (for instance, move y)(x) past two operators 
to the left and move I , u ~ ( ~ )  past two operators to the rightj so there is 
no extra minus sign in the contribution of the pairing (6.1.23). On the 
other hand, to go from (6.1.22) to (6.1.24) requires an odd permutation 
of fermionic operators (the same as for (6.1.231, plus the interchange of 
yt{x) and lyt(y)) so the contribution of this pairing does come with an 
extra minus sign.** 

Additional signs are encountered when we consider contributions of  
higher order. In theories of the type considered here, in which the 
interactions of fermions all take the form (6.1.1 81, the fermion lines in 

" Actually, this sign is not wholly unrelated to the requirements of Fermi statistics. The same 
field can destroy a partide and create an andparticle, so there is a relatiun, known as 'crossing 
symmetry: between processes in which initial particles or antiparticles are exchangcd with final 
antiparticles or particles. In particular the amplitudes for the process 1 2C -c 1'2'~ are related to 
lhose for the 'crossed' process 12' -, 1'2; the two pairings (6.1.23) and (6.1.24) just correspond 
to the two diagrams for this prwess, which differ by an interchange of 1 and 2' (or  1' and 2), 
so the antisymmetry of the scattering amplitude under interchange of initial (or final) particles 
naturally requires a minus sign in the relative contrjbudon of these two pairings. However, 
crossing symmet~y is not an  ordinary symmctry (it involvcs an analytic continuation in kinematic 
variables) and it is difficult to use it with any precision for general processes. 
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Figure 6.5. The connected second-order diagrams for fermion-antif'ermion scat- 
tering in a theory with interaction (6.1.18), Here straight lines represent fermions 
or antifermions, depending on the arrow direction; dotted lines are neutral 
bosons. There is again a minus sign difference in the contributions of these two 
diagrams, arising from an extra interchange of fermion operators in the pairings 
represented by the second diagram. 

general Feynman diagrams form either chains of lines that pass through 
the diagram with arbitrary numbers of interactions with the boson fields, 
as in Figure 6.6, or else fermionic loops, like that shown in Figure 6.7. 
Consider the effect of adding a fermionic loop with M corners to the 
Feynman diagram for any process. This corresponds to the pairing of  
fermionic operators 

On the other hand, these operators appear in Eq. (6.1.1) in the order 

To go from (6.1.26) to (4.125) requires an odd permutation of fermionic 
operators (move @(xl) to the right past 2M - 1 operators) so the con- 
tribution of each such fermionic loop is accompanied with a minus sign. 

These rules yield the full S-matrix, including contributions from pro- 
cesses in which various clusters of particles interact in widely separated 
regions of spacetime. As discussed in Chapter 4, to calculate the part 
of the S-matrix that excludes such contributions, we should include only 
cnnnecred Fe ynman diagrams. In particular, this excludes lines passing 
clean through the diagram without interacting, which would yield the 
factors (6.1.13). 

To make the Feynman rules perfectly clear, we will calculate the low- 
order contributions to the S-matrix for particle scattering in two different 
theories. 
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Figure 6.6. The connected second-order diagrams for boson-fcrmion scattering 
in a theory with interaction (61.18). Straight lines are fcrmions; dashed lines are 
neutral bosons, 

Figurc 6.7. The Iowest-order connected diagram for boson bosan scattering in 
a theory with interaction (6.1.18). Such fermion loop graphs yield an extra minus 
sign, arising from permutations of the paircd fermion fields. 

Theory 1 

Consider the theory of fermions and self-charge-conjugate bosons with 
interaction (6.1.18). The lowest-order connected diagrams for fermion- 
boson scattering are shown in Figure 6.6. Following the rules outlined in 
Figure 6.1, the corresponding S-matrix element is 
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(The labels 1 and 2 are used here for fermions and bosons, respectively.) 
For fermion-fermion scattering there are also two second-order diagrams, 
shown in Figure 6.4. They yield the S-matrix element 

with the last term indicating subtraction of the preceding term with 
interchange of particles 1' and 2' (or equivalently 1 and 2). There are 
no second-order graphs for boson-boson scattering in this theory; the 
lowest-order graphs are of fourth order, such as that shown in Figure 
6.7. More specific examples of formulas like Eqs. (6.1.27) and (6.1.28) 
will be gwen in Section 6.3, after we have had a chance to evaluate the 
propagators and go over to m omen turn space. 
&' /Z?&Z.XG&#?W (d~/~ f ,d%8~?&?~ G J X ~ ~ !  &k /kkC hk/& dfl 

all different. It is instructive aIsa to look at an exarnpIe with a trilinear 
interaction in which all three fields are the same, or at least enter into the 
interaction in a symmetric way. 

Now take the interaction density to be a sum of terms that are trilinear 
in a set of real bosonic fields q5f(x): 

1 
X(X) = j! C ~ ~ m n + / ( ~ ) # h ( ~ ) d ' n { ~ )  (6.1.29) 

Pmn 

with gf,, a real totally symmetric coupling coefficient. Suppose we want 
to consider a scattering process 1 2 4 1'2' to second order in this 
interaction. Each of the two vertices must have two of the four external 
lines attached to it. (The only other possibility is that one of the external 
lines is attached to one vertex and three to the other vertex, but the 
vertex with three external lines attached to it would have no remaining 
lines to connect it to the other vertex so this would be a disconnected 
contribution.) The additional line required at each vertex must then just 
serve to connect the two vertices to each other. There are three graphs of 
this type, differing in whether the other external line that is attached to 
the same vertex as line 1 is line 2 or 1' or 2'. (See Figure 6.8.) Following 
the rules given above, the contribution to the S-matrix from those three 



Figure 6.8. The connected-second order diagrams for boson-boson scattering in 
a theory with interaction (6.1.29). 

diagrams is 

To be even more specific, if the bosons in this theory are spinless particles 
of a single species, then we write the interaction (6.1.29) in the form 

and the S-matrix element (6.1.30) for scalar-scalar scattering i s  
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where AFjx - y )  is the scalar field propagator, calculated in the next 
section. There are no terms of third order in X'(x), or of any odd order 
in .W(x). 

6.2 Calculation of the Propagator 

We now turn to a calculation of the propagator (6.1.14), an essential 
ingredient in the Feynman rules that arises in the pairing of a field 
y l (x)  with a field adjoint y~:(~). Inserting Eqs. (6.1.15) and (6.1.16) in 
Eq. (6.1.14), and using the commutation or anticommutation relations for 
annihilation and creation operators, we have immediately 

In the course of calculating commutators and anticammuiators in Chapter 
5, we showed that 

v m  = k 2 i ) - '  P h  ( - P + - d i G i )  , 
u 

(6.2.3) 
where Pt,(p,m) is a polynomial in p and w. (Here as in Eq. (6.2.1), the top 
and bottom signs refer to bosonic and fermionic fields, respectively.) For 
instance, if pc(x) and pn(y) are scalar fields #(x) and $(y) for a particle 
of spin zero, then we have simply 

I f  y f ( x )  and zy&) are Dirac fields for a particle of spin :, then 

where d and rn are here four-valued Dirac indices. (The matrix appears 
here because we are considering the pairing of ~:[(x) with I,P;(~). I t  is 
absent in the pairing of y:(x) with q ~ ( y )  = zyt(y)fi.) If yz(x) and y,(y) are 
vector fields V,(x)  and VL8(y) for a particle of spin one, then 
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More generally, if y?&) and tp,(y) are components of fields yUh(x) and 
ya6(y)  for a particle of spin j ,  in the irreducible (A ,  B )  and (2,B) repre- 
sentations of the homogeneous Lorentz group, then 

where sinh 0 = pljm, while a, h, Zi, 6 run by unit steps from -A to + A ,  - B  
to + B ,  -2 to +A, and -B to +B, respectively, and likewise for the 
running indices d, b', 8, and b. 

Inserting Eqs. (6.2.2) and (4.2.3) in Eq. (62 .1)  yields 

where A+(x) is the function introduced in Chapter 5 

in which is taken as + d m ,  
To go further, we must say a bit about how to extend the definition 

of the polynomial P ( p ) .  Eqs. (6.2.2) and (6.2.3) only define P ( p )  for four- 
momenta 'on the mass shell', i.e., with = f d m .  Any polynomial 
function of such four-momentum can always be taken as linear in f l ,  
because any power or can be written as (p2 + m 2 ) '  or 

0 2 p (p + m 2 ) ' ,  respectively. Thus we can define a polynomial P ( ~ ) ( ~ )  by the 
conditions that 

for = p2 + m2 , ~ ( ~ ' ( r )  =  PI ( dp) 

where ~ ( ' 7 ' )  are polynomials depending only on q. We can now use the 
relations 

(recall that B(x) has a unit step at xO, and is athenvise constant) to move 
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the derivative operators to the left of the 0 functions in Eq. (4.2.8) 

where AF is the 'Feynman propagator' 

However, far x' = 0 the function A+(x) is  even in x, since a change 
x + -x in Eq, (6.2.9) can be compensated by a change p + -p in the 
integration variable. We can therefore drop the second term in Eq. (62.121, 
and write simply 

It will be most useful to use the expression of the Feynman propagator 
as a Fourier integral. The step functions in Eq. (6.2.13) have the Fourier 
representation* 

This can be combined with the Fourier integral (6.2.9) for A+(x). We 
introduce new integration variables, q = p, ty0 = + s in the first term of 
Eq. (6.2.13), yielding 

Combining denominators and adopting a four-dimensional notation, we 
have simply 

where q2 = q2 - (qO)Zm (In the denominator we have replaced ZF Jw 
with 6, because the only important thing about this quantity is that it 

To pwve this, note Lhat i l  r > 0 then the conlour of integralion can be closcd with a large 
cbckwise semi-circle in the lower half-plane, so the integraI picks up a contribution of -2ni 
horn the pule at s = -IF.  11' r < 0 lhen the contour can be closed with a large counter-clockwise 
semi-circle in the upper half-planc, whcrc the intcgrand i s  analytic, giving an integral equal to 
Z e n .  
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is a positive infinitesimal.) This shows incidentally that AF is a Green's 
function for the Klein-Gordon differential operator, in the sense that 

with boundary conditions specified by the -ie in the denominator: 
as shown by Eq. (6.2.13), A;(x) for xb --+ +cc or xo -+ -m involves 
only positive or negative frequency terms, e x p ( - i x O d w )  or 
exp(+ixO Jmj, respectively. 

Inserting Eq. (6.2.16) in Eq. (6.2.14) now gives the propagator as 

There is one obvious problem with this expression. The polynomial P(pj 
is Lorentz-covariant when p is on the mass shell, p2 = -m2, but in Eq. 
(6.2.18) we integrate over all q p ,  not restricted to the mass shell. The 
polynomial ~ { ~ j ( ~ )  is defined for general qit to be linear in qO, a condition 
that clearly does not respect Lorentz covariance unless the polynomial is 
also linear in each spatial component q' as well. We can instead always 
define our extension of the polynomial P ( p )  to general four-momenta qp,  
which we shall call simply P ( q ) ,  in such a way that P ( q )  i s  Lurentz- 
covariant for general q p ,  in the sense that 

where Apt, is a general Lorentz transformation, and DCA) is the appropriate 
representation of the Lorentz group. For instance, for scalar, Dirac, and 
four-vector fields, these covariant extensions are obvious1 y provided by 
just replacing pF with a general four-momentum q p  in Eqs. (6.2.4), (6.2.51, 
and (6.2.6). For the scalar and Dirac fields, these are already linear in #, 
so here there is no difference between pIL)(q) and P(q}: 

P):'(~) = P[,(q) (scalar, Dirac fields) . (6.2.19) 

On the other hand, for the vector field of a spin one particle, the 00 
components of the covariant pdynomial P,,(q) = qIt, + m-2q,q, are 
quadratic in qO,  so here there is a difference: 

(The extra term here is fixed by the two conditions that it must cancel 
the {q0j2 term in Poo{q), and must vanish when qj' is on the mass shell.) 
Inserting this in Eq. (6.2.18) gives the propagator of a vector field as 
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The first term is manifestly covariant, and the second term, though not 
covariant, is local, so it can be cancelled by adding a local non-covariant 
term to the Hamiltmian density. Specifically, if V J x )  interacts with other 
fieids through a term V,(x)J"x) in X ( x ) ,  then the effect of the second 
term in Eq. (6.2.21) is to produce an effective interaction 

(The factors -i are the usual ones which always accompany vertices and 
propagators. The factor $ is needed because there are two ways to pair 
other fields with =RCfl(x), hifiering in the interchange of J p  and J V  .) Thus 
the effect of the non-covariant second term in Eq. (6.2.21) can be cancelled 
by adding to X(X) the non-covariant term 

It is the singularity of the equal-time commutators of vector fields at zero 
separation that requires us to employ a wider class of interactions than 
those with a scalar density. A detailed non-perturbative proof of the 
Lorentz invariance of the S-matrix in this theory will be given in the next 
chapter. 

It should not be thought that this is solely a phenomenon associated 
with spins j 2 1. For instance, consider the vector field associated with a 
particle of spin j = 0, equal (as discussed in Chapter 5) to the derivative 
di4(x) of a scalar field. For the pairing of this field with a scalar t$t(y), 

the polynomial P(p) on the mass shell is 

while the pairing of d;.&(x) with +,b'(y) yields a polynomial 

The covariant polynomials for general off-shell four-momenta q p  are 
again obtained by just substituting q p  f-br pi in Eqs. (6.2.23) and (6.2.24). 
Eq. (6.2.23) shows that P i ( q )  is already linear in qo, so here there is no 
difference between h(q} and P ? ( ~ ) .  However, for Eq. (6.2.24) there is a 
difference : 

so here the propagator is 
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Just as before, the non-covariant effects of the second term may be 
removed by adding to the interaction a nm-covariant term 

where J f i ( x )  is here the current which multiplies i?,$(xj in the covariant 
part of X(x) .  

It should be clear that (at least for massive particles) the effects of 
non-covariant parts of the propagator can always be cancelled in this way 
by adding non-cavariant local terms to the Hamiltonian density. This is 
because the numerator P ) . : ) ( ~ )  in the propagator must equal thk covariant 
pol nomial Pt,(q) when b' is on the mass shell, so the difference between rd P,, (q) and P,,(y) must contain a factor q 2  + tm2. This factor cancels 
the denominator (g2 t m2 - ic)  in the contribution of this difference to 
Eq. (6.2.18), so Eq. (6.2.150 always equals a covariant term plus a term 
proportional to the delta function S4(x - y )  or its derivatives. The effect 
of the latter term may be cancelled by adding to the interaction a term 
quadratic in the currents to which the paired fields couple, or in their 
derivatives. In what follows, it will be assumed tacitly that such a term 
has been included in the interaction, and in consequence we shall use 
the cooariant polynomial Pl , (q )  in the propagator (6.2.1 81, and will thus 
henceforth drop the label 'L'. 

Jt may seem that this is a rather ad hoc procedure. Fortunately, in the 
canonical formalism discussed in the following chapter, the non-cuvariant 
term in the Hamiltonian density needed to cancel non-covariant terms 
in the propagator arises autamatically. This, in fact, forms part of the 
motivation for introducing the canonical formalism. 

Before closing this section, it may be useful to mention some other defi- 
nitions of the propagator, equivalent to Eq. (6.2.1), that appear commonly 
in the literature. First, taking the vacuum expectation value of Eq. (6.1.14) 
gives 

(Here ( A B  . . .)o denotes the vacuum expectation value (mO, AB . - an).) 
Both y:(x] and y~;'(y) annihilate the vacuum, so only one term in each 
commutator or anticommutator in Eq. (6.2.28) actual1 y contributes to the 
propagator : 
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Also, v-t and y+ would annihilate a vacuum state on the right, and 
tp- and v+t would annihilate the vacuum state on the left, so tp+ and 
y-  may be replaced everywhere in Eq. (6.2.29) with the complete field 
IQ = q?+ + I/-: 

This is often written 

where T is a time-ordered product, whose definition is now extended*' 
to all fields, with a minus sign for any odd permutation of fermionic 
operators. 

6.3 Momentum Space Rules 

The Feynman rules outlined in Section 6.1 specify how to calculate the 
contribution to the S-matrix of a given Nth order diagram, as the integral 
over N spacetime coordinates of a product of spacetime-dependent factors. 
For a final particle (or antiparticle) line with momentum p f p  leaving a 
vertex with spacetime coordinate xp, we get a factor proportional to 
exp(-ipt . x), and fur an initial particle line with momentum pit entering 
a vertex with spacetime coordinate xp, we get a factor proportional 
to exp(+ip x). In Section 6.2 we saw that the factor associated with 
an internal line running from y to x can be expressed as a Fourier 
integral, over off-shell four-momenta q\ of an integrand proportional 10 
exp(iq - jx - y)). We can think of qfi as the four-momentum flowing along 
the internal line in the direction of the arrow from y to x. Hence the 
integral over each vertex's spacetime position merely yields a factor 

where C p' and C p denote the total four-momentum of all the final or 
initial particles leaving or entering the vertex, and C q' and C q denote 
the total four-momentum of a l  the internal lines with arrows leaving or 
entering the vertex, respectively. Of course, in place of these integrals over 
xps, we now have to do integrals over the Fourier variables q p ,  one for 
each internal line. 

These considerations can be encapsulated in a new set of Feynman rules 

~~~ 

" This is not inconsistent with our previous definition of the limeordered product of Hamiltonian 
densities in Chapter 3, because lhe Hamiltonian dcnsity can only contain even numbers of 
fermionic lield factors. 



Momentum Spaw Rules 

z ' ~ ' n p C  

(0 
Figure 6.9. Graphical representation of pairings of operators arising in the 
momentum-space evaluation of the S-matrix. The expressions on the right are 
the factors that must be included in the momentum space integrand of the 
S-matrix for each line of the Feynman diagram. 

(see Figure 6.9) for calculating contribution to the S-matrix as integrals 
over momentum variables: 

(i) Draw all Feynman diagrams of the desired order, just as described 
in Section 6.1. However, instead of labelling each vertex with a 
spacetime coordinate, each internal line is now labelled with an off- 
mass-shell four-momentum, considered conventionally to flow in the 
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direction of the arrow (or in either direction for neutral particle lines 
without arrows. j 

(ii) For each vertex of type i ,  include a factor 

with the momentum sums having the same meaning as in (6.3.1). This 
delta function ensures that the four-momentum is conserved a t  every 
point in the diagram. For each external line running upwards out of 

/ ! J  the diagram, include a factor ( ~ n ) - ~ h ; ( p  'n 'n') or ( ~ n ) - ' / ~ u ~ ( ~  a n ), 
for arrows pointing upwards or downwards, respectively. For each 
external line running from below into the diagram, include a fictor 
(2r)-3/'ut(pan) or (~a)-~j%;(pnn), for arrows pointing upwards or 
downwards, respectively. For each internal line with ends labelled P 
and m, the arrow pointing from m to t, and carrying a momentum 
label qi', include as a factor the integrand of the integral for -iAc,(y): 

A reminder: for scalars or antiscalars of four-momentum y, the u s  
and us are simply ( ,z~ ' )~ ' / ' ,  while the polynomial P ( q )  is unity. For 
Dirac spinors of four-momentum p and mass M ,  the u s  and c s 
are the normalized Dirac spinors described in Section 5.5, and the 
polyrlornial P ( p )  is the matrix (-iyIlp + M)p. 

(iii) Integrate the product of all these factors over the four-momenta 
carried by internal lines, and sum over all field indices t ,m,  etc. 

jiv) Add up the results obtained in this way from each Feynman diagram. 

Additional combinatoric factors and ferrnianic signs may need to be 
included, as described in parts (v) and (vi) of Section 6.1. Examples will 
be given at the end of this section. 

We have a four-momentum integration variable for every internal line, 
but many of these are eliminated by the delta functions associated with 
vertices. Since energy and momentum are separately conserved for each 
connected part of a Feynman diagram, there will be C delta functions 
left over in a graph with C connected parts. Hence in a diagram with I 
internal lines and V vertices, the number of independent four-momenta 
that are not fixed by the delta functions is I - [V - C]. This is clearly also 
the number L of independent loops: 

which is defined as the maximum number of internal lines that can 
be cut without disconnecting the diagram, because any such and only 
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such internal lines can be assigned an independent four-momentum. We 
can think of the independent momentum variables as characterizing the 
momenta that circulate in each loop. In particular a tree graph is one 
without loops; after taking the delta functions into account there are no 
momentum-space integrals left for such graphs. 

For instance, in a theory with interaction (6.1.18), the S-matrix (6.1.27) 
for fermion-boson scattering is given by the momentum-space Feynman 
rules as 

with labels I and 2 here denoting fermions and bosons, respectively. The 
momentum-space integral here is trivial, and gives 

In the same way, the S-matrix element 16-1-28) for fermion-fermion scat- 
tering in the same theory is 

These results illustrate the need for a more compact notation. We may 
define a fermion-boson coupling matrix 

The matrix elements (6.3.5) and (6.3.6) for fermion-boson and fermim- 
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fennion scattering can then be rewritten in matrix notation as 

and 

where M~ and rn2 are the diagonal mass matrices of  the fermions and 
bosons in Eqs. (6-3.8) and {6.3.9), respectively. The general rule is that in 
using matrix notation, one writes coefficient functions, coupling matrices, 
and propagators in an order dictated by following lines hackwards from 
the order indicated by the arrows. In the same notation, the S-matrix for 
boson-boson scattering in the same theory would be given by a sum of 
one-loop diagrams, shown In Figure 6.7: 

where the ellipsis in the last line indicates terms obtained by permuting 
bosons l', 2', and 2. The minus sign at  the beginning of the right-hand 
side is the extra minus sign associated with fermionic loops. Note that 
after elimination of delta functions there is just one momentum-space 
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integral here, as appropriate for a diagram with one loop. We shall see 
how to do this sort of momentum-space integral in Chapter 11. 

To make this more specific, consider a theory with a Dirac spinor field 
y(x) of mass M and a pseudoscalar field $(x) of mass rn, interacting 
through the interaction - i g @ * ~ ~ ~ p .  (The factor - i  is inserted to make 
this interaction Hermitian for real coupling constants g.) Recall that 
the polynomial P ( q )  for the scalar is just unity, while for the spinor it is 
[-iy,q~'+M]~. Also, the u for a scalar of energy E is ( 2 ~ ) - ' / ' ,  while for the 
spinor u is the conventionally normalized Dirac spinor discussed in Section 
5.5. Eqs. (6.3.8), (6.3.91, and (6.3.10) give the lowest-order connected S -  
matrix elements for fermion-boson scattering, fermion-fermion scattering, 
and boson-boson scattering: 

where in the last formula the ellipsis indicates a sum over permutations 
of particles 2,  l', 2'. The factors P in the fermion propagator numerators 
have been used to replace ot with u. 

Another useful topological result expresses a sort of conservation law 
of lines. For the moment we can think of all internal and external lines as 
being created at vertices and destroyed in pairs at the centers of internal 
lines or when external lines leave the diagram. (This has nothing to do 
with the directions of the arrows carried by these lines.) Equating the 
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numbers of lines that are created and destroyed then gives 

where I and E are the numbers of internal and external lines, Vi are the 
numbers of vertices of various types labelled i, and ni are the number of 
lines attached to each vertex. (This also holds separately fur fields of each 
type,) In particular, if all interactions involve the same number = r~ of 
fields, then this reads 

where V is the total number of all vertices. In  this case, we can eliminate 
I from Eqs. (6.3.4) and (6.3.1 1). and find that for a connected (i.e., C = 1) 
graph the number of vertices is given by 

For instance for a trilinear interaction the diagrams for a scattering 
process { E  = 4) with L = 0,1,2 - . . has V = 2,4,6 + + vertices. In general, 
the expansion in powers of the coupling constants is an expansion in 
increasing numbers of loops. 

6.4 Off the Mass Shell 

In the Feynman diagrams for any S-matrix element all external Iines 
are 'on the mass shell'; that is, the four-momentum associated with an 

2 external line for a particle of mass m is constrained to satisfy p,,pp = -m . 
It is often important also to consider Feynman diagrams 'off the mass 
shell', for which the external line energies like the energies associated with 
internal lines are free variables, unrelated to any three-momenta. For one 
thing, these arise as parts cf larger Feynman diagrams; for instance, a 
loop appearing as an insertion in some internal line of a diagram could 
be regarded as a Feynman diagram with two external lines, both off the 
mass shell. 

Of course, once we calculate the contribution of a given Feynman 
diagram off the mass shell, it is easy to calculate the associated S-matrix 
elements by going to the mass shell, taking the four-momentum p p  flowing 
along the line into the diagram to have = q'm for particles in 
the initial state and = - d m  for particles in the final state, and 
including the appropriate external line factors ( ~ T L ) - ~ / ' Q  or (2n)-%; 
for initial particles or antiparticles and ( ~ n ) - ~ / ~ u ;  or (2n)-'j20f for final 
particles or antiparticles. Indeed, when we come to the path integral 
approach in Chapter 8 we shall find it easiest first to derive the Feynman 
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rules for djagrams with lrli external lines off the mass shell, and then 
obtain S-matrix elements by letting the momenta associated with external 
lines approach their appropriate mass shells. 

Feynman graphs with lines off the mass shell are just a special case of 
a wider generalization of the Feynman rules that takes into account the 
effects of various possible external fields, Suppose we add a sum of terms 
involving external fields c J x )  to the Hamiltonian, so that the interaction 
V ( t )  that is used in the Dyson series (3.5.10) for the S-matrix is replaced 
with 

The 'currents' o,(r) have the usual time-dependence of the interaction 
picture 

but are otherwise quite arbitrary operators. The S-matrix for any given 
transition a + then becomes a functional Sp,[c] of the c-number 
functions ~ , ( t ) .  The Feynman rules for computing this functional are 
given by an obvious extension of the usual Feynman rules. In addition to 
the usual vertices obtained from V{t) ,  we must include additional vertices: 
if o,{x) is a product of n, field factors, then any 0, vertex with position 
label x must have n, lines of corresponding types attached, and makes a 
contribution to the position-space Feynman rules equal to -i~,(x) times 
whatever numerical factors appear in o,(x). I t  follows then that the rth 
variational derivative of Spa [c] with respect to F,(x), q,{y) . . at E = 0 is 
given by position space diagrams with r additional vertices, to which are 
attached respectively n,, nh . - . internal lines, and no external lines. These 
vertices carry position labels s,y . - - over which we d o  not integrate; each 
such vertex makes a contribution equal to -i times whatever numerical 
factors appear in the associated current (1,. 

In particular, in the case where these currents are all single field factors, 
I.&, 

the rth variational derivative of Sp, [ E ]  with respect to cf(x), ~ , ( y )  - at 
E. = 0 is given by position space diagrams with r additional vertices carry- 
ing spacetime labels x, y . - -, to each of which is attached a single internal 
particle line of type d, m - - .. These can be thought of as off-shell external 
lines, with the difference that their contribution to the matrix element is 
not a coefficient function like (2n)-3/2u& or (27r )-3/2u;(p, ~ ) e - ' p ' ~  

but a propagalor, as well as a factor - i  from the vertex at the end of 
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the line. We obtain a momentum space Feynman diagram with particles 
in states ar and fi on the mass shell plus r external lines of type L,m- - - 
carrying momenta p, p' - . . from the variational derivative 

by stripping away the propagators on each of the off-shell lines and 
then taking the appropriate Fourier transforms and multiplying with 
appropriate coefficient functions ut, zd;, etc. and a factor (-i)'. 

It is very useful for a number of purposes to recognize that there is a 
simple relation between the sum of contributions from all perturbation 
theory diagrams for any off-shell amplitude and a matrix element, between 
eigenstates of the full Hamiltonian, of a time-ordered product of corre- 
sponding operators in the Heisenberg picture. This relation is provided 
by a the~rern,~ which states that to all orders of perturbation theory' 

where O,(x), etc. are the counterparts of o,(x) in the Heisenberg picture 

and YF+ and Y,g- are 'in' and 'out' eigenstates of the full Hamiltonian 
H ,  respectively. 

Here is the proof, From Eq. (3.5.10), we see immediately that the 
left-hand side of Eq. (6.4.3) is 

For definiteness, suppose that xy z xq 2 - . . 2 x:. Then we can denote 
by rol . - - all rs  greater than xp ; by r 11 . . . r IN, all rs  between xy and 
xi, and so on; finally denoting by r,l - - - r,Nr all rs that are less than x:. 

' For a single 0 operator, this is a version of the Schwinger action principle.4 
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Eq. (6.4.41, we have 

In deriving this result we supposed that xy 2 x! 2 . - - t $, so we could 
just as well replace the product of operators on the right-hand-side with 
the time-ordered product : 

But now both sides are entirely symmetric (or for fermions antisymmetric) 
in the as and xs, so this relation holds whatever the arder of the times 
xy . . . x:. Also, we saw in Section 3.1 that (in the sense of Eq. (3.1.12)) 

Hence Eq. (6.4.13) is the desired result (6.4.3). 

Problems 

1. Consider the theory of a real scalar field $, with interaction (in the 
interaction picture) V = g J d3x 4(x13/3 !. Calculate the connected 
S-matrix element for scalar-scalar scattering to second order in g, 
doing all integrals. Use the results to calculate the differential cross- 
section for scalar-scalar scattering in the center-of-mass system. 

2. Consider a theory involving a neutral scalar field 4(x) for a bosrlln 
B and a complex Dirac field y ~ ( x )  for a ferrnion F, with interaction 
(in the interaction picture) V = ig ,f d 3 x  q(x jy  gp(x]+(x). Draw all 
the connected ~ r d e r - ~ ~  Feynman diagrams and calculate the cor- 
responding S-matrix elements for the processes FC t B + FC' + 3, 
F + I;" F + FF", and F" + F + B + B (where F" is the antiparticle 
of F). Do all integrals. 

3. Consider the theory of a real scalar field $(XI, with interaction 
V = g J d 3 x  $ { ~ ) ~ / 4 ! .  Calculate the S-matrix for scalar-scalar scat- 
tering to order g, and use the result to calculate the differential 
scattering cross-section. Calculate the correction terms in the S -  
matrix for scalar-scalar scattering to order g2, expressing the result 
as an integral over a single four-momentum, but do all x-integrals. 
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4. What is the contribution in Feynman diagrams from the contraction 
of the derivative i?,v~~(x/ of a Dirac field with the adjoint pi(y) of 
the field? 

3. Use the theorem of Section 6.4 to give expressions for the vacuum 
expectation values of Heisenberg picture operators (Yo, Q(x)Y0) and 
(Yo, T(@(x), @(y))YoJ in the theory of Problem 1, to orders g and 
g2, respectively. 
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The Canonical Formalism 

Ever since the birth of quantum field theory in the papers of Born, Dirac, 
Fermi, Heisenberg, Jordan, and Pauli in the late 1920s, its development 
has been historically linked to the canonical formalism, so much so that it 
seems natural to begn any treatment of the subject today by postulating a 
Lagrangian and applying to it the rules of canonical quantization. This is 
the approach used in most books on quantum field theory. Yet historical 
precedent is not a very convincing reason for using this formalism. If 
we discovered a quantum field theory that led to a physically satisfactory 
S-matrix, would it bother us if it could not be derived by the canonical 
quantization of some Lagrangian? 

To some extent this question is moot because, as we shall see in Section 
7.1, all of the most familiar quantum field theories furnish canonical 
systems, and these can easily be put in a Lagrangian form. However, 
there is no proof that every conceivable quantum field theory can be 
formulated in this way. And even if it can, this does not in itself explain 
why we should prefer to use the Lagrangian formalism as a starting point 
in constructing various quantum field theories. 

The point of the Lagrangian formalism is that it makw it easy to 
satisfy Lorentz invariance and other symmetries; a classical theory with 
a Lorentz-invariant Lagrangian density will when canonically quantized 
lead to a Lorentz-invariant quantum theory. That is, we shall see here 
that such a theory allows the construction of suitable quantum mechanical 
operators that satisfy the commutation relations of the Poincark algebra, 
and therefore leads to a Lorentz-invariant S-matrix. 

This is not so trivial. We saw in the previous chapter that in theories 
with derivative couplings or spins j L 1, it is not enough to take the 
interaction Hamiltonian as the integral over space of a scalar interaction 
density; we also need to add nun-scalar terms to the interaction density 
to compensate for non-covariant terms in the propagators. The canonical 
formalism with a scalar Lagrangian density will automatically provide 
these extra terms, Later, when we come to non-Abelian gauge theories 
in Volume 11, this extra convenience will become a necessity; it would be 
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just about hopeless to try to guess at the form of the Harniltonian in such 
theories without starting with a Lorentz-invariant and gauge-invariant 
Lagrangian density. 

7.1 Canonical Variables 

In this section we shall show that various quantum field theories that we 
have constructed so far satisfy the commutation rules and equations of 
motion of the Hamiltonian version of the canonical formalism. It is the 
Hamiltonian formalism that is needed to calculate the S-matrix (whether 
by operator or path-integral methods) but it is not always easy to choose 
Hamiltonians that yield a Lorentz-invariant S-matrix. In the balance 
of this chapter we shall take the Lagrangian version of the canonical 
formalism as our starting point, and use it to derive physically satisfactory 
Hamiltonians. The purpose of the present section is to identify the 
canonical fields and their conjugates in various field theories, to tell us 
how to separate the free-field terms in the Lagrangian, and incidentally to 
reassure us that the canonical formalism is indeed applicable to physically 
realistic theories. 

We first show that the free fields constructed in Chapter 5 automatically 
provide a system of quantum operators qn(x ,  t )  and canonical conjugates 
p,(x, t )  that satisfy the familiar canonical commutation or anticommuta- 
tion relations: 

where the subscripts + indicate that these are commutators if either of 
the particles created and destroyed by the two operators are bosom, and 
anticommuta.t.ors if both particles are femions. For instance, the real 
scalar field $(x) for a self-charge-conjugate particle of zero spin was 
found in Section 5.2 to obey the commutation relation 

where A is the function 

with ko = $ k .  We note that 

A(x,o)=o,  A(x,o)=-id3(x). 
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(A dot denotes the derivative with respect to the time x!.) It is easy 
then to see that the field and its time-derivative 4 obey the equal-time 
commutation relations: 

[dlxd),&yd)]- = i@b - Y)  , (7.1.4) 

Therefore we may define canonical variables 

which satisfy the canonical commutation relations (7.1.1)-(7.1.3). 
For the complex scalar field of a particle of spin zero with a distinct 

antiparticle, the commutation relations are 

We may therefore define the free-particle canonical variables as the com- 
plex operators 

p ( x ,  t )  - gt(x, f )  . (7.1.9) 

Equivalently, writing 6 = (4, + i & ) / $  wwith & Hermitian for k = 1,2, 
we have canonical variables 

4?x, t )  = & d x ,  t )  , (7.1.10) 

P ~ X ,  t j  = $k@, 0 , (7.1.1 1) 

and these satisfy the commutation relations (7.1.1)-.{7.1.3). 
For the real vector field of a particle ofspin one, the commutation 

relations are given by Section 5.3 as 

(We are using d' rather than V p  for the vector field because we want to 
reserve upper case letters here for the fields in the Heisenberg picture.) 
Here the free-particle canonical variables may be taken as 

with i = 1,2 ,3 .  The reader may check that (7.1.12) and (~7.1.13) satisfy 
the commutation relations (7.1.1)-(7.1.3 j. The field equations (5.3.36) and 



7.1 Canonical Variables 295 

(5.3.38) together with Eq. (7.1.13) allow us to express vo in terms of the 
other variables as 

so 2.' is not regarded as one of the q s .  The extension of these results to 
cornpiex vector fidds may be handled just as for complex scalar fields. 

For the Dirac field of a non-Majorana spin : - particle, Section 5.6 shows 
that the anticornmutator is 

and 

Here it would be inconsistent to take ly, and y i  to be independent 
canonical variables, because their anticommutator does not vanish at 
equal times. It is conventional instead to define 

It is easy then to see that (7.1.15) and (7.1.16) satisfy the canonical 
anticommutation relations (7.1.1)-(7.1.3). 

For any system of operators that satisfy commutation or anticommu- 
tation relations like (7.1.1)-(7.1.31, we may define a quan turn mechanical 
functional derivative: for an arbitrary bosmic functional F [q ( t ) ,  p ( t ) ]  of 
qn(x ,  t) and p,(x, b) at a fixed time t, we define* 

This definition is motivated by the fact that if F [q( l ) ,  p ( t ) ]  is written with 
all q s to the left of all p s, then (7.1.17) and (7.1.18) are respectively just 
the left- and right-derivatives with respect to g" and p,. That is, for an 

' We are herc using a notation that will be adopled henceforth; 11'f(x,y) is a funcchon or two 
classes of variables collectively called x and y,  then F u ( y ) ]  indicatcs a functional that dcpcnds 
on the values o f f  (x. y )  Ior all .r at Iixed y .  By a bosonic functional we mean one in which each 
term contains only even numbcrs of fcrmionic fidds. 
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arbitrary c-number*' variation 69 and S p  of the q s and ps, we have 

For more general functionals we need the definitions (7.1.17) and (7.1.1 8) 
to pin down various signs and equal-time commutators that may appear. 

In particular, Ho is the generator of time- translations on free-particle 
states in the sense that: 

so the free-particle operators have the time-dependence 

We recognize these as the familiar dy namical equations in the Hamiltonian 
formalism. 

The free-particle Hamiltonian is given as always by 

This Ho may be rewritten in terms of the q s and ps at time 1. For instance, 
it is easy to see that for a real scalar field, Eq. (7.1.23) is equal up to a 
constant term to the functional 

To be more precise, using (7.1.7) and the Fourier representation of the 
scalar field 4, we find that Eq. (7.1.24) becomes: 

= / d3k k0  (ot(k)a(k) + 4d3(k - k)) . (7.1.25) 

" Where qa and p, are bosonic or fermionic, 6qn and dp, are understood to commute or anticom- 
mute with all ferrnionic operators, respectively, and to commute with dl bosonic operators. 
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This is the same as Eq. (7.1.23), except for the infinite constant term. Such 
terms only affect the zero of energy, and have no physical significance in 
the absence of Explicit forms for Ho as a functional of the q 
and p variables for other fields will be given in Section 7.5. 

I t  is usual in textbooks on quantum field theory to derive Eq. (7.1.25) as 
a consequence of Eq. (7.1,24), which in turn is derived from a Lagrangian 
density. This seems to me backward, for Eq. (7.1.25) must hold; if 
some assumed free-particle Lagrangian did not give Eq. (7.1.25) up to 
a constant term, we would conclude that it was the wrong Lagrangian. 
Rather, we should ask what free-field Lagrangian gives Eq. (7.1.25) for 
spinless part ides, or more generally, gives the free-particle Hamil tonian 
(7.1.23). This question may be answered by the well-known Legendre 
transformation from the Hamiltonian to the Lagrangian; the free-field 
Lagrangian is given by 

it being understood that p, is replaced everywhere by its expression in 
terms of q" and Qn (and, as we shall see, perhaps some auxiliary fields 
as well). For instance, from the Hamiltonian (7.1.24) and (7.1.7) we can 
derive the free-field Lagrangian for a scalar field: 

Whatever we suppose the complete Lagrangian of the scalar field may be, 
this is the term that must be separated out and treated as a term of zeroth 
order in perturbation theory. A similar exercise may be carried out for 
the other canonical systems described in this section, but from now on we 
shall content ourselves with guessing the form of the free-field Lagrangian 
and then confirming that it gives the correct free-particle Hamiltonian. 

We have seen that various free-field theories can be formulated in 
canonical terms. I t  i s  then a short step to show that the same is true of the 
interacting fields. We can introduce canonical variables in what is called 
the 'Heisenberg picture', defined by 

-f However, changes in such terms due to changes in the boundary conditions for the helds, as 
for instarm quantizing in the space belween parallel plales rather than in infinite space, are 
physically significant, and have even been m e a ~ u r e d . ~  
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where H is the full Hamiltonian. Because this is a similarity transformation 
that commutes with H, the total Hamiltonian is the same functional of 
the Heisenberg picture operators as it was of the y s and ps:  

H [Q, PI = e i H ' ~  i4, p] eiH' = H [q, p]  . 

Also, because Eqs. (7.1.28)-(7-1.29) define a similarity transformation, the 
Heisenberg picture operators again satisfy the canonical commutation or 
anticommutation relations: 

However, they now have the time-dependence 

6 H  
p n ( x ,  t )  = -i[PR(x, t), HI = - 

w ' ( x ,  0 ' 
For instarm, we might take the Hamiltonian tbr a real scalar field as the 
free-particle term (7.1.24) plus the integral of a scalar interaction density 
2, so that in terms o f  Heisenberg-picture variables 

In this case the canonical conjugate to Q is gven by the same formula as 
for free fields : 

However, as we shall see, the relation between the canonical conjugates 
P J x )  and the field variables and their time-derivatives is in general not 
the same as for the free-particle operators, but must be inferred from 
Eqs. (7.1.33) and (7.1.34). 

7.2 The Lagrangian Formalism 

Having seen that various realistic theories may be cast in the canonical for- 
maIism, we must now face the question of how to choose the Hamiltonian. 
As we will see in the next section, the easiest way to enforce Lorentz in- 
variance and other symmetries is to choose a suitable Lagrangian and use 
it to derive the Hamiltmian. There is not much loss of generality in this; 
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given a realistic Hamiltonian, we can generally reconstruct a Lagrangian 
from which it could be derived, by reversing the process that we are 
going to describe here of deriving Hamiltonians from Lagrangians. (The 
derivation of Eq, (7,1.24) gives one example of this reconstruction.) But 
although we can go from Hamiltonians to Lagrangians or Lagrangians 
to Hamiltonians, it is easier to explore physically satisfactory theories by 
listing possible Lagrangians, rat her than Hamiltonians. 

The Lagrangian is, in general, a functional* ~ [ ~ ( t ) , ~ j t ) ]  of a set of 
generic fields Y~{x ,L )  and their time-derivatives q f ( x ,  t) .  The conjugate 
fields Jlf(x, 1) are defined as the variationa.1 derivatives*' 

The equations of motion are 

These field equations can be usefully reformulated as a variational prin- 
ciple. We define a functional of !PL(x) over all spacetime, known as the 
action 

J -.x 

Under an arbitrary variation of '+'(XI, the change in I [ Y ]  is 

Assuming that S y L ( x )  vanishes for t -, +a, we may integrate by parts, 
and write 

We see that the action is stationary with respect to all variations 61' that 
vanish at t + km if and only if the fields satisfy the field equations (7.2.2). 

* Recall that in  he notation we use for f'uncticmals. a functional hke L in which we display 
the variable r is understood to depend on thc fields Y?{(x.t) and */(x,i), with the undisplayed 
variables L and x running over all their values at a fixed valuc of the displayed variablc t .  We 
use upper case Y s and I l  s to indicate that the% are interacting ralher than frce fields. 

.* Because the Ys and $s do  not in general satisfy simple commu~atton or antlcommu~alim 
relations, we cannwt give a simplc dcfinition of the Jimc~imal derivatives wcuring here as we did 
for functional derivatiues with respect to the Qs and P s  in the previous section. Instead. we will 
simply specify that the variational derivatives are what they would hc for c-number variables, 
with minus signs and equal-time commutators or anticommutators supplied as needed to make 
the formulas correct quantum-mechanically. As far as I know. nu important issues hinge on the 
details hcrc. 
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Because the field equations are determined by the functional I[V],  
it is natural in trying to construct a Lorentz-invariant theory to make 
I [Y1 a scalar functional. In particular, since I [Y] is a time-integral 
of L[Y(t), * ( t ) ] ,  we guess that L should itself be a space-integral of an 
ordinary scalar function of Y(x) and dY(x)/Jx~, known as the Lclgrangian 
density 3 : 

so that the action is 

All field theories used in current theories of elementary particles have 
Lagrangians of this form. 

Varying ~ ' ( x )  by an  amount 6 ~ T ( r ,  and integrating by parts, we find 
a variation in L: 

so (with obvious arguments suppressed) 

SL 2 9  
-=- 
d y f  a+s ' 

The field equations (7.2.1) then read 

These are known as the Euler-Lagrange equations. As expected, if 9 is a 
scalar then these equations are Lorentz-invariant. 

In addition to being Lorentz-invariant, the action I is required to be 
real. This is because we want just as many field equations as there are 
fields. By breaking up any complex fields into their real and imaginary 
parts, we can always think of I as being a functional only of a number 
of real fields, say N of them. If I were complex, with independent real 
and imaginary parts, then the real and imaginary parts of the conditions 
that I be stationary (the Euler-Lagrange equations) would yield 2N field 
equations for N fields, too many to be satisfied except in special cases. 
We will see in the next section that the reality of the action also ensures 
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that the generators of various symmetry transformations are Hermitian 
operators. 

Although the Lagrangian formalism makes it easy to construct theories 
that will satisfy Lorentz invariance and other symmetries, to calculate the 
$-matrix we need a formula for the interaction Hamiltonian. In general, 
the Hamilt onian is given by the Legendre transformation 

Although Eq. (7.2.1) does not in general allow Y~ to be expressed uniquely 
in terms of !I!/ and IIr, it is easy to see that Eq. (7.2.10) has vanishing 
variational derivative with respect to Ikf for any *"satisfying Eq. (72.11, 
so in general it is a functional only of Y' and I&. Its variational derivatives 
with respect to these variables are 

where subscripts denote the quantities held fixed in these variational 
derivatives. Using the defining equation (7.2.1) for IIt, this simplifies to 

and 

The equations of motion (7.2.2) are then equivalent to 

It is tempting now to identify the generic field variables V G  and their 
conjugates TIf with the canonical variables Q" and P, of the previous 
section, and impose on them the same canonical commutation relations 
(7.1.30)-(7.1.32), so that Eqs. (7.2.12) and (7.2.13) are the same as the 
Hamiltonian equations of motion (7.1.33) and (7.1.34). This is indeed the 



302 7 The Canonid  Formcllism 

case for the simple example of the real scalar field Q with non-derivative 
coupling. Consider the Lagrangian density 7 

1 y=-- m2 
2 

i?p@Jpo - -@l- #(@) , 
2 

(7.2.14) 

which can be obtained by adding a real function -@(a) of to the 
free-field Lagrangian density found in the previous section. The Euler- 
Lagrange equations here are 

From this Lagrangian density, we calculate a canonical conjugate to @: 

which is the same as Eq. 17-1-36] if we identify @ and I7 with the canonical 
variabks Q and P. The Hamiltonian is now given by Eq. (72.10) as$ 

which we recognize as the Hamiltonian (7.1.35). This little exercise should 
not be regarded as another derivation of this Hamiltonian, but rather as a 
validation of the Lagrangian (7.2.14) as a possible theory of scalar fields. 

Matters are not always so simple. We have already seen in the previous 
section that there are field variables, such as the time component of a 
vector field or the Hermitian conjugate of a Dirac field, that are not 
canonical field variables Q" and do not have canonical conjugates; yet 
Lorentz invariance dictates that these must appear in the Lagrangians for 
the vector and Dirac fields. 

From the point of view of the Lagrangian formalism, the special char- 
acter of field variables like the time component of a vector field or the 
Hermitian conjugate of a Dirac fieid arises from the fact that although 
they appear in the Lagrangian, their time-derivatives do not. We shall 
denote the field variables ~ h h o s e  time-derivatives do not appear in 
the Lagrangian as Cr;  the remaining independent field variables are the 

- - 

7 We do not include a frce constant facbr in thc term -$ d,,U@W, because any such constant if 
positive can be absorbed in to  the normalixation of m. we shall see, a negalive constant here 
would lead to a Hamiltonian that is uot hounded below. The constant m is known as thc hare 
mass. Thc most general Lagrangian lhat satisfies the principle of renormalizitbility (discussed in  
Chapter 12) i s  of h i s  form, with X ( Q )  a quartic polynomial in 0. 
I n  order for H lo be interpreted as an energy, it should be bounded below. The positivity of thc 
first Iwo terms shows that we guessed correctly as to the sign in the lint term in Eq. (7.2.14). The 
remaining condition i s  that $rn2*' $ X(@) must be bounded below as a function of 0. 
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canonical variables Q". The Q" have canonical conjugates 

and satisfy the commutation relations (7.1.30)47,1.32), but there are no 
canonical conjugates for the C'. Because 6 ~ 3 6 ~ '  = 0, the Hamiltonian 
(7.2.10) is in general 

but  this is not yet useful until we express the C r  and Q[ in terms of the 
Q s  and P s. The equations of motion of the Cy involve only fields and 
their first timederivatives 

in the simple cases to be discussed in this chapter, these equations together 
with Eq. (7.2.18) can be solved to give the Cr and Q' in terms of the Q s  
and P s. Section 7.6 shows how in such cases one can avoid the task of 
actually solving for the C' and Q'. In gauge theories like electrodynamics 
other methods must be used: either choosing a particular gauge, as in 
Chapter 8, or the more modern covariant methods to  be dkcussed in 
Volume 11. 

Once we have derived a Hamiltonian as a functional of the Heisenberg 
picture Q s and P s, to use perturbation theory we must make a transition 
to the interaction picture. The Hamiltonian is time-independent, so it can 
be written in terms of the P, and Qn at 1 = 0, which are equal to the 
corresponding operators p, and q" in the interaction picture at t = 0. The 
Hamiltonian derived in this way may then be expressed in terms of the 
q s  and ps of the interaction picture, and split into two parts, a suitable 
fresparticle term Ho and an interaction V .  Final1 y, the time-dependence 
equations (7.1.21) and (7.1.22) and the commutation or anticommutation 
relations (7.1.1)-(7.1.2) are used to express the q s and p s in V(i) as linear 
combinations of annihilation and creation operators. 

We shall present a number of examples of this procedure in Section 
7.5; for the moment we will gyve only one example of the simplest type, 
the scalar field with Hamiltonian (7.2.17). We split H into a free-particle 
term and an interaction 
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Here @ and II are taken at the same time t, and H is independent of t ,  
though Ho and V usually are not. 

We now pass to the interaction representation. Taking t = 0 in 
Eqs. (7.2.22) and (7.2.231, we can simply replace @, ll with the inter- 
action picture variables 4, n, since they are defined by Eqs. (7.1-28) and 
(7.1.29) to be equal at that time. To calculate the interaction V(t) in the 
interaction picture, we apply the similarity transformation (3.5.5) 

= / d3x H'(#(x, t ) )  . (7.2.24) 

The same transformation applied to Ho leaves it constant: 

The relation between n and 4 is dictated by Eq. (7.1.21) 

(This happens to be the same relation as in Eq. (7.2.16), but as we shall 
see this is not to be expected in general.) Also, the equation of motion for 
# is dictated by Eq. (7.1.22) : 

which together with Eq. (7.2.26) yields the field equations 

(0 - m2)(b(x) = 0 . (7.2.28) 

The general real solution may be expressed as 

with = understood, and a(p) some as-yet-unknown operator 
function of p. Eq. (7.2.26) then gives the canonical conjugate as 

In order to get the desired commutation relations, 



7.2 The Lagrangian Formalism 

we must take the as  to satisfy the familiar commutation relations 

Also, we have ali-eady shown in the previous section that using these 
expansions in Eq. (7.2.25) gives the usual formula (4.2.11) for the free- 
particle Hamiltonian, up to an inconsequential additive constant. As 
remarked before, these results should not be regarded so much as an 
alternative derivation of Eqs. (7.2.241, (7.2.34), and (7.2.35) (which were 
obtained in Chapter 5 on quite other grounds) but rather as a validation 
of the first two terms of Eq. (7.2.14) as the correct free-particle Lagrangian 
for a real scalar field. We can now proceed to use perturbation theory to 
calculate the $-matrix, taking (7.2.24) as V ( t ) ,  with the field d ( x )  given by 
Eq. (7.2.29). 

The procedures illustrated here will be carried out for examples that 
are more complicated and more interesting in Section 7.5. 

In  considering the various possible Lagrangian densities for physical 
theories it is common to apply integration by parts, treating as equivalent 
any Lagrangian densities that differ only by total derivatives i?,,Pi. It is 
obvious that such total derivative terms do not contribute to the action 
and hence do not affect the field equations. I t  is also obvious that a 
space-derivative term V F in the Lagrangian density does not contribute 
to the Lagrangian and hence does not affect the quantum theory defined 
by the ~ a ~ r a n ~ i a n . 7  What is less obvious and worth noting here is that 
a time-derivative a o 9 0  in the Lagrangian density also does not affect the 
quantum structure of the theory. To see this, let's first consider the effect 
of adding a term to the Lagrangian of the more general form 

where D is an arbitrary n- and x-dependent functional of the values of Q 
at a given time. This changes the formula for the conjugate variables P ( t )  
as functionals of Qrt) and ~ ( t )  by the amount 

It follows that there is no change in the Hamiltonian as expressed as a 

1 This is under the usual assumption, that the fields vanish at infinity. These tesulls do not 
necessary apply when we allow fields of different topology, as dtscussed in Volumc 11. 
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functional of the Q ( t )  and &t) : 

Hence also there is no change in the Hamiltmian as expressed as a 
functional of the old canonical variables and P,. However, the Hamil- 
tonian is not the same functional of the new canonical variables Qn and 
P, +AP, as it was of the Qn and P,, and in a theory described by the new 8 

Lagrangian 9 + A 9  it is the new canonical variables Q" and P, + AP, 
rather than the Qn and P, that would satisfy the canonical commutation 
relations. The commutators of the Qn with each other and of the with 
the P, are given by the usual canonical relations, but the commutators of 
the P, with each other are now 

In general this doesn't vanish, but if the added term in the Lagrangian is 
a total time-derivative 

then D in Eq. (7.2.36) is of the special b r m  

In this case the commutator (7.2.39) vanishes, so the variables Q" and 
P, satisfy the usual commutation relations. We have seen that a change 
of the form (7.2.36) in the Lagrangian does not change the form of the 
Hamiltonian as a functional of the Qn and P,, and since, as we have now 
shown, the commutation relations of these variables are also unchanged, 
the addition to the Lagrangian of the term (7.2.36) has no effect on the 
quantum structure of the theory. Different Lagrangian densities obtained 
from each other by partial integration may therefore be regarded as 
equivalent in quantum as well as dassical field theory. 

7.3 Global Symmetries 

We now come to the real point of the Lagrangian formalism, that it 
provides a natural framework for the quantum mechanical implementation 



of symmetry principles. This is because the dynamical equations in 
the Lagrangian formalism take the form of a variational principle, the 
principle of stationary action. Consider any infinitesimal transformation 
of the fields 

~ ' ( x )  + Y!'(x) + i~ F'(x) (7.3.1) 

that leaves the action 17-2-31 invariant : 

{With c a constant, such symmetries are known as gIubal symmetries. In 
general, 9' depends on the fields and their derivatives at x.) Of course 
Eq. (7.3.2) is automatically satisfied for all infinitesimal variations of the 
fields if the fields satisfy the dynamical equations; by an infinitesimal 
symmetry transformation we mean one that leaves the action invariant 
even when the dynamical equations are not satisfied. If we now consider the 
same transformation with F an arbitrary function of position in spacetime ; 

then, in general, the variation of the action will not vanish, but it will 
have to be of the form 

in order that it should vanish when e{x)  is constant. If we now take 
the fields in I[Yj to satisfy the field equations than I is stationary with 
respect to arbitrary field variations that vanish at large spacetime distances, 
including variations of the form (7.3.3), so in this case (7.3.4) should vanish. 
Integrating by parts, we see that P I X )  must satisfy a conservation law: 

It follows immediately that 

where 

There is one such conserved current P and one constant of the motion 
F for each independent infinitesimal symmetry transformation. This rep- 
resents a general feature of the canonical formalism, often referred to as 
Noether's theorem: symmetries imply conservutic~n h w s .  

Many symmetry transformations leave the Lagrangan and not just 
the action invariant. This is the case, for instance, for translations and 
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rotations in space and also isospin transformations and other internal 
symmetry transformations, though not for general Lorentz transforrna- 
tions. When the Lagrangan is invariant we can go further, and write an 
explicit formula for the conserved quantities F. Consider a field variation 
(7.3.3) in which ~ ( x )  depends on t but not x. In this case the variation in 
the action is 

The requirement that the Lagrangian be invariant under this transforma- 
tion when F is a constant yields 

so for general fields (whether or not the field equations are satisfied) the 
variation in the action is 

Comparing this with Eq. (7.3.4) gives 

Using the symmetry condition (7.3.91, the reader can easily check that 
this F is indeed time-independent for any fields that satisfy the dynamical 
equations (7.2.2). 

Other symmetry transformations such as isospin rotations leave not 
only the action and the Lagrangian invariant but also the Lagrangian 
density. In such cases we can go even further, and write an explicit 
formula for the current P { x ) .  Writing the action as in Eq. (7.2.6) as the 
integral of the Lagrangian density, its variation under the transformation 
(7.3.3) with a general infinitesimal parameter ~ ( x )  is 

The invariance of the Lagrangian density when 6 is a constant requires 
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that 

so for arbitrary fields the variation of the action is 

Comparison with Eq. (7.3.4) shows that 

Using the symmetry condition (7.3.13), it is easy to see directly that d,JJ1 
vanishes when the fields satisfy the Euler-Lagrange equations (7.2.9). Note 
also that the integral of the time component of the current (7.3.15) has 
the previously derived value (7.3.1 1 j. 

So far everything we have said would apply to classical as well as quan- 
tum mechanical field theories. The quantum properties of the conserved 
quantities F are most easily seen for symmetries of the Lagrangian (not 
necessarily the Lagrangian density) that transform the canonical fields 
Qn(x,  t )  (that is, those of the I' whose time derivatives appear in the 
Lagrangian) into x-dependent functionals of themselves at the same time. 
For such transformations, we have 

As we shall see, infinitesimal spatial translations and rotations as we11 as 
a11 infinitesimal internal symmetry transformations are of the form {7.3.1), 
(7.3.161, with .Fn a linear functional of the Q", but we will not need to 
assume here that the symmetry is linear. For all such symmetries the 
operator F is not only conserved; it also acts in quantum mechanics as a 
generator of this symmetry. 

To see this, note first that when !PP is a canonical field Qn, the functional 
derivative dI , /dyL  is equal to the canonical conjugate P,, while when Y' 
is an auxiliary field Cr, this functional derivative vanishes; hence we may 
rewrite Eq. (7.3.11) in the form 

To calculate the commutator (not anticommutator) of F with a canonical 
field Qm(x, t) at an arbitrary time &, we can invoke Eq. (7.3.6) to evaluate F 
as a functional of the Q s  and P s  at the time t ,  and then use the equal-time 
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canonical commutation relations (7.1.30)<7.1.32) to obtain' 

It is in this sense that F is the generator of the transfbrmation with 
Eq. (7.3.16). Eq. (7.3.17) and the canonical commutation rules give also 

Where Fm is linear, Eq. (7.3.19) tells us that P, transforms contragredicntly 
to Q". 

As a first example, consider the symmetry transformation of spacetime 
translation : 

This is of the form (7.3.1 j, with four independent parameters EP and four 
corresponding transformation functions 

In consequence we have four independent, conserved currents, convention- 
ally grouped together in the energy-mt~msntum tensor T P ,  : 

from which we can derive time-independent quantities as the spatial 
integrals of the time components of the translation 'currents' (not to be 
confused with the canonical conjugate field variables P,(x, t)) :  

The Lagrangian is invariant under spatial translations, so in accordance 
with the above general results we can conclude that the spatial components 
of P, take the form 

p = -  1 d 3 x  P,(x, ~)vQ"(K I )  . (7.3.25) 

Using the equal-time commutation relations (7.1.30)-(7.1.32), we also 
find the commutator of this operator with the canonical fields and 

* We are here assuming that for Q bosonic ur krmionic thc variation 9" is also respeclively 
bosonic or fermionic, s o  that F is busonic. Thc only exceptions are certain symme~ries known 
as supcrsymmetries, for which F is fcrmionic and r7.3.18) is an anticnmrnutatnr if P" is also 
ferrnionic. 



7.3 Global Symmetries 31 1 

conjugates : 

It foHows that for any hnction B of Qs and P s that does not also depend 
explicitly on x, we have 

These results show that the operator P is indeed the generator of space 
translations. 

In contrast, time-translations do not leave the Lagrangian L(t) invariant. 
However, we already know the generator of time-translations; it is the 
Hamiltonian P" = H ,  which as we know satisfies the commutation relation 

[H , Y(x, t ) ]  = -i$(x, t) (7.3.29) 

for any function Fi of Heisenberg picture operators. 
If we further assume that the Lagrangian is the integral of a Lagrangian 

density, then we may also obtain an explicit formula for the energy- 
momentum tensor Tp,. However, the Lagrangian density 9 ( x )  is not 
invariant under spacetime translations, so we cannot use Eq. (7.3.15) here. 
Instead, note that the change in the action under a spacetime-dependent 
translation 

The Euler-Lagrange equations (7.2.9) show that the terms proportional 
to e add up to &V,Y, so 

Integrating by parts, we see that this takes the form of Eq. (7.3.4) 

with 'currents' 

As a check, we 
are the same as 

may 
our 

note that the spatial components of Eq. (7.3.23) 
previous formula (7.3.25) for P, while for p = 0 
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Eq, (7.3.23) gives the usual formula for the Hamiltonian: 

(A warning: the tensor T p v  obtained by raising the second index in 
Eq. (7.3.34) is not in general symmetric, and therefore cannot be used as 
the right-hand side of the field equations of general relativity. The correct 
energy-momentum tensor to use as the sour= of the gravitational field is 
the symmetric tensor W V  introduced in the next section.) 

In many theories there are also one or more symmetry principles 
that state the invariance of the action, under a set of linear coordinate- 
independent transformations of the canonical fields 

together with a set of suitable transformations on any auxiliary fields Cr: 

Here t ,  and 2, are sets of Hermitian matrices furnishing some representa- 
tions of the Lie algebra of the symmetry group, and we sum over repeated 
group indices a, b, etc. (For instance, in electrodynamics there is such 
a symmetry, for which the one matrix tn ,  is diagonal, with the charges 
carried by each field on the main diagonal.) From any such symmetry, we 
can infer the existence of another set of conserved currents J i :  

whose time components are the densities of a set of time-independent 
operators 

When the Lagrangian as well as the action is invariant under the trans- 
formation (7.3.36), Eq. (7.3.1 I) provides an explicit formula for the T, : 

The equal-time commutation relations here give 

{Where t, is diagonal, this tells us that Qn and P, respectively lower and 
raise the value of T,  by an amount equal to the nth diagonal element 
of fa.) Using these results, we can calculate the commutator of T, with 
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another generator Tb:  

[To 3 Thl- = i / d3x [- P m  ( f n I m n  ( t b ) n k  Q~ + gn ( f h ) n k ( f o ) k n ~ m ]  . 

(7.3.43) 
Thus, if the matrices t, form a Lie algebra with structure constants firhcy 

then so do the quantum operators T,: 

This confirms that the quantities (7.3.40) are correctly normalized to 
qualify as generators of the symmetry group. 

Where the Lagrangian is the integral of a Lagrangian density which is 
invariant under (7.3.36) and (7.3.37) we can go further, and use Eq. (7.3.15) 
to provide an explicit formula for the currents associated with these global 
symmetries : 

As an illustration, suppose we have two real scalar fields of equal mass, 
with Lagrangian density 

2 2 Y = - f dPOlSWl - t m  8, - t d,,@ldp@2 - j m2@ - &(@: + 0:). 
(7.3.47) 

This is invariant under a linear transformation like (7.3.36): 

so there is a conserved current (7.3.46) : 

The explicit formula (7.3.46) for the current can be used to derive other 
useful commutation relations. In particular, since the Lagrangian density 
does not involve time-derivatives of the auxiliary fields, we have 

We can then derive the equal-time commutators of general fields not only 
with the symmetry generators T,, but also with the densities J : :  

If the auxiliary fields are constructed as local functions of the P s  and Q s  
in such a way that they transform according to a representation of the 
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symmetry algebra with generators z,, then also 

We often summarize Eqs. (7.3.49) and (7.3.51) in the single commutation 
relation 

Commutation relations like (7.3.49)-(7.3.51) will be used in Chapter 10 to 
derive relations called Ward identities for matrix elements involving the 
current J f i .  

7.4 Lorenbz Invariance 

We are now going to show that the Lorentz invariance of the Lagrangian 
density implies the Lorentz invariance of the $-matrix. Consider an 
infinitesimal Lorentz transformation 

According to the analysis or  the previous section, the invariance of the 
action under such transformations tells us immediately that there are a 
set of conserved 'currents' .,iftPPv : 

one current for each independent component of wP,. The integrals of 
the time-components of these 'currents' then provide us with a set of 
time-independent tensors: 

The 3)" will turn out to be the generators of the homogeneous Lorentz 
group. 

We would like to have an explicit formula far the tensor JW", but 
Lorentz transformations act on the coordinates and hence cannot leave 
the Lagrangian density invariant, so we cannot immediately use the results 
of the previous section. However, translation invariance allows us to 
formuIate Lorentz invariance as a symmetry of the Lagrangian density 



under a set of  transfbrmations on the fields and field-derivatives alone. 
The fields undergo the matrix transformation 

where j,, are a set of matrices satisfying the algebra of the homogeneous 
Lorentz group 

For example, for a scalar field # we have d #  = 0, so f,,, = 0, while for 
an irreducible field of type (A, B )  we have 

where .d and 39 are spin matrices for spin A and B, respectively. We 
specially note that for a covariant vector field, 6 V, = IO,"~, so here 

The derivative of a field that transforms as in Eq. (7.4.7) transforms like 
another such field, but with an extra vector index 

The Lagrangian density is assumed to be invariant under the combined 
transformations Eqs. (7.4.7) and (7.4.91, so 

Setting the coefficient of diV equal to zero gives 

Using the Euler-Lagrange equations (7.2.91, and our formula (7.3.34) for 
the energy-momentum tensor Ti,,,, we may write this as 

This immediately suggests the definition of a new energy-momentum 
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tensor, known as the Belinjhnte t e n s ~ r : ~  

The quantity in square brackets is manifestly antisymmetric in p and K, 
so W v  satisfies the same conservation law as T p v ,  

a p U  = o . (7.4.12) 

For the same reason, when we set p = 0 in Eq. (7.4.11) the index K runs 
over space components only, so the derivative term here drops out when 
we integrate over all space 

where P O  = H ,  Thus WV can be regarded as the energy-momentum 
tensor, just as well as TPv. However, Eq. (7.4.10) tells us that, unlike PV, 
the Belinfante tensor @pi' is not only conserved but also symmetric: 

I t  is OFv rather than T"' that acts as a source of the gravitational field.3 
In consequence of the symmetry of WV,  we may construct one more 
conserved tensor density: 

This is conserved, in the sense that 

aA-&yb = OPV - ew = 0 (7.4.16) 

Thus Lorentz invariance allows us to define one more time-independent 
tensor 

The rotation generator Jk = e i j k j i j / 2  is not only time-independent, but 
also has no explicit time-dependence, so it commutes with the Hamiltmian 

Also, applying Eq. (7.3.28) to the function @OY, we have 



and therefore 

On the other hand, the 'boost' generator Kk - J ~ O ,  though time-independ- 
ent, does explicitly involve the time coordinate 

or more explicitly 

K = - tP + d3x x o"(x, t )  . 1 (7.4.20) 

Since this is a constant, we have 0 = K = P + I[H,K], and therefore 

Also, applying Eq. (7.3.28) again gives 

and there fore 

For any reasonable Lagrangian density, the operator (7.4.20) will be 
'smooth' in the sense used in Section 3.3, ix., the interaction terms in 
eiHoL J d3x x @'(x, O)e-iH~f vanish' for t -+ f oc. (Note that the interaction 
terns in eiHot J d3x O " { X , O ) ~ - ~ ~ O ~  must vanish for r 4 f m in order to 
allow the introduction of 'in' and 'out' states and the S-matrix.) With this 
smoothness assumption and the commutation relation (7.4.21) in hand, we 
can repeat the arguments of Section 3.3, and conclude that the S-matrix 
is Lorentz-invariant. 

The same arguments were also used in Section 3.3 to verify that the 
remaining commutation relations of the Lorentz group, those of the JiV 
with each other, take the proper form. This can also be shown directly 
for the commutators of the rotation generators, which here take the form 

Since the Lagrangian density does not depend on the time-derivatives of 
the auxiliary fields, and the rotation generators do not mix canonical and 

' When we say that some interaction-picture operator vanishes for r 4 &LC, we mean that its 
matrix elements between states that are smooth superpositions of energy eigenstates vanish in 
this limit. 
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auxiliary fields, this can also be written as a sum over canonical fields 
alone : 

n 
~ ' j  = / d3x f', (x'a,~' - x j a i ~ "  - i (2'') ,v") . (7.4.24) 

It follows immediately then from the canonical commutation relations 
that 

These results can be used to derive the usual commutation relations of 
the ~ ' j  with each other and other generators.*' I F  there are no auxiliary 
fields then the same arguments may be applied to the 'boost' generators to 
complete the demonstration that the PiL and J1'" satisfy the commutation 
relations of the inhomogeneous Lorentz group. However the 'boost' 
matrices 9'' will in general mix canonical and auxiliary fields (such as 
the components vi and Ifo of a vector field), so the direct proof of the 
commutation relations of the J~~ with each other has to be given on a 
case by case basis. Fortunately, this is not needed for the proof of the 
Lorentz invariance of the S-matrix given in Section 3.3. 

7.5 Transition to Interaction Picture: Examples 

At the end of Section 7.2 we showed how to use the Lagrangian of a 
simple scalar field theory to derive the structure of the interaction and 
the free fields it contains in the interaction picture. We will now turn to  
somewhat more complicated and revealing examples. 

Scuhr fiedd, Derivative Coupling 

First let's consider a neutral scalar field, but now with derivative coupling. 
We take the Lagrangian as 

2 2 Y = - 18 2 P @P@ - @ a) - Jpdp@ - X(@),  (7.5.1) 

where J p  is either a c-number external current (unrelated to currents JP 

introduced earlier), or a functional of various fields other than @ (in which 
case terms involving these other fields need to be added to (7.5.1)). The 

" Also, sirkt ~~j commutes with H and pnQ", it commutes wilh L. Thc commutator of JG with 
 he auxiliary fields musl thuf bc consistent with the rotational invariance of L. 
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canonical conjugate to 4 is now 

and the Hamiltonian is 

H = d3x[ I I@-A?]  S 

Collecting terms, we can write this as 

H = Ho + V, (7.5.3) 

Ho = 1 d3x [ jI12 + i(v@12 + $I~@~] , (7.5.4) 

As explained in Section 7.2, we can pass to the interaction picture by 
simply replacing Jl and Q, with 7c and C$ (and likewise for any fields in the 
current JrL, though we will not bother to indicate this explicitly): 

The free-particle Hamiltonian is just the same as Eq. (7.2.25), and leads 
as in Section 7.2 to Eqs. (7.226)-(7.2.35). Indeed, whatever the total 
Hamiltonian may be, we must take (7.5.6) as the part we split off and call 
the free-particle part, with the remainder called the interaction, because 
as we have seen it is this form of the free-particle Harniltanian that leads 
to the correct expansion (7.229) of the scalar field in terms of creation 
and annihilation operators that satisfy the commutation relations (7.2.341, 
(7.2.35). The last step is to replace x in the interaction Hamiltonian with 
its value 4 in the interaction picture (nor its value 4-j0 in the Heisenberg 
picture) : 
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The extra non-invariant term in Eq. (7.5.8) is just what we saw in Section 
6.2 is needed to cancel a non-invariant term in the propagator of a#. 

Vechw Field, Spin One 

Similar results are obtained in the canonical quantization of the vector 
field Vp for a particle of spin one. Let's here keep an open mind, and 
write the Lagrangian density in a fairly general form 

~ = - - - . ~ a p ~ ~ w ~ -  2 j ya,v,aVv~- ( m 2 ~ ~ ~ - ~ p ~ V ,  !J (7.5.9) 

where q/?, and m2 are so far arbitrary constants, and J ,  is either a c- 
number external current, or an operator depending on fields other than 
V p ,  in which case additional terms involving these fields must be added 
to 2. The Euler-Lagrange field equations for yt read 

Taking the divergence gives 

This is the equation for an ordinary scalar field with man rn2/(ix + 8 )  
and source a n ~ v l ( a  + P )  We want to describe a theory containing only 
particles of spin one, not spin zero, so to avoid the appearance of divA as 
an independently propagating scalar field, we take a = -/3, in which case 
anvi can be expressed in terms of an external current or other fields, as 
-dl~'//m2. The constant o: can be absorbed in the definition of V,, so we 
can take a! = -p = 1, and therefore 

where 

The derivative of the Lagrangian with respect to the time-derivative of 
the vector field is 

This is non-vanishing for y a spatial index i, so the V' are canonical fields, 
with conjugates 

ni = F ~ O  = vi + aivO . (7.5.14) 

On the other hand F" = 0, so V O  does not appear in the Lagrangian, 
and v0 is therefore an auxiliary field. This causes no serious difficulty: the 
fact that ~ ~ F / E V ~  vanishes means that the field equation for V' involves 
no second time-derivatives, and can therefore be used as a constraint that 
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eliminates a field variable. Specifically, the Euler-Lagrange equation for 
v = O i s  

2 0 d i ~ ' O = m  V +P (7.5.1 5 )  

or using Eq. (7.5.14) 

Now let us calculate the Hamil tonian H = J d3x (Il v - Y) for this 
theory. Eq. (7.5.14) allows us to write v in terms of II and .J0: 

Again, we split this up into a free-particle term Ho and interaction V:  

and pass to the interaction picture by replacing the Heisenberg-picture 
quantities V and II with their interaction-picture counterparts v and 
7t (and, though not shown explicitly, likewise for whatever fields and 
conjugates are present in J" : 

The relation between n and v i s  then 

+ = GHob, x T T )  = n - ~ - * v ( v .  n) (7.5.20) 
67~ 

and the 'field equation' is 

n = -  m d v ,  n) 
= +V'V - V ( V .  v) - m 2 v .  (7.5.21) 

6 v 
Since V O  is not an independent field variable, i t  is not related by a 
similarity transformation to any interaction-picture object vo. Instead, we 
can invent a quantity 
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Eq. (7.5.20) then allows us to write n as 
0 x = i + V v  . (7.5.23) 

Inserting this in Eqs. (7.5.22) and (7.5.21) gives our field equations in the 
form 

v2u0 + V . i, - m2u0 = 0 ,  
v 2 v  - v p  . V) -+-- vep - m2v = 0 . 

These can be combined in the covariant form 

,p - Pi7v~v - m2vp = 0 . (7.5.24) 

Taking the divergence gives 

2,J" = 0 

and hence 

A real vector field satisfying Eqs. (7.5.25) and (7.5.26) can be expressed as 
a Fourier transform 

where = d m ;  the di(p, o) for o = + l  , 0, -1 are three independent 
vectors satisfying 

pc(@(p, 0) = 0 (7.5.28) 

and normalized so that 

x eqp, o)eV*(p, 0) = qliY + plLp"/m2 ; (7.5.29) 
u 

and the a ( p , ~ )  are operator coefficients. It is straightforward using 
Eqs. (7.5.23), (7.5271, and (7.5.29) to calculate that v and x satisfy the 
correct commutation relations 

[vi(x, t), nj(y, r)] = i 6, d3(x - y) , 

[ci(x, t ) ,  U ~ X ,  t ) ]  = [ni(x, t ) +  d(x, t)] = 0 , (7.5.30) 

provided that a(p,a) and a) satisfy the commutation relations 
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We already know that the vector field for a spin one particle must 
take the form (7,5271, so our derivation of these results serves to verify 
that Eq. (7.5.18) gives the correct free-particle Hamiltonian for a massive 
particle of spin one. It is easy to check also that Eq. (7.5.18) may be written 
(up to a constant term) in the standard form of a free-particle energy, as 

J d 3 p  at(p, o)a(p,o). Finally, using Eq. (7.5.22) in Eq. (7.5.191 yields 
the interaction in the interaction picture 

The extra non-invariant term in Eq. (7.5.33) is just what we found in 
Chapter 6 is needed to cancel a non-invariant term in the propagator of 
the vector field. 

Dirac fwld,  Spin One Half 

For the Dirac field of a particle of spin 112, we tentatively take the 
Lagrangian as 

u = + m)\Y - ~ ( q ,  V) (7.5.34) 

with &@ a real function of and Y. This is not real, but the action is, 
because 

q y w p ~  - ( ~ y v p v } +  = q f a P Y  + ( 3 p ~ ] l l w  = ~ J Y ~ V )  . 

Hence the field equations obtained by requiring the action to be stationary 
with respect to 9 are the adjoints of those obtained by requiring the action 
to be stationary with respect to Y, as necessary if we are to avoid having 
too many field equations. The canonical conjugate to Y is 

so we should not regard Y as a field like Y, but rather as proportional to 
the canonical conjugate of Y. The Hamiltonian is 

We write this as 

where 
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We now pass to the interaction picture. Since Eq. (7.5.35) does not 
involve the time, the similarity transformation (7.1.281, (7.1.29) yields 
immediately 

0 n = - q y  . (7.5.39) 

Likewise, Ho and V ( t )  can be calculated by replacing Y and ll with y 
and 7~ in Eqs. (7.5.37) and (7.5.38). This gives the equation of motion 

or more neatly 

(;lpi3, + m)y, = 0 .  

(The other equation of motion, k = - b ~ ~ / d ~ p ,  yields just the adjoint of 
this one.) Any field satisfying Eq. (7.5.41) can be written as a Fourier 
transform 

where = d m ;  a(p, a) and l ~ f ( ~ , o )  are operator coefficients; and 
u(p, f )  are the two independent solutions of 

and likewise 

normalized so that* 

In order to obtain the desired anticommutators 

' The matrix iyfip,, has eigenvalu~s Lm. so L i i  and ZvE must be proporlional to the projection 
matrices ( - P f P p , ,  + m ) / 2 m  and {i.)"(, + m)/2m, respectively. The proportionality factor may be 
adjusted up to a sign by absorbing i t  in rhc definition of u and v. The overall sign is determined 
by positivity: Tr Zeiifi = h t u  and Tr CtlEfi = CU'~ must be positive. 
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we must adopt the anticommutation relations 

and their adjoints. These agree with the results obtained in Chapter 5, 
thus verifying that (7.5.37) is the correct free-particle Hamiltonian for spin 
i. In terms of the as and bs, this Hamiltonian i s  

We can rewrite this as a more conventional free-particle Harniltonian, plus 
another infinite c-numberb* 

The c-number term in Eq. (7.5.52) is only important if we worry about 
gravitational phenomena ; otherwise here, as for the scalar field, we can 
throw it away, since it only affects the zero of energy with respect to 
which all energies are measured. With this understanding, Ho is a positive 
operator, just as for bosuns. 

7.6 Constraints and Dirac Brackets 

The chief obstacle to deriving the Hamiltonian from the Lagrangian is 
the occurrence of constraints. The standard analysis of this problem is 
that of ~ i r a c , ~  whose terminology we will follow here. Dirac's analysis is 
not really needed for the simple theories discussed in this chapter, where 
it is easy to identify the unconstrained canonical variables. We shall use 
the theory of a real massive vector field for illustration here, returning to 
Dirac's approach in the next chapter, where it will be actually useful. 

Primmy constmirats are either imposed on the system (as when in the 
next chapter we choose a gauge for the electromagnetic field) or arise from 
the structure of the Lagrangian itself. For an example of the latter type, 
consider the Lagrangan (7.5.11) of a massive vector field V p  interacting 

** Note the negative sign of the c-number term. The conjectured symmetry known as supe7symmetry4 
connects the numbers of boson and fcrmion fields, in such a way that the c-numbers 10 Ho all 
cancel. 
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with a current J,:  

where 

Suppose we try to treat all four components of VJ1 on the same basis. We 
should then define the conjugates 

We immediately find the primary constraint: 

More generally, we encounter primary constraints whenever the equations 
I l l  = ~L/&T' cannot be solved to give all the &'l" (at least locally) 
in terms of I I f  and Y'. This will be the case if and only if the matrix 
62~/6(d0'l") S(aoYm) has vanishing determinant. Such Lagrangians are 
called irregular. 

Then there are secondary constraints, which arise from the requirement 
that the primary constraints be consistent with the equations of motion. 
For the massive vector field, this is just the Euler-Lagrange equation 
(7.5.16) for v': 

Here we are finished, but in other theories we might encounter further 
constraints by requiring consistency of the secondary constraints with the 
field equations, and so on. The distinction between primary, secondary, 
etc. constraints is not important; we will treat them all together here. 

There is another distinction between certain types of constraint that is 
more important. The constraints we have found for the massive vector 
field are of a type known as second uluss, for which there is a universal 
prescription for the commutation relations. To explain the distinction 
between first and second class constraints, and the prescription used to 
deal with second class constraints, it is useful first to recall the definition 
of the Poisson brackets of classical mechanics. 

Consider any Lagrangian L(Y,Y) that depends on a set of variables 
Ya(t) and their time-derivatives y U ( t ) .  (The Lagrangians d quantum field 
theory are a special case, with the index a running over all pairs of G and 
x.) We can define canonical conjugates for aII of these variables by 
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The IIs and Vs will in general not be independent variables, but may 
instead be related by various constraint equations, both primary and 
secondary. The Poisson bracket is then defined by 

with the constraints ignored in calculating the derivatives with respect 
to Yu and n,. In particular, we always have Wu,nblp = 6;. (Here 
and below all fields are taken at the same time, and time arguments are 
everywhere dropped.) These brackets have the same algebraic properties 
as comrnu tators : 

including the Jacobi identity 

Ef we could adopt the usual commutation relations ['Y", IIh] = id;, 
[Yo, vh] = [II,, IIb] = 0, then the commutator of any two functions 
of the 'Ps and ns would be just [A, B] = i[A, B ] p .  But the constraints do 
not always allow this. 

The constraints may in general be expressed in the form X,V = 0, where 
the 3 1 ~  are a set of functions of the Y s  and rIs. Because we are including 
secondary constraints along with the primary constraints, the set of all 
the constraints i s  necessarily consistent with the equations of motion 
A = [A, H ]  p, and therefore 

when the constraint equations X N  = 0 are satisfied. 
We call a constraint j r s t  class i f  i t s  Poisson bracket with all the other 

constraints vanishes when (after calculating the Poisson brackets) we im- 
pose the constraints. We shall see a simple example of such a constraint in 
the quantization of the electromagnetic field in the next chapter, where the 
first class constraint arises from a symmetry of the action, electromagnetic 
gauge invariance. In fact, the set of first class constraints ;CN = 0 is always 
associated with a group of symmetries, under which an arbitrary quantity 
A undergoes the infinitesimal transformation 

(In field theory these are local transformations, because the index N con- 
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tains a spacetime coordinate.) Eq. (7.6.1 1) shows that this transformation 
leaves the Hamiltonian invariant, and for first class constraints it also re- 
spects all other constraints. Such first class constraints can be eliminated 
by a choice of gauge, or treated by gauge-invariant methods described in 
Volume 11. 

After all of the first class constraints have been eliminated, the re- 
maining constraint equations X N  = O are such that no linear combination 
CN uNhN, xMlp of the Poisson brackets of these constraints with each 
other vanishes. It follows that the matrix of the Poisson brackets of the 
remaining constraints is non-singular : 

where 

Constraints of this sort are called second class. Note that there must always 
be an even number of second class constraints, because a n  antisymmetric 
matrix of odd dimensionality necessarily has vanishing determinant. 

As we have seen, in the case of the massive real vector field the 
constraints are 

where 

The Poisson bracket of these constraints is 

and, of course, 

This 'matrix' is obviously non-singular, so the constraints 17.6.15) are 
second class. 

Dirac suggested that when all constraints are second class, the commu- 
tation relations will be given by 

where IA,BlD is a generalization of the Poisson bracket known as the 
Dirao bracket : 

(Here N and M are compound indices inchding the position in space, 



7.6 Constrainis and Dirac Brackets 329 

taking values like 1, x and 2, x in the vector field example.) He noted 
that the Dirac bracket like the Poisson bracket satisfies the same algebraic 
relations as the commutators 

and also the relations 

which make the commutation relations (7.6.19) consistent with the con- 
straints XN = 0. Also, the Dirac brackets are unchanged if we replace the 

with any functions & for which the equations = 0 and y~ = 0 
define the same submanifold of phase space. But all these agreeable prop- 
erties do not prove that the commutators are actually given by Eq. (7A.19) 
in terms of the Dirac brackets. 

This issue is illuminated if not settled by a powerful theorem proved 
by Maskawa and ~ a k a j i m a . ~  They showed that for any set of canonical 
variables YU, n, governed by second class constraints, it is always possible 
by a canonical transformation* to construct two sets of variables Qn, Y 
and their respective conjugates P,, P,, such that the constraints read 
gr = P, = 0. Using these coordinates to calculate Poisson brackets, and 
redefining the constraint functions as 21, = T ,  ~2~ = Pr, we have 

and for any functions A, B 

This C-matrix has inverse C-I = C ,  so the Dirac brackets (7.6.20) are 

Recall that by a canonical transformation, we mean a transformation from a set $ phase space 
cmrdinates Ya, 11, to some other phase space coordinates @, &, such that [YU,nb]p = 15; 
and [ + * , q b ] p  = [Rs,nblP = 0, the Poisson brackets being calculated in terms of the Y a  and 
&. It follows that the Poisson brackets for any fynctions A , B  are the same whether calculated 
in terms of 9'" and FI, or in terms of and ll,. I t  also follows that if I" and H, satisfy 
the Hamiltonian equations of motion, lhen so do @ and flu, with the same Hmiltcinian. Thc 
Lagrangian is changed by a canonical transformarion, but only by a time-derivative. which does 
not affect the action. 
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here 

In other words, the Dirac bracket is equal to the Pc~i.rsorn bracket ralcuht~d 
in terms q/' the reduced sut of zancorzshned canovaiccal cariahks Q", P,. 
If we assume that these unconstrained variables satisfy the canonical 
commutation relations, then the commutators of general operators A, B 
are given by Eq. (7.6.19) in terms of the Dirslc brackets.** 

We now return to the massive vector field, to see how it can be quantized 
using Dirac brackets. This is a case where i t  i s  easy to express the 
constrained variables V O  and no in terms of the unconstrained onest Vi 
and ni;  we have simply no = 0, and V O  is given by Eq. (7.6.5). From 
Eqs. (7.6.17) and (7.6.18), we see that C N M  here has the inverse 

Therefore the nirac prescription (7.6.19), (7.6.20) yields the equal-time 
commutators 

By definition, we have 

W r ( x L  ~ , I ( Y ) I P  = s3(x - y)de . [VP(x), VV(y)]p = [IIJx), n,.(y)IP = O . 
(7.6.29) 

Hence 

" It i s  slill an open ques(ion whcther we should adopt canonical commutation rdatims for the 
unconstrained variables Q". Pn ccsnstructcd by lhe Maskawa-Nakajima canun~cal tratisformation. 
Ultimately, thc test LIT such canonical cornmutatirm relations i s  Lheir consistency with the frce-field 
commutatiun relations derived in Chaplrr 5, but to apply this tesi we need to know what thc 

and P,, are. In  the Appendix to this chapler we display two large classes of theories in which 
we can identify a sel  of unconstramd Qs and Ps, such that the Dirac commutation rcla~ions 
(7.6.19) follow from [he ordinaty canunical comrnutatim relations of the Q s  and Ps. We shall 
also show Lhat in thesc cams. the Hamillonian defined in lerms of the unconstrained Ys and ns 
may be written just as well in Lerms of the constrimed variables. 

t This is n spccial case of the thcories discussed in Fxt A of the Appendix. 
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These are indeed just the commutation relations that we would find 
by assuming that the unconstrained variables satisfy the usual canoni- 
cal commutation relations [ ~ ' ( x ) ,  IIj(y)] = i6;d3(x - y), [ ~ ' ( x ) ,  ~ j ( y ) ]  = 

[ni(x), nj{y)] = 0, and using the constraints to evaluate the commutators 
involving and v'. 

7,7 Field Redefinitions and Redundant Couplings' 

Observables like masses and S-matrix elements are independent of some 
of the coupling parameters in any action, known as the redundant pa- 
rameters. This is because changes in these parameters can be un- 
done by simply redefining the field variables. A continuous redefini- 
tion of the fields, such as an infinitesimal local transformation YL(x) -, 
Y C ( x )  + FF ' ( ~ ( x ) ,  ( l I I Y I ( ~ ) ,  . - -), clearly cannot affect any ohseruahle of the 
theory," though, of course, it would change the values of matrix elements 
of the fields themselves. 

How can we tell whether some variation in the parameters of a the- 
ory can be cancelled by a field redefinition? A continuous local field 
redefinition will produce a change in the action of the form 

SO any change Sgi in the coupling parameters gi, for which the change in 
the action is of the form 

may be compensated by a field redefinition 

~ ' ( x )  4 ' P L ( x )  + E F ~ ( Y ( x ) ,  81iY!(~), . . -) , 

This secllon lies strmewbat out of the book's main linc of dcvclopmenl, and may be vmitted in 
a first rcading. 

" For inslance, lhe theorem of Section 10.2 shows that as long as we multiply by the correct field 
renormalixa~inn constants. S-rnalrix elements can be obtained from the vacuum expecta t im valuc 
of a time-ordered product of any operabrs that have nm-vanishing matrix ele~nents betwecn the 
vacuum and the one-particle states of the particlcs parlicipaling in the reactiun. 
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and therefore can have no effect on any observables. In  other words, a 
coupling parameter is redundant if the change in the action when we vary 
this parameter uanishw when we use h e  field equations 6i/6YP = 0, 

For example, suppose we write the Lagrangian density of a scalar field 
theory in the form 

The constant Z is an redundant coupling, because 

and this vanishes when we use the field equation 

On the other hand, neither the bare mass m nor the coupling g are 
redundant, and no function of m and g i s  redundant. 

In this example, the field redefinition needed to compensate for a change 
of Z is a simple rescaling, in which F is proportional to 0. (For this reason 
Z is called a field renormalization constant.) This is the most general field 
transformation that leaves the general form of this action invariant. But 
for the more general actions considered in Sections 12.3 and 12.4, with 
arbitrary numbers of fields and derivatives, we would have to consider 
non-linear as well as linear field redefinitions, and an infinite subset of the 
parameters of the theory would be redundant. 

Appendix Dirac Brackets from Canonical Commutators 

In this Appendix we shall show, in theories of two types, that the for- 
mula giving commutators as Dirac brackets times i follows from the usual 
canonical comn~utation relations for a reduced set of variables. 

Suppose (as in the case of a massive vector field V p )  that the quantum 
variables Y a  and n,, appearing in the Lagrangian L may be divided into 
two classes:* one set Qn of independent canonical variables (like Vi(x)) 
with independent canonical conjugates P, = d ~ / l @ ;  and another set 

We are again using a compact notation, in which labels like a, n, and r include a space coordinate 
x as well as discrete indices. Repeated labels are summed and integrated. All quanlurn variables 
are understocd to be evaluated ai the same time, with the common Lime argumcnt dropped 
everywhere. The quantities 9' arc the same as the C' introduced in Section 7.2. 
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Y[x)  (like V') whose time-derivatives do not appear in the Lagrangian. 
The primary constraints are the conditions XIr  = 0, where 

are the variables conjugate to the 2". The secondary constraints arise from 
the equations of motion 0 = i?L/8dr for the Y; we suppose that these 
constraints can 'solved' - i.e., they may be written in the form 2zr = 0, 
with xzr in the form 

;12r = 2' - f r ( Q ,  P )  - (7.A.2) 

(An example is provided by Eq. (7.6.51, which gives V' in terms of the 
independent P s (here, the ni )  and Q s . )  We assume that the independent 
Qs and Ps satisfy the usual canonical commutation rules; 

[en, Pm] = ibk , [Q", Q"1 = [Pn, Pm1 = 0 . (7.A.3) 

The constraint ; ~ 2 ~  = 0 ylelds the commutators involving 2 :  

a f '  [2', Q"] = -i- , 
af' 

[Y, Pn] = i - 
dp, a p  ' 

where rrs is the Poisson bracket 

and, of course, all commutators involving 9, vanish: 

Now let us compare these commutators with the Dirac brackets. The 
Poisson brackets of the constraint functions are 

(In the example of the massive vector field Pvanishes,  but the discussion 
here wit1 apply also for non-vanishing P,.) It is easy to see that the 
C-matrix has the inverse 
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Also, the Poisson brackets of any function A with the constraint functions 
are 

Hence the Dirac bracket is 
i?A L:B dB (?A 

[A, BIn = [A, B]p - -- f-- 
J 2 r  2 9 ,  2 . p  ;yr 

Now, if A and B ace both functions only of the independent canonical 
variables Qn and P,, then dA,/JY = i?B/dY = 0, so the Dirac bracket is 
equal to the Poisson bracket. I n  particular, 

Where A is Y and B is a function of Q s  and P s ,  it is only the fifth term 
on the right-hand side of Eq. (7.A.12) that contributes. In particular 

afr [$', QHIn = -- ;fr 
[Y, PnJr, = +- - (7.A. 14) 

WI ' ;Qn 
Where both A and B are A, we have only the fourth term 

[y, g s l D  = r r s  (7.A.15) 

Finally, where A is 9, and B is anything, we have only the first and third 
terms, which cancel ; 

Comparison of Eqs. (7.A. 13)-(7.A. 16) with Eqs. (7.A.3)-(7.A.7) shows that 
in all cases, the commutators are equal to the Dirac brackets times i. This 
is only to be expected, because as remarked in Section 7.6 all Dirac 
brackets involving the constraint functions vanish, so the Dirac brackets 
involving 2' and/or -9, are given by using the constraint equations to 
express 2' and/or 9, in terms of the independent Qs  and Ps. 

Next consider the case where the constraints take the form of conditions 
ll,('P) = 0 on the !I!', which can be solved by expressing them in terms 
of a smaller set of unconstrained variables p, and an equal number 
of separate conditions x2,(II) = 0 on the n,, which can be solved by 
expressing the Il, in terms of a smaller set of unconstrained P,. (We will 
see an example in the next chapter, where the constraints on the YU are 
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gauge fixing conditions that are used to eliminate first class constraints, 
and the constraints on the Il, are secondary constraints arising from 
the consistency of the first class constraints with the field equations.) 
We assume that the unconstrained variables satisfy the usual canonical 
commutation relations [Qn, P,] = id:, [Qn, Qm] = [P,, P,] = 0. The 
constrained and unconstrained momenta are related by 

l t  Tullows that 

or, in other words, 

Now, the constraint xlr(Y) = 0 is satisfied for Y" = Y"(Q) fur all (2, so 

Furthermore, the vectors ( V r I b  - dillr/d'£'"~m a complete set perpen- 
dicular to all the vectors (u,)" = S Y ~ / ~ Q " ,  because if there were some 
other vector Vb with VbfU,Jh = 0 for all n, then there would be additional 
constraints on the Yu. Hence Eq. (7.A.18) implies that 

with some unknown coefficients c;. To determine these coefficients, we 
make use of the other constraint, that ;c?,(II) = 0. It folows that 

Using Eq. (7.A.201, we have then 

We recognize the factor multiplying c! as the Poisson bracket 

Also, since XI, depends only on the Y and x z l  depends only on the n, 
these are the only non-vanishing Poisson brackets of constraints, so 
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Thus Eq. (7.A.21) may be written 

with N running over all constraint functions. For second class constraints, 
this has the unique solution 

Using this in Eq. (7.A.20) shows that 

The Poisson brackets of Yu and with the constraint functions are 

so the quantity in brackets on the right-hand side of Eq. (7.A.24) is the 
Dirac bracket 

as was to be shown. Also, we can easily see that because C-' has no 11 
or 22 components, the other Dirac brackets are 

so trivially 

In addition to commutation rules, we also need an explicit formula Tor 
the Hamiltonian. The usual canonical formalism tells us to take 

the sum running over independent canonical variables. In theories of both 
types considered in this Appendix, this Hamiltonian may be written in 
terms of the constrained variables as 

For theories of type A, this is trivial; the sum over a runs over values n, 
for which Yn = Q" and II, = P, are the independent canonical variables, 



together with values r, for which II, = P, = 0. For theories of type B, we 
note that Eq. (7.A.17) gives 

which again yields Eq. (7.A.30). 

Problems 

1. Consider the theory of a set of real scalar fields W, with Lagrangian 
density 9 = -f Em, d,#'dWmf,,(@), where f ,(O) is an arbitrary 
real matrix function of the field. {This is called the non-linear 6- 
mocEeL) Carry out the canonical quantization of this theory. Derive 
the interaction V [$(t), #(t)]  in the interaction picture. 

2. Consider a theory of real scalar fields @" and Dirac fields Yi ,  with 
Lagrangian density 2' = Yo  + Y1, where 2'0 is the usual free-field 
Lagrangian density, and Y l  is an interaction term involving an and 
'I", but not their derivatives. Derive an explicit expression for the 
symmetric energy-momentum tensor W'. 

3. In the theory described in Problem 2, suppose that the Lagrangian 
density is invariant under a global infinitesimal symmetry S W  = 
ic 1, t", V ,  6 ~ '  = if C .  5' - ~ j .  Derive an explicit expression for 

* J  

the conserved current associated with this symmetry. 

4. Consider the theory of a complex scalar field @ and a real vector 
field Vt', with Lagrangian density 

where D, = d, - ig V, and F,, = d,, Vt8 - dl, Vl',,, and .W is an arbitrary 
function. Carry out the canonical quantization of this theory. Derive 
the interaction in the interaction picture. 

5. In the theory of Problem 4, derive expressions for the symmetric 
energy-momentum tensor OF' and for the conserved current associ- 
ated with the symmetry under 6@ = IF@, SVp = 0. 

6. Prove that the Dirac bracket satisfies the Jacobi identity (7.623). 

7. Prove that the Dirac bracket is independent of the choice of con- 
straint functions ;C'N used to describe a given submanifold of phase 
space. 
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Electrodynamics 

The original approach to quantum electrodynamics was to take for granted 
Maxwell's classical theory of electromagnetism, and quantize it. It will 
probably not surprise the reader that this book will follow a different path. 
We shall first infer the need for a principle of gauge invariance from the 
peculiar difficulties that arise in formulating a quantum theory of massless 
particles with spin, and then deduce the main features of electrodynamics 
from the gauge invariance principle. After that we shall follow a more 
conventional modern approach, in which one takes gauge invariance as 
the starting point and uses it to deduce the existence of a vector potential 
describing massless prticles of unit spin. 

It is too soon to tell which of these two alternatives corresponds to 
the logical order of nature. Most theorists have tended to take gauge 
invariance as a starting point, but in modern string theories1 the argument 
runs the other way; one first notices a state of mass zero and unit spin 
among the normal modes of a string, and then from that deduces the 
gauge invariance of the effective field theory that describes such particles. 
At any rate, as we shall see, using either approach one is led to the 
quantized version of Maxwell's theory, still the paradigmatic example of 
a successful quantum field theory. 

8.1 Gauge Invariance 

Let's start by recalling the problems encountered in constructing covariant 
free fields for a massless particle of helicity &I. We saw in Section 5.9 
that there is no  difficulty in constructing an antisymmetric tensor free 
field f , , ,(x) for such particles. This field can be expressed in terms of the 
four-potential a,(x) ,  given by Eq. (59.231, through the familiar relation 

However, Eq. (5.9.23) shows that the a,jx) transforms as a four-vector 



only up to a gauge transformation 

There is, in fact, no way to construct a true four-vector as a linear 
combination of the creation and annihilation operators for helicity +I .  
This is one way of understanding the presence of singularities at m = 0 in 
the propagator of a massive vector field 

which prevent us from dealing with massless particles of helicity 3-1 by 
simply passing to the limit m + 0 of the theory of a massive particle of 
spin one. 

We could avoid these problems by demanding that all interactions 
involve only* F,, ,  (x) = dgA, , (x )  - a,A,(x) and its derivatives, not AJx j, 
but this is not the most general possibility, and not the one realized 
in nature. Instead of banishing A J x )  from the action, we shall require 
instead that the part of the action I,M for matter and its interaction with 
radiation be invariant under the general gauge transformation 

(at least when the matter fields satisfy the field equations) so that the extra 
term in Eq. (8.1.2) should have no effect. The change in the matter action 
under the transformations (8.1.3) may be written 

Hence the Lorentz invariance of IM requires that 

This is trivially true if IM involves only F,,(x) and its derivatives, along 
with matter fields. In this case 

But if IM involves A J x )  itself then Eq. (8.1.5) is a non-trivial constraint 
on the theory. 

Now, what sort of theory will provide conserved currents to which we 
can couple the field Ap(x )?  We saw in Section 7.3 that infinitesimal internal 

We now use Ap and FiJ, for thc electromagnelic potential vector and the Jield slrcngth tensor 
because these are interacting fields. 



symmetries of the action imply the existence of conserved currents. In 
particular, if the transformation" 

leaves the matter action invariant for a constant E, then for general. 
infinitesimal functions ~ ( x )  the change in the matter action must take the 
form 

When the matter fields satisfy their field equations, the matter action is 
stationary with respect to any variation of the Ys, so in this case (8.1.7) 
must vanish, and hence 

In particular, we saw in Section 7.3 that if IM is the integral of a function 
Yw of Y!l and t?),Y!', then the conserved current is given by? 

and this generates the transformations (8.1.6) in the sense that 

where Q is the time-independent charge operator 

We can therefore construct a Lorentz-invariant theory by coupling the 
vector field A,, to the conserved current JiL, in the sense that 61M/6A, (x )  
is taken to be proportional to J p ( x ) .  Any constant of proportionality may 
be absorbed into the definition of the overall scale of the charges qe, so 
we may simply set these quantities equal : 

The conservation of electric charge only allows us to fix the values of all 
charges in terms of the value of any one of them, conventionally taken to 

*' Becausc the field transformation matrix is taken now to be diagonal it is not convenient here to 
,use the summation convention for sums ovcr field indices, so there is no sum over l in Eq. (8.1.6). 
Here Y' is understood to run over all independent fields other than Ad'. We use a capital psi to 
indicate that these are Heisenberg-picture fields, whose time-dependence includcs thc  effect^ of 
interactions. Of course, this is not to be confused with a state-vector or wave function. 
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be the electron charge, denoted -e. It is Eq, (8.1.11) that gives a definite 
meaning* to the value of e. 

The requirement (8.1.1 1) may be restated as a principle of invariance:Ia 
the matter action is invariant under the joint transformations 

A symmetry of this type with an arbitrary function ~ ( x )  is called a local 
symmetry, or a gauge invariance of the second kind. A symmetry under 
a transformation with E. constant is called a global symmetry, or a gauge 
invariance of the first kind. Several exact local symmetries are now known, 
but the only purely global symmetries appear to be accidents enforced by 
other principles. (See Section 12.5.) 

We have not yet said anything about the action for photons themselves. 
As a guess, we can take this to be the same as for massive vector fields, 
but with rn = 0; 

I;. = - d4. Fpr F'IV . 1 (8.1.14) 

This is the same as the action used in classical electrodynamics, but its 
real justification is that it is (up to a constant) the unique gauge-invariant 
functional that is quadratic in F,,,, without higher derivatives. Also, as 
we will see in the next section, it leads to a consistent quantum theory. 
If there are any terms in the action of with higher derivatives and/or 
of higher order in Fp, they can be lumped into what we have called 
the matter action. Using Eqs. (8.1.1 1) and (8.1.141, the field equation for 
electromagnetism now reads 

We recognize these as the usual 

+ IM] = dPFiL" J" . (8.1.15) 

inhomogeneous Maxwell equations, with 
current J ' .  There are also other, homogeneous, Maxwell equations 

O =  a,r;,,+a,~,, +z,,F,, , @.1,161 

which follow directly from the definition F,, ZE - &Ap. 
In the above discussion, we have started with the existence of massless 

spin one particles, and have been led to infer the invariance of the matter 
action under a local gauge transformation (8.l.l2), (8.1.13). As usually 
presented, the derivation runs in the opposite direction. That is, one starts 

5 OFcoursc, Eq. (8.1.1 1) fixes the definition of c only after we haw delined how wc are nurmalizing 
AJx) .  The question of electromagnetic field normalization i s  paken up in Section 10.4. 
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with a global internal symmetry 

and asks what must be done to promote this tu a local symmetry 

If the Lagrange density Y depended only on fields yL(x) and not an 
their derivatives then it would make no difference whether F is constant 
or not; invariance with F constant would imply invariance with F a 
function of spacetime position. But all realistic Lagrangians do involve 
field derivatives, and here we have the problem that derivatives of fields 
transform differently from fields themselves : 

In order to cancel the second term here, we 'invent' a vector field A J x )  
with transformation rule 

and require that the Lagrangian density depend on i;Y' and A, only in 
the combination 

D,Y' = z,,vC - iql~,,y' , (8.1.21) 

which transforms just like V' 

A matter Lagrangian density YLw(\Y,DT) that is formed only out of Y" 
and D,Y/ will be invariant under the transformations (8.1.18). (8.L.20), 
with C(X) an arbitrary function, i f  i t  is invariant with e a constant. With 
the Lagrangian of this form, we have 

which is the same as Eq. (8.1.11). (We could also include F p  and its 
derivatives in YM.)  From this point of view, the masslessness of the 
particles described by A, is a consequence of gauge invariance rather 
than an assumption: a term - ~ / H ~ A , A ~  in the Lagrangian density would 
violate gauge invariance. 

8.2 Constraints and Gauge Conditions 

There are aspects of electrodynamics that stand in the way of quantizing 
the theory as we did for various theories of massive particles in the 
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previous chapter, As usual, we may define the canonical conjugates to the 
electromagnetic vector potential by 

Quantization by the usual rules would give 

[A,(x, t ) ,  IIV(y, t )]  = i6;d3(x - y) . 
But this is not possible here, because A,, and II'' are subject to several 
constraints. 

The first constraint arises from the fact that the Lagrangan density is 
independentkf the time-derivative of Ao, and therefore 

This is called a primary cons#raint, because it follows directly from the 
structure of the Lagrangian. There is also a secondary cms~raint here, 
which follows from the field equation for the quantity fixed by the primary 
constraint :** 

the time-derivative term dropping out because Foe = 0 
the matter Lagrangian may generally depend on A', the 
depends only on the canonical matter fieldst Q" and 
conjugates P,, : 

. Even though 
charge density 

their canonical 

Hence Eq. (8.2.3) is a functional relation among canonical variables. 
Both Eq. (8.2.2) and Eq. (8.2.3) are inconsistent with the usual as- 
sumptions that [A,(x, t ) ,  nV (y, r)] = id;h3(x - y) and [Qn(x, t), l l V  (y, t ) ]  = 

[ M x ,  0, WY, t)l = 0. 
We encountered a similar problem in the theory of the massive vector 

field. In that case we found two equivalent ways of dealing with it: 
either by the method of Dirac brackets or, more directly, by treating only 

' For I;pg = -FpVFfiL' /4 ,  wc have ?Lt',/i?(&jA,) = -FOP, which vanishes for p = 0 because F"' is 
antisymmetric. For matter Lagrangians YAW that ~nvohe  only 'I" and D~Y',  the prescription 
(8.1.21) lells us that YM does not depend on any derivatives of any A'. Even i f  the mattcr 
Lagrangian depends also on F,,, dLPM/B(S,A,)  will be again anlispmetric in p and I., and 
therefore will vanish for p = I. = 0. 

" As usual, i, j, etc. run over the values 1,2,3. 
Jf Due to exhaustion of alphabtic resouroes, J hnvc had to adopt a notatiun here that is diffcrcnt 

from that of the previous chapter. Thc symbols Qn and P, are now rescrvcd for the canonical 
matter fields and their canonical conjugates, ruspcctively, while the canonical eleclrornagnctic 
fields and canonical conjugates are A, and ni. 
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Ai and ni as canonical variables, solving the analog of Eq. (8.2.3) to 
calculate A" in terms of these variables. It is clear that here we cannot 
use Dirac brackets; the constraint functions x here are 11° and dini - J' 
(as compared with ZiHl - m 2 ~ '  - 1') and these obviously have vanishing 
Poisson brackets. In Dirac's terminology, the constraints (8.2-2) and (8.2.3) 
are%firsr class. Nor can we eliminate A' as a dynamical variable by solving 
for it in terms of the other variables. Instead sf  giving AO for all time, 
Eq. (8.2.3) is a mere initial condition; if Eq. (8.2.3) is satisfied at one time, 
then it is satisfied for all times, because (using the field equations for the 
other fields A'), we have 

and the current conservation condition then gives 

It should not be surprising that we still have four components of A p  

with only three field equations, because this theory has a local gauge 
symmetry that make.s it, in principle, impossible to infer the values of the 
fields at arbitrary times from their values and rates of change at any one 
time. Given any solution Ap(x,t) of the field equations, we can always 
find another solution AJx, t) + r?,c(x, t )  with the same value and time- 
derivative at t = 0 (by choosing F so that its first and second derivatives 
vanish there) but which differs from A,,(x, t )  at later times. 

Because of this partial arbitrariness of A J x ,  r ) ,  it is not possible to apply 
the canonical quantization procedure directly to A,, (or, as for finite mass, 
to A). Of the various approaches to this difficulty, two are particularly 
useful. One is the modern method of gauge-invariant quantization, to 
be discussed in Volume 11. The other, which will be followed here, is to 
exploit the gauge invariance of the theory, to 'choose a gauge'. That is, 
we make a finite gauge transformation 

to impose a condition on A,(x) that will allow us to apply the methods 
of canonical quantization. There are various gauges that have been found 
useful in various applications:$ 

$ Herc 0 1s any complex scalar ficld with q + 0; this gauge condition is used whcn the gauge 
symmetry is sprmtnneously broken by a nun-vanishing vacuum expedalion value of @. 
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Lorentz (or Landau) gauge: 8,Ap = 0 
Coulomb gauge: V . A = O  
Temporal gauge ; AO = O  
Axial gauge: d3 = 0 
Unitarity gauge: real 

The canonical quantization procedure works most easily in the axial or 
Coulomb gauge, but of course Coulomb gauge keeps manifest rotation 
invariance in a way that axial gauge does not, so we will adopt Coulomb 
gauge here.' 

To check that this is possible, note that if Afl does not satisfy the 
Coulomb gauge condition, then the gauge-transformed field Ap+ Pi  will, 
provided we choose i so that v2i = V . A, From now on, we assume 
that this transformation has been made, so that 

It will be convenient henceforth to limit ourselves to theories in which 
the matter Lagrangian YLv may depend on matter fields and their time- 
derivatives and also on A p  but not on derivatives of Ap. (The standard 
theories of the electrodynamics of scalar and Dirac fields have Lagrangians 
of this type.) Then the only term in the Lagrangian that depends on Fpr 
is the kinematic term -;F,,!F'', and the constraint equation (8.2.3) reads 

- sip = J O  , (8.2.7) 

Together with the Coulomb gauge condition (8.2.61, this yields 

- v 2 ~ ' )  = J O ,  (8.2.8) 

which can be solved to give 

The remaining degrees of freedom are A', with i = 1,2,3, subject to the 
gauge condition V . A = 0. 

As mentioned earlier, the charge density depends only on the canonical 
matter fields Q" and their canonical conjugates P,, so Eq. (8.2.9) represents 
an explicit solution for the auxiliary field A'. 

8.3 Quantization in Coulomb Gauge 

There is still an impediment to the canonical quantization of electrody- 
namics in the Coulomb gauge. Even after we use Eq. (8.2.9) to eliminate 
AO (and no) from the list of canonical variables, we cannot apply the usual 
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canonical commutation relations to A' and n i ,  because there are two re- 
maining -constraints on these variables.* One of them is the Coulomb 
gauge condition 

The other is the secondary constraint Eq. (8.2.3), which requires that 

Neither constraint is consistent with the usual commutation relations 
[Ai(x) ,II j {y) ]  = i6 i j J3(x  - y), because operating on the right-hand side 
with either C/dx' or d / J y i  does not give zero. 

These constraints are of a type known as second class, for which there 
is a universal prescription for the commutation relations, discussed in 
Section 7.6. Note that the constraint functions have the Poisson brackets 

where here, for any functionals U and V, 

The 'matrix' CNM is non-singular, which identifies these as second class 
constraints. Also, the field variables A' may be expressed in terms of 
independent canonical variables, which may, for instance, be taken as 
Ql, = ~ ' ( x ) ,  Q2, = A ~ ( x ) ,  with given by the solution of Eq. (8.3.1): 

Using Eq. (8.3.2), the canonical conjugates T I i  to A' may likewise be 
expressed in terms of the canonical conjugates PX1 and P2, to Q1, and 
Qlx. In such cases, Part B of the Appendix to the previous chapter 
tells us that if the independent variables Q1,, Qz,, PIX, and P2, satisfy 
the usual canonical commutation relations, then the commutators of the 
constrained variables and their canonical conjugates are given {aside from 
a factor i) by the corresponding Dirac brackets (7.6.20). This prescription 
has the great advantage that we do not have to do use explicit expressions 
fbr the dependent variables in terms of the independent ones. 

' In (his section i ,  j ,  etc, run over the values 1,2.3. We cormme the practicc of taking all operators 
at the same time, and omitting the time argument. 



To calculate the Dirac brackets, we note that the matrix C has the 
inverse 

Also, the non-vanishing Poisson brackets of the and Hi  with the 
constraint functions are 

and 

Hence according to Eqs. (7.6.19) and (7.6.201, the equal-time commutators 
are 

Note that these are consistent with the Coulomb gauge conditions (8.3. I) 
and (8.3.2), as is guaranteed by the general properties of the Dirac bracket. 

Now, what is ll in electrodynamics? For the class of theories discussed 
in the previous section where only the kinematic term -a J d ' x ~ ~ ~ ; , ,  F!" in 
the Lagrangan depends on A, varying the Lagrangian with respect to A 
without worrying about the constraint V . A = 0 Bves 

SL n.  = - 
d 

= K(x) + -A'(x) . 
8 A] (x) dxJ 

But with A constrained by the condition V A = 0, variational derivatives 
with respect to A are not really well defined. If the variation of L under a 
change d~ in A is bL  = J d 3 x  B d ~ ,  then since V . 6 ~  = 0, we also have 
6L = J d3x [P + V.F] - 6~ for any scalar function *(XI. Thus all we can 
conclude from inspection of the Lagrangian is that TI equals A(x)+vA~(x)  
plus the gradient of some scalar. This ambiguity is removed by condition 
(8.3.21, which requires that V . ll = -JO = vZ A0. Because V . A = 0, we 
conclude that Eq. (8.3.6) does indeed give the correct formula for IT'. 

Although the commutation relations (8.3.5) are reasonably simple, we 
must face the complication that JI does not commute with matter fields 
and their canonical conjugates. If F is any functional of these matter 
degrees of freedom, then its Dirac bracket with A vanishes, but its Dirac 



8.3 Quantization in Coulomb Gauge 

bracket with Il is 

In order to facilitate the transition to the interaction picture, instead of 
expressing the Hamiltonian in terms of A and Il, we shall write it in terms 
of A and 111, where Ill is the solenoidal part of II: 

for which [F,  nl(z)J vanishes. By rising the facts that l l l(x) commutes 
with H(y) - fll(y) = V A ' ( ~ )  and that d,~ ' (x)  commutes with d j ~ o ( y ) ,  it 
i s  easy to see that l l l(x) satisfies the same commutation relations (8.3.5) 
as TX(x), and also the simple constraint 

Now we need to construct a Hamiltonian. According to the general 
results of the Appendix to Chapter 7, we can apply the usual relation 
between the Hamiltonian and Lagrangian using the cons trained variables 
A and Ill, without first having explicitly to write the Hamiltonian in 
terms of the unconstrained Q s  and P s. In electrodynamics, this gives 

where, as mentioned earlier, (2" and P, are to be understood as the matter 
canonical fields and their canonical conjugates. (We can use 111 in place 
of II in Eq. (8.3.9) because V A = 0.) 

To be specific, consider a theory with a Lagrangian density of the form 

where J, is a current that does not involve Ail, and Ymal,, is the La- 
grangan for whatever other fields do appear in P, aside from their 
electromagnetic interactions, which are given explicitly by the term JpA" 
in Eq. (8.3.10). (The electrodynamics of spin f particles has a Lagrangian 
of this form, but the electrodynamics of spinless particles is more compli- 
cated.) Replacing A everywhere with IIL, this gives a Hamiltonian (8.3.9) 
of the form 



where WM is the Hamiltonian for matter fields, excludjng their electro- 
magnetic interactions 

Using the solution (8.2.9) for A(', this is 

1 o 0 The term 7 J  A may look peculiar, but this is nothing but the familiar 
Coulomb energy 

The reader can verify, using the commutation relations (8.3.5), that the rate 
of change of any operator function F of A and ll is given by i~ = [ F , H ] ,  
as it should be. 

8.4 Electrodynamics in the Interaction Picture 

We now break up the Hamiltonian (8.3+11) into a free-particle term Ho 
and an interaction V 

where Hmauer,o and VmatL,, are the free-particle and interaction terms 
in Hmalter, and Vcoul is the Coulomb interaction (8.3.12). The total 
Hamiltonian (8.4.1) is time-independent, so Eqs. (8.4.2) and (8.4.3) can 
be evaluated at any time we like (as long as both are evaluated at the 
same time), in particular at 1 - 0. As in Chapter 7, the transition to the 
interaction picture is made by applying the similarity transformation 

where P here denotes the canonical conjugates to the matter fields Q, and 
any operator o(x, t )  in the interaction picture is related to its value Ojx, 0) 
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in the Heisenberg picture at t = 0 by 

o(x, i )  = exp(iHof) O(x, 0) exp(-iHo t), (8.4.5) 

so that 

i u(x, t )  = [n(x,  E ) ,  Hn] . (8.4.6) 

(We are dropping the subscript 1 on n(x).) Since Eq. (8.4.5) is a similarity 
transformation, the equal-time commutation relations are the same as is 
the Heisenberg picture: 

and likewise for the matter fields and their conjugates. For the same 
reason, the constraints (8.2.6) and (83.8) still apply 

To establish the relation between n and a, we must use Eq. (K4.6) to 
evaluate a: 

We can replace ?/SxJ in the second term with -,?/ayj, integrate by parts, 
and use Eq. (8.4.11), yielding 

just as in the Heisenberg picture. The field equation is likewise determined 
by 

ifci(x, t )  = [K~(x,  t ) ,  Ho] 

x (V x V x a(y, 

which (using Eqs. (8.4.1 0) and (8.4.1 2 ) )  just yields the usual wave equation 



Since A' is not an independent Heisenberg-picture field variable, but rather 
a functional (8.2.9) of the matter fields and their canonical conjugates 
that vanishes in the limit of zero charges, we do not introduce any 
corresponding operator a' in the interaction picture, but rather take 

The most general real solution of Eqs. {8.4.10), (8.4.13), and (8.4.14) 
may be written 

where = IpI : @(p, o) are any two independent 'polarization vectors' 
satisfying 

and a(p, a) are a pair of operator coefficients, with a a two-valued index. 
By adjusting the normalization of ~ ( p ,  01, we can normalize the dl(p, 0) so 
that the completeness relation reads 

For instance, we could take the e{p, (T) to be the same polarization vectors 
that we encountered in Section 5.9 : 

where R @ )  is a standard rotation that carries 

3 (8.4.19) 

the three-axis into the 
direction of p. Using Eqs. (8.4.18) and (8.4.12), we can easily see that the 
commutation relations (8.4.7)-(8.4.9) are satisfied if (and in fact only if)  
the operator coefficients in Eq. (8.4.15) satisfy 

As remarked before for massive particles, this result should be regarded 
not so much as an alternative derivation of Eqs. (8.4.20) and (8.4.21), but 
rather as a verification that Eq. (8.4.2) gives the correct Hamiltonian for 
free massless particles of helicity f 1. In the same spirit one can also 
use Eqs. (8.4.12) and (8.4.15) in Eq. (8.4.2) to calculate the free-photon 
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Hamil tonian 

which (aside from an inconsequential infinite c-number term) is just what 
we shouId expect. 

Finally, we record that the interaction (8.4.4) in the interaction picture 
is 

where in terms of the current J in the Heisenberg picture 

while VcOul(t) is the Coulomb term 

and Vmatt,,(t) is the non-electromagnetic part of the matter field interaction 
in the interaction picture : 

We have written j@' instead of j . a in Eq. (8.4.231, but these are equal 
because a p  has been defined to have a' = 0. 

8.5 The Photon Propagator 

The general Feynman rules described in Chapter 6 dictate that an in- 
ternal photon line in a Feynman diagram contributes a factor to the 
corresponding term in the S-matrix, given by the propagator: 

where T as usual denotes a time-ordered product. Inserting our formula 
(8.4.1 5) for the electromagnetic potential then yields 
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where 

and pr in the exponentials is taken with = Ipl. We recall Prom 
Eqs. (8.4-18) and (8.4.17) that 

As we saw in Chapter 6, the theta functions in Eq. (8.5.2) may be expressed 
as integrals over an independent time-component qo of an off-shell four- 
momentum q!', so that Eq. (8.5.2) may be rewritten 

Thus in using the Feynman rules in momentum space, the contribution 
of an internal photon line carrying four-momentum q that runs between 
vertices where the photon is created and destroyed by fields a p  and a q s  

I t  will be very usehd (though apparently perverse) to rewrite Eq. (8.5.4) 
as 

where np - (0,0,0,1) is a fixed time-like vector, q' as usual is q2 - (.q012, 
but qo is here entirely arbitrary. We shall choose q" in Eq. (8.5.7) to be 
given by four-momentum conservation: it is  the difference of the matter 

flowing in and out of the vertex where the photon line is created. 
The terms proportional to q, and/or q ,  then do not contribute to the 
S-matrix, because the factors q,, or q, act like derivatives 13, and Z,,, 
and the photon fields a, and a ,  are coupled to currents jtL and j' that 
satisfy the conservation condition d,j" = 0 . * The term proportional to 
n,n, contains a factor q2 that cancels the ,y2 in the denominator of the 
propagator, yielding a term that is the same as would be produced by a 
term in the action: 

' This argumcnt as given here is l ittle hetler than hand-waving The result has been justified 
by a detailed analysis of Feynman diagrams,3 but thc casicst way to meal t h i ~  problem i s  by 
path-integral mcthods, as discussed in Section 9.6. 
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The integral over qo here yields a delta function in time, so this is 
equivalent to a correction to the interaction Hamiltonian I/([), of the 
form 

This is just right to cancel the Coulomb interaction (8.4.25). Our result 
is that the photon propagator can be taken effectively as the covariant 
quantity 

with the Coulomb interaction dropped from now on. We see that the 
apparent violation of Lorentz invariance in the instantaneous Coulomb 
interaction is cancelled by another apparent violation of Lorentz invari- 
ance, that as noted in Section 5.9 the fields aIt(x) are not four-vectors, 
and therefore have a non-covariant propagator. From a practical point of 
view, the important point is that in the momentum space Feynman rules, 
the contribution of an internal photon line is simply given by 

and the Coulomb interaction is dropped. 

8.6 Feynman Rules for Spinor Electrodynamics 

We are now in a position to state the Feynman rules for calculating the 
S-matrix in quantum electrodynamics. For definiteness, we will consider 
the electrodynamics of a single species of spin f particles of charge q = -r 
and mass m, We will call these fermions electrons, but the same formalism 
applies to muons and other such particles. The simplest gauge- and 
Lorentz-invariant Lagrangian for this theory is* 

1 
Y = - - F  4 P" F p V - p ( 7 " [ c : , + i e A P ] + m ) Y .  (8.6.1) 

The electric current four-vector is then simply 

* In Chapter 12 we will discuss reasons why more complicalcd lerms are excluded frum the 
Lagrangan density. 
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The interaction (8.4.23) in the interaction picture is here 

(There is no Vmatt,, here.) As we have seen, the Coulomb term VcOul(r) 
just serves to cancel a part of the photon propagator that i s  non-covariant 
and local in time. 

Following the general results of Section 6.3, we can state the momentum 
space Feynman rules for the connected part of the S-matrix in this theory 
as follows: 

ji) Draw all Feynman diagrams with up to some given number of vertices. 
The diagrams consist of electron lines carrying arrows and photon lines 
without arrows, with the lines joined at vertices, at each of which there is 
one incoming and one outgoing electron line and one photon line. There 
is one external line coming into the diagram from below or going upwards 
out of the diagram for each particle in the initial or final states, respec- 
tively; electrons are represented by external lines carrying arrows pointing 
upwards into or out of the diagram, while positrons are represented by 
lines carrying arrows pointing downwards into or out of the diagram. 
There are also as many internal lines as are needed to give each vertex 
the required number of attached lines. Each internal line is labelled with 
an off-mass-shell four-momentum flowing in a definite direction along the 
line (taken conventionally to flow along the direction of the arrow for 
electron lines.) Each external line is labelled with the momentum and spin 
z-component or helicity of the electron or photon in the initial and final 
states. 

(ii) Associate factors with the components of the diagram as follows: 

Vertices 

Label each vertex with a four-component Dirac index t~ at the electron 
line with its arrow coming into the vertex, a Dirac index f i  at the electron 
line with its arrow going out of the vertex, and a spacetime index p at the 
photon line. For each such vertex, include a factor 

where k and k' are the electron four-momenta entering and leaving the 
vertex, and q is the photon four-momentum entering the vertex (or minus 
the photon momentum leaving the vertex). 
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Label each external line with the three-momentum p and spin z-component 
or helicity a of the particle in the initial or final state. For each line for an 
electrm in the final state running out of a vertex carrying a Dirac label P 
on this line, include a factor* 

For each line for a positron in the final state running into a vertex carrying 
a Dirac label n onthis line, include a factor 

For each line for an electron in the initial 
carrying a Dirac label a on this 

For each line for a positron in 
carrying a Dirac label P on this 

line, include 
state running into a vertex 
a factor 

the initial state running out of a vertex 
line, include a factor 

The us and us are the four-component spinors discussed in Section 5.5. 
For each line for a photon in the final state connected to a vertex carrying 
a spacetime label p on this line, include a factor 

For each line for a photon in the initial state connected to a vertex carrying 
a spacetime label p on this line, include a factor 

The e, are the photon polarization four-vectors described in the previous 
section. 

Internal lines: 

For each Internal electron line carrying a four-momentum k and running 
from a vertex carrying a Dirac label to another vertex carrying a Dirac 

A matrix f i  has been extracted from the interaction in (8.6.4), so that ii and i appear instead of 
ut and ~ ! t .  
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label a, include a factor 

(We are here using the very convenient 'Dirac slash' notation; for any 
four-vector d5, jd denotes y,d'.) For each internal photon line carrying 
a four-momentum q that runs between two vertices carrying spacetime 
labels p and v include a factor 

(iii) Tntegrate the product of all these hctors over the four-momenta 
carried by the internal lines, and sum over all Dirac and spacetime indices. 

(iv) Add up the results obtained in this way from each Feynman diagram. 

Additional combinatoric factors and fermionic signs may need to be 
included, as described in parts (v)  and {vi) of Section 4.1. 

The difficulty of evaluating Feynman diagrams increases rapidly with 
the number of internal lines and vertices, so it is important to have some 
idea of what numerical factors tend to suppress the contributions of the 
more complicated diagrams, We shall estimate these numerical factors 
including not only the factors of the electronic charge e associated with 
vertices, but also the factors of 2 and n from vertices, propagators, and 
momentum space integrals. 

Consider a connected Feynman diagram with V vertices, I internal 
lines, E external lines, and L loops. These quantities are not independent, 
but are subject to relations already used in Section 6.3; 

There is a factor e(27rj4 from each vertex, a factor (2711-~ from each 
internal line, and a four-dimensional momentum space integral for each 
loop. The volume element in four-dimensional Euclidean space in terms 
of a radius parameter K is n l ~ ~ d h - ~ ,  SO each loop contributes a factor a2. 
Thus the diagram will contain a factor 

The number E of external lines is fixed for a given process, so we see that 
the expansion parameter that governs the suppression of Feynman graphs 
for each additional loop is 

R 
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Fortunately this is small enough that good accuracy can usually be ob- 
tained from Feynman diagrams with at  most a few loops. 

We must say a little more about the spin states of photons and electrons 
in realistic experiments, where not every particle in the initial and final 
states has a definite known helicity or spin z-component. This consid- 
eration is especially important for photons, which in practice are often 
characterized by a state of transverse or elliptical polarization rather than 
helicity. As we saw in the previous section, for photons of helicity & I ,  the 
polarization vectors are 

where R(b) is the standard rotation that takes the z-axis to the p direction. 
These are not the only possible photon states; in general, a photon state 
can be a linear combination sf helicity states Y?,, y + I  - 

which is properly normalized if 

To calculate the S-matrix element for absorbing or emitting such a photon, 
we simply replace e,(p, *I) in the Feynman rules with 

The polarization vectors for definite helicit y satisfy the normalization 
condition 

and therefore in general 

The two extreme cases are cirudar polcarizarinn, for which r- = O or 
a+ = 0, and linear polurizution, for which a +  = Ja-1 = I/$. For linear 
polarization, by an adjustment of the overall phase of the state (8.6.13), 
we can make %+ and a- complex conjugates, so that they can be expressed 
as 
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Then in the Feynman rules we should use a polarization vector 

That is, # is the azimuthal angle of the photon polarization in the plane 
perpendicular to p. Note that the photon polarization vector here is real, 
which i s  only possible for linear polarization. in  between the extremes of 
circular and linear polarization are the states of elliptic polarization, for 
which la+l and Icc-l are non-zero and unequal. 

More generally, an initial photon may be prepared in a statistical 
mixture of spin states. In the most general case, an initial photon may have 
any number of possible polarization vectors each with probability 
Pr. The rate for absorbing such a photon in a given process will then be 
of the form 

where p is the density matrix 

Since p is obviously a Hermitian positive matrix of unit trace (because 
Cr Pr = 1) with p , ~  = pop = 0 and p,,pv = p,,,p" = 0, it may be written 
as 

where e,(p;s) are the two orthonormal eigenvectors of p with 

and are the corresponding eigenvalues, with 

We mag then write the rate for the photon absorption process as 

Thus any statistical mixture of initial photon states is always equivalent 
to having just two orthonormal polarizations e,(p; s) with probabilities 1,. 

In particular, if we know nothing whatever about the initial photon 
polarization, then the two probabilities A, for the polarization vectors 
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e,(p;s) are equal, so that L1 = AT = f, and the density matrix (and hence 
the absorption rate) is an average over initial polarizations 

Fortunately, this result does not depend on the particular pair of polar- 
ization vectors ei(p; s) over which we average; for unpolarized photons we 
can average the absorption rate over any pair of orthonormal polarization 
vectors. Similarly, if we make no attempt to measure the polarization of 
a photon in the final state, then the rate may be calculated by summing 
over any pair of orthonorrnal final photon polarization vectors. 

The same remarks apply to electrons and positrons; if (as is usually the 
case) we make no attempt to prepare an electron or positron so that some 
spin states are more likely than others, then the rate is to be calculated 
by ntleraging over any two orthonormal initial spin states, such as those 
with spin z-component a = -ti; if we make no attempt to measure a final 
electron's or positron's spin state, then we must sum the rate over any 
two orthonormal initial spin states, such as those with spin z-component 
0 = &f.  Such sums may be performed using the relations (5.5.37) and 
(5.5.38): 

where = d m .  For instance, if the initial state contains an 
electron with momentum p and spin z-component 0,  and a positron with 
momentum p' and spin z-component d, then the S-matrix element for 
the process will be of the form (C,(pt, d) u~(p, 0))- Hence if neither 
electron nor positron spins are observed, the rate will be proportional to 

Techniques for the calculation of such traces are described in the Appendix 
to this chapter. 



Figure 8.1, The two lowest-order Feynman diagrams for Compton scattering. 
Straight lines are electrons; wavy lines are photons. 

8,7 Comptm Scattering 

As an example of the methods described in this chapter, we shall consider 
here the scattering of a photon by an electron (or other particle of spin 1 
and charge -ej, to lowest order in e. We label the initial and final photon 
momenta and polarization vectors by M, ep  and k ' p ,  i~', where ko = Ik( 
and ko' = (k'l. Also, the initial and final electron momenta and spin 
z-components are labelled plt,a and p'p, d, where = dpZ + m2 and 
i0 = d m ,  with m the electron mass. The lowest order Feynman 
diagrams for this process are shown in Figure 8.1. Using the rules outlined 
in the previous section, the corresponding S-matrix element is 
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Performing the (trivial) y-integral, collecting factors of i and 271, and 
rewriting the result in matrix notation, we have more simply 

(Here j* means e;ye, not (I)'. Also, we drop the -ie, because the 
denominators here do not vanish.) Because p' = -m2 and k 2  = kf2  = 0, 
the denominators can be simplified 

( p  + k)' + m' = 2p . k , (8.7.3) 

( g - k ' ) 2  + m 2  = -2p'-k. (8.7.4) 

Also, the 'Feynman amplitude' M is defined in general by Eq. (3.321, 
which (because some scattering is assumed to take place) here reads 

The differential cross-section is given in terms of M by Eq. 13.4.151, which 
here reads 

Since one of the particles here is massless, Eq. (3.4.17) for the initial 
velocity gives 

To go further, it will be convenient to adopt a specific coordinate frame. 
Since electrons in atoms move non-relativistically, the laboratory frame for 
high-energy (X ray or gamma ray) photon4ectron scattering experiments 
is usually (though not always) one in which the initial electron can be 
taken to be at rest. We will adopt this frame here, so that 

The velocity (8.7.8) is then simply 
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To save writing, we denote the photon energies by 

The three-momentum delta function in Eq. (8.7.7) just serves to eliminate 
the differential d3$, setting p' = k - k', This leaves the remaining energy 
delta function 

This fixes o' to satisfy 

where # is the angle between k and k'. Squaring both sides and cancelling 
w ' ~  terms givesm 

The energy delta function (8.7.13) can be written 

Also, the differential d3k' can be written 

d3k' = wJ2dw1dL!, 

where dR is the solid angle into which the final photon is  scattered. The 
final delta function in Eq. (8.7.15) just serves to eliminate the differential 
dwl in Eq. (8,7.16), leaving us with a differential cross-section 

with 6' = m + w - a i ,  and o' gven by Eq. (8.7.14). 

* Equivalently, there is an incrcase In wavclength 

The verification OF his  formula in thc scattering d X rays by electrons by A.H. Compton in 
1922--3 played a key role in confirming Einstein's 1905 proposal of a quantum of light, which 
soon after Compton's experiments carnc to be known as the photon. 
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Usually we do not measure the spin z-component of the initial or final 
electron. In such cases, we must sum over d and average over a, or in 
other words take half the sum over 0 and 0': 

dG(p + k, e + p' + k', e f )  = da(p, a + k, e -4 p', d + k', e') . 

To calculate this, we use the standard formula 

and likewise for the sum over d. It follows that for an arbitrary 4x4 
matrix A 

Recalling that fiY$? = -.i,', Eq, (8.7.6) gives now 

(Recall again that 1' means e l f ,  not (e,y")*, and likewise for 40 . )  We 
work in a 'gauge' in which 

such as for instance Coulomb gauge in the laboratory frame, where 
8 = do = 0 and p = 0. This implies that 

and likewise for c", t', and 1'. Eq. (8.7.21) can therefore be written in 
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the greatly simplified form 

The trace of any product of an odd number of gamma matrices vanishes, 
so this breaks up into terms of zeroth and second order in rn: 

where 

The Appendix to this chapter shows how to calculate any trace 
Tr( 4 # f #. . .) as a sum of products of scalar products of the four-vectors 
a,  b,c ,d , .  . .. In general, traces of products of 6 or 8 gamma matrices like 
the t k  or Tk would be gwen by a sum of 15 or 105 terms, respectively, but 
fortunately here most scalar products vanish ; in addition to Eq. (8.7.221, 
we also have k . k  = kr.k' = 0. (Furthermore. e+e* = e'.el* = 1.) To simplify 
the calculation further, let us specialize to the case of linear polarization, 
where e b a d  e ' 9 r e  real. Dropping the asterisks in Eqs. (8.7.25)-(8.7.321, 
we have then 



Since &p, = 0 and epe,, = 1, we have 

$ i # = - i $ $ = - $  
SO 

TI = -Tr{ # I &  d g f '  p r r }  . 

Also, kpk,, = 0, so 

$ # $ = - # g # + 2 $ p . k = 2 & p * k  

and hence 

TI = - 2 p - k ~ r { # ' $  #'$') . 

Using Eq. @,Ah), this is 

Tt = - 8 p .  k [2e' - k e' . p' - k - JI'] . 
It is convenient to make the substitutions 

A similar {though more lengthy) calculation gives 

T2 = T3 = -8(r k ' ) 2 ( p  k )  + 16 (e r'lZp . k'p k + 8(e r'j2t k'm2 

-8(e - e')rn2(k - e')(kf e )  + 8(er - k ) 2 p  - k t  
-4(k - p)' + 4(k . k f ) ( p  p') - 4(k . p')(p - k') , (8.7.34) 

Tq = - 16 p - k'(e k t ) l  + 8 ( p  . k ) ( p  k')  , (8.7.35) 

t1 = t 4 = 0 ,  (8.7.36) 
12 = t~ = -8 e - e f  k - e ' k ' - e  + 8 ( p -  k ' ) (e -er ) ' -4 (k  - k') . (8.7.37) 

Combining all these terms in Eq. (8.7-24) gives 

All this applies in any Lorcntz frame. In the laboratory frame, we have 
the special results 



Combining Eq. (8.7.38) with Eq. (&.7.17), the laboratory frame cross- 
section is 

This is the celebrated formula derived (using old-fashioned perturbation 
theory) by 0. Klein and Y, ~ i s h i n a ~  in 1929. 

As discussed in Section 8.6, if the incoming photon is (as usual) not 
prepared in a state with any particular polarization, then we must average 
over two orthonormal values of e. This average gives 

and the differential cross-section is then 

e 4 ~ 1 2 d f l  
do(p, 0 + k, e + p', a' + k, e') = 4 

e,0,u1 
647$,2,* 

We see that the scattered photon is preferentially polarized in a direction 
perpendicular to the incident as well as the final photon direction, i.e., 
perpendicular to the plane in which the scattering takes place. This is a 
well-known result, responsible among other things for the polarization of 
light from eclipsing binary stars.*' 

To calculate the cross-section for experiments in which the final photon 
polarization i s  not measured, we must sum Eq. (8.7.40) over e', using 

This gives 

where 19 is the angle between k and kt. In the non-relativistic case, w << rn, 

" The light from one of the stars is polarized when it is s ca t t ed  by free electruns in the outer 
atmosphere of the other, cooler, star when both are dong Lhe same line o f  sight. This polarization 
is normally undetectable because i t  cancels when thc astronomer adds up kight from all paris of 
the star's disk. The polariration has been observed in eclipsing binary stars a l  times when the 
cooler star blocks the light from jusl one side of the hotter star. 
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Eq. (8.7.41) gives 

The solid angle integral is 

gving a total cross-section for w << rn: 

This is often written or = 8nr; /3 ,  where ro = e2/41tm = 2.818 x lWi3 
cm is known as the classics/ electron radius. Expression (8.7.43) is calIed 
the Thornson cross-seclion, after J. J, Thornson, the discoverer of the 
electron. Eqs. (8.7.42) and (8.7.43) were orignally derived using classical 
mechanics and electrodynamics, by calculating the reradiation of light by 
a non-relativistic point charge in a plane wave electromagnetic field. 

8.8 Generalization : p-form Gauge Fields* 

The antisymmetric field strength tensor F,,, of electromagnetism is a 
special case of a general class of tensors of special importance in physics 
and mathematics. A p-jorm is an antisymmetric covariant tensor of rank 
p.  From a p-form t,,,p ,,... ,p one may construct a (p + 1)-form called the 
exterior derivative" d t  by taking the derivative and then antisymmetrizing 
with respect to all indices: 

with square brackets indicating antisymmetrization with respect to the in- 
dices within the brackets. Because derivatives commute, repeated exterior 
derivatives vanish 

A p-form whose exterior derivative vanishes is called closed, while a p- 
form that is itself an exterior derivative is called exact. From Eq. (8.8.2) 

This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 

" Exterior derivatives and p-forms play a speciai role in general relativity, in part because the 
exterior derivative of a tensor transforms like a tensor evcn though it is calculated using ordinary 
rather than covariant d e n v a t i ~ e s . ~  



it follows that any exact p-form is closed; a famous theorem6 of Poincarb 
states that in a simply connected region, any closed p-form is exact.? 
For instance, the homogeneous Maxwell equations (8.1.16) tell us that the 
electromagnetic field strength two-form Fp,  is  closed; Poincark's theorem 
then shows that it is also exact, so that it can be written as an exterior 
derivative, i.e., as F,, = 8,A, - ;,A,. Again using Eq. (8.&.2), we see that 
the two-form Fpv is invariant if A, is changed by an exterior derivative, 
ie., by a gauge transformation 6A, = d,Q. 

The formalism of p-forms and exterior derivatives makes it natural to 
consider the possibility of massless particles described by p-form field 
gauge fields$ A,, ...,, with an invariance under gauge transformations 

or in more detail 

o A p l . , - p p  = 2 ~ l Q p 2 ~ . . p p ] ,  

where R,,...,tp-, is an arbitrary (p  - I)-form. From such a pform gauge 
field, we can construct a gauge-invariant field strength tensor given by 

F = dA (8.8.4) 

or in detail 

(Alternatively, we can start with a (p + 1)-form F ,  and from an assumed 
condition d F  = 0 infer the existence of a p-form A with F = dA.) By 
analogy with electrodynamics, we might expect the Lagrangian density 
for A to take the form 

where J is an antisymmetric tensor current (either a c-number, or a 
function of fields other than A )  that in order to make the action gauge- 
invariant must satisfy the conservation condition 

J / ~ I " ' ! J P  = (3, 
/( I  (8.8.7) 

- 

t In rnultipiy connected spaces close$ forms are not necessarily cxact; althuugh it i s  possible to 
write a clnsed p-form as an exterior derivative lwally, this cannot in general be done smoothly 
throughout the spact. The sct of closed p-forms, moddo exaclt p-forms, makes up what is callcd 
the pth de Rham cohomology group of thc space. There is  a deep relatiun betwen the de Kham 
cohomology groups of a space and its which will be discuswd further in Volume I T .  * W e  art speaking loosely in calling A,, ,, a p-form, bccaux for F = dA to be r tensor i~ ls 
only necessary for A to be a tensor up  to a gauge transformation. I n  fact, we have already seen 
that in four spacetime dimensions, it is not possible to construct a four-vector Geld from the 
creation and annihilation operators of physical massless particlcs of helicity f I ,  so we have to 
deal with an A a ( x )  that according to Cq. (8.1.2) transforms as a rowvector only up to a gaugc 
transformat~on. 



8.8 General lzaiion : p$orm Gauge Fields 

The Euler-Lagrange equations are then 

These p-form gauge ficlds play an important role in theories with more 
than four spacetime dimensions. For instance, in the simplest string 
theories in 26 spacetime dimensions, there is a normal mode of the string 
represented at low energm by a two-form gauge field A,,,. But in four 
spacetime dimensions, p-forms offer no new possibilities. 

To see this, note first that in D spacetime dimensions there are no 
antisymmetric tensors with more than D indices, so in general we must 
take p $ 1 5 D. Like any other (p + 1)-form with p + 1 5 D, the field 
strength F may be expressed in terms of a dual ( D  - p - 1)-form 9, as 

Likewise, the p-form current J may be expressed in terms of a dual 
( D  - p)-form current f ,  as 

Jp1 "'pp = FPI ' ' ' / I D A ,  
,,, 

PP-I P ~ J  - (8.8.10) 

The field equation (8.8.8) and conservation condition (8.8.7) then read 
simply 

d,,F = 3 ,  cly=O. (8.8.1 1) 

Because the dual current 3 is closed, it may be written in terms of a 
( D  - p - I )-form Y as 

Eqs. (8.8.11) and (83.12) tell us that the difference of 9 and ,Y i s  closed, 
and therefore according to Poincark's theorem, may be written as 

with 4 a (D - p - 2)-form. There is an exception for the case p = D - 1, 
where 9 and Y are zero-forms, i.e, scalars, and the condition d 9  = d9' 
simply tells us that 9 and 9 diffc r only by a constant. In this case the 
gauge field describes no degrees .)f freedom at all. We may therefore 
concern ourselves only with the cases p I D - 2. 

For p I D - 2, the homogeneous 'Maxwell' equations d F  = 0 read 

which with Eq. (8.8.13) yieIds the field equation for 4 :  

This is invariant under a new set of gauge transformations 4 + q5 + dm, 
except that where D - p - 2 = O the gauge transformation that leaves F 
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invariant is 6 -+ + c, where c is  an arbitrary constant. We see that in D 
spacetime dimensions, rhe theory of a p-forrn gauge field A wirh current 3 
is equivalent to the theory O J '  a ( D  - p - 2)-form gauge j d d  6, with current 
- d 9 .  

We can now understand why p-form gauge fields offer no new possibili- 
ties in four spacetime dimensions. As we have seen, we need only consider 
the cases p 5 D - 2, or p = 0, 1, or 2. A zero-form gauge field is a scalar 
S, for which Eq. (8.8.5) reads F, = d,S, and the field equations (8.8.8) 
read simply OS = - J .  The gauge invariance here is invariance under a 
shift S + S + c, with c a constant. This is just the theory of a massless 
scalar field with only derivative interactions. A onsform gauge field is a 
four-vector Ayx) coupled to a conserved four-vector current, just as in . 

electrodynamics. Finally, according to the general result quoted above, 
a two-form gauge field in four spacetime dimensions is equivalent to a 
zero-form gauge field, which as we have seen is equivalent to a massless 
derivatively coupled scalar field. 

Appendix Traces 

In calculating S-matrix elements and transition rates for processes in- 
volving particles of spin f, we often encounter traces of products of Dirac 
gamma matrices. It will therefore be useful to give formulas for these 
traces that can be used in all such calculations. 

For products of euen numbers of gamma matrices, the trace is given by 

pairings pairs 

Here the sum is over all different ways of pairing the indices p l ,  - - F I N .  A 
pairing can be regarded as a permutation of the integers 1, 2, 2N into 
some order P 1, P2, P . ( 2 N ) ,  in which we pair pp 1 with p p z ,  pp3 with 
p p q ,  and so on. Permuting pairs or permuting ys within a pair yields the 
same pairing, so the number of different pairings is 

We can avoid summing over equivalent pairings by requiring that 

P l  < P 2 ,  P 3 < P 4 , - - . ,  P . ( 2 h r - l ) < P . ( Z N )  (8.A.3) 

With this convention, the factor S p  is + 1 or -1 according to whether the 
pairing involves an even or odd permutation of indices. The product in Eq. 
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(8.4.1) is over all N pairs, the nth pair contributing a factor vrP I,Pr ,12n,. 

For instance (writing p, v,  p, g, . . in place of p1, pz, ,q, p4, -1, for N = 
1,2, and 3 we have* 

Tr {?fib ) = 4 tip , (8.A.5) 

Tr { ~ p t . v l ' p l i r  ) = 4 [ ~ p v  ~ p n  - ~ p ~ ~ v a  + ~ p ~ v p ]  3 
(8.A.6) 

For an odd number of gamma matrices, the result is much simpler 

The proof of Eq. (8.A.1) is by mathematical induction. First note that 

so Tr {qPy,) = 4 q,,,, in agreement with Eq. (8.A.1). Next, suppose that 
Eq. (8.A.1) is true for N I M - 1. We then have 

All commutators have zero trace, so the last term subtracted here is the 
same as the left-hand side, and so 

If we assume that Eq. (8.A.l) correctly gves the trace of any product 
of 2N - 2 Dirac matrices, then Eq. (8.A.9) shows that Eq. (8.A.1) also 
correctly gwes the trace of any product of 2N Dirac matrices. 

The easiest way to see that the trace of an odd number of Dirac 
matrices vanishes is to note that -y, is related to y, by a similarity 
transformation, -7, = YsYr(Ys)-l. Traces are unaffected by such similarity 

' There are now computer programs7 available for the calculation of  traces of products of large 
numbers of Dirac matrices. 



transformations, so the trace of an odd number of Dirac matrices i s  equal 
to minus itself, and hence vanishes. 

One occasionally encounters another class of traces, of the form 

Tr ( ~ 5 ~ l r l  7,a rn ~ p , )  - 
This vanishes for odd n for the same reason as given above for traces 
without a ys. It also vanishes for n = 0 and n = 2: 

Tr ( 7 S j  = O @.A. 10) 

(To see this just recall that 7s - iyOy1y22"j, and note that there is no  way 
of pairing the indices in Tr (7071~z~3) or in Tr { Y ~ Y ~ ~ ~ ~ ~ Y ~ Y ~ ~ )  SO that the 
spacetime indices in each pair are equal.) For n = 4 it is possible to 
pair the indices in Tr ( ~ n Y 2 Y 3 Y p Y v s p y n o )  SO that the spacetime indices in 
each pair are equal, but only if p, v,  p, are some permu tation of 0,1,2,3.  
Furthermore this trace must be odd under permutations of p, 1.1, p, r~ since 
gamma matrices with different indices anticommute. Thus the trace 
Tr ( Y ~ Y ~ Y ~ Y ~ Y ~ )  must be proportional to the totally antisymmetric tensor 
e,,,,,,. The constant of proportionality may be worked out by letting 
p, r,p, a take the values 0,1,2,3, and recalling that ~ 0 1 2 3  -- -1. In this way 
we find 

The trace of products of y5 with six, eight, or more Dirac matrices may 
be calculated by the same methods used above to verify Eq. @.A. 1 ) .  

Problems 

1, Calculate the differential and total cross-sections for the process 
e+e- -+ p+p- to lowest order in e. Assume that electron and 
muon spins are not observed. Use the simplest Lagrangian Tor the 
electrodynamics of electrons and muons. 

2. Carry out the canonical quantization of the theory of a charged scalar 
field 0 and its interaction with electromagnetism, with Lagrangan 
density: 

6P = - ( D ~ @ ) ~ ( D P ~ ) )  - m2@'@ - i(CDT0j2 - FryFIw , 
where 

Use Coulomb gauge. Express the Hamiltonian in terms of the fields 
A, a, and @t and their canonical conjugates. Evaluate the interaction 



V (  t )  in the interaction-picture in terms of the interaction picture fields 
and their derivatives. 

3. Use the results of Problem 2 to calculate the differential and total 
cross-sections for photon scattering by a massive charged scalar 
particle to lowest order in e, 

4. Write a gauge-invariant Lagrangan for a charged massive vector 
field interacting with the electromagnetic field. 

5. Calculate the differential cross-section for electron4ectron scattering 
to lowest order in u. Assume that final and initial spins are not 
measured. 

References 

1. See, e.g., M. B. Green, J. H. Schwarz, and E. Witten, Superstring 
Theory (Cambridge University Press, Cambridge, 1987): Section 2.2. 

la. V. Fock, 2. J Phys. 39, 226 (1927); H. Weyl, 2. Phys. 56, 330 
(1929). The term 'gauge invariance' derives from an analogy with 
earlier speculations about scale invariance by H. Weyl, in R w m ,  
&it, Mclterie, 3rd ed. (Springer-Verlag, Berlin, 1920). Also see F, 
London, Z. j, Phys, 42, 375 (1927). This history has been reviewed 
by C. N. Yang, talk at City College (unpublished). 

2. The use of Coulomb gauge in electrodynamics was strongly advo- 
cated by Schwinger on pretty much the same grounds as here: that 
we ought not to introduce photons with helicities other than kl. 
See J. Schwinger, Phys. Rev. 78, 1439 (1948) ; 127, 324 (1962) ; Nuotlo 
Cirnento 30, 278 (1963). 

3. R. P. Fegnman, Phys. Rev. 101, 769 (1949): Section 8. 

4. 0. Klein and Y. Nishina, 2.f: Phys. 52, 853 (1929); Y. Nishina, ihid., 
$69 (1929); also see 1. Tamrn, Z. j: Phys. 62, 545 (1930). 

5. See, e.g., S. Weinberg, Gravitcatitm wnd Cosmoiogy (Wiley, New York, 
1972) : Section 4.1 1. 

6. For a readable general introduction to the geometry and topology of 
p-forms, see H. Flanders, D i e r m t i a l  Forms (Academic Press, New 
York, 1963). 

7. T, West, Cornput. Phys. Cnmmun. 77. 286 (1493). 



Path-Integral Methods 

In Chapters 7 and 8 we applied the canonical quantization operator for- 
malism to derive the Feynman rules for a variety of theories. In many 
cases, such as the scalar field with derivative coupling or the vector field 
with zero or non-zero mass, the procedure though straightforward was 
rather awkward. The interaction Hamiltonian turned out to contain a 
covariant term, equal to the negative of the interaction term in the La- 
grangian, plus a non-covariant term, which served to cancel non-covariant 
terms in the propagator. I n  the case of electrodynamics this non-covariant 
term (the Coulomb energy) turned out to be not even spatially local, 
though it is local in time. Yet the final results are quite simple: the Feyn- 
man rules are just those we should obtain with covariant propagators, and 
using the negative of the interaction term in the Lagrangian to calculate 
vertex contributions. The awkwardness in obtaining these simple results, 
which was bad enough for the theories considered in Chapters 7 and 8, 
becomes unbearable for more complicated theories, like the non-Abelian 
gauge theories to be discussed in Volume 11, and also general relativity. 
One would very much prefer a method of calculation that goes directly 
from the Lagrangian to the Feynman rules in their final, Lorentz-covariant 
form. 

Fortunately, such a method does exist. It is provided by the path- 
integral approach to quantum mechanics. This was first presented in the 
context of non-relativistic quantum mechanics in Feynman's Princeton Ph. 
D. thesis,' as a means of working directly with a Lagrangian rather than a 
Hamiltonian. In  this respect, it was inspired by earlier work of ~ i r a c . ~  The 
path-integral approach played a part {along with inspired guesswork) in 
Feynman's later derivation of his diagrammatic rules.3 However, although 
Feynman diagrams became widely used in the 1950s, most physicists 
(including myself) tended to derive them using the operator methods of 
Schwinger and Tomonaga, which were shown by Dyson in 1949 to lead 
to the same diagrammatic rules that had been obtained by Feynman by 
his own methods. 

The path-integral approach was revived in the late 1960s, when Faddeev 
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and popov4 and De Witt5 showed how to apply it to non-Abelian gauge 
theories and general relativity. For most theorists, the turning point 
came in 1971, when 't ~ o o f t ~  used path-integral methods to derive the 
Feynman rules for spontaneously broken gauge theories (discussed in 
Volume II), including in particular the theory of weak and electromagnetic 
interactions, in a gauge that made the high energy behavior of these 
theories transparent. Soon after, as also discussed in Volume 11, it was 
discovered that the path-integral method allows us to take account of 
contributions to the S-matrix that have an essential singularity at zero 
coupling constant and therefore cannot be discovered in any finite order 
of perturbation theory. Since then, the path-integral methods described 
here have become an indispensable part of the equipment of all physicists 
who make use of quantum field theory. 

At this point the reader may be wondering why if the path-integral 
method is so convenient we bothered in Chapter 7 to introduce the 
canonical formalism. Indeed, Feynman seems at first to have thought 
of his path-integral approach as a substitute for the ordinary canonical 
formulation of quantum mechanics. There are two reasons for starting 
with the canonical formalism. The first is a point of principle: although 
the path-integral formalism provides us with manifestly Lorentz-invariant 
diagrammatic rules, it does not make clear why the S-matrix calculated 
in this way is unitary. As far as T know, the only way to show that the 
path-integral formalism yields a unitary S-matrix is to use it to reconstruct 
the canonical formalism, in which unitarity is obvious. There is a kind 
of conservation of trouble here; we can use the canonical approach, in 
which unitarity is obvious and Lorentz invariance obscure, or the path- 
integral approach, which is manifestly Lorentz-invariant but far from 
manifestly unitary. Since the path-integral approach is here derived from 
the canonicai approach, we know that the two approaches yield the same 
S-matrix, so that the S-matrix must indeed be both Lorentz-invariant and 
unitary. 

The second reason fur introducing the canonical formalism first is 
more practical: there are important theories in which the simplest ver- 
sion of the Feynman path-integral method, in which propagators and 
interaction vertices are taken directly from the Lagrangian, is simply 
wrong. One example is the non-linear a-model, with Lagrangian density 
9 = -~gkl(d) i?,gkP#' .  In such theories, using the naive Feynman rules 
derived directly from the Lagrangian density would yield an S-matrix that 
is not only wrong but even non-unitary, and that also depends on the 
way in which we define the scalar field.' In this chapter we shall derive 
the path-integral formalism from the canonical formalism, and in this way 
we will see what additional sorts of vertices are needed to supplement the 
simplest version of the Feynman pat h-integral method. 
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9.1 The General Path-Integral Formula 

We start with a general quantum mechanical system, with Hermitian 
operator 'coordinates' Q, and conjugate 'momenta' Ph, satisfying the 
canonical commutation relations* : 

{We shall restrict ourselves in this and the next three sections to bosonic 
operators, which satisfy commutation rather than anticommutation rela- 
tions. Our results will be generalized to include fermionic operators in 
Section 9.5.) In a field theory, the index a consists of a position x and a 
discrete Lorentz and species index m, and we conventionally write 

Also, the Kronecker delta in Eq. (9.1.1) is interpreted in a field theory as 

However, for the present it will be convenient to use the more compact 
notation of Eqs. (9.1.1) and (9. I .2) .  These are 'Schrodinger-picture' oper- 
ators, taken at a fixed time (say, r = 0). The time-dependent operators in 
the Heisenberg picture will be considered a little later. 

Since the Q, all commute, we can find a simultaneous eigenstate lq), 
with eigenvalues q , :  

(We are using lower case qs and ps here to denote eigenvalues rather than 
t o  denote operators in the interaction picture as in Chapter 7, but since 
we will not  be using the interaction picture in this chapter no confusion 
should arise.) The eigenvectors can be taken to be orthonormal, 

so that the completeness relation reads 

' We are tacitly assuming here that any Iirst class conslraints are eliminated by choosing a gauge, 
and any remaining second class constraints arc 'solvcd' by writing the constrained degrees of 
freedom in terms of the unconstrained Q, and P,,, as in Section 7.6. The direcl applicalion nl' 
palh-integral methods ID constrained syswms is dcscribcd by ~ a d d c c v . ~  
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Similarly, we can find a complete orthonormal set of eigenstates of the 
Pu: 

As usual, it follows from Eq. (9.1.1) that these two complete sets of 
eigenstates have the scalar product** 

In the Heisenberg picture, the Q and P operators are given a tirne- 
dependence 

where H is the total Hamiltunian. These have eigenstates 1 y ; t )  and lp; t )  

given by 

(Note that ly; t )  is the eigenstate of Q,{t) with eigenvalue q,, and ncri the 
result of letting the state ly) evolve for a time t. This is why its time- 
dependence is given by a factor exp(iHt) rather than exp(-iHt).) These 
states obviously satisfy the completeness and orthonormality conditions 

., + The prod li~llnwb Ihe same lincs as in thc quantum rnechanjcs of point particles, Frum Eq. (9.1. I ) ,  
we see 1ha1 Pi, acts as -.-iJjt3qh nn wave functions in n q-barns. The right-hand side nf kq. (9.1.12) 
is then seen to be the wave function in  this basis of an eipenstare of P Thc factor n I/,& is 
fixed by Ihe normali7.atinn rcquircmcnt, Eq. (9.1.10). 
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and also 

If, by measurements at time t, we find that our system is in a definite 
state Iq; t), then the probability amplitude for measurements at time i' to 
give a state 14'; t') is the scalar product (q' ; t f  lq; t). Our central dynamical 
problem is to calculate this scalar product. 

This is easy when t' and t  are infinitesimally close, say t' = z + d~ and 
t = z. Using Eq. (9.1.17), we have 

The Hamiltonian H is given as a function H(Q,  P), but since (9.1.13) and 
(9.1.14) are similarity transformations, and H commutes with itself, it can 
equally well be written as the same function of Q(t) and P ( t )  

This function can be written in various different forms, with different 
constant coefficients, by using the commutation relations (9.1.1) and (9.1.2) 
to move the Qs and P s past each other. It will be convenient to adopt a 
standard form, in which all Qs appear to the left of all Ps .  For instance, 
given a term in the Hamiltonian of form PaQbPc, we would rewrite it 
as PaQhPc = @,P,P,. - i &,PC. With this convention, the Q,(t)s in the 
Hamiltonian in Eq. (9.1.24) may be replaced? with their eigenvalues q:. 
To deal with the P ( t ) ,  we use Eq. (9.1.23) to expand lq; z) in P-eigenstates 
Ip; t), and find 

with each p, integrated from -m to +LO. 
Now let's return to the more general case of a finite time-interval. To 

calculate (q ' ;  t ' l q ; ~ ) ,  with t < t', we break up the timainterval from t to tf 

into steps t, T I ,  zz,. . + TN, t', with 

This is only possible because with d.r infinitesimal, exp[-iHd5) is h e a r  in H 
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and sum over a complete set of states Iq ; z k )  at each time zk : 

Inserting Eq. (9.1.261, this becomes 

where 

Our result, Eq. (9.1.291, can be put in a much more elegant form. Define 
smooth interpolating functions, q ( z )  and p(z ) ,  such that 

In the limit dz + 0 ( is . ,  N -+ a), the argument of the exponential in 
Eq. (9.1.29) becomes just an integral over z 

Further, we may define integrals over the functions q ( z ) , p ( z )  by 

Eq. (9.1.29) then becomes a constrained path integral 

This is called a path integral, because we integrate over all paths that 
take q ( ~ )  from q at t = r to q' at T = t i ,  as well as over all P I T ) .  The 



great advantage of writing matrix elements in this way is that, as shown 
in Section 9.3, the path integrals are easy to calculate when expanded in 
powers of the coupling constants in H .  

The path-integral formalism allows us to calculate not only transition 
probability amplitudes like (y' ; l ' t  y ; f ) ,  but also the matrix elements be- 
tween states {q'; l'( and (q,  t) of time-ordered products of general operators 
O ( P ( t ) , Q { t ) ) ,  It will be convenient to define these operators with (unlike 
H )  all Ps moved to the Ieft and all Q s  to the right, Then by inserting any 
such operator G'[P(r), Q(L)] in Eq. (9.1.26), we have 

can 
and 

order to calculate the matrix element of a product 
P( tr ) ,  ~ ( t a ) )  ~ J R  ( ~ ( t ~ ) ,  Q(~B)) . . - of operators with > t~ > . ., we 
insert the &operators between the appropriate states in Eq. (9.1.28), 
use Eq. (9.1.35). For instance, if the time t~ falls between zk and q + l ,  

then insert F A  (P (la), ~ ( r a ) )  between (qr+l : r k + l  and jqk ; rr ). Note that 
in Eq. (9.1.28) each successive sum over states is at a later time, so this is 
only possible because of our assumption that t~ > t~ > , + .  . Following 
the same steps as before, we now find the general path-integral formula 

This result is only valid if the times are ordered, with 

However, nothing on the right-hand side of Eq. (9.1.36) refers to the order 
of time-arguments. Hence if we are presented with a path integral like 
the right-hand side of Eq, (9.1.361, with t ~ ,  t ~ ; .  - in arbitrary order (all 
between t and r', with r < t'), then this path integral will equal a matrix 
element like the left-hand side of Eq. (9.1.36), but with the operators 
arranged in order {from left to right) of decreasing time. That is, for 



9.1 The General Pulh-integral Formula 

t ~ ,  t ~ ,  . in arbitrary order, we have 

where T denotes the usual time-ordercd product. 
It should perhaps be stressed that the c-number functions y,{z), p,(z) 

in Eq. (9.1.38) are mere variables of integration, and in particular are 
not constrained to obey the equations of motion of classical Hamiltonian 
dynamics 

(For this reason, the Hamiltonian H(q(z),p(z)) in Eq. (9.2.38) is not con- 
stant in z.) Nevertheless, there is a limited sense in which path integrals 
do respect these equations of motion. Suppose that one of the functions 
in Eq. (9.1.38), say ( p ( t a ) ,  q ( t A ) ) ,  happens to be the left-hand side of 
either Eq. (9.1.39) or Eq. (9.1.40). We note that (for t < t~ < tr) 

where il is the argument of the exponential in Eq. (9.1.38): 

As Iong as t~ does not approach t or t', the integrations over q,(tA) and 
pa(tA ) are unconstrained, and so with reasonable assumptions about the 
convergence of these integrals, the integral of such variational derivatives 
must vanish. Hence the path integral (9-1.38) vanishes if O A ( p , q )  is taken 
to be the left-hand side of either of the equations of motion (9.1.39) or 
(9.1.40). 

This simple rule applies only if the integration variables q,jtA), p , j r~)  
are independent of any of the variables q,{tR),  pu( tB) ,  etc. appearing 
in any of the other functions CJB, Oc, etc. in Eq. (9.1.38), and hence 
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only if we prohibit t~ from approaching f ~ ,  t ~ ,  etc. as well as 1 or t, 
When LA approaches, say, t ~ ,  the path integral will be found to involve 
a non-zero term proportional to 8 ( t A  - ts) or its derivatives. These delta 
functions are the same as would be found in the operator formalism 
from time-derivatives of the step functions implicit in the definition of the 
time-ordered product. 

In evaluating the path integrals (9.1.34) and (9.1.381, we only need to 
know the classical Hamiltonian, the c-number function H(q,p). If we were 
to define a theory by the path integrals, the question would naturally 
arise, which of many possible quantum mechanical Hamiltonians H(Q, P )  
(differing is the order of Qs and Ps)  governed the quantum theory that 
corresponds to these path integrals. Our derivation has provided an 
answer: the quantum Harniltonian i s  to be taken with all Qs on the left, 
all P s  on the right. But it would be a mistake to give this prescription 
too much significance. There are a great many ways of interpreting 
the measure ll dqa( z )  I I d p h ( ~ )  appearing in path integrals like (9.1.34) 
or (9.1.38). Our prescription, of putting all Qs to the left of all P s, is 
appropriate only if the measure is interpreted according to Eqs. (9.1.31)- 
(9.1.33). Other measures would lead to other prescriptions for operator 
ordering. The question is not an urgent one, because different prescriptions 
for ordering operators in the Hamiltonian just correspond to different 
choices of the constants that appear as coefficients of the various terms in 
the Hamiltonian, and we generally formulate theories with these constants 
left as arbitrary parameters anyway. 

It is difficult to use the general path integral in Eq. (9.1.38) for numerical 
calculations or as a source of rigorous theorems. For these purposes 
it is better to use the path-integral method to calculate amplitudes in 
Euclidean space, where t is replaced with an imaginary quantity -ix4, and 
the argument of the exponential in Eq. 19.1.38) is a negative real quantity. 
In this way, instead of jagged paths producing rapid oscillations of the 
integrand from one path to another, all jagged paths are exponentially 
suppressed. Though we shall not go into it here, quantum field theory 
may be formulated from the beginning in terms of Feynman amplitudes in 
Euclidean ~ ~ a c e t i r n e . ~ ~  Under certain plausible assumptions, it is possible 
to reconstruct the Feynman amplitudes in Minkowskian spacetime from 
their Euclidean counterpartshsb But we may as well stick to the Minkowski 
space formulation of the path integral if we are only going to use it to 
calculate Feynman amplitudes in perturbation theory. 
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9.2 Transition to the S-Matrix 

As already mentioned, we can easily convert the general quantum me- 
chanical results of Section 9.1 to a notation appropriate to quantum field 
theory, by letting the index a run over points x in space and over a 
spin-and-species index rn, and replacing Q,{t) and P,(t) with Q,(x, t )  and 
P,(x, t ) ,  respectively. Eq. (9.1.38) then reads* 

However, in field theory Eq. (9.2.1) is not exactly what we want. Exper- 
imentalists do not measure probability amplitudes for transitions between 
eigenstates (q', tfl and Iq, t )  of the quantum field Q, but rather S-matrix 
elements, the probability amplitudes for transitions between states that at 
6 -+ -a or t -+ +GO contain definite numbers of particles of various types. 
These are called 'in' and 'out' states, Icr, in) and la, out), where a and /3 
denote sets of particles characterized by the various particles' momenta, 
spin z-component (or helicity), and species. To calculate a matrix element 
of a time-ordered product (perhaps empty) between such states, we need 
to multiply Eq. (9.2.1) by the 'wave functions' (8, out(qf, t') and (q ,  tlu, in) 
at any fixed times t and t', taken for convenience here to be -w and 
tot, respectively, and then perform an integral over the 'arguments' q,(x)  
and q k ( x )  of these wave functions. But instead of constraining the path 
integral over q,(x, z j  by the conditions 

and then integrating over &(x) and q,(x), we can just as well do 
an unconstrained integral over q,(x,z) (and also over p , ( x , ~ ) ) ,  and 
set the arguments of the wave functions equal to the values given by 
Eq. (9.2.2): 

' Wc are now writing H and the &s with square brackets, to remind us that H[q(t),p(t)] and 
&[p(t), q [ t ) ]  are funtbliona/s of qJx, t )  and p,(x, f )  at a fixed timc r.  
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Incidentally, this result leads immediately8* to Eq. (6.4.3), a theorem that 
we use repeatedly to relate sums of off-shell Feynman graphs to matrix 
elements of Heisenberg-picture operators between exact energy eigenstates, 

It is necessary now to consider how to calculate the wave functions 
appearing as the final pair of factors in Eq. (9.2.3). Let's first consider the 
simplest and most important case, the vacuum. (We saw in Section 6.4 that 
S-matrix elements may be easily calculated from the vacuum expectation 
values of time-ordered products.) We assume as usual that for t + f x, 
matrix elements may be calculated as if there were no interactions. The 
'in' and 'out' vacua may thus be defined by the conditions 

where sin and aOut are the operators appearing in the coefficients of 
explip . x - 1Et) in the plane-wave expansion of the operator Q,(x, t )  at 
t + -x and t + +Q respectively. For instance, for the real scalar field 
of a neutral spinless particle, we have in effect 

" 11 is only necessary to note that, fur a Hamiltonian H [ P ( t ) ,  Qrt)] + r, d3x  c ~ ( x ,  t ) C ~ ( x , t ) ,  thc 
S-ma~rix is given by Eq. (9.2.3) as 

x ( p ,  outlq(+uc.);+m) (q(-ix); -mla, in} 

The left-hand side of Eq. (6.4.3) i s  the derivaiire of this expression with respect to F,, +, etc., at 
e = 0, which yields the right-hand side of Eq. (9.2.3), and using Eq. (9.2.3) again thcn irnmediatcly 
gives Lhe right-hmd side ol' F.q. (6.4.3). 
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f-tf m 
-i(2n)-'12 J d3p (E / z ) "" [~  out in (p)e@" - H.c.] 

where = E E d m ,  and we here use the conventional $ and II 
rather than Q and P for a scalar field, and drop the unnecessary labels 
rn, a, n. Inverting the Fourier transforms and taking a linear combination 
of the resulting expressions, we have 

&Kt 

LJ (p) = lim - /' 63X e - i ~ ' x  
uu I r-t+.x; (24-W 

As mentioned in Section 9.1, the 'momentum' n(x, t )  acts on wave- 
functions in a &basis as the variational derivative - i 5 /6&(x ,  t), so in 
this basis the conditions (9.2+4) read 

The analogous ordinary differential equation has a well-known Gaussian 
solution, so let's try a Gaussian ansatz here: 

with kernel B and constant ,4' to be determined. Substituting this in 
Eq. (9.2.81, we see that the functional differential equation for the vacuum 
wave functional i s  satisfied if for all # 

or, in other words, if 

/ d3x e-m'x&(x, y) = E(p) e-4.y . (9.2.1 1 )  

The solution is easily found by inverting the Fourier transform 

(Recall that E(p) - Jw). This is actually the most useful represen- 
tation for the kernel 8, but we may note in passing that for x # y, B may 
also be written in terms of a Hankel function of negative order 
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where r 3 I X  -yI- The constant &V in Eq. (9.2.9) may be formally obtained 
from the normalization condition for the vacuum state, but we will not 
need this result. 

According to Eq. {9.2.9), in calculating vacuum expectation values in 
the theory of a scalar field, the product of the last two factors in Eq, (9.2.3) 
is 

where E. is a positive infinitesimal. To obtain the final expression, we have 
used the fact that for any reasonably smooth function f (z), 

Inserting Eq. (9.2.14) in Eq. (9.2.3) now gives 

We shall see in Section 9.4 that the whole effect of the last term in 
the argument of the exponential in Eq. (9,2.16) is to provide the -k 
in the denominator of the scalar field propagator in momentum space, 
[pZ + m2 - L]-'. We will not go into the corresponding details for fields 
of general spin, but will simply state that in general 

- f f [ qW,p ( r ) ]  + ir terms) 1. 
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where the 'k terms' just have the effect of putting the correct -ic in the 
denominators of all propagators. 

This is a good place to mention that field-independent factors in 
Eq. (9.2.171, like the constant (.N12, are not important. This is because 
such factors contribute also to the matrix element (VAC, outlVAC, in), 
In calculating the connected part of vacuum expectation values of time- 
ordered products (or the S-matrix) we eliminate the contribution of discon- 
nected vacuum fluctuation subgraphs by dividing by (VAC, outlVAC, in), 
and any constant factors in the vacuum expectation values cancel in this 
ratio. 

We could go on and calculate matrix elements between multi-particle 
states, by inserting the appropriate 'wave functionals' in Eq. (9.2.3). These 
can be calculated by applying the adjoints of annihilation operators 
such as (9.2.7) to the vacuum state; just as for the harmonic oscilla- 
tor, these wave functionals turn out to be Hermite polynomials in the 
field times the vacuum Gaussian. We do not need to work all this 
out here, because as shown in Section 6.4, the vacuum expectation val- 
ues (9.2.17) are all we need in order to be able to calculate S-matrix 
elements. 

9.3 Lagrangian Version of the Path-Integral Formula 

The integrand in the exponential in Eqs. (9.1.38) or (9.2.17) looks like 
the Lagrangian L associated with the Hamiltonian H. This appear- 
ance is somewhat misleading because here the 'momenta' p,(t) or p,(x, t )  
are independent variables, not yet related to qa( t )  or q , ( x , t )  or their 
derivatives. However, there is a large and important class of theories 
in which the integral over the 'momenta' can be done by just replac- 
ing them with the values dictated by the canonical formalism, in which 
case the integrand in the exponential in the path integrals really is the 
Lagr angian. 

These are theories with a Hamiltonian that is quadratic in the 'momenta' 
- in the language of field theory 

with a 'matrix' A that is real, symmetric, positive, and non-singular. The 
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argument of the exponential in Eq. (9.2.17) is then quadratic in the p s  : 

where 

Now, in general the integral of the exponential of a quadratic expression 
like (9.3.2) will be proportional to the exponential evaluated at the sta- 
tionary point of its argument. For a finite number of real variables t,, 
this formula reads 

where < is the stationary point 

(For a proof of this formula, see the Appendix to this chapter.) Hence, as 
long as the CA,  BB,  etc. in Eq. (9.2.17) are independent of the ps, for such a 
Hamiltonian we can evaluate the path integral over the ps in Eq. (9.2.17) by 
setting these variables at the stationary point of the quadratic expression 
in the argument of the exponential. But the variational derivative of this 
quadratic is 

6 rfi 1 dr { J d3x qdx, rlp.(x, r )  - H Iq(r), p ( ~ ) ]  + ir terms 
f i p v @ J l  -* 

(The ir terms depend only on the 4 s . )  Thus the stationary 'point' p,(x, t )  
where this vanishes is just the value of p,(x, t )  dictated by the canonical 
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formula 

With p,(x,t) set equal to this value, the argument of the exponential in 
Eq. (9.2.17) is the ordinary Lagrangian 

and we can write Eq. (9.2.17) as 

(VAC, out 1 T {OA [ ~ ( t ~ j ] ,  ( I S  [ ~ ( t g  )] , . -) 1 VAC, in) 

x exp [I 1% dr { L  Iq(:). ij(r)] + ic terms}] . (9.3.10) 
-x 

(We have combined the 1127~ factors in the integrals over the p, with the 
determinant coming from Eq. (9.3.6j.) This is the desired Lagrangian form 
of the path-integral formula. 

In deriving Eq. (9.3.10). it was necessary to assume that the operators 
OAy C B ,  . - - were independent of the canonical 'momenta'. This is not as 
restrictive as it may seem. For instance, in a scalar field theory for which 
the canonical conjugate to @ i s  IT = i t  is possible to calculate the 
matrix element of a timeordered product of operators, one of which is 
4(l) ,  by taking the difference of matrix elements in which this operator is 
replaced with @(t + dz) and @(.I.), and then dividing by dz, with d.t 4 0. 
Equivalently, as long as t is not equal to any of the other time-arguments 
of the operator in Eq. (9.3.10), we can simply differentiate Eq. (9.3.10) 
with respect to t. 

The one serious remaining complication in Eq. (9.3.10) is the deter- 
minant of .d[q]. If  d [ q ]  is field-independent, then this is no problem; 
we have already noted that overall constants make no contribution to 
the connected parts of vacuum expectation values, in which we divide by 
a vacuum-vacuum amplitude proportional to the same constant factor. 
This is the case for instance for the theory of a set of scalar fields a, 
with non-derivative coupling to each other and/or derivative coupling to 
external currents J, .  The Lagrangian density here is 
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An obvious extension of the results of Section 7.5 from one to sev- 
eral derivatively coupled scalars shows that this Lagrangian implies the 
Hamiltonian 

(The @, are taken to be real scalars, but complex scalars can be accom- 
modated by separating them into real and imagmary parts.) In general 
there is a non-trivial term that is linear in the Il,, but the coefficient of 
the quadratic term is a constant, just the unit 'matrix': 

-1/2 
The factor ( ~ e t  [.(in& [y]]) in Eq. (9.3.10) is here a field-independent 
constant, and therefore is without effect. 

However, matters are not always so simple. As a second example, let 
us consider the so-called non-linear 0-model, with Lagrangian density 

A straightforward calculation gives the Hamiltmian as 

Here .d is the field-dependent quantity 

In cases of this sort, the determinant may be reexpressed as a contribution 
to the effective Lagrangian, using the relation Det A? = exp Tr In d . By 
replacing the continuum of spacetime positions with a discrete lattice of 
points surrounded by separate regions of very small spacetime volume a, 
we may interpret the delta function in d,,,, as d4(x - y )  = ~ - ' f i , , ~  , so 
that 

with the logarithm of a matrix defined now by its power series expansion 

To evaluate the trace, we note that C,  - .  . = !2-' Jd4-r.. - The determi- 
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nant factor here is then 

Det .d x cxp [-R-' / d4x tr in [ l  + u(B(x))]] , 

where 'tr' is to be understood as the trace in an ordinary matrix sense. 
The constant of proportionality (which arises from the -In S1 term) is 
field-independent and therefore of no present interest. We can regard this 
determinant as providing a correction to the effective Lagrangian density 

The factor R-I may be written as an ultraviolet divergent integral 

1 4 R- = 6 (X - X) = ( 2 7 ~ ) - ~  / ddp . 1 . 

We shall not show this here, but the extra terms in the Feynman diagrams 
for this theory contributed by A 9  could also have been derived in the 
canonical formalism by taking account of the equal-time-commutator 
terms in the propagator of time-derivatives of the scalar field.' Ignoring 
this correction would lead to a spurious dependence of the S-matrix on the 
way that the scalar field is defined, and would also be inconsistent with 
any symmetries of the Lagrangian under transformations of the scalar 
fields. 

Even where the factor ( ~ e t  d)-'/' in the path-integral formula (9.3.10) 
is field-independent, the Lagrangian in this formula may not be the same 
as the one with which we started. As an example, let's consider the theory 
of a set of real vector fields, with Lagrangian density 

where the currents J,p are either externally produced c-number quantities 
or depend on other fields (in which case terms describing these other fields 
are to be added to the Lagranpan). By a simple extension of the results 
of Section 7.5, we see that the Hamiltonian is 

1 i [ i  z 
1 

H = d'x 1 -IT: + - (V x A.)' + - r n i ~ , ~  2 

again with the understanding that other terms must be added involving 
any fields that appear in J,p. Here the coefficient of the quadratic term is 
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somewhat more complicated than in our first example: 

but it is field-independent, so that the factor (Det i~)-'/~ has no  effect. On 
the other hand, the Lagrangian (9.3.9) is here not the one with which we 
started; it  is expressed entirely in terms of A and its spacetime derivatives, 
with no dependence on any time-component A'. For this reason, the 
Lorentz invariance of Eq. (9.3.10) is far from obvious. 

To remedy this, we may reintroduce the auxiliary field. Suppose we add 
to the Harniltonian a term 

and integrate over the A: as well as the A,, and Il.. This can only 
introduce a field-independent overall factor, since AH is a quadratic in AO 

( with a field-independent coefficient in the term of second order in A') 
whose stationary value vanishes, However, suppose that we now integrate 
over the ll, bqfi~re integrating over the A:. The Harniltonian in the path 
integral (9.2.17) is here replaced with 

This is still quadratic in ll, with a field-independent (and somewhat 
simpler) coefficient of the quadratic term, so the integral over the II,s can 
be done by just replacing II, with its value at the stationary point of the 
functional x, J d3x lT - A. - H - AH : 

With n, eliminated in this way, x, Jd3xl ln  + A, - H - AH is just the 
Lorentz-invariant Lagrangian with which we started. 

In order to take account of the possible need to introduce auxiliary 
fields like A:, from now on we shall write the path-integral formula after 
elimination of the canonical conjugates in terms of fields vp. that include 
both canonical fields q, and auxiliary fields c,: 

x exp [i Jz d r  { ~ [ ~ ( r j , + ( r ) ]  + ir terms}] 

} I VAC, in) 
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it now being understood that L includes any terms arising from a possible 
field-dependent factor (Det .#)-'I2 . 

9.4 Path-Integral Derivation of Feynman Rules 

We are now ready to use the path-integral formalism to derive the Feyn- 
man rules in a wide class of theories. We will concentrate here on the 
vacuum expectation values of time-ordered products of field operators 
(and their adjoints), 

MtAtB.- ( x A x B  . . .) = 
(VAC, out 1 T ( y d j  (q), vlH (XB) - . b )  I VAC, in) 

(VAC, out 1 VAC, in) 
(9.4.1) 

from which S-matrix elements may be obtained (as shown in Section 6.4) 
by stripping off the final propagators associated with each field, replacing 
them with the coefficient functions that multiply creation or annihilation 
operators in the corresponding free fields, and summing over the indices 
on these coefficient functions, 

For the simpler theories whose Hamiltonian is quadratic in the lls,  
Eq. (4.3.1 1 )  gives 

where I [~p]  is the action 

I [~p] = Ix' dr { L  [ y ( i ) ,  J:(T)] + ie terms) 
-:x, 

with L now including any terms that may arise from a field-dependent 
determinant in Eq. (9.3.10). 

Let us now suppose that the Lagrangian is the integral of a Lagrangian 
density, consisting of a quadratic term Yo which would be present in the 
absence of interactions, plus a Lagrangian interaction density Yl : 

That is, the action (9.4.3) is 
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Since Po and the 'IF terms' are quadratic in the fields, we may always 
write To in the generalized quadratic form 

For instance, for a real scalar field of mass rn, the unperturbed Lagrangian 
is 

and the IF terms in I. are given by Eq. (9.2.161, as 

so here 

(We are now dropping the factor e-'IT in the i~ term, since it produces a 
correction of higher order in F . )  To deal with interactions, we will expand 
the exponential in powers of 11, 

and then expand 1, in powers of the fields. The general integrals that we 
encounter in the numerator and the denominator of Eq. (9.4.2) are of the 
form 

where the field factors zy,, (xl ), zyp-,(xz), etc. arise from Il [y] and/or 
from the field factors ~ ? f , ~ ( x ~ )  etc. originally present in the numerator of 
Eq. (9.4.2). With lo[y:] of the form (9.4.8), the integral (9.4.13) is of the 
same form as the integrai evaluated in the Appendix to this chapter, with 
the discrete index s replaced with the pair of labels d,x. We can therefore 
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use Eqs. (9.A.12) and (9.A.15), which give here 
- l / 2  

. 1 1 , ~ z . . ( ~ I ~ 2  -1 = [Det (g)] c [ - ig-11 
27~ paired ficlds 

pairings of pairs 
liclds 

(9.4.14) 
This just amounts to the coordinate-space Feynman rules for calculating 
the numerator of Eq. (9.4.2) in their covariant form: w e  expand in the 
interaction I , ,  and then sum over the ways of pairing the fields in the i I  s 
with each other and with the fields yLA(xA),  etc., with the contribution of 
each pairing being given by the spacetime integral of the product of the 
coefficients of the fields in Il  [ y ]  and the product of the 'propagators' -iA, 
where 

(The factor [ ~ e t ( i 2 / 2 x ) ] - ' / ~  in Eq. (9.4.14) actually represents the con- 
tribution of graphs with unlimited numbers of single loops unattached to 
any other lines, but in any case this factor cancels in the ratio (9.4.21.) 

It remains to calculate the propagators (9.4.15). We interpret Eq. (9.4.15) 
as an integral equation 

In  the absence of external fields, translation invariance will make 9 
necessarily a function only of x l  - x2, which can be written as a Fourier 
integral 

9!, , , J, ,, = / d4p eiP'(-'] -x2) 2 fi,(( f 2  ( p )  . (9.4.17) 

The solution of Eq. (9.4.16) is then 

where W1 is the ordinary inverse of the matrix 53. As we will see, the L 
terms have the effect of making the inverse well-defined for all real values 
of p. We have thus reduced the problem of calculating the propagator to 
that of taking the inverse of a finite matrix. 

First consider a massive scalar field, for which the kernel 9 takes the 
form (9.4.11). We can write this as a Fourier integral 

so the propagator is 
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We recognize this as the same scalar propagator previously obtained by 
operator methods. (The difference between e and F E(p) is immaterial, 
since both are just positive infinitesimals.) 

For a second example, consider a real massive vector field, The unper- 
turbed Lagrangian is 

We can again write lo[y] in the form (9.4.8), with kernel 

We will not bother to show it here, but the '+ E'F terms' here take the 
simple form -ieE(p)r,,,. The vector field propagator is then given by 
simply inverting the 4x4 matrix in the integrand 

(Terms proportional to e are dropped in the numerator. They are impor- 
tant in the denominator in defining how the integrand is to be treated 
near the mass shell, p2 = -m2.) This is the same as the propagator derived 
by operator methods, except that the non-covariant terms proportional 
to d(x0 - $') are now absent. These non-covariant terms were previously 
needed to cancel non-covariant terms in the interaction HamiItonian, but 
the vertex contributions in the Feynman rules are now obtained directly 
by inspection of the covariant Lagrangian, and no such cancellation is 
needed. 

Theories with derivative coupling are equally simple, The factor arising 
from the pairing of a field derivative 2 y v ~ L ( ~ )  with any other field v~,(y) 
{perhaps itself a field derivative) is 

Such propagators have no non-covariant pieces. For instance, for a 
real scalar field, the pairing of tTP4 with 8,$ gives a momentum space 
propagator k ,k , / (k2  + rn2 - k). Also, as we saw in the previous section, 
vertices in the theory of a scalar field with derivative couplings to other 
fields may be read off from the Lagrangian, and are separately covariant. 
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We now turn to the problem of extending the path-integral formalism to 
cover theories containing fermions as well as bosons. It would be easy 
to proceed in a purely formal way, by analogy with the bosonic case, 
with the justification that this gives the 'right' Feynman rules. Instead, we 
will here derive the path-integral formalism for fermions directly from the 
principles of quantum mechanics, as we did for bosor~s.~ 

As before, we will start with a general quantum mechanical system, with 
'coordinates' Q, and canonical conjugate 'momenta' Pa, but now satisfying 
anticommutation rather than commutation relations: 

(These are Schrodinger-picture operators, or in other words Heisenberg- 
picture operators at time t = 0.) Later we will replace the discrete index 
with a spatial position x and a field index m. 

We wish first to construct a complete basis for the states on which the 
Qs and P s  act. Note that for any given a, we have 

I t  follows that there will always be a 'kct' state 10) annihilated by all Q,: 

and a 'bra' state (01 annihilated (from the right) by all P, : 

(01 P, = 0 .  (9.5.5) 

For instance, we can take 

where I f )  and ( g l  are any kets and bras for which these expressions do 
not vanish. (They cannot vanish for all I f )  and (g(  unless the operators 
n, Qa and n, P, vanish, which we assume not to be the case.) These 
states satisfy Eqs. (9.5.4) and (9.5.5) by virtue of Eq. (9.5.3). They are not 
in general unique, because there may be other bosonic degrees uf freedom 
that distinguish the various possible 10) and (01, but for simplicity we will 
limit ourselves here to the case where the only degrees of freedom are 
those described by the fermionic operators Q, and P,, and will assume 
that the states satisfying Eqs. (9.5.4) and (9.5.5) are unique up to constant 
factors, which we choose so that 
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(Note that this normalization convention could not be imposed if we had 
defined (01 as the left-eigenstate of the Q, with eigenvalue zero, because in 
this case (01 {Q,, Ph) 10) would vanish, which with Eq. (9.5.1) would imply 
that (010) = 0.) 

As we saw in Section 7.5, in the Dirac theory Q, is not Hermitian, but 
instead has an adjoint -Pa, in which case (01 can be regarded as simply 
the adjoint of 10). However, there are fermimic operators (such as the 
'ghost' fields to be introduced in Volume 11) for which P, is unrelated to 
the adjoint of Qu. In what follows we will not need to assume anything 
about the adjoints of Q, or P,, or about any relation between 10) and (01. 

A complete basis for the states of this system is provided by 10) and the 
states [antisymmetric in indices a, b, - . .) 

with any number of dtfferent Ps acting on 10). That is, the result of 
acting on these states with any operator function of the P s  and Qs can 
be written as a linear combination of the same set of states. In particular, 
if an index a is unequal to any of the indices appearing in I b, c, , . p ) ,  then 

On the other hand, if a is equal to one of the indices in the sequence, 
b, c, - - ., we can always rewrite the state (possibly changng its sign) so that 
a is the first of these indices, in which case we have 

Similarly, we may define a complete dual basis, consisting of (01 and 
the states (also antisymmetric in the indices) 

Using Eqs. (9.5.4)<9.5.6) and the anticommutation relation (9.5.1), we see 
that the scalar products of these states take the values 

0 if {c, d, . - -) # (a, R,  . . .) 
1 if c = a, d = b, etc. 

(9.5.13) 

where (- .) here denotes the set of indices within the brackets, irrespective 
of order. 

In deriving the Feynman rules, we would like to be able to rewrite 
sums over intermediate states like (9.5.7) as integrals over eigenstates of 
the Q, or the P,. However, it is not possible for these operators to have 
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eigenvalues (other than zero) in the usual sense. Suppose we try to find a 
state Iq) that satisfies (for all a) 

QoIq) = q u 1 4 )  . 

From Eq. (9.5.2) we see that 

which is impossible for ordinary numbers. However, nothing can stop us 
from introducing an algebra of 'variables' (known as Grrrssmann aarinbles) 
q,, which act like c-numbers as far as the physical Hilbert space is 
concerned, but which still satisfy the anticommutation relations (9.5.15). 
We will require further that 

where q and q' denote any two 'values' of these variables. We can now 
construct eigenstates Iq) satisfying Eq. (9.5.14) : 

with the exponential defined as usual by its power series expansion. {To 
verify Eq. (9.5.14), use the fact that all Pug, commute with one another 
and have zero square, so that 

as required by Eq. (9.5.14).) We can also define left-eigenstates (ql {nor 
the adjoints of Iq)), as 

where n, is the product in whatever order we take as standard. By the 
same argument as for Eq. (9.5.14), we see that 
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These eigenstates have the scalar product 

Moving each Q, to the right (starting with the rightmost) ylelds factors 
i2(qL - q,), which we move to the right out of the scalar product, so 

We shall see that Eq. (9.5.20) plays the role of a delta function in integrals 
over the qs. 

In the same way, we can construct right- and left-eigenstates of the P,: 

where the pa are like q, anticommuting c-numbers (taken for convenience 
to anticornmute with the q, and all fermionic operators as well as each 
other), and 

with scalar product (now derived by moving the Ps to the left) 

The scalar products of these two sorts of eigenstate with each other are 

and so 

( 4 ~ )  = 
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where j l ~  i s  a phase that depends only on the number N of Q, operators: 

Somewhat more simply, we also find 

It is easy to see that the states ly) are in a sense a complete set (and 
so also are the Ip).) From the definitions (9.5171, we see that the state 
la,b,-. .) in the general basis is (up to a phase) just the coefficient of 
the product q , q h  - .  . in an expansion of lq) in a sum of products of qs .  
Therefore we can write any state I f )  in the form 

where the f s are numerical coefficients, and a subscript a, b, . . - on ] q )  
denotes the coefficient of q,qh. . - in Iq). 

In summing over states, it will be very convenient to introduce a sort of 
integration over fermionic variables, known as Berrzin inhgration,10 that 
is designed to pick out the coefficients of such products of anticommuting 
c-numbers. For any set of such variables r, (either ps or q s  or both 
together), the most general function f ( 6 )  (either a c-number or a state- 
vector like 14)) can be put in the form 

f (t) = c + terms with fewer < factors in 1 
and the integral over the cs is defined simply by 

with the tilde in Eq. (9.5.29) indicating that we 

(9.5.29) 

use the convenient con- 
vention that the differentials are written in a n  order opposite to that of 
the product of integration variables in Eq. (9.5.28). Since this product is 
antisymmetric under the interchange of any two s, the integral is likewise 
antisymmetric under the interchange of any two d t s ,  so these 'differentials' 
effectively anticommute 

Also, the coefficient c may itself depend on other unintegrated c-number 
variables that anticommute with the t s  over which we integrate, in which 
case it is important to standardize the definition o f  c by moving all <s  to 
the left of c before integrating over them, as we have done in Eq. (9.528). 
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For instance, the most general function of a pair of anticommuting 
c-numbers and c2 takes the form 

f (51 ,52)  = (1C2c12 +ti  ci + t 2 c 2  + d 

because the squares and all higher powers of and c2 vanish. This 
function has the integrals 

Note that the multiple integral is the same as a repeated integral: 

a result that can easily be extended to integrals over any number of 
fermionic variables. (It was in order to obtain this result without extra 
sign factors that we took the product of differentials in Eq. (9.5.29) to be in 
the opposite order to the product of variables in Eq. (9.5.281.) Indeed, we 
could have first defined the integral over a single anticommuting c-number 
tl, and then defined multiple integrals in the usual way by iteration. The 
most general function of anticornmuting c-numbers is linear in any one 
of them 

(because e: = O), and its integral over is defined as 

Repeating this process leads to the same multiple integral as defined by 
Eqs. (9.5.28) and (9.5.29). 

This definition of integration shares some other properties with multiple 
integrals (from -co to Sm) over ordinary real variables, but there are 
significant differences. 

Obviously, Berezin integration is linear, in the sense that 

din 1 [fit) + ~ii)] = / j f i d t r )  n t(i)+/ (fi n nt,,) (9-5-311 

and also 

where a(<') is any function (including a constant) of any anticommuting 
c-numbers 5;  over which we are not integrating. However, linearity with 
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respect to left-multiplication is not so obvious. If we are integrating over 
v variables, then since & is assumed to anticommute with all r,, we have 

and so 

It is therefore very convenient (though not strictly necessary) to take 
the differentials dc, to anticommute with all anticommuting variables 
(including the t,): 

W n K ,  + C;(Gd = 0 

in which case Eq. (9.5.33) reads more simply 

Another similarity with ordinary integration is that, for an arbitrary 
anticommu ting c-number 5' independent of 5, 

since shifting [ by a constant only affects the terms in f with fewer than 
the total number of <-variables. 

On the other hand, consider a change of variables 

where Y is an arbitrary non-singular matrix of ordinary numbers. The 
product of the new variables is 

But n, cm, here i s  just the same as the product (in the original order) 
n, tn, except for a sign e[m] which is +I or -1 according to whether the 
permutation n-+ m, is an even or odd permutation of the original order: 

This applies whatever order we take for the r,, as long as we take the 5 ;  
in the same order. It follows that the coeffjcient of n, cA in any function 
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f (0 is just (Det Y)-L' times the coefficient of JJ, c,, a statement we write 
as 

This is the usual rule for changing variables of integration, except that 
(Det Y )  appears to the power -1 instead of + 1. We shalI use Eq, (9.5.38) 
and the linearity properties (9.5.3 11, (9.5.32), and (9.535) Iater to evaluate 
the integrals encountered in deriving the Feynman rules for theories with 
fermions. 

We can now use this definition of integration to write the completeness 
condition as a formula for an integral aver eigenvalues. As already men- 
tioned, any state I f )  can be expanded in a series of the states (O), la), la, h) ,  
etc. and these states are (up to a phase) the coefficients of the products 
1, qrr, q l rqb ,  etc. in the Q-eigenstate ly). According to the definition of 
integration here, we can pick out the coefficient of any product &&qd + + 

in the state Iq) by integrating the product of Iq) with all q, with a not 
equal to h, c, 6, - - .. Thus, by choosing a function f ( q )  as a suitable sum of 
such products of qs, we can write any state I f )  as an integral: 

(We can move Iq) to the left of the differentials without any sign changes 
because the exponential in Eq. (9.5.1 7) used to define Iq) involves only 
even numbers of ferrnionic quantities.) To find the function f ( q )  for a 
given statevector I f  ), take the scalar product of Eq, (9.5.39) with some 
bra (q'l (with q' any fixed Q-eigenvalue). According to Eqs. (9 .5 .35)  and 
(9.5.20), this is 

Moving every factor (q ,  -q:) to the right past every differential dqh yields 
a sign factor (-)N' = (-IiV, where N is now the total number of qu 
variables, SO 

We can rewrite f ( 4 )  as f (4' + (4 - 4')) and expand in powers of q - q'. All 
terms beyond the lowest order vanish when multiplied with the product 



which partly justifies our earlier remark that Ey. (9.5.20) plays the role of 
a delta function for integrals over the 4s.  Using Eq. (9-5.321, we now have 

The term in the integrand proportional to n y, has coefficient f(y1), so 
according to our definition of integration {yt[f) = (-)wf(g') . Inserting 
this back in Eq. (9.5.39) gives our completeness relation 

or as an operator equation 

In exactly the same way, we can also show that 

We are now in a position to calculate transition matrix elements. As 
before, we define time-dependent operators 

and their right- and left-eigenstates 

The scalar product between y-eigenstates defined at infinitesjmally close 
times is then 

Now insert Eq. (9.5.42) to the left of the operator exp[-iHd7). It is 
convenient here to define the Hamiltonian operator H ( P ,  Q) with all Ps 
to the left of all Q s ,  so that (for dz infinitesima1) 
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(We could move the c-number H ( p ,  q )  to either side of the matrix element 
without any sign changes because each term in the Hamiltonian is assumed 
to contain an even number of fermionic operators.) This gives 

Using Eqs. (9.5.26) and (9.5.27), and noting that the products pug, and 
! p,q, commute with all anticommu ting c-numbers, we find 

The rest of the derivation follows the same lines as in Section 9.1. To 
calculate the matrix element (q' ; t' lQA(.P ( l A ) )  Q B ( P ( t s ) ,  Q ( t s ) )  . - - 14; t )  of a 
product of operators {with tf > t~ > rs > . . . > t), divide the time-interval 
from t to t' into a large number of very close time steps; at each time step 
insert the completeness relation (9.5.41 j; use Eq. 19-5-47] to evaluate the 
resulting matrix elements {with BA,t IB,  etc. inserted where appropriate); 
move all differentials to the left (this introduces no sign changes, because 
at each step we have an equal number of dps and d q s ) ;  and then introduce 
functions q a ( t )  and p,(t) that interpolate between the values of q, and p, 
at each step. We then find 

The symbol T here denotes the ordinary product if the times are in 
the order originally assumed, LA > ts > . . .. However, the right-hand 
side is totally symmetric in the CA, OB, . - . (except for minus signs where 
anticornmuting c-numbers are interchanged) so this formula holds for 
general times (between t and l'), provided T is interpreted as the time- 
ordered product, with an overall minus sign if time-ordering the operators 
involves an odd number of permutations of fermionic operators. 

Up to this point we have kept track of the overall phase factor (-i)'xN. 



But in fact these phases contribute only to the vacuum-vacuum transition 
amplitude, and hence will not be of importance to us. 

The transition to quantum field theory follows along the same lines as 
described for bosonic fields in Section 9.2. The vacuum expectation value 
of a time-ordered product of operators is given by a formula just like 
Eq. (9.2.17) : 

where the proportionality constant is the same for all operators @ A ,  Bg, 
etc., and the ' i ~  terms' again arise from the wave function of the vacuum. 
As before, we have replaced each discrete index like a with a space position 
x and a field index m. We are also dropping the tilde on the product of 
differentials, since it only affects the constant phase in the path integral. 

A major difference between the krmionic and bosonic cases is that here 
we will not want to integrate out the ps before the qs. Indeed, in the 
standard model of electroweak interactions (and in other theories, such 
as the older Fermi theory of beta decay) the canonical conjugates p, are 
auxiliary fields unrelated to the &, and the Lagrangian is linear in the 
4, so that the quantity J d3x C, p, Gm - H in Eq. (9.5.49) as it stands 
is  the Lagrangian L . Each term in the Hamiltonian for a fermionic 
field that carries a non-vanishing quantum number (like the electron field 
in quantum electrodynamics) generally contains an equal number of ps 
(propordonal to q t )  and ys. In particular, the free-particle term Ho in the 
Hamiltonian i s  bilinear in p and q, so that 

with 54 some numerical 'matrix', The interaction Hamiltonian V = H - 
Ho is a sum of products of equal numbers of fermionic q s  and p s  
(with coefficients that may depend on bosonic fields) so when we expand 
Eq. (9.5.49) in powers of the V we encounter a sum of fermionic integrals 
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of the form 

one such term for each possible set of vertices in the Feynman diagram, 
with coefficients contributed by each vertex given by i times the coefficient 
of the product of fields in the corresponding term in the interaction. 

To calculate this sort of integral, first consider a generating function for 
all these integrals: 

where f , [ x )  and g,(y)  are arbitrary anticommuting c-number functions. 
We shift to new variables of integration 

Using the translation invariance condition (9.5.36), we then find 

The integral is a constant [i-e., independent of the functions f and g) 
which can be shown using Eq. (9.5.38) to be proportional to Det 9. Of 
more importance to us is the first factor. Expanding this factor in powers 
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of gf' and comparing with the direct expansion of Eq. (9.5.52), we see that 

K C spairing n ( - i W 1  
paired m x , y  

pairings pairs 

with a proportionality constant that is independent of the x, y, m, or I?, 

and also independent of the number of these variables. The sum is over 
all different ways of pairing ps with qs, not counting as different pairings 
that only differ in the order of the pairs. In other words, we sum over the 
N! permutations either of the ps or the qs. The sign factor dFairing is + l  
if this permutation is even; -1 if it is odd. 

This sign fxtor and sum over pairings are just the same as we encoun- 
tered in our earlier derivation of the Feynman rules, with the sum over 
pairings corresponding to the sum over ways of connecting the lines asso- 
ciated with vertices in the Feynman diagrams, and the factors (W'),,, 
playing the role of the propagator for the pairing of y,(x) with p, (y) .  In 
the Dirac formalism for spin i, the free-particle action is 

= - 1 d4x V(J) Iyli Cli + m] y(x) , (9.5.55) 

where in the usual notation the canonical variables here are 

with m a four-valued Dirac index. Comparing this with Eq. (9.5.50) , we 
find here 

(Though we shall not work it out in detail, the ic term here arises in much 
the same way as for the scalar field in Section 9.2.) The propagator is then 

just as we found in the operator formalism. The extra factor -yo 
arises because this propagator is the vacuum expectation value of 
~ ( . v ? r n b ) ,  -[vW +'I,), not T{VJ,(X), v,dy}). 

As one example of a problem that is easier to solve by path-integral 
than by operator methods, let us calculate the field dependence of the 
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vacuum-tvacuum amplitude for a Dirac field that interacts only with an 
external field. Take the Lagrangian as 

Y = -11.7 [ Y ~ ? , ~  + m + T]y? , (9.5.59) 

where T ( x )  is an x-dependent matrix representing the interaction of the 
ferrnion with the external field. According to Eq. (9.5491, the vacuum 
persistence amplitude in the presence of this external field is 

with a proportionality constant that is independent of T{x) .  We write this 
as 

where 

To evaluate this, we change the variables of integration q,(x) to 

The remaining integral is now r-independent, so the whole dependence of 
the vacuum persistence amplitude is contained in the determinant arising 
according to Eq. (9.5.38) from the change of variables: 

{VAC, autlVAC, in)r x Det X[r ]  . (9.5.64) 

To recover the results of perturbation theory, let us write 

x y r ]  = 9 + 9[rj , (9.5.65) 

and expand in powers of $[l-]. Eq. (9.5.64) gives then 

(VAC, outlVAC, in), a Det (3[1 + GK1s[I?l]) 

= [DetCY] exp Tr {%' B [TI)" 
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This is just what we should expect from the Feynman rules: the con- 
tributions from internal lines and vertices in this theory are -iF1 and 
-i$[q; the trace of the product of ra factors of -W19[r] thus corre- 
sponds to a loop with n vertices connected by n internal lines; l / n  i s  the 
usual combinatoric factor associated with such loops (see Section 6.1); the 
sign factor is (-l)n+' rather than (-1)" because an extra minus sign is 
associated with fermion loops; and the sum over n appears as the argu- 
ment of an exponential because the vacuum persistence amplitude receives 
contributions from graphs with any number of disconnected loops. The 
r-independent factor Det 9 is less easy to derive from the Feynman rules ; 
it represents the contribution of any number of fermion loops that carry 
no vertices. 

More to the point, a formula like Eq. (9.5.64) allows us to derive non- 
perturbative results by using topological theorems to derive information 
about the eigenvalues of kernels like X' [ r ] .  This will be pursued further 
in Volume IT. 

9.6 Path-Integral Formulation of Quantum Electrodynamics 

The path-integral approach to quantum field theory really comes into its 
own when applied to gauge theories of massless spin one particles, such 
as quantum electrodynamics. The derivation of the Feynman rules for 
quantum electrodynamics in the previous chapter involved a fair amount 
of hand-waving, in arguing that the terms in the photon propagator ApV(g) 
proportional to qj' or q v  could be dropped, and that the purely time-like 
terms would just cancel the Coulomb term in the Hamiltonian, so that 
the effective photon propagator could be taken as v p ' / q 2 .  TO give a real 
justification of this result using the methods of Chapter 8 would involve 
us in a complicated analysis of Feynman diagrams. But as we shall now 
see, the path-integral approach yields the desired form of the photon 
propagator, without ever having to think about the details of Feynman 
diagrams. 

In Chapter 3 we found that in Coulomb gauge, the Hamiltonian for 
the interaction of photons with charged particles takes the form 

Here A is the vector potential, subject to the Coulomb gauge condition 

while TZI is the solenoidal part of i t s  canonical conjugate, satisfying the 
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same constraint 

Also, H M  is the matter Hamiltonian and Vc,,l is the Coulomb energy 

Just as for any other Hamiltonian system, we can calculate vacuum 
expectation values of time-ordered products as path integrals* 

where y~&)  are generic matter fields. In  writing Eq. (9.6.5) in terms 
of a matter Lagrangian density, we are assuming that HM is local and 
either linear in the matter ~ E S  (as in spinor electrodynamics) or quadratic 
with field-independent coefficients (as in scalar electrodynamics). We have 
inserted delta functions*' in Eq. (9.6.5) to enforce the constraints (9.6.2) 
and (9.63). 

The argument of the exponential in Eq. (4.65) is evidently quadratic in 
the independent components of n (say, 7 ~ 1  and IT?), with field-independent 
coefficients in the term of second order in n. Thus, according to Eq. 
(9.A.91, the integral over IT can be done (up to a constant factor) by 
setting n equal to the stationary point of the argument of the exponential, 

' Note that n ( x )  i s  the interpolaling c-numhcr held for the quantum uperatur l l ~ ,  w h i m  com- 
mutation relations with each other and with A are the same as those of n, but which unlike II 
commutes with all canonical matter variables. 

" This is  nor strictly accurale. I f  wc take the canonical variables tu be, say. q . u z  and a l , q ,  with 
as and n3 regarded as functionals of these var~ables given by Eqs. (9.6.2) and (9.631, then we 
should inscrt the delta functiuns 

However, this differs from the product of delta fun~lions in Eq. (9.6.5) only by a factor ~ e t ~ f ,  
which although in f i n k  is ficld-independent and henw cancels in  ratios like (9.4.11. 
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-i / dt vc7,,l + ic terms 1 [n .i (V - a w ) ]  (9.6.6) 
.x 

To bring out the essential covariance of this result, we use a trick. Intro- 
duce a new variable of integration uo(x), and replace the Coulomb term 
- J dt  Vcclzll in the action with 

Since (9.6.7) is quadratic in a" the integral wer a0 can be done (up to a 
constant factor) by setting uO(x) equal to the stationary point of (9.6.7), 
i.e., to the solution of 

or in other words, to 

Using this in Eq. (9.6.7) just gives the Coulomb action - J dt VcOu1. Hence 
we can rewrite the argument of the exponential in Eq. (9.6.6) as 

3 18- - 
2 i ( V  x a? + a .  j +YH - a"jo + :(va0l2 

= - 1 f fp' + a,,jp + LYM + total derivatives 4 P" 

with I,, = a,a, -&a,,, and integrate over no as well as over a and matter 
fields. That is, the path integral (9.6.6) i s  now 

x 6nf is  . . exp (i [u, lyl)  s (V - a(x)) , 
X 

where I is the original action 

I [a, y?] = 8 x  [-- f f,, f + a,jP + PU] + ie terms . (9.6.10) 

Now everything i s  manifestly Lorcntz- and gauge-invariant, except for 
the final product of delta functions which enforce the Coulomb gauge 
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condition.** To make further progress, we shall use a simple version of 
a trick4v5 that in Volume I1 will be used to treat the more difficult case 
of non-Abelian gauge theories. For simplicity, we shall deal here with 
the case where the operators f iA  [A, Y], f l B  [A, Y!], . . . as well as the action 
I [a, ty] and measure [n da] [n by] are gauge-invariant. 

First, replace the field variables of integration a J x )  and y(x) everywhere 
in Eq. (9.6.9) with the new variables 

with arbitrary finite A(x). This step is a mathematical triviality, like 
changmg an integral STrn f ( x ) d x  to read Jrm f (y)dy, and does not require 
use of the postulated gauge invariance of the theory. Next, use gauge 
invariance to replace atLA(x) and tpdn(x) in the action, measure, and 0- 
functions with the original fields a&) and yp-(x), respectively. Eq. (9.6.9) 
then becomes 

x exp (i~[a,tp]) 6 (V a(x) + v2h(x)) - (9.6.13) 
.Y 

Now, the function A{x) was chosen at  random, so despite appearances the 
right-hand side of Eq. (9.6.13) cannot depend on this function. We shall 
exploit this fact to put the path integral in a much more convenient form. 
Multiply Eq. (9.6.13) by the functional 

(where cl is an arbitrary constant), and integrate over A(x). By shifting 
the integration variable A(x), and noting the actual A-independence of 
(9.6.13), we see that the effect is simply to multiply Eq. (9.6.13) with the 
field-independent constant 

" Note that now a0(r) is drjt e ual to the value (9.h.W), but i s  an independent variable of integration. 
We will not integrate over (x) first, which would lead back to Eq. (9.6.41, but instead wilt treat 
it in tandem with 4x1. 

3 
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This factor cancels out in the connected part of the vacuum expectation 
value, and thus has no  physical effect. But (9.6.13) is only A-independent 
~ f l e r  we integrate over ap(x) and tp(x). We can just as well integrate over 
A(x) before we integrate over aIi(x) and y(x), in which case the factor 
n, 6 (V a(x) + V ~ A )  in Eq. (9.6.13) is replaced with 

where "x" again means proportional with a field-independent factor. 
Dropping constant factors, Eq. (9.6.9) now becomes 

where 

This is now manifestly Lorentz-invariant. 
We consider the new term in (9.6.18) as a contribution to the unper- 

turbed part of the action, whose photonic part now reads 

The photon propagator is then found immediately by inverting the 4 x 4 
matrix in the integrand of Eq. (9.6.20) 

4" + 1 - @qv ] ciq,(x-y) A w , ~ y  = u"I-~ d41y [- a! ( q 2  - k)2 . (9.6.21) 

We are free to choose ol as seems most convenient. Two common choices 
are a.= 1, which yields the propagator in Feynnaun gauge: 



or a = crj, in which case the factor (9.6.14) acts as a delta function, and we 
obtain the propagator in Lmdazd guuge (often also caHed Lorentz gwge): 

Practical calculations are made far more convenient by working with such 
manifestly Lorentz-invariant interactions and propagators. 

9.7 Varieties of Statistics* 

We can now take up a question raised in Chapter 4:  what are the 
possibilities for the change of state-vectors when we interchange iden tical 
particles? 

For this purpose, we will consider the preparation of the initial or final 
states in a scattering process. Suppose that a set of indistinguishable 
particles in either of these states is brought to a particular configuration 
with momenta pl, pz, etc. from a standard configuration with momenta 
k l ,  k2, etc., by some sort of slowly varying external fields, keeping the 
particles far enough apart in the process to justify the use of non-relativistic 
quantum mechanics. (Spin indices are not shown explicitly here; they 
should be understood to accompany momentum labels.) To calculate 
the amplitude for this process we can use the path-integral method,"' 
taking the qs  and ps of Section 9.1 as particle positions and momenta, 
rather than fields and their canonical conjugates. These always satisfy 
canonical commutation rather than anticommutation relations, whether 
or not the particles are bosons or fermions or something else, so at this 
point we are not committing ourselves to any particular statistics. The 
path-integral formula (9.1.34) gives an amplitude (pl, p2, - . . Ikl, kz,.  . -) as 
an integral over paths in which onc particle is brought continuously from 
momentum k l  to momentum pl ,  another identical particle is brought 
continuously from momentum k2 to momentum pz, and so on. The 
subscript 'D' indicates that this is the amplitude we would calculate for 
distinguishable particles. In  particular, this amplitude is symmetric under 
permutations of  the ps and simultaneous permutations of the ks, but has 
no particular symmetry under separate permutations of the ps or ks. But 

* This section lies somewhat ilul of the book's main line of development, and may be ornilled in 
a iirsl reding. 

'* Here I am following the discussinn of Laidlaw and C. ~ e ~ i t t , "  except that they apply thc 
path-integral method to the whole scattering proms, rather than just the preparation of initial 
or linal shies. In il relativistic theory the possibility of particlc c r c a h n  and annih~lation makes 
i t  necessary to apply thc path-integral method Lo fields rather than particlc orbits. For us. this 
is nor a prublem, because we Iimit such calculations to sulficicntly early w late limes, when the 
particles participating in a sratknng prwess are all far apart. 
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if the particles are really indistinguishable, then there are other paths 
that are topologically distinct, but that  yield the same final configuration. 
For space dimensionality d 2 3, the only such p t h s t  are those that take 
k l ,  k 2 , .  . . into some non-trivial permutation 9 of PI, ~ 2 ~ .  . -. Hence the 
true amplitude should be written 

the sum running over all N !  permutations of the N indistinguishable 
particles in the state, and C9 a set of complex constants. These amplitudes 
must satisfy a composition rule appropriate for indistinguishable particles: 

Using Eq. (9.7.11, this is the requirement 

Applying a permutation 9"' to both the initial and final states in the first 
amplitude on the right, this is 

But the amplitudes (pl , pl, - . . I kl, k2, - . . )D satisfy the composition rule for 
distinguishable particles 

so the composition rule for the physical amplitudes may be written 

t This is expressed formally in the statement that thc first hornotopy group of configwa~ion spacc 
in d 2 3 is the permutation group.'2 By 'configuration space' for tV distinguishable particles is 
mcant thc spacc of N d-vectors, excludmg d-veclors that coincidc with (or are within an arbitrary 
limiting distance o f )  each other, and idenlifying configurations that differ only hy a permutation 
of the vectors. 
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which will be satisfied if and only if 

That is, the coefficients Cp must furnish a me-dimensional representation 
of the permutation group. But the permutation group has only two such 
representations: one is the identity, with C,y = +1 for all permutations, 
and the other is the alternating representation, with Cp = +1 or Cp = -1 
according to whether 9 is an even or odd permutation. These two 
possibilities correspond to Bose or Fermi statistics, respectively. $ 

The nice feature of this argument is that it makes it clear why the case 
of two space dimensions is an exception. In this case there is a much richer 
variety of topologically distinct p t h s . 7  For instance, a path in which one 
particle circles another a definite number of times cannot be deformed 
into a path where it does not. In consequence, in two space dimensions 
it is possible to have anyons,15 particles with more general permutation 
properties than just Ferrni or Bose s t a t i ~ t i c s . ~ ~  

Appendix Gaussian Mu1 tiple Integrals 

We wish first to calculate the multiple integral, over a finite number of 
real variables cr, of the exponential of a general quadratic function of : 

Q(C) = i C ~ r s ~ r S s  + C L E r  + M 9 (9.A.2) 
TS r 

where Krs, L,, and M are arbitrary constants, except that the matrix K is 
required to be symmetric and non-singular. For this purpose, we begin 
by considering the case where K,,, L,, and M are all real, with K,, also 
positive. The result in the general case can then be obtained by analytic 
continuation. 

Any real symmetric matrix can be diagonalized by an orthogonal matrix. 
Therefore, there is a matrix Y with transpose yT = LfL1 such that 

$ There has been much discussion in thc litcraturc of possibilities other than Bose or Ferrni 
statistics. often under the label parastntistics. It has bccn shown'3 that parastatistics theories in 
d 2 3 space dimensions are equivalent to theories in which all particles arc ordinary femiclns 
or bosom, but carrying an extra quantum number, so that wave functions could have unusual 
properties under permutations of moments and spins. 

TI This is expressed in the statement that the first homotopy group d codiguration space in two 
space dimensions is not lhe permulat~on group, but a larger group known as thc h d d  grvup.14 
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Because K is assumed positive and non-singuiar, the eigenvalues ti, are 
positive-definite. We can use the matrix Y' to perform a change of 
variables : 

The Jacobian IDet 9' of this transformation is unity, so the multiple 
integral (9.A.1) is now given by a product of ordinary integrals: 

9 = rM 1: dtt  erp {- f c2 - (T~)r ir  1 

But the determinant and the reciprocal of Eq. (9.A.3) give 

so Eq. (9.A.5) may be written 

Eq. (9.A.1) defines a function of K,,, L,, and M that is analytic in K , ,  in 
a finite region around the surface where K r s  is real and positive, where 
the integral converges, and for such Krs is analytic everywhere in L, and 
Ad. Since (9.A.6) equals (9.A.I) for Krs, L,, and M all real, with K,, also 
positive, Eq. (9.A.6) provides an analytic continuation of Eq. (9.A.1) to 
the whole complex plane, with a cut required by the square root. The sign 
of the square root is fixed by this analytic continuation. In field theory 
K,, is actually imaginary, except for a small real part due to the ' i f  term'. 

It is useful to express Eq. (9.A.6) in terms of the stationary point of the 
function (9.A.2) : 

This is the result to remember: Gaussian integrals can be evaluated up to 
a determinant factor by selting the integration variable equal fu the point 
where the argument of the expnnentiul is stutiunury. 



We next wish to use this result to calculate the integrals 

(Integrals of this sort with an odd number of [-factors in the integrand 
obviously vanish.) From the power-series expression of exp (- Cr L,&) 
in Eq. (9.A.1), we have the sum rule 

Comparing the coefficients of L,, L,, LrlY on bath sides, we see that 
I r , r2 - - - r2x  must be proportional to a sum of products of elements of K -I, 

which symmetry requires to take the form 

Here the sum is over all ways of pairing the indices r l +  + .  r z ~ ,  with two 
pairings being considered the same if they differ only by the order of the 
pairs, or by the order of indices within a pair. To calculate the constant 
factor CN, we note that the number V N  of terms in the sum over pairings in 
Eq, (B.A+12) is equal to the number ( 2 N ) !  of permutations of the indices, 
divided by the number of ways N! of permuting index pairs and by the 
number 2N of permutations within index pairs 

Therefore, Eq. (9.A. 12) gives 

Comparing this with Eq. (9.A.11) shows that the factors ( 2 N ) !  and ~ ! 2 '  
are cancelled by vx, leaving us with 



For instance, 

and so on, where lo is the integral with no indices 

Problems 

1, Consider a non-relativistic particle of mass m, moving along the 
x-axis in a potential V ( x )  = mw'x2/2. Use path-integral methods to 
find the probability that if the particle is at xl  at time t l ,  then it is 
between x and x + dx  at time t. 

2. Find the wave function in field space of a state consisting of a single 
spinless particle of mass m # 0. Use the result to derive the Feynman 
rules fur emission or absorption of such a particle. 

3. Find the wave function in field space of the vacuum in the theory 
of a neutral vector field of mass m # 0. Use the result to derive the 
form of the ic terms in the propagator of this field. 

4. The Lagrangian density of the free spin 312 Rarita-Schwinger field 
y?p is 

Use path-integral methods to find the propagator of this field. 
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Non-Perturbative Methods 

We are now going to begin our study of higher-order contributions to 
physical processes, corresponding to Feynman diagrams involving one or 
more loops. It will be very useful in this work to have available a method 
of deriving results valid to all orders in perturbation theory {and in some 
cases beyond perturbation theory). In this chapter we will exploit the 
field equations and commutation relations of the interacting fields in the 
Heisenberg picture for this purpose. The essential bridge between the 
Heisenberg picture and the Feynman diagrams of perturbation theory is 
provided by the theorem proved in Section 6.4: the sum of all diagrams for 
a process a + f i  with extra vertices inserted corresponding to operators 
oJx), oh(y),  etc, is given by the matrix dement of the time-ordered product 
of the corresponding Heisenberg-picture operators 

As a special case, where the operators O,(x), Ob(x), etc. are elementary 
particle fields, this matrix element equals the sum of all Feynman dia- 
grams with incoming lines on the mass shell corresponding to the state x, 
outgoing lines on the mass shell corresponding to the state ,G, and lines 
off the mass shell {including propagators) corresponding to the operators 
O,(x), Ob(x) ,  etc. After exploring some of the non-perturbative results 
that can be obtained in this way we will be in a good position to take up 
the perturbative calculation of radiative corrections. 

1 . 1  Symmetries 

One obvious but important use of the theorem quoted above is to extend 
the application of symmetry principles from S-matrix elements, where all 
external lines have four-momenta on the mass shell, to parts of Feynman 
diagrams, with some or all external lines off the mass shell. 

For instance, consider the symmetry of spacetime translational invari- 
ance. This symmetry has as a consequence the existence of a Hermitian 
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four-vector operator Pj', with the property that, for any local function 
O(x) of field operators and their canonical conjugates, 

(See Eqs. (7.3.28) and (7.3.29).) Also, the states r and P are usually chosen 
to be eigenstates of the four-momentum: 

It follows that for any set of local functions O,(x ) ,  Oh(x) ,  etc. of fields 
andlor field derivatives 

This has the solution 

= exp (i(pp - p x )  . x) Fob.--(xl  - xz, * .  + )  , (10.1-4) 

where x is any sort of average spacetime coordinate 

and F depends only on differences among the xs. {In particular, a vacuum 
expectation value can depend only on the coordinate differences.) We can 
Fourier transform Eq. (10.1.4) by integrating separately over xp and the 
coordinate differences, with the result that. 

We saw in Section 6.4 that the matrix element of the time-ordered product 
is given by applying the usual coordinate-space Feynman rules to the sum 
of all graphs with incoming particles corresponding to particles in r ,  
outgoing particles in /I, and external lines that simply terminate in vertices 
at XI, xz, . - -. The Fourier transform (10.1.6) is correspondingly given 
by applying the momentum-space Feynman rules to the same sum of 
Feynrnan diagrams, with off-shell external lines carrying four-momenta 
k l , k 2 , - .  into the diagrams. Eq. (10.1.6) is then just the statement that 
this sum of Feynman graphs conserves four-momentum. The result is 
obvious in perturbation theory, because four-momentum is conserved at 
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every vertex, so it is not surprising to see the same result emergme without 
having to rely on perturbation theory. 

With somewhat more effort, one can use the Lorentz transformation 
properties of the Heisenberg-picture fields and the 'in' and 'out' states to 
show that the sum of all graphs with a given set of on- and off-shell lines 
satisfies the same Lorentz transformation conditions as the lowest-order 
terms. 

Similar arguments apply to the conservation of internal quantum num- 
bers, like electric charge. As shown in Section 7.3, a field or other operator 
OJx) that destroys a charge y, (or creates a charge -q,) will satisfy 

in the Heisenberg and interaction pictures alike. Also, if the free-particle 
states a and f l  have charges q, and gp, then so do the corresponding 'in' 
and 'out' states. We then have 

Thus the amplitude T { ~ ~ ( x ) ,  Oh(y), . . . )'I+',+) vanishes unless 
charge is conserved 

A somewhat less trivial example is provided by the symmetry of charge- 
conjugation invariance. As'we saw in Chapter 5, there is an operator C 
that interchanges electron and positron operators 

with [ a phase factor. For the free electron field y(x), this gives 

where /3C is a 4 x 4 matrix, which (for the Dirac matrix representation 
we have been using, with y5 diagonal) takes the form 

Applied to the free-particle electric current in spinor electrodynamics, this 
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gives 

C ( ~ ~ ' ~ , ) C - ~  = -pcfTcW = -py" . 
If C is to be conserved in ebctrodynamics, it must then also be defined to 
anticommute with the free photon field 

In theories like electrodynamics for which C commutes with the interaction 
as well as Ho, it also commutes with the similarity transformation n(t) 
between the Heisenberg and interaction pictures, and so it anticommutes 
with the electric current of the interacting fields 

- 
c(Sy")c-' = -Yy'Y (10.1.8) 

and the electromagnetic field in the Heisenberg-picture 

I t  follows then that the vacuum expectation value of the time-ordered 
product of any odd number of electromagnetic currents and/or fields 
vanishes. Therefore the sum of all Feynman graphs with an odd number 
of external photon lines (off or on the photon mass shell) and no other 
external lines vanishes. 

This result is known as Furry's rheoreml I t  can be proved perturbatively 
by noting that a graph consisting of electron loops d ,  to each of which 
are attached nf photon lines, must have numbers I and E of internal and 
external photon lines related by an andog of Eq. (6.3.11): 

Hence if E is odd at least one of the loops must have attached an 
odd number of photon lines. For any such loop there is a cancellation 
between the two diagrams in which the electron arrows circulate around 
the loop in opposite directions. Hence Furry's theorem is a somewhat less 
trivial consequence of a symmetry principle than translation or Lorentz 
invariance; it is not true of individual diagrams, but rather of certain sums 
of diagrams. Figure 10.1 illustrates the application of Furry's theorem that 
was historically most important, its use to show that the scattering of a 
photon by an external electromagnetic field receives no contributions of 
first order (or any odd order) in the external field. 

10.2 Polology 

One of the most important uses of the nun-perturbative methods described 
in this chapter is to clarify the pole structure of Feynman amplitudes as 



Figure 10+1, The lowest-order diagrams for the scattering of a photon by an 
electromagnetic field. Here straight lines represent virtual electrons; wavy lines 
represent real and virtual photons; and the double line represents a heavy particle 
like an atomic nucleus that serves as a source of an electromagnetic field. The 
contributions of these two diagrams cancel, as required by charge-conjugation 
invariance. 

functions of the momenta carried by external lines. Often the S-matrix 
for a physical process can be well approximated by the contribution of a 
single pole. Also, an understanding of this pole structure will help us later 
in dealing with radiative corrections to particle propagators. 

Consider the momentum-space amplitude 



The A s  are Heisenberg-picture operators of arbitrary Lorentz type, and 
{-  . .)o denotes the expectation value i n  the true vacuum YoS = Yo- = Y! 0. 

As discussed in Section 6.4, if A l ,  - - . A, are ordinary fields appearing in 
the Lagrangian, then (10.2.1) is a sum of the terms calculated using the 
ordinary Feynman rules, for all graphs with external lines corresponding 
to the fields A1, rn . A,, carrying off-shell four-momenta ql - . y, into the 
graph. However, we will not be limited to this case; the Ai may be 
arbitrary local functions of fields and field derivatives. 

We are interested in poles of G at certain values of the invariant squares 
of the total four-momenta carried by various subsets of the external lines. 
To be definite, let's consider G as a function of $, where 

2 with 1 5 r 5 n-1. We will show that C has a pole at ,g2 = -m , where rn is 
the mass of any one-particle state that has non-vanishing matrix elements 

t with the states A )  - A, Yo and A,+1 . + .  A n y o ,  and that the residue at this 
pole is given by 

where the M s  are defined by* 

(with - d m ) ,  and the sum is over all spin (or other) states of the 
particle of mass m. 

Before proceeding to the proof, it will help to clarify the significance of 

+ Recall that in ~ h c  absence or timc-vatying extcrnal fields, thcre is no dislinction between 'in' and 
'out' one-particle states, so that Yp,rri = YB0- = YRV. 



(10.2.3) if we write it in the somewhat long-winded form 

1 ~ 7 ~ ) ~  s4(k + qr+1 + - + y,) ( 2 n ~ ~ / ~  

This is just what we should expect from a Feynman diagram with a single 
internal line for a particle of mass rn connecting the first r and the last 
~1 - r external lines.** However, it is nut necessary that the particle of mass 
m correspond to a field that appears in the Lagrangian of the theory. 
Eqs. (10.2.3) and (10.2.6) apply even if this particle is a bound state of the 
so-called elementary particles whose fields do appear in the Lagrangian. 
In this case, the pole arises not from single Feynrnan diagrams, like Figure 
10.2, but rather from infinite sums of diagrams, such as the one shown 
in Figure 10.3. This i s  the first place where the methods of this chapter 
take us beyond results that could be derived as properties of each order 
of perturbation theory. 

0 Now to the proof Among the n! possible orderings of the times xy - .  . x, 
in Eq. (10.2.1), there are n ! / r ! ( n  - r)!  for which the first r of the xy are 
all larger than the last n - r. Isolating the contribution of this part of the 
volume of integration in Eq. (10,2.1), we have 

where 'OT' denotes the other terms arising from different time-orderings. 
We can evaluate the matrix element here by inserting a complete set of 
intermediate states between time-ordered products. Among these may 

" See Figure 10.2. The hcturs ( 2 ~ ) ~ / ~ [ 2 ( k ~  $ fi12)]'12 just serve to remove kinematic factors 
associaled wilh the mass m external line in M{llk,b and M k r a ~ ,  Also, the sum over u of the 
pmduct of coefficient-function factors from these two matrix clcments yields the numerator of 
the propagabr associated with the internal line in Figure 10.2. 
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Figure 10.2. A Feynman diagram with the pole structure (10,2.6). Here the 
line carrying a momentum k represents a n  elementary particle, one whose field 
appears in the Lagrangian. 

Figure 10.3. Figure 10.3. A Feynman diagram of the class whose sum has the 
pole structure (10.2.6). Here the pole is due to a composite particle, a bound state 
of two elementary particles. The elementary particles are represented by straight 
lines, and interact by the exchange of particles represented by wavy lines. 

be the single-particle state Yp, of a definite species of mass rn. Further 
isolating the contribution of these one-particle intermediate states, we 
have 

where 'OT' now denotes other terms, here arising not only from other time- 
orderings, but also from other intermediate states. It will be convenient 



to shift variables of integration, so that 

and use the results of the previous section to write 

Also, the argument of the theta function becomes 

0 0 min [xy . - - x,] - rnax [x:+~ . xn] 

=x; + r n i n [ ~ ~ , O . . - ~ , O ]  - r n a x [ ~ ~ : + ~  - -J I ; ]  . 

We also insert the Fburier representation 16.2.15) of the step function 

The integrals over x l  and x,+l now just yield delta functions: 

We are interested here only in the pole that arises from the vanishing of 
the denominator w +- ie, so for our present purposes we can set the factor 
exp(-iw [min - max]) equal to unity. The integrals over both p and w are 
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now trivial, and yield the pole 

where now 

and the final ' - .  .' in Eq. (10.2.12) denotes terms that do not exhibit this 
particular pale. (The 'other terms' arising from other single-particle states 
produce poles in q at different positions, while those arising from multi- 
particle states produce branch points in q, and those arising from other 
time-orderings produce poles and branch cuts in other variables.) Using 
Eqs. (10.2.9) and (1 0.2.101, it is easy to see that these Ms are the same as 
defined by Eqs. (10.2.4) and (10.2.5). Also, near the pole we can write 

(We again redefine E by a positive factor 2 J i ,  which is permissible 
since F stands for any positive infinitesimal.) Eq. (10.2-1 2) i s  thus the same 
as the desired result (10.2.3). 

This result has a classic application to the theory of nuclear forces. Let 
0,jx) be any real field or combination of fields (for instance, proportional 
to a quark-antiquark bilinear i j y s ~ ,  q )  that has a non-vanishing matrix 
element between a one-pion state of isospin n and the vacuum, normalized 
so that 

The matrix element of @, between one-nucleon states with four-momenta 
p,pt then has a pole at ( p  - -P -rnS which isospin and Lorentz 
invariance (including space inversion invariance) dictate must take the 



form*' 

where u and u' are the initial and final, nudeon spinor coefficient functions, 
including the nucleon wave functions in isospin space, and z, with a = 

1,2,3 are the 2 x 2 Pauli isospin matrices. The constant G, is known as the 
pion-nucleon coupling constmf. This pole is not actually in the physical 
region for the matrix element ( 1  0.2.161, for which ( p  - p')2 2 0, but it can 
be reached by analytic extension of this matrix element, for instance by 
considering the off-shell matrix element 

where N and N' are appropriate components of a field operator or 
product of field operators with non-vanishing matrix elements between 
one-nucleon states and the vacuum. The theorem proved above in this 
section shows then that exchange of a pion in the scattering of two 
nucleons with initial four-momenta pl ,p, and final four-momenta p;, p i  

2 .  yields a pole at (pl - pi)2  = ( p ?  - -+ r n ,  . 

(The easiest way to get the phases and numerical factors right in such 
formulas is to use Feynman diagrams; our theorem just says that the pole 
structure is the same as would be found in a field theory in which the 
Lagrangian involved an elementary pion field.) Again, this pion pole is 
not actually in the physical region for scattering of nucleons on the mass 
shell, for which (pl - d,12 2 0, but it can be reached by analytic extension 
of the S-matrix element, for instance by considering the off-shell matrix 

" hrenrz and isospin invariance requires this matrix to take the form (ii' r s, uj, where r i s  a 4 x 4 
matrix for which the bilinear ($ I-y,) transforms as a pseudoscalar. Like any 4 x 4 matrix, can 
be expanded as a sum of terms proportional to  he D m c  matriccs I ,  y,, b,,, y v ] ,  ys+, and p. The 
cocflicicnts must be respectively pseudoscalar, pseudorector, pseudotensor, veclor, and scalar. 
Out of the two momenta p and p' it is possible to cunstruct no pse~doscalars or pseudovectors; 
jusl one pseudntcnsor, proportional to ~ ~ ' ' ' ~ ~ p , ,  LWO indepcndcnt vectors, proportional LO p,  
or p ; ;  and a scalar proportional LO unity, in each case with a proportiunal~ly factor depcnding on 
the only independent scalar variable, [ p  - p')2. B y  using the momentum-space Dirac equations 
for u and d ,  i t  is easy to see  hat Lhe tensor and pseudovector matrices in r give contributions 
proportional to ys. 
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Although this pole is not in the physical region for nucleon-nucleon 
scattering, the pion mass is small enough so that the pole is quite near 
the physical region, and under some circumstances may dominate the 
scattering amplitude, as for instance for large G in the partial wave 
expansion. 

Interpreted in coordinate space, a pole like this at ( p l  - dl)' = (p2 - 
4 -m: implies a force of range l/rn,. For instance, in Yukawa's 

original theory2 of nuclear force the exchange of mesons (then assumed 
scalar rather than pseudoscalar) produced a local potential of the form 
exp(-mnr)/4.rsr, which in the first Born approximation yields an S-matrix 
for non-relativistic nucleon scattering proportional to the Fourier trans- 
form: 

The factor 1 / [(pl -pl '12 + m2] is just the non-relativistic limit of the prop- 
agator - + +m in (10.2.17). (In (10.2.17) the energy transfer 
py - py  for lpl 1 < r n ~  and id 1 << m~ equals [pI2 - p;2]/2mp4, which is 
negligible compared with the magnitude Ipl -pi  1 of the momentum trans- 
fer.) When Yukawa's theory was first proposed, it was generally supposed 
that this sort of momentum-dependence arises from the appearance of 
a meson field in the theory. It was not until the 1950s that it became 

2 generally understood that the existence of a pole at ( p l  - p;12 -, -m, 
follows from the existence of a pion prarricle and has nothing to do with 
whether this is an elementary particle with its own field in the Lagrangian. 

10,3 Field and Mass Renormalization 

We will now use a special case of the result of the previous section to 
clarify the treatment of radiative corrections in the internal and external 
line of general processes. 

The special case that concerns us here is the one in which the four- 



momentum of a single external line approaches the mass shell. (In the 
notation of the previous section, this corresponds to taking r = 1.) We 
will consider a function 

where flf(x) is a Heisenberg-picture operator, with the Lorentz transfor- 
mation properties of some sort of free field yg belonging to an irreducible 
representation of the homogeneous Lorentz group (or the Lorentz group 
including space inversion for theories that conserve parity), as labelled by 
the subscript 6, and A2, A3, etc. are arbitrary Heisenberg-picture oper- 
ators. Suppose there is a one-particle state Y41,1T that has non-vanishing 

f matrix elements with the states &;',Yo and with A 2 A 3 .  ..Yo. Then ac- 
cording to the theorem proved in the previous section, Gg has a pole at 
q: = -mZ, with 

We use Lorentz invariance to write 

( y o ,  @mql,.) = ( 2 ~ ) - ' / ~  N u t h ,  4 , (10.3.3) 

where ur(q,o) is (aside from the factor (2~) - ' /* )  the coefficient function* 
appearing in the free field t p ~  with the same Loreptz transformation 
properties as @ p ,  and N is a constant. (I t  was in order to obtain Eq. (10.3.3) 
with a single free constant N that we had to assume that 02 transforms 
irreducibly.) We also define a 'truncated' matrix element Mf by 

According to Eqs. (6.2.2) and (6.2.1 S), the quantity multiplying M(# in 
(10.3.5) is the momentum space matrix propagator -iAffl(gl) for the free 

+ For instance, for a conventionally normalized free scalar field, y(ql,o) = 1 2 J w ] - ' / ~ .  
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field with the Lorentz transformation properties of fit (or a t  least its 
limiting behavior for q: + -m2), so (10.3.5) allows us to identify Mc 
as the sum of all graphs with external lines carrying momenta q l ,  qz . . . 
corresponding to the operators fi6, A2, * . ., but with the final propagator for 
the Oc line stripped away. Eq. (10.3.4) is then just the usual prescription for 
how to calculate the matrix element for emission of a particle from the sum 
of Feynman diagrams: strip away the particle propagator, and contract 
with the usual external line factor 12.rr) -~/~u; .  The only djscrepancy with 
the usual Feynman rules i s  the factor N. 

The above theorem is a famous result due to Lehmann, Symanzik, and 
~ i m m e r m a n , ~  known as the reductiola formula, which we have proved here 
by a somewhat different method that has allowed us easily to generalize 
this result to the case of arbitrary spin. One important aspect of this 
result is that it applies to any sort of operator; Op need not be some field 
that actually appears in the Lagrangian, and the particle it creates may 
be a bound state composed of those particles whose fields do occur in the 
Lagrangian. It provides an important lesson even where Of is some field 
CYG in the Lagrangian; if we are to use the usual Feynrnan rules to calculate 
$-matrix elements, then we should first redefine the normalization of the 
fields by a factor l/N, so that (with apologies for the multiple use of the 
symbol '3'); 

A field normalized as in Eq. (10,3.6) is called a renvrrnulized .field. 
The field renormalization constant N shows up in another place. Sup- 

pose that there is just one of the operators A2, A 3 , .  . , in Eq. ( l O . 3 . l ) ,  and 
take it to be the adjoint of a member of the same field multiplet as f i r .  
Then Eq. (10.3.2) reads 

This is just the usual behavior of a propagator (the sum of all graphs with 
two external lines) near i t s  pole, except for the factor INI*. According to 
Eq. (10.3.6), this factor is absent in the propagator of the renormalized 
field Yf .  Thus a renormalized >field is one whose propagator has the same 
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behavior near i t s  pole as for a free field, and the renormalized mass is defined 
by the position of the pole. 

To see how this works in practice, consider the theory of a real self- 
interacting scalar field @B, the subscript B being added here to remind 
us that so far this is a 'bare' (i-e., unrenonnalized) field. The Lagrangian 
density is taken as usual as 

In general there would be no reason to expect that the field QB would 
satisfy condition (10.3.6), nor that the pole in q2 would be at -me, so let 
us introduce a renormalized field and mass 

with Z to be chosen so that cD does satisfy Eq. (10.3.6), and dm2 chosen 
so that the pole of the propagator is at q2 = -m2. (The use of the symbol 
Z in this context has become conventional; there is a different Z for each 
field in the Lagrangiaa.) The Lagrangian density (10.3.7) may then be 
rewritten 

Yl = 

where 

In calculating the corrections to the complete momentum space propagator 
of the renormalized scalar field, conventionally called A'(q), it is convenient 
to consider separately the one-parric/e-irreducible graphs: those connected 
graphs {excluding a graph consisting of a s ~ n g k  scalar line) that cannot be 
disconnected by cutting through any one internal scalar line. An example is 
shown in Figure 10.4. It is conventional to write the sum of all such graphs, 

4 2 with the two external line propagator factors 4 2 7 ~ ) -  (q + m2 - ia)-' 
omitted, as i ( ~ x ) ~ I I ' ( ~ l ) ,  with the asterisk to remind us that these are 
one-particle-irreducible graphs. Then the corrections to the complete 
propagator are given by a sum of chains of one, two, or more of these 
one-particle-irreducible subgraphs connected with the usual uncorrected 
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Figure 10.4. Figure 10.4. Diagrams that (a) are, or (b) are not, one-particle 
irreducible. These diagrams are drawn for a theory with some sort of quadrilinear 
interaction, like the theory of a scalar field # with interaction proportional to #4. 

propagator factors : 

or more simply 

Summing the geometric series, this gives 

In calculating II*, we encounter a tree graph arising from a single insertion 
of vertices corresponding to the terms in Eq. (10.3.12) proportional to 
2,824D and 82, plus a term H;oop arising from loop graphs like that in 
Figure 10.4(a) : 

The condition that rn2 is the true mass of the particle is that the pole of 
the propagator should be at q2 = -m2, so that 

Also, the condition that the pole of the propagator at q 2  = -m2 should 
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have a unit residue (like the uncorrected propagator) is  that 

These conditions allow us to evaluate Z and dm2 : 

This incidentally shows that 26m2 and Z - 1 are given by a series of terms 
containing one or more coupling constant factors, justifying the treatment 
of the first two terms in Eq. (10.3.12) as part of the interaction 3 1 .  

In actual calculations it is simplest just to say that from the loop terms 
llbop(q2) we must subtract a first-order polynomial in q 2  with coefficients 
chosen so that the difference satisfies Eqs. (10.3.17) and (10.3.18). As we 
shall see, this subtraction procedure incidentally cancels the infinities that 
arise from the momentum space integrals in TIEoop. However, as this 
discussion should make clear, the renormalization of masses and fields has 
nothing directly to do with the presence ufinfnities, and would be necessary 
eoen in a theory in which all mornenlurn space integrals were conuergent. 

An important consequence of the conditions (10.3.17) and (10.3.18) is 
that it is not necessary to include radiative corrections in external lines on 
the mass shell. That is, 

Similar remarks apply to particles of arbitrary spin. For instance, for 
the 'bare' Dirac field the Lagrangian is 

We introduce renormalized fields and masses 
1 /2 Y = Z T  ( 10.3.23) 

(The subscript 2 on Z2 is conventionally used to distinguish the renor- 
malization constant of a ferrnion field.) The Lagrangian density is then 
rewrit ten 

9 = + Y 0 f  Y 1 ,  (10.3.25) 
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Let i(27rj4~*(v) be the sum of all connected graphs, with one fermion line 
coming in with four-momentum k and one going out with the same four- 
momentum, that cannot be disconnected by cutting through any single 
internal fermion line, and with external line propagator factors - i ( 2 ~ ) - ~  
and [i J! + m - Q]-' omitted. (Lorentz invariance is being used to justify 
writing Z* as an ordinary function of the Lorentz scalar matrix J! - k,pp.) 

Then the complete fermion propagator is 

In calculating Z*(&) we take into account the tree graphs from the terms in 
Eq. (10.3.27) proportional to Y $'£' and TY as well as loop contributions: 

The condition that the complete propagator has a pole at k2 = -m2 with 
the same residue as the uncorrected propagator is then that 

and hence 

Just as for scalars, the vanishing of [i 1 + r n ] - ' X * ( ~ >  in the limit $ -* im 
tells us that radiative corrections may be ignored in external fermion 
lines. Corresponding results for the photon propagator will be derived in 
Section 10.5. 

10.4 Renormalized Charge and Ward Identities 

The use of the commutation and conservation relations of Heisenberg- 
picture operators allows us to make a connection between the charges 
(or other similar quantities) in the Lagrangian density and the properties 
of physical states, Recall that the invariance of the Lagrangian density 
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with respect to global gauge transformations Y f  4 exp(iyTa)Yl  (with a 
an arbitrary constant phase) implies the existence of a current 

satisfying the conservation condition 

This implies that the space-integral of the time component of P is time- 
independent : 

where 

(There is a very important possible exception here, that the integral (10.4.4) 
may not exist if there are long-range forces due to massless scalars in the 
system. We will return to this point when we consider broken symmetries 
in Volume 11.) Also, since it is a space-integral, Q is manifestly translation- 
invariant 

and since Ji1 is a four-vector, Q is invariant with respect to homogeneous 
Lorentz transformations 

It  follows that Q acting on the true vacuum Yo must be another Lorentz- 
invariant state of zero energy and momentum, and hence (assuming no 
vacuum degeneracy) must be proportional to Yo itself. But the propor- 
tionality constant must vanish, because Lorentz invariance requires that 
(Yo, J,Yo) vanish. Hence 

Also, Q acting on any one-particle state Yp,,, must be another state with 
the same energy, momentum, and Lorentz transformation properties, and 
thus (assuming no degeneracy of one-particle states) must be proportional 
to the same one-particle state 

The Lorentz invariance of Q ensures that the eigenvalue qy,) is independent 
of p and a, depending only on the species of the particle. This eigenvalue is 
what is known as the electric charge (or whatever other quantum number 
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of which J P  may be the current) of the one-particle state. To relate 
this to the qf parameters in the Lagrangian, we note that the canonical 
commutation relations give 

or integrating over x; 

The same is true of any local function F(y)  of the fields and field derivatives 
and their adjoints, containing definite numbers of each: 

where q~ is the sum of the q f  for all fields and field derivatives in F{y), 
minus the sum of the q f  for all field adjoints and their derivatives. Taking 
the matrix element of this equation between a one-particle state and the 
vacuum, and using Eqs. (10.4.7) and {10.4.8), we have 

Hence we must have 

as long as 

As we saw in the previous section, Eq. (10.4.14) is the condition that 
assures that momentum space Greens functions involving F have poles 
corresponding to the one-particle state YIb,,,. For a one-particle state 
corresponding to one of the fields in the Lagrangian we could take 
F = Yt ,  in which case y~ = qc, but our results here apply to general 
one-particle states, whether or not their fields appear in the Lagrangian. 

This almost, but not quite, tells us that despite all the possible high-order 
graphs that affect the emission and absorption of photons by charged 
particles, the physical electric charge is just equal to a parameter qc 
appearing in the Lagrangian (or to a sum of such parameters, like q~ .) 
The qualification that has to be added here is that the requirement, that 
the Lagrangian be invariant under the transformations Ye + exp(iqtcx)Yf, 
does nothing to fix the over-all scale of the quantities q p .  The physical 
electric charges are those that determine the response of matter fields to 
a given renormalized electromagnetic field Ap. That is, the scale of the qe 
is fixed by requiring that the renormalized electromagnetic field appears 
in the matter Lagrangian YM in the linear combinations [d,, - i qGAp]yC,  
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so that the current Jp is 

Ward Identities 445 

(10.4. IS) 

But AP and qc are not the same as the 'bare electromagnetic field' A; and 
'bare charges' q ~ f  that appear in the Lagrangan when we write it in its 
simplest form 

9 = - :(dpAB - &AB~)(J'AL - avAE) ',)+ PM (yb, [ap - ~ ~ S I A B ~ ] T ~ )  
(10.4. f 6) 

The renormalized electromagnetic field (defined to have a complete prop- 
agator whose pole at p2 = 0 has unit residue) is conventionally written in 
terns of A: as 

so in order for the charge qf to characterize the response of the charged 
particles to a given renormalized electromagnetic field, we should define 
the renormalized charges by 

We see that the physical electric charge q of any particle is just propor- 
tional to a parameter q~ related to those appearing in the Lagrangian, with 

-1/2 a proportionality constant Z3 that is the same for all particles. This 
helps us to understand how a particle like the proton, that is surrounded 
by a cloud of virtual mesons and other strongly interacting particles, can 
have the same charge as the positron, whose interactions are all much 
weaker. I t  is only necessary to assume that for some reason the charges 
q ~ f  in the Lagrangian are equal and opposite for the electron and for 
those particles (two u quarks and one d quark) that make up the proton; 
the effect of higher-order corrections then appears solely in the common 

-1/2 factor 2, . 
In order for charge renormalization to arise only from radiative cor- 

rections to the photon propagator, there must be cancellations among the 
great variety of other radiative corrections to the propagators and electro- 
magnetic vertices of the charged particles. We can see a little more deeply 
into the nature of these cancellations by making use of the celebrated 
relations between these charged particle propagators and vertices known 
as the Ward identifies. 

For instance, consider the Greens function for an electric current di'(x) 
together with a Heisenberg-picture Dirac field Yn(y) of charge q and its 
covariant adjoint Y,(z). We define the electromagnetic vertex function Tp 
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Figure 10.5. Diagrams for the first corrections to the electron propagator and 
vertex function in quantum electrodynamics. Here straight lines are electrons; 
wavy lines are photons. 

of the charged particle by 

where 

According to the theorem of Section 6.4, Eq. (10.4.20) gives the sum of 
all Feynman graphs with one incoming and one outgoing fermion line, 
i.e., the complete Dirac propagator. Also, Eq. (10.4.19) gives the sum of 
all such graphs with an extra photon line attached, so F' is the sum of 
"vertex" graphs with one incoming Dirac line, one outgoing Dirac line, 
and one photon line, but with the complete Dirac external h e  propagators 
and the bare photon external line propagator stripped away. To make the 
normalization of S' and P perfectly clear, we mention that in the limit 
of no interactions, these functions take the values 

The one-loop diagrams that provide corrections to these limiting values 
are shown in Figure 10.5. 
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We can derive a relation between P and S' by use of the identity 

where the delta functions arise from time-derivatives of step functions. 
The conservation condition (10.4.2) tells us that the first term vanishes, 
while the second and third terms can be calculated using the commutation 
relations ( 1 O.4,9), which here give 

[JO(W), %{Y, t )]  = - ~ % I ( Y ,  M 3 b  - Y )  (10.4.22) 

and its adjoint 

Ey. (104.21) then reads 

Inserting this in the Fourier transform ( I  0.4.19) gives 

(f - k), ,  S'jk) TP(k,  t) St([) = i S 1 ( l )  - i S ' ( k )  

or in other words 

This is known as the gel-aer~lized Ward identity, first derived (by these meth- 
ods) by ~akahashi! The original Ward identity. derived earlier by wardi 
from a study of perturbation theory, can be obtained from Eq. (10.4.25) 
by letting $ approach k. In this limit, Eq. (10.4.25) gives 

The fermion propagator is related to the self-energy insertion Z'(,k) by 
Eq. (10.3.28) 

so Eq. (10.4.26) may be written 
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For a renorrnadized Dirac field, Eqs. (10.3.31) and (10.4.27) tell us that on 
the mass shell 

where [ iy,kp + t r I ] ~ k  = [Cl;t,kp + m]ui  = 0. Thus the renormalization 
of the fermion field ensures that the radiative corrections to the vertex 
function r, cancel when a fermion on the mass shell interacts with an 
electromagnetic field with zero momentum transfer, as is the case when 
we set out to measure the fermion's electric charge. If we had not used 
a renocmalized fermion field then the corrections to the vertex function 
would have just cancelled the corrections due to radiative corrections to 
the external fermion lines, leaving the electric charge again unchanged. 

10.5 Gauge Invariance 

The conservation of electric charge may be used to prove a useful result 
for the quantities 

In theories like spinor electrodynamics in which the electromagnetic in- 
teraction is linear in the field A p ,  this is the matrix element for emission 
(and/or absorption) of on- or off-shell photons having four-momenta q ,  
qr, etc. (andlor -q, -q', etc.), with external line photon coefficient func- 
tions or propagators omitted, in an arbitrary transition a + B.  Our result 
is that Eq. (10.5.1) vanishes when contracted with any one of the photon 
four-momenta : 

Since M is defined symmetrically with respect to the photon lines, it will 
be sufficient to show the vanishing of the first of these quantities. 

For this purpose, note that by an integration by parts 

The electric current P(x) is conse~-ved, but this does not immediately 
imply that Eq. (10.5.3) vanishes, because we still have to take account 
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of the xO-dependence contained in the theta functions that appear in the 
definition of the time-ordered product. For instance, for just two currents 

so, taking account of the conservation of Jfi(x) : 

a o o o v 
- T{J"(x )  J' (y) )  = 6(P - ) J (x) J ' ( ~ )  - 6(y0  - x ) J ( y )  ~ ' ( x )  
2xp 

With more than two currents, we get an equal-time commutator like this 
(inside the time-ordered product) for each current aside from P ( x )  itself. 
To evaluate this commutator, we recall that (as shown in the previous 
section) for any product F of field operators and their adjointsand/or 
derivatives 

where q~ is the sum of the yts for the fields and field derivatives in 
F, minus the sum of the qts for the field adjoints and their derivatives. 
For the electric current, q~ is zero; JV(y) is itself an electrically neutral 
operator. I t  follows that 

[jO(i, t), J V ( j ,  t ) ]  = 0 (10.5.5) 

and therefore Eq. (10.5.4) vanishes, so that Eq. (10.5.3) gives 

as was to be proved. 
There is an important qualification here. In deriving Eq. (10.5.5) we 

should take into account the fact that a product of fields at the same 
spacetime point y like the current operator Jyy) can only be properly 
defined through some regularization procedure that deals with the infinities 
in such products. In many cases it turns out that there are non-vanishing 
contributions to the commutator of ~ ' ( 2 ,  t )  with the regulated current 
~ ~ ( j ,  t), known as Schwinger Where the current includes terms 
arising from a charged scalar field @, there are additional regulator- 
independent Schwinger terms involving @+@. However, a l  these Schwinger 
terms are cancelled in multi-photon amplitudes by the contribution of 
additional interactions that are quadratic in the electromagnetic field, 
either arising from the regulator procedure (if gauge-invariant) or, as for 
charged scalars, directly from terms in the Lagrangian. We will be dealing 
mostly with charged spinor fields, and will use a regularization procedure 
(dimensional regularization) that does not lead to Schwinger terms, so 
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in what follows we will ignore this issue and continue to use the naive 
commutation relation (10,5.5). 

The same argument yields a result like Eq. (10.5.2) even if other particles 
besides photons are off the mass shell, provided that all charged particles 
are taken on the mass shell, i.e., kept in the states IYp- and Ye+. Otherwise, 
the left-hand side of Eq. (10.5.2) receives contributions from non-vanishing 
equal-time commutators, such as those we encountered in the derivation 
of the Ward identity in the previous section. 

One consequence of Eq. (10.5.2) is that S-matrix elements are unaffected 
if we change any photon propagator A,,,(q) by 

or if we change any photon polarization vector by 

where ko - Ikl, and a,,, PI,, and c are entirely arbitrary {not necessarily 
constants, and not necessarily the same for all propagators or polarization 
vectors.) This is (somewhat loosely) called the gauge invariance of the 
5'-matrix. 

To prove this result it is only necessary to display the explicit dependence 
of the S-matrix on photon polarization vectors and propagators 

where MPu"' is the matrix element (10.5.1) calculated in the absence of 
electromagnetic interactions.' The invariance of Eq. (10.5.9) under the 
'gauge transformations' ( 10.5.7) and (10.5.8) follows immediately from 
the conservation conditions (10.5.2). (In Section 9.6 we used the path- 
integral formalism to prove a special case of this theorem, that vacuum 
expectation values of time-ordered products of gauge-invariant operators 
are independent of the constant r in the propagator (9.6.21).) This result 
is not as elementary as it looks, as i t  applies not to individual diagrams, 
but only to sums of diagrams in which the current vertices are inserted in 
all possible places in the diagrams. 

There is a particularly important application of Eq. (10.5.2) to the 
calculation of the photon propagator. The complete photon propagator, 

* The slates a and b are the same as r and P ,  but with photons deleted. Note that the arguments 
of M are all taken to be inr,orning ruur-momenta, which is why we havc tn insert various signs 
for some of the arguments of M in Eq. (10.5.9). 
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conventionally called A;,, (q) ,  takes the form 

where Mpb is proportional to the matrix element j10.5.1) with two currents 
and a and both the vacuum state, and A,, is the bare photon propagator, 
written here in a general Lorentz-invariant gauge as 

From Eq. (10.5.2) we have here qpMpv{y) = 0, so that 

On the other hand, just as we did for scalar and spinor fields in Section 
10.3, we may express the complete photon propagator in terms of a 
sum Il*(q) of graphs with two external photon lines that (unlike M) are 
one-photon-irreducible ; 

or in other words 

This together with Lorentz invariance tells us that n*(q> must take the 
form 

Then Eq. (10.5.13) yields a complete propagator of the form 

where 

Now, because II;,(y) receives contributions only from one-photon- 
irreducible graphs, it is expected not to have any pole at q2 = 0. (There 
is an important exception in the case of broken gauge symmetry, to be 
discussed in Volume 11.) In particular, the absence of poles at q2 = 0 in 
the q,q, term in l l i , (q)  tells us that the function n(q2) in Eq. (10.5.16) also 
has no such pole, and so the pole in the complete propagator (10.5.17) is 
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still at q2 = 0, indicating that radiative corrections do not give the photon 
a mass. 

For a renormalized electromagnetic field, radiative corrections should 
also not alter the gauge-invariant part of the residue of the photon pole 
in Eq. (10.5.17), so 

This condition leads to a determination of the electromagnetic field renor- 
malization constant Z3.  Recall that when expressed in terms of the renor- 
malized field (10.4.17), the electrodynamic Lagrangian takes the form 

9 = - iZ3(3pAv  - &A,)(arAV - a''Ai') + 9, (Yf, [2,, - iZ3qfAp]YL) , 

The function n(q2)  in the one-photon-irreducible amplitude is then 

where ~ E L O O ~  is the contribution of loop diagrams. It follows that 

In practice, we just calculate the loop contributions and subtract a constant 
in order to make n(O) vanish. 

Incidentally, Eq. (10.5.18) shows that for q 2  # 0 the gauge term in the 
photon propagator is altered by radiative corrections. The one exception 
is the case of Landau gauge, for which 5 = 5 = 1 for all q2. 

10.6 Electromagnetic Form Factors and Magnetic Moment 

Suppose that we want to calculate the scattering of a particle by an 
external electromagnetic field (or by the electromagnetic field of another 
particle), to first order in this electromagnetic field, but to all orders in 
all other interactions (including electromagnetic) of our particle. For this 
purpose, we need to know the sum of the contributions of all Feynman 
diagrams with one incoming and one outgoing particle line, both on the 
mass shell, plus a photon line, which may be on or off the mass shell. 
According to the theorem of Section 6.4, this sum is given by the one- 
particle matrix element of the electromagnetic current J p ( x ) .  Let us see 
what governs the general form of this matrix element. 

According to spacetime translation invariance, the one-particle matrix 
element of the electromagnetic current takes the form 

The current conservation condition i?,,Jjt = 0 then requires 
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Also, setting p = 0 and integrating over all x gwes 

Using Eq. (10.4.8), this gives 

where q is the particle charge. 
We also have at our disposal the constraints on the current matrix 

elements imposed by Lorentz invariance. To explore these, we will limit 
ourselves to the simplest cases: spin zero and spin f. The analysis 
presented here provides an example of techniques that are useful for other 
currents, such as those of the semi-leptonic weak interactions. 

Spin Zero 

For spin zero, Lorentz invariance requires the oneparticle matrix element 
of the current to take the general form 

where po and are the mass-shell energies = Jw), and / p ( p ' , p )  
is a four-vector function of the two four-vectors dlt and d, (We have 
extracted a factor of the charge q of the particle from $ for future 
convenience.) Obviously, the most general such four-vector function takes 
the form of a linear combination of p ' ~  and pP, or equivalently of p ' j L  + p' 
and p'r - f ,  with scalar coefficients. But the scalars p2 and i2 are fixed 
at the values p' = d2 = -m2, so the scalar variables that can be formed 
from JF and d~ can be taken as functions only of p p', or equivalently of 

Thus the function $ P ( p 1 , p )  must take the form 

p) = ( p t  + p)"(k2) + i (p' - p ) p ~ ( k 2 )  . (IO.6.6) 

The fact that J p  is Hermitian implies that $P(pr,p)'  = j P ( p , p t ) ,  so that 
both ~ ( k ~ )  and ~ ( k ~ )  are real. 

Now (p' - p) . (p' $- p )  vanishes, while {p' - p ) 2  = k2 is not general1 y zero, 
so the condition of current conservation is simply 

Also, setting p' = p and p = 0 in Eq. (10.6.4), and comparing with Eq. 
(10.6.3), we find that 

The function ~ ( k ~ )  is called the electromagnetic form factor of the particle. 
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For spin i, Lorentz invariance requires the one-particle matrix element of 
the current to take the general form 

where P is a four-vector 4 x 4 matrix function of pV,p '" ,  and 7" and u 
is the usual Dirac coefficient function. We have extracted a factor ig to - 

make the normalization of P the same as in the previous section. 
Just as for any 4 x 4 matrix, we may expand in the 16 covariant 

matrices 1, y,, [y,, y,], ' j 5yp ,  and 75.  The most general four-vector P can 
therefore be written as a linear combination of 

with the coefficient of each term a function oT the only scalar variable in 
the problem, the quantity (10.65). This can be greatly simplified by using 
the Dirac equations satisfied by zs and u :  

( p ,  j i + m = 0 , (i pd -t rn) u(p, a) = 0 

In  consequence, we can drop* all but the first three entries: f, p'J', and 
7". We conclude that, on the fermion mass shell, P may be expressed as 
a linear combination of gfl,pfl, and p'p, which we choose to write as 

i 
- - (p + p'y%(k2) + (P - .d 'pH(k2) ]  u ( ~ ,  a). (10.6.10) 
2m 2m 

~ - 

' This is obvious for the terms pP d ,  p'p #, fl #I, and p'fl # I ,  which may be replaced respciively 
with i m p ,  irnp'fl, imp" and imp'p, which are the same as terms already on our list. Also, we can 
write 

which may be replaced with 2iwfL 2pp, a h e x  ~ornb ina t ion  of terms already on our I jsl. The 
same applies to [yg, $'I. A h ,  

which may be replaced with 2m2 + 2 p .  p' = -k2. Hencc the terms [ #, # ' ] p g  and [ d ,  $'lp'fi give 
nothing new. Finally. Lo deal with the lasl lerm we may use the relation 

Contracling this with p, and pb and then moving all $ f'actors to the right and { factors to thc 
left again gives a linear combination of p, p ' p ,  and yr.  
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The hermiticity of'JP(0) implies that 

p rPt(p', PIP = -Pi(p7 P' )  , (10.6.1 1) 

so that ~ ( k ' ) ,  c(k2), and I f ( k 2 )  must all be real functions of k2 .  
The consemation condition (10.6.2) is automatically satisfied by the first 

two terms in Eq. (10.6.10), because 

(p' - P ) ~ T "  = i [(i #' t m) - ( i  i + m)] 

and 

(p' - p) (PI + p) = pf2 - p2 . 
On the other hand, (p' - JI)' does not in general vanish, so current 
conservation requires the third term to vanish 

~ ( k ~ )  = 0 .  (10.6.12) 

Also, lett~ng p' + p in Eqs. (10.6.9) and (10.6.10), we find 

Using the identity ( y f i ,  I # + m} = 2rnyJL + 2ip", we also have 

Recall also that 

( ' f ' , ~  J"(W',,) = q(24-'(p"lpO)~,l, [F(o)  + G(o)] . (10.6.13) 

Comparing this with Eq. (10.63) yields the normalization condition 

F(O)  + GCO) = 1 . ( 10.6.14) 

I t  may be useful to note that the electromagnetic vertex matrix I? is 
commonly written in terms of two other matrices, as 

u(pP, a ' )W' ,  PMP, 4 = G(P', a') [Y% (k2) 

+ ~ i [ ~ " . ) ? ~ l  (P I  - ~ ) ~ ~ ~ 2 ( k ~ j ]  U(P,G) (10.6.15) 

As already mentioned, we may rewrite the matrix appearing in the second 
term in terms of those used in defining ~ ( k ~ j  and c(k2 j:  
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Comparing Eq. (10.6.15) with Eq. (10.6.10), we find 

~ ( k ~ )  = ~ l ( k ~ }  + 2~ ~ l ( k ~ )  

~ ( k ' )  = -2m ~ ~ ( k ' )  . 
The normalization condition ( 10.6.14) now reads 

F1(0) - 1 . 
Tn order to evaluate the magnetic moment of our particle in terms of 

its form factors, let us consider the spatial part of the vertex function in 
the case of small momenta, \pi, Ip'I << m. For this purpose, it is useful to 
use Eq. (10.6.16) to rewrite Eq. (10.6.10) (with H = 0) in a third form : 

For zero momenta the matrix elements of the commutators of Dirac 
matrices are given by (5.4.19) and (5.4.20) as 

1 
where ~ ( 7 )  = ;a is the angular momentum matrix for spin I .  Hence to 
first order in the small momenta, 

In a very weak time-independent external vector potential A(x)  the matrix 
element of the interaction Hamiltonian H' = - J d3x JJO - A(x )  between 
one-particle states of small momentum is therefore 

where I3 = V x A  is the magnetic field. Hence in the limit of a slowly varying 
weak magnetic field, the matrix element of the interaction Harniltonian is 

The magnetic moment p for an arbitrary particle of general spin j is 
defined by the statement that the matrix element of the interaction of the 
particle with a weak static slowly varying magnetic field is 
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Hence Eq. (10.6.22) g w e s  the magnetic moment of a particle of charge q, 
1 mass m, and spin as: 

This contains as a special case the celebrated Dirac result7 p = q / 2 m  for 
a spin particle without radiative corrections. 

We mention without proof that the farm factors ~ ( k ~ )  and ~ ( k ~ )  of 
the proton may be measured for k2 > 0 by comparison of experimental 
data for electron-proton scattering with the Rosenbluth formula8 for the 
laboratory frame differential cross-section : 

where Er, is the energy of the incident electron (taken here with Eo >> m,); 
0 is the scattering angle; and 

10.7 The KallewLehmann Representation' 

We saw in Section 10.2 that the presence of one-particle intermediate 
states leads to poles in Fourier transforms of matrix elements of time- 
ordered products, like (10.2.1). Multi-particle intermediate states lead to 
more complicated singularities, which are difficult to describe in general. 
But in the special case of a vacuum expectation value involving just two 
operators, we have a convenient representation that explicitly displays the 
analytic structure of the Fourier transform. In particular, this representa- 
tion may be used for propagators, where the two operators are the fields of 
elementary particles. When combined with the positivity requirements of 
quantum mechanics, this representation yields interesting bounds on the 
asymptotic behavior of propagators and the magnitude of renormalization 
constants. 

Consider a complex scalar Heisenberg-picture operator @(XI, which 
may or may not be an elementary particle field. The vacuum expectation 

" This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 
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value of a product @ ( x ) @ ~ ( ~ )  may be expressed as 

where the sum runs over any complete set of states. (Here the sum over 
n includes integrals over continuous labels as well as sums over discrete 
labels.) Choosing these states as eigenstates of the momentum four-vector 
P p ,  translational invariance tells us that 

and so 

It is convenient to rewrite this in terms of a spectral function. Note that 
the sum En S4@ - p,) 1 {0l@[0)ln) i2 is a scalar function of the four-vector 
pP, and therefore may depend only on p2 and (for p' I 0) on the step 
function 8($-'). In fact, the intermediate states in Eq. (10.7.3) all have 
p2 I 0 and > 0, so this sum takes the form 

x d4(p - ~d I { ~ I @ ( o ) I ~  l 2  = ( 2 n r 3  & P O )  d - p 2 )  (10.7.4) 
n 

with p(-p2) = 0 for p2 > 0. (The factor (2nIm3 is extracted from p for 
future convenience.) The spectral function p(-p2) = 0 is clearly real and 
positive. With this definition, we can rewrite Eq. (10.7.3) as 

Interchanging the order of integration over g p  and p2, this may be ex- 
pressed as 

where A+ is the familiar function 

In just the same way, we can show that 
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with a second spectral function p ( p 2 )  defined by 

We now make use of the causality requirement, that the commutator 
[@(x),@+(y)] must vanish for space-like separations x - y. The vacuum 
expectation value of the commutator is 

As noted in Section 5.2, for x - y space-like the function A+(x - y) does 
not vanish, but it does become men. In order for (10.7.10) to vanish for 
arbitrary space-like separations, it is thus necessary that. 

This is a special case of the CPT theorem, proved here without the use of 
perturbation theory: for whatever states with pZ = -p2 have the quantum 
numbers of the operator @, there must be corresponding states with 
p2 = --p2 that have the quantum numbers of the operator @?. 

Using Eq. (10.7.1 I), the vacuum expectation of the time-ordered product 
is 

where AF(x - y;  ,u2) is the Feynman propagator for a spinless particle of 
mass p ;  

2 0 0 2 - ~ A ~ ( x - ~ ; ~ ~ )  5 B ( X ~ - ~ ~ ) A + ( X - ~ ; ~  )-B(y -x )A+(y-X;P 1 .  
(10.7.13) 

Borrowing the notation introduced in Section 10.3 for complete propaga- 
tors, we introduce the momentum space function 

Recall that 

This yields our spectral representation;9 

One immediate consequence of this result and the positivity of p ( y 2 )  is 
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that A1(p) cannot vanish for l p 2 1  + cc! faster*' than the bare propagator 
l/($ + m2 - k). From time to time the suggestion is made to include 
higher derivative terms in the unperturbed Lagrangian, which would make 
the propagator vanish faster than l/p2 for lp21 + m, but the spectral 
representation shows that this would necessarily entail a departure from 
the positivity postulates of quantum mechanics. 

We can use the spectral representation together with equal-time commu- 
tation relations to derive an interesting sum rule for the spectral function. 
If @(x) i s  a conventionally normalized (not renormalized) canonical field 
operator, then 

We note that 

so the spectral representation (10.7.10) and the commutation relations 
(10.7.17) together tell us that 

This implies that for l p 2 1  -+ m, the momentum space propagator (10.7.16) 
of the unrenormalized fields has the free-field asymptotic behavior 

This result is only meaningful within a suitable scheme for regulating 
ultraviolet divergences; in perturbation theory the unrenorrnalized fields 
have infinite matrix elements, and their propagator is ill-defined. 

Now consider the possibility that there is a one-particle state Ik) of mass 
m with a non-vanishing matrix element with the state (OIQ(0). Lorentz 

* *  In fact, it is not even certain that Ar(p )  vanishes for 121 + m at all, even though this would 
seem to follow from the spectral representation. The problem arises from the interchange of 
the integrals over f and p2. What is certain is that A'@) is an analytic function of -p2 with 
a discontinuity across the positive real axis -$ = given by np(d), as can be shown by the 
methods of the next section. From this, i t  follows that A'rp) i s  given by a dispersion relation with 
spectral function &i2) and possible subtractions: 

where n is a positive integer, pi is an arbitrary positive conspant, and ~ ( ~ 9  is a 4-dqxndent 
polynomial in of order n - 1 that is absent for n = 0. 



invariance requires this matrix element to take the form 

where N is a constant. According to the general results of Section 10.3, 
the propagator AP(p) of the unrenormalized fields should have a pole at 
p2 + -m2 with residue Z = 1PJl2 > 0. That is, 

where g(p2) 2 0 is the contribution of multi-particle states. Together with 
Eq. {10.7.18), this has the consequence that 

and so 

with the equality reached only for a free particle, for which (OJ@(x) has 
no matrix elements with multi-particle states. 

Because Z is positive, Eq. (10.7.21) can also be regarded as providing 
an upper bound on the coupling of the field @ to multi-particle states: 

with the equality reached for Z = 0. The limit Z = 0 has an interesting 
interpretation as a condition for a particle to be composite rather than 
elementary.10 In this context, a 'composite' particle may be understood to 
be one whose field does not appear in the Lagrangian. Consider such a 
particle, say a neutral particle of spin zero, and suppose that its quantum 
numbers allow it to be destroyed by an operator F I T )  constructed out of 
other fields. We can freely introduce a field Q for this particle by adding a 
term to the Lagrangian density of the form? A 9  = (@ - F(Y) )~ ,  because 
the path integral over 4 can be done by setting it equal to the stationary 
point 0 = FCY), at which A 9  = 0. But suppose instead we write 

1 2 2  A Y  = ALPo + AYI, where A P o  = -@#dW - p @ is the usual free- 
field Lagrangian, and treat AY1 = A Y  - A g o  as an interaction. A term 
18 2 P @iWD in the interaction is nothing new. We encountered such a term 
in Eq. {10.3.12), multiplied by a factor (1 - 2 ) ;  the only new thing is that 
here Z = 0. Instead of adjusting Z to satisfy the field renormalization 
condition !X1(0)  = 0, here we must regard this as a condition on the 

This is known in condensed matter physics as a 'HubbardStratonovich transformation'." It will 
be used to introduce fields for pairs ~Felectrons in our discussion of superconductivi~y in Volume 
11. 
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coupling constants of the composite particle. Unfortunately, it has not 
been possible to implement this procedure in quantum field theories, 
because as we have seen Z = 0 means that the particle couples as strongly 
as possible to its constituents, and this rules out the use of perturbation 
theory. The condition Z = 0 does prove useful in non-relativistic quantum 
mechanics; for instance, it fixes the coupling of the deuteron to the neutron 
and proton. l 2  

Although the spectral representation has been derived here only for a 
spinless field, it is easy to generalize these results to other fields, Indeed, 
in the next chapter we shall show that to order e2, the 2-factor for the 
electromagnetic field (conventimally called Z 3 )  is given by 

(where A >> rn, is an ultraviolet cutoff), in agreement with the bound 
(20.7.22). 

10.8 Dispersion Relations* 

The failure of early attempts to apply perturbative quantum field theory 
to the strong and weak nuclear forces had led theorists by the late 1950s 
to attempt the use of the analyticity and unitarity of scattering amplitudes 
as a way of deriving general non-perturbative results that would not 
depend on any particular field theory. This started with a revival of 
interest in dispersion relations. In its original form,' b dispersion relation 
was a formula giving the real part of the index of refraction in terms of 
an integral over its imaginary part. It was derived from an analyticity 
property of the index of refraction as a function of frequency, which 
followed from the condition that electromagnetic signals in a medium 
cannot travel faster than light in a vacuum. By expressing the index 
of refraction in terms of the forward photon scattering amplitude, the 
dispersion relation could be rewritten as a formula for the real part of 
the forward scattering amplitude as an integral of its imaginary part, 
and hence via unitarity in terms of the total cross-section. One of the 
exciting things about this relation was that it provided an alternative to 
conventional perturbation theory; given the scattering amplitude to order 
e2, one could calculate the cross-section and the imaginary part of the 
scattering amplitude to order e4, and then use the dispersion relation to 

This section lies somewhat out of the books main line of' development, and may be omittcd in 
a first reading. 
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calculate the real part of the forward scattering amplitude to this order, 
without having ever to calculate a loop graph. 

The modern approach to dispersion relations began in 1954 with the 
work of Gell-Mann, Goldberger, and ~ h i r r i n g ] ~  Instead of considering 
the propagation of light in a medium, they derived the analyticity of the 
scattering amplitude directly from the condition of microscopic causality, 
which states that commutators of field operators vanish when the points 
at which the operators are evaluated are separated by a space-like interval. 
This approach allowed ~ o l d b e r ~ e r "  soon thereafter to derive a very useful 
dispersion relation for the forward pion-nucleon scattering amplitude. 

To see how to use the principle of microscopic causality, consider the 
forward scattering in the laboratory frame of a massless boson of any 
spin on an arbitrary target r of mass na, > 0 and p, = 0. (This has 
important applications to the scattering not only of photons but also 
pions in the limit m, = 0, to be discussed in Volume 11.) By a repeated 
use of Eq. (10.3.4) or the Lehmann-Symanzik-Zimmerman t h e ~ r e r n , ~  the 
S-matrix element here is 

Here k and k' are the initial and final boson four-momenta, with 10 = k', 
m' = k"; A ( x )  is any Heisenberg-picture operator with a non-vanishing 
matrix element {VACIA(x) lk) = { 2 n ) - " 2 ( 2 ~ 0 ) - ' / 2 ~ e i k ' x  between the one- 
boson state Ik) and the vacuum; and N is the constant in this matrix 
element. In  photon scattering A(x)  would be one of the transverse corn- 
ponents of the electromagnetic field, while for massless pion scattering 
it would be a pseudoscalar function of hadron fields. The differential 
operators i n ,  and -iny are inserted to supply factors of ik" and ik' 
that are needed to cancel the external line boson propagators. Letting 
these operators act on A ? ( ~ )  and ACx), we have 

where J(x) U,A(x), and 'ETC' denotes the Fourier transform of equal 
time commutator terms arising from the derivative acting on the step 
functions in the time-ordered product. The commutators of operators like 
A(xj and ~ t ( y )  (or their derivatives) vanish for xo = yo unless x = y, 
so the 'ETC' term i s  the Fourier transform of a differential operator 
acting on S4(x - y), and is hence a polynomial function of the boson 
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four-momenta. We are concerned here with the analytic properties of the 
S-matrix element, so the details of this polynomial will be irrelevant. 

Using translation invariance, Eq. (10.8.2) gives the S-matrix element as 
S = -21-riJ4(k' - k ) M ( w ) ,  where 

F ( w )  - #X e'"f .x(a T(J?(o), J ( x ) j a )  + ETC , J (10.8.4) 

it now being understood that k p  = UP, where L is a fixed four-vector 
with Pep = 0 and P = 1. 

The time-ordered product can be rewritten in terms of commutators in 
two different ways: 

T { J ' ( ~ ) ,  ~ ( x ) )  = 8 ( - x 0 ) [ J ~ ( ~ ) ,  ~ ( x ) ]  + J(x)J'(o) 
= -u(x')[J'(o), ~ ( x ) ]  + J'(o)J(x) . 

Correspondingly, we can write 

F(w)  = FA(w)  + F+(m) = FR(w)  + F-(m) , 

where 

Microscopic causality tells us that the integrands in (10.8.7) and (10.8.8) 
vanish unless xp  is within the light cone, and the step functions then 
require that XP is in the backward light cone in (10.8.71, so that x . t > 0, 
and in the forward light cone in Eq. (10.8.8), so that x 3 t  < 0. We conclude 
that FA(w) is analytic for Im w > 0 and F R ( u )  is analytic for I m o  < 0, 
because in both cases the factor eiwFx provides a cutoff for the integral 
over x t  (Recall that the 'ETC' term is a polynomial, and hence analytic 
at all finite points.) We may then define a function 
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which is analytic in the whole complex w plane, except for a cut on the 
real axis. 

We can now derive the dispersion relation. According to Eq. (10.8.6), 
the discontinuity of F ( w )  across the cut at any real E is 

F ( E  + k) - .FIE - k )  = FA(E) - F R ( E )  = F - ( E )  - F + ( E )  . (10.8.12) 

I f  F j w ) / w n  vanishes as lo1 + co in the upper or lower half-plane, then 
by dividing by any polynomial P ( w )  of order n we obtain a function 
that vanishes for llvl + cc and is analytic except for the cut on the real 
axis and poles at the zeroes w, of 
Iwl + GO, we can take Pjm) = 1.) 
we then have 

P(o). (Where .F(w) itself vanishes as 
According to the method of residues, 

where o is any point off the real axis, and C is a contour consisting of two 
segments: one running just above the real axis from -a + ie to +a + if 
and then around a large semi-circle back to -m + i ~ ,  and the other just 
below the real axis from +m - if to -x - ie and then around a large 
semi-circle back to +w - i ~ .  Because the function F ( z ) / P ( z )  vanishes 
for jzl -+ co, we can neglect the contribution from the large semi-circles. 
Using Eq. (lO.8.12), Eq. (10.8.13) becomes 

where Q ( w )  is the (n - 11th-order polynomial 

A dispersion relation of this form, with P ( w j  and Qjw) of order n and 
n -  1 respectively, is said to have n subtracrions. If we can take P = 1 then 
Q = 0, and the dispersion relation is said to be unsubtracted. 

If we now let w approach the real axis from above, Eq. ( lO,8,l4) gives 

Recalling Eqs. (10.8.6) and (3.1.251, this is 

with 1/(E -w) now interpreted as the principal value function P / ( E  - w). 
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This result is useful because the functions F+(E) - may be expressed 
in terms of measurable cross-sections. Summing over a complete set of 
multi-particle intermediate states f l  in Eqs. ( 10.8.9) and (10.8.10) (including 
integrations over the momenta of the particles in p) and using translation 
invariance again, we have 

But the matrix elements for the absorption of the massless scalar boson 
B in 3 + m 4 /I or i t s  antiparticle BC' in Br + r + j3 are 

Comparing with Eq. (3.4.151, we see that F + ( E )  - may be expressed in terms 
of total cross-sections** at energies T E :  

The scattering amplitude (10.8.3) is now, for real c ~ ,  > 0, 

It is more usual to express this dispersion relation in terms of the 
amplitude f ( w )  for forward scattering in the laboratory frame, defined 
so that the laboratory frame differential cross-section in the forward 
direction is ~f (w)12. This amplitude is given in terms of M { w )  by 

" In some cases whcrc sclcctinn rules allow the transition 2 + z + B and r -. x + B', the functions 
F*(E)  also contain terms proportional to d(E)  arising from the contribution of the one-par(icle 
statc u in thc sum orer inlermzdiate states B. -]'his docs not occur f i r  lransversely polarized 
photons, or for pseudosca1;lr pions in the limil pn, - 0. 
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f ( w )  = -4n2w M ( w )  = 2 x 2 i ~ ( w ) / l ~ 2 ,  so Eq. (10.8.23) now reads 

where R(tu) = 2in2 Q ( ~ ) / N I ~ .  The optical theorem (3.6.4) tells us that the 
second term on the right-hand side equals iIm f ( w ) ,  so this can just as 
well be written in the more conventional form 

] E d E ,  (10.824) 

In particular, we see that R(w) is real if we choose P ( m )  real. 
The forward scattering amplitude also satisfies an important symmetry 

condition. By changing the integration variable in Eqs. ( 10.8.7) and (10.8.8) 
from x to -x and then using the translation-invariance property 

we see that for Imw 5 0, FA(-w) is the same as FR(w), except for an 
interchange of J with J + .  That is, 

FA(-m)  = Fh(w) for Im w I 0 ,  

where a superscript c indicates that the amplitude refers to the scattering 
of the antiparticle BC on 3. (We leave it to the reader to show that this 
relation is not upset by the equal-time commutator terms in Eqs. (10.8.7) 
and (10.8.8).) In the same way, we find 

FR(-w)= F ~ ( o )  for I m w  2 0 ,  

and for real ro 

Using these relations in (10.8.6), and recalling that f (m) is proportional to 
F(co), we find the crossing symmetry relation, that for real o 

We are free to take P ( m )  as any polynomial of sufficiently high order, 
but Rjw) then depends not only on P ( w )  but  also on the values of F ( w )  
at the zeroes of P(w). For P(w)  real and of nth order, the only free 
parameters in Eq. (10.8.16) are the n real coefficients' in  the real (n - 11th 
order polynomial R(cv). Hence Eq. ( 10.8.16) contains just n unknown real 
independent constants, the coefficients in the polynomial R(m) for a given 
P(cu). We therefore wish to take the order M of the otherwise arbitrary 
polyomial P ( w )  to be as small as possible. 
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We might try taking P ( o )  = 1, but this doesn't work. The analysis of 
Section 3.7 suggests that the forward scattering amplitude should grow 
like w or perhaps as fast as w ln2 w .  In this case for f(w)/P(ru) to vanish 
as w -+ 0, it is sufficient to take P ( w )  as a second order polynomial, 
so that R(w) is linear in o. Choosing P ( E )  = E' for convenience, Eq. 
(10.8.24) then becomes 

with a and b unknown real constants. The crossing symmetry condition 
(10.8.25) tells us that the corresponding constants in the dispersion relation 
for the antiparticle scattering amplitude f " (w)  are 

If we assume for instance that the cross-sections C J , + ~ ( E )  and u,+~c(E) 
behave for E + w, as different constants times (In Elr, then (10.8.26) 
would give 

so the real part of the scattering amplitude would grow faster than the 
imaginary part by a factor In or. This is implausible; we saw in Section 
3.7 that the real part of the forward scattering amplitude is expected to 
become much smaller than the imaginary part for w -+ m, as confirmed 
by experiment. We conclude that if O , + ~ ( E )  and aats.(E) do behave for 
E + M? as constants times (In E)r then the constants must be the same. 
Because we are concerned here with the high-energy limit, this result does 
not depend on the assumption that B is a massless boson, so in the same 
sense, the ratio of the cross-sections of arty particle and i ts antipurticle 
on a &xed target should upproach unity al high elaergy. This result is 
a somewhat generalized version of what is known as Pomeranchuk's 
theorem.16 (Pomeranchuk considered only the case r = 0, while Section 
3.7 and the observed behavior of cross-sections both suggest that r = 2 is 
more likely.) 

Although Pomeranchuk took his estimates of the asymptotic behavior 
of scattering amplitudes from arguments like those of Section 3.7, today 
high energy behavior is usually inferred from Regge pole theory.'' It 
would take us too far from our subject to go into details about this; 
suffice it to say that for hadronic processes the asymptotic behavior of 
f(w) as ri, goes to infinity is a sum over terms proportional to t d o ) ,  where 
a, (~)  are a set of 'Regge trajectories', each representing the exchange of an 
infinite family of different one-hadron states in the collision process. The 
leading trajectory (actually, a complex of many trajectories) in hadron- 
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hadron scattering is the 'Pomeron,' for which a(0) is close to unity. It is 
this trajectory that gives cross-sections that are approximately constant 
for E + co. According to Pomeranchuk's theorem, the Pomeron couples 
equally to any hadron and its antiparticle. We can estimate a,(O) for 
the lower Regge trajectories from the spectrum of hadronic states. A 
necessary though not sufficient condition18 for a mesonic resonance of 
spin j to occur at a mass m is that m2 equals the value of t where one of 
trajectories cx,(t) equals j. Apart from the Pomeron, the leading trajectory 
in pion-nucleon scattering is that on which we find the j = 1 p meson at 
m = 770 MeV, the j = 3 g meson at m = 1690 MeV, and a j = 5 meson 
a t  m = 2350 MeV. Extrapolating these values of a(t) down to t = 0, we 
can estimate that this trajectory has ~ ( 0 )  w 0.5. This trajectory couples 
with opposite sign to .rr+ and n-, so for pion-nucleon scattering we expect 
f (0)  - P(o)  to behave roughly like @. 

For photon scattering there is no distinction between B and Bd', so here 
Eq. (10.8.27) gives b = 0, and Eq. (10.8.26) reads 

This is essentially the original ~ r a m e r s - ~ r o n i g ' ~  relation. As we shall see 
in Section 13.5, for a target of charge e and mass m the constant a has 
the known value Ref (0) = -e2/m. 

Problems 

1. Consider a neutral vector field fip{x). What conditions must be 
imposed on the sum IIiI;,(k) of one-particle-irreducible graphs with 
two external vector field lines in order that the field should be 
properly renormalized and describe a particle of renormalized mass 
m? How do we split the free-field and interacting terms in the 
Lagrangian to achieve this? 

2. Derive the generalized Ward identity that governs the electromag- 
netic vertex function of a charged scalar field. 

3. What is the most general form of the matrix element (p2a2 I J ~ ( x ) ~ ~ ~ o ~ )  
of the electromagnetic current P ( x )  between two spin f one-particle 
states of diflerent masses ml and m2 and equal parity? What if the 
parities were opposite? (Assume parity conservation throughout.) 

4. Derive the spectral (KaIlen-Lehmann) representation for the vacuum 
expectation value (T(J"(x) ~'(~)t))a, where J'(x) is a complex 
conserved current. 
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5. Derive the spectral (Kallen-Lehmann) representation for the vacuum 
expectation value { T ( y , ( x )  v?&)))~, where y(x) is a Dirac field. 

6. Without using any assumptions about the asymptotic behavior of 
the scattering amplitude or cross-sections, show that it is impossible 
for forward photon scattering amplitudes to satisfy unsubtracted 
dispersion relations. 

7. Derive the spectral (Kallen-Lehmann) representation for a complex 
scalar field by using the methods of dispersion theory. 

8. Use dispersion theory and the results of Section 8.7 to calculate the 
amplitude for forward photon-electron scattering in the electron rest 
frame to order e4. 
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One-Loop Radiative Corrections 
in Quantum Electrodynamics 

In this chapter we shall proceed to carry out some of the classic one-loop 
calculations in the theory of charged leptons - massive spin f particles 
that interact only with the electromagnetic field. There are three known 
species or 'flavors' of leptons: the electron and muon, and the heavier, 
more recently discovered tauon. For definiteness we shall refer to the 
charged particles in our calculations here as 'electrons,' though most of 
our calculations will apply equally to muons and tauons, After same 
generalities in Section 11.1, we will move on to the calculation of the 
vacuum polarization in Section 11.2, the anomalous magnetic moment of 
the electron in Section 11.3, and the electron self-energy in Section 11.4. 
Along the way, we will introduce a number of the mathematical techniques 
that prove useful in such calculations, including the use of Feynman 
parameters, Wick rotation, and both the dimensional regularization of 
't Hooft and VeItman and the older regularization method of Pauli and 
ViHars. Although we shall. encounter infinities, it will be seen that the 
final results are finite if expressed in terms of the renormalized charge 
and mass. In  the next chapter we shall extend what we have learned 
here about renormalization to general theories in arbitrary orders of 
perturbation theory. 

The Lagrangian density for electrons and photons is taken in the form* 

where FF = P A L  - dvA)lg; A: and tys are the bare (i.e., unrenormalized) 
fields of the photon and electron, and -ea and rnB are the bare charge and 

-- 

' In this chapter we will not be making transformations between Heisenbcrg- and interaction- 
picture operators, so we shall return to a conventional notation, in which the an upper case A 
and a lower case ry are uscd tn denote the photon and charged particle fields, respectively. 



mass of the electron. As described in the previous chapter, we introduce 
renormalized fields and charge and mass: 

with the constants Z2,  Z3,  and Sm adjusted so that the propagators of the 
renormalized fields have poles in the same position and with the same 
residues as the propagators of the free fields in the absence of interactions. 
The Lagrangian may then be written in terms of renormalized quantities, 
as 

where 

and Y2 is a sum of 'counterterms' 

It will turn out that all of the terms in Y z  are of second order and 
higher order in e, and that these terms just suffice to cancel the ultraviolet 
divergences that arise from loop graphs. 

11.2 Vacuum Polarization 

We now begin our first calculation of a radiative correction involving 
loop graphs, the so-called vacuum polarization effect, consisting of the 
corrections to the propagator associated with an internal photon line. 
Vacuum polarization produces measurable shifts in the energy levels of 
hydrogen, and makes an important correction to the energies of muons 
bound in atomic orbits around heavy nuclei. Also, as we shall see in 
Volume 11, the calculation of the vacuum polarization provides a key 
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Figure 1 1. I .  The one-loop diagram for the vacuum polarization in quantum elec- 
trodynamics. Here wavy lines represent photons; lines carrying arrows represent 
electrons. 

element in the calculation of the high energy behavior of eIcctrodynamics 
and other gauge theories. 

As in Section 10.5, we define i j2n)4rI*~'yq)  as the sum of all connected 
graphs with two external photon lines with polarization indices p and 
v and carrying four-momentum q into and out of the diagram, not 
including photon propagators for the two external Iines, and with the 
asterisk indicating that we exclude diagrams that can be disconnected 
by cutting through some internal photon line. The complete photon 
propagator A ' / " ( ~ )  is given by Eq. (10.5.13) : 

where AIi"(q) is the photon propagator without radiative corrections. Our 
task here is to caIculate the leading contributions to I I * P 0 { q ) .  

In lowest order there is a one-loop contribution to n*, corresponding 
to the diagram in Figure 11.1 : 

with the first minus sign on the right required by the presence of a fermion 
loop. More simply, this is 

( I  1.2.3) 
The first step in doing this integral is to use a trick introduced by 

~ e ~ n r n a n . '  We use the elementary formula 



11.2 Vacuum Pulcdrizatim 

to write the product of scalar propagators in Eq. (11.2.3) as 

I 

= 1 [ ( p  - 4 ~ 1 Z  + m2 - i~ + q 2 x ( ~  - XI] 2 i i ~  . 

(This is a special case of a class of integrals given in the Appendix to 
this chapter.) We can now shift the variable of integration in momentum 
space* 

so that Eq. (1 1.2.3) 

P + P + ~ ,  

becomes 

Using the results of the Appendix to Chapter 8, the trace here can easily 
be calculated as 

Our next step is called a Wick rotcation2 AS long as -q2 < 4m2, the 
quantity m2 + $x( l -  x) is positive for all x between0 and 1, so the poles 
in the integrand of Eq. jt 1.2.5) are at = +Jp2 + rn2 + q2x(1 - x) - it, 
i.e., just above the negative real axis and just below the positive real 
axis. (See Figure 1 1.2.) We can rotate the contour of integrations of 
counterclockwise without crossing either of these pales, so that instead of 
integrating po on the real axis from o r 7  to tx, we integrate it on the 
imaginary axis from -im to +ix. That is, we can write = tp4, with p4 
integrated over real values from -x to +m. (If an ie instead of -ie had 
appeared in the denominator of the propagator, then we would have been 
setting = -ip4, with p4 again integrated over real values from -m to 

Strictly speaking, lhis step is only valid m convergent integrals. In principle, in order to justify 
thc shift of variables, we should introduce some regulator scheme to make all integrals converge, 
such as the dimensional regularization scheme discussed below. 
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Figure 11.2. Wick rotation of the contour of integration. Small x's mark the 
poles in the po complex plane; the arrow indicates the direction of rotation of the 
contour of integration, from the real to the imagnary pO-axes. 

+a. The effect would be a change of sign of II;L,(q).) Eq. (11.2.5) now 
becomes 

where 

and all scalar products are evaluated using the Euclidean norm 

with the understanding that .q4 = -iqo , Also, vPfi can be taken as either 
the Kronecker delta, with the indices running over 1, 2, 3, 4, or as the 
usual Minkowski tensor, with the indices running over 1, 2, 3, 0. 

The integral (1  1.2.7 j is badly divergent. Eventually all infinities will 
cancel, but to see this it is necessary at intermediate stages of the calcula- 
tion to use some sort of regularization technique that makes the integrals 
finite. i t  would not do simply to cut off the integrals at some maximum 
momentum A, integrating only over pi with p2 < A ~ ,  because this would 
amount to introducing a step function O ( A ~  - p 2 )  into the electron prop- 
agator, and the Ward identity (10.4.25) shows that in order to maintain 



gauge invariance, any modification of the electron propagator must be 
accompanied with a modification of the electron-photon vertex. If fact, 
with an ordinary cutoff A, radiative corrections would induce a photon 
mass, a clear violation of the requirements of gauge invariance. 

Experience has shown that the most convenient method for regulating 
divergent integrals without impairing gauge invariance is the dimensional 
regularization technique introduced by 't Hooft and veltman3 in 1972, 
based on a continuation from four to an arbitrary number d of spacetime 
dimensions. This amounts to carrying out angular averages in integrals 
like (1 1-2.7) by dropping all terms that are odd in p, and replacing the 
terms that have even numbers of p-factors with** 

Also, after writing the integrand in this way as a function only of p2, the 
volume element d l p E  is to be replaced with fldhd-'dx, where K = fl, 
and Qd is the area of a unit sphere in d dimensions 

The integral (1 1.2.7) now converges for complex spacetime dimension- 
ality d. We can continue the integral through complex d-values to d = 4, 
the infinities then reappearing as factors ( d  - 4)-I. 

For the integral (1 1.2.71, dimensional regularization gives 

4e2od -2 
l-p"= I = - 4' di l d l d n  [x2 + m2 + q2x(l  - r)] 

{W4 

The integrals over k: can be carried out for any complex d (or for any real 
d ,  aside from the even integers). We use the well-known formulas (given 
in greater generality in the Appendix to this chapter): 

" Thew expressions may mosl easily be derived hy noting that their form is dictated by Lorentz 
invariance and the symmelry among the indices p , v , p ,  etc., while the factors may tx found by 
requiring that both sides give the same result when contracted with q s .  
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and find 

d 

dx (1 - 2 / d )  qp (m2 + 42n (1 - x)) '-I T ( I  + d / 2 )  T ( 1  - d / 2 )  ~ . s '  [ 
;1-2 +- ( 2 q ~ q f i x (  1 - x) - q"pUx( I - x) + m 2 r l ~ u )  (m2 + ,q2x(l - x)) 

1 

The two terms in the integrand can be combined, using 

We find 

We note the very important result that this contribution to TI*pg satisfies 
the relation 

that was derived in Section 10.5 on the basis of the conservation and 
neutrality of the electric current. I t  was precisely to achieve this result 
that we adopted the dimensional regularization scheme. The reason that 
dimensional regularization gives this result is that the conservation of 
current does not depend on the dimensionality of spacetime. 

The gamma function r(2 - d / 2 )  in Eq. (11.2.13) blows up for d -, 4. 
Fortunately, as we saw in Section 11.1, there is another term that must 
be added to n*Pn(q), arising from the term -$T3 - 1)FIsPt in the 
interaction Lagrangian. This term has a structure like Eq. (11.2.13) 

so to order e2, the complete n' has the form 

with 
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As we saw in Section 10.5, the definition of the renormalized electromag- 
netic field requires that ~ ( 0 )  = 0 {in order that the residue of the pole in 
the complete photon propagator at  q2 = 0 should be the same as for the 
bare propagator, aside from gauge-dependent terms). Therefore, to order 

2 
e ,  

so that, to order e2, 

x [(& + p 2 x ( ~  - r)) $-' - Inl'J:-2] . 

Now we can remove the regularization, allowing d to approach its 
physical value d = 4. As mentioned before, there is an infinity in the 
one-loop contribution, arising from the limiting behavior of the Gamma 
function 

where y is the Euler constant, y = 0.5772157. The infinite part of Z3 - 1 
is given by using 1/(2 - d / 2 )  for r(2 - 6/21, and replacing d everywhere 
else by 4: 

We shall see in Volume I1 that this result may be used to derive the leading 
term in the renormalization group equation for the electric charge. 

The poles at d = 4 obviously cancel in because for d = 4 both 
(m2 + q 2 ~ ( 1  - i) j f -' and (m2)!-2 have the same limit, unity. For the same 
reason, the term -y in r(2-d/2) cancels in the total n(q2), though it does 
make a finite contribution to Zj - 1. There are other finite contributions to 
2 3  - 1, that arise from the product of the pole in r(2-d/2) with the linear 
terms in the expansion of ndr(d/2) around d = 4, but these also cancel 
in the total n(q2) .  Indeed, in carrying out our dimensional regularization, 
we might have replaced ( 2 7 ~ ) - ~  with (27cp6, and the factor Tr 1 = 4 might 
have been replaced with the dimensionality 2d/2  of gamma matrices in 
arbitrary even spacetime dimensionalities d ,  and these too would have 
contributed to the finite part of Z 2  - 1, but not of c(~'). Moreover, e2 
cannot be supposed to be &independent, because as shown by inspection 
of Eq. (11.2.13), it has the d-dependent dimensionality If we 
take e2 x p44-d, where C, is some quantity with the units of mass, then 
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there are additional finite terms in Z2 - 1, arising from the product of the 
pole in r ( 2  - d / 2 )  with the term (4 - d) In p in the expansion of p4-d in 
powers of 4 - d, but again, these cancel between Z3 - 1 and the one-loop 
contributions to n(q2) .  

The only terms that do contribute to T C ( ~ ~ ~  in the limit d -+ 4 are those 
arising from the product of the pole in r(2 - d/2) with the linear terms 
in the expansion of (m2 + q2x(1 - x)):-~ and (rn2)i-2 in powers of d - 4: 

This gives at last 

e2 ) d r .  (1 1.2.22) 

The physical significance of the vacuum polarization can be explored 
by considering its effect on the scattering of two charged particles of 
spin f .  The Feynman diagrams of Figure 11.3 make contributions to the 
scattering S-matrix element of the form 

where el and ez are the charges of the two particles being scattered: 
n(q2) is calculated using for e in Eq. (11.2.22) the magnitude of the 
charge of the particle circulating in the loop in Figure 11.3; and qfi is the 
momentum transfer q = pl -pl! = pr -p2. Using the conservation property 
q,fil~yJ%l == 0 the two diagrams together yield an S-matrix element : 

In the non-relativistic limit, u l~yOul  i d  while til+yiul 2 0, and 
likewise for particle 2. Also, in this limit qo is negligible compared with 
(q( .  Eq. (11.2.23) in this limit becomes 
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This may be compared with the S-matrix in the Born approximation due 
to a local spin-independent central potential V ( r ) :  

Setting XI = x2 + r, this gives 

Comparing this with Eq. (11.2.23) shows that in the non-relativistic limit 
the diagrams of Figure 11.3 yield the same S-matrix element as a potential 
V(r) such that 

or, inverting the Fourier transform, 

Eq. (11.2.28) is to first order in the radiative correction the same potential 
energy that would be produced by the electrostatic interaction of two 
extended charge distributions el ~ ( x )  and eZq(y) at a distance r : 

J 

where 

Note that 

so the total charges of particles I and 2, as determined from the long- 
range part of the Coulomb potential, are the same constants q and e2 
that govern the interactions of the renormalized electromagnetic field. 

For Irl # 0 the integral (1 1.2.30) can be carried out by a straightforward 
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Figure 11.3. Two diagrams for the scattering of charged particles. Here lines 
carrying arrows are charged particles; wavy lines are photons. Diagram (b) repre- 
sents the lowest-order vacuum polarization correction to the tree approximation 
graph (4. 

con tour integration : 

This expression is negative everywhere. However, we have seen that the 
integral of qjr) over all r equals +l. Therefore, ~ ( r )  must contain a term 
(1 +,L)fi3(r) that is singular at r = 0, with L chosen to satisfy Eq. (11.2.31): 

The complete expression for the charge distribution function is then 

The physical interpretation of this result is that a bare point charge 
attracts particles of charge of opposite sign out of the vacuum, repelling 
their antiparticles to infinity, so that the bare charge is partially shielded, 
yielding a renormalized charge smaller by a factor 1/(1 + L). As a check, 
we may note that if we cut off the divergent integral (1 1.2.32) by taking the 
integral to extend only over r 2 A, we find that the part that is divergent 
for a 4 0 is 

Hence if we identify the momentum space cutoff A with a-I, the divergent 



part of L is related to the divergent part of 2 3  - 1 by 

because to order e2 the renormalized charge (10.4.18) is gven by 

Eq. (1 1.2.35) is confirmed below. 
Vacuum polarization has a measurable effect on muonic atomic energy 

levels. As we shall see in Chapter 14, the effect of Feynman graph (b) in 
Figure 1 1 -3 is to shift the energy o f  an atomic state with wave function 
W) by 

where AV(r) is the perturbation in the potential (1 1-2-28); 

This perturbation falls off exponentially for r >> m-'. On the other hand, 
the wave function of electrons in ordinary atoms will generally be confined 
within a much larger radius a >> r n - l ;  for instance, for hydrogenic orbits 
of electrons around a nucleus of charge Ze  we have a = 137/Zm (where 
here m = m,). The energy shift will then depend only on the behavior of 
the wave function for r << a. For orbital angular momentum rP, the wave 
function behaves like r v o r  r << a, so Eq. (1 1.2.37) gives AE proportional 
to a factor ( r n a ~ ~ ' + ~ .  The effect of vacuum polarization is therefore very 
much larger for % = 0 than for higher orbital angular momenta. For G = 0 
the wave function is approximately equal to the constant y ( O )  for r less 
than or of  the order of m-', so Eq. (11.2.37) becomes 

Using Eqs. (1 1.2.38) and ( 1  1.2.22), the integral of the shift in the potential 
(for elez = -2e2) is 

Also, in states of hydrogenic atoms with L = 0 and principal quantum 
number n the wave function at  the origin is 
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so the energy shift (1 1.2.39) is 

For instance, in the 2s state of hydrogen this energy shift is -1.122 x lW7 
eV, corresponding to a frequency shift AE/2nh  of - 37.13 MHz. This 
is sometimes called the UehEhg e f l e c ~ . ~  As discussed in Chapter 1, such 
tiny energy shifts became measurable because in the absence of various 
radiative corrections the pure Dirac theory would predict exact degeneracy 
of the 2s and 2 p  states o f  hydrogen. As we shall see in Chapter 14, most 
of the +I058 MHz 'Lamb shift' between the 2s and the 2p states comes 
from other radiative corrections, but the agreement between theory and 
experiment is good enough to verify the presence of the -37.13 MHz shift 
due to vacuum polarization. 

Although vacuum polarization contributes only a small part of the 
radiative corrections in ordinary atoms, it dominates the radiative correc- 
tions in muonic atoms, in which a muon takes the place of the orbiting 
electron. This is because most radiative corrections give energy shifts in 
muonic atoms that on dimensional grounds are proportional to m,, while 
the integrated vacuum polarization energy J d3r AV due to an electron 
loop is still proportional to r n ~ ~  as in Eq. (11.2.40), giving an energy shift 
proportional to rnim;' = (210)~m,. However, in this case the muonic 
atomic radius i s  not much larger than the electron Compton wavelength, 
so the approximate result (11.2.39) only gives the order of magnitude of 
the energy shift due to vacuum polarization. 

For the purposes of comparison with later calculations, note that if we 
had cut OR the integral (1  1.2.7) at K -- A, then in place of Eq. (1 1.2.20) we 
would have encountered an integral of the form 

where p is an infrared effective cutofl of the order of the mass of the 
charged particle circulating in the loop of Figure 11.1. (The easiest way to 
find the constant factor here is to require that the limit of this expression 
for d < 3 and A + m matches Eq. (1  1.2.20).) With such an ultraviolet 
cutoff in place, we can pass to the limit d + 4, and obtain 
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Figure 11.4. One-loop diagrams for the photon-lepton vertex function P. Here 
wavy lines represent photons; other lines represent electrons or muons. Diagrams 
(a) and (b) are cancelled by lepton field renormalization terms; diagram ( c )  arises 
from the vacuum polarizatiorl calculated in Section 11.2; and (d) is the term 
calculated in Section 11.3. 

11.3 Anomalous Magnetic Moments and Charge Radii 

For our next example, we shall calculate the shift in the magnetic moment 
and the charge radius of an electron or muon due to lowest-order radiative 
corrections. The one-loop graphs and renormalization corrections for 
the photon-lepton vertex are shown in Figure 11.4. Of these graphs, 
those involving insertions in incoming or outgoing lepton lines vanish 
because the lepton is on the mass shell, as discussed in Section 10.3. The 
graph involving an insertion in the external photon line is the vacuum 
polarization effect, discussed in the previous section. This leaves one 
one-loop graph (the last in Figure 1 I .4) that needs to be calculated here: 

where p' and p are the final and initial lepton four-momenta, respectively. 
(The contribution of the vertex connecting the external photon line and 
the internal lepton line is taken as yr, because a factor e(2n j4 was extracted 
in defining P.) 

This integral has an obvious ultraviolet divergence, roughly like 
J'd4k/ (k2)2.  Unlike the case of the vacuum polarization, here we do 
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not need a fancy regularization procedure like dimensional regulariza- 
tion to maintain the structure required by gauge invariance, because the 
photon is a neutral particle and so the integral may be rendered finite by 
suitable modifications of the photon propagator (for instance by including 
a factor ~ ~ / ( k '  + M ~ )  with a large cutoff mass M), without having to 
introduce modifications elsewhere to maintain gauge invariance. In  any 
case, as we shall see the anomalous magnetic moment and charge radii 
can be calculated without encountering any ultraviolet divergences at all. 
In what follows we shall leave the integrals for the vertex function in their 
infinite form, with it being understood that if necessary any divergent 
integrals can be expressed in terms of a cutoff mass M. 

We start by combining denominators, using a repeated version of the 
Feynman trick described in the Appendix to this chapter 

1 X 

- ABC = ? L 1 d r  dy [ A ~ + B ~ ~ - ~ ~ + C ~ - X ) ] - ~ .  (1 L3.2) 

Applied to the denominators in Eq. (1 1.3-11, this gives 

where q = p - p' is the momentum transferred to the photon. Shifting the 
variable of integration 

the integral (1 1.3. I) becomes 

Our next step is a Wick rotation. As explained in the previous section, 
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the - i ~  in the denominator dictates that when we rotate the ko contour 
of integration to the imaginary axis we must rotate counterclockwise, so 
that the integral over k" from -m to +n is replaced with an integral 
over imaginary values from -im to +dm, or equivalently over real values 
of k4 = -iko from -m to +a We also exploit the rotational symmetry 
of the denominator in Eq. (11.3.4); we drop terms in the denominator 
of odd order in k ,  replace k"kg with rl"k94, and replace the volume 
element d4k = idk ldk2dk3dk4 with 2ir2rc3&c, where K is the Euclidean 
length of the four-vector k. Putting this all together, Eq. (1 1.3.4) now 
becomes 

We are interested here only in the matrix element 6 ' T h  of the vertex 
function between Dirac spinors that satisfy the relations 

We can therefore simplify this expression by using the anticornmutation 
relations of the Dirac matrices to move all factors 6' to the right and all 
factors # to the left, replacing them when they arrive on the right or left 
with im. After a straightforward but tedious calculation, Eq. (11.3.5) then 
becomes 

f 4irnpfP(y - x + x y )  + 4imp"(r2 - xy - y ) )u  

We next exploit the symmetry of the final fxtor under the reflection 
y -+ x - y. Under this reflection, the functions y - x $ xy and x2 - xy - y 
that multiply pt'! and are interchanged, so both may be replaced with 
their average: 
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This gives finally 

x P' y p  - rc2 + 2m2(x2 - 42 + 2) + 2q2(y (x - y )  + 1 - x ) ]  { [ 

Note that p p  and p'p now enter only in the combination p p  + p f p ,  as 
required by current conservation. 

There are other diagrams that need to be taken into account. Of course, 
there is the zeroth-order term yp in P. The term proportional to 2 2  - 1 
in the correction term (11.1.9) yields a term in T p  

Also, the effect of insertions of corrections to the external photon propa- 
gator is a term: 

The form of each of these terms is in agreement with the general result 
(10.6.10) (with Ef(q2) = 0) 

To order e2, the form factors are 

where r (q2 )  is the vacuum polarization function (11.2.22). 
The integral for the form factor ~ ( q ~ )  is finite as it stands: 
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Figure 11.5, A two-loop diagram for the muon magnetic moment. Here the 
heavy straight line represents a muon; the light wavy lines are photons; and the 
other light lines are electrons. This diagram makes a relatively large contribution 
to the fourth-order muon gyromagnetic ratio, proportional to ln(nap/na,). 

This makes it easy to calculate the anomalous magnetic moment. As noted 
in Section 10.6, it is only the yfl term that contributes to the magnetic 
moment, so the effect of radiative corrections is to multiply the Dirac 
value a/2m of the magnetic moment by a factor F ( 0 ) .  But the definition 
of e as the true lepton charge requires that 

so the magnetic moment may be expressed as 

From Eq. (11.3.13), we find 

This is the famous arj2n correction first calculated by ~chwinger.~ 
Of course, this is only the first term in the radiative corrections to the 

magnetic moment. Even in just the next order, fourth order in e, there are 
so many terms that the calculations become quite complicated. However, 
because of the large muon-electron mass ratio, there is one fourth-order 
term in the magnetic moment of the muon that is  somewhat larger than 
my of the others. It arises from the insertion of an electron loop in the 
virtual photon line of the second-order diagram, as shown in Figure 11.5. 
The effect of this electron loop is to change the photon propagator l /kz  
in Eq. (11.3.1) to (1 + n, (k2} ) /k2 ,  where x, (k2)  is gven by Eq. (11.2.22), 
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but with the mass rn taken as the electron mass: 

Inspection of Eq. ( I  1.3.12) shows that in calculating the muon magnetic 
moment the effective cutoff on the virtual photon momentum k is m,. The 
ratio rn,/m, is so large that for k' of order rn: we may approximate 

with the neglected terms having coefficients of order unity in place of 
l n ( 4 / m j ) .  Since this is a constant, the change in -G(O) produced by 
adding an electron loop in the virtual photon line is simply given by 
multiplying our previous result (1 1.3.16) for -G(O) by Eq. (11.3.17), so 
that now 

(As we shall see in Volume 11, this argument is a primitive version of 
the method of the renormalization group.) The result (11.3.18) may be 
compared with the full fourth-order result:6 

I t  turns out that the 'O(1)' terms multiplying e4/96n2 add up to -6.137, 
which is not very much smaller than l n ( m ~ / m i )  = 10.663, so the approx- 
imation (11.3.18) gives the fourth-order terms only to a factor of order 
2. The correct fourth-order result ( 11.3.19) gives p, = 1.001 16546 e/2m,, 
in comparison with the second-order result p, = 1.001161e/2rnfl and the 
current experimental value? a = 1.001 l65923(8 )e/2m,,. 

Now let us turn to the other form factor. The integral in Eq. (11.3.11) 
for ~ ( ~ ~ j  has an ultraviolet divergence. However, in order to satisfy the 
charge-non-renormalization condition (1  1-3-14], it is necessary that Zz 
take the value 
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(Recall that n(0) = 0.) This is itself ultraviolet divergent, with an infinite 
part 

Inserting Eq. (1 1.3.20) back into Eq. (11.3.1 1) gives 

The integral over K is now convergent: 

However, we see that the integral over x and y now diverges logarith- 
mically at x = 0 and y = 0, because there are two powers of x and/or 
y in the denominators, and just two differentials dxdy in the numera- 
tor. This divergence can be traced to the vanishing of the denominator 
[ic2 + m2x2 + q2yjx - y)]3 in Eq. {11.3.11) at x = 0, y = 0, and rc = 0. 
Because this infinity comes from the region of small rather than large rc, 
it is termed an infrared divergence rather than an ultraviolet divergence. 

We shall give a comprehensive treatment of the infrared divergences 
in Chapter 13. It will be shown there that infrared divergences in the 
cross-section for processes like electron-electron scattering, such as those 
that are introduced by the infrared divergence in the electron form factor 
~ ( ~ ~ 1 ,  are cancelled when we include the emission of low-energy photons 
as well as elastic scattering. Also, as we shall see in Chapter 14, when 
we calculate radiative corrections to atomic energy levels the infrared 
divergence in ~ ( ~ ~ 1  is cut off because the bound electron is not exactly 
on the free-particle mass shell. For the present we shall continue our 
calculation by simply introducing a fictitious photon mass p to cut off the 
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infrared divergence in ~ ( $ 1 ,  leaving it for Chapter 14 to see how to use 
this result. 

With a photon mass p, the denominator k2 - i~ in Eq. (11.3.1) would 
be replaced with k 2  + p2 - i f .  The effect would than be to add a term 
p2{1 - x) to the cubed quantity in the denominators of Eqs. (1 1.3.3)- 
(11.3.71, (11.3.11), (11.3.20), and 111.3.22). Eq. (11.3.23) then is replaced 
with 

This integral is now completely convergent. It can be expressed in terms 
of Spence functions, but the result is not particularly illuminating. For 
our purposes in Chapter 14, it will be sufficient to calculate the behavior 
of F ( ~ ~ )  for small q2. We already know from the Ward identity that 
F ( 0 )  = 1 - G(0)  = 1 + e2/8n2,  SO let us consider the first derivative ~ ' ( ~ ~ 1  
at q2 = 0. According to Eq. (11.3.24), this is 

The vacuum polarization contribution is given by Eq. (11.2.22) as 

~ ' ( 0 )  = 
e2 

60n2m2 ' 
(1 1.3.26) 

Dropping all terms proportional to powers of p / m  in Eq. (11.3.25), we 
then have' 

with the term the contribution of vacuum polarization. On the other 
hand, Eq. (1 1.3.13) shows that G ( ~ ~ )  has a finite derivative at y2 = 0, 

' The y-integral is trivial. The x-integral i s  most easily calculated in the limit p < rn by dividing 
the range of integration into two parts, one from 0 to s, where p / m  s < 1, and the second 
from s to 1. 
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These results are most convenientiy expressed in terms of the charge form 
factor ~ ~ ( ~ ~ 1 ,  defined by the alternative representation (10.6.15) of the 
vertex function 

According to Eqs. (10.6.17) and lO.6.l8), 

For l q 2  / < m2, this form factor is approximately 

This may be expressed in terms of a charge radius a, defined by the limiting 
behavior of the charge form factor for q2 -r 0: 

(This definition is motivated by the fact that the average of expriq over 
a spherical shell of radius a goes as 1 - q2a'/6 for q2a2 < 1.) We see that 
the charge radius of the electron is given by 

We will see in Chapter 14 that for electrons in atoms the role of the 
photon mass is played by an effective infrared cutoff that is much less 
than m, so the logarithm here is large and negative, yielding a positive 
value for a2. 

1 Electron Self-Energy 

We conclude this chapter with a calculation of the electron self-energy 
function. This by itself does not have any direct experimental implications, 
but some of the results here will be useful in Chapter 14 and Volume 11. 

As in Section 10.3, we define i ( 2 ~ ) ~  ~ ' ( ~ , l ] ~  as the sum of all graphs 
with one incoming and one outgoing electron line carrying momenta p 
and Dirac indices cx and p respectively, with the asterisk indicating that 
we exclude diagrams that can be disconnected by cutting through some 
internal electron line, and with propagators omitted for the two external 
lines. The complete electron propagator is then given by the sum 
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Figure 11.6. The one-loop diagram for the electron self-energy function. As 
usual, the straight line represents an electron; the wavy line is a photon. 

where 

The sum is trivial, and gives 

In lowest order there is a one-loop contribution to E*, given by Figure 
11.6: 

or more simply 

2; ,,,w = 

(This is in Feynman gauge; amplitudes with charged particles off the mass 
shell are not gauge-invariant.) For use in our calculation of the Lamb 
shift, it will be convenient to use a method of regularization introduced 
by Pauli and ~ i l l a r s . ~  We replace the photon propagator (k2 - b)-' with 

so that the electron self-energy function is 

Later we can drop the regulator by letting the regulator mass p go to 
infinity, I n  Chapter 14 we will also be interested in the case where p << m,. 

We again use the Feynman trick to combine denominators, and recall 
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that y p y K y ,  = -27" and yPy, = 4. This gwes 

Shifting the variable of integration k + k + px and rotating the contour 
of integration gives 

The K-integral is trivial; 

The interaction j 11 .i.9) also contributes a renormalization counterterm 
-(Zz - 1)(i $ + me) + Z2d% in E*(p), with Z 2  and dm, determined by the 
condition that the complete propagator S J ( p )  regarded as a function of i# 
should have a pole at i $  = -m, with residue unity. (As we shall see in the 
next chapter, this makes C* finite as p + cr, to all orders in e.)  In lowest 
order, this gives 
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(To this order, we do not distinguish between am, and Z26m,.) Dropping 
terms that vanish for p2 4 m? Eqs. (11.4.8)-(11.4.10) yield 

dm, = 

zz-I= 

Inspection then shows that in the complete self-energy function the 1np2 
terms cancel, leaving us with 

There is still a divergence from the behavior of the last term as x -+ 0, 
which can be traced to the singular behavior of the integral over the 
photon momentum k in Eq. (1 1.4.5) at k2  = 0, when we take p2 at the 
point = -m3 where we evaluated 2 2  - 1. Such infrared divergences 
will be discussed in detail in Chapter 13. For the present, the point that 
concerns us is that the ultraviolet divergence has cancelled. 

The result (11.4.9) for Sm, is of some interest in itself. Note that 
6m,/rn, > 0, as we would expect for the electromagnetic self energy 
due to the interaction of a charge with its own field. But unlike the 
classical estimates of electromagnetic self-energy by Poincark, Abraham, 
and others: Eq. (1 1.4.9) is only logarithmically divergent in the limit 
p -+ m where the cutoff is removed. In this limit : 

In our calculatim of the Lamb shift in Section 14.3 we will be interested 
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in the opposite limit, p << m,. Here Eq. (11.4.9) gives 

Appendix Assorted Integrals 

In order to combine the denominators of N propagators, we need to 
replace a product like D L ~ D , ~  . ..a,' with an integral of a function that 
involves a linear combination of Dl, Dl, ... DM. For this purpose it is 
often convenient to make use of the formula 

In this chapter we have used special cases of this formula for N = 2 and 
N = 3. 

After combining denominators, shifting the four-momentum variable of 
integration, Wick rotating, and using four-dimensional rotational invari- 
ance, we commonly encounter integrals of the form 

with (k2  -t v2jm coming from the combined propagator denominators, 
and ( k 2 r  coming from the propagator numerators and vertex momentum 
factors. This is divergent for 2n + 4 2 2m, but the integral can be given a 
finite value by analytically continuing the spacetime dimensionality from 
4 to a complex value d. To evaluate the resulting integral, we use the 
well-known formula 

where G = d + 2n. We used this formula in the special cases a = 0, m = 2 
and n = 1, m = 2 in Section 11.2. 

Ultraviolet divergences manifest themselves in Eq. (1 1 .A.2) as poles in 
the factor T(m - d / 2 )  = T(m - n - d / 2 )  as d -+ 4 with fixed integer n. For 
2 + n = m, this factor goes as 

where y - 0.5772157. rn i s  the Euler constant. The limiting behavior for 
2 + n > m can be obtained from (1 l.A.3) and the recursion relation for 
Gamma functions. 
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Problems 

1. Calculate the contributions to the vacuum polarization function 76(q2)  
and to Z3 of one-loop graphs involving a charged spinless particle 
of mass m,. What effect does this have on the energy shift of the 2s 
state of hydrogen, if was >> Zm,? 

2. Suppose that a neutral scalar field t$ of mass m+ has an interaction 
g$(hp with the electron field. To one-loop order, what effect does 
this have on the magnetic moment of the electron? On Z2? 

3. Consider a neutral scalar field 4 with mass rn4 and self-interaction 
g4"6. To one-loop order, calculate the S-matrix element for scalar- 
scalar scattering. 

4. To one-loop order, calculate the effect of the neutral scalar field of 
Problem 2 on the mass shift dm, of the electron. 
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General Renormalization Theory 

We saw in the previous chapter that calculations in quantum electrody- 
namics invdlving one-loop graphs yield divergent integrals over mornen- 
turn space, but that these infinities cancel when we express all parameters 
of the theory in terms of 'renormalized' quantities, such as the masses 
and charges that are actually measured. In 1449  son' sketched a proof 
that this cancellation would take place to all orders in quantum electrody- 
namics. I t  was immediately apparent (and will be shown here in Sections 
12.1 and 12.2) that Dyson's arguments apply to a larger class of theories 
with finite numbers of relatively simple interactions, the so-called renor- 
rnalizable theories, of which quantum electrodynamics is just one simple 
example. 

For some years it was widely thought that any sensible physical theory 
would have to take the form of a renormalizable quantum field theory. 
The requirement of renormalizability played a crucial role in the devel- 
opment of the modern 'standard model' of weak, electromagnetic, and 
strong interactions. But as we shall see here, the cancellation of ultravi- 
olet divergences does not really depend on renormalizability; as long as 
we include every one of the infinite number of interactions allowed by 
symmetries, the so-called non-renormalizable theories are actually just as 
renormalizable as renormalizable theories. 

I t  is generally believed today that the realistic theories that we use 
to describe physics at accessible energies are what are known as 'effec- 
tive field theories.' As discussed in Section 12.3, these are low-energy 
approximations to a more fundamental theory that may not be a field 
theory at all. Any effective field theory necessarily includes an infinite 
number of non-renormalizable interactions. Nevertheless, as discussed in 
Sections 12.3 and 12.4, we expect that at sufficiently low energy all the 
non-renormalizable interactions in such effective field theories are highly 
suppressed. Renormalizable theories like quantum electrodynamics and 
the standard model thus retain their special status in physics, though for 
reasons that are somewhat different from those that originally motivated 
the assumption of renormalizability in these theories. 
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1 2 .  Degrees of Divergence 

Let us consider a very general sort of theory, containing interactions of 
varying types labelled i. Each interaction may be characterized by the 
number njf of fields of each type f ,  and by the number di of derivatives 
acting on these fields. 

We will start by calculating the 'superficial degree of divergence' D of 
an arbitrary connected one-particle irreducible Feynman diagram in such 
a theory. This is the number of factors of momentum in the numerator 
minus the number in the denominator of the integrand, plus four for every 
independent four-momentum over which we integrate. The superficial 
divergence is the actual degree of divergence of the integration over the 
region of momentum space in which the momenta of all internal lines 
go to infinity together. That is, if D > 0, then the part of the amplitude 
where all internal momenta go to infinity with a common factor K + m 
will diverge like 

In the same sense, an integral with degree 
rithmically divergent, and an integral with 

(12.1.1) 

of divergence D =: 0 is Ioga- 
D < 0 is convergent, at least 

as far as this region nf momentum space is concerned. We will come back 
later to the problem posed by subintegrations that behave worse than the 
integral over this region. 

To calculate D, we will need to know the following about the diagram: 

If - number of internal lines of field type f , 
Ej- = number of external lines of field type f , 
N .  , = - number of vertices of interaction type i , 

We will write the asymptotic behavior of the propagator A f ( k )  of a field 
of type f in the form 

Looking back at Chapter 6, we see that sf = 0 for scalar fields, sf = 
for Dirac fields, and sf = 1 for massive vector fields. More generally, 
it can be shown that for massive fields of Lorentz transformation type 
(A,  B), we have sj  = A + B .  Speaking loosely, we may call si the 'spin.' 
However, dropping terms that because of gauge invariance have no effect, 
the effective photon propagator r l , , / k 2  has sf = 0. A similar result applies 
to a massive vector field coupled to a conserved current, provided the 
current does not depend on the vector field. I t  can also be shown that, in 
the same sense, the graviton field gF,  has a propagator also with SJ = 0. 
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According to (12.1.21, the propagators make a total contribution to D 
equal to 

Also, the derivatives in each interaction of type i introduce di momentum 
factors into the integrand, yielding a total contribution to D equal to 

Finally, we need the total number of independent momentum variables 
of integration. Each internal line can be labelled with a four-momentum, 
but these are not all indepefident; the delta function associated with 
each vertex imposes a linear relation among these internal momenta, 
except that one delta function only serves to enforce conservation of 
the external momenta. Thus, the momentum space integration volume 
elements contribute to D a term 

which, of course, is just four times the number of independent loops in 
the diagram. Adding the contributions (12.1.3), (12.1.4), and (12.1.51, we 
find 

Eq. (12.1.6) is not very convenient as it stands, because it gives a value 
for D that seems to depend on the internal details of the Feynman diagram. 
Fortunately, it can be simplified by using the topological identities 

(Each internal line contributes two of the lines attached to vertices, while 
each external line contributes only one.) Using Eq. (12.1.7) to eliminate 
I f ,  we see that Eq. (12.1.6) becomes 

where Ai is a parameter characterizing interactions of type i :  

This result could have been obtained by simple dimensional analysis, 
without considering the structure of Feynman diagrams. The propagator 
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of a field is a four-dimensional Fourier transform of the vacuum ex- 
pectation value of a time-ordered product of a pair of free fields, so a 
conventionally normalized field f whose dimensionality* in powers of mo- 
mentum is 91 will have a propagator of dimensionality -4 + 2 ~ 3 ~ .  Hence 
if the propagator behaves Like k-2+2sf when k is much larger than the 
mass, then the field must have a dimensionahty with -4 + 2 g j  = -2 + 2sf, 
or af = 1 + sf. An interaction i with nif such fields and di derivatives will 
then have dimensionality di + Cf njf( 1 +sf  j. But the action must be dimen- 
sionless, so each term in the Lagrangian density must have dimensionality 
+4 to cancel the dimensionality -4 of d4x. Hence the interaction must 
have a coupling constant of dimensionality 4 - di - '& niT(l  +so, which is 
just the parameter Ai. The momentum space amplitude corresponding to 
a connected Feynman graph with Ef external lines of type f is the Fourier 
transform over 4 xf Ej coordinates of a vacuum expectation value of the 
time-ordered product of fields with a total dimensionality '& Ef(l + sf), 
so it has dimensionality xf Ej(-3 +sf). Of this dimensionality, -4 comes 
from a momentum space delta function, and XI Ef(-2 t 2 s f )  is the 
dimensionality of the propagators for the external lines, so the momen- 
tum space integral itself together with all coupling constant factors has 
dimensionality 

The coupling constants for a given Feynrnan graph have total dimension- 
ality Ci NiAi, leaving the momentum space integral with dimensionality 
4 - Cj  Ef(.qf + 1 )  - Ci N j A i .  As long as we are interested in the region 
of integration where all momenta go to infinity together, the degree of 
divergence of the momentum space integral is its dimensionality, thus 
justifying Eq. (12.1.8). 

If all interactions have Ai 2 0, then Eq. (12.1+8) provides an upper 
bound on D that depends only on the numbers of external lines of each 
type, i.e., on the physical process whose amplitude is being calculated 

For example, in the simple version of quantum electrodynamics studied in 
the previous chapter, the Lagrangan included terms of the types shown 
in Table 12.1. All interactions here have Ai 2 0, and hence a Feynman 
diagram with E, external photon lines and E, external Dirac lines will 

' I n  this chapter, 'dimensionality' wilt always refer lo Lhe dimensionality in powers of mass or 
momentum, in units with h = c = 1. We are using fields that arc conventionally normalinxi, in 
the sense that the term in the free-field Lagrangian with the largest number of derivatives (which 
determines the asymptotic behavior of the propagator) has a dimcnsinnles~s cnenicient. 



12.1 Degrees of Diverge~zce 503 

Table 12.1. Terms in the Lagrangian density for quantum electrodynamics. Here 
di ,  n,,, and n,, are the numbers of derivatives, photon fields, and electron fields 
in the interaction, and Ai is the dimensionality nf the corresponding coefficient. 

1 {Recall that s, = 0, s, = ,.) 

have superficial degree of divergence bounded by Eq. (12.1.10) : 

Only a finite number of sets of external lines can yield superficially 
divergent integrals; these will be enumerated in Section 12.2. We are going 
to show that the limited number of divergences that appear in theories 
with Ai 0 for all interactions are automatically removed by a redefinition 
of a finite number of physical constants and a renormalization of fields. 
For this reason, such theories are called renorrnaIizable. In Section 12.3 we 
will catalog all the renormalizable theories, and discuss the significance of 
renormalizability as a criterion for physical theories. 

The term 'renormalizable' is also applied to individual interactions. 
Renormalizable interactions are those with Ai 2 0, whose coupling con- 
stants have positive or zero dimensionality. Sometimes one distinguishes 
between interactions with Ai = 0, called simply renormalizable, and those 
with Ai > 0, called superrenormalizrrble. Since adding additional fields 
or derivatives always lowers Ai, there can only be a finite number of 
renormalizable interactions involving fields of any given types. We have 
seen that all the interactions in the simplest version of quantum electro- 
dynamics are renormalizable, with the ipy terms superrenormalizable. 

On the other hand, if any interaction has Ai < 0, the degree of di- 
vergence (12.1.8) becomes larger and larger the more such vertices we 
include. No matter how large we take the various Ef, eventually with 
enough vertices of type i for which Ai < 0, Eq. ( 1  2.1.8) will become positive 
(or zero), and the integral will diverge. Such interactions, whose couplings 
have negative-definite dimensionality, are called ntm-renormalizobk;'* the- 

" In perturbative stal~stical mechanics, non-renormali?ablc interactions are called irreler!ant, becausc 
they become less important in the limit of low encrgks. Renormalisable and super-renormalizable 
inkractbns are called murginul and r ~ k v a n t ,  respec~ively. 
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Figure 12.1. Some two-loop graphs for Compton scattering. Here straight lines 
are electrons; wavy lines are photons. The momentum space integral for diagram 
(a) is convergent, while for (b) and (c) it is divergent, due to the subintegration 
associated with the subgraphs surrounded by dotted lines. 

ories with any non-renormaluable interactions are also known as non- 
renormalizable. But this does not mean that such theories are hopeless; we 
shall see that these divergences may also be absorbed into a redefinition 
of the parameters of the theory, but here we need an infinite number of 
couplings. 

I t  should be kept in mind that we have here calculated the degree of 
divergence of Feynman diagrams arising only from regmns of momentum 
space in which all internal four-momenta go to infinity together. Diver- 
gences can also arise from regions in which only the four-momenta of 
lines belonging to some subgraph go to infinity. For instance, in quantum 
electrodynamics Eq. (12.1.1 1) gives D 5 - 1 for Compton scattering (where 
E,  = 2, E,  = 2).  and indeed graphs like Figure 12.1(a) are convergent, but 
a graph like Figure 12.l(b) or 22.l(c) is logarithmically divergent, because 
these graphs contain subgraphs (indicated by dotted boxes) with D 2 0. 
We can think of the divergence of these graphs as being due to an anoma- 
lously bad asymptotic behavior that occurs when the eight components of 
the two independent internal four-momenta of these graphs go to infinity 
on a particular four-dimensional subspace, namely, that subspace in which 
the only four-momentum actually going to infinity is the one circulating 
in the loops that are inserted in the internal lines or at  an electron-photon 
vertex. 

,It has been shown2 that the requirement for the actual convergence of 
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the amplitude corresponding to any graph is that power-counting should 
give D < 0 not only for the complete multiple integral for the whole 
amplitude, but a h  for any subintegration defined by holding any one 
or more linear combinations of the loop momenta fixed. (The graphs 
shown in Figures 12.lIb) and 12.11~) fail this test because D 2 0 for the 
subintegrations in which only the momenta for the loops within the dotted 
squares are integrated.) We will not repeat the rather long proof here, 
because it is well treated in earlier books,3 and in any case the method 
of proof has little to do with how we actually do calculations. The next 
section will describe how this requirement is fulfilled. 

12.2 Cancellation of Divergences 

Consider a Feynman diagram, or part of a Feynman diagram, with positive 
superficial degree of divergence, D 2 0, The part of the momentum space 
integral where all internal momenta go to infinity together will then 
diverge, like Jrn kD-I dk. If we differentiate D + 1 times with respect to 
any external momentum, we lower the net number of momentum factors 
in the integrand by D + I,* and hence render this part of the momentum 
space integral convergent. There may still be divergences arising from 
subgraphs, like those in Figures 12.lrb) and 12.1 (c); for the moment we 
will ignore this possibility, returning to it later in this section. Since 
differentiation D + 1 times renders the integral finite, it follows that the 
contribution of such a graph or subgraph can be written as a polynomial 
of order D in external momenta, with divergent coefficients, plus a finite 
remainder. 

To see how this works without irrelevant complications, consider the 
logarithmically divergent one-dimensional integral 

with D = 1 - 1 = 0. Differentiating once gives 

For instance, if an internal scalar field line carries a momentum k + p, where p is a linear 
combination of external four-momenta and k is a four-momentum variable of inkgation, then the 
derivative of the propagator [(k + p ) 2  $pn2]-'] with respect to pp gives -2(k,, tp,)[{k + p ) 2  +m2lP2, 
which gnes as k - 3  rather than k-I For k -t m. 



The constant c is obviously divergent, but the rest of the integral is 
perfectly finite, In exactly the same way, we can evaluate the D = 1 
integral 

with divergent constants a and b. 
Now, a polynomial term in external momenta is just what would be 

produced by adding suitable terms to the Lagrangian: if a graph with Ef 
external lines of type f has degree of divergence D 2 0, then the ultraviolet 
divergent polynomial is the same as would be produced by adding various 
interactions i with nif = EJ fields of type f and di 5 D derivatives. If 
there already are such interactions in the Lagrangian, then the ultraviolet 
divergences simply add corrections to the coupling constants of these 
interactions. Hence these infinities can be cancelled by including suitable 
infinite terms in these coupling constants. All that we ever measure is 
the sum of the bare coupling constant and the corresponding coefficient 
from one of the divergent polynomials, so if we demand that the sum 
equals the (presumably finite) measured value, then the bare coupling 
must automaticaIIy contain an infinity that cancels the infinity from the 
divergent integral over internal momenta, (One qualification: where the 
divergence occurs in a graph or subgraph with just two external lines, 
which appears as a radiative correction to a particle propagator, we must 
demand not that some effective coupling constant equals its measured 
value, but rather that the complete propagator has a pole at the same 
position and with the same residue as for free particles.) In this way, all 
infinities are absorbed into a redefinition of couplings constants, masses, 
and fields. 

For this renormalization program t~ work, it is essential that the La- 
grangian include uJd interactions that correspond to the ultraviolet diver- 
gent parts of Feynman amplitudes. {There are exceptions to this rule 
in supersymmetric theoriesm4) The interactions in the Lagrangian are, of 
course, limited by various symmetry principles, such as Lorentz invari- 
ance, gauge invariance, etc., but these constrain the ultraviolet divergences 
in the same way. (It takes some work to prove that non-Abelian gauge 
symmetries constrain infinities in the same way that they constrain inter- 
actions. This will be shown in Volume 11.) In the general case, there are 
no other limitations on the ultraviolet divergences, so the Lagmngfan musl 
include every possible term consistent with symmetry principles. 

But there is an important class of theories with only a finite number 
of interactions, where the renormalization program also works. These are 
the so-called renormalizable theories, whose interactions all have Ai 2 0. 
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Eq. (1  2.1.8) then gives 

SO divergent polynomials arise in only a limited number of Feynman 
graphs or subgraphs: those with few enough external lines so that D 2 0. 
The contribution of such divergent polynomials is just the same as would 
be produced by replacing the divergent graph or subgraph with a single 
vertex arising from a term in the Lagrangian with fields of type f and 
0,1,- . . D derivatives. But, comparing with Eq. (12.1.91, we see that these 
art? precisely the same as the interactiuns lhat sativy i h ~  r ~ ~ u r m d i z d d i t y  
requdrmenr A; 2 0, or in other words, 

In order for all infinities to cancel in a renormalizable theory, it is 
usually necessary that all renormalitable interactions that are allowed by 
symmetries must actually appear in the LagrangianM* For instance, i f  there 
is a scalar (or pseudoscalar) field 6, and fermion field y? with interactions 
VI,O$ (or p " ~ y 4 )  then we cannot exclude an interaction 44 ; otherwise there 
would be no counterterm to cancel the logarithmic divergence arising from 
fermion loops with four attached scalar or pseudoscalar lines. 

Let's see in more detail how the cancellation of infinities works in the 
simplest version of quantum electrodynamics. Eq. (1 2.1.1 1) shows that the 
only graphs or subgraphs that could possibly yield divergent integrals are 
the following: 

This is the electron-photon vertex T L ~ ) ( ~ ' , ~ ) .  (The superscript L indicates 
that this includes only contributions from graphs with loops.) 1 1  has D = 0, 
so its divergent part is momentum-independent. Lorentz invariance then 
only allows this divergent constant to be proportional to pel, SO 

with L a logarithmically divergent constant, and rt) finite. This does not 
uniquely define the constant L, since we can always move a finite term 

." In addition, interachons and mass krms that are not allflwed by global symmelries may appear 
in the Lagrangian, as long as thcy are superrenormalizable, that is, with A, > 0. This is 
because the presence of a superrenormnlizable coupling lowers the dcgrcc of divergence, so 
thal Ihe symrnelry breaking does not alTeect those divergences that are cancelled by the strictly 
renorrnalizablc couplings with At = 0. Notc that i t  is the bare strictly renormalizablc couplings 
that would exhibit the symmetry; renormalized couplings that are dcfincd in terms of mass-shell 
matrix elements generally show the effect or symmetry hrcaking. 
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SL 3, from rf} to Ly,. To complete the definition, we may note that as 
shown in Section 9.7, the mass-shell matrix element of TJp ,  p )  and hence 
of ~ ( f ) ( ~ , ~ )  between mass-shell Dirac spinors is proportional to the same 
matrix element of IP, SO we may define L by the prescription that 

for p2 + ma = 0. 

This is the electron self-energy insertion Z*(p) .  It has D = I, so its 
divergent part is linear in the momentum f carried by the incoming and 
outgoing fermion. Lorentz invariance (including parity conservation) will 
only allow it to be a function of d ,  so we may write the loop contribution 
as 

where A and 3 are divergent constants, and ~ ( f )  is finite. Again, this does 
not uniquely define the constants A and B, because we can always shift 
E(II by a finite first-order polynomial in pl. We will define A and B by 
the prescription that 

Actually, B is not a new divergent constant. As long as we use a 
regularization procedure that respects current conservation, T, and Z will 
be related by the Ward identity (10.4.27) 

and therefore 

Taking the matrix element of this equation between C(p, a') and u(p, 0) 
and using Eqs. (12.2.2) and (12.2.41, we find 

This is the photon self-energy insertion n;,(q). I t  has D = 2, so its 
divergent part is a second-order polynomial In q. Lorentz invariance only 
allows n;, to take the form of a linear combination of qp. and y, q ,  with 
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coefficients depending only on y2, so the loop contributions take the form 

where CI,C2, and C3 are divergent constants. As long as we use a 
regularization technique that respects current conservation, we must have 

The same must then be true for the divergent terms, so Cl qv+(c2f c ~ ) ~ ~ ~ ,  
must be finite for all q. It follows that Cl and Cz + C3 must be finite, and 
can therefore be lumped into the finite part of n$!(q). Thus 

where n(q2)  is finite and C is the sole remaining divergence in I&,. To 
pin down the definition of C, we may move any finite constant ~(0) into 
C, so that 

This is the amplitude Mpupm for scattering of light by light. It has D = 0, 
so using Lorentz invariance and Bose statistics, it may be written (there 
is no non-loop contribution) 

with K a potentially divergent constant, However, current conservation 
gives 

and so K (q,q,, + q,q,, + qbqvp)  is finite. In order for this to be true 
for q # 0, K must itself be finite. This is a nice example of the role of 
symmetry principles in the renormalization program; if K had turned out 
to be infinite it could not be removed by renormalization of the coupling 
constant for an interaction (A, A ' ) ~ ,  because no such interaction is allowed 
by gauge invariance, but K is finite because of current conservation 
conditions that are imposed by gauge invariance. 

These have D = 3 and D = 3,;  and i, respectively, but Lorentz invariance 
makes all such graphs vanish. 

This has D = 1, but vanishes because of charge-conjugation invariance. 
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The reader will perhaps have notlced that the independent divergent 
constants A, B, C are in one-to-one correspondence with the independent 
parameters Z 2 ,  Z3, and Srn  in the counterterm part ( 1  1.1.9) of the La- 
grangian for quantum electrodynamics. These countert erms make a direct 
contribution Z2Sm - (Z2 - l)(i $ + m) to Cm(p). The requirement that 
the position and residue of the one-particle pole be the same as in the 
free-field propagator means we must choose Z2 and 6m so that the total 
Em@) satisfies Eq. (12.2.41, i-e., 

so that the complete electron self-energy insertion is just the finite function 
x q p j  : 

Also, Y2 makes a direct contribution to T, equaI to (Z2 - l)y,,. Using 
Eq. (12.2.6), we see that the full vertex is 

This is not only finite, but satisfies the condition 

as can also be seen from Eqs. (10.6.13) and (10.6.14). Finally, 5f2  makes a 
contribution - (Z3 - I ) ( ~ ~ ~ , , ,  - q,q,) to II;,(q).  In order that the photon 
propagator shouId have a pole with the same residue as for free fields we 
need the coefficient of q2a,, - q,vp, in the total II,,,(p) to vanish, so 

and the photon propagator is then finite: 

So far, we have only checked that the divergences, arising from the re- 
gion of momentum space in which all internal momenta are large (and with 
generic ratios), are polynomials in external momenta that are cancelled 
by suitable counterterms. Such graphs are called superficially convergent. 
Before we conclude that all ultraviolet divergences actually are removed 
by renormalization, we need to consider the ultraviolet divergences aris- 
ing in higher-order graphs when some subset of the momentum space 
integration variables rather than all of them go to infinity. Far instance, 
in quantum electrodynamics the superficial divergences in subintegrations 
come from subgraphs that are either photon self-energy parts II', or elec- 
tron self-energy parts Z*, or elect ronwAectrun-photon vertices P. The 



Figure 12.2. Some fourth-order graphs for the photon self-energy in quantum 
elect rod ynamics that involve overlapping divergences, Lines carrying arrows are 
clectrons; wavy lines photons. The crosses mark the contribution of counterterms. 

problem with such divergences is that they cannot be removed by dif- 
ferentiation with respect to external momenta; we are left with terms 
where the derivatives act only on internal lines in the parts of the graph 
which are not in the divergent subgraphs, and therefore do not reduce the 
degree of divergence of these subgraphs. As mentioned in the previous 
section, a graph or sum of graphs is actually convergent only if it and all 
its subintegrations are superficially convergent, in the sense of counting 
powers of momentum. But wherever such a divergent subgraph appears, 
it always comes accompanied with an infinite counterterm. In electrod y- 
namics, these are the terms in Eq. (1 1.1.9): a term - ( Z 3  - l)(q2rl,, - q,,q,) 
for each n,(q); a term Z16m - ( Z 2  - 1 )(i $ + m) for each T'(p) ; and 
a term (ZZ - l )yp  for each P. Just as for the graph as a whole, these 
counterterms cancel the infinities from the divergent subgraphs.] 

Unfortunately, there is a flaw in this simple argument - the possibility 
of overlapping divergences. That is, it is possible that two divergent 
subgraphs may share an internal line, so that we cannot regard them as 
independent divergent integrals. In quantum electrodynamics this happens 
only when two electron4ectron-photon vertices overlap inside a photon 
or an electron self-energy insertion,t as shown in Figures 12.2 and 12.3. 

A complete treatment of renormalization that takas account of overlap- 

? The sharmg uf a line in two sclf-energy insertions or in a self-energy insertion and a vertex 
part would not leave enough external lines to attach such a subgraph to the resl of the 
diagram, Historically, the Ward identity (10.4.26) was used to bypass  he problem of overlapping 
divergences in the electri~~ =If-energy, by expressing the electron self-energy in terms of ihe 
vertex function, where overlapping divergences do not occur. This approach will not be followcd 
here, as it is unnecessary, and in any case does not solve the problem for the self-energy d the 
photon or other neutral particles. 



Figure 12.3. Some fourth-order graphs for the electron self-energy in quantum 
electrodynamics that involve overlapping divergences. Wavy lines are photons; 
other lines are electrons. The crosses mark the contribution of counterterms. 

ping divergences should include a prescription for eliminating superficial 
ultraviolet divergences, not only in the overall integration but in all subin- 
tegrations as well, together with a proof that this prescription is (at least 
formally) implemented by renormalization of masses, fields, and coupling 
constants. The theorem of Ref, 2 then ensures that all Green's functions 
of renormalized fields are finite when expressed in terms of renormalized 
masses and couplings. The first proof that the renormalization of fields, 
couplings, and masses renders the whole integration and all its subinte- 
grations superficially divergent was offered by Salam.5 A more specific 
prescription for eliminating ultraviolet divergences was given by Bogoli- 
ubov and ~arasiuk: and corrected by ~ e p p , ~  and shown by them to be 
equivalent to a renormalization of fields, masses, and coupling constants. 
Finally, zimmerman8 proved that this prescription does eliminate all su- 
perficial divergences in the whole integration and all its subintegrations, 
and used the theorem of Ref. 2 to conclude from this that the renormalized 
Fe ynrnan momentum-space integrals are convergent. 

Briefly, the 'BPHZ' prescription for dimhating superficial divergences 
requires that we consider all possible ways (called 'forests') of surrounding 
a whole graph and/or its subgraphs with boxes that may be nested within 
each other but do not overlap. (An example is given below.) For each 
forest we define a subtraction term by replacing the integrand for any 
subgraph of superficial divergence D within a box (starting with the 
innermost boxes and working outwards) with the first D + 1 terms of its 
Taylor series expansion in the momenta flowing into or out of that box.$ 

$ As described here, this prescription applies to untenormalizable as well as renorrnalizablc theories. 
I n  renormalizablc theories i t  implies that there is no subtraction unless the box contains one- o f  
the limited number of graphs corresponding lo renormalizable terms in the Lagrangian. 



12.2 Cancellation of Divergences 51 3 

The subtracted Feynrnan amplitude is given by the original graph, minus 
all these subtraction terms, including the subtraction term for a forest 
consisting of a single box surrounding the whole graph, 

It is fairly easy to see that the subtracted Feynman amplitude that is 
calculated in this way is the same as would be obtained by replacing 
all fields, coupling constants, and masses in the original Lagrangan by 
their renormalized counterparts. The difference between this procedure 
and the sort of renormalization we carried out in Chapter 11 is that the 
renormalized fields, coupling constants, and masses are defined in terms 
of amplitudes a t  a unconventional renormalization point, where all four- 
momenta vanish. (In this respect, the one-dimensional divergent integrals 
discussed at the start of this section provide an elementary example of the 
BPHZ method of separating divergent terms.) But there is nothing special 
about this renormalization point; once a Feynman amplitude is made 
convergent by expressing it in terms of these unconventional renormalized 
quantities, it can be rewritten in terms of conventionally renormalized 
fields, couplings, and masses without introducing new infinities. 

It is not necessary to use the BPHZ subtraction prescription in practice. 
Replacing fields, masses, and couplings with their renormalized counter- 
parts (defined using any convenient renormalization points) automatically 
provides counterterms that cancel all infinities. Instead of proving that the 
BPHZ subtraction prescription really does make all integrals converge, 
we shall just look at  one example that shows how renormalization works, 
even in the presence of overlapping divergences. 

Consider the fourth-order contribution to the photon self-energy inser- 
tion l l l , (q)  shown in Figure 12.2. (The forests here consist of the whole 
integral over p and p', the subintegration over p alone, and the subinte- 
gration over p' alone.) including the corresponding counterterms for the 
vertex parts and photon field renormalization, this has the value 

2 
- I 2 3  - l)overlap (q q p v  qpqv 1 (12.2.16) 

where S ( p )  = I-i jd + d/[p2 + rn2 - k ] ;  (Zz - 1j2 is the term in Z2 - 1 
of second order in e ;  and (23 - 1 ),,,1,, is a logarithmically divergent 
constant of fourth order in e that cancels the terms in [II;v(q)]overlap of 
second order in q'. The factor 2 in the second term arises because there is 
a renormalization counterterm Z2 - 1 for each of the two vertices in the 
second-order photon self-energy Note, however, that the first term here 
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can be thought of either as the insertion of a vertex correction given by 
the $-integral into a photon self-energy given by the p-integral, or as the 
insertion of a vertex correction given by the p-integral into a photon self- 
energy given by the $-integral, but not as the insertion of two independent 
vertex corrections, because there is only one photon propagator. 

To see how to handle the infinities in Eq. (12.2.16), note that 

where R2 is a finite remainder. (Lorentz invariance tells us that the integral 
on the right is proportional to y,. The difference between this integral and 
(Z2  - equals the complete renormalized electron-electron-photon 
vertex to second order in e at zero electron and photon momenta, and is 
therefore finite.) This allows us to rewrite Eq. (12.2.14) in the f u r l  

First consider integration over p' alone. Each of the first two terms is 
logarithmically divergent, but their difference is finite. The third term is 
also logarithmically divergent (with a gauge-invatiant regulator), but the 
divergence in this term (unlike the first two terms) takes the f o m  of a 
second-order polynomial in q, with the remainder finite. This remaining 
divergence is cancelled by the term -(z3 - 1)(q2 - g p q v )  that cancels all 
second-order terms in the expansion of ll;,(q). So the pf-subintegration 
gives a finite result. The symmetry of Eq. (12.2.16) shows that in exactly 
the same way the p subintegration also gives a finite result. Generic 
subintegrations over p and p' with ap + bp' held fixed (where a and 
b are arbitrary non-zero constants) are manifestly convergent, and the 
integration over p and p' together is made finite by the counterterm 
-@3 - 1 ) ( q 2  - qfiq"). Thus Eq. (12.2.18) and any of its subintegrations 
satisfy the power-counting requirements for convergence, and therefore 
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according to the theorem2 quoted in the previous section, the whole 
expression actually converges. 

* * *  

In electrodynamics there is a natural definition of renormalized cou- 
plings as well as renormalized masses and fields. This is not always the 
case, For example, consider the theory of a single real scalar field +(x) 
with Lagrangian density 

To one-loop order, the S-matrix for scalar-scalar scattering is given by 
the Feynman rules as 

where 

and ql ,  qz  and q;,  q; are the incoming and outgoing four-momenta. Com- 
bining denominators and rotating the k0-integration contour as usual, this 

- 2 + [k2 + m2 - tx(1- r)] + [k2 + in2 - u(l- x)Ip2} , (12.2.22) 

where s, t, and u are the Mandelstam variables 

related by s + t + u = 4m2; also, x is the Feynrnan parameter introduced 
in combining denominators. With an ultraviolet cutoff at k = A, this gives 
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the result (for A >> m) 

We can define the renormalized coupling g~ as the value of F at any point 
s, t ,  u we like, provided we stay in the region where F is real. For instance, 
suppose that in order to maintain the symmetry among the scalars, we 
choose to renormalize at the off-mast-shell pointl p: = p: = = = 

2 p , s = t = u = -4$/3. Defining the renormalized coupling gn as the 
value of F at this point, we have 

g = g . + *  32n2 [ I n ( $ )  d r  i n (  3 

(12.2.25) 
The cutoff dependence then cancels in Eq. (12.2.24) to order gi, leaving a 
finite formula for F in terms of g ~ :  

Here p2 may be taken to be any reaI quantity greater than -3m2, in which 
range g~ is real. The explicit p-dependence in Eq. (12.2.26) is, of course, 
cancelled by the pdependence of the renormalized coupling. This freedom 
to change the renormalization prescription (which of course exists also in 
electrodynamics and other realistic theories) will be of great importance 
to us when we come to the renormalization group method in Volume 11. 

12.3 Is Renormalizability Necessary? 

In the previous section we found a special class of theories having only 
a finite number of terms in the Lagrangian, to which the renormaliza- 
tion program is nevertheless applicable. These are theories in which all 

7 Going back over the derivation of E (12.2.251, one may check lhat in this derivation we have 4- not used the conditions $ = p i  = dl- = p i 2  = -m2,  so Eq. (12.2.24) is valid whatever we take 
for the external line masses. 
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interactions satisfy the renormalizability condition 

~ j - 4 - d ~ - C n ~ ~ ( s ~ + l ) > O ,  
f 

where di and nif are the numbers of derivatives and fields of type f in 
interactions of type I, and s j  is (with some qualifications) the spin of 
fields of type f .  For renormalization to work in such theories, it is also 
usually necessary that all renormalizable interactions that are allowed by 
symmetry principles should actually appear in the Lagrangian. 

I t  is important that there are only a limited number of such interaction 
types. Ai becomes negative if we have too many fields or derivatives, 
or fields of too high spin. Barring special cancellations, there are no 
renormalizable interactions at all involving fields with sf 2 1, because the 
only possible term in the Lagrangian with Ai 2 0 that involves such a field 
along with two or more other fields would involve a single sf = 1 field 
along with two scalars and no derivatives, which would not be Lorentz- 
invariant. We shall see in Volume I1 that general, massless, spin one gauge 
fields in a suitable gauge effectively have sf = 0, like the photon. Also, 
in Volume I1 we shall see that even massive gauge fields may effectively 
have sf = 0, depending on where their mass comes from. Leaving aside 
these special cases, Table 12.2 gives a list of all renormalizable terms in 
the Lagrangian density that are allowed by Lorentz invariance and gauge 
invariance involving scalars (s = O),  photons (s = O), and spin fermions 
(s = f ). 

We see that the requirement of renormalizability puts severe restrictions 
on the variety of physical theories that we may consider. Such restrictions 
provide a valuable key to the structure of physical theories. For instance, 
Lorentz and gauge invariance by themselves would allow the introduc- 
tion of a 'Pauli' term proportional to W pip, liv]y F p "  in the Lagrangan 
of quantum electrodynamics, which would make the magnetic moment 
of the electron an adjustable parameter, but we exclude such terms be- 
cause they are not renormalizable. The successful predictions of quantum 
electrodynamics, such as the calculation of the magnetic moment of the 
electron outlined in Section 11.3, may be regarded as validations of the 
principle of renormalizability. The same applies to the standard model of 
weak, electromagnetic, and strong interactions, to be discussed in Volume 
11; there are any number of terms that might be added to this theory, 
such as four-fermion interactions among quarks and leptons, that would 
invalidate all the predictions of the standard model, and are excluded only 
because they are non-renormalizable. 

Must we believe that the Lagrangian is restricted to contain only 
renormalizable interactions? As we saw in the previous section, if we 
include in the Lagrangian all of the infinite number of interactions allowed 
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Table 12.2. Allowed renormalizable terms in a Lagrangan density involving 
scalars #, Dirac fields y, and photon fields A p .  Here t~,f and di are the number 
of fields of type f and the number of derivatives in an interaction of type i ,  and 
Ai is  he dimensionaIity of the associated coefficient. 

flif bi A i xi 

Scalars Photons 1 Spin 

by symmetries, then there will be a counterterm available to cancel every 
ultraviolet divergence. In this sense, as said earlier, non-renormalizable 
theories are just as renormalizable as renormalizable theories, as long as 
we include all possible terms in the Lagrangian. 

In recent years it has become increasingly apparent that renorrnaliz- 
ability is not a fundamental physical requirement, and that in fact any 
realistic quantum field theory will contain non-renormalizable as well as 
renormalizable terms. This change in point of view can be traced in part 
to the continued failure to find a renormalizable theory of gravitation. In 
the general class of metric theories of gravitation governed by Einstein's 
principle of equivalence there are no renormalizable interactions at all - 
generally covariant interactions must be constructed from the curvature 
tensor and its generally covariant derivatives, and hence, even in a 'gauge' 



where the graviton propagator goes as k P 2 ,  these interactions involve too 
many derivatives of  the metric for renormalizability. In particular, we can 
easily see that general relativity is non-renormalizable from the fact that 
its coupling constant 8 d N  = (2.43 x loi8 G ~ v ) - '  has negative dimen- 
sionality. Even if nothing else did, the cancellatjon of divergences due to 
virtual gravitons would require that the Lagrangian contain all interac- 
tions allowed by symmetries - not only interactions involving gravitons, 
but involving any particles. 

But if renormalizability is not a fundamental physical principle, then 
how do we explain the success of renormalizable theories like quantum 
electrodynamics and the standard model? The answer can be seen by 
simple dimensional analysis. We have already noted that the coupling 
constant of an interaction of type i has dimensionality 

where Ai is the index (12,l.g). Non-renormalizable interactions are just 
those whose coupling constants have the dimensionality of negative powers 
of mass. Now, it is not unreasonable to guess from (12.3.1) that the 
coupling constants not only have dimensionalities governed by Ai, but are 
roughly of order 

where M is some common mass. (This is found to be actually the 
case in the effective field theories discussed below and in more detail in 
Volume 11.) In calculating physical processes at a characteristic momentum 
scale k <( M ,  the inclusion of a non-renormalizable interaction of type 
i with Aj < 0 will introduce a factor gi = ~ * i ,  which on dimensional 
grounds must be accompanied by a factor , V A i ,  and so the effect af 
such an interaction is suppressed* for k << M by a factor ( k / ~ ) - * i  << 1. 
(This argument will be made more carefully using the method of the 
renormalization group in Volume 11.) The success of the renormalizable 
theories of electroweak and strong energies shows only that M is very 
much larger than the energy scale at which these theories have been 
tested. 

1 1  is essential at this point to assume that the ultraviolet divergences have bccn removed 
by rcnnrmalizal~on, so that thcre are no hctors of an dtravinlet cutoff A to mess up our 
dimensional analysis. Otherwise, dimen~ional analysis tells us that for A 4 x., each add~tional 
non-renurmalizable coupling constant factor g, with Ai < 0 would be accompanied with a growing 
factor A- .% This dimensional argument Ied ~ e i s e n b e r ~ ~  vcry early 10 classify interactions 
according to thc dimensionality of their coupling constants. and to suggestf" that new cfkcts 
might arise at cnergia of order g#'iAi. as for instancc at thc energy ~ 7 ~ "  = 3 0  GcV, rherc G p  
is the bur-fermion coupling cvnstant of the Fermi beta decay theory. After thc dcvclopmenl ol' 
renormalixalion theory i t  was noted by Sakata er a1.l' that thc nnn-renormalizable theories arc 
those whosc coupling constants have negativc dimensionality. 
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For instance, the leading non-renorrnalizable corrections to the conven- 
tional electrodynamics of electrons or muons would be those interactions 
of dimension 5, which are suppressed by only one factor of 1/M. There is 
just one such interaction allowed by Lorentz, gauge, and CP invariance, 
a Pauli term of order ( i e / 2 M )  tp[.i,,p,]ry F". According to Eqs. (10.6.24), 
(10.6.17), and (10.6.19), such a term would contribute an amount of order 
4e/M to the magnetic moment of the electron or muon. The calculated 
value of the magnetic moment of the electron agrees with experiment 
to within terms of order 10-~~e/2na,, so M must be greater than about 
8 x 10'~m, = 4 x 10' GeV. 

This limit may be weakened if other symmetries restrict the form 
of the non-renormalizable interactions. For instance, the conventional 
Lagrangian of quantum electrodynamics is invariant under a chiral trans- 
formation y, + ysy, except for a change of sign of the ferrnion mass term 
- m p p .  If we assume that the full Lagrangian is invariant under a formal 
symmetry y, + ysy, m + -m, then a Pauli term in the Lagrangian would 
have to appear with an extra factor m / M ,  so that its contribution to the 
magnetic moment would be only of order 4 e m / ~ ~ .  Because of the extra 
factor of rn, here it is the muon rather than the electron that provides the 
most useful limit on M. The calculated value of the magnetic moment of 
the muon agrees with experiment to within terms of order 10-~e/2m,, so 
M must be greater than about J 8 x 1 0 8 m P  - 3 x lo3 GeV. In any case, if 
M is anywhere near as large as 10IX GeV, then we are certainly justified 
in neglecting any non-renormalizable interactions that might appear in 
quan turn electrodynamics. 

These considerations help us to cope with some of the puzzles associated 
with higher-derivative terms in the Lagrangian. For instance, in the 
general theory of a real scalar field 4, we would expect to find terms in 
the Lagrangian density of the form $On+. Any one such term would make 
a direct contribution to the scalar seIf-energy function lT(q2) proportional 
to (q2)n.  If we were to include this contribution to all orders, but ignore 
all other effects of non-renmmalizable interactions, then the propagator 
A ' ( ~ ~ )  = l/(q2 + m2 - ll*(q2)) would not have the simple pole in q2 at 
negative q2 expected from the general arguments of Section 10.7, but n 
such poles (some of which may coincide), generally at complex values of 
q2.  But if the non-renormalizable term @"# has a coefficient of order 
M - ~ ( ~ - ' ) ,  where M >> m, then the extra poles are at q 2  of order M ~ ,  where 
it is illegitimate to ignore the infinite number of other non-renormalizable 
interactions that must also appear in the Lagrangan. Thus the appearance 
of higher-derivative terms in a general non-renormalizable Lagrangian is 
not in conflict with the general principles underlying quantum field theory 
that were used in Section 10.7. But by the same token, we also cannot 
use higher-derivative terms to avoid ultraviolet divergences altogether, as 



has been repeatedly proposed. A term ~-~1"- ' )40"# in the Lagrangian 
density provides a cutoff at momenta q 2  * hf2, but at these momenta we 
cannot ignore all the other non-renormalizable interactions that must be 
present. 

Although highly suppressed, non-renormalizable interactions may be 
detectable if they have effects that would otherwise be forbidden. For 
instance, we will see in Section 12.5 that the symmetries of charge-con- 
jugation and space-inversion invariance are an automatic consequence of 
the structure of the electromagnetic interactions that is imposed by gauge 
invariance, Lorentz invariance, and renormalizability, but we can easily 
imagine non-renormalizable terms that would violate these symmetries, 
such as an electron electric dipole moment term i p ~ s  C y f i , y V ]  yFpV, or 
the Ferrni interaction f jq~~y,zy$$5p. It is widely believed today that the 
conservation of baryon and lepton number is violated by very small effects 
of highly suppressed non-renormalizable interactions. Another example 
of a detectable non-renmmalizable interaction is provided by gravitation, 
As mentioned before, gravitons have no renormalizable interactions at  all. 
But, of course, we detect gravitation, because it has the special property 
that the gravitational fields of all the partides in a macroscopic body add 
up coherently. 

Although non-renormalizable theories involve an infinite number of 
free parameters, they retain considerable predictive power :I they allow 
us to calculate the non-analytic parts of Feynman amplitudes, like the In q 
and g In q terms in the one-dimensional examples at the beginning of the 
previous section. Such calculations just reproduce the results required by 
the axiom of S-matrix theory, that the S-matrix has only those singularities 
required by unitarity. 

Paradoxically, it is just in the case where symmetry principles forbid 
renormalizable interactions that non-renormalizable quantum field theo- 
ries prove the mast useful. In such cases we can derive a useful perturba- 
tion theory by expanding in powers of k / M .  This has been worked out 
in detail for the theory of low-energy pions,12~'3 to be discussed in detail 
in Volume 11, and the theory of low-energy gravitons-l4 For a simpler 
example, consider the theory of a real scalar field, satisfying the principle 
of invariance under the field translation 

with F an arbitrary constant. This symmetry forbids any renormalizable 
interactions or scalar mass, but it allows an infinite number of non- 
renormalizable derivative interactions 



where g w A V 4 ,  and ', .' denotes terms with more derivatives or fields. 
(For simplicity, it is assumed here that the theory also has a symmetry 
under the reflection q5 -, -4.) According to the above dimensional anal- 
ysis, the graph for a general reaction in which all energies and momenta 
are of order k << M is suppressed by a factor ( k / M ) " ,  where 

with ni and di the numbers of scalar fields and derivatives in an interaction 
of type i, and Vi the number of vertices for these interactions in our graph. 
For k < M, the dominant contributions to any process are those with the 
smallest value of v. The formula for v can be put in a more useful form 
by using the familiar topological identities for a connected graph : 

where I ,  E, and L are the numbers of internal lines, external lines, and 
loops in our graph. Combining these relations gives 

Now, the field translation symmetry requires that every field must be 
accompanied with at least one derivative, so the quantity d i  - ni as well 
as L is non-negative for all interactions. Thus for a given process (that 
is, a fixed number E of external lines) the dominant terms will be those 
constructed solely from tree graphs {i.e., L = 01, and interactions with 
the minimum number d i  = ni of derivatives. That is, in leading order we 
can take the Lagrangian density to depend only on.first derivatives of the 
field. Higher-order corrections may involve loops and/or interactions with 
more derivatives on some fields. But to any given order v in k / M ,  we need 
only consider a finite number of graphs, those with I, 5 (4 - 2E + v)/4, 
and only a finite number of interaction types. 

For instance, scalar-scalar scattering is given in leading order by the 
one-vertex tree graph calculated using the interaction -g(d,,q5Pq5)2 in first 
order, According to our formula for v ,  the leading correction, suppressed 
at low energy by a factor ( k / ~ ) ' ,  arises from another single-vertex tree 
graph, produced by an interaction with two additional derivatives nf the 
form" 8/,(?, 4 d j 'S ' 9  t?j,&" . The next corrections, suppressed at low en- 
ergy by two further factors of k / M ,  arise both from the one-loop diagram 
of Figure 12.4 (including permutations of external lines), calculated us- 
ing only the interaction -g(d,,@fl+)2, and also from tree graphs with 

" In sccordmce with the remarks ol' Seclion 7.7, we art: excluding interactions involving U&, 
because thc ficld cquation for can be used tu express such interactions in terms uf rhe others. 
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Figure 12.4. One-loop diagram for scalar-scalar sca~tering in the theory with 
derivative quadrilinear interactions. 

a single vertex arising from a quartic interaction with eight derivatives, 
whose couplings contain infinite parts that cancel the ultraviolet diver- 
gence from the loop graph.? The loop graph also yields finite terms in 
the scattering amplitude proportima1 to terms like s4 In s + t4 In t + u4 In u, 
s2 t2 in u + t2d In s + u's2 in t, etc., with calculable coefficients proportional 
to g2. These finite terms simply represent the correction to the lowest-order 
scattering amplitude needed to ensure the unitarity of the S-matrix, but 
perturbative quantum field theory is by far the ea.siest way of calculating 
them. 

Although non-renormalizable theories can provide useful expansions in 
powers of energy, they inevitably lose all predictive power at energies of 
the order of the common mass scale M that characterizes the various 
couplings. If we were to take these expansions literally, the results for 
S-matrix elements would violate unitarity bounds for E >> M .  There 
seem to be just two possibilities about what happens at such energies. 
One is that the growing strength of the effects of the non-renormalizable 
couplings somehow saturates, avoiding any conflict with unitarity.15 The 
other is that new physics of same sort enters at the scale M .  In this case, 
the non-renormalizable theories that describe nature at energies E << M 
are just <fec.tiue ,field theories rather than truly fundamental theories. 

Probably the earliest example of an effective field theory was derived 
in the 1930s by Euler et ad.,'h as a theory of low-energy photon-photon 
interactions. (See Section 1.3.) i n  effect, they calculated the contribution 
to photon-photon scattering of Feynman diagrams such as Figure 12.5, 
and found that at energies much less than m, the scattering of light by 
light was the same as would be calculated with an effective Lagrangian 

eE eB + higher orders in - & , 
rnz m; 

'1 These are Ihe only ultravitdct divergenes encountcrcd in one-Imp graphs if we use dirnensiorial 
regularizntion. For uther methods o f  regulmzntion thcrc are alsu quartic and quadratic di- 
vergences, which arc cancelled by countcrterms in the four-scalar inLera~liuns with four or six 
derivatives. 
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Figure 12.5. Diagram for photon-photon scattering, whose effect at low energy 
can be calculated from the effective Lagrangian of Euler et ~ 1 . ' ~  Straight lines are 
electrons; wavy lines are photons. 

Euler st al. used this effective Lagrangan only in the tree approximation, 
to calculate the leading terms in photon interaction matrix elements. It was 
not until much later that such Lagrangians, though non-renormalizable, 
were used beyond the tree approximation. 1 2 ~ 7  

In modern jargon, we say that in deriving this Lagrangian the electron 
is 'integrated out', because in the one-loop approximation we have 

A more general procedure is simply to write down the most general non- 
renormahable effective Lagrangian, use it to calculate various amplitudes 
as an expansion in energies and momenta, and then choose the constants 
in the effective Lagrangan by matching the results it gives for these 
amplitudes to those derived from the underlying theory. 

We will encounter effective field theories again, especially in considering 
broken symmetries in Volume 11. As we shall see, effective field theories 
are useful even where they cannot be derived from an underlying theory, 
either because the theory is unknown, or because its interactions are 
tot, strong to allow the use of perturbation theory. Indeed, even if we 
knew nothing about the properties of charged particles, the scattering 
of photons at suffciently low energy would have to be described by an 
effective Lagrangian consisting of the terms (E' - B')~ and (E.B}*, because 
these are the unique quartic Lorentz- and gauge-invariant terms with no 
derivatives acting on E and B. Terms with such derivatives would be 
suppressed at low photon energies E by additional factors of E / M ,  where 
M is some typical mass of the charged particles that are being integrated 
out. We can go further: we shall see that effective field theories are 
useful even where the light particles they describe are not present in the 
underlying theory at all, but composites of the heavy particles that are 
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integrated out. The underlying theory might not even be a field theory at 
all - the problem of incorporating gravitation has led many theorists to 
believe that, in fact, it is a string theory. But wherever an effective field 
theory comes from, it is inevitably a non-renormalizable theory. 

12.4 The Floating Cutoff 

Before closing this chapter, it is worth commenting on the relation be- 
tween conventional renormalization theory and an approach pioneered 
by ~ i l s o n . ' ~  In Wilson's method one imposes a 'floating' finite ultraviolet 
cut-off (either sharp or smooth) at momenta with components of order A, 
and instead of taking A + a, one requires that the bare constants of the 
theory (those appearing in the Lagrangian) depend on A in such a way 
that all observable quantities are A-independent. 

It is convenient to work with dimensionless parameters. If a bare 
coupling or mass parameter gi(A) has dimensionality [masslAi, we define 
the corresponding dimensionless parameter Yi by 

Ordinary dimensional analysis tells us that the value of gi at one value 
A' of the cutoff can be expressed as a function of the values of the qj at 
another value A of the cutoff, and the dimensionless ratio A'/A: 

No dimensional parameters other than A' and A can appear in F, because 
no ultraviolet or infrared divergences can enter here; the difference be- 
tween the constants at A and at A' arises from diagrams whose internal 
lines are restricted to have momenta between A and A'. Differentiating 
Eq. (12.4.2) with respect to A' and then setting A' equal to A yields a 
differential equation for Y i :  

where P i ( 9 )  = [a/& Fi(%,~)Jz=l. The functions f i i (Y) may be calculated 
for small couplings in perturbation theory. This is Wilson's version of the 
'renormalization group' equation, which will be discussed in somewhat 
different terms in Volume 11. 

The Lagrangian for any finite value of the cutoff defines an effective 
field theory, in which instead of (or in addition to) integrating out 'heavy' 

This section lies somewhat out of the book's main line of development, and may be omitted in 
a first reading. 
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particles like the electron in the work of Euler e t  al., one integrates out d l  
particles with momenta greater than A. Even if one starts with a theory 
with a finite number of coupling parameters 9;' at some cutoff Ao, at any 
other value of the cutoff the differential equation (12.4.3) will generally 
yield non-zero values for all couplings allowed by symmetry principles.** 

We now distinguish between the renormalizable and unrenormalizable 
couplings, labelled 9, and g,, respectively, with a running over the finite 
number N of couplings (including masses) for which A, 2 0, and n running 
over the infinite number of couplings with dimensionalities A, < 0. We 
want to show that if the couplings 9,(Ao) and $,(Ao) at some initial 
cutoff' value A. lie on a generic N-dimensional initial surface Yo, then 
(with some qualifications) for A << A. they will approach a fixed surface 
Y that is independent of both A. and the initial surface.' This fixed 
surface is stable, in the sense that from any point on the surface, the 
trajectory generated by Eq. (12.4.3) stays on the surface. Such a stable 
surface defines a finite-parameter set of theories whose physical content is 
cutoff-independent, which as argued in the previous section, is the essential 
property of renormalizable theories. Furthermore, this construction shows 
that a generic theory defined with cutoff A. will look for A << A. like a 
renormalizable theory> 

To prove these results, consider any small perturbation W i ( A )  in the 
values of the gi{A)  satisfying Eq, (12.4.3). I t  will satisfy the differential 
equation 

where 

This equation couples the renormalizable and unrenormalizable couplings, 
making it difficult to see the difference in their behavior. To decouple them, 
we introduce the linear combinations 

1 

1 * The only known exceptions 10 this rule arc in theories based ou ~ a ~ e r s ~ r n r n e t r ~ . ~  
t This theorem i s  due to Polchinski.'') Whal t'ollows hcrc is a shortened and less rigorous version. 

(In Potchinski's prmf, the initial surface is takcn to be that with all nun-renurmalixablc couplings 
vanishmg. As we shall see hcrc, thc couplings appruach the same fixed surfacc for generic initial 
surfaces.) 

$ Of course some thcorics have symmetries and a field content  hat do not allow any renormdizable 
intcractions. This i s  the case for theories containing only ferrnion fields, or only Ihe gravitational 
field. Such theories hl r  A A. look like free-fietd theories. 
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where 9: are the values of the renormalizable couplings at cutoff Ao, 
which we shall use as coordinates for the initial surface, and 9, are the 
values of the non-renormalizable couplings at cutoff A derived from the 
differential equation (12.4.3), with initial value for A. at the point on 
the initial surface with coordinates Y:. To calculate the derivative of & 
with respect to A, we note that the derivatives d!$,/~!e satisfy the same 
differential equation (12.4.4) as the It is an elementary exercise then 
to show that 

where 

N,,  - M,, - 
ab 

Now we must estimate the elements of N,,. For a free-field theory no 
cutoff is needed, so for very small coupling all bare parameters gi(A) 
become A-independent. Hence for small couplings the dimensionless 
parameters '$i simply scale as A-*~, and the matrix Mi,/ is given by 

It follows that the matrix N,, is given approximately by -And,,. The 
defining characteristic of the non-renormalizable couplings is that A ,  < 0, 
so Eq, (12.4.7) tells us that, at least for couplings in some finite range, 
where N,, is positive-definite, the c, decay for A << A. like positive 
powers of A/Ao. In this limit, then, the perturbations are related by 

In particular, if we make a small change in the initial surface Yo and/or 
the starting point on that surface and/or the initial cutoff Aa, such that the 
perturbations 63 ,  in the renormalizable couplings vanish at some cutoff 
A << Aa, then the perturbations fig, in all the other couplings at cutoff 
A also vanish. Thus the non-renormalizable couplings YJA) for A << A. 
can depend only on the renormalizable couplings Y,(A), not separately 
on the initial surface or the starting point on that surface or the initial 
cutoff Ao. At cutoff A << A. ail the couplings therefore approach an 
N-dimensional surface Y ,  with coordinates Y,(A), which is independent 
of both the initial surface and of Ao. Note that the non-renormalizable 
couplings 9, are not generally small on Y ;  the important point is that 
they become functions of the renormalizable couplings. Changes in A 
with A remaining much less than A. will change the couplings, but the 
couplings will remain close to 9 (at least as long as the couplings do not 
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become so large that N ,  is no longer a positive-definite matrix). Hence 
9 is a stable surface, as was to be proved. 

We have seen that all physical quantities may be expressed in terms of 
A and the $,(A), and are A-independent. This is true in particular of 
the N conventional renormalized couplings and masses, like e and me in 
quantum electrodynamics. But we can then invert this relation, and express 
the 9 4 A )  in terms of the conventional parameters and A. In this way 
we can justify the usual renormalization program: all physical quantities 
are expressed in a cutoff-independent way in terms of the conventional 
renormalized couplings and masses. 

The Wilson approach has some advantages in practice. One does not 
have to worry about subintegrations and overlapping divergences; the 
momentum cutoff applies to all internal lines. Also, some of the non- 
renormalization theorems of supersymmetry theory, which tell us that 
certain couplings are not affected by radiative corrections, work only for 
the cutoff-dependent bare couplings.20 

On the other hand, there are disadvantages to the Wilson approach. 
One must give up the special simplicities of working with renormalizable 
theories like quantum electrodynamics; once one starts integrating out 
particles with momenta above some scale A, the resulting effective field 
theory will contain all Lorentz- and gauge-invariant interactions, with 
A-dependent couplings. (Nevertheless, in physical processes at energies 
E << A, the dominant couplings will still be the renormalizable ones.) 
Also, the cutoff generally destroys manifest gauge invariance, and either 
manifest Lorentz invariance or unitarity. None of this is a problem 
in condensed matter physics, the original context of Wilson's approach, 
because no one would expect a realistic condensed matter theory to be 
strictly renormalizable, and there are no fundamental physical principles 
that are necessarily violated by a cutoff. In fact, in crystals there is a 
cutoff on phonon momenta, provided by the inverse lattice spacing. 

At bottom, the difference between the conventional and the Wilson 
approach is one of mathematical convenience rather than of physical 
interpretation. Indeed, conventional renormalization already provides a 
sort of  adjustable cutoff; when we express our answer in terms of coupling 
constants that are defined as the values of physical amplitudes at some 
momenta of order p (as for the scalar field theory discussed in the previous 
section), the cancellations that make integrals converge begin to operate 
at virtual momenta of order p. Conversely, the A-dependent coupling 
constants of the Wilson approach must ultimately be expressed in terms 
of observable masses and charges, and when this is done the results are, 
of course, the same as those obtained by conventional means. 
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12,5 Accidental Symmetries* 

In Section 12.3 we saw that there are good reasons to adopt renormaliz- 
able field theories as approximate descriptions of nature at sufficiently low 
energy. It often happens that condition of renormalizability is so stringent 
that the effective Lagrangian automatically obeys one or more symmetries, 
which are not symmetries of the underlying theory, and may therefore 
violated by the suppressed non-renorrnalizable terms in the effective La- 
grangan. Indeed, most of the experimentally discovered symmetries of 
elementary particle physics are 'accidental symmetries' of this sort. 

A classic example is provided by the inversions and flavor conservation 
in the electrodynamics of charged leptons. The most general renormal- 
izable and gauge- and Lorentz-invariant Lagrangian density fbr photons 
and fields vi of spin f and charge e takes the form 

where i, j are summed over the three lepton flavors (c, p, and T ) ,  ~ I L  and 
Y)# are the left- and right-handed parts of the field tpj, defined by 

and ZL, ZR,  and M are numerical matrices. We are not assuming anything 
about lepton flavor conservation, SO the matrices Z L ~ ~ ,  ZRi j  and Mij need 
not be diagonal. Also we are not assuming anything about invariance 
under P, C, or T invariance, so there is nu necessary relation between ZL 
and ZR, or between M and M'. The only constraints on these matrices 
come from the reality of the Lagrangian density, which requires that 
ZLij  and ZRij  are Hermitian, and from the canonical anticommutation 
relations, which require that ZLij and ZRij are positive-definite. 

Now suppose we replace the lepton fields V L ,  V R  with new fields &, 
zyX defined by 

where S L , ~  are non-singular matrices that can be chosen as we like. The 
Lagrangian density when expressed in terms of these new fields then takes 

' This section lies somewhat out of the book's main line of dcvelopment, and mdy be omitted in 
a first reading. 
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the same form as in Eq. (12.5.1), but with new matrices 

We can choose SL and SR SO that Z;, = 2; = 1. (Take S L , ~  = U L , R D ~ , ~ ,  
where ULTR are the unitary matrices that diagonalize the positive-definite 
Hermitian matrices ZL,R, and the DLSR are the diagonal matrices whose 
elements are the inverse square roots of the eigenvalues of ZL,R,) 

Now make another transformation, to lepton fields yy defined by 

The Lagrangian density again takes the same form when expressed in 
terms of these new fields, with new matrices 

This time we take S;2.R unitary, so that again ZL = 2; = 1. We choose 
these unitary matrices so that M" is real and diagonal. (By the polar 
decomposition principle, M' like any square matrix may be put in the 
form M' = VH, where V is unitary and H is Hermitian. Take SL = S: V ?  
and choose SA as the unitary matrix that diagonalizes H,) Dropping 
primes, the Lagrangian density now takes the form 

where mi are real numbers, the eigenvalues of the Hermitian matrix H .  
Finally, this can be put in the more familiar form 

With the Lagrangian taking this form, it is now apparent that any renor- 
malizable Lagrangian for lepton electrodynamics automatically conserves 
P, C, and T, as well as the numbers of leptons (minus the numbers of 
antileptons) of each flavor : electron, muon, and tauon.'* In particular, 
despite the appearance of Eq. (12.5.1), this theory does not allow such 
processes as y + e f y .  The reader may perhaps worry whether it is correct 
to identify the lepton fields as the vi (previously called y:') appearing in 
Eq. (12.5.8), which obviously conserves lepton flavor, rather than the tpi 
appearing in Eq. (12,5.1), which seems to allow processes like p + e + 7.  

" This was tirst shown by kinberg, Kab~r, and myself.21 F'einberg2' had earlier noted that weak 
irAzra&un effects in a theory with only one neutrino species would give rise to an observable 
rate for thc process p 4 e + y .  a difficulty that was nnly resulved by the discovery or a second 
neutrino species. 
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Such worries may be put aside; as stressed in Section 10.3, there is no one 
field that can be identified as the field of the electron or muon. In fact, 
although Eq. (12.5.1) yields a non-vanishing matrix element for radiative 
decay of lepton 1 into lepton 2 08 the lepton mass shell, by taking the 
lepton momenta on the mass shell we find a vanishing 3-matrix for all 
such processes even when calculated using Eq. (12.5.1). 

I t  was essential in deriving these results that the same electric charge 
appeared in Eq. (12.5.1) for both the left- and right-handed parts of the 
lepton fields or, in other words, that both left- and right-handed parts of 
the lepton fields transform in the same way under electromagnetic gauge 
transformations. As we shall see in Volume IT, for similar reasons the 
modern renormalizable theow of strong interactions known as quantum 
chromodynamics automatically conserves C, and (aside from certain non- 
perturbative effects) P and T, as well as the numbers of quarks (minus 
the numbers of antiquarks) of each quark flavor. We shall also see in 
Volume 11 that the simplest version of the renormalizable standard model 
of weak and electromagnetic interactions automatically conserves lepton 
flavor (though not C and P) for reasons similar to those described here for 
electrodynamics. It remains an open possibility that non-renormalizable 
interactions arising from higher mass scales may violate any of these 
conservation laws. 

Problems 

1. List all the renormalizable (or superrenormalizable) Loren tz- 
invariant terms in the Lagrangian of a single scalar field for space- 
time dimensionalities 2, 3, and 6. 

2. Show how the overlapping divergence in the electron self-energy is 
cancelled in quan turn electrodynamics, 

3. Consider the theory of a scalar field gS and spinor field yl, with 
interaction Hamiltmian g4V.y:. Write the one-loop part of the scalar 
self-energy function Il'(q) as a divergent polynomial in p p ,  plus an 
explicit convergent integral. 

4. Suppose that the quantum electrodynamics of electrons and photons 
is actually an effective field theory, derived by integrating out un- 
known particles of mass M >> me. Assume gauge invariance and 
Lorentz invariance, but not invariance under C, P, or T. What are 
the non-renormalizable terms in the Lagrangian of leading order in 
1 / M  ? Of next to leading order'! 
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Infrared Effects 

In the study of radiative corrections a special role is played by those 
corrections due to 'soft' photons: photons whose energy and momentum 
are much less than the masses and energies characteristic of the process 
in question. Not only are these correciions often so large that they must 
be summed to all orders of perturbation theory; they are so simple that 
this summation is not difficult. The contribution of photons of infinitely 
long wavelength takes the form of divergent integrals, but as we shall see 
these 'infrared divergences' all cancel.' 

In most of this chapter we will deal with photons interacting with 
charged particles of arbitrary type and spin, including particles like atomic 
nuclei that have strong as well as electromagnetic interactions, But it is not 
difficult to adapt the calculations presented here to the infrared effects of 
other massless particles, such as the gluons of quantum chromodynamics. 
In Section 13.4 we shall explicitly consider very general theories of massless 
particles, and will show the cancellation of infrared divergences on general 
grounds. 

After these generalities, we shall return to photons, and take up two 
topics of practical importance: the scattering of soft photons by charged 
particles with arbitrary non-electromagnetic interactions and arbitrary 
spin, and the treatment of heavy charged particles like atomic nuclei as a 
source of an external electromagnetic field. 

13.1 Soft Photon Amplitudes 

In  this section we shall derive a universal formula that gives the amplitude 
for emission of any number of very-low-energy photons in a process r 4 /3' 
involving any number of higher-energy charged particles of any types. 

Let us start with the amplitude for emission of just one soft photon. If we 
attach the soft photon line with outgoing momentum q and polarization 
index jr to an outgoing charged-particle line that leaves some connected 
Feynman diagram for the process a 4 /I, as in Figure 13.l(a), then we 
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must multiply the S-matrix element for a + with an additional charged- 
particle propagator carrying the momentum p + y  that the charged particle 
had before emitting the photon, together with the contribution of the new 
charged-particle-photon vertex. For charged particles of spin zero, mass 
m, and charge +e, these factors are 

which in the limit q + 0 becomes 

(We are freely redefining the scale of the positive infinitesimal F ,  being 
careful only to keep track of its sign.) This result is actually true for 

1 charged particles of any spin. Fur instance, for a particle of spin I and 
charge +e, we must replace the coefficient function ii(p, 0 )  for the outgoing 
charged particle with 

In the limit q + 0 the numerator of the propagator is given by a sum of 
dyads: 

so we have a sum of equal-momentum matrix elements of gp, p e n  by 

and again the effect again is to multiply the matrix element for the 
process r - fl by the factor (1 3.1.1). More generally, for any spin in 
the limit q + 0 the four-momentum p + q of the new internal charged 
particle line approaches the mass shell, so the numerator of the propagator 
approaches a sum of dyads of coefficient functions which convert the new 
vertex matrix into a factor proportional to pp and a unit matrix in helicity 
indices, leading again to the factor (13.L1). Furthermore, as we saw in 
Chapter 10, higher-order corrections do not affect either the residue of the 
mass-shell poles in the propagators or the matrix eIement of the electric 
current between states of the same particle at equal momentum, so (63.1.1) 
gives the correct factor associated with the emission of a soft photon from 
an outgoing charged-particle line to all orders of perturbation theory* 

The same reasoning applies to  a photon emitted from an incoming 
charged-particle line of the process r -+ P ,  except that after the incoming 
particle emits a photon of four-momentum q the charged-particle line has 
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Figure 13.1. Dominant graphs for the emission of soft photons in an arbitrary 
process a -+ p. Straight lines are particles in the states a and j3 (including possible 
hard photons); wavy lines are soft photons. 

four-momentum p - q ,  so in place of j l3 . l .  1) we find a factor 

The photon cail also, of course, be emitted from an internal line of the 
process a! + fl, but in this case there is no factor that goes as ( p  4)-I 
for q + 0. The amplitude M I J q )  (the S-matrix without the energy- 
momentum conservation delta function) for emitting a single soft photon 
with four-momentum q and polarization index p in the process a + P is 
therefore given in the limit g + 0 by multiplying the matrix element Mg. 
for a + with a sum of terms like (13.1.1) and {13.1.2), one for each 
outgoing or incoming charged particle : 

where p, and +en are the four-momentum and charge of the nth particle 
in the initial and final states, and g, is a sign factor with the value +1 far 
particles in the final state fi and -1 for particles in the initial state a. 

Before going on to consider the emission of more than one soft photon, 
it is worth mentioning an important feature2 of the formula (13.1,3). To 
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calculate the amplitude for emission of a photon of definite helicity, we 
must contract this expression with the corresponding photon polarization 
vector e,(q, -+). But as we saw in Section 5.4, @(q, f) is not a four-vector; 
under a Lorentz transformation Ally, the polarization vector is transformed 
into Apvev{q, -t) plus a term proportional to qp. In order for this last term 
not to spoil Lorentz invariance, it is therefore necessary that MfJq) should 
vanish when contracted with qp. But for g 0, (13.1.3) gives 

The coefficient d Mp, on the right-hand side is just the total charge in the 
final state minus the total charge in the initial state, so the condition that 
it vanishes is just the condition that charge is conserved. Thus without any 
independent assumptions about gauge invariance, we see that for particles 
of spin one and mass zero, Lorentz invariance requires the conservation of 
whutever coupEing constant like electric charge gouerns the interaction qf 
these particles at low energies. 

Incidentally, the amplitude for emitting a soft graniton of four-momen- 
turn q and tensor indices y, v in a process a + is  given by a formula3 
analogous to (1 3.1.3) : 

where f, is the coupling constant of the soft gravitm to particles of type 
n. Lorentz invariance here requires that this vanish when contracted with 
q,. But 

so the sum Cfn& is conserved. However, the only linear combination 
of the four-momenta that can be conserved without forbidding all non- 
trivial scattering processes is the total four-momentum, so in order for 
(13.1.6) to vanish, the f, must all be equal. {The common value of 
all f. may be identified as Jm, where GN is Newton's constant of 
gravitation.) Thus Lorentz invariance requires the result that low-energy 
massless particles of spin two couple in the same way to all forms of energy 
and momentum. This goes a long way toward showing that Einstein's 
principle of equivalence is a necessary consequence of Lorentz invariance 
as applied to massless particles of spin two. Likewise, the amplitude for 
emitting a soft massless particle of four-momentum q and spin j z 3 in a 
process a + f l  is of the form 



Lorentz invariance here requires that the sum Cg,pipf:. . - must be con- 
served, But no such quantity can be conserved without prohibiting all 
non-trivial scattering processes, so the g,, must all vanish. Massless parti- 
cles of spin j 2 3 may exist, but they cannot have couplings that survive 
in the limit of low energy, and in particular they cannot mediate inverse 
square law forces. 

Now let us consider the emission of two soft photons. The contribution 
to the matrix element from a graph in which the two photons are emitted 
from different external lines of the process a + /I is given by multiplying 
the matrix element for x + p by a product of factors like (13.1.1) or 
( 1  3.1 2). Perhaps surprisingly, the same is true even if the two photons are 
emitted from the same external line. For example, if photon 1 is emitted 
from an external line of charge +e and energy-momentum four-vector p 
after photon 2 we get a factor 

while if photon 2 is emitted after photon 1 the factor is 

(See Figure 13.2. Again, is +1 or -1 according to whether the charged- 
particle line is outgoing or incoming.) These two factors add up to 

which is just a product of the same factors encountered in the emission 
of a single photon. 

More generally, in emitting an arbitrary number of photons from a 
single external line we encounter a sum of the form* 

This identity may be proved by mathematical induction. We h a w  alrcady seen that i t  is Lrue for 
two photons. Suppuse that it is true for N - 1 photons. For N photons we may thcn write the 
?urn ovcr permutations as a sum ovcr the choice of the firs1 photon 10 be emitted together with 
a sum over permutations of the remaining photons: 

as was to be proved. 



13.2 Virtual Soft Photons 539 

Figure 13.2. Graphs for the emission of two soft photons from the same outgoing 
charged particle. Straight lines are hard particles; wavy lines are sofi photons. 

b ~ 4 1  - Wl-' [p (ql + qz) - iqel-' Lp . ( q ~  + q2 + q3)  - iVe]-' - .  . 
+ permutations 

= [ P - q 1 - i l l ~ ] - 1 ~ ~ q 2 - i 9 ~ ] 1 ~ ~ y j - j ~ ~ ] - 1 h + +  . (13.1.7) 

It follows then that the amplitude Mf;>'*r(ql . + q w )  for emitting N 
very soft photons with polarization indices p l ,  + + ' p ~  and four-momenta 
yl,. . . q~ in the process x + p is given in 
the matrix element Mp, for a + j by a 
(13.1.31, one for each photon : 

the limit q -+ 0 by multiplying 
product of factors like that in 

13.2 Virtual Soft Photons 

We shall now use the results of the previous section to calculate the 
effect to all orders of radiative corrections involving virtual soft photons 
exchanged among the charged particle lines uf a process r + P ,  as in 
Figure 13.3. By a 'soft' photon we mean one that carries momentum less 
than A, where A is some convenient dividing point chosen low enough 
to justify the approximations made in the previous section. We shall find 
that these soft photons introduce infrared divergences, sa as a stop-gap 



Figure 13.3, A typical dominant. graph for the radiative corrections due to virtual 
soft photons to the S-matrix for the process a + b. Straight lines are particles in 
the states sl and p (including possible hard photons); wavy lines are soft photons. 

we will have to introduce also a lower bound i on the photon momenta. 
Zt is important to recognize the difference between these two limits on the 
soft photon momenta. The upper cutoff A just serves to define what we 
mean by 'soft' photons; the A-dependence of the soft-photon radiative 
corrections is cancelled by the A-dependence of the rest of the amplitude, 
which is calculated including only virtual photons with momenta greater 
than A. On the other hand, the lower cutoff must eventually be removed 
by taking A -+ 0; as we shall see, the infrared divergences in this limit will 
be cancelled by the effects of real soft photon emission. 

For each virtual soft photon we must supply a propagator factor 

then multiply the amplitude ( 1  3.1.8) with the product of these propagators, 
contract photon polarization indices, and integrate over photon four- 
momenta. In addition for N virtual photons we must divide by a factor 
2N N!, because the sum over all places to which we may attach the 
two ends of the soft photon lines includes spurious sums over the N! 
permutations of the photon lines and over interchanges of the two ends 
of these lines. The effect of radiative corrections involving N soft photons 
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is then to multiply the matrix element Mp, for the process without such 
radiative corrections by a factor 

where 

Note that we have changed the sign of p,-q in the denominator in (13.2,3), 
because if we define q as the momentum emitted by line n then -q is the 
momentum emitted by line m. 

Summing over N, we conclude that the matrix element for a process 
including radiative corrections due to any number of soft photons with 
momenta Iq[ 2 A is given by 

where M~~ is the amplitude including virtual photons only with momenta 
greater t R an A. 

The integral over in (13.2.3) may be done by the method of residues. 
The integrand is analytic in qo except for four poles, at 

0 where v, - p,/p,, and likewise for v,. If particle n is outgoing and 
particle m is incoming, then q .  = +1, q,  = -1, so by dosing the qo 
contour in the upper half-plane we avoid the contributions from the poles 
at q0 = v, q - iq, E or qo = v, . q + iqme. Similarly, if n is incoming and rn is 
outgoing we can avoid these two poles by closing the contour in the lower 
half-plane. In these two cases it is only one of the poles at qo = &{lql- ir) 
that contributes, and we find a purely real integral: 

On the other hand, if particles n and rn are both outgoing or both 
incoming, then the poles at v, - q - iq,f and v, q + iq,e lie on opposite 
sides of the real qO-axis, and we cannot avoid a contribution from one of 



them whichever way we close the contour: 

where p,, is the relative velocity of particles n and rn in the rest frame of 
either: 

The imaginary term in Eq. (13.2.6) leads to an infrared-divergent phase 
factor4 in Eq. (13.2.41, which drops out when we take the absolute value of 
the matrix element to calculate the rate for the process a -+ p. (This infinite 
phase factor is the relativistic counterpart of the well-known feature of 
non-relativistic Coulomb scattering, that the outgoing wave part of the 
Schrodinger wave function has a dependence on the radial coordinate r of 
the form expjipr - iv In r ) / r  instead of expjipr)/r, where v is the product 
of charges divided by the relative ve l~c i ty .~ )  The reaction rate is affected 
by the real part of J,,, which fbr all q, and q ,  takes the value 

An elementary calculation gives 

Using this in the absolute value squared of Eq. (13.2.4) gives the effect of 
soft virtual photons on the rates for the process TIjr as 

where r$, and ri3 are the rates for the process a + /I including radiative 
corrections of soft photons only with momenta greater than i or A, 
respectively, and A is the exponent 

Note that this makes sense only because the correction factor ( i /AlA 
has turned out to be the ratio of a function of 3. to the same function 



of A, since the two rates in 
respectively. 

The exponent A is always 
single charged particle by a 
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Eq. (13.2.10) can only depend on 3. and A, 

positive. For instance, in the scattering of a 
neutral particle or an external potential, we 

must add terms in Eq. (13.2.1 l )  where both n and rn are the initial or 
the final charged particle (in which case g , ~ ,  = +l and fl,, = Oj, or n is 
the initial or final charged particle and m is the other one (in which case 
qfrqm = -1 and p,, = P, where 1 > > 0.) This gives 

which is positive for all 1 > 0 > 0. Because A is positive the effect of the 
infrared divergences introduced by soft virtual photons when summed to 
all orders is to make the rate for any given charged particle process m -t P 
z;ani.sh in the limit ;1 --t 0. 

Before we go on to consider how soft real photon emission cancels 
these infrared divergences, we should pause to note a technicality in the 
above calculation which as far as I know has always been ignored in 
the literature. In calculating these radiative corrections we have included 
diagrams in which the virtual photon is absorbed and emitted at  the sume 
external charged-particle line, as well as those in which it is emitted and 
absorbed at  different lines. Rut as we learned in Chapter 10, in calculating 
the S-matrix we are not supposed to include radiative ccrrections arising 
from insertions of self-energy su bgraphs in external lines. This might 
suggest that we should drop the terms n = m in Eq. (13.2.11), but then the 
cancellation of infrared divergences we will find in the next section would 
not be complete. 

The resolution of this problem can be found in the observation that soft 
virtual photons produce infrared divergences not only directly, but also 
through their effect on the renormalization constants Z, of the charged 
particle fields. (The renormalization constant Z,, is the one usually called 
Z z  in theories like quantum electrodynamics with a single charged field 
of spin 4.) It is the counterterms proportional to 2, - 1 that cancel 
the effect of radiative corrections in external lines. To be specific, the 

-1/2 renormalized field of a charged particle of type n is a factor 2, 
times the unrenormalized field, so when we calculate the S-matrix using 
renormalized fields (corresponding to the omission of radiative corrections 

-l!2 in external lines) we are introducing an extra factor JJ, 2, , the product 
running over all charged particles in the initial and final states. (Of 

-1/2 course there are also factors Z, for neutral particles, but these are not 



infrared-divergent.) In a slightly different notation, this factor is 

where Zf is the field renormalization constant for fields of type f ,  Ef is 
the number of external lines of type f, and the product now runs over aII 
charged field types. However, these field renormalization constants also 
appear in the interiors of diagrams; expressing an interaction of type i 
that involves Nif charged-particle fields of type f in terms of renormalized 
fields introduces an infrared-divergent factor 

(For instance, the counterterm i e ( Z 2  - l)A,pyhp in Eq. ( 1 1.1.9) together 
with the ordinary electromagnetic interaction -iepyhp yields a total in- 
teraction -iZ2e@yhp. It was the infrared divergence in this 2 2  factor that 
was responsible for the infrared divergence arising from the second term 
in the brackets in Eq. (1 1.3.231, and the last term in Eq. (1 1.4.14).) There is 
also an infrared divergence in the propagators of the renormalized fields; 
the propagator of a renormalized charged field of type f when expressed 
in terms of the propagator of the unrenormalized field introduces a factor 
27'. Putting this all together, the total number of factors of Zf for each 
charged field type f, introduced by the counterterms to interactions and 
to radiative corrections on internal as well as external lines, is 

where I f  and E j  are the numbers of internal and external lines of type 
f ,  and Vi is the number of vertices for interactions of type i. We have 
already noted in Section 6.3 that this quantity vanishes for each f .  Thus 
the counterterms which cancelled the radiative corrections on external 
lines are themselves cancelled by the Zf factors arising from internal lines 
and vertices. Eq. (13.2.1 1) is therefore correct as it stands, including the 
terms with n = m. 

13.3 Real Soft Photons; Cancellation of Divergences 

The resolution of the infrared divergence problem encountered in the 
previous section is found in the observation that it is not really possible 
to measure the rate Tg, for a reaction cc --+ p involving definite numbers 
of photons and charged particles, because photons of very low energy can 
always escape undetected. What can be measured is the rate rD.(E, E T )  
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for such a reaction to take place with no unobserved photon having an 
energy greater than some small quantity E, and with not more than some 
small total energy ET going into any number of unobserved photons. (Of 
course, E I E T .  In an experiment without soft photon detectors, one 
can rely on measurements of the energies of the 'hard' particles in a and 
fi to put a limit ET on the total energy going into soft photons, and 
in this case we just set E = ET.j We now turn to a calculation of this 
rate. 

The S-matrix for emitting N real soft photons in a process a! + fi 
is obtained by contracting each of the N photon polarization indices 
pr, p2, - . . on the amplitude (13.1.8) with the appropriate coefficient func- 
tion 

where q is the photon momentum, la = f 1 is its helicity, and d' is the 
corresponding photon polarization 'vector'.' This gives a photon emission 
matrix element (the S-matrix element with delta function omitted) as 

(The superscript i is to remind us that these amplitudes are to be calculated 
with an infrared cutoff R on the momenta of virtual photons. Eventually 
we shall take A + 0. The presence of soft virtual photons does not 
interfere with the result (1 3.3.1) because of the factorization discussed 
in Section 13.1.) The differential rate for emitting N soft photons into 
a volume fl, dfq, of momentum space is given by squaring this matrix 
element, summing over helicities, and multiplying with JJ, d3q,. We recall 
from Eq. (8.5.7) that for q2 = 0, the helicity sums take the form 

where c = -q/2q12 and $ - 1/21ql. The charge conservation condition 
C,  q,e, = O allows us to drop the terms in Eq. (13.3.2) involving q, or q,, 

' We are using .+instead of e'' for photon polarization vectors, to avoid conhsion with our use 
here of en for electric charges. 



yielding a differential rate" 

To calculate the differential rate for the emission of N soft photons 
with definite energies w, = Iq,l we must integrate Eq. (13.3.3) over the 
directions of the photon momenta q,. These integrals are the same as 
those we encountered in the integrals (l3.2.8), 

Integrating Eq. (13.3.3) over photon directions thus gives the differential 
rate for photons of energy w l ,  rn h w~ : 

where A(r  -+ f i )  is the same constant encountered in the previous section: 

We see from Eq. (13.3.5) that an unrestricted integral over the energies 
of the emitted photons would introduce another infrared divergence. 
However, unitarity demands that if we use an infrared cutoff for the 
momenta of the virtual photons (as implied by the superscript i) then we 
must use the same infrared cutoff for the real photons. To calculate the 
rate T ~ , ( E ,  E T )  for the reaction 2 4 f i  with not more than energy E going 
into any one unobserved photon and not more than energy ET going 
into any number of unobserved photons (with E and E r  chosen small 
enough to justify the approximations used in deriving Eq. ( 1  3.3.1)), we 
must integrate Eq. (13.3.5) over all photon energies, subject to the limits 
E 2 cur 2 I. and C, w, I ET, then divide by NI because this integral 
includes configurations that differ only by permutations of the N soft 
photons, and finally sum over N .  This gives 

This integral would factor into the product of N integrals over the indi- 
vidual w, were it not fur the restriction C, 01, I E. This restriction may 

" The result for (q(d1 g,(q)JTfi, in the case N = 1 carrespunds to the disrrihuhm d energy 

emitted classically by a discontinuously changing current dcnsity fwr-vectur J"(x = ~ C , ' " ~ ' { ~ -  

~ , t )  pfe,,/E,, with the sum here running only ovcr particles in the initial state for r < 0 and in 
the final state for r r 0. 
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be implemented by including as a factor in the integrand a step function 

Eq. (13.3.6) then becomes 

1 S du sin Eiu r$,(~,  E = )  = - 
7t -rm U 

( 1  3.3.8) 
The integral in the exponent can be done in the limit lb << ET by writing 
i t  as the sum of the integral of (e""' - l ) / w ,  in which we can set i = 0, 
and the integral of 1 / q  which is trivial. Rescaling the u and w variables, 
this gives for ;1 << E : 

where 

For E and ET of the same order and A << 1 the factor .F(E/ET,  A )  in 
Eq. ( 1  3.3.9) is close to unity J for instance, 

Because A(o: -, /I) > 0, the factor ( ~ j i ) ~ ~ ' ' ~ )  in Eq. (13.3.9) becomes 
infinite in the limit 2 + 0. However, Eq. (13.2.10) shows that the rate r;, 
vanishes in this limit: 

Using this in Eq. ( 1  3.3.9) shows that the infrared cutoff ,i drops out in the 
limit I;.<< E: 

We remind the reader that the energy A is just a convenient dividing 
point between 'soft' photons which are taken into account explicitly in 
Eq. (13.3.1 1) and 'hard' photons whose effects are buried in T$%. The 
right-hand side of Eq. (13.3.11) is independent of A because T $ ~  a 
A ~ .  However, in theories with a small coupling constant like quantum 
electrodynamics it is frequently a good strategy to take A to be sufficiently 
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small compared with the typical energies W involved in the collision so 
that the approximations made here apply for photon energies less than A, 
but large enough so that A(& -, 8) ln(W/A) << 1. Then it may be a good 
approximation to calculate rjZ in lowest-order perturbation theory, with 
the dominant radiative corrections for E <( A given by the factor ( E / A ) ~  
in Eq. (13.3.1 1). 

The same cancellation of infrared divergences occurs for soft gravitons.3 
The rate for any process a -+ P,  with not more than an energy E going 
into soft gravitons, turns out to be proportional to E ~ ,  where 

13.4 General Infrared Divergences 

The infrared divergence due to soft photons that we have been considering 
up to now in this chapter is just one example of a variety of infrared 
divergences that are encountered in various physical theories. Another 
example is provided by quantum electrodynamics with massless charged 
particles. Here even after the cancellation of infrared divergences due 
to soft photons, we find a logarithmic divergence in the exponent A in 
Eq. (13.3.11). According to Eqs. (13.2.11) and (13.2.7), for a process in 
which all charged particles are electrons, in the limit m, -+ 0 the exponent 
goes as 

(In the last step we have used the charge conservation condition C,  e,q, = 
0.) The infrared divergence in this formula arises from soft photons that 
are emitted in a direction parailel to the momentum of one of the 'hard' 
electrons in the initial or final state, but it occurs also even if the photon 
like the electron is not soft, because the propagator denominator @, f q ) 2  
vanishes for = q2 = 0 if p. is parallel tb q. To be a little more specific, 
for pi = q2 = 0 the integral of this factor* over photon directions takes 

' This factor is not squared, because the divergence w u r s  only in the interference between this 
term in the S-matrix element and terms in which the photon is emitted from some other charged 
particle line rn # n. For rn = n the intcgral (13.2.8) is proportional to m;. 
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the form 

where 0 is the angle between the momenta of the photon and the charged 
particle. This integral diverges logarithmically at O = 0. 

Of course, in the real world there are no massless electrically charged 
particles, but in reactions in which the typical value E~ of the scalar 
products ip,, p,l is much larger than m:, it is of interest to identify 
the places where large ln(m,/E) factors appear. The dominant radiative 
correction in this case is often given by the term - ln(m,,/E) C, e ; /2x2  
in A. More importantly, in quantum chromodynamics there are massless 
particles, the gluons, that carry a conserved quantum number known as 
color that is analogous to electric charge, so that infrared divergences 
arise from the emission of parallel hard gluons from hard gluons or other 
hard colored particles in the initial or final states. 

These infrared divergences are not, in general, eliminated by summing 
over suitable sets of final states, However, Lee and ~auenberjf have 
pointed out that the infrared divergences can be made to cancel if we 
not only sum over suitable final states, but also assume a certain prob- 
abilistic distribution of initial states. What follows is a modified version 
of their argument, which will immediately make clear why in the case of 
electrodynamics with massive electrons it was sufficient to sum over final 
states. 

For these purposes it is convenient to return to 'old-fashioned' pertur- 
bation theory, in which the S-matrix is given by Eq. (3.2.7) and Eq. (3.5.3) 
as 

where 

(The integrals over cl . . . c, should be understood to include sums over 
the spins and types of particles in these states as well as integrals over the 
three-mornenta of these particles.) Infrared divergences arise from (and 
only from) the vanishing of one or more of the energy denominators in 
this expression. 

However, not all vanishing energy denominators give rise to infrared 
divergences. A general intermediate state c may have Ec = E,, but usually 
this is just one point in the interior of the range of integration, and the 
integral over this range is rendered convergent by the prescription implied 



by the ie in the denominator. in  order for an intermediate state cm to 
produce an infrared divergence, it  is necessary that the energy E, = E,  
be reached at the endpoilab of the range of integration. This happens 
for instance if the first intermediate state cl in Eq. (13.4.2) consists of 
the particles in the initial state Q, with any of the massless particles in 
this state replaced with jers, consisting of any number of nearly parallel 
massless particles with a total momentum equal to that of the particle 
the jet replaces. In  this case, the endpoint at which E,, = E,  is the point 
in momentum space at which all of the massless particles in each jet 
are parallel. More generally, we can have any number of the massless 
particles in a replaced with jets of nearly parallel massless particles, plus 
any number of additional soft massless particles. The set of all such states 
will be called Dlu). (To be precise, we need to introduce a small angle O 
as well as a small energy A to define what we mean by 'nearly parallel' 
and 'soft'. We will not bother to show the dependence of the set Dju)  on O 
and A) The states in D(a) are 'dangerous', in the sense that the vanishing 
of the energy denominator E,  - Ec, at the endpoint can introduce an 
infrared divergence: the endpoint at which E,, = E, is the point at which 
all massless particles in each jet are parallel, and all soft massless partides 
have zero energy. 

Furthermore, if q,. . . c, are each in the set D(a) ,  then an intermediate 
state c,+l in D(a)  is also dangerous in the same sense. On the other hand, 
if some intermediate state c, is not in D{a),  then a later state ck with k > rn 
would not be dangerous even if it belonged to the set D(a) ,  because the 
configuration of hard particles or jets with three-momenta equal to those 
of particles in [he state a would be just an ordinary point inside the range 
of integration. In  exactly the same way, we may define a set of states D(b)  
in which one or more of the massless particles in the state b are replaced 
with jets of nearly parallel massless particles, each having the same total 
three-momentum as the particle it replaces, and we add any number of 
soft massless particles. An intermediate state c., is dangerous if i t  belongs 
to the set D(h)  and if the later states ck with k 3 rn all belong to D(b). 

To isolate the effects of these dangerous states we rewrite Eq. (13.4.2) 
in the form 

where g,, :Pb, and .Yg Ll.h are the projection operators respectively on D(a), 
D(b), and on all other states. (It is assumed here that none of the charged 
particles in A have momenta close to that of some charged particle in a, so 
that the sets D(a) and D(h) do not overlap.) Now, for A + 0 and O -+ 0, 
the dangerous intermediate states occupy so little phase space that they 
may be neglected wherever they do not lead to infrared divergences. The 
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power series (13.4.3) therefore becomes 

This would be exact if all of the projection operators YQqb between the 
leftmost and the rightmost were replaced with .Pu -t Yb + +$ and if 9% 
and Pa on the left and right were replaced with 4 +..Yo, but as remarked 
above this would have a negligible effect on the final result when A and 
El are sufficiently small. 

Eq. (13.4.4) may be written in a more compact form: 

where, for future use, we define R: and R? for general states a and /3 as: 

and Ts is the 'safe' operator*' 

All of the infrared divergences have now been isolated in the two operator 
factors i lk  and R:. 

To eliminate these infrared divergences it is now only necessary to note 
that if it were not for the projection operators on the dangerous states, the 
operators Q; and R; would be just the unitary operators that according to 
Eq. (3.1.16) convert free-particle states into 'out' or 'in' states, respectively. 
These operators are therefore unitary if confined to the subspaces D ( p )  
and D(a)  of states that would be dangerous for some given final state fl 
and some given initial state 1. That is, for general a and /? 

* *  lo ( R i b  we are wing  ihc Rcl (ha Thn is mlc~lated with Bh = Eo. and in (T$h we aR using 
the fact that the projection operators 9, make [Cl: vanish unless E,  is very clnse to E,. Also, 

the factors Ckb' and !2: in Eq. (13.4.5) make Bqc .d  = : Y $ U . ~  



The transition rate i s  therefore free qf i~lfrured divergences Lfsurnmed over 
the subspaces of states fhat would be dangerous for arty given Jinal arad 
initial srates /3 and ol: 

In order to be satisfied that this really does solve the general problem 
of infrared divergences, it is necessary to argue that it is only sums like 
that in Eq. (13.4.11) that are experimentally measurable. It is plausible 
that we should have to sum over dangerous final states in order to have 
a measurable transition rate, since it is not possible experimentally to 
distinguish an outgoing charged (or colored) massless particle from a jet 
of massless particles with nearly parallel momenta and the same total 
energy? together with an arbitrary number of very soft quanta, all with 
the same total charge (or color). The sum over initial states is more 
problematic. Presumably one may argue that truly massless particks are 
always produced as jets accompanied by an ensemble of soft quanta that 
is uniform within some volume of momentum space. However, to the best 
of my knowledge no one has given a complete demonstration that the 
sums of transition rates that are free of infrared divergences are the only 
ones that are experimentally measurable. 

This problem does not arise in quantum electrodynamics (with massive 
charged particles), where as we have seen it is only necessary to sum 
over final states in order to eliminate infrared divergences. The reason 
for this difference can be traced to the fact that in electrodynamics the 
states a, b, c, - - - are direct products of states (labelled with Greek letters) 
with fixed numbers of charged particles and hard photons, times states 
containing only soft photons having energy less than some small quantity 
A. Then for a reaction in which some set of soft photons f is produced in 
a reaction m -+ fi among charged particles and hard photons, Eq. (13.4.5) 
simplifies to 

where 0 denotes the soft photon vacuum, and are calculated as before, 
but in the reduced Hilbert space consisting only of soft photons, and with 
the interactions of these photons taken as the interaction Hamiltonian 
with all charged particles in the fixed states indicated by the arguments f l  
or a. Just as before, these operators are unitary in the 'dangerous' Hilbert 
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space 9 of soft photons, sot 
t +  C l%,A2 = IVS)~.I~ (~+(dWfl)Wfi) (a)) 00 

f f B  

without having to sum over initial states. 

13.5 Soft Photon Scatteringm 

In our treatment in this chapter of soft photon interactions, we have up 
to now considered only processes in which the soft photons are emitted 
or absorbed in a process r + which was going on anyway. It is also 
possible to make useful general statements about processes in which the 
process a -P /3 is trivial, and the soft photons play an essential part in 
producing an interesting reaction. We will consider here the simplest 
and most important example of this sort, the scattering of a soft photon 
from a massive particle of arbitrary type and spin, where a and f i  are 
single-particle states. The complication here is that the leading term in the 
soft photon scattering amplitude does not come from the pole terms, but 
from non-pole terms that are related to the pole terms by the condition 
of current conservation. 

The S-matrix for photon scattering may be put in the form 

where q and q' are the initial and final photon four-momenta, p and p' 
are the initial and final target four-momenta, and 1' are the initial and 
final photon helicities, ~,(q',  A') and cJq, i) are the corresponding photon 
polarization vectors, and CT and 0' are the initial and final target spin 
z-components, According to the theorem of Section 6.4, the amplitude 
M v p  may be expressed as 

The reason that we are now not encountering any factor (E/AIA like that in Eq. (13.3.11) is that 
we are here identifying the maximum energy E of the real soft photon states over which we are 
summing with the maximum energy A of the 'dangerous' soft photon states over which we sum 
in calculating fl*. 

' This section lies somewhat out of the book's main line oT development, and may be omitted in 
a first reading. 



where JP(x)  is the electromagnetic current, and the dots indicate possible 
'seagull' terms such as those in the theory of charged scalar fields in 
which the two photons interact at a single vertex instead of with separate 
currents. We now repeat the standard polology arguments described 
in Chapter 10 and already used in Section 13.1. Inserting a complete 
set of intermediate states between the current operators in Eq. j13,5.2), 
integrating over x and isolating the one-particle intermediate states gives 

where GJ' is the one-particle matrix element of the current 

and NV1 represents the contribution of states other than the one-particle 
state itself, plus any seagull terms. (Eq. (13.53) is to be understood in 
the sense of matrix multiplication, with spin indices not shown explicitly.) 
About N V p  we know very little, except that it does not have the singularity 
at q p  4 0 exhibited by the first two terms, and therefore may be expanded 
in powers of qt'. 

We now use the current conservation (or gauge invariance) conditions: 

q . G(P', P' - q) = [E(d) - UP' - q)l@hf,  P' - q) . (13.5.7) 

Applied to Eq. (13.5.3), these conditions yield the condition we need on 
jjr V l l  . 

4rNY'(y; 6,  P) = -G''(P'+ p' + q) @(P + q, p} + G'(P', p' - q) GV(p' - q, p) - 
(13.5.8) 

We also note that M " p  satisfies the 'crossing symmetry' condition 

M'I1(q ; p', p) = MJ"(p' - p - q ; p', p) (13.5.9) 

and since the pole terms in Eq. (13.5.3) evidently satisfy this condition, so 
also does N" : 

We will use these conditions to determine the first terms in the expansion 
of N" in powers of momenta. 

First we need to say something about the expansion of the one-particle 
current matrix elements Gfi(pr,p) in powers of the momenta p' and p. 
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Space inversion invariance (to the extent that it i s  applicable) tells us that 
the expansion of G' and G' (with i = I  ,2,3)  contain terms respectively of 
only even and odd order in the momenta, According to Eq. (10.6.3), the 
term in G:,,, of zeroth order in momenta is rd,!,,, where r is the particle 
charge. The current conservation condition then tells us that to second 
order in momenta, 

The terms in G of first order in momenta are thus given by e(p'+p)5,!,o/2m, 
plus a possible first-order term orthogonal to p' - p, which rotational 
invariance tells us must be proportional to (p' - p) x J,;,, where J is the 
familiar spin matrix of the charged particle. Summarizing these results, 
we have the expansions 

~'(p', p) = el  + quadratic , (13.5.11) 

e 1 @ 
G(P', PI = %(P' + p) + 7 J x (p' - p) + cubic , 

1 
where '1' is the unit spin matrix, and 'quadratic' and 'cubic' refer to the 
order of the neglected terms in powers of the small momenta p and p'. The 
coefficient p/ j in Eq. (133.12) is real because the current is Hermitian. 
With the coefficient written in this way (with j the spin of the charged 
particle), p is the quantity known as the magnetic moment of the particle. 

Now let us return to N"P, and consider the expansion of Eq. (13.5.8) in 
powers of the small momenta q", p and pf. Taking v = 0 in Eq. (13.5.8) 
shows that q , ~ u p  is at least quadratic in these small quantities. There is 
no constant vector orthogonal to q p ,  so must be at least of first order 
in small momenta. The crossing symmetry condition (1 3.5.10) then tells 
us that N" must also be at least of  first order in small momenta. Taking 
p = i in Eq. (13.5.8) and using Eq. (13.3.12) then tells us that 

eLq' q k ~ i k  = -- + quadratic 
m 

and hence 

e2 
IVik = - -S ik  + linear . (1 3.5.13) 

m 

Since Gi is at least of first order in the small momenta, so are the pole 
terms in Eq. (13.5.3) for G ' ~ ,  leaving us in zero order with only the non-pole 
term lVik : 

e 
M'(o;o,o) = IVik(0;0,0) = --ha . (23.5.14) 

m 



From this we can calculate the soft photon scattering cross-section. But 
there is no need for this calculation; now that we know that the photon 
scattering amplitude in the limit of zero momentum depends only on the 
target particle mass and charge, and is of second order in the charge, 
we can immediately use the results of m y  second-order calculation of the 
photon scattering cross-section for target particles of any gven spin, such 
as our result (8.7.42) for the differential photon scattering cross-section in 
quantum electrody narnics : 

We now see that this is a universal formula, valid in the low-energy limit 
for target particles of mass m and charge e and of arbitrary type and 
spin, even if these particles are composite and strongly interacting, like 
atomic nuclei. Gell-Mann and Goldberger and LOW$ have shown that 
these results may be extended to give the next-to-leading term in the soft 
photon scattering amplitude in terms of the target particle's mass, charge, 
and magnetic moment. 

13.6 The External Field Approximation* 

It is intuitively obvious that a heavy charged particle like the nucleus of 
an atom acts approximately like the source of a classical external field. In 
this section we will see how to justify this approximation, and will gain 
some idea of its limitations. 

Consider a Feynman diagram or a part of a Feynman diagram in which 
a heavy charged particle passing through the diagram from the initial to 
the final state emits N off-shell photons with four-momenta ql ,  q2,.  . . q~ 
and polarization indices p1,~2, - - p ~ .  The sum of all such graphs or 
subgraphs (not including the N photon propagators) ylelds an amplitude 

with the matrix element calculated including all interactions in which 
the heavy particle may participate, including strong nuclear forces. This 
amplitude has a multiple pole at q l , q l , .  q~ -+ 0, arising from terms in 

This section lies somewhat oul of the book's main line of dcvelopment, and may be omitted in 
a first reading. 
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the matrix elements of the product of currents in which the intermediate 
states consist of just the same heavy particle as in the initial and final states. 
This multiple pole dominates ( 1  3.6.1) when all components of q l ,  42, , , , q~ 
are small compared with all energies and momenta associated with the 
dynamics of the (perhaps composite) heavy particle. In this case the 
methods of Section 10.2 give" 

where 

and '+ permutations' indicates that we are to sum over all permutations 
of the N photons. For applications to atomic systems it is important 
to recognize that (13.6.1) applies for particles of arbitrary spin that have 
strong as well as electromagnetic interactions, like atomic nuclei. 

We also note that for particles of arbitrary spin and charge Ze, the 
matrix elements of the electric current between states of equal four- 
momenta are+ 

so that 

The important thing about Eq. (13.6.5) is that these matrices all commute, 

" In perturbation theory, the denominators come from the denominators of  the propagators: 

while the numerators of the propagators provide factors uuf that together with the photon 
emission vertex matrices yield the matrix elements (13.6.3). c matrix J p  differs from the matrix 
Gp of the previous section by a factor 2#. 

G I  

' This is most easily proved by first noling that in the Lorentz frame in which the particle is at 
resl, relational invariance requires that the matrix elements of the current have vanishing space 
components and a time component proportional Lo 5,~,#, with no other dependence on a or a'. 
The constant of proportionality is supplied by Eq. (10.6.3), and a Lorentz transformation then 
gives Eq. 113.6.4). 
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so their product can be factored out of the sum over permutations: 

To leading order in the q s  the delta function here may be written 

Fortunately, it turns out that the result of summing over permutations 
here is much simpler than the individual terms. For p . (ql  + . . - + q N )  = 0, 
we have 

+ permutations = ( 2 i n 1 ~ - ' 6 ( ~  . q l )  6 ( p  . q 2 )  . 6 0 ,  - qN-1) .  (13.6.8) 1 
For instance, for N = 2 this reads: 

The general result (13.6.8) can be obtained most easily as the Fourier 
transform of the identity 

Inserting Eq. (1 3.6.8) in Eq. (13.6.6) gives our final result for the amplitude 
(13.6.1) : 

This result applies to relativistic as well as slowly moving heavy particles, 
and can be used to derive the 'Weizsacker-Williams' approximation9 for 
charged-particle scattering. In  the special case of a non-relativistic heavy 
charged particle, with \ p (  < Eq. (13.6.9) further simplifies to 
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where ~1 is a unit time-like vector 

Now suppose that a single heavy non-relatjvistic particle of charge Z e  
with normalized momentum space wave function ~ , ( p )  appears in both 
the initial and final states. Using the Fourier representation of the delta 
function in Eq. (13.6.9), the matrix element of Y in this state is 

where v)(X) is the coordinate space wave function: 

V U ~ X )  - ( 2 ~ )  - 3 / 2  d3p LJ P l e @ X  ( 1  3.6.12) 

Because of the factorization in Eq. (13.6.11), the effect of including a 
heavy charged particle in this state is then the same as that of adding 
any numbers of a new kind of vertex in the momentum space Feynman 
rules, in which light Dirac particles of charge -e such as electrons interact 
with an external field, with each such vertex contributing to the overall 
amplitude a factort (now including the photon propagator and electron- 
photon vertex) 

where k and k f  are the initial and final electron four-momenta. The 
complete scattering amplitude must then be averaged over the heavy 
particle position X, with weight function C, y , ( ~ ) ~ 2 .  The factor (1 3.6.1 3) 
is the same as would be produced by a new term in the interaction 
Lagrangian 

- 
where J /  - - i e Y y W  is the electric current of the electrons, and d p  is an 
external vector potential 

The first factor here i s  the usual fxtor of i accompanying the constants in thc interaction 
Lagrangian of the heavy charged particle in (he Feynman rules. 



This, of course, is just the usual Coulomb potential: 

If there is more than one heavy charged particle (as in a molecule) we 
must express d p ( x )  as a sum of terms like (13.6.16), each with its own 
charge Ze and position X. 

It is useful to keep in mind what diagrams we are summing in using the 
external field approximation. Consider the interaction of a single electron 
(relativistic or non-relativistic) with a single heavy charged particle such 
as a proton or deuteron. I f  we ignore all other interactions, then the 
Feynman diagrams for the scattering of the electron due to its interaction 
with the external field are just those with any number of insertions of 
the electron-external field vertex (1 3.614) in the electron line. (See Figure 
13.4.) But as shown by the sum over permutations in Eq. (f3.6.2), these 
diagrams in the external field approximation come from diagrams in the 
underlying theory in which the photons attached to the electron line are 
attached to the heavy charged particle line in all possible orders. (See 
Figure 13.5.) The 'uncrossed ladder' diagrams (labelled L) of Figure 
13.5 do not dominate this sum unless the electron as well as the heavy 
charged particle is non-relativistic. (These diagrams include contributions 
from terms in old-fashioned perturbation theory whose intermediate states 
contain the same particles as the initial and final states, leading to small 
energy denominators when the electron and heavy charged particle are 
both non-relativistic, while all other diagrams of Figure 13.5 correspond 
to intermediate states with either extra photons, electron-positron pairs, 
or heavy particle-antiparticle pairs, which are suppressed by large energy 
denominators.) The uncrossed ladders can be summed by solving an 
integral equation, known as the Bethe-Sadpeier equation,'0 but there is no 
rationale for selecting out this subset of diagrams unless both particles are 
non-relativistic, in which case the Bethe-Salpeter equation just reduces 
to the ordinary non-relativistic Schrodinger equation, plus relativistic 
corrections associated with the spin-orbit coupling that can be treated as 
small perturbations. It must be said that the theory of relativistic effects 
and radiative corrections in bound states is not yet in entirely satisfactory 
shape. 

In the derivation of the external field (13.616) we evaluated the inter- 
action of the heavy charged particle with the electromagnetic field only to 
leading order in the photon momentum. There are corrections of higher 
order in the photon momentum arising from the heavy particle's magnetic 
dipole moment, electric quadrupole moment, etc. Also, of course, there 
are radiative corrections arising from Feynman diagrams beyond those of 
Figure 13.4, such as diagrams in which photons are emitted and absorbed 



Figure 13.4. Diagrams 

The External Field Approxi~nation 561 

+ . . .  

for the scattering of an  electron by an external electro- 
magnetic field. Here straight lines represent the electron; wavy lines ending in 
crosses represent its interaction with an external field. 

Figure 13.5. Diagrams for the scattering of an electron by a heavy, charged 
target particle, which in the limit of large target mass yield the same result as the 
diagrams of Figure 13.4. Here the single straight line is the electron; the double 
straight line is the heavy target particle; and wavy lines are virtual photons. 
Diagrams marked 'L' are called uncrossed ladder graphs; they dominate the sum 
when the electron as well as the target particle is non-relativistic. 
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from the electron line or electron loops are inserted into photon lines. We 
shall see in the next chapter that in bound states the diagrams of Figure 
13.4 must be included to all orders, but all other corrections of higher 
order in photon momenta or e may be included as perturbations to these 
diagrams. 

Problems 

1. Consider the process e+ + e- -+ nf + 71- in the center-of-mass frame 
at an energy of i GeV and scattering angle of 90". Suppose that 
by measuring the energies of the final pions we determine that an 
energy of not more than E r  << 1 GeV is emitted in soft photons. 
How does the reaction rate depend on Er? 

2. Consider a massless spinless particle described by a scalar field 4, 
whose interaction Lagrangian density is of the form $ ( x ) J ( x ) ,  where 
J ( x )  involves only massive particle fields. Derive a formula for the 
rate of emission of arbitrary numbers of soft scalar particles in a 
process a + p, with these soft scalars having a total energy less than 
some small quantity Er.  Include radiative corrections due to soft 
scalars with energy less than some small quantity A. 

3. Derive a formula for the next term beyond Eq. (1 3.5.1 4) for low- 
energy photon scattering on an arbitrary target. 

4. Suppose that a spin one particle of very small mass m is described by 
a vector field Vprx), which couples only to a much heavier fermion 
described by a Dirac field ~ ( x ) ,  with an interaction Lagrangian 
density of the form g Vhpy,,y- Suppose that the heavy fermion 
normally decays into other particles that have no interaction with 
V p ,  releasing an energy W much greater than m. Consider such a 
decay process, but where an additional VP particle is emitted along 
with the other decay products, with the vector particle energy less 
than an upper limit E ,  in the range W >> E >> m. How does the rate 
of this process depend on E and m? Ignore radiative corrections. 

5, Prove that Eq. (13.6.8) holds when p . ( q t  + . . . q N )  = 0. 
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Bound States in External Fields 

In our calculations of radiative corrections in Chapter 11 we went just 
m e  step beyond the lowest order in perturbation theory. However, there 
is a very important class of problems where even the simplest calculation 
requires that from the begnning we consider classes of Feynman diagrams 
of arbitrarily high order in coupling constants like e. These problems are 
those involving bound states - in electrodynamics, either ordinary atoms 
and molecules, or such exotic atoms as positronium or muonium. 

It is easy to see that such problems necessarily involve a breakdown 
of ordinary perturbation theory. Consider for instance the amplitude for 
electron-proton scattering as a function of the center-of-mass energy E. 
As shown in Section 10.3, the existence of a bound state like the ground 
state of hydrogen implies the existence of a pole in this amplitude at 
E = 3 + me- 13.6 eV. However, no single term in the perturbation series 
for electron-proton scattering has such a pole. The pole therefore can only 
arise from a divergence of the sum over all diagrams at center-of-mass 
energies near m, + me. 

The reason for this divergence of the perturbation series is also easy to 
see, especially if for the moment we consider the time-ordered diagrams of 
old-fashioned perturbation theory instead of Feynman diagrams. Suppose 
that in the center-of-mass system the electron and proton both have 
momenta of magnitude q << me, and consider an intermediate state in 
which the electron and proton momenta are different but also of order q .  
The energy denominator factor contributed by this state will be of order 
[q2/m,J-'. Each such state will also contribute a matrix element of the 
Coulomb interaction of order e 2 / q 2  (the Fourier transform of e2/r), and 
the corresponding momentum space integration will contribute a factor 
of order q3. Putting this together, we see that each additional Coulomb 
interaction contributes an overall factor of order 

Thlrs the perturbation theory should break down when q is less than or 
of the order of e2m,, or in other words when the kinetic and potential 
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energies, which are of order q2/nte, are no larger than about e4%, which, 
of course, is of the order of the binding energy of hydrogen. 

Our problem here is to learn how to use perturbation theory to evaluate 
radiative corrections in bound-state problems, summing to all orders those 
diagrams that need to be summed to all orders, and keeping only a finite 
number of those that don't. 

1 4  The Dirac Equation 

We shall limit ourselves in this chapter to problems in which bound states 
arise because of the Coulomb interaction of electrons (or muons) with 
heavy charged particles such as atomic nuclei. As shown in Section 13.6, 
this interaction may be taken into account by adding to the interaction 
Lagrangian a term* representing the effects of a c-number external vector 
potential d p ( x )  : 

which is obtained by replacing the quantum vector potential Ap with 
Ap + d p  in the interaction part of Eq. (1 1.1.6). For instance, for a single 
heavy particle of charge Z e  at the origin, 

It is the interaction (14.1.1) that must be taken into account to all orders. 
In this section we will consider the theory with only this interaction, 
leaving radiative corrections to subsequent sections. 

Physicists learn in kindergarten to approach this sort of problem by 
solving the wave equation of Dirac in the presence of the external field. It 
might seem unnecessary to derive this equation here, but as emphasized 
in Chapter 1, Dirac's original motivation for this equation as a sort of 
relativistic Schrijdinger equation does not stand up to inspection. Also, in 
the course of our derivation we will discover the normalization conditions 
that have to be imposed on the solutions of the Dirac equation, which 
seemed somewhat ad hoc in Dirac's approach. The solutions of the Dirac 
equation discussed here will be important ingredients in our treatment of 
radiative corrections in the next section. 

- 

* In this chapter we return to the- use of an upper case Y to denote the electron field in the 
Heisenberg picture, reserving a lower case w for the Dirac field with time-dependence governed 
solely by the c-number external field dyx). 
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We will work here in a version of the Heisenberg picture, in which the 
time-dependence of operators i s  determined by a Hamiltonian including 
the external field interaction ( 14.1.1), but no other interactions. The 
electron field y(x) in this picture satisfies the field equation 

This is not the Dirac equation in the original sense of ~ i r a c , '  because 
y ( x )  here is not a c-number wave function but a quantum operator. The 
c-number Dirac wave funcrions are defined by 

where Oh; are a complete orthonormal set of state-vectors, with Do the 
vacuum. It follows immediately from Eq. (14.1.3) that these functions 
satisfy the homogeneous Dirac equation 

We can also derive a normalization condition from the equal-time anti- 
commutation relations for the Dirac 'field. These are unaffected by the 
interaction (14.1.1), and therefore take the same form as for the free 
fields : 

Taking the vacuum expectation value and inserting a sum over the states 
aN, we find 

it being understood that the sum over N includes an integral over contin- 
uum states as well as a sum over any discrete bound states. 

We are chiefly interested in the case of a time-independent external 
field, like (14.1.2). In such cases, the states $N may be taken as eigenstates 
of the Hamiltonian (including the interaction ( l4. l . l ))  with energies E N .  
Time-translation invariance then tells us that the uN{x) and uN(xj have 
the time-dependence : 

The homogeneous Dirac equations (1 4.1 -6 )  then become 
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The minus sign on the right-hand side of Eq. (14.1.11) shows that the 
VN are the famous 'negative-energy' solutions of Dirac. As shown by 
Eq. (14.1.8), these negative-energy solutions are needed to make up a 
complete set of wave functions. Of course, for moderate external fields 
there are no negative-energy states in the theory, so all EN are positive, 
but there i s  still an important difference between the states with non- 
vanishing u~ or v~ : the definitions (14.1.4) and (14.1.5) show that a state 
can have UN # 0 or VN f 0 only if it has charge -e or +e, respectively. 
It is in this sense that negative-energy solutions of the Dirac equation 
have something to do with the existence of antiparticles. However, this 
argument has nothing to do with the details of the Dirac equation, or 
even with the spin of the electron. 

From the Dirac wave equations (14.1.10) and (1 4.1.1 1) we can easily see 
that wave functions of different energy are orthogonal. That is, 

so if i x 2  (uh igoy uM) remains bounded as 1x1 + 0 and 1x1 -t ca, then 

With similar boundary conditions for the v ~ ,  we find in the same way that 

Taking N = M, Eqs. (14.1.12) and (14.1.13) tell us that the energies are all 
real. Dropping the complex conjugation of EJW in Eqs. (lAl.l2)-(l4.l.l4), 
we see that us of different energy are orthogonal, vs of different energy are 
orthogonal, and (as long as the potential is not strong enough to produce 
negative energy states) all us are orthogonal to all us .  By a suitable choice 
of the discrete quantum numbers that characterize the states along with 
the energy, we can then always arrange that 
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Multiplying Eq. (14.1.8) on the right with uM{y) or vM(y), we find then 
that these wave functions must satisfy the normalization conditions 

where dHIW is a product of Kronecker deltas and momentum space delta 
functions, with normalization adapted to that used in defining &, in such 
a way that '& dNM = 1. These normalization conditions have nothing 
directly to do with any probabilistic interpretation of the Dirac wave 
functions, but arise instead from the anticommutation relations (l4.l.7) 
for the fields. 

Let us now specialize to the case of a pure electrostatic external field 
with A = 0. In our standard representation of the Dirac matrices, we have 

where a is the usual three-vector of 2 x 2 Pauli matrices, and '1' and '0' 
here are the 2 x 2 unit and zero matrices. We introduce two-component 
wave functions f~ and g~ by setting 

The energy eigenvalue condition (14.1.10) then takes the form: 

In the non-relativistic case where e d o r  = ZGC << 1 the binding energy 
m - E N  is of order ~ ~ a ~ r n ,  while the gradient operator is of the order 
of Zam, so g~ is smaller than fN by a factor of order Zcc. (To find the 
positron wave functions YN we replace EN everywhere by - E N ,  SO in this 
case f N  is smaller than g~ by the same factor.) We shall return to this 
non-relativistic case at the end of this section. 

Physical states may be classified as even or odd under space inversion: 

where is a sign factor, *I.  Recall that with the intrinsic parity of the 
electron defined to be +1, the Dirac field has the space-inversion property 

so Eqs. (14.1.4) and (14.1.22) show that the Dirac wave functions satisfy 
the parity condition 
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Note that the parity of the state is the same as the parity of f N ( x ) ,  not 
m (XI- 

Where the potential do is rotationally invariant, the solutions of the 
wave equations here may be classified according to their total angular 
momentum j and parity q. For a given j, the components f and g 
may be expanded in spherical harmonics with orbital angular momentum 

1 1 G = j - t  and 8 = j- i, but for a definite parity q = (-1 jjrr, Eqs. (14.1.24) 
show that we can only have L = j T f in f and .t = j f 4 in g .  The 
usual rules of angular-momentum addition then show that for a state of 
total angular momentum j ,  total angular-momentum z-component p, and 
parity ( - l y~ : ,  the 'large' two-component wave function f has the form 

where C and Y are the usual Clebsch-Gordan coefficients and spherical 
harmoni~s.~ Also, given any wave function of definite total angular mo- 
mentum and parity we can construct another wave function with the same 
j and p but opposite parity by applying the operator a 2, so the 'small' 
components may be put in the form 

It is conventional to define the orbital angular momentum G of the state 
as the orbital angular momentum of the 'large' components f (x), 

so that the parity is always (-I){. 
Inserting Eqs. (14.1.25) and (14.1.26) in Eqs. ( 14.1 -20) and (1 4.1.21) 

yields the coupled differential equations 

where for parity q = (- l)jTi, 

k = f ( j +  i ) .  
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Let us now concentrate on the simple Coulomb field (14.1.2), for which 
e.dO = Z r / r .  The treatment of the Dirac equation in this case3 is familiar, 
so it will be summarized briefly here just for completeness. It is easy to 
see that the solutions near the origin ga as rs-I, with s2 = k2 - z ~ c ~ ~ .  
(Note that k 2  2 1, SO the exponent s is real for Z a  5 1.) We must reject 
the solutions with s < 0 as being inconsistent with the normalization 
condition (14.1.18). The condition that the wave functions do not blow 
up for r + then fixes the allowed values of the energy eigenvalues: 

where n is a 'principal quantum number' with 

It is noteworthy that these energies do not depend on the parity or f, but 
only on a and j. For each n and j there are two solutjons, corresponding to 
the two signs of k or the two possible parities, except that for n = j + we 

, I  
only have k > 0 and parity ( - l ) j u 7 ,  so that C = j - f . With Eq. (14.1.32). 
this is the same as the familiar non-relativistic restriction that d 5 n - I. 

light atoms with Zcl << 1, Eq. (14.1.3 1 ) yields the power series 

The first two terms, of course, just represent the rest energy and the 
binding energy as given by the non-relativistic Schr~dinger equation. The 
leading term that depends on j as well as n is the third term, the first 
relativistic correction. For n = 1 there is only one value of the total 
angular momentum, j = f, and since here n = j + i there is also only one 

. I 
parity, (- 111-7 = + 1, corresponding to l = 0 . It is therefore difficult to 
see the effects of the relativistic corrections in Eq. (14.133) in the rt = I 
states of hydrogenic atoms, though as we shall see in Section 14.3, this 
has recently become possible. On the other hand, for n = 2 we have a 

1 
j = state with both parities (k, 2s1/2 and 2plj2) as well as a 2p3,t2 state 
with j = 5 and negative parity. E q  (14-1.33) gives the splitting between 
the p states in hydrogen as 

Such relativistic line splitting is known as the .fine structure of the atomic 
state. From the beginning it was known that this prediction is in good 
agreement with the observed fine structure. On the other hand, the Dirac 
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equation does not yield any energy difference in the 2s1,2 and 2p1,2 states, 
so this is a good place to look for the effects of further corrections, to be 
considered in Section 14.3. 

Before closing this section we shall consider the approximate forms for 
the wave functions and matrix elements in the non-relativistic case for a 
general electrostatic potential .do. (For a Coulomb potential, this is the 
limit Z r  < 1.) Since here EN + pn E 2m >> e.d0l ,  the 'small' components 
of the electron wave function are given approximately in terms of the 
large components by 

Eq. (1 4.1.21 ) then becomes just the non-relativistic Schrodinger equation 

Since there is no longer any coupling between spin and orbital degrees of 
freedom in the equation for f N ,  we may find a complete set of solutions 
of this equation in the form 

where ;CA~ is a two-component constant spinor, and yN(x )  is an ordinary 
one-component solution of the Schrodinger equation. However, we often 
work with states that have definite values of the total angular momentum 
j, for which f ,v is (for non-vanishing orbital angular momentum) a sum 
of such terms. 

In the non-relativistic approximation, the four-component Dirac wave 
function takes the form 

and Eq. (14.1.18) gives the normalization condition 

where 

In relating matrix elements in an external field to free-particle matrix 
elements, it is useful to note that the momentum space wave function in 
an energy eigenstate N may be written 
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where u(p, v) is the free-particle Dirac spinor 

and fN(p) i s  the Fourier transform of the two-component Schrodinger 
wave function 

* * * 
In closing, as an aid in calculating the effects of various perturbations, 

we note that the leading terms in the electron matrix elements of the 
sixteen independent 4 x 4 matrices are 

14.2 Radiative Corrections in External Fields 

We now consider radiative corrections to the results of the previous section, 
due to the interaction of electrons with the quantum eIectromagnetic field 
as well as the external field of the heavy charged particles. These radiative 
corrections can be calculated using Feynman diagrams of the usual sort, 
with the whole effect of the external field being to modify the propagator 
of the eIectron field in the presence of the external electromagnetic field 
(and to supply the external-field-dependent renormalization counterterms 
shown in Eq. (14.1.1)). To be specific, the effect of inserting any number 



14.2 Radiative Corrections in External Fields 573 

of vertices corresponding to the first term of the interaction (14.1.1) in an 
internal electron line of any graph is to replace the bare coordinate space 
propagator -iS(x - y )  with a corrected propagator 

where as usual 

(We must write Sd as a function of x and y rather than of x - y, because 
the external field invalidates translation invariance.) The theorem proved 
in Section 6.4 tells us that Eq. (14.2.1) is the same as 

with the subscript d on the right indicating that the vacuum state @o 
and electron field y(x j  are to be defined in a Heisenberg picture in which 
the only interaction taken into account i s  the interaction (14.1.1) with 
the external field. Inserting a complete set of intermediate states @N in 
Eq. (14.2.2) yields an expression for the propagator in terms of the Dirac 
wave functions t l ~  and I IN introduced in the previous section 

It is also possible to obtain the propagator (14.2.2) as the solution of the 
inhomogeneonas Dimc equation : 

which follows from the field equations (14.1.3) and anticommutation re- 
lations (14.1.71, or formally from the perturbation series (14.2.1). Also 
Eq. (14.2.3) tells us that the propagator satisfies boundary conditions: 
its Fourier decomposition contains only 'positive frequency terms' pro- 
portional to exp(-i~(xO - y"} with E > 0 for x0 - yo + w, and only 
'negative frequency terms' proportional to exp(+i~(xo - with E > 0 
for d' -yo -m. The inhomogeneous Dirac equation with these bound- 
ary conditions may be used to obtain a numerical solution4 for this 
propagator even in cases where the external field is too strong to allow the 
use of the perturbation series (14.2.1). Once the propagator Sd(x,y) has 
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been calculated, the amplitudes for scattering in an external field can be 
calculated using ordinary Feynman diagrams, but with Sd(x,  y )  in place 
of S(x - y )  (and with .&-dependent renormalization counterterms inserted 
where appropriate). 

Now k t  us see how to use the perturbation series with this corrected 
propagator to calculate the shifts of bound-state energy levels. Consider 
the full electron propagator S,>(x, y), involving interactions of the electron 
with the quantum electromagnetic field as well as the external field: 

with Y(x)  the electron field in a Heisenberg picture including all inter- 
actions, and Slo the vacuum eigenstate of the full Hamiltonian. For a 
time-independent external potential we can find a complete orthonormal 
set S Z N  of eigenstates of the full Hamiltonian with energies EL. Inserting 
a sum over these states in the operator product in Eq. (14.2.5), we find 

where 

(The sum includes an integral over continuum states as well as a sum over 
discrete bound states. As before, U N  and VN are non-zero only if the state 
flN has charge -e or +e, respectively.) We can redefine the propagator as 
a function of energy rather than time 

(Time-translation invariance dictates that Sd(x,  y) is a function of xo -yo 
but not of xo and yo separately.) From Eq. (14.2.6) we see that 

In particular, Sh(x, y ; E )  has a pole at any electron bound-state energy, 
and also at the negative of any positron bound-state energy. (Of course, 
positrons do not have bound states in the Coulomb field of an ordinary 
positively charged nucleus.) 
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Let us now consider the lowest-order radiative corrections to the com- 
plete propagator. The Feynman rules here give the complete propagator 
to this order as S$ = Sd -t 6 Z d ,  with a correction term 

where iE> is the sum of all one-loop diagrams with one incoming and 
one outgoing electron line (excluding final electron propagators) calculated 
using Sd(x,  y)  in place of S(x - y) for internal electron lines, plus second- 
order renormalization counterterms. Using energy variables in place of 
time variables, this is 

where 

The effect of these radiative corrections is tu change the wave functions 
to UN = UN + 6 u N  and VN = v~ -1- S G ~  and the bound-state energies to 
EL = EN + 6 EN, SO that the complete propagator is 

(We are dropping the ie terms because we are now not taking E to lie in the 
continuum of scattering states.) We see that the shift dEb~ of an electron 
bound-state energy is given by the coefficient of -~)~(x)~p~(y) / (E , j i  - E ) ~  
in the complete propagator. To calculate this, we note that Eq. (14.2.3) 
gives 

Inserting this in Eq. (14.2.12) gives 
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Figure 14.1. Lowest-order Feynman diagrams for the electron self-energy func- 
tion Z>(x,y) in the presence of an external field. Here double straight lines 
represent electron propagators Sd that include effects of the external field; single 
straight lines are the incoming and outgoing electron lines; wavy lines are virtual 
photons; the cross represents renormalization counterterms. 

where the dots denote additional terms involving at least one negative- 
energy pole. Comparing the coefficients of (EN - E ) - ~  here and in 
Eq. (14.2.14), we find 

The e s ~  are solutions of the homogeneous Dirac equation satisfying the 
normalization condition j 14.1.81, so this is very much like ordinary first- 
order perturbation theory, but with -Em in place of a perturbation to the 
Hamiltonian. 

Generally SEN turns out to be complex. This is simply a consequence 
of the instability of atomic energy levels to radiative decay to lower levels; 
we saw in Chapter 3 that an unstable state of energy E and decay rate 

produces poles in various amplitudes at the complex energy E - ir/2. 
The imagmary part of Eq. (14.2.17) therefore equals -r/2, while its real 
part gves the energy shift. 

The Feynman diagrams for E* are shown in Figure 14.1. (Note that 
there are new photon tadpole diagrams here because the external field 
breaks the Lorentz invariance and charge-conjugation invariance that 
forbids such diagrams in the ordinary Feynman rules.) Application of the 
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position space Feynman rules to these diagrams gives 

with the renormalization constants (Z2 - I) ,  (Z3  - I), and dm calculated 
to second order in e. (The minus sign in the second term is the usual one 
that accompanies closed fermion loops.) 

For strong external fields with Z a  of order unity it is necessary to 
calculate the configuration space electron propagator Sd and the integrals 
in Eqs. (14.2.17) and (14.2.18) n~rner ica l l~ .~  However, for weak fields we 
can use the f i r s t  few terms of the series (14.2.1) in Eq. (14.2.18) and 
calculate these integrals in closed form. For this purpose, it is more 
convenient to work in momentum space, defining: 

(We are here committing the impropriety of using the same symbol for a 
function and its Fourier transform, leaving it to the displayed arguments 
of the functions to indicate which is which.) Then Eqs. (14.2.1) and 
(14.2.18) become 
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and 

Because the external field is time-independent, S-pl(x, y) and Z,>(x, y)  can 
depend on xo and only through the difference xo - y o ,  so S , d ( p P , p )  and 
B>(p', p) as well as .#((p' - p )  must be proportional to 6 (p" - : 

y&', P )  = 6b"' - p0P>(p', P; PO) (1 4.2.27) 

The energy shift is then given by Eqs. (14.2.17) and (14.2.13) as 

with Z>(pt, p; E N )  given by Eqs. (14.2.23), {14.2.24), and (14.2.27). This 
is the master formula we shall use in the next section to calculate energy 
shifts in weak external fields, 

14.3 The Lamb Shift in Light Atoms 

Let us now consider radiative corrections to the energy levels of a non- 
relativistic electron in a general electrostatic field, such as an electron 
in the Coulomb field of a light nucleus with Z ~ A  << 1. It is natural in 
this limit to treat the Coulomb field as a weak perturbation, but we will 
see that this would lead to an infrared divergence, related to that found 
in Section 11.3. The infrared divergence is really fictitious, because the 
four-momenta p, E N  and p', E N  are not on the electron mass shell, but it 
does force us to proceed with some care. 

Usually this problem is dealt with by dividing the integral over virtual 
photon energies into a low-energy range, within which we can treat the 
electrons nun-relativistically but must include effects to all orders in the 
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external field, and a high-energy range, within which we have to include 
relativistic effects but may include only effects of lowest order in the 
external field. Instead, we shall here introduce a fictitious photon mass p, 
chosen to be much larger than typical electron kinetic energies, but much 
less than typical electron momenta. For a Coulomb field, this amounts to 
the requirement that 

We write the photon propagator in the first two terms of Eq. (14.2.24) 
(including the formulas for the counterterms 2 2  - I and Z26na) in the 
form 

The energy shift is correspondingly a sum of two terms, a 'high-energy' 
and a 'low-energy' term: The high-energy term is calculated by using the 
first term in the photon propagator (14.3.2) in the first three terms in 
Eq. (14.2.24), and adding the result to the last two terms (the vacuum 
polarization terms) in Eq. (14.2.24) which are not infrared divergent 
anyway; the low-energy term is calculated using the second term in 
Eq. (14.3.2) in the first three terms of Eq. (14.2.24). One advantage of 
this procedure is that we shall be able to use the results of the relativistic 
calculations of Sections 11.3 and 1 1.4 directly, without the rather tricky 
conversion from a photon mass to an infrared energy cutoff. Of course, in 
the end we shall have to check that the dependence on the photon mass y 
in the high-energy and low-energy contributions to the energy shift cancel, 
leaving the total energy shift pindependent. 

A High-Energy Term 

Because p is taken much Iarger than the atomic binding energies we can 
here keep only terms of lowest order in the external field. The one-loop ra- 
diative correction to atomic energy levels in a general time-independent ex- 
ternal vector potential d ~ ( x )  is given in momentum space by Eq. (14.2.281, 
with the self-energy insertion &(p', p) given by Eqs. (14.2.24) and (14.2.23). 
The terms of zeroth order in the external field simply cancel: the 6m term 
cancels the first term with .d = 0; the 2 3  - 1 term cancels the third term 
with .d = 0; and the Zz - 1 terms vanish because u ( p )  satisfies the Dirac 
equation, The term in &(pt,p) that i s  o f  first order in , d p  may be put in 
the form 
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with 

Comparison of the first two terms with Eqs. (1 1.3.1) and (11.3.8) and 
the second two terms with Eqs. (11.3.9), (11.2.3), and (11.2.15) reveals 
that r:(pf, p )  is the complete one-loop vertex function, including vacuum 
polarization and all counterterms, whose mass-shell matrix elements we 
have already calculated in Section 11.3. Using Eqs. (14.2.26) and (14.2.25), 
this contribution to the energy shift (14.2.28) is given by 

(This could have been guessed at, by simply replacing the 71' in the 
interaction of the electron with the external field with I?:.) As discussed 
in Section 14.1, because Zo! < 1 we can approximate the Dirac wave 
function u~ in Eq. (14.3.5) as 

where fnr is the non-relativistic two-component wave function of an 
electron in the external Coulomb field, and u(p,o) is the four-component 
normalized solution of the momentum space Dirac equation 

for spin z-component a. Since uN(p) approximately satisfies the free- 
particle Dirac equation, Eq. (10.6.15) gives the general form of the matrix 
element of ry as 



14.3 The Lamb Sh$ in Light Atoms 58 1 

where q = p' - p. The wave functions uNjp) fall off very rapidly for 
Ip( 2+ Zam,, so we only need F ~ ( ~ * )  and ~ ~ ( ~ ~ j  in the limit l q 2 1  m:. In 
this limit, Eqs. (11.3.31), (10.6.183, and (11.3.16) give 

Let us first consider the contribution of the F1 term in Eq. (14.3.81, 
which makes by far the largest contribution to the energy shift, and raises 
the most interesting problems in its calculation. For a pure electrostatic 
field with ,d = 0, Eqs. (14.3.5), (14.3.8), and (14.3.9) g v e  

To calculate this contribution, we may use the leading term in the non- 
relativistic matrix element ( 14.1.41), and find 

or in position space 

In particular, for the Coulomb potential (14.1.2), we have e v 2 d o ( x )  = 
- - ~ e ~ S ~ ( x ) ,  and the label N consists of a principal quantum number n 
and angular-momentum quantum numbers j, rn, $, while (1 1.2.41) gives 
LfHjd(Q)l0  = 2(Z  X ~ , / I I ) ' / ~ ~ ~ , ~ ~ , ~ / , J ' % -  The energy shift (14.3.11) is then 

(The lack of dependence of 6 E  on the total angular momentum z- 
component rn is guaranteed by rotational invariance.) The term 5 in 
the brackets in Eqs. (14.3.12) and (14.3.13) arises from vacuum polariza- 
tion, and yields just the energy shift calculated somewhat heuristically in 
Section 1 1.2. 
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Before going on to calculate the magnetic and low-energy contributions 
to the energy shift, it is worth noting that the result we have obtained so 
far yields a fair order-of- magnitude estimate of the Lamb shift without 
further work. We can anticipate that the low-energy terms will contain a 
term proportional to ln(p/B), with a coefficient such as to cancel the p- 
dependence in Eq. (1 4.3.12). The constant B here is an energy which must 
be included to make the argument of the logarithm dimensionless; since it 
is the binding of the electron in the atom that will eventually provide our 
infrared cutoff, we may guess that B is 
of order B -. (~a) ' rn , .  The total energy 
quantum number n and orbital angular 
form 

a typical atomic binding energy, 
shift in a state N with principal 
momentum G is therefore of the 

For the 2s state of hydrogen, the logarithmic term alone gives 

As we shall see, the 'O(1)' terms in Eq. (14.3.15) will lower the total energy 
shift by about 25%. 

Now let us consider the contribution of the F2 term in the matrix 
element of r';, which as we saw in Section 10.6 may be interpreted as 
a radiative correction to the magnetic moment of the electron. Using 
Eqs. (14.3.10), (14.3.81, and (14.3.6) in Eq. (14.3-51, we find that this term 
gives an energy shift 

or in position space 

where 

Fpv(x) = d j l d t 8  (x) - &dJx) . 
For a pure electrostatic field with ,d = 0, this is 

In the non-relativistic limit Z r  < 1, we can use the approximate result 



(14.1.43), which here reads 

Using this in Eq. (14.3.8) and integrating by parts, this part of the energy 
shift is 

Combining Eqs. ( 1  4.3.12) and (14.3.2 1) gives the total high-energy contri- 
bution to the energy shift in an arbitrary electrostatic potential ,do: 

B Low-Energy Term 

The low-energy contribution to the energy shift is obtained from the 
first three terms in Eq. (14.2.241, making the replacement in the photon 
propagator 

This substitution will eventually serve to cut off the integral over com- 
ponents of the photon four-momentum k a t  values of order p, but it is 
not possible to see this until we carefully take mass renormalization into 
account, so we shall defer making any non-relativistic approximations 
until then. Also, we are now including photon momenta as small or 
smaller than the binding energies of the atomic states, so we must treat 
the electrostatic forces responsible for this binding to all orders. 

Instead of working with the momentum space formula (14.2.24), it will 
be convenient to return to the configuration space formula (142.18). This 
zives the low- energy contribution to the electron self-energy function as 
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where D(x  - y; p) is the modified photon propagator 

and the counterterms Z&)- 1 and Sm(p) are calculated using this modified 
propagator. Converting from time to energy variables, the low-energy 
contribution to the function (14.2.13) is then 

- &(p)  - 1) (y . V + i y O ~  + i e y v d ,  + m,) d3(x - y) 

The low-energy contribution to the energy shift is then given by 
Eq. (14.2.17) as 

-6m ( ) d3x iiN(x)uN(x) . J (14.3.27) 

Note that the terms proportional to Zz(p) - 1 have dropped out because 
the Dirac wave function u N ( x )  satisfies the Dirac equation Eq. (I4.l.10). 
For the electron propagator in the presence of the Coulomb field, we use 
Eq. (14.2- 15) : 

with the sums in the first and second terms running over all one-electron 
and one-positron states, respectively. The ko integrals can be done most 
easily by closing the contour of integration with a large semi-circle in the 
lower half-plane in the first term and in the upper half-plane in the second 
term : 
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and Iikewise if p is replaced with zero. The energy shift (14.3.27) now 
becomes 

'' / d 3 k  [6 EN] low energy = -- 
212lty M 

where 

(Of course, the 'sum' over M in Eq. (14.3.28) receives contributions only 
from electron states in the first term and positron states in the second 
term.) Eq. (14.3.28) could have been derived more directly from old- 
fashioned perturbation theory; the energy denominators EM - EN + u 
and E M  + EN -t w are the result of subtracting the energy EN of the 
initial state from the energy of an intermediate state consisting of either 
an electron of energy EM and a photon of energy w, or else a positron 
of energy EM, a photon of energy o, and both the final and the initial 
electron. (See Figure 14.2.) 

Before making any approximations to Eq. (14.3.28), it will be convenient 
to express the time components of the matrix elements TLN and pa,  
in terms of the corresponding space components, using relations* derived 

Eq. {14,3.32) is derived in the same way. 
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Figure 14.2. Old-fashioned perturbation theory diagrams for the low-energy part 
of the electron energy shift. Here solid lines are electrons; wavy lines are photons; 
the dashed line cuts through particle lines corresponding to the immediate states 
appearing in the first two terms in (14.3.28) 

from the conservation of the electric current: 

ki G d k )  = ( E N  - E M ) ~ ~ N ( ~ )  , (14.3.31) 

Furthermore, by using the completeness relation (14.1.8) it is straightfor- 
ward to show that: 

the last step following from the parity condition (14.1.23). In this way, 
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Eq. (14.3.28) can be rewritten 

+ $p - Sm ( ) d x WV(X)W(X) - , (14.3.35) 

In the next-to-last term, we have used the elementary integral 

So far, this has been an exact rewriting of Eq. (14.3.28). We must now 
invoke several approximations. First, consider mass renormaliza tion. We 
have already calculated 6 m , ( p )  to order a! in Section 11.4; it is 

Although in Section 11.4 we regarded p as a regulator mass, to be taken 
much larger than m,, we can just as we11 use Eq+ (14.3.36) to provide a 
value for dm&) in the case that interests us here, p << m,. In this limit 
Eq. (14.3.36) gives 

We also recall that for Z a  << I ,  uN(x) is given by Eq. (14.1.37) as 

where dots indicate terms of higher order in ZN; v is the non-relativistic 
velocity operator -iV/m,; and f N ( x )  is a two-component spinor solution 
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of the non-relativistic Schrodinger equation, normalized according to 
Eq. (14.1.38) so that 

1 lfN(x)12 = I - f(r21NN + + .  . . (14.3.39) 

This gives the coefficient of dm,@) in Eq. (14.3.35) as 

We note immediately that the leading term in -6m, (p)  J d3x PNuN cancels 
the term a p / 2  in Eq. (14.3.35). Indeed, we could have anticipated this 
cancellation, because the term 4 2  in Eq. (14.3.35) survives in the limit 
Zcl + 0, and the definition of m&) as the renormalized electron mass 
implies that there must be no energy shift in this limit. By the same 
argument we can anticipate that the term of order ap2 /m,  in dm&) 
(which is larger than of order ol(~r)~m,, and therefore cannot simply 
be neglected) cancels the second and third terms in Eq. (14.3.351, which 
are also of this order," On the other hand, the product of the a p 2 / m ,  

" The cancellation can be shown as follows. We anticipate that the second and third terms in 
Eq. {14,3,35) are small enough so that we they can be evaluated using the extreme nonrelativistic 
approximation /bff(x) = u N ( x )  for the Dirac equation satisfied by u N ( x ) .  On the other hand, 
although the Coulomb force may be neglected in the positron wave functions aM(x], the sum 
over M in the third term receives im ortant contributions from relativistic positrons, so we use 
the approximation u p,(r) z (2~)-~&p,o)e*",  where u(p,o) is the positron spinor introduced 
in Section 5.5. normalized so that a(p,  al)o(p,a) = So,,. Thus the sums over M in the second and 
third terms of Eq. (143.35) are approximately given by 

To leading order in p/m,, the second and third terms in Eq. (14.335) are then, respectively, 

and 

(Eq, (14.3.32) rules out the possibility that a relativistic correction to the latter expression might 
not be suppressed by the factor k2/in; thal appears in this expression for 1kl2 < m:.) These two 
terms are cancelled by the term +3p2/4nrn, in -6m,(p) d3xf iN(x )uhr (x ) .  Finally, we note that 
relativistic corrections lo the above estimates for the sums over positron states would involve 
additional factors of c2/& cz ( X U ) ' ,  yielding contributions of ordcr c c ( ~ z ) ~ ~ ~ / r n ,  cr(~z)~rn, ,  
which justifies the non-relativistic approximations used here. 
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term in Sm, with the second term in the matrix element (14.3.40) is of 
2 2 order (Za )  rxp /m, << r ( ~ a ) ~ m , ,  and may therefore be neglected. To order 

c r ( ~ a j ~ r n , ,  the only remaining effect of mass renormalization is to leave 
us with the product of the leading term in dm&) with the term of order 
( 2 ~ ) ~  in J d3x i r ~ u ~  : 

(This is the effect of mass renormalization on the electron kinetic energy, 
mentioned in Section 1.3.) It turns out that this is just the negative of 
what the first term in Eq. (14.3.35) wouId be if we neglected the difference 
between energy levels. To see this, note that the integral in this term 
is effectively cut off at Ikl - ,u << Zam,, so we can evaluate the matrix 
element rMN(k) in the limit k -+ 0. To lowest order in Zu, Eq. (14.1.42) 
gives 

and using the completeness of the solutions fN of the non-relativistic 
Schrijdinger equation, we then have 

so to this order 

Thus after mass renormalization we are left with just the first term in 
Eq. (14.3.351, less the same with energy differences EN - EM dropped : 
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Again using Eq. (14.3.41), this is 

Even though typical values of the electron momentum are much larger 
than typical atomic energy differences, this is not true of typical values 
of Ikl in this integral, because the integral would be infrared divergent if 
we did not keep the EM - E N  terms in the denominators. The integral in 
Eq. (14.3.44) may be evaluated in the limit p 3 lEM - E N (  - ( ~ a ) ~ m ,  by 
dividing the range of integration of Ikl into two segments, from zero to 
L and from 1, to infinity, with li chosen so that ]EM - E N \  << ;i << p but 
otherwise arbitrary. In this way we find 

The imaginary term here reflects the possibility of decay of the atom in 
state N to states M of lower energy. This term contributes to the decay 
rate, given by the imaginary part of the energy shift. We are interested 
here in the real part of the energy shift, and so will drop this imaginary 
term in what follows. Eq. (14.3.44) now gives 
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C Total Energy Shft 

We need to make a connection between the sum in Eq. (14.3.45) and the 
matrix element in the high-energy term (14.3.22). For this purpose, let's 
first see what value the sum in Eq. (14.3.45) would have if we could ignore 
the logarithm. We note that (EAW - EN)vhrM = [Y, HINM,  SO 

The only term in the non-relativistic Hamiltmian H that does not com- 
mute with the momentum operator p is the potential term, -edO(x) ,  so 
this gives 

Inspection of Eqs. (14.3.45) and (14.3.22) now shows that the term propor- 
tional to In p in the high-energy term is cancelled by the term proportional 
to In p in the low-energy term ; 

So far, this has been for a general electrostatic field . d 0 ( x ) .  Let us now 
specialize to a pure Coulomb field, with 

In this case, Eq. (14.3.46) reads 

This is non-vanishing only for t = 0. Also, the matrix element in the last 
term in Eq. (14.3.47) has the value 

which is non-vanishing only for G # 0. It is therefore useful at this point 
to divide our consideration between the two cases, G = 0 and % # 0. 
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It is convenient here to define a mean excitation energy AEN : 

For s-wave hydrogenic states, the label N consists of a principal 
quantum number n and spin z-component m, and Lfnm(O)Ifi = 
2 ( ~ m n , / n ) ' / ~ 6 , , ~ / ~ ' 4 n ,  so 

Using Eqs. (14.3.51) and (14,332) in Eq. (14.3.47) gives the energy shift in 
these states as 

ii. .f #O 

For non-vanishing orbital angular momentum the sum (14.3.49) van- 
ishes, so the definition (14.3.5 1) is inappropriate. Instead, it is conventional 
here to define a mean excitation energy AEN by 

(Because Eq. (14.3.49) vanishes, it makes no difference what units are used 
to measure EN - EM in Eq. (14.3.541.) Also, in a state of total angular 
momentum j and orbital angular momentum b, the scalar product a L 
has the familiar value j ( j  + 1) - L(d + 1) - i, and for principal quantum 
number n the operator l / r 3  has the expectation value 

Putting this all together in Eq. (14.3.47), we have for L # 0: 

It only remains to use these results to give numerical value for the 
energy shifts. The mean excitation energies here must be calculated 
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numerically; using non-relativistic hydrogen wave functions, they have the 
values5 : 

where 1 Ry = m,a2/2 = 13.6057 eV. Eq. (14.3.53) then gives 

= 2.nh x 81z7.,4 MHz, (14.3.57) 

= 27~6 x 1039.31 MHz, (14.3.58) 

while Eq. (14.3.56) gives 

= 27~A x -12.88 MHz. ( 1  4.3.59) 

The classic Lamb shift is the energy difference between the 2s and 
2 p ;  states of the hydrogen atom, states that would be degenerate in the 
absence of radiative corrections. Our calculation has given 

[ ~ E ] L \  - [6E]2p,,l = 4.35152 x l V 5  eV = 2nA x 1052.19 MHz . 
This is numerically close (though analytically not identical) to the old 
result of Kroll and ~ a r n b ~  and French and Wei~skopf,~ which they ob- 
tained using the techniques of old-fashioned perturbation theory. Earlier 
in this section we made a crude estimate of 1300 MHz by considering 
only the high-energy contribution to the 2s energy shift, with an infrared 
cutoff guessed to be of order a2m, = 2 Ry. We can now see that this was 
an overestimate, arising mostly from the fact that the true value of the 
effective infrared cutoff AE2, = 16.64 Ry is considerably larger than we 
had guessed. On the other hand, as described in Section 1.3, in 1947 Hans 
13ethe8 was able to make a rather good estimate of the Lamb shift, 1040 
MHz, by considering only the lowenergy contribution to the 2s energy 
shift, with an ukmuiolet cutoff guessed to be me. (Bethe made the first 
estimate of the excitation energy, AEz, -- 17.8 Ry.) 

The calculation of the Lamb shift described here has been improved 
by the inclusion of higher-order radiative corrections and nuclear size 
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and recoil effects. At present the greatest uncertainty is due to a doubt 
about the correct value of the rms charge radius rp of the proton. For 
r, = 0.862 x lo-" cm or r p  = 0.805 x 10-'"m, one calculation9 gives 
a Lamb shift of either 1057.87 MHz or 1057.85 MHz, while anotherlo 
gives either 1057.883 MHz or 1057.865 MHz. Given the uncertainty in 
proton radius, the agreement is excellent with the present experimental 
value," 1057.845(9) MHz. The accuracy of this experimental value is 
limited chiefly by the - 100 MHz natural linewidth of the 2 p  state in 
hydrogen, so further improvements here will be very difficult. 

In the last few years there has been an important improvement in  
measurements of the energy shift of the Is ground state itself, by direct 
comparison of the frequency of the 1s-2s resonance with four times 
the frequencies of the 2 s 4 s  and 2s4d two-photon resonances. These s 
and d states are much narrower than the 2 p  state, so these frequency 
differences can be measured more accurately than the classic Lamb shift. 
For a brief while it seemed that there was a discrepancy here between 
theory and experiment. ~ a l c u l a t i o n s ~ ~ ~ ~ ~  showed that for a proton radius 
r, = 0.862(11) x cm or 0.805(11) x cm, the inclusion of proton 
size and other corrections increases the theoretical Is energy shift from 
the above result of 8127.4 MHz to 81 73.1 2(6) MHz or 81 72.94(9) MHz, 
respectively. This result for a proton radius r ,  = O.86Z(ll) x 10-'brn, 
which is believed to be more reliable, was not quite in agreement with the 
measured valud3 of 8172.86(5) MHz. But a later calculation14 that adopts 
this proton radius and includes terms of order yields energy shifts 
for the Is, 2s, and 4s states in agreement with experiment. So apparently 
quan turn electrodynamics wins again. 

Problems 

1 .  Consider a charged scalar particle of mass na # 0, described by a 
field 4(x) whose only interaction is with an external time-independent 
electromagnetic field &FIX). Let mN be a complete set of normaljzed 
one-boson or one-antiboson states with energies E N ,  and define 
u N ( x ) e - j E " k  (a0, &x, t)(DN) and vN(x)eiEhr' = (ON, $(x, t)mO), where 
mo is the vacuum. Show that the UN and u~ together form a 
complete set, and give formulas for the coefficients of u~ and c~ in 
the expansion of a general function f (x). 

2. Suppose we include radiative corrections in the theory of Problem 
1. Let ill'jx, y)  be the sum of all diagrams with one incoming and 
one outgoing charged scalar line (excluding final scalar propagators) 
to order a. Derive a formula for the shift in the energies EN of the 
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one-boson states due to these radiative corrections, in terms of uN{x) 
and Il*(x, y). 

3. Use the results of Section 14.3 to calculate the radiative decay rate 
of the 2 p  states of hydrogen. 

4. Suppose that the electron has an interaction with a light scalar field 
4, of the form g#~t&y,. Suppose that the scalar mass m4 is in the 
range ( ~ . z ) ~ r n ,  & nrm < Zam,. Calculate the change in the energy 
of the 1s state of hydrogenic atoms due to this interaction. 

5.  Carry out the calculation of Problem 4 for PM* = 0. 
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