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Preface 

During the past decade the field of quantum information processing has experienced extremely 
rapid progress. Many physicists and computer scientists have become interested in this excit- 
ing new field, and research activities were started in many places, including the University of 
Dortmund, where several groups from experimental and theoretical condensed-matter physics 
and from computer science, joined forces in a program called “Materials and methods for 
quantum information processing”. Since that program involved graduate students from sev- 
eral countries, and with different scientific backgrounds, we decided to teach an introductory 
course on the fundamentals of quantum information processing. The idea was to provide the 
graduate students working on highly specialized research projects in, for example, magnetic 
resonance, semiconductor spectroscopy, or genetic algorithms, with a common language and 
background connecting their areas of research. In that course we tried to discuss on equal foot- 
ing both theoretical foundations and experimental opportunities and limitations. The present 
book contains the material presented in our course, in  an edited and slightly updated form. 

We are well aware of the existence of a number of excellent books and courses relevant to 
our subject. Nevertheless, we feel that a compact introduction to both theory and experiment 
aimed at advanced students of physics is still lacking. We assume that our readers have a 
reasonably good background in physics, notably in quantum mechanics, plus some knowledge 
in introductory statistical mechanics and solid-state physics. We did not attempt to make 
our book self-contained by explaining every concept which is needed only occasionally. We 
do hope, however, that we have succeeded in explaining the basic concepts from quantum 
mechanics and computer science which are used throughout the book and the whole field of 
quantum computing and quantum communication. 

We are grateful to the students who attended our course or participated in a seminar based 
partly on the course material. Their questions and comments were helpful in shaping the 
material. Of course all errors and inaccuracies (which are present, no doubt) are entirely our 
own responsibility. We would like to express our thanks to many colleagues for many things: 
to Bernd Burghardt for BTEX help, to Hajo Leschke for clarifying remarks, to Heinz Schuster 
and Claudius Gros for encouragement, to Michael Bortz, Hellmut Keiter (who fought his way 
through the entire manuscript when it was still in an intermediate state), and AndrC Leier for 
reading parts of the manuscript, and to AndrC Leier for also supplying material on quantum 
error correction. 

Joachim Stolze and Dieter Suter 

Dortmund, March, 2004 



1 Introduction and survey 

1.1 Information, computers and quantum mechanics 

1.1.1 Digital information 
Storage, interchange and processing of information is a defining feature of human culture as 
well as the basis of our economic system. Over the last fifty years, all these processes have 
undergone dramatic changes, driven by the evolution of microelectronics technology. The in- 
creasing availability of cheap storage, fast processors and global telecommunication (includ- 
ing the Internet) has prompted a shift from a number of different conventional techniques used 
to store, process and transmit information, which used different, mostly analog techniques, to 
those which use all-digital forms of representing information. 

This convergence of technologies has also eased the connection between storage, process- 
ing and communication and made the most of the ongoing processes transparent or invisible 
to the person who is actually using them. A search for a picture over an Internet search engine, 
e.g., which typically involves typing a few words and results in a long list of “hits”, involves 
all three types of processes mentioned several times: 

0 The computer on which the person works interprets the input and uses its locally stored 
information to decide what action it has to take. 

0 It communicates with routers to obtain the address of the search engine. 

0 I t  sends the request over the Internet to the search engine. The transfer of information 
over the Internet involves multiple steps of processing and using stored information about 
connections at all nodes. 

The search engine receives the request and compares the keywords to those stored in its 
files. 

0 It uses stored rules to rank the hits. 

0 The result is sent back over the Internet. 

0 The workstation receives the information and uses stored information to display the in- 

Each of these steps can be further subdivided into smaller steps that may again include differ- 
ent types of actions on the information being exchanged between many different parties (most 
of them electronic circuits). 

formation. 
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These fundamental changes of the way in which information is represented and processed 
have simultaneously changed the way in which we use information. One consequence is that, 
very often, information can no longer be localized or associated with a specific physical de- 
vice. While hand-written notes represented unique instances of the pertinent information, 
every electronic mail is stored (at least temporarily) on many different computers. It is there- 
fore not only available for later retrieval by the person who wrote it, but also to many others 
like system managers, hackers, or government agencies. 

Most users of digital information experience the paradigm shift from Conventional forms 
of information representation to a unilied digital form as an exciting possibility for improved 
communication, easier access to vital information and additional choices for entertainment. 
This attitude has driven the growth of the microelectronics industry over the last decades and 
is likely to remain an important economic force for the foreseeable future. 

At the same time, the global availability of information and the difficulty of controlling 
one's personal data have prompted concerns about maintaining privacy. The emerging field of 
quantum information processing holds promises that are relevant for both issues, the further 
evolution of microelectronics as well as the concerns about privacy. This field, which com- 
bines approaches from physics, mathematics, and computer science, differs from conventional 
approaches by taking into account the quantum mechanical nature of the physical devices that 
store and process the infortnation. In this monograph, we concentrate on the aspect of "quan- 
tum computers". which refers to machines built on the basis of explicitly quantum mechanical 
systems and designed to process information in a way that is much more efficient than con- 
ventional computers. While it is still unclear at what time (and if ever) such computers will 
be more powerful than classical computers, it is quite clear that at least some of the underly- 
ing physics will he incorporated into future generations of information processing hardware. 
The related field of quantum communication, which promises to deliver ways of exchanging 
information that cannot be tapped by any eavesdropper, will only be mentioned here briefly. 

1.1.2 Moore's law 
The evolution of micro- and optoelectronic devices and the associated digitization of infor- 
mation has relied on improvements in  the fabrication of semiconductors that have led to ever 
smaller and faster components. The decrease in size, in  particular, has allowed more compo- 
nents to be packed onto a chip, thus making them more powerful by integrating more func- 
tions. Simultaneously, the decrease in size is a prerequisite for making faster devices, as long 
as they rely on a fixed, systemwide clock. As early as 1965, Gordon Moore noticed that the 
number of components that could be placed on a chip had grown exponentially over many 
years, while the feature size had shtunk at a similar rate [Moo65]. This trend continued over 
the next forty years and is expected to do so for the foreseeable future. 

Figure 1.1 shows the current expectations: it represents the projections that the semicon- 
ductor industry association makes for the coming decade. As shown in Fig. I .  I ,  the feature 
s k e  of electronic deviccs is now in the range of 100 nm and decreasing at a rate of some 12% 
per ycar. According to this roadmap, feature sizes of 50 nm will be reached in  the year 2013. 

This trend could in  principle continue for another forty years before the ultimate limit is 
reached, which corresponds to the size of an atom. Much before this ultimate limit, however, 
the fealure size will become smaller than some less well defined limit, where the electrons that 
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Figure 1.1: Prospective evolution of fcaturc size in microelectronic circuits (source: interna- 
tional scrniconductor association roadrnap). 

do the work in the semiconductor devices, will start to show that their behavior is governed by 
quantum mechanics, rather than the classical physical laws that are currently used to describe 
their behavior. 

1.1.3 Emergence of quantum behavior 

The reduction of feature size also implies a decrease in operation voltage, since the internal 
fields would otherwise exceed the breakthrough fields of all available materials. Within the 
next ten years, the operational voltage is expected to decrease to less than one Volt. The 
capacitance of a spherical capacitor is C = 47reor.. For a spherical capacitor with radius 
50 nm, the capacitance is therefore of the order of 5 . F. A change in the voltage of 
0.1 V will then move less than four electrons in such a device, again making quantization 
effects noticeable. While the capacitance of real capacitors is higher, the number of electrons 
stored in a memory cell will become a small integer number in the near future, again bringing 
quantum physics into play. 

Classical physics is an approximation of the more fundamental laws of quantum mecha- 
nics, which represents a useful approximation in many fields of engineering. Quantum mecha- 
nics is required in order to understand the properties of semiconductors, such as current - volt- 
age curves of diodes, from their microscopic structure. Once these properties are established, 
however, it becomes possible to describe the operation of semiconductor devices on the basis 
of the classical theory of electrodynamics. 

This classical description of the operation of semiconductor devices will become impos- 
sible when the feature size reaches the coherence length. This quantity depends on the details 
of the material, the processing and the temperature at which the device operates, but typically 
is in the range of a few nanometers to some tens of nanometers. 

Figure 1.2 shows how the transition to the quantum regime will change the way in which 
typical electronic devices operate. Capacitors, which are present in many electronic circuits, 
exhibit a direct proportionality between applied voltage and stored charge in all classical de- 



4 I Inrroduction clnd survey 

Classical Quantum mechanical 

4 

U 

Voltage Voltage 

Figure 1.2: Current/vnltagc chardclcrislics of classical capacitor (left) and its analog in thc 
quantum regime, where individual electrons can or cannot cntcr thc dcvice. 

vices. When the capacitance becomes small enough, the transfer of a single electron will 
change the potential of the capacitor by a large enough amount that it takes a significantly 
larger voltage to transfer additional charges. 

This makes it obvious that the progress that we have today will soon lead to a situation 
where it is no longer possible to describe the flow of electricity as a classical current. While 
a classical device, such as the workhorse FGT, requires a continuous relationship between 
current and voltage, this will no longer be the case in the quantum mechanical regime, as 
experimental prototypes clearly show. 

1.1.4 Energy dissipation in computers 

Possibly even more impressive than the reduction in €eature size over time is a correspond- 
ing trend in thc energy dissipated in a logical step. Over the last fifty years, this number has 
decreased by more than ten orders of magnitude, again following an exponential time depeii- 
dence. A straightforward extrapolation shows that this trend would decrease the dissipated 
energy to lcss than X:BT (at room temperature) in little more than ten years. This ainount was 
long taken as the minimum that any working switch would have to dissipate. If this were the 
case, it would definitely put an end to the increase in packing density and speed of microelec- 
tronics, which would otherwise become too hot to operate. 

While it is now known that there is no principal limit to the amount of energy that is dis- 
sipated during a logical step, it is clear that devices that operate bclow the k,jT limit must 
function differently, using so-called reversible logic, rather than the usual Boolean logic. In- 
terestingly enough, devices that operate by the laws of quantum mechanics are inherently 
reversible. The two trends - reduction of dissipated power and reduction of size - therefore 
appear to converge towards devices that use quantum mechanics for their operation. 

While the limitations that force the use of quantum devices in the future may appear as a 
nuisance to many engineers, they also represent an enormous potential, since these future de- 
vices may be much more powerful than conventional (classical) devices. They citn implement 
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all the algorithms that run on today’s classical computers, but in addition, they also can be 
used to implement a different class of algorithms, which explicitly use the quantum mechani- 
cal nature of the device. A few such quantum algorithms have been designed to solve specific 
problems that cannot be solved efficiently on classical computers. While many questions re- 
main unanswered concerning the feasibility of building devices that fulfill all the stringent 
requirements for a useful quantum computer, the possibilities offered by this emerging tech- 
nology have generated a lot of attention, even outside the scientific community. 

1.2 Quantum computer basics 

1.2.1 Quantum information 
We discuss here exclusively digital representations of information. Classically, information is 
then encoded in a sequence of bits, i.e., entities which can be in two distinguishable states, 
which are conventionally labeled with 0 and 1. In electronic devices, these states are encoded 
by voltages, whose values vary with the technological basis of the implementation (e.g. TTL: 
0 -low is represented by voltages < 0.8 V and 1 -high by voltages > 2.4 V). 

Classical hit Quantum bit = qubit Spin 1i2 

0 I - y o  0 

Figure 1.3: Representation of information in a classical computer (Icft) vs. quantum computer 
(center). The spin 1/2 (right) is the prototypical example of a qubit. 

The same principle applies to quantum systems that represent information: to represent a 
single bit of information, two distinguishable states of the system are needed. “Distinguish- 
able” means, in a quantum system, that the two states must differ in some quantum numbers, 
i.e., they must be different eigenstates of at least one operator. A typical example is a spin 1/2, 
which has two possible states. Another example is a photon, which can be polarized either 
vertically or horizontally. One of these states is identified with the logical value 0 (or false), 
the other with the value 1 (or true). 

The main difference between quantum mechanical and classical information is that, in the 
quantum mechanical case, the system is not necessarily in the state 0 or 1. Instead it can be in 
an arbitrary superposition (linear combination) of these states. To emphasize this difference 
between quantum and classical bits, the term “qubit” (short for quantum bit) has been adopted 
for the quantum mechanical uni t  of information. 

The power of quantum computers is directly related to this possibility of creating super- 
positions of states and applying logical operations to them: this allows one to perform many 
operations in parallel. A system consisting of N qubits has 2N mutually orthogonal basis 
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states, and it  is possible to bring such a system into a state that is a superposition of all these 
basis states. Logical operations such as inultiplications can then be applied to this superposi- 
tion. In a sense to be discussed later, such a transformation is equivalent to transforming all 
the states i n  parallel, i.e., performing 2 N  operations in parallcl. 

Becoming slightly more formal, we find that the information, which is encoded in a quan- 
tum mechanical system (or quantum register), is described by a vector in Hilbcrt space. For 
the simplest case of a single qubit, the state is I,(/)) = ul&) + hl7,!1~). The two parameters n 
and h are both complex numbers. Taking normalization into account, the system is therefore 
described by three continuous variables. 

The fact that the state is described by three continuous variables does not imply that a 
single qubit can store an infinite amount of information. To obtain the information content, 
one has  to take the measurement process, which retrieves the information, into account: it is 
never possible to measure exactly the quantum state of a singlc photon. A single measurement 
(more precisely: an ideal quantum mechanical measurement as postulated by von Neumann) 
can only measure one degree offrcedom and returns a single bit (parlicle found or not). 

A complete measurement of the state of a single qubit would thus require repeated mea- 
surements, which were possible if one could prepare copies of the actual quantum mechanical 
state. However, this is prohibited by the “no-cloning theorem”, which states that no process 
can duplicate the exact quantum state of a single particle. While the details of the calculation 
ice rather involved, it is possible to show that a single quantum mechanical two-level system 
can transfer up to two classical bits of information. Without a complete analysis, this can be 
rationalized by the consideration that we can make two independent measurements on a pho- 
ton, corresponding, c.g., to the rneasurement of the polarization horizontal/verticnl or at f45 
degrees. 

1.2.2 Quantum communication 

One of thc most active areas of quantum information processing is quantum communication, 
i.e., the transfer of information encoded in quantum mechanical degrees of freedom. This is 
typically done by encoding the information in photons. Serniclassicnlly, a photon can carry 
i t  hit: it can be transmitted or not, thus corresponding to a logical 0 or I .  Other encoding 
schemes include the polarization of the photon, which may be vertical or horizontal. 

Quantum communication has evolved into a very active field. Besides its fundamental in- 
terest, it promises a numher of possible applications: taking quantum mechanics into account 
may improve the information content of communication channels: as discussed above, a pho- 
ton qiihit can transmit up to two classical bits of information. In addition, i t  has been shown 
that communication with individual photons may be made secure, i.e., it is impossible to tap 
into such ii communication without the users of the communication line noticing it. This is 
ii consequcnce of the no-cloning theorem: While it is conceivable that an eavesdroppcr inter’- 
cepts a photon, thus detecting that information is being transferred, and that he subsequently 
re-emits a similar photon to the original receiver, he cannot send an exact copy of the original 
photon. This necessarily allows the two partncrs who are trying to establish a secure commu- 
nication to realize that their communic;ition is being monitored ~ not for individual photons, 
hut from ii statistical analysis of the successfully transmitted photons. 
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This is not automatic, however. If the communication protocol were to use only the pres- 
ence or absence of the photon as the information, the eavesdropper would be able to use QND 
(=quantum nondemolition detection) to observe the passage of the photon. Such experimen- 
tal schemes can measure a given quantum mechanical variable (such as the light intensity) 
without affecting this variable (i.e., changing the number of photons). Heisenberg's principle 
requires, however, that such a measurement affects the conjugate variable, in this example the 
phase of the photon. 

The two partners can use this fact to make the communication protocol secure. A typical 
protocol requires one of the two partners (typically called Alice) to send a stream of photons 
to the second partner (typically called Bob), which are entangled with a second set of pho- 
tons, which Alice keeps. The two partners then make a measurement of the polarization of 
these photons, switching the axes of their polarizers randomly between two predetermined 
positions. If the photon pairs are originally in a singlet state, each partner knows then the 
result of the other partner's measurements provided that they used the same axis of the po- 
larizer. They can therefore generate a common secret string of bits by exchanging through a 
public channel (e.g., a radio transmission) the orientation of the polarizer that they used for 
their measurements (but not the results of their measurements). They can then eliminate those 
measurements where only one partner detected a photon as well as those for which the orienta- 
tion of their polarizers were different. Assuming an ideal system, the remaining measurement 
results are then exactly anti-correlated. If an eavesdropper (usually called Eve) tried to listen 
in on their communication, her measurements would inevitably affect the transmitted data. 
A statistical analysis of the measurement results obtained by Alice and Bob, for which they 
publicly exchange a fraction of their bits, would then reveal the presence of the eavesdropper. 
This scheme has been tested successfully in a number of experiments by using optical fibers 
or beams through free space. 

1.2.3 Basics of quantum information processing 
A quantum computer, i.e., a programmable quantum information processing device, encodes 
the information in the form of a quantum register, consisting of a labeled series of qubits. Each 
qubit is represented by a quantum mechanical two-level system, such as a spin-1/2 and can 
therefore be described by the spinor 

The total collection of qubits is called a quantum register. Its state is written as 

While today's quantum registers are limited to 7 qubits, a useful quantum computer will re- 
quire several hundred to 1000 qubits. 

Before an actual computation can be initiated, the quantum register must be initialized 
into a well defined state, typically the quantum mechanical ground state 10.0, ... 0 >. This 
operation is non-unitary, since it must bring the system into one specific state, independent of 
the state in which it starts. The initialization is therefore a non-reversible process that must 
include dissipation. 
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The actual informiition processing occurs through the operation of quantum gates, i t . .  
transformations that operate on the quantum register and correspond to logical operations: 

The sequence of quantum gates is determined by the specitic algorithm to be implemented. 
The program that specifies this sequence may be stored in a classical device associated with 
the quantum computer, such as a classical computer. 

Like any change in a quantum mechanical system, logical operations are driven by a suit- 
able Hamiltonian acting on the state that represents the quantum register. It is in most cases 
difticult to find a Hamiltonian that directly perlornis the desired transformation, such as the 
decomposition of an integer into its prime factors. Instead, the total transformation is ~isually 
split into elementary logical operations that transform a single bit of information or connect 
two bits by operating on one bit in a way that depends on the state of the other bit. It turns 
out that all possible logical operations can be decomposed into a small group of elementary 
operations: 

0 single qubit operations, corresponding to arbitrary rotations of the spinor repreaenting 
the qubit and 

one type ol2-qubit operations, e.g., the "controlled NOT" or CNO'I 

A quantum computer implementation that can perform arbitrary calculations must there- 
fore implement these two types of operations. Particularly critical are the two-qubit opera- 
tions, since they require interactions between thee qubits. A typical operation is thc CNOT 
gate, whose truth table is shown in Table 1.1 : this particular gate has two inputs and two out- 
puts. If the control bit is zero, it simply passes both bits to the output. If the control bit is one, 
it passes the control bit through unchanged, but inverts the target bit. 

The 2-qubit operations must also be applied to arbitrary pairs of qubits. It is possible, 
however, to decompose a 2-qubit operation between any pair into a series of 2-qubit operations 
between nearest neighbors. Such schemes are often much easier to implement than schemes 
with interactions between arbitrary pairs. The number of 2-qubit operations is larger, but 
increases only linearly with the number of qubits. The overall process therefore remains 
efficient. Implementing 2-qubit gates always requires a coupling between the qubits on which 
the gate operates. How this coupling is implemented depends on the details of the physical 
system. 
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1.2.4 Decoherence 
Possibly the biggest obstacle to overcome when one tries to build a quantum computer is de- 
coherence. This term summarizes all processes that contribute to a decay of the information 
coded in the quantum register. As we have stressed above, quantum computers derive their 
power from the possibility of performing logical operations on a large number of states simul- 
taneously, which have been combined into a superposition state. If the relative phase between 
these states slips, the result of the operation will effectively become associated with the wrong 
input, thereby destroying the information. As the number of qubits in the quantum regis- 
ter increases, the processing power increases, but at the same time the quantum information 
becomes more fragile. 

The biggest contribution to decoherence is usually dephasing. In a simple picture, dephas- 
ing occurs when the energy difference between the two states representing the qubit fluctuates. 
As a result, the relative phase of the superposition state acquires an additional phase propor- 
tional to the energy change. 

The effect of such a dephasing as well as other decoherence processes is a loss of infor- 
mation in the system. Since it is highly unlikely that any system will be able to successfully 
complete a useful quantum information processing algorithm before decoherence becomes 
noticeable, it is vital to develop strategies that eliminate or reduce the effect of decoherence. 
One possibility that is pursued actively, is to apply quantum error corrections. Basically these 
processes use coding of quantum information in additional qubits. Algorithms have been 
developed for using these additional qubits to check for and eliminate various types of errors. 

1.2.5 Implementation 
To actually build a quantum computer, a suitable physical system has to be identified and the 
associated controls must be put in place. We give here a brief overview of the conditions 
that all implementations must fulfill and discuss some issues that help in identifying suitable 
systems. 

The quantum information is stored in a register. Any implementation therefore has to 
define a quantum mechanical system that provides the quantum register containing N qubits. 
For a “useful” quantum computer, N should be at least 400, or preferably 1000; limitations on 
the number N of identifiable qubits will therefore be an important consideration. 

Processor Readout 
Quantum 

Initialization register 

... . 

Figure 1.4: Principle of opcration of quantum processors. 

These qubits must be initialized into a well defined state, typically into a ground state 10). 
This is necessarily a dissipative process. Implementations must therefore provide a suitable 



10 1 Introduction ctnd .surviy 

mechanism for initialization. The implementation must then provide a mechanism for ap- 
plying computational steps to the quantum register. Each of these steps consists of ii unitary 
operation cp;xtTt  defined by a Hamiltonian Ri that is applied for a time T ~ .  The Hamilton- 
ian must act on specific qubits and pairs of qiibits by applying electromagnetic fields. The 
quantum computer must therefore contain mechanisms for generating these fields in a well 
controlled manner. After the last processing step, the resulting state of the quantum register 
must be determined, i.e., the result of the computation must be read out. This would typi- 
cally correspond to iin ideal quantum mechanical measurement, i.e., the projection onto an 
eigenstate of the corresponding observable. Readout has to be done on each qubit separately. 

A number of different systems have been considered for implcmenting quantum informa- 
tion processors. The obvious connection between qubits and spins 1/2 as two-level systems 
suggests using spin systems for storing the quantum information. Their advantage is not only 
the easy mapping scheme from bits of information to their state space, but also an excellent 
dcgree of isolation of the spin degrees of freedom from their environment, which provides 
long decohercnce times. Unfortunately, the weakness of this coupling also makes i t  difficult 
to read out the result of a computation from the quantum register. Spins have therefore not 
been used as individual entities so far, but only in bulk form: liquid state nuclear magnetic 
resonance (NMR), which forms the basis for the most advanced quantum computers so far 
uses typically 10’” identical molecules to implement a qiiantum register. The advantage of 
this scheme is a relatively straightforward implementation of gate operations, the main disad- 
vantage is that such “ensemble” quantum computers are difficult to scale to large numbers of 
qubits. 

Another physical systcm that is relatively well isolated from its environment is a system 
of atomic ions stored in electromagnetic traps. Storing information i n  these systems is less 
straightforward, since the number of states accessible to each ion is infinite and the interactions 
arc harder to control with sufficient precision. The main advantage of trapped ions may bc that 
it is relatively easy to read out the result from individu a I tons. ’ 

While NMR and ion traps are the only implementations availablc to date, a significant 
aniount of research is directed towards solid-state implementations, which may be easier to 
scale to larger numbers of qubits. Their main difficulty is the much faster decoherence pro- 
cesses arid the difficulty in manufacturing such small structures in a reproducible way. 

1.3 History of quantum information processing 

1.3.1 Initial ideas 

Quantum information processing has deep roots that are almost as old as quantum mechanics 
itself. If we believe that quantum mechanics is the fundamental physical theory that lets 
us derive properties of all materials, it should also be the basis for the description of any 
computer. However, in most cases, classical mechanics (and optics, electrodynamics etc.) 
are excellent approximations to the undcrlying quantum theory and perfectly adequate for the 
description of the operation of computational machinery. 

The more relevant question is therefore, what happens when the physical basis for the 
computer is an explicitly quantum system for whose description the classical approximation 
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fails. Explicit discussions on this possibility essentially started in 1982, when Benioff showed 
how the time dependence of quantum systems could be used to efficiently simulate classical 
computers operating according to Boolean logic [Ben82]. 

In the same year, Richard Feynman asked the opposite question: Can classical comput- 
ers efficiently simulate quantum mechanical systems [Fey82]. He noted that the number of 
variables required to describe the system grows exponentially with its size. As an example, 
consider a system of N spins-1/2. The size of the corresponding Hilbert space is Z N  and a 
specification of its wavefunction therefore requires 2 . 2N - 1 real numbers. Any computer 
trying to simulate the evolution of such a system therefore must keep track of Z N  complex 
numbers. Even for a few hundred particles, 2N exceeds the number of atoms in the universe 
and therefore the memory of any conceivable computer that stores these variables in bit se- 
quences. At the same time, the time required to run a simulation grows exponentially with 
the number of particles in the quantum system. Feynman concluded that classical computers 
will never be able to exactly simulate quantum mechanical systems containing more than just 
a few particles. Of course, these considerations only take the general case into account. If 
the particles (or at least the majority) do not interact, e.g., it is always possible to perform the 
computation in a smaller Hilbert space, thus reducing the computational requirements quali- 
tatively. 

After stating the problem, Feynman immediately offered a solution: “Quantum computers 
- universal quantum simulators”. He showed that the drastic increase in the storage require- 
ments and the computation time can be viewed as a consequence of the large amount of in- 
formation that is present in the quantum mechanical system. The consideration that quantum 
systems effectively simulate themselves may then be taken as an indication that they are ef- 
ficient processors of information. He stated “I therefore believe it is true that with a suitable 
class of quantum machines you could imitate any quantum system, including the physical 
world.” As an open question he asked which systems could actually be simulated and where 
such simulations would be useful. 

A first proof of this conjecture was given in 1993 by Bernstein and Vazirani [BV93]. They 
showed that a quantum mechanical Turing machine is capable of simulating other quantum 
mechanical systems in polynomial time. This implied that quantum computers are more pow- 
erful than classical computers. This was a proof of principle, but no example was given for 
such a procedure, i.e., no algorithm was yet known that would run more efficiently on a quan- 
tum computer than on a classical computer. 

1.3.2 Quantum algorithms 
Such algorithms, which require a quantum computer, are called “quantum algorithms”. The 
first quantum algorithm that can run faster on a quantum computer than on any classical com- 
puter was put forward by Deutsch in I985 [Deu85] and generalized by Deutsch and Jozsa in 
1992 ( [DJ92) . The problem they solved - deciding if all possible results of a function are 
either identical or equally distributed between two values - had little practical relevance. 

A very useful algorithm was developed in  1994 by Coppersmith [Cop94]: he showed how 
the Fourier transform can be implemented efficiently on a quantum computer. The Fourier 
transform has a wide range of applications in physics and mathematics. In particular it is also 
used in number theory for factoring large numbers. The best known application of the quan- 



turn Fourier transform is the factoring algorithm that Peter Shor published in  1994 [Sho94]. 
1;actoring larger numbers is not only of interest for nutnhcr thcory, but also has significant 
impact on thc sccurity of digital data transmission: ’The most popular cryptographic systems 
rely on the difficulty of factoring large numbers. 

The best classical algorithms for factorization of an I: digit number use a time that grows 
as exp(cl(’l.‘’) (log 1 ) ( 2 / ” ) ) ,  i t . ,  exponentially wilh the nuniber of digits. Shor proposed a 
model for quantum computation and an algorithm that solvcs the factorization problem in a 
time proportional to O(1‘ log 1 log log 1 ) ,  i.e., polynornially in the number of digits. This is 
a qualitative difference: polynomial-time algorithms are considered “cfticicnt”, while expo- 
nential algorithms arc not usable for large systems. The different behavior implies that for a 
sufficiently large number, a quantum computer will always finish the factorization faster than 
a classical computcr, even if the classical computer runs on a much faster clock. 

best classical algorithm / /--- 

,.,...* 1 / Shur uigorilhm 
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Figure 1.5: Time required for classical fiic(ori7ation algorithm vs. quantum algorilhrn 

We illustrate this by a numerical example. We will assume that a fast classical computer 
can factorizc a SO digit numbcr in one second, while thc quantum computcr may take as much 
iis un hour for the same operation. If the number of digits increases to 300, both computers 
require some 2.5 days to solve the problem, as shown in tigure 1.5. A further increase to 
1000 digits requires 42 days on the quantum computer, while the classical computer would 
need some I9000 years - clearly too long for any practical purposes. With 2000 digits, the 
quantum computer needs half a year, while the computation time on the classical computer 
becomes roughly equal to the age of the universe. 

1.3.3 Implementations 
A quantum mechanical system that can be used as an information processing device must 
meet a nuniber of rather restrictive conditions, including: 

0 It must be possible to initialize the system into a well-defined quantum state. 

0 It must be possible to apply unitary opcrations to each individual two-level systctn that 
serves as a qiibit. 

0 I t  must bc possible to apply unitary operations to some pairs of qubits. 
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0 The information stored in the quantum register, in particular the relative phases of all 
quantum states must be preserved for a sufficiently large number of logical operations. 

0 It must be possible to read out the state of each qubit with high fidelity. 

Each of these requirements can be expressed much more quantitatively, as we discuss later 
in this book. Some of the requirements tend to work against each other: being able to control 
individual qubits, e.g., requires coupling them to the environment. Such couplings, however, 
always tend to bring noise into the system, thus causing decay of the quantum information. 
The same processes that must be used to initialize the system again tend to destroy the quantum 
information. 

It is therefore not surprising that it proved very difficult to meet these conditions simul- 
taneously on a single system. The first physical system on which quantum algorithms were 
actually implemented was nuclear magnetic resonance ( NMR) in liquids [GC97, CFH971. 
Nuclear spins have the advantage that they are very well isolated from their environment, 
therefore preserving the quantum information for long times (up to several seconds). On the 
other hand, the weak coupling to the environment makes it very difficult to measure the spin 
state of individual nuclear spins. This difficulty can be circumvented in liquid state NMR 
quantum computers by working with many identical copies of the molecule that represents 
the quantum register, typically some 102". 

The first experiments that used individual systems to implement quantum algorithms used 
atomic ions in electromagnetic traps [SKHR+03, LDM'031. An obvious advantage of atomic 
systems is that it is possible to use large numbers of atoms whose properties are identical. 
Compared to NMR systems, readout of the individual qubits is quite straightforward in trapped 
ion quantum computers. Storing them in electromagnetic traps virtually eliminates most cou- 
plings to the environment except to the trap itself. It may therefore be possible to reach long 
decoherence times in such systems. The main difficulties at this time are to control the gate 
operations with sufficient precision and to increase the number of trapped ions. 

Some quantum algorithms have also been implemented in optical systems, using photons 
as qubits. However, the approach that was used so far would involve an exponential increase in 
the number of optical elements if it were to be scaled to larger systems. More recent proposals 
for scalable quantum computers that are based on photons have not been implemented yet. 

Scaling to large numbers of qubits, which will be necessary to build a computer whose pro- 
cessing power exceeds that of a classical computer, may eventually become easier by using 
solid state systems. Many proposals have been put forward for systems involving semicon- 
ductor or superconducting materials, but actual implementations are still at a very early stage. 



2 Physics of computation 

2.1 Physical laws and information processing 

2.1.1 Hardware representation 

Information processing is often considered a purely abstract process, which can be discussed 
in purely mathematical terms. However, information is always represented in some physical 
entity, and processing and analyzing it requires physical devices [Lan91, Lan961. As a conse- 
quence, any information processing is inherently limited by the physical nature of the devices 
used in the actual implementation. While it is evident that an electronic chip with a high clock 
speed is more powerful as an information processor (in most respects) than a hand-operated 
mechanical computer, it is perhaps less obvious that the nature of the physical device does not 
just determine the clock rate, it can determine qualitatively the class of algorithms that can be 
computed efficiently. 

This principle is often overlooked, but its consequences have often been discovered. 
Church and Turing asserted rChu36, Tur361 that most computers are equivalent with respect 
to computability (not with respect to speed), allowing one to disregard the details of the in- 
formation processing device for determining if a given problem can be solved on a computer. 
However, the strong form of the Church-Turing hypothesis, which states that any problem 
that can be solved eficiently on one computer can be solved efficiently on any other computer, 
appears to be wrong: some problems have been established to be solvable efficiently if the 
computer operates according to quantum mechanics, but not on classical computers. 

The physical laws governing the hardware that stores and processes the information im- 
pose a number of limitations on the ultimate performance of any computational machine. They 
differ from mathematical limitations (e.g., complexity classes), which determine the number 
of logical operations needed to complete an algorithm, but not the speed at which it can be 
executed. They are similar, however, to the limits that thermodynamics sets on the efficiency 
of heat engines: they not only indicate future roadblocks in the development of computer 
hardware, they also can be used as guidelines for the design of efficient devices. These limi- 
tations arise on all levels and relate to the performance of all computational steps, such as the 
storage of information, execution of logical operations, or the transfer of information between 
different parts of the computer. While they are also relevant for natural information processing 
devices (such as the human brain), we will consider here only artifacts, since their operation 
is still better understood and easier to quantify. 

For this section, we will concentrate on physical laws that do not refer to a specific hard- 
ware basis chosen for implementing the information processing devices. We will refer to these 
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issues as fundamental, in contrast to issues that depend on a specific technology, such as the 
speed at which a CMOS gate can be operated (which is, of course, also limited by physical 
laws). While most of our present information processing systems are still limited by technical 
rather than by fundamental physical limits, some systems are approaching these limits (e.g. 
the channel capacities of cxperimcntal fiber optics systems are close to thc limit found by 
Shannon) and other components will be approaching real or perceived limitations within the 
next few decades, provided that the current trends can be extrapolated. In the past, several 
apparent limitations could be overcome by conceptual changes. 

N bit register 

Step 1 - Step 2 - 
Figure 2.1: Modcl of cornputation: thc information is stored i n  a rcgistcr consisting of N bits. 
Compulation is perl'orrnetl i n  discrete steps acting o n  this register. The suhsequent registers 
rcprcscnt thc Sam rcgistcr at diffcrcnt tinics. 

Figure 2 .  I shows schematically the model that we use to analyze the computational pro- 
cess: information is stored in N bits combined into a register. The cornputation is split into 
discrctc steps executed in  sequencc. Each stcp uses information from the register to transform 
the register into a new state. For each step j ,  the state of bit b k ( j  +~ 1) after the operation is 
dctcimincd by thc state of all bits beforc this step, 

where the functions j'i together represent the logical operations acting on the register. 

2.1.2 Quantum vs. classical information processing 

Quantum and classical computers share a number of properties that are sub.ject to the same 
physical limitations. As an example, the limits on processing speed that we discuss in the 
following section apply to both approaches. Similarly, the amount of information that can be 
stored in ii system is limited by the entropy of the system. 

One of the major difl'erences between classical and quantum computers is the existence 
of superpositions i n  thc quantum computer, which implies that the amount of information 
processed by a single computational step is a single number of N bits in the classical computer, 
while the quantum computer processes typically 2 N  numbers simultaneously. 

Another, hut less fundamental difference is that ideal quantum computers operate re- 
versibly: logical operations are implemented by unitary transformations, which do not change 
the energy of the quantum state on which they operate and therefore (in the ideal case) do 
not dissipate any energy. As we discuss in more detail below, the operation of today's clas- 
sical computers i s  irreversible. This is partly due to the logic foundations (Boolean logic 
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uses non-invertible operations), and partly due to the hardware design. The progress in mi- 
croelectronics is quickly reducing the dissipation per logical operation and considerations of 
the ultimate limits to the requirements on energy and power to drive logical operations are 
becoming relevant. 

The quantum mechanical measurement process imposes some limitations on quantum 
computers that are not relevant for classical computers: the readout process will always change 
the information stored in  a quantum computer, while its effect on a classical computer can be 
made arbitrarily small. 

2.2 Limitations on computer performance 

While some of the limits that physical laws set for the operation of computers are quite obvi- 
ous (such as the speed of light as a limit for information transfer), others have only recently 
been established, while others have been shown not to be fundamental limits, if some of the 
concepts are adjusted. 

2.2.1 Switching energy 

One limitation that was held to be fundamental was that the operation of a logical gate work- 
ing at a temperature T should dissipate at least the energy ~ B T  [Lan61, KL701. At the time 
that these minimum energy requirements were discussed, actual devices required switching 
energies that were some ten orders of magnitude larger, so this perceived limit appeared quite 
irrelevant for any conceivable device. 

1950 1970 1990 2010 

Year 

Figure 2.2: The energy dissipation per logical step in electronic circuits decreased by about 2-3 
orders of magnitude cvcry decade [Key88]. 

As Fig. 2.2 shows, the situation has changed dramatically in the 40 years since: the energy 
dissipated per logical step has decreased exponentially, at a rate of approximately a factor of 
ten every 4 years. This increase in energy efficiency is a requirement for the increase in speed 
and computational power and will need to continue if these other trends continue. Consider, 



e.g., a typical microprocessor with some I OH transistors being clocked at 1 GHz: if it were to 
dissipate 10 mJ per logical operation, as was typical in 1940, it would consume some 10’5 W 
for a short time, probably disintegrating explosively within a single clock cycle. 

I t  appears therefore quite likely that this trend must continue as long as the increase in 
speed and integration continues. As the figure shows, the cxtrapolation of this trend implies 
that the energy per logical step will reach the thermal energy ~ R T  (T = 300 K) within 10-15 
years. This litnit (ku7’) is relevant in at least two respects: 

0 ~X:UT is the average thermal energy per degree of freedom. Any environment that is at 
the tempcrature 7’ will therefore inject this energy into switches that are not perfectly 
shielded from the environment, thus causing them to switch spontaneously. 

0 k~(‘1’ is the minimum energy that is dissipated by non-reversible gate operations, such as 
an AND operation. 

We are therefore led to conclude that conventional electronic circuits will encounter problems 
when they reach this limit. However, as we discuss below, it is now established that infor- 
mation can be processed with techniques that dissipate less energy than ~ B T  per logical step. 
There is no lower limit for the energy required for a logical operation, as long as the switching 
time is not critical. 

2.2.2 Entropy generation and Maxwell’s demon 

The flow of information in any computer corresponds to a transfer of entropy. Information 
processing is therefore closcly tied to thermodynamics. As an introduction to these issues 
consider the Maxwell demon: As Maxwell discussed, in his “Theory of heat” in 187 1, 

“If we conceive a being whose faculties are so sharpened that he can follow 
cvcry molecule in its course, such a being, whose attributes are still essentially finite 
as our own, would be able to do what is at present impossible to us. For we have 
seen that the molecules in a vessel full of air at a uniform temperature are moving 
with velocities by no means uniform ... Now let us suppose that such ;L vessel is 
divided into two portions, A and B, by a division in which there is a small hole, and 
that a being, who can see the individual molecules, opens and closes this hole, so as 
to allow only the swifter molecules to pass from A to B, and only the slower ones to 
pass from B to A. He will thus, without expenditure of work, raise the temperature 
of R and lower that of A, in contradiction with the second law of thermodynamics.” 

Clearly such a device is not in contradiction with the first law of thermodynamics, but 
with the second. A number of people discussed this issue, adding even simpler versions of 
this paradox. A good example is that the demon does not have to measure the speed of the 
niolecules; it is sufficient if he measured its direction: He only opens the door if a molecule 
comes towards the door from the left (e.g.), but not if it comes from the right. As a result, 
pressure will increase in the right-hand part of the container. This will not create a temperature 
difference, but rather a pressure difl‘ttrence, which could also be used as a source of energy. 
Still, this device does not violate conscrvation of energy, since the energy of the inolecules is 
not changed. 
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The first hint at a resolution of this paradox came in 1929 from Leo Szilard LSzi291, who 
realized that the measurement, which must be taken on the molecules, does not come for free: 
the information required for the decision, whether or not to open the gate, compensates the 
entropy decrease in the gas. It is thus exactly the information processing, which prevents the 
violation of the second law. 

While Szilard’s analysis of the situation was correct, he only assumed that this had to be 
the case, he did not give a proof for this assumption. It was Rolf Landauer of IBM [Lan613 
who made a more careful analysis, explicitly discussing the generation of entropy in various 
computational processes. Other researchers, including Charles Bennett, Edward Fredkin, and 
Tommaso Toffoli showed that it is actually the process of erasing the information gained 
during the measurement (which is required as a step for initializing the system for the next 
measurement) which creates the entropy, while the measurement itself could be made without 
entropy creation. Erasing information is closely related to dissipation: a reversible system 
does not destroy information, as expressed by the second law of thermodynamics. Obviously 
most current computers dissipate information. As an example, consider the calculation 3+5 = 
8. It is not possible to reverse this computation, since different inputs produce this output. The 
process is quite analogous to the removal of a wall between two containers, which are filled 
with different pressures of the same gas. 

The creation of entropy during erasure of information is always associated with dissipation 
of energy. Typically, the erasure of 1 bit of information must dissipate at least an energy of 
knT. This can be illustrated in  a simple picture. We assume that the information is stored in 
a quantum mechanical two-level system, the two states being labeled 10) and 11). Erasing the 
information contained in this bit can be achieved by placing it in state lo), e.g., independent 
of its previous state. This is obviously impossible by a unitary operation, i.e., by (energy- 
conserving) evolution under a Hamiltonian, since in that case the final state always depends 
on the input state. 

12> 

11> 

Figure 2.3: Erasing a bit of information, i.e., setting it unconditionally to the valuc (0) can be 
achieved by driving the transition from state 11) to an auxiliary state 12) with a laser. 

Figure 2.3 shows a simple system that allows for initialization of a qubit by spontaneous 
emission. A laser drives the transition from state 11) to an auxiliary optically excited state 12). 
If this state has a nonvanishing probability to decay to state lo), It will eventually end up in 
this state, since this does not interact with the laser beam. It represents therefore a (re-)ini- 
tialization of the qubit into state 10). For this scheme to work, the third state la ) ,  must have 



an energy higher than that of state 11). If the system is initially in  state Il), the pulsc puts it 
in  state 12). If it is initially in statc lo), the pulse does nothing. From state ]2), the system 
will undergo spontaneous emission; in a suitable system, the probability for this spontaneous 
emission to bring the atom to state 10) approaches unity. If this probability is not high enough, 
the procedure must bc repeated. 

The miniinuni energy expenditure for this procedure is defined by the photon energy for 
bringing the system into the excited state. This energy must be larger than k n T ,  since the 
system could otherwise spontaneously undergo this transition, driven by the thermal energy. 
Similar requirements hold in classical systems, where dissipation is typically due to friction. 

2.2.3 Reversible logic 

As discussed before, conventional computers use Boolean logic, which includes the operations 
AND and OR. Both these operations, which have two input bits and one output bit, discard 
information, i.e., they reduce the phase space. When the system has fewer accessible states, 
its entropy is lower. Since the second law of thermodynamics does not allow a decrease 
in the entropy of a closed system, this decrease has to be compensated by thc generation 
of entropy at some other placc. The entropy generated by erasing a bit of information is 
A S  = k U T  111 2 .  Cornpulers based on Boolean logic are therefore inherently dissipative 
devices, with the dissipation per logical step of at least X:DT In 2. This generation of heat 
during the computational process reprcscnts an obvious limitation on thc possible speed ol' it 
computer, since no physical device can withstand arbitrary amounts of heat generation. 
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Figure 2.4: Examples o f  an  irreversible (AND) and reversihle (CNOT) gate. 

It turns out, however, that computers do not have to rely on Boolean logic. They can use 
reversible logic instead, which preserves the information, generating no entropy during the 
processing [Ben73]. Figure 2.4 shows an example of ;I reversible logic gate, the so-called 
controlled N O T  or CNOT gate, which can be used to implement arbitrary algorithms. This 
particular gate is its own inverse, i.e., CNOT . CNOT = 1. 

Quantum information processors usc unitary operations to perform computations. Since 
unitary operations are always reversible, they therefore require algorithms that use only rc- 
versiblc logical gates. For the example of a quantum computer, it is easy to prove that the 
energy dissipation during the computation vanishes. For this we calculate the energy of the 
quantum register at time t 

( E ) ( ! )  Tk('Htp(t)) = TI.('HP f w ' p ( 0 ) ~ ~ ' 3 i ' )  = rl'r(cz'Kt3-tP ' % ' p ( O ) )  = (E)(O),  ( 2 . 2 )  

where we have used that [p"', 7-f = 01. (The density operator p demibes the state of the 
systcm. TI denote\ the trace, see Chaptcr 4.) 
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A general reversible computer can be represented as a system of states, corresponding to 
the information stored in the computer, and a sequence of logical operations, transforming one 
such state into the next. Since no information is discarded, it is possible to reverse the com- 
plete computation and bring the system back to its initial state, simply be reversing each of the 
logical operations. No minimum amount of energy is required to perform reversible logical 
operations. However, not discarding any information also implies that no error correction or 
re-calibration is done, since these processes also discard (unwanted) information. Reversible 
computation (which includes quantum computation) therefore requires very reliable gate op- 
erations. 

Figure 2.5: Reversible copy operation in a time-modulated potential. 

Figure 2.5 shows schematically how a reversible operation that could be implemented 
by a time-modulated potential and a coupling between source and target. The double well 
potential represents the information: the bead in the left hand well corresponds to the logical 
value 0, the bead in the right hand well to the value I .  Each potential therefore stores one bit 
of information, with the single minimum well representing a neutral state. The copy operation 
is achieved by modulating the potential between a monostable and a bistable state in such a 
way that no energy is expended. The modulation must be sufficiently slow that the system 
can follow it adiabatically. The spring, which is a passive device, assures that the bead in the 
second well falls into the left or right subwell, depending on the position of the other bit. 

2.2.4 Reversible gates for universal computers 

The first proof that reversible logic gates can form the basis of a universal computer is due to 
Fredkin and Toffoli [FT82]. They proposed a three-bit gate that is now known as the Fredkin 
gate, which can be operated in a reversible way (details will be discussed in Section 3). The 
Fredkin gate can be used to implement a reversible AND gate by identifying the inputs of the 
AND gate with two lines of the Fredkin gate and setting the third input to the fixed value 0. The 
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corresponding output line then contains the output of the AND gate, while the two other lines 
contain bits of information which are not used by the Boolean logic, but would be required 
to reverse the computation. Other reversible gates can be derived from the Fredkin gate in a 
similar way: the irreversible Boolean gate is embedded in the “larger” Fredkin gate. 

When reversible gates are embedded in larger reversible ones, some of the output lines are 
not used in the rest of the computation. They can be erased at the corresponding dissipation 
cxpcnsc, or they can be used to reverse the computation after the result has been read out, thus 
providing a truly reversible operation of the machine at the expense of some additional bits 
whosc number grows linearly with the length of the computation [Ben73]. 

Another reversible computational architecture is the reversible Turing machine. A Turing 
machine consists of an infinitely long tape storing bits of information, a r e d w r i t e  head that 
can be in a number of different states, and a set of rules stating what the machine is to do  
depending on the value of the bit at the current position of the head and the state of the head. 
A reversible set of rules would be the set of operations represented in Table 2.1. 

The information processing corresponds to a motion of the head. The motion is driven by 
thermal fluctuations and a small force defining the direction. The amount of energy dissipated 
in this computer decreases without limit as this external force is reduced, but at the same 
time the processing speed decreases. Overall the best picture to describe the operation of a 
reversible computer is that it is driven along a computational path. The same path may be 
retraced backward by changing some external parameter, thereby completely reversing the 
effect of the computation. 

2.2.5 Processing speed 

One limit for the processing speed can be derived from the uncertainty principle. It can be 
shown [ML98] that it takes at least a time 

rrh 
at = - 

2E (2.3) 

[or a quantum mechanical state to evolve into an orthogonal state, if E is the energy of the 
system. This condition is a requirement for two states to be distinguishable, which is one 
condition to qualify as a computational step. This limit therefore defines a minimal duration 
for a computational step given the available energy E .  It does not imply, however, that this 
energy must be dissipated during this step. In an ideal system, the energy will rcmain available 
for the continuation of the computation. 
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Quantum computers work close to this limit if the energy is equated with the energy range 
of the eigenstates of the relevant Hamiltonian. This implies that only the energy in the system 
degrees of freedom is included in the calculation, not the (usually much larger) energy stored 
in bath degrees of freedom, in particular, not the rest mass of the system. In an NMR quan- 
tum computer, e.g., where the relevant degrees of freedom are the nuclear spins, the energy 
available to the computation is the Zeeman energy of the spins. 

This system also permits a verification of the condition stated above. Setting the energy of 
the ground state I T)  to zero, the excited state I l) has an energy f w ~  (where wr, is the Larmor 
frequency of the spin, which is proportional to the magnetic field). An initial state 

then evolves into 

Apparently the two states are orthogonal for w L t  = 7r, i.e., after t = 7r/wL. Since the 
(constant) energy of this state is E = b r , / 2 ,  we recover the condition given above. 

An interesting aspect of this limit is that it does not depend on the architecture of the com- 
puter. While we generally expect computers containing many processors working in parallel 
to be faster than purely serial computers, this is no longer the case for a computer working at 
the limit just discussed: if the number of processors increases, the available energy per pro- 
cessor decreases and correspondingly its speed. The total number of logical operations per 
unit time remains constant. 

2.2.6 Storage density 

A limit on the amount of data stored in the computer can be derived from thermodynamics. 
According to statistical mechanics, the entropy of a system is 

(2.6) 

where W is the number of accessible states. To store N bits of information, we need N two- 
level systems, which have 2N states. Accordingly, a system that stores N bits has an entropy 

S = k~ In W, 

S = N k B  1112, (2.7) 

It should be realized here, that the entropy that we calculate is the entropy of an ensemble at a 
given energy, while the actual system doing the computation is in a well-defined (pure) state, 
thus having zero entropy. 

2.3 The ultimate laptop 

2.3.1 Processing speed 

Some limits to the performance of computers have been summarized by Seth Lloyd [LloOO] in 
a very popular style: he discusses the “ultimate laptop”, i.e., the maximum performance that a 



computer of 1 kg mass and a volume of 1 1 may ultimately achieve. "Ultimatcly" means again 
that this approach does not consider any specilk implementation; in fact, the conditions coil- 
sidered are such that it is highly unlikely that any device will ever be built that even remotely 
approaches the conditions that arc derived here. Nevertheless, the considerations are instruc- 
tive in showing that limitations will eventually become important, no matter what advances 
matcrials science will make in the future. 

The limit on the processing speed discussed i n  Section 2.2.5 would be reached if all thc 
mass ofthe computer were available as energy for driving the computation; it can be obtained 
from the condition 2.3 on the processing speed. An energy of 

E = ,w2 = 1, x lo1" .I (2.8) 

results in a maximum speed of 

operations per second. 
An additional limit derives from the necessity to include error correction. Detecting an 

error can in principle be achieved without energy dissipation. However, correcting i t  implies 
eliminating information (about the environment), thus generating dissipation. The dissipated 
energy will heat the computer and must be removed to the environment. We will assume 
hcrc that energy dissipation is limited by blackbody radiation. At a temperature of T = 
G x 1U8 K, with a surface area of 0.01m2, the power of the blackbody radiation amounts to 
P = 4 x lo2" W. This energy throughput (which is required for error correction, not for 
operation) corresponds to a mass throughput of 

(2.10) 

which must be fully converted to energy. If this is possible, the number of error bits that can 
be re,jected per cecond is 7 x bits per second. With a total of logical operations 
per second, this implies that its error rate must be less than about 10px to achieve reliable 
operation. 

2.3.2 Maximum storage density 

A limit that may be easier to approach is if we assume that every atom of the system can 
store at most 1 bit of information. This is in principle fuliilled i n  NMR and ion trap cluantum 
computers. Fur a mass of I kg, the number of atoms would be of the order of A[ 
this density, it would thus be possible to store loz5 qubits of information in a computer. If 
optical transitions of these atoms are used for logical operations, gate times of the order of 
10 " s would be feasible, allowing a total of lo4" logical opcrations per second for the 
whole computer. 

At such data rates, the different parts of the computer would not be able to communi- 
cate with each other at the same rate as the individual logical operations. The computer 
wo~ild thereforc need a highly parallel architecture. If serial opcration is preferred (which 
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may be dictated by the algorithm), the computer needs to be compressed. Fully serial oper- 
ation becomes possible only when the dimensions become equal to the Schwarzschild radius 
(= 1.5 x lopz7  m for m = 1 kg), i.e., when the computer forms a miniature black hole. 

While all these limits appear very remote, it would only take of the order of 100-200 
years of progress at the current rate (as summarized by Moore’s law) to actually reach them. 
It is therefore very likely that a deviation from Moore’s law will be observed within this time 
frame, irrespective of the technology being used for building computers. 

Further reading 

A brief, nontechnical introduction into the thermodynamic aspects of computation is given in 
two articles in Scientific American [BL85, Ben871. 



3 Elements of classical computer science 

Computer science is a vast field, ranging from the very abstract and fundamental to the very 
applied and down-to-earth. It is impossible to summarize the status of the field for an audience 
of outsiders (such as physicists) on a few pages. The present chapter is intended to serve as 
an introduction to the most basic notions necessary to discuss logical operations, circuits, and 
algorithms. We will first introduce logic gates of two types: irreversible and reversible. Later 
we will discuss the Turing machine as a universal computer and the concept of complexity 
classes. All this will be done in an informal and highly non-rigorous style intended to provide 
our physicist readership with some rough idea about the subject. 

3.1 Bits of history 

The inventor of the first programmable computer is probably Charles Babbage (1 791-1871). 
He was interested in the automatic computation of mathematical tables and designed the me- 
chanical “analytical engine” in the 1830s. The engine was to be controlled and programmed 
by punchcards, a technique already known from the automatic Jacquard loom, but was never 
actually built. Babbage’s unpublished notebooks were discovered in 1937 and the 3 1 -digit 
accuracy “Difference Engine No. 2” was built to Babbage’s specifications in 1991. (Babbage 
was also Lucasian professor of mathematics in Cambridge, like Newton, Stokes, Dirac, and 
Hawking, and he invented important practical devices such as the locomotive cowcatcher.) 

The first computer programmer probably is Ada Augusta King, countess of Lovelace 
( 1  8 15-1 852), daughter of the famous poet, Lord Byron, who devised a programme to compute 
Bernoulli numbers (recursively) with Babbage’s engine. From this example we learn that the 
practice of devising algorithms for not-yet existing computers is considerably older than the 
quantum age. 

Another important figure from 19th century Britain is George Boole (18 15-1864) who in 
1847 published his ideas for formalizing logical operations by using operations like AND, 
OR, and NOT on binary numbers. 

Alan Turing (1912-1954) invented the Turing machine in 1936 in the context of the de- 
cidability problem posed by David Hilbert: Is it always possible to decide whether a given 
mathematical statement is true or not? (It is not, and Turing’s machine helped to show that.) 

Quantum Computing: A Short Course from Theory to Experiment 
Joachirn Stoke, Dieter Suter 

Copyright 8 ZW4 WILEY-VCW GmbH & Co. KGaA 
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/*I GATE 

3.2 Boolean algebra and logic gates 

OUT 

3.2.1 Bits and gates 

Classical digital computers are based on Boolean logic. In this context, the “atoms” of infor- 
mation are the binary digits, or hits, which can assume the values 0 or I ,  which correspond to 
the truth values [rue and false. In the computing hardware, bits are represented by easily dis- 
tinguishable physical states, such as the presence or absence of a voltage, charge, or current. 
Information is encoded i n  strings of bits which are manipulated by the computer. 

Computations are defined by algorithms, sequences of elementary logical operations like 
NOT, OR, and AND, that act on (transform) strings of bits. Any transformation between two 
bit strings of finite length can be decomposed into one- and two-bit operations. (See [Pre97]; 
a proof of the quantum version of this important fact will be sketched in  Chapter 5.)  

Figure 3.1: A logic gatc with two input bits and one output bit. 

Logic operations or gates can be characterized by the number of bits that they take ;IS input 
and the number of bits they produce as output. Figure 3.1 shows a simple example with two 
inpiit bits and one output bit. This representation of logic gates, where wires represent bits and 
boxes the gate operations leads naturally to what is called the rietwork modd ojcornpututiori 
(often also called the circuit ,node/). 

The simplest type of logic gate operations are the one bit gates, which act on a single input 
bit and produce a single output bit. Four possible operations may be applied to a single bit: 
the bit may be left untouched (identity), it may be flipped (NOT), and il may be set to 0 or 1 
unconditionally. The latter two operations are obviously irreversible. 

3.2.2 2-bit logic gates 

At the next level of complexity are the2-bit logic gates. We first discuss one-bit functions o f a  
two-hit argument: 

( x ,  y) -+ / ( : I : ,  y) where :I:, y, f = 0 or 1 .  (3.1) 

Logic gates of this type are called Boolenri~~~filnr.tions. The four possible inputs 00, 01, 10, 1 1 
can each be mapped to one of two possible outputs 0 and 1 ; the i‘unction is completely charac- 
terized by the string offour output bits ( f ( O O ) ,  f’(01), f(lO), f ’ (  11)). Since there are ‘L4 = 1 6  
different output strings, we have I6 possible Boolean functions of two binary variables. Note 
that these gates ;ire irrevetsihtp since the output is shorter than the input. 

The binary operations OR and AND are defined by their truth tcihks, see Tablc 3. I .  
All other operations, such as lMPLIES or XOR can be constructed from the elementary 

operations NOT, OR, and AND. As an example for the reduction of ti logical operation to  
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Table 3.1: Truth table for AND and OR. mi 
more elementary operations consider 

z XOR IJ = (:I: OR y) AND NOT ( 2  AND y) . (3.2) 

( XOR is also often denoted by cD, because it is equivalent to addition modulo 2.) 
We now return to the I6 Boolean functions of two bits. We number them according to the 

four-bit output string a5 given in the above truth table, read from top to bottom and interpreted 
as a binary number. For example AND outputs 0001=1 and OR outputs 01 11=7. We can thus 
characterize each gate or function by a number between 0 and 15 and look at them in order. 
Some examples are: 

0: The absurdity, for example (z AND y)  AND NOT (z AND y). 

1: :1: ANDy 

2: x AND ( NOT 14) 

3: x, which can be written in a more complicated way: z = z OR (y  AND NOT y) 

4: ( NOT x) AND y 

5: y = ...( see x above) 

8: ( NOT x) AND ( NOT y) =: ( x  NOR y) 

9: ( (  NOT x) AND ( NOT y))  OR (z AND y) = NOT (Z XOR y) =: ( X  EQUALS y) 

All others can be obtained by negating the above; notable are 

13: NOT (:I; AND ( NOT y)) =: :x' IMPLIES 

14: NOT (:I; AND y) =: x NAND y 

15: The banality, for example ( x  AND y) OR NOT (x AND 71). 

We have thus seen that all Boolean functions can be constructed from the elementary Boolean 
operations. Furthermore, since 

z OR y = ( NOT x) NAND ( NOT :y). (3.3) 

we see that we only need NAND (as defined by line 14) and NOT to achieve any desired 
classical logic gate with two input bits and one output bit. 



In  order to connect an arbitrary number 71 of input lines to 7n, output lines we need, in ad- 
dition to the logic gates shown schematically in Figure 3.1, the ability to COPY the contents 
of one bit to a different bit while keeping the original bit. This is usually symbolized by a 
branching line in a network diagram, which symbolizes a branching wire with equal voltage 
levels at the three terminals. While copying a classical bit is thus a trivial operation, copy- 
ing a quantum bit turns out to be impossible! This no-cloning tlaeorem will be discussed in 
Chapter 4; it is at the heart of the schemes developed for .xcure quantum communication to 
be discussed in Chapter 13. 

3.2.3 Minimum set of irreversible gates 

We would like to reduce the number of gates needed to perform an arbitrary bit string operation 
to the absolute minimum. Being able to build a network using the smallest possible set of 
different elements is desirable from a theoretical point of view. In practice, however, it is 
usually more advisable to employ a larger variety of gates in order to keep the total size of the 
network smaller. We note that 

.r NAND y = NOT ( . I .  AND g )  = ( NOT .r) OR ( NOT y) = 1 - xy. 

. x N A N D . I = ~ - x ~ : ~  J'= NOTJ (3.5) 

(3.4) 

If we can copy .r to another bit, we can use NAND to achieve NOT 

(where we have used .r2 ~ L for .r = 0, I). Alternatively, if we can prepare a constant bit 1 : 

.r NAND 1 = 1 - .r = NOT .r. (3.6) 

We can also express AND and OR by NAND only: 

(2:  NAND y) NAND (xNAND y) = 1 - ( I  - : x ? / ) ~  
(3.7) 

= 1 -- ( I  - 2xy + : I : ~ ? / ~ )  = 1 - ( I  - . ~ y )  = x!/ = .X AND ?/ 

and 

( X  NAND X) NAND (y NAND y) = ( NOT X) NAND ( NOT ?/) 
(3.8) 

:- 1 - ( 1  - .c)(l - y) = :r + 11 - .q = s OR !I. 

Thus the NAND gate and the COPY operation (which is not a gate in  the strict sense 
defined above) are a uriiversal set of (irreversible) classical gates. A different universal set of 
two gates is given by NOR and COPY, for example. In fact, NAND and COPY can both be 
performed by a single two-bit to two-bit gate, if we can prepare a bit in state I .  This is the 
NAND/NOT gate: 

(x ,  ?/) + (1 - X .  1 - x?/) = { NOT X ,  :x: NAND g) .  (3.9) 

The NOT and NAND functions are obviously achieved by ignoring the second and first output 
hit, respectively. For y = 1 we obtain COPY, combined with a NOT which can be inverted by 
the same gate. 
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3.2.4 Minimum set of reversible gates 

Although we know how to construct a universal set of irreversible gates there are good rea- 
sons to study the reversible alternative. Firstly, quantum gates are reversible, and secondly, 
reversible computation is in principle possible without dissipation of energy. 

A reversible computer evaluates an invertible n-bit function of n bits. Note that every 
irreversible function can be made reversible at the expense of additional bits: the irreversible 
(for rr~ < n) function mapping 72 bits to m bits 

x ( n  bits) - f ( m  bits) (3.10) 

is replaced by the obviously reversible function mapping T L  + 7n bits to n, + m bits 

( x .  ni times 0) + (:I;, f ) .  (3.1 1) 

The reversihlr n-bit functions are permutations among the 2” possible bit strings; there are 
(2”)! such functions. For comparison, the number of arbitrary n-bit functions is (2“)(2“) .  The 
number of reversible I ,- 2-, and %bit gates is 2,24, and 40320, respectively. While irreversible 
classical computation gets by with two-bit operations, reversible classical computation needs 
three-bit gates in order to be universal. This can be seen by observing that the 24 reversible 
two-bit gate5 are all linear, that is, they can be written in the form [Pre97] 

(3.12) 

where all matrix and vector elements are bits and all additions are modulo 2. As the two one- 
bit gates are also obviously linear, any combination of one- and two-bit operations applied to 
the components of a n-bit vector Z can only yield a result linear in 2. On the other hand, for 
TL 2 3 there are invertible n-bit gates which are not linear, for example, the Toffoli gate to be 
discussed below. In Chapter 5 we will see that quantum computing, although reversible too, 
does not need gates acting on three quantum bits to be universal. Furthermore all quantum 
gates will have to be strictly linear because quantum mechanics is a linear theory. 

3.2.5 The CNOT gate 

One of the more interesting reversible classical two-bit gates is the controlled NOT, orCNOT, 
also known as “reversible XOR’, which makes the XOR operation reversible by storing one 
argument : 

( ~ , y )  + ( . r ,x  XOR y). (3.13) 

Table 3.2 shows why (3.13) is called CNOT thetarget bit y is flipped if and only if the control 
bit II: = 1. A second application of CNOT restores the initial state, so this gate is its own 
inverse. 

The CNOT gate can be used to copy a bit, because it maps 

(.. 0) -----f ( J ,  x). (3.14) 
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Table 3.2: Thc CNOT gate. 

0 

x XOR y 
W 

Figure 3.2: Lclt: Single CNOT gatc. Righl: SWAP gatc. 

The network combining three XOR gates in Figurc 3.2 achieves a SWAP of the two input 
bits: 

(.r,y) + ( x , x  XOR y) + ((I: XOR ~ j )  XOR X,X XOR y) 

--+ (!j,y XOR (Z XOR ;(/)) = (y> 2:)  
(3 .  IS) 

Thus thc reversible XOR can be used to copy and move bits around. 

3.2.6 The Toffoli gate 

We will \how now that the functionality of the universal NANDNOT gate (3.9) can be 
achieved by adding ii three-bit gate to our toolbox, the Toffoli gate H(”, also known as 
controlled-controlled-NOT, (CCNOT ) which niapa 

(.r,!y? z )  + ( x , y . q  XOR z ) ,  (3.16) 

that is, i is flipped only if both 2 and ?/ arc 1. The nonlinear nature of the Toffoli gate is evident 
from the presence of the product xy. This gate is universal, provided that we can prepare fixed 
input bits and ignore output bits: 

For z = 1 we have ( z ~ ,  y, 1) ----f ( x ,  y, 1 - .I-?)) = ( x ,  y,c NAND y). 

0 Ik r  ,I- = 1 we obtain i XOR ?j which can be used to copy. swap, etc. 

0 For x = y = 1 we obtain NOT. 

Thus wc can do any computation reversibly. In fact it is even possible to avoid the dissipa- 
tive step of memory clearing (in principlc): store all “garbage” which is generated during the 
reversiblc computation, copy the end result of the coinputation and then let the computation 
run backwards to clcan up the garbage without dissipation. Though this may save some energy 
dissipation, it has ii price as compared to reversible coinputation with final memory clearing: 
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0 The time (number of steps) grows from T to roughly 2T. 

0 Additional storage space, growing roughly proportional to T ,  is needed. 

However, there are ways [Pre97] to split the computation up in a number of steps which are 
inverted individually, so that the additional storage grows only proportional to log T ,  but in 
that case more computing time is needed. 

3.2.7 The Fredkin gate 

Another reversible three-bit gate which can be used to build a universal set of gates is the 
Fredkin gate [FT82]. While the Toffoli gate has two control bits and one target bit, the Fredkin 
gate has one control qubit and two target bits. The target bits are interchanged if the control 
bit is I ,  otherwise they are left untouched. Table 3.3 shows the input and output of the Fredkin 
gate, where z is the control bit, and y and z are the target bits, respectively. 

Table 3.3: Thc Frcdkin gate. 

Input Output 

To implement a reversible AND gate, for example, the z bit is set to 0 on input. On output 
z then contains z AND y, as can be read off from Table 3.3. If the other two bits z and y 
were discarded, this gate would be irreversible; keeping the input bits makes the operation 
reversible. The NOT gate may also be embedded in the Fredkin gate: setting y = 0 and z = 1 
on input we see that on output z = NOT z and g = rc; thus we have implemented a COPY 
gate at the same time. 

3.3 Universal computers 

3.3.1 The Turing machine 

TheTuring machine acts on a tape (or string of symbols) as an input/output medium. It has a 
finite number of internal states. If the machine reads the symbol s from the tape while being 
in state G, it will replace s by another symbol s’, change its state to G’ and move the tape 
one step in direction d (left or right). The machine is completely specified by a j n i t e  set of 
transition rules 

( s .  G) ---i (s’, G’, d )  (3.17) 
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Taoe - 
0 0 0 1 1 0 1 l...... 0011010111 

State indicator P I a b c ...... h (halt) 

Figure 3.3: A Turing machine operating on  a tape with binary symbols and possessing sevcral 
internal \rates, including thc holt state. 

The machine has one cpecial internal state, the “halt” state, in which the machine stop$ all 
further activity. On input, the tape contains the “program” and “input data“; on output, the 
result of the computation. 

The (finite) set of transition rules for a given Turing machine T can be coded as a binary 
number 47’1 (the deccription of T ) .  Let T ( L )  be the output of T for a given input tape . I . .  

Turing showed that there exists a univerxil Turing wiucliinc. l J  with 

U ( d [ T ] .  . r )  = T( . r )  (3.18) 

and the number of steps U needs to simulate each stcp of T is only a pol~ynornial function of 
the length of d[T]. Thus we only have to supply the “description” d [ l ’ ]  of T and the original 
input .r on a tape to U and U will perform the same task as any machine T ,  with at most 
polynoniial slowdown. 

3.3.2 The Church-Turing hypothesis 

Other models of computation (for example the network model) are computationally equivalent 
to the Turing model: the same tasks can he performed with the same efficiency. In 1936 
A l o n ~ o  Church IChu36I and Alan Turing [Tur36] independently stated the 

~ ‘ ~ ~ ~ r ~ . } 7 - ~ f r ; i i ~  ~ ? ~ p ~ t ~ z ~ s i ~ ~ :  Every function which would naturslly be regarded as  
computable can be computed by the universil Turing machine. 

‘I’hc notion of a computable function here is meant to comprise an extremely broad range 
of tasks. Any mapping of a finite string of bits to another finite string of bits falls into this 
range. The input string could come from a lengthy sequence of keystrokes where thc output 
bit string is the print on this page. As another example, the input string could be some table 
containing numerical data and the output string a graphical representation of these data, such 
as text processing etc.). There is no proof of the Church-Turing hypothesis, but also no 
counterexample has been found, despite decades of attempts to find one. 
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3.4 Complexity and algorithms 

3.4.1 Complexity classes 

Complexity has many aspects, and computational problems may be classified with respect to 
several measures of complexity. Here we will only treat very few examples from important 
complexity classes. The article by Mertens [Mer02] gives more examples in easy-to-read 
style. 

Consider some task to be performed on an integer input number 2; for example, finding 
x2 or determining if .r is a prime. The number of bits needed to store 1c is 

L = log, 5.  (3.19) 

The computational complexity of the task characterizes how fast the number s of steps a Turing 
machine needs to solve the problem increases with L. For example, the method by which most 
of us have computed squares of “large” numbers in primary school has roughly 

s x L2 (3.20) 

(if you identify s with the number of digits you have to write on your sheet of paper). This is 
a typical problem from complexity class P:  there is an algorithm for which s is a polynomial 
function of L. If s rises exponentially with L the problem is considered hard. (Note, however, 
that it is not possible to exclude the discovery of new algorithms which make previously hard 
problems tractable!) 

It is often much easier to verify a solution than to find it; think of factorizing large numbers. 
The complexity class N P  consists of problems for which solutions can be verified in polyno- 
mial time. Of course P is contained in N P ,  but it is not known if N P  is actually larger than 
P ,  basically because revolutionary algorithms may be discovered any day. N P  means nonde- 
terministic polynomial. A nondeterministic polynomial algorithm may at any step brunch into 
two paths which are both followed in parallel. Such a tree-like algorithm is able to perform 
an exponential number of calculational steps in polynomial time (at the expense of exponen- 
tially growing parallel computational capacity!). To verify a solution, however, one only has 
to follow “the right branch” of the tree and that is obviously possible in polynomial time. 

Some problems may be reduced to other problems, that is, the solution of a problem PI 
may be used as a “step” or “subroutine” in an algorithm to solve another problem Pz. Often 
it can be shown that Pz may be solved by applying the subroutine PI a polynomial number of 
times; then Pz is polynomiully reducible to PI :  P2 5 PI. (Read: “P, cannot be harder than 
PI .”) Some nice examples are provided by problems from graph theory, where one searches 
paths with certain properties through a given graph (or network), see [Mer02]. A problem is 
called NP-conzplete if any N P  problem can be reduced to it. Hundreds of NP-complete 
problems are known, one of the most famous being thetraveling salesman problem of finding 
the shortest route between a given number of cities that touches every city once and starts and 
ends at the same city. If somebody finds a polynomial solution for any NP-complete problem, 
then “P = NP” and one of the most fundamental problems of theoretical computer science 
is solved. This is, however, very unlikely, since many first-rate scientists have unsuccessfully 
tried to find such a solution. 



I t  should be noted at this point that theoretical computer science bases its discussion of 
complexity classcs on worst cuse complexity. In practical applications it is very often possible 
to tind excellent approximations to the solution of, say, the traveling salesman problem within 
reasonable time. 

3.4.2 Hard and impossible problems 

A famous example for a hard problem is the factoring problem (finding the prime factors of 
a given large integer) already mentioned in Chapter 1. We will discuss this problem and its 
relation to cryptography in  Chapter 8, where we will also treat Shor’s [Sho94] quantum fxtor- 
ization algorithm. Since Shor’s discovery, suspicions have grown that the factoring problem 
may be in class N P I  ( I  for intermediate), that is, harder than P,  but not NP-complete. If 
this class exists, P f NI’. 

Some functions may be not just hard to compute but unconzputable because the algorithm 
will never stop, or, nobody knows ifit will ever stop. An example is the algorithm: 

While L is equul to the ,sim of two prinies, add 2 to :I’ 

otherwise print .r (itid halt 
beginning at n: = 8. 

If this algorithm stops, we have found a counterexample to the famous Goldbach conjecture, 
that every even number is the sum of two primes. Another famous unsolvable problem is the 
/?tilting prohlem, which is slated very easily: 

I s  there N getzerd cilgoritlini to di?ci& if. luring machine T with description (tran- 
sition rides) d[T] will stop on a certain iriput : I :?  

Therc is a nice argument by Turing showing that such an algorithm does not exist. Suppose 
such an algorithm existed. Then it would be possible to make il Turing machine T,J which 
halts if and only if T(d[T] )  (that is, T ,  fed its own description as input) does not halt: 

(3.21) 

This is possible since the description d[T] contains sufficient information about the way T 
works. Now feed TH the description of itself, that is, put T = 7’,, 

’ I ’ r r (d [T] )  halts ++ T(rl[T]) does not halt. 

T ~ r ( d [ Y > l ] )  halts T,4(d[Tr1]) docs not halt. (3.22) 

This contradiction shows that there is no algorithm that solves the halting problem. This is 
a nice recursive argument: let an algorithm find out something about its own structure. This 
kind of reasoning is typical of the field centered around Godel’s incompleteness theorem. A 
very intercstirig sem-literary piece of work centered about the ideas of recursiveness and self- 
reference in mathematics and other fields of culture is the book “Godel, Escher, Bach” rHof791 
by the physicistkomputer scientist Douglas R. Hofsladter. 

Further reading 

Morc coniplete accounts of computer ccience aimed at the discussion of quantum computing 
can he found in [NCOI], Chap. 3, [Ste98J, Secs. 2 and 3, [Pre97], Sec. 6.1. These references 
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also contain pointers to more rigorous mathematical treatments of the subject. Details on the 
history of computing can be found, for example, in  the history section of the entry “Comput- 
ers” in the Encyclopuediu Britutirzicu. A nice readable account of complexity with some more 
details than we will treat (and need) here is [Mer02]. 



4 Quantum mechanics 

The first part of this chapter is intended to be a mere recapitulation of material from a standard 
quantum mechanics course for most readers. This does not mean that the complexities of 
atomic physics will be reviewed here, but rather that the focus will be on the general formal 
structure of the theory. Later on we will treat some simple applications which have not yet 
become standard subject matter of a quantum mechanics course but which are relevant to 
quantum information processing. Throughout this book we shall almost exclusively employ 
Dirac's abstract bra and ket notation for quantum states. This is quite natural for a field 
which focuses more o n  algebraic structures and relations between states than on, for example, 
probability distributions in space related to individual states which are best discussed in the 
position representation, that is in  terms of wave functions. 

4.1 General structure 

4.1.1 Spectral lines and stationary states 

In a way, quantum mechanics started almost two hundred years ago when scientists like Wol- 
laston and Fraunhofer first observed distinct lines in optical spectra. Later on Kirchhoff and 
Bunsen showed that the spectral lines were characteristic for the different chemical elements 
and thus established a connection between optics and what later became atomic physics. 
About a hundred years ago early quantum theory established that: 

1. electromagnetic radiation is emitted and absorbed in quanta, or photons, whose energy is 
proportional to their frequency, and 

2. atoms possess certain stationary states with fixed energies. The differences of these en- 
ergy values correspond to the energies of the photons emitted or absorbed in transitions. 

Schrodinger showed that the stationary states could be described by wave functions whose 
dynamics was determined by an equation which was later named after him. The possible 
(quantized) energy values arose from an eigenvalue problem related to the Schrodinger equa- 
tion. It did not take long to show that Schriidinger's theory was completely equivalent to 
approaches by Heisenberg and by Pauli which involved an algebraic eigenvalue problem. 

4.1.2 Vectors in Hilbert space 

One of the most strikingly counter-intuitive features of quantum mechanics is the linear struc- 
ture of its state space. As it turns out this property is also extremely important for the appli- 
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cation of quantum mechanics to information proccssing. In classical mechanics the state of 
a finite number of interacting point particles is uniquely specified by a vector of generalixed 
coordinates and momenta. In  quantum mechanics, the state of the system is also uniquely 
specified, this tiinc by a vector in Hilbert space. In both cases, linear combinations of two 
admissible vectors are again admissible vectors. The difference lies in the meaning and inter- 
pretation of the vector components. Classically the components are coordinates and momenta 
which have definite values in every admissible state, leading to definite predictions for the out- 
conies of all conceivable physical measurements. In the quantum case, Hilbert space vector 
components denote probability amplitudes related to the possible outcomes of certain mea- 
surements. This leads to the standard probabilistic interpretation of superpositions of Hilbert 
space vectors. 

It is important to note that even the Hilbert spaces of very simple systems can have infinite 
dimension. A single hydrogen atom in free space has countably infinitely many bound states 
plus a continuum of scattering states. For the time being we neglect the continuous spectrum, 
assuming that we can suppress transitions into continuum states. For mathematical simplicity 
we even assume that the dimension d of the Hilbert space is finite. d = 2 will be the important 
spccial casc of a single quantum bit, or qubit. 

The Hilbert space thus is ii d-dimensional complex linear space: every linear combination 
of states (Hilbert space vectors) is a state too; scalar product, norm, etc., can be detined as 
usual. The common quantum mechanical abbreviation for a complex column vector is a Dirac 
ket: 

The corresponding row vector is a Dirac bra: 

where the asterisk denotes complex conjugation. 
In view of the probabilistic interpretation of quantum mechanics, it suffices to consider 

normalized states I$), that is, ~ ~ ~ ~ ~ ) ~ ~ 2  := ( ~ J I $ )  = 1. Furthermore the states I$) andr'"l$)(cu 
real) are physically equivalent: overall phase factors do not matter. However, relative phases 
between components of a state are e.rtr.enze/y important:/4) + I$/)) and 14) + pi '"  I,$) (for (Y # 0) 
may have completely different physicid properties, and many of the most interesting quantum 
mechanical phenomena are interference effects related to relative phases between states. 

4.1.3 Operators in Hilbert space 

Operators map states to each other lincarly; they thus are d x d complex matrices operating 
on the d-dimensional Hilbert apace: 
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Operators will be denoted by boldface letters. An eigenstute (or eigenvector) 14q) of an oper- 
ator Q fulfills the eigenvalue equation 

QI@q) yl4,) (4.4) 

where the complex number y is called the rigenvalue. The eigenvalues of different eigenstates 
can be equal; this is called degeneracy. A trivial example is the unit operator 1 (d  x d unit 
matrix) all of whose eigenvalues are equal to unity. 

Observables (measurable quantities) correspond to self-adjoint or Hermitian matrices, that 
is, 

At = A: (At);,, := (A)Ti. (4.5) 

Self-adjoint operators possess real eigenvalues (the eigenvalues are the possible outcomes of a 
measurement and thus have to be real); the eigenstates lai) corresponding to the eigenvalues a, 
of the operator A are pairwise orthogonal (or can be orthogonalized in the case of degeneracy). 
Thus they form a basis in Hilbert space, 

Ala;) = u , ; ~ u , ; )  (uJ(L,) = dL,j ( i , , j  = 1,.  . . ,d), (4.6) 

where d?,, is the familiar Kronecker symbol. (It should be kept in mind that we are operating 
in a finite-dimensional Hilbert space where all states can be normalized to unity.) 

The sets of eigenstates and eigenvalues characterize an observable A completely, because 
any arbitrary state can be expanded in eigenstates of A which obey (4.6). This leads to the 
spectral representation of A. To define that representation we need a further class of oper- 
ators: projection operators or projectors for short. The projector P, onto the eigenstate 1.;) 
(or, more correctly, to the subspace spanned by Ini)) is defined by 

P, := I U ; ) ( U , l .  (4.7) 

Prig) = laz)(ail$) = ( ~ ~ r l ~ ~ ~ ) l ( ~ ~ ) ~  

Application of P; to an arbitrary state 141) yields a multiple of Iui) 

(4.8) 

where I(u;ll/i)lis the “length” of the projection of 14)) onto the unit vector Iai). 

We then have 
For the following we will assume that the vectors la,) are orthonormal, i.e. (u i l uJ )  = h lJ .  

P,P, = d;.jp,,; especially P P  = P;. (4.9) 

These equations have obvious geometrical interpretations: two subsequent projections yield 
zero when they project onto different orthogonal subspaces; when they project onto the same 
subspace the second projection has no effect. From P2 = P we see immediately that the only 
possible eigenvalues of a projector are zero and unity. The projector to the subspace spanned 
by Iui) and I.,) is simply Pi +Pi. This projector also has the characteristic property of being 
equal to its square. As the Pi cover “all directions” of Hilbert space we obtain a completeness 
relation: 

(4.10) 
r=l i=l 
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Now the sprctrul reprt‘scwtution of A can be defined: 

11 

(4.1 I )  
i=l r=l 

The states la,) are now the eigenstates of A and u; its eigenvalues. Physically this means that 
an arbitrary state is tirst decomposed into components along eigenstates of A, and then each 
of these components is treated according to its eigenstate property (4.6). It should be noted 
that the spectral representation is possible not only for observables (4.5) but for the larger class 
of riormcrl operators B with BtB = BB 1 .  

4.1.4 Dynamics and the Hamiltonian operator 

The stationary states of a quantum system are eigenstates of a special operator, the Hamilton- 
ian operator (or Harniltonian, for short), whose eigenvalues are the energy values of the sta- 
tionary states. This follows froni the Schriidinger ryua/ion (often called the “time-dependent” 
Schriidinger equation) governing the evolution of an arbitrary state I$(t)). 

(4.12) 

where 7-t is the Hamiltonian. If thc Hamiltonian is time-independent and 14i) is an eigenstate 
of the Harniltonian with energy eigenvulue ~ i :  

’HI$,) = .,la,). (4.13) 

then 

l I / , ( t ) )  = (’XI, (4:) p;) (4.14) 

is a solution of the timc-dependent Schrodinger equation with initial condition 

I f / , ( r  = 0)) = I(/);). (4. IS) 

Obviously 1 t)( t ) )  is a s t d o n a r y  state, as a global phase factor has no physical significance. 
The eigenvalue equation (4.13) is often called the “time-independent Schrijdinger equation”. 
As any initial state I$(t = 0)) can be cxprcssed as a linear combination of eigenstates I$);) 
of 7-t, the initial value problem is solved (at least in principle). Formally the solution for 
tinie-inrl~Jpendent 7-i ciln be written as 

I d l ( t ) )  = U(t)l+(t = 0)) := exp 

The time evolfiitioii operutor U(t) may be interpreted in two ways: 
i) i15 ii power series 

(4.16) 

(4.17) 
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i i )  by means of the spectral representation 
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(4.18) 

For a more general Hamiltonian X ( t )  depending on time, the time evolution operator U(t) (as 
defined by I$(t)) = U(t)l$(O))) obeys an operator differential equation; for a general time 
dependence of X the solution of that equation is not even known for d = 2. 

All eigenvalues exp (-iq) of U(t) have unit modulus; operators with this property are 
called unitary. A unitary operator U preserves all scalar products, that is, the scalar product 
of I~I) and ix) equals that of Ul$) and Ul,y); consequently norms are preserved too. The 
general property characterizing unitarity is 

u+u = 1 @ U+ = u-'. 
For time-independent X we have 

(4.19) 

(u(t))-I = U(-t), (4.20) 

that is, unitary time evolution is reversible. 

4.1.5 Measurements 

The process of measurement in quantum mechanics is difficult to grasp since it involves phe- 
nomena at the border between the quantum system and its environment, including the ob- 
server. In this section we will stay quite formal and just state the projection postulate which 
is usually employed to describe the measurement process. A more physical discussion of the 
postulate and its interpretation will follow in Section 4.3 . The situation to which the pos- 
tulate refers is that of a quantum system prepared in a state I $ ) .  After preparation a single 
measurement of the observable A is performed. This cycle of preparation and measurement 
is repeated many times so that the notion of probability used in the postulate makes sense. 
Alternatively we may imagine an ensemble containing a large number of independent copies 
of the quantum system, all prepared in the same state I$). A is measured for all system copies 
independently. 

POSTULATE: A single measurement of the observable A in the normalized state I$) yields 
one of the eigenvalues ai of A with probability ~ ( u ~ ~ $ ) ~ ~  (EL l(uil$)12 = 1 due to normal- 
ization). Immediately after the measurement the system is in the (normalized) state 

(4.21) 

where P7 is the projection operator onto the subspace of eigenstates of A with eigenvalue u,. 
(This subspace ic  one-dimensional if the eigenvalue u,  is nondegenerate.) Any measurement 
thus leads to a reduction ofthe wavefunction. In general it is not possible to predict the out- 
come of a single measurement. A measurement of A on an ensemble of systems as discussed 
above yields the uveruge (expectation value) 

(A) := (4AIV~) (4.22) 



44 4 Qutrntum mechanics 

with deviations described by thevar-icrnce (the square of the standard deviation) 

(4.23) 

The variance vanishes if and only if I,t,/i) is an eigenstate of A. 
In this chapter we havc discussed two fundamentally different kinds of change of state: the 

time evolution governed by the Hamiltonian, which is unitary, deterministic and reversible (at 
least for a time-independent Hamiltonian), and the measurement process which is probabilistic 
and irreversible. From an aesthetic point of view this is a very unpleasant situation. After all, 
quantum tncchanics is supposed to be valid for the whole system, including the measurement 
apparatus, at leaht in principle, and then it is hard to see why a measurement (an interaction 
between the apparatus and the system) should be fundamentally different from other dynan- 
ical processes in the system. This is one of the questions that have kept the measurement 
process discussion going for inany decades. In Section 4.3 we will return to the measurement 
process in order to discuss in a little more detail, those aspects which are relevant for quantum 
information procesing. 

4.2 Quantum states 

4.2.1 The two-dimensional Hilbert space: qubits, spins, and photons 

In many situations, only two states of a system are important, for example, the ground and 
first excited states; a singlc spin- 112 particle fixed in space possesses only two states anyway. 
A photon can be in one of two mutually exclusive polarization states; horizontal and vertical 

t is linearly polarized, or left and right if it is circularly polarized. In order to keep the 
analogy to classical bits as close as possible these two-state systems are most suitable for the 
discussion of quantum computing. Any quantum system with a two-dimensional Hilbert space 
can serve as a quantum hit or quhit which can exist in two mutually orthogonal states 10) and 
11). These states are often called the computational basis states; they correspond to the states 
“logical 0 ’  and “logicnl I ”  of a common classical bit. In contrast to a classical bit, however, a 
qubit can also exist in any arbitrary linear combination of the computational basis states. We 
briefly discuss some properties of single qubits in this section. For definiteness we assume 
that the qubits are represented by spin-I12 particles possessing a magnetic moment which can 
be infuenced by an external magnetic field l?. 

The Hilbert space of a single spin-112 particle is spanned by two basis states which we 
chose in the following way: 

(4.24) 

(The identification with thc computational basis states 10) and 11) follows the convention of 
[NCOII.) All operators in this Hilbert space can be combined froin the four fundamental 
operators 

(4.25) 
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(4.26) 

S+ and S- are called the spin raising and lowering operator, respectively. More convenient 
for the purposes of physics are the following combinations: 

2 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

The spin matrices S,, obey the usual angular momentum commutation relations, and they are 
their own inverses (up to a factor): 

(4.3 1 )  

The matrices X, Y ,  and Z have eigenvalues k1 and are commonly known as fuuli matrices. 

h2 
s2 1 s2 = s2 = -1. 

r r J  ” 4  

4.2.2 Hamiltonian and evolution 

The S,, can be used to write the Hamiltonian of a spin-1/2 particle (fixed in space) in an 
external field with components B ,. , Bu, B, : 

+ +  

IFI = -B. S = -(B:,S,r + B , S ,  + BzS, ) .  (4.32) 

Usually the Hamiltonian (4.32) contains prefactors related to the nature of the particle, like 
the y factor and the Bohr magneton. At this point, however, those prefactors do not matter 
and are eliminated by using appropriate units for 6. Note that (4.32) is, apart from trivial 
modifications, the most general Hermitian single-qubit operator. 

It is evident why X is also often called the “NOT gate” in the language of quantum com- 
puting: it maps the two computational basis states onto each other. Any unitary 2 x 2 matrix 
is a valid quantum gate, for example the Z gate, which generates a 7r relative phase between 
the computational basis states. We will also frequently encounter the Hadamard gate 

1 
H = -(X + Z) .  (4.33) Jz 
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H (hopefully not to be confused with the Hamiltonian) is at the same time unitary and Her- 
mitian, implying that H2 = 1. Nevertheless H is sometimes called the “square-root of NOT” 
gate, because it turns 10) into :I state “halfway between” (0)  and 11) and similarly for 1 1 ) .  (As 
an exercise, find the genuine square-root of NOT. Hint: Try to write NOT as exp zc~S,~ . )  

Let us return to the spin in an external tield and perform some small exercises. Consider 

and determine the action of the time evolution a qubit initially in the state I T) = 

operator U ( f )  for a 6 field along one of the coordinate axes f y  = . I : ,  :y, 2 .  

( 3  
U ( t )  = exp (- 7) = [’Xi] ( iH,,t --) 2S, 

(4.34) 

As the square of the operator is equal to the unit operator, all even terms of the power 
series expansion (4.17) of the exponential in U ( t )  are proportional to 1, whereas all odd terms 
are proportional to 2S,,, and thus 

(4.35) 

For ( Y  = 2 we have 

which is a stationary state, as expected, because the initial state was an eigenstate of S; (and 
thus of %). The case cv ~ II’ is different; (4.35) leads to 

U(t) = 

consequently 

(4.37) 

(4.38) 

This state runs through a continuum of states periodically and thus performs a kind of “uniform 
rotation in Hilbert space”. The result for c): = y is similar. It is a useful exercise to calculate 
the time-dependent expectation value of thc spin vector, with components (S,>), (cv = IL’, y, z )  
for all thcse cases and to visualize it in terms of it classical magnetic moment precessing 
in a magnetic field. This aspect will be discussed again in the context of nuclear magnetic 
resonance in chapter 10. 

The most general state i n  the Hilbert spacc of a single qubit is an arbitrary normalized 
linear combination of 1 1) and I 5 )  which may be parametrized, for example, by two angles: 

(4.39) 
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Thus a qubit in a sense contains two (bounded) real numbers’ worth of information, in  contrast 
to the single binary number contained in a classical bit. Unfortunately, however, not all of this 
information is accessible and robust. The question of how to read, write, and manipulate part 
of this information will keep us busy throughout this book. It is easy to check that l H ,  4)  is an 
eigenstate of the operator 

cos HS, + sin 6, cos 4 S X  + sin H sin 4Sg (4.40) 

with eigenvalue +h/2. Thus, in order to prepare the qubit in this state, one “only” needs to 
align the spin along the (8,Cj) direction by a sufficiently strong magnetic field in that direction. 

The two angles (H,4) parametrize the surface of a sphere, the Bloch sphere, which is 
often helpful in visualizing state changes of single qubit systems. Every Hilbert space vector 
(or pure state) of a single qubit is represented by a point on the surface of the Bloch sphere. 
Every unitary single-qubit operator is (apart from a global phase factor) a rotation of the 
Bloch sphere, as will be discussed in more detail in Chapter 5. In the next subsection we will 
encounter a different kind of state, called mixed state. The mixed states of a single qubit will 
be seen to populate the interior of the Bloch sphere. 

4.2.3 Two or more qubits 

“Stepping up from one qubit to two is a bigger leap than you might expect. Much that is weird 
and wonderful about quantum mechanics can be appreciated by considering the properties of 
the quantum states of two qubits.” (John Preskill [Pre97J) 

In the real world there are no isolated spin- 1 /2 particles; quantum systems always couple to 
the “environment” which we often cannot or do not want to take into account in our quantum 
mechanical considerations. However, if we consider a quantum system which is in reality only 
part of a larger system, we will have to abandon some of the “articles of faith” to which we 
have become accustomed when dealing with isolated quantum systems: 

I .  states are no longer vectors in Hilbert space, 

2. measurements are no longer orthogonal projections onto the final state, 

3. and time evolution is no longer unitary. 

The simplest example is given by one qubit A which we call “system”, and to which we have 
access and another qubit B which we call “environment” and to which we have no access. 
The two pairs of states ( 1  T ) A ,  I . l )A} and ( 1  I J),} are orthonormal bases for the Hilbert 
spaces of the two subsystems. The two qubit system with its four-dimensional Hilbert space 
is the simplest possible setting for a discussion of the concepts of pure and mixed states of a 
single subsystem, and of entanglement between subsystems. 

If the subsystems A and B are in states respectively, the combined system 
is in a direct product state which we denote by c9 l C j ) B .  Direct product states are often 
simply called product states and later on we will often use shorthand notations like 1 T T )  for 
I @ I T ) u .  Presently, however, we will stick to the somewhat clumsy but unambiguous 
notation with the subscripts A and B and the direct product sign @. Product states are the 
simplest, but by no means the only possible states of the combined system. According to 

and 



the general superposition principle of quantum mechanics, any linear combination of product 
states, like l i / ~ ) ~  @;I + 1 ~ ) ~ ~  @> IX), is a possible state of the combined system. This 
leads us straight to the definition of entanglement for a bipartite system. A stale of a bipartite 
system is called rntungled if it cannot be written as a direct product of two states from the 
two subsystem Hilbert spaces. A word of caution is in order here: a state which does not look 
like a product state at first sight may be one after all; for a simple example consider the state 
I+) ((4.46) below), expanded in direct products of the basis vectors of the subsystem Hilbert 
spaces. An entangled state cannot be written as a product state in any basis. In contrast, a state 
which can be written as a product state in some basis is called separable. 

We consider the two-qubit state 

I'd)) = (1 I T),q @ I T)n + I .L)A cg I I)/{. (4.4 1 ) 

(In12 + lb12 = 1) which for general values o f n  and h is entangled. A measurement of the state 
of quhit A yields 1 T ) n  with probability /u12 and 1 J ) A  63 1 .Lin with probability lb12. 
In both cases after the measurement on A the state of B isfixed. Now measure an observable 
which acts on A only and leaves B unaffected: 

I 

M,d Cil 1 ~ .  (4.42) 

The expectation value of this observable in the state 141) (4.41) is easily calculated since 1~ 
does not change I . . . ) U  \tates and since / j ( T  I L ) n  = 0 : 

4.2.4 Density operator 

The quantity 

(4.45) 
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is the density operator (density matrix); it is Hermitian ( 4 3 ,  positive (no negative eigenval- 
ues) and its trace is unity (due to normalization). It is important to note that every operator 
with these properties is a density operator, be it diagonal or not, in the basis which we have 
chosen accidentally or thoughtfully! Due to these properties every density operator can be 
written as a convex combination (a linear combination with positive coefficients whose sum 
equals unity) of orthogonal projectors. If p i  = P A  ( for example if la1 = 1 in our example) 
P A  is a single projector on a vector in Hilbert space. (Projectors onto higher-dimensional 
subspaces are excluded by RA p = 1.) In that case PA is called a pure state; otherwise it is 
called a mixed state. (Mixed states are also often called "incoherent superpositions" by people 
with an optics background.) In our example, P A  (4.45) is a mixed state if both u and b are 
nonzero, that is if and only if I$) (4.41) is an entangled state. This connection turns out to 
hold beyond our simple example. 

As a second example let us now consider a state in which the systems A and B are not 
entangled, that is, a product state (in fact, the most general two-quhit product state): 

= TI.A (MA P A )  . 

Again p~ is Hermitian and of unit trace, but obviously not diagonal; in the usual basis (4.24) 
it is 

(4.48) 

Nevertheless p ;  = p . , ~ ,  as we can easily verify. 

4.2.5 Entanglement and mixing 

Thus the density matrix of A is a pure state if the (pure) state of the combined system A + B 
is a product state (that is, not entangled). If the (pure) state of the combined system A + B 
is entangled, the summation over all possibilities for the state of B ("partial trace over the 
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Hilherr space of D'')  leads to the loss of the phases oC the complex numbers a and b and we 
end up with a mixed state, as observed in the previous example involving the state (4.41). The 
following general picture for the loss of coherence (as encoded in the phascs of the initial pure 
statc probability amplitudes) thus emerges: in the bcginning, system ( A )  and environment (U) 
are not entangled. The system's density matrix is initially pure. By interaction, the system 
and environment become entangled (we will see examples in later chapters) and the system's 
density matrix becomes mixed. 

We stress that the pure or mixed character of a density operator is independent of the 
choice of basis for the Hilbert space of interest. It is thus completely unrelated to whether 
the density operator is diagonal or not. If is a pure state, p i  = P A  holds in any basis. 
Fortunately it is not necessary to compute all matrix elements of p i  to check if P A  is pure. It 
suffices to check if the trace of p i  equals unity, because for mixed states that trace is strictly 
smaller than unity. (To see this, consider the basis in which is diagonal, keeping in mind 
that the trace does no1 depend on the basis.) 

Often, especially in experimental contexts, the diagonal elements of a density operator are 
called pupulutions and the off-diagonal elements are called coherence.?. Whilc this distinction 
depends on the choice of basis and is thus artificial from a theorist's point of view, it may make 
perfect sense to an experimcntalist whose choice of basis is often dictated by the experiment. 

Thc "pedestrian" method of determining the density matrix P A  that we have used for thc 
two simple examples abovc may be phrased more compactly, and more generally at the same 
time. Given a pure state I,\) of the combined system A + B, the density operator of system A 
is obtained as 

where T ~ H  denotes the trace i n  the Hilbert space of B. The generalization to a mixed state of 
thc compound system A + B is obvious: 

P A = n l 3 p  (4.50) 

is then usually called the reducwi density niutrix of A. 

4.2.6 Quantification of entanglement 

Entanglement can be quantified beyond the crude yesho level considered above. Therc exist 
several measures of entanglement, of which we will only mention the c'oncurrewr C which 
for the most general pure two-qubit state 

(where loI2 + i/j12 + / y l L  + = 1 due to normalization) ic  given by 

(' := 21fd - p y  2 0. (4.52) 

The concurrence is also bounded from above: 

c 5 1. (4.53) 
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This is most easily verified by writing 

(4.54) 

The normalization of Ix) was used in the second-to-last step; the last step follows from 
~ ( 1  - x) 5 f. The two-qubit product state I@)  (4.46) has C = 0, and in fact any state with 
C = 0 can be written as a product state. Thus C = 0 if and only if Ix) (4.51) is a product 
state. The state I$) (4.41) has 

(4.55) 

the state 1 @} (4.41) is maximally entcmgled. The four maximally entangled 
states 

(4.56) 

are known as Bell slates; they are a basis (the Bell basis) of the two-qubit Hilbert space. The 
Bell states illustrate nicely how information can be hidden for local measurements, involving 
only one of the qubits A and B. In any of the states (4.56), any measurement of a single 
qubit will give completely random and (on average) identical results; these states cannot be 
distinguished by single-qubit measurements. 

Entanglement between two quantum systems is quite generally created by interactions 
between the systems. Section 7.2.3 below, discusses an example where an initial product state 
of two spins-1/2 develops into a Bell state under the influence of an exchange interaction 
between the spins. 

Up to now we have only considered pure states of the combined system A + B. We have 
discussed and quantified the entanglement between subsystems A and B,  and we have defined 
the density operator for subsystem A by discarding the information on subsystem B. All this 
is also possible for mixed states of the combined system A + B;  for example, the definition of 
the concurrence may be generalized to mixed two-qubit states [HW97, W00981. Thus mixed 
states of two qubits as well as pure states may be entangled to varying (but not arbitrary, 
see I Woo0 I ] )  degrees. More general entanglement measures, extending, for example, beyond 
two qubits are a topic of ongoing research (see IBru021 and other articles in the same journal 
issue devoted to Quantum Information Theory). 

4.2.7 Bloch sphere 

There is a useful and graphic representation for single-qubit states; to derive it, note that every 
operator in the single-qubit Hilbert space can be written as a combination of the unit operator 



and the three spin matrices S,, (Eqs. (4.27) to (4.30)). As the spin matrices are Herniitian and 
traceless, any linear combination (with real coefficients) of +I and the S , ,  is Hermitian and 
has unit trace; in fact, every 2 x 2 matrix with thece properties ciin be written as 

) - (  2 f - -)- ;( P,+rP ,  1-r: 
1 + r, I’, - ir, 

I + - P . S  - (4.57) 

where ? is a real three-component vector. The eigenvalues of this matrix are 

(4.58) 
1 

2 
A, = - ( I  5 IF] ) .  

that is, the matrix is positive if lfii 5 1. Thus the general single-qubit density matrix is 

(4.59) 

‘The set of possible polurizution vecfors P is called the Bloch sphere; pure states have Ir‘l -7 

I, since in that case one of the eigenvalues(4.58) vanishes. The physical meaning of the 
polarization vector is 

(4.60) 
1 1 1 -Pa = -TrpS,, = - ( S c v ) .  
2 ti h, 

The pure states 18, q5) (4.39) have 
+ 

P = (sin H cos (/)> sin 6, sin 4, cos 19). (4.6 I ) 

There is a simple general relation between the concurrence C (4.52) of a pure two-qubit state 
and the polarization vcctor P of the corresponding singlc-qubit density matrix which i n  
turn is related to the “purity” of P A .  Among the many possible quantitative measures of purity 
o l  a single qubit density matrix we choose the quantity 

4 

:= 2Trp2 - I. (4.62) 

A pure density matrix has TI = I and the “maximally mixed” density matrix p = +I has 
77 = 0. The quantity 11 can be written in terms of the eigenvalues of p, and by (4.58), in terms 
of P :  

11 = 2 ( q  + x2 ) ~ 1 = Ifit? (4.67) 

The density matrix of the system A corresponding to the pure state 12) (4.5 I )  is easily found 
to be (in the usual basis (4.24)) 

The determinant of p ~ ( k )  is related to the concurrence of 12) (compare 4.54): 

1 

’1 
det P A ( % )  = -P, 

(4.64) 

(4.65) 
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but on the other hand the determinant can be expressed by the eigenvalues (4.58): 

from which we conclude the desired relation 

+ 2 c = 1 - / P I ’  = 1 ~ ‘1. 

As an instructive exercise for the reader we suggest to distinguish the pure state 

from the mixed state 
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(4.66) 

(4.67) 

(4.68) 

(4.69) 

by determining the expectation values and variances of the operators S(>. 
Since there are no truly isolated systems (if there were we would have no way to no- 

tice!) the Schrodinger equation (4.12) is only an approximation which should be generalized 
to describe the dynamics of mixed states. This generalization is given by the von Neumann 
equution (often also called Liouville-von Neumann equation since it also generalizes the Li- 
ouville equation of classical statistical mechanics) 

d 
d t  

ih-p = [‘Ft, p ] .  (4.70) 

This equation is equivalent to Schrodinger’s equation (4.12) if p is a pure state. For time- 
independent ‘Ft a formal solution analogous to (4.16) may be found: 

p( t )  = U ( t ) p ( t  = O)U(t)+ (4.71) 

where U(t) = exp (-zF) is again the time evolution operator. A word of warning is in order 
at this point: all considerations above are only valid if IFt involves only degrees of freedom of 
the “system” and not of the “environment”. As soon as system and environment are coupled 
by ‘X the density operator p (of the system) is no longer sufficient to describe the dynamics 
consistently, and additional information or simplifying assumptions are necessary. 

4.2.8 EPR correlations 

Quantum mechanics is radically different from classical mechanics. This is vividly illustrated 
by the Einstein-Podolskv-Rosen thought experiment [ EPR351 invented in 1935 by Albert Ein- 
stein, Boris Podolsky, and Nathan Rosen, with the intention of showing that quantum mecha- 
nics does not provide a complete description of nature. Ironically the discussion started by 
Einstein, Podolsky, and Rosen led to the discovery by John Bell in 1964 [Be1641 that indeed 
correlations between separated quantum systems which are entangled due to interactions in 
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the past can be stronger than is possible from any classical mechanism. This result was ex- 
perimentally confirmed by several groups, most notably the group of Alain Aspect [AGRX 1 ], 
showing that nature prefers quantum mechanics to a “complete description” in the sense of 
Einstein et al. At the same time these results show that there are “quantum tasks” which 
cannot be performed by any classical system. 

To discuss these matters, we consider once more two qubits A and R, which will be under 
the control of two scientists named Alice and Bob. (These are the names of the standard char- 
acters in quantum information processing. David Mermin once remarked that, in  the present 
context, the names Albert and Boris would be more appropriate.) We will refer to the qubits 
as spins-i, keeping in mind that real experiments usually involve photons in mutually exclu- 
sive polarization states. The combined system A + H is initially prepared in the maximally 
entangled state 

(4.72) 

a member of the Bell basis (4.56). 1’4)) is often called the singlet state because it is an eigenstate 
of the total spin S$ := (s’n + s ’ ~ ) ~  with eigenvalue zero (see Appendix A). 

The state I?/)) having bccn prepared, the two qubits are separated spatially and Alice and 
Bob perform measurements of the z spin components of their respective qubits. (The argu- 
ment does not change if any other axis in spin space is chosen, as long as both partners agree 
on its direction.) Let us assume that Alice measures first and that she obtains S3 
for her qubit. According to the postulates of quantum mechanics then the state of the com- 
bined system collapses to I and Alice can predict with certainty, the outcome of 
Bob’s subsequent measurement, S, = -:. This was called a “spooky action at a distance” 
(spukhaffe Feriiwirkung) by Einstein, and it is not surprising that he did not like it, having 
made considerable efforts to eliminate actions at a distance from physics i n  his theory of rel- 
ativity. Onc attcmpt to reconcile the prediction of quantum mechanics with classical thinking 
is the assumption of an underlying classical mechanism which determines the outcome of the 
experiment but which scientists have not yet been able to unravel. This line of thinking goes 
under the label hidden-vciriuble theory and it was ended by Bell’s discovery. 

1 
~ -I 

00 I 

4.2.9 Bell’s theorem 

Bell showed that the assumption of hidden classical variables leads to certain restrictions (the, 
by now, famous Bell inequalities) for the results of certain measurements. These inequalities 
are violated by quantum mechanical theory and, as it tinally turned out, also by experiment. 

As an example we will discuss an inequality due to Clauser, Horne, Shirnony, and Holt 
[CHSHhB] (the CHSH inequality) which was also independently found by Bcll who did not 
publish i t .  We start the discussion with a purely classical reasoning assuming that the out- 
comes of the measurements performed by Alice and Bob on the state 14)) (4.72) can be de- 
scribed by an underlying classical probability distribution. We assume that Alice ciin measure 
two spin components 

2 -  
a = - S n  (7 

li 
and (4.73) 
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defined by two unit vectors a‘ and Z’, respectively. Both a and a’ can assume the values *l. 
Bob can perform similar measurements with respect to directions h’ and 2 of his qubit. A 
large number of singlet states is prepared and shared between Alice and Bob, each of whom 
performs a single measurement on each qubit, deciding randomly (and independently) which 
of the two possible measurements to perform. The pairs of measurements take place at such 
space-time points as to exclude any influence of one measurement on the other. According 
to the classical point of view the quantities a, a’, b, and b’ have definite values independent 
of observation, for each of the large number of measurements performed. These values are 
governed by a joint probability distribution p ( a ,  a’, b ,  b’) about which nothing is known except 
that it is non-negative and normalized to unity. Now consider the quantity 

f := (a + a‘)b - (a - a’jb’. (4.74) 

Since a and a’ are either equal or opposite to each other, one summand of f is zero and the 
other is 5 2 ;  thus I f 1  = 2 and consequently 

(4.75) 
(L, (I’ ,b. h’ 

where the overbar denotes the average (expectation value) with respect to the probability dis- 
tribution defined by p(a,  d, h, b’). The average may be performed separately for each term in 
f ,  leading to 

ab +a’b - a+a” 5 2. (4.76) 

the CHSH inequality. Every single measurement pair performed by Alice and Bob, as de- 
scribed above, contributes to one of the four averages of products in the CHSH inequality and, 
for a large number of measurements, the inequality may be checked to arbitrary precision. 

4.2.10 Violation of Bell’s inequality 

Now let us consider the situation from a quantum mechanical point of view. We choose the 
following directions of measurement for Alice and Bob: 

(4.77) + * + ’ A  - 1  -1 1 i - k). b = -(i -?), Jz 0 = Z ,  0, 12, h = -(- Jz 
where 5 denotes the unit vector in R: direction, etc. This leads to (see (4.28, 4.29)) 

1 ‘ 1  
Jz Jz a = ZA.  a’ = XA, b = --(ZB + XB), b = - ( Z B  - XIj). (4.78) 

The calculation then proceeds by observing that 

(4.79) 



so that the quantum mechanical expectation value of a @ b in the singlet state (4.72) is 

(4.80) 

The other expectation values are calculated in a similar manner, leading to 

(4.81) 

and consequently 

(ah) + (a'b) - (ah') + (a'b') = 2 f i  (4.82) 

in obvious contradiction to the classical Bell-CHSH inequality (4.76). The quantum mechan- 
ical result (4.82) was confirmed by Aspect et al. [AGR81] raising the status of the Einstein, 
Podolsky, and Rosen scenario from Gedavikerirx~~rrimrrzt to real experiment. In the experi- 
ment the spin- 1/2 states from the above analysis are replaced by photon polarization states: 
the two mutually orthogonal S, eigenstates are mapped to linear polarizations at 0' and 90" (in 
some fixed coordinate system), and the S,. eigenstates correspond to *45" polarizations. This 
translates the algebraic relations between Hilbert space vectors, such as I+) = A( I T )  + 1 I)) 
(where S,,/+) = + $ I + ) )  to relations between electric fields of polarized photons. A photon 
pair with entangled polarizations corresponding to the singlet state (4.72) can be created by a 
cascade of decays from an excited atomic state. Measurements of the spin components (4.78) 
then correspond to photon polarization measurements, and the 45" nngle between the two spin 
space reference directions changes to a 22.5" angle between polarizations. The experimental 
results clearly confirm the prediction of quantum mechanics and violate the Bell-CHSH in- 
equality. This and other experiments have demonstrated the impossibility of hidden-variable 
Lheories, and hence, the reality and importance of entanglement in several convincing ways. 

f i  

4.2.1 1 The no-cloning theorem 

In the classical world of our everyday work we take the possibility of copying something for 
granted: we distribute copies of our research papers to other scientists and we (hopcfully) 
make backup copies of our important data files on a regular basis. In Chapter 3 we discussed 
the possibilities of copying classical bits, using either the classical irreversible NAND/NOT 
gate, or the reversible classical CNOT gate which performs the following opcration on a pair 
of classical bits ( . I ; ,  y): 

(.r9?y) + (yI  XOR y). 

With the target bit 71 initialized to zero, this yields 

( L ,  0) i ( r ,  x ) .  (4.83) 

as desired. As shall be discussed i n  Chapter 5 ,  a quantum CNOT gate may be defined which 
performs exactly the same operation on the input states 10) and 11): 

; 10) G ~ J  10) + 10) Gj 10) 11) RJ 10) + 11) cc 11) (4.84) 



4.2 Quantum stutes 57 

Here the first qubit is assumed to be the source qubit and the second qubit is the target qubit, 
which after copying is supposed to be in the same state as the source qubit, provided it was 
properly initialized to a certain “blank” state (logical zero in our case) in the beginning. So, it 
seems to be possible to copy quantum states too! However, the problems start as soon as we 
initialize the source qubit to a state 

Id]) = 4 0 )  + Pll) .  (4.85) 

In this case the CNOT gate (which is supposed to be a linear operator) maps 

I+) C;3 10) = ~ ~ 1 0 )  @ 10) + 81 I )  cd 10) + a10) @ 10) f a l l )  @ 11) # I$) 03 I$), (4.86) 

because 14) @ 121,) contains “mixed terms” 10) @ 11) and 11) Q3 10). This example shows that it 
may be possible to copy every member of a finite set of mutually orthogonal quantum states, 
but not every superposition of these states. The ability to copy classical objects may thus be 
interpreted as the ability to copy special quantum states. 

In general it is not possible to make a copy (or clone) of an unknown (pure) quantum 
state by means of unitury operations. This is the famous no-cloning theorem of Wootters and 
Zurek [WZ82] and also Dieks [Die82]. The proof is amazingly simple. Let I+) be a pure 
state from some Hilbert space fis(lllr(~c., and is) some “standard’ (or blank) initial state from 
a Hilbert space fjjt,iL,.RPt which has the same structure as .)jso,,t.,-P. A “quantum state cloner” 
would then be a unitary operator U (defined on the direct product 4jhOllrCe 4jtargpt) with the 
property 

(4.87) 

As U is supposed to clone every state from 4jSollIc(~ we now consider the cloning of a second 
state 14): 

U14) @ 1s) = 14) @ 14). (4.88) 

For simplicity we assume that I$)), 14), and Is) are normalized, and take the scalar product of 
the two equations above, keeping in mind that U is unitary, that is, it preserves scalar products: 

(4.89) 

As U is supposed to clone both states 14)) and 14) we also have 

(4.90) 

and this is possible only if (li/l4) = 0 or (‘d114) = 1, that is, if the two states to be copied by 
the same operation are either identical or orthogonal. This proves the theorem while admitting 
copies of states from a set of mutually orthogonal Hilbert space vectors. 

Several questions arise regarding the assumptions of the theorem: 

0 Can we allow non-unitary cloning operations? A possible idea might be to enlarge the 
Hilbert space by taking into account the environment’s Hilbert space. It is not hard to see 
that this idea leads to the same problems as above. 
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0 Can mixed states be cloned’? 

0 Are less than perfect copies possible and useful’? 

All these questions have been addressed in the research literature, references to which can be 
found, for example, in [ NCO 1 I .  

The no-cloning theorem may be considered an obstacle in quantum computation, where 
i t  would be desirable to “store a copy in a safe place”. It should be noted, however, that the 
thcorcm is at the very heart of the concept of secure quantum communication to be discussed 
in Chapter 13. 

4.3 Measurement revisited 

4.3.1 Quantum mechanical projection postulate 

The projection postulate (see Section 4. I .5) is one of the fundamental assumptions on which 
quantum mechanics is based. It assumes that an ideal measurement brings a particle into the 
eigenstate lu,) of the measurement operator A, where u: j  is the corresponding eigenvalue. 
which we here assume to be nondegenerate for simplicity. We cannot predict i n  general which 
of the eigenstates will be realized, but the probability of the realization of each state I o , , ~ )  is 

T’.; = I ( ( I . ,  I li4 l 2  (4.91) 

for a system initially in state I,$). The observable that is used for this readout process must be 
adapted to the system used to implement the quantum computer as well as to the algorithm. A 
typical measurement would be the decision if qubit i is in state 10) or 11). The corresponding 
measurement operator may be written as Sk, i.c., as the z spin operator acting on qubit i, 
with the positive eigenvalue indicating that the qubit is in state 10) and the negative eigenvalue 
labeling state 11). 

Figure 4.1 : Stern-Gerlach experimcnt. 

The usual treatment of rrieasurement processes is due to von Neumann and is best pictured 
as a generalized Stern-Gerlach experiment (see Figure 4. I ) .  The measurement apparatus sep- 
arates the particles according to their internal quantum states. In this picture i t  is obvious that 
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the measurements are local, i.e., the results for the individual particles do not depend on the 
state of the other particles. Obviously the complete absence of interactions is not representa- 
tive for a quantum computer. 

Figure 4.2: Pictorial rcpresentation of the coupling mcchanism during the measurement pro- 
cess. 

For this simple example, it is relatively straightforward to see how the inhomogeneous field 
separates the different particles according to their orientation. A particle whose north pole is 
closer to the south pole of the magnet has a lower energy than the particle with the opposite 
orientation - its potential energy is negative. It can further lower its energy by moving farther 
into the high-field region and is therefore deflected upwards, while the oppositely oriented 
particle is deflected down. Transferred into the quantum mechanical context, particles will 
follow different trajectories, depending on their spin state. 

If we want to describe the result of a sequence of measurements, where different realiza- 
tions of eigenstates may occur, it is more convenient to use the density operator introduced 
i n  Section 4.2.3. Since the measurement projects the system into an eigenstate of the ob- 
servable, the resulting density operator (which describes the ensemble of the measurement 
outcomes) is diagonal in the basis of these eigenstates. The measurement process corresponds 
to a nonunitary evolution 

(4.92) 
./ 

where the P,, = 1 ~ : ~ )  (a,, I are the projection operators onto the eigenstates u,, of the observable 
A, i.e., operators with a single 1 on the diagonal and zeroes everywhere else. 

Apparently the measurement process simply eliminates all off-diagonal elements of the 
density operator in the basis of the observable (which is usually also an eigenbasis of the 
Hamiltonian). This implies that the result of the measurement process will be a mixed state, 
unless the system was already in an eigenstate of A. 

We will give some more details of the measurement process below; before that we put it 
in an historical and philosophical context. 
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4.3.2 The Copenhagen interpretation 

The conventional interpretation of this measurement process is due to Bohr and coworkers and 
known as the “Copenhagen interpretation” of quantum mechanics. It can be summarized by a 
few fundamental assumptions. 

0 Quantum mechanics describes individual systems. 

Quantum mechanical probabilities are primary, i.e., they cannot be derived from a deter- 
ministic theory (like statistical mechanics). 

0 The world must be divided into two parts. The object under study must be described 
quantum mechanically, the remaining part, which includes the measurement apparatus, 
is classical. The division between system and measurement apparatus can be made at an 
arbitrary position. 

0 The observation process is irreversible. 

0 Complementary properties cannot be measured simultaneously. 

The Copenhagen interpretation has the advantage that it is relatively simple and internally 
consistent. It cannot satisfy, from an aesthetic point of view, since it implies two different types 
of evolution: the “normal” unitary evolution of the SchrGdinger equation and the nonunitary 
measurement process. In the strict sense, it implies that quantum mechanical systems cannot 
be attributed real properties; instead, it represents “only” a theory about the possible outcomes 
of measurements and their probabilities. 

These deficiencies have prompted many researchers to look for better alternatives and / or 
to check some of the fundamental assumptions for their validity. A more detailed model that 
tries to integrate the measurement process with the uni tary evolution under the Schriidinger 
equation and avoids the splitting of the universe into a quantum mechanical and a classical 
part, is due to John (also known as Jiinos or Johann) von Neumann. 

4.3.3 Von Neumann’s model 

In his model, the system S is coupled to an apparatus A. For a simple two-level system the 
basis states are l ’q~ , , )  and I&), the eigenstates of a system observable 0 s .  The measurement 
should determine if the system is in state 1$,,) or I $ / , ) .  To obtain a quantum mechanical 
description of the measurement process, we also describe the apparatus as a two-level system. 
The eigenstates are written as l & l )  and I&) and correspond to the apparatus indicating that 
the system is in state and I t / > / , ) ,  respectively. A corresponding observable acting on the 
apparatus can be written as 0 ~ .  

According to von Neumann, the measurement process involves coupling the system to the 
measurement apparatus through an interaction of the type 

where On is the observable to be measured and B ih a variable of the measurement apparatus. 
The Aystern thus drives the motion of the measurement apparatus and in the idealized proces, 
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the eigenvalues of A can be read off a “pointer variable” of the measurement apparatus, which 
is treated classically. One usually assumes that the observable O A  that one tries to measure, 
commutes with the Hamiltonian of the system. In the case of the Stern-Gerlach experiment, 
the observable O A  is the z-component of the spin operator, S,, and the pointer variable is the 
position z along the field direction. 

Before the measurement process, the total (system and apparatus) can be described as a 
state without correlations between system and apparatus. The two parts can thus be described 
individually by the states 1’4)) = ( c , j l ~ ~ ~ , j )  + c,,l$~(~)) (which is not known) and it) and the 
combination by the product state 

The interaction between system and apparatus must be such that it drives the evolution as 

and 

Since the evolution is linear, the superposition state evolves as 

Apparently the combined system (consisting of system and apparatus) is still in a superposi- 
tion state, but the two parts are now entangled. Von Neumann’s model does not generate a 
reduction of the wavefunction, such as is required by the projection postulate (compare equa- 
tion (4.21)). This is a necessary consequence of the unitary evolution. The reduction only 
occurs if we assume in addition that the apparatus is a classical system, where a reduction 
must occur. A reduction of the wavefunction component for the apparatus into (e.g.) ItIL) then 
also causes a reduction of the system state into 

While the wavefunction reduction is therefore not explained, it has been shifted farther 
away from the system. According to von Neumann’s understanding, the final reduction occurs 
in the mind of the observer. While this is therefore not a full resolution of the measurement 
paradox, it improves the situation. Since the apparatus is very complex in terms of a quantum 
mechanical description, the collapse of its wavefunction is very fast. Furthermore, since it 
does not directly involve the system, some inconsistency is easier to accept. Nevertheless, 
one major issue remains unresolved in  von Neumann’s model (as well as in  all others): we 
only obtain probabilities from the quantum mechanical description, i.e., we cannot predict the 
result of individual measurements. 

An extension of the von Neumann measurement that is sometimes used in the context of 
quantum information processing and communication is the positive operator-valued measure 
(POVM), where the states that form the basis for the measurement are not orthogonal. The 
corresponding projection operators must still sum up to unity. 
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Further reading 

There is a large number of excellent books on quantum mechanics and its applications at all 
levelc. Dirac'q clawic book [Dir%] is a concise and clear masterpiece. Cohen-Tannoudji 
et al. ICI'DL921 is a detailed student-friendly textbook. Ballentine IBa1991 has interesting 
modern applications, whereas Peres [Per%] concentrates on the conceptual structure of the 
theory. 



5 Quantum bits and quantum gates 

5.1 Single-qubit gates 

5.1.1 Introduction 

Information is quantized in classical digital information processing as well as in quantum 
information processing. In analogy to the classical bit, the elementary quantum of information 
in quantum information processing is called a qubit. Any two distinct states of a quantum 
system can be used as a qubit, as discussed in Chapter 4. 

Once some information is stored in a set of qubits (a quantum register), we must be able 
to manipulate these qubits in order to process the information. This means we must be able to 
change the state of a qubit either unconditionally (for example, for initializing a qubit or for 
writing information into a qubit), or conditionally, depending on the previous state of the qubit 
itself (e.g., the NOT operation) or on the state of itself and another qubit (e.g., the controlled 
NOT, or CNOT operation), and so on. These tasks will have to be performed by quantum 
gates. 

Of course one could imagine still more complicated gates, where the state change of one 
(or more) qubit(s) would depend on the state(s) of an arbitrary number of other qubits. Fortu- 
nately all possible operations can be reduced to a finite set of universal quantum gates. From 
these gates one can construct the specific algorithms of quantum information processing which 
we will discuss later. 

In the present chapter we will discuss the elementary building blocks for those algorithms: 
quantum gates. In several steps we will show that arbitrary quantum gates can be constructed 
(that is, approximated to arbitrary precision) from a small number of one-and two-bit gates. 
Note that in Chapter 3 we argued that using classical reversible gates, three-bit operations are 
needed to achieve universality, whereas here we will need only one- and two-qubit operations. 
This indicates that quantum gates are “more powerful” than classical gates. 

5.1.2 Rotations around coordinate axes 

All operators in the Hilbert space of a single qubit can be combined from the four fundamental 
operators 1. X. Y ,  and Z (the Pauli matrices) introduced in Section 4.2.1, where we also 
encountered the Hadamard gate H = 1 (X + Z) (4.33). 

Any unitary 2 x 2 matrix is a valid single-qubit quantum gate. Note that the operators X, 
Y ,  and Z have eigenvalues &l and thus are unitary. It is evident why X is also often called the 
“NOT gate” in the language of quantum computing; Z generates a T relative phase between 
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the two basis states, and Y = i X Z  is a combination of the two other gates. It is also easy 
to generate an arbitrary relative phase (instead of 7r)  between the two states. To see this, note 
that 

exp ( L 4 Z )  = ( f: ~, ‘a, ) 
which generates a relative phase 24. ltnportant special cases of this gate are 

(the $ gate) and 

S = T 2 = ( A  y ) ,  
(often simply called the phase gate). Note that S2 = Z. 

The NOT gate can also be generahed. Due to the fact that X2 = 1 we have 

(5. I ) 

(5.2) 

(5.3) 

(5.4) 

which interpolates smoothly between the identity and NOT gates, for 4 = 0 and :, respec- 
tively. For (i, = $ we obtain the “square-root of NOT” gate. The gate exp (id)Y) may be 
discussed in a similar way. 

5.1.3 General rotations 

The above discussion of the spin component operators X, Y ,  and Z may be generalized to the 
spin operator component along an urhitrury direction. From the gcncral theory of quantum 
mechanical angular momentum we know that exp(iy‘.S) (for some vector y3 has the properties 
of it rotation operator. However, it is not always clear what is being rotated, and how. In 
Section 4.2.1 we studied the time evolution of the initial state I r )  in a constant magnetic 
field 6 along one of the coordinate axes. The time evolution operator (4.34) in that case has 
precisely the form exp(,i{. S), with {along one of the axes. For B along the 2 axis we obtain 
no time evolution (apart from a trivial overall phase factor), but for in the z direction the 
state i$ ( t ) )  (4.38) is such that the expectation value of the spin vector S rotates uniformly in 
the y z  plane, that is, it rotates about the .z: axis. As the expectation value of the spin vector is 
proportional to the polarization vector 9 describing a state in the Bloch sphere representation 
(compare (4.60), (4.61)) we may also visualize l$(t)) as rotating on a great circle of the Bloch 

We now return to the general case and consider the spin component operator Ti S along an 
arbitrary unit vector 6. Using the algebraic properties of the spin matrices it is easy to show 
that the square of 7 i  . S is a multiple of the unit operator, 

4 

sphere. -., 

(i7;. S) = (n,X + n,Y + n,Z)’2 = 1, (5.5) 
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and consequently 

Note that 

Ri(6') = Rs(-8) = Ril(0). (5.7) 

This operator obviously commutes with the spin component 6. s' and thus does not affect this 
specific component. In fact it can be shown that the unitary transformation R,z(O) corresponds 
to a rotation by the angle 28 about the axis z. We stress that this rotation can be interpreted in 
several ways. The expectation value (s) of the spin vector rotates by 26' as R7: (6') is applied to 
the state of the qubit. Alternatively but equivalently we may think of the spin vector S being 
rotated as it undergoes a unitary transformation, RL(O)SRz(6'). Finally, the polarizafion 
vector P on the Bloch sphere rotates as (S) does. 

We will not demonstrate explicitly that R<(a) is a 2a rotation for general 5, but only for 
fi = i (the unit  vector along the z axis): 

For an arbitrary pure state 18, 4 )  (compare (4.39)) we obtain 

Note that a 27r rotation (0 = 7 r )  reverses the sign of any single-qubit state, but has no conse- 
quences for expectation values of physical observables in that state. 

5.1.4 Composite rotations 

As any normalized pure single-qubit state is represented by a point on the surface of the Bloch 
sphere, and as any two points on a sphere are connected by a rotation, any unitary single-qubit 
operator can be written in the form 

U = ezoRz(0). (5.10) 

It is often desirable to employ only rotations about the coordinate axes instead of rotations 
about arbitrary axes 71. This is indeed possible; for any unitary U a decomposition 

U = e"'R;([j)R~(*/)Ri(d). (5.1 1) 
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can be found. A similar decomposition with 2 instead of 2 is also possible. Another decom- 
position which will be used in the next subsection is closely related to the above single-qubit 
2 - Y decomposition. Let 

with /3, 7,  and 6 determined from (5.1 1). Note that 

ABC =- 1; (5.13) 

furthermore the relations between Pauli matrices 

XYX = -Y; xzx = -z (5.14) 

can be used to show that 

(5.15) 

and thus 

cZ“AXBXC = c”R,7(~7’)R~(~)R1.(6) == U. (5.16) 

By inserting two X operators (NOT gates) we can thus convert U into the unit operator. 

5.2 Two-qubit gates 

5.2.1 Controlled gates 

Any programming language contains control structures of the type: “If condition X holds, 
pelform operation Y”. In quantum information processing these structures are implemented 
using multi-qubit gates which have one or more curitrut yubits and turget qubits. The simplest 
cxaniple is the two-bit (or two-qubit) operation known as “controlled NOT” (CNOT), defined 
by the following truth table: 

control-qubit target-qubit result 

10 

The control qubit remains unchanged, but the target qubit is flipped if the control qubit is 
1 .  (We abbreviate I I )  a s  1 here for simplicity.) The “result” column of the truth table lists 
both control and target qubits. Note that the output target qubit is equal to the “exclusive 
or” (XOR) between the control and target qubits. Hence the CNOT operation is also called 
“reversible XOR’, wherc the reversibility is accomplished by kccping thc valuc of thc control 
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qubit, i n  contrast to the ordinary (irreversible) XOR operation of classical computer science 
which we discussed in Chapter 3. In fact, the reversible XOR is its own inverse. Symbolically 
it achieves the following mapping: 

(., Y) + (.. 5 XOR Y), (5.17) 

and it can be used to copy a bit, because it maps 

(z, 0) --f (5 ,  z). (5.18) 

A combination of three CNOT gates (the second one with reversed roles of control and target 
bits) swaps the contents of two bits, as can be verified by repeated application of (5.17). Thus 
the CNOT gate can be used to copy and move bits around. In matrix notation with respect to 
the usual computational basis (loo), I O l ) ,  IlO), 111)) the CNOT gate reads 

1 0 0 0  
c N o T = [ O  0 1 0 0  0 0 1 ) = ( :  :) 

0 0 1 0  

(5.19) 

(using 2 x 2  block matrix notation). Replacing X by an arbitrary unitary single-qubit operation 
U, we arrive at the controlled-U (CU) gate. 

5.2.2 Composite gates 

The roles of control and target qubits may be shifted by basis transformations (in the individual 
qubit Hilbert spaces). One example is shown in figure 5. I .  

c r 

Figure 5.1: Ambiguity of control and target qubits. 

Here control and target qubits have interchanged their roles due to the application of a 
Hadamard gate (4.33) to each qubit both before and after the CNOT operation. This can be 
verified by writing down the two-qubit Hadamard transform matrix HI ~3 Ha explicitly and 
performing the matrix multiplications. 

The CU gate can be implemented using CNOT and single-qubit gates. The idea is to 
use the decomposition (5.16) and apply U = P A X B X C  if the control qubit is set and 
ABC = 1 if not. The circuit in Figure 5.2 does the trick. 

Obviously the d r y  phase factor as well as the two NOT (= X) operations are only active 
if the control qubit ic  set. 

The CNOT and Hadamard gates can be used, for example, to create maximally entangled 
states from the four two-qubit computational basis states la, b) (with a ,  b = 0, l )  via 

IPut,) = CNOT (0. b)H(n)la, b )  (5.20) 
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t o eiU 

Figure 5.2: A circuit for the conlrnlled-U gate. 

As an example, consider 

(5.2 I ) 

which is one of the Bell states (4.56). The other (a,b) values yield the remaining members of 
the Bell basis. 

I n  higher-order controlled operations 'ri control qubits and h: target qubits are used; an 
important example is the Toffoli (controlled-controlled-NOT, or C2NOT) gate (3.16), or more 
generally, the C2U gate for some arbitrary single-qubit U. Actually, C2U can be built from 
CNOT and single-yubit gates. To see this, consider the unitaiy operator V, with V2 = U 
(which always exists) and build the circuit shown in Figure 5.3. If neithcr of the control qubits 

Figure 5.3: A circuit for the controlled-controllcd-U gate; V 2  = U 

is set, nothing at all happcns. If only one control qubit is set, Vf = V-' and one V acts on 
the target qubit. If both control qubits are set, Vt is not switched on, but both Vs are. It is 
interesting to note that, with quantum reversible gates, the Toffoli gate can be decomposed into 
one- and two-qubit gates, which is not possible classically. (Otherwise universal reversible 
classical computation with just one- and two-bit operations would be possible, contrary to 
what wc discussed in Chapter 3.) The Toffoli gate (and as we shall see, arzy gate) can be made 
from Hadarnard, phase, CNOT, and gates. The Toffoli gate needs about a dozen of these 
more elementary gates, as shown in Figure 4.9 of [NCOI]. Also of interest is Figure 4.10 
there, showing how to iniplement C"U from Toffoli and U gates. 
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5.3 Universal sets of gates 

5.3.1 Choice of set 

It is important to know whether any conceivable unitary operation in the Hilbert space of inter- 
est can be decomposed into a sequence of standard elementary operations taken from a finite 
set. Only if that is true, can a universal quantum computer be built which can be programmed 
to fulfill fairly arbitrary tasks, much as today’s universal classical digital computers which are 
(in principle) built from a very small set of universal classical gates. Luckily there exists a set 
of universal quantum gates, in the sense that any unitary operation may be upproxinzated to 
arbitrary accuracy by a combination of these gates. 

As already mentioned in the previous section, the following four gates do the trick: 

0 the CNOT gate, 

0 the : gate (5.2) 

0 = exp i - ( 1 -  Z ) ) ,  
T =  ( : expi; ) (; 

0 the phase gate (5.3) 

S = T z = ( :  f )  

(note that S2 = Z), and 

0 the Hadamard gate (4.33) 

(5.22) 

(5.23) 

(5.24) 

This set of four gates can be shown to be universal in a three-step process. 

1 .  Any unitary operator can be expressed (exactly) as a product of unitary operators affect- 
ing only two computational basis states: “Two-level gates are universal.” 

2. (From i) and preceding sections.) Any unitary operator may be expressed (exactly) using 
single-qubit and CNOT gates: “Single-qubit and CNOT gates are universal.” 

3. Single-qubit operations may be upproximuted to arbitrary accuracy using Hadamard, 
phase, and gates. 

5.3.2 Unitary operations 

We start with step 1:  Two-level gates are universal; that is, any d x d unitary matrix U can 
be written as a product of (at most) two-level unitary matrices (unitary matrices which d (  d -  1 ) 



act non-trivially only on at most two vector components). This can be shown as follows. 
Concentrate on the top left corner of the unitary matrix 

The 2 x 2 unitary matrix 

eliminates the second element in the first column of U: 

(5.25) 

(5.26) 

(5.27) 

(In what follows we use (without introducing additional notation) UI,  supplemented by a 
(d ~ 2) x (d  ~ 2) unit matrix so that products like U1 U make sense.) Further unitary 2 x 2 
matrices can be used to eliminate further elements from the first column of U: 

(5.28) 

Note that initially the first column had unit norm because U is unitary. We have applied 
only unitary (that is, norm-preserving) operations so the end result is still a unit  vector but has 
only one non-zero component, which must be 1 .  (A phase can be eliminated.) Due to unitarity 
(of a product of unitary matrices) all elements in the first row other than the leftmost one must 
also vanish. The elimination process can be continued i n  other columns and finally 

( & I ) + ( &  (5.29) 

and thus 

u =- u;u; . . . ul (5.30) 

which is the desired decomposition of an arbitrary gate U in terms of two-level gates. 

5.3.3 Two qubit operations 

In step 2 we prove that single-qubit and CNOT gates are universal, because we can use them 
to build the arbitrary two-level gates discussed in the previous step. The basic idea i s  simple. 
Trunsform the Hilbert space such that the two relevant basis states become the basis states 
of one qubit, perform the desired single-qubit operation on that qubit, and transform back 
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to the original basis. The basis reshuffling can be achieved via higher-order controlled-NOT 
operations, which in turn can be reduced to simple CNOT operations. 

We just discuss a three-qubit example: How to perform a two-level operation U involv- 
ing the states IABC) = 1000) and 1111)? First, apply the Toffoli gate (3.16) to the three 
arguments NOT A, NOT B and C(remember that the Toffoli gate is a three-qubit gate): 
O(")( NOT A .  NOT B, C). The first two qubits are control qubits which in this case must 
be 0, the last one is the target. This operation swaps 1000) with 1001) and leaves everything 
else untouched. Now, apply O( ' j ) (  NOT A ,  C: D ) .  This swaps 1001) with loll) .  The net effect 
has been to swap 1000) with loll) .  Now, the C2U can be applied, performing the operation U 
on qubit A, provided both B and C are 1. Finally the basis states can be rearranged in their 
original order. 

Similar rearrangements can always be achieved through a sequence of qubit basis states (or 
the binary numbers representing the states) two consecutive members of which differ at one 
position only. (Such sequences are known as Gray codes.) Clearly this way of constructing 
arbitrary quantum gates is not always the most efficient one (involving the smallest possible 
number of operations). However, this is no source of serious concern, since there are, in any 
case, unitary n-qubit operations which involve ( ] ( e n )  gates to implement (see Section 4.5.4 
of [NCOl]) and hence are intrinsically inefficient. 

5.3.4 Approximating single-qubit gates 

In step 3 we show that Hadamard, phase and gates are (approximately) universal single- 
qubit gates. Recall that the most general single-qubit gate is a rotation of the Bloch sphere by 
an arbitrary angle about an arbitrary axis (combined with a trivial phase factor). Imagine we 
could implement a rotation about some axis 5 by an angle a which is an irrational multiple 
of 27r. Due to irrationality, the angles 

n . c y  mod 27r (71 = 0, I ,  2, ...) (5.31) 

are dense in [O; 271.1 and thus an arbitrary rotation about n' can be approximated to arbitrary 
precision by repeating the [Y rotation: 

Rii(P) = + (4~). (5.32) 

If we can implement two such irrational rotations about mutually orthogonal axes we can 
perform arbitrary rotations due to the Z-Y-Z decomposition (5.1 1). This is exactly the route 
followed by Boykin et ul. [BMP+99] which we will briefly sketch now. From the fundamental 
multiplication laws for Pauli matrices 

x2 = y 2  = z2 = 1, XY = iz = -YX etc. (5.33) 

and the definition of the Hadamard gate 

1 
H = -(X + Z) Jz 

we obtain 

(5.34) 

HXH = 2, H Z H  = X. (5.35) 



Furthermore we recall the rotation of the Bloch sphere about the unit vector ii by an angle 0 

(5.36) 

With 6 = 6 this can be written as 

1 1  
Z-IXT = c-ostrl - I sin o i i .  a' (5.40) 

where 

(5.41 j 

Invoking some theorems from algebra and number theory it can be shown that ( y  is an irrational 
multiple of 2 ~ .  

This is the first of the two rotations we need. The second one is 

where 

Now we can work out 

(5.43) 

(5.44) 
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and finally 

with 

73 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

from which we see that 76' = and r i i  . y' = 0. This is again a rotation by the same angle cv 
as before, about an axis orthogonal to the previous axis 6. 

The construction in [NCOI] uses the rotations X i Z i  and H X f  ZaH = Z a X i ,  which 
are quite similar to those used above. However, the axes of rotation are not orthogonal to each 
other but only at an angle of 32.65". In this cabe the simple Z-Y-Z decomposition (5.1 1 )  of an 
arbitrary rotation into three factors is not possible, but a decomposition into more than three 
factors still is. 

Further reading 

An excellent reference for the material in this chapter is Chapter 4 of [NCOI] which consists to 
a large extent of exercises which the reader is encouraged to solve in order to really learn the 
material. (However, the anticipated results of the exercises are stated clearly enough so that the 
lazy reader may also get along without solving the exercises.) Preskill [Pre97], Section 6.2.3 
discusses universal quantum gates from a different (Lie-group) point of view. 



6 Feynman's contribution 

In this chapter we review Richard Feynman's two articles from 1982 and 1985 [Fey82,Fey96], 
which were seminal for the field of quantum computation. Both papers originated from in- 
vited talks at conferences. Feynman's interest had been triggered by the notion of reversible 
computation brought up by Fredkin, Bennett, and Toffoli. The sections of this chapter bear 
the same titles as the original papers. This chapter is not necessary in order to understand 
the remainder of this book. It is there purely for entertainment, or, if you are more seriously 
minded, for historical interest. 

6.1 Simulating physics with computers 

6.1.1 Discrete system representations 

In his 1982 article (which was mentioned already in Section 1.3.1) Feynman discussed the 
ways in which different kinds of physical systems can be simulated by computers. A deter- 
ministic simulation of a quantum system on a classical computer runs into problems because 
the required resources grow exponentially with the system size. In Section 1.3.1 we saw that 
even for a few spin- I /2 particles without any other degrees of freedom, the size of the Hilbert 
space is forbidding. This situation worsens considerably if additional (continuous) degrees 
of freedom of the particles must be accounted for. Classical (deterministic) dynamics, on the 
other hand, is much easier to simulate because it is local, causal, and reversible. Of course 
such a simulation always involves some kind of discretization for the possible values of con- 
tinuous variables such as time, coordinates, field values, etc. For example, the motion of N 
interacting classical point particles in three dimensions is determined by 3N equations of mo- 
tion. The number of differential equations is proportional to the number of particles. A typical 
numerical algorithm for solving these equations of motion will involve a discretization of time 
and an approximation of differentials by differences. This will convert the set of differential 
equations to a set of algebraic equations. The resources necessary to solve this set of algebraic 
equations will grow as a power of the number of particles, but not exponentially. This means 
that classical deterministic dynamics can be efficiently simulated by computer. 

This is no longer so for classical probabilistic dynamics; at least if a deterministic sim- 
ulation is desired. To understand what is meant by a deterministic simulation, consider the 
classical diffusion equation 
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(where 1) is the diffusion constant) as an example. p(,?, t )  is the probability density of tinding 
ii single particle which undergoes Brownian motion. To simulate the diffusion equation, spacc 
and time can be discretized and the dynamics can be approximated by a sct of transition rules 
determining how probability “jumps” back and forth between neighboring points in spacc in  
each time step. The continuous function TI(?, I )  is thus replaced by an array of numbers p ; ~ . ,  
the probabilities of finding the diffusing particle at the space point F’; at the instant of time 
tl;. The simulation keeps track of all these numbers, starting from a given initial configuration 
p ; ( )  and ending up with the desired final configuration 1 , where .i always runs from 1 to S ,  
the number of grid points into which 7 was discretized. The trouble starts as the number of 
diffusing particles increases. For two particles p(7, t )  then becomes p(F1, ?l, t ) ,  where Ti and 
CL are the coordinates of the two particles. This discretizes into an array of numbers p , , , k ,  

where Ft and ?’? are the possible discrete values of the coordinates r;’l and $2, respectively. The 
simulation now has to keep track of S2  numbers per time step. With N particles one has 5” 
numbers per time step, which quickly outgrows the capabilities of any classical computer. Of 
course there are situations where a description in terms of individual pdrticle coordinates is 
unnecessarily complicated, for example if the particles do not interact with each other, but i f  
they do there is no way around this description (or a similar one). 

6.1.2 Probabilistic simulations 

Deterministic simulations of probabilistic dynamics keep track of all possible (discretized) 
configurations of the system, important ones as well as very improbable ones. The aim of a 
probnhilistir sirnulation is to avoid the waste of resources implied by the complete calculation 
of all possible configurations. The probabilistic simulation is constructed in such a way that it 
arrives at any possible final result (or configuration) with the same probability as the natural 
process. This can be done without exponential growth of resources as the number of particles 
increases. Of course for probabilistic simulations repeated simulation runs (plus some statis- 
tics to generate error bars for the results) are necessary. In fact probabilistic simulations of 
this kind are cveryday business for scientists and engineers in various fields. 

A probabilistic simulation of a quantum system on a classical computer, however. turns 
out to be impossible. The fundamental reason for this failure is related to the nature of corre- 
lations i n  quantum systems. The possibility of a probabilistic simulation of quantum systems 
would imply the existence of some “hidden” classical variables which are not accessible to 
the observer and have to be averaged over to arrive at a physical result. The existence of such 
variahlcs in turn restricts the values of correlations of the system, by the Bell or CHSH in- 
equalities discussed in Section 4.2.8. These inequalities are not obeyed by quantum theory, 
and they have been shown to be violated in a number of quantum experiments. Thus a con- 
sibtent probabilistic simulation of a quantum system on a classical computer is impossible, as 
demonstrated in detail by Feynman. This impossibility led Feynman to the suggestion of in- 
vestigating the possibilities of quantum simulations performed by quantum computers, a field 
that we will briefly discuss in Section 8.5. 
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6.2 Quantum mechanical computers 

6.2.1 Simple gates 

Feynman’s second paper contains quite detailed suggestions for quantum implementations of 
classical computing tasks. We will discuss these suggestions up to a “Hamiltonian that adds” 
before turning to the genuine quantum applications in the following chapters. The paper also 
shows that Feynman was well aware of (and interested in) the problems inherent in the high 
sensitivity of quantum systems to small perturbations; nevertheless, he says: “This study is 
one of principle; our aim is to exhibit some Hamiltonian for a system which could serve as a 
computer. We are not concerned with whether we have the most efficient system, nor how we 
could best implement it.” 

Y - 4 3 -  x XOR y 

Figure 6.1: Left: Single CNOT gate. Right: CCNOT (Toffoli) gate. 

From Chapter 3 we know some reversible gates on the 1-, 2-, and 3-bit levels: 

(s, y)  if x = 0 
( , r ,  1 - y) if J: = 1 ’ c CNOT maps ( T ~  y) - ( J .  J’ XOR y) = (6.3) 

and the Toffoli gate, controlled controlled NOT or Q(“) gate: 

(.I., y, 1 ~ z )  iff s = y = 1 
(s.  y, z )  otherwise . (6.4) CCNOT maps ( , r , ? j , z )  --f ( J , U , T ~  XOR z )  = 

where “iff” is short for “if and only if”, as usual. The two latter gates are shown in Figure 6. I .  
Note that the symbol @ symbolizes XOR or equivalently addition modulo 2. Because for 

all three gates ju5t one bit is flipped, all three are their own inverses, which will be important 
in what follows. Viewed as quantum mechanical operators, they are of course also unitary. 

6.2.2 Adder circuits 

From these elements we can construct an adder (more precisely, a half-adder) which takes two 
input bits n and h and a carry bit c which is zero initially (Figure 6.2). The CCNOT changes 
the carry bit to I iff both a and b are 1. The output bit on the middle wire is 1 if o = 1 and 
b = 0 or if n = 0 and b = 1 and zero otherwise, and thus yields a (3 b. 
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Figure 6.2: An adder (half-adder) circuit. 

The next circuit (and the one for which we will construct a Hamiltonian) is ;I full  adder 
(Figure 6.3). It takes two data bits a and b and ii carry bit c from a previous calculation and 
calculates (1 (I) b c, plus a carry bit which is I if two or more of a, h ,  c are 1 .  

a a 

a 8 ) b  

ad368)c 

Figure 6.3: A full addcr circuit. 

What is going on along the three top wires is quite clear, the “tricky bit” is the carry bit rl, 
espccially the action of the second CCNOT gate. Note that if u = b = I ,  d = 1 by the first 
CCNOT gate. The control bit (1 6i) I) = 0 of the second CCNOT gate then is zero so that (1 is 
not flipped back to 0 rcgardless of the value of r .  The only case in which rl is flipped (from 0 
to 1 )  is o k; h = I and c = 1, such that indeed tl = 1 if a, + (1 + (. 2 2. 

6.2.3 Qubit raising and lowering operators 

Wc now change our point of view from classical to quantum. To this end we first map the 
bits to qubits of which we only use the basis states 10) = I T) and 11) = I J), since we are 
(at this point) not interested in the specific quantum properties arising from the superposition 
principle. We have to translate the gates and circuits discussed above into quantum mechanical 
operators. From Chapter 4 we know how to flip a qubit by the spin raising and lowering 
operators: 

(6.5) 
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The index a simply reminds us that we are manipulating the qubit a. For the following discus- 
sion it is convenient to use a slightly different notation and language. We interpret the basis 
states and Il), as absence and presence of a particle at qubit n, respectively. The number 
of particles at qubit n, can be either zero or one. and this number can be changed by creating or 
annihilating an “a-type particle”. These tasks are performed by the creation operator at and 
by its adjoint, the annihilation operator a: 

Comparing (6.6) to (6.5) we see that at corresponds to S; and a corresponds to S:. We stress 
that we will only use the the language of creation and annihilation operators as a convenient 
way of discussing the states of qubits; we will not employ the full formal machinery of the 
“occupation number representation” , also known as “second quantization”. 

Recalling the relation S, = $X = (S+ + S-) (4.29) we can express the NOT operation 
on qubit a in terms of the a-particle creation and annihilation operators: 

Since the qubit (L may be used as a control qubit in a CNOT or CCNOT gate, we need a 
convenient way of checking the state of a without changing it. In our newly adopted language 
this means “counting the number of a-particles”, and it is achieved by the particle number 
operator ata, as can be easily verified: 

In order to take care of other qubits 6, c, etc., in  addition to the qubit n, we introduce b-type, 
c-type, etc. particles with corresponding creation and annihilation operators bt and b, ct and 
c, etc. Then it is very easy to write down the operator corresponding to the CNOT gate with a 
as control qubit. This operator is supposed to flip b if (I, = 1 and to do nothing if a = 0: 

CNOT ( ( I ,  b )  = (b + bt)ata + l t J ( l ( l  - ata) = (b + bt - lt,)ata + l t > l , l .  (6.9) 

In order to avoid sign trouble we assume that operators for different qubits (or sites, if we think 
of qubits localized each at a different point in space) commute. This is a property reminiscent 
of Bose particles (Bosons), while the “on-site’’ commutation relation 

ai-a + aa’ = 1, (6.10) 

is typical for Fermi particles (Fermions). Thus the particles employed here are neither Bosons 
nor Fermions, which would cause some complications if we intended to use standard many- 
particle calculational techniques. As mentioned already, however, we are not going to do this. 
To continue the construction of a “Hamiltonian that adds” we need to code the Toffoli gate 
O(“) or CCNOT as an operator, which is as easy as the CNOT: 

@(‘3)(o, h. C )  = lf,1tJlf, + (ct + c - l,.)atabtb. (6.1 1) 
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The operator for the full  adder can be written down reading the diagram in Fig. 6.3 starting 
from the left and writing down the elementary operators starting from the right: 

CNOT ( b ,  c ) e ( : 3 ) ( b ,  cl (1) CNOT (a, h)e(:3)(u,  b,  ~ ) I u ,  b,  C ,  0) 

=: A4A;jAaAIla, h, c,  0) = exp (--iF) lu, h, c, 0) (6.12) 

(with obvious definitions of the operators Al . . . A4). Is there a Hamiltonian ‘FI and a time t 
which both satisfy this equation? Obviously this is no easy question, since 

and thus the right-hand side of the above equation for the ful l  adder will be a superposition of 
states where ‘H has acted any number of times, from zero to infinity. Nevertheless, it turns out 
that it is possible: 

0 to construct an ‘H such that the desired final state is present (among others) and 

0 to separate the desired state from the others. 

The trick is to keep a record of which of the A operators have already acted on the input state. 
This bookkeeping is done by auxiliary (or “slave”) particles . Suppose we want to calculate 

Iqlf) = AkAk- I . . . A, 1’4);) (6.14) 

(in our example k = 4) for an ?~-qubit state  TI, = 4 in our example). We introduce 
a “chain” of k + 1 new “program counter qubits” named i = 0 .  . . A:, with corresponding 
creation and annihilation operators q;,ql. 

6.2.4 Adder Hamiltonian 

Thc desired Hamiltonian then reads 

Here, “h.c.” denotes the Hermitian conjugate (to make ‘FI Hermitian). We have used the 
fact that the A operators are Hermitian and the q operators are assumed to commute among 
therriselves and with all gate operators A,.  Note that the number of “y particles” cfi_,, q/ ql 
is a constant; we will be interested exclusively in the case of a single particle. The action 
of the Hamiltonian is represented pictorially in Figure 6.4: Whenever the “program counter 
particlc” moves from site i to i + 1 or vice versa the operator A,+I acts on the “register qubits” 
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Figure 6.4: A Hamiltonian with register operations A,.  

where the calculation is performed. The calculation starts with the register qubits in the input 
state I $ * )  and a single program counter particle at site 0. The action of ‘H” then yields 

where we have used that the gates A, are their own inverses. We see that if the program 
counter particle is at site 1, the last operator which has been active is Al: 

(6.17) 

The next application of H then leads to two possibilities: 

0 I + 1 - 1; A/ is squared (and thus erased because it is its own inverse) 

0 I + I + 1; A/+‘ is prepended to the string of A operators. 

(This argument can of course be transformed into a rigorous proof by induction.) We conclude 
that if our final state contains a component with the counter particle at site k ,  we are finished. 
We only have to project out the desired component: 

(6.18) 

where a is a normalization factor whose size may be important in practice. 
After showing how to construct the full adder Hamiltonian, Feynman in his paper then goes 

on to discuss the influence of imperfections (for example not perfectly equal “bond strengths” 
in the program counter qubit chain), simplifications of the implementation and more compli- 
cated tasks like implementing loops which perform a piece of code a given number of times. 
We recommend the original paper [Fey961 to readers who want to discover more details. 

To more adventurous readers we recommend the following exercise. Construct the Hamil- 
tonian for the full adder. Calculate (for example numerically, with your good old classical PC) 
the amplitude of the desired output state as a function of time. Does this amplitude depend 
on the contents of the register qubita? Can you see how it will depend on the number of pro- 
gram steps k for more general programs? We have not done this exercise ourselves, but we 
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are confident that it is feasible and that it will basically reduce to finding the eigenvalucs and 
eigenstates of a single quantum mechanical particle moving on an open-ended chain of five 
sites, which is a typical (and solvable) exercise in many courses on condensed matter theory. 



7 Errors and decoherence 

7.1 Motivation 

7.1.1 Sources of error 

Any physical implementation of a computational process is designed to transform an input 
information into the desired output by applying appropriate operations as prescribed by the 
algorithm. These algorithms break the computation into suitable elements that can be han- 
dled by the available hardware. The goal of the hardware design is therefore to build a device 
that implements the mathematical operations as precisely and efficiently as possible. Unfor- 
tunately, any real physical device deviates to some degree from the idealized mathematical 
operation; this holds true for classical as well as for quantum computers. 

While one tries to approximate the mathematically ideal operations with a suitably engi- 
neered device, it is never possible to avoid errors, i.e., differences between the mathematically 
predicted result and the physically executed computation. An important goal of computer ar- 
chitectures is therefore to avoid, recognize and correct errors in the computation. In classical 
computers, the most important design element for this purpose is the use of digital repre- 
sentation of information. As a result, every bit of information can be re-adjusted after every 
computational step to match the voltage corresponding to either the “0’ or “1” state of the 
respective hardware. 

This elementary error correction scheme can not be used in quantum computers, where 
the qubits can be in arbitrary superpositions of the relevant quantum mechanical states. As 
discussed in other parts of this book, the input of a quantum computation is encoded in the 
exponentially many complex amplitudes of an initial state which is subsequently steered along 
a specific path in Hilbert space (whose dimension also grows exponentially with the number of 
qubits) to a final state whose properties contain the result of the computation. It is absolutely 
vital to maintain the phase coherence between the components of the state in order to perform 
a genuine quantum computation. 

We distinguish three effects that cause the results of a quantum computation to deviate 
from the ideal result: 

0 The gate operations are not perfect. 

0 The isolation between the quantum mechanical system (the quantum register) and the en- 
vironment is not perfect. The spurious interactions with the environment cause unwanted 
transitions (=relaxation) and decay of the phase coherence (=dephasing or decoherence). 
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0 The quantum system itself differs from the idealized model system considered i n  the de- 
sign of the quantum computer. This includes, e.g. coupling constants that are slightly 
different from the ideal ones, and quantum states that are not included in the computa- 
tional Hilbert space. 

Section 7.2 summarizes the processes that lead to the loss of coherence in the system and 
therefore to the loss of quantum information. 

7.1.2 A counterstrategy 

While one can (and should!) try to minimize these errors, it is important to realize that there 
are technical, financial as well as fundamental limits to the precision that can be achieved. It is, 
e.g., not possible to shield gravitational interactions between the system and the environment, 
or the quantum fluctuations in the apparatus that controls the gate operations and reads out the 
result . 

To combat the detrimental effect of these imperfections on the results of computational 
processes, a number of options exist. 

0 Optimize the classical apparatus that controls the quantum system. 

0 Dcsign gate operations in such a way that errors in experimental parameters tend to cancel 
rather than amplify. A typical example for this approach is the use of composite pulses 
in NMR [Lev01 I.  

0 Use error correction schemes. 

0 Store the information in areas of thc Hilbert space that are least affected by the interaction 
between the system and its environment. 

I t  appears likely that any useful implementation of a quantum computer will require the 
implementation of all of these principles (and more) into its design. We discuss possible 
approaches to rccognize and correct errors in quantum computers in Section 7.3. How infor- 
mation can be "protected" against decoherence will be discussed in Section 7.4. 

7.2 Decoherence 

7.2.1 Phenomenology 

Interference between two or more quantum states lies at the heart of the most striking quantum 
phenomena. As in classical wave oplics, interference is possible only if the states kccp a 
definite phase relationship, that is, if they are c.ol7ererzt. The destruction of coherence by 
uncontrollable interactions with environmental degrees of freedom is culled decoiietmcr. If 
decoherence occurs so fast that no interference phenomena can bc observed, the resulting 
behavior can often be described in terms of classical physics. 

If two states behave in the same way under the influence of thc environment, they can stay 
coherent in spite of the coupling to the environment. If, on the other hand, they bchave very 
diffcrently, that is, if they can be easily distinguished from each other by the environment, 
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they will lose coherence rapidly. This simple intuitive observation is important for quantum 
error correction and decoherence-free subspaces, to be discussed in later sections. 

In this section we shall illustrate by means of simple examples how decoherence induced 
by interaction with the environment affects the state of a system, for example, a quantum 
information processing device. 

In the beginning the system is in a carefully prepared pure state. The (complex) ampli- 
tudes of the initial state with respect to some basis in Hilbert space represent the quantum 
information to be processed. Classically, the uncontrollable interaction between system and 
environment cause the system evolution to deviate from the ideal evolution. 

If the environment is itself a quantum mechanical system, the interaction between system 
and environment builds up correlations between the system and environmental degrees of 
freedom. For the ideally prepared initial state, the environment also can be described as an 
(unknown) pure state, which does not depend on the state of the system. The total quantum 
system, consisting of the quantum register and its environment, is then in a product state.' The 
interaction between system and environment transforms this product state into a correlated 
state, which can be highly entangled. The state of the system alone (as represented by its 
density matrix) then in general is no longer pure but mixed, as discussed in Chapter 4. 

7.2.2 Semiclassical description 

The simplest description of the spurious interaction between system and environment uses a 
single spin-1/2 to describe the quantum register and a magnetic field for the environment. 
Since we discuss errors, we may restrict the analysis to the case when this field is weak 
compared to the static field that defines the energy of the basis states 10) and 11). In this 
limit, the most important effect of the error field is due to the component along the static field, 
which is usually chosen to be oriented along the z axis. 

To illustrate its effect, we consider a system that is initially in a superposition state 

id~(0) )  = u/O) + 611). (7.1) 

If the two states 10) and 11) are eigenstates of the driving Hamiltonian R with eigenvalues Eo 
and El ,  an ideal evolution will transform this state into 

(7.2) 

Figure 7. I shows, as an example, a magnetization vector in the xy plane. This corresponds to 
the case u = b = i. Evolution corresponds to precession around the z-axis, and the resulting 

phase angle is E = (El  - Eo)t/tl. 
Dephasing is due to additional (uncontrollable) interactions, which shift the energy of 

these eigenstates by a small amount ( r ~ ,  . As a result, the average energy level shift difference 
changes the relative phase between the states by an angle 

I f d ! ( t ) )  = a / O ) p P E o t ' f i  + /)I 1) - 1 El / h ,  

v5 

' Of coursc the prcparation of the systcm's state require5 interaction with other degrees of Creedom; for the sake 
of simplicily we a s u m e  thal those degrees of freedom can be separated sufficiently well from both system and 
environment once the preparation of the system's initial btate is accomplished. 
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The state then hecoines 

In the example of Figure 7. I ,  this corresponds to a stochastic change of the orientation of the 
magnetization vector. 

Individual Mean 

Figure 7.1 : Cohcrcnt and incohcrcnt contribution to the evolution. 

Within the present picture of a single spin in a classical magnetic field, this additional 
phase increment arises from the fluctuating external held. The magnetic field has ii well- 
defined value at all times, thereby causing a well-defined Larinor precession, the resulting 
precession angle differs between computational runs and deviates from the mathematically 
correct representation. As shown in Figure 7.2, the resulting evolution of the spin corresponds 
to Brownian motion of the individual spin orientation. 

I 

Single spin: diffusion process Ensemble, time-average, 
entangled system: decay 

4 

____.c 

time 
- c  

time 

Figure 7.2: The left-hand part of the figure shows the evolution of a spin in a randomly varying 
magnetic field, which corresponds effectively to a diffusion process. The right-hand part shows 
how the average magnetiLation o f  an ensemble of spins decays when the individual spins evolve 
in random magnetic fields. 

If we now consider an ensemble instead of a single quantum system, the average informa- 
tion will be reduced, iis shown in the right-hand part of Figure 7.1. As a function of time, the 
average over the individual motional processes can be compared to a diffusion process. 
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In most systems, an exact description of the processes that are responsible for these phase 
kicks is not available. If the interaction that causes them does not have a memory (Markovian 
limit), it is possible to describe their average effect by an exponential decay process for the 
relevant density operator elements. For the off-diagonal elements one writes 

The dephasing time T2 is related to the RMS strength of the error field. More detailed de- 
scriptions of these effects can be found in the NMR literature, where the effect is discussed as 
relaxation [Red57]. 

Different relaxation processes also cause the diagonal density operator elements to ap- 
proach thermal equilibrium with a time constant 571. These longitudinal relaxation processes 
also affect the quantum computation, causing a decay of the information. However, they are 
also needed, since they bring the system to the ground state, as required for initialization. 

The ensemble consideration is relevant not only for ensemble quantum computers, but 
also to quantum computers consisting of individual quantum systems. Even in these cases, a 
typical quantum computation will involve repeated runs of the computational process and the 
ensemble average corresponds then to the temporal average over the different runs. 

7.2.3 Quantum mechanical model 

In quantum mechanics, the situation is slightly different. Here, these phase-kicks are corre- 
lated to states of the external system, which is referred to as the bath. Typical examples for 
relevant degrees of freedom in the environment are phonons passing through the system or 
modes of the radiation field causing, e.g., spontaneous emission. For every state of this exter- 
nal system, the quantum register remains in a pure state, but the phase 6 for this realization 
will be different than that for other states of the environment. 

Since it is never possible to know exactly the state of the external system, one has to 
average over all accessible states of the external system. This averaging process changes the 
situation qualitatively: the vector representing the system is no longer only rotated by these 
additional phase kicks, it also becomes shorter. Technically, it is no longer in a pure state, but 
rather in a mixed state. In the simple picture given above, the vector no longer ends on the 
unit circle (or sphere), but remains inside it. 

A simple quantum mechanical model of decoherence is provided by two interacting qubits: 
A (the system) and B (the environment). Each qubit is represented by a spin-;, and we assume 
that the two spins are coupled by an exchange interaction 

w -  - 
?-l = -Sn ' su .  

tr. (7.6) 

For w > 0 the ground state of this Hamiltonian is the singlet, with energy eigenvalue - :hw, 
the triplet states have energy +fhu (see Appendix A). The initial state is the most general 
product state (compare 4.46) 
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(7.7) 

l q i ( 0 ) )  can be expressed in terms of the singlet and triplet states whose time evolution 15 

wnple. The reculting time-dependent Ftate I(,h(t)) ic 

This state is strictly periodic because the extremely simple model (7.6) contains only a single 
energy or frequency scale, w. More complicated models of a system coupled to an envi- 
ronment of course will show more complex behavior, but the general tirnescale on which 
decoherence phenomena happen, will still be inversely proportional to the coupling between 
system and environment (in our case, w). 

The degree of entanglement between system A and environment B is given by the concur- 
rence (4.52). A short calculation leads to the compact result 

c = / ( i d  - bcI21 sinwtl .  (7.9) 

The concurrence is a periodic function of time, as it should be for a periodically varying 
quantum state. The maximum value of C is determined by the initial state. If 1u.l = I d  : 1 or 
Ihl = IcI = 1 the state can become maximally entangled; on the other hand, if Id = lrl = 1 or 
Ibl 1 the state can never become entangled at all. In fact, in these two cases I$(O)) is a 
triplet state. I IT) or 1 LI) which is an eigenstate o f 8  and thus goes unaffected by the coupling 
to the environment. All other cases where G(t)  = 0 are equivalent to this one, since ud = tit. 

only if A and R initially are in the same pure state, which can always be written as I T )  i n  
an appropriate spin-space coordinate system. Unfortunately the stability of these states under 
the interaction (7.6) cannot be exploited i n  any useful way since i n  general the environment 
cannot be controlled by the experimenter and thus the equality between the initial states of 
system and environment cannot be guaranteed. In particular, the environmental degrees of 
freedom are usually strongly coupled to additional degrees of freedom. The decoherence-free 
subspaces to be discussed later are subspaces o f  the Hilhert space of the system (only) which 
are protected by the symmetry of the interaction between system and environment. 

Id 

7.2.4 Entanglement and mixing 

We now discuss the case of strongly entangled states. For the special case h = c = 0 , 
( I  = d = 1 we see that the initial product state of system and environment 

I?/,(())) = I ‘Tl) (7.10) 

develops into a rnaxirnally entangled state at time f - -  2”, : 

(7.11) 
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In a quantum computer (and most other cases) we are only interested in the system A and 
therefore consider only its density operator 

(7.12) 

where TrB denotes the trace over the Hilbert space of the environment B (see Chapter 4). 
Apparently this density operator is now diagonal. The spin has equal probabilities for being 
in the i and J, states, but the phase information has been lost. The state is now a maximally 
mixed one, whereas the initial density operator p(0) was pure. 

For the present trivial model, the pure state could be recovered by simply letting the com- 
bined system-environment evolve for an identical period of time. However, more realistic 
models of the environment have (infinitely) many degrees of freedom and the resulting evolu- 
tion is no longer periodic. As a result, it is no longer possible to recover a pure state from the 
mixed state. 

This effect occurs also for other initial conditions, e.g., when the system is initially in a 
superposition state. As an example, we consider the case u = b = c = -d = 1, such that & 

(7.13) 

Note that the A part of this initial state is an eigenstate of S,. (4.29). A measurement of the 
component of the system spin at t = 0 thus would clearly reveal the coherent nature of the 

state. At t = 5 this state evolves into the following maximally entangled state 

(7.14) 

The corresponding density matrix of A is again (7.12) and a measurement of S,. (of A )  would 
yield zero. The initial information about the relative phase between I 

The common feature of the two states I$($))  (7.1 1) and (7.14) is the fact that the two 
basis states I and 1 J , ) A  of the system in both cases are strictly correlated to two mutually 
orthogonal states of the environment B. For (7.11) these are the eigenstates of S z  and for 
(7.14) the eigenstates of S,. This observation is an example of what was called “the funda- 
mental theorem of decoherence” by Leggett (Leg02I: if two mutually orthogonal states of the 
system of interest become correlated to two mutually orthogonal states of the environment, 
all effects of phase coherence between the two system states become lost. Note that in the 
situation just described the final state of the system can be inferred from the final state of the 
environment; that is, the environment has “measured” the state of the system. This kind of 
reasoning can be applied to many instances of the quantum mechanical measurement problem, 
for example, the disappearance of the interference pattern in the standard two-slit experiment 
of quantum mechanics which occurs as soon as one measures through which of the two slits 
each single electron has passed. 

and I liA is lost. 
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7.3 Error correction 

7.3.1 Basics 

As errors are unavoidable in quantum as well as in classical computing one must devise strate- 
gies for fighting them. Error-correcting codes do this by detecting erroneous qubits and cor- 
recting them. As in classical computation, redundancy is an indispensable ingredient here, and 
other than in classical computation, extreme care must be exerted not to garble the quantum 
information by the nieasurements involved in error detection. 

Quantum information is not only potentially more “valuable” than classical information 
but unfortunately also more vulnerable, because a qubit can be modified i n  more subtle ways 
than a classical hit which can just bc flipped from 0 to 1 or vice versa. Furthermore a classici11 
hit can be protected against errors by basically copying it several times and comparing the 
copies. an accidental simultaneous flip of many copies being extremely improbable. This is 
the basis of classical error correction. 

No such proccdure was in sight during the early years of quantum computing, and thus 
many scientists were very skeptical whether the attractive prospects of quantum computing 
could ever become a reality. Fortunately, methods for quantum error Correction were soon 
discovered, based on coding schemes which permit detection of the presence and nature of 
an error (by converting it into a “syndrome” coded in ancillary qubits) M’ithout affecting thc 
information stored in thc encoded qubit. As wc will discuss below these quantum error- 
correcting codes protect quantum information against large classes of errors. For simplicity 
we will restrict ourselves to errors which occur when information is transmitted through space 
(communication) or time (data storage) without being modified. The detection and corrcction 
of crrors during the processing of data is the subject of,fiiult-tolrrunt coinpiiring which we will 
only briefly mention at the end of the scction. 

The development of quantum error correction has culminated in the thrrsliold theorem, 
stating that arbitrarily long quantum computations can be performed reliably even with faulty 
gates, providcd only that the error probability per gate is below a ccrtain constant threshold. 

7.3.2 Classical error correction 

To correct an error in a classical cnvironment, one needs to detect it. The simplcst way to do 
this is to generate copies of the information to be protected from errors and to compare these 
copies with each other. More generally, the information must be encoded in some rcdmlrint 
way which allows for reconstruction of thc original data after partial destruction or loss. Of 
course, conipletdy lost data cannot he recovered at all, hut depending on the effort invested, 
the probability of complete loss can be made as small as desired. 

The kind of error correction used and its probability of success depend on the kind of error 
expected. To keep things simplc, suppose we want to transmit single classical hits 0 or I ,  
where each bit is transmitted successfully with probability 1 - p and is flipped (once) with 
probability p ,  neglecting the possibility of multiple Hips. We encode the logical bit O L  in the 
cndr word 000 consisting of three physical hits, and likewise 11, w 11 1 .  Thus 000 and I I 1 
tire the only two legal code words of the present coding scheme. If  the error probabilities 
for the three clubits are identical and independent of each other, the probability for error-free 
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transmission of the logical bit is (1 - p ) " ,  the probability that one of the three physical qubits 
has flipped is is 3p(  1 - P ) ~ ,  and so on. After transmission we check if all three bits of the code 
word are equal, and if they are not, we flip the one bit which does not conform to the other 
two. This leads to a wrong result if two or three bits were flipped during transmission, and the 
total probability for this to happen is p 2 ( 3  - 2 p )  which is much smaller than p for sufficientIy 
small p .  

Usually the bit-flip probability p grows with the distance (in space or time) of transmis- 
sion, so that error correction must be repeated sufficiently frequently (but not too frequently, 
since copying and measuring operations may themselves introduce additional errors which 
we have neglected here for simplicity). A larger number of physical bits per logical bit can 
be employed, increasing the probability of success, but also increasing the cost in terms of 
storage space or transmission time. 

Of course in today's mature communication technology, far more sophisticated error cor- 
rection schemes are in use than the one just presented, but they all rely on checking for damage 
and reconstructing the original information with the help of redundancy. 

7.3.3 Quantum error correction 

The classical error correction scheme discussed above is useless in the quantum regime, be- 
cause it involves a measurement of every single bit transmitted. In the quantum case this 
entails a collapse of the qubit state to one of the measurement basis states, so that any infor- 
mation stored in the coefficients a and b of a superposition state al0) + b(1)  is lost. One of 
the central ideas of quantum error correction is to detect the kind of error that has occurred 
(if any) without touching the information stored, and to subsequently reconstruct the original 
qubit state. Additional (or ancillary) qubits are needed in this process to store the kind of error 
(or error syndrome). Not every conceivable error is detectable or correctable; think of a multi- 
bit error converting one code word into a different legal code word in a classical redundant 
coding scheme. The more kinds of errors one wants to be able to correct, the more resources 
one needs. 

One of the specific problems related to the quantum nature of information was already 
addressed above: the fact that measurement may destroy the very information that was to be 
protected. This problem cannot be circumvented by just copying the information because of 
the no-cloning theorem (Section 4.2.11). Furthermore, in addition to the simple classical bit 
flip error, quantum mechanics allows for an entire continuum of possible errors, for example, 
continuous amplitude and phase changes. Fortunately the quantum error correction schemes 
developed during the past decade or so suffice to correct large classes of qubit errors. 

One way to present the basic principle of quantum error correction is that the information 
is encoded in a Hilbert space whose dimension is larger than the minimum. Within this larger 
Hilbert space, it is then possible to choose two states as the basis states of the qubit in such a 
way that the interactions that cause the error do not transform one state directly into the other. 
Error detection then checks if the system contains contributions from other states and, if so, 
forces the system back into that part of Hilbert space that corresponds to the qubit. 
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To begin with, let us discuss the transmission of qubits between a source A (Alice) and a 
receiver B (Bob). The transmission channel leaves each transmitted qubit either unchanged 
(with probability I - p )  or flips it by applying an X operator (Section 4.2.1) (with probabil- 
ity 11) .  The situation is completely analogous to the classical case discussed above. While 
quantum mechanics prevents Alice from copying quantum states for crror protection, it pro- 
vides her with entanglement as a new tool to achieve the same goal, as we will now see. In 
order to safely transmit the qubit state n,lO) + h ( 1 )  Alice initializes two further qubits in the 
state lo), so that thc initial state of the three qubits is 

I f ) ” )  = n1000) + ql00) .  (7. IS) 

Next she applies two CNOT gates, both with the tirst qubit as control and with the second and 
third qiibits as targets, respectively. These two steps transform the statc to 

1,fhl) = n/000) + qlll). (7.16) 

Alice thus encodes the information initially contained in  the state of a single qubit i n  an en- 
tangled state of three qubits. This opcration is nut cloning: cloning (if it were possible) would 
lead to a product state ofthe three qubits with all of them in the same single-qubit state. Finally 
Alice sends the three qubits down the faulty channel, and relaxes. 

) without damage; this happens with prob- 
ability ( I  ~ p)“ since the three qubits have been transmitted independently. With probability 
p (  1 - p)2 each of the three qubits has been acted on by the “error operator” X, and with 
probability p 2 (  1 - p )  each of the three possible pairs of two qubits have been flipped. Finally, 
with probability p?’ all thrce qubits have been flipped. Note that this is the only case where 
in spite of errors having occurred, Bob receives a combination of the legal “quantum code 
words” 1000) and I I 1 1 )  and thus is unable to detect the error. In all other cases the entangled 
nature of Bob’s state allows for error correction (which, however, is not always successful, as 
we will see). Note that the two components 01 Bob’s state are always complements of each 
other; for example, if qubit 2 was flipped during transmission, Bob receives instead of I,$,) 
(7.16) the state 

Ideally, Bob receives the three-qubit state 

i./i,,) = aplo) + hj 101). (7.17) 

That means that a measurement of Z I Z ~  (the subscripts refer to the qubits) yields the same 
value (-I in  our example) for both components of Bob’s state. The same is true, of course, 
for the combination Z I Z:<. Bob’s state is thus always an eigenstate of Z1 Zz and Z I Z3, and 
the action of these two observables docs not affect the state, apart from an unimportant global 
phase. By measuring ZlZ2 and Z I  Z:( Bob can detect what kind of error has occurred (if any) 
and act accordingly. For the above example Z I Z z  = -1 and Z1Z:3 = 1 from which Bob 
concludes that qubit 2 has been flipped. He applies X2 and thus restores the state I$,). apart 
from a sign. This procedure works for all cases where only one qubit was flipped, as one can 
verify easily. If two qubits are flipped, however, the error correction fails (as it does in the 
classical case): the state u /  101) + h / 0 1 0 )  yields the same values for ZlZ2 and Z1Z:s as the 
statc i q ~ l )  just discussed and is thus “corrected” to u I 1  I )  + 01000). 
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There is a slightly different procedure for identifying the error which avoids any modifi- 
cation of Bob’s state and which only employs CNOT gates. For that procedure Bob needs two 
extra (ancilla) qubits prepared in the state 100). He then first carries out two CNOT operations 
with qubits 1 and 2 of the message as controls, respectively, and qubit 1 of the ancilla as target, 
and then two CNOTs with qubits 1 and 3 of the message as controls, respectively, and qubit 2 
of the ancilla as target. The two ancilla qubits then contain the error syndrome: the first qubit 
is 0 if the first and second qubits of the message are equal, the second qubit of the ancilla com- 
pares the first and third qubits of the message. This procedure is an example for a more general 
strategy of storing the error syndrome in additional dimensions of the Hilbert space provided 
by ancillary qubits. This does not affect the information in the message, and the stored error 
syndrome can be used to correct the error, or to perform a fault-tolerant quantum computation 
which directly processes the encoded message and takes into account any errors which have 
been detected and stored as error syndromes. This eliminates (to some extent) the necessity to 
repeatedly decode and re-encode information, a procedure which is itself susceptible to errors. 

After applying either of the two error-correction routines just sketched, Bob can recon- 
struct Alice’s original single-qubit state by simply repeating Alice’s first two CNOT opera- 
tions (with qubit 1 as control and qubits 2 and 3 as targets, respectively). The result for the 
first qubit is al0) + 1111) (with probability 1 - 3p2 - 2p“, that is, in most cases, provided p 
is sufficiently small) or a#ll) + b / O ) .  The probability of failure is thus O(p2) ,  as compared to 
O(p)  without error correction. 

7.3.5 Continuous phase errors 

Next we consider a “continuous” type of error as opposed to the “discrete” spin flip error just 
discussed. It turns out that this new error type can be corrected for by basically the same 
mechanism. The error is a random z axis rotation given by 

(7.18) 

4 is a random angle between 0 and 27r, and E is a “strength parameter” which controls the 
mean phase spread caused by P(E) on average. The randomness in this operation is related 
to environmental degrees of freedom, for example, the random magnetic field discussed in 
Section 7.2.2. After the usual average over that randomness we have a combination of no 
error and a “phase flip” caused by the operator Z: 

Z(al0) + b l l ) )  = a p )  - b l l ) .  (7.19) 

Now, consider the action of Z in a different basis, given by the eigenstates I+) and I-) of X: 

(7.20) 

obviously 

(7.2 1) 
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that is, Z causes a bit flip in the basis given by the eigenstates of X, and we have already seen 
how a bit flip can be corrected for. The basis change from Z eigenstates to X eigenstates and 
back is accomplished by a Hadamard gate H (4.33), formally 

H Z H  = X. (7.22) 

In  order to achieve error correction for a phaae-flipping t r a n m i s h n  channel, Alice prepare\ 
the state (7.16) as before, and then applies HM.‘ = H ~ H L H J  to I $ L ) :  

HLZJ1dj~) = 0 1 +  + +) + hi- - -) (7.23) 

before sending her 3-qubit message off. Bob can use alrnosl the same procedure its before; 
howcvcr, hc has to usc XIXa and X1Xa for crror syndrome extraction and Z1, Zz, and Za 
for error correction, before applying H@:’ to switch back to the computational basis. 

7.3.6 General single qubit errors 

Yet another kind of error that can happen to a single qubit is an “accidental measurcment” 
resulting in a projection to 10) or 11). That kind of error can be related to a phase flip (Z)  by 
observing that the projectors to 10) and 11) (Section 4.2.1) can be written as 

(7.24) 

Pmjectors onto more general Hilbert space vectors can be written as linear combinations of 
1, X, Y, and Z.  This is clear from the fact that any 2 x 2 matrix can be written in terms of 

a10) t p11) in this form. Obviously any unitary 2 x 2 matrix (that is, any quantum gate) can 
also be expressed i n  terms of these operators. The most general single-qubit error is given by a 
general unitary 2 x 2 matrix, combined with a projection to some axis, and can thus be written 
in terms of 1, X, Y ,  and Z.  We have seen that errors caused by X and Z can be corrected for 
by simple procedures, and given the fact that Z X  = iY, errors caused by Y should also be 
correctable. 

The simple code that does the trick is a cornbination of the two procedures already Jib- 
cussed and was invented by Peter Shor [Sho95]. Shor’s code involves the idea of concatrnut- 
ing two redundant codes: the original logical qubit is redundantly encoded in three qubits in 
order to fight one kind of error, and then each of these three qubits is again encodcd in  thrcc 
qubits to take care of the second type of error. The encoding procedure consists of well-known 
steps. Alice first applies two CNOT gates with the original logical qubit as control and with 
the two additional qubits initialized to the slate 10) as targets. Then she applies a Hadamard 
gate to each of the three qubits. This maps the computational basis states as follows: 

1 1 
2 ~O)(OI = PI = T(l + Z) ; 11)(11 = PL = F ( 1  - Z).  

these operators; nevertheless i t  is a useful exercise to write the projector onto the gener’ ‘1 1 state 

As a final step, Alice adds two fresh 10) qubits to each of the three code qubits in her possession 
and again applies the two-CNOT encoding procedure to each of these qubit triplets. This 
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yields one logical qubit encoded in entangled states of nine physical qubits: 

1 
11) + -(10OO) - ) I  1 l ) ) ( ~ O O O )  ~ ~ l l l ) ) ( ~ O O O )  - 1111)). 

2 f i  

Assuming (as usual) that the encoding procedure is flawless, we discuss the correction of 
single-qubit errors. In order to detect a bit flip on the first qubit (or any qubit of the first triplet, 
in fact), Bob may again use the operators ZIZa and Z I Z : ~ .  Subsequent application of the 
appropriate X operator then corrects the error. A phase flip on one of the first three qubits 
changes the sign within that block, that is, it changes 1000) + 111 1) to 1000) ~ 1111) and vice 
versa. In order to detect such a sign change and its location Bob again only compares the signs 
of the three-qubit blocks one and two, and one and three. Since X I X ~ X : ~  is the operator 
for the simultaneous bit flip on qubits 1,  2, and 3, that is, it maps 1000) + 1111) and vice 
versa, the sign comparisons between blocks are performed by the somewhat clumsy operators 
X ~ X ~ X ; J X ~ X ; X ( ;  and X ~ X S X ( ~ X ~ X ~ X $ , .  A phase flip on any of the first three qubits can 
then be repaired by applying Z 1 Za Z:$. If both a bit flip and a phase flip have occurred on, say, 
qubit 1, the two procedures outlined above will both detect and remove their respective “target 
errors”, so that indeed all single-qubit errors caused by X, Z, or ZX = iY can be corrected. 
As argued above, this means that an entire continuum of arbitrary single qubit errors is kept at 
bay by really taking care of onIy a finite (and very sniafl) set of errors. This remarkable fact is 
sometimes referred to as “discretization of errors”, and it is instrumental to the whole concept 
of quantum error correction. Note that there is nothing similar for classical analog computing. 

The Shor code is conceptually simple and easy to understand, but it needs nine physical 
qubits per logical qubit to provide protection against arbitrary single-qubit errors. There are 
codes providing the same degree of protection with 7 ISte961 and even 5 [LMPZ96,BDSW96] 
physical qubits per logical qubit. However, we will not discuss these here. Especially the five- 
qubit code requires rather complicated operations to achieve its goal; this seems to be another 
example for the tradeoff between speed and size so often encountered in computer science. 

7.3.7 The quantum Zen0 effect 

One may try to avoid the implementation of detailed recovery operations for a set of possi- 
ble errors altogether by exploiting the yuanturrz Zeno effect for error correction [EARV03]. 
The idea behind this radical simplification is simply to keep the quantum state error-free by 
projecting frequently (by a measurement) onto the subspace corresponding to the “no error” 
syndrome. 

Zeno of Elea (ca. 490 - 430 b.C., southern Italy) was a student of Parmenides. He stated 
a number of paradoxa to defend the teachings of Parmenides, in particular the statement that 
motion is impossible and more than one thing cannot exist. One well known paradox is that of 
the race between Achilles and the tortoise. Achilles (the fastest man in antiquity) is ten times 
as fast as the tortoise. Nevertheless he cannot overtake her if she gets a head start of (e.g.) 
10 in: Achilles first must cover these 10 m. During this time, the tortoise moves 1 m and is 
therefore still ahead. While he covers this meter, the tortoise moves another 0.1 in and so on, 
always staying ahead. 



Another motion paradox “proves” that a body cannot move h m  A to B: for this, it would 
first have to move to thc middle of the distance. For this it would first have to move to the 
middle of the first half, etc. 

While these paradoxa are easily resolved, similar situations exist in quantum mechanics 
that are real. They have been discussed under the heading “quantum Zeno effect”, although 
they cannot really bc considered paradoxa. 

We consider the evolution of a system that is initially (at t = 0) prepared in the state l d ~ j , ) ,  
which is an eigenstate of operator A with eigenvalue u;. The state evolves under the influence 
of a Hamiltonian 3.t, which does not commute with A. A possible example would be that the 
Hamiltonian is K S, and the observable is Srr .  A measurement with A of the system after 
some time T will then in general yield a result that is different from a,. 

For the spin system, we can consider a spin in the m,,. = +1/2 eigenstate of S, evolving 
in a magnetic field ,!&llz. The probability that a subsequent measurement at time t also finds 
the eigenvalue + I / 2  is then 

(whcrc W L  is the Larmor frequency) while the probability of obtaining the opposite result is 

1 

(7.28) 

If  such a measurement is performed, thc projection postulate states that after the measure- 
ment the system is in an eigenstate of A. If the measurement yielded the result +1/2, thc 
system is again in the same initial state, and the evolution starts out again with the same time 
dependence. The important point is that the first derivative of the time dependence, 

(7.29) 

vanishes after the projection: the system therefore does not change during short times. 
Figure 7.3 shows how the evolution of the system changes a s  the measurement interval 

decreases. The long-term evolution of the system becomes quasi-linear. If a series of mea- 
surements is repeated with a separatiori (in time) o h ,  the probability that 17, measiirements in 
sequence will always find the system in state YrA,,. = + l / 2  becomes 

(7.30) 

For short meawrement intervals, wLr <. 1 this can be expanded as 

(7.31) 

Using the re lat ion 

(7.32) 
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Figure 7.3: Quantum Zeno en'ect: the decay of a state becomes slower with increasing number 
of measurements. 

the time evolution can be approximated as 

p + ( n r )  = p + ( t )  E exp ( -- W i T t j  (7.33) 

The evolution is not only slower, it is also damped. The system no longer shows precession, 
but moves exponentially towards thermal equilibrium. 
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Figure 7.4: Experimental test of the quantum Zeno effect. Left-hand side: laser pulses mea- 
sure the state of the ions while they are attempting to make a transition from state 10) to 11). 
Right-hand side: calculated and measured transition probability for increasing number of mea- 
surements. 



98 7 Errors und decoherence 

These general quantum mechanical predictions can be verified experimentally, e.g., for 
trapped ions IIHBW90I. Figure 7.4 shows the principle of the experiment. The ions are 
initially in  state lo), from where an RF field drives them into state 11). The amplitude of the 
Rf; field and its duration can be adjusted such that probability for the ion to make the transition 
from state 10) to 11) approaches unity at time 7 .  

‘10 detect if the ions have arrived in state I I) ,  one can use laser pulses that excite fluores- 
cence from the ions if they arc in state 11); with a suitable calibration, the fluorescence signal 
can be used to measure whether the ions are in this state. If such a laser pulse is applied first 
at time 7, it  finds the ions in state T with almost unit probability. If, however, additional mea- 
surcmcnts are made at times T,, = 7 :  for i = l..n, the probability of finding the system in 
state 11) at time 7 is reduced to 

(7.34) 
1 
2 

p ( n )  = - [l - COS2) (7r/n)j. 

This prediction was verified expcrimcntally by measurements on two hyperfine states of the 
!’Bet ground state IIHBW90], as shown in the right-hand side of Figure 7.4. 

Clearly the slow-down of transition rates by measurement cannot be universal. As an 
example, consider an atom that is initially in the excited state. A possible measurement for 
the excited state population probability is a fluorescence measurement: as long as wc do not 
observe a fluorescence photon from this atom, we know it is still in the excited state. If we 
only “look” at the atom often enough, it is therefore impossible for the atom to decay. Similar 
arguments are used to explain why the decay of the proton has not yet been observed. 

The main reason for this paradox is that the concept of a quantum mechanical mea- 
surcmcnt is not established with sufficient precision. A projection, i.e., a reduction of the 
wavepacket, does not idways occur in “standard” quantum mechanical measurements. If the 
intcraction is weak (such as “looking” for a fluorescence photon), the reduction does not occur. 
One important point that niust be considered is that a projective measurement can only occur 
during a finite time interval, which is the longer the weaker is the coupling to the apparatus. 
The projection postulate is well suited to the Stern-Gerlach type experiment, but completely 
unsuitable for experiments like NMR. 

7.3.8 Stabilizer codes 

After the first error-correcting quantum codes were found, a general theoretical framework 
for the analysis and classification of codes was developed quickly. This framework, called 
stnbilizPr formalism, is based on group theory. The basic concept is the Puuli group for 7) 
qubits. For a single qubit the Pauli group consists of the unit matrix 1 and the three Pauli 
matrices X. Y, Z, all with preractors i 1, fi. These matrices form a group under matrix 
multiplication: a product of two group elements is again a group element. For 7 1  qubits, direct 
products of matrices from the individual qubit Pauli groups form a group in a conipletely 
analogous way. Suppose now that S is a subgroup of the n,-qubit Pauli group and that a certain 
set v s  of Ti-qubit states is invariant under the action of all elements of 5’; then V& is said to 
bc the vector space stahili,-ed by S ,  and S is called the stabilizer. The basis vectors of l(q can 
be used as code words for a .stahilizc.r w d e .  A simple example for 71 = 3 is provided by the 
set S = { 1, Z l Z z ?  ZzZ:l: ZlZ:3}; KT is spanned by l000) and 1111). Note that the nontrivial 
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elements of the stabilizer for this code work as error-syndrome extractors: they leave all states 
containing only legal code words intact and map all states affected by errors to other states. 
Different errors must be distinguishable by the syndrome extractors in order to be correctable. 
We have seen earlier that for the present simple three-qubit code only single-qubit flip errors 
can be corrected, while two-qubit flips lead to wrong transmission results and three-qubit flips 
are not detected at all. 

For a code with n-qubit code words, one may classify errors by their weight, that is, by 
the number of nontrivial Pauli matrices applied to the code words. It is desirable to construct 
a code able to correct all errors up to a maximum weight w; such a code is called w-error- 
correcting. The achievable w depends on the similarity or distinguishability of the code words 
employed. If the minimum distance (as expressed by the number of differing qubits) between 
any two code words is d, then the maximum 211 is given by the integer part of d /2 .  Of course the 
minimum distance depends on the number k of logical (qu)bits encoded (as 2k code words) 
in the n physical (qu)bits. Classical as well as quantum codes are often characterized by 
[n, k ,  d ] .  There is an elaborate theory of classical error-correcting codes, and in fact a class of 
quantum error-correcting codes may be derived from classical codes. These codes are called 
Calderbank-Shor-Steane (or CSS) codes after their inventors. They are a subclass of the 
stabilizer codes, as discussed in Chapter 10 of [NCOI]. The codes with ri = 5 [LMPZ96, 
BDSW961 and 71 = 7 [Ste96] mentioned above both have k = 1 (that is, two code words, 
or one logical bit) and d = 3. I t  can be shown (see Chap 12 of [NCOl]) that n = 5 is the 
minimum size for a 1 -error-correcting quantum code. Nevertheless, the five-qubit code is of 
limited practical use because it involves complicated encoding and decoding procedures, and 
because fault-tolerant quantum logical operations are difficult to implement in this code. 

7.3.9 Fault-tolerant computing 

We have only discussed simple transmission (in space or time) of quantum information, with- 
out considering any logical operations (except those needed for quantum error correction). 
For quantum computing to become practical, it is necessary to perform logical operations in a 
fault-tolerant way. This means that all quantum gates (including those used in quantum error 
correction) should be implemented in such a way that they do not assume the input qubits to 
be perfectly free of errors. As a consequence gates should not operate on single logical qubits 
(which do not offer any possibility of detecting and correcting errors), but on the redundant 
code words of a quantum error-correcting code. During these operations care must be taken 
to keep errors from propagating too quickly through the set of qubits employed. Of course the 
details of the implementations used in this field depend on the operations as well a5 the codes 
employed, and this rather technical discussion is beyond the scope of this book. 

The fault-tolerant implementation of a standard set of universal quantum gates for the 
7-qubit Steane code is discussed in Chapter 10 of [NCOI], along with references to more 
technical treatments. The techniques of quantum error-correction, employing concatenated 
multi-level encoding and fault-tolerant quantum logic, ensure that nontrivial quantum com- 
putations may become practical. Under physically reasonable assumptions about the noise 
present, it has been shown that arbitrarily long quantum computations can be performed re- 
liably and effectively, that is, with an affordable growth in resources such as storage, circuit 
size, or time, provided that the failure probability in individual quantum gates is below a 
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certain constant threchold [Pre98 1. This important result is known as the threshold theorcm; 
additional referenceb to the original work may be found i n  [NCOl I.  

7.4 Avoiding errors 

7.4.1 Basics 

While error correction represents a necessary part of any quantum computer, the thresholds 
that have to be reached before error correction can be applied are very high. It is therefore 
necessary also to implement strategies that reduce the rate at which errors occur. Efforts to 
reduce the number of errors in a quantum computer must encompass the complete hardware 
(and software) design. 

Most efforts will concentrate on engineering aspects like reducing stray electric and mag- 
netic fields that can influence the dynamics of the system and implementing gates in such a 
way that the resulting propagator does not depend too strongly on experimental parameters 
that are difficult to control. A good example of this are composite pulses, which were in- 
troduced into NMR in 1979 ILF79,Lev86]; they generate rotations that are close to the target 
rotation even if the field strength, pulse duration or frequency offset deviate from their nominal 
values. 

While these efforts are important, they are strongly implementation-specific. It is there- 
fore not possible to discuss them i n  detail here. We concentrate therefore on some general 
principles, which can be applied to many different implementations. In particular, we discuss 
how quantum information can be stored in particular regions of Hilbert space in such a way 
that it is less affected by couplings between the system and environment, other than those that 
are applied purposely to drive the computation. 

For the discussion of decoherence processes, one typically distinguishes a number of dif- 
ferent cases based on the type of coupling between the system and environment: 

(i) Total decoherence. This is the most general case, essentially there are no restrictions on 
the operators that generate the decoherence. 

(ii) Independent qubit decoherence. If the coupling operator contains only operators act- 
ing on individual spins, errors of individual qubits are independent. This is the case 
typically considered in quantum error correction. 

(iii) Collective decoherence. Here the coupling operators acts in the same way on all 
qubits. In the case of spins, the operators then have the form 

(7.35) 

where N = . I : ,  y, .z marks the spin component and i the index of the spin. Clearly the 
perturbation has full permutation symmetry in this case. Only three independent pertur- 
bation operators exist in this case. 

(iv) Cluster decoherence. This is an intermediate case, where clusters of qubits decohere 
collectively, while the different clusters decay independently. 
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7.4.2 Decoherence-free subspaces 

Decoherence-free subspaces represent a possibility of shielding quantum information from 
the decoherence processes caused by the environment by taking advantage of the symmetry 
properties of the coupling operators between the system and environment [PSE96]. We follow 
the discussion of Lidar, Chuang and Whaley [LCW98]. 

As discussed before, decoherence can be seen to arise from interactions with the bath. 
It is therefore useful to distinguish three contributions to the Hamiltonian of the full system 
(including the bath): 

'H = 'Hs @ 1 B  + 1s R x/r + 'HI*,,.. (7.36) 

Here 7 - t ~  is a pure system operator, ' H B  is a pure bath operator, and 7-l1~,~ represents the 
coupling operator. The interaction operator contains product operators 

(2 

where F,, are system operators and B, bath operators. If the system is a spin system, the F,, 
are spin operators, the B, may be spatial coordinates. 

Decoherence is the nonunitary part of the evolution of the system density matrix, which 
under appropriate conditions can be written as [Lin76] 

(7.38) 

Here 'l?~ is the system Hamiltonian plus any possible unitary contributions arising from the 
system-bath interaction, and a,<?/j are elements of a positive semi-definite Hermitian matrix. 
The operators F, are the generators of the decoherence process. We may thus consider the 
possible decoherence processes in terms of these operators. In spin systems these are clearly 
the spin operators; for the typical case of spin-l/2 systems, these are multiples of the Pauli 
matrices. 

Depending on the generators F,,, not all states are equally subject to decoherence. Deco- 
herence-free subspaces exist if, for a certain set of states ii), the coupling to the environment 
does not generate a time evolution. For a formal analysis, we write the corresponding part of 
the density operator 

../ 

where the coefficients p ,  
the decoherence-free subspace is then, that the right-hand side of (7.38) vanishes: 

depend on the initial conditions. The condition for the existence of 

(7.40) 

This condition can be fulfilled in a number of ways, depending on the initial conditions (via 
the f i t . ] )  and on the coupling to the bath (via the a , ~ ) .  However, decoherence-free subspaces 



are only interesting if no additional constraints have to be imposed on the bath parameters or 
the initial conditions of the system, since those are hard to control. Such additional constraints 
can be avoided if the states li) satisfy the condition LLCW981 

Fckli) = f N l i )  (7.41) 

for all operators F,,, i.e., if they form a degenerate set of eigenstates for all error generators. 
Obviously this is a rather restrictive criterion, and we will thereforc discuss a few examples 
after. we have finished the formal analysis. 

To see if the concept is useful at all, we must check how much information can be en- 
coded in a decoherence-free subspace. The answer depends on the type of decoherence. For 
collective decohercnce DFS turn out to be interesting, sincc the DFS asymptotically fill the 
Hilbert space completely. In this case there are only three independent perturbation operators, 
the total spin operators (7.35). With c," = 0 in (7.41), a DFS is spanned by all singlet (total 
spin quantum number S, = 0) states of, say, K spins (where I< must be even). The number 
of these states can be determined by considering states with a given total spin z component 
SF,. The total number of ,S+ = 0 states is ( & ), the number of ways to pick I ( /2  down 

spins from a total of Ii' spins. Some of these S+ = 0 states arc the desired singlets, the others 
belong to subspaces with 5 ' ~ .  # 0. Every such subspace contains exactly one S'$ = I state. 
Thc total number of S+ = 1 states is ( K,r ). Hcncc the number of Sy, = 0 states (or 

subspaces, since each subspace is one-dimensional) is 

(7.42) 

'The number of logical qubits that can be stored in this DFS of A' physical qubits then is 

(7.43) 
3 
2 

N = logL dini[UFS(Ii)] = Ii' ~ log, I{ + s(l), 

where we have used Stirling's formula (for large 71) 

The result (7.42) for collective decoherence was first derived from group-theoretical consid- 
erations in IZR97 1. In contrast to this case, where the decoherence-free subspaces asymptoti- 
cally f i l l  the whole Hilbert space, in the oppositc limit of individual qubit decoherence ur total 
decoherence, the amount of information that can be encoded in DFSs is negligibly small. 

The last requirement that must be met is to implement gates in  this DFS. This is easily 
achieved in the generic model, but actual implementations in physical systems are still rare 
and must be discussed for the specific examples. We therefore switch to one such example, 
NMR. 

7.4.3 NMR in Liquids 

The simplest example of a decohercnce-free subspace is provided by NMR i n  liquids if we 
consider the decoherence induced by randomly fluctuating magnetic fields. They couple to 
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the spin system through the sum of the z-components of the nuclear spin operators, 

(7.45) 
i 

where b ( t )  describes the fluctuating magnetic field. This Hamiltonian generates a diffusion- 
like evolution of the spins. 

The effect of this randomly fluctuating field will not be the same on all coherences 
pzj  = ( i lp l j ) .  The difference can most easily be shown for a system of identical spins (a 
homonuclear spin system). In such a system all states li) with the same z-component of the 
total spin, m = (il Ck, I:I*i), have the same energy and are therefore shifted by the same 
amount if the external field fluctuates? The effect of field fluctuations on off-diagonal density 
operator elements is then 

d 
dt  zh-p,, = b( t )Arn , ,p , ,  . 

where 

(7.46) 

(7.47) 
I ,  k 

and the sum runs over all spins. AmiJ represents the change in the total magnetic spin quan- 
tum number, which is proportional to the difference in Zeeman energy between the two states 
l i) and i j ) .  We can therefore eliminate the decoherence due to such a process if we encode a 
qubit not in a single spin but associate the logical states as 

(7.4%) 

with 

Am,,, = 0. (7.49) 

In such an encoding scheme, the logical states are not associated with single spins. As a result, 
one does not have immediate access to manipulate the system, i.e., to apply gate operations to 
these logical qubits. How this is done depends on the actual implementation and will not be 
discussed here. 

From what has been said so far it should be obvious that such an encoding scheme will 
only work for fluctuations of the field in the direction of the static field, i.e., along the t- 
axis. If more complex systems of coupling operators are present, it is still possible to design 
decoherence-free subspaces. While the general analysis is rather mathematical and mainly 
relies on existence proofs, without constructing an actual DFS [KLVOO], it is relatively easy 
to see that if a number of states are available that are immune to noise coupling to (e.g.) X i  I;, 
arbitrary linear combinations of these states are still immune to this type of noise. It is then 

' The energies are no t  exactly identical, \ i c e  small energy differences (due to chemical-shift interactions) are used 
to lo-" times the for addressing the individual qubits. Howevcr, these dillcrences are small, of the order of 

Zeeman energy. 



possible to choose a suitable linear combination such that it is also immune to noise (e.g.) 
coupling to C,i I:. 

A number of proofs of principle for such encoding schemes have been performed. A 
single qubit of information was encoded in three spins in such a way that it was protected 
from global noise dong all three axes [VFP+OlJ. The experimental results show that the 
information that is containcd in thc noisclcss subspacc dccays significantly slower than the 
unprotected information. However, the encoding - decoding process is not error-free, so the 
fidelity with the encoding process is actually much lower than without the encoding for most 
of the range of experimental parameters. 

More recently, a complete quantum algorithm (Grover’s algorithm on two qubits) was 
implemented in a decoherence-free subspace that was embedded in a four-spin system in such 
a way that it reliably reached the correct result in the presence of strong decoherence [OLK03]. 

7.4.4 Scaling considerations 

The rate at which decoherence occurs in a given system is one of the most important pa- 
rameters for assessing the viability of a quantum computer implementation. However, it is 
important to  realize that the rate at which quantum information is lost is not identical to the 
rate at which a single qubit undergoes decoherence. The difference is that during a typical 
computational process, information is spread over all qubits of the quantum register. It is 
therefore affected by decoherence processes acting on all qubits and decays correspondingly 
faster. 

How the decoherence rate increases with the number of qubits depends on the type of 
coupling to the environment that is responsible for the decoherence as well as on the encoding 
scheme used. While decoherence-free subspaces are a useful concept, we should not expect 
to find regions of Hilbert space that are completely irnmunc to decohcrcncc. Rathcr, thcsc 
su bspaces will be “sub-decoherent”, i.e. the decoherence of states completely contained in 
thcm will bc slower than for avcragc quantum states. 

In realistic systems, the external fields acting on the different qubits are usually correlated 
to a finite degree. Depending on the degree of correlation, it should be possible to identify 
“clusters” ofqubits for which the couplings are more strongly correlated than on average. The 
average rate at which information is lost from the quantum register can then be significantly 
reduced by suitable encoding schemes within such clusters of correlated spins [MS03]. 

Further reading 

Decoherence is discussed i n  many sources dealing with fundamental issues of quantum 
mechanics, such as the measurement problem and the quantum-classical boundary. In the 
present context Leggett’s summer school lecture notes [Leg021 are particularly useful. A 
compact and clear reference on quantum error correction is [SteOl]; [NCOl] discusses the 
topic i n  much more detail and from a more general perspective, with many references t o  orig- 
inal research articles. Preskill’s lecture notes [Pre97] also contain an in-depth discussion, 
pointing out relations to classical error-correcting codes. A recent review on decoherence-free 
subspaces and related topics is [LWO3]. 



8 Tasks for quantum computers 

8.1 Quantum versus classical algorithms 

8.1.1 Why Quantum? 

Quantum computers can be built as universal computers, i.e., such that they can perform 
all tasks that can be executed on any other (classical or quantum) computer. However, as 
long as they use the same algorithms for these tasks as classical computers, they also need 
roughly the same amount of time for completing the task. As discussed in Chapter 3, “roughly 
the same amount of time” refers mostly to the scaling issues, i.e., how quickly the required 
time increases with the size of the problem. Only when algorithms are implemented that 
use specific properties of quantum mechanical systems can quantum computers outperform 
classical computers. Such algorithms, which are known as “quantum algorithms”, require 
hardware that is designed as a quantum computer. 

Problems where quantum algorithms are more efficient than classical algorithms typically 
include many repetitions of some task on a large number of input values. A prototypical 
example is the search through an unstructured database, e.g., the search for a person of whom 
one only knows the phone number. Classical computers then have to look through all entries 
of the phone book in turn, comparing the listed number with the given number. As shown in 
the upper part of Figure 8.1, this procedure involves many repetitions of the simple task (read 
item - compare - decide if numbers are identical). 

For a number of similar problems, quantum computers can search the database more ef- 
ficiently. As shown in the lower part of Figure 8.1, these algorithms typically involve the 
following steps. The system is initially in a well defined state, which we take to be the ground 
state 10). Starting from this state, a superposition of all possible basis states is established. 
For a system of N qubits, the number of basis states is 2 N .  The process of creating these 
superpositions can be completed in O ( N )  steps; it is therefore efficient in the computational 
sense. The next step is the application of a transformation to this superposition state. This step 
is in some cases equivalent to performing the same operation on each of the 2N state sequen- 
tially. Since this step replaces ZN operations, i t  is largely responsible for the high efficiency 
of quantum computers compared to classical computers. This feature is often referred to as 
quuratum parallelism. After this central computational step, another transformation is usually 
required to arrange the relevant information in the output qubits in such a way that it can be 
read out during the final step. 
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Figure 8.1: Diflcrences i n  classical and quantum algorithms. 

8.1.2 Classes of quantum algorithms 

I f  we consider simple numerical tasks like multiplication for thc central transformation opera- 
tion, it will transform the superposition state into a superposition ofthe results of thc multipli- 
cation. While the operation is fast, such an algorithm cannot he considered efficient, since the 
time for readout of the 2 N  individual results would still grow exponentially with the number 
of qubits. The advantages of “quantum parnllelism” can therefore only be exploited in cases 
where one is not interested in all answers to all possible inputs. Instead. quantum algorithms 
concentrate on two key issues: finding something (e.g., a result to a query) or determining 
global properties of some functions, such as the period of a function, the median of a se- 
quence, etc., rather than individual details I tiMD021 . Accordingly, the quantum algorithms 
that have been introduced so far can be hroadly classified into two kinds: 

Quantum Fourier transform based algorithms. The most prominent member of this class 
is Shor’s [Sho94] algorithm with its exponential speedup of number factoring as con-  
pared to classical algorithms. 

Quantum searching algorithms, for example the one by Grover [GroC)6, Gro971 with its 
quadratic speedup lor a “needle in a haystack” search in an unstructured database. 

While wnie of the proposed algorithm\ involve advanced mathematical tool\, others are 
quite easy to undcrctand intuitively. We first discuss the relatively simple Deutsch algorithm, 
which determines global properties of certain c l a w s  of functions. 
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8.2 The Deutsch algorithm: Looking at both sides of a coin 
at the same time 

8.2.1 Functions and their properties 

The Deutsch (-Jozsa) algorithm provides a possibility for computing global properties of cer- 
tain functions in exponentially less time than any classical algorithm. It was originally put for- 
ward by Deutsch [Deu85] and generalized to several input qubits by Deutsch and Jozsa [DJ92]. 
The algorithm has been implemented experimentally on both ion-trap [GRL+03] and NMR 
quantum information processing systems [MFGMOl]. 

While the properties of some functions are easy to describe (e.g., increasing monotoni- 
cally, oscillating ...), one may also encounter functions that are too complex for such an analy- 
sis or for which no analytical expression is available. In such cases, one may still be interested 
in finding global properties of the functions, e.g., determining if the function is constant (its 
output does not depend on the input) or if it includes all possible numbers among the possi- 
ble results. The Deutsch algorithm [Deu85] and its extensions (see Section 8.2.5) provide an 
efticient way of answering these questions. With a single function evaluation, this algorithm 
distinguishes between two types of functions 

that take positive integers as input and yield the output zero or one. The two types of functions 
considered are balanced (i.e., outputs zero and one occur with equal frequency) or constant 
(i.e., the output is either always zero or always one). 

Quantum mechanically, function evaluations are implemented as unitary transformations 
Uf acting on the states that represent the information 

Clearly, not every function can be represented as a unitary transformation (e.g., constant func- 
tions are manifestly non-invertible and hence non-unitary), but it is always possible to find an 
enlarged state space, in which a unitary operator exists that maps the possible inputs into the 
correct output states. 

8.2.2 Example: one-qubit functions 

As the simplest example, consider a one-bit-to-one-bit function f ( z ) .  There are four possible 
one-bit-to-one-bit functions: 

f l  : 0 -+ 0, 1 -+ 1 

f z  : o +  1 , l  -+o  
,f:j : 0 + 1, 1 4 1 

f,, : 0 + 0, 1 4 0 

which can be encoded as 2 x 2 matrices (compare Section 4.2): 

1 1 

h tr, f l  = 1, f . i  = x. f:3 = P+ + -s+. f 4  = P- + -s-. (8.3) 



The first two functions are hcilancrci (both outputs 0 and 1 occur with equal frequency), the 
other two are constant. In the original algorithm by Deutsch [Deu85], an additional qubit 9 
is required to implement these functions on a quantum computer. On this quantum register 
(consisting of the two qubits .I: and ly), the function evaluation is implemented as an addition 
without carry on the second qubit: 

UfIX,?/) = l:r,:yx I(.)) (8.4) 

where 1 1 )  means addition modulo 2,  or XOR. 

corresponds to the mapping 
In  the actual computational basis (IOO), IOl), IlO), Ill)), the first function (the identity) 

U f ,  : l0,O) + l O , O ) ,  / U , l )  - - +  10, l),  I l , O )  -+ 11, l), / l , l )  i l l , U ) ,  (8 .5 )  

which can be written as the matrix 

1 0 0 0 

[I: :i I: fi = (A :) 
0 0 1 0  

(8.6) 

The blocks 1, 0, and X represent 2 x 2 matrices. The other three one-bit-to-one-bit functions 
can similarly he reprewnted in the form 

(8.7) 

Each of these red  symmetric matrices Uf is its own inverse. Hence the matrices are 
unitary, as required for their implementation by a quantum mechanical evolution. 

8.2.3 Evaluation 

To compute J ( r )  we initialize $1 to zero and apply Uf to I.r, 0): 

u, 1.r, 0) = I X ,  J ( . r ) ) .  (8.8) 

Note that storing the input qubit .r inakec even constant function9 invertible. Recalling the 
Hndamard gate 

that is, 

we can perform 

(8.9) 

(8. lo) 
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(Where H,. means the Hadamard gate applied to the z qubit.) By applying Uf  just once to a 
superposition of two input states, we have thus obtained information about f for both possible 
input values; this is the simplest example of quantum parallelism. 

To start the Deutsch algorithm, the g qubit is also put in a superposition state: 

Applying the function operator Uj to this state yields 

As is often the case in quantum algorithms, the input values are now entangled with the func- 
tion results. 

We now distinguish the two cases where the function is either constant ( f ( 0 )  = f(1)) or 
balanced (f(1) = 1 @ f ( 0 )  # f ( 0 ) ) .  In the first case the quantum register is in the state 

1 

2 M 2 )  = - (10, . f ( O ) )  + 11, . f ( ( ) ) )  - 10, 1 cf, . f ( O ) )  - 11: 1 @ . f ( O ) ) )  

1 
2 = ~ (10) + 11)) (I.f(O)) - 11 f ( 0 ) ) ) .  (8.14) 

In the second (balanced) case, the state is 

Comparing these two states we see that the answer to our question (function constant or bal- 
anced) is now encoded in the relative phase of the first qubit. This information can be con- 
verted into the populations of the same qubit by a second application of the Hadamard gate to 
the T qubit: 

(8.16) 

The 2 qubit contains now the sum of the two possible function values. It is therefore zero if 
they are equal, i.e., the function is constant, and 1 if the function is balanced ( f ( O ) @ f (  1) = 1). 
One function evaluation is thus enough to determine whether f is balanced or constant. A 
pictorial way of describing this is “looking at both sides of a coin at the same time”: if the two 
sides of a coin are equal, it is forged (not too cleverly, however), if not, chances are that it is 
good. 

8.2.4 Many qubits 

The one-qubit Deutsch algorithm is not too impressive, but consider now a function with n 
input qubits, and still only one output qubit. The initial state of the quantum register is now 
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Applying the ri-qubit Hadamard transformation 

(8.18) 

(with H, the Hadamard gate acting on qubit i )  to this state yields 

a superposition of all possible input states. This step is extremely efficient: it takes only I I  + I 
operationc (which often can be performed in parallel) to create an equal-weight superposition 
of the 2” ’ input states. 

The functions to be examined are again implemented by the unitary operation 

Applying this transformation to the superposition of all input states yields 

we find 

(8.21) 

(8 .22 )  I .F)( iO) - 11)) 
I.t)(ll) - 10)) 

for f(..‘) = 0 
for f ( .7)  = 1 

(8.23) 

The possible function values are now stored in the signs of the amplitudes in the superposition 
state. 

The tinal step of the algorithm is another Hadarnard transformation, as i n  the one-qubit 
case. To understand its effect. consider a Hadamard gate applied to a single qubit 13:): 

(8.24) 

This generalizes to the wqubit case: 

(8.25) 
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where 2. z’ = C,  .rl z ,  is the bitwise scalar product of the two n-qubit vectors .? and 2. The 
final state of the n-qubit algorithm is therefore 

(8.26) 

To decide if the function is constant or balanced, one has to measure the population of the 
ground state 1.3 = 16), which is 

& 1 for f constant 
- 0 for f balanced ’ 
I 

2-”  C(_[)I(T) = (8.27) 

and obviously some intermediate value if f is neither balanced nor constant. 

8.2.5 Extensions and generalizations 

The Deutsch-Jozsa algorithm performs the test (balanced or constant) on a n-bit function 
ff.1). If one imagines that n may be large and f’ may be costly to evaluate, then the advantage 
of having only one function evaluation (as compared to O(2“)) is clear. It is, however, impor- 
tant to stress that the function must be promised to be either balanced or constant; for a more 
general function the Deutsch-Jozsa algorithm will give an ambiguous answer. 

The algorithm was improved in [CEMM98] and generalized to mixed (thermal) states 
in [MFGMOI]). An interesting generalization was published by Chi, Kim and Lee [CKLOI]: 
they showed that the scheme can be extended to functions whose results are integers rather 
than bits. Furthermore, their modification does not require the auxiliary qubit lg), which is 
modified in the Deutsch-Jozsa algorithm, but whose state is not needed for readout. 

All these algorithms do not have a great practical value as compared to the Shor and 
Grover algorithms but they are easy to understand and they illustrate how interference, and 
in a way, the Fourier transform (which is related to the Hadamard transform), are employed 
in quantum information processing. Another Fourier-based algorithm which is more difficult, 
and potentially much more interesting, is Shor’s algorithm for finding prime factors. 

8.3 The Shor algorithm: It’s prime time 

Shor’s algorithm draws from two main sources. One source is number theory, which we will 
not treat too deeply, and which shows that factoring can be reduced to finding the period of 
certain functions. Finding a period is of course related to the physicist’s everyday business of 
Fourier transformation, which is the second source of Shor’s algorithm. A quantum computer 
can very effectively compute the desired number-theoretic function for many input values in 
parallel, and it can also perform certain aspects of the Fourier transform so efficiently that 
already the term “quantum Fourier transformation” (QFT) has been coined. 

Why is it interesting to find prime factors of large numbers? The scientist’s motivation 
is, because i t  is a hard problem. It turns out that this is one of the extremely rare cases 
where the same motivation is shared by scientists, bankers, and the military. The reason is 
cryptography, the secret transmission of (for example financial or military) data by so-called 



public key cryptographic schemes. In these schemes a large number (the public key) is used to 
generate a coded message which is then sent to a recipient. The message can only  be decoded 
using the prime factors of the public key. These prime factors (the private key) are only 
known to the recipient (bank, chief of staff,...). An extremely low-level example is the number 
29083=127.229. With pencil and paper only it will probably take you some time to tind the 
prime factors, whereas the inverse operation (the multiplication) should not take you more 
than about a minute. In the present section we discuss Shor's algorithm theoretically. The 
experimental implementation by means of liquid-state NMR will be treated in Section 10.3. 

8.3.1 Some number theory 

Let N 2 3 be the large odd integer which we want to factorize, and n < N some other integer. 
Let us assume that the greatest common divisor g c d ( N ,  0,) = I, that is, N and a are coprime. 
(If they are not coprime, ,f = gcd(N, a )  is already a nontrivial prime factor of N and we 
restart with N / S  in place of N . )  To determine the gctl we can employ a nice little piece of 
classical Greek culture, Euclid's algorithm, which is, by modern terms, an efficient algorithm. 

The algorithm works as follows. Let z and y be two integers, :c > :y, and z = gcd( . r ,  y). 
Then both .I' and ?J as well as the numbers .x - ?J, R: - 2?j, . . .arc multiples of z ,  and so is the 
remainder T = :c - X:y < ?J obtained in the division of :I; by y. If T is zero, z :: y and the 
problem is solved. If I' # 0, the problem is transformed to a similar one involving smaller 
numbers: 

The above argument can be repeated with the pair of numbers (y, T )  in place of (z, y), etc. 
Thus 2 is expressed as the gcd of pairs of ever smaller numbers. The last nonzero remainder 
obtained in  this procedure is the desired number z .  

To proceed in our attempt at factorizing the number N we need another building block 
from number theory, which is tnorlul~ir i~x/~orientiatiotz. Remembering that (1, and N are co- 
prime, we consider the powers n;'' of o,, modulo N (that is, we calculate the remainder of d 
with respect to division by N ) .  The smallest positive integer 7% such that 

( I '  lrlod N ~ 1 (8.29) 

is called the 0rdi.r of 11 mo(l N .  This means that 

IC' k . N i l  

for some k ,  and conscqucntly 

( I " + '  ~ k . N . ( I  t (1  

(8.30) 

(8.31) 

(8.32) 

such that 
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which shows that r is the period of the modular exponential function 

Incidentally, this shows that r 5 N because Eh(z )  (being the remainder of a division by N )  
cannot assume more than N different values before repeating. 

Three cases may arise: 

1)  r i s  odd, 

2) r is even and a’./’ mod N = -1, 

3) T- is even and mod N # -1. 

Cases I )  and 2) are irrelevant for the factorization of N ,  but in case 3) at least one of the two 
numbers gcd(N, 5 1) is a nontrivial factor of N, as we shall show below. 

8.3.2 Factoring strategy 

We now show that case 3) above leads to a nontrivial factor of N. For ease of notation let us 
call = x. From x2 mod N = 1 it follows that x2 - 1 = (x + 1)(x - 1) is divided by 
N and thus N must have a common factor with :I: + 1 or z - 1. That common factor cannot 
be N itself, since 2 mod N # -1 and thus s + 1 is not a multiple of N; neither can z - 1 
be a multiple of N since if it were, a’’/2 riiod N = 1 and the order would be r /2 ,  not r .  
(Remember that the order was defined as the smallest number such that a“ rnod N = 1.) The 
common factor we are looking for must then be one of the numbers gcd(N, f I), and the 
gcd can be efficiently computed by Euclid’s algorithm. 

Next we must make sure that case 3) above has a fair chance to occur if we randomly try 
some numbers a.  The following facts give us hope: 

0 If N is a pure prime power W = p s  ( s  2 a) ,  this can be detected efficiently, because then 
(with integer p )  must hold, which can be checked for all possible the condition s = 

values of s. (Note that s can be at most s.) 
0 If N is an odd composite number N = pY1 . . ‘p::;” (711 2 2 )  and a a randomly chosen 

integer 1 5 u 5 N - 1 coprime to N ,  and ar = 1 mod N (that is, r is the order of 
a rnotl N ) ,  then the probability 

1 3  
rriod N # -1) 2 1 - - > -. 

2m - 4 
yrob(r even and (8.34) 

This means that for each time we calculate the order of (I mod N we have a chance of better 
than 75% to find a nontrivial prime factor of N .  Computing the order rrb times reduces the 
chance of failure to 4G‘‘’. The chance of finding a prime factor (if one exists!) can thus be 
brought arbitrarily close to 1, but it is important to note that Shor’s is aprobabilistic algorithm. 

The proof of this number-theoretic result can be found in (NCOI 1, Appendix 4. It is not 
difficult, but it involves a few more pieces of classical culture, such as the Chinese Remainder 



Theorem, which is more than 750 years old. The proof can also be found in Appendix B of 
the excellent I996 paper [EJ961 by Ekert and Jozsa. 

We are now able to give an algorithm which (with high probability) returns a non-trivial 
factor of any coinpoaite N .  All steps can be performed efficiently on a classical computer, 
except for the task of computing the order, which is where quantum computing comes in. 

I ) If N is even. return the factor 2.  

2) Determine whether N = a‘’ for integers 0. 2 I and b 2 2, and if so return the factor 0,. 

3) Randomly choose x in the range 1 to N - 1. If gcd(:r, N )  > 1 then return the factor 
gccl (.r , N )  . 

4) Use the order-finding subroutine to find the order of 3: modulo N .  

5 )  If 7’ is even and ,r’’/’ rriod N f - 1 then compute g c d ( . ~ ” / ~  * 1 ,  N )  and test to see if one 
of these is a nun-trivial factor, returning that factor if so. Otherwise, the algorithm fails 
in which case one must restart at step 3). 

In Section V1 of [EJ961 the authors discuss the complete application of the algorithm to the 
smallest odd composite number which is not a power of a prime, N = 15. That number was 
also factorized in the first liquid-state NMR implementation of Shor’s algorithm, corripare 
Section 10.3. 

8.3.3 The core of Shor’s algorithm 

The centerpiece of Shor’s algorithm is the calculation of the order of 0, mod N ,  that is, the 
period of the modular exponential function (8.33). The strategy for doing this is to calculate 
the function F N  ( x )  for many values of x in parallel and to use Fourier techniques to detect 
the period in the sequence of function values. To do this for a given N two quantum registers 
are needed: 

a source register with 1%. qubits such that N 2  5 CJ := ‘ L K  5 2N” and 

a target register with N or inore basis states, that is, at least log, N qubits. 

Srep I of thc algorithm is the initialization ol‘both registers 

I??,)  = 16)IC). (8.35) 

S t q )  2 is the “Quantum Fourier transformation” of the source register. The quantum Fourier 
transformation is nothing but the ordinary discrete Fourier transformation of a set of data of 
length Q (details will be discussed in the next section). The corresponding unitary operator 
on the source register Hilbert space is defined by 

(8.36) 
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The number Q between 0 and Q - 1 has the binary expansion q = CEi' q,2J, and 1q) is 
shorthand for l q ~ - ~  . . ,4140).  The target register is not modified, so the state after step 2 is 

C)- 1 

1+2) = (UP, @ l)l?bl) = QP2 c lq) lQ; (8.37) 
q=O 

all the Fourier phase factors are equal to unity since all source qubits were initially zero. 
Note that this particular output can also be generated by a Hadamard transform of the source 
register. 
Step 3 is the application of the gate U ,  which implements the modular exponentiation 
q H f ( q )  = ( ~ ' 1  mod N (we will not discuss in detail how to build this gate). The result is 

(8.38) 

Here Q > N 2  function values of the function FN ( q )  are computed in parallel in one step, and 
since r < N the period r must show up somewhere in this sequence of function values. 
Step 4: Apply the quantum Fourier transform again to the source register. This leads to 

(8.39) 
q=o q'=O 

Step 5: Measure the source qubits in the computational basis. The probability of finding 
the source register in the state q displays a pattern (due to quantum interference) from the 
regularities of which the order r can be deduced. To see how this comes about we assume ' 
for the moment that Q is divisible by T ,  that is, 

Q = nr. (8.40) 

We introduce a shorthand notation for the state 1$4): 

(8.41) 
Y Y' 

where both sums extend from zero to Q - 1. The probability of finding the source register in 
a particular basis state 1qo) is the expectation value of P,,) @ 1 where P,, = ~ q O ) ( y O ~  is the 
projection operator onto Iqo) and 1 refers to the target qubit: 

' Although this assumption is strictly impossible sincc 4 is a power of two it does not have major harmful effects, 
as we will see below. 



Thc modular exponential function f ( p )  = a!' iiiotl N has period T ,  and the 'I' function val- 
ues within a period are all distinct due to the nature of the function. The scalar prod- 
uct ( f ( p ' ) J f ( y ' ) )  of thc target register states thus is periodic in both variables p' and q' 
and we can sort the terms in (8.42) according to the nonzcro values of ( . f (p ' ) l j (q ' ) ) .  We 
first consider the case p' = 0. The scalar product ( f ( o ) l f ( q ' ) )  = ( f ( O ) l . f ( O ) )  = 1 
for y' = 0, I , .  2.1.. . . . , (,it - 1 ) ~ .  For any of these q' values ( j ( p ' ) \ f ( O ) }  = 1 for 7'1 = 

0, r ,  2 r , .  . . , ( 1 1  ~ 1 ) ~ .  The terms in (8.42) containing the nonzero scalar product ( f ( O ) l , f ( O ) )  
thus generate the following contribution: 

n - I  1 2 - 1  In -1  

(8.43) 
1,=(l / I - ( ]  I 

In a similar way we can collect the contributions associated with ( , f ( l ) l f ( l ) ) ,  ( f ( 2 ) I f ( 2 ) ) ,  
..., ( f ( r  ~ l ) l f ( r  - 1)) to obtain thc desired probability of tinding the source register in the 
basis state JqO): 

r-1 1 1 1  1 

(8.44) 
I 

The inncr summation always comprises 71 terms, indepcndent of j .  This is duc to the simnplify- 
ing assumption (8.40). Without that assumption, that is, for (77, - 1 ) r  < Q < ~ l , r '  the inncr sum 
would only have ri - 1 terms for some j .  Given that we are typically discussing large numbers 
this is not a big effect. Re-expanding the abbreviation introduced above, we obtain 

The phase factor in front of the sum is irrelevant. The (geometric) sum itself yields n if 
is integer, and zero otherwise, independent of , j .  The probability (8.44) thus shows a regular 
pattern of peaks of equal height from which I' may be deduced. 

Without the simplifying assumption (8.40) the pattern is not quite as regular, but the prob- 
ability for finding the source register in the state Iq,) can still be expressed in terms of a few 
geometrical sums: 

(8.46) 

where "int" dcnotes the integer part of a real number. The function (8.46) is shown in Fig- 
urc 8.2 for Q 2% and /' = 10. From the regularities of peak structures like the one in 
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Figure 8.2 the order r can be deduced with a high probability (but not with certainty) if the 
positions of a sufficiently large number of peaks are taken into account. We do not reproduce 
the technical details here and instead refer our readers to the literature for the full discussion 
which requires some additional mathematical tools. 

100 
I 150 I 200 

250 

Figure 8.2: Probability of measuring q, with Q = 256 and T = 10. 

What remains to be understood is the implementation of modular exponentiation and of 
the discrete Fourier transform. We skip all details of the modular exponentiation except for 
one remark related to the efficient computation of (high) powers xn of some integer z. By A1 
integer multiplications the A l  + 1 numbers x, .I?, .r4, . . . , x2“ can be generated. Given the 
binary expansion a = C2=il a,2’ ( a ,  = 0 , l )  of a,  the desired power can be written as A1 

(8.47) 

Since this product contains at most A 1  + 1 factors the large power .c‘ thus can be computed 
using only of the order of log, n multiplications. The only other ingredient needed is an 
algorithm for multiplying two integers by means of quantum gates, which is available. 

8.3.4 The quantum Fourier transform 

We will first discuss the “classical” discrete Fourier transform, with a short digression on the 
fast Fourier transform (FFT) and then we will turn to the quantum Fourier transform (QFT) 
and see that it is even faster than the fast Fourier transform. The usual discrete Fourier trans- 
form maps a complex input vector with components xi). s1,. . . , X N - ~  to the output vector 
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(the Fourier coefficients) yo, 111, . . . , Y N - ~  by means of 

and vice versa, 

(8.48) 

(8.49) 

Note that both transformations can be interpreted as “matrix times vector” operations. That 
the two matriccs involvcd arc in fact inverses of each other, follows from the identity 

(8.50) 

which is nothing but a geometrical sum. Obviously the evaluation of the Fourier transform 
involves roughly N” complex multiplications, and about the same number of additions. Dou- 
bling the size of the data set thus means quadrupling the operation count. 

The FFT (which can be traced back to work by Gaul!, in 1805) rests on the observation that 
by separating even and odd j in (8.48) one obtains 

(8.51) 

where N was assumed to be even. Note that the two sums are both again discrete Fourier 

count thus has been cut in half by a simple reorganization of the Fourier sum, and there is no 
reason to stop at this point if is even. Continuation of this process for N = 2“. yields the 
FFT algorithm (see, for example, [PTVF92] for details) which reduces the operation count 
from O ( N 2 )  to U(N1ogN)  which for many applications, for example in image processing, 
computerized tomography, etc., makes the difference between “possible in principle only” and 
“practical and convenient for everyday use”. 

The quantum Fourier transform is an operator defined by the following mapping of the 
basis states of an N-dimensional Hilbert space: 

transforms of $ data each, leading to an operation count of 2 ( 2) N 2  = $ N 2 .  The operation 

An arbitrary quantum state with amplitudes .I-, is then mapped as 

N - l  N - 1  

(8.52) 

(8.53) 
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with y k  given by the “classical” Fourier transform formula (8.48). This transformation is 
unitary, that is, it conserves the norm of a quantum state, 

2 
N-1 c T,, exp (%j  k) 
1’0 

N - l  N-1 N-1 N-1 

k=O j=O 1=0 l=O 

where in the last step we have used the identity (8.50). 
Let us now assume that N = 2‘“ such that the basis states (10). . . 12” - 1)) form the 

computational basis for a n-qubit quantum computer. We will denote these basis states either 
by the integer j ,  or by the sequence , j& . . . j,’, from the binary representation of j 

(8.54) 
Y== 1 

We will also need the binary representation of a fractional number (between 0 and 1) which 
we write as a binary fraction 

o .jr.71+1 . . . j r n  = 312-l + .71+12-2 + . . . + ~ ~ , ~ 2 - ” ’ + ‘ - ~  (8.55) 

We take another look at the quantum Fourier transform 

(8.56) 

and insert the binary expansion of k ,  which leads to 

Ij) H 2-4 . . . 2 t:xp (2”J 2Ti , (2 k1271-9) / k l  . . . k , , )  
k 1 = O  k , , = O  1=1 

1 1 

= 2-5 @ [lo), + exp(27Tij2-l)l1),] . 
1=1 

In the first step lkl . . . k n )  has been decomposed into an explicit tensor product @r=L Ikl), 
and in the following step sums have been rearranged according to the familiar pattern 
C, C, a,b, = (C, u,)(CJ b l ) .  A closer look at the exponent reveals a binary fraction 

rt 

J2- /  = Xj1/2”.-J’-1 = J 1 J 2 . . . j r r - / . ~ 1 1 - 1 + 1 . . . . 7 n .  (8.57) 
v =  1 
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I 

I 

'The integer part (left of the decimal point) is irrelevant because rzLRk = 1 and we can write 
the quantum Fourier transform as 

r 

8.3.5 Gates for the QFT 

The quantum Fourier transform is thus nothing but a simple qubit-wise phage shift: the 11) 
state of each of the 71 qubits is given an extra phase factor. That operation can be performed 
efficicntly by a quantum circuit combining some simple quantum gatcs. 1,et us define the 
unitary (phase shift) operator 

Ijn-,> 

(8.58) 

- -  

and thc corresponding controlled-Rk gate which applies Rk to the target qubit if the control 
qubit is in state 11). In the corresponding symbol (Figure 8.3) for the "wiring diagram" of 
a quantum computer performing thc quantum Fourier transform, the upper wire denotes the 
target qubit, the lower wire the control qubit, and data are processed from left t o  right as ucual. 

Target I R k  I 
U 

Control 

Figure 8.3: Thc controlled-Rk gate 

Figure 8.4: A circuit I'or the cluantuin Fouricr translimn. Nol shown arc thc swap gatcs neces- 
sary to rearrange the output into the dcsired form. 
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To analyze how the circuit of Figure 8.4 performs the quantum Fourier transform, consider 
the input state l j l j 2  . . . j n ) .  The Hadamard gate applied to the first qubit generates the state 

11)) l j , .  . . j r o ,  (8.59) 1/2  0 + (,2Tio.;] 
2-  ( I  ) 

since e 2 ~ W ~  - - (- l )J1. The controlled-R2 gate produces 

2-1/2 (10) + c 2 7 w l J z  11)) l j 2 . .  . j r l ) ,  (8.60) 

and the following controlled-R gates keep appending bits to the exponent of the phase factor 
of 11) leading finally to 

2-1/2 (10) + f p z 0 . 3 1 3 2 . .  ./,! 11,) b 2 . .  . . j 7 1 ) .  (8.61) 

The second qubit is treated in a similar way. The Hadamard gate generates 

2-"2 ( 1  () ) + C 2 T 1 0 . J 1 J 2 . . . ; n  11)) (10) + e2Tio.,j2 11)) l . i 3  ' . . j ? L )  (8.62) 

and the controlled-R2 through R,, -1 gates take care of the lower-order bits in the exponent 
of the phase factor of I 1)2, leading to 

2-"2 (10) + p2Ti0..11.12 .... ;,, 11,) (10) + e2Ti ( l . h . . . : ; n  11)) I j B . .  .%). (8.63) 

Continuing this process we obtain the final state 

2 - 9  (10) + e2n iC7132 . . .~n  11)) (lo) + e2xr( ) . jz . . . j , ,  11)) 11)) . (8.64) 

This is almost the desired result, except for the order of the qubits which can be rearranged by 
SWAP gates. 

The total number of operations (gates) for the quantum Fourier transform is easily counted. 
The first qubit is acted on by a Hadamard gate and n - 1 controlled-R gates, a total of 7~ gates. 
The next qubit needs one controlled-R gate less, and so on. The total number of gates shown 
(implicitly) in Figure 8.4 thus is n + ( n  - 1) + . . . + 1 = n(12 + 1)/2. In addition one needs 
about n / 2  SWAP gates, each containing three CNOTs. The quantum Fourier transform thus 
needs of the order of n2 gates (operations) to Fourier transform 2" input data. This is much 
better than even the FFT which needs o(n2") steps, as discussed above. Note, however, that 
it is not possible to get out all of the amplitudes of the final state of the quantum Fourier 
transform, nor is it possible to efficiently prepare the input state for arbitrary amplitudes. This 
restricts application of the QFT to a special class of applications, such as the Shor algorithm. 

8.4 The Grover algorithm: Looking for a needle in a 
haystack 

Grover's algorithm (Gro96, Gro971 is useful for a search in an unstructured database. This is 
a very important problem in data processing because every database is an unstructured one if 
the problem does not fit to the original design structure of the data base. Just think of trying to 
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find out the name of a person living at a given street address from the usual alphabetic phone 
directory of a big city. If the phone directory contains N entries this will require checking 
N / 2  entries on average (provided there is only one person who lives at the particular address). 
Grover’s algorithm reduces the number of calls to O( m), which is a significant reduction 
for large N .  

In this scction we will not deal with the practical implementation of Grover’s algorithm, 
that is, how to couple an existing classical database to this quantum algorithm, etc. We will 
only outline how this beautiful algorithm allows the solution to “grow” out of the noise by 
iterating a simple procedure. As with all growing things, however, i t  is important to do the 
harvesting at  the right time. It turns out that the same procedures can be used to grow the 
solution and to determine the time for the harvest. 

For a recent implementation of Grover’s algorithm employing NMR techniques, see 
[DMK031. An  intcresting implementation of Grover’s algorithm based purely on the 
Fourier transforming capabilities of classical wave optics has also been demonstrated, see 
[BvLvdHS02]. 

8.4.1 Oracle functions 

Let the aearch apace of our problem have N elements (entries in the phone directory, in the 
introductory example), indexed 0 to N ~ 1, and for simplicity, N = 271. Let the search 
problem have A 1  solutions (perqons living at the given street address). The solutions can be 
characteriied by somc function ,f with the property 

1 
0 

if L is a solution 
if .I’ is not a solution. 

f ( : c )  = (8.65) 

We are able, by somc kind of “detector” to recognize a solution if we are confronted with 
the zth element of the database. In our example this is simple: we just check the item “street 
address” in the telephone directory entry number :r and output a 1 if it fits and a zero otherwise. 
In other examples this step may be much more complicated. Grover’s algorithm minimizes 
the number of calls to this “detector” function, or omc:le function as it is corninonly called. 

Like other functions, the oracle function corresponds in a quantum algorithm to a unitary 
operator 0. This operator acts on the tensor product of the quantum register holding the index 
.r and a single oracle qubit 1s) in the following way: 

(8.66) 

that is. thc oracle qubit is flipped when the database item with the number s is a solution of 
the search problem. If we initialize the oracle qubit in the state 

application of the quantum oracle will 

0 I.) Iqo) = (- 1 ) f (  I . )  1.r) 1 qo) . 

(8.67) 

lead to 

(8.68) 
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Note that the oracle qubit is not changed, and in fact remains in its initial state during the 
whole calculation. We will henceforth omit it from our calculations (without forgetting that it 
is needed). So from now on we will abbreviate the above equation in the following way: 

01.) = ( - l ) f ( q z )  (8.69) 

The oracle marks the solutions of the search problem by a minus sign. We will see that only 

0 (&) calls to the quantum oracle will be necessary to solve the search problem. We 

wish to stress again that the oracle does not by some magic know the solution, it is only able 
to recognize if a candidate is a solution. Think of the prime factoring problem to note the 
difference: it is easy to check if a proposed candidate divides a number. An appropriate circuit 
performing test divisions would be used as an oracle in that case. 

8.4.2 The search algorithm 

The key point of the search algorithm will be to use the phase factors (minus signs) marking 
the solutions to let the amplitudes of the solution states grow out of the set of all possible 
states, and to “harvest” them at the right time, as noted above. We will now first list the steps 
of the search algorithm and then analyze what these steps do. 
Step 1. Initialize the n-qubit index register 

l+1) = I $  
(All n qubits are set to their 10) states.) 
Step 2. Apply the Hadamard transform 

N - l  

1 ~ ~ ~ )  = HBT71G) = N-1’2 C 1.) ( N  = 2 ” )  
X = O  

(8.70) 

(8.71) 

to generate an equal-weight, equal-phase superposition of all computational basis states. 
Steps 3 andfollowing. Iterate with the Grover operator G 

Iq%.+1) = GIli/k.) (8.72) 

where the Grover operator consists of four substeps: 
Substep I .  Apply the oracle 

I + k + l / d  = 01’4%) (8.73) 

(we use fractional indices to symbolize that these are substeps of the Grover iteration step). 
Substep 2 .  Apply the Hadamard transform 

/ d l k + 1 / 2 )  = H33’1\$’k.+~/4). (8.74) 

Substep 3. Apply a conditional T phase shift, that is, reverse the signs of all computational 
basis states except 10): 

C,I.) = ( - 1 ) h . q . )  (8.75) 
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(8.76) 

Substcps 2,3, and 4 can be efticiently implemented on a quantum computer: remember that 
Ha” creates 2It states (in a superposition) with just 1). operations; conditional phase shifts are 
also easy to construct from a complete set of quantum gates. The oracle r r i q  be computation- 
ally expensive, but we use it only once per iteration step. 

8.4.3 Geometrical analysis 

Let us analyze what the Grover iteration step does, other than calling the oracle. The condi- 
tional phase shift may be written as 

c, = -1 + 2jo)(ol (8.78) 

where 1 is the n-qubit unit operator and (0) (01 is the projection operator onto the basis state 
lo), Wc know already that 

H w f r ) O )  = I $ L ) (  and ($21 = (OIH“’) (8.79) 

whcre 1 $ ~ )  is the equal-weight (and equal-phase) superposition. The Grover operator thus can 
be written as 

This operation has a nice algebraic interpretation; it turns out that the amplitudes of thc com- 
putational basis states are “inverted about their average” (or mean) as is often said. However, 
we will not employ this algebraic interpretation (which is explained in Chapter 6 of [ N O 1  I ) ,  
because it turns out that there is an even nicer geometrical interpretation. The Grover iteration 
is ii rotation in the two-dimensional space spanned by the starting vector I,&) (the uniform 
superposition of all basis states) and the uniform superposition of the states corresponding to 
the N solutions of the search problem, and we will see that the rotation moves the state into 
the right direction. 

To see this we define two normalized states: 

(8.81) 

with the function f ( x )  defined by (8.65). Obviously ([I) is the uniform superposition of the 
desired states and ICP) that of the remaining states. We can then write the state /$b) i n  the 
search algorithm as a superposition of ICY) and IP): 

(8.82) 
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which defines the angle 8. Now recall that the oracle marks solutions of the search problem 
with a minus sign such that 

(8.83) 

The lp) component of the initial state thus gets reversed, whereas the 1.) component remains 
the same. In the I N ) ,  la) plane this is a rejection about the la) axis. (See Figure 8.5.) The 
remaining three substeps of G in fact perform another reflection. Note that 

where Pa is the projector onto the initial state 1$2) and P i  is the projector onto the subspace 
perpendicular to I@Z). The component perpendicular to 111,2) thus gets reversed so that we 
have performed a rejection about 14~2) .  A look at the figure tells us that we have reached the 
state 

38 38 
Gl$2) = cos 2 +sill -I,!?), 2 (8.85) 

that is, G has performed a 8 rotation. Iteration then yields 

2 k +  1 2 k + 1  
Qjn) +sin - O l P ) ,  

2 
Gkl$2) = cos - 

2 
(8.86) 

and we only have to choose k such that the [[j) component is as large as possible. Measurement 
in the computational basis will then, with high probability, produce one of the components of 
I,!?), the solutions of the search problem. For a detailed description of the search algorithm in 

t 

Figure 8.5: The Grover iteration as a twofold reflection, or a rotation (see text for details). 

a space with four states (admittedly not too large), see [NCOI] or the popular article [Gro99] 
by Grover. 

How often do we have to apply the Grover operator? From Figure 8.5 and the definition of 
the angle 8 we see that the necessary number of iterations is the closest integer (abbreviated CI) 



(8.87) 

(8.88) 

since a.rc:siii:i: > r. This moves the state quite close to the desired one: as each Grover 
iteration rotates the state by H we end up at most H/2  away from ip). For the interesting case 

<< 1 the error probability (given by the square of the I N )  component in the final state) is 

(8.89) 

It is important to note that: 

0 itcrating more than R times worsens the result, 

0 in this version of the algorithm, it is necessary to know A f ,  the number of solutions. 

8.4.4 Quantum counting 

Here we discuss how thc number AT of solutions to the search problem can be counted by a 
quantum algorithm involving the Grover operator G again. The idea is simple: recall that in  a 
suitable two-dimcnsional subspace, G is just a rotation and the rotation angle is re1ate.d to A d .  
This rotation angle can be determined by quantum Fourier transform techniques. 

The rotation matrix for G in the basis (lo), ib)) is 

cos0 ~ sirid 
G = (  sin H cos H 

(8.90) 

The eigenvectors of this matrix are - ( ) with eigenvalues e*jH. Recall that sin = a. (Some problems may arise if AT > N / 2 ,  because then 0 > ~ / 2 ;  however, these 
problem may always be circumvented by enlarging the search spacc from N to 2 N by adding 
some fictitious directions to the Hilbert space, as discussed in [NCOl]. We will ignore these 
problems altogether for simplicity.) The problem of (approximately) counting the number A 1 
ol‘ solutions is thus reduced to estimating the phase 0 of the unitary operator G, the Grover 
gatc. This task o f  p h u s c  estiriiuriorz is very similar to the task of periodTfiridiqg involved i n  
Shor’s algorithm as discussed in  Section 83.3. 

8.4.5 Phase estimation 

For a given unitary operator U we are in poaiession of an eigenvector It/): 

(8.91) 
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where 4 (between 0 and 1) is to be estimated. Let us assume we have available “black boxes” 
to 

0 prepare lu), 

0 perform controlled-U(2’) operations ( j  = 0, 1. ..). 
The phase estimation algorithm needs two registers. The first register contains t qubits, ini- 
tially all in the state 10) ( t  depending on the demanded accuracy and success probability of 
the algorithm). The second register holds the state 1.) initially. 

Step 1. Apply the Hadamard transform H@‘ to the first register, to generate the state 
The algorithm works as follows. 

(8.92) 

which is the by now well-known equal-weight, equal-phase superposition. 
Step 2.k ( k  = 0. .... t - 1). Apply the controlled-U(”) operation to register 2, using qubit k 
of the first register as control qubit. This puts register 2 in Ftate 

111,) if qubit k is 10) (8.93) 

and in state 

(,2a?2‘. rp iu) if qubit k is 11) (8.94) 

Note that register 2 stays in the state 171) all the time, up to phase factors which we can collect 
next to the qubits of register I which control them. The state of the first register thus can be 
written 

(Remember that we have omitted the second register which is in state lu) anyway.) For ease 
of discussion, assume that 4 is a t-bit binary fraction, 4 = 0.4142 . . . qht (remember 4 5 1). 
The state of register 1 is just 

.L’/2 (10) + e2x1  ’ @’ 11)) (10) + e : 2 . r r i o . @ - l @ t  11)) . . , (10, + e2n i0 .d ldJa . . .~b ‘  11,) (8.96) 
1 

since e2a’rr’ = 1 for integer m. 
We now recall the discussion of the quantum Fourier transform from Shor’s algorithm 

in Section (8.3.4). There we constructed a quantum circuit performing the quantum Fourier 
transformation 

(8.97) 



The iriversc quantum Fourier transfortn can be performed by simply reversing the QFT circuit. 
Applying the inverse QFT to the state of register 1 leads to the state 

and therefore we can measure (1, exactly in  this example, where I$ has exactly t bits. 
If the binary expansion 01 (1, is longer than t bits, for example, if q5 is irrational so that its 

binary cxpansion does not terminate at all, only an estimate is possible. In that case the algo- 
rithm does not uniqucly lead to the single basis state (8.98) but to ;I superposition of basis states 
with probabilities strongly concentrated on t-bit binary fractions 4’ approximating 0. (Note 
the similarity to the probabilities discussed i n  Section 8.3.3; the period estimate performed 
there is cssentialiy equivalent to the phase estimate which we are presently discussing.) As- 
sume that we want to achieve a certain precision h’ in estimating 4. The probability of failure 
of the algorithm is then the cumulative probability of all states with 16’ - 41 > 6. That proba- 
bility can be estimated, see Section 5.2.1 of [NCOI]. It turns out that if 1 qubits are available, 
a n  ,/,-bit approximation to 4 may be found with probability of success a 

t = rr +intlog, (1 + &) 
(int denotes the integer part of a real number, as usual.) 

An important point that remains is the preparation of the eigenctate 
we are not able to prepare a cpecific eigenstate, but only somc state I 
expanded in U-eigenstates, 

least 1 ~ F ,  if 

(8.99) 

1 6 ) .  In the worst case 
) which can then be 

(8.100) 

Running the phase estimation algorithm with input 141) in the cccond register leads (due to 
linearity) to the output 

(8.101) 

where (& is an approximalion to the phase cbtL .  We thus obtain the possible phasc values of U 
with their respective probabilities I(.?, 1, as given by the initial state. 

In the special case of the Grover algorithm it turns out that we are lucky. Recall that the 
starting vector of the Grover algorithm was a combination of I ( Y )  and l[j). or equivalently, or 
the two eigenstates ofthe unitary operator G (the Grover operator) so that the phase estimation 
algorithm will give us appruxirnations to either 0 or (271) 0 with both of which we will be 
content, because knowing H will enable us to optimize the number of iterations of G and 
therefore tind a solution of the search problem with high probability. 

We will not discuss how to rrul/y search an unstructured data base etc., and we will also 
not go into the detailed performance and probability estimatcs. Some remarks on these topics 
may be found in Chapter 6 o f  [NCOI], and some generalizations and references to interesting 
applications are in [GMD02]. 



8.5 Quuntum simulations I29 

8.5 Quantum simulations 

8.5.1 Potential and limitations 

Most of the current work on implementations of quantum algorithms concentrates on the al- 
gorithms for factoring (Shor) and database searching (Grover). From a physics perspective, 
however, the original suggestion by Feynman [Fey821 (see Section 1.3.1 and Chapter 6), that 
quantum processors may be the only possibility of efficiently simulating quantum mechanical 
systems, offers a more exciting potential. If quantum computers with 50-100 qubits can be 
built, they will open a new window into the transition from individual particles to macroscopic 
bodies and help us to understand the behavior of small particles like quantum dots. 

To simulate a quantum mechanical system, the quantum computer has to generate a time 
evolution that is identical to that of the original physical system. In addition, the states of the 
system under investigation must be mapped into states of the quantum computer. The quantum 
computer typically is a system of qubits (spins-1/2) with a finite number of available states, 
while the physical system may not be a spin system, but consist, e.g., of bosons or fermions, 
with an infinite number of states. The mapping process must therefore include the selection 
of an area in Hilbert space that is to be represented in the quantum simulator. 

While the simulation of coherent evolution is relatively straightforward, additional con- 
siderations apply to the simulation of open systems. Within certain limitations, this can be 
achieved by adding a single qubit to the closed system and using feedback from quantum me- 
chanical measurements [LVOl]. Adiabatic evolution can be an interesting basis for optimiza- 
tion problems [CEM98, FGG+OI I ;  this approach is closely related to simulated annealing. 
Here one relies on the quantum adiabatic theorem that states that the system remains in an 
eigenstate of the (nondegenerate) Hamiltonian if the Hamiltonian changes sufficiently slowly. 
Starting from the ground state of the physical system one can therefore find the ground state of 
a simulated system by changing the Hamiltonian slowly from the initial to the simulated one. 
The procedure can be used to find an optimal state by formulating the optimization problem 
i n  terms of a suitable Hamiltonian. 

An important part of the theoretical work on quantum simulation discusses the issue of 
which kinds of physical systems can be efficiently simulated by which other systems. As an 
example, it appears that the physical system consisting of one boson in 2N modes is no more 
powerful than classical wave mechanics and therefore unable to simulate other quantum sys- 
tems like a collection of qubits [SOG+02]. Vice versa, it was possible to prove that quantum 
computers based on qubits can simulate fermionic as well as bosonic systems [AL97]. 

8.5.2 Motivation 

Feynman’s discussion of the computational difficulties associated with the simulation of quan- 
tum mechanical systems hinges on the exponential growth of the size of Hilbert space with the 
number of particles in  the system. Keeping track of all degrees of freedom is thus a compu- 
tationally expensive problem. Without proof, he suggested that a quantum mechanical system 
might not have this limitation. Other researchers, e.g.: Benioff, Bennett, Deutsch, and Lan- 
dauer contributed to the discussion, but only in 1996 could Lloyd [Llo96] prove that universal 
computers can be built from quantum mechanical systems. 



130 8 Eisks,for qucintum computers 

During the subsequent period, the research in this field concentrated on finding algorithms 
that run efiiciently on quantum computers but solve “classical” problems. The discussion on 
thc usefulness of quantum computing frequently circles around these algorithms. In recent 
years, the efforts to use quantum computers for the purpose envisaged by Feynman have also 
grown. In addition, a number of specific proposals have been put forward for relevant physical 
processes and interactions that can be simulated more efficiently by quantum computers than 
by classical devices. 

The most straightforward type of quantum simulation is the calculation of eigenstates and 
eigenvectors for given interactions (Hamiltonians). Even for sparse Hamiltonian matrices, the 
computational resources required for matrix diagonalization on classical computers grow at 
least linearly with the dimension of Hilbert space and thus exponentially with the number 
of particles. Bcsides these static problems, quantum simulators should also be able to solve 
problems from dynamics, such as the dynamics of many-body systems. While small quantum 
systems can be simulated by classical computers, general systems corresponding to more than - 20 qiibits (dimension of Hilbert space N 10”) are too large for full numerical calculations. 
Mesoscopic systems with a few tens to a few hundred particles would therefore be the most 
interesting targets for quantum computers. Relevant questions that could be tackled with fu- 
ture quantum computers include the electronic state of small metal particles to improve, e.g., 
the understanding of superconductivity. In systems with a finite particle number the usual 
BCS (Bardeen-Cooper-Schrieffcr) ansatz is doubtful, and at the same time exact numerical 
diagonalization of the general BCS Hamiltonian is impractical beyond a few tens of electron 
pairs. While true phase transitions occur only in the thermodynamic limit, the properties of 
nanometer-sized particles are attracting increasing interest as nanotechnology is being devel- 
oped in research labs as well as for industrial applications. 

Examples where quantum computers can provide exponential increase in speed over clas- 
sical computers include the determination of eigenvalues and eigenvectors of quantum me- 
chanical systems [AL99). Drawing from mathematically similar problems and using the 
quantum Fourier transform, Abrams and Lloyd devised a quantum algorithm that works ex- 
ponentially faster than classical algorithms. Since this type of computation cannot be done by 
classical computers on systems with more than - 100 particles, quantum computers with as 
few as 100 qubits could find relevant applications here. 

8.5.3 Simulated evolution 

Before one can implement a simulation, the mapping from the physical system onto the quan- 
tum simulator has to bc specified. The mapping must speciPy which states are mapped onto 
each other and at the same time which operators that can be generated in the quantum com- 
puter represent the relevant observables of the physical system. On an algebraic level, the 
structures of the operator algebras that represent the different physical systems are relevant: 
one system can be uscd to simulate another if an isomorphic mapping of the operator alge- 
bras is possible. However, only the interactions available to effect the calculations actually 
determine if the suggested mapping can be implemented. Only if thc real Hamiltonian of 
the quantum computer system can be efficiently mapped onto the target system Hamiltonian, 
will quantum simulators become feasible. So far no universal procedure exists to define such 
mappings. 
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The main task of the quantum simulator is to generate a time evolution US that imitates 
the time evolution of the real physical system as closely as possible. In most cases, it will 
not be possible to generate the exact Hamiltonian on the quantum simulator in a single step. 
However, a suitable general simulator can generate different time evolutions for subsequent 
intervals in such a way that the desired evolution is reached after some time T :  

(8.102) 
k 

Finding such a decomposition is in general not trivial. One is therefore often forced to 
use approximate methods. A useful standard technique for calculating the overall propaga- 
tor is the Average Hamiltonian theory developed for multiple pulse experiments in solid state 
nuclear magnetic resonance [HW68, Hae761. It uses the fact that for short enough times Q, 

the individual propagators in equation (8.102) are close to the unity operator and therefore ap- 
proximately commute with each other. In the limit where they commute, the total propagator 
can be written as 

Using suitable combinations of X ~ f i  and TA , it is then possible to match the average Hamiltonian 
with the desired system Hamiltonian, 8 s  = 'Ft,,. 

8.5.4 Implementations 

In comparison with the rich theoretical work, relatively little experimental work has been 
published. The first example is the simulation of a three-body interaction in an NMR quantum 
computer [TSS+99]. As in most physical systems, spin interactions are either one- or two 
body interactions; however, a suitable concatenation of two-qubit interactions generates the 
same evolution as a three-qubit Hamiltonian. 

To realize such an effective Hamiltonian, one starts from the usual two-spin interaction, 
which easily generates propagators like 

uAB = e i 4 S z ~ S z ~  (8.104) 

Using the interaction of spin B with a third spin C, it is possible to generate one- and two-qubit 
operators that convert this propagator into a three-spin propagator: 

u A l 3 C  = f? - ; ~ S , B S , C e ~ ~ S , , . B e ~ ~ 6 " S , A S , l ~ e - % q S . r . B e l n S ' . " S " :  (8.105) 

Under the influence of such a coupling operator, a single qubit becomes entangled with two 
others. 

Another example is due to Somaroo et al. [STH+99]. They mapped the lowest four states 
of a quantum mechanical harmonic oscillator onto the states o f a  two-spin NMR system and let 
it evolve under an effective Harmonic oscillator Hamiltonian. A crucial issue documented by 
this example is that quantum simulations (like classical ones) map only a partial state space 
into the quantum register; selection of this partial space will become a critical issue when 
operating quantum simulators. 



9 How to build a quantum computer 

9.1 Components 

The term quantum computer refers to a device that processes quantum information, which 
was discussed in Chapter 5. As one tries to build such a device, one has to make a number of 
decisions that depend on each other. On the physical side, one needs some hardware basis to 
represent the quantum information, as well as the means to perform logical operations on this 
information and read out the result. We review some of the existing and proposed hardware 
for building quantum computers in the following chapters. 

Before one gets down to the details of actual implementation, there are some considera- 
tions that are relevant for all of them, independent of the specific hardware basis. The first 
question that we start to discuss here, is how the information flows into and through the com- 
putational device; we refer to this as the architecture of the quantum computer. The oldest and 
so far most successful architecture is commonly referred to as the network model of quantum 
computation [Deu89]. This is the model that we had in mind when we discussed quantum 
gates in Chapter 5,  and we will use it as the model for discussing existing and possible imple- 
mentation. For completeness, we list some alternatives to the network model in Section 9.4 at 
the end of this chapter. 

9.1.1 The network model 

We now concentrate on the usual network model for constructing a quantum computer. Any 
such implementation has to define a number of components that handle the different steps 
required for quantum information processing. The first and probably most obvious step is 
to define how the quantum information is stored. In analogy to a classical computer, where 
information is stored in arrays of bits called registers, quantum computers may use arrays of 
qubits called quantum registers. The requirements on these qubits will be discussed in more 
detail in Section 9.2.1. 

Once the qubits are defined, the architecture must provide means of operating on this 
quantum register. The first step of any quantum algorithm is to initialize the quantum register, 
i.e., to bring the qubits into a well defined state, independent of its previous history. In many 
cases, this will be the ground state 10). Since such an initialization cannot be performed by 
unitary operations, it is necessarily a dissipative process. 

The implementation must then provide a mechanism for applying computational steps to 
the quantum register. Each of these steps will be implemented by a unitary operation defined 
by a Hamiltonian W 7  that is applied for a time 7, .  After the last processing step, the resulting 
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Figure 9.1: Network model of quantum computation. The information is stored in the quantum 
register, which must be initialized and to which the different computational steps are applied. 
Finally, the contents of each qubit i s  read out. 

state of the quantum register must be determined, i.e., the result of the computation must be 
read out. This would typically correspond to an ideal quantum mechanical measurement, i.e., 
the prqjection onto the eigenstate of the corresponding observable. 

9.1.2 Some existing and proposed implementations 

FoI the first demonstrations of quantum inforrnation processing, the information was encoded 
in nuclear spin degrees of freedom. Processing was achieved by pulses of radio frequency 
radiation, applied with nuclear magnetic resonance (NMR) spectrometers. Until today, most 
of the quantum computer demonstration experiments were done on liquid-state NMR quantum 
computers. More details on this implementation will be given in the next chapter. 

lndividual quantum gates and simple algorithms have also been demonstrated with op- 
tical implementations [TakOO, KMSWOO, BHS021. Similar to the liquid state NMR, this 
approach has no direct extension to larger numbers of qubits, unless some nonlinear ele- 
ments are introduced 1Mi189, KLMOO, SZOI]. More recently, it became possible to store 
and manipulate quantum information in atomic ions trapped by electromagnetic potentials 
[LDM+03, SKHR+03, GRLi 031. Since trapped ions are quite well isolated from their en- 
vironment, decoherence can be controlled quite well, and there is some prospect that this 
approach can be scaled to relatively large size [KMW02J. More details on this approach will 
be given in Chapter 11. 

While these three types of itnplernentations have made the biggest progress so far, it is 
generally believed that systems with hundreds or thousands of qubits will need to be based on 
solid state quhits. A number of suggestions have been published so far that are based on solid- 
state materials. Coherent dynamics was demonstrated for semiconductor and superconducting 
qubits, as well as a first single-qubit algorithm [BMS+O4J. Some additional details on these 
proposals and implementations will be discussed in Chapter 12. 

This brief summary shows how diverse the approaches are, that are currently being pursued 
to build a quantum computer. Each of them has its specific properties that will make its 
operation unique in some respect. Nevertheless there are some common properties for all of 
them. I n  particular, they will all have to fulfill some stringent requirements to become useful 
devices (DiVOOl, which we discuss in the following section. 
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9.2 Requirements for quantum information processing 
hardware 

9.2.1 Qubits 

The central part of any quantum computer is the collection of qubits that contain the quantum 
information being processed. Together, they form the quantum register. While it is, in princi- 
ple, possible to identify qubit states with any pair of quantum mechanical states, most of the 
possible choices will be impossible to implement. This is unfortunate since even a single atom 
has an infinite number of states and could therefore, in principle, form the basis of a very large 
quantum register. However, most of these states have lifetimes that are much too short for 
quantum computing. Furthermore, most of them (infinitely many) lie in an energy range that 
is arbitrarily close to the ionization limit. As a result, they are not only unstable, but virtually 
impossible to distinguish. 

To be useful for information processing, the relevant physical parameters of the individual 
qubits must be well known. This is necessary in order to be able to predict and control their 
evolution during logical operations. While this is (at least in principle) relatively straightfor- 
ward in the generic case of spins S = 112, where the only possible interaction is the Zeeman 
coupling ?tz = yB . I, it becomes a rather nontrivial task in solid state systems, where the 
internal Hamiltonian of the system and its coupling to the environment are not known apriori, 
but must be determined by measurement instead. The relevant physical parameters include the 
internal Hamiltonian, the interaction of the system with external fields (electric and magnetic), 
the couplings between different qubits, and the relevant decoherence rates. 

Scalability is an important issue if quantum computers are to become more powerful than 
classical computers. In the simplest sense it only means that one should be able to place 
as many qubits as one wishes i n  the register without affecting the operation of the device in 
a significant manner. Besides just adding qubits, however, one also needs to maintain and 
improve the precision of the addressing of qubits, the precision of the individual quantum 
gates, and to reduce the decoherence rate. While current quantum registers have at most 
N = 7 qubits, it will be necessary to increase this number to at least 20-50 before quantum 
computers can tackle tasks that cannot be solved by classical computers. For some problems, 
e.g., factorization by Shor’s algorithm, even larger registers, with 400 - 1000 qubits will be 
required. 

One of the less obvious requirements for the identification of qubits with individual quan- 
tum states is that it must be possible to create arbitrary superpositions of these states. This is 
usually possible unless there is a selection rule that prevents it. As an example, we consider 
two neighboring quantum dots, where an electron can tunnel from one dot to the other. It is 
then possible to identify the qubit state 10) with the electron being in dot 1 ,  and qubit state 
11) with the electron being in dot 2. However, it is not possible to identify a qubit with each 
quantum dot, e.g., with the assignment that the presence of an electron corresponds to il), 
while its absence would correspond to 10). The superposition of these two states would then 
correspond to a superposition between states with different particle numbers, which is usually 
impossible to achieve for massive particles like electrons. 

- i  
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9.2.2 Initialization 

Before the actual computation starts, the system must be put into a well defined initial state. 
Typically, this state is chosen equal to the logical state 10) for all qubits. If one relies on 
thermal relaxation for this process, the thermal energy knT must be small compared to the 
energy difference ti,, between the two qubit states. For a nuclear spin system with a Larmor 
frequency wu = 500 MHr, this would imply that the temperature has to be significantly lower 
than T = : 3 mK. This may be a slow process in many systems, in particular in the spin 
systems. where the relaxation times are long. 

A slow initialization process is not critical for the computation process itself it occurs 
before the actual computation and does not affect the time it takes to execute the algorithm. 
However, it will become a significant issue for any quantum computer that is more powerful 
than a classical computer: such a system will have to rely on an error correction scheme. 
All error correction schemes known to date require an input in the form of freshly initialized 
qubits. These error correction qubits must be initialized at a rate that is large compared to 
the dephasing rate. This requirement cannot be fulfilled by thermal relaxation, where the 
dephasing processes are always fastcr than the spin-lattice relaxation. 

The requirement can be met, however, in  many optical systems, such as ion traps, where 
the initialization procedures use optical excitation, which may proceed over a time ofthe order 
of nanoseconds. In other systems, particularly in solid state systems, future implementations 
will probably rely on switching on some strong coupling to 3 “cold” syslern, which brings thc 
qubit to its ground state, and can be switched off during the actual computation. Switching it 
off is essential, since such a strong interaction would invariably give rise to a fast decoherence 
process. 

9.2.3 Decoherence time 

The information in the quantum register is subject to decay through the interaction with ex- 
ternal degrees of freedom. The computation must therefore be completed before this decay 
has significantly degraded the information. For most physical systems being considered for 
quantum information processing, estimates for the decoherence times vary by many orders of 
magnitude. This is partly due to the difficulty of performing such measureinents; in addition, 
the decoherence that one can attain in a specific device is usually many orders of magnitude 
shorter than for an ideal isolated system and varies with many parameters of the fabrication 
process that can only partially be controlled. This is particularly true lor solid state systems 
where the qiibits are either defects embedded into a macroscopic environment consisting of 
thousands of atoms, or they themselves consist of inesoscopic structures with thousands or 
millions of particles. 

The ellect of decoherencc can partly be eliminated by quantum error correction, a s  dis- 
cussed in Section 7. However, error correction also increases the duration of the computation 
and introduces additional errors. Theoretical analysis shows [Prc98] that computations can 
proceed for an arbitrary duration provided that quantum error correction is used and error-free 
computation without error correction is possible for a critical minimum number of operations 
that is of the order of some tens of thousands of gate operations. The relevant figure of merit 
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for the viability of a particular implementation will therefore eventually be whether it can 
reach this threshold where reliable quantum computing can proceed for arbitrary duration. 

When estimating the prospects of achieving this threshold, one has to take into account 
that the relevant dephasing time is not that of the individual qubits, but that of the total in- 
formation stored in the quantum register. While details for the decoherence in such highly 
entangled quantum systems are not known, it is generally expected (and verified for many 
specific models) that decoherence processes will be much faster for the total quantum regis- 
ter than for the individual qubits. In the simple model of independent qubit relaxation, the 
average decoherence time will decrease linearly with the number of qubits. For 1000 qubits, 
the decoherence time will therefore be 1000 times shorter than for a single qubit, while the 
number of operations required to complete an algorithm may be 1000 times higher than for a 
simple one qubit computer. This example is meant to illustrate how challenging it is to find a 
scaluble quantum computer. 

9.2.4 Quantum gates 

If one wishes to build ii “universal” quantum computer, i.e., one that can process arbitrary 
algorithms, one needs a universal set of quantum gates. The unitary operations that act as 
gates on the qubits must be implemented by Hamiltonians that act on the system for a specified 
time. 

Single-qubit gate Two-qubit gate 

j ---w j -+T& 
k k. 

Figure 9.2: Single and two-qubit gales. 

Generating the single-qubit Hamiltonians is in  general relatively straightforward: typically 
they correspond to external fields acting on the qubits for a specified duration. In the example 
shown in Figure 9.2, the field is applied at 45” between the x and z axis of qubit j .  The 
nontrivial requirement is, in many systems, that these gates must be applied selectively, i.e., it 
must be possible to apply a logic gate to qubit j in such a way that no other qubit is affected 
by it. In  the case of ion trap quantum computers, it is possible to apply laser pulses that are 
so tightly focused that the interaction with all but one ion can be neglected. This is clearly not 
possible, e.g., for spin-based quantum computers. In liquid state NMR, e.g., the wavelength 
of the applied radio frequency field is of the order of I meter; all qubits therefore experience 
roughly the same coupling to the rf field. Nevertheless it is possible to address individual 
qubits independently of each other, since the excitation is a resonant process: only spins whose 
magnetic resonance transitions are close to the frequency of the rf field interact strongly with 
the field. The selection process occurs in this case in  frequency space. 



In solid state systems, the selective addressing of individual qubits will typically be 
achieved by nanometer-sized electrodes that must reach close to each qubit. While the tech- 
nology of building thcsc circuits is maturing rapidly, the effect that these structures and h e  
applied fields have on the decoherence of the qubits will have to be analyzed in more detail. 

In many systems, the two-qubit operations are more difficult to implement, since they also 
require, apart from external fields, interactions between qubits. In the example of Figure 9.2, 
the controlled phase gate includes external fields along the z-axis of qubits j and k ,  in addition 
to a bilinear coupling between these qubits. While it is still comparatively easy to find systems 
with interactions between quhits, static interactions will not do: Interactions should be off 
for most of the time. Only when a two-qubit gate is to be applied to the qubit-pair j ,  k ,  
the interaction between qubil j and k must be switched on for a well defined duration. In 
some systems, this procedure cannot be implemented directly: in liquid state NMR, e.g., the 
couplings are determined by the structure of the molecule, which remains constant during an 
experiment. A possible alternative is then to use static interactions and eliminate the unwanted 
oncs by a procedurc called refocusing. This procedure is applied routinely in NMR quantum 
computers and will be discussed in Chapter 10. The concept has also been generalized to other 
systems [BBO?]. 

Every experimentally realizable gate will include imperfections, i.e., deviations from the 
ideal behavior. For single-qubit gates, whose ideal forin U(0, (1) may be parametrized with 
two angles, deviations may correspond to errors in these angles. In systems, where the qubits 
are only part of a larger Hilbert space, leakage may be a problem: the real operation may 
take part of the state out of the qubit space. As an examplc, consider a harmonic oscillator, 
whcrc the states 171. = 0) and In = 1) have been chosen to represent a qubit [CZ9S,GRL+031. 
Since the energy level separations between all states are identical, there is always a tendency 
to excite higher lying vibrational states. In  addition, addressing is usually not perfect. Any 
excitation of a single qubit j will always excite neighboring qubits to some degree. The effect 
of most errors is a degrading of the information in the quantum register and is therefore similar 
to an additional source of decoherence. Consequently, these errors can also be eliminated by 
error correction schemes, provided they are small enough. 

9.2.5 Readout 

At the end of the computation process, the result of the computation must be retrieved from 
the final state of the quantum register: The result of the quantum computation is not the final 
quantum state, but rather clossical information that may consist of :I sequence of (classical) 
bits. Converting the quantum state into classical bits is achieved by the readout process. What 
exactly has to be read out is determined by the quantum algorithm being considered. While 
this is, in principle, similar to the corresponding procedure in a classical computer, where 
one reads the logical state of the individual classical bits, it involves here measurements on 
a quantum mechanical system. The quantum mechanical measurement process is ii highly 
nontrivial topic, and quantum computers touch some of its central issues. We therefore discuss 
some of these issues in a separate section. 
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9.3 Converting quantum to classical information 

9.3.1 Principle and strategies 

When the quantum algorithm is finished, the quantum register is left in its final state 

which contains the solution of the problem being investigated. The sum runs over all ZN basis 
states, where N is the number of qubits. According to this formal analysis, the result of the 
computation is contained in the 2N coefficients c, that determine the final state. However, a 
useful final result should have a numerical or Boolean logical value, such as true or fulse or 
37. We therefore discuss here how to convert the final state of the unitary transformation into 
the desired classical information. 

Like the initialization process, the readout is a nonunitary operation that cannot be re- 
versed. The wavefunction of the quantum register collapses during readout, becoming classi- 
cal. Many algorithms rely on measuring the populations of the individual qubit states (0) and 
11). In this case, the relevant observables are the longitudinal components of the pseudo-spin 
operators 2. Other algorithms, like the Deutsch-Jozsa scheme, require readout of the trans- 
verse component X, and some quantum computer architectures, like the one-way quantum 
computer, require the readout of arbitrary components of the pseudo-spin. 

I I  
Measurement 
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Figure 9.3: State reduction during the measurement process 

According to the quantum mechanical projection postulate discussed in Chapter 4, an ideal 
quantum mechanical measurement collapses the state It/>) into an eigenstate 14%) of the observ- 
able being measured and returns the eigenvalue X i  of the corresponding state with probability 
I(*; 1 2 ,  where c, is the expansion coefficient of the state 14)) = c, 14,;). Assuming that such an 
ideal measurement is possible, reading out the result of a quantum computation is relatively 
straightforward. Unfortunately, real measurements deviate from this. In many realistic sys- 
tems, measurement attempts will return no result, e.g., when one tries to measure the state of 
a qubit by scattering a photon from it. If the photon is not scattered, this is not important, one 
just repeats the attempt. If the photon is scattered but not detected, this is more critical. In this 
case, an interaction of the qubit with an external system (the photon) has changed the state of 
the qubit, and a repetition of the measurements may produce a different result. 



I40 9 How to huild ( I  yunriturrt computi’r 

Several strategies are possible to circumvent this problem: one can try to use a QND 
(=quantum nondemolition measurement) [ GLP98, Ave021. Such a measurement arranges for 
the unavoidable influence that the measurement must have on the qubit to be such that it does 
not affect later measurements of the same variable. Not all variables can be measured this 
way, but in most cases it should be possible to arrange the system in such a way that QND 
measurements can bc used at least in principle. 

Another possibility is to read out not the qubit itself, but a copy of it. As discussed in 
Chapter 4, copying quantum information is possible within limitations. The copy process 
will not provide an exact copy of the quantum state (no cloning theorem!), but it can copy 
exactly the probabilities of obtaining certain measurement results. As long as the copying 
process is exact, one can therefore repeatedly mcasure copies of the qubit. If the measurement 
is not successful, or to check the validity of the measurement result, one can then make an 
additional copy and read that out. Such a procedure could be repeated many times to achieve 
very reliablc readout even with very unreliable single measurements (see Section 9.3.4). 

9.3.2 Example: Deutsch-Jozsa algorithm 

As an example readout process consider a function evaluation, such as in the Deutsch-Jozsa 
problem (see Section 8.2). Here the processing can be written as 

I ’  r 

where the superposition of all possible input states is transformed into a superposition of all 
possible input states and function values. As discussed in Chapter 8, the goal of the Deutsch- 
Jozsa algorithm is to learn, with a single function call, whether a function is constant or 
balanced. For the simple case of a single qubit (plus auxiliary qubit), we found that if the 
two function values are the same, f ( 0 )  = f(l), then the final state of the quantum register is 

In this trivial example, the type of measurement that must be performed is obvious. In both 
cases, the input register is in an eigenstate of X. Its cigenvalue is +1 if the two possible 
function values are diffcrent (i.e., the function is balanced) or - 1 if the two valucs are the 
same (i.e., thc function is constant). Obviously the result can be determined from the single 
measurement of the variable X of qubit 1 .  
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The example shows that (for a single yubit) a single measurement is sufficient to determine 
the result (constant or balanced). This power does not come for free: while one gains this 
ability, one loses the possibility to find out what these values are, i.e., whether the (constant) 
results are 0 , 0  or I, 1 or (for the case of a balanced function) f (0)  = O and f (  I) = 1 or f ( 0 )  = 

1 and f(1) = 0. Answering such a question requires one to measure a different observable, 
which does not commute with X and is therefore not compatible with this measurement. 

The complete information that is contained in the final state consists of the 2N coefficients 
ci that define the superposition. Some sources claim that it is impossible to determine all these 
coefficients. This is not true, and we will give some examples for simple systems where this 
has been done. However, to determine all 2 N  coefficients requires at least 2N measurements, 
i.e., an effort that increases exponentially with the number of qubits. Obviously this is not 
possible without losing the advantage of quantum computers. 

Furthermore, it can be difficult to make measurements that are state-selective, i.e., distin- 
guish state l i) from the other 2 N  - 1 states. Instead one is usually content with measurements 
on single qubits, which are often referred to as local measurements. 

9.3.3 Effect of correlations 

Most quantum algorithms require a readout of the state of each yubit independent of all other 
yubits. This readout should provide reliable information on the final state. As discussed above, 
this will not allow for a complete determination of the state. Consider, e.g., the two states 

and 

If the two yubits described by this state are measured independently, one will obtain 10) in 
50% of all cases and 11) in the other 50% for each of the yubits. Looking only at individual 
results, the two states would then appear to be indistinguishable. It is nevertheless possible to 
distinguish between them by taking correlations into account. In the first case, measurements 
on the individual spins always yield the same result; in the second case, they are completely 
uncorrelated. 

9.3.4 Repeated measurements 

Experimental readout schemes can never be 100% efficient, since photons may be lost, de- 
tectors have noise or dark counts. One therefore should be able to repeat the measurement to 
increase the probability of obtaining correct results. As discussed above, this can be achieved 
either by a QND measurement (under certain conditions), or by an efficient copying mecha- 
nism and readout of the copy rather than the original. We give here some more details about 
the copy-and-readout procedure. 
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If the qubit Is) is in a superposition state 

(9.9) 

and the measurement qubit is initially in state lo), the copy (CNOT) operation changes the 
state of the two qubits into the correlated state 

If a measurement of the measurement qubit yields a result (i.e., tinds it in state 10) or 1 I ) ) .  
it colli1pses the wavefunction of both qubits simultaneously. If it does not provide a result, 
one has the option of discarding the measurement qubit. This corresponds to eliminating its 
degrees of freedom and returns the register qubit to its original state. The measurement qubit 
can then be re-initialized to state 10) and the process can be repeated until  a result is obtained. 

9.4 Alternatives to the network model 

9.4.1 Linear optics and measurements 

Photons are certainly among the most attractive systems for storing quantum information, and 
optical components can execute unitary transformations on the photons with high precision. 
Quantum algorithms can therefore be implemented relatively easily i n  optical setups that use 
only linear optics [TakOO, KMSWOO, BHS021. Unfortunately, setups with linear optics cannot 
be readily extended to larger number of qubits: as the number of qubits increases, one needs 
either a coupling between different qubits or the number of optical components required in- 
creases exponentially with the number of qubits. Since the interaction between individual 
photons is quite weak, it seems therefore impossible to build a scalable optical quantum com- 
puter. 

A possible way out was suggested by Knill, Laflamme, and Milburn: they realized that 
measurements of individual photons represent a nonlinear process that works well enough with 
single photons and can be used for quantum computing [KLMOOJ. This linear optics scheme 
encodes qubits in the mode occupied by the single photon, i.e., two modes are required to 
encode a logical qiibit: 1 0 ~ )  = I O l ) ,  Ilf,) = 110). Their scheme differs from the usual network 
model in that thcy use measurements. which are clearly nonunitary operations, to process the 
data. The results of these measurements are fed back into the state of the quantum register by 
controlled phase shifts. Several steps have been taken towards realizing this scheme, including 
the construction of a two-qubit gate that is closely related to the CNOT operation [OPW+O3]. 

Among the biggest difficulties of this architecture is the necessity for storing qubits. Even 
if the auxiliary photons used for the measurements can be produced on demand, which remains 
a challenging problem ILM00, KHR02,TAFi 02 I ,  the measurements are inherently probabilis- 
tic and have to be repeated several times to ensure siicce Until success is assured, the pho- 
tons have to be kept in a waiting state. While some schemes have been tested to store the 
quantum state of photons [CBM83, LDBHOI , TSS+021, the efficiency of such conversions is 
still much too low for useful implementations. While these difficulties make i t  unlikely that 
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such a scheme will be implemented directly, similar proposals have been put forward that may 
be easier to implement. They use squeezed states [GKPOI] or coherent] states [RGMf03] to 
encode the qubits: in the latter case, the logical states are 1 0 ~ )  = 1.) and 11~)  = 1 - (I), 
which are almost orthogonal if 0 > 2. 

Experimental work towards this goal is under way. Single-qubit gates are straightforward 
to be implemented by retardation plates or modulators. Two-qubit gates are significantly more 
demanding but have been realized by interference on a beamsplitters [SJP+O4]. 

9.4.2 Quantum cellular automata 

One requirement of the network model of quantum computation is local addressing, i.e., the 
ability to perform logical operations on arbitrary individual qubits. This requirement is rel- 
atively easy to satisfy for the present demonstration models with only a few qubits. It is, 
however, a major problem for increasing the number of qubits. In liquid state NMR, e.g., the 
number of resonance lines increases exponentially with the number of coupled spins, making 
individual addressing virtually impossible for systems with 10 and more qubits. Apart from 
the difficulty of constructing the device in such a way that it allows addressing with high pre- 
cision, the large number of control gates may introduce too many channels for decoherence. 

A quantum computer architecture that does not need to address every qubit individually 
has been developed by Lloyd [Llo93]. In this scheme, only a few control qubits are needed, 
while the quantum information is stored in a chain of qubits that consists of repeated units 
ABC of only three distinguishable physical quhits. Each group of three physical qubits stores 
one logical qubit. Logical operations can be broken down into operations that act on all A, B or 
C physical qubits. It was shown that this architecture is universal, i.e., it can efficiently run all 
algorithms that are efficient on a network quantum computer. A modification of this scheme 
that uses only two distinguishable units was proposed [BJ97, BJ99, BenOO]. Although the 
overhead is significantly larger with this scheme, it may be well suited for an implementation 
based on endohedral fullerenes as qubits ITwa031. 

9.4.3 One-way quantum computer 

An even more radical deviation from the network computational model was suggested by 
Raussendorf and Briegel [RBOI]. Their approach, which is referred to either as une-i.vay 
quantum computer or cluster quantum computer replaces most unitary transformations by 
single-qubit measurements. Before these measurements can be performed, the system has to 
be brought into a highly entangled state (the “cluster state”). This approach therefore shifts the 
interactions between qubits from the processing stage to the preparation stage and explicitly 
uses entanglement as a computational resource. The proposed device appears to be at least 
as powerful as a network quantum computer and for certain tasks it is more powerful JRBOl , 

’ Coherent states [KSXS, CTDL921 are superpositions of harmonic oscillator eigenstates In), I C Y )  = 

exp (- !$) %In), where ct is an arbitrary complex number. No two coherent states are orthogo- 

nal to each other, hut their scalar product decays rapidly with growing distance in the coinplcx plane, 1 (alp) l 2  = 

e- l n - L ’ l 2 .  Coherent stales nliniinize the Heiscnberg uncertainty product, and squcczed states enjoy similar quasi- 
classical properties. 



RBB03I . Fur a possible implemcntation, it was suggested to represent the qubits by atoms 
stored i n  an optical lattice [ DRKBOZJ formed by thc electric field of a standing light wave. 



10 Liquid state NMR quantum computer 

The first implementation of a quantum computer that has been realized is nuclear magnetic 
resonance (NMR) in liquids. I t  encodes the quantum information in the nuclear spin degrees 
of freedom of molecules that are placed in a glass tube. While one usually thinks of quantum 
registers as individual systems (and many projects try to implement such systems), NMR 
radically deviates from this approach. In this case, every qubit is represented by some 10’” 
identical copies of a nuclear spin in a suitable molecule. One therefore refers to this type of 
quantum information processing as “ensemble quantum computing”. 

Nuclear magnetic resonance is mainly a spectroscopic tool that is used for the analysis 
of almost any type of molecule, condensed matter or gases in various environments. In the 
form of MRI (magnetic resonance imaging) it also has become an important tool in clinical 
medicine. We start with a review of the basics of NMR spectroscopy before we discuss how 
this approach can be used for quantum computing. 

10.1 Basics of NMR 

10.1.1 System and interactions 

Magnetic resonance is a spectroscopic technique that investigates the spin degrees of freedom 
of electrons and nuclear spins. The spin of charged (and some neutral composite) particles has 
a magnetic dipole moment associated with it; if such particles are placed in a magnetic field, 
the energy of these magnetic dipoles depends on their orientation with respect to the field. 

Figure 10.1: Basic\ of nuclear magnetic resonance (NMR). 

As shown in Figure 10.1, the magnetic field lifts the degeneracy of the spin states. This 
effect, which is known as the Zeeman effect, is proportional to the strength of the magnetic 
field. For a spin S = 1/2, the splitting of the two energy levels is proportional to the magnetic 
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field strength. Quantum mechanically, it is described by the Hamiltonian 
+ -+ 

7-t, = -7s. 11, (10.1) 

where y is the gyromagnetic ratio of spin S. The usual convention is to orient the z-axis along 
the static magnetic field. The Hamiltonian then becomes 

( 10.2) 

where Bn is the strength of the magnetic field and WL the Larmor frequency. For most NMR 
quantum information processing experimcnts, we can restrict the discussion to spins S = 1/2,  
for which the Zeeman interaction is the only coupling to external fields. 

I n  magnetic resonance experiments, one uses alternating magnetic fields, which couple 
to the same magnetic dipole moments, to resonantly excite transitions between these spin 
states. The resonance condition is that the frequency of these alternating fields fulfills the 
Bohr condition 

F12 = -ySzB" = - - W L S z ,  

hw = Ah:, (10.3) 

where A E  is the separation of the two energy lcvels (= tiw,, here). The relevant frequency is 
in  the radio frequency range for nuclear spins (10-1000 MHz in fields of 1-20 T). 

Given the commutation relations for angular momenturn, we can write the (Schriidingcr) 
equation of motion as 

(1 0.4) 

The resulting evolution of the spin is a precession around the direction of the magnetic 

(S , ) (1 )  = s , . v (0 )  cos(wr,t - 4)  (10.5) 

( S , ) ( t )  = S,,(O) sin(w,,t - 4 )  (10.6) 

(S,)(2) = LSZ(0), ( 10.7) 

where S,,(O) is the amplitude of the transverse magnetization and 4) its phase, i.e., the 
angle from the x-axis at t = 0. 

As shown in Figure 10.2, this evolution corresponds to a precession around the z-axis, 
i.e., itround the magnetic field. Equation (10.4) is called the Bloch equation, after one of the 
discovcrcrs of NMR, who also wrote the theory for it [Blo46]. It can also be derived classically 
and has applications to many two-level systems besides NMR [ FVH571. 

field at the Larmor frequency. 

10.1.2 Radio frequency field 

To excite transitions between the different spin states, one applies a radio frequency (RF) 
magnetic field. It is generated by a current running through a coil that is wound around the 
sample, as shown in Figure 10.3. The generated RF field is 

(10.8) 
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X 

Figure 10.2: Larmor precession of spins in a magnetic ficld. 

Figure 10.3: An alternating current through a coil generates an R F  field perpendicular to the 
static magnetic field. 

where we have chosen the &-axis parallel to the axis of the coil. 

in opposite directions. 
This alternating magnetic field is best described as a superposition of two fields rotating 

(10.9) 

The first component rotates from :1: to the y axis (counterclockwise when viewed from the 
z-axis), the second in the opposite direction. 

10.1.3 Rotating frame 

The resulting dynamics are best analyzed in a coordinate system that rotates around the static 
magnetic field at the radio frequency. We briefly show here the transformation to this rotating 
frame since all quantum computing experiments use the rotating frame representation, not the 
laboratory frame. As shown in Figure 10.4, the two coordinate systems are related by 

cos(wt) sin(wt) o ) ( ; ) ( 4 ) = ( - sin(wt) cos(wt) 0 > 

0 0 1  
(10.10) 



where the vector r"' refer5 to the rotating coordinate system, the unlabeled to the laboratory- 
tixed system. 

Figure 10.4: Rotating and laboratory-fixed coordinate systems 

If we apply this transformation to the radio frequency field, the two circular components 
become 

(10.11) 

Apparently, one of the two components is now static, while the counter-rotating compo- 
nent rotates at twice the RF frequency. 11 turns out that, to an excellent approximation, it i s  
sufticicnt to consider the effect of that component which is static in  this coordinate system, 
while the counter-rotating component can be neglected [RS40]. It is therefore a convenient 
fiction to assurne that the applied RF generates a circularly polarized RF field, which is static 
in the rotating frame. 

10.1.4 Equation of motion 

So far  we have transformed thc radio frequency field into thc rotating frame. We also need to 
transform the quantum mechanical equation of motion into this reference frame. We start by 
trancforming the state vector, using the unitary operator 

U(t)  ~ C 2 u t S 2 / f l  ( 10.12) 

which detinec a rotation around the --axis. It transforms the laboratory statc I(/)) into the 
rotating frame as 

The same operator also transforms the Hamiltonian: 

'H' = U 'RU + ihU-'U. (10.14) 

The first term corresponds to a rotation of the operator around the z-axis. The second term 
tahes into account that the iotating coordinate system is not an inertial reference frame, since 
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the rotation is an accelerated motion. Like centrifugal forces, it corrects the equation of motion 
for the corresponding virtual force. Evaluating this term, we find 

ih,IklU = ws, (10.15) 

The rotating frame Hamiltonian is therefore 

xr = - A W L S ,  - W l S , ,  ( 1 0.1 6) 

where w1 = yB1 is the strength of the RF field in frequency units and Aw,, = WL - w is the 
static magnetic field (also in frequency units), reduced by the frequency of the applied field. 

Figure 10.5: Effective magnetic field in the rotating coordinate system. 

As shown in Figure 10.5, the total effective field in the rotating frame can be represented 
by the vector 

w',e = ( W l ,  0,  a w l , ) .  (10.17) 

10.1.5 Evolution 

The resulting evolution of the spins in the rotating frame is exactly the same as if a (small) 
static field were applied in this direction in the laboratory frame: they undergo a precession 
around the magnetic field. 

Figure 10.6 shows three specific examples for the motion of spins in this effective field. 
In the absence of RF irradiation (w1 = O), the effective field is aligned along the z-axis and 
the precession is the same as in  the laboratory frame, except that the precession frequency 
is lower. In the case of resonant irradiation (shown on the right), the field along the z-axis 
vanishes and the effective field lies along the x-axis. In the general case, the effective field 
lies along a direction in the zz plane. 

If the radio frequency is applied on resonance and the spins are initially in thermal equi- 
librium, the precession around the effective field (which now lies in the zy  plane) brings the 
spins from the direction parallel to the static magnetic field into the xy plane (perpendicular 
to the effective field), and from there to the negative z-axis. Such a rotation by an angle T 

corresponds to an inversion of the spins. If the field is left on, the spins continue to precess, 
returning to the +z axis, again to the negative and so on. This process of successive inversions 
is called Rabi flopping, in reference to Rabi's molecular beam experiment [RZMK38]. The 
frequency w1 at which this process occurs is called the Rabi frequency. 
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Figure 10.6: Spin precession for the cases of free preccssion(w1 = 0, leli), resonant irradiation 
(AWL = 0, right), and the general case (center). 

The primary use of RF irradiation in NMR quantum computers is to create logical g;W 
operations. As discussed in Chapter 5 ,  single-qubit gates correspond to rotations of the spins. 
Pulscs of RF radiation are a convenient means for irnplementing such rotations around arbi- 
trary axes. To show this, we first assume that the applied RF field is oriented along the .!:-axis 
of thc rotating coordinate system; other directions (e.g., along the :y-axis) can he chosen by 
adjusting the phase of the RF field. The rotation axis can therefore be oriented in any arbitrary 
direction by adjusting frequency (and thereby Awl,) and phase of the R E  The angle of rotation 
c t  w(,[rT around the effective field, which is called the flip angle, is given by the product of 
the cffcctive field strength and the pulse duration T .  

10.1.6 NMR signals 

NMR signals are obtained in the time domain, as the response of the system to an RF pulse. 
We consider tirst the simplest case, where the system consists of an ensemble of spins S = 
112. 

We describe the system by a density operator analysis to calculate the signal. The thermal 
equilibrium density opcrator is 

(10. 

where the approxiniatc form, dcrived for the high-temperature limit 

A E  = i j L S z  < kn'l' (10. 

is always valid in liquid state NMR: under typical experimental conditions, $$ is of the order 
of l o p 5 .  Wc have therefore 

( 10.20) 
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In  the simplest case, one applies an RF pulse that rotates the spin through an angle of 5 into 
the .ry plane. 

p(O+) = 1 (1 + 5%) 
2 (10.21) 

After the pulse, the system undergoes Larmor precession under the Zeeman Hamiltonian 

Detection of the signal should not be treated as a quantum mechanical measurement process. 
There is no reduction of a wavefunction, and the system is virtually unaffected by the mea- 
surement. Rather than projecting onto an eigenstate, one measures the expectation value of a 
specific observable as a function of time, without disturbing the free evolution of the quantum 
system. This is of course closely related to the fact that the system consists of an ensemble of 
many spins rather than a single particle. 

n 

recessing spin 

= rotating magnetization 

Figure 10.7: Detection of frccly precessing spins through the Faraday effcct. 

Figure 10.7 shows how observation of the precessing spins is achieved through the Faraday 
effect. The polarized spin ensemble is a macroscopic magnetization; as it precesses, it changes 
the flux through the RF coil, thus inducing a voltage signal proportional to 

Damping effects, which are not discussed here, cause a decay of the signal, 

2koT 

(10.23) 

(10.24) 

This signal, which is generated by freely precessing magnetization that slowly decays is 
known as free induction decay (FID). 

For an analysis of the signal one usually considers not the time domain signal, but its 
Fourier transform. For an FID decaying exponentially with time constant T2, the spectrum 
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becomes 

(10.25) 

i.e., a Lorentzian with a half-width at half height 
While the frequency-domain signal contains the same information as the time-domain 

FID, it is still very useful to do this transformation. The main advantage of the Fourier trans- 
form is that it allows one to distinguish different transitions: two distinct transitions usually 
have different Larmor frequencies q, 

centered at the Larmor frequency WI,. 

W,) = 
E7 - F:, 

t, 
( 10.26) 

The corresponding resonance lines are thcrcfore separated in frequency space, while the time 
domain signals overlap. The amplitude of each resonance line is determined by the product 
of a density operator element with an element of the observable; in  the simplest case, where 
the nontrivial part of the initial density operator and the observable are identical, 2p(n) ~ 1 = 

A = S,  , and the amplitudes A,, of the individual transitions i n  the spectrum become 

10.1.7 Refocusing 

In many NMR experiments, and particularly in (NMR-) quantum computation, it is necessary 
to eliminate unwanted interactions. This is usually achieved by a sequence of RF pulses that 
modulatcs the evolution in such a way that the total effect of the intcraction on the system 
vanishes. The first such experiment is the "Hahn-echo" observed in liquid state NMR by 
Erwin Hahn [HahS0]. 

Figure 10.8 shows a typical experiment. The initial $ RF pulse converts longitudinal into 
transverse magnetization that subsequently precesses in the magnetic field. For a system of 
uncoupled spins, the density operator after the RF pulse is 

(10.28) 

As shown in the lower part of the figure, the phase Aw/,r (which represents the orientation 
of the magnetization in thc :xg plane) increases linearly with time. lr two spins experience 
different magnetic fields, their precession frequency differs. In the figure, the full and dashed 
lines indicate the evolution of the phase of two spins that experience different inagnctic fields 
(e.g., due to magnetic field inhomogeneity). In  the central part of the figurc, the full arid clashed 
arrows indicate the orientation of these spins. If a distribution of such Larmor frequencies is 
present, thc overall effect will be destructive interference and a loss of signal, as indicated in 
the upper part of Figure 10.8. 

To refocus this destructive interference pIocess, one can apply a second RF  pulse. A 7rv 

pulse leaves the 2;-component of the density operator invariant but inverts the y-component: 

2 p ( r )  - 1 (x e-z 'HT/ f iS x p i 'H7 /1 ,  - - S.,. cos(Awr,r) + S,  sin(Aw1,r). 

2p( r+)  1 o< S,. c o s ( A w , , ~ )  - S ,  sin(Aw1,r) 

= S , , . c ~ ~ - A w r , r )  - S,s in( -Aw~,r ) .  (10.29) 
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I l Time 

Figure 10.8: Refocusing of magnetic field inhomogeneities in a Hahn echo experiment. 

Apparently, the pulse inverts the phase of the q y  magnetization vector, as indicated in the 
lower part of Figure 10.8. The spins continue to precess in  the magnetic field. If the Larmor 
frequency remains constant over time, the total phase acquired during the time T after the 
refocusing pulse is equal to the phase that the spin acquired between the two pulses, before 
their phase was inverted. As a result, the total phase vanishes, independently of the Larmor 
frequency of the spin. The destructive interference is then eliminated and a “spin-echo’’ is 
observed. 

In a similar way, unwanted couplings between spins (qubits) can be eliminated by suitable 
refocusing sequences. In an AX system (see Section 10.2.2, e.g.,) the coupling term can be 
eliminated by applying a refocusing pulse to one of the spins. For a Hamiltonian 

‘HAX = WAA, + wxXz + dA,X,, ( 1  0.30) 

the initial condition 2p(O) - 1 K A,  + X, , and equal precession periods before and after a 
T pulse on the X-spin, the system evolves to 

2 p ( 2 r )  - 1 = U(T)e-’“XJfiU ( 7 )(As + X,)Ut(~),7”X1/hUt(7) 
= U(r)e - , T X , / f r U ( T ) e l T X ,  / h  (A,  + X I  )e--2TX~/hUt ( ~ ) e ” ~ r / ‘ U t ( ~ ) ,  ( 10.3 I )  

where U(T) := e- lxAxr / t f  is the time evolution operator describing the precession. Using 



we tind that the the refocusing pulse eliminates the Zeeman term X, as well as thc coupling 
term A,X2, but leaves the Zccman term of the A spin. Similar refocusing schemes are possi- 
ble to climinate different terms in larger spin systems. 

10.2 NMR as a molecular quantum computer 

10.2.1 Spins as qubits 

Thc two quantum states that represent a qubit correspond naturally to the two states of a spin- 
1/2 - the only quantum system whose Hilbert space has exactly two states. It is therefore 
natural to use the F;eynman-Vernon-Heilwartli picture [FVH57] to describe the qubit a s  a 
virtiial spin-1/2. In this chapter, however, the virtual spin is a real nuclear spin of a molecule 
i n  solution: we study NMK systems to show how quantum computers can be implemented. It 
should be realized, however, that the quantum computers that can be built this way still have 
very limited capabilities. They should not be compared to conventional computers, which 
have been developed over half a century, but to early prototypes whose development only 
started tcn years ago. 

Classical bit Quantum bit = qubit Spin 1/2 

0 I 
Figure 10.9: Idenlilicalion of hits with volkige levels (classical coiiiputer, left), quantum me- 
chanical skates (generic quantuni coniputct, center), and states of r? spin- 1/2 (right). 

Using the spins as qubits requires a mapping of the logical qubit states to the spin states. 
As shown in Figure 10.9, the spin states take over the role of voltage levels in classical coni- 
puters. Conventionally, one chooses the 1w.C; = +1/2) state to represent a logical 0, while the 
1'rrL.s = ~ 1/2) state represents a logical 1. To construct a quantum register, one needs several 
distinguishable qubits. 

As indicated in Figure 10.10, conventional (Si-based) computers use wires to address the 
individual bits of information. In ii liquid state NMR quantum computers, thc qubits are nu- 
clear spins of freely floating molecules; clearly it is not feasible to use wires for addressing i n  
this case. Nevertheless, it is possible to address qubits selectively. Since the qubit gates are 
applied with resonant radio frequency fields, thcy are only effective when the RF frequency is 
close to the Larinor frequency of the spin. Spins whose Larmor frequency differs from the fre- 
quency of the radio frequency pulse are not affected by the pulse to a tint approximation. The 
width of the frequency range is of the order of the Rabi frequency, i.e., inversely proportional 
to the duration of the RF pulse. 
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Figure 10.10: Addressing of qubits in NMR quantum computers vs. solid state computers. 

The difference in Larmor frequencies for different qubits is associated with their gyromag- 
netic ratio (for heteronuclear spin systems) or with the chemical shift (for homonuclear spin 
systems). The term "chemical shift" refers to a change in the magnetic field strength at the 
site of the nucleus: the electron system in which the nucleus is embedded has a nonvanishing 
magnetic susceptibility. These shifts depend therefore on the electronic structure of the mol- 
ecule and can be used to make nuclear spins distinguishable. The Hamiltonian that describes 
such a system of qubits can be written as 

R Z  = - c u t s :  ( 1  0.33) 

where the index i runs over all spins (qubits). 
These frequency shifts are proportional to the magnetic field strength. The available chem- 

ical shift range depends on the isotope under examination. In the case of protons ('H), this 
range is of the order of 10 ppm. For I3C, it is about 200 ppm, and similar for 15N. For a typical 
IH NMR frequency, the available frequency range is therefore of the order of 6 kHz, for "'C 
in the same field 30 kHz. 

In contrast to conventional computers, where etching localizes different bits, this may be 
considered a bottom-up approach, where the molecular design determines the location of the 
qubit in frequency space. 

10.2.2 Coupled spin systems 

Implementation of quantum algorithms requires two-qubit gates, which can be implemented 
by using couplings between qubits I spins. Such couplings are naturally present in nuclear spin 
systems and exploited also in NMR spectroscopy. There are two main types of couplings; the 
first is called scalar, indirect, or J-coupling, the second type is the direct or dipolar coupling. 
The latter arise from the magnetic dipolar field generated by one spin and felt by the other, 
while the former are mediated through the electrons and do not depend on the orientation 
of the molecule. The difference in orientation dependence is responsible for the fact that in 
isotropic liquids, the direct dipole-dipole coupling is averaged to zero. As a result, only the 
scalar J-coupling is observed in the spectrum. 



I n  both cases, the coupling between two spins can be understood as a small additional 
magnetic field generated by spin A and acting on spin X, as well as i n  the opposite direction. 
We consider here on ly  the simplest case (which is most useful for NMR quantum computing), 
where the interaction can be written as 

The total Hamiltonian is then 

Energy levels 
AX 

I)+ d; 

(10.35) 

Spectrum 

? I  4 ,  X-spectrum A-spectrum 

b1 4 
4+- :r 

"I j. 

44- V 

Figure 10.11: Encrgy lcvcls and spectrum of a system of two spins-1/2, called A and X, rc- 
spectively. The dashed horimntal  lines indicate the energy levels o f  the Zeernan Harniltoniiin 
alone (no coupling), the solid lines the energies of the full Hamiltonian. 

Figure 10.1 1 shows the corresponding energy levels. The coupling shifts the states with 
parallel orientation of the two spins upwards (for a positive sign of the coupling constant d), 
the states with antiparallel orientation downwards. 

Transitions are possible between the states TT-T.]., TTti.[t, T.lttJ.j., .It-.lj.. The trsnsi- 
tion frequencies are 

w I Z  = W T T - T ~  = w,y - dh/2;  w1:) = WTT-]I z= wA - d h / 2 ;  ( 10.36) 

w24 WlLiLL : w.4 -$ d h / 2 ;  w?,l = WJT-Jj, w,v + d h / Z ;  
The spectrum consists of four lines, each of which is associatcd with a transition of onc spin 
and labeled by the state of the second spin. 

10.2.3 Pseudo / effective pure states 

Before NMR quantum computing waf demon\trated, all algorithmb for quantum computer\ 
assumed that quantum computers use individual quantum ay$tems, which are initially prepared 
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in a specific quantum state. Unfortunately, detecting individual spins is extremely difficult and 
has only been achieved in a few specific systems [KDDf93, WBB+93,GDT+97, Koh991. In 
most cases, signals can be detected only from macroscopic ensembles of spins, containing 
some lozo spins. These spins are not in identical quantum mechanical states and therefore 
cannot be described by a pure state. For the description of the mixed states, one has to use a 
density operator. 

NMR quantum computers became feasible when it was realized that algorithms that re- 
quire pure states can also be applied to systems in mixed states. For this purpose, the target 
system has to be prepared in an initial state that can be written as the sum of the unit operator 
and an operator representing a pure state: 

Ppp P 1  + w p r  (1 0.37) 

where p p p  is referred to as a “pseudo-pure’’ state, or “effective pure state”, while p p  is a pure 
state. If the unit operator does not contribute to the signal, the behavior of such a system is 
exactly equal to that of a pure state. 

The coefficient cv is largely determined by the polarization of the spin system. Obviously, 
a single spin is always in  a pseudo-pure state (compare (4.59)). In  coupled spin systems, 
however, the thermal equilibrium states are not even pseudo-pure. Unitary operations cannot 
be used to bring such a system into a pseudo-pure state. Instead one has to average over a 
number of different mixed states to make the pseudo-pure state. 

There are a number of procedures for implementing such an averaging scheme, which are 
referred to as “spatial labeling” (CFH971, “temporal labeling” [KCL98] and “logical labeling” 
[VYSC99]. Temporal labeling is perhaps easiest to explain, using the example of two coupled 
spins. In equilibrium, the populations of the four states are 

To obtain a pseudo-pure state, one can equalize the populations of three levels (e.g., TL, Jr, LL) 
by cyclically permuting them and adding the results. The time-averaged populations would 
then be 

( 1  0.39) 

The corresponding averaged density operator corresponds to the sum of the unit operator (=the 
totally mixed state) and a pseudo pure state. 

The well known disadvantage of this process is that one loses signal by destroying polar- 
ization. In the case of spatial labeling, one turns the population differences of states 2, 3, 4 
into transverse magnetization, which is destroyed by pulsed field gradients. It was soon re- 
alized [War97 ] that this loss of polarization, which increases exponentially with the number 
of spins in the quantum register, severely restricts the usefulness of liquid-state NMR quan- 
tum computing. Similarly, the number of operations required increases exponentially with the 
number of qubits. This can be reduced to polynomial overhead by logical labeling [VYSC99], 
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which uses additional (ancilla) spins to create pure states for specific ancilla spin configura- 
tionc. For the related techniques POPS [Fun011 or SALLT [MKOI], the overhead is indepen- 
dent of the number of clubits. 

10.2.4 Single-qubit gates 

single-qubit gates are implemented by RF pulses. In the rotating frame, an RF pulse can be 
represented by its propagator C i,x’/’r, where 7-L is the Hamiltonian during the pulse and t the 
duration of the pulse. Depending on the phase of the RF field, the propagator for a resonant 
pulse is ( : - i ‘ / ’ , . s r / t r  or The flip angle is 

where T i h  the duration of the pulse. 
Combining these two generators (rotations), it is possible to implement any SU(2) opera- 

tion. An important example is the set of rotations around the z-axis, which cannot be generated 
by RF pulses directly. They can, however, be realized by combining three rotations around 
axes in the s y  plane: 

We now conaider the most important single-qubit gates. Using the conventional choice of 
relative phases between states, the NOT gate may be implemented, up to an irrelevant overall 
phase, by 

( 10.42) 

This irnplemcntation of NOT thus differs from the usual representation by an overall phase of 
-;. Since such overall phases do not correspond to observable quantities, we will not con- 
sider them here and regard all implementations that differ by such a phase factor as equivalent. 

One might tirst think that any 180 degree pulse, which inverts the two states 10) and 11) 
should be an implementation of NOT. However, looking at the propagator for a T~ pulse, 

( 10.43) 

one secc that this diflers from the NOT in term5 of the relative phase that it applies to the two 
states. 

The Hadamard gate 

J;z 1 - I  ’ )  ( 10.44) 
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can also be implemented by an RF pulse 

( 10.45) 

Physically this transformation can be achieved in a number of different ways: either by apply- 
ing an off-resonant RF pulse with AWL = W I ,  or by a sequence of RF pulses along the y, x 
and -‘y axes: 

(1 0.46) H ~ e - ~ $ S y / h e - a ~ S z / f i  z”S,/tl - - ? x S , / l r  i ? S , / h  c 4  - e  t : L  . 

The last version is the shortest: a (5) pulse is followed by a T , ~  pulse. 
The three-pulse version is also interesting: as in the case of the composite z-rotation 

(10.41), it can be understood as a “rotated rotation”. The central pulse executes the desired 7r 

rotation around an axis in the q j  plane. The first and last pulses then rotate the axis from the 
x‘y plane into the .TZ plane. This scheme is experimentally easier to implement since it only 
requires resonant pulses. 

For many purposes the Hadamard gate can be replaced by the pseudo-Hadamard gate 

Y 

(10.47) 

and its inverse 

(10.48) 

i.e., by 55 RF pulses around the y axis. 

10.2.5 Two-qubit gates 

Two-qubit gates require couplings between the spins to apply transformations to one spin con- 
ditional on the state of the other spin. There are two somewhat different ways of implementing 
such gates. One may be referred to as “soft pulses”, the other as “pulses plus free precession”. 
The first uses the fact that weak RF  fields affect only transitions whose resonance frequency 
is close to the RF frequency. As we discussed in Section 10.2.2, the transitions of a nuclear 
spin that is coupled to another spin can be labeled by the state of the coupling partner. A weak 
RF field whose frequency matches the frequency of one resonance of spin A (e.g.) therefore 
excites spin A on the condition that spin X is in the 11) state - a CNOT gate. 

(10.49) 

This variation is conceptually simple since it can be described in terms of two-level sys- 
tems. and it can be extended to more complicated spin systems. It has the disadvantage, 
however, that it requires long pulses, thus causing excess decoherence. 
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Figure 10.12: Evolution of nuclcar spin cohcrciicc under ii coupling 1 0  another spiri-1/2 

The second approach can also be understood in terms of a vector diagram. We consider a 
spin A coupled to a control spin X by the interaction dA,X,. As shown above, the resulting 
spectrum has two resonance lines in the A-spectrum, which can be labeled by the states 1 T )  
and I 4) of the X spin. We will assunie that pulses can be applied to the A and X spin 
separately - a condition which must be satisfied for the one-qubit gates. In contrast to the first 
implementation, however, the pulses used here always act on all transitions of a given spin, 
independent of the state of its coupling partner(s). 

Starting from the state 100) = IX =T, A =t , ) ,  a e i % A y l t L  RF pulse creates a superposi- 
tion state 

( 1  0.50)  

Free precession converts it into a state 

(10.51) 

where we uce a rotating frame that is resonant with the Zeeman frequency for the A and 
(independently) for the X spin. 

After a time t = &, the $pin has reached a state 

( 10.52) 

An c /" pulse applied iit this time returns the system to its original state 100) (apart from 
an overall phase factor). This can be readily followed in terms of a vector model. The initial 
g-pulse turns the spin from the z-axis to the :r:-axis. It then precesses by 90 degrees to the 
;y-axis, and the subsequent .r-pulse flips it back to the z-axis. 

If we apply the same sequence of pulses to the state 110) = IX =J,,A =T), the free 
precession occurs with opposite sign 

(10.53) 

and the second pulw rotates the spin to the negative, rather than the positive z-axis. As can 
be easily checked. the sequence of two pulses with free precession is therefore equivalent to a 
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controlled NOT operation 

(10.54) 

The additional terms of X, and A,? are for normalization of the relative phases. They can be 
implemented as composite z-pulses [FFLSl] or as phase shifts. 

Three qubit gates like the Toffoli gate can be constructed in the same way as two-qubit 
gates. However, since there are no three-spin interactions in nature, these must be created 
artificially. This is still possible, using, e.g., transformations like 

e-'iIIB,Cz e -  i(tAzBr etPB,Cz = ,-i~AzBzCz ( 10.55) 

Alternatively, three- or N-spin gates may be generated using selective pulses 
[PSD+99,MDAKOl]. 

10.2.6 Readout 

As discussed in  Section 10. I .6, detection in magnetic resonance is best described in  a classical 
picture: the transverse components of the spin generate a macroscopic magnetization that pre- 
cesses around the static magnetic field. Obviously such a detection scheme is not compatible 
with the usual description of a quantum mechanical measurement, which involves the collapse 
of a wavefunction. Instead, one observes the system continuously, without significantly affect- 
ing its behavior. This difference is closely related to the fact that the system is an ensemble, 
rather than the usually assumed single-particle system. In addition, the observed quantity is 
not the population of some state, i.e., ($&I&.), but rather the evolution of a coherence, i.e., 
141,) ($kl, where l,$,.k) are eigenstates of the Zeeman Hamiltonian. According to equation 
(10.23), the signal contribution of a specific coherence is proportional to the corresponding 
matrix element of the total spin operator x i  Si,. 

This matrix element vanishes unless exactly one of the spins changes its magnetic quantum 
number, i.e., unless the transition occurs between two states 

12) = jm 0 ,m'. ... TI />  N ) and 1s) = I , r I L [ l h L 1 l ,  ... m F j  ( 10.56) 

with 7n3' = , I  for all but one j .  While the total signal is the sum over all spins (qubits), it 
is straightforward to distinguish the individual qubits. As we discussed in Section 10.2.1, all 
spins in an NMR qubit register must have different Larmor frequencies to allow addressability 
for logical operations. This condition also implies that their precession frequencies during 
detection will be different. A Fourier transformation of the FID from such a system therefore 
separates the contributions from different qubits in frequency space. 

Measuring the FID is apparently a straightforward way to measure the expectation value of 
transverse spin components. When a quantum algorithm requires the measurement of popula- 
tions, it can be trivially modified to allow for implementation on an NMR quantum computer. 
One adds an RF pulse that converts the populations into transverse coherence and again mea- 
sures the FID of the system. 
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Figure 10.13: Readout o f  pupulations with the help ol' an RF pulse for thc two-qubit states. The 
vector diagram shows how thc spin is rotated by the RF pulse and the (single line) spectra show 
how the resulting amplitudes identify the qubit state. 

Figure 10. I3 shows as an example, the signal that one observes from a single qubit if it is 
in one of the two eigenstates before the RF pulse is applied. If it is in the ground state, which 
corresponds to the spin pointing along the direction of the magnetic field, the RF  pulse rotates 
it to the positivc ?/-axis. Since S ,  is the observable, we expect a positive signal at the Larmor 
frequency of this qubit. If the spin is in the logical 11) state instead, it always points in the 
opposite direction and thc signal becomes negative. 

There are cases in quantum computation, where the readout process hinges on the collapse 
of a wavcfunction. For those cases, which include Shor's algorithm, the algorithm must be 
modified when it is applied to an NMR system. The non-existence of a collapse is handled 
by appcnding an additional step, which is polynomial in the number of bits and allows one to  
obtain the result from enseniblc mcasurements [GC97, VSB+OI 1. 

10.2.7 Readout in multi-spin systems 

As thc number of qubits increases, the number of resonance lines in the associated NMK 
spectra also increases. While the addressability criterion mandates an increase in the number 
of lines that is proportional to the number of qubits, the couplings between the spins (which 
are necdcd for two-qubit gates) increase the number of lines much more rapidly. If all spins 
arc couplcd to each other, the total number of lines is 7 % ~  = N 2 N - ' ,  where N is the number 
of qubits. This exponential increase in the number of lines in a finite frequency bandwidth, 
limits the number of useful qubits. Figure 10.14 shows the number of resonance lines for N 
= 1 ,  2. and 3 qubits. 

While this large number of resonance lines limits the size of the qubit system, it does 
have the advantage that the spectrum contains much more information about the state of the 
quantum mechanical system than the simple readout of individual qubits. Every group of lines 

ociatcd with transitions of qubit i j )  can also yield information about the states of the other 
qubits. To illustrate this, we consider the two-qubit system of Section 10.2.2 and assume that 
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Figure 10.14: Increase in the number of resonance lines in N spin systems. 

we are interested in the readout of the states 

Figure 10.15 shows how these states can be distinguished by applying an RF pulse, rnea- 
suring the FID and calculating its Fourier transform. If we apply the pulse only to the A or 
X spin, we measure only a partial spectrum. Each partial spectrum consists of two resonance 
lines that can be labeled with the quantum state of the coupling partner. If the coupling part- 
ner X is in state lo), e.g., the spectrum of the A spin only shows the single resonance line 
associated with this state. Even the partial spectrum of either spin provides therefore a clear 
distinction between all four possible cases. It is also possible to apply an RF pulse that excites 
both spins simultaneously. The resulting nonselective spectrum, shown in the last column, 
again allows for a clear distinction between the four cases. 

p before pulse A Spectrum X Spectrum AX Spectrum 
(selective pulse) (selective pulse) (nonselecllve pulse) 

10> Il> 10> If> A X A X  

l o b  L L U  
101> 

Figure 10.15: Signals in  NMR readout for different spin states. 

This scheme can easily be extended to more spins; examples are given, e.g., in [CPH98]. 
In general, a spectrum of a weakly coupled N-spin system contains N2Np' resonance lines. 
Taking into account that the usual NMR experiments measure not only c, S&, but also c, S:, 
this number doubles to N 2 N .  The number of resonance lines is thus even larger than 2N, 



the total number of coefficients that describe a pure state of N qubits. This shows that the 
resonance line amplitudcs are not independent of each other. 

10.2.8 Quantum state tomography 

If the system is not in a pure, but in a mixed state (to which it unavoidably evolves in the 
course of a computation process), a density operator is needed to fully describe the state. 
The density operator contains ( 2 N ) 2  = 2” elements, which is more than the amount of 
information contained in a single NMR spectrum. It is nevertheless possible to measure the 
complete density operator by combining results from a series of measurements. 

For this purpose, we expand the density operator in an operator basis that consists of all 
possible (tensor) products of the operators 

lt> s;, s$, S’i. ( 10.58) 

where i = 1 . . N  runs over all qubits. This results in a total of /IN = 22N operators that are 
orthogonal and form a complete basis for the expansion of the density operator. 

In this basis, the information that can be obtained from the FID without applying a pulse, 
yields the coefticicnts of all operators of the typc 

( 10.59) 

and 

11 63 1 2  c;3 . ’ ’S!. ($ . . . s; @ . . ’ c.3 I N .  ( 10.60) 

More precisely, the terms that are obtained i n  this way include all products that include 
exactly one transvcrse ( , I :  or y) term, while all other factors are either unity or S: operators - 
the N 2 N -  * t e r m  counted before. 

To measure the other components of the density operator, we use unitary transformations 
that turn them into observable operators as listed above. This can be achieved by selective 5 
rotations applicd to single qubits. Such a rotation of qubit k around the x-axis, e.g., turns the 
(unobservable) operator 

l1 IR l2 E; ’ .  . s;; w ” ‘  @ sk 63 ‘ . ’  c3 lN.  (10.61) 
?/ 

into 

1’ fz3 1 2  63.. . s.’ .I; @ .  ~ . . @ s; @ . . . @ I N ,  ( 10.62) 

which is observablc. Since every qubit must be rotatcd around the z as well as thc ;v axis, we 
need a total of 2N qubit rotations to get the complete information about the density operator. 

This procedure is called “quantum state tomography” [CGK98, CCKLyB] , in reference to 
X-ray tomography, where a sequence of two-dimensional pictures (or projections) is used to 
reconstruct the three-dimensional body being imaged. 

Figure 10.16 shows an example of such a tomographic analysis of the density operator 
that resulted from applying the Grover algorithm to a two-spin system ICGK981. The largest 
dcnsity operator element corresponds to the population of the 111) state. 
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Figure 10.16: Theoretical and experimental density operator components during Grover cxper- 
iment. 

10.2.9 DiVincenzo’s criteria 

DiVincenzo [DiVOO] listed five criteria that implementations of quantum computers should 
fulfill to be considered “useful”. We summarize here to what degree liquid state NMR fulfills 
these criteria: 

1. Well-defined qubits. 

The usual implementations use nuclear spins S = 1/2 and identify 10) = I T) and 11) = 
I J). The qubits are well characterized in the sense that their energies are well known 
and the coupling to external fields occurs only through the Zeeman interaction. In the 
liquid state NMR experiments, logical qubits are not represented by individual spins, 
but by collections of spins of the order of Avogadro’s number. This is in contrast to the 
usual assumption of quantum computation theory, and some consequences of this need 
to be addressed in the context of readout and initialization. 

In liquid state NMR, the individual qubits are distinguishable by their resonance fre- 
quency. The resonance frequencies of the different spins may be shifted by chemical 
shift effects or the qubits may be represented by different isotopes. The latter is clearly 
preferable, since it avoids cross-talk between qubits. However, since the number of use- 
ful isotopes is limited, assigning different isotopes to different qubits is clearly not a 
scalable procedure. When one uses chemical shift differences, the separation should be 
as large as possible to allow for fast operations of logical gates. 

In summary, NMR systems fulfill the “qubit-identification” requirement quite well, but 
liquid-state NMR appears to fail the scalability criterion. 

2. Initialization into a well defined state. 

In liquid state NMR, initialization is achieved by relaxation, which provides for an ex- 
cess of spins in the ground state. For algorithms designed to work with pure states, this 
must be combined with the preparation of a pseudo-pure state. While these procedures 
can be used for small spin systems, they are clearly not scalable for larger systems. 
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3. Long decoherence times. 

The long decoherence time (of the order of a second) of liquid state NMR is one of its 
biggest advantages. However, typical gate times are at least several milliseconds, so the 
number of gates that can be applied is limited to approximately 100. 

4. A universal set of quantum gates. 

At this point, liquid state NMR scores very well: the implementation of unitary trans- 
formations is well established and rather straightforward. 

5. A qubit-selective readout. 

Another strong point, as discussed above. The differentiation of qubits requires chemical 
shift separation, but is much easier to achieve than the addressing during gating. It is 
even possible to read out the full density operator, rather than only the populations, as i n  
standard quantum computing algorithm. 

10.3 NMR Implementation of Shor's algorithm 

The Shor algorithm (see Section 8.3) was implemented i n  an NMR system [VSB+Ol] by a 
group at IBM Almaden Research Center near San Jose, California. The smallest integer to 
which the Shor algorithm can be applied is N=15 (remember: N must be odd and not the 
powei of a prime). 

10.3.1 Qubit implementation 

For the implementation of Shor's factoring algorithm, Vandersypen et a!. used a custoin- 
designed moleculc with five l!'F and two "$C nuclear spins. 

Figure 10.17: Cu\Lorn dcsigncd molecule with xven nuclcar spin quhils [VSB ' 011 

The use of carbon and fluorine nuclei spreads the frequencies over a relatively wide range 
and therefore nllows for fast processing. 19F and '"C arc hoth spins-1/2, have generally long 
dccoherence timcs and a large chemical shift range that allows for fast gating of the qubits. 
As actual qubits, five fluorine and two carbon nuclei were used; two additional carbon nuclei 
wcre not used in this experiment. 
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The chemical shift separation between the qubits is typically of the order of 1 kHz, thus 
allowing for single-qubit gate switching times of the order of 1 millisecond. Each qubit is 
coupled to every other spin, although some of the coupling constants are relatively small. 
While the large number of coupling constants allows for direct implementation of all two- 
qubit gates, it leads to a rather complicated spectrum: since every spin is coupled to six other 
spins, we expect 26 = 64 resonance lines for every spin. Most of these transitions can actually 
be observed. Another consequence of the many couplings is that for every gate most of the 
couplings must be refocused. 

(0) (1) (2) (3) (4) 

I" " ____"  "" .... ".l "."" ....... A 

Figure 10.18: Shor's algorithm. 

Shor's algorithm requires a quantum register consisting of n qubits for the modular expo- 
nentiation and rri qubits to store the number N to be factorized. For N = 15, m must be at 
least 4 and n, i n  the general case 8. However, using specific properties of the N = 15 case, 
n can be reduced to 2. In their implementation, Vandersypen et al. chose n = 3,  to find 
additional periods. 

10.3.2 Initialization 

Shor's algorithm starts with the initial state 

IG") = j0000001), (10.63) 

i.e., a pure state. The NMR system must therefore be first be brought from the thermal to a 
pseudopure state. In this case, Vandersypen et ul. used temporal averaging. As we discussed 
in Section 10.2.3, the temporal averaging process for two spins involves a sum over three 
different experiments. For the seven-qubit system used for the factorization experiment, the 
pseudo pure state preparation required averaging over 36 different experiments. 

The success of the preparation scheme can be checked easily by applying a selective read- 
out pulse to the system, measuring the resulting FID and converting it into a spectrum. If the 
system is in a pure (or pseudo-pure) state, each spin should have a well defined frequency, 
i.e., only one of the resonance lines that are generated by spin-spin coupling appears. As Fig- 
ure 10.19 shows, this is fulfilled to an excellent approximation in the spectra of the first three 
qubits. 

While the source register is initiated in the state lo), the target register is initially in state 
11). This is achieved by first initiating it into state 10) and subsequently flipping bit 7. 

The next step is the generation of the superposition of all spin states of qubits 1-3 (the 
input qubits) through the Hadamard transformation. The Hadamard gates were implemented 
by spin-selective pulses on the first three qubits. 
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Figure 10.19: Demonstration of piire state preparation i n  the speclra o f  qubils 1-3 [VSB'OI]. 

Figure 10.20: Implcmcntation of Shor's algorithm by gatcs for N=15 and ( ~ = 7  [VSB 

10.3.3 Computation 

One of the crucial steps of Shor's algorithm (as well as of corresponding classical algorithms) 
is the tnodular exponentiation j ( q )  = d 1  mod N for 2" values in parallel. As discussed in 
Section 8.3.3, this is done qubit by qubit with the help of the identity 

2 " -  1 
> (1  0.64) o,9 = n, q,, -1 (1,291gvo ... 

where (I,) are the bits of the binary representation of y. While the period of f ( y )  can be as 
large as N ,  only the values 2 and 4 appear for N=15. Since IJ, musl be coprime with N ,  the 
possible choices o f a  for N=15 are 2, 4, 7, 8, 11 ,  13 and 14. For the choices u = 2, 7, 8, and 
13, one finds ~ 1 . ~  riivtl 15 = 1, while (i2 r i i o t l  15 = I for (1 = 4, I I and 14. According to 
the above expansion, one therefore needs only the two least significant bits of q. i.e.. (10 and 
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y1. Vandersypen et al. chose to use three bits for encoding q; the additional qubit may be used 
for test purposes. Together with the 7n = log2 15 = 4 qubits needed to encode f ( q ) ,  a total 
of seven qubits were used. To implement the exponentiation efficiently, the powers of u were 
precomputed on a classical computer. The eight values of q are stored as a superposition in 
the qubits labeled 1, 2, 3 in Figure 10.20. The exponentiation is then computed in the target 
register through CNOT operations. 

The first step is a multiplication mod 15 with a,‘’(’, i.e., multiplication by a if qubit 3 is 1, 
no operation if qubit 3 is 0. Since the target register is now in state Il), multiplication by 
a can be done by adding ( a  - I ) ,  again controlled by qubit 3. This addition can be imple- 
mented by two CNOT operations: for a = 7, qubits 5 and 6 must be changed from zero to 1 .  
The controlled addition is therefore achieved by the operation CNOT ( 3 , 5 )  CNOT ( 3 ,  S), as 
shown in Figure 10.20. For IL  = 1 I ,  qubits 4 and 6 must be incremented, which is done as 
CNOT (3,4) CNOT (3,Ci). 

The second step is multiplication with (?‘*I mod 15. For IL  = 7, this corresponds to multi- 
plication by 4, controlled by (11 or qubit 2 in Figure 10.20. In a four-bit register, multiplication 
by 4 can be implemented by swapping bits 0 with 2 and 1 with 3. In Figure 10.20, this corre- 
sponds to SWAP operations of 4 with 6 and 5 with 7, both controlled by qubit 2. Each SWAP 
operation can be decomposed into 3 CNOT operations, of which the second is turned into a 
CCNOT for the controlled SWAP. These CNOT and CCNOT operations are labeled CDE and 
FGH in Figure 10.20. Vandersypen et al. used a number of simplifications (=“compiler opti- 
mizations”) to simplify or eliminate specific gates, taking advantage of the special situation. 
These simplifications are indicated in the figure as dotted gates (can be eliminated) or dashed 
gates (can be simplified). Gate C can be eliminated because the control qubit is zero, thus re- 
ducing the gate to the unity operation. The doubly controlled gates D and G act on target bits 
that are in basis states (not superposition states), which allows for additional simplifications. 
Gate F can be simplified to a NOT operation, since the control qubit is always I .  Finally, gates 
E and H can be omitted, since they act on qubits that are no longer accessed afterwards and 
therefore do not affect the result. 

After the multiplication step, Shor’s algorithm requires an (inverse) QFT, in this case on 
the three most significant qubits. It contains Hadamard gates and phase gates (i.e., z-rotations) 
of 45 and 90 degrees. In practice, the phase gates are usually turned into rotations of the 
coordinate axes: rather than apply actual i-pulses (which can be implemented by composite 
rotations), one simply shifts the phases of all earlier pulses by the corresponding amount. 

10.3.4 Readout 

At the end of the standard algorithm, the information is stored in the populations of the spin 
state. As discussed in Section 10.2.6, one obtains the populations by applying an RF pulse, 
measuring and Fourier transforming the FID. 

The three spectra shown in Figure 10.2 1 display the resulting state of the three qubits for 
an input of a, = 11. They contain only positive lines for qubits 1 and 2, indicating that they 
are in state 10) at the end of the computation. Qubit 3 has one positive and one negative line, 
indicating that it is in a superposition state 10) k 11). 
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Figure 10.21: Spcctra olLhe three result-qubits for  the input n = 11 (VSB'OI] 

After the inverse QFT, qubit 3 is the most significant bit. The resulting state is therefore 
a mixture of 1100) = 14) and l000) = 10). This indicates that the periodicity is 11 = 4 and 
r ~ 2"/4 = 2. A classical calculation yiclds the greatest common divisor of 112/2 i 1 and 
15 as 3 and 5, and thus directly the prime factors of N .  

Qubit 1 

uy,hJ- 10> + 11> 
Qubit 2 

Figure 10.22: Spectra of the threc result-qubits for thc input o = 7 [VSB ' 011. 

If the input n = 7 is used instead. the observed spectra shown in Figure 10.22 show that 
both qubits 2 and 3 are in superposition states, while qubit I is again in state 10). The possible 
results are therefore the states 1000) = lo), 1010) = 12), 1100) = 14), and 11 10) = 16), indicating a 
period of2. We conclude that I '  = 8/2 = 4 and ~ c r 1 ( 7 ~ / ~  1 I.  15) = 3 , s  as before. Obviously 
both trial values for (1 produce the expected result. 
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10.3.5 Decoherence 

The experimental implementation of Shor's algorithm represented a milestone for quantum 
information processing, not because of the result itself, but because it provides the possibility 
of studying limitations to quantum information processing in a working example. 

I I I 8 

Figure 10.23: Pulse sequence used for the implementation [VSB'OI]. 

The IBM group used some 300 radio frequency pulses to implement the algorithm. Most 
of the pulses were used not for the processing itself, but to compensate for unwanted effects, 
such as spin-spin couplings and magnetic field inhomogeneity. The overall sequence lasted 
almost 1 second, which is longer than some of the relevant relaxation times (=decoherence 
times). This caused a significant loss of information and therefore deviations of the experi- 
mental measurements from the idealized behavior. Vandersypen et al. analyzed these devia- 
tions with a model for the relevant decoherence processes and found that they could explain 
most of the differences with their model. 



11 Ion trap quantum computers 

Among the first of the systems that were suggested for building a quantum computer was a 
linear trap with stored atomic ions [CZ95]. Atomic ions have some attractive properties for 
use as qubits: qubits can be defined in ways that make decoherence very slow while simulta- 
neously allowing for readout with high efficiency. To avoid perturbing these ideal properties, 
the ions are best isolated in space [D:h90]. This can be achieved with electromagnetic traps, 
which arrange electric and magnetic fields in such a way as to create a potential minimum for 
the ion at a predetermined point in space. 

11.1 Trapping ions 

11.1.1 Ions, traps and light 

Earnshaw’s theorem states that static electromagnetic fields cannot trap a charge in a stable 
static position’. However, using a combination of static and alternating electromagnetic fields 
it is possible to confine ions in an effective potential. 

Paul trap Penning trap 

Figure 11.1: Two classical ion traps 

Figure 1 1.1 shows schematically the geometries used in the two traditional traps, the Paul 
and Penning traps [Pau90]. Both consist of an axially symmetric set of electrodes. The elec- 
trodes on the symmetry axis have the same potential, while the ring has the opposite polarity. 

’ In the purely electrostatic cnsc the exlstence of a minimum of the electrostatic potential in a charge-free region 
would violate Gauss’ law. See [BG97] for a discussion of Earnshaw’s theorem in  a modern context. 
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The resulting field is roughly that of a quadrupole, where the lield vanishes at the center and 
increases in all directions. 

In the case of the Paul trap, the voltage on the electrodes varies sinusoidally. Thc ion is 
therefore alternately attracted to the polar end caps or to the ring electrode. On average, it 
experiences a net force that pushes it towards the center of the trap. In the exact center, the 
field is zero and any deviation results in a net restoring force. The Penning trap has the same 
electrodes, but the electric field is static: it is repulsive for the end caps. The ions arc prevented 
from reaching the ring electrode by a longitudinal magnetic field. 

11.1.2 Linear traps 

- I -  

Figure 11.2: Linear quadrupolc trap. [NRL + 00 I 

I I 

The Paul Trap can also be made into an extended linear trap IPDM89, RGB+92]. Fig- 
ure 11.2 shows the geometry uscd in this design, which consists of four parallel rods that 
generate a quadrupole potential in the plane perpendicular to them. The quadrupole potential 
is alternated at a radiofrequcncy, and the time-averaged effect on the ions confines them to 
the symmetry axis of the trap, while they are free to movc along this axis. A static potential 
applied to the end caps prevents the ions from escaping along the axis. The resulting effective 
potential (averaged over an rf cycle) can be written as 

v = wt.2 + w y  + w y ,  (11.1) 

where LU',,, N = .c, z are the vibrational frequencies along the three orthogonal axes. By 
design, one has w,,. = w!, >> wZr i t . ,  strong confinement perpendicular to the axis and weak 
confinement parallel to the axis. 

Tons that are placed in such a trap will therefore preferentially order along the axis. The 
distance between the ions is dctcrmined by the equilibrium between the confining potential 
d2 2 
z y  and the Coulomb repulsion between the ions. This type of trap has two important ad- 

vantages for quantum computing applications: it allows one to assemble many ions in a linear 
chain where they can be addressed by laser beams and the equilibrium position of the ions (on 
the symmetry axis) is field-free. This is in contrast to the conventional Paul trap where the 
Coulomb repulsion between the ions pushes them away from the field-free point. As a result, 
two or more ions in a Paul trap perform a micromotion driven by the r l  potential. In the linear 
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Figure 11.3: Strings of ions in linear traps. [NRLfOO] 

Paul trap, the field-free region is a line where a large number of ions can remain in zero field 
and therefore at rest. 

When more than one ion is confined in such a trap, the system has multiple eigenmodes of 
the atomic motion. The lowest mode is always the center of mass motion of the full system, 
in analogy to the motion of atoms in a crystal. A change of the fundamental vibrational mode 
can be compared to the Mossbauer effect, where the recoil from the photon is shared between 
all atoms in the crystal. The higher vibrational modes, which correspond to phonons with 
nonzero wave vector, as well as the vibrational modes that include wave vector components 
perpendicular to the axis, will not be relevant in this context. 

11.2 Interaction with light 

The interaction of light with atomic ions is essential for building a quantum computer on the 
basis of trapped ions: it is used for initializing, gating, and readout. We therefore discuss here 
some of the basics of the interaction between light and atomic ions. 



11.2.1 Optical transitions 

When light couples to atomic ions, the electric field of the optical wave couples to the atomic 
electric dipole moment: 

+ 

7-tc = - E . &  (11.2) 

where I? is the electric field and jlt the atomic electric dipole moment. For the purpose of 
quantum information processing applications, it is important to distinguish between “allowed” 
and “forbidden” optical transitions. In the first case, the matrix element of the electric dipole 
moment operator for the transition is of the order of C in; in the latter, it is several 
orders of magnitude smaller. 

The size of the electric dipole moment determines not only the strength of the interaction 
with thc laser field and thus the ease with which the ion can be optically excited, it also 
determines the lifetime of the electronically excited states. According to Einstein’s theory 
of absorption and emission, the spontancous cmission rate is proportional to the square of 
the matrix element. States that have an optically allowed transition to a lower lying state are 
therefore unsuitable for use in quantum computers, since the associated information decays 
too fast. 

While an atom has an infinite number of energy levels, it is often sufficient to consider a 
pair of states to discuss, e.g., the interaction with light. Writing 19) for the state with the lowcr 
energy (usually the ground state) and 1.) for the higher state, the relevant Hamiltonian can 
then be written as 

R2T,.S = -wnSz ~ ‘Lw, cosjwtjs:,,. (11.3) 

Here, /wn = Ep ~ E!, is the energy difference between the ground and excited state and 
2wl r o s ( w / )  is the coupling between the laser field (with frequency w) and the atomic dipole 
rnornent. The operators s,, and s, are pseudo-spin- 1/2 operators. 

If the Hamiltonian is written in this way, the analogy to the real spin-l/2 system, as was 
discussed in Chapter 10, is obvious. This allows us to treat two-level transitions as virtual 
spins-1/2 IFVH.57 I. The interaction representation with respect to the laser frequency “ro- 
tatcs” now at thc lascr frcqucncy w around thc z-axis of thc virtual spin: 

1 1.2.2 Motional effects 

When an atom is not at rect, its trancition frequency ic shifted through the Doppler effect: 

..+ 

u,=wr)+h u‘, (1 1.5) 

where is (he wave vector of the laser field and ii the atomic velocity. In free atoms, the 
vclocity can have arbitrary values, with the probability of a specific velocity determined by 
the Boltzmann dislribulion. The optical spectra o f  ensembles oraloms are therefore broaclened 
andor shifted according to their motional state. 
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Figure 11.4: Energy levels of the trapped atom (left) and the resulting spectrum (right). 

In trapped ions, the motional energy is quantized. Depending on the trap potential, the 
motional states can often be approximated by a collection of harmonic oscillators. Harmonic 
oscillator motion does not shift the frequency by arbitrary amounts, but creates sidebands that 
are separated from the carrier frequency wg by the harmonic oscillator frequency. As shown 
in Figure 1 1.4, the trap motion creates a set of sidebands whose frequencies can be written 
as w, = wo + nwl ' ,  where --cx) < 71 < a: is the order of the sideband and WT is the 
trap frequency. Since every motional degree of freedom creates such a sideband pattern, the 
resulting spectrum can contain a large number of resonance lines. 

In all techniques suggested to date, for quantum computing with trapped ions, the spatial 
coordinates of the qubit ions play an important role either as a qubit or as a variable used for 
coupling different qubits. If the spatial degrees of freedom are used in the computation, the 
motional state of the ion must be well controlled and initialized to a specific state, which is 
usually the motional ground state. The ions must therefore be cooled into their ground state 
as a part of the initialization process [KWM+98]. 

11.2.3 Basics of laser cooling 

The technique to bring them into the ground state is laser cooling, which was developed in the 
1980's [WD75, NHTD78, WDW78, Chu98, Phi98, CT981. It relies on the transfer of momen- 
tum from photons to atoms during an absorption (and emission) process. Suitable arrange- 
ments allow one to use this momentum transfer to create extremely strong forces that push 
the atoms in the direction of the laser beam. Adjusting the experimental parameters properly, 
these forces can be conservative (i.e., they form a potential) or they can be dissipative friction 
forces. Conservative forces are useful for logical gate operations, while frictional forces are 
useful for initialization and cooling. 

The origin of these mechanical effects of light can be traced to the momentum hk that 
every photon carries. As shown in Figure I I S,  the photon momentum is transferred to the 
atom whenever a photon is absorbed. During the subsequent spontaneous emission process, 
the recoil of the photon emission also contributes to the mechanical effects of the light on 
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Figure 11.5: Phoron momenlum a\ the \otirce ol'mechanical olfects o l  light. 

the atom. However, the emission is, i n  contrast to the absorption process, not directed. The 
avcragc effect of all emission processes therefore vanishes. 

The Inomenturn change due to the transfer of a single photon momentum i s  relatively 
small; it corresponds to a change in the atomic velocity of a few c d s .  As an example, we 
calculate the rnomenliim transferred by a single photon at a wavelength of 589 nin, a prominent 
wavelength in the spectrum of Na: 

(11.6) 

Given the mass ???Na = 3.818 . 10-2" kg of the sodium atom, this corresponds to a change in 
it5 velocity of 

Ap I cm 
nu = - - - L.95-. 

7'' N n S 
(1 1.7) 

This estimate was first made by Einstein in 19 17 [Ein 171 and verified experimentally by 
Frisch 1933 IFri331 with a classical light source. Since the atoms scattered less than three 
photons in his experiment, the effect was very small. 

However, if an allowed atomic transition is excited by a laser, the atom re-ernits the photon 
within a few nanoseconds ( 1  6 ns for Na) and is ready to absorb another photon. It can therefore 
scatter up to 10' photons per aecond, and the momentum transferred by them adds up to a force 

corresponding to an accclcration of 

(I 1.8) 

( I  I .9) 
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Figure 11.6: Schcmatics of sideband cooling for a single degree of freedom. 

This implies that an atom arriving with the velocity of a jet plane can be stopped over a 
distance of a few centimeters. 

In the case of trapped ions, the situation may also be discussed in terms of resolved mo- 
tional sidebands. Cooling is then achieved by irradiating the lower-frequency sidebands, as 
shown in Figure 11.6. In reality, the laser drives not only the ly, 3}  H / e ,  2) transition, but all 
ly, 7 1 )  H If:, 7 1  - 1) transitions for TI, > 0. For each absorption event, the vibrational quantum 
number is reduced by one unit, since the photon energy is smaller than the energy difference 
of the two internal states. The emission process occurs with roughly equal probabilities into 
the different ground states, thus not affecting the average vibrational energy. The only state 
that is not coupled to the laser is the (g, 01 state, since no transition with a frequency below 
the carrier originates from this state. As a result, all atoms eventually are driven into this state 
in the absence of heating mechanisms. 

11.3 Quantum information processing with trapped ions 

11.3.1 Qubits 

Since the atomic ions stored in traps have a large number of states, there are many distinct 
possibilities of defining qubits. Since spontaneous decay times through allowed transitions 
are of the order of a few nanoseconds, the requirement of long decoherence times implies that 



both states of the qubits must either be sublevels of the electronic ground statc or metastable 
states, i.e., states where all transitions to lower lying states are “forbidden”. 

il> 

nm 

Figure 11.7: Possihle qiibit implemcntation using ;I melnstablc state in C a t  . 

A typical example of a a qubit implemcntation is the Cat ion. In its ground state, the 
single valence electron is i n  the 4s orbital, which is abbreviated by the term symbol 4‘S1p. If 
the electron is excited into ii 3 d orbital, it has angular momentum L=2, and can only decay to 
the ground state by emitting two quanta of angular momcntum. These quadrupole transitions 
are “forbidden” in the dipole approximation, resulting in long lifetimes of the excited state. 
Nagerl et NL. [NRL+OO] therefore suggested using the transition between the 4’S1/2 ground 
state and the :j2 D512 excited state as a qubit. 

2 

IF=2, mF=2> 

Figure 11.8: Powihle qubit iinplemcntation using two hyperfine states of “Bef 
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The second common choice is to encode the quantum information in sublevels of the elec- 
tronic ground state [MMK+95 1. Figure 1 1.8 shows as an example the possible encoding of a 
qubit in the hyperfine levels of the electronic ground state of Bef .  The two qubit states corre- 
spond to the 1 F = 2 ,  r n F  = 2 )  and IF = 1.mp = 1) hyperfine states. Since the spontaneous 
transition rate between ground states is very small, the lifetime is again long compared to all 
relevant timescales. The transitions from the two ground state hyperfine levels to the electron- 
ically excited state 2Pl,2 are sufficiently well resolved to allow one to optically distinguish 
whether the ion is in the 12; 2 )  or 11.1) state. 

The initialization of the qubits must bring the ion into a specific internal state as well as 
into the motional ground state. While the laser cooling for the initialization of the external 
state was described above, the initialization of the internal state can be achieved by optical 
pumping. The principle of optical pumping is very similar to sideband cooling: a laser drives 
the system in such a way that only the desired state of the ion does not couple to the laser, while 
ions in other states can absorb light, become excited and return to an arbitrary sublevel of the 
ground state. These absorption / emission cycles are repeated until the ion falls into the state 
that does not couple. Given enough time, all ions will therefore assemble into the uncoupled 
state. The dissipative process that is required for the initialization step here is spontaneous 
emission. 

11.3.2 Single-qubit gates 

The way to generate (pseudo-)spin rotations that correspond to single qubit gates depends 
on the specific choice of the qubit states. If the two states encoding the qubit are connected 
by an optical transition, it is possible to apply laser pulses that have the same effect as RF 
pulses acting on spin qubits. The corresponding Hamiltonian ( I  I .4) has the same structure 
as that of a spin-1/2. Since the spatial separation of the ions is typically of the order of 10 
optical wavelengths, it is possible to use tightly focused laser beams aimed at individual ions 
to separately address the qubits [SKHRf03 I .  While the optical transitions used for such qubits 
must be “forbidden”, the tightly focused laser beams that are required for addressing qubits 
individually provide sufficiently high Rabi frequencies for efficient excitation. 

If the qubit is defined by two hyperfine states that are connected by a magnetic dipole 
transition, the situation is even more directly related to magnetic resonance. In this case, the 
transition between the two qubit states is a magnetic dipole transition, which can be driven by 
microwave fields [MWOI]. Since the wavelength of microwave radiation is large compared 
to the distance between the ions, microwaves will interact with all qubits simultaneously. 
Addressing of individual qubits therefore requires a magnetic field gradient to separate the 
transition frequencies of the ions. 

The second possibility for addressing hyperfine qubits is to use Raman laser pulses 
[SKE+00]. For this purpose, one uses two laser fields, whose frequency difference matches 
the energy level separation of the two qubit states. The laser frequency is close to a transition 
to an auxiliary state. Choosing an appropriate set of parameters (frequencies, field strengths), 
i t  is possible to generate laser pulses that effectively drive the transition between the two qubit 
states, with negligible excitation of the auxiliary state [MMK+95]. 
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Figure 11.9: Ranian excitation o f  il hyperline quhit. 

11.3.3 Two-qubit gates 

Two-qubit gates that can form the basis of a universal quantum computer, require, in addition 
t o  the single-qubit operations, an interaction between qubits. In the case of trappcd ions, the 
main interaction is thc Coulomb repulsion between neighboring ions, which are separated by 
a few micrometers in typical traps. 'This interaction can be utilized for two-qubit operations in 
different ways, depending on the qubit implenientation. 

The Coulomb repulsion between the ions couples their motional dcgrccs of freedom. As 
in a solid, the motion of ions in a trap is best described in t e r m  of eigenrnodes that involve 
all ions. This quantixed motion is often involved in quantum information processing. Initial 
demonstrations of quantum information processing used the lowest two states of the harmonic 
oscillak>r a s  it clubit IMMK 951, and other implementations and proposals involve them as an 
intermediate bus-qubit. 

Phase gate SWAP 

- 101) - 101) - 100) - loo) 

Figure 11.10: Sclective lascr pulhe to generate a phase shift of state 111) (left) and a SWAP 
operation (right). 

We therefore first discuss a two-qubit gate that uses the internal degrees of freedom of 
a 'Bef ion as the target qubit and the harmonic oscillator motion as the control qubit of a 
CNO'T gate [MMK-+9S]. Figure 1 1. I0 shows two examples of simple two-qubit gates that can 
be realized by such a acheme. The notation Ioj'j) refers to the intcrnal state ( v  and the motional 
slate 13. 
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In the first example, resonant radiation that couple5 only state state 111) to an auxiliary 
state executes a 271. pulse. As in any two-level system, the two-level system Ill) and laux) 
acquires a phase e’= = -1 by the pulse. Since the other states are not affected, the overall 
effect is 

1 0 0  0 
p 4 = [ 0  0 1 0  0 1 0 0 1 

0 0 0 - 1  

(1 1.10) 

This phase gate can be combined with two n/2 pulses into a CNOT operation [MMK+951. 
Another important two-qubit gate, the SWAP operation, can be generated by a 71. pulse on the 
red sideband (see Figure 11. lo). 

While motional degrees of freedom are not ideal as actual qubits, they appear to be useful 
for executing two-qubit gates between ions: A two-qubit gate between ions j and k is executed 
by first swapping the information from ion :j into the oscillator mode, executing the two- 
qubit gate between oscillator and ion k ,  as described above, and subsequently swapping the 
information from the oscillator back to ion j .  Since the harmonic oscillator motion involves 
all ions, this procedure works for any pair of ions, irrespective of their distance. 

11.3.4 Readout 

One of the important advantages of trapped ion quantum computers is the possibility of op- 
tically reading out the result with a very high selectivity and success probability. For this 
purpose one uses a laser whose frequency is tuned to an optical cycling transition from the 
state that is to be detected, focuses it on the ion to be measured, and detects the fluorescence 
emitted. 

Figure 11.11: Optical readout o f a  single qubit: the left-hand part shows the relevant states and 
transitions, the right-hand part an example of a cycling transition. 

The term “cycling transition” means that the the state to which the ion is excited can 
only fall back to the particular ground state from which it was excited. Figure 1 1.11 
shows an example of such a cycling transition. If circularly polarized light couples to the 
IF = I .  7 n ~  = 1) electronic ground state, it excites the atom into the IF = 2,  m F  = 2) ex- 
cited state. The selection rule A r r i F  = 6 1  does not allow for transitions to any ground state 
but the IE’ = 1. r n p  = 1) state. 



For suitable transitions, up to 1 O8 photons can be scattered. If the detection systern has a 
I D/o collection efficiency, this yields a very reliable decision whether the ion is in the particular 
state or not. 

h .3 

v1 

3 
8 
2 

8 e 

5 

m 

Y 

\ 

a) u 

u m 

0 
2 

E 

Icigure 11.12: Fluorcsccncc of a singlc Ba ion.  The quantum jumps indicate changes o f  the 
internal quantum state ol‘ the ion. 

Figure 1 1. I2 shows an example for an observed signal [SBNTX6]: when the single Ba ion 
is in the observed state, it scatters approximately 2200 photons per sccond; the background 
rate is less than 500 photons per second. As shown i n  the example data, the fluorescence level 
is an excellent indicator if the ion is in thc state that is being measured. The sudden drops in 
the fluorescence level indicate that the ion jumps into a different state, which is not coupled to 
the transition being irradiated. These transitions are referred to as “quantum jumps”. 

‘The detection scheme sketched here only provides a measure of the atom being in state 
10); a similar measurement of state 11) is only possible if that state is also part of a cycling 
transition. The complementary measurement of the atom being in  state 11) can be achieved 
in different ways. The first possibility is to take the abscnce of a result for the state 10) 
measurement as a measurciiient of the atom being i n  state 11). This is possible since the 
system (under ideal conditions) 1rzu.r.t be either i n  state 10) or state 11). A second possibility 
is to perform first the measurement of state /(I)  and then apply a logical NOT operation and 
a second measurement of state 10). Since the NOT operation interchanges the two states, ii 
subsequent measurement of the slate 10) is logically equivalent to a nieasuremcnt of state 11) 
before the NO?’ operation. 
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11.4 Experimental implementations 

11.4.1 Systems 

The most popular ion for quantum information studies is currently the Ca+ ion [NRL+OO, 
GRL+03]. For laser cooling, excitation of resonance fluorescence and optical pumping of the 
ground state, different transitions are used. The experiment therefore requires laser sources at 
the wavelengths 397 nm, 866 nm, and 854 nm. If the E2 transition between the ground state 
and the metastable D5j2 state is used as the qubit, a fourth laser with a wavelength of 729 nrn 
is required. Its frequency stability must be better than 1 kHz 

The long lifetimes make hyperfine ground states very attractive for quantum information 
processing applications. Examples for such systems are the 171Ybi {MWOl] and 'Be+ ions 
[SKE+00]. 

The linear Paul trap was mostly used for quantum information processing, but some vari- 
ants are also being considered. Tight confinement of the ions is advantageous as it increases 
the separation between the vibrational levels and therefore facilitates cooling into the motional 
ground state. In addition, the vibrational frequencies are involved in the logical operations. 
Accordingly higher vibrational frequencies imply faster clocks. 

Figure 11.13: Two ions in a small elliptical trap. 

Tight confinement can be achieved mainly by miniaturization of the traps. For the example 
shown in Figure I I .  13, the smallest trapping frequency is 8.6 MHz [KWM+98]. However, 
miniaturization is not without difficulties: it increases, e.g., the effect of uncontrolled surface 
charges in the trap and it makes addressing of the ions more difficult. 

11.4.2 Some results 

The earliest quantum logic operation was reported by the group of Wineland [MMK+95]. 
They used a "Be+ ion where one of the qubits was a pair of internal states, two hyperfine sub- 
levels of the electronic ground state, the IF = 2 ,  m~ = 2 )  and IF = 1, rriF = 1) states with 
an energy difference of 1.25 GHz. This qubit represented the target qubit. The control qubit 
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was defined by the two lowest harmonic oscillator states, which were separated by 11 MHL. 
A sequence of three Rainan pulses was used to implement a CNOT gate. 

Figure 11.14: Expcrimciital tcst of thc CNOT gale o n  \ingle "Be ' ion. 

Figure 1 1  . I4 shows the populations of the four possible states of the system before (front 
row) and after (back row) the application of the CNOT gate. The control qubit, which is 
shown in white, does not change during the CNOT operation. The target qubit, shown in 
black, remains also roughly constant when the control qubit is in the 10) state (shown in the 
first two columns) but changes when the control is 1 (3'"' and 4t" row). 

Other achievements with this systcin include cooling of two ions into the vibrational 
ground state and their entanglement [ KWM + 98, SKE+OO]. For this purpose the authors did 
not acldress the ions individually, but modified the effective Rabi frequency through fine-tuning 
of their micromotion. The resulting state was not a singlet state (but close to it) and the scheme 
is not directly applicable to quantum computing. 

Using Caf ions in a linear trap, optical addressing of individual ions was demonstrated 
[NLRf991, and in a chain of three ions, coherent excitation of ions [RZR+99]. 

The two-qubit Cirac-Zoller gate ICZC)S] was realized on lwo trapped Ca+ ions 
[SKHR-t03] by tuning the lascr to a blue-shifted sideband, where, in addition to the electronic 
transition of the given ion, the collective motion of the two ions was also excited. Single- 
qubit gates were realized by a laser beam whose lrequency was resonant with the quadrupole 
transition and which was focused so tightly that it interacted only with a single ion. The final 
state was measured by exciting the S-P transition of the trapped ions and measuring the flu- 
orescence. Since the ions can only be excited when they are in the S state, high fluorescence 
counts are indicative of the qubit being in the 10) state. 

A two-qubit gate has also been implemented on two trapped beryllium ions by Lcibfried 
rt L I ~ .  [LDMS03]. They used two hyperfine states of the electronic ground state to store the 
quantum information. In  this experiment, the motion of the ions was excited by two coun- 
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Figure 11.15: CNOTgnte irnplcmented on two trapped Ca+ ions [SKHR+03]. 

terpropagating laser beams, whose frequencies differed by 6.1 MHz. As a result, the ions 
experience a time-dependent effective potential that resonantly excites the oscillatory motion 
in  the trap. The parameters of the excitation were chosen such that the ions were not directly 
excited, but instead their quantum states were transported around a closed loop in parameter 
space. As shown by Berry [Ber84], the parameters of such a circuit can be chosen in a way 
that the transported states acquire a net phase. Leibfried et al. used this procedure to imple- 
ment a phase gate on their system. Since the laser beams interact with both ions, additional 
lasers will be required for generating specific single-qubit gates in this system. 

11.4.3 Problems 

One of the biggest problems of ion traps is that the ions, as charged particles, are relatively 
sensitive to stray fields in the vicinity. These fields can adversely affect the motion of the ions 
and, if they are time dependent, they heat the ions. Typical heating times are of the order of 
1 ms [KWM+98] for two ions in a trap. With increasing numbers of ions, heating rates are 
expected to increase so that not only the number of particles that couple to these stray fields, 
but also the number of degrees of freedom that can be driven, increases. 

Like all other implementations of quantum computers, ion traps will have to demonstrate 
that they can perform a sufficiently large number of gate operations. As the number of ions 
in a trap increases, a number of difficulties (such as limited trap frequency, heating) increase, 
and it appears unlikely that individual traps will be able to accept a sufficiently large number 
(i.e., hundreds) of ions. This problem may be circumvented if the total number of qubits is 
stored in multiple traps. It has been suggested [CZKM97] that it should be possible to couple 
these separate traps through photons, thus creating an arbitrarily large quantum register with 
a linear overhead. 

Addressing of qubits by lasers must be achieved in the far-field diffraction-limited regime, 
where the separation between the ions must be large compared to an optical wavelength. This 
requirement sets a lower limit on the distance between the ions and therefore on the strength of 
the axial confinement potential. Since this potential also determines the vibrational frequency 



that enters the clock \peed, it is obvious that ion traps cannot be operated with arbitrary speed. 
While direct microwave pulses can distinguish between the ionc through their frequency \ep- 
aratioii in  an inhornogeneous magnetic field [MWOI], it is not clear that this will allow for 
signilicuntly tightcr continement. 
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12.1 Solid state NMR/EPR 

12.1.1 

Liquid state NMR was the first experimental technique that allowed the implementation of 
quantum algorithms and is currently (in 2004) still the basis for the most advanced quantum 
information processors. Nevertheless, there are serious obstacles to advancing this system 
much farther. One difficulty is associated with the preparation of pseudo-pure states [War97]: 
The procedure averages all populations but one. As long as the spin system can be described 
by the high-temperature approximation, the population of an individual spin state is inversely 
proportional to the number of states. It therefore decreases as 2-N with the number of spins 
N .  The detectable signal size therefore limits the possible number of spins to be used in such 
a quantum information processor. 

The reduction of sensitivity associated with the preparation of pseudo-pure states can be 
avoided by using algorithms that do not require pure states to work with. For this purpose, 
variations of algorithms have been developed that can be applied directly to mixed states 
[MBE98, BriiOO, BK021, For the purpose of database search, such modified algorithms can 
even be exponentially faster [BriiOO] than the original algorithm developed by Grover [Gro97 1. 

Another approach to beating the exponential decrease of the signal size due to the pseudo- 
pure state preparation would be to work with sufficiently high spin polarization that one can 
create good approximations of pure states. Virtually complete polarization of the electron 
spins by thermal relaxation can be achieved at a temperature of 100 mK in a magnetic field of 
2 T, where & = 27. High enough nuclear spin polarization, in contrast, cannot be achieved 
in thermal equilibrium within the currently accessible experimental conditions. 

Highly spin polarized hydrogen nuclei can be obtained by several noneyuilibrium tech- 
niques, e.g., by separating the ortho and para components in molecular hydrogen gas [BW86]. 
When the symmetry between the two nuclei in the molecule is broken, e.g., through achemical 
reaction, it may be possible to achieve truly entangled nuclear spin states [HBGOI]. Other ap- 
proaches to pure state preparation include optical pumping [Kas67] or polarization exchange 
with electron spins at very low temperature [DKS+88]. All these techniques require that the 
system be kept at low temperature to avoid competing processes that reduce the polarization. 
This also implies that the material that contains the spins be a solid rather than a liquid. 

Another aspect of liquid state NMR that may may be difficult to scale up to larger numbers 
of qubits, is the addressing of the individual qubits. Current implementations use the natural 
chemical shift range of the nuclear spins to distinguish them by their resonance frequency. 

Scaling behavior of NMR quantum information processors 

Quantum Computing: A Short Course from Theory to Experiment 
Joachirn Stoke, Dieter Suter 
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Since the chemical shift range is limited, this procedure cannot be extended to arbitrarily large 
numbcrs of spins. The larger the number of qubits, the smaller is thcrcfore the separation of 
their resonances and therefore the slower the switching spccd. It appears therefore necessary 
to design an addressing scheme that does not rely on chemical shift differences. 

Some solid state implementations of spin-qubits may be considered direct extensions of 
liquid state NMR: Kamperrnann and Veemnn used a quadrupolar system [KV02], much like 
a similar system in a liquid crystal (MSM+02]. A potentially more powerful scheme was 
demonstrated by Mehring rt al. [MMS03], which achieved entanglement in a spin-based quan- 
tum computer in the actual density operator, rather than in the pseudo-pure states typically 
employed i n  ensemble quantum computers. Their system used an electron spin coupled to 
different nuclear spins by hypertine interaction. As for all other spin-based quantum comput- 
ers demonstrated so far, there is no straightforward extension of this scheme to large (> 100) 
numbers of qubits. 

12.1.2 37P in silicon 

This should be possible, however. if the system proposed by Kane can be implenientcd 
IKan98). He proposed to use "'P impurities in Si, the only I = 1/2  shallow (group V )  
donor in Si. The Si::"P system was exhaustively sludied 40 years ago in the first electron- 
nuclear double-resonancc experiments. At sufficiently low ,'" P concentrations at temperature 
T = I .S K. the electron spin relaxation time is thousands of seconds and the ,'" P nuclear spin 
relaxation time exceeds 10 hours. This system would thcrcfore allow for a Inrge numbcr of 
gate operations within a decoherence time. 

-3 
T 4 0 0  mK BAc (%I0 Tesla) I 

- 
Barrier 

Si 

Figure 12.1: Proposcd scheme for ;1 quantum computcr that uses 31P aloms i n  a "Si matrix. 

Figure 12.1 shows thc principle of this scheme: the '"P atoms are to be placed in a matrix 
of 2"Si (which has no nuclear spin). Opcration of these qiibits would be identical to that of 
a liquid state NMR system, i.e., by radio frequency pulscs. However, since all qubits see the 
same chemical environment, their resonance frequencies are identical. As a way of addressing 
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them, it may be possible to use small electrodes, which are labeled “A-gates” and “J-gates”, 
respectively, in the figure. 

0.0 0.2 0.4 0.6 0.8 1 .o 

A-Gate Voltage (V) 

Figure 12.2: Dependence 0 1  the hyperfinc coupling constant on the gate voltage, according 
to [Kan98]. 

The hyperfine coupling between electrons and nuclei depends on the electron density at 
the site of the nucleus. If the voltage applied to the gate electrodes changes the electrostatic 
potential near the donor sites, it shifts the electrons closer or farther from the gates and thereby 
changes the electron density at the site of the nucleus and therefore its hyperfine coupling. The 
electrodes labelled “A-gates’’ could therefore be used for addressing the individual qubits by 
shifting their energies in and out of resonance. Similarly J-gates would move electron density 
between the donor sites, thus inducing an indirect coupling between qubits and allowing the 
addressing of pairs of qubits. 

12.1.3 Other proposals 

The concept of using donor atoms in silicon can also be modified by using Si/Ge heterostruc- 
tures [VYW+OO], rather than bulk Si. An attractive feature of such heterostructures is that the 
g-factor of the electron spin depends on the material. Using electrodes, the electrons can be 
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pushed into the Si or Ge material, thereby changing their resonance frequency and providing 
addressability for single-qubit gates. 

A scheme that is intermediate between liquid state NMR and the single-spin solid state 
NMR approach is the “crystal-lattice quantum computer” [YY99,LYGYOl, LCiY+02], where 
arrays of identical nuclear spins are used as a single qubit. Compared to liquids, these solids 
offcr the possibility of increasing the spin polarization, not only by lowering the temperature, 
but also by polarization transfer from elcctronic spins, e.g., by dynamic nuclear polariziitiun. 
Addressability of individual qubits coulcl be obtained by a strong field gradient produced by a 
micrometer-sized ferromagnet. Furthcrmorc. solids are required for some detection schemes 
that offer higher sensitivity than the usual inductive detection [ SMY+Ol]. 

Among the most attractive qubit materials are the endohedral fullerenes N@Cfio and 
P@Ctio [HMW+02]. The endohedral atom is trapped insidc the highly symmetric fullerene 
molecule, which can be considered a nanometer-sized trap for a neutral atom. The nitrogcn 
atom has an electron spin of S=3/2, while the nucleus has spin I = l  (for ‘“N or 1=1/2 for lr,N 
and ” ’  P). Addressing of the individual qubits can be achieved, e.g., with magnetic field gra- 
dients ISLO21; alternatively, the three stable group-live endohedrals could be combined into 
a quantum cellular automaton that does not require addressing of individual qubits [Twa03]. 
The interaction between cage and atom is repulsive and the electronic structure of the trapped 
atom is very similar to that of the free atom [GreOO]. Due to the high symmetry of its environ- 
ment, the decoherence times of the N@Cfio spin is quite long [KDP+97]; at low temperature, 
the spin-lattice relaxation time reaches approximately 1 second [HMW 021. 

12.1.4 Single-spin readout 

A difficult problciu in all spin-based quantum computer concepts is the readout of the result. 
While some of the concepts try to simplify this task by coding the qubits in ensembles of spins, 
it would bc prcfcrable to he able to reid out individual spin. Several successful singlc-spin 
measurements have been reported that werc hascd on optical readout [WBBf93, KDD 93, 
GDT+97,Kiih99], or scanning tunneling microscopy [MMROO,DW02]. A number of different 
approaches have been proposed [ Sid9 1,  GJFD+O2, MMJ031. 

The optical readout of spin is bused on the optical readout of electronic states, but the 
details are strongly system-depcndent. Early optical readout experiments concentrated on 
excited triplet states. Since the lifetime of the individual triplet states differs, a resonance 
microwave field that exchanged populations between them can “short-circuit” the decay of 
long-lived states. If a laser drives a transition froin the ground state to an excited singlet state, 
some of the molecules undergo inter-systcm crossing to the lower lying triplet state. Since 
its lifetime is rather long, molecules get trapped in this state, thus reducing the ground state 
population. The observed fluorescence is a measure of the ground state population. Resonant 
irradiation of triplet transitions changes the fraction of spins i n  the electronic ground state and 
is therefore observed as an increase in the fluorescence. 

Another experimental approach to single-spin detection uses a scanning tunneling m -  
croscope (STM) [MMROO. DW021. While the details of the experiment must be considered 
unknown, it appears that the tunneling current contains an oscillating component at the Larmor 
frequency if the tip is placed over a paramagnetic molecule. The oscillating signal componcnt 
is separated from the dc component and fed into a microwavc spectrum analyzer. 
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Figure 12.3: Spatial distribution of STM-EPR signal on graphite surface. The clcvatcd regions 
corrcspond to four adsorbed BDPA molecules. The right-hand part of the figure shows the STM- 
detected EPR spectrum of TEMPO clusters. The three resonance lines are due to the hypcrfinc 
interaction with thc 14N nuclcar spin. 

By setting the detection frequency to the EPR frequency, it is possible to map the spin 
density on the surface. The example shown in Figure 12.3 represents the signal from four 
organic radical molecules (BDPA) that were deposited on a graphite surface [DW02]. The 
right-hand part shows the STM-detected EPR signal from TEMPO molecules, another stable 
radical. In this case, the electron spin couples to the nuclear spin of the 14N nuclear spin. The 
hyperfine interaction splits the EPR resonance into three resonance lines, corresponding to the 
three nuclear spin states. 

Both techniques - optical and STM-EPR allow for the detection of individual electronic 
spins. While this is not a readout of the spin state, it can be used as such if the spin being 
detected is not the qubit to be read out, but coupled to the computational qubit: the coupling 
shifts the EPR frequency, allowing one to detect the spin state of the computational qubit 
through the EPR frequency of the readout qubit. 

A difficulty of the optical readout is that the spatial resolution is limited by the optical 
wavelength. Near-field optical techniques reach better spatial resolution, but their collection 
efficiency is too low for efficient readout of qubit states. STM-based systems require me- 
chanical motion, resulting in a slow readout process. For an all solid state system, electronic 
readout would provide the possibility to eliminate external optical and mechanical (STM) ac- 
cessories. A possible approach is to use single electron transistors (SET’S), in combination 
with spin-dependent tunneling processes [KMD+OO, BRB+03], but their viability for single- 
spin readout has still to be verified. 

12.2 Superconducting systems 

12.2.1 Charge qubits 

Superconducting materials owe their specific properties to a liquid formed by Cooper pairs, 
i.e., pairs of electrons held together by a coupling to lattice vibrations. The pairs have zero 
total spin and are therefore Bosons that can occupy a single quantum state subject to a simple 
effective Hamiltonian. As shown in Figure 12.4, typical qubit systems consist of a small 
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“box” of superconducting material that is in contact with a reservoir of Cooper pairs through 
ii Josephson junction (i.e., a thin layer of insulating material) [MSSOl]. In addition, a control 
electrode can change the electrostatic potential of the box. 

Reservoir 
Tunnel junction 

I Y C o n t r o l  electrode Gate voltage 

Figure 12.4: Components  ol‘ ;I superconducting qubit (left) and its Iowcst cncrgy lcvcls as a 
function of the gate voltagc (right). 

The Coulomb energy required to bring a single electron charge t: onto a neutral qubit 
island is Ec1 = r 2 / 2 ( C : ,  +(. : , I ) ,  where C, and (‘,, are the capacitances to the control electrode 
and the reservoir. In addition to  the mutual repulsion of the electrons, the Coulomb energy 
depends on the potential applied through the control electrode. Since this energy contribution 
also depends on the net charge on the box, it is convenient to write the electrostatic part of the 
Ilamiltonian as 

where 77, is the number of excess Cooper pairs in the box’ and ~ 1 , ~  - C ~ ~ l K l / 2 c  piuametrizes the 
control voltage. The control electrode therefore changes the number of excess Cooper pairs 
where the island is effectively neutral. 

The so-called charge qubits are defined by the number $11 of excess Cooper pairs on the 
island. Each 71. value yiclds one of the dashed parabolas in Figure 12.4, showing the quadratic 
dependence on the control voltage for each of the Cooper pair number eigenslates 1,1t.). These 
states are coupled by Cooper pair tunneling to thc reservoir, represented by the Josephson 
coupling energy E J .  Choosing states In) and I T ( .  + 1) as the qubit states (and neglecting all 
other states). wc can writc an cffcctivc Hainiltonian for thc qubit as 

(12.2) 

where we have shifted the origin of the energy axis to the mean of the two states. The pseudo- 
spin defined by the qubit therefore interacts with an adjustable rnagneiic field along its z-axis 
that is defined by the control electrode’s potential, plus an effective field along the x-axis, 
which is determined by the Josephson splitting. 

An obvious difficulty for this type of qubit is that the the Hainiltonian is not diagonal in 
the transverse lield, which is determined by the tunnel splitting, cannot be 

switched off. Thc control voltage, which affects the longitudinal field, can be used to apply 

I I t i s .  ,isaumed , ,  that the box contains no unpaired conduction electrons. To suppre tes with broken Cooper pairs, 
- .... 

parameters can he chosen such that the superconducting energy gap A is the largeat energy scale in the problem. 
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gates, but the qubits are never in a completely quiet state where the information does not 
evolve. A way to circumvent this problem was suggested by Makhlin ef al. [MSS99]: if the 
junction to the reservoir is replaced by a loop with two junctions, the magnetic flux through 
this loop can adjust the effective tunnel splitting. 

12.2.2 Flux qubits 

Rather than encoding the information in the charge degrees of freedom of small superconduct- 
ing islands, it is also possible to associate the qubit states with two states of distinct magnetic 
flux through a superconducting ring [MOL+99]. Compared to the charge qubits, flux qubits 
should offer longer decoherence times, since they are not subject to electrostatic couplings to 
stray charges. 

Figure 12.5: A simplc flux qubii (left) consist o fa  loop that includes a Josephson junction. The 
second version allows control ol'thc Josephson energy by the f lux a'. The total encrgy forms a 
double well potcntial as a function of the flux. 

Figure 12.5 shows the basic element of a flux qubit, a superconducting ring with a Joseph- 
son junction. The energy of the system is 

(12.3) 

where EJ is the Josephson energy, is an external flux 
bias, L the self-inductance of the loop, CJ the charge, and CJ the capacitance of the junction. 
The first term represents the Josephson coupling energy of the junction, which is a periodic 
function of the flux CP through the loop. The second term is the magnetic field energy of the 
flux, and the third the Coulomb energy of the charge over the junction. 

For suitable parameters, the total energy forms a double well potential, as shown on the 
right-hand side of Figure 12.5. The two minima correspond to the two basis states of the flux 
qubit, which are coupled by the junction energy E J .  The longitudinal component of the ef- 
fective magnetic field is now determined by the external flux, while the transverse component 
depends on the junction energy. In close analogy to the charge qubit, it is again possible to 
tune the junction energy by inserting a small loop and adjusting the flux through this control 
loop, as shown in the center of Figure 12.5. 

= h / 2 ~  is the flux quantum, 
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12.2.3 Gate operations 

As discussed above, the Hamiltonians that describe the charge as well as the flux qubits can 
be brought into the form of effective spin-l/2 systems, which are acted upon by effective mag- 
netic ficlds. Depending on the details of the implemcntation, the componcnts of this effective 
field can be changed over a certain rangc by suitable control parameters. Two diffcrent ap- 
proaches have been used to implement gate operations: the control parameters can be switched 
between different values and left there at constant values for the suitable duration, or they can 
be modulated to resonantly excite a transition bctween the basis statcs. 

If dc (unmodulated) pulses are used, the whole process of switching the control field on. 
letting the systcm evolve, and switching back, should be fast on the timescale of the unper- 
turbed evolution of the systcm. With dc pulses, a coherent superposition of the two states can 
be created by initialization of the system into the ground state and then suddenly pulsing the 
control field to equalize thc energy of the two states [NPT99]. Leaving them in the degenerate 
states for a quarter of the tunneling cycle time, creates an equal superposition of the two states. 
This superposition remains if the control field is switched off sufficiently rapidly. Thcse very 
demanding requirements can be relaxed if resonant irradiation is used IVAC+O2, YHCf021. 
The resulting evolution is then exactly that of a spin- 1/2 under resonant irradiation. 

Like in any other implementation, two-qubit gates require a coupling between qubits. This 
can be implemented directly between qubits either through the Coulomb interaction between 
chargcs, which yields a coupling operator SJ,S:, i n  the basis of Eq. (12.2), or through induc- 
tive coupling bctween flux states, which can be written in  the form SiSi.  For f lux qubits, 
gate operations can be inipleniented by suitably time-dependent bias currents [SJD+0.3]: 
Such two-qubit gates were demonstrated by Yamanioto cf al. [YPA’ 031 and by Berkley et 
LII. (RXR +03]. 

For larger systems, it may be advantagcous not to use pairwise couplings, but rather to  
couple each qubit to a common degree of freedom, such as an LC oscillator. The resulting 
system has a common “bus” qubit, in analogy to the trapped ions, where the motion is used a s  
;I common bus qubit. Such a procedure may simplify the coupling network and also lower thc 
amount of decoherence introduced into thc system by the gate clectrodes. 

Apart from the systems discussed here, superconducting qubits have also bcen imple- 
mented that are intermediate bctween the charge and flux qubit. Choosing such an interme- 
diate state allows one to optimize, in particular, the decohcrence by choosing the basis states 
such that the effect of external noise sources are minimized. 

12.2.4 Readout 

For charge qubits, readout can be performed for the charge-type quantum dots by an SET, 
which is very sensitive to small changes in the electric field. For flux qubits, SQUIDS (super- 
conducting quantum interference devices) represent the tnost sensitive detection device. An 
early experiment [ N P F W ]  used a probe electrode that was coupled to the box by a tunncl 
junction, which provides an escape route for excess electrons in the box: if an excess Cooper 
pair is in  the box, a tunnel current is registered through the probe gate. This electrode was 
also used to initialize the system into the ground state. In this experiment, the clectrode was 
permanently coupled to the qubit box. The escape path for the electrons therefore presented 
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a significant contribution to the decay of the coherence in the system. Since the coupling is 
an efficient source of decoherence for the system, it will have to be switched off for an actual 
quantum information processing device. 

Figure 12.6: Signal from superconducting qubit undergoing Rabi oscillations as a function of 
control charge [ NPT991. 

In the system displayed in Figure 12.6, Rabi oscillations have been initiated with an intense 
electrical field pulse. While the readout is done on a single system, it represents an average 
over a large number of pulse cycles. The measured quantity was therefore the probe current, 
not the number of electrons. It is proportional to the probability of finding the qubit in  the 
upper state, from where electrons can tunnel out into the probe electrode. The oscillation 
period is given by the tunnel splitting, which can be tuned with the flux through the loop 
that includes the two tunnel junctions between the reservoir and the box. It agrees with the 
splitting that was measured by microwave spectroscopy. At larger offsets, the cycle Rabi 
frequency increases, but the oscillation amplitude decreases. To reduce noise, the experiment 
was performed at a temperature of 30 mK in a dilution refrigerator. Coherent dynamics of a 
single flux qubit have also been observed by ICNHM03 1. 

12.3 Semiconductor qubits 

12.3.1 Materials 

Semiconductor materials provide the richest set of tools for constructing qubits. Some of the 
proposed solid state spin based implementations use semiconductor materials in some form 
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and were discussed i n  Section 12.1. Here we concentrate on other suggested systems that do 
not use impurity spins for the clubit irnplementation. 

The extensive use and Lissociated technology base for semiconductor materials i n  conven- 
tional clcctronics is also one of the attractive features for quantum computing implementa- 
tions: no other material base has a similar range of tools available, not only for generating 
structures with ditncnsions in thc nanometer range, but also for ad.justing material properties 
like conductivity, potential, bandgap etc. 

Apart from the impurity spins discussed in Section 12. I, semiconductor materials offer 
a range of additional possibilities for defining qubits. This includes excitons, electron spins, 
nuclear spin, electric charges, and more. Most of these systems, however, have only been 
suggested as implementations and only a few, if any of them, are likely to be implemented for 
more than one qubit. 

While the group 1V materials Si and Ge were mostly used in implementations on the basis 
of impurity spins, I I W  materials like GaAs are preferred for most of the other approaches. 
Using 1WV materials is particularly important for implementations that use optical excitation 
or readout, which requires dircct bandgap matcrials. In addition, the high electron mobilitics 
that can be reached in high-purity 2D electron systems, promise slow decoherence. 

One possible basis for semiconductor qubits are quantum dots, i s . ,  structures that confine 
electrons i n  three dimensions in such a way that the energies become discrete. Typical sizes 
of these structures range from 5 to 50 nm. 

Figure 12.7: 'Two coupled quanlum dois its quhiis; letf: schematic representotion; right: trans- 
mission clcctron micrograph: hcighl 01' dots is 1-2 i m .  dot separalion 4 nm,  dot radius X- 
12 n m  [Fit+t4 ' 01,OYvH i 041. 

Quantum dots lorm spontaneously when some semiconductor materials are deposited on 
a substrate with a different lattice constant, c.g., during thc growth of InAs on a GaAs sub- 
strate. The dilference in lattice constant implies that the material grown on top is signiticantly 
strained. The elastic energy associatcd with this strain can be minimized if the layer grows 
not as a film, but assembles inLo islands; this process is called Stranski-Krastanow growth. 

Stopping the growth procesh at the right rnoinent leaves an assembly of mesa-like struc- 
turcs bchind, whosc dimensions can he adjusted to match the range where quantum confine- 
ment effects are significant. If additional layers of GaAs and lnAs are grown over the quantum 
dots, thc dots i n  thc sccond layer tend to align with the existing dots. One has therefore a good 
chance to obtain coupled dots, as in the example shown in Figure 12.7. 
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12.3.2 Excitons in quantum dots 

The confinement of the electrons in the quantum dots makes the energy levels discrete, thus 
offering the possibility of using them for encoding quantum information. One possibility is 
to ube excitonic states [CBS+OO,BHH+Ol], i.e., electron-hole pairs, which are created by the 
absorption of light. The energy Epx of excitons is determined by Epx = E ,  - Eb, where E,, 
is the bandgap and &, the binding energy of the electron-hole pair. 

Dot 1 Dot2 Ilot 1 Dot 2 Dot 1 Dot2 Dot 1 Dot2 

Logical 
state too> 101) 110) 111) 

Figure 12.8: Possible encoding of two quhits by a single electron-hole pair in two quantum 
dots. State 10) is identified with the particle being in dot 1, state 11) with thc particle in dot 2. 

Using an exciton in a pair of coupled qubits, quantum information may be encoded into 
the electron and hole being in one or the other quantum dot: identifying the logical 10) with 
the left quantum dot, the four states shown in Figure 12.8 correspond to 10,0), I l , O ) ,  11; l), 
and 10, l), respectively. At a separation of 4-8 nm, the electron wavefunctions of the two 
quantum dots overlap, allowing electrons and holes to tunnel between them. The eigenstates 
are therefore the symmetric and antisymmetric linear combinations, which are observed in the 
photoluminescence spectrum. 

Readout of excitonic states is relatively straightforward in principle: the electron-hole 
pairs recombined after a time of the order of 1 ns, emitting a photon that can be detected. 
The wavelength of the photon indicates the state occupied by the particles before their de- 
cay. Depending on the coding scheme, the eigenstates of the system, which determine the 
photon wavelength, may not be the qubit states, but a modification of the algorithm could 
still make use of the information gained from the photoluminescence data. Unfortunately, 
the recombination destroys the quantum information stored in the exciton and the probabil- 
ity that an electron-hole pair emits a photon, which is subsequently detected, is too low to 
allow for reliable readout in a single event. Instead of detecting an emitted photon, it is also 
possible to convert the photoexcited electrons into free carriers, which can then be detected 
electrically [ZBS+02]. 

12.3.3 Electron spin qubits 

Using the spin degree of freedom rather than the charge has two essential advantages. The 
Hilbert space consist only of the two spin states, thus minimizing any “leakage” of quantum 
information into other states. Second, the spin is less strongly coupled to the environment 
than the charge. As a result, the dephasing time of electron spins in semiconductor quantum 
dots can be as long as a few microseconds [KA98]. Compared to nuclear spins, electron spins 
offer stronger couplings to magnetic fields and therefore faster gate operation, and they may 



be controlled by electric fields also. The advantages of electron spins (fast gateb) and nuclear 
spin (slow decoherence) may also be combined by storing the information in nuclear spin and 
switching it  into electron spins for processing [TMLO.?]. 

Spccitic spin states of electrons in quantum dots can be created either by optical excitation 
with circularly polarized light or by spin injection [OHH+99,ZRK+OI ,OYB+991 from mag- 
netic materials. Manipulation of the spin states can be achieved either optically [CDF+03], 
using pulses of circularly polarized light, or electrically, if the quantum dot structures are 
detined by electrostatic potentials. Modulation of the potentials then modulates the tunnel 
splittings, which can be exploited for logical gate operations [LD98]. 

In contrast to silicon-based systems, where isotopically enriched 2xSi material is free of 
nuclear spins, &As has three nuclear isotopes with spin I=3/2. Electron spins therefore al- 
ways are subject to hyperline interaction with the nuclei over which the electron wavefunction 
extendb. This interaction therefore yields a signiticant contribution to the dephasing of elec- 
tron spins in GaAs [KLG02, SSO31. 

Readoul of single electronic spins presents a significant challenge. Two approached are 
currently investigated: optical readout, similar as i n  the case of excitons, and the conversion 
of spin into charge degrees of freedom followed by electrical detection [RSI,OO. BL031. 

Like in superconducting systems, readout may be easier in intermediate systems that 
do not rely on individual spins, hut on cnsembles with pseudospin, such 11s “quantum hall 
droplets” [ SPS031. 



13 Quantum communication 

This chapter deals with quantum aspects of the transfer of information. It is divided into 
two parts. The first part discusses tasks which cannot be performed classically but which 
can be performed quantum mechanically. The second part is an introduction to some notions 
and topics in classical and quantum information theory. We include it in order to supply our 
readers with some basic notions which are useful in studying the growing body of research 
literature in quantum information theory. 

13.1 “Quantum only” tasks 

Before we start discussing tasks which can only be performed quantum mechanically but not 
classically, we recall the no-cloning theorem (Section 4.2.1 1) where it is just the other way 
round. Any piece of classical information can be copied arbitrarily often and with arbitrary 
precision, but there is no way to copy an arbitrary quantum state. This inability to copy quan- 
tum information is the basis for secure communication by means of quantum key distribution, 
which we will discuss in Section 13.1.3. Before, in Section 13.1.2, we will show how one 
qubit may be used to transfer the information of two classical bits by a scheme known as 
(super-) dense coding. We will start, however, with quantum teleportation. 

13.1.1 Quantum teleportation 

We may be unable to give a copy of a quantum state to a friend, but under certain circum- 
stances we are able to transmit some classical information which allows him or her to prepare 
precisely the state that we originally had. Our state will then be destroyed, of course, because 
otherwise we would have been able to violate the no-cloning theorem. A necessary resource 
for this teleportation of an unknown state is entanglement, that is, both partners must share 
among them two qubits (in the simplest case) in an entangled state. Quantum teleportation 
was discovered in 1993 by Bennett et al. [BBC+93] and is surprisingly simple. 

We consider the usual characters, Alice and Bob. Let Alice be in possession of a qubit in 
the state 

(13.1) 

(Of course she does not know Q and [j, otherwise the problem would be trivial.) Furthermore 
Alice and Bob share a pair of qubits prepared in one of the Bell states (4.60), often also called 
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an EPR pair, 

where Alice can manipulate only the first qubit and Bob only the second one. The initial state 
of the combined three-qubit aystem is thus 

Alice applies a CNOT( 1,2) gate to the two qubits in her possession, followed by a Hadamard 
gate H I  acting on the first qubit (the one initially containing 141)). This entangles the two 
state? 141) and 14) with each other. 

We rewrite this state in order to bring out clearly what has happened on Bob’s end 

where X3. Y:$, and Z:3 arc the Pauli matrices (4.28-4.30) applied to the clubit 3, that is, Bob’s 
qubit. 

Bob now possesses a superposition of four distorted variants of Alice’s original state. 
Alice performs a measurement (in the computational basis) on the two qubits 1,2 to which she 
has acccss. She obtains vne of the four combinations [ A l l  A I 2 ) ( A f l ,  A12 = 0. I with equal 
probabilities. After the measurement the state of the complete system has been projectcd to 

/ A l l  A,12)X:f2Z:f1 It$)  ( 1  3.6) 

so that Bob p ~ . s . s c . c . . s r . ~  ( I  dcjiri ite modification of’ thc dr.rirc.tl stirtr I ’d)), but he  doe,^ riot y t  
k r i o w  which otw! ‘Yo let him know, Alice transmits the two measured classical bits ( A l l  ~ A],) 
through a classical channel. The transmission through the classical channel is limited by the 
spccial theory of relativity and prcvents superluminal communication, or. as Einstein put it, 
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“spukhafte Fernwirkungen” (spooky actions at a distance). Bob then applies to his qubit the 
operator 

(13.7) 

and can enjoy the state 1,d)) which is now in his possession, while Alice’s original qubit is in 
the state lMl). 

It is important to note that in this process neither matter nor energy were transported “ex- 
plicitly”, only two classical bits. Surprisingly enough these two classical bits were sufficient 
to reconstruct on Bob’s side the state I$)  which requires three real numbers for its complete 
specification (one amplitude, and two phases, assuming normalization). I n  a sense, these 
three real numbers contain infinitely more information than was transmitted; unfortunately 
(see the following subsection) this information cannot be retrieved completely. Neverthe- 
less, the possibility of teleportation clearly shows how powerful a resource a shared EPR pair 
is. On the other hand, the necessity to have a shared EPR pair for every qubit (or electron, 
nucleon) whose state is to be teleported makes it very clear that we are still quite far away 
from any kind of “beam me up, Scotty” scenario. Nevertheless, single-qubit states have been 
successfully teleported in more than one laboratory, using optical and NMR techniques. Ref- 
erences to those experiments (and to critical comments on them) can be found in IGMD021 
and in [NCOl], p. 59. 

13.1.2 (Super-) Dense coding 

An arbitrary normalized pure single-qubit state is completely specified by three real numbers, 
for example, the two angles H and @ in the Bloch sphere representation (4.39), plus an overall 
phase which is usually irrelevant. These real numbers contain much more information than 
the single binary digit contained in a classical bit, and it is interesting whether that much 
information can be reliably transmitted by a single qubit. The answer is no, unfortunately. 
However, transmission capacity can be doubled by using quantum instead of classical bits, as 
discovered by Bennett and Wiesner in 1992 [BW92], whose scheme has become known as 
superdense coding . In a sense, it is the inverse process of teleportation. Alice and Bob share 
an EPR pair and can transmit two classical bits by a single qubit. The method is difficult to 
implement and it is not important as a means of practical fast communication. However, it 
demonstrates one possibility of secure communication, as we shall see. 

As in the preceding subsection, Alice and Bob are supposed to share the EPR pair state 

(1  3.8) 

(By the way, there is no need for any prior direct communication between Alice and Bob: they 
could have obtained their respective qubits from an “EPR pair distribution agency”.) Now, if 
Alice wants to send the two classical bits ( M I  ~ Af2)  to Bob, she applies Xyl  Z p  (to the only 
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qubit accessible to her, that ic, qubit I ) .  This yields 

x" z" 
1d)OO) := 1 114) = 14) 

b 1 0 )  :: XlZ:'ld,) = -(ll0) + 101)) fi 
1 

Then Alice transmits her clubit to Bob. Note that the four states on the right-hand side are :in 

orthonorinal set (the Bell basis which we have already encountered in Chapter 4) and thuc can 
be dictinguished by an appropriate measurement. Bob might t int  apply CNOT( 12) and then 
tneiisure the target bit 2. This yields 

(13.10) 

Obviously this yields the first classical bit A l l  transmitted by Alice. The second qubit now has 
been used up in the measurement. The remaining classical bit AT2 is encoded in the relative 
sign in the four superpositions (13.9) above. Bob can decode it by applying the Hadarnartl 
gatc H = l ( X  + Z )  to his remaining qubit and then measuring it : 4 

(13.1 1) 

( I 3.12) 

Experinientally this has been implemented by both optical and NMR techniques, see 
IGMD02l fur the references. 

What about the security of this procedure for information transinission between Alice 
and Bob'? Can a malignant person (usually called Eve, the eavesdropper) intercept the qubit 
transmitted by Alice and decode the information? Of course she can intercept and measure the 
qubit, but, regardless of the two classical bits A l l  and A f Z  encoded by Alice, Eve will measure 
10) and 11) with equal probabilities, so that she obtains no information whatsocvcr. Formally 
inclined readers may convince themselves that the reduced density matrix (see Chapter 4) 
of the state intercepted by Eve does not depend on the classical bits to be transmitted. The 
information is encoded i n  the way the two qubits are entangled, and it can only be decoded by 
using information on both yubits. In the lbllowing subsection we will see how entanglement 
can be employed to generate keys for data encryption. 
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13.1.3 Quantum key distribution 

Secure communication is a field where quantum mechanics may contribute in several ways to 
create or destroy security. In Section 8.3 we saw how quantum mechanics may help to break 
classical codes by Shor’s algorithm. Here we will discuss how quantum mechanics helps to 
make secure communication possible by quantum key distribution, one of the central ideas 
in the field of qiianrum cryptography [GRTZ02]. Alice and Bob exchange qubits in order to 
generate a key which can be used later to encrypt a message transmitted by a classical (and 
public) channel. The encrypted message can only be decrypted by means of the key. Quantum 
mechanics can be used to make sure that only two persons are in possession of the key. This 
should be contrasted to old-fashioned techniques such as providing secret agents with “code 
books” which may get lost, stolen, or copied. 

A key is a (random) sequence of (classical) bits {k ,} (z  = 1,. . . , N )  which Alice uses to 
encrypt the N-bit message {m,;,} and transform it to the code {cZ} by 

m,, = k,  XOR r , ,  = ( k ,  + r n , )  mod 2. ( 13.1 3) 

Bob can decrypt the code if he possesses the key: 

(13.14) 

as can be easily verified for all four possible combinations ( k ; ,  m i ) .  

and m’ are encoded with the same key and the codes c and c’ are intercepted, the relation 
This method of encryption is only safe if the key is used only once. If two messages *rri 

cj CH c: = i r i ;  cfi nt: (13.15) 

can be used to eliminate the deliberate irregularities introduced by encoding. Subsequently 
standard correlation analyses (as available at any secret service) can be applied in an attempt 
to separate m, from 111’. Given this situation there is obviously a need to distribute fresh keys 
among Alice and Bob. Quantum key distribution serves that purpose. There exist several 
schemes or “protocols” to do this quantum mechanically, see [GMD02]. Here we will discuss 
only two schemes which are closely related to each other. 

First we discuss the four-state protocol known as BB84 [BB84]. This protocol uses four 
pairwise orthogonal states 

(13.16) 

(the eigenstates of the Pauli matrices Z and X, respectively) which can be easily prepared as 
linearly polarized photons with electric field I? along .?, 6 ,  and 2 f :Q, where 2 and 6 are unit 
vectors along the coordinate axes. Measurements are performed with linear polarizers along 
these directions, and detectors. A photon polarized along .? passes through a polarizer along :? 
and is detected, one along 6 is not. To get an unambiguous result the observer must know that 
a photon should be coining along his way and that it is polarized either along 2 or along 6. 
A photon polarized along one of the diagonal directions 2 f 6 will not yield any information 
when analyzed with a polarizer along .?, because both possibilities will give a signal in half of 
all cases. 



Alice prepares 2 n  qubits randomly in one of the four states. Each qubit z contains two 
classical bits, namely: 

0 / ) p , 2  tclling which basis, {lo), Il)} or { 1 t ), 1 - ) } ,  was used to prepare the state, and 

.s!,<, telling which state ( I  st or 2nd) of the given basis was prepared. 

Bob (ideally) receivcs all these qubits and measures them, randomly switching the basis 
used for measuring. He also obtains two bits for each qubit, namely 

0 b,,,,,, telling which basis was used to measure the qubit, and 

, s ~ , . ~ ,  telling which state of the given basis was measured. 

Alice now (rlftrr- the transmission) tells Bob (over a public channel) the sequence { h p , [ }  
which Bob compares to his sequence {b?,?,!}. Both parties keep only qubits with b,,,, = b,,,,; 
and throw away all the others (roughly n), because they do not contain useful information, as 
discussed above. For the remaining qubits the classical bits s ~ ~ , ~ ,  = c ~ , l l , L  are known to both 
Alice and Bob. They constitute the key. 

The security aspects of this procedure become visible if Eve intercepts and measures thc 
qubits. During transmission Eve neither knows which basis Alice uses for preparing the 
qubits, nor which basis Bob uses for measuring them. Nevertheless she has to supply Bob 
with qubits resembling thosc transmitted by Alice, in order not to be discovered immediately. 
Eve's only possible strategy is lo ~i se  one of the two measurement bases randomly for each 
qubit. After each measurement she prepares a fresh qubit i n  thc basis statcjust measured and 
passes it on to Bob. After the transmission is complete, Alice and Bob discuss their bases and 
agree to discard about half of their measurements as useless. (Eve of course listens to thc con- 
versation and discards the same measurements.) Let us discuss what effect Eve's attack has on 
the code, that is, on those qubits which have been measured by Bob in the same basis as used 
by Alice to prepare them. For about 50 % of these qubits Eve has performed her measurement 
in the right basis, causing no disturbance. The remaining SO o/o of the qubits have been niea- 
surcd in thc wrong basis by Eve and then passed on to Bob. The final measurement by Bob 
( in  the right basis) has projected half of these qubits back into the state originally prepared by 
Alice, so the overall error rate caused by Eve is 25 %. 

Alice and Bob can agree to publicly compare a certain share of the key (thereby sacrificing 
that share, of course), and if they detect no differences they can be prctty certain that no 
eavesdropping has occurred. (If 771 bits are comparcd the probability that they are all correct 
by chance in the presence of eavesdropping is (!)"' = 3 .  10-"' for I n  = 100.) Of coursc Eve 
might be clever enough not to intercept every qubit, and also there might be errors other than 
those caused by eavesdropping in a less than perfect transmission line. All thew problcms 
have been analyzed and may be overcome, see ISte98, GMDO2 I .  

The scheme has been demonstrated using 23 km of public telecom glass fiber beneath 
Lake Geneva by Zbinden el al. 1997 [ZGGf97], see [GRTZ02] for a review of more recent 
work. In that experiment polarized light pulses with 5 0.1 photons per pulse were used: there 
must be (practically) no pulses with two or niore photons bccausc an cavcsdroppcr might 
intercept just one photon and go unnoticed. (By the way, this problem is one of the reasons 
for the interest in "single photon on demand" sources.) Thc bit crror rate was - 1% and the 
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data transfer rate was of the order of MHz instead of the usual (in non-secure communication) 
GHz. 

Other protocols for secure communication involve entangled states, for example EPR 
pairs, and it was shown that the Bell inequalities (mentioned in Chapter 4) distinguishing 
genuine quantum correlations from classical ones can be used to detect eavesdroppers. An 
extremely simple scheme involving EPR pairs but no Bell inequalities was suggested by Ben- 
nett, Brassard, and Mermin in 1992 [BBM92]. This scheme is essentially equivalent to the 
BB84 protocol just discussed, as we will see. Alice and Bob share 2 n  EPR pairs 

( 1 3.1 7) 

in the usual way, that is, each qubit is accessible to one person only. Both measure the qubit 
accessible to them, and thus project it on one of the eigenstates of X or Z (at random). They 
inform each other publicly about the (X, Z) sequence used, but not about the results of the 
measurements. They discard all measurements where one has measured X and the other Z. 
The remaining measurement results are perfectly anticorrelated and can be used to produce 
two equal bit strings of length N ri. A part of the key may again be sacrificed to detect 
eavesdropping. The scheme has an additional advantage: the EPR pairs can be left untouched 
until just before the key is needed so that the time during which the key is kept in classical 
storage and can be copied by a thief is minimal. Of course this requires the ability to preserve 
EPR pairs over long times, but that is a different story. 

For further information on quantum cryptography, interested readers are referred to 
IGRTZ021. This review article treats a broad range of topics, from theoretical foundations 
to detailed discussions of fiber optical transmission systems. 

13.2 Information theory 

Information theory has developed over the past five or six decades in parallel to computer 
science. Its roots are in communication theory, that is, in the theory of transmission of infor- 
mation by telephone or radio. Of course, all parts of this book deal with information theory 
in a wider sense, but as the subfields have developed, questions of computation and algorithm 
development have been separated from information theory in a narrower sense. In this section 
we will restrict ourselves to some problems dealing with the transmission of information. 

The most fundamental questions of course are, what is information, or, more precisely, 
how can it be quantified? These questions were dealt with in the pioneering contributions 
of Claude Shannon [Sha48] in  the late 1940s. The historical (or socio-economic) context 
was the rapid growth of communication by telephone lines. Consequently the problem was 
formulated as the problem of effectively transmitting information through a given “channel”. 
The channel, for example a telephone line, may connect two points in space, but it may also 
connect two points in time, in  which case we are dealing with effective data storage. As 
every channel has physical limits, there is an obvious interest in precisely determining these 
limits and extending them if possible. To do that, a measure of the information content of 
a communication must be developed and related to the capacity of the channel. That is the 
content of Shannon’s noiseless channel coding fheorem. Of course channels are always noisy, 



and questions of error-correction immediately come to mind. Actually there is a large subfield 
of classical information theory dealing with the development of error-correcting codes. The 
fundumental limits are tixed by S k n n n o r i ’ s  nois.v churzizrl coding theorem. 

I n  contrast to the theory of quantum (or classical) algorithms, here we are not dealing with 
a small number of (qu-)bits which must be processed, but with large quantities of transmitted 
data. From the point of view of the communications engineer these data form a random 
sequence of symbols about which only some statistical properties may be known. It turns 
out (not unexpectedly) that some key concepts from statistical mechanics, such as entropy are 
useful also in information theory, both classical and quantum. 

After discussing some notions of classical information theory we will try to generalize the 
concepts to the quantum regime. Unfortunately it tu rns  out that the use of qubits does not 
significantly speed up the transmission of classical information (such as this text) through a 
noiseless channel. Nevertheless it is interesting to study how the notion of classical infor- 
mation may be generalized to quantum information, how strongly quantum information may 
be compressed (looking for the quantum analogs of Shannon’s theorems), and how quantum 
noise (i.e., coizfirzlrnus fluctuations in both amplitude and phase i n  contrast to mere bit Rips) 
may affect the transmission. 

13.2.1 

Information content and entropy 

The first question is, how to quantify information. Imagine you arc told that 

A few bits of classical information theory 

x = 2 .  (13.18) 

How much information do you gain? That depends on your previous knowledge: if you knew 
alrcady that .Y was 2, you learn nothing. If you only knew tha1 X was determined by throwing 
a die you gain information. The information content of X is a measure of your ignomnce: 
how much information would you gain if you learned the value of X‘? That depends obviously 
on the number of values .I:  of the random variable X and their probabilities p(:c) .  The general 
formula for the information content of X is 

(13.19) 

Since 0 5 p ( ~ )  5 1, S ( X )  > 0. Let us look at niore examples to see if this definition makes 
sense: 

0 p ( x )  = &(.,2 (for integer r )  + S ( X )  = 0. 
(Nothing is learned if we know already that X = 2.) 

0 p ( x )  : for .r = 1 , .  . . , N and zero otherwise + S = log, N. 
N = G + S = 2.58 (the fair die) 
N = 2”l + S = 171: 771, bits must be specilied to convey thc information 

0 p ( 6 )  = $ , p (  I )  :: . . . = p ( 5 )  = + S‘ = 2.16 (a loaded die). 
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The comparison between the fair die and the loaded die shows that the potential information 
gain decreases if the information about the probability distribution increases. The uniform 
probability distribution is the one with “maximal ignorance”. Obviously S is closely related 
to the entropy well-known from Statistical Mechanics, and it is indeed often called information 
entropy or Shannon entropy. A simple but important special case is a binary variable ( X  = 0 
or I ,  say), with p(1) = p =+ p ( 0 )  = 1 - p .  S ( x )  is then a function of p only: 

S(X) = H ( p )  = -plog*p ~ (1 -p)log,(l - p ) .  (13.20) 

The binary entropy function H ( p )  assumes its maximum value 1 at p = $. 
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Figure 13.1: The binary entropy function H ( p ) .  

Mutual information and the data processing inequality 

For two random variables X and Y we can define the conditional probability p(?j/1~) that the 
random variable Y assumes the value ?J under the condition that X = L ,  and the conditional 
entropy 

(13.21) 
c 0 

Since - C,  p ( ? j l ~ )  log, p(?jI:~;) is the information content of Y for given value of X ,  the 
conditional entropy S(Y I X )  is the average information content remaining in Y if we were to 
learn the value of X .  (Where the average is performed over the possible values of X . )  Since 
the (“simultaneous”) probability p ( z .  y) that X = T and Y = g is given by 

p(.r, y) = p(.z)p(yIx), (1 3.22) 



wc can rewrite (13.21) as 

1 u 

We now define the rnutual irif~l.7iiationcontent of X and Y a\ 

( 1  3.23) 

(13.24) 

If  X and k’ are independent random variables, that is, p(x,y) = p ( x ) p ( y ) ,  the mutual infor- 
mation f ( X  : Y) = 0 and this indicates that I ( X  : Y )  in fact measures how much X and Y 
“know about each other”. We can relate the mutual information to the conditional entropy by 
noting that 

.I‘ {I !I 

where we have used (13.22), (13.23, and p(y) = x,,.p(r, y). Due to the symmetry of 
I ( X  : Y )  we also have 

I ( X  : Y )  = I ( Y  : X )  = -S(XJY) + S ( X ) .  ( I  3.26) 

Defining the information content of the “two-component” random variable (X,  Y )  by 

( 13.27) 
, I ’  !/ 

and using the normalization conditions p ( ~ )  = 1, ~ J ( . J . ,  y) and p ( ? / )  = x,,, p ( x ,  y) we see 
that 

T ( X  : Y) = -S(.Y. Y) + S ( X )  + S (  Y )  ( 13.28) 

whcrc S ( X ,  Y )  i s  the information content of the “vector” random variable (X, Y ) .  
During data processing, information can only decrease. To see this we reconsider the 

fundainental step (2.1) of data processing from a probabilistic point of view. The register is 
described by ii random variable which is capable of a certain sct of states (or values). The 
set of rules (the program) determining the transition from one state ol  the register to the next 
state is encoded in conditional probabilities. In this language, data processing is a stochastic 
process (a Markov chain). We consider two steps of data processing involving three random 
variables S - - 3  1‘ i 2 where successive variables are connectcd by conditional probabilities 
p(://l:r) and p(zl?y) and whcre the simultaneous probability p(x, y, z )  7: p ( x : ) p ( y l z ) p ( . z ~ y ) .  
Under these conditions the clrittr ptacessitlg i n q u a l  

S ( X )  2 I ( X  : 1‘) 2 /(.I( : n),  ( I  3.29) 
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that is, 2 cannot know more about X than Y knew which is less than the information content 
of X .  This highly plausible inequality (a corollary to which is the well-known rule “garbage 
in, garbage out”) can be deduced from the properties of the various entropy functions dis- 
cussed above. (Compare, for example, [NCOl], Chap. 11). 

Data compression and Shannon’s noiseless channel coding theorem 

The basic idea of data compression is very simple and also very old. Determine which se- 
quences of symbols or words occur most frequently and use abbreviations for them, that is, 
code these words in short strings ofthe symbols (bits, for example) used for data transmission. 
We illustrate this principle with a very simple example. Suppose we wish to transmit infor- 
mation from a source X with a four-letter alphabet with unequal probabilities. Four symbols 
can be distinguished by using two bits and there is a “natural” (or naYve) way to do this. In the 
table we show both the nai‘ve code and a “clever” code which we analyze below. 

I10 
1 1 1  

Note that in the naive code all symbols are stored in two bits each. The clever code uses 
bit strings of variable length, but nevertheless the boundaries of the symbols are always well 
defined: after a “0’ or after at most three bits. The average length of the cleverly coded string 
in bits per symbol then is 

1 1 2 7 
- . 1 + - . 2 + - . 3 = -  < 2 .  
2 4 8 4 

( 1  3.30) 

Let us compare this to the entropy of the  source: 

1 1 1  1 2  1 1  1 2 7 
S ( X ) = - - l o g 2 - - - 1 0 ~ 2 - - - 1 0 g <  - = - . 1 + - . 2 + - . 3 = - .  (13.31) 

2 2 4  4 g L 8 2  4 8 4 

The fact that the two numbers are equal is no coincidence. Also, no compression scheme can 
be constructed which works with a smaller number of bits per syinbol on average. This is the 
contents of Shannon’s noiseless channel coding theorem. 

To illustrate the idea a little more generally (but without going into full generality) we 
consider a source sending a stream of binary symbols: X = 0 , l  ; p(1) = p ,y (O)  1 - p 
with p # i. (Remember: the central elements of data compression were the fact that not all 
strings are equally probable, and the use of short codes for frequent symbols.) We will not 
encode individual symbols but blocks of symbols with 71. large. In the typical case such a 
block will contain n p  ones and n( 1 - p )  zeros. (Let us postpone for a moment the discussion 
of what “typical” really means.) There are many blocks of n3 symbols n p  of which are ones. 
The probability of any such sequence of zeros and ones is 



212 13 Quatiturn cornmiiiiic~ltiori 

Now note that 

where H (11) is the binary entropy function defined earlier. As these typical sequences all have 
equal probability 2-72’f(z’), their total number is ‘L’”“(’’), and they can be numbered, from 1 to 
2’ jH(1’ ) .  To communicate which one of the 2‘r ’ r ( rJ )  possible typical sequences are transmitted, 
only 1111(;1)) bits are needed, not 1 1  bits a s  in the case where bits are transmitted one by one. 
It is not possible to distinguish the typical sequences by sending fewer than , r ~ H ( p )  bits, since 
they are all equally probable, so the compression from 71, to n f 3 ( p )  is optimal. 

So, how typical is typical, and why is the above argument relevant‘! Why do we really 
cncountcr (almost) only typical sequences? Tt turns out that the answer to these questions is 
provided by one of the “laws of large numbers” arguments which are possibly familiar from 
elementary statistical mechanics. There it is shown, for example, that the energy per particle 
may be allowed to fluctuate arbitrarily, but nevertheless the total energy of a Imge number of 
particlcs practically does not deviate from its mean value. By a similar argument we will now 
show that, although the individual symbols of a sequence may fluctuatc between 0 and I ,  a 
long sequence will never deviate much from the typical number of zeros and ones, that is, n p  
ones and n( 1 - p )  zeros. The probability of finding m ones in a sequence of 72, symbols is 

( 13.34) 

the binomial distribution. For fixed p and large 71, the binomial distribution is excellently 
approximated by ii Gaussian distribution. To see this we write down In p)(nz), approximating 
the logarithm of the binomial coefficient with the help of Stirling’s formula 

111 I I !  r t  ln rI II t O(ln n )  ( I  3.35) 

valid for large 11. (We assume that 1 1 ,  111, and ( n  - m )  are all sufficiently large.) We then 
calculatc the firct and cecond derivdtive\ of l r i p ( r r r )  which we need for ii Taylor expansion. 
The reaults are 

(1 
- In p ( m )  = I r i p  - h ( 1  - p )  - I r i  111 + ln(n 
t l r r l  

m )  ( 1  3.36) 

and 

( 1  3.37) 

The first derivative of lny(,rn) vanishes if = -, or 7n = np, and we see that i rp  is 
indeed the most probable number of ones in a sequence of length ‘I!,. A Taylor expansion of 
I r i  p (  111) about the value r n  = rip then reads 

( I  3.38) 
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This shows clearly that p ( m )  is a Gaussian 

( 1  3.39) 

with standard deviation (T = Jm. (We have adjusted the normalization of the Gauss- 
ian ( 1  3.39) by hand, because we used the crude form ( 1  3.35) of Stirling’s asymptotic expan- 
sion. Taking into account a few more terms in this expansion leads to the correct normaliza- 
tion automatically, but makes the calculation somewhat less transparent.) Note that, while the 
mean value n p  grows linearly with the sequence length 11, the standard deviation only grows 
as fi. That is, the relative fluctuations of the number of ones in  a sequence becomes smaller 
as the sequence grows longer and for long enough sequences we can be pretty sure that almost 
all sequences are typical. 

Thus we only have to transmit H ( p )  < 1 bits per symbol for our binary source. More 
generally, for a source producing random variables X (capable of d values so that coding 
the symbols one by one would require log, d bits per symbol) with an information content 
S ( X )  we need , I /LS(X) < nlog, d bits to communicate n, values of X .  This fact about the 
compressibility of data is known as Shannon’s noiseless channel coding theorem. 

For practical purposes it is of course not always possible to wait until a large number 
71 of symbols have accumulated before starting the transmission. However, there are near- 
optimal coding schemes for blocks of a few (say, four) symbols only. They are based on 
the same idea as the example we started with: use shorter transmission codes for the most 
frequently occurring blocks of symbols. An example for such a scheme is the Hz@znn code 
(compare lSte98J). 

The binary symmetric channel and Shannon’s noisy channel coding theorem 

We have to think about signal transmission in the presence of noise, because noise is unavoid- 
able in real-world systems. Depending on the physical nature of the signal and the transmis- 
sion channel, different types of noise are possible. We will concentrate on the important and 
simple case of binary digital transmission (of zeros and ones, that is) and symmetric bit-flip 
noise. That means that every single bit is flipped with a certain probability p on its way down 
the channel, regardless of its value (0 or 1) and regardless of the fate of all other bits. Such a 
channel is called a binary symmetric channel, and we want to know its capacity, measured in 
(useful) bits out per bit in. It turns out (see ISte981 for details) that for the maximum infor- 
mation content of the source, S ( X )  = 1 (that is, 0 and 1 are equally probable in the input bit 
stream) the channel capacity is 

C ( p )  = 1 - H ( p )  ( I  3.40) 

where N ( p )  is again the binary entropy function defined earlier and p is the bit flip probability. 
For a noisy channel one must use some redundancy, that is, one must employ error-correcting 
codes. Shannon’s noisy channel coding theorem tells us that, for any given channel capacity 
C(p) ,  there exist error-correcting codes which allow for transmission with an arbitrarily small 
error probability. 



Unfortunately the theorem is an existence theorem and does not tell us immediately how 
cuch a code may be constructed, but fortunately, a variety of clever error-correcting code\ 
have been constructed (cee [GMD02] for some examples), for example, for the transmission 
ot image data from wtellites traveling the solar system to Jupiter and bcyond. 

13.2.2 A few bits of quantum information theory 

The von Neumann entropy 

It turns out that a useful quantum analog to Shannon's cntropy (information content) for a 
classical set of probabilities p ,  (which charucterke the possible values .r, of a random variable 
X) 

(13.41) 

i\ the voii Ncunraniz cntropy 

S(p) = -Trplog, p ( I  3.42) 

which is defined for any density operator, that is, any operator p with p = pt 2 0, Trp = 1. 
Any such p can be decomposed in projectors onto normahed but not necessarily orthogonal 
pure slates, 

(13.43) 
i i 

'This is possible in many ways for any given p, and to any of these possibilities we can assign 
a (classical) Shannon cntropy S'({pL});  it can be shown that 

S({IA})  2 S(P) ,  ( 13.44) 

with equality if and only if the vectors lqii) are pairwise orthogonal. (Take, for example, the 
eigenstates of p.) This inequality has a fairly obvious interpretation in terms of the distin- 
guishability of two quantum states. Imagine H person (Alice) sending a string of classical 
symbols : I : ;  down a line to another person (Bob), according to probabilities p, .  We have 
learned that the information content of this transmission is S( { p i } ) .  

Now let us assume that Alice is a dedicated follower of fashion and goes into the quantum 
communication business. Instead of sending classical symbols :c7, she sends quantum states 
I ( /J ' ) .  While Bob can easily distinguish all possible x,, he can only distinguish two states with 
certainty if they are orthogonal to each other. This is also related to the no-cloning theorem: 
imagine Bob could clone arbitrary unknown quantum states. He then could make many copies 
of the incoming state and perform m i n y  measurements comparing clones of Alice's state to 
clones of all possible states and determine Alice's state with high probability. 

It is instructive to consider a simple example involving a two-dimensional Hilbert space 

spanned by the vectors 1 0 )  = ( ) and 17) = ( ). Let us define a third vector 

In) := cos $17) + sin $ 1 0 )  (13.45) 
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and the density matrix 

The easiest way to calculate the von Neumann entropy S(p) is via the eigenvalues A, of p: 

S(p)  = - c A ,  log, A , .  (13.47) 
2 

The eigenvalues of the above density matrix are 

(13.48) 

For q5 = 0 the states la) and 10) are distinguishable, the eigenvalues of p are A = p and 
X = 1 - p and thus S(p)  = H ( p )  (the binary entropy function) whereas for (#) # 0 1 0 )  and 
10) cannot be distinguished with certainty, and S(p) is strictly smaller than H ( p ) ,  as seen in 
the figure. 
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Figure 13.2: The von Neumann entropy for a simple two-dimensional density matrix. Curves 
arc for = 0,0.17r, 0.27r, 0.37r, and 0.47r, respcctively (top to bottom). Sec text for details. 

The quantum entropy has some non-classical properties. Whereas classical random vari- 
ables X ,  Y always fulfill 



that is, the entropy of ii subsystem is never greater than that of the total system, this is possiblc 
for a quantum system. Consider two qubits A ,  H in the (pure!) state 

However, the reduced density matrix of subsystem A (obtained from PAD by performing the 
trace over the Hilbert space of R)  is P A  = i 1  + S(pn)  = 1. 

Evidently this is related to the entanglement between A and I?. In general A and f3 can bc 
considered entangled if and only if 

where, of course, p is again the reduced density matrix. The von Neumann entropy can thus 
be used to define more gencral measures of entanglement than the concurrence discussed in 
Chapter 4. 

Most theorems concerning entropy, which are relevant to quantum information thcory, 
can be derived from a few fundamental properties which are discusscd, proved and applied 
in [NCOl] and which wc just quote here for the sake ofconipleteness: 

i )  Concavity 

 XI.^ 2 0, XI + A2 =: 1). In statistical mechanics, the concavity of the entropy i b  related 
to thermodynamical stability. 

i i )  Strong szihadditivify 

iii) Triungularity 

All of these incqualities also hold (in appropriately modified form) for the Shannon entropy, 
cxcept the first one in iii). 

The accessible information and Holevo's bound 

Wc are still dealing with the transmission of classical data through a quantum channel. Let 
Alice have a classical information source X ,  that is, a random variable with values xi and 
probabilities pi(,i ~ 0, . . . 77.). According to the value .I:, to bc transmitted, Alice prepares 
one quantum state pi from a fixed set of (mixed, in general) states PO, . . . , pn and gives i t  
to Bob who measures the state and gets a result which can bc treated as a classical random 
variable Y capable of values yo, . . . , ylr , .  Let us discuss Bob's measurement a little more 
prccisely. Bob has a set of wiea.wremwt operutors M, ( i  = 0, . . . ,771. )  which he can apply 
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to any incoming state vector I$) (and also, with appropriate changes in notation, to mixed 
states). The probability of finding the result i is 

and the state immediately after the measurement is 

(1 3.55) 

(13.56) 

The operators E,; := MIM, are positive, and if C’rL, E, = 1 they are called POVM 
elements (positive operator valued measure elements). (If the sum is smaller than one, Bob’s 
measurement misses some possibilities of the incoming 14)) .) An extremely simple example 
for a set of POVM elements are the projectors Pi on the states of a basis. 

Turning back to the result Y of Bob’s measurement (described by the POVM elements 
Eo, . . . , E,,), it is clear that what Bob can learn about Alice’s message is I ( X  : Y ) ,  the 
mutual information, which depends on the cleverness of his measurement strategy. The ac- 
cessible information is the maximum of I ( X  : Y )  over all measurement strategies. There is 
no prescription to calculate the accessible information, but there is a bound by Holevo (also 
often spelled Kholevo). Under the conditions described above, and with p := xi p,pz, we 
have 

I ( X  : Y )  5 S(p)  - C p , S ( p , )  =: x 
2 

( 1  3.57) 

where ,y is sometimes called the Holevo information. (For the simplest possible example 
compare Section 12.1.2 of [NCO 1 ] .) 

Schumacher’s noiseless channel coding theorem 

Consider a “quantum alphabet” of ctates I & )  (not necessarily orthogonal to each other) with 
probabilities p, .  Such an alphabet can be described by a density operator 

IAI 

( 1  3.58) 

A message is a sequence of n “quantum characters”: l q b / , ) l q 5 L 2 }  . . . Iqb!,,). The ensemble of 
?,-symbol messages is described by the density operator p@“ which lives in a Hilbert space 
Jim‘’ of dimension 

lAJ” = 2” ~ ( X L  I f l /  ( I  3.59) 

(or smaller, if the alphabet states are not linearly independent). 
Is it possible to compress the information contained in p@”? Schumacher’s 1995 theorem 

provides an affirmative answer. For sufficiently large 11 ,  p E n  is compressible to a state in a 
Hilbert space of dimension YrS@) (that is, in 71S(p) qubits) with a fidelity (probability that 



218 I3 L)iiuntuin cornmunicatioti 

after decompression the original state is recovered) approaching I .  This means that S(p) is 
the number of qubits of essential quantum information, per character of the alphabet. 

The proof rests on the same ideas as that of Shannon’s noiseless channel coding theorem, 
namely typical sequences and the laws of large numbers. The density operator p can be 
decomposed into its eigenstates 1.) (which are orthonormal), with eigenvalues p(.c): 

( 13.60) 

Then the von Neumann entropy is equal to the Shannon entropy 

S(p)  = S ( { p ( . r ) } ) .  (13.61) 

We can then define a typical sequence 

of classical symbols .r, and associate with it a typical state 

1.1.1) I.I.2) . . . j X l 1 )  ( I  3.63) 

in the Hilbert space fj@”. The typical states span the typicul subspuce and by the laws of large 
numbers a few facts can be shown about the typical subspace for sufficiently large 11, which are 
very similar to the properties of the typical sequences leading to Shannon’s noiseless channel 
coding theorem. (See [NCOI] for a nice parallel treatment of both theorems.) 

0 pol1 has almost all or its weight in the typical subspace: 

TrP(n)p@” 2 1 - 6 (n’ ---f 0) (1 3.64) 

where P(n) is the projector on the typical subspace. 

0 The dimension of the typical subspace is asymptotically 2 n S ( p ) :  

implying that compression is possible. 

0 The weight in any ~rncrller subspacc is negligible. Let Q ( n )  be a projector on any 
subspace ol  Hql‘ of dimcnsion at most T”< with H < S(p).  Then for any S > 0 and rI 
sufficiently large 

TrQ(rr)p””” 5 6 (1  3.66) 

implying that compression is limited: if one tries to press too hard, the data will get lost. 
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Classical information over noisy quantum channels 

This is a subject of ongoing research (as is, even more so, the subject of quantum information 
over noisy quantum channels). The usage of quantum states for information transfer offers 
many possibilities which do not exist classically. Many of these possibilities are related to 
entanglement. For example, two or more successive qubits transmitted may be entangled, 
and there may also be entanglement between transmitter and receiver. (This leads to the 
fascinating possibilities of quantum cryptography and teleportation discussed in the first part 
of this chapter.) Many of the schemes involving entanglement between the transmitted qubits 
are not explored very well. The simplest case is that of product state transmission, that is, the 
71-symbol quantum message is just a product state of n factors (no entanglement). For that 
case an analogy of Shannon’s noisy channel coding theorem has been shown which gives a 
lower bound for the capacity of a noisy quantum channel. That lower bound is known as the 
Holevo-Schumacher-Westmoreland (HSW) bound. Some researchers suspect that the bound 
is in fact the exact value of the capacity, but this has not yet been proved. Details on the HSW 
theorem, together with some simple examples, can be found in [NCOI 1. 



A Two spins-1/2: Singlet and triplet states 

+ 
Consider two spins-;, S.4 and SB. The Hilbert space of this system is spanned by the four 
simultaneous eigenstates of S A . ,  and S B . ~ ,  I T ) A @  1 I), =: 1 TL), I IT), I TT) ,  and 1 II), with 

etc. If the two spins are coupled by an exchange interaction [Mat811 

it is more convenient to organize the Hilbert space in terms of the singlef and triplet states to 
be defined now. The total spin vector operator of the system is 

4 4 + 

ST := S A  + S B ,  (A.3) 

and its square 

serves to express the exchange interaction by the square of the total spin 

The eigenvalues of H thus depend only on the total spin quantum number S;, defined by 
S;7 = f i 2 S ~ ( S , ~ j  + l), which may assume the values 5'7, = 0 or 1. By the standard properties 
of angular momentum operators there must be three eigenstates with ST = 1 and S,,,, = 
0, &ft  (the triplet states) and one state with 5'~ = 0, and consequently ST,, = 0 (the singlet 
state). The two states 

have S , ~ ~ , ,  = &h and thus are triplet states. The remaining triplet state is found by acting with 
the total spin raising operator S; = S i  + S i  on IT-) and normalizing. This yields 

(A.7) 
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The 5inglct state must be a normalized superposition of the two ST ., = 0 Statcs 1 1 1) ,rnd I 11) 
which is orthogonal to IT,). that is, 

1 
IS) := -(I li) - I 11‘)) 

\/z 
Note that both total spin raising and lowering operators annihilate IS), demonstrating thc spin- 
zero character of this stale. 

For w > 0 (called antiferromagnetic coupling in the language of magnetism) the ground 
state of H i s  the singlet, 

(A.9) 
3 

HIS) = - q h ” l S )  

whereas 

The two-spin product states withS,!, = 0 can be expressed in  terms of singlet and triplet 
states: 

1 
(A.l  1 j 

1 
I 1‘1) = -(/TO) + Is))  and I IT) = ,(IT”) - IS)). J;z Jz 

The time evolution of thcw states is simply 

(A. 12) 



B Symbols and abbreviations 

Symbol Explanation (chapter) 

XOR logical operation, addition modulo 2 (3) 
direct product (4) 
basis states of spin-1/2 (2) 
basis states of qubit ( 1 )  
unit operator (4) 
operators: boldface (4) 
gate operators (6) 
commutator ( 2 )  
creation and annihilation operators (6) 
magnetic flux density in frequency units (4) 
magnetic flux density, magnetic field (4,9) 
radio-frequency amplitude ( 10) 
radio-frequency magnetic field (10) 
creation and annihilation operators (6) 
concurrence (entanglement measure) (4) 
vacuum speed of light (2) 
creation and annihilation operators (6) 
Clauser, Horne, Shimony, and Holt (inequality) (4) 
code (13) 
complementary metal-oxide semiconductor ( 2 )  
controlled NOT operation (1, 3) 
Calderbank, Shor, and Steane (codes) (7) 
diffusion constant (6) 
dimension of Hilbert space (4) 
description of Turing machine T (3) 
Kronecker symbol (4) 
determinant (4) 
decoherence-free subspace (7) 
energy (2) 
POVM element ( 1  3) 
Einstein-Podolsky-Rosen (4) 
electron paramagnetic resonance (12) 
energy eigenvalue (4) 
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total (electronic and nuclear) angular momentum (1 1)  
generator of decoherence (7)  
field effect transistor ( I )  
fast Fourier transformation (8) 
free induction decay ( 10) 
gyromagnetic ratio (9) 
greatest common divisor (8) 
Hamiltonian operator (4) 
Hadamard gate (4) 
Hilbert space (4) 
binary entropy ( I  3) 
t11utuitl information content (I 3) 
imaginary uni t  ( 2 )  
integer part (of a rcal number) (8) 
Boltzrnann constant (2) 

eigenvalue of observable (9) 
natural logarithm (2) 
classical bits (13) 
total magnetic quaiiturn number (1  1) 
rneasurernent operator ( 13) 
message ( 13) 
unit vector (5) 
nuclear magnetic resonance ( 1  0) 
nondeterministic polynomial (complexity class) (3) 
angular frequency (7) 
Larrnor frequency (7) 
polynomial (complexity class) (3) 
polarization vector (4) 
probability density (6) 
probabilities ( I  3) 
conditional probability ( 1 - 3 )  
siinultancous probability (13) 
projection operator (4) 
probability (4) 
probability (6) 
magnetic flux ( I  2) 
inagnetic flux quantum (I 2) 
positive operator-valued measure (4) 
quantum state ( 1  ) 
creation and annihilation operators (6) 
quantum Fourier transformation (8) 
quantum nondemolition detection (1)  
rotation operator ( 5 )  

key ( 1  3) 
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phase gate (8) 
radio-frequency ( 10) 
density operator (2) 
entropy (2) 
information content, Shannon entropy ( 13) 
conditional entropy ( 1  3) 
von Neumann entropy (1 3) 
spin raising and lowering operators (4) 
spin - 1 /2  operators (4) 
scanning tunneling microscope (1 2) 
absolute temperature (2) 
Turing machine (3) 
dephasing time (7) 
Toffoli gate (3) 
trace operation (2) 
transistor to transistor logic (1) 
universal Turing machine (3) 
unitary transformation (8) 
Pauli operators (4) 
unit vectors along coordinate axes (4,5, 13) 
random variables ( I  3) 
possible values of random variables (1 3) 
xAND y(3) 
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