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Preface

During the past decade the field of quantum information processing has experienced extremely
rapid progress. Many physicists and computer scientists have become interested in this excit-
ing new field, and research activities were started in many places, including the University of
Dortmund, where several groups from experimental and theoretical condensed-matter physics
and from computer science, joined forces in a program called “Materials and methods for
quantum information processing”. Since that program involved graduate students from sev-
eral countries, and with different scientific backgrounds, we decided to teach an introductory
course on the fundamentals of quantum information processing. The idea was to provide the
graduate students working on highly specialized research projects in, for example, magnetic
resonance, semiconductor spectroscopy, or genetic algorithms, with a common language and
background connecting their areas of research. In that course we tried to discuss on equal foot-
ing both theoretical foundations and experimental opportunities and limitations. The present
book contains the material presented in our course, in an edited and slightly updated form.

We are well aware of the existence of a number of excellent books and courses relevant to
our subject. Nevertheless, we feel that a compact introduction to both theory and experiment
aimed at advanced students of physics is still lacking. We assume that our readers have a
reasonably good background in physics, notably in quantum mechanics, plus some knowledge
in introductory statistical mechanics and solid-state physics. We did not attempt to make
our book self-contained by explaining every concept which is needed only occasionally. We
do hope, however, that we have succeeded in explaining the basic concepts from quantum
mechanics and computer science which are used throughout the book and the whole field of
quantum computing and quantum communication.

We are grateful to the students who attended our course or participated in a seminar based
partly on the course material. Their questions and comments were helpful in shaping the
material. Of course all errors and inaccuracies (which are present, no doubt) are entirely our
own responsibility. We would like to express our thanks to many colleagues for many things:
to Bernd Burghardt for I5TgX help, to Hajo Leschke for clarifying remarks, to Heinz Schuster
and Claudius Gros for encouragement, to Michael Bortz, Hellmut Keiter (who fought his way
through the entire manuscript when it was still in an intermediate state), and André Leier for
reading parts of the manuscript, and to André Leier for also supplying material on quantum
error correction.

Joachim Stolze and Dieter Suter
Dortmund, March, 2004
Quantium Computing: A Short Cowrse from Theory to Experiment. Joachim Stolze and Dieter Suter

Copyright (© 2004 Wiley-VCH Vertag GmibH & Co. KGaA
ISBN: 3-527-40438-4
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1 Introduction and survey

1.1 Information, computers and quantum mechanics

1.1.1 Digital information

Storage, interchange and processing of information is a defining feature of human culture as
well as the basis of our economic system. Over the last fifty years, all these processes have
undergone dramatic changes, driven by the evolution of microelectronics technology. The in-
creasing availability of cheap storage, fast processors and global telecommunication (includ-
ing the Internet) has prompted a shift from a number of different conventional techniques used
to store, process and transmit information, which used different, mostly analog techniques, to
those which use all-digital forms of representing information.

This convergence of technologies has also eased the connection between storage, process-
ing and communication and made the most of the ongoing processes transparent or invisible
to the person who is actually using them. A search for a picture over an Internet search engine,
e.g., which typically involves typing a few words and results in a long list of “hits”, involves
all three types of processes mentioned several times:

e The computer on which the person works interprets the input and uses its locally stored
information to decide what action it has to take.

o [t communicates with routers to obtain the address of the search engine.

o It sends the request over the Internet to the search engine. The transfer of information
over the Internet involves multiple steps of processing and using stored information about
connections at all nodes.

e The search engine receives the request and compares the keywords to those stored in its
files.

o It uses stored rules to rank the hits.

o The result is sent back over the Internet.

e The workstation receives the information and uses stored information to display the in-
formation.

Each of these steps can be further subdivided into smaller steps that may again include differ-
ent types of actions on the information being exchanged between many different parties (most
of them electronic circuits).

Quantum Computing: A Short Course from Theory 1o Experiment. Joachim Stolze and Dieter Suter
Copyright (© 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40438-4
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These fundamental changes of the way in which information is represented and processed
have simultaneously changed the way in which we use information. One consequence is that,
very often, information can no longer be localized or associated with a specific physical de-
vice. While hand-written notes represented unique instances of the pertinent information,
every electronic mail is stored (at least temporarily) on many different computers. It is there-
fore not only available for later retrieval by the person who wrote it, but also to many others
like system managers, hackers, or government agencies.

Most users of digital information experience the paradigm shift from conventional forms
of information representation to a unified digital form as an exciting possibility for improved
communication, easier access to vital information and additional choices for entertainment.
This attitude has driven the growth of the microelectronics industry over the last decades and
is likely to remain an important economic force for the foreseeable future.

At the same time, the global availability of information and the difficulty of controlling
one’s personal data have prompted concerns about maintaining privacy. The emerging field of
quantum information processing holds promises that are relevant for both issues, the further
evolution of microelectronics as well as the concemns about privacy. This field, which com-
bincs approaches from physics, mathematics, and computer science, differs from conventional
approaches by taking into account the quantum mechanical nature of the physical devices that
store and process the information. In this monograph, we concentrate on the aspect of “quan-
tum computers”, which refers to machines built on the basis of explicitly quantum mechanical
systems and designed to process information in a way that is much more efficient than con-
ventional computers. While it is still unclear at what time (and if ever) such computers will
be more powerful than classical computers, it is quite clear that at least some of the underly-
ing physics will be incorporated into future generations of information processing hardware.
The related field of quantum communication, which promises to deliver ways of exchanging
information that cannot be tapped by any eavesdropper, will only be mentioned here briefly.

1.1.2 Moore’s law

The evolution of micro- and optoelectronic devices and the associated digitization of infor-
mation has relied on improvements in the fabrication of semiconductors that have led to ever
smaller and faster components. The decrease in size, in particular, has allowed more compo-
nents to be packed onto a chip, thus making them more powerful by integrating more func-
tions. Simultaneously, the decrease in size is a prerequisite for making faster devices, as long
as they rely on a fixed, systemwide clock. As early as 1965, Gordon Moore noticed that the
number of components that could be placed on a chip had grown exponentially over many
years, while the feature size had shrunk at a similar rate [Moo65]. This trend continued over
the next forty years and is expected to do so for the foreseeable future.

Figure 1.1 shows the current expectations: it represents the projections that the semicon-
ductor industry association makes for the coming decade. As shown in Fig. 1.1, the feature
size of electronic devices is now in the range of 100 nm and decreasing at a rate of some 12%
per year. According (o this roadmap, feature sizes of 50 nm will be reached in the year 2013.

This trend could in principle continue for another forty years before the ultimate limit is
reached, which corresponds to the size of an atom. Much before this ultimate limit, however,
the feature size will become smaller than some less well defined limit, where the electrons that
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Figure 1.1: Prospective evolution of feature size in microelectronic circuits (source: interna-
tional scmiconductor association roadmap).

do the work in the semiconductor devices, will start to show that their behavior is governed by
quantum mechanics, rather than the classical physical laws that are currently used to describe
their behavior.

1.1.3 Emergence of quantum behavior

The reduction of feature size also implies a decrease in operation voltage, since the internal
fields would otherwise exceed the breakthrough fields of all available materials. Within the
next ten years, the operational voltage is expected to decrease to less than one Volt. The
capacitance of a spherical capacitor is C = 4megr. For a spherical capacitor with radius
50 nm, the capacitance is therefore of the order of 5 - 107!® F. A change in the voltage of
0.1 V will then move less than four electrons in such a device, again making quantization
effects noticeable. While the capacitance of real capacitors is higher, the number of electrons
stored in a memory cell will become a small integer number in the near future, again bringing
quantum physics into play.

Classical physics is an approximation of the more fundamental laws of quantum mecha-
nics, which represents a useful approximation in many fields of engineering. Quantum mecha-
nics is required in order to understand the properties of semiconductors, such as current - volt-
age curves of diodes, from their microscopic structure. Once these properties are established,
however, it becomes possible to describe the operation of semiconductor devices on the basis
of the classical theory of electrodynamics.

This classical description of the operation of semiconductor devices will become impos-
sible when the feature size reaches the coherence length. This quantity depends on the details
of the material, the processing and the temperature at which the device operates, but typically
is in the range of a few nanometers to some tens of nanometers.

Figure 1.2 shows how the transition to the quantum regime will change the way in which
typical electronic devices operate. Capacitors, which are present in many electronic circuits,
exhibit a direct proportionality between applied voltage and stored charge in all classical de-
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Figure 1.2: Current/voltage characteristics of classical capacitor (left) and its analog in the
quantum regime, where individual electrons can or cannot cnter the device.

vices. When the capacitance becomes small enough, the transfer of a single electron will
change the potential of the capacitor by a large enough amount that it takes a significantly
larger voltage to transter additional charges.

This makes it obvious that the progress that we have today will soon lead to a situation
where it is no longer possible to describe the flow of electricity as a classical current. While
a classical device, such as the workhorse FET, requires a continuous relationship between
current and voltage, this will no longer be the case in the quantum mechanical regime, as
experimental prototypes clearly show.

1.1.4 Energy dissipation in computers

Possibly even more impressive than the reduction in feature size over time is a correspond-
ing trend in the energy dissipated in a logical step. Over the last fifty years, this number has
decreased by more than ten orders of magnitude, again following an exponential time depen-
dence. A straightforward extrapolation shows that this trend would decrease the dissipated
energy to less than kT (at room temperature) in little more than ten years. This amount was
long taken as the minimum that any working switch would have to dissipate. 1f this were the
case, it would definitely put an end to the increase in packing density and speed of microelec-
tronics, which would otherwise become too hot to operate.

While it is now known that there is no principal limit to the amount of energy that is dis-
sipated during a logical step, it is clear that devices that operate below the kT timit must
function differently, using so-called reversible logic, rather than the usual Boolean logic. In-
terestingly enough, devices that operate by the laws of quantum mechanics are inherently
reversible. The two trends — reduction of dissipated power and reduction of size — therefore
appear to converge towards devices that use quantum mechanics for their operation.

While the limitations that force the use of quantum devices in the future may appear as a
nuisance to many engincers, they also represent an enormous potential, since these future de-
vices may be much more powerful than conventional (classical) devices. They can implement
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all the algorithms that run on today’s classical computers, but in addition, they also can be
used to implement a different class of algorithms, which explicitly use the quantum mechani-
cal nature of the device. A few such quantum algorithms have been designed to solve specific
problems that cannot be solved efficiently on classical computers. While many questions re-
main unanswered concerning the feasibility of building devices that fulfill all the stringent
requirements for a useful quantum computer, the possibilities offered by this emerging tech-
nology have generated a lot of attention, even outside the scientific community.

1.2 Quantum computer basics

1.2.1 Quantum information

We discuss here exclusively digital representations of information. Classically, information is
then encoded in a sequence of bits, i.e., entities which can be in two distinguishable states,
which are conventionally labeled with O and 1. In electronic devices, these states are encoded
by voltages, whose values vary with the technological basis of the implementation (e.g. TTL:
0 ~low is represented by voltages < 0.8 V and 1 ~high by voltages > 2.4 V).

Classical bit Quantum bit = qubit Spin 172
A\ E P

Figure 1.3: Representation of information in a classical computer (left) vs. quantum computer
(center). The spin 1/2 (right) is the prototypical example of a qubit.

The same principle applies to quantum systems that represent information: to represent a
single bit of information, two distinguishable states of the system are needed. “Distinguish-
able” means, in a quantum system, that the two states must differ in some quantum numbers,
i.e., they must be different eigenstates of at least one operator. A typical example is a spin 1/2,
which has two possible states. Another example is a photon, which can be polarized either
vertically or horizontally. One of these states is identified with the logical value O (or false),
the other with the value 1 (or true).

The main difference between quantum mechanical and classical information is that, in the
quantum mechanical case, the system is not necessarily in the state O or 1. Instead it can be in
an arbitrary superposition (linear combination) of these states. To emphasize this difference
between quantum and classical bits, the term “qubit” (short for quantum bit) has been adopted
for the quantum mechanical unit of information.

The power of quantum computers is directly related to this possibility of creating super-
positions of states and applying logical operations to them: this allows one to perform many
operations in parallel. A system consisting of N qubits has 2V mutually orthogonal basis
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states, and it is possible to bring such a system into a state that is a superposition of all these
basis states. Logical operations such as multiplications can then be applied to this superposi-
tion. In a sense 1o be discussed later, such a transformation is equivalent to transforming all
the states in parallel, i.e., performing 2 operations in parallcl.

Becoming slightly more formal, we find that the information, which is encoded in a quan-
tum mechanical system (or quantum register), is described by a vector in Hilbert space. For
the simplest case of a single qubit, the state is |¢)) = alig) + blipy). The (wo parameters a
and b are both complex numbers. Taking normalization into account, the system is therefore
described by three continuous variables.

The fact that the state is described by three continuous variables does not imply that a
single qubit can store an infinite amount of information. To obtain the information content,
one has to take the measurement process, which retrieves the information, into account: it is
never possible to measure exactly the quantum state of a single photon. A single measurement
(more precisely: an ideal quantum mechanical measurement as postulated by von Neumann)
can only measure one degree of freedom and returns a single bit (particle found or not).

A complete measurement of the state of a single qubit would thus require repeated mea-
surements, which were possible if one could prepare copies of the actual quantum mechanical
state. However, this is prohibited by the “no-cloning theorem”, which states that no process
can duplicate the exact quantum state of 4 single particle. While the details of the calculation
are rather involved, it is possible to show that a single quantum mechanical two-level system
can transfer up to two classical bits of information. Without a complete analysis, this can be
rationalized by the consideration that we can make two independent measurements on a pho-
ton, corresponding, ¢.g., to the measurement of the polarization horizontal/vertical or at +15
degrees.

1.2.2  Quantum communication

One of the most active areas of quantum information processing is quantum communication,
L.e., the transter of information encoded in quantum mechanical degrees of freedom. This is
typically done by encoding the information in photons. Semiclassically, a photon can carry
a bit: it can be transmitted or not, thus corresponding to a logical 0 or [. Other encoding
schemes include the polarization of the photon, which may be vertical or horizontal.

Quantum communication has evolved into a very active field. Besides its fundamental in-
terest, it promises a number of possible applications: taking quantum mechanics into account
may improve the information content of communication channels: as discussed above, a pho-
ton qubit can transmit up to two classical bits of information. In addition, it has been shown
that communication with individual photons may be made secure, i.e., it is impossible to tap
into such a communication without the users of the communication line noticing it. This is
a consequence of the no-cloning thecorem: While it is conceivable that an eavesdropper inter-
cepts a photon, thus detecting that information is being transferred, and that he subsequently
re-emits a similar photon to the original receiver, he cannot send an exact copy of the original
photon. This necessarily allows the two partners who are (rying to establish a secure commu-
nication to realize that their communication is being monitored — not for individual photons,
but from a statistical analysis of the successfully transmitted photons.
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This is not automatic, however. If the communication protocol were to use only the pres-
ence or absence of the photon as the information, the eavesdropper would be able to use QND
(=quantum nondemolition detection) to observe the passage of the photon. Such experimen-
tal schemes can measure a given quantum mechanical variable (such as the light intensity)
without affecting this variable (i.e., changing the number of photons). Heisenberg’s principle
requires, however, that such a measurement affects the conjugate variable, in this example the
phase of the photon.

The two partners can use this fact to make the communication protocol secure. A typical
protocol requires one of the two partners (typically called Alice) to send a stream of photons
to the second partner (typically called Bob), which are entangled with a second set of pho-
tons, which Alice keeps. The two partners then make a measurement of the polarization of
these photons, switching the axes of their polarizers randomly between two predetermined
positions. If the photon pairs are originally in a singlet state, each partner knows then the
result of the other partner’s measurements provided that they used the same axis of the po-
larizer. They can therefore generate a common secret string of bits by exchanging through a
public channel (e.g., a radio transmission) the orientation of the polarizer that they used for
their measurements (but not the results of their measurements). They can then eliminate those
measurements where only one partner detected a photon as well as those for which the orienta-
tion of their polarizers were different. Assuming an ideal system, the remaining measurement
results are then exactly anti-correlated. If an eavesdropper (usually called Eve) tried to listen
in on their communication, her measurements would inevitably affect the transmitted data.
A statistical analysis of the measurement results obtained by Alice and Bob, for which they
publicly exchange a fraction of their bits, would then reveal the presence of the eavesdropper.
This scheme has been tested successfully in a number of experiments by using optical fibers
or beams through free space.

1.2.3 Basics of quantum information processing

A quantum computer, i.e., a programmable quantum information processing device, encodes
the information in the form of a quantum register, consisting of a labeled series of qubits. Each
qubit is represented by a quantum mechanical two-level system, such as a spin-1/2 and can
therefore be described by the spinor

The total collection of qubits is called a quantum register. Its state is written as
[)™ 8 = ¢4]0,0,0..0) + ¢1]0,0,0..1) + ¢2|0,0,0..1,0) + ... (1.2)

While today’s quantum registers are limited to 7 qubits, a useful quantum computer will re-
quire several hundred to 1000 qubits.

Before an actual computation can be initiated, the quantum register must be initialized
into a well defined state, typically the quantum mechanical ground state 0,0, ...0 >. This
operation 1s non-unitary, since it must bring the system into one specific state, independent of
the state in which it starts. The initialization is therefore a non-reversible process that must
include dissipation.
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Table 1.1: Truth table of CNOT gate.

control-qubit | target-qubit | result
0 0 00
0 1 01
L 0 1
1 1 10

The actual information processing occurs through the operation of quantum gates, i.c.,
transformations that operate on the quantum register and correspond to logical operations:

o) )= ) (13

The sequence of quantum gates is determined by the specific algorithm to be implemented.
The program that specifies this sequence may be stored in a classical device associated with
the quantum computer, such as a classical computer.

Like any change in a quantum mechanical system, logical operations are driven by a suit-
able Hamiltonian acting on the state that represents the quantum register. Tt is in most cases
difficult to find a Hamiltonian that directly performs the desired transformation, such as the
decomposition of an integer into its prime factors. Instead, the total transformation is usually
split into elementary logical operations that transform a single bit of information or connect
two bits by operating on one bit in a way that depends on the state of the other bit. It turns
out that all possible logical operations can be decomposed into a small group of elementary
operations:

o single qubit operations, corresponding to arbitrary rotations of the spinor representing
the qubit and

o one type ol 2-qubit operations, e.g., the “controlled NOT” or CNOT.

A quantum computer implementation that can perform arbitrary calculations must there-
fore implement these two types of operations. Particularly critical are the two-qubit opera-
tions, since they require interactions between thee qubits. A typical operation is the CNOT
gate, whose truth table is shown in Table 1.1: this particular gate has two inputs and two out-
puts. If the control bit is zero, it simply passes both bits to the output. If the control bit is one,
it passes the control bit through unchanged, but inverts the target bit.

The 2-qubit operations must also be applied to arbitrary pairs of qubits. Tt is possible,
however, to decompose a 2-qubit operation between any pair into a series of 2-qubit operations
between nearest neighbors. Such schemes are often much easier to implement than schemes
with interactions between arbitrary pairs. The number of 2-qubit operations is larger, but
increases only linearly with the number of qubits. The overall process therefore remains
efficient. Implementing 2-qubit gates always requires a coupling between the qubits on which
the gate operates. How this coupling is implemented depends on the details of the physical
system.
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1.2.4 Decoherence

Possibly the biggest obstacle to overcome when one tries to build a quantum computer is de-
coherence. This term summarizes all processes that contribute to a decay of the information
coded in the quantum register. As we have stressed above, quantum computers derive their
power from the possibility of performing logical operations on a large number of states simul-
taneously, which have been combined into a superposition state. If the relative phase between
these states slips, the result of the operation will effectively become associated with the wrong
input, thereby destroying the information. As the number of qubits in the quantum regis-
ter increases, the processing power increases, but at the same time the quantum information
becomes more fragile.

The biggest contribution to decoherence is usually dephasing. In a simple picture, dephas-
ing occurs when the energy difference between the two states representing the qubit fluctuates.
As a result, the relative phase of the superposition state acquires an additional phase propor-
tional to the energy change.

The effect of such a dephasing as well as other decoherence processes is a loss of infor-
mation in the system. Since it is highly unlikely that any system will be able to successfully
complete a useful quantum information processing algorithm before decoherence becomes
noticeable, it is vital to develop strategies that eliminate or reduce the effect of decoherence.
One possibility that is pursued actively, is to apply quantum error corrections. Basically these
processes use coding of quantum information in additional qubits. Algorithms have been
developed for using these additional qubits to check for and eliminate various types of errors.

1.2.5 Implementation

To actually build a quantum computer, a suitable physical system has to be identified and the
associated controls must be put in place. We give here a briet overview of the conditions
that all implementations must fulfill and discuss some issues that help in identifying suitable
systems.

The quantum information is stored in a register. Any implementation therefore has to
define a quanturn mechanical system that provides the quantum register containing N qubits.
For a “useful” quantum computer, N should be at least 400, or preferably 1000; limitations on
the number N of identifiable qubits will therefore be an important consideration.

Quantum
Initialization  register / Prf cessor\ Readout
(% Step 1 Step 2 Step N — 11>
i vee . T 0>
U, =eitlm U, = elfzm Uy = eillvey
N qubits

Figure 1.4: Principle of opcration of quantum processors.

These qubits must be initialized into a well defined state, typically into a ground state |0).
This is necessarily a dissipative process. Implementations must therefore provide a suitable
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mechanism for initialization. The implementation must then provide a mechanism for ap-
plying computational steps to the quantum register. Each of these steps consists of a unitary
operation ¢ 7™ defined by a Hamiltonian H; that is applied for a time ;. The Hamilton-
ian must act on specific qubits and pairs of qubits by applying electromagnetic fields. The
quantum computer must therefore contain mechanisms for generating these fields in a well
controlled manner. After the last processing step, the resulting state of the quantum register
must be determined, i.e., the result of the computation must be read out. This would typi-
cally correspond to an ideal quantum mechanical measurement, i.e., the projection onto an
eigenstate of the corresponding observable. Readout has to be done on each qubit separately.

A number of different systems have been considered for implementing quantum informa-
tion processors. The obvious connection between qubits and spins 1/2 as two-level systems
suggests using spin systems for storing the quantum information. Their advantage is not only
the easy mapping scheme from bits of information to their state space, but also an excellent
degree of isolation of the spin degrees of freedom from their environment, which provides
long decoherence times. Unfortunately, the weakness of this coupling also makes it difficult
to read out the result of a computation from the quantum register. Spins have therefore not
been used as individual entities so far, but only in bulk form: liquid state nuclear magnetic
resonance (NMR), which forms the basis for the most advanced quantum computers so far
uses typically 102V identical molecules to implement a quantum register. The advantage of
this scheme is a relatively straightforward implementation of gate operations, the main disad-
vantage is that such “ensemble” quantum computers are difficult to scale to large numbers of
qubits.

Another physical system that is relatively well isolated from its environment is a system
of atomic ions stored in electromagnetic traps. Storing information in these systems is less
straightforward, since the number of states accessible to each ion is infinite and the interactions
arc harder to control with sufficient precision. The main advantage of trapped ions may be that
it is relatively easy to read out the result from individual ions.

While NMR and ion traps are the only implementations available to date, a significant
amount of research is directed towards solid-state implementations, which may be easier to
scale to larger numbers of qubits. Their main difficulty is the much faster decoherence pro-
cesses and the difficulty in manufacturing such small structures in a reproducible way.

1.3 History of quantum information processing

1.3.1 Initial ideas

Quantum information processing has decp roots that are almost as old as quantum mechanics
itself. If we believe that quantum mechanics is the fundamental physical theory that lets
us derive properties of all materials, it should also be the basis for the description of any
computer. However, in most cases, classical mechanics (and optics, electrodynamics etc.)
are excellent approximations to the underlying quantum theory and perfectly adequate for the
description of the operation of computational machinery.

The more relevant question is therefore, what happens when the physical basis for the
computer is an explicitly quantum system for whose description the classical approximation
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fails. Explicit discussions on this possibility essentially started in 1982, when Benioff showed
how the time dependence of quantum systems could be used to efficiently simulate classical
computers operating according to Boolean logic [Ben82].

In the same year, Richard Feynman asked the opposite question: Can classical comput-
ers efficiently simulate quantum mechanical systems [Fey82]. He noted that the number of
variables required to describe the system grows exponentially with its size. As an example,
consider a system of N spins-1/2. The size of the corresponding Hilbert space is 2V and a
specification of its wavefunction therefore requires 2 - 2V — 1 real numbers. Any computer
trying to simulate the evolution of such a system therefore must keep track of 2V complex
numbers. Even for a few hundred particles, 2N exceeds the number of atoms in the universe
and therefore the memory of any conceivable computer that stores these variables in bit se-
quences. At the same time, the time required to run a simulation grows exponentially with
the number of particles in the quantum system. Feynman concluded that classical computers
will never be able to exactly simulate quantum mechanical systems containing more than just
a few particles. Of course, these considerations only take the general case into account. If
the particles (or at least the majority) do not interact, e.g., it is always possible to perform the
computation in a smaller Hilbert space, thus reducing the computational requirements quali-
tatively.

After stating the problem, Feynman immediately offered a solution: “Quantum computers
— universal quantum simulators”. He showed that the drastic increase in the storage require-
ments and the computation time can be viewed as a consequence of the large amount of in-
formation that is present in the quantum mechanical system. The consideration that quantum
systems effectively simulate themselves may then be taken as an indication that they are ef-
ficient processors of information. He stated “I therefore believe it is true that with a suitable
class of quantum machines you could imitate any quantum system, including the physical
world.” As an open question he asked which systems could actually be simulated and where
such simulations would be useful.

A first proof of this conjecture was given in 1993 by Bernstein and Vazirani [BV93]. They
showed that a quantum mechantcal Turing machine is capable of simulating other quantum
mechanical systems in polynomial time. This implied that quantum computers are more pow-
erful than classical computers. This was a proof of principle, but no example was given for
such a procedure, i.e., no algorithm was yet known that would run more efficiently on a quan-
tum computer than on a classical computer.

1.3.2 Quantum algorithms

Such algorithms, which require a quantum computer, are called “quantum algorithms”. The
first quantum algorithm that can run faster on a quantum computer than on any classical com-
puter was put forward by Deutsch in 1985 [Deu85] and generalized by Deutsch and Jozsa in
1992 ( [DJ92] . The problem they solved — deciding if all possible results of a function are
either identical or equally distributed between two values — had little practical relevance.

A very useful algorithm was developed in 1994 by Coppersmith [Cop94]: he showed how
the Fourier transform can be implemented efficiently on a quantum computer. The Fourier
transform has a wide range of applications in physics and mathematics. In particular it is also
used in number theory for factoring large numbers. The best known application of the quan-
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tum Fourier transform is the factoring algorithm that Peter Shor published in 1994 [Sha94].
Factoring larger numbers is not only of interest for number theory, but also has significant
impact on the security of digital data transmission: The most popular cryptographic systems
rely on the difficulty of factoring large numbers.

The best classical algorithms for factorization of an [ digit number use a time that grows
as exp(cll'/® (log 1)(3/3)), i.e., exponentially with the number of digits. Shor proposed a
model for quantum computation and an algorithm that solves the factorization problem in a
time proportional to O(1? log!loglog!), i.e., polynomially in the number of digits. This is
a qualitative difference: polynomial-time algorithms are considered “efficient”, while expo-
nential algorithms are not usable for large systems. The different behavior implies that for a
sufficiently large number, a quantum computer will always finish the factorization faster than
a classical computer, even if the classical computer runs on a much faster clock.

ape of ~]
nniverse best classicat algorithm
lyear Shor algorithm
Thour
s 500 1000 1500 2000
# Digits |

Figure 1.5: Time required for classical factorization algorithm vs. quantum algorithm.

We illustrate this by a numerical example. We will assume that a fast classical computer
can factorize a 50 digit number in one second, while the quantum computer may take as much
as an hour for the same operation. If the number of digits increases to 300, both computers
require some 2.5 days to solve the problem, as shown in figure 1.5. A further increase to
1000 digits requires 42 days on the quantum computer, while the classical computer would
need some 19000 years - clearly too long for any practical purposes. With 2000 digits, the
quantum computer needs half a year, while the computation time on the classical computer
becomes roughly equal to the age of the universe.

1.3.3 Implementations

A quantum mechanical system that can be used as an information processing device must
meet a number of rather restrictive conditions, including:

o It must be possible to initialize the system into a well-defined quantum state.

¢ It must be possible to apply unitary operations to each individual two-level system that
serves as a qubit.

o It must be possible to apply unitary operations to some pairs of qubits.
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e The information stored in the quantum register, in particular the relative phases of all
quantum states must be preserved for a sufficiently large number of logical operations.

o It must be possible to read out the state of each qubit with high fidelity.

Each of these requirements can be expressed much more quantitatively, as we discuss later
in this book. Some of the requirements tend to work against each other: being able to control
individual qubits, e.g., requires coupling them to the environment. Such couplings, however,
always tend to bring noise into the system, thus causing decay of the quantum information.
The same processes that must be used to initialize the system again tend to destroy the quantum
information.

It is therefore not surprising that it proved very difficult to meet these conditions simul-
taneously on a single system. The first physical system on which quantum algorithms were
actually implemented was nuclear magnetic resonance ( NMR) in liquids |[GC97, CFH97].
Nuclear spins have the advantage that they are very well isolated from their environment,
therefore preserving the quantum information for long times (up to several seconds). On the
other hand, the weak coupling to the environment makes it very difficult to measure the spin
state of individual nuclear spins. This difficulty can be circumvented in liquid state NMR
quantum computers by working with many identical copies of the molecule that represents
the quantum register, typically some 10%".

The first experiments that used individual systems to implement quantum algorithms used
atomic ions in electromagnetic traps [SKHRT03,LDM™'03]. An obvious advantage of atomic
systems is that it is possible to use large numbers of atoms whose properties are identical.
Compared to NMR systems, readout of the individual qubits is quite straightforward in trapped
ion quantum computers. Storing them in electromagnetic traps virtually eliminates most cou-
plings to the environment except to the trap itself. It may therefore be possible to reach long
decoherence times in such systems. The main difficulties at this time are to control the gate
operations with sufficient precision and to increase the number of trapped ions.

Some quantum algorithms have also been implemented in optical systems, using photons
as qubits. However, the approach that was used so far would involve an exponential increase in
the number of optical elements if it were to be scaled to larger systems. More recent proposals
for scalable quantum computers that are based on photons have not been implemented yet.

Scaling to large numbers of qubits, which will be necessary to build a computer whose pro-
cessing power exceeds that of a classical computer, may eventually become easier by using
solid state systems. Many proposals have been put forward for systems involving semicon-
ductor or superconducting materials, but actual implementations are still at a very early stage.
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2 Physics of computation

2.1 Physical laws and information processing

2.1.1 Hardware representation

Information processing is often considered a purely abstract process, which can be discussed
in purely mathematical terms. However, information is always represented in some physical
entity, and processing and analyzing it requires physical devices [Lan91,Lan96]. As a conse-
quence, any information processing is inherently limited by the physical nature of the devices
used in the actual implementation. While it is evident that an electronic chip with a high clock
speed is more powerful as an information processor (in most respects) than a hand-operated
mechanical computer, it is perhaps less obvious that the nature of the physical device does not
just determine the clock rate, it can determine qualitatively the class of algorithms that can be
computed efficiently.

This principle is often overlooked, but its consequences have often been discovered.
Church and Turing asserted [Chu36, Tur36] that most computers are equivalent with respect
to computability (not with respect to speed), allowing one to disregard the details of the in-
formation processing device for determining if a given problem can be solved on a computer.
However, the strong form of the Church-Turing hypothesis, which states that any problem
that can be solved efficiently on one computer can be solved efficiently on any other computer,
appears to be wrong: some problems have been established to be solvable efficiently if the
computer operates according to quantum mechanics, but not on classical computers.

The physical laws governing the hardware that stores and processes the information im-
pose a number of limitations on the ultimate performance of any computational machine. They
differ from mathematical limitations (e.g., complexity classes), which determine the number
of logical operations needed to complete an algorithm, but not the speed at which it can be
executed. They are similar, however, to the limits that thermodynamics sets on the efficiency
of heat engines: they not only indicate future roadblocks in the development of computer
hardware, they also can be used as guidelines for the design of efficient devices. These limi-
tations arise on all levels and relate to the performance of all computational steps, such as the
storage of information, execution of logical operations, or the transfer of information between
different parts of the computer. While they are also relevant for natural information processing
devices (such as the human brain), we will consider here only artifacts, since their operation
is still better understood and easier to quantify.

For this section, we will concentrate on physical laws that do not refer to a specific hard-
ware basis chosen for implementing the information processing devices. We will refer to these
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issues as fundamental, in contrast to issues that depend on a specific technology, such as the
speed at which a CMOS gate can be operated (which is, of course, also limited by physical
laws). While most of our present information processing systems are still limited by technical
rather than by fundamental physical limits, some systems are approaching these limits (e.g.
the channel capacities of experimental fiber optics systems are close to the limit found by
Shannon) and other components will be approaching real or perceived limitations within the
next few decades, provided that the current trends can be extrapolated. In the past, several
apparent limitations could be overcome by conceptual changes.

N bit register

Step 1 Step 2
i

Figure 2.1: Model of computation: the information is stored in a register consisting of N bits.
Computation is performed in discrele steps acting on this register. The subsequent registers
represent the same register at different times.

Figure 2.1 shows schematically the model that we use to analyze the computational pro-
cess: information is stored in N bits combined into a register. The computation is split into
discrete steps executed in sequence. Each step uses information from the register to transform
the register into a new state. For each step j, the state of bit by (j + 1) after the operation is
determined by the state of all bits before this step,

be(G+ 1) = JL01(5), ba(5)s O (), .1

where the functions f," together represent the logical operations acting on the register.

2.1.2 Quantum vs. classical information processing

Quantum and classical computers share a number of properties that are subject to the same
physical limitations. As an example, the limits on processing speed that we discuss in the
following section apply to both approaches. Similarly, the amount of information that can be
stored in 4 system is limited by the entropy of the system.

One of the major differences between classical and quantum computers is the existence
of superpositions in the quantum computer, which implies that the amount of information
processed by a single computational step is a single number of N bits in the classical computer,
while the quantum computer processes typically 2% numbers simultaneously.

Another, but less fundamental difference is that ideal quantum computers operate re-
versibly: logical operations are implemented by unitary transformations, which do not change
the energy of the quantum state on which they operate and therefore (in the ideal case) do
not dissipate any energy. As we discuss in more detail below, the operation of today’s clas-
sical computers is irreversible. This is partly due to the logic foundations (Boolean logic
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uses non-invertible operations), and partly due to the hardware design. The progress in mi-
croelectronics is quickly reducing the dissipation per logical operation and considerations of
the ultimate limits to the requirements on energy and power to drive logical operations are
becoming relevant.

The quantum mechanical measurement process imposes some limitations on quantum
computers that are not relevant for classical computers: the readout process will always change
the information stored in a quantum computer, while its effect on a classical computer can be
made arbitrarily small.

2.2 Limitations on computer performance

While some of the limits that physical laws set for the operation of computers are quite obvi-
ous (such as the speed of light as a limit for information transfer), others have only recently
been established, while others have been shown not to be fundamental limits, if some of the
concepts are adjusted.

2.2.1 Switching energy

One limitation that was held to be fundamental was that the operation of a logical gate work-
ing at a temperature 1" should dissipate at least the energy kg7 [Lan61, KL70]. At the time
that these minimum energy requirements were discussed, actual devices required switching
energies that were some ten orders of magnitude larger, so this perceived limit appeared quite
irrelevant for any conceivable device.

10",

| ! ] ! ] ! ™
1950 1970 1990 2010

Year

Figure 2.2: The energy dissipation per logical step in electronic circuits decreased by about 2-3
orders of magnitude cvery decade [Key88§].

As Fig. 2.2 shows, the situation has changed dramatically in the 40 years since: the energy
dissipated per logical step has decreased exponentially, at a rate of approximately a factor of
ten every 4 years. This increase in energy efficiency is a requirement for the increase in speed
and computational power and will need to continue if these other trends continue. Consider,
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e.g., a typical microprocessor with some [0® transistors being clocked at 1 GHz: if it were to
dissipate 10 mJ per logical operation, as was typical in 1940, it would consume some 10'® W
for a short time, probably disintegrating explosively within a single clock cycle.

It appears therefore quite likely that this trend must continue as long as the increase in
speed and integration continues. As the figure shows, the extrapolation of this trend implies
that the energy per logical step will reach the thermal energy kg7 (1" = 300 K) within 10-15
years. This limit (kpT) is relevant in at least two respects:

. %;‘; T is the average thermal energy per degree of freedom. Any environment that is at
the temperature 7" will therefore inject this energy into switches that are not perfectly
shielded from the environment, thus causing them to switch spontaneously.

o kp'l' is the minimum energy that is dissipated by non-reversible gate operations, such as
an AND operation.

We are therefore led to conclude that conventional electronic circuits will encounter problems
when they reach this limit. However, as we discuss below, it is now established that infor-
mation can be processed with techniques that dissipate less encrgy than kg T per logical step.
There is no lower limit for the energy required for a logical operation, as long as the switching
time 1s not critical.

2.2.2 Entropy generation and Maxwell’s demon

The flow of information in any computer corresponds to a transfer of entropy. Information
processing is therefore closely tied to thermodynamics. As an introduction to these issues
consider the Maxwell demon: As Maxwell discussed, in his “Theory of heat” in 1871,

“If we conceive a being whose faculties are so sharpened that he can follow
every molecule in its course, such a being, whose attributes are still essentially finite
as our own, would be able to do what is at present impossibie to us. For we have
seen that the molecules in a vessel full of air at a uniform temperature are moving
with velocities by no means uniform... Now let us suppose that such a vessel is
divided into two portions, A and B, by a division in which there is a small hole, and
that a being, who can see the individual molecules, opens and closes this hole, so as
to allow only the swifter molecules to pass from A to B, and only the slower ones to
pass from B to A. He will thus, without expenditure of work, raise the temperature
of B and lower that of A, in contradiction with the second law of thermodynamics.”

Clearly such a device is not in contradiction with the first law of thermodynamics, but
with the second. A number of people discussed this issue, adding even simpler versions of
this paradox. A good example is that the demon does not have to measure the speed of the
molecules; it is sufficient if he measured its direction: He only opens the door if a molecule
comes towards the door from the left (e.g.), but not if it comes from the right. As a result,
pressure will increase in the right-hand part of the container. This will not create a temperature
difference, but rather a pressure difterence, which could alse be used as a source of energy.
Still, this device does not violate conservation of energy, since the energy of the molecules is
not changed.
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The first hint at a resolution of this paradox came in 1929 from Leo Szilard [Szi29], who
realized that the measurement, which must be taken on the molecules, does not come for free:
the information required for the decision, whether or not to open the gate, compensates the
entropy decrease in the gas. It is thus exactly the information processing, which prevents the
violation of the second law.

While Szilard’s analysis of the situation was correct, he only assumed that this had to be
the case, he did not give a proof for this assumption. It was Rolf Landauer of IBM [Lan61]
who made a more careful analysis, explicitly discussing the generation of entropy in various
computational processes. Other researchers, including Charles Bennett, Edward Fredkin, and
Tommaso Toffoli showed that it is actually the process of erasing the information gained
during the measurement (which is required as a step for initializing the system for the next
measurement) which creates the entropy, while the measurement itself could be made without
entropy creation. Erasing information is closely related to dissipation: a reversible system
does not destroy information, as expressed by the second law of thermodynamics. Obviously
most current computers dissipate information. As an example, consider the calculation 34-5 =
8. It is not possible to reverse this computation, since different inputs produce this output. The
process is quite analogous to the removal of a wall between two containers, which are filled
with different pressures of the same gas.

The creation of entropy during erasure of information is always associated with dissipation
of energy. Typically, the erasure of 1 bit of information must dissipate at least an energy of
kgT. This can be illustrated in a simple picture. We assume that the information is stored in
a quantum mechanical two-level system, the two states being labeled |0} and |1). Erasing the
information contained in this bit can be achieved by placing it in state |0), e.g., independent
of its previous state. This is obviously impossible by a unitary operation, i.e., by (energy-
conserving) evolution under a Hamiltonian, since in that case the final state always depends
on the input state.

2>

Laser

10> 1>

Figure 2.3: Erasing a bit of information, i.e., setting it unconditionally to the valuc |0} can be
achieved by driving the transition from state |1) to an auxiliary state |2) with a laser.

Figure 2.3 shows a simple system that allows for initialization of a qubit by spontaneous
emission. A laser drives the transition from state |1) to an auxiliary optically excited state |2).
If this state has a nonvanishing probability to decay to state |0}, It will eventually end up in
this state, since this does not interact with the laser beam. It represents therefore a (re-)ini-
tialization of the qubit into state |0). For this scheme to work, the third state |2), must have
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an energy higher than that of state |1). If the system is initially in state |1), the pulse puts it
in state |2). If it is initially in state |0), the pulse does nothing. From state |2), the system
will undergo spontaneous emission; in a suitable system, the probability for this spontaneous
emission to bring the atom to state |()) approaches unity. If this probability is not high enough,
the procedure must be repeated.

The minimum energy expenditure for this procedure is defined by the photon energy for
bringing the system into the excited state. This energy must be larger than kg1, since the
system could otherwise spontaneously undergo this transition, driven by the thermal energy.
Similar requirements hold in classical systems, where dissipation is typically due to friction.

2.2.3 Reversible logic

As discussed before, conventional computers use Boolean logic, which includes the operations
AND and OR. Both these operations, which have two input bits and one output bit, discard
information, i.e., they reduce the phase space. When the system has fewer accessible states,
its entropy is lower. Since the second law of thermodynamics does not allow a decrease
in the entropy of a closed system, this decrease has to be compensated by the generation
of entropy at some other place. The entropy generated by erasing a bit of information is
AS = kpTIn2. Computers bused on Boolean logic are therefore inherently dissipative
devices, with the dissipation per logical step of at least kT In2. This generation of heat
during the computational process represents an obvious limitation on the possible speed of a
computer, since no physical device can withstand arbitrary amounts of heat generation.

AND CNOT
00 00> 00
013" 0101
10 . 111
11— 11> 10

Figure 2.4: Examples of an irreversible (AND) and reversible (CNOT) gate.

It turns out, however, that computers do not have to rely on Boolean logic. They can use
reversible logic instead, which preserves the information, generating no entropy during the
processing [Ben73]. Figure 2.4 shows an example of a reversible logic gate, the so-called
controlled NOT or CNOT gate, which can be used to implement arbitrary algorithms. This
particular gate is its own inverse, i.e., CNOT - CNOT = 1.

Quantum information processors usc unitary operations to perform computations. Since
unitary operations are always reversible, they therefore require algorithms that use only re-
versible logical gates. For the example of a quantum computer, it is easy to prove that the
energy dissipation during the computation vanishes. For this we calculate the energy of the
quantum register at time t

(EMt) - Tr(Hp(t)) = Tr(He M p(0)e’ ™) = Tr(e " He ' p(0)) = (E)(0), (2.2)

where we have used that [, = 0]. (The density operator p describes the state of the
system, Tr denotes the trace, see Chapter 4.)
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A general reversible computer can be represented as a system of states, corresponding to
the information stored in the computer, and a sequence of logical operations, transforming one
such state into the next. Since no information is discarded, it is possible to reverse the com-
plete computation and bring the system back to its initial state, simply be reversing each of the
logical operations. No minimum amount of energy is required to perform reversible logical
operations. However, not discarding any information also implies that no error correction or
re-calibration is done, since these processes also discard (unwanted) information. Reversible
computation (which includes quantum computation) therefore requires very reliable gate op-
erations.

Figure 2.5: Reversible copy operation in a time-modulated potential.

Figure 2.5 shows schematically how a reversible operation that could be implemented
by a time-modulated potential and a coupling between source and target. The double well
potential represents the information: the bead in the left hand well corresponds to the logical
value 0, the bead in the right hand well to the value 1. Each potential therefore stores one bit
of information, with the single minimum well representing a neutral state. The copy operation
is achieved by modulating the potential between a monostable and a bistable state in such a
way that no energy is expended. The modulation must be sufficiently slow that the system
can follow it adiabatically. The spring, which is a passive device, assures that the bead in the
second well falls into the left or right subwell, depending on the position of the other bit,

2.2.4 Reversible gates for universal computers

The first proof that reversible logic gates can form the basis of a universal computer is due to
Fredkin and Toffoli [FT82]. They proposed a three-bit gate that is now known as the Fredkin
gate, which can be operated in a reversible way (details will be discussed in Section 3). The
Fredkin gate can be used to implement a reversible AND gate by identifying the inputs of the
AND gate with two lines of the Fredkin gate and setting the third input to the fixed value 0. The
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Table 2.1: Reversible Turing machine

head state | bitread | change | change | move to
bitto | state to
A 1 0 A left
A 0 1 B right
B 1 1 A left
B 0 0 B right

corresponding output line then contains the output of the AND gate, while the two other lines
contain bits of information which are not used by the Boolean logic, but would be required
to reverse the computation. Other reversible gates can be derived from the Fredkin gate in a
similar way: the irreversible Boolean gate is embedded in the “larger” Fredkin gate.

When reversible gates are embedded in larger reversible ones, some of the output lines are
not used in the rest of the computation. They can be erased at the corresponding dissipation
cxpense, or they can be used to reverse the computation after the result has been read out, thus
providing a truly reversible operation of the machine at the expense of some additional bits
whose number grows linearly with the length of the computation [Ben73].

Another reversible computational architecture is the reversible Turing machine. A Turing
machine consists of an infinitely long tape storing bits of information, a read/write head that
can be in a number of different states, and a set of rules stating what the machine is to do
depending on the value of the bit at the current position of the head and the state of the head.
A reversible set of rules would be the set of operations represented in Table 2.1.

The information processing corresponds to a motion of the head. The motion is driven by
thermal fluctuations and a small force defining the direction. The amount of energy dissipated
in this computer decreases without limit as this external force is reduced, but at the same
time the processing speed decreases. Overall the best picture to describe the operation of a
reversible computer is that it is driven along a computational path. The same path may be
retraced backward by changing some external parameter, thereby completely reversing the
effect of the computation.

2.2.5 Processing speed

One limit for the processing speed can be derived from the uncertainty principle. It can be
shown [MLO§] that it takes at least a time

wh

At =
2F

(2.3)

lor a quantum mechanical state to evolve into an orthogonal state, it I is the energy of the
system. This condition is a requirement for two states to be distinguishable, which is one
condition to qualify as a computational step. This limit therefore defines a minimal duration
for a computational step given the available energy E. It does not imply, however, that this
energy must be dissipated during this step. In an ideal system, the energy will remain available
for the continuation of the computation.
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Quantum computers work close to this limit if the energy is equated with the energy range
of the eigenstates of the relevant Hamiltonian. This implies that only the energy in the system
degrees of freedom is included in the calculation, not the (usually much larger) energy stored
in bath degrees of freedom, in particular, not the rest mass of the system. In an NMR quan-
tum computer, e.g., where the relevant degrees of freedom are the nuclear spins, the energy
available to the computation is the Zeeman energy of the spins.

This system also permits a verification of the condition stated above. Setting the energy of
the ground state | T) to zero, the excited state | |) has an energy Awy, (where wy, is the Larmor
frequency of the spin, which is proportional to the magnetic field). An initial state

() = (1 1) +1 1) Q.4)
then evolves into
W(t) = 51 1)+ e 1) @5

Apparently the two states are orthogonal for wpt = m, ie., after { = x/wp. Since the
(constant) energy of this state is F = fwwy, /2, we recover the condition given above.

An interesting aspect of this limit is that it does not depend on the architecture of the com-
puter. While we generally expect computers containing many processors working in parallel
to be faster than purely serial computers, this is no longer the case for a computer working at
the limit just discussed: if the number of processors increases, the available energy per pro-
cessor decreases and correspondingly its speed. The total number of logical operations per
unit time remains constant.

2.2.6 Storage density

A limit on the amount of data stored in the computer can be derived from thermodynamics.
According to statistical mechanics, the entropy of a system is

S = k‘B In W, (26)

where W is the number of accessible states. To store /V bits of information, we need N two-
level systems, which have 2V states. Accordingly, a system that stores N bits has an entropy

S=Nkgin2, 2.7

It should be realized here, that the entropy that we calculate is the entropy of an ensemble at a
given energy, while the actual system doing the computation is in a well-defined (pure) state,
thus having zero entropy.

2.3 The ultimate laptop
2.3.1 Processing speed

Some limits to the performance of computers have been summarized by Seth Lloyd [L1000] in
a very popular style: he discusses the “ultimate laptop”, i.e., the maximum performarnce that a
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computer of 1 kg mass and a volume of 1 | may ultimately achieve. “Ultimatcly” meuans again
that this approach does not consider any specific implementation; in fact, the conditions con-
sidered are such that it is highly unlikely that any device will ever be built that even remotely
approaches the conditions that are derived here. Nevertheless, the considerations are instruc-
tive in showing that limitations will eventually become important, no matter what advances
materials science will make in the future.

The limit on the processing speed discussed in Section 2.2.5 would be reached if all the
mass of the computer were available as energy for driving the computation; it can be obtained
from the condition 2.3 on the processing speed. An energy of

E=md=9x10'%] (2.8)
results in a maximum speed of

2L 2mc? .
n = — = =5 x 10"
wh wh

2.9)

operations per second.

An additional limit derives from the necessity to include error correction. Detecting an
error can in principle be achieved without energy dissipation, However, correcting it implies
eliminating information (about the environment), thus generating dissipation. The dissipated
energy will heat the computer and must be removed to the environment. We will assume
here that energy dissipation is limited by blackbody radiation. At a temperature of T =
6 x 10® K, with a surface area of 0.01m?, the power of the blackbody radiation amounts to
P = 4 x 10% W. This energy throughput (which is required for error correction, not for
operation) corresponds to a mass throughput of

din . kg v

—:P‘ZZI——, 2.10

dt /¢ ns ( )
which must be fully converted to energy. If this is possible, the number of error bits that can
be rejected per second is 7 x 102 bits per second. With a total of 10°° logical operations
per second, this implies that its error rate must be less than about 10~ to achieve reliable
operation.

2.3.2 Maximum storage density

A limit that may be easier to approach is if we assume that every atom of the system can
store at most | bit of information. This is in principle fulfilled in NMR and ion trap quantum
computers. For a mass of 1 kg, the number of atoms would be of the order of 1025, At
this density, it would thus be possible to store 10%° qubits of information in a computer. If
optical transitions of these atoms are used for logical operations, gate times of the order of
10" ' s would be feasible, allowing a total of 10" logical operations per second for the
whole computer.

At such data rates, the different parts of the computer would not be able to communi-
cate with each other at the same rate as the individual logical operations. The computer
would therefore need a highly parallel architecture. If serial operation is preferred (which
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may be dictated by the algorithm), the computer needs to be compressed. Fully serial oper-
ation becomes possible only when the dimensions become equal to the Schwarzschild radius
(= 1.5 x 1072" m for m = 1kg), i.e., when the computer forms a miniature black hole.

While all these limits appear very remote, it would only take of the order of 100-200
years of progress at the current rate (as summarized by Moore’s law) to actually reach them.
It is therefore very likely that a deviation from Moore’s law will be observed within this time
frame, irrespective of the technology being used for building computers.

Further reading

A brief, nontechnical introduction into the thermodynamic aspects of computation is given in
two articles in Scientific American [BL85, Ben87].
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3 Elements of classical computer science

Computer science is a vast field, ranging from the very abstract and fundamental to the very
applied and down-to-earth. It is impossible to summarize the status of the field for an audience
of outsiders (such as physicists) on a few pages. The present chapter is intended to serve as
an introduction to the most basic notions necessary to discuss logical operations, circuits, and
algorithms. We will first introduce logic gates of two types: irreversible and reversible. Later
we will discuss the Turing machine as a universal computer and the concept of complexity
classes. All this will be done in an informal and highly non-rigorous style intended to provide
our physicist readership with some rough idea about the subject.

3.1 Bits of history

The inventor of the first programmable computer is probably Charles Babbage (1791-1871).
He was interested in the automatic computation of mathematical tables and designed the me-
chanical “analytical engine” in the 1830s. The engine was to be controlled and programmed
by punchcards, a technique already known from the automatic Jacquard loom, but was never
actually built. Babbage’s unpublished notebooks were discovered in 1937 and the 31-digit
accuracy “Difference Engine No. 2” was built to Babbage’s specifications in 1991. (Babbage
was also Lucasian professor of mathematics in Cambridge, like Newton, Stokes, Dirac, and
Hawking, and he invented important practical devices such as the locomotive cowcatcher.)

The first computer programmer probably is Ada Augusta King, countess of Lovelace
(1815-1852), daughter of the famous poet, Lord Byron, who devised a programme to compute
Bernoulli numbers (recursively) with Babbage’s engine. From this example we learn that the
practice of devising algorithms for not-yet existing computers is considerably older than the
quantum age.

Another important figure from 19th century Britain is George Boole (1815-1864) who in
1847 published his ideas for formalizing logical operations by using operations like AND,
OR, and NOT on binary numbers.

Alan Turing (1912-1954) invented the Turing machine in 1936 in the context of the de-
cidability problem posed by David Hilbert: Is it always possible to decide whether a given
mathematical statement is true or not? (It is not, and Turing’s machine helped to show that.)

Quantum Computing: A Short Course from Theory 1o Experiment. Joachim Stolze and Dicter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40438-4
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3.2 Boolean algebra and logic gates

3.2.1 Bits and gates

Classical digital computers are based on Boolean logic. In this context, the “atoms” of infor-
mation are the binary digits, or bits, which can assume the values 0 or 1, which correspond to
the truth values true and false. In the computing hardware, bits are represented by easily dis-
tinguishable physical states, such as the presence or absence of a voltage, charge, or current.
Information is encoded in strings of bits which are manipulated by the computer.

Computations are defined by algorithms, sequences of elementary logical operations like
NOT, OR, and AND, that act on (transform) strings of bits. Any transformation between two
bit strings of finite length can be decomposed into one- and two-bit operations. (See [Pre97];
a proof of the quantum version of this important fact will be sketched in Chapter 5.)

ouT
IN GATE

_— ]

Figure 3.1: A Jogic gatc with two input bits and one output bit.

Logic operations or gates can be characterized by the number of bits that they take as input
and the number of bits they produce as output. Figure 3.1 shows a simple example with two
input bits and one output bit. This representation of logic gates, where wires represent bits and
boxes the gate operations leads naturally to what is called the network model of computation
(often also called the circuit model).

The simplest type of logic gate operations arc the one bit gates, which act on a single input
bit and produce a single output bit. Four possible operations may be applied to a single bit:
the bit may be left untouched (identity), it may be flipped (NOT), and it may be set to 0 or 1
unconditionally. The latter two operations are obviously irreversible.

3.2.2 2-bit logic gates

At the next level of complexity are the2-bit logic gates. We first discuss one-bit functions of a
two-bit argument:

(,y) — [(x,y) where z,y, f = 0orl. 3.1

Logic gates of this type are called Boolean functions. The four possible inputs 00, 01, 10, 11
can each be mapped to one of two possible outputs 0 and 1; the function is completely charac-
terized by the string of four output bits (f(00), £(01), £(10), f(11)). Since there are 2* = 16
different output strings, we have 16 possible Boolean functions of two binary variables. Note
that these gates are irreversible since the output is shorter than the input.

The binary operations OR and AND are detined by their truth tables, see Table 3.1.

All other operations, such as IMPLIES or XOR can be constructed from the elementary
operations NOT, OR, and AND. As an exampie for the reduction of a logical operation to
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Table 3.1: Truth table for AND and OR.

x|y |xORy | xANDy
00 0 0
011 1 0
10 1 0
1|1 | 1

more elementary operations consider
2 XOR y = (x OR yy) AND NOT (2 AND y). (3.2)

( XOR is also often denoted by &, because it is equivalent to addition modulo 2.)

We now return to the 16 Boolean functions of two bits. We number them according to the
four-bit output string as given in the above truth table, read from top to bottom and interpreted
as a binary number. For example AND outputs 0001=1 and OR outputs 0111=7. We can thus
characterize each gate or function by a number between 0 and 15 and look at them in order.
Some examples are:

0: The absurdity, for example (x AND y) AND NOT (z AND y).

1: z ANDy

x AND ( NOT y)

x, which can be written in a more complicated way: = = z OR (y AND NOT y)

(NOT z) AND y

y = ...(see x above)
( NOT z) AND ( NOT y) =: (x NOR y)

9: (( NOT z) AND ( NOT y)) OR (z AND y) = NOT (z XOR y) =: (x EQUALS )
All others can be obtained by negating the above; notable are

13: NOT (z AND (NOT y)) =: 2 IMPLIES y

14: NOT (z AND y) =: 2 NAND y

15: The banality, for example (z AND y) OR NOT (x AND y).

We have thus seen that all Boolean functions can be constructed from the elementary Boolean
operations. Furthermore, since

2 OR y = ( NOT ) NAND ( NOT y), (3.3)

we see that we only need NAND (as defined by line 14) and NOT to achieve any desired
classical logic gate with two input bits and one output bit.
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In order to connect an arbitrary number » of input lines to 7 output lines we need, in ad-
dition to the logic gates shown schematically in Figure 3.1, the ability to COPY the contents
of one bit to a difterent bit while keeping the original bit. This is usually symbolized by a
branching line in a network diagram, which symbolizes a branching wire with equal voltage
levels at the three terminals. While copying a classical bit is thus a trivial operation, copy-
ing a quantum bit turns out to be impossible! This no-cloning theorem will be discussed in
Chapter 4; it is at the heart of the schemes developed for secure quantum communication to
be discussed in Chapter 13.

3.2.3 Minimum set of irreversible gates

We would like to reduce the number of gates needed to perform an arbitrary bit string operation
to the absolute minimum. Being able to build a network using the smallest possible set of
different elements is desirable from a theoretical point of view. In practice, however, it is
usually more advisable to employ a larger variety of gates in order to keep the total size of the
network smaller. We note that

# NAND y = NOT (x AND ) = ( NOT 2) OR { NOT y) = 1 — xy. (3.4)
If we can copy x to another bit, we can use NAND to achieve NOT:

ZNANDz=1-2?=1 2= NOTuz 3.5)
(where we have used @ — « for & = 0, 1). Alternatively, if we can prepare a constant bit 1:

#NAND 1 =1-x = NOT z. (3.6)
We can also express AND and OR by NAND only:

(x NAND y) NAND (: NAND yy) = [ — (1 — ay)?

=1 (L-2zy+a®y?)=1—(1—ay) =2y =2 ANDy G7
and

(x NAND ) NAND (y NAND y) = ( NOT ) NAND ( NOT y)

38
=1-(l-x)l—-y)=x+y—-xzy=20Ry. 69

Thus the NAND gate and the COPY operation (which is not a gate in the strict sense
defined above) are a universal set of (irreversible) classical gates. A different universal set of
two gates is given by NOR and COPY, for example. In fact, NAND and COPY can both be
performed by a single two-bit to two-bit gate, if we can prepare a bit in state 1. This is the
NAND/NOT gate:

(m,y) — (1 —x,1 —zy) = { NOT 2,2 NAND y). (3.9)

The NOT and NAND functions are obviously achieved by ignoring the second and first output
bit, respectively. For iy = 1 we obtain COPY, combined with a NOT which can be inverted by
the same gate.
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3.2.4 Minimum set of reversible gates

Although we know how to construct a universal set of irreversible gates there are good rea-
sons to study the reversible alternative. Firstly, quantum gates are reversible, and secondly,
reversible computation is in principle possible without dissipation of energy.

A reversible computer evaluates an invertible n-bit function of n bits. Note that every
irreversible function can be made reversible at the expense of additional bits: the irreversible
(for m < n) function mapping 7 bits to m bits

x(n bits) — f(m bits) (3.10)
is replaced by the obviously reversible function mapping 7 + mn bits to n + m bits
(z,mtimes 0) — (x, f). (3.11)

The reversible n-bit functions are permutations among the 2™ possible bit strings; there are
(2")! such functions. For comparison, the number of arbitrary n-bit functions is (27)(2"), The
number of reversible 1,- 2-, and 3-bit gates is 2, 24, and 40320, respectively. While irreversible
classical computation gets by with two-bit operations, reversible classical computation needs
three-bit gates in order to be universal. This can be seen by observing that the 24 reversible
two-bit gates are all linear, that is, they can be written in the form [Pre97]

T T o B x a
()= ()= 8)05)+(3) 512
where all matrix and vector elements are bits and all additions are modulo 2. As the two one-
bit gates are also obviously linear, any combination of one- and two-bit operations applied to
the components of a n-bit vector & can only yield a result linear in #. On the other hand, for
n > 3 there are invertible n-bit gates which are not linear, for example, the Toffoli gate to be
discussed below. In Chapter 5 we will see that quantum computing, although reversible too,

does not need gates acting on three quantum bits to be universal. Furthermore all quantum
gates will have to be strictly linear because quantum mechanics is a linear theory.

3.2.5 The CNOT gate

One of the more interesting reversible classical two-bit gates is the controlled NOT, orCNOT,
also known as “reversible XOR”, which makes the XOR operation reversible by storing one
argument:

(z,y) — (x,z XOR y). (3.13)

Table 3.2 shows why (3.13) is called CNOT: thetarget bit y is flipped if and only if the control
bit z = 1. A second application of CNOT restores the initial state, so this gate is its own
inverse.

The CNOT gate can be used to copy a bit, because it maps

(,0) — (x,2). (3.14)
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Table 3.2: The CNOT gate.
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Figure 3.2: Left: Single CNOT gate. Right: SWAP gate.

The network combining three XOR gates in Figure 3.2 achieves a SWAP of the two input
bits:
(x,y) — (z,7 XOR y) — ((x XOR y) XOR x,2 XOR y)

; (3.15)
— (y,y XOR (2 XOR y)) = (y, )

Thus the reversible XOR can be used to copy and move bits around.

3.2.6 The Toffoli gate

We will show now that the functionality of the universal NAND/NOT gate (3.9) can be
achieved by adding a three-bit gate to our toolbox, the Toffoli gate #3), also known as
controlled-controlled-NOT, (CCNQOT ) which maps

(z,y,z) — (x,y,ry XOR 2), (3.16)

that is, z is flipped only if both 2 and y are 1. The nonlinear nature of the Toffoli gate is evident
from the presence of the product xy. This gate is universal, provided that we can prepare fixed
inpul bits and ignore output bits:

e For z = | we have (z,y,1) — (x,y,1 — 2y) = (x,y, 2 NAND 7).
e T'or z = 1 we obtain =z XOR y which can be used to copy, swap, etc.
e For x = y = 1 we obtain NOT.

Thus we can do any computation reversibly. In fact it is even possible to avoid the dissipa-
tive step of memory clearing (in principle): store all “garbage” which is generated during the
reversible computation, copy the end result of the computation and then let the computation
run backwards to clean up the garbage without dissipation. Though this may save some energy
dissipation, it has a price as compared to reversible computation with final memory clearing:
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e The time (number of steps) grows from T to roughly 27'.

e Additional storage space, growing roughly proportional to 7', is needed.

However, there are ways [Pre97] to split the computation up in a number of steps which are
inverted individually, so that the additional storage grows only proportional to log T, but in
that case more computing time is needed.

3.2.7 The Fredkin gate

Another reversible three-bit gate which can be used to build a universal set of gates is the
Fredkin gate [FT82]. While the Toffoli gate has two control bits and one target bit, the Fredkin
gate has one control qubit and two target bits. The target bits are interchanged if the control
bit is 1, otherwise they are left untouched. Table 3.3 shows the input and output of the Fredkin
gate, where z is the control bit, and y and z are the target bits, respectively.

Table 3.3: The Fredkin gate.

Input Output
Xx|yltzllx|y]|z
1 O A O O O
1110 1]0]1
11014 1]1]0
110,01 |10]0
O/ 111 0]1]1
01700 1]|0
00| L|l0}0O]|1
0[{0(01][0]0]O0

To implement a reversible AND gate, for example, the z bit is set to O on input. On output
z then contains x AND y, as can be read off from Table 3.3. If the other two bits = and y
were discarded, this gate would be irreversible; keeping the input bits makes the operation
reversible. The NOT gate may also be embedded in the Fredkin gate: settingy = 0and z = 1
on input we see that on output » = NOT x and y = z; thus we have implemented a COPY
gate at the same time.

3.3 Universal computers

3.3.1 The Turing machine

TheTuring machine acts on a tape (or string of symbols) as an input/output medium. It has a
finite number of internal states. If the machine reads the symbol s from the tape while being
in state G, it will replace s by another symbol s, change its state to G’ and move the tape
one step in direction d (left or right). The machine is completely specified by a finite set of
transition rules

(s,G) — (s',G',d) 3.17)
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Tape

00011011..... 0011010111

State indicator

Figure 3.3: A Turing machine operating on a tape with binary symbols and possessing sevcral
internal states, including the half state.

The machine has one special internal state, the “halt” state, in which the machine stops all
further activity. On input, the tape contains the “program” and “input data”; on output, the
result of the computation.

The (finite) set of transition rules for a given Turing machine T" can be coded as a binary
number d[T7] (the description of T'). Let T'(«x) be the output of 7" for a given input tape .
Turing showed that there exists a universal Turing machine U with

U(d[T). x) = T(x) (3.18)

and the number of steps U needs to simulate each step of T is only a polynomial function of
the length of d[T’]. Thus we only have to supply the “description™ d[7] of T" and the original
input . on a tape to U and U will perform the same task as any machine T, with at most
polynomial slowdown.

3.3.2 The Church-Turing hypothesis

Other models of computation (for example the network model) are computationally equivalent
to the Turing model: the same tasks can be performed with the same efficiency. In 1936
Alonzo Church [Chu36] and Alan Turing [Tur36] independently stated the

Church-Turing hypothesis: Every tunction which would naturally be regarded as
computable can be computed by the universal Tuning machine.

The notion of a computable function here is meant to comprise an extremely broad range
of tasks. Any mapping of a finite string of bits to another finite string of bits falls into this
range. The input string could come from a lengthy sequence of keystrokes where the output
bit string is the print on this page. As another example, the input string could be some table
containing numerical data and the output string a graphical representation of thesc data, such
as text processing etc.). There is no proof of the Church-Turing hypothesis, but also no
counterexample has been found, despite decades of attempts to find one.
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3.4 Complexity and algorithms

34.1 Complexity classes

Complexity has many aspects, and computational problems may be classified with respect to
several measures of complexity. Here we will only treat very few examples from important
complexity classes. The article by Mertens [Mer02] gives more examples in easy-to-read
style.

Consider some task to be performed on an integer input number z; for example, finding
x2 or determining if z is a prime. The number of bits needed to store x is

L = log, . (3.19)

The computational complexity of the task characterizes how fast the number s of steps a Turing
machine needs to solve the problem increases with L. For example, the method by which most
of us have computed squares of “large” numbers in primary school has roughly

sox L2 (3.20)

(if you identify s with the number of digits you have to write on your sheet of paper). This is
a typical problem from complexity class P: there is an algorithm for which s is a polyromial
function of L. If s rises exponentially with L the problem is considered hard. (Note, however,
that it is not possible to exclude the discovery of new algorithms which make previously hard
problems tractable!)

It is often much easier to verify a solution than to find it; think of factorizing large numbers.
The complexity class N P consists of problems for which solutions can be verified in polyno-
mial time. Of course P is contained in N P, but it is not known if N P is actually larger than
P, basically because revolutionary algorithms may be discovered any day. N I? means nonde-
terministic polynomial. A nondeterministic polynomial algorithm may at any step branch into
two paths which are both followed in parallel. Such a tree-like algorithm is able to perform
an exponential number of calculational steps in polynomial time (at the expense of exponen-
tially growing parallel computational capacity!). To verify a solution, however, one only has
to follow “the right branch” of the tree and that is obviously possible in polynomial time.

Some problems may be reduced to other problems, that is, the solution of a problem P;
may be used as a “step” or “subroutine” in an algorithm to solve another problem . Often
it can be shown that P, may be solved by applying the subroutine P; a polynomial number of
times; then % is polynomially reducible to P;: Py < Pj. (Read: “P, cannot be harder than
P1”) Some nice examples are provided by problems from graph theory, where one searches
paths with certain properties through a given graph (or network), see [Mer02]. A problem is
called N P-complete if any NP problem can be reduced to it. Hundreds of N P-complete
problems are known, one of the most famous being thetraveling salesman problem of finding
the shortest route between a given number of cities that touches every city once and starts and
ends at the same city. If somebody finds a polynomial solution for any N IP-complete problem,
then “P = N P” and one of the most fundamental problems of theoretical computer science
is solved. This is, however, very unlikely, since many first-rate scientists have unsuccessfully
tried to find such a solution.
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It should be noted at this point that theoretical computer science bases its discussion of
complexity classes on worst case complexity. In practical applications it is very often possible
to find excellent approximations to the solution of, say, the traveling salesman problem within
reasonable time.

3.4.2 Hard and impossible problems

A famous example for a hard problem is the factoring problem (finding the prime factors of
a given large integer) already mentioned in Chapter 1. We will discuss this problem and its
relation to cryptography in Chapter 8, where we will also treat Shor’s |Sho94] quantum factor-
ization algorithm. Since Shor’s discovery, suspicions have grown that the factoring problem
may be in class N PI (7 for intermediate), that is, harder than £, but not N ’-complete. If
this class exists, I # NP,

Some functions may be not just hard to compute but uncomputable because the algorithm
will never stop, or, nobody knows if it will ever stop. An example is the algorithm:

While ¢ is equal to the sum of two primes, add 2 to x
otherwise print x and halt
beginning at x = 8.

If this algorithm stops, we have found a counterexample to the famous Goldbach conjecture,
that every even number is the sum of two primes. Another famous unsolvable problem is the
halting problem, which is stated very easily:

Is there a general algorithm to decide if a Turing machine T with description (tran-
sition rules) d|T) will stop on a certain input x?
There is a nice argument by Turing showing that such an algorithm does not exist. Suppose
such an algorithm existed. Then it would be possible to make a Turing machine 7; which
halts if and only if T'(d[T]) (that is, T, fed its own description as input) does not halt:

Ty (d[T]) halts = T(d[T]) does not halt. (321

This is possible since the description d[T] contains sufficient information about the way T
works. Now feed Ty the description of itself, that is, put T = Ty

Ty (d[1))]) halts < Ty (d[Ty]) does not halt. (3.22)

This contradiction shows that there is no algorithm that solves the halting problem. This is
a nice recursive argument: let an algorithm find out something about its own structure. This
kind of reasoning is typical of the field centered around Gidel's incompleteness theorem, A
very interesting semi-literary piece of work centered about the ideas of recursiveness and self-
reference in mathematics and other fields of culture is the book “Gédel, Escher, Bach” [Hof79|
by the physicist/computer scientist Douglas R. Hofstadter.

Further reading

Morc complete accounts of computer science aimed at the discussion of quantum computing
can be found in [NCO1], Chap. 3, [Ste98], Secs. 2 and 3, [Pre97], Sec. 6.1. These references
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also contain pointers to more rigorous mathematical treatments of the subject. Details on the
history of computing can be found, for example, in the history section of the entry “Comput-
ers” in the Encyclopaedia Britannica. A nice readable account of complexity with some more
details than we will treat (and need) here is [Mer02}.
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4 Quantum mechanics

The first part of this chapter is intended to be a mere recapitulation of material from a standard
quantum mechanics course for most readers. This does not mean that the complexities of
atomic physics will be reviewed here, but rather that the focus will be on the general formal
structure of the theory. Later on we will treat some simple applications which have not yet
become standard subject matter of a quantum mechanics course but which are relevant to
quantum information processing. Throughout this book we shall almost exclusively employ
Dirac’s abstract bra and ket notation for quantum states. This is quite natural for a field
which focuses more on algebraic structures and relations between states than on, for example,
probability distributions in space related to individual states which are best discussed in the
position representation, that is in terms of wave functions.

4.1 General structure

4.1.1 Spectral lines and stationary states

In a way, quantum mechanics started almost two hundred years ago when scientists like Wol-
laston and Fraunhofer first observed distinct lines in optical spectra. Later on Kirchhoff and
Bunsen showed that the spectral lines were characteristic for the different chemical elements
and thus established a connection between optics and what later became atomic physics.
About a hundred years ago early quantum theory established that:

1. electromagnetic radiation is emitted and absorbed in quanta, or photons, whose energy is
proportional to their frequency, and

2. atoms possess certain stationary states with fixed energies. The differences of these en-
ergy values correspond to the energies of the photons emitted or absorbed in transitions.

Schrédinger showed that the stationary states could be described by wave functions whose
dynamics was determined by an equation which was later named after him. The possible
(quantized) energy values arose from an eigenvalue problem related to the Schrédinger equa-
tion. It did not take long to show that Schrodinger’s theory was completely equivalent to
approaches by Heisenberg and by Pauli which involved an algebraic eigenvalue problem.

4.1.2 Vectors in Hilbert space

One of the most strikingly counter-intuitive features of quantum mechanics is the linear struc-
ture of its state space. As it turns out this property is also extremely important for the appli-

Quantum Computing: A Short Course from Theory to Experiment. Joachim Stolze and Dieter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
[SBN: 3-527-40438-4
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cation of quantum mechanics to information processing. In classical mechanics the state of
a finite number of interacting point particles is uniquely specified by a vector of generalized
coordinates and momenta. In quantum mechanics, the state of the system is also uniquely
specified, this time by a vector in Hilbert space. In both cases, linear combinations of two
admissible vectors are again admissible vectors. The difference lies in the meaning and inter-
pretation of the vector components. Classically the components are coordinates and momenta
which have definite values in every admissible state, leading to definite predictions for the out-
comes of all conceivable physical measurements. In the quantum case, Hilbert space vector
components denote probability amplitudes related to the possible outcomes of certain mea-
surements. This leads to the standard probabilistic interpretation of superpositions of Hilbert
space vectors.

It is important to note that even the Hilbert spaces of very simple systems can have infinite
dimension. A single hydrogen atom in free space has countably infinitely many bound states
plus a continuum of scattering states. For the time being we neglect the continuous spectrum,
assuming that we can suppress transitions into continuum states. For mathematical simplicity
we even assume that the dimension d of the Hilbert space is finite. d = 2 will be the important
special casc of a single quantum bit, or qubit.

The Hilbert space thus is a d-dimensional complex linear space: every linear combination
of states (Hilbert space vectors) is a state too; scalar product, norm, etc., can be defined as
usual. The common quantum mechanical abbreviation for a complex column vector is a Dirac
ket:

lay=1{ . |. (4.1)

{af = (aj, a5, .., ag), (4.2)

where the asterisk denotes complex conjugation.

In view of the probabilistic interpretation of quantum mechanics, it suffices to consider
normalized states |3, that is, ||[¢)||? := (¥|¢) = 1. Furthermore the states |) and e |¢)) («
real) are physically equivalent: overall phase factors do not matter. However, relative phases
between components of a state are extremely important:|¢) + |1} and |¢) + €|y (for v 5 0)
may have completely different physical properties, and many of the most interesting quantum
mechanical phenomena are interference etfects related to relative phases between states.

4.1.3 Operators in Hilbert space

Operators map states to cach other lincarly; they thus are d x d complex matrices operating
on the d-dimensional Hilbert space:

Rly) - [¢). (4.3)
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Operators will be denoted by boldface letters. An eigenstate (or eigenvector) |¢,) of an oper-
ator Q fulfills the eigenvalue equation

Q|¢q> - Q‘¢(1> 4.4)

where the complex number ¢ is called the eigenvalue. The eigenvalues of different eigenstates
can be equal; this is called degeneracy. A trivial example is the unit operator 1 (d x d unit
matrix) all of whose eigenvalues are equal to unity.

Observables (measurable quantities) correspond to self-adjoint or Hermitian matrices, that
18,

AT =A; (A = (A). (4.5)
Self-adjoint operators possess real eigenvalues (the eigenvalues are the possible outcomes of a
measurement and thus have to be real); the eigenstates |a;) corresponding to the eigenvalues a;
of the operator A are pairwise orthogonal (or can be orthogonalized in the case of degeneracy).
Thus they form a basis in Hilbert space,

Alay) = ailay) (aila;) =65 (,j=1,...,d), (4.6)

where §;; is the familiar Kronecker symbol. (It should be kept in mind that we are operating
in a finite-dimensional Hilbert space where all states can be normalized to unity.)

The sets of eigenstates and eigenvalues characterize an observable A completely, because
any arbitrary state can be expanded in eigenstates of A which obey (4.6). This leads to the
spectral representation of A. To define that representation we need a further class of oper-
ators: projection operators or projectors for short. The projector P; onto the eigenstate |a;)
(or, more correctly, to the subspace spanned by |a;)) is defined by

P,,' = ‘CL,’,><(L11. (47)
Application of P; to an arbitrary state |¢) yields a multiple of |a;)
Pil) = lai){aile) = (aile)]as), (4.8)

where |{a;[¥)[is the “length” of the projection of |1)) onto the unit vector |a;).
For the following we will assume that the vectors |a;) are orthonormal, i.e. (a;|a;) = d;;.
We then have

P.P; = 6;;P;; especially P? = P;. (4.9)

These equations have obvious geometrical interpretations: two subsequent projections yield
zero when they project onto different orthogonal subspaces; when they project onto the same
subspace the second projection has no effect. From P? = P we see immediately that the only
possible eigenvalues of a projector are zero and unity. The projector to the subspace spanned
by |a;) and |a;) is simply P; +P;. This projector also has the characteristic property of being
equal to its square. As the P; cover “all directions” of Hilbert space we obtain a completeness
relation:

d d
Y oPi=) |a){a =1, (4.10)
i=1 i=1
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Now the speciral represeniation of A can be defined:

d d
A= Z(L,:P,,; = Z(L,,;|a,,;)(a,-,1, 4.11)
i=1 i=1

The states |a;) are now the eigenstates of A and q; its eigenvalues. Physically this means that
an arbitrary state is first decomposed into components along eigenstates of A, and then each
of these components is treated according to its eigenstate property (4.6). It should be noted
that the spectral representation is possible not only for observables (4.5) but for the larger class
of normal operators B with B'B = BB'.

4.1.4 Dynamics and the Hamiltonian operator

The stationary states of a quantum system are eigenstates of a special operator, the Hamilton-
ian operator (or Hamiltonian, for short), whose eigenvalues are the energy values of the sta-
tionary states. This follows from the Schrddinger equation (often called the “time-dependent”
Schradinger equation) governing the evolution of an arbitrary state [1(1)),

d 7
o W)y = —EHI’(/J(I‘,)% (4.12)

where H is the Hamiltonian. If the Hamiltonian is time-independent and |¢,) is an eigenstate
of the Hamiltonian with energy eigenvalue &;:

Higs) = eldi), (4.13)
then

) = oo (=i ) ) @14
is a solution of the time-dependent Schrodinger equation with initial condition

[t = 0)) = |¢s). (4.15)

Obviously |¢(1)) is a stationary state, as a global phase factor has no physical significance.
The eigenvalue equation (4.13) is often called the “time-independent Schrodinger equation™.
As any initial state |¢(f = 0)) can be cxpressed as a linear combination of eigenstates |¢;)
of H, the initial value problem is solved (at least in principle). Formally the solution for
time-independent H can be written as

6(0) = U o(e = ) s= exp (=71 ) oo = ) (4.16)

The fime evolution operator U(t) may be interpreted in two ways:
1) as a power series

Ht HE\ L HINE 1 HEY?
exp (~7,T> =1+ (—1T> + 5 (~—1,TL> + G (Lh> . (4.17)
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ii) by means of the spectral representation

Mt 4 €t
exp <_Z_ﬁ> = ;GXP (*’l“h*> |¢i)(¢il- (4.18)

For a more general Hamiltonian H(¢) depending on time, the time evolution operator U(¢) (as
defined by [¢(t)) = U(t)[»(0))) obeys an operator differential equation; for a general time
dependence of H the solution of that equation is not even known for d = 2.

All eigenvalues exp (—iaﬁt) of U(t) have unit modulus; operators with this property are
called unitary. A unitary operator U preserves all scalar products, that is, the scalar product
of |¢) and |x) equals that of U} and Uly); consequently norms are preserved too. The

general property characterizing unitarity is

Ulu=1aUut=U" (4.19)

For time-independent H we have
(U))™" = U(-1), (4.20)

that is, unitary time evolution 18 reversible.

4.1.5 Measurements

The process of measurement in quantum mechanics is difficult to grasp since it involves phe-
nomena at the border between the quantum system and its environment, including the ob-
server. In this section we will stay quite formal and just state the projection postulate which
is usually employed to describe the measurement process. A more physical discussion of the
postulate and its interpretation will follow in Section 4.3 . The situation to which the pos-
tulate refers is that of a quantum system prepared in a state |¢)). After preparation a single
measurement of the observable A is performed. This cycle of preparation and measurement
is repeated many times so that the notion of probability used in the postulate makes sense.
Alternatively we may imagine an ensemble containing a large number of independent copies
of the quantum system, all prepared in the same state [¢). A is measured for all system copies
independently.

POSTULATE: A single measurement of the observable A in the normalized state |¢)) yields
one of the eigenvalues a; of A with probability [(a;|¥)|? (3, [{a:|¥)|? = 1 due to normal-
ization). Immediately after the measurement the system is in the (normalized) state

P.ly) 4.21)

Pl
where P, is the projection operator onto the subspace of eigenstates of A with eigenvalue «;.
(This subspace is one-dimensional if the eigenvalue g, is nondegenerate.) Any measurement
thus leads to a reduction of the wavefunction. In general it is not possible to predict the out-
come of a single measurement. A measurement of A on an ensemble of systems as discussed
above yields the average (expectation value)

(A) = (Y]|Al) (4.22)
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with deviations described by thevariance (the square of the standard deviation)
(A= (A >0 (4.23)

The variance vanishes if and only if |¢) is an eigenstate of A.

In this chapter we have discussed two fundamentally different kinds of change of state: the
time evolution governed by the Hamiltonian, which is unitary, deterministic and reversible (at
least for a time-independent Hamiltonian), and the measurement process which is probabilistic
and irreversible. From an aesthetic point of view this is a very unpleasant situation. After all,
quantum mechanics is supposed to be valid for the whole system, including the measurement
apparatus, at least in principle, and then it is hard to see why a measurement (an interaction
between the apparatus and the system) should be fundamentally different from other dynam-
ical processes in the system. This is one of the questions that have kept the measurement
process discussion going for many decades. In Section 4.3 we will return to the measurement
process in order to discuss in a little more detail, those aspects which are relevant for quantum
information processing.

4.2 Quantum states

4.2.1 The two-dimensional Hilbert space: qubits, spins, and photons

In many situations, only two states of a system are important, for example, the ground and
first excited states; a single spin-1/2 particle fixed in space possesses only two states anyway.
A photon can be in one of two mutually exclusive polarization states; horizontal und vertical
if it is linearly polarized, or left and right if it is circularly polarized. In order to keep the
analogy o classical bits as close as possible these two-state systems are most suitable for the
discussion of quantum computing. Any quantum system with a two-dimensional Hilbert space
can serve as a guantum bit or qubit which can exist in two mutually orthogonal states |0) and
|1). These states are often called the computational basis states; they correspond to the states
“logical 0" and “logical 1" of a common classical bit. In contrast to a classical bit, however, a
qubit can also exist in any arbitrary linear combination of the computational basis states. We
briefly discuss some properties of single qubits in this section. For definiteness we assume
that the qubits are represented by spin-1/2 particles possessing a magnetic moment which can
be influenced by an external magnetic field B.

The Hilbert space of a single spin-1/2 particle is spanned by two basis states which we
chose in the following way:

( (]) ) = [ 1)=10) and < (1) ) =11 =1 (4.24)

(The identification with the computational basis states |0) and |1) follows the convention of
[NCO1].) All operators in this Hilbert space can be combined from the four fundamental
operators

PT:((l) g>=|T><Tl Plz(g ‘1’)~|1><1| (4.25)
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S+=h<8 é)ﬁzl N S‘=ﬁ<(1’ 8>—hu><T|. (4.26)

ST and S~ are called the spin raising and lowering operator, respectively. More convenient
for the purposes of physics are the following combinations:

1:(é ?):Pﬁpl 427)
S, = g( o0 > _ g(PT~Pl): g”z (4.28)
S, = g( Y > - %(s++s—) - gx (4.29)
S, = g( ? B’i > = %(S* - 8*) = gY. (4.30)

The spin matrices S,, obey the usual angular momentum commutation relations, and they are
their own inverses (up to a factor):

2
sﬁzsizsﬁz%L 4.31)

The matrices X, Y, and Z have eigenvalues +1 and are commonly known as Pauli matrices.

4.2.2 Hamiltonian and evolution

The S, can be used to write the Hamiltonian of a spin-1/2 particle (fixed in space) in an
external field with components B, B, B,:

H=-B-S=—(B,S.+ B,S, + B.S.). (4.32)

Usually the Hamiltonian (4.32) contains prefactors related to the nature of the particle, like
the g factor and the Bohr magneton. At this point, however, those prefactors do not matter
and are eliminated by using appropriate units for B. Note that (4.32) is, apart from trivial
modifications, the most general Hermitian single-qubit operator.

It is evident why X is also often called the “NOT gate” in the language of quantum com-
puting: it maps the two computational basis states onto each other. Any unitary 2 x 2 matrix
is a valid quantum gate, for example the Z gate, which generates a 7 relative phase between
the computational basis states. We will also frequently encounter the Hadamard gate

H= —1§(X + 7). (4.33)
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H (hopetully not to be confused with the Hamiltonian) is at the same time unitary and Her-
mitian, implying that H? = 1. Nevertheless H is sometimes calied the “square-root of NOT”
gate, because it turns |0) into a state “halfway between™ |0) and [1) and similarly for {1). (As
an exercise, find the genuine square-root of NOT. Hint: Try to write NOT as expi0:S,..)

Let us return to the spin in an external field and perform some small exercises. Consider

1 . . . .
a qubit initially in the state | T) = ( 0 ) and determine the action of the time evolution

operator U(1) for a B field along one of the coordinate axes v = x, 3, z.

iHt iB.t 28,
U(t) = exp <LT> = oxp( - ) (4.34)

h”
series expansion (4.17) of the cxponentlal in U(#) are proportlonal tol, wheleas all odd terms

are propottional to 2S,,, and thus

Bt Bt 2S,
) = cos 1 i . .35
U(t) = cos < 5 ) + isin ( 5 ) Iy (4.35)

For «v = z we have

U(tb(“’”*ﬁ) V) jutt) = e (551 ) iy @36)

exp (i%51)

which is a stationary state, as expected, because the initial state was an eigenstate of S, (and
thus of H). The case « + x is different; (4.35) leads to

U(t) = (wb(n_) isin (3) ) (4.37)

isin (51)  cos (B

:lm

consequently

(1)) = < ffjl((ﬁ ,)) ) =cos<§:§f) | r>+ism(—f%> 1) (4.38)

This state runs through a continuum of states periodically and thus performs a kind of “uniform
rotation in Hilbert space”. The result for o = y is similar. It is a useful exercise to calculate
the time-dependent expectation value of the spin vector, with components (S,,), (o = x, vy, 2)
for all these cases and to visualize it in terms of a classical magnetic moment precessing
in a magnetic field. This aspect will be discussed again in the context of nuclear magnetic
resonance in chapter 10.

The most general state in the Hilbert space of a single qubit is an arbitrary normalized
linear combination of | T) and | |) which may be parametrized, for example, by two angles:

|6, ¢) = exp (135) cos §| T+ exp <1§) sin g‘ (08 <m0<¢<2n).

(4.39)
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Thus a qubit in a sense containg two (bounded) rea! numbers’ worth of information, in contrast
to the single binary number contained in a classical bit. Unfortunately, however, not ail of this
information is accessible and robust. The question of how to read, write, and manipulate part
of this information will keep us busy throughout this book. It is easy to check that |6, ¢) is an
eigenstate of the operator

cos /8 + sin 6 cos ¢S, + sin 0 sin ¢S, (4.40)

with eigenvalue +h/2. Thus, in order to prepare the qubit in this state, one “only” needs to
align the spin along the (0, ¢) direction by a sufficiently strong magnetic field in that direction.

The two angles (6, ¢) parametrize the surface of a sphere, the Bloch sphere, which is
often helpful in visualizing state changes of single qubit systems. Every Hilbert space vector
(or pure state) of a single qubit is represented by a peint on the surface of the Bloch sphere.
Every unitary single-qubit operator is (apart from a global phase factor) a rotation of the
Bloch sphere, as will be discussed in more detail in Chapter 5. In the next subsection we will
encounter a different kind of state, called mixed state. The mixed states of a single qubit will
be seen to populate the interior of the Bloch sphere.

4.2.3 Two or more qubits

“Stepping up from one qubit to two is a bigger leap than you might expect. Much that is weird
and wonderful about quantum mechanics can be appreciated by considering the properties of
the quantum states of two qubits.” (John Preskill [Pre97])

In the real world there are no isolated spin-1/2 particles; quantum systems always couple to
the “environment” which we often cannot or do not want to take into account in our quantum
mechanical considerations. However, if we consider a quantum system which is in reality only
part of a larger system, we will have to abandon some of the “articles of faith™ to which we
have become accustomed when dealing with isolated quantum systems:

1. states are no longer vectors in Hilbert space,
2. measurements are no longer orthogonal projections onto the final state,

3. and time evolution is no longer unitary.

The simplest example is given by one qubit A which we call “system”, and to which we have
access and another qubit B which we call “environment” and to which we have no access.
The two pairs of states {| 1) 4,| 1) 4} and {| 1) 5,] |) 5} are orthonormal bases for the Hilbert
spaces of the two subsystems. The two qubit system with 1ts four-dimensional Hilbert space
is the simplest possible setting for a discussion of the concepts of pure and mixed states of a
single subsystem, and of entanglement between subsystems.

If the subsystems A and B are in states [¢) , and |¢) ;, respectively, the combined system
is in a direct product state which we denote by |1/) , ® |¢) 5. Direct product states are often
simply called product states and later on we will often use shorthand notations like | 77) for
| 1)4 ® | 1);. Presently, however, we will stick to the somewhat clumsy but unambiguous
notation with the subscripts A and B and the direct product sign ®. Product states are the
simplest, but by no means the only possible states of the combined system. According to
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the general superposition principle of quantum mechanics, any linear combination of product
states, like [1) 4 @ [¢) 5 + [X) 4 @ |A\); 18 a possible state of the combined system. This
leads us straight to the definition of entanglement for a bipartite system. A state of a bipartite
system is called entangled if it cannot be written as a direct product of two states from the
two subsystem Hilbert spaces. A word of caution is in order here: a state which does not look
like a product state at first sight may be one after all; for a simple example consider the statc
[P} ((4.46) below), expanded in direct products of the basis vectors of the subsystem Hilbert
spaces. An entangled state cannot be written as a product state in any basis. In contrast, a state
which can be written as a product state in some basis is called separable.
We consider the two-qubit state

[y =al s Np+bl @] L)y (441

(la)? + |b]* = 1) which for general values of a and b is entangled. A measurement of the state
of qubit A yields | T) , @ | T),, with probability }a|? and | |}, ® | |}, with probability |b|*.
in both cases after the measurement on A the state of B is fixed. Now measure an observable
which acts on A only and leaves B unaffected:

M, @ 1. (4.42)

The expectation value of this observable in the state |¢) (4.41) is easily calculated since 1
does not change |...) , states and since (T | [} =0

(My) = (M4 0 Lp¢)

_ a*Am|@m<T\+b*Au1®n<1@haAwlﬁ

[wmA®mm+buu®um (443

= al® AT M| )4 + 16 a(l M| 1) 4
- T‘r/\ (Ill,|2 PIA MA + 11)‘2 Pl/\ MA)
=Tra ([la* Pra+ > Pia] Ma) = Tra (paMy).

Here P14 and P 4 are the projectors (4.25) for the system A; Tr 4 denotes the trace (sum of
the diagonal elements) in the Hilbert space of A, that is,

TraO =4 (110 1) 4+a(l|O]])4 (4.44)

for any operator Q.

4.2.4 Density operator
The quantity

2 2 laf* 0
P4 = I(L\ PT/\ + 1()} PlA = 0 |[)|2 (4.45)
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is the density operator (density matrix); it is Hermitian (4.5), positive (no negative eigenval-
ues) and its trace is unity (due to normalization). It is important to note that every operator
with these properties is a density operator, be it diagonal or not, in the basis which we have
chosen accidentally or thoughtfully! Due to these properties every density operator can be
written as a convex combination (a linear combination with positive coefficients whose sum
equals unity) of orthogonal projectors. If p%4 = p4 ( for example if |a| = 1 in our example)
pa is a single projector on a vector in Hilbert space. (Projectors onto higher-dimensional
subspaces are excluded by Try p = 1.) In that case p 4 is called a pure state; otherwise it is
called a mixed state. (Mixed states are also often called “incoherent superpositions” by people
with an optics background.) In our example, p4 (4.45) is a mixed state if both a and & are
nonzero, that is if and only if |1} (4.41) is an entangled state. This connection turns out to
hold beyond our simple example.

As a second example let us now consider a state in which the systems A and B are not
entangled, that is, a product state (in fact, the most general two-qubit product state):

) = (al a8 100 ) (el s+l 1) ) (4.46)

with |a]? + |62 = |c|? + |d|* = 1. For that state we quickly end up with
(My) = (2[Ma © 15/®)

= [ atr 1o at | Mafai a0

{c* (T +d 5l |J 1p {C! Tp+dl l>u}

=la? A(T|Mal 104+ b]* 4(l |Ma] l)a
+a’b 4(T [Mal [)a+b"a a{l [Ma| 1)a
Sa

. ‘ S
=Tra (MA [I(l|2PTA + [b°Pya+ a*b—h‘i + b*a7}>

(4.47)

=Tra (Mapa).
Again p 4 is Hermitian and of unit trace, but obviously nor diagonal; in the usual basis (4.24)
it is
_{ laf?* ba

Nevertheless p% = p.. as we can easily verify.

4.2.5 Entanglement and mixing

Thus the density matrix of A is a pure state if the (pure) state of the combined system A + B
is a product state (that is, not entangled). If the (pure) state of the combined system A 4+ B
is entangled, the summation over all possibilities for the state of B (“partial trace over the
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Hilbert space of B”) leads to the loss of the phases of the complex numbers ¢ and b and we
end up with a mixed state, as observed in the previous example involving the state (4.41). The
following general picture for the loss of coherence (as encoded in the phases of the initial pure
state probability amplitudes) thus emerges: in the beginning, system (A) and environment (/3)
are not entangled. The system’s density matrix is initially pure. By interaction, the system
and environment become entangled (we will see examples in later chapters) and the system’s
density matrix becomes mixed.

We stress that the pure or mixed character of a density operator is independent of the
choice of basis for the Hilbert space of interest. It is thus completely unrelated to whether
the density operator is diagonal or not. If p, is a pure state, p4 = pa holds in any basis.
Fortunately it is not necessary to compute all matrix elements of p% to check if p4 is pure. It
suffices to check if the trace of p? equals unity, because for mixed states that trace is strictly
smaller than unity. (To see this, consider the basis in which p4 is diagonal, keeping in mind
that the trace does not depend on the basis.)

Often, especially in experimental contexts, the diagonal elements of a density operator are
called populations and the off-diagonal elements are called coherences. While this distinction
depends on the choice of basis and is thus artificial from a theorist’s point of view, it may make
perfect sense to an experimentalist whose choice of basis is often dictated by the experiment.

The “pedestrian” method of determining the density matrix p 4 that we have used for the
two simple examples above may be phrased more compactly, and more generally at the same
time. Given a pure state |x) of the combined system A 4 B, the density operator of system A
is obtained as

pa=Try ) (x| (4.49)

where Trp denotes the trace in the Hilbert space of B. The generalization to a mixed state of
the compound system A 4+ I3 is obvious;

pa="Trpp (4.50)

is then usually called the reduced density matrix ot A.

4.2.6 Quantification of entanglement

Entanglement can be quantified beyond the crude yes/no level considered above. There exist
several measures of entanglement, of which we will only mention the concurrence C' which
for the most general pure two-qubit state

) =l D@ D+ A DA Ly +1 DAl s+l Da@| by @S
(where )% + [3]% + |v|? + [8]? = 1 due to normalization) is given by

C = 2lad — By > 0. (4.52)
The concurrence is also bounded from above:

C <1 (4.53)
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This is most easily verified by writing

2 . ) . X
x4 = (le]® + 1BV + 161%) = lay* + B6*?
< (Jeo* + 1811y + 1617) (4.54)
. . . . 1
= (la)* + B3 (1~ (Ja* +18)%) < T

The normalization of |x) was used in the second-to-last step; the last step follows from
z(1 —z) < 1. The two-qubit product state |®) (4.46) has C' = 0, and in fact any state with
C = 0 can be written as a product state. Thus C' = 0 if and only if |y) (4.51) is a product
state. The state [/} (4.41) has

C = 2lab| = 2|a|\/1 = Ja]? < 1. (4.55)

Fora = +b = \/ii the state |¢)) (4.41) is maximally entangled. The four maximally entangled
states

1
V2
1
V2

are known as Bell states; they are a basis (the Bell basis) of the two-qubit Hilbert space. The
Bell states illustrate nicely how information can be hidden for local measurements, involving
only one of the qubits A and B. In any of the states (4.56), any measurement of a single
qubit will give completely random and (on average) identical results; these states cannot be
distinguished by single-qubit measurements.

Entanglement between two quantum systems is quite generally created by interactions
between the systems. Section 7.2.3 below, discusses an example where an initial product state
of two spins-1/2 develops into a Bell state under the influence of an exchange interaction
between the spins.

Up to now we have only considered pure states of the combined system A + B. We have
discussed and quantified the entanglement between subsystems A and B, and we have defined
the density operator for subsystem A by discarding the information on subsystem 5. All this
is also possible for mixed states of the combined system A + B; for example, the definition of
the concurrence may be generalized to mixed two-qubit states [HW97, Woo98]. Thus mixed
states of two qubits as well as pure states may be entangled to varying (but not arbitrary,
see |Woo01]) degrees. More general entanglement measures, extending, for example, beyond
two qubits are a topic of ongoing research (see [Bru02} and other articles in the same journal
issue devoted to Quantum Information Theory).

[x M@l et 1,0 M
(4.56)

[| DAl Wyl 1)ao] T>B}

4.2.7 Bloch sphere

There is a useful and graphic representation for single-qubit states; to derive it, note that every
operator in the single-qubit Hilbert space can be written as a combination of the unit operator
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and the three spin matrices S,, (Egs. (4.27) to (4.30)). As the spin matrices are Hermitian and
traceless, any linear combination (with real coefficients) of %1 and the S,, is Hermitian and
has unit trace; in fact, every 2 x 2 matrix with these properties can be written as

1 2 - = 1 1+, P,—iP, i
(14+2p.8) = ° = a y 4.

where I’ is a real threc-component vector. The eigenvalues of this matrix are

i -
A = S(1E|P), (4.58)

that is, the matrix is positive if | £] < 1. Thus the general single-qubit density matrix is

L1 2., . .
1

The set of possible polarization vectors P is called the Bloch sphere; pure states have 1ﬁ| =
L, since in that case one of the eigenvalues(4.58) vanishes. The physical meaning of the
polarization vector is

1, 1

5})& f} TT pS,, = E

The pure states |0, @) (4.39) have

(S} (4.60)

P = (sin f cos ¢, sin sin ¢, cos ). (4.61)

There is a simple general relation between the concurrence C' (4.52) of a pure two-qubit state
and the polarization vector P of the corresponding single-qubit density matrix p4 which in
turn is related to the “purity” of p 4. Among the many possible quantitative measures of purity
ol a single qubit density matrix we choose the quantity

ni=2Trp? — I (4.62)

A pure density matrix has ; = 1 and the "maximally mixed” density matrix p = %1 has
1 = 0. The quantity 7 can be written in terms of the eigenvalues of p, and by (4.58), in terms
of P:

=202 + %) 1= P (4.63)

The density matrix of the system A corresponding to the pure state |y) (4.51) is easily found
to be (in the usual basis (4.24))

(4.64)

0812 eyt + gt
PA(X,) =Trp \X)<’(\ _ ( |(¥| | J oy Jé )

aty+ 38 P e

The determinant of p4(x) is related to the concurrence of |y) (compare 4.54):

1
det paly) = 71C“, (4.65)
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but on the other hand the determinant can be expressed by the eigenvalues (4.58):

detp=A A = iu —|P}?), (4.66)
from which we conclude the desired relation

C?=1-|P2=1-n. (4.67)

As an instructive exercise for the reader we suggest to distinguish the pure state

1
Ix) = ﬁﬂ D+1) (4.68)

from the mixed state
1
p= §(PT +P)) (4.69)

by determining the expectation values and variances of the operators S,,.

Since there are no truly isolated systems (if there were we would have no way to no-
tice!) the Schrodinger equation (4.12) is only an approximation which should be generalized
to describe the dynamics of mixed states. This generalization is given by the von Neumann
equation (often also called Liouville-von Neumann equation since it also generalizes the Li-
ouville equation of classical statistical mechanics)

d
ih—p = [H, pl. 4.70
ihrop=[H, pl (4.70)
This equation is equivalent to Schrodinger’s equation (4.12) if p is a pure state. For time-
independent H a formal solution analogous to (4.16) may be found:

p(t) =U(t)p(t = 0)U(t)! (4.71)

where U(t) = exp (—zl}?) is again the time evolution operator. A word of warning is in order
at this point: all considerations above are only valid if H involves only degrees of freedom of
the “system” and not of the “environment”. As soon as system and environment are coupled
by H the density operator p (of the system) is no longer sufficient to describe the dynamics
consistently, and additional information or simplifying assumptions are necessary.

4.2.8 EPR correlations

Quantum mechanics is radically different from classical mechanics. This is vividly illustrated
by the Einstein—Podolsky—Rosen thought experiment [EPR35] invented in 1935 by Albert Ein-
stein, Boris Podolsky, and Nathan Rosen, with the intention of showing that quantum mecha-
nics does not provide a complete description of nature. Ironically the discussion started by
Einstein, Podolsky, and Rosen led to the discovery by John Bell in 1964 [Bel64] that indeed
correlations between separated quantum systems which are entangled due to interactions in
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the past can be stronger than is possible from any classical mechanism. This result was ex-
perimentally contirmed by several groups, most notably the group of Alain Aspect [AGRSI],
showing that nature prefers quantum mechanics to a “complete description” in the sense of
Einstein et al. At the same time these results show that there are “quantum tasks” which
cannot be performed by any classical system.

To discuss these matters, we consider once more two qubits A and B, which will be under
the control of two scientists named Alice and Bob. (These are the names of the standard char-
acters in quantum information processing. David Mermin once remarked that, in the present
context, the names Albert and Boris would be more appropriate.) We will refer to the qubits
as spins—%, keeping in mind that real experiments usually involve photons in mutually exclu-
sive polarization states. The combined system A + B is initially prepared in the maximally
entangled state

) = j§ sl D~ 114 ] Dl @72)

a member of the Bell basis (4.56). |4} is often called the singlet state because it is an eigenstate
of the total spin S% := (§A + gg)z with eigenvalue zero (see Appendix A).

The state |+/) having been prepared, the two qubits are separated spatially and Alice and
Bob perform measurements of the z spin components of their respective qubits. (The argu-
ment does not change if any other axis in spin space is chosen, as long as both partners agree
on its direction.) Let us assume that Alice measures first and that she obtains S, - lg
for her qubit. According to the postulates of quantum mechanics then the state of the com-
bined system collapses to | 1) , & | |),; and Alice can predict with certainty, the outcome of
Bob’s subsequent measurement, S, = —"—2’ This was called a “spooky action at a distance”
(spukhafte Fernwirkung) by Einstein, and it is not surprising that he did not like it, having
made considerable efforts to eliminate actions at a distance from physics in his theory of rel-
ativity. One attempt to reconcile the prediction of quantum mechanics with classical thinking
is the assumption of an underlying classical mechanism which determines the outcome of the
experiment but which scientists have not yet been able to unravel. This line of thinking goes
under the label hidden-variable theory and it was ended by Bell’s discovery.

4.2.9 Bell’s theorem

Bell showed that the assumption of hidden classical variables leads to certain restrictions (the,
by now, famous Bell inequalities) for the results of certain measurements. These inequalities
are violated by quantum mechanical theory and, as it finally turned out, also by experiment.

As an example we will discuss an inequality due to Clauser, Horne, Shimony, and Holt
[CHSH69] (the CHSH inequality) which was also independently found by Bell who did not
publish it. We start the discussion with a purely classical reasoning assuming that the out-
comes of the measurements performed by Alice and Bob on the state |v) (4.72) can be de-
scribed by an underlying classical probability distribution. We assume that Alice can measure
two spin components

=2

. 9.
a=-S8,-a and a’=-8S,-d (4.73)
h h
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defined by two unit vectors @ and &’, respectively. Both a and a’ can assume the values +1.
Bob can perform similar measurements with respect to directions b and b of his qubit. A
large number of singlet states is prepared and shared between Alice and Bob, each of whom
performs a single measurement on each qubit, deciding randomly (and independently) which
of the two possible measurements to perform. The pairs of measurements take place at such
space—time points as to exclude any influence of one measurement on the other. According
to the classical point of view the quantities a, a’, b, and b’ have definite values independent
of observation, for each of the large number of measurements performed. These values are
governed by a joint probability distribution p(a, @', b, 1’) about which nothing is known except
that it is non-negative and normalized to unity. Now consider the quantity

f:=(a+a’)b-(a—a")b". (4.74)

Since a and a’ are either equal or opposite to each other, one summand of f is zero and the
other is +2; thus | f| = 2 and consequently

f:= Z pla,a’,b,b")f <2 (4.75)

a,a’ bb

where the overbar denotes the average (expectation value) with respect to the probability dis-
tribution defined by p(a,a’,b,b’). The average may be performed separately for each term in
f, leading to

ab+a’b —ab’/ +a’b’ < 2, (4.76)

the CHSH inequality. Every single measurement pair performed by Alice and Bob, as de-
scribed above, contributes to one of the four averages of products in the CHSH inequality and,
for a large number of measurements, the inequality may be checked to arbitrary precision.

4.2.10 Violation of Bell’s inequality

Now let us consider the situation from a quantum mechanical point of view. We choose the
following directions of measurement for Alice and Bob:

- 1 - 1
i=2 a@==% b=-—(-2-3), 0 =-—(2-12), 4.77
T(2=a), = =) @77)
where # denotes the unit vector in x direction, etc. This leads to (see (4.28, 4.29))
1 1
a=2Z, a =X4, b=-——(Zp+Xp), b =—(Zp-Xp). 478
A, a A \/§< B B) \/5( B B) (4.78)

The calculation then proceeds by observing that

- v = X L o
a bl 0,4 Dy =1 Da® = s = | 1)) “19)

aeb 1), o 1y = 11,0 %('I =1 1)
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so that the quantum mechanical expectation value of a @ b in the singlet state (4.72) is

1
(ab) = (Wlac bi) = . (4.80)
The other expectation values are calculated in a similar manner, leading to
(a'b) = —, (ab) = ——, (a'b)= (4.81)
\/5',‘ \/‘2‘ 7 \/§ b4
and consequently
(ab) + (a’'b) — (ab’) + (a'b’) = 2v2 (4.82)

in obvious contradiction to the classical Bell-CHSH inequality (4.76). The quantum mechan-
ical result (4.82) was confirmed by Aspect et al. [AGR81] raising the status of the Einstein,
Podolsky, and Rosen scenario from Gedankenexperiment to real experiment. In the experi-
ment the spin-1/2 states from the above analysis are replaced by photon polarization states:
the two mutually orthogonal S, eigenstates are mapped to linear polarizations at 0° and 90° (in
some fixed coordinate system), and the S, eigenstates correspond to +45° polarizations. This
translates the algebraic relations between Hilbert space vectors, such as |[+) = %ﬂ n+D)
(where S,|+) = +1|+)) to relations between electric fields of polarized photons. A photon
pair with entangled polarizations corresponding to the singlet state (4.72) can be created by a
cascade of decays from an excited atomic state. Measurements of the spin components (4.78)
then correspond to photon polarization measurements, and the 45° angle between the two spin
space reference directions changes to a 22.5° angle between polarizations. The experimental
results clearly confirm the prediction of quantum mechanics and violate the Bell-CHSH in-
equality. This and other experiments have demonstrated the impossibility of hidden-variable
theories, and hence, the reality and importance of entanglement in several convincing ways.

4.2.11 The no-cloning theorem

In the classical world of our everyday work we take the possibility of copying something for
granted: we distribute copies of our research papers to other scientists and we (hopefully)
make backup copies of our important data files on a regular basis. In Chapter 3 we discussed
the possibilities of copying classical bits, using either the classical irreversible NAND/NOT
gate, or the reversible classical CNOT gate which performs the following operation on a pair
of classical bits (ir, y):

With the target bit y initialized to zero, this yields
(x,0) — (@, ), (4.83)

as desired. As shall be discussed in Chapter 5, a quantum CNOT gate may be defined which
performs exactly the same operation on the input states |0) and |1):

[0) & (0) — |0) ©

0) ;| 0) 1) e 1) (4.84)
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Here the first qubit is assumed to be the source qubit and the second qubit is the target qubit,
which after copying is supposed to be in the same state as the source qubit, provided it was
properly initialized to a certain “blank” state (logical zero in our case) in the beginning. So, it
seems to be possible to copy quantum states too! However, the problems start as soon as we
initialize the source qubit to a state

[¥) = aj0) + B[1). (4.85)
In this case the CNOT gate (which is supposed to be a linear operator) maps

[¥) ®10) = ]0) ® |0) + B]1) @ [0) — «|0) @[0) + B|1) ®[1) # [¢) @ [¥), (4.86)

because [¢/) @ |¢)) contains “mixed terms” |0) & |1) and |1) & |0). This example shows that it
may be possible to copy every member of a finite set of mutually orthogonal quantum states,
but not every superposition of these states. The ability to copy classical objects may thus be
interpreted as the ability to copy special quantum states.

In general it is not possible to make a copy (or clone) of an unknown (pure) quantum
state by means of unitary operations. This is the famous no-cloning theorem of Wootters and
Zurek [WZ82] and also Dieks [Die82]. The proof is amazingly simple. Let |10} be a pure
state from some Hilbert space $¢ource. and |s) some “standard” (or blank) initial state from
a Hilbert space $;,.50. Which has the same structure as Hsonrce. A “quantum state cloner”
would then be a unitary operator U (defined on the direct product Hsgurce © Hiarger) With the

property
U|/l/)> ® ‘S> = '1/)> & |¢> V|’Lﬂ> € f)smm'o' (487)

As U is supposed to clone every state from $q,,cc W€ now consider the cloning of a second
state |¢):

Ulp) @ |s) = [¢) ® |). (4.88)

For simplicity we assume that [¢)), |¢), and |s) are normalized, and take the scalar product of
the two equations above, keeping in mind that U is unitary, that is, it preserves scalar products:

(sl i) (e o 19)) = st = Gl @59
As U is supposed to clone both states |1/} and |¢) we also have

(M@WWQ(W@%M)—KW%M@W%#WWV (4.90)

and this is possible only if (¢|¢) = 0 or {(0|¢) = 1, that is, if the two states to be copied by
the same operation are either identical or orthogonal. This proves the theorem while admitting
copies of states from a set of mutually orthogonal Hilbert space vectors.

Several questions arise regarding the assumptions of the theorem:

e Can we allow non-unitary cloning operations? A possible idea might be to enlarge the
Hilbert space by taking into account the environment’s Hilbert space. It is not hard to see
that this idea leads to the same problems as above.
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o Can mixed states be cloned?
e Are less than perfect copies possible and useful?

All these questions have been addressed in the research literature, references to which can be
found, for example, in [NCOI1].

The no-cloning theorem may be considered an obstacle in quantum computation, where
it would be desirable to “‘store a copy in a safe place”. It should be noted, however, that the
thcorem is at the very heart of the concept of secure quantum communication to be discussed
in Chapter 13.

4,3 Measurement revisited

4.3.1 Quantum mechanical projection postulate

The projection postulate (see Section 4.1.5) is one of the fundamental assumptions on which
quantum mechanics is based. It assumes that an ideal measurement brings a particle into the
eigenstale |a;) of the measurement operator A, where a; is the corresponding eigenvalue,
which we here assume to be nondegenerate for simplicity. We cannot predict in general which
of the eigenstates will be realized, but the probability of the realization of each state |a;) is

pi =y ) (4.91)

for a system initially in state |+/). The observable that is used for this readout process must be
adapted to the system used to implement the quantum computer as well as to the algorithm. A
typical measurement would be the decision if qubit 7 is in state |0) or |1). The corresponding
measurement operalor may be written as S’, i.e., as the z spin operator acting on qubit i,
with the positive eigenvalue indicating that the qubit is in state |0) and the negative eigenvalue
labeling state |1).
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Figure 4.1: Stern-Gerlach experiment.

The usual treatment of measurement processes is due to von Neumann and is best pictured
as a generalized Stern-Gerlach experiment (see Figure 4.1). The measurement apparatus sep-
arates the particles according to their internal quantum states. In this picture it is obvious that
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the measurements are local, i.e., the results for the individual particles do not depend on the
state of the other particles. Obviously the complete absence of interactions is not representa-
tive for a quantum computer.

tlm increases

Figure 4.2: Pictorial representation of the coupling mechanism during the measurement pro-
cess.

For this simple example, it is relatively straightforward to see how the inhomogeneous field
separates the different particles according to their orientation. A particle whose north pole is
closer to the south pole of the magnet has a lower energy than the particle with the opposite
orientation — its potential energy is negative. It can further lower its energy by moving farther
into the high-field region and is therefore deflected upwards, while the oppositely oriented
particle is deflected down. Transferred into the quantum mechanical context, particles will
follow different trajectories, depending on their spin state.

If we want to describe the result of a sequence of measurements, where different realiza-
tions of eigenstates may occur, it is more convenient to use the density operator introduced
in Section 4.2.3. Since the measurement projects the system into an eigenstate of the ob-
servable, the resulting density operator (which describes the ensemble of the measurement
outcomes) is diagonal in the basis of these eigenstates. The measurement process corresponds
to a nonunitary evolution

p—> PpP;, (4.92)

where the P; = |a,){a;]| are the projection operators onto the eigenstates a; of the observable
A, i.e., operators with a single 1 on the diagonal and zeroes everywhere else.

Apparently the measurement process simply eliminates all off-diagonal elements of the
density operator in the basis of the observable (which is usually also an eigenbasis of the
Hamiltonian). This implies that the result of the measurement process will be a mixed state,
unless the system was already in an eigenstate of A.

We will give some more details of the measurement process below; before that we put it
in an historical and philosophical context.
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4.3.2 The Copenhagen interpretation

The conventional interpretation of this measurement process is due to Bohr and coworkers and
known s the “Copenhagen interpretation” of quantum mechanics. It can be summarized by a
few fundamental assumptions.

o Quantum mechanics describes individual systems.

e Quantum mechanical probabilities are primary, i.e., they cannot be derived from a deter-
ministic theory (like statistical mechanics).

o The world must be divided into two parts. The object under study must be described
quantum mechanically, the remaining part, which includes the measurement apparatus,
is classical. The division between system and measurement apparatus can be made at an
arbitrary position.

¢ The observation process is irreversible.

o Complementary properties cannot be measured simultaneously.

The Copenhagen interpretation has the advantage that it is relatively simple and internally
consistent. It cannot satisfy, from an aesthetic point of view, since it implies two different types
of evolution: the “normal” unitary evolution of the Schrodinger equation and the nonunitary
measurement process. In the strict sense, it implies that quantum mechanical systems cannot
be attributed real properties; instead, it represents “only” a theory about the possible outcomes
of measurements and their probabilities.

These deficiencies have prompted many researchers to look for better alternatives and / or
to check some of the fundamental assumptions for their validity. A more detailed model that
tries to integrate the measurement process with the unitary evolution under the Schridinger
equation and avoids the splitting of the universe into a quantum mechanical and a classical
part, is due to John (also known as Jdnos or Johann) von Neumann.

4.3.3 Von Neumann’s model

In his model, the system S is coupled to an apparatus A. For a simple two-level system the
basis states are |,,) and |9y ), the eigenstates of a system observable Og. The measurement
should determine if the system is in state |t/,) or {¢,). To obtain a quantum mechanical
description of the measurement process, we also describe the apparatus as a two-level system.
The eigenstates are written as |£,) and |&,) and correspond to the apparatus indicating that
the system 1s in state |20, ) and |i,), respectively. A corresponding observable acting on the
apparatus can be written as O 4.

According to von Neumann, the measurement process involves coupling the system to the
measurement apparatus through an interaction of the type

Hint = O 4B, (4.93)

where O 4 is the observable to be measured and B is 4 variable of the measurement apparatus.
The system thus drives the motion of the measurement apparatus and in the idealized process,
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the eigenvalues of A can be read off a “pointer variable” of the measurement apparatus, which
is treated classically. One usually assumes that the observable O 4 that one tries to measure,
commutes with the Hamiltonian of the system. In the case of the Stern-Gerlach experiment,
the observable O 4 is the z-component of the spin operator, S, and the pointer variable is the
position z along the field direction.

Before the measurement process, the total (system and apparatus) can be described as a
state without correlations between system and apparatus. The two parts can thus be described
individually by the states [¢)) = (c.|ta) + cb|ths)) (which is not known) and |£) and the
combination by the product state

'¢> ® |§> = (C(Li¢a> + Cb|¢b>) & |£> (494)

The interaction between system and apparatus must be such that it drives the evolution as
[Pu) @ 1€) — |Ya) ® (&) (4.95)
and
|n) ®1€) — [4) © &) (4.96)
Since the evolution is linear, the superposition state evolves as
(Caltba) + cpltn)) © |§) = caltba) @ 1€a) + colths) & [€n). 4.97)

Apparently the combined system (consisting of system and apparatus) is still in a superposi-
tion state, but the two parts are now entangled. Von Neumann’s model does not generate a
reduction of the wavefunction, such as is required by the projection postulate (compare equa-
tion (4.21)). This is a necessary consequence of the unitary evolution. The reduction only
occurs if we assume in addition that the apparatus is a classical system, where a reduction
must occur. A reduction of the wavefunction component for the apparatus into (e.g.) |£,) then
also causes a reduction of the system state into |t ).

While the wavefunction reduction is therefore not explained, it has been shifted farther
away from the system. According to von Neumann’s understanding, the final reduction occurs
in the mind of the observer. While this is therefore not a full resolution of the measurement
paradox, it improves the situation. Since the apparatus is very complex in terms of a quantum
mechanical description, the collapse of its wavefunction is very fast. Furthermore, since it
does not directly involve the system, some inconsistency is easier to accept. Nevertheless,
one major issue remains unresolved in von Neumann’s model (as well as in all others): we
only obtain probabilities from the quantum mechanical description, i.e., we cannot predict the
result of individual measurements.

An extension of the von Neumann measurement that is sometimes used in the context of
quantum information processing and communication is the positive operator-valued measure
(POVM), where the states that form the basis for the measurement are not orthogonal. The
corresponding projection operators must still sum up to unity.
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Further reading

There is a large number of excellent books on quantum mechanics and its applications at all
levels. Dirac’s classic book [Dir58] is a concise and clear masterpiece. Cohen-Tannoudji
et al. |CTDLY2] is a detailed student-friendly textbook. Ballentine [Bal99] has interesting
modern applications, whereas Peres [Per98] concentrates on the conceptual structure of the
theory.
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5 Quantum bits and quantum gates

5.1 Single-qubit gates

5.1.1 Introduction

Information is quantized in classical digital information processing as well as in quantum
information processing. In analogy to the classical bit, the elementary quantum of information
in quantum information processing is called a gubit. Any two distinct states of a quantum
system can be used as a qubit, as discussed in Chapter 4.

Once some information is stored in a set of qubits (a quantum register), we must be able
to manipulate these qubits in order to process the information. This means we must be able to
change the state of a qubit either unconditionally (for example, for initializing a qubit or for
writing information into a qubit), or conditionally, depending on the previous state of the qubit
itself (e.g., the NOT operation) or on the state of itself and another qubit (e.g., the controlled
NOT, or CNOT operation), and so on. These tasks will have to be performed by quantum
gates.

Of course one could imagine still more complicated gates, where the state change of one
(or more) qubit(s) would depend on the state(s) of an arbitrary number of other qubits. Fortu-
nately all possible operations can be reduced to a finite set of universal quantum gates. From
these gates one can construct the specific algorithms of quantum information processing which
we will discuss later.

In the present chapter we will discuss the elementary building blocks for those algorithms:
quantum gates. In several steps we will show that arbitrary quantum gates can be constructed
(that is, approximated to arbitrary precision) from a small number of one-and two-bit gates.
Note that in Chapter 3 we argued that using classical reversible gates, three-bit operations are
needed to achieve universality, whereas here we will need only one- and two-qubit operations,
This indicates that quantum gates are “more powerful” than classical gates.

5.1.2 Rotations around coordinate axes

All operators in the Hilbert space of a single qubit can be combined from the four fundamental
operators 1, X,Y, and Z (the Pauli matrices) introduced in Section 4.2.1, where we also
encountered the Hadamard gate H = %(X +Z) (4.33).

Any unitary 2 x 2 matrix is a valid single-qubit quantum gate. Note that the operators X,
Y, and Z have eigenvalues +1 and thus are unitary. It is evident why X is also often called the
“NOT gate” in the language of quantum computing; Z generates a 7 relative phase between
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the two basis states, and Y = iXZ is a combination of the two other gates. [t is also easy
to generate an arbitrary relative phase (instead of ) between the two states. To see this, note
that

, e 0 ,

exp (i¢Z) = ( 0 it ) (5.1

which generales a relative phase 2¢. Important special cases of this gate are
1 0 T exp —ig 0
= = expi— ) 5.

T ( 0 expif ) expvg( 0 expig )’ (5:2)
(the % gate) and

S:T2:<1 Q), (53)

0

(often simply called the phase gate). Note that S = Z.
The NOT gate can also be generalized. Due to the fact that X? = 1 we have

. i~ COoS is8in
exp (1¢pX) = 1cos ¢ + iXsin¢g = ( isinq; cos;’{) >, (5.4)

which interpolates smoothly between the identity and NOT gates, for ¢ = 0 and 7, respec-

tively. For ¢ = 7 we obtain the “square-root of NOT” gate. The gate exp (i¢Y) may be
discussed in a similar way.

5.1.3 General rotations

The above discussion of the spin component operators X, Y, and Z may be generalized to the
spin operator component along an arbitrary direction. From the general theory of quantum
mechanical angular momentum we know that exp(ig-S) (for some vector ¢) has the properties
of a rotation operator. However, it is not always clear what is being rotated, and how. In
Section 4.2.1 we studied the time evolution of the initial state | T) in a constant magnetic
field 33 along one of the coordinate axes. The time evolution operator (4.34) in that case has
precisely the form exp(iq - §), with ¢ along one of the axes. For B along the z axis we obtain
no time evolution (apart from a trivial overall phase factor), but for B in the x direction the
state [10(t)) (4.38) is such that the expectation value of the spin vector S rotates uniformly in
the yz plane, that is, it rotates about the x axis. As the expectation value of the spin vector is
proportional to the polarization vector PP describing a state in the Bloch sphere representation
(compare (4.60), (4.61)) we may also visualize |¢(t)) as rotating on a great circle of the Bloch
sphere. -

We now return to the general case and consider the spin component operator 7i - S along an
arbitrary unit vector 7i. Using the algebraic properties of the spin matrices it is easy to show
that the square of 7 - Sisa multiple of the unit operator,

h

2_ 2\° .
(—ﬁ~S> = (N X +n,Y +n,2)% =1, (5.5)
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and consequently

2 . .
R;(0) =exp <7(—);ﬁ . S> = 1lcosf + I%ﬁ -Ssin 6. (5.6)
1
Note that
R!(0) = Rs(—8) = RZ1(0). (5.7)

This operator obviously commutes with the spin component 77 - S and thus does not affect this
specific component. In fact it can be shown that the unitary transformation R (6) corresponds
to a rotation by the angle 26 about the axis 7. We stress that this rotation can be interpreted in
several ways. The expectation value (S) of the spin vector rotates by 20 as Rz (@) is applied to
the state of the qubit. Alternatively but equivalently we may think of the spin vector S being
rotated as it undergoes a unitary transformation, R,;(O)gR,ﬁ(Q). Finally, the polarization
vector P on the Bloch sphere rotates as (S) does.

We will not demonstrate explicitly that Ry () is a 2 rotation for general 7, but only for
71 = Z (the unit vector along the z axis):

e

R;(a) = exp(iaZ) = < P(’)” ,Om ) (5.8)

For an arbitrary pure state |6, ¢) (compare (4.39)) we obtain

eia 0 6—1‘%(‘05%
Ré(a)|6799> - < 0 e~ie >< ei%sing

il g 8
(6 P57 cos §

j2za o >:|9,d)—2(y>. 59

e sin 5

Note that a 27 rotation (o = 7) reverses the sign of any single-qubit state, but has no conse-
quences for expectation values of physical observables in that state.

5.1.4 Composite rotations

As any normalized pure single-qubit state is represented by a point on the surface of the Bloch
sphere, and as any two points on a sphere are connected by a rotation, any unitary single-qubit
operator can be written in the form

U =e“Rz(8). (5.10)

It is often desirable to employ only rotations about the coordinate axes instead of rotations
about arbitrary axes 7i. This is indeed possible; for any unitary U a decomposition

U = ¢“R;(3)Ry(7)R:(6). (5.11)
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can be found. A similar decomposition with & instead of 2 is also possible. Another decom-
position which will be used in the next subsection is closely related to the above single-qubit
Z — Y decomposition. Let

A=R.(9R, (1) B=R;(-1)R. (#) . C-R. ("1;2 ‘3) L (5.12)

with 3, v, and & determined {rom (5.11). Note that

ABC =1; (5.13)
furthermore the relations between Pauli matrices

XYX=-Y; XZX =-Z (5.14)

can be used to show that

B ¥ (048
XBX = R; (5) R <T> (5.15)
and thus
“AXBXC = ¢ R: (8)Ry(V)R;(8) = U. (5.16)

By inserting two X operators (NOT gates) we can thus convert U into the unit operator.

5.2 Two-qubit gates
5.2.1 Controlled gates

Any programming language contains control structures of the type: “If condition X holds,
perform operation Y. In quantum information processing these structures are implemented
using multi-qubit gates which have one or more control qubits and target qubits. The simplest
example is the two-bit (or two-qubit) operation known as “controlled NOT” (CNOT), defined
by the following truth table:

control-qubit | target-qubit | result
0 0 00
0 ] 0l
1 0 11
1 1 10

The control qubit remains unchanged, but the target qubit is flipped if the control qubit is
I. (We abbreviate |1) as 1 here for simplicity.) The “result” column of the truth table lists
both control and target qubits. Note that the output target qubit is equal to the “exclusive
or” (XOR) between the control and target qubits. Hence the CNOT operation is also called
“reversible XOR”, where the reversibility is accomplished by keeping the value of the control
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qubit, in contrast to the ordinary (irreversible) XOR operation of classical computer science
which we discussed in Chapter 3. In fact, the reversible XOR is its own inverse. Symbolically
it achieves the following mapping:

(z,y) - (CLIXOR y)? (517)
and it can be used to copy a bit, because it maps
(#,0) — (2,2). (5.18)

A combination of three CNOT gates (the second one with reversed roles of control and target
bits) swaps the contents of two bits, as can be veritied by repeated application of (5.17). Thus
the CNOT gate can be used to copy and move bits around. In matrix notation with respect to

the usual computational basis (|00}, |01}, {10, |11)) the CNOT gate reads
10 00
01 0 0 1 0
CNOT = [ o o o _(OX) (5.19)
0 0 1 0

(using 2 x 2 block matrix notation). Replacing X by an arbitrary unitary single-qubit operation
U, we arrive at the controlled-U (CU) gate.

5.2.2 Composite gates

The roles of control and target qubits may be shifted by basis transformations (in the individual
qubit Hilbert spaces). One example is shown in figure 5.1.

I
il 1 1H}
™ ol
|H——Hj

Figure 5.1: Ambiguity of control and target qubits.

Here control and target qubits have interchanged their roles due to the application of a
Hadamard gate (4.33) to each qubit both before and after the CNOT operation. This can be
verified by writing down the two-qubit Hadamard transform matrix H; ® Hs explicitly and
performing the matrix multiplications.

The CU gate can be implemented using CNOT and single-qubit gates. The idea is to
use the decomposition (5.16) and apply U = ¢**AXBXC if the control qubit is set and
ABC = 1 if not. The circuit in Figure 5.2 does the trick.

Obviously the e phase factor as well as the two NOT (= X) operations are only active
if the control qubit is set.

The CNOT and Hadamard gates can be used, for example, to create maximally entangled
states from the four two-qubit computational basis states |a, b) (with a, & = 0, 1) via

|Bap) = CNOT (a,b)H(a)|a,b) (5.20)



08 5 Quantum bits and quantum gates

10
— Control
Target
Figure 5.2: A circuit for the controlled-U gate.
As an example, consider
H@[0,0) - =(0,0041,0) > |w) = ==(10,0) + |1, 1)) (521)
[ ) s s 3 = = 0= 3 3 . .
\/§ (84 \/—‘Z

which is onc of the Bell states (4.56). The other (a,b) values yield the remaining members of
the Bell basis.

In higher-order controlied operations n control qubits and % target qubits are used; an
important example is the Toffoli (controlled-controlled-NOT, or C2NOT) gate (3.16), or more
generally, the C2U gate for some arbitrary single-qubit U. Actually, C?U can be built from
CNOT and single-qubit gates. To see this, consider the unitary operator V, with V¥ = U
(which always exists) and build the circuit shown in Figure 5.3. If neither of the control qubits

Figure 5.3: A circuit for the controlled-controlled-U gate; V? = U,

is set, nothing at all happens. If only one control qubit is set, VT = V=1 and one V acts on
the target qubit. Tf both control qubits are set, VT is not switched on, but both V' arc. It is
interesting to note that, with quantum reversible gates, the Toffoli gate can be decomposed into
one- and two-qubit gates, which is not possible classically. (Otherwise universal reversible
classical computation with just one- and two-bit operations would be possible, contrary to
what we discussed in Chapter 3.) The Toffoli gate (and as we shall see, any gate) can be made
from Hadamard, phase, CNOT, and % gates. The Toffoli gate needs about a dozen of these
more elementary gates, as shown in Figure 4.9 of [NCO1]. Also of interest is Figure 4.10
there, showing how to implement C™U from Toffoli and U gates.
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5.3 Universal sets of gates

5.3.1 Choice of set

It is important to know whether any conceivable unitary operation in the Hilbert space of inter-
est can be decomposed into a sequence of standard elementary operations taken from a finite
set. Only if that is true, can a universal quantum computer be built which can be programmed
to fulfill fairly arbitrary tasks, much as today’s universal classical digital computers which are
(in principle) built from a very small set of universal classical gates. Luckily there exists a set
of universal quantum gates, in the sense that any unitary operation may be approximated to
arbitrary accuracy by a combination of these gates.
As already mentioned in the previous section, the following four gates do the trick:

e the CNOT gate,

e the ¢ gate (5.2)

T = < Lo > = exp (7%(1 - 7)), (5.22)

0 expij

e the phase gate (5.3)

S:T2:<1 Q) (5.23)
0 1

(note that S = Z), and

o the Hadamard gate (4.33)

1 1 /1 1
H:%(X+Z):7§<1 —1>' (5.24)

This set of four gates can be shown to be universal in a three-step process.

1. Any unitary operator can be expressed (exactly) as a product of unitary operators affect-
ing only two computational basis states: “Two-level gates are universal.”

2. (From i) and preceding sections.) Any unitary operator may be expressed (exactly) using
single-qubit and CNOT gates: “Single-qubit and CNOT gates are universal.”

3. Single-qubit operations may be approximated to arbitrary accuracy using Hadamard,
phase, and § gates.

5.3.2 Unitary operations

We start with step 1: Two-level gates are universal; that is, any d x d unitary matrix U can

be written as a product of (at most) @ two-level unitary matrices (unitary matrices which
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act non-trivially only on at most two vector components). This can be shown as follows.
Concentrate on the top left corner of the unitary matrix

a d .
U= b e - 1. (5.25)

The 2 x 2 unitary matrix

i a*t b

eliminates the second element in the first column of U

a o
o(2)=(%) son

(In what follows we use (without introducing additional notation) U,, supplemented by a
(d — 2} x (d — 2) unit matrix so that products like U; U make sense.) Further unitary 2 x 2
matrices can be used to climinate further elements from the first column of U:

1 0 0
Us Usse LU = 0 ¢ - : (5.28
d—1Vd—2 1V = 0 - - (non-zero) 2

Note that initially the first column had unit norm because U is unitary. We have applied
only unitary (that is, norm-preserving) operations so the end result is still a unit vector but has
only one non-zero component, which must be 1. (A phase can be eliminated.) Due to unitarity
(of a product of unitary matrices) all elements in the first row other than the leftmost one must
also vanish. The elimination process can be continued in other columns and finally

I(d -1
U,U,_,---UU=1 (kg (((T) = (d -~ 1)+(d~2)+---+1), (5.29)
and thus
U=Uulul...ul (5.30)

which is the desired decomposition of an arbitrary gate U in terms of two-level gates.

5.3.3 Two qubit operations

In step 2 we prove that single-qubit and CNOT gates are universal, because we can use them
to build the arbitrary two-level gates discussed in the previous step. The basic idea is simple.
Transform the Hilbert space such that the two relevant basis states become the basis states
of one qubit, perform the desired single-qubit operation on that qubit, and transform back
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to the original basis. The basis reshuffling can be achieved via higher-order controlled-NOT
operations, which in turn can be reduced to simple CNOT operations.

We just discuss a three-qubit example: How to perform a two-level operation U involv-
ing the states |ABC) = |000) and |111)? First, apply the Toffoli gate (3.16) to the three
arguments NOT A, NOT B and C(remember that the Toffoli gate is a three-qubit gate):
93 ( NOT A, NOT B, C). The first two qubits are control qubits which in this case must
be 0, the last one is the target. This operation swaps |000) with |001) and leaves everything
else untouched. Now, apply #(3)( NOT A, C, I3). This swaps |001) with [011). The net effect
has been to swap |000) with |011). Now, the C2U can be applied, performing the operation U
on qubit A, provided both B and C are 1. Finally the basis states can be rearranged in their
original order.

Similar rearrangements can always be achieved through a sequence of qubit basis states (or
the binary numbers representing the states) two consecutive members of which differ at one
position only. (Such sequences are known as Gray codes.) Clearly this way of constructing
arbitrary quantum gates is not always the most efficient one (involving the smallest possible
number of operations). However, this is no source of serious concern, since there are, in any
case, unitary n-qubit operations which involve O(e™) gates to implement (see Section 4.5.4
of [NCO1]) and hence are intrinsically inefficient.

5.3.4 Approximating single-qubit gates

In step 3 we show that Hadamard, phase and § gates are (approximately) universal single-
qubit gates. Recall that the most general single-qubit gate is a rotation of the Bloch sphere by
an arbitrary angle about an arbitrary axis (combined with a trivial phase factor). Imagine we
could implement a rotation about some axis 72 by an angle o which is an irrational multiple
of 27r. Due to irrationality, the angles

ne mod 27 (n=0,1,2,...) (5.31)

are dense in [0, 27] and thus an arbitrary rotation about 7 can be approximated to arbitrary
precision by repeating the ¢ rotation:

Ri(8) = (Ra(a))” + O(e). (5.32)

If we can implement two such irrational rotations about mutually orthogonal axes we can
perform arbitrary rotations due to the Z-Y-Z decomposition (5.11). This is exactly the route
followed by Boykin e al. [BMP799] which we will briefly sketch now. From the fundamental
multiplication laws for Pauli matrices

X2=Y?2=7?=1, XY=iZ=-YX et (5.33)
and the definition of the Hadamard gate
1
H=—=(X+12 5.34
\/5( ) (5.34)
we obtain

HXH=7Z, HZH=X. (5.35)
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Furthermore we recall the rotation of the Bloch sphere about the unit vector 77 by an angle 0
o > 4 1 gsi AP (5.36)
xXp | T - =cos| = —qsin{ = | 17 - &, .
exp i cos { 5 i )¢
(7=(X,Y,Z) = %§), and the ¢ gate
s ’,72‘% : s .4 s ;T
T =¢'% ( ‘ f’ ) =¥ #2277 = HTH = ¢'fFe 5% = X1, (537)

We now multiply
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where
q= ((us‘ (g) , —8in (%) , — CO8 (g)) . (5.39)
With 7 = I_g_l this can be written as

L . oL
X7 =cosal —isinai-o (5.40)

.

71

where

o (T 1 [
oSy =cos | =) ==(1+— . 5.
COS (¥ = COS (8> 5 ( + \/Z) (5.41)

Invoking some theorems from algebra and number theory it can be shown that v is an irrational
multiple of 2.
This is the first of the two rotations we need. The second one is

H *Z X:H:, (5.42)
where
HY - 14 (5.43)
2 — 2 . J.4
V2

Now we can work out

TR |
H :XH:2 = Q(x+z —-V2Y) (5.44)
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1

H :YH? X-7Z 5.45
\/5( ) (5.45)
1
H :ZH? = 5(X+Z+\/§Y), (5.46)
and finally
B s AT ¥ 4. YRS 4 1 W
H 2Z :X4H?2 = cos (8)1 zsm(S)m c (5.47)

with

m = (% sin (%) ,\/5(:05 (g) ,%sin (g)) (5.48)

from which we see that m? = % and 17 - § = 0. This is again a rotation by the same angle «
as before, about an axis orthogonal to the previous axis 7i.

The construction in [NCO17] uses the rotations XiZ% and HX*ZiH = Z+ X4, which
are quite similar to those used above. However, the axes of rotation are not orthogonal to each
other but only at an angle of 32.65°. In this case the simple Z-Y-Z decomposition (5.11) of an
arbitrary rotation into three factors is not possible, but a decomposition into more than three
factors still is.

Further reading

An excellent reference for the material in this chapter is Chapter 4 of [NCO1] which consists to
a large extent of exercises which the reader is encouraged to solve in order to really learn the
material. (However, the anticipated results of the exercises are stated clearly enough so that the
lazy reader may also get along without solving the exercises.) Preskill [Pre97], Section 6.2.3
discusses universal quantum gates from a different (Lie-group) point of view.
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6 Feynman’s contribution

In this chapter we review Richard Feynman’s two articles from 1982 and 1985 [Fey82,Fey96],
which were seminal for the field of quantum computation. Both papers originated from in-
vited talks at conferences. Feynman’s interest had been triggered by the notion of reversible
computation brought up by Fredkin, Bennett, and Toffoli. The sections of this chapter bear
the same titles as the original papers. This chapter is not necessary in order to understand
the remainder of this book. It is there purely for entertainment, or, if you are more seriously
minded, for historical interest.

6.1 Simulating physics with computers

6.1.1 Discrete system representations

In his 1982 article (which was mentioned already in Section 1.3.1) Feynman discussed the
ways in which different kinds of physical systems can be simulated by computers. A deter-
ministic simulation of a quantum system on a classical computer runs into problems because
the required resources grow exponentially with the system size. In Section 1.3.1 we saw that
even for a few spin-1/2 particles without any other degrees of freedom, the size of the Hilbert
space is forbidding. This situation worsens considerably if additional (continuous) degrees
of freedom of the particles must be accounted for. Classical (deterministic) dynamics, on the
other hand, is much easier to simulate because it is local, causal, and reversible. Of course
such a simulation always involves some kind of discretization for the possible values of con-
tinuous variables such as time, coordinates, field values, etc. For example, the motion of N
interacting classical point particles in three dimensions is determined by 3N equations of mo-
tion. The number of differential equations is proportional to the number of particles. A typical
numerical algorithm for solving these equations of motion will involve a discretization of time
and an approximation of differentials by differences. This will convert the set of differential
equations to a set of algebraic equations. The resources necessary to solve this set of algebraic
equations will grow as a power of the number of particles, but not exponentially. This means
that classical deterministic dynamics can be efficiently simulated by computer.

This is no longer so for classical probabilistic dynamics; at least if a deterministic sim-
uvlation is desired. To understand what is meant by a deterministic simulation, consider the
classical diffusion equation

op 9
— = DV-©p 6.1)
ot
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(where 1) is the diffusion constant) as an example. p(7, 1) is the probability density of finding
a single particle which undergoes Brownian motion. To simulate the diffusion equation, space
and time can be discretized and the dynamics can be approximated by a set of transition rules
determining how probability “jumps” back and forth between neighboring points in space in
each time step. The continuous function p(7, () is thus replaced by an array of numbers p;j,
the probabilities of finding the diffusing particle at the space point r; at the instant of time
t,. The simulation keeps track ot all these numbers, starting from a given initial configuration
;o and ending up with the desired final configuration p;p, where ¢ always runs from 1 to S,
the number of grid points into which #* was discretized. The trouble starts as the number of
diffusing particles increases. For two particles p(7, t) then becomes p(7, 72, t), where 7] and
7y are the coordinates of the two particles. This discretizes into an array of numbers p; s,
where 7; and 7 are the possible discrete values of the coordinates ') and 73, respectively. The
simulation now has to keep track of S% numbers per time step. With N particles one has SV
numbers per time step, which quickly outgrows the capabilities of any classical computer. Of
course there are situations where a description in terms of individual particle coordinates is
unnecessarily complicated, for example if the particles do not interact with each other, but if
they do there is no way around this description (or a similar one).

6.1.2 Probabilistic simulations

Deterministic simulations of probabilistic dynamics keep track of all possible (discretized)
configurations of the system, important ones as well as very improbable ones. The aim of a
probabilistic simulation is to avoid the waste of resources implied by the complete calculation
of all possible configurations. The probabilistic simulation is constructed in such a way that it
arrives at any possible final result (or configuration) with the same probability as the natural
process. This can be done without exponential growth of resources as the number of particles
increases. Of course for probabilistic simulations repeated simulation runs (plus some statis-
tics to generate error bars for the results) are necessary. In fact probabilistic simulations of
this kind are everyday business for scientists and engineers in various fields.

A probabilistic simulation of a quantum system on a classical computer, however, turns
out to be impossible, The fundamental reason for this failure is related to the nature of corre-
lations in quantum systems. The possibility of a probabilistic simulation of quantum systems
would imply the existence of some “hidden” classical variables which are not accessible to
the observer and have to be averaged over to arrive at a physical result. The existence of such
variables in turn restricts the values of correlations of the system, by the Bell or CHSH in-
equalities discussed in Section 4.2.8. These inequalities are not obeyed by quantum theory,
and they have been shown to be violated in a number of quantum experiments. Thus a con-
sistent probabilistic simulation of a quantum system on a classical computer is impossible, as
demonstrated in detail by Feynman. This impossibility led Feynman to the suggestion of in-
vestigating the possibilities of quantum simulations performed by quantum computers, a field
that we will briefly discuss in Section 8.5.



6.2  Quantum mechanical computers 77

6.2 Quantum mechanical computers

6.2.1 Simple gates

Feynman’s second paper contains quite detailed suggestions for quantum implementations of
classical computing tasks. We will discuss these suggestions up to a “Hamiltonian that adds”
before turning to the genuine quantum applications in the following chapters. The paper also
shows that Feynman was well aware of (and interested in) the problems inherent in the high
sensitivity of quantum systems to small perturbations; nevertheless, he says: “This study is
one of principle; our aim is to exhibit some Hamiltonian for a system which could serve as a
computer. We are not concerned with whether we have the most efficient system, nor how we
could best implement it.”

X

X X

y X XORy 2

€/

Figure 6.1: Left: Single CNOT gate. Right: CCNOT (Toffoli) gate.

From Chapter 3 we know some reversible gates on the 1-, 2-, and 3-bit levels:

NOT maps # — 1 — a, (6.2)
N v (zy)ifz=0
CNOT maps (z,y) — (z,2 XOR y) = { (1 y)ife—1 " (6.3)
and the Toffoli gate, controlled controlled NOT or 63 gate:
o o S (zmyl—2)iffr=y=1
CCNOT maps (z,y,2) — (a,y,2y XOR z) = { (2. =) otherwise , (6.4)

where “iff” is short for “if and only it”, as usual. The two latter gates are shown in Figure 6.1.

Note that the symbol & symbolizes XOR or equivalently addition modulo 2. Because for
all three gates just one bit is flipped, all three are their own inverses, which will be important
in what follows. Viewed as quantum mechanical operators, they are of course also unitary.

6.2.2 Adder circuits

From these elements we can construct an adder (more precisely, a half-adder) which takes two
input bits ¢ and b and a carry bit ¢ which is zero initially (Figure 6.2). The CCNOT changes
the carry bit to 1 iff both @ and b are 1. The output bit on the middle wire is 1 if ¢ = 1 and
b=0orif a = 0and b = 1 and zero otherwise, and thus yields a ¢ b.



78 6 Feynman’s contribution

a ’I a © a
b /L b 2 adb
=0 \\w 1 iff a=b=1

Figure 6.2: An adder (half-adder) circuit.

The next circuit (and the one for which we will construct a Hamiltonian) is a full adder
(Figure 6.3). It takes two data bits a and b and a carry bit ¢ from a previous calculation and
calculates a (0 b B ¢, plus a carry bit which is 1 if two or more of a, b, c are 1.

a—o—2 o a

b b i o o a®b

c s ¥, a®dbodc
d=0 () 1 _iff a=b=1

Figure 6.3: A full adder circuit.

What is going on along the three top wires is quite clear, the “tricky bit” is the carry bit d,
especially the action of the second CCNOT gate. Note thatif ¢ = b = 1, d = 1 by the first
CCNQT gate. The control bit @ ¢p b = 0 of the second CCNOT gate then is zero so that d is
not flipped back to O regardless of the value of . The only case in which d is flipped (from 0
tol)isa®b=1and ¢ = 1,suchthatindeedd = 1ifa+b+c> 2.

6.2.3 Qubit raising and lowering operators

We now change our point of view from classical to quantum. To this end we first map the
bits to qubits of which we only usc the basis states |0) = | 1) and [1) = | |), since we are
(at this point) not interested in the specific quantum properties arising from the superposition
principle. We have to translate the gates and circuits discussed above into quantum mechanical
operators. From Chapter 4 we know how to flip a qubit by the spin raising and lowering
operators:

SHD.=h1, + S;ID,=hl), (6.5)
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The index a simply reminds us that we are manipulating the qubit a. For the following discus-
sion it is convenient to use a slightly different notation and language. We interpret the basis
states |0), and |1), as absence and presence of a particle at qubit a, respectively. The number
of particles at qubit a can be either zero or one, and this number can be changed by creating or
annihilating an “a-type particle”. These tasks are performed by the creation operator a' and
by its adjoint, the annihilation operator a:

alloy, =1), : al1), =10) (6.6)

a’
Comparing (6.6) to (6.5) we see that al corresponds to 87 and a corresponds to 8. We stress
that we will only use the the language of creation and annihilation operators as a convenient
way of discussing the states of qubits; we will not employ the full formal machinery of the
“occupation number representation” , also known as “second quantization”.

Recalling the relation S, = %X = 1(S* +S7) (4.29) we can express the NOT operation
on qubit a in terms of the a-particle creation and annihilation operators:

NOT (a) = (a+a'). 6.7)

Since the qubit a may be used as a control qubit in a CNOT or CCNOT gate, we need a
convenient way of checking the state of a without changing it. In our newly adopted language
this means “counting the number of a-particles”, and it is achieved by the particle number
operator a'a, as can be easily verified:

alalz), =zlz), (r=0,1). (6.8)

In order to take care of other qubits b, ¢, etc., in addition to the qubit a, we introduce b-type,
c-type, etc. particles with corresponding creation and annihilation operators b and b, ¢' and
c, etc. Then it is very easy to write down the operator corresponding to the CNOT gate with a
as control qubit. This operator is supposed to flip b if @ = 1 and to do nothing if a = 0:

CNOT (a,b) = (b + bHala+1,(1, —a'a) = (b + b’ — 1,)ala+ 1,1,. (6.9)

In order to avoid sign trouble we assume that operators for different qubits (or sites, if we think
of qubits localized each at a different point in space) commute. This is a property reminiscent
of Bose particles (Bosons), while the “on-site” commutation relation

alataal =1, (6.10)

is typical for Fermi particles (Fermions). Thus the particles employed here are neither Bosons
nor Fermions, which would cause some complications if we intended to use standard many-
particle calculational techniques. As mentioned already, however, we are not going to do this.
To continue the construction of a “Hamiltonian that adds” we need to code the Toffoli gate
6) or CCNOT as an operator, which is as easy as the CNOT:

0% (a,b,¢) = 1,11, + (c' + ¢~ 1.)aTabib. (6.11)
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The operator for the full adder can be written down reading the diagram in Fig. 6.3 starting
from the left and writing down the elementary operators starting from the right:

CNOT (b, ¢)8®) (b, ¢, d) CNOT (a, b)8™ (a, b, d)a, b, ¢,0)

{
=: AgA AL A |a,b,c,0) = exp (L%) la, b, c,0)  (6.12)

(with obvious definitions of the operators A ... Ay). Is there a Hamiltonian H and a time ¢
which both satisfy this equation? Obviously this is no easy question, since

HI HE L/ HEND 1 HE?
exp (Lh>—1+<—l,7>+§<7/7> +6(AL7> 4+ (6.13)

and thus the right-hand side of the above equation for the full adder will be a superposition of
states where 7 has acted any number of times, from zero to infinity. Nevertheless, it turns out
that it is possible:

e to construct an H such that the desired final state is present (among others) and

o to separate the desired state from the others.

The trick is to keep a record of which of the A operators have already acted on the input state.
This bookkeeping is done by auxiliary (or “slave™) particles . Suppose we want to calculate

[p) = AxAgoy - Aqle) (6.14)

(in our example & = 4) for an n-qubit state [4;)(n = 4 in our example). We introduce
a “chain” of k& + 1 new “program counter qubits” named ¢ = 0-- -k, with corresponding
creation and annihilation operators q,q:r

6.2.4 Adder Hamiltonian
The desired Hamiltonian then reads

k—1
H=> (al, A1+ he)
i—0
k=1 ke |

= Z<qg+1q'iA'i+l + AT,+1(LT‘1:¢ 1) = Z(QIM% + qqu+l)A’i+l~ (6.15)
s =0

Here, “h.c.” denotes the Hermitian conjugate (to make H Hermitian). We have used the
fact that the A operators are Hermitian and the q operators are assumed to commute among
themselves and with all gate operators A;. Note that the number of “g particles” Zf‘:(, q,‘ qi
is a constant; we will be interested exclusively in the case of a single particle. The action
of the Hamiltonian is represented pictorially in Figure 6.4: Whenever the “program counter
particle” moves from site i to ¢+ 1 or vice versa the operator A; ;| acts on the “register qubits™
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A A, Ay

Figure 6.4: A Hamiltonian with register operations A;.

where the calculation is performed. The calculation starts with the register qubits in the input
state |1;) and a single program counter particle at site 0. The action of 1" then yields

HY[1000 - - - 0)|¢p;) = HY 10100 - - - 0 A1 |¢;)

= H""2[0010---0)As Ay [t) + [1000---0) AjA, [0;) | =+, (6.16)
——
1

where we have used that the gates A; are their own inverses. We see that if the program
counter particle is at site [, the last operator which has been active is A;:

I()“'+“'O)Al"'ld7i>- 6.17)

The next application of H then leads to two possibilities:

e [ — [ —1;A;is squared (and thus erased because it is its own inverse)

e [ — 14 1; A,y is prepended to the string of A operators.

(This argument can of course be transformed into a rigorous proof by induction.) We conclude
that if our final state contains a component with the counter particle at site k, we are finished.
We only have to project out the desired component:

a00- - 01 |s) = qlqp oxp (—z%) [100 - - - O)y), (6.18)
where « is a normalization factor whose size may be important in practice.

After showing how to construct the full adder Hamiltonian, Feynman in his paper then goes
on to discuss the influence of imperfections (for example not perfectly equal “bond strengths”
in the program counter qubit chain), simplifications of the implementation and more compli-
cated tasks like implementing loops which perform a piece of code a given number of times.
We recommend the original paper [Fey96] to readers who want to discover more details.

To more adventurous readers we recommend the following exercise. Construct the Hamil-
tonian for the full adder. Calculate (for example numerically, with your good old classical PC)
the amplitude of the desired output state as a function of time. Does this amplitude depend
on the contents of the register qubits? Can you see how it will depend on the number of pro-
gram steps k for more general programs? We have not done this exercise ourselves, but we



82 6 Feynman’s contribution

are confident that it is feasible and that it will basically reduce to finding the eigenvalues and
eigenstates of a single quantum mechanical particle moving on an open-ended chain of five
sites, which is a typical (and solvable) exercise in many courses on condensed matter theory.
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7 Errors and decoherence

7.1 Motivation

7.1.1 Sources of error

Any physical implementation of a computational process is designed to transform an input
information into the desired output by applying appropriate operations as prescribed by the
algorithm. These algorithms break the computation into suitable elements that can be han-
dled by the available hardware. The goal of the hardware design is therefore to build a device
that implements the mathematical operations as precisely and efficiently as possible. Unfor-
tunately, any real physical device deviates to some degree from the idealized mathematical
operation; this holds true for classical as well as for quantum computers.

While one tries to approximate the mathematically ideal operations with a suitably engi-
neered device, it is never possible to avoid errors, i.e., differences between the mathematically
predicted result and the physically executed computation. An important goal of computer ar-
chitectures is therefore to avoid, recognize and correct errors in the computation. In classical
computers, the most important design element for this purpose is the use of digital repre-
sentation of information. As a result, every bit of information can be re-adjusted after every
computational step to match the voltage corresponding to either the “0” or “1” state of the
respective hardware.

This elementary error correction scheme can not be used in quantum computers, where
the qubits can be in arbitrary superpositions of the relevant quantum mechanical states. As
discussed in other parts of this book, the input of a quantum computation is encoded in the
exponentially many complex amplitudes of an initial state which is subsequently steered along
a specific path in Hilbert space (whose dimension also grows exponentially with the number of
qubits) to a final state whose properties contain the result of the computation. It is absolutely
vital to maintain the phase coherence between the components of the state in order to perform
a genuine quantum computation.

We distinguish three effects that cause the results of a quantum computation to deviate
from the ideal result:

e The gate operations are not perfect.

o The isolation between the quantum mechanical system (the quantum register) and the en-
vironment is not perfect. The spurious interactions with the environment cause unwanted
transitions (=relaxation) and decay of the phase coherence (=dephasing or decoherence).

Quantwrm Computing: A Short Course from Theory to Experiment. Joachim Stolze and Dieter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40438-4
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e The quantumn system itself differs from the idealized model system considered in the de-
sign of the quantum computer. This includes, c.g. coupling constants that are slightly
different from the ideal ones, and quantum states that are not included in the computa-
tional Hilbert space.

Section 7.2 summarizes the processes that lead to the loss of coherence in the system and
therefore to the loss of quantum information.

7.1.2 A counterstrategy

While one can (and should!) try to minimize these errors, it is important to realize that there
are technical, financial as well as fundamental limits to the precision that can be achieved. It1s,
e.g., not possible to shield gravitational interactions between the system and the environment,
or the quantum fluctuations in the apparatus that controls the gate operations and reads out the
result.

To combat the detrimental effect of these imperfections on the results of computational
processes, a number of options exist.

o Optimize the classical apparatus that controls the quantum system.

o Design gate operations in such a way that errors in experimental parameters tend to cancel
rather than amplify. A typical example for this approach is the use of composite pulses
in NMR [Lev01].

e Use error correction schemes,

o Store the information in areas of the Hilbert space that are least affected by the interaction
between the system and its environment.

It appears likely that any useful implementation of a quantum computer will require the
implementation of all of these principles (and more) into its design. We discuss possible
approaches to recognize and correct errors in quantum computers in Section 7.3. How infor-
mation can be “protected” against decoherence will be discussed in Section 7.4.

7.2 Decoherence

7.2.1 Phenomenology

Interference between two or more quantum states lies at the heart of the most striking quantum
phenomena. As in classical wave oplics, interference is possible only if the states keep a
definite phase relationship, that is, if they are coherent. The destruction of coherence by
uncontrollable interactions with environmental degrees of freedom is called decoherence. 1f
decoherence occurs so fast that no interference phenomena can be observed, the resulting
behavior can often be described in terms of classical physics.

If two states behave in the same way under the influence of the environment, they can stay
coherent in spite of the coupling to the environment. If, on the other hand, they behave very
ditferently, that is, if they can be easily distinguished from each other by the environment,
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they will lose coherence rapidly. This simple intuitive observation is important for quantum
error correction and decoherence-free subspaces, to be discussed in later sections.

In this section we shall illustrate by means of simple examples how decoherence induced
by interaction with the environment affects the state of a system, for example, a quantum
information processing device.

In the beginning the system is in a carefully prepared pure state. The (complex) ampli-
tudes of the initial state with respect to some basis in Hilbert space represent the quantum
information to be processed. Classically, the uncontrollable interaction between system and
environment cause the system evolution to deviate from the ideal evolution.

If the environment is itself a quantum mechanical system, the interaction between system
and environment builds up correlations between the system and environmental degrees of
freedom. For the ideally prepared initial state, the environment also can be described as an
(unknown) pure state, which does not depend on the state of the system. The total quantum
system, consisting of the quantum register and its environment, is then in a product state.' The
interaction between system and environment transforms this product state into a correlated
state, which can be highly entangled. The state of the system alone (as represented by its
density matrix) then in general is no longer pure but mixed, as discussed in Chapter 4.

7.2.2 Semiclassical description

The simplest description of the spurious interaction between system and environment uses a
single spin-1/2 to describe the quantum register and a magnetic field for the environment.
Since we discuss errors, we may restrict the analysis to the case when this field is weak
compared to the static field that defines the energy of the basis states |0) and |1). In this
limit, the most important effect of the error field is due to the component along the static field,
which is usually chosen to be oriented along the z axis.

To illustrate its effect, we consider a system that is initially in a superposition state

[£(0)) = a|0) + bj1). a.1n

If the two states |0) and |1) are eigenstates of the driving Hamiltonian A with eigenvalues £
and Fy, an ideal evolution will transform this state into

(L)) = al0)e™ Eol/ R 4 plyem Eatit, (7.2)

Figure 7.1 shows, as an example, a magnetization vector in the xy plane. This corresponds to

thecasea = b = % Evolution corresponds to precession around the z-axis, and the resulting

phase angle is E = (Fy — Ey)t/h.

Dephasing is due to additional (uncontrollable) interactions, which shift the energy of
these eigenstates by a small amount dg,. As a result, the average energy level shift difference
changes the relative phase between the states by an angle

8= {0, gt (7.3)

! Of course the preparation of the system’s state requires interaction with other degrees of freedom; for the sake
of simplicity we assume that those degrees of freedom can be separated sufficiently well from both system and
environment once the preparation of the system’s initial state is accomplished.
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The state then becomes
llﬂ(t» _ a|0>6—iﬁ‘(,r/h,cir§/2 + b|1>c—v‘.E] 1'/11'(%_7:5/2. (7.4)

In the example of Figure 7.1, this corresponds to a stochastic change of the orientation of the
magnetization vector.

Individual Mean

<, 18,

Figure 7.1: Cohcrent and incoherent contribution to the evolution.

Within the present picture of a single spin in a classical magnetic field, this additional
phase increment arises from the fluctuating external field. The magnetic field has a well-
defined value at all times, thereby causing a well-defined Larmor precession, the resulting
precession angle differs between computational runs and deviates from the mathematically
correcl representation. As shown in Figure 7.2, the resulting evolution of the spin corresponds
to Brownian motion of the individual spin orientation.

Single spin: diffusion process Ensemble, time-average,
entangled system: decay

phase
<>

— e
time time

Figure 7.2: The left-hand part of the figure shows the evolution of a spin in a randomly varying
magnetic field, which corresponds effectively to a diffusion process. The right-hand part shows
how the average magnetization of an ensemble of spins decays when the individual spins evolve
in random magnetic fields.

If we now consider an ensemble instead of a single quantum system, the average informa-
tion will be reduced, as shown in the right-hand part of Figure 7.1. As a function of time, the
average over the individual motional processes can be compared to a diffusion process.
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In most systems, an exact description of the processes that are responsible for these phase
kicks is not available. If the interaction that causes them does not have a memory (Markovian
limit), it is possible to describe their average effect by an exponential decay process for the
relevant density operator elements. For the off-diagonal elements one writes

pis () = piy (0)e BBt/ Ts, (7.5)

The dephasing time 75 is related to the RMS strength of the error field. More detailed de-
scriptions of these effects can be found in the NMR literature, where the effect is discussed as
relaxation [Red57].

Different relaxation processes also cause the diagonal density operator elements to ap-
proach thermal equilibrium with a time constant 77. These longitudinal relaxation processes
also affect the quantum computation, causing a decay of the information. However, they are
also needed, since they bring the system to the ground state, as required for initialization.

The ensemble consideration is relevant not only for ensemble quantum computers, but
also to quantum computers consisting of individual quantum systems. Even in these cases, a
typical quantum computation will involve repeated runs of the computational process and the
ensemble average corresponds then to the temporal average over the different runs.

7.2.3 Quantum mechanical model

In quantum mechanics, the situation is slightly different. Here, these phase-kicks are corre-
lated to states of the external system, which is referred to as the bath. Typical examples for
relevant degrees of freedom in the environment are phonons passing through the system or
modes of the radiation field causing, e.g., spontaneous emission. For every state of this exter-
nal system, the quantum register remains in a pure state, but the phase J for this realization
will be different than that for other states of the environment.

Since it is never possible to know exactly the state of the external system, one has to
average over all accessible states of the external system. This averaging process changes the
situation qualitatively: the vector representing the system is no longer only rotated by these
additional phase kicks, it also becomes shorter. Technically, it is no longer in a pure state, but
rather in a mixed state. In the simple picture given above, the vector no longer ends on the
unit circle (or sphere), but remains inside it.

A simple quantum mechanical model of decoherence is provided by two interacting qubits:
A (the system) and B (the environment). Each qubit is represented by a spin-%, and we assume
that the two spins are coupled by an exchange interaction

W = -
H:ESA-SB. (7.6)
For w > 0 the ground state of this Hamiltonian is the singlet, with energy eigenvalue #%}w,

the triplet states have energy +%ﬁw (see Appendix A). The initial state is the most general
product state (compare 4.46)

P+ d l>> — ac 1) +be| 11)+ad| T1)+bd] L1).

B

w(O) = (a )+ l>)A® (¢
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(7.7)

|1(0)) can be expressed in terms of the singlet and triplet states whose time evolution is
simple. The resulting time-dependent state {)(t)) is

exp (%) [1(t)) =ac| 17 +bd] |])
+ 2ad(1 +¢) +be(1 — ] 1) 73)

+ %[ad(l — e 4 be(1 +€H)] 1)

This state is strictly periodic because the extremely simple model (7.6) contains only a single
energy or frequency scale, w. More complicated models of a system coupled to an envi-
ronment of course will show more complex behavior, but the general timescale on which
decoherence phenomena happen, will still be inversely proportional to the coupling between
system and environment (in our case, w).

The degree of entanglement between system A and environment B is given by the concur-
rence (4.52). A short calculation leads to the compact result

C = |ad — be[?| sinwt|. (7.9)

The concurrence is a periodic function of time, as it should be for a periodically varying
quantum state. The maximum value of C' is determined by the initial state. If |a| = [d| = 1 or
|b] = |e| = 1 the state can become maximally entangled: on the other hand, if |a| = [c| = L or
|b| = |d| - 1 the state can never become entangled at all. In fact, in these two cases [1/(0)) is a
triplet state, | 11) or{ | ) which is an eigenstate of H and thus goes unaffected by the coupling
1o the environment. All other cases where C{{) = 0 are equivalent to this one, since ad = be
only if A and B initially are in the same pure state, which can always be written as | T) in
an appropriate spin-space coordinate system. Unfortunately the stability of these states under
the interaction (7.6) cannot be exploited in any useful way since in general the environment
cannot be controlled by the experimenter and thus the equality between the initial states of
system and environment cannot be guaranteed. In particular, the environmental degrees of
freedom are usually strongly coupled to additional degrees of freedom. The decoherence-free
subspaces to be discussed later are subspaces of the Hilbert space of the system (only) which
are protected by the symmetry of the interaction between system and environment.

7.2.4 Entanglement and mixing

We now discuss the case of strongly entangled states. For the special case b = ¢ = 0,
a = d = | we see that the initial product state of system and environment

[p(0)) =1 T1) (7.10)

develops into a maximally entangled state at time ¢ = ¢
17

1 1+ 1 —1
oxp <%> {1/)(27;)) = ;r1| T+ ! 5 [| L. (7.11H)
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In a quantum computer (and most other cases) we are only interested in the system A and
therefore consider only its density operator

T n T 1
pa (o) =Tre v (55)) (v ()| = 5UDA T+ DED, (7.12)
where Trp denotes the trace over the Hilbert space of the environment B (see Chapter 4).
Apparently this density operator is now diagonal. The spin has equal probabilities for being
in the 1 and | states, but the phase information has been lost. The state is now a maximally
mixed one, whereas the initial density operator p(0) was pure.

For the present trivial model, the pure state could be recovered by simply letting the com-
bined system-environment evolve for an identical period of time. However, more realistic
models of the environment have (infinitely) many degrees of freedom and the resulting evolu-
tion is no longer periodic. As a result, it is no longer possible to recover a pure state from the
mixed state.

This effect occurs also for other initial conditions, e.g., when the system is initially in a
superposition state. As an example, we consider the casea =b=c= —d = % such that

sy =5 (10+10) «(1n-10) . .13

Note that the A part of this initial state is an eigenstate of S, (4.29). A measurement of the
2 component of the system spin at ¢ = 0 thus would clearly reveal the coherent nature of the
state. At ¢ = o this state evolves into the following maximally entangled state

e (3 ) wtgon =3 10w (1n=i0) ~anae(in+in) |.
(7.14)

The corresponding density matrix of A is again (7.12) and a measurement of S,, (of A) would
yield zero. The initial information about the relative phase between | T) , and | |) , is lost.

The common feature of the two states |¢)(5)) (7.11) and (7.14) is the fact that the two
basis states | ) , and | |} , of the system in both cases are strictly correlated to two mutually
orthogonal states of the environment B. For (7.11) these are the eigenstates of S; and for
(7.14) the eigenstates of S,,. This observation is an example of what was called “the funda-
mental theorem of decoherence” by Leggett [Leg02]: if two mutually orthogonal states of the
system of interest become correlated to two mutually orthogonal states of the environment,
all effects of phase coherence between the two system states become lost. Note that in the
situation just described the final state of the system can be inferred from the final state of the
environment; that is, the environment has “measured” the state of the system. This kind of
reasoning can be applied to many instances of the quantum mechanical measurement problem,
for example, the disappearance of the interference pattern in the standard two-slit experiment
of quantum mechanics which occurs as soon as one measures through which of the two slits
each single electron has passed.
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7.3 Error correction

7.3.1 Basics

As errors are unavoidable in quantum as well as in classical computing one must devise strate-
gies for fighting them. Error-correcting codes do this by detecting erroneous qubits and cor-
recting them. As in classical computation, redundancy is an indispensable ingredient here, and
other than in classical computation, extreme care must be exerted not to garble the guantum
information by the measurements involved in error detection.

Quantum information is not only potentially more “valuable” than classical information
but unfortunately also more vulnerable, because a qubit can be modified in more subtle ways
than a classical bit which can just be flipped from 0 to | or vice versa. Furthermore a classical
bit can be protected against errors by basically copying it several times and comparing the
copies, an accidental simultaneous flip of many copies being extremely improbable. This is
the basis of classical error correction.

No such procedure was in sight during the early years of quantum computing, and thus
many scientists were very skeptical whether the attractive prospects of quantum computing
could ever become a reality. Fortunately, methods for quantum error correction were soon
discovered, based on coding schemes which permit detection of the presence and nature of
an error (by converting it into a “‘syndrome” coded in ancillary qubits) without affecting the
information stored in the encoded qubit. As we will discuss below these quantum error-
correcting codes protect quantum information against large classes of errors. For simplicity
we will restrict ourselves to errors which occur when information is transmitted through space
(communication) or time (data storage) without being modified. The detection and correction
of errors during the processing of data is the subject of fault-tolerant computing which we will
only briefly mention at the end of the scction.

The development of quantum error correction has culminated in the threshold theorem,
stating that arbitrarily long quantum computations can be performed reliably even with faulty
gates, provided only that the error probability per gate is below a certain constant threshold.

7.3.2 Classical error correction

To correct an error in a classical environment, one needs to detect it. The simplest way to do
this is to generate copies of the information to be protected from errors and to compare these
copies with each other. More generally, the information must be encoded in some redundant
way which allows for reconstruction of the original data after partial destruction or loss. Of
course, completely lost data cannot be recovered at all, but depending on the etfort invested,
the probability of complete loss can be made as small as desired.

The kind of error correction used and its probability of success depend on the kind of error
expected. To keep things simple, suppose we want to transmit single classical bits 0 or 1,
where each bit is transmitted successfully with probability 1 — p and is flipped (once) with
probability p, neglecting the possibility of multiple flips. We encode the logical bit 01, in the
code word 000 consisting of three physical bits, and likewise 17, + 111. Thus 000 and 111
are the only two legal code words of the present coding scheme. If the error probabilities
for the three qubits are identical and independent of each other, the probability for error-free
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transmission of the logical bit is (1 — p)?, the probability that one of the three physical qubits
has flipped is is 3p(1 —p)2, and so on. After transmission we check if all three bits of the code
word are equal, and if they are not, we flip the one bit which does not conform to the other
two. This leads to a wrong result if two or three bits were flipped during transmission, and the
total probability for this to happen is p?(3 — 2p) which is much smaller than p for sufficiently
small p.

Usually the bit-flip probability p grows with the distance (in space or time) of transmis-
sion, so that error correction must be repeated sufficiently frequently (but not too frequently,
since copying and measuring operations may themselves introduce additional errors which
we have neglected here for simplicity). A larger number of physical bits per logical bit can
be employed, increasing the probability of success, but also increasing the cost in terms of
storage space or transmission time.

Of course in today’s mature communication technology, far more sophisticated error cor-
rection schemes are in use than the one just presented, but they all rely on checking for damage
and reconstructing the original information with the help of redundancy.

7.3.3 Quantum error correction

The classical error correction scheme discussed above is useless in the quantum regime, be-
cause it involves a measurement of every single bit transmitted. In the quantum case this
entails a collapse of the qubit state to one of the measurement basis states, so that any infor-
mation stored in the coefficients a and b of a superposition state a|0) + b|1) is lost. One of
the central ideas of quantum error correction is to detect the kind of error that has occurred
(if any) without touching the information stored, and to subsequently reconstruct the original
qubit state. Additional (or ancillary) qubits are needed in this process to store the kind of error
(or error syndrome). Not every conceivable error is detectable or correctable; think of a multi-
bit error converting one code word into a different legal code word in a classical redundant
coding scheme. The more kinds of errors one wants to be able to correct, the more resources
one needs.

One of the specific problems related to the quantum nature of information was already
addressed above: the fact that measurement may destroy the very information that was to be
protected. This problem cannot be circumvented by just copying the information because of
the no-cloning theorem (Section 4.2.11). Furthermore, in addition to the simple classical bit
flip error, quantum mechanics allows for an entire continuum of possible errors, for example,
continuous amplitude and phase changes. Fortunately the quantum error correction schemes
developed during the past decade or so suffice to correct large classes of qubit errors.

One way to present the basic principle of quantum error correction is that the information
is encoded in a Hilbert space whose dimension is larger than the minimum. Within this larger
Hilbert space, it is then possible to choose two states as the basis states of the qubit in such a
way that the interactions that cause the error do not transform one state directly into the other.
Error detection then checks if the system contains contributions from other states and, if so,
forces the system back into that part of Hilbert space that corresponds to the qubit.
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7.3.4 Single spin-flip error

To begin with, let us discuss the transmission of qubits between a source A (Alice) and a
receiver B (Bob). The transmission channel leaves each transmitted qubit either unchanged
(with probability 1 — p) or flips it by applying an X operator (Section 4.2.1) (with probabil-
ity p). The situation is completely analogous to the classical case discussed above. While
quantum mechanics prevents Alice from copying quantum states for error protection, it pro-
vides her with entanglement as a new tool to achieve the same goal, as we will now see. In
order to safely transmit the qubit state a|0) + b|1) Alice initializes two further qubits in the
state |0), so that the initial state of the three qubits is

lth) = a|00D) + b|100). (7.15)

Next she applies two CNOT gates, both with the first qubit as control and with the second and
third qubits as targets, respectively. These two steps transform the state to

|¥n) = a]000) + b[111). (7.16)

Alice thus encodes the information initially contained in the state of a single qubit in an en-
tangled state of three qubits. This operation is not cloning: cloning (if it were possible) would
lead to a product state of the three qubits with all of them in the same single-qubit state. Finally
Alice sends the three qubits down the faulty channel, and relaxes.

Ideally, Bob receives the three-qubit state | ) without damage; this happens with prob-
ability (1 — p)? since the three qubits have been transmitted independently. With probability
p(1 — p)* each of the three qubits has been acted on by the “error operator” X, and with
probability p?(1 — p) each of the three possible pairs of two qubits have been flipped. Finally,
with probability p* all three qubits have been flipped. Note that this is the only case where
in spite of errors having occurred, Bob receives a combination of the legal “quantum code
words” |000) and |111) and thus is unable to detect the error. In all other cases the entangled
nature of Bob’s state allows for error correction (which, however, is not always successful, as
we will see). Note that the two components of Bob’s state are always complements of each
other; for example, if qubit 2 was flipped during transmission, Bob receives instead of |¢)})
(7.16) the state

[11) = a]0L10) + b]101). (7.17)

That means that a measurement of Z,Z, (the subscripts refer to the qubits) yields the same
value (—1 in our example) for both components of Bob’s state. The same is true, of course,
for the combination Z;Z4. Bob’s state is thus always an eigenstate of Z,Z, and Z,Z3, and
the action of these twa observables does not atfect the state, apart from an unimportant global
phase. By measuring Z,Z, and Z,Z3 Bob can detect what kind of error has occurred (if any)
and act accordingly. For the above example Z,Zs = —1 and Z,Z; = 1 from which Bob
concludes that qubit 2 has been flipped. He applies X and thus restores the state |4 ), apart
from a sign. This procedure works for all cases where only one qubit was flipped, as one can
verify easily. If two qubits are flipped, however, the error correction fails (as it does in the
classical case): the state a[101) + b|010) yields the same values for Z;Zy and Z1Zj; as the
state |1 ) just discussed and is thus “corrected” to a|L11) + b|000).
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There is a slightly different procedure for identifying the error which avoids any modifi-
cation of Bob’s state and which only employs CNOT gates. For that procedure Bob needs two
extra (ancilla) qubits prepared in the state {00). He then first carries out two CNOT operations
with qubits 1 and 2 of the message as controls, respectively, and qubit 1 of the ancilla as target,
and then two CNOTs with qubits | and 3 of the message as controls, respectively, and qubit 2
of the ancilla as target. The two ancilla qubits then contain the error syndrome: the first qubit
is 0 if the first and second qubits of the message are equal, the second qubit of the ancilla com-
pares the first and third qubits of the message. This procedure is an example for a more general
strategy of storing the error syndrome in additional dimensions of the Hilbert space provided
by ancillary qubits. This does not atfect the information in the message, and the stored error
syndrome can be used to correct the error, or to perform a fault-tolerant quantum computation
which directly processes the encoded message and takes into account any errors which have
been detected and stored as error syndromes. This eliminates (to some extent) the necessity to
repeatedly decode and re-encode information, a procedure which is itself susceptible to errors.

After applying either of the two error-correction routines just sketched, Bob can recon-
struct Alice’s original single-qubit state by simply repeating Alice’s first two CNOT opera-
tions (with qubit 1 as control and qubits 2 and 3 as targets, respectively). The result for the
first qubit is a|0) 4 b|1) (with probability 1 — 3p® — 2p?, that is, in most cases, provided p
is sufficiently small) or a|1) + b]0). The probability of failure is thus O(p?), as compared to
O(p) without error correction.

7.3.5 Continuous phase errors

Next we consider a “continuous” type of error as opposed to the “discrete” spin flip error just
discussed. It turns out that this new error type can be corrected for by basically the same
mechanism. The error is a random 2 axis rotation given by

P(e) = (% — ( el(;‘/’ o, ) — cos(e)1 + isin(e9)Z. (7.18)

¢ is a random angle between 0 and 2, and ¢ is a “strength parameter” which controls the
mean phase spread caused by P(¢) on average. The randomness in this operation is related
to environmental degrees of freedom, for example, the random magnetic field discussed in
Section 7.2.2. After the usual average over that randomness we have a combination of no
error and a “phase flip” caused by the operator Z:

Z(al0) + b|1)) = al0) — b[1). (7.19)
Now, consider the action of Z in a different basis, given by the eigenstates |+) and |—) of X:

_ oy _ .
=S Xl = ) (7.20)

obviously

Z+) = ), (121)
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that is, Z causes a bit flip in the basis given by the eigenstates of X, and we have already seen
how a bit flip can be corrected for. The basis change from Z eigenstates to X eigenstates and
back is accomplished by a Hadamard gate H (4.33), formally

HZH = X. (7.22)

In order to achieve error correction for a phase-flipping transmission channel, Alice prepares
the state |3,) (7.16) as before, and then applies H®* = H; H,H to [¢,):

Hm;;l?/Jl> — (Il|+ + +> + bl? _ 7) (723)

betore sending her 3-qubit message off. Bob can use almost the same procedure as before;
however, he has to use X, X, and X; X for crror syndrome extraction and Zy, Z,, and Z;
for error correction, before applying H®? 1o swiich back o the computational basis.

7.3.6 General single qubit errors

Yet another kind of error that can happen to a single qubit is an “accidental measurement”
resulting in a projection to |0) or |1). That kind of error can be related to a phase flip (Z) by
ohserving that the projectors to |0) and |1) (Section 4.2.1) can be written as

1 1
OO =Py =50+2) 5 [ =P =-(0-2) (7.24)

Projectors onto more general Hilbert space vectors can be written as linear combinations of
1,X,Y, and Z. This is clear from the fact that gny 2 x 2 matrix can be written in terms of
these operators; nevertheless it is a useful exercise to write the projector onto the general state
«|0) + 3|1} in this form. Obviously any unitary 2 x 2 matrix (that is, any quantum gate) can
also be expressed in terms of these operators. The most general single-qubit error is given by a
general unitary 2 X 2 matrix, combined with a projection to some axis, and can thus be written
in terms of 1, X, Y, and Z. We have seen that errors caused by X and Z can be corrected for
by simple procedures, and given the fact that ZX = {Y, errors caused by Y should also be
correctable.

The simple code that does the trick is a combination of the two procedures already dis-
cussed and was invented by Peter Shor [Sho95]. Shor’s code involves the idea of concatenat-
ing two redundant codes: the original logical qubit is redundantly encoded in three qubits in
order to fight one kind of error, and then each of these three qubits is again encoded in three
qubits to take care of the second type of error. The encoding procedure consists of well-known
steps. Alice first applies two CNOT gates with the original logical qubit as control and with
the two additional qubits initialized to the state |0) as targets. Then she applies a Hadamard
gate to cach of the three qubits. This maps the computational basis states as follows:

0y —=1+++) 5 1) —=|——-). (7.25)

As a final step, Alice adds two fresh |0) qubits to each of the three code qubits in her possession
and again applies the two-CNOT encoding procedure to each of these qubit triplets. This
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yields one logical qubit encoded in entangled states of nine physical qubits:

I
0y — 5751000} + [T11))([000) + [111))((000) +|111)) (7.26)
1
P ﬁ(|000>—|111>)(4000>7|111>)(4000>—|111>).

Assuming (as usual) that the encoding procedure is flawless, we discuss the correction of
single-qubit errors. In order to detect a bit flip on the first qubit (or any qubit of the first triplet,
in fact), Bob may again use the operators Z,Z, and Z;Z;3. Subsequent application of the
appropriate X operator then corrects the error. A phase flip on one of the first three qubits
changes the sign within that block, that is, it changes [000) + [111) to [000) — |111) and vice
versd. In order to detect such a sign change and its location Bob again only compares the signs
of the three-qubit blocks one and two, and one and three. Since X;X»X3 is the operator
for the simultaneous bit flip on qubits 1, 2, and 3, that is, it maps [000) — |111) and vice
versa, the sign comparisons between blocks are performed by the somewhat clumsy operators
X1 XXX X5 X4 and X4 X5XX7X3Xy. A phase flip on any of the first three qubits can
then be repaired by applying Z1Z2Z;. If both a bit flip and a phase flip have occurred on, say,
qubit 1, the two procedures outlined above will both detect and remove their respective “target
errors”, so that indeed all single-qubit errors caused by X, Z, or ZX = ¢'Y can be corrected.
As argued above, this means that an entire continuum of arbitrary single qubit errors is kept at
bay by really taking care of only a finite (and very small) set of errors. This remarkable fact is
sometimes referred to as “discretization of errors”, and it is instrumental to the whole concept
of quantum error correction. Note that there is nothing similar for classical analog computing.
The Shor code is conceptually simple and easy to understand, but it needs nine physical
qubits per logical qubit to provide protection against arbitrary single-qubit errors. There are
codes providing the same degree of protection with 7 [Ste96] and even 5 [LMPZ96,BDSW96]
physical qubits per logical qubit. However, we will not discuss these here. Especially the five-
qubit code requires rather complicated operations to achieve its goal; this seems to be another
example for the tradeoff between speed and size so often encountered in computer science.

7.3.7 The quantum Zeno effect

One may try to avoid the implementation of detailed recovery operations for a set of possi-
ble errors altogether by exploiting the quantum Zeno effect for error correction [EARV03].
The idea behind this radical simplification is simply to keep the quantum state error-free by
projecting frequently (by a measurement) onto the subspace corresponding to the “no error”
syndrome.

Zeno of Elea (ca. 490 — 430 b.C., southern Italy) was a student of Parmenides. He stated
a number of paradoxa to defend the teachings of Parmenides, in particular the statement that
motion is impossible and more than one thing cannot exist. One well known paradox is that of
the race between Achilles and the tortoise. Achilles (the fastest man in antiquity) is ten times
as fast as the tortoise. Nevertheless he cannot overtake her if she gets a head start of (e.g.)
10 m: Achilles first must cover these 10 m. During this time, the tortoise moves 1 m and is
therefore still ahead. While he covers this meter, the tortoise moves another 0.1 m and so on,
always staying ahead.
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Another motion paradox “proves” that a body cannot move from A to B: for this, it would
first have to move to the middle of the distance. For this it would first have to move to the
middle of the first half, etc.

While these paradoxa are easily resolved, similar situations exist in quantum mechanics
that are real. They have been discussed under the heading “quantum Zeno effect”, although
they cannot really be considered paradoxa.

We consider the evolution of a system that is initially (at ¢ == 0) prepared in the state |4, ),
which is an eigenstate of operator A with eigenvalue a;. The state evolves under the influence
of a Hamiltonian M, which does not commute with A. A possible example would be that the
Hamiltonian is o< S, and the observable is S,.. A measurement with A of the system after
some time 7 will then in general yield a result that is different from a;.

For the spin system, we can consider a spin in the 1, = +1/2 eigenstate of S, evolving
in a magnetic field || z. The probability that a subsequent measurement at time ¢ also finds
the eigenvalue -+ | /2 is then

Py = %(1 + cos(wr.t)), (7.27)

(where wy, is the Larmor frequency) while the probability of obtaining the opposite result is
1
p_= 5(1 —cos{wrt)). (7.28)

If such a measurement is performed, the projection postulate states that after the measure-
ment the system is in an eigenstate of A. If the measurement yielded the result +1/2, the
system is again in the same initial state, and the evolution starts out again with the same time
dependence. The important point is that the first derivative of the time dependence,

d

— =0 .
i . (7.29)

0

vanishes after the projection: the system therefore does not change during short times.

Figure 7.3 shows how the evolution of the system changes as the measurement interval
decreases. The long-term evolution of the system becomes quasi-linear. If a series of mea-
surements is repeated with a separation (in time) of 7, the probability that n measurements in
sequence will always find the system in state 1. = +1/2 becomes

1
Dy = F(] + cos{wr, ™)™ (7.30)

For short measurement intervals, w7 < 1 this can be expanded as

wir\"
pr~|1-— 4 . (7.31)

Using the relation

Jim (1 _ i)" e (7.32)

n—nsc n
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Figure 7.3: Quantum Zeno effect: the decay of a state becomes slower with increasing number
of measurements.

the time evolution can be approximated as

2
pr(nT) = pir(t) = exp (—%t) i (7.33)

The evolution is not only slower, it is also damped. The system no longer shows precession,
but moves exponentially towards thermal equilibrium.
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Figure 7.4: Experimental test of the quantum Zeno effect. Left-hand side: laser pulses mea-
sure the state of the ions while they are attempting to make a transition from state |0) to |1).
Right-hand side: calculated and measured transition probability for increasing number of mea-
surements.
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These general quantum mechanical predictions can be verified experimentally, e.g., for
trapped ions [IHBW90|. Figure 7.4 shows the principle of the experiment. The ions are
initially in state |0), from where an RF field drives them into state |1). The amplitude of the
RF field and its duration can be adjusted such that probability for the ion to make the transition
from state |0) to |1) approaches unity at time 7.

To detect if the ions have arrived in state |1), one can use laser pulses that excite fluores-
cence from the ions if they are in state |1); with a suitable calibration, the fluorescence signal
can be used to measure whether the ions are in this state. If such a laser pulse is applied first
at time 7, it finds the ions in state 7 with almost unit probability. If, however, additional mea-
surements are made at times 7; = 72 for i = 1..n, the probability of finding the system in
state |1) at time 7 is reduced to

p{n) = %[1 — cos” (m/n)]. (7.34)

This prediction was verified experimentally by measurements on two hyperfine states of the
“Bet ground state IHBW90], as shown in the right-hand side of Figure 7.4.

Clearly the slow-down of transition rates by measurement cannot be universal., As an
example, consider an atom that is initially in the excited state. A possible measurement for
the excited state population probability is a fluorescence measurement: as long as we do not
observe a fluorescence photon from this atom, we know it is still in the excited state. 1f we
only “look” at the atom often enough, it is therefore impossible for the atom to decay. Similar
arguments are used to explain why the decay of the proton has not yet been observed.

The main reason for this paradox is that the concept of a quantum mechanical mea-
surement is not established with sufficient precision. A projection, i.e., a reduction of the
wavepacket, does not always occur in “standard” quantum mechanical measurements. If the
interaction is weak (such as “looking” for a fluorescence photon), the reduction does not occur.
One important point that must be considered is that a projective measurement can only occur
during a finite time interval, which is the longer the weaker is the coupling to the apparatus.
The projection postulate is well suited to the Stern—Gerlach type experiment, but completely
unsuitable for experiments like NMR.

7.3.8 Stabilizer codes

After the first error-correcting quantum codes were found, a general theoretical framework
for the analysis and classification of codes was developed quickly. This framework, called
stabilizer formalism, is based on group theory. The basic concept is the Pauli group for n
qubits. For a single qubit the Pauli group consists of the unit matrix 1 and the three Pauli
matrices X,Y,Z, all with prefactors £ 1, 44. These matrices form a group under matrix
multiplication: a product of two group elements is again a group element. For n qubits, direct
products of matrices from the individual qubit Pauli groups form a group in a completely
analogous way. Suppose now that S is a subgroup of the n-qubit Pauli group and that a certain
sel Vg of n-qubit states is invariant under the action of all elements of S; then Vy is said to
be the vector space stabilized by S, and S is called the stabilizer. The basis vectors of Vg can
be used as code words for a stabilizer code. A simple example for n = 3 is provided by the
set S = {1,2,Zy,2Z,Z3,7Z,Zs}; Vs is spanned by |000) and |111). Note that the nontrivial
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elements of the stabilizer for this code work as error-syndrome extractors: they leave all states
containing only legal code words intact and map all states affected by errors to other states.
Different errors must be distinguishable by the syndrome extractors in order to be correctable.
We have seen earlier that for the present simple three-qubit code only single-qubit flip errors
can be corrected, while two-qubit flips lead to wrong transmission results and three-qubit flips
are not detected at all.

For a code with n-qubit code words, one may classify errors by their weight, that is, by
the number of nontrivial Pauli matrices applied to the code words. 1t is desirable to construct
a code able to correct all errors up to a maximum weight w; such a code is called w-error-
correcting. The achievable w depends on the similarity or distinguishability of the code words
employed. If the minimum distance (as expressed by the number of differing qubits) between
any two code words is d, then the maximum w is given by the integer part of d/2. Of course the
minimum distance depends on the number k of logical (qu)bits encoded (as 2¥ code words)
in the n physical (qu)bits. Classical as well as quantum codes are often characterized by
[n, k, d]. There is an elaborate theory of classical error-correcting codes, and in fact a class of
quantum error-correcting codes may be derived from classical codes. These codes are called
Calderbank—Shor—Steane (or CSS) codes after their inventors. They are a subclass of the
stabilizer codes, as discussed in Chapter 10 of [NCO1]. The codes with n = 5 [LMPZ96,
BDSWO96] and n = 7 [Ste96] mentioned above both have £ = 1 (that is, two code words,
or one logical bit) and d = 3. It can be shown (see Chap 12 of [NCO1]) that n = 5 is the
minimum size for a ]-error-correcting quantum code. Nevertheless, the five-qubit code is of
limited practical use because it involves complicated encoding and decoding procedures, and
because fault-tolerant quantum logical operations are difficult to implement in this code.

7.3.9 Fault-tolerant computing

We have only discussed simple transmission (in space or time) of quantum information, with-
out considering any logical operations (except those needed for quantum error correction).
For quantum computing to become practical, it is necessary to perform logical operations in a
fault-tolerant way. This means that all quantum gates (including those used in quantum error
correction) should be implemented in such a way that they do not assume the input qubits to
be perfectly free of errors. As a consequence gates should not operate on single logical qubits
(which do not offer any possibility of detecting and correcting errors), but on the redundant
code words of a quantum error-correcting code. During these operations care must be taken
to keep errors from propagating too quickly through the set of qubits employed. Of course the
details of the implementations used in this field depend on the operations as well as the codes
employed, and this rather technical discussion is beyond the scope of this book.

The fault-tolerant implementation of a standard set of universal quantum gates for the
7-qubit Steane code is discussed in Chapter 10 of [NCO!], along with references to more
technical treatments. The techniques of quantum error-correction, employing concatenated
multi-level encoding and fault-tolerant quantum logic, ensure that nontrivial quantum com-
putations may become practical. Under physically reasonable assumptions about the noise
present, it has been shown that arbitrarily long quantum computations can be performed re-
liably and effectively, that is, with an affordable growth in resources such as storage, circuit
size, or time, provided that the failure probability in individual quantum gates is below a
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certain constant threshold [Pre98]. This important result is known as the threshold theorem;
additional references to the original work may be found in [NCO1].

7.4 Avoiding errors

7.4.1 Basics

While error correction represents a necessary part of any quantum computer, the thresholds
that have to be reached before error correction can be applied are very high, It is therefore
necessary also to implement strategics that reduce the rate at which errors occur. Efforts to
reduce the number of errors in a quantum computer must encompass the complete hardware
(and software) design.

Most efforts will concentrate on engineering aspects like reducing stray electric and mag-
netic ficlds that can influence the dynamics of the system and implementing gates in such a
way that the resulting propagator does not depend too strongly on experimental parameters
that are difficult to control. A good example of this are composite pulses, which were in-
troduced into NMR in 1979 [LF79, Lev86]; they generate rotations that are close to the target
rotation even if the field strength, pulse duration or frequency offset deviate from their nominal
values.

While these efforts are important, they are strongly implementation-specific. It is there-
fore not possible to discuss them in detail here. We concentrate therefore on some general
principles, which can be applied to many different implementations. In particular, we discuss
how quantum information can be stored in particular regions of Hilbert space in such a way
that it is less affected by couplings between the system and environment, other than those that
are applied purposely to drive the computation.

For the discussion of decoherence processes, one typically distinguishes a number of dif-
ferent cases based on the type of coupling between the system and environment:

(i) Total decoherence. This is the most general case, essentially there are no restrictions on
the operators that generate the decoherence.

(if) Independent qubit decoherence. 1f the coupling operator contains only operators act-
ing on individual spins, errors of individual qubits are independent. This is the case
typically considered in quantum error correction,

(iii) Collective decoherence. Here the coupling operators acts in the same way on all
qubits. In the case of spins, the operators then have the form

F,=) 8., (7.35)

where @ = x,y, z marks the spin component and ¢ the index of the spin. Clearly the
perturbation has full permutation symmetry in this case. Only three independent pertur-
bation operators exist in this case.

(iv) Cluster decoherence. This is an intermediate case, where clusters of qubits decohere
collectively, while the different clusters decay independently.
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7.4.2 Decoherence-free subspaces

Decoherence-free subspaces represent a possibility of shielding quantum information from
the decoherence processes caused by the environment by taking advantage of the symmetry
properties of the coupling operators between the system and environment [PSE96]. We follow
the discussion of Lidar, Chuang and Whaley [LCW98].

As discussed before, decoherence can be seen to arise from interactions with the bath.
It is therefore useful to distinguish three contributions to the Hamiltonian of the full system
(including the bath):

H=Hs®1p+1s&®Hy + Him. (7.36)

Here Hg is a pure system operator, Hp is a pure bath operator, and Hy,, represents the
coupling operator. The interaction operator contains product operators

Hlnt = Z F(y & Baa (737)

[83

where F, are system operators and B,, bath operators. If the system is a spin system, the F,
are spin operators, the B, may be spatial coordinates.

Decoherence is the nonunitary part of the evolution of the system density matrix, which
under appropriate conditions can be written as [Lin76]

d i, ~ 1
iP5t Hspsl =53 aap ([F psFL] + [Faps, FL]) : (7.38)
' o, 3

Here Hg is the system Hamiltonian plus any possible unitary contributions arising from the
system-bath interaction, and a,,; are elements of a positive semi-definite Hermitian matrix.
The operators F, are the generators of the decoherence process. We may thus consider the
possible decoherence processes in terms of these operators. In spin systems these are clearly
the spin operators; for the typical case of spin-1/2 systems, these are multiples of the Pauli
matrices.

Depending on the generators F,, not all states are equally subject to decoherence. Deco-
herence-free subspaces exist if, for a certain set of states |4}, the coupling to the environment
does not generate a time evolution. For a formal analysis, we write the corresponding part of
the density operator

p= hisli)(il, (7.39)
i

where the coefficients j; ; depend on the initial conditions. The condition for the existence of
the decoherence-free subspace is then, that the right-hand side of (7.38) vanishes:

1 - -
5 Z aaﬂ ([ch PFL] + [F(Yp’ FL]) = 0 (740)
w3

This condition can be fulfilled in a number of ways, depending on the initial conditions (via
the j; ;) and on the coupling to the bath (via the a,g). However, decoherence-free subspaces
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are only interesting if no additional constraints have to be imposed on the bath parameters or
the initial conditions of the system, since those are hard to control. Such additional constraints
can be avoided if the states |¢) satisfy the condition [LCW9S]

F, i) = eqli) (741

for all operators F,, i.e., it they form a degenerate set of eigenstates for all error generators.
Obviously this is a rather restrictive criterion, and we will therefore discuss a few examples
after we have finished the formal analysis.

To see if the concept is useful at all, we must check how much information can be en-
coded in a decoherence-free subspace. The answer depends on the type of decoherence. For
collective decoherence DFS turn out to be interesting, since the DES asymptotically fill the
Hilbert space completely. In this case there are only three independent perturbation operators,
the total spin operators (7.35). With ¢, = 0 in (7.41), a DFS is spanned by all singlet (total
spin quantum number S = 0) states of, say, K spins (where & must be even). The number
of these states can be determined by considering states with a given total spin z component
S7.. The total number of §F = 0 states is ( A{\/’2 ) the number of ways to pick K/2 down
spins from a total of K spins. Some of these S = 0 states arc the desired singlets, the others
belong to subspaces with Sp- # 0. Every such subspace contains exactly one S7. = 1 state.

The total number of 57 = 1 states is ( K ) Hence the number of Sy = 0 states (or

K/2 -1
subspaces, since each subspace is one-dimensional) is
G K K B K!

The number of logical qubits that can be stored in this DFS of K physical qubits then is

N =log, dim[DFS§(K)| = K — % log, K + O(1), (7.43)
where we have used Stirling’s formula (for large n)

Inn! = (n+ %) Inn —n+ O(1). (7.44)

The result (7.42) for collective decoherence was tirst derived from group-theoretical consid-
erations in |ZR97]. In contrast to this case, where the decoherence-free subspaces asymptoti-
cally fill the whole Hilbert space, in the opposite limit of individual qubit decoherence or total
decoherence, the amount of information that can be encoded in DFSs is negligibly small.

The last requirement that must be met is to implement gates in this DFS. This is easily
achieved in the generic model, but actual implementations in physical systems are still rare
and must be discussed for the specific examples. We therefore switch to one such example,
NMR.

7.43 NMR in Liquids

The simplest example of a decoherence-free subspace is provided by NMR in liquids if we
consider the decoherence induced by randomly fluctuating magnetic fields. They couple to
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the spin system through the sum of the z-components of the nuclear spin operators,

M. =b(t)) L, (7.45)

where b(t) describes the fluctuating magnetic field. This Hamiltonian generates a diffusion-
like evolution of the spins.

The effect of this randomly fluctuating field will not be the same on all coherences
pi; = (i|p|j). The difference can most easily be shown for a system of identical spins (a
homonuclear spin system). In such a system all states [¢) with the same z-component of the
total spin, m = (i| >_, I¥|i), have the same energy and are therefore shifted by the same
amount if the external field fluctuates.” The effect of field fluctuations on off-diagonal density
operator elements is then

iﬁ%{)@ = b(t)AWL,jjp,',Jx_ (746)

where

Amgy = (i) > Ty — (5] > TE) (7.47)
k k

and the sum runs over all spins. Am,;; represents the change in the total magnetic spin quan-
tum number, which is proportional to the difference in Zeeman energy between the two states
|#) and |7). We can therefore eliminate the decoherence due to such a process if we encode a
qubit not in a single spin but associate the logical states as

0y =1 5 =1 (7.48)
with

In such an encoding scheme, the logical states are not associated with single spins. As a result,
one does not have immediate access to manipulate the system, i.e., to apply gate operations to
these logical qubits. How this is done depends on the actual implementation and will not be
discussed here.

From what has been said so far it should be obvious that such an encoding scheme will
only work for fluctuations of the field in the direction of the static field, i.e., along the z-
axis. If more complex systems of coupling operators are present, it is still possible to design
decoherence-free subspaces. While the general analysis is rather mathematical and mainly
relies on existence proofs, without constructing an actual DFS [KLVO0O0], it is relatively easy
to see that if a number of states are available that are immune to noise coupling to (e.g.) >, I,
arbitrary linear combinations of these states are still immune to this type of noise. It is then

2 The energies are not exactly identical, since small energy differences (due to chemical-shift interactions) are used
for addressing the individual qubits. However, these differences are small, of the order of 10~% to 107° times the
Zeeman energy.
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possible to choose a suitable linear combination such that it is also immune to noise (e.g.)
coupling to 3, I%.

A number of proofs of principle for such encoding schemes have been performed. A
single qubit of information was encoded in three spins in such a way that it was protected
from global noise along all three axes [VFPT01]. The experimental results show that the
information that is contained in the noiscless subspace decays significantly slower than the
unprotected information. However, the encoding — decoding process is not error-free, so the
fidelity with the encoding process is actually much lower than without the encoding for most
of the range of experimental parameters.

More recently, a complete quantum algorithm (Grover’s algorithm on two qubits) was
implemented in a decoherence-free subspace that was embedded in a four-spin system in such
away that it reliably reached the correct result in the presence of strong decoherence [OL.KO3].

7.4.4 Scaling considerations

The rate at which decoherence occurs in a given system is one of the most important pa-
rameters for assessing the viability of a quantum computer implementation. However, it is
important to realize that the rate at which quantum information is lost is not identical to the
rate at which a single qubit undergoes decoherence. The difference is that during a typical
computational process, information is spread over all qubits of the quantum register. It is
therefore affected by decoherence processes acting on all qubits and decays correspondingly
faster.

How the decoherence rate increases with the number of qubits depends on the type of
coupling to the environment that is responsible for the decoherence as well as on the encoding
scheme used. While decoherence-free subspaces are a useful concept, we should not expect
to tind regions of Hilbert space that are completely immune to decoherence. Rather, these
subspaces will be “sub-decoherent”, i.e. the decoherence of states completely contained in
them will be slower than for average quantum states.

In realistic systems, the external fields acting on the different qubits are usually correlated
to a finite degree. Depending on the degree of correlation, it should be possible to identify
“clusters”™ of qubits for which the couplings are more strongly correlated than on average. The
average rate at which information is lost from the quantum register can then be significantly
reduced by suitable encoding schemes within such clusters of correlated spins [MS03].

Further reading

Decoherence is discussed in many sources dealing with fundamental issues of quantum
mechanics, such as the measurement problem and the quantum-classical boundary. In the
present context Leggett’s summer school lecture notes [Leg02] are particularly useful. A
compact and clear reference on quantum error correction is [Ste01]; [NCO1] discusses the
topic in much more detail and from a more general perspective, with many references to orig-
inal research articles. Preskill’s lecture notes [Pre97] also contain an in-depth discussion,
pointing out relations to classical error-correcting codes. A recent review on decoherence-free
subspaces and related topics is [LWO3].
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8 Tasks for quantum computers

8.1 Quantum versus classical algorithms

8.1.1 Why Quantum?

Quantum computers can be built as universal computers, i.e., such that they can perform
all tasks that can be executed on any other (classical or quantum) computer. However, as
long as they use the same algorithms for these tasks as classical computers, they also need
roughly the same amount of time for completing the task. As discussed in Chapter 3, “roughly
the same amount of time” refers mostly to the scaling issues, i.e., how quickly the required
time increases with the size of the problem. Only when algorithms are implemented that
use specific properties of quantum mechanical systems can quantum computers outperform
classical computers. Such algorithms, which are known as “quantum algorithms”, require
hardware that is designed as a quantum computer.

Problems where quantum algorithms are more efficient than classical algorithms typically
include many repetitions of some task on a large number of input values. A prototypical
example is the search through an unstructured database, e.g., the search for a person of whom
one only knows the phone number. Classical computers then have to look through all entries
of the phone book in turn, comparing the listed number with the given number. As shown in
the upper part of Figure 8.1, this procedure involves many repetitions of the simple task (read
item - compare - decide if numbers are identical).

For a number of similar problems, quantum computers can search the database more ef-
ficiently. As shown in the lower part of Figure 8.1, these algorithms typically involve the
following steps. The system is initially in a well defined state, which we take to be the ground
state |0). Starting from this state, a superposition of all possible basis states is established.
For a system of N qubits, the number of basis states is 2"V. The process of creating these
superpositions can be completed in O(N) steps; it is therefore efficient in the computational
sense. The next step is the application of a transformation to this superposition state. This step
is in some cases equivalent to performing the same operation on each of the 2V state sequen-
tially. Since this step replaces 2V operations, it is largely responsible for the high efficiency
of quantum computers compared to classical computers. This feature is often referred to as
quantum parallelism. After this central computational step, another transformation is usually
required to arrange the relevant information in the output qubits in such a way that it can be
read out during the final step.

Quantum Computting: A Short Course from Theory 1o Experiment. Joachim Stolze and Dieter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40438-4
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Figure 8.1: Diflcrences in classical and quantum algorithms.

8.1.2 Classes of quantum algorithms

If we consider simpic numerical tusks like multiplication for the central fransformation opera-
tion, it will transform the superposition statc into a superposition of the results of the multipli-
cation. While the operation is fast, such an algorithm cannot be considered efficient, since the
time for readout of the 2" individual results would still grow exponentially with the number
of qubits. The advantages of “quantum parallelism” can therefore only be exploited in cases
where one 1s not interested in all answers to all possible inputs. Instead, quantum algorithms
concentrate on two key issues: finding something (e.g., a result to a query) or determining
global properties of some functions, such as the period of a function, the median of a se-
quence, etc., rather than individual details [GMDO02] . Accordingly, the quantum algorithms
that have been introduced so far can be broadly classified into two kinds:

e Quantum Fourier transform based algorithms. The most prominent member of this class
is Shor’s [Sho%94] algorithm with its exponential speedup of number factoring as com-
pared to classical algorithms.

o Quantum searching algorithms, for example the one by Grover [Gro96, Gro97] with its
quadratic speedup for a “needle in a haystack” search in an unstructured database.

While some of the proposed algorithms involve advanced mathematical tools, others are
quite easy to understand intuitively. We first discuss the relatively simple Deutsch algorithm,
which determines global properties of certain classes of functions.
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8.2 The Deutsch algorithm: Looking at both sides of a coin
at the same time

8.2.1 Functions and their properties

The Deutsch (—Jozsa) algorithm provides a possibility for computing global properties of cer-
tain functions in exponentially less time than any classical algorithm. [t was originally put for-
ward by Deutsch [Deu85] and generalized to several input qubits by Deutsch and Jozsa [DJ92].
The algorithm has been implemented experimentally on both ion-trap [GRL103] and NMR
quantum information processing systems [MFGMO1].

While the properties of some functions are easy to describe (e.g., increasing monotoni-
cally, oscillating ...), one may also encounter functions that are too complex for such an analy-
sis or for which no analytical expression is available. In such cases, one may still be interested
in finding global properties of the functions, e.g., determining if the function is constant (its
output does not depend on the input) or if it includes all possible numbers among the possi-
ble results. The Deutsch algorithm [Deu85] and its extensions (see Section 8.2.5) provide an
efficient way of answering these questions. With a single function evaluation, this algorithm
distinguishes between two types of functions

f:x—{0,1} 8.1

that take positive integers as input and yield the output zero or one. The two types of functions
considered are balanced (i.e., outputs zero and one occur with equal frequency) or constant
(i.e., the output is either always zero or always one).

Quantum mechanically, function evaluations are implemented as unitary transformations
Uy acting on the states that represent the information

Uylr) = |f(2)). (8.2)

Clearly, not every function can be represented as a unitary transformation (e.g., constant func-
tions are manifestly non-invertible and hence non-unitary), but it is always possible to find an
enlarged state space, in which a unitary operator exists that maps the possible inputs into the
correct output states.

8.2.2 Example: one-qubit functions

As the simplest example, consider a one-bit-to-one-bit function f(x). There are four possible
one-bit-to-one-bit functions:
f1:0—-0,1-1

fo:0-1,1—-0
f3:0-1,1—1
f1:0—=0,1—=0

which can be encoded as 2 x 2 matrices (compare Section 4.2):

. 1 1
=1 fa=X, f:s=P++ES+, f4:P~+ES—~ (8.3)
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The first two functions are balanced (both outputs 0 and 1 occur with equal frequency), the
other two are constant. In the original algorithm by Deutsch [Deu85], an additional qubit y
is required to implement these functions on a quantum computer. On this quantum register
(consisting of the two qubits : and y), the function evaluation is implemented as an addition
without carry on the second qubit:

Uyle,y) = lz,y © f(x)) (8.4)

where (1) means addition modulo 2, or XOR.
In the actual computational basis (|00),101),{10),|11)), the tirst function (the identity)
corresponds to the mapping

Uy, 10,0y = 10,0),10,1) - [0,1),]1,0) - |1,1),|1,1) — |1,0), (8.5)
which can be written as the matrix
1 0 0 0
01t 0 0 1 0
oo o0 11 (0 X) (8.6)
6 01 0

The blocks 1, 0, and X represent 2 x 2 matrices. The other three one-bit-to-one-bit functions
can similarly be represented in the form

X 0 X 0 10 .
Uf2:<0 1>’Uf3:<0 X>’Uf4:<0 1) ®.7)

Each of these real symmetric matrices Ug is its own inverse. Hence the matrices are
unitary, as required for their implementation by a quantum mechanical evolution.
8.2.3 Evaluation
To compute [(x) we initialize y to zero and apply Us to |z, 0):
Uz, 0) = |, [(«)). (8.8)

Note that storing the input qubit 2 makes even constant functions invertible. Recalling the
Hadamard gate

1 ] 1
a0 h) o
that is,
1 1
Ho) - \-];E(IOHIU) ; H|1>:\/§(IU>711>) (8.10)
we can pertorm
U HLJ00) = —= U, (00) + [10)) = —= (0, F(0)) + |1, £(1))). (8.11)

V2 V2
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(Where H,, means the Hadamard gate applied to the & qubit.) By applying U ¢ just once to a
superposition of two input states, we have thus obtained information about f for both possible
input values; this is the simplest example of quantum parallelism.

To start the Deutsch algorithm, the y qubit is also put in a superposition state:

1 1 ,
jr) = HLH,[0.1) = 5 (10) + 1) (10) = 1)) = 5 (100) + [10) = [01) = [11)) (8.12)
Applying the function operator U to this state yields

02 = Ugleta) = 500, 7(0)) + |1, £(1)) ~ 10,19 FO)) ~ L1 [ 813)

As is often the case in quantum algorithms, the input values are now entangled with the func-
tion results.

We now distinguish the two cases where the function is either constant (f(0) = f(1)) or
balanced (f(1) =1 & f(0) # f(0)). In the first case the quantum register is in the state

(10, £(0)) + (L, f(0)) = 0, 1@ f(0)) = [1, 1® f(0)))
= %(10>+l1>) (1F(0) =1 f(0))) . (8.14)

DO —

42) =

In the second (balanced) case, the state is

(10, £(0)) + 11,1 f(0)) — 0,1 & f(0)) — |1, £(0)))
= 510 =) (FO) — L& f(0)). 815)

Comparing these two states we see that the answer to our question (function constant or bal-
anced) is now encoded in the relative phase of the first qubit. This information can be con-
verted into the populations of the same qubit by a second application of the Hadamard gate to
the  qubit:

[2) =

N —

ww~Hnw>:ummuu»(”m”\%@ﬂ”». (8.16)

The x qubit contains now the sum of the two possible function values. It is therefore zero if
they are equal, i.e., the function is constant, and 1 if the function is balanced ( f(0)& f(1) = 1).
One function evaluation is thus enough to determine whether f is balanced or constant. A
pictorial way of describing this is “looking at both sides of a coin at the same time”: if the two
sides of a coin are equal, it is forged (not too cleverly, however), if not, chances are that it is
good.

8.2.4 Many qubits

The one-qubit Deutsch algorithm is not too impressive, but consider now a function with n
input qubits, and still only one output qubit. The initial state of the quantum register is now

67 1) = ’O>l‘0>2 T ‘0>n—l|0>nr1>n+1' (8]7)

|1«'/)U> =
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Applying the r-qubit Hadamard transformation
H; = H H, (8.18)

(with H; the Hadamard gate acting on qubit ¢) to this state yields

) = HAH (1) = ('”> ;;”)l ('0> gl>)2... (%> (@%%

= s (0 ), 19

a superposition of all possible input states. This step is extremely efficient: it takes only 7 4 |
operations (which often can be performed in parallel) to create an equal-weight superposition
of the 2" input states.
The functions to be examined are again implemented by the unitary operation
Uyl y) = [,y = f(2)). (8.20)
Applying this transformation to the superposition of all input states yields

[4a) = U slahy) (8.21)

Using
U= - s @ - { D0 D= s

we find

S EE R U] «
iw»-?( 17 2( 7 ) (8.23)

The possible function values are now stored in the signs of the amplitudes in the superposition
state.

The final step of the algorithm is another Hadamard transformation, as in the one-qubit
case. To understand its effect, consider a Hadamard gate applied to a single qubit |x):

1 1
H|z) = —(|0) + (- 1)*|1)) = —= —=1)"%|2). 8.24
) = 500+ (D7) = 25 30 (8.24)
This generalizes to the n-qubit case:

H|7) = —1&: (1™ (8.25)
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where I+ 2= 3. x;%, is the bitwise scalar product of the two n-qubit vectors & and Z, The
final state of the n-qubit algorithm is therefore

"l./)3> _ H:FW)Q) _ ~2}; ZZ(_])I:E#)"(E’)L;} <@.\;¥> . (8.26)

To decide if the function is constant or balanced, one has to measure the population of the
ground state |Z) = |0}, which is

—n _ (@ _ J Elfor fconstant
2 Z( b { 0 for f balanced (8.27)

&

and obviously some intermediate value if f is neither balanced nor constant.

8.2.5 Extensions and generalizations

The Deutsch-Jozsa algorithm performs the test (balanced or constant) on a n-bit function
f(&). If one imagines that n may be large and f may be costly to evaluate, then the advantage
of having only one function evaluation (as compared to O(2'")) is clear. It is, however, impor-
tant to stress that the function must be promised to be either balanced or constant; for a more
general function the Deutsch-Jozsa algorithm will give an ambiguous answer.

The algorithm was improved in [CEMMO8] and generalized to mixed (thermal) states
in [MFGMOI]). An interesting generalization was published by Chi, Kim and Lee [CKLO1]:
they showed that the scheme can be extended to functions whose results are integers rather
than bits. Furthermore, their modification does not require the auxiliary qubit |y), which is
modified in the Deutsch-Jozsa algorithm, but whose state is not needed for readout.

All these algorithms do not have a great practical value as compared to the Shor and
Grover algorithms but they are easy to understand and they illustrate how interference, and
in a way, the Fourier transform (which is related to the Hadamard transform), are employed
in quantum information processing. Another Fourier-based algorithm which is more difficult,
and potentially much more interesting, is Shor’s algorithm for finding prime factors.

8.3 The Shor algorithm: It’s prime time

Shor’s algorithm draws from two main sources. One source is number theory, which we will
not treat too deeply, and which shows that factoring can be reduced to finding the period of
certain functions. Finding a period is of course related to the physicist’s everyday business of
Fourier transformation, which is the second source of Shor’s algorithm. A quantum computer
can very effectively compute the desired number-theoretic function for many input values in
parallel, and it can also perform certain aspects of the Fourier transform so efficiently that
already the term “quantum Fourier transformation” (QFT) has been coined.

Why is it interesting to find prime factors of large numbers? The scientist’s motivation
is, because it is a hard problem. It turns out that this is one of the extremely rare cases
where the same motivation is shared by scientists, bankers, and the military. The reason is
cryptography, the secret transmission of (for example financial or military) data by so-called
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public key cryptographic schemes. In these schemes a large number (the public key) is used to
generale a coded message which is then sent to a recipient. The message can only be decoded
using the prime factors of the public key. These prime factors (the private key) are only
known to the recipient (bank, chief of staff,...). An extremely low-level example is the number
29083=127-229. With pencil and paper only it will probably take you some time to find the
prime factors, whereas the inverse operation (the multiplication) should not take you more
than about a minute. In the present section we discuss Shor’s algorithm theoretically. The
experimental implementation by means of liquid-state NMR will be treated in Section 10.3.

8.3.1 Some number theory

Let N > 3 be the large odd integer which we want to fuactorize, and ¢ < N some other integer.
Let us assume that the greatest common divisor ged{ N, a) = 1, that is, N and a are coprime.
(If they are not coprime, f = gcd(V, a) is already a nontrivial prime factor of N and we
restart with N/ [ in place of N.) To determine the ged we can employ a nice little piece of
classical Greek culture, Euclid’s algorithm, which is, by modern terms, an efficient algorithm.

The algorithm works as follows. Let x and y be two integers, © > y, and z = ged(z, y).
Then both z and y as well as the numbers = — ¥, © — 2y, ... arc multiples of z, and so is the
remainder r = 1 — ky < y obtained in the division of x by y. If r is zero, z = y and the
problem is solved. If » s 0, the problem is transformed to a similar one involving smaller
numbers:

z = ged(w, y) = ged(y, r). (8.28)

The above argument can be repeated with the pair of numbers (y, r) in place of (x,y), etc.

Thus z is expressed as the ged of pairs of ever smaller numbers. The last nonzero remainder
obtained in this procedure is the desired number z.

To proceed in our attempt at factorizing the number N we need another building block

from number theory, which is modular exponentiation. Remembering that ¢ and N are co-

prime, we consider the powers a* of a, modulo N (that is, we calculate the remainder of o”
with respect to division by N). The smallest positive integer » such that

o mod N =1 (8.29)
is called the order of a mod N. This means that

a =k N+ 1 (8.30)
for some k, and conscquently

' =k-N-a+ta (8.31)
such that

@' mod N =amod N (8.32)
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which shows that r is the period of the modular exponential function
Fy(x) =a” mod N. (8.33)

Incidentally, this shows that » < N because Fiv () (being the remainder of a division by N)
cannot assume more than NV different values before repeating.
Three cases may arise:

1) ris odd,
2) risevenand a'/2 mod N = —1,
3) risevenand a”/? mod N # —1.

Cases 1) and 2) are irrelevant for the factorization of IV, but in case 3) at least one of the two
numbers ged(N, a’/2 + 1) is a nontrivial factor of NV, as we shall show below.

8.3.2 Factoring strategy

We now show that case 3) above leads to a nontrivial factor of N. For ease of notation let us
call @’/ = z. From z? mod N = 1 it follows that z° — 1 = (2 + 1)(x — 1) is divided by
N and thus N must have a common factor with z + 1 or x — 1. That common factor cannot
be N itself, since z mod N # —1 and thus 2 + 1 is not a multiple of NV; neither can z — 1
be a multiple of N since if it were, a”/? mod N = 1 and the order would be r/2, not r.
(Remember that the order was defined as the smallest number such that o” mod N = 1.) The
common factor we are looking for must then be one of the numbers gcd(N, a”/? 4 1), and the
ged can be efficiently computed by Euclid’s algorithm.

Next we must make sure that case 3) above has a fair chance to occur if we randomly try
some numbers a. The following facts give us hope:

e If NV is a pure prime power N = p* (s > 2), this can be detected efficiently, because then

the condition s = 11‘(’; J[\: (with integer p) must hold, which can be checked for all possible
values of s. (Note that s can be at most %)

e If V is an odd composite number N = pi* - - p%m (mn > 2) and a a randomly chosen

integer 1 < a < N — 1 coprime to N, and a” = 1 mod N (that is, r is the order of
a mod N), then the probability
1

>

2m =

prob(r even and a’/? mod N # —1) > 1 —

. (8.34)

el Lo

This means that for each time we calculate the order of @ mod N we have a chance of better
than 75% to find a nontrivial prime factor of V. Computing the order m times reduces the
chance of failure to 4=, The chance of finding a prime factor (if one exists!) can thus be
brought arbitrarily close to 1, but it is important to note that Shor’s is a probabilistic algorithm.

The proof of this number-theoretic result can be found in [NCO1], Appendix 4. It is not
difficult, but it involves a few more pieces of classical culture, such as the Chinese Remainder
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Theorem, which is more than 750 years old. The proof can also be found in Appendix B of
the excellent 1996 paper [EJ96] by Ekert and Jozsa.

We are now able to give an algorithm which (with high probability) returns a non-trivial
factor of any composite N. All steps can be performed efficiently on a classical computer,
except for the task of computing the order, which is where quantum computing comes in.

1) If N is even, return the factor 2.
2) Determine whether N = a® for integers a > | and b > 2, and if so return the factor a.

3) Randomly choose  in the range 1 to N — 1. If ged(2, N) > 1 then return the factor
ged(x, N).

4) Use the order-finding subroutine to find the order of 2 modulo V.

5) If ris even and 2772 mod N # —1 then compute ged(2"/2 4 1, N) and test to see if one
of these is a non-trivial factor, returning that factor if so. Otherwise, the algorithm fails
in which case one must restart at step 3).

In Section VI of [EJ96] the authors discuss the complete application of the algorithm to the
smallest odd composite number which is not a power of a prime, /N = 15. That number was
also factorized in the first liquid-state NMR implementation of Shor’s algorithm, compare
Section 10.3.

8.3.3 The core of Shor’s algorithm

The centerpiece of Shor's algorithm is the calculation of the order of @ mod N, that is, the
period of the modular exponential function (8.33). The strategy for doing this is to calculate
the function Fy () for many values of x in parallel and to use Fourier techniques to detect
the period in the sequence of function values. To do this for a given N two quantum registers
are needed:

e a source register with K qubits such that N? <  := 2K < 2N? and
e atarget register with /V or more basis states, that is, at least log, N qubits.

Step 1 of the algorithm is the initialization of both registers

41 = |0)]0). (8.35)
Step 2 is the “Quantum Fourier transformation” of the source register. The quantum Fourier
transformation is nothing but the ordinary discrete Fourier transformation of a set of data of
length Q (details will be discussed in the next section). The corresponding unitary operator
on the source register Hilbert space is defined by

Q-1 ,
U, ¢ lg) —\/15 > exp <2m%> ). (8.36)

q'=0
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The number g between 0 and () — 1 has the binary expansion g = Ef{;{)l g;27, and |q) is
shorthand for |gx_1 . .. q1qo). The target register is not modified, so the state after step 2 is
Q-1
W) = (Ug, @ Diwn) = Q> Y 1g)|0); (8.37)

q=0

all the Fourier phase factors are equal to unity since all source qubits were initially zero.
Note that this particular output can also be generated by a Hadamard transform of the source
register.

Step 3 is the application of the gate U, which implements the modular exponentiation
g+ f(q) = a? mod N (we will not discuss in detail how to build this gate). The result is

Q-1
W’%> - Uu,|7/)2> = Q-l/z Z Iq)la" mod N> (8.38)

g=t

Here Q > N? function values of the function Fy (q) are computed in parallel in one step, and
since 7 < N the period » must show up somewhere in this sequence of function values.
Step 4: Apply the quantum Fourier transform again to the source register. This leads to

Q-1Q—1 ,
[0a) = (Upq @ Dfiss) = Q7' > >~ ™4 |g)[a? mod N). (8.39)

q=0 ¢'=0

Step 5: Measure the source qubits in the computational basis. The probability of finding
the source register in the state g displays a pattern (due to quantum interference) from the
regularities of which the order » can be deduced. To see how this comes about we assume '
for the moment that () is divisible by r, that is,

Q = nr. (8.40)

We introduce a shorthand notation for the state |14 ):

[a) = DD agela)lf(d), (8.41)
q9 q

where both sums extend from zero to ( — 1. The probability of finding the source register in
a particular basis state |go) is the expectation value of P, © 1 where Py, = |qo){go] is the
projection operator onto |qo) and 1 refers to the target qubit:

(haPgy 2 Ltoa) = >N "S> " gy (plao) (gola) (S (P (d)

p/

=33 an g (FEF(G). (842)
»oq

! Although this assumption is strictly impossible since @ is a power of two it does not have major harmful effects,
as we will see below.
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The modular exponential function f(p) = of mod N has period r, and the r function val-
ues within a period are all distinct due to the nature of the function. The scalar prod-
uct {f(p')]f(q’)) of the target register states thus is periodic in both variables p and ¢’
and we can sort the terms in (8.42) according to the nonzero values of (f(p")|f(¢')). We
first consider the case p/ = 0. The scalar product {(f(0)|f(¢")) = {(f(0)|/(0)) = 1
for ¢ = 0,v.2r,...,(n — )r. For any of these ¢ vatues (f{(p)|f(0)) = 1 forp =
0,7,2r,...,(n — 1)r. The terms in (8.42) containing the nonzero scalar product {f(0)|f(0))
thus generate the following contribution:

n—1n-—1 n--1 2
Z Z CY;OJM‘“:{UJ"" = Z a’lu-l““ (843)
v=0 p=0 =0

In a similar way we can collect the contributions associated with (f(1)|f(1)), {(f(2)|f(2)),

o (JOr = 1)|f(r = 1)) to obtain the desired probability of finding the source register in the
basis state |¢):

2

r—1

(W4 Py 0 1fha) = Y

j=0

-1

E Yoy por+j

14=0

(8.44)

The inner summation always comprises 7 terms, independent of j. This is duc to the simplify-
ing assumption (8.40). Without that assumption, that is, for (n — 1)r < Q < nr the inner sum
would only have n — 1 terms for some j. Given that we are typically discussing large numbers
this is not a big effect. Re-expanding the abbreviation «,, introduced above, we obtain

n— 1 n—1 2
Z”qn wrtil = 2 Z exp (27” "‘(/” + ]))
p=U () ji=0 (9
o n—l - I 2
Qz exp (ZTH%) Z ((‘,xp (27‘”%)) ‘ . (845)
=0

The phase factor in front of the sum is irrelevant. The (geometric) sum itself yields n if %i
is integer, and zero otherwise, independent of 7. The probability (8.44) thus shows a regular
pattern of peaks of equal height from which » may be deduced.

Without the simplifying assumption (8.40) the pattern is not quite as regular, but the prob-
ability for finding the source register in the state |go) can still be expressed in terms of a few
geometrical sums:

Qo 2
—1 mt( n ) o I
(s [Py 2 L) = Qz 7}% ﬂ; <exp (27”6)) \ (8.46)

where “int” denotes the integer part of a real number. The function (8.46) is shown in Fig-
ure 8.2 for ) - 256 and r = 10. From the regularities of peak structures like the one in
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Figure 8.2 the order r can be deduced with a high probability (but not with certainty) if the
positions of a sufficiently large number of peaks are taken into account. We do not reproduce
the technical details here and instead refer our readers to the literature for the full discussion
which requires some additional mathematical tools.

01 T T T T

0.06 | i

prob(q)

0.04 1

0.02 E

. .

0 50 100 150 200 250

Figure 8.2: Probability of measuring ¢, with @ = 256 and r = 10.

What remains to be understood is the implementation of modular exponentiation and of
the discrete Fourier transform. We skip all details of the modular exponentiation except for
one remark related to the efficient computation of (high) powers * of some integer z. By M
integer multiplications the M + 1 numbers x,z?, x4, ... ,22" can be generated. Given the
binary expansion g = Zﬁo a;2" (a; = 0, 1) of a, the desired power can be written as

M

= =] (rz) . (8.47)

i=0

Since this product contains at most M + 1 factors the large power x® thus can be computed
using only of the order of log, ¢ multiplications. The only other ingredient needed is an
algorithm for multiplying two integers by means of quantum gates, which is available.

8.3.4 The quantum Fourier transform

We will first discuss the “classical” discrete Fourier transform, with a short digression on the
fast Fourier transform (FFT) and then we will turn to the quantum Fourier transform (QFT)
and see that it is even faster than the fast Fourier transform. The usual discrete Fourier trans-
form maps a complex input vector with components zq, 1, ...,Zx_1 to the output vector
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(the Fourier coefficients) yg, y1, . .., yn—1 by means of

N—1 .
2mi
Yk = N~z E exXp <%kj> £, (8.48)
J=0
and vice versa,

N1

2mi
T = N—% exp (—%kj) ;. (8.49)
Jj=0

Note that both transformations can be interpreted as “matrix times vector” operations. That
the two matrices involved arc in fact inverses ot each other, follows from the identity

N—1

27i .
Z exp (*}—\?(1 - [)/a:) = Ndj, (8.50)

k-0

which is nothing but a geometrical sum. Obviously the evaluation of the Fourier transform
involves roughly V2 complex multiplications, and about the same number of additions. Dou-
bling the size of the data set thus means quadrupling the operation count.

The FFT (which can be traced back to work by Gaul} in 1805) rests on the observation that
by separating even and odd j in (8.48) one obtains

N N
N™3 ZZ:I ¢ Lm kl) 2o +ex 2mi k S ~_‘27ri kl
Yy — 3 ) a . v . exX A e
i £ PP N )TN 2 PPN )

(8.51)

where N was assumed to be even. Note that the two sums are both again discrete Fourier
transforms of % data each, leading to an operation count of 2 (%)2 = %N 2. The operation
count thus has been cul in half by a simple reorganization of the Fourier sum, and there is no
reason to stop at this point if ’;’— is even. Continuation of this process for N = 2" vields the
FFT algorithm (see, for example, [PTVF92] for details) which reduces the operation count
from O(N?) to O(N log N)) which for many applications, for example in image processing,
computerized tomography, etc., makes the difference between “possible in principle only” and
“practical and convenient for everyday use”.

The quantum Fourier transform is an operator defined by the following mapping of the
basis states of an N-dimensional Hilbert space:

N-1

2mi
) — ik} k). .
M(Xp( NM)I ) (8.52)

o=

) = N7

An arbitrary quantum state with amplitudes «:; is then mapped as

N-1

N-1
Z a;lg) — Z yi|k) (8.53)
k=0

30
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with y, given by the “classical” Fourier transform formula (8.48). This transformation is
unitary, that is, it conserves the norm of a quantum state,

2
N-1 N-1|[N-1
2 -1

ol =N T exp <—Jk>
k=0 k=0 | j=0

N-1TN-1N-1 N-1

2m¢
= N7t zjare ™ UTDR = Z |, |2
k=0 0 =0 =0

Z

L
I

where in the last step we have used the identity (8.50).

Let us now assume that N = 2" such that the basis states {|0)...|2" — 1)} form the
computational basis for a n-qubit quantum computer. We will denote these basis states either
by the integer j, or by the sequence j;jz ... 7, from the binary representation of j

n
FERT a2 =) G2 (8.54)

We will also need the binary representation of a fractional number (between 0 and 1) which
we write as a binary fraction

0. jujist g = 3271+ e 278 o 27 (8.55)
We take another look at the quantum Fourier transform

2" 1 .
. b 2me .
i) = 27% ) exp < o Jk'> k), (8.56)

k=0

and insert the binary expansion of %, which leads to

1 1
Z Z exp ( P (Z k2" l)) LI )

k=0  kn=0

1 1 n n 1
278 Y Y Rexp(2mijh2 k) =277 (X) [Z exp(2mijk; 2~ ki)
k=0 Ky, =0 {=1 (=1 Lk;=0
T

=275 (X) [10), + exp(2mij2")|1),] -
=1

In the first step |k ... k) has been decomposed into an explicit tensor product @),", ki),
and in the followmg step sums have been rearranged according to the familiar pattern
> 2o aibj = (32, ai)(32; b;). A closer look at the exponent reveals a binary fraction

=3 52" = Gida Gt dneti1 - e (8.57)
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The integer part (left of the decimal point) is irrelevant because €™ = 1 and we can write

the quantum Fourier transform as

1>1) ('0)2 +67‘/27T()"j”‘ 1dn 1)2) .
(10) 2T Jrd2.n

= 27 (0, 4+ O

1,

8.3.5 Gates for the QFT

The quantum Fourier transform is thus nothing but a simple qubit-wise phase shift: the |1)
state of each of the n qubits is given an extra phase factor. That operation can be performed
efficiently by a quantum circuit combining some simple quantum gates. [et us define the

unitary (phase shift) operator

1 0
Ry = ( 0 e2miz™* ) (8.58)

and the corresponding controlled-R,, gate which applies Ry, to the target qubit if the control
qubit is in state |1). In the corresponding symbol (Figure 8.3) for the “wiring diagram” of
a quanfum computer performing the quantum Fourier transform, the upper wire denotes the
target qubit, the lower wire the control qubit, and data are processed from left to right as usual.

Target R,

Control

Figure 8.3: The controlled-R, gate.

The controlled-Ry, gate (for various k values) and the Hadamard gate are sutticient for the

quantum Fourier transform circuit shown in Figure 8.4.
s> ﬂ Re| l Ry
> ]

-———— N

lin-1>

j >
Il
Figure 8.4: A circuit for the quantum Fourier transtorm. Not shown are the swap gates neces-

sary to rearrange the output into the desired form.
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To analyze how the circuit of Figure 8.4 performs the quantum Fourier transform, consider
the input state |, jo . .. j,). The Hadamard gate applied to the first qubit generates the state

2712 ([0) + 209 1)) o . ), (8.59)
since e2™0J1 = (—1)J1. The controlled-R gate produces
2712 (j0) + €2 0032 [1)) o .. i), (8.60)

and the following controlled-R gates keep appending bits to the exponent of the phase factor
of |1),, leading finally to

271/2 (|0> + eZTri(J.j]jz..,j,,

D) gz -+ dn)- (8.61)
The second qubit is treated in a similar way. The Hadamard gate generates
2722 ((0) + 2709250 1)) (0) + €270 1)) s ) 5.6

and the controlled-R. through R, _, gates take care of the lower-order bits in the exponent
of the phase factor of |1),, leading to

9-2/2 (|0> 4 2mi0.J1d2. “)) (!0> + e?ﬂ'i().,72~~».771|1>) 173 -0 dn). (8.63)
Continuing this process we obtain the final state

9-% (40> +62m0._7'1j2..,j,,|1>) (|O> 4 @27i0-G2wn 1>) (|0> 4 270 ’1>) (8.64)

This is almost the desired result, except for the order of the qubits which can be rearranged by
SWAP gates.

The total number of operations (gates) for the quantum Fourier transform is easily counted.
The first qubit is acted on by a Hadamard gate and n — 1 controlled-R gates, a total of . gates.
The next qubit needs one controlled-R gate less, and so on. The total number of gates shown
(implicitly) in Figure 8.4 thus is 7 + (n — 1) + - - + 1 = n(n + 1)/2. In addition one needs
about n/2 SWAP gates, each containing three CNOTSs. The quantum Fourier transform thus
needs of the order of n? gates (operations) to Fourier transform 2" input data. This is much
better than even the FFT which needs O(n2") steps, as discussed above. Note, however, that
it is not possible to get out all of the amplitudes of the final state of the quantum Fourier
transform, nor is it possible to efficiently prepare the input state for arbitrary amplitudes. This
restricts application of the QFT to a special class of applications, such as the Shor algorithm.

8.4 The Grover algorithm: Looking for a needle in a
haystack

Grover’s algorithm [Gro96, Gro97] is useful for a search in an unstructured database. This is
a very important problem in data processing because every database is an unstructured one if
the problem does not fit to the original design structure of the data base. Just think of trying to
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find out the name of a person living at a given street address from the usual alphabetic phone
directory of a big city. If the phone directory contains N entries this will require checking
N/2 entries on average (provided there is only one person who lives at the particular address).
Grover’s algorithm reduces the number of calls to @(v/N), which is a significant reduction
for large N.

In this section we will not deal with the practical implementation of Grover’s algorithm,
that is, how to couple an existing classical database to this quantum algorithm, etc. We will
only outline how this beautiful algorithm allows the solution to “grow” out of the noise by
iterating a simple procedure. As with all growing things, however, it is important to do the
harvesting at the right time. Tt turns out that the same procedures can be used to grow the
solution and to determine the time for the harvest.

For a recent implementation of Grover’s algorithm employing NMR techniques, see
[DMKO3].  An interesting implementation of Grover’s algorithm based purely on the
Fourier transforming capabilities ol classical wave optics has also been demonstrated, see
[BvLvdHSO02].

8.4.1 Oracle functions

Let the search space of our problem have N elements (entries in the phone directory, in the
introductory example), indexed O to N — 1, and for simplicity, N = 2", Let the search
problem have M solutions (persons living at the given street address). The solutions can be
characterized by some function f with the property

0 if x is not a solution. (8.65)

) = { 1 if  is a solution
We are able, by some kind of “detector” to recognize a solution if we are confronted with
the xth element of the database. In our example this is simple: we just check the item “street
address” in the telephone directory entry number x and output a | if it fits and a zero otherwise.
In other examples this step may be much more complicated. Grover’s algorithm minimizes
the number of calls to this “detector” function, or oracle function as it is commonly called.
Like other functions, the oracle function corresponds in a quantum algorithm to a unitary
operator O. This operator acts on the tensor product of the quantum register holding the index
x and a single oracle qubit |4} in the following way:

Ol g) = |a)|g @ f(2)), (8.66)

that is, the oracle qubit is flipped when the database item with the number ¢ is a solution of
the search problem. If we initialize the oracle qubit in the state

_ o) -11)
lqo) = 7 (8.67)

application of the quantum oracle will lead to

Olx)lgo) = (=1)7)|2)|q0). (8.68)
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Note that the oracle qubit is not changed, and in fact remains in its initial state during the
whole calculation, We will henceforth omit it from our calculations (without forgetting that it
is needed). So from now on we will abbreviate the above equation in the following way:

Olz) = (=1)/"|z) (8.69)

The oracle marks the solutions of the search problem by a minus sign. We will see that only

O (\ / %) calls to the quantum oracle will be necessary to solve the search problem. We

wish to stress again that the oracle does not by some magic know the solution, it is only able
to recognize if a candidate is a solution. Think of the prime factoring problem to note the
difference: it is easy to check if a proposed candidate divides a number. An appropriate circuit
performing test divisions would be used as an oracle in that case.

8.4.2 The search algorithm

The key point of the search algorithm will be to use the phase factors (minus signs) marking
the solutions to let the amplitudes of the solution states grow out of the set of all possible
states, and to “harvest” them at the right time, as noted above. We will now first list the steps
of the search algorithm and then analyze what these steps do.

Step 1. Initialize the n-qubit index register

—,

l¥1) = 10) (8.70)

(All n qubits are set to their |0) states.)
Step 2. Apply the Hadamard transform

N-1
) = HPP|0) = N7V o) (N =27 (8.71)

=0

to generate an equal-weight, equal-phase superposition of all computational basis states.
Steps 3 and following. Tterate with the Grover operator G

[Vrq1) = Glvn) (8.72)

where the Grover operator consists of four substeps:
Substep 1. Apply the oracle

[Urs1/4) = Olh) (8.73)

(we use fractional indices to symbolize that these are substeps of the Grover iteration step).
Substep 2. Apply the Hadamard transform

[ir1/2) = B g g a). (8.74)

Substep 3. Apply a conditional 7 phase shift, that is, reverse the signs of all computationai
basis states except |0):

Clx) = (=1)%0~Lz) (8.75)
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[¥sta/4) = Calthpyiy)- (8.76)
Substep 4. Apply the Hadamard transform again

Pg1) = H" [Prasya)- (8.77)

Substeps 2,3, and 4 can be efficiently implemented on a quantum computer: remember that
H®" creates 2" states (in a superposition) with just 1. operations; conditional phase shifts are
also easy to construct from a complete set of quantum gates. The oracle may be computation-
ally expensive, but we use it only once per iteration step.

8.4.3 Geometrical analysis

Let us analyze what the Grover iteration step does, other than calling the oracle. The condi-
tional phase shift may be written as

Cr = —1+2j0)(0| (8.78)

where 1 is the n-qubit unit operator and [0) (0| is the projection operator onto the basis state
|0}, We know already that

HE"J0) = [y (and (42| = (/") (879

where [1),) is the equal-weight (and equal-phase) superposition. The Grover operator thus can
be written as

G = H?"C,H®"0O = (2\4)9) (2] — 1) O. (8.80)

This operation has a nice algebraic interpretation; it turns out that the amplitudes of the com-
putational basis states are “inverted about their average” (or mean) as is often said. However,
we will not employ this algebraic interpretation (which is explained in Chapter 6 of [NCO1}),
because it turns out that there is an even nicer geometrical interpretation. The Grover iteration
is a rotation in the two-dimensional space spanned by the starting vector |9} (the uniform
superposition of all basis states) and the uniform superposition of the states corresponding to
the M solutions of the search problem, and we will see that the rotation moves the state into
the right direction.
To see this we define two normalized states:

! " x = —1~ ()|
) = i L0 - @l 1) = m;mu ) (8.81)

with the function f(z) defined by (8.65). Obviously |/3) is the uniform superposition of the
desired states and |«) that of the remaining states. We can then write the state |1s) in the
search algorithm as a superposition of |«) and |3):

. [N-W AL 6 0 |
11/,12)_\/7]\[ o) + F(/f}—(,05§|a>+bm2|/}> (8.82)
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which defines the angle 8. Now recall that the oracle marks solutions of the search problem
with a minus sign such that

Oliy) = cos —g[a) — sin g[,@) (8.83)

The |3) component of the initial state thus gets reversed, whereas the |o) component remains
the same. In the |a),|3) plane this is a reflection about the |«) axis. (See Figure 8.5.) The
remaining three substeps of G in fact perform another reflection. Note that

2[th) (Wa| — 1 = [ho) (2] — (1 = |tho)(a|) = Py — Py (8.84)

where Py, is the projector onto the initial state |1;) and Py is the projector onto the subspace
perpendicular to |15). The component perpendicular to |¢2) thus gets reversed so that we
have performed a reflection about |1)2). A look at the figure tells us that we have reached the
state

Gli2) = cos %0|a> + sin %M)’), (8.85)

that is, G has performed a 0 rotation. Iteration then yields

¢

. 2k
G*|4py) = cos 2+

2k +1
2

Lo1a) +sin 221 Lo 3, (8.86)

and we only have to choose k such that the |3) component is as large as possible. Measurement
in the computational basis will then, with high probability, produce one of the components of
|3}, the solutions of the search problem. For a detailed description of the search algorithm in

A B>

6/2

? jo>

' O ly>
Figure 8.5: The Grover iteration as a twofold reflection, or a rotation (see text for details).

a space with four states (admittedly not too large), see [NCO1] or the popular article {Gro99]
by Grover.

How often do we have to apply the Grover operator? From Figure 8.5 and the definition of
the angle 6 we see that the necessary number of iterations is the closest integer (abbreviated CI)
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to 58 *
X! (8.87)
N 20 2 ‘
o LB I Y Al (8.88)
4 arcsin \/ AW 2 4V M

since arcsinz > . This moves the staie quite close to the desired one: as each Grover

ileration Totates the state by # we end up at most #/2 away from |/3). For the interesting case

‘—% < 1 the error probability (given by the square of the |«) component in the final state) is
M

f
} G2
p < sin 5= . (8.89)

It 1s important to note that:

e itcrating more than I? times worsens the result,

e in this version of the algorithm, it is necessary to know A{, the number of solutions.

8.4.4 Quantum counting

Here we discuss how the number A of solutions to the search problem can be counted by a
quantum algorithm involving the Grover operator G again. The idea is simple: recall that in a
suitable two-dimensional subspace, G is just a rotation and the rotation angle is related to M.
This rotation angle can be determined by quantum Fourier transform techniques.

The rotation matrix for G in the basis (|«), |3)) is

cos)  —sind
G = ( sinfl cosf ) (8.90)
The eigenvectors of this matrix are %( J_iz ) with eigenvalues ¢, Recall that sin § =

/3. (Some problems may arise if M > N/2, because then 0 > 7/2; however, these

problems may always be circumvented by enlarging the search space from N to 2N by adding
some fictitious directions to the Hilbert space, as discussed in [NCO1]. We will ignore these
problems altogether for simplicity.) The problem of (approximately) counting the number M
of solutions is thus reduced to estimating the phase € of the unitary operator G, the Grover
gate. This task of phase estimation is very similar to the task of period-finding involved in
Shor’s algorithm as discussed in Section 8.3.3.

8.4.5 Phase estimation
For a given unitary operator U we are in possession of an eigenvector |u):

Ulu) = 2™ |u) (8.91)
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where ¢ (between 0 and 1) is to be estimated. Let us assume we have available “black boxes”
to

e prepare |u),

e perform controlled-U(?") operations (j = 0, 1. ).
The phase estimation algorithm needs two registers. The first register contains ¢ qubits, ini-
tially all in the state |0) (¢t depending on the demanded accuracy and success probability of
the algorithm). The second register holds the state |u) initially.
The algorithm works as follows.
Step 1. Apply the Hadamard transform H®? to the first register, to generate the state

2f
1
H@tm) = — LL) (8.92)

which is the by now well-known equal-weight, equal-phase superposition.
Step 2.k (k = 0,...,t — 1). Apply the controlled-U?") operation to register 2, using qubit k
of the first register as control qubit. This puts register 2 in state

lu) if qubit & is |0) (8.93)
and in state

22" if qubsit k is |1). (8.94)

Note that register 2 stays in the state |u) all the time, up to phase factors which we can collect
next to the qubits of register | which control them. The state of the first register thus can be
written

. 2mi2 g mi2l =2 22
g (100 727010 ) (10) + 272 ) - (Jo) + 2270 )
1 21,—1
= 573 2 k). (8.99)
k=0

(Remember that we have omitted the second register which is in state |u) anyway.) For ease
of discussion, assume that ¢ is a ¢-bit binary fraction, ¢ = 0. ¢1¢2 ... ¢; (remember ¢ < 1),
The state of register 1 is just

1 27 + i 0. ¢y 2mi (). Do Py
é—t/_‘z (‘0> + 2 U.<f>,{1>) (\0> +€2 0.¢ 71(/>r|1>) . (‘0> + 27 0 b1 ‘1>) (8.96)
since 27" — 1 for integer m.
We now recall the discussion of the quantum Fourier transform from Shor’s algorithm
in Section (8.3.4). There we constructed a quantum circuit performing the quantum Fourier

transformation
{/l .- /n> =

1 o .
(10> +€Z7Tl,()..],,

on/z 1>) (10> + 2710 i

1>) . (|0> 4 e?2mi0 J1g2 0

1)).
(8.97)
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The inverse quantum Fourier transform can be performed by simply reversing the QFT circuit.
Applying the inverse QFT to the state of register 1 leads to the staie

[f1.. &) (8.98)

and therefore we can measure ¢ exactly in this example, where ¢ has exactly ¢ bits.

If the binary expansion of ¢ is longer than ¢ bits, for example, if ¢ is irrational so that its
binary expansion does not terminate at all, only an estimate is possible. In that case the algo-
rithm does not uniquely lead to the single basis state (8.98) but to a superposition of basis states
with probabilities strongly concentrated on t-bit binary fractions ¢’ approximating ¢. (Note
the similarity to the probabilities discussed in Section 8.3.3; the period estimate performed
there is essentially equivalent to the phase estimate which we are presently discussing.) As-
sume that we want to achicve a certain precision § in estimating ¢. The probability of failure
of the algorithm is then the cumulative probability of all states with |¢’ — ¢| > §. That proba-
bility can be estimated, sce Section 5.2.1 of [NCOI]. It turns out that if ¢ qubits are available,
an n-bit approximation to ¢ may be found with probability of success at least 1 — ¢, if

I
t = n + intlog, <1 + —) . (8.99)
4e
(int denotes the integer part of a real number, as usual.)
An important point that remains is the preparation of the eigenstate |u). In the worst case

we are not able to prepare a specific eigenstate, but only some state |¢) which can then be
expanded in U-eigenstates,

[¥) = Z culuy, where Ulu) = 2™ ). (8.100)

u

Running the phase estimation algorithm with input |¢) in the sccond register leads (due to
linearity) to the output

> culdnlu) (8.101)

t

where ¢/, is an approximation to the phase ¢,,. We thus obtain the possible phase values of U
with their respective probabilities |, |* as given by the initial state.

In the special case of the Grover algorithm it turns out that we are lucky. Recall that the
starting vector of the Grover algorithm was a combination of |«) and |/3), or equivalently, of
the two eigenstates of the unitary operator G (the Grover operator) so that the phase estimation
algorithm will give us approximations to either # or (27) - 0 with both of which we will be
content, because knowing # will enable us to optimize the number of iterations of G and
therefore find a solution of the search problem with high probability.

We will not discuss how to really search an unstructured data base etc., and we will also
not go into the detailed performance and probability estimatcs. Some remarks on these topics
may be found in Chapter 6 of [NCO!], and some generalizations and references to interesting
applications are in [GMDO2].
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8.5 Quantum simulations

8.5.1 Potential and limitations

Most of the current work on implementations of quantum algorithms concentrates on the al-
gorithms for factoring (Shor) and database searching (Grover). From a physics perspective,
however, the original suggestion by Feynman [Fey82] (see Section 1.3.1 and Chapter 6), that
quantum processors may be the only possibility of efficiently simulating quantum mechanical
systems, offers a more exciting potential. If quantum computers with 50100 qubits can be
built, they will open a new window into the transition from individual particles to macroscopic
bodies and help us to understand the behavior of small particles like quantum dots.

To simulate a quantum mechanical system, the quantum computer has to generate a time
evolution that is identical to that of the original physical system. In addition, the states of the
system under investigation must be mapped into states of the quantum computer. The quantum
computer typically is a system of qubits (spins-1/2) with a finite number of available states,
while the physical system may not be a spin system, but consist, e.g., of bosons or fermions,
with an infinite number of states. The mapping process must theretore include the selection
of an area in Hilbert space that is to be represented in the quantum simulator.

While the simulation of coherent evolution is relatively straightforward, additional con-
siderations apply to the simulation of open systems. Within certain limitations, this can be
achieved by adding a single qubit to the closed system and using feedback from quantum me-
chanical measurements [LVO1]. Adiabatic evolution can be an interesting basis for optimiza-
tion problems [CEM98, FGG101]; this approach is closely related to simulated annealing.
Here one relies on the quantum adiabatic theorem that states that the system remains in an
eigenstate of the (nondegenerate) Hamiltonian if the Hamiltonian changes sufficiently slowly.
Starting from the ground state of the physical system one can therefore find the ground state of
a simulated system by changing the Hamiltonian slowly from the initial to the simulated one.
The procedure can be used to find an optimal state by formulating the optimization problem
in terms of a suitable Hamiltonian.

An important part of the theoretical work on quantum simulation discusses the issue of
which kinds of physical systems can be efficiently simulated by which other systems. As an
example, it appears that the physical system consisting of one boson in 2% modes is no more
powerful than classical wave mechanics and therefore unable to simulate other quantum sys-
tems like a collection of qubits [SOGT02]. Vice versa, it was possible to prove that quantum
computers based on qubits can simulate fermionic as well as bosonic systems [AL97].

8.5.2 Motivation

Feynman'’s discussion of the computational difficulties associated with the simulation of quan-
tum mechanical systems hinges on the exponential growth of the size of Hilbert space with the
number of particles in the system. Keeping track of all degrees of freedom is thus a compu-
tationally expensive problem. Without proof, he suggested that a quantum mechanical system
might not have this limitation. Other researchers, e.g., Benioff, Bennett, Deutsch, and Lan-
dauer contributed to the discussion, but only in 1996 could Lloyd [[.1096] prove that universal
computers can be built from quantum mechanical systems.
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During the subsequent period, the research in this field concentrated on finding algorithms
that run efficiently on quantum computers but solve “classical” problems. The discussion on
the usefulness of quantum computing frequently circles around these algorithms. In recent
years, the efforts to use quantum computers for the purpose envisaged by Feynman have also
grown. In addition, a number of specific proposals have been put forward for relevant physical
processes and interactions that can be simulated more efficiently by quantum computers than
by classical devices.

The most straightforward type of quantum simulation is the calculation of eigenstates and
eigenvectors for given interactions (Hamiltonians). Even for sparse Hamiltonian matrices, the
computational resources required for matrix diagonalization on classical computers grow at
least linearly with the dimension of Hilbert space and thus exponentially with the number
of particles. Besides these static problems, quantum simulators should also be able to solve
problems from dynamics, such as the dynamics of many-body systems. While small quantum
systems can he simulated by classical computers, general systems corresponding to more than
~ 20 qubits (dimension of Hilbert space ~ 10%) are too large for full numerical calculations.
Mesoscopic systems with a few tens to a few hundred particles would therefore be the most
interesting targets for quantum computers. Relevant questions that could be tackled with fu-
ture quantum computers include the electronic state ot small metal particles to improve, e.g.,
the understanding of superconductivity. In systems with a finite particle number the usual
BCS (Bardeen—Cooper—Schrieffer) ansatz is doubtful, and at the same time exact numerical
diagonalization of the general BCS Hamiltonian is impractical beyond a few tens of electron
pairs. While true phase transitions occur only in the thermodynamic limit, the properties of
nanometer-sized particles are attracting increasing interest as nanotechnology is being devel-
oped in research labs as well as for industrial applications.

Examples where quantum computers can provide exponential increase in speed over clas-
sical computers include the determination of eigenvalues and eigenvectors of quantum me-
chanical systems [AL99]. Drawing from mathematically similar problems and using the
quantum Fourier transtorm, Abrams and Lloyd devised a quantum algorithm that works ex-
ponentially faster than classical algorithms. Since this type of computation cannot be done by
classical computers on systems with more than ~ 100 particles, quantum computers with as
few as 100 qubits could find relevant applications here.

8.5.3 Simulated evolution

Before one can implement a simulation, the mapping from the physical system onto the quan-
tum simulator has to be specified. The mapping must specily which states are mapped onto
each other and at the same time which operators that can be generated in the quantum com-
puter represent the relevant observables of the physical system. On an algebraic level, the
structures of the operator algebras that represent the different physical systems are relevant:
one system can be used to simulate another if an isomorphic mapping of the operator alge-
bras is possible. However, only the interactions available to cffect the calculations actually
determine if the suggested mapping can be implemented. Only if the real Hamiltonian of
the quantum computer system can be efficiently mapped onto the target system Hamiltonian,
will quantum simulators become feasible. So far no universal procedure exists to define such
mappings.
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The main task of the quantum simulator is to generate a time evolution Ug that imitates
the time evolution of the real physical system as closely as possible. In most cases, it will
not be possible to generate the exact Hamiltonian on the quantum simulator in a single step.
However, a suitable general simulator can generate different time evolutions for subsequent
intervals in such a way that the desired evolution is reached after some time 7

Ug =7 = [[ ™. (8.102)
k

Finding such a decomposition is in general not trivial. One 1s therefore often forced to
use approximate methods. A useful standard technique for calculating the overall propaga-
tor is the Average Hamiltonian theory developed for multiple pulse experiments in solid state
nuclear magnetic resonance [HW68, Hae76]. It uses the fact that for short enough times 7,
the individual propagators in equation (8.102) are close to the unity operator and therefore ap-
proximately commute with each other. In the limit where they commute, the total propagator
can be written as

US — ciHuvT — e’ Zk, H’\“Tk‘ (8103)

Using suitable combinations of Hj, and 7y, it is then possible to match the average Hamiltonian
with the desired system Hamiltonian, Hg = H,,.

8.5.4 Implementations

In comparison with the rich theoretical work, relatively little experimental work has been
published. The first example is the simulation of a three-body interaction in an NMR quantum
computer [TSST99]. As in most physical systems, spin interactions are either one- or two
body interactions; however, a suitable concatenation of two-qubit interactions generates the
same evolution as a three-qubit Hamiltonian.

To realize such an effective Hamiltonian, one starts from the usual two-spin interaction,
which easily generates propagators like

Uap = '¢8=48:5, (8.104)

Using the interaction of spin B with a third spin C, it is possible to generate one- and two-qubit
operators that convert this propagator into a three-spin propagator:

w . . TS inS. S
Uipc=e¢ w8u5S:0 15808 id8:48:1 ,~1580p inSa5S:0 (8.105)

Under the influence of such a coupling operator, a single qubit becomes entangled with two
others.

Another example is due to Somaroo e al. [STH'99]. They mapped the lowest four states
of a quantum mechanical harmonic oscillator onto the states of a two-spin NMR system and let
it evolve under an effective Harmonic oscillator Hamiltonian. A crucial issue documented by
this example is that quantum simulations (like classical ones) map only a partial state space
into the quantum register; selection of this partial space will become a critical issue when
operating quantum simulators.
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9 How to build a quantum computer

9.1 Components

The term guantum computer refers to a device that processes quantum information, which
was discussed in Chapter 5. As one tries to build such a device, one has to make a number of
decisions that depend on each other. On the physical side, one needs some hardware basis to
represent the quantum information, as well as the means to perform logical operations on this
information and read out the result. We review some of the existing and proposed hardware
for building quantum computers in the following chapters.

Before one gets down to the details of actual implementation, there are some considera-
tions that are relevant for all of them, independent of the specific hardware basis. The first
question that we start to discuss here, is how the information flows into and through the com-
putational device; we refer to this as the architecture of the quantum computer. The oldest and
so far most successful architecture is commonly referred to as the network model of quantum
computation {Deu89]. This is the model that we had in mind when we discussed quantum
gates in Chapter 5, and we will use it as the model for discussing existing and possible imple-
mentation. For completeness, we list some alternatives to the network model in Section 9.4 at
the end of this chapter.

9.1.1 The network model

We now concentrate on the usual network model for constructing a quantum computer. Any
such implementation has to define a number of components that handle the different steps
required for quantum information processing. The first and probably most obvious step is
to define how the quantum information is stored. In analogy to a classical computer, where
information is stored in arrays of bits called registers, quantum computers may use arrays of
qubits called quantum registers. The requirements on these qubits will be discussed in more
detail in Section 9.2.1.

Once the qubits are defined, the architecture must provide means of operating on this
quantum register. The first step of any quantum algorithm is to initialize the quantum register,
i.e., to bring the qubits into a well defined state, independent of its previous history. In many
cases, this will be the ground state |0). Since such an initialization cannot be performed by
unitary operations, it is necessarily a dissipative process.

The implementation must then provide a mechanism for applying computational steps to
the quantum register. Each of these steps will be implemented by a unitary operation defined
by a Hamiltonian H; that is applied for a time 7;. After the last processing step, the resulting

Quantum Computing: A Short Courve from Theory to Experiment. Joachim Stolze and Dieter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40438-4
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Quantum

Initialization  register / Processor\ Readout
o Step 1 Step 2 Step N 1>
0]
cee T 0>
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N qubits

Figure 9.1: Network model of quantum computation. The information is stored in the quantum
register, which must be initialized and to which the different computational steps are applied.
Finally, the contents of each qubit is read out.

state of the quantum register must be determined, i.e., the result of the computation must be
read out. This would typically correspond to an ideal quantum mechanical measurement, i.e.,
the projection onto the eigenstate of the corresponding observable.

9.1.2 Some existing and proposed implementations

For the first demonstrations of quantum information processing, the information was encoded
in nuclear spin degrees of freedom. Processing was achieved by pulses of radio frequency
radiation, applied with nuclear magnetic resonance (NMR) spectrometers. Until today, most
of the quantum computer demonstration experiments were done on liquid-state NMR quantum
computers. More details on this implementation will be given in the next chapter.

Individual quantum gates and simple algorithms have also been demonstrated with op-
tical implementations |Tak00, KMSWO00, BHS02]. Similar to the liquid state NMR, this
approach has no direct extension to larger numbers of qubits, unless some nonlinear ele-
ments are introduced [Mil89, KLMOO, SZ01]. More recently, it became possible to store
and manipulate quantum information in atomic ions trapped by electromagnetic potentials
|LDM*03, SKHR t03, GRL 03]. Since trapped ions are quite well isolated from their en-
vironment, decoherence can be controlled quite well, and there is some prospect that this
approach can be scaled to relatively large size [KMWO02]. More details on this approach will
be given in Chapter 11.

While these three types of implementations have made the biggest progress so far, it is
generally believed that systems with hundreds or thousands of qubits will need to be based on
solid state qubits. A number of suggestions have been published so far that are based on solid-
state materials. Coherent dynamics was demonstrated for semiconductor and superconducting
qubits, as well as a first single-qubit algorithm [BMS*04], Some additional details on these
proposals and implementations will be discussed in Chapter 12.

This brief summary shows how diverse the approaches are, that are currently being pursued
to build a quantum computer. Each of them has its specific properties that will make its
operation unique in some respect. Nevertheless there are some common properties for all of
them. In particular, they will all have to fulfill some stringent requirements to become useful
devices {DiV00], which we discuss in the following section.
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9.2 Requirements for quantum information processing
hardware

9.2.1 Qubits

The central part of any quantum computer is the collection of qubits that contain the quantum
information being processed. Together, they form the quantum register. While it is, in princi-
ple, possible to identity qubit states with any pair of quantum mechanical states, most of the
possible choices will be impossible to implement. This is unfortunate since even a single atom
has an infinite number of states and could therefore, in principle, form the basis of a very large
quantum register. However, most of these states have lifetimes that are much too short for
quantum computing. Furthermore, most of them (infinitely many) lie in an energy range that
is arbitrarily close to the ionization limit. As a result, they are not only unstable, but virtually
impossible to distinguish.

To be useful for information processing, the relevant physical parameters of the individual
qubits must be well known. This is necessary in order to be able to predict and control their
evolution during logical operations. While this is (at least in principle) relatively straightfor-
ward in the generlc case of spins S = 1/2, where the only possible interaction is the Zeeman
coupling H, = 'yB I, it becomes a rather nontrivial task in solid state systems, where the
internal Hamiltonian of the system and its coupling to the environment are not known a priori,
but must be determined by measurement instead. The relevant physical parameters include the
internal Hamiltonian, the interaction of the system with external fields (electric and magnetic),
the couplings between different qubits, and the relevant decoherence rates.

Scalability is an important issue if quantum computers are to become more powerful than
classical computers. In the simplest sense it only means that one should be able to place
as many qubits as one wishes in the register without affecting the operation of the device in
a significant manner. Besides just adding qubits, however, one also needs to maintain and
improve the precision of the addressing of qubits, the precision of the individual quantum
gates, and to reduce the decoherence rate. While current quantum registers have at most
N = 7 qubits, it will be necessary to increase this number to at least 20-50 before quantum
computers can tackle tasks that cannot be solved by classical computers. For some problems,
e.g., factorization by Shor’s algorithm, even larger registers, with 400 — 1000 qubits will be
required.

One of the less obvious requirements for the identification of qubits with individual quan-
tum states is that it must be possible to create arbitrary superpositions of these states. This is
usually possible unless there is a selection rule that prevents it. As an example, we consider
two neighboring quantum dots, where an electron can tunnel from one dot to the other. Tt is
then possible to identify the qubit state |0) with the electron being in dot 1, and qubit state
|1} with the electron being in dot 2. However, it is not possible to identify a qubit with each
quantum dot, e.g., with the assignment that the presence of an electron corresponds to |1),
while its absence would correspond to |0). The superposition of these two states would then
correspond to a superposition between states with different particle numbers, which is usually
impossible to achieve for massive particles like electrons.
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9.2.2 Initialization

Before the actual computation starts, the system must be put into a well defined initial state.
Typically, this state is chosen equal to the logical state |0) for all qubits. If one relies on
thermal relaxation for this process, the thermal energy kT must be small compared to the
energy difference fuw between the two qubit states. For a nuclear spin system with a Larmor
frequency wy = 500 MHz, this would imply that the temperature has to be significantly lower
than T = ';‘% = 3 mK. This may be a slow process in many systems, in particular in the spin
systems, where the relaxation times are long.

A slow initialization process is not critical for the computation process itself: it occurs
before the actval computation and does not affect the time it takes to execute the algorithm.
However, it will become a significant issue for any quantum computer that is more powerful
than a classical computer: such a system will have to rely on an error correction scheme.
All error correction schemes known to date require an input in the form of freshly initialized
qubits. These error correction qubits must be initialized at a rate that is large compared to
the dephasing rate. This requirement cannot be fulfilled by thermal relaxation, where the
dephasing processes are always faster than the spin-lattice relaxation.

The requirement can be met, however, in many optical systems, such as ion traps, where
the initialization procedures use optical excitation, which may proceed over a time of the order
of nanoseconds. In other systems, particularly in solid state systems, future implementations
will probably rely on switching on some strong coupling to a “cold” system, which brings the
qubit to its ground state, and can be switched off during the actual computation. Switching it
off is cssential, since such a strong interaction would invariably give rise 10 a fast decoherence
process.

9.2.3 Decoherence time

The information in the quantum register is subject to decay through the interaction with ex-
ternal degrees of freedom. The computation must therefore be completed before this decay
has significantly degraded the information. For most physical systems being considered for
quantum information processing, estimates for the decoherence times vary by many orders of
magnitude, This is partly due to the difficulty of performing such measurements; in addition,
the decoherence that one can altain in a specific device is usually many orders of magnitude
shorter than for an ideal isolated system and varies with many parameters of the fabrication
process that can only partially be controlled. This is particularly true for solid state systems
where the qubits are either defects embedded into a macroscopic environment consisting of
thousands of atoms, or they themselves consist of mesoscopic structures with thousands or
millions of particles.

The effect of decoherence can partly be eliminated by quantum error correction, as dis-
cussed in Section 7. However, error correction also increases the duration of the computation
and introduces additional errors. Theoretical analysis shows [Prc98] that computations can
proceed for an arbitrary duration provided that quantum error correction is used and error-free
computation without error correction is possible for a critical minimum number of operations
that is of the order of some tens of thousands of gate operations. The relevant figure of merit
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for the viability of a particular implementation will therefore eventually be whether it can
reach this threshold where reliable quantum computing can proceed for arbitrary duration.

When estimating the prospects of achieving this threshold, one has to take into account
that the relevant dephasing time is not that of the individual qubits, but that of the total in-
formation stored in the quantum register. While details for the decoherence in such highly
entangled quantum systems are not known, it is generally expected (and verified for many
specific models) that decoherence processes will be much faster for the total quantum regis-
ter than for the individual qubits. In the simple model of independent qubit relaxation, the
average decoherence time will decrease linearly with the number of qubits. For 1000 qubits,
the decoherence time will therefore be 1000 times shorter than for a single qubit, while the
number of operations required to complete an algorithm may be 1000 times higher than for a
simple one qubit computer. This example is meant to illustrate how challenging it is to find a
scalable quantum computer.

9.2.4 Quantum gates

If one wishes to build a “universal” quantum computer, i.e., one that can process arbitrary
algorithms, one needs a universal set of quantum gates. The unitary operations that act as
gates on the qubits must be implemented by Hamiltonians that act on the system for a specified
time.

Single-qubit gate Two-qubit gate
J H J ¢
k k
U= el2B(X+Z) Uy = 0 ZHZZ 7))

Figure 9.2: Single and two-qubit gates.

Generating the single-qubit Hamiltonians is in general relatively straightforward: typically
they correspond to external fields acting on the qubits for a specified duration. In the example
shown in Figure 9.2, the field is applied at 45° between the x and z axis of qubit j. The
nontrivial requirement is, in many systems, that these gates must be applied selectively, i.e., it
must be possible to apply a logic gate to qubit j in such a way that no other qubit is affected
by it. In the case of ion trap quantum computers, it is possible to apply laser pulses that are
so tightly focused that the interaction with all but one ion can be neglected. This is clearly not
possible, e.g., for spin-based quantum computers. In liquid state NMR, e.g., the wavelength
of the applied radio frequency field is of the order of 1 meter; all qubits therefore experience
roughly the same coupling to the rf field. Nevertheless it is possible to address individual
qubits independently of each other, since the excitation is a resonant process: only spins whose
magnetic resonance transitions are close to the frequency of the rf field interact strongly with
the field. The selection process occurs in this case in frequency space.
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In solid state systems, the selective addressing of individual qubits will typically be
achieved by nanometer-sized electrodes that must reach close to each qubit. While the tech-
nology of building these circuits is maturing rapidly, the etfect that these structures and the
applied fields have on the decoherence of the qubits will have to be analyzed in more detail.

In many systems, the two-qubit operations are more difficult to implement, since they also
require, apart from external fields, interactions between qubits. In the example of Figure 9.2,
the controlled phase gate includes external fields along the z-axis of qubits j and k, in addition
to a bilinear coupling between these qubits. While it is still comparatively easy to find systems
with interactions between qubits, static interactions will not do: Interactions should be oft
for most of the time. Only when a two-qubit gate is to be applied to the qubit-pair j, &,
the interaction between qubit j and k& must be switched on for a well defined duration. In
some systems, this procedure cannot be implemented directly: in liquid state NMR, e.g., the
couplings are determined by the structure of the molecule, which remains constant during an
experiment. A possible alternative is then to use static interactions and eliminate the unwanted
ones by a procedure called refocusing. This procedure is applied routinely in NMR quantum
computers and will be discussed in Chapter 10. The concept has also been generalized to other
systems [BBO3].

Every experimentally realizable gate will include imperfections, i.e., deviations from the
ideal behavior. For single-qubit gates, whose ideal form U(6, ¢) may be parametrized with
two angles, deviations may correspond to errors in these angles. In systems, where the qubits
are only part of a larger Hilbert space, leakage may be a problem: the real operation may
take part of the state out of the qubit space. As an example, consider a harmonic oscillator,
where the states [ = 0) and |n = 1) have been chosen to represent a qubit [CZ95,GRL*03].
Since the energy level separations between all states are identical, there is always a tendency
to excite higher lying vibrational states. In addition, addressing is usually not perfect. Any
excitation of a single qubit j will always excite neighboring qubits to some degree. The ctfect
of most errors is a degrading of the information in the quantum register and is therefore similar
to an additional source of decoherence. Consequently, these errors can also be eliminated by
error correction schemes, provided they are small enough.

9.2.5 Readout

At the end of the computation process, the result of the computation must be retrieved from
the final state of the quantum register: The result of the quantum computation is not the final
quantum state, but rather classical information that may consist of a sequence of (classical)
bits. Converting the quantum state into classical bits is achieved by the readout process. What
exactly has to be read out is determined by the quantum algorithm being considered. While
this is, in principle, similar to the corresponding procedure in a classical computer, where
one reads the logical state of the individual classical bits, it involves here measurements on
a quantum mechanical system. The quantum mechanical measurement process is a highly
nontrivial topic, and quantum computers touch some of its central issues. We therefore discuss
some of these issues in a separate section.
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9.3 Converting quantum to classical information

9.3.1 Principle and strategies

When the quantum algorithm is finished, the quantum register is left in its final state

ll/)ﬁn> = C()'U) 0, 00> + [&]
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which contains the solution of the problem being investigated. The sum runs over all 2V basis
states, where N is the number of qubits. According to this formal analysis, the result of the
computation is contained in the 2%V coefficients ¢; that determine the final state. However, a
useful final result should have a numerical or Boolean logical value, such as true or false or
37. We therefore discuss here how to convert the final state of the unitary transformation into
the desired classical information.

Like the initialization process, the readout is a nonunitary operation that cannot be re-
versed. The wavefunction of the quantum register collapses during readout, becoming classi-
cal. Many algorithms rely on measuring the populations of the individual qubit states |0) and
|1). In this case, the relevant observables are the longitudinal components of the pseudo-spin
operators Z. Other algorithms, like the Deutsch—Jozsa scheme, require readout of the trans-
verse component X, and some quantum computer architectures, like the one-way quantum
computer, require the readout of arbitrary components of the pseudo-spin.

Measurement
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Figure 9.3: State reduction during the measurement process.

According to the quantum mechanical projection postulate discussed in Chapter 4, an ideal
guantum mechanical measurement collapses the state |i/) into an eigenstate |¢;) of the observ-
able being measured and returns the eigenvalue ), of the corresponding state with probability
|c;]?, where ¢; is the expansion coefficient of the state |¢/) = 5 ¢;|$;). Assuming that such an
ideal measurement is possible, reading out the result of a quantum computation is relatively
straightforward. Unfortunately, real measurements deviate from this. In many realistic sys-
tems, measurement attempts will return no result, e.g., when one tries to measure the state of
a qubit by scattering a photon from it. If the photon is not scattered, this is not important, one
just repeats the attempt. If the photon is scattered but not detected, this is more critical. In this
case, an interaction of the qubit with an external system (the photon) has changed the state of
the qubit, and a repetition of the measurements may produce a different result.
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Several strategies are possible to circumvent this problem: one can try to use a QND
(=quantum nondemolition measurement) [GLPI8, Ave02]. Such a measurement arranges for
the unavoidable influence that the measurement must have on the qubit to be such that it does
not affect later measurements of the same variable. Not all variables can be measured this
way, but in most cases it should be possible to arrange the system in such a way that QND
measurements can be used at least in principle.

Another possibility is to read out not the qubit itself, but a4 copy of it. As discussed in
Chapter 4, copying quantum information is possible within limitations. The copy process
will not provide an exact copy of the quantum state (no cloning theorem!), but it can copy
exactly the probabilities of obtaining certain measurement results. As long as the copying
process is exact, one can therefore repeatedly measure copies of the qubit. If the measurement
is not successful, or to check the validity of the measurement result, one can then make an
additional copy and read that out. Such a procedure could be repeated many times to achieve
very reliable readout even with very unreliable single measurements (sec Section 9.3.4).

9.3.2 Example: Deutsch—Jozsa algorithm

As an example readout process consider a function evaluation, such as in the Deutsch-Jozsa
problem (see Section 8.2). Here the processing can be written as

|10} = Z [4,0) = |[Yan) = Z |, f (9.2)

X

where the superposition of all possible input states is transformed into a superposition of all
possible input states and function values. As discussed in Chapter 8, the goal of the Deutsch—
Jozsa algorithm is to learn, with a single function call, whether a function is constant or
balanced. For the simple case of a single qubit (plus auxiliary qubit), we found that if the
two function values are the same, f(0) = f(1), then the final state of the quantum register is

[theq) = 10)F0)) = [DIF0)) — [0)[£(0)) + (L) £(0)) (9.3)

= (J0) = [1)(SO)) — 1£(0)), 94)
but if they are different, £(0) # f(1) = f(0),

{ne) = JO)S(0)) = [1) F(0) = [0)S(0)) + [1)|£(0)) ©.5)

= (10) + 1D)(1F(0)) = [F(0)))- (9.6)

In this trivial example, the type of measurement that must be performed is obvious. In both
cases, the input register is in an eigenstate of X. Its cigenvalue is +1 if the two possible
function values are different (i.e., the function is balanced) or —1 if the two values are the
same (i.e., the function is constant). Obviously the result can be determined from the single
measurement of the variable X of qubit 1.
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The example shows that (for a single qubit) a single measurement is sufficient to determine
the result (constant or balanced). This power does not come for free: while one gains this
ability, one loses the possibility to find out what these values are, i.e., whether the (constant)
results are 0, 0 or 1, 1 or (for the case of a balanced function) f(0) = Oand f(1) = Lor f(0) =
1and f(1) = 0. Answering such a question requires one to measure a different observable,
which does not commute with X and is therefore not compatible with this measurement.

The complete information that is contained in the final state consists of the 2"V coefficients
¢; that define the superposition. Some sources claim that it is impossible to determine all these
coefficients. This is not true, and we will give some examples for simple systems where this
has been done. However, to determine all 2%V coefticients requires at least 2%V measurements,
i.e., an effort that increases exponentially with the number of qubits. Obviously this is not
possible without losing the advantage of quantum computers.

Furthermore, it can be difficult to make measurements that are state-selective, i.e., distin-
guish state |i) from the other 2V — 1 states. Instead one is usually content with measurements
on single qubits, which are often referred to as local measurements.

9.3.3 Effect of correlations

Most quantum algorithms require a readout of the state of each qubit independent of all other
qubits. This readout should provide reliable information on the final state. As discussed above,
this will not allow for a complete determination of the state. Consider, e.g., the two states

1) = 75 (100) + 1), ©7)
and
192) = 5(100) +101) + [10) + 1)) ©8)

If the two qubits described by this state are measured independently, one will obtain [0} in
50% of all cases and |1) in the other 50% for each of the qubits. Looking only at individual
results, the two states would then appear to be indistinguishable. It is nevertheless possible to
distinguish between them by taking correlations into account. In the first case, measurements
on the individual spins always yield the same result; in the second case, they are completely
uncorrelated.

9.3.4 Repeated measurements

Experimental readout schemes can never be 100% efficient, since photons may be lost, de-
tectors have noise or dark counts. One therefore should be able to repeat the measurement to
increase the probability of obtaining correct results. As discussed above, this can be achieved
either by a QND measurement (under certain conditions), or by an efficient copying mecha-
nism and readout of the copy rather than the original. We give here some more details about
the copy-and-readout procedure.
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If the qubit |g) is in a superposition state

lg) = al0) +b[1) = ( Z ) (9.9)

and the measurement qubit is initially in state |0), the copy (CNOT) operation changes the
state of the two qubits into the correlated state

(a]0) + bJ1I0) — (al0Y]0) + b[1)]1)). (9.10)

If a measurement of the measurement qubit yields a result (i.e., finds it in state |0} or |1)),
it collapses the wavefunction of both qubits simultaneously. If it does not provide a result,
one has the option of discarding the measurement qubit. This corresponds to eliminating its
degrees of freedom and returns the register qubit (o its original state. The measurement qubit
can then be re-initialized to state |0) and the process can be repeated until a result is obtained.

9.4 Alternatives to the network model

9.4.1 Linear optics and measurements

Photons are certainly among the most attractive systems for storing quantum information, and
optical components can execute unitary transformations on the photons with high precision.
Quantum algorithms can therefore be implemented relatively easily in optical setups that use
only linear optics [Tak00, KMSWOQ0, BHS02]. Unfortunately, setups with linear optics cannot
be readily exiended to larger number of qubits: as the number of qubits increases, one necds
either a coupling between ditferent qubits or the number of optical components required in-
creases exponentially with the number of qubits. Since the interaction between individual
photons is quite weak, it seems therefore impossible to build a scalable optical quantum com-
puter.

A possible way out was suggested by Knill, Laflamme, and Milburn: they realized that
measurements of individual photons represent a nonlinear process that works well enough with
single photons and can be used for quantum computing [KLMOO}. This linear optics scheme
encodes qubits in the mode occupied by the single photon, i.e., two modes are required to
encode a logical qubit: |0,) = |01),|1,,) = |10). Their scheme differs from the usual network
model in that they use measurements, which are clearly nonunitary operations, to process the
data. The results of these measurements are fed back into the state of the quantum register by
controlled phase shifts. Several steps have been taken towards realizing this scheme, including
the construction of a two-qubit gate that is closely related to the CNOT operation [OPW103].

Among the biggest difficultics of this architecture is the necessity for storing qubits. Even
if the auxiliary photons used for the measurements can be produced on demand, which remains
a challenging problem [LMO00, KHR02, TAF+ 02|, the measurements are inherently probabilis-
tic and have to be repeated several times to ensure success. Until success is assured, the pho-
tons have to be kept in a waiting state. While some schemes have been tested to store the
quantum state of photons [CBM83, LDBHO1, TSS™ 02}, the cfticiency of such conversions is
still much too low for useful implementations. While these difficulties make it unlikely that



9.4  Alternatives to the network model 143

such a scheme will be implemented directly, similar proposals have been put forward that may
be easier to implement. They use squeezed states {GKPO1] or coherent! states [RGM103] to
encode the qubits: in the latter case, the logical states are [0r) = |a) and |1.) = | — «),
which are aimost orthogonal if ov > 2.

Experimental work towards this goal is under way. Single-qubit gates are straightforward
to be implemented by retardation plates or modulators. Two-qubit gates are significantly more
demanding but have been realized by interference on a beamsplitters [SJTP04].

9.4.2 Quantum cellular automata

One requirement of the network model of quantum computation is local addressing, i.e., the
ability to perform logical operations on arbitrary individual qubits. This requirement is rel-
atively easy to satisfy for the present demonstration models with only a few qubits. It is,
however, a major problem for increasing the number of qubits. In liquid state NMR, e.g., the
number of resonance lines increases exponentially with the number of coupled spins, making
individual addressing virtually impossible for systems with 10 and more qubits. Apart from
the difficulty of constructing the device in such a way that it allows addressing with high pre-
cision, the large number of control gates may introduce too many channels for decoherence.

A quantum computer architecture that does not need to address every qubit individually
has been developed by Lloyd [L.1093]. In this scheme, only a few control qubits are needed,
while the quantum information is stored in a chain of qubits that consists of repeated units
ABC of only three distinguishable physical qubits. Each group of three physical qubits stores
one logical qubit. Logical operations can be broken down into operations that acton all A, B or
C physical qubits. It was shown that this architecture is universal, i.e., it can efficiently run all
algorithms that are efficient on a network quantum computer. A modification of this scheme
that uses only two distinguishable units was proposed [BJ97, BI99, Ben0O]. Although the
overhead is significantly larger with this scheme, it may be well suited for an implementation
based on endohedral fullerenes as qubits [Twa03].

9.4.3 One-way quantum computer

An even more radical deviation from the network computational model was suggested by
Raussendorf and Briegel {RBO1]. Their approach, which is referred to either as one-way
quantum computer or cluster quantum computer replaces most unitary transformations by
single-qubit measurements. Before these measurements can be performed, the system has to
be brought into a highly entangled state (the “cluster state”). This approach therefore shifts the
interactions between qubits from the processing stage to the preparation stage and explicitly
uses entanglement as a computational resource. The proposed device appears to be at least
as powerful as a network quantum computer and for certain tasks it is more powerful [RBO1,

I Coherent states [KSSS CTDL92] arc superpositions of harmonic oscillator eigenstates |n), |} =

exp ( M ) Sy \/— n), where « is an arbitrary complex number. No two coherent states are orthogo-
nal to each other, but their scalar product decays rapidly with growing distance in the complex plane, [{«|3)|? =
~le=B1? Coherent states minimize the Heisenberg uncertainty product, and squeczed states enjoy similar quasi-

classlcal properties.
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RBBO3] . For a possible implementation, it was suggested to represent the qubits by atoms
stored in an optical lattice [DRKBO2] formed by the electric field of a standing light wave.
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10 Liquid state NMR quantum computer

The first implementation of a quantum computer that has been realized is nuclear magnetic
resonance (NMR) in liquids. It encodes the quantum information in the nuclear spin degrees
of freedom of molecules that are placed in a glass tube. While one usually thinks of quantum
registers as individual systems (and many projects try to implement such systems), NMR
radically deviates from this approach. In this case, every qubit is represented by some 102
identical copies of a nuclear spin in a suitable molecule. One therefore refers to this type of
quantum information processing as “ensemble quantum computing”.

Nuclear magnetic resonance is mainly a spectroscopic tool that is used for the analysis
of almost any type of molecule, condensed matter or gases in various environments. In the
form of MRI (magnetic resonance imaging) it also has become an important tool in clinical
medicine. We start with a review of the basics of NMR spectroscopy before we discuss how
this approach can be used for quantum computing.

10.1 Basics of NMR

10.1.1 System and interactions

Magnetic resonance is a spectroscopic technique that investigates the spin degrees of freedom
of electrons and nuclear spins. The spin of charged (and some neutral composite) particles has
a magnetic dipole moment associated with it; if such particles are placed in a magnetic field,
the energy of these magnetic dipoles depends on their orientation with respect to the field.
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Figure 10.1: Basics of nuclear magnetic resonance (NMR).

As shown in Figure 10.1, the magnetic field lifts the degeneracy of the spin states. This
effect, which is known as the Zeeman effect, is proportional to the strength of the magnetic
field. For a spin S = 1/2, the splitting of the two energy levels is proportional to the magnetic

Quantun Computing: A Short Course from Theory to Experiment. Joachim Stolze and Dicter Suter
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-401438-4
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field strength. Quantum mechanically, it is described by the Hamiltonian
H, = —~S - I, (10.1)

where + is the gyromagnetic ratio of spin S. The usual convention is to orient the z-axis along
the static magnetic field. The Hamiltonian then becomes

H.=—S.By = ~wrS,, (10.2)

where By is the strength of the magnetic field and w;, the Larmor frequency. For most NMR
quantum information processing experiments, we can restrict the discussion to spins S = 1/2,
for which the Zeeman interaction is the only coupling to external fields.

In magnetic resonance experiments, one uses alternating magnetic fields, which couple
to the same magnetic dipole moments, to resonantly excite transitions between these spin
states. The resonance condition is that the frequency of these alternating fields fulfills the
Bohr condition

hw = AE, (10.3)

where AF is the separation of the two energy levels (= fiwy, here). The relevant frequency is
in the radio frequency range for nuclear spins (10-1000 MHz in ficlds of 1-20 T).
Given the commutation relations for angular momentum, we can write the (Schrodinger)
equation of motion as
as, ds, ds,
X = — S‘l ) = - —_
e T e g TR dt
The resulting evolution of the spin is a precession around the direction of the magnetic
field at the Larmor frequency.

= 0. (10.4)

(Su)(t) = Suy(0)cos(wrt — ¢) (10.5)
(Sy)(t) = Sy(0)sin(wrt — ¢) (10.6)
8:)(1) = 5.(0), (10.7)

where S, (0) is the amplitude of the transverse magnetization and ¢ its phase, i.e., the
angle from the z-axis att = 0.

As shown in Figure 10.2, this evolution corresponds to a precession around the z-axis,
r.e., around the magnetic field. Equation (10.4) is called the Bloch equation, after one of the
discoverers of NMR, who also wrote the theory for it [Blo46]. Tt can also be derived classically
and has applications to many two-level systems besides NMR [FVH57].

10.1.2 Radio frequency field

To excite transitions between the different spin states, one applies a radio frequency (RF)
magnetic field. It is generated by a current running through a coil that is wound around the
sample, as shown in Figure 10.3. The generated RF field is

_ cos(wt)
B =213 0 , (10.8)
0
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~

Figure 10.2: Larmor precession of spins in a magnetic field.

B(l

Figure 10.3: An alternating current through a coil generates an RF field perpendicular to the
static magnetic field.

where we have chosen the x-axis parallel to the axis of the coil.
This alternating magnetic field is best described as a superposition of two fields rotating
in opposite directions.

_ cos{wt) cos(wt)
By = By | sin(wt) | + By | —sin(wt) | . (10.9)
0 0

The first component rotates from  to the y axis (counterclockwise when viewed from the
z-axis), the second in the opposite direction.

10.1.3 Rotating frame

The resulting dynamics are best analyzed in a coordinate system that rotates around the static
magnetic field at the radio frequency. We briefly show here the transformation to this rotating
frame since all quantum computing experiments use the rotating frame representation, not the
laboratory frame. As shown in Figure 10.4, the two coordinate systems are related by

z\" cos(wt)  sin(wt) O x
Yy = | —sin(wt) cos(wt) 0 vy I, (10.10)
z 0 0 1 z
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where the vector 7 refers to the rotating coordinate system, the unlabeled to the laboratory-
fixed system.

Z

" y

wt ot
r
X y
Figure 10.4: Rotating and laboratory-fixed coordinate systems.

If we apply this transformation to the radio frequency field, the two circular components
become

1 cos(2wl)
Biy=H8 {0} 4+ DB | —sin(2wt) | . (10.11)
0 0

Apparently, one of the two components is now static, while the counter-rotating compo-
nent rotates at twice the RF frequency. It turns out that, to an excellent approximation, it is
sufficient to consider the effect of that component which is static in this coordinate system,
while the counter-rotating component can be neglected [BS40]. It is therefore a convenient
fiction to assume that the applied RF generates a circularly polarized RF field, which is static
in the rotating frame.

10.1.4 Equation of motion

So far we have transformed the radio frequency field into the rotating frame. We also need to
transform the quantum mechanical equation of motion into this reference frame. We start by
transforming the state vector, using the unitary operator

U(L) = ¢™i8:/h, (10.12)

which defines a rotation around the z-axis. It transforms the laboratory state |¢) into the
rotating frame as

W}y’ _ Ufl W”> —e iwt,Sl/ﬁ‘w>‘ (1012)
The same operator also transforms the Hamiltonian:
H =U "HU +ihU UL (10.14)

The first term corresponds to a rotation of the operator around the z-axis. The second term
takes into account that the rotating coordinate system is not an inertial reference frame, since
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the rotation is an accelerated motion. Like centrifugal forces, it corrects the equation of motion
for the corresponding virtual force. Evaluating this term, we find

ihU™1U = w8, (10.15)
The rotating frame Hamiltonian is therefore
H = -AwrS, —w1S,, (10.16)

where wy = vB) is the strength of the RF field in frequency units and Aw;, = wy — w is the
static magnetic field (also in frequency units), reduced by the frequency of the applied field.

Figure 10.5: Effective magnetic field in the rotating coordinate system.

As shown in Figure 10.5, the total effective field in the rotating frame can be represented
by the vector

Dot = (w1, 0, Awp). (10.17)

10.1.5 Evolution

The resulting evolution of the spins in the rotating frame is exactly the same as if a (small)
static field were applied in this direction in the laboratory frame: they undergo a precession
around the magnetic field.

Figure 10.6 shows three specific examples for the motion of spins in this effective field.
In the absence of RF irradiation (w; = 0), the effective field is aligned along the z-axis and
the precession is the same as in the laboratory frame, except that the precession frequency
is lower. In the case of resonant irradiation (shown on the right), the field along the z-axis
vanishes and the effective field lies along the z-axis. In the general case, the effective field
lies along a direction in the zz plane.

If the radio frequency is applied on resonance and the spins are initially in thermal equi-
librium, the precession around the effective field (which now lies in the zy plane) brings the
spins from the direction parallel to the static magnetic field into the xy plane (perpendicular
to the effective field), and from there to the negative z-axis. Such a rotation by an angle 7
corresponds to an inversion of the spins. If the field is left on, the spins continue to precess,
returning to the +z axis, again to the negative and so on. This process of successive inversions
is called Rabi flopping, in reference to Rabi’s molecular beam experiment [RZMK38]. The
frequency w; at which this process occurs is called the Rabi frequency.
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Figure 10.6: Spin precession for the cases of free precession(w = 0, left), resonant irradiation
(Awr, = 0, right), and the general case (center).

The primary use of RF irradiation in NMR quantum computers is to create logical gate
operations, As discussed in Chapter 3, single-qubit gates correspond to rotations of the spins.
Pulses of RF radiation are a convenient means for implementing such rotations around arbi-
trary axes. To show this, we first assume that the applied RF field is oriented along the w-axis
of the rotating coordinate system; other directions (e.g., along the y-axis) can be chosen by
adjusting the phase of the RF field. The rotation axis can therefore be oriented in any arbitrary
direction by adjusting frequency (and thereby Aw,) and phase of the RF. The angle of rotation
o wyrT around the effective field, which is called the flip angle, is given by the product of
the effective field strength and the pulse duration 7.

10.1.6 NMR signals

NMR signals are obtained in the time domain, as the response of the system to an RF pulse.
We consider first the simplest case, where the system consists of an ensemble of spins S =
1/2.

We describe the system by a density operator analysis to calculate the signal. The thermal
equilibrium density operator is

H _
Peq X exp(—H/kpT) =1 - — (10.18)
li?Bl
where the approximate form, derived for the high-temperature limit
AE =w,S, < k! (10.19)

is always valid in liquid state NMR: under typical experimental conditions, %:AP E_is of the order
of 1075, We have therefore

| Wy,
g == | 1+ —=8.]. .
Peq 2( +kUT ) (10.20)
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In the simplest case, one applies an RF pulse that rotates the spin through an angle of 7 into
the xy plane.

1 wr,
p(0+) = (1+ k‘BTS > (10.21)

After the pulse, the system undergoes Larmor precession under the Zeeman Hamiltonian

) ) 1
p(t) — €_LHI'/hp(O+)€[Ht/h’ _ =

5 <1 + I:;T(S coswyt + 8, smwﬁ)) (10.22)

Detection of the signal should not be treated as a quantum mechanical measurement process.
There is no reduction of a wavetunction, and the system is virtually unaffected by the mea-
surement. Rather than projecting onto an eigenstate, one measures the expectation value of a
specific observable as a function of time, without disturbing the free evolution of the quantum
system. This is of course closely related to the fact that the system consists of an ensemble of
many spins rather than a single particle.

Precessing spin
induces voltage
in coil

I\'nitugr

Precessing spin

= rotating magnetization
Figure 10.7: Detection of freely precessing spins through the Faraday effect.
Figure 10.7 shows how observation of the precessing spins is achieved through the Faraday

effect. The polarized spin ensemble is a macroscopic magnetization; as it precesses, it changes
the flux through the RF coil, thus inducing a voltage signal proportional to

s(t) x ) X wp Z Zk T Cos(th) (10.23)

Damping effects, which are not discussed here, cause a decay of the signal,

2
L cos(wpt)e T2, (10.24)

s(t) x ST

This signal, which is generated by freely precessing magnetization that slowly decays is
known as free induction decay (FID).

For an analysis of the signal one usually considers not the time domain signal, but its
Fourier transform. For an FID decaying exponentially with time constant 75, the spectrum
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becomes

8 = _ 10.25
s(w) V 2r 26T 1 + (w—w),)2T? ( )

i.e., a Lorentzian with a half-width at half height ,i centered at the Larmor frequency wy,.
While the frequency-domain signal contains the same information as the time-domain
FID, it is still very useful to do this transformation. The main advantage of the Fourier trans-
form is that it allows one to distinguish different transitions: two distinct transitions usually
have different Larmor frequencies w;;
L — 1
w.,] == ‘-—h—
The corresponding resonance lines are therefore separated in frequency space, while the time
domain signals overlap. The amplitude of each resonance line is determined by the product
of a density operator element with an element of the observable; in the simplest case, where
the nontrivial part of the initial density operator and the observable are identical, 2p(0) — 1 =
A =8, and the amplitudes A;; of the individual transitions in the spectrum become

(10.26)

Ay ox [(8u)is]. (10.27)

10.1.7 Refocusing

In many NMR experiments, and particularly in (NMR-) quantum computation, it is necessary
to eliminate unwanted interactions. This is usually achieved by a sequence of RF pulses that
modulates the evolution in such a way that the total effect of the intcraction on the system
vanishes. The first such experiment is the “Hahn-echo” observed in liquid state NMR by
Erwin Hahn [Hah50].

Figure 10.8 shows a typical experiment. The initial 5 RF pulse converts longitudinal into
transverse magnetization that subsequently precesses in the magnetic field. For a system of
uncoupled spins, the density operator after the RF pulse is

2p(7) = 1o ¢ HT/RG eHT/h — G cos(AwrT) + S, sin(Awy, 7). (10.28)

As shown in the lower part of the figure, the phase Awy, T (which represents the orientation
of the magnetization in the xy plane) increases linearly with time. If two spins experience
ditferent magnetic fields, their precession frequency differs. In the figure, the full and dashed
lines indicate the evolution of the phase of two spins that experience different magnctic fields
(e.g., due to magnetic field inhomogeneity). In the central part of the figure, the full and dashed
arrows indicate the orientation of these spins. If a distribution of such Larmor frequencies is
present, the overall effect will be destructive interference and a loss of signal, as indicated in
the upper part of Figure 10.8.

To refocus this destructive interference process, one can apply a seccond RF pulse. A 7,
pulse leaves the x-component of the density operator invariant but inverts the y-component:

2p(7+) 1o Sy cos(Aw;,7) — Sy sin(Awy,7)
=8, cos(—AwrT) — Sy sin(—Awy, 7). (10.29)
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Figure 10.8: Refocusing of magnetic field inhomogeneities in a Hahn echo experiment.

Apparently, the pulse inverts the phase of the vy magnetization vector, as indicated in the
lower part of Figure 10.8. The spins continue to precess in the magnetic field. If the Larmor
frequency remains constant over time, the total phase acquired during the time 7 after the
refocusing pulse is equal to the phase that the spin acquired between the two pulses, before
their phase was inverted. As a result, the total phase vanishes, independently of the Larmor
frequency of the spin. The destructive interference is then eliminated and a “spin-echo” is
observed.

In a similar way, unwanted couplings between spins (qubits) can be eliminated by suitable
refocusing sequences. In an AX system (see Section 10.2.2, e.g.,) the coupling term can be
eliminated by applying a refocusing pulse to one of the spins. For a Hamiltonian

Hax =waA, +wx X, +dA. X, (10.30)

the initial condition 2p(0) — 1 x A, + X, and equal precession periods before and after a
7 pulse on the X-spin, the system evolves to

2p(27,) 1= U(T)e—mxx/hU(T)(AI + X;I;)Ut(T)eiﬂx"'/hUT(T)
_ U(T)67'iva_,.,/hU(T)eMrX;,./FL(A:I: + X;,,)e“”xm/ﬁUT(T)e”Xm/hUT(7), (10.31)

where U(7) := e~ ""ax7/% g the time evolution operator describing the precession. Using

XK o™X/ = A AL —wx X, — dALX,, (10.32)
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we find that the the refocusing pulse eliminates the Zeeman term X, as well as the coupling
term A, X, but leaves the Zecman term of the A spin. Similar refocusing schemes are possi-
ble to climinate different terms in larger spin systems.

10.2 NMR as a molecular quantum computer

10.2.1 Spins as qubits

The two quantuim states that represent a qubit correspond naturally to the two states of a spin-
1/2 — the only quantum system whose Hilbert space has exactly two states. It is therefore
natural to use the Feynman—Vernon—Hellwarth picture [FVH57] to describe the qubit as a
virtual spin-1/2. In this chapter, however, the virtual spin is a real nuclear spin of a molecule
in solution: we study NMR systems to show how quantum computers can be implemented. It
should be realized, however, that the quantum computers that can be built this way stilt have
very limited capabilities. They should not be compared to conventional computers, which
have been developed over half a century, but to early prototypes whose development only
started ten years ago.

Classical bit Quantum bit = qubit Spin 172
V AE ]

Figure 10.9: Identification of bits with voltage levels (classical computer, left), quantum me-
chanical states (generic quantum computer, center), and states of a spin-1/2 (right).

Using the spins as qubits requires a mapping of the logical qubit states to the spin states.
As shown in Figure 0.9, the spin states take over the role of voltage levels in classical com-
puters. Conventionally, one chooses the |y = +1/2) state to represent a logical 0, while the
Img = —1/2) state represents a logical 1. To construct a quantum register, one needs several
distinguishable qubits.

As indicated in Figure 10.10, conventional (Si-based) computers use wires to address the
individual bits of information. In a liquid state NMR quantum computers, the qubits are nu-
clear spins of freely floating molecules; clearly it is not feasible to use wires for addressing in
this case. Nevertheless, it is possible to address qubits selectively. Since the qubit gates are
applied with resonant radio frequency fields, they are only ettective when the RF frequency is
close to the Larmor frequency of the spin. Spins whose Larmor [requency differs from the fre-
quency of the radio frequency pulse are not affected by the pulse to a first approximation. The
width of the frequency range is of the order of the Rabi frequency, i.e., inversely proportional
to the duration of the RF pulse.
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Liquid state NMR

Solid state computer quantum computer
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Figure 10.10: Addressing of qubits in NMR quantum computers vs. solid statc computers.

The difference in Larmor frequencies for different qubits is associated with their gyromag-
netic ratio (for heteronuclear spin systems) or with the chemical shift (for homonuclear spin
systems). The term “‘chemical shift” refers to a change in the magnetic field strength at the
site of the nucleus: the electron system in which the nucleus is embedded has a nonvanishing
magnetic susceptibility. These shifts depend therefore on the electronic structure of the mol-
ecule and can be used to make nuclear spins distinguishable. The Hamiltonian that describes
such a system of qubits can be written as

Hy = — Zwisg (10.33)

where the index 7 runs over all spins (qubits).

These frequency shifts are proportional to the magnetic field strength. The available chem-
ical shift range depends on the isotope under examination. In the case of protons ('H), this
range is of the order of 10 ppm. For !3C, it is about 200 ppm, and similar for *N. For a typical
IH NMR frequency, the available frequency range is therefore of the order of 6 kHz, for 1*C
in the same field 30 kHz.

In contrast to conventional computers, where etching localizes different bits, this may be
considered a bottom-up approach, where the molecular design determines the location of the
qubit in frequency space.

10.2.2 Coupled spin systems

Implementation of quantum algorithms requires two-qubit gates, which can be implemented
by using couplings between qubits / spins. Such couplings are naturally present in nuclear spin
systems and exploited also in NMR spectroscopy. There are two main types of couplings; the
first is called scalar, indirect, or J-coupling, the second type is the direct or dipolar coupling.
The latter arise from the magnetic dipolar field generated by one spin and felt by the other,
while the former are mediated through the electrons and do not depend on the orientation
of the molecule. The difference in orientation dependence is responsible for the fact that in
isotropic liquids, the direct dipole—dipole coupling is averaged to zero. As a result, only the
scalar J-coupling is observed in the spectrum.
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In both cases, the coupling between two spins can be understood as a small additional
magnetic field generated by spin A and acting on spin X, as well as in the opposite direction.
We consider here only the simplest case (which is most useful for NMR quantum computing),
where the interaction can be written as

Hax = dA.X.. (10.34)

The total Hamiltonian is then

H=H.+Hax = —waA, —wxX; +dA X, =

i}
—wa —wy + %

J —un+ux - 4
2 WA —wx — gzﬁ
wa +wx + %
(10.35)
Energy levels Spectrum
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X-spectrum A-spectrum
¢ ' t '
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Figure 10.11: Encrgy levels and spectrum of a system of two spins-1/2, called A and X, re-
spectively. The dashed horizontal lines indicate the energy levels of the Zeeman Hamiltonian
alone (no coupling), the solid lines the energies of the full Hamiltonian.

Figure 10.11 shows the corresponding energy levels. The coupling shifts the states with
parallel orientation of the two spins upwards (for a positive sign of the coupling constant d),
the states with antiparallel orientation downwards.

Transitions are possible between the states [1+1], 1T« |7, T/« |l, |1« ]]. The transi-
tion frequencies are

Wi = Wite]] = WX —dh/Q; W13 = W1yt :wA—dﬁ/iZ; (10’;())
Wod Wil = wa T dh/2; war = wire) | = wx +dh/2;
The spectrum consists of four lines, each of which is associated with a transition of one spin
and labeled by the state of the second spin.

10.2.3 Pseudo / effective pure states

Before NMR quantum computing was demonstrated, all algorithms for quantum computers
assumed that quantum computers use individual quantum systems, which are initially prepared
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in a specific quantum state. Unfortunately, detecting individual spins is extremely difficult and
has only been achieved in a few specific systems [KDD193, WBB*93, GDT197, K&h99]. In
most cases, signals can be detected only from macroscopic ensembles of spins, containing
some 102 spins. These spins are not in identical quantum mechanical states and therefore
cannot be described by a pure state. For the description of the mixed states, one has to use a
density operator.

NMR quantum computers became feasible when it was realized that algorithms that re-
quire pure states can also be applied to systems in mixed states. For this purpose, the target
system has to be prepared in an initial state that can be written as the sum of the unit operator
and an operator representing a pure state:

Ppp X 81+ apy, (10.37)

where p,,, is referred to as a “pseudo-pure” state, or “effective pure state”, while p,, is a pure
state. If the unit operator does not contribute to the signal, the behavior of such a system is
exactly equal to that of a pure state.

The coefficient «v is largely determined by the polarization of the spin system. Obviously,
a single spin is always in a pseudo-pure state (compare (4.59)). In coupled spin systems,
however, the thermal equilibrium states are not even pseudo-pure. Unitary operations cannot
be used to bring such a system into a pseudo-pure state. Instead one has to average over a
number of different mixed states to make the pseudo-pure state.

There are a number of procedures for implementing such an averaging scheme, which are
referred to as “spatial labeling” {CFH97], “temporal labeling” [KCL98] and “logical labeling”
[VYSC99]. Temporal labeling is perhaps easiest to explain, using the example of two coupled
spins. In equilibrium, the populations of the four states are

M:l/d+e  TLIT /4 [1i1/4—e (10.38)

To obtain a pseudo-pure state, one can equalize the populations of three levels (e.g., T|, [T, [ ])
by cyclically permuting them and adding the results. The time-averaged populations would
then be

—

+ = (10.39)
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The corresponding averaged density operator corresponds to the sum of the unit operator (=the
totally mixed state) and a pseudo pure state.

The well known disadvantage of this process is that one loses signal by destroying polar-
ization. In the case of spatial labeling, one turns the population differences of states 2, 3, 4
into transverse magnetization, which is destroyed by pulsed field gradients. It was soon re-
alized [War97] that this loss of polarization, which increases exponentially with the number
of spins in the quantum register, severely restricts the usefulness of liquid-state NMR quan-
tum computing. Similarly, the number of operations required increases exponentially with the
number of qubits. This can be reduced to polynomial overhead by logical labeling [VYSC99],



158 10 Liquid state NMR quantum computer

which uses additional (ancilla) spins to create pure states for specific ancilla spin configura-
tions. For the related techniques POPS {Fun0O1] or SALLT [MKO1], the overhead is indepen-
dent of the number of qubits.

10.2.4 Single-qubit gates

single-qubit gates are implemented by RF pulses. In the rotating frame, an RF pulse can be
represented by its propagator ¢~ /" where H is the Hamiltonian during the pulse and ¢ the
duration of the pulse. Depending on the phase of the RF field, the propagator for a resonant
pulse is ¢~ +Se/ or ¢=1@ySu/RThe flip angle is

Do = WaT, o=y, (10.40)

where T is the duration of the pulse.

Combining these two generators (rotations), it is possible to implement any SU(2) opera-
tion. An important example is the set of rotations around the z-axis, which cannot be generated
by RF pulses directly. They can, however, be realized by combining three rotations around
axes in the xy plane:

. P—Mf?/'l o T
ef‘Ld)S;/h, — : €i¢/2 — ()I7},581,,/?),0—'1,rf>sy/hetgb.,-/h
— ﬁf'i.%S”/ﬁcl:bsx/ﬁeigsy/!a (10'41)

We now consider the most important single-qubit gates. Using the conventional choice of
relative phases between states, the NOT gate may be implemented, up to an irrelevant overall
phase, by

NOT C—Mer/ﬁ = < _; i ) = (_1_1"%< 1 1 ) (]042)

This implementation of NOT thus differs from the usual representation by an overall phase of
—%. Since such overall phases do not correspond to observable quantities, we will not con-
sider them here and regard all implementations that differ by such a phase factor as equivalent.
One might first think that any 180 degree pulse, which inverts the two states |0) and {1)
should be an implementation of NOT. However, looking at the propagator for a 7, pulse,

C—mSy/h: ( (l) —01 ), (10.43)

one secs that this differs from the NOT in terms of the relative phase that it applies to the two
states.
The Hadamard gate

H - %( b ) (10.44)
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can also be implemented by an RF pulse

1 1 1 —i(Z)(S,+8,)/h
—_— =e¢ V2 AT e (10.45)
A4

Physically this transformation can be achieved in a number of different ways: either by apply-
ing an off-resonant RF pulse with Aw; = w;, or by a sequence of RF pulses along the y,
and —y axes:

H — e—'ﬁzsy/he~iﬂ‘sz/hei%Sy/hv — e—mSz/hez'%Sy/ﬁ- (]0.46)

The last version is the shortest: a (%)y pulse is followed by a 7, pulse.

The three-pulse version is also interesting: as in the case of the composite z-rotation
(10.41), it can be understood as a “rotated rotation”. The central pulse executes the desired #
rotation around an axis in the xy plane. The first and last pulses then rotate the axis from the
2y plane into the xz plane. This scheme is experimentally easier to implement since it only
requires resonant pulses.

For many purposes the Hadamard gate can be replaced by the pseudo-Hadamard gate

1 i
ne g Ly )= 10
and its inverse
1 — i
b= ﬁ( } 11 > =e (10.48)

i.e., by £% RF pulses around the y axis.

10.2.5 Two-qubit gates

Two-qubit gates require couplings between the spins to apply transformations to one spin con-
ditional on the state of the other spin. There are two somewhat different ways of implementing
such gates. One may be referred to as “soft pulses”, the other as “pulses plus free precession”.
The first uses the fact that weak RF fields affect only transitions whose resonance frequency
is close to the RF frequency. As we discussed in Section 10.2.2, the transitions of a nuclear
spin that is coupled to another spin can be labeled by the state of the coupling partner. A weak
RF field whose frequency matches the frequency of one resonance of spin A (e.g.) therefore
excites spin A on the condition that spin X is in the |1) state — a CNOT gate.

1
CNOT = . (10.49)
1
This variation is conceptually simple since it can be described in terms of two-level sys-

tems. and it can be extended to more complicated spin systems. It has the disadvantage,
however, that it requires long pulses, thus causing excess decoherence.
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FFigure 10.12: Evolution of nuclear spin coherence under a coupling to another spin-1/2.

The second approach can also be understood in terms of a vector diagram. We consider a
spin A coupled to a control spin X by the interaction dA ;X .. As shown above, the resulting
spectrum has two resonance lines in the A-spectrum, which can be labeled by the states | )
and | }) of the X spin. We will assume that pulses can be applied to the A and X spin
separately — a condition which must be satistied for the one-qubit gates. In contrast to the first
implementation, however, the pulses used here always act on all transitions of a given spin,
independent of the state of its coupling partner(s).

Starting trom the state [00) = | X =T, A =1,), a ¢ *3%v/? RF pulse creates a superposi-
tion state

1
V2

Free precession converts it into a state

W () =l

0) & (|0) + 1))} (10.50)

|W(t)) = L[\o) @ ([0ye At/ L)t hdt/ 1)) (10.51)

V2
where we use a rotating frame that is resonant with the Zeeman frequency for the A and
(independently) for the X spin.

After atime { = 57, the spin has reached a state

™

W) = 5 l0) € (=)o) + (14 DI, (1052

An ¢ "5 A:/1 pulse applied at this time returns the system to its original state [00) (apart from
an overall phase factor). This can be readily followed in terms of a vector model. The initial
y-pulse turns the spin from the z-axis to the xr-axis. It then precesses by 90 degrees to the
y-axis, and the subsequent z-pulse flips it back to the z-axis.

It we apply the same sequence of pulses to the state |10) = |X =], A =T), the free
precession occurs with opposite sign

1
V2
and the second pulse rotates the spin to the negative, rather than the positive z-axis. As can
be easily checked, the sequence of two pulses with free precession is therefore equivalent to a

(B(0) (1) 5 (0 1) 4, (10:53)
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controlled NOT operation

oI5 Xy /=i (XA B AT AKX )/ —iF Xy /R (1+1) 1 . (10.54)
1

The additional terms of X, and A , are for normalization of the relative phases. They can be
implemented as composite z-pulses [FFL81] or as phase shifts.

Three qubit gates like the Toffoli gate can be constructed in the same way as two-qubit
gates. However, since there are no three-spin interactions in nature, these must be created
artificially. This is still possible, using, e.g., transformations like

e"iﬁByCze‘i“A:BmeiﬁByCz — e—i’yAszCz' (1055)

Alternatively, three- or N-spin gates may be generated using selective pulses
[PSD*99,MDAKO1].

10.2.6 Readout

As discussed in Section 10.1.6, detection in magnetic resonance is best described in a classical
picture: the transverse components of the spin generate a macroscopic magnetization that pre-
cesses around the static magnetic field. Obviously such a detection scheme is not compatible
with the usual description of a quantum mechanical measurement, which involves the collapse
of a wavefunction. Instead, one observes the system continuously, without significantly affect-
ing its behavior. This difference is closely related to the fact that the system is an ensemble,
rather than the vsually assumed single-particle system. In addition, the observed quantity is
not the population of some state, i.e., (¢4 |¢), but rather the evolution of a coherence, i.e.,
[¥;) (x|, where |¢); ) are eigenstates of the Zeeman Hamiltonian. According to equation
(10.23), the signal contribution of a specific coherence is proportional to the corresponding
matrix element of the total spin operator ) SL.

This matrix element vanishes unless exactly one of the spins changes its magnetic quantum
number, i.e., unless the transition occurs between two states

i) = [m®,m*, ..m") and 1f) = [m”, mY, ..mM) (10.56)
with m7’ = m/? for all but one j. While the total signal is the sum over all spins (qubits), it
is straightforward to distinguish the individual qubits. As we discussed in Section 10.2.1, all
spins in an NMR qubit register must have different Larmor frequencies to allow addressability
for logical operations. This condition also implies that their precession frequencies during
detection will be different. A Fourier transformation of the FID from such a system therefore
separates the contributions from different qubits in frequency space.

Measuring the FID is apparently a straightforward way to measure the expectation value of
transverse spin components. When a quantum algorithm requires the measurement of popula-
tions, it can be trivially modified to allow for implementation on an NMR quantum computer.
One adds an RF pulse that converts the populations into transverse coherence and again mea-
sures the FID of the system.
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Figure 10.13: Readout of populations with the help ol an RF pulse for the two-qubit states. The
vector diagram shows how the spin is rotated by the RF pulse and the (single line) spectra show
how the resulting amplitudes identity the qubit state.

Figure 10.13 shows as an example, the signal that one observes from a single qubit if it is
in one of the two eigenstates before the RF pulse is applied. If it is in the ground state, which
corresponds to the spin pointing along the direction of the magnetic field, the RF pulse rotates
it to the positive y-axis. Since §,, is the observable, we expect a positive signal at the Larmor
frequency of this qubit. If the spin is in the logical |1) state instead, it always points in the
opposite direction and the signal becomes negative.

There are cases in quantum computation, where the readout process hinges on the collapse
of a wavefunction. For those cases, which include Shor’s algorithm, the algorithm must be
modified when it is applied to an NMR system. The non-existence of a collapse is handled
by appending an additional step, which is polynomial in the number of bits and allows one to
obtain the result from ensemble measurements [GC97, VSBF01].

10.2.7 Readout in multi-spin systems

As the number of qubits increases, the number of resonance lines in the associated NMR
spectra also increases. While the addressability criterion mandates an increase in the number
of lines that is proportional to the number of qubits, the couplings between the spins (which
are necded for two-qubit gates) increase the number of lines much more rapidly. If all spins
arc coupled to each other, the total number of lines is n; = N2V~! where N is the number
of qubits. This exponential increase in the number of lines in a finite frequency bandwidth,
limits the number of useful qubits. Figure 10.14 shows the number of resonance lines for N
=1, 2, and 3 qubits.

While this large number of resonance lines limits the size of the qubit system, it does
have the advantage that the spectrum contains much more information about the state of the
quantum mechanical system than the simple readout of individual qubits. Every group of lines
associated with transitions of qubit |7} can also yield information about the states of the other
qubits. To illustrate this, we consider the two-qubit system of Section 10.2.2 and assume that
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Figure 10.14: Increase in the number of resonance lines in N spin systems.

we are interested in the readout of the states
00), 01), [10), [11). (10.57)

Figure 10.15 shows how these states can be distinguished by applying an RF pulse, mea-
suring the FID and calculating its Fourier transform. If we apply the pulse only to the A or
X spin, we measure only a partial spectrum. Each partial spectrum consists of two resonance
lines that can be labeled with the quantum state of the coupling partner. If the coupling part-
ner X is in state |0), e.g., the spectrum of the A spin only shows the single resonance line
associated with this state. Even the partial spectrum of either spin provides therefore a clear
distinction between all four possible cases. It is also possible to apply an RF pulse that excites
both spins simultaneously. The resulting nonselective spectrum, shown in the last column,
again allows for a clear distinction between the four cases.

p before pulse A Spectrum X Spectrum AX Spectrum
(selective pulse) {selective pulse) (nonselective pulse)
AX 10> 11> 10> 1> A X

LA U U W W W .

- I L

SO e B O B A

Figure 10.15: Signals in NMR readout for different spin states.

This scheme can easily be extended to more spins; examples are given, e.g., in [CPH98].
In general, a spectrum of a weakly coupled N-spin system contains N2V ~! resonance lines.
Taking into account that the usual NMR experiments measure notonly >, S%, butalso >, SZ,
this number doubles to N2V, The number of resonance lines is thus even larger than N,
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the total number of coefficients that describe a pure state of NV qubits. This shows that the
resonance line amplitudes are not independent of cach other.

10.2.8 Quantum state tomography

If the system is not in a pure, but in a mixed state (to which it unavoidably evolves in the
course of a computation process), a density operator is needed to fully describe the state.
The density operator contains (27V)2 = 22V elements, which is more than the amount of
information contained in a single NMR spectrum. 1t is nevertheless possible to measure the
complete density operator by combining results from a series of measurements.

For this purpose, we expand the density operator in an operator basis that consists of all
possible (tensor) products of the operators

1', 8,80 8, (10.58)

where i = 1..N runs over all qubits. This results in a total of 4V = 22V operators that are
orthogonal and form a complete basis for the expansion of the density operator.

In this basis, the information that can be obtained from the FID without applying a pulse,
yields the coefficients of all operators of the type

l'wt?*e S 1V (10.59)
and
'w1?2g---Sa 08w . o1l (10.60)

More precisely, the terms that are obtained in this way include all products that include
exactly one transverse (x or y) term, while all other factors are either unity or S* operators —
the N2V =1 terms counted before.

To measure the other components of the density operator, we use unitary transformations
that turn them into observable operators as listed above. This can be achieved by selective J
rotations applied to single qubits. Such a rotation of qubit & around the x-axis, c.g., turns the
(unobservable) operator

'g1?6% Slw @8k g1V (10.61)
into
l'wi?e---Sw. 08w . ol1V, (10.62)

which is observable. Since every qubit must be rotated around the x as well as the ¥ axis, we
need a total of 2%V qubit rotations to get the complete information about the density operator.

This procedure is called “quantum state tomography” [CGK98, CGKLY9%] , in reference to
X-ray tomography, where a sequence of two-dimensional pictures (or projections) is used to
reconstruct the three-dimensional body being imaged.

Figure 10.16 shows an example of such a tomographic analysis of the density operator
that resulted from applying the Grover algorithm to a two-spin system |CGK98]. The largest
density operator element corresponds to the population of the |11) state.
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Figure 10.16: Theoretical and experimental density operator components during Grover cxper-
iment.

10.2.9 DiVincenzo’s criteria

DiVincenzo [DiV0O0] listed five criteria that implementations of quantum computers should
fulfill to be considered “useful”. We summarize here to what degree liquid state NMR fulfills
these criteria:

1.

Well-defined qubits.

The usual implementations use nuclear spins S = 1/2 and identify |0) = | T) and [1) =
| }). The qubits are well characterized in the sense that their energies are well known
and the coupling to external fields occurs only through the Zeeman interaction. In the
liquid state NMR experiments, logical qubits are not represented by individual spins,
but by collections of spins of the order of Avogadro’s number. This is in contrast to the
usual assumption of quantum computation theory, and some consequences of this need
to be addressed in the context of readout and initialization.

In liquid state NMR, the individual qubits are distinguishable by their resonance fre-
quency. The resonance frequencies of the different spins may be shifted by chemical
shift effects or the qubits may be represented by different isotopes. The latter is clearly
preferable, since it avoids cross-talk between qubits. However, since the number of use-
ful isotopes is limited, assigning different isotopes to different qubits is clearly not a
scalable procedure. When one uses chemical shift differences, the separation should be
as large as possible to allow for fast operations of logical gates.

In summary, NMR systems fulfill the “qubit-identification” requirement quite well, but
liquid-state NMR appears to fail the scalability criterion.

Initialization into a well defined state.

In liquid state NMR, initialization is achieved by relaxation, which provides for an ex-
cess of spins in the ground state. For algorithms designed to work with pure states, this
must be combined with the preparation of a pseudo-pure state. While these procedures
can be used for small spin systems, they are clearly not scalable for larger systems.
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3. Long decoherence times.

The long decoherence time (of the order of a second) of liquid state NMR is one of its
biggest advantages. However, typical gate times are at least several milliseconds, so the
number of gates that can be applied is limited to approximately 100.

4. A universal set of quantum gates.

At this point, liquid state NMR scores very well: the implementation of unitary trans-
formations is well established and rather straightforward.

5. A qubit-selective readout.

Another strong point, as discussed above. The differentiation of qubits requires chemical
shift separation, but is much easier to achieve than the addressing during gating. It is
even possible to read out the full density operator, rather than only the populations, as in
standard quantum computing algorithms.

10.3 NMR Implementation of Shor’s algorithm

The Shor algorithm (see Section 8.3) was implemented in an NMR system [VSB01] by a
group at IBM Almaden Research Center near San Jose, California. The smallest integer (0
which the Shor algorithm can be applied is N=15 (remember: N must be odd and not the
power of a prime).

10.3.1 Qubit implementation

For the implementation of Shor’s factoring algorithm, Vandersypen et al. used a custom-
designed molecule with five F and two **C nuclear spins.

Figure 10.17: Custom designed molecule with seven nuclear spin qubits [VSB ' 01].

The use of carbon and fluorine nuclei spreads the frequencies over a relatively wide range
and therefore allows for fast processing. '"F and '*C arc hoth spins-1/2, have generally long
decoherence times and a large chemical shift range that allows for fast gating of the qubits.
As actual qubits, five fluorine and two carbon nuclei were used; two additional carbon nuclei
were not used in this experiment.
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The chemical shift separation between the qubits is typically of the order of 1 kHz, thus
allowing for single-qubit gate switching times of the order of 1 millisecond. Each qubit is
coupled to every other spin, although some of the coupling constants are relatively small.
While the large number of coupling constants allows for direct implementation of all two-
qubit gates, it leads to a rather complicated spectrum: since every spin is coupled to six other
spins, we expect 2° = 64 resonance lines for every spin. Most of these transitions can actually
be observed. Another consequence of the many couplings is that for every gate most of the
couplings must be refocused.

(0) (1) (2) (3) (4)

10 Inverse
H X X i
QFT
1 a modN

Figure 10.18: Shor’s algorithm.

Shor’s algorithm requires a quantum register consisting of n qubits for the modular expo-
nentiation and rn qubits to store the number N to be factorized. For N = 15, m must be at
least 4 and m in the general case 8. However, using specific properties of the N = 15 case,
n can be reduced to 2. In their implementation, Vandersypen et al. chose n = 3, to find
additional periods.

10.3.2 Initialization

Shor’s algorithm starts with the initial state
[1g) = [0000001), (10.63)

i.e., a pure state. The NMR system must therefore be first be brought from the thermal to a
pseudopure state. In this case, Vandersypen et al. used temporal averaging. As we discussed
in Section 10.2.3, the temporal averaging process for two spins involves a sum over three
different experiments. For the seven-qubit system used for the factorization experiment, the
pseudo pure state preparation required averaging over 36 different experiments.

The success of the preparation scheme can be checked easily by applying a selective read-
out pulse to the system, measuring the resulting FID and converting it into a spectrum. If the
system is in a pure (or pseudo-pure) state, each spin should have a well defined frequency,
i.e., only one of the resonance lines that are generated by spin-spin coupling appears. As Fig-
ure 10.19 shows, this is fulfilled to an excellent approximation in the spectra of the first three
qubits.

While the source register is initiated in the state |0}, the target register is initially in state
|1). This is achieved by first initiating it into state |0) and subsequently flipping bit 7.

The next step is the generation of the superposition of all spin states of qubits 1-3 (the
input qubits) through the Hadamard transformation. The Hadamard gates were implemented
by spin-selective % pulses on the first three qubits.
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Figure 10.19; Demonstration of pure state preparation in the spectra of qubits 1-3 [VSBT01].
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Figure 10.20: Implementation of Shor’s algorithm by gates for N=15 and a=7 [VSB10I.

10.3.3 Computation

One of the crucial steps of Shor’s algorithm (as well as of corresponding classical algorithms)
is the modular exponentiation f{q) = a% mod N for 2" values in parallel. As discussed in
Section 8.3.3, this is done qubit by qubit with the help of the identity

on—1 .
af =@ Ir-1 gt (10.64)

where ¢, are the bits of the binary representation of ¢. While the period of f(g) can be as
large as N, only the values 2 and 4 appear for N=15. Since ¢ must be coprime with N, the
possible choices of a for N=15 are 2, 4, 7, 8, 11, 13 and 14. For the choices ¢ = 2, 7, 8, and
13, one finds a* mod 15 = 1, while & mod 15 = 1 fora =4, 11 and 14. According to
the above expansion, one therefore needs only the two least significant bits of g, i.e., gy and
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¢1. Vandersypen et al. chose to use three bits for encoding ¢; the additional qubit may be used
for test purposes. Together with the m = log, 15 = 4 qubits needed to encode f(q), a total
of seven qubits were used. To implement the exponentiation efficiently, the powers of a were
precomputed on a classical computer. The eight values of ¢ are stored as a superposition in
the qubits labeled 1, 2, 3 in Figure 10.20. The exponentiation is then computed in the target
register through CNOT operations.

The first step is a multiplication mod 15 with a9, i.e., multiplication by « if qubit 3 is 1,
no operation if qubit 3 is 0. Since the target register is now in state |1), multiplication by
a can be done by adding (a — 1), again controlled by qubit 3. This addition can be imple-
mented by two CNOT operations: for a = 7, qubits 5 and 6 must be changed from zero to 1.
The controlled addition is therefore achieved by the operation CNOT (3,5) CNOT (3, 6), as
shown in Figure 10.20. For a = 11, qubits 4 and 6 must be incremented, which is done as
CNOT (3,4) CNOT (3, 6).

The second step is multiplication with a>* mod 15. For a = 7, this corresponds to multi-
plication by 4, controlled by ¢, or qubit 2 in Figure 10.20. In a four-bit register, multiplication
by 4 can be implemented by swapping bits 0 with 2 and 1 with 3. In Figure 10.20, this corre-
sponds to SWAP operations of 4 with 6 and 5 with 7, both controlled by qubit 2. Each SWAP
operation can be decomposed into 3 CNOT operations, of which the second is turned into a
CCNOT for the controlled SWAP. These CNOT and CCNOT operations are labeled CDE and
FGH in Figure 10.20. Vandersypen ef al. used a number of simplifications (="“compiler opti-
mizations”) to simplify or eliminate specific gates, taking advantage of the special situation.
These simplifications are indicated in the figure as dotted gates (can be eliminated) or dashed
gates (can be simplified). Gate C can be eliminated because the control qubit is zero, thus re-
ducing the gate to the unity operation. The doubly controlled gates D and G act on target bits
that are in basis states (not superposition states), which allows for additional simplifications.
Gate F can be simplified to a NOT operation, since the control qubit is always 1. Finally, gates
E and H can be omitted, since they act on qubits that are no longer accessed afterwards and
therefore do not affect the result.

After the multiplication step, Shor’s algorithm requires an (inverse) QFT, in this case on
the three most significant qubits. It contains Hadamard gates and phase gates (i.e., z-rotations)
of 45 and 90 degrees. In practice, the phase gates are usually turned into rotations of the
coordinate axes: rather than apply actual z-pulses (which can be implemented by composite
rotations), one simply shifts the phases of all earlier pulses by the corresponding amount.

10.3.4 Readout

At the end of the standard algorithm, the information is stored in the populations of the spin
state. As discussed in Section 10.2.6, one obtains the populations by applying an RF pulse,
measuring and Fourier transforming the FID.

The three spectra shown in Figure 10.21 display the resulting state of the three qubits for
an input of @ = 11. They contain only positive lines for qubits 1 and 2, indicating that they
are in state |0) at the end of the computation. Qubit 3 has one positive and one negative line,
indicating that it is in a superposition state |0) + [1).
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Figure 10.21: Spectra of the three result-qubits for the input a = 11 [VSB*01].

After the inverse QFT, qubit 3 is the most significant bit. The resulting state is therefore
a mixture of [100) = [4) and |000) = |0). This indicates that the periodicity is n = 4 and
= 2"/4 = 2. A classical calculation yiclds the greatest common divisor of 11%/2 £ 1 and
15 as 3 and 5, and thus directly the prime factors of N.
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Figure 10.22: Spectra of the three result-qubits for the input @ = 7 [VSB ' 01].

If the input a = 7 is used instead, the observed spectra shown in Figure 10.22 show that
both qubits 2 and 3 are in superposition states, while qubit | is again in state |0). The possible
results are therefore the states |000) = |0}, [010) =|2), ]100} = |4), and |1 10) = |6}, indicating a
period of 2. We conclude that - = 8/2 = 4 and ged (7% + 1, 15) = 3, 5 as before. Obviously
both trial values for « produce the expected result.
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10.3.5 Decoherence

The experimental implementation of Shor’s algorithm represented a milestone for quantum
information processing, not because of the result itself, but because it provides the possibility
of studying limitations to quantum information processing in a working example.
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Figure 10.23: Pulse sequence used for the implementation [VSBTO1].

The IBM group used some 300 radio frequency pulses to implement the algorithm. Most
of the pulses were used not for the processing itself, but to compensate for unwanted effects,
such as spin-spin couplings and magnetic field inhomogeneity. The overall sequence lasted
almost 1 second, which is longer than some of the relevant relaxation times (=decoherence
times). This caused a significant loss of information and therefore deviations of the experi-
mental measurements from the idealized behavior. Vandersypen et al. analyzed these devia-
tions with a model for the relevant decoherence processes and found that they could explain
most of the differences with their model.
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11 Ion trap quantum computers

Among the first of the systems that were suggested for building a quantum computer was a
linear trap with stored atomic ions [CZ95]. Atomic ions have some attractive properties for
use as qubits: qubits can be defined in ways that make decoherence very slow while simulia-
neously allowing for readout with high efficiency. To avoid perturbing these ideal properties,
the ions are best isolated in space [Dzh90]. This can be achieved with electromagnetic traps,
which arrange electric and magnetic fields in such a way as to create a potential minimum for
the ion at a predetermined point in space.

11.1 Trapping ions

11.1.1 Ions, traps and light

Earnshaw's theorem states that static electromagnetic fields cannot trap a charge in a stable
static position'. However, using a combination of static and alternating electromagnetic fields
it is possible to confine ions in an effective potential.

Paul trap Penning trap
N 4B
\/\ g
e I

Figure 11.1: Two classical ion traps.

Figure 11.1 shows schematically the geometries used in the two traditional traps, the Paul
and Penning traps [Pau90]. Both consist of an axially symmetric set of electrodes. The elec-
trodes on the symmetry axis have the same potential, while the ring has the opposite polarity.

! In the purely electrostatic casc the existence of a minimum of the electrostatic potential in a charge-free region
would violate Gauss’ law. See [BG97] for a discussion of Earnshaw’s theorem in a modern context.

Quantum Computing: A Short Course from Theory 1o Experiment. Joachim Stolze and Dicter Suter
Copyright © 2004 Witey-VCH Verlag GrobH & Co. KGaA
ISBN: 3-527-40438-4
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The resulting field is roughly that of a quadrupole, where the field vanishes at the center and
increases in all directions,

In the case of the Paul trap, the voltage on the electrodes varies sinusoidally. The ion is
therefore alternately attracted to the polar end caps or to the ring electrode, On average, it
experiences a net force that pushes it towards the center of the trap. In the exact center, the
field is zero and any deviation results in a net restoring force. The Penning trap has the same
electrodes, but the electric field is static: it is repulsive for the end caps. The ions are prevented
from reaching the ring electrode by a longitudinal magnetic field.

11.1.2 Linear traps
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Figure 11.2: Linear quadrupolc trap. [NRL100]

The Paul Trap can also be made into an extended linear trap |PDM89, RGB192]. Fig-
ure 11.2 shows the geometry used in this design, which consists of four parallel rods that
generate a quadrupole potential in the plane perpendicular to them. The quadrupole potential
is alternated at a radiofrequency, and the time-averaged effect on the ions confines them to
the symmetry axis of the trap, while they are free to move along this axis. A static potential
applicd to the end caps prevents the ions from escaping along the axis. The resulting effective
potential (averaged over an rf cycle) can be written as

V:wfm2+w5?/2+wf::2, (11.1)

where w,, @ = x,y, z are the vibrational frequencies along the three orthogonal axes. By
design, one has w, = w, > w,, i.e., strong confinement perpendicular to the axis and weak
confinement paralle! to the axis.

Tons that are placed in such a trap will therefore preferentially order along the axis. The
distance between the ions is determined by the equilibrium between the confining potential
w?z? and the Coulomb repulsion between the ions. This type of trap has two important ad-
vantages for quantum computing applications: it allows one to assemble many ions in 4 linear
chain where they can be addressed by laser beams and the equilibrium position of the ions (on
the symmetry axis) is ficld-free. This is in contrast to the conventional Paul trap where the
Coulomb repulsion between the ions pushes them away from the field-free point. As a result,
two or more ions in a Paul trap perform a micromotion driven by the rf potential. In the linear
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Figure 11.3: Strings of ions in linear traps. [NRL1T00]

Paul trap, the field-free region is a line where a large number of ions can remain in zero field
and therefore at rest.

When more than one ion is confined in such a trap, the system has multiple eigenmodes of
the atomic motion. The lowest mode is always the center of mass motion of the full system,
in analogy to the motion of atoms in a crystal. A change of the fundamental vibrational mode
can be compared to the Mdssbauer effect, where the recoil from the photon is shared between
all atoms in the crystal. The higher vibrational modes, which correspond to phonons with
nonzero wave vector, as well as the vibrational modes that include wave vector components
perpendicular to the axis, will not be relevant in this context.

11.2 Interaction with light

The interaction of light with atomic ions is essential for building a quantum computer on the
basis of trapped ions: it is used for initializing, gating, and readout. We therefore discuss here
some of the basics of the interaction between light and atomic ions.
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11.2.1 Optical transitions

When light couples to atomic ions, the electric field of the optical wave couples to the atomic
electric dipole moment:

Ho=—FE - i, (11.2)

where E is the electric field and fi,, the atomic electric dipole moment. For the purpose of
quantum information processing applications, it is important to distinguish between “allowed”
and “forbidden” optical transitions. In the first case, the matrix element of the electric dipole
moment operator for the transition is of the order of 10727 C mj; in the latter, it is several
orders of magnitude smaller.

The size of the electric dipole moment determines not only the strength of the interaction
with the laser field and thus the ease with which the ion can be optically excited, it also
determines the lifetime of the electronically excited states. According to Einstein’s theory
of absorption and emission, the spontancous cmission rate is proportional to the square of
the matrix element. States that have an optically allowed (ransition (o a lower lying state are
therefore unsuitable for use in quantum computers, since the associated information decays
too fast.

While an atom has an infinite number of energy levels, it is often sufficient to consider a
pair of states to discuss, e.g., the interaction with light. Writing |g) for the state with the lower
energy (usually the ground state) and |¢) for the higher state, the relevant Hamiltonian can
then be written as

Hors = —woS. — 2w cos{wt)S,. (11.3)

Here, fwy = L. — I, is the energy difference between the ground and excited state and
2wy cos(w!) is the coupling between the laser field (with frequency w) and the atomic dipole
moment. The operators S, and S, are pseudo-spin-1/2 operators,

If the Hamiltonian is written in this way, the analogy to the real spin-1/2 system, as was
discussed in Chapter 10, is obvious. This allows us to treat two-level transitions as virtual
spins-1/2 [FVHS7|. The interaction representation with respect to the laser frequency “ro-
tates” now at the laser frequency w around the z-axis of the virtual spin:

Hirg = —(wo — w)S. —wiS,. (11.4)

11.2.2 Motional effects

When an atom is not at rest, its transition frequency is shifted through the Doppler effect:

-

W =wq+ kU, (11.5)

where k is the wave vector of the laser field and @@ the atomic velocity. In free atoms, the
velocity can have arbitrary values, with the probability of a specific velocity determined by
the Boltzmann distribution. The optical spectra of ensembles of aloms are therefore broadened
and/or shitted according to their motional state.
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Figure 11.4: Energy levels of the trapped atom (left) and the resulting spectrum (right).

In trapped ions, the motional energy is quantized. Depending on the trap potential, the
motional states can often be approximated by a collection of harmonic oscillators. Harmonic
oscillator motion does not shift the frequency by arbitrary amounts, but creates sidebands that
are separated from the carrier frequency wg by the harmonic oscillator frequency. As shown
in Figure 11.4, the trap motion creates a set of sidebands whose frequencies can be written
as wy, = wp + nwy, where —0o < n < oo is the order of the sideband and wr is the
trap frequency. Since every motional degree of freedom creates such a sideband pattern, the
resulting spectrum can contain a large number of resonance lines.

In all techniques suggested to date, for quantum computing with trapped ions, the spatial
coordinates of the qubit ions play an important role either as a qubit or as a variable used for
coupling different qubits. If the spatial degrees of freedom are used in the computation, the
motional state of the ion must be well controlled and initialized to a specific state, which is
usually the motional ground state. The ions must therefore be cooled into their ground state
as a part of the initialization process [KWM™T98].

11.2.3 Basics of laser cooling

The technique to bring them into the ground state is laser cooling, which was developed in the
1980’s [WD75, NHTD78, WDW78, Chu98, Phi98, CT98]. It relies on the transfer of momen-
tum from photons to atoms during an absorption (and emission) process. Suitable arrange-
ments allow one to use this momentum transfer to create extremely strong forces that push
the atoms in the direction of the laser beam. Adjusting the experimental parameters properly,
these forces can be conservative (i.e., they form a potential) or they can be disstpative friction
forces. Conservative forces are useful for logical gate operations, while frictional forces are
useful for initialization and cooling.

The origin of these mechanical effects of light can be traced to the momentum 7k that
every photon carries. As shown in Figure 11.5, the photon momentum is transferred to the
atom whenever a photon is absorbed. During the subsequent spontaneous emission process,
the recoil of the photon emission also contributes to the mechanical effects of the light on
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Figure 11.5: Photon momentum as the source of mechanical effects of light.

the atom. However, the emission is, in contrast to the absorption process, not directed. The
average effect of all emission processes therefore vanishes.

The momentum change due to the transfer of a single photon momentum is relatively
small; it corresponds to a change in the atomic velocity of a few cm/s. As an example, we
calculate the momentum transferred by a single photon at a wavelength of 589 nm, a prominent
wavelength in the spectrum of Na:

ho 6.626 1075

smkg
A B89 10~%m '

Ap = =1.125- 1072 (11.6)

Given the mass my, = 3.818 - 10725 kg of the sodium atom, this corresponds to a change in
its velocity of

Ap cm

Av = :2.95T. (11.7)

M Na

This estimate was first made by Einstein in 1917 |[Ein17]} and verified experimentally by
Frisch 1933 [Fri33] with a classical light source. Since the atoms scattered less than three
photons in his experiment, the effect was very small.

However, if an allowed atomic transition is excited by a laser, the alom re-emits the photon
within a few nanoseconds (16 ns for Na) and is ready to absorb another photon. It can therefore
scatter up to 10® photons per second, and the momentum transferred by them adds up to a force

_yrmkg
Ap  1.125.10 K8 )

i " S =7.03-10 N (11.8)
T s

corresponding to an acceleration of

F 7.03.10-20N sm
, = = — =1.8.10%~ = 200000 g. 11.9
. Mya  3.818- 10~ 20kg §? g (1.9
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Figure 11.6: Schematics of sideband cooling for a single degree of freedom.

This implies that an atom arriving with the velocity of a jet plane can be stopped over a
distance of a few centimeters.

In the case of trapped ions, the situation may also be discussed in terms of resolved mo-
tional sidebands. Cooling is then achieved by irradiating the lower-frequency sidebands, as
shown in Figure 11.6. In reality, the laser drives not only the |g, 3) < |e, 2) transition, but all
lg,n) < |e,n — 1) transitions for n > 0. For each absorption event, the vibrational quantum
number is reduced by one unit, since the photon energy is smaller than the energy difference
of the two internal states, The emission process occurs with roughly equal probabilities into
the different ground states, thus not affecting the average vibrational energy. The only state
that is not coupled to the laser is the {g, 0| state, since no transition with a frequency below
the carrier originates from this state. As a result, all atoms eventually are driven into this state
in the absence of heating mechanisms.

11.3 Quantum information processing with trapped ions

11.3.1 Qubits

Since the atomic ions stored in traps have a large number of states, there are many distinct
possibilities of defining qubits. Since spontaneous decay times through allowed transitions
are of the order of a few nanoseconds, the requirement of long decoherence times implies that
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both states ot the qubits must either be sublevels of the electronic ground state or metastable
states, i.e., states where all transitions to lower lying states are “forbidden”.
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Figure 11.7: Possible qubit implementation using a metastable state in Ca®t.

A typical example of a a qubit implementation is the Ca® ion. In its ground state, the
single valence electron is in the 4s orbital, which is abbreviated by the term symbol 425} 2. 1f
the electron is excited into a 3 d orbital, it has angular momentum L.=2, and can only decay to
the ground state by emitting two quanta of angular momentum. These quadrupole transitions
are “forbidden” in the dipole approximation, resulting in long lifetimes of the excited state.
Nigerl et al. [INRL100] therefore suggested using the transition between the 425, /2 ground
state and the 3* D5 excited state as a qubit.

9B et
lF'—-"l, mF=]> j
*S112 { o
IF=2, mp=2>

Figure 11.8: Possible qubit implementation using two hyperfine states of “Be ™.
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The second common choice is to encode the quantum information in sublevels of the elec-
tronic ground state [MMK95]. Figure 11.8 shows as an example the possible encoding of a
qubit in the hyperfine levels of the electronic ground state of Bet. The two qubit states corre-
spond to the [F' = 2,mp = 2) and |F = 1,mg = 1) hyperfine states. Since the spontaneous
transition rate between ground states is very small, the lifetime is again long compared to all
relevant timescales. The transitions from the two ground state hyperfine levels to the electron-
ically excited state °P; /2 are sufficiently well resolved to allow one to optically distinguish
whether the ion is in the |2, 2) or |1, 1) state.

The initialization of the qubits must bring the ion into a specific internal state as well as
into the motional ground state. While the laser cooling for the initialization of the external
state was described above, the initialization of the internal state can be achieved by optical
pumping. The principle of optical pumping is very similar to sideband cooling: a laser drives
the system in such a way that only the desired state of the ion does not couple to the laser, while
ions in other states can absorb light, become excited and return to an arbitrary sublevel of the
ground state. These absorption / emission cycles are repeated until the ion falls into the state
that does not couple. Given enough time, all ions will therefore assemble into the uncoupled
state. The dissipative process that is required for the initialization step here is spontaneous
emission.

11.3.2 Single-qubit gates

The way to generate (pseudo-)spin rotations that correspond to single qubit gates depends
on the specific choice of the qubit states. If the two states encoding the qubit are connected
by an optical transition, it is possible to apply laser pulses that have the same effect as RF
pulses acting on spin qubits. The corresponding Hamiltonian (11.4) has the same structure
as that of a spin-1/2. Since the spatial separation of the ions is typically of the order of 10
optical wavelengths, it is possible to use tightly focused laser beams aimed at individual ions
to separately address the qubits [SKHR*03]. While the optical transitions used for such qubits
must be “forbidden”, the tightly focused laser beams that are required for addressing qubits
individually provide sufficiently high Rabi frequencies for efficient excitation.

If the qubit is defined by two hyperfine states that are connected by a magnetic dipole
transition, the situation is even more directly related to magnetic resonance. In this case, the
transition between the two qubit states is a magnetic dipole transition, which can be driven by
microwave fields [MWOL]. Since the wavelength of microwave radiation is large compared
to the distance between the ions, microwaves will interact with all qubits simultaneously.
Addressing of individual qubits therefore requires a magnetic field gradient to separate the
transition frequencies of the ions.

The second possibility for addressing hyperfine qubits is to use Raman laser pulses
[SKET00]. For this purpose, one uses two laser fields, whose frequency difference matches
the energy level separation of the two qubit states. The laser frequency is close to a transition
to an auxiliary state. Choosing an appropriate set of parameters (frequencies, field strengths),
it is possible to generate laser pulses that effectively drive the transition between the two qubit
states, with negligible excitation of the auxiliary state [MMK™95].
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Figure 11.9: Raman excilation of a hyper(ine qubit.

11.3.3 Two-qubit gates

Two-qubit gates that can form the basis of a universal quantum computer, require, in addition
to the single-qubit operations, an interaction between qubits. In the case of trapped ions, the
main interaction is the Coulomb repulsion between neighboring ions, which are separated by
a few micrometers in typical traps. This interaction can be utilized for two-qubit operations in
different ways, depending on the qubit implementation.

The Coulomb repulsion between the ions couples their motional degrees of freedom. As
in a solid, the motion of ions in a trap is best described in terms of eigenmodes that involve
all ions. This quantized motion is often invoived in quantum information processing. Initial
demonstrations of quantum information processing used the lowest two states of the harmonic
oscillator as a qubit [MMK ' 95], and other implementations and proposals involve them as an
intermediate bus-qubit.

Phase gate SWAP
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Figure 11.10: Sclective laser pulse to generate a phase shift of state [11) (left) and a SWAP
operation (right).

We therefore first discuss a two-qubit gate that uses the internal degrees of freedom of
a "Be™ ion as the target qubit and the harmonic oscillator motion as the control qubit of a
CNOT gate [IMMK™95]. Figure 11.10 shows two examples of simple two-qubit gates that can
be realized by such a scheme. The notation |«/3) refers to the internal state « and the motional
state /3.
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In the first example, resonant radiation that couples only state state |11) to an auxiliary
state executes a 27 pulse. As in any two-level system, the two-level system |11) and |aux)

acquires a phase e™ = —1 by the pulse. Since the other states are not affected, the overall
effect is
1 00 O
01 0 0
Py = 00 1 0 (11.10)
0 06 0 -1

This phase gate can be combined with two 7/2 pulses into a CNOT operation [MMK™95].
Another important two-qubit gate, the SWAP operation, can be generated by a 7 pulse on the
red sideband (see Figure 11.10).

While motional degrees of freedom are not ideal as actual qubits, they appear to be useful
for executing two-qubit gates between ions: A two-qubit gate between ions j and k is executed
by first swapping the information from ion j into the oscillator mode, executing the two-
qubit gate between oscillator and ion k, as described above, and subsequently swapping the
information from the oscillator back to ion j. Since the harmonic oscillator motion involves
all ions, this procedure works for any pair of ions, irrespective of their distance.

11.3.4 Readout

One of the important advantages of trapped ion quantum computers is the possibility of op-
tically reading out the result with a very high selectivity and success probability. For this
purpose one uses a laser whose frequency is tuned to an optical cycling transition from the
state that is to be detected, focuses it on the ion to be measured, and detects the fluorescence
emitted.
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Figure 11.11: Optical readout of a single qubit: the left-hand part shows the relcvant states and
transitions, the right-hand part an example of a cycling transition.

The term “cycling transition” means that the the state to which the ion is excited can
only fall back to the particular ground state from which it was excited. Figure 11.11
shows an example of such a cycling transition. If circularly polarized light couples to the
F =1, mp = 1) electronic ground state, it excites the atom into the |F' = 2, mpr = 2) ex-
cited state. The selection rule Amp = %1 does not allow for transitions to any ground state
but the |F' = 1,mp = 1) state.
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For suitable transitions, up to 103 photons can be scattered. If the detection system has a
1% collection efficiency, this yields a very reliable decision whether the ion is in the particular
state or not.
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Figure 11.12: Fluorescence of a single Ba ion. The quantum jumps indicate changes of the
internal quantum state of the ion.

Figure 11.12 shows an example for an observed signal [SBNT&6]: when the single Ba ion
is in the observed state, it scatters approximately 2200 photons per sccond; the background
rate s less than 500 photons per second. As shown in the example data, the fluorescence level
is an excellent indicator if the ion is in the state that is being measured. The sudden drops in
the fluorescence level indicate that the ion jumps into a different state, which is not coupled to
the transition being irradiated. These transitions are referred to as “quantum jumps”.

The detection scheme sketched here only provides a measure of the atom being in state
{0): a similar measurement of state |1) is only possible if that state is also part of a cycling
transition. The complementary measurement of the atom being in state |1) can be achieved
in different ways. The first possibility is to take the absence of a result for the state |0)
measurement as a measurcment of the atom being in state |1). This is possible since the
system (under ideal conditions) must be either in state |0) or state |[1). A second possibility
is to perform first the measurement of state |0)) and then apply a logical NOT operation and
a second measurement of state |0). Since the NOT operation interchanges the two states, a
subsequent measurement of the state |0) is logically equivalent to a measurement of state |1)
before the NOT operation.



11.4  Experimental implementations 185
11.4 Experimental implementations

11.4.1 Systems

The most popular ion for quantum information studies is currently the Ca® ion [NRLT00,
GRL103]. For laser cooling, excitation of resonance fluorescence and optical pumping of the
ground state, different transitions are used. The experiment therefore requires laser sources at
the wavelengths 397 nm, 866 nm, and 854 nm. If the E2 transition between the ground state
and the metastable Dy state is used as the qubit, a fourth laser with a wavelength of 729 nm
is required. Its frequency stability must be better than 1 kHz

The long lifetimes make hyperfine ground states very attractive for quantum information
processing applications. Examples for such systems are the '"1Yb* IMWO1] and “Be™ ions
[SKE*00].

The linear Paul trap was mostly used for quantum information processing, but some vari-
ants are also being considered. Tight confinement of the ions is advantageous as it increases
the separation between the vibrational levels and therefore facilitates cooling into the motional
ground state. In addition, the vibrational frequencies are involved in the logical operations.
Accordingly higher vibrational frequencies imply faster clocks.

| |
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Figure 11.13: Two ions in a small elliptical trap.

Tight confinement can be achieved mainly by miniaturization of the traps. For the example
shown in Figure 11.13, the smallest trapping frequency is 8.6 MHz [KWM198]. However,
miniaturization is not without difficulties: it increases, e.g., the effect of uncontrolled surface
charges in the trap and it makes addressing of the ions more difficult.

11.4.2 Some results

The earliest quantum logic operation was reported by the group of Wineland [MMK™95].
They used a “Be ™ ion where one of the qubits was a pair of internal states, two hyperfine sub-
levels of the electronic ground state, the |F' = 2 myp = 2) and |F = 1,mp = 1) states with
an energy difference of 1.25 GHz. This qubit represented the target qubit. The control qubit
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was defined by the two lowest harmonic oscillator states, which were separated by 11 MHz.
A sequence of three Raman pulses was used to implement a CNOT gate.
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Figure 11.14: Expcrimental test of the CNOT gate on single “Be ' ion.

Figure 11.14 shows the populations of the four possible states of the system before (front
row) and after (back row) the application of the CNOT gate. The control qubit, which is
shown in white, does not change during the CNOT operation. The target qubit, shown in
black, remains also roughly constant when the control qubit is in the |0} state (shown in the
first two columns) but changes when the control is | (37 and 4" row).

Other achievements with this system include cooling of two ions into the vibrational
ground state and their entanglement [KWM 198, SKET00]. For this purpose the authors did
not address the ions individually, but modified the effective Rabi frequency through fine-tuning
of their micromotion. The resulting state was not a singlet state (but close to it) and the scheme
is not directly applicable to quantum computing.

Using Ca™ ions in a linear trap, optical addressing of individual ions was demonstrated
[NLR*99], and in a chain of three ions, coherent excitation of ions [RZR*99].

The two-qubit Cirac-Zoller gate [CZ95] was realized on (wo trapped Ca*t ions
[SKHR*03] by tuning the laser to a blue-shifted sideband, where, in addition to the electronic
transition of the given ion, the collective motion of the two ions was also excited. Single-
qubit gates were realized by a laser beam whose frequency was resonant with the quadrupole
transition and which was focused so tightly that it interacted only with a single ion. The final
state was measured by exciting the S—P transition of the trapped ions and measuring the flu-
orescence. Since the ions can only be excited when they are in the S state, high fluorescence
counts are indicative of the qubit being in the |0) state.

A two-qubit gate has also been implemented on two trapped beryllium ions by Leibfried
et al. [LDM*03|. They used two hyperfinc states of the electronic ground state to store the
quantum information. In this experiment, the motion of the ions was excited by two coun-
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Figure 11.15: CNOT gate implemented on two trapped Ca™ ions [SKHRT03].

terpropagating laser beams, whose frequencies differed by 6.1 MHz. As a result, the ions
experience a time-dependent effective potential that resonantly excites the oscillatory motion
in the trap. The parameters of the excitation were chosen such that the ions were not directly
excited, but instead their quantum states were transported around a closed loop in parameter
space. As shown by Berry [Ber84/, the parameters of such a circuit can be chosen in a way
that the transported states acquire a net phase. Leibfried er al. used this procedure to imple-
ment a phase gate on their system. Since the laser beams interact with both ions, additional
lasers will be required for generating specific single-qubit gates in this system.

11.4.3 Problems

One of the biggest problems of ion traps is that the ions, as charged particles, are relatively
sensitive to stray fields in the vicinity. These fields can adversely affect the motion of the ions
and, if they are time dependent, they heat the ions. Typical heating times are of the order of
1 ms [KWM*98] for two ions in a trap. With increasing numbers of ions, heating rates are
expected to increase so that not only the number of particles that couple to these stray fields,
but also the number of degrees of freedom that can be driven, increases.

Like all other implementations of quantum computers, ion traps will have to demonstrate
that they can perform a sufficiently large number of gate operations. As the number of ions
in 4 trap increases, a number of difficulties (such as limited trap frequency, heating) increase,
and it appears unlikely that individual traps will be able to accept a sufficiently large number
(i.e., hundreds) of ions. This problem may be circumvented if the total number of qubits is
stored in multiple traps. 1t has been suggested [CZKM97] that it should be possible to couple
these separate traps through photons, thus creating an arbitrarily large quantum register with
a linear overhead.

Addressing of qubits by lasers must be achieved in the far-field ditfraction-limited regime,
where the separation between the ions must be large compared to an optical wavelength. This
requirement sets a lower limit on the distance between the ions and therefore on the streagth of
the axial confinement potential. Since this potential also determines the vibrational frequency
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that enters the clock speed, it is obvious that ion traps cannot be operated with arbitrary speed.
While direct microwave pulses can distinguish between the ions through their frequency sep-
aration in an inhomogeneous magnetic field [MWOL1], it is not clear that this will allow for
significantly tighter confinement.
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12 Solid state quantum computers

12.1 Solid state NMR/EPR

12.1.1 Scaling behavior of NMR quantum information processors

Liquid state NMR was the first experimental technique that allowed the implementation of
quantum algorithms and is currently (in 2004) still the basis for the most advanced quantum
information processors. Nevertheless, there are serious obstacles to advancing this system
much farther. One difficulty is associated with the preparation of pseudo-pure states [War97]:
The procedure averages all populations but one. As long as the spin system can be described
by the high-temperature approximation, the population of an individual spin state is inversely
proportional to the number of states. It therefore decreases as 27N with the number of spins
N. The detectable signal size therefore limits the possible number of spins to be used in such
a quantum information processor.

The reduction of sensitivity associated with the preparation of pseudo-pure states can be
avoided by using algorithms that do not require pure states to work with. For this purpose,
variations of algorithms have been developed that can be applied directly to mixed states
[MBE98, Brii00, BK02]. For the purpose of database search, such modified algorithms can
even be exponentially faster [BriiO0] than the original algorithm developed by Grover [Gro97].

Another approach to beating the exponential decrease of the signal size due to the pseudo-
pure state preparation would be to work with sufficiently high spin polarization that one can
create good approximations of pure states. Virtually complete polarization of the electron
spins by thermal relaxation can be achieved at a temperature of 100 mK in a magnetic field of
2 T, where ,f;—“T = 27. High enough nuclear spin polarization, in contrast, cannot be achieved
in thermal equilibrium within the currently accessible experimental conditions.

Highly spin polarized hydrogen nuclei can be obtained by several nonequilibrium tech-
niques, e.g., by separating the ortho and para components in molecular hydrogen gas [BW86].
When the symmetry between the two nuclei in the molecule is broken, e.g., through a chemical
reaction, it may be possible to achieve truly entangled nuclear spin states [HBGO1]. Other ap-
proaches to pure state preparation include optical pumping [Kas67] or polarization exchange
with electron spins at very low temperature [DKS™88]. All these techniques require that the
system be kept at low temperature to avoid competing processes that reduce the polarization.
This also implies that the material that contains the spins be a solid rather than a liquid.

Another aspect of liquid state NMR that may may be difficult to scale up to larger numbers
of qubits, is the addressing of the individual qubits. Current implementations use the natural
chemical shift range of the nuclear spins to distinguish them by their resonance frequency.

Quantum Computing: A Short Course from Theory to Experinent. Joachim Stolze and Dieter Suter
Copyright (©) 2004 Wiley-VCH Verlag GmbH & Co. KGaA
1SBN: 3-527-40438-4
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Since the chemical shift range is limited, this procedure cannot be extended to arbitrarily large
numbers of spins. The larger the number of qubits, the smaller is theretore the separation of
their resonances and therefore the slower the switching speed. It appears therefore necessary
to design an addressing scheme that does not rely on chemical shift differences.

Some solid state implementations of spin-qubits may be considered direct extensions of
liquid state NMR: Kampermann and Veeman used a quadrupolar system [KV02], much like
a similar system in a liquid crystal [MSM102}. A potentially more powerful scheme was
demonstrated by Mehring ez al. [MMSO03], which achieved entanglement in a spin-based quan-
tum computer in the actual density operator, rather than in the pseudo-pure states typically
employed in ensemble quantum computers. Their system used an electron spin coupled to
different nuclear spins by hyperfine interaction. As for all other spin-based quantum comput-
ers demonstrated so far, there is no straightforward extension of this scheme to large (> 100)
numbers of qubits.

12.1.2 P in silicon

This should be possible, however, if the system proposed by Kane can be implemented
[Kan98). He proposed to use *'P impurities in Si, the only I = 1/2 shallow (group V)
donor in Si. The Si:*'P system was exhaustively studied 40 years ago in the first electron-
nuclear double-resonance experiments. At sufficiently low *' P concentrations at temperature
T = 1.5 K, the electron spin relaxation time is thousands of seconds and the *' P nuclear spin
relaxation time exceeds 10 hours. This system would theretore allow for a large number of
gate operations within a decoherence time.
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Figure 12.1: Proposed scheme for a quantum computer that uses ** P atoms in a 2*Si matrix.

Figure 12.1 shows the principle of this scheme: the ?'P atoms are to be placed in a matrix
of ?Si (which has no nuclear spin). Operation of these qubits would be identical to that of
a liguid state NMR system, i.e., by radio frequency pulses. However, since all qubits see the
same chemical environment, their resonance frequencies are identical. As a way of addressing
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them, it may be possible to use small electrodes, which are labeled “A-gates” and “J-gates”,
respectively, in the figure.
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Figure 12.2: Dependence of the hyperfine coupling constant on the gate voltage, according
to [Kan9§].

The hyperfine coupling between electrons and nuclei depends on the electron density at
the site of the nucleus. If the voltage applied to the gate electrodes changes the electrostatic
potential near the donor sites, it shifts the electrons closer or farther from the gates and thereby
changes the electron density at the site of the nucleus and therefore its hypertine coupling. The
electrodes labelled “A-gates” could therefore be used for addressing the individual qubits by
shifting their energies in and out of resonance. Similarly J-gates would move electron density
between the donor sites, thus inducing an indirect coupling between qubits and allowing the
addressing of pairs of qubits.

12.1.3 Other proposals

The concept of using donor atoms in silicon can also be modified by using Si/Ge heterostruc-
tures [VYWT00], rather than bulk Si. An attractive feature of such heterostructures is that the
g-factor of the electron spin depends on the material. Using electrodes, the electrons can be
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pushed into the Si or Ge material, thereby changing their resonance frequency and providing
addressability for single-qubit gates.

A scheme that is intermediate between liquid state NMR and the single-spin solid state
NMR approach is the “crystal-lattice quantum computer” [YY99,LYGYO01,LGY T02], where
arrays of identical nuclear spins are used as a single qubit. Compared to liquids, these solids
offer the possibility of increasing the spin polarization, not only by lowering the temperature,
but also by polarization transfer from electronic spins, e.g., by dynamic nuclear polarization.
Addressability of individual qubits coutd be obtained by a strong field gradient produced by a
micrometer-sized ferromagnet. Furthermore, solids are required for some detection schemes
that offer higher sensitivity than the usual inductive detection [SMY T 01].

Among the most attractive qubit materials are the endohedral fullerenes N@Cy, and
P@Cy, [HMWT02]. The endohedral atom is trapped inside the highly symmetric fullerene
molecule, which can be considered a nanometer-sized trap for a neutral atom. The nitrogen
atom has an electron spin of S=3/2, while the nucleus has spin I=1 (for "N or I=1/2 for 1°N
and ?' P). Addressing of the individual qubits can be achieved, e.g., with magnetic field gra-
dients [SL.02]; alternatively, the three stable group-tive endohedrals could be combined into
a quantum cellular automaton that does not require addressing of individual qubits [Twa03].
The interaction between cage and atom is repulsive and the electronic structure of the trapped
atom is very similar to that of the free atom [Gre00]. Due to the high symmetry of its environ-
ment, the decoherence times of the N@Cg spin is quite long [KDP+97]; at low temperature,
the spin-lattice relaxation time reaches approximately 1 second [HMW F02].

12.1.4 Single-spin readout

A difticult problem in all spin-based quantum computer concepts is the readout of the result.
While some of the concepts try to simplify this task by coding the qubits in ensembles of spins,
it would be preferable to he able to read out individual spin. Several successful single-spin
measurements have been reported that were based on optical readout [WBB193, KDD ' 93,
GDT197,K6h99], or scanning tunneling microscopy [IMMR0O0,DWO02]. A number of different
approaches have been proposed [Sid91, GIFDT02, MMJ03].

The optical readout of spin is based on the optical readout of electronic states, but the
details are strongly system-dependent. Early optical readout experiments concenirated on
excited triplet states. Since the lifetime of the individual triplet states differs, a resonance
microwave field that exchanged populations between them can “short-circuit” the decay of
long-lived states. If a laser drives a transition from the ground state to an excited singlet state,
some of the molecules undergo inter-system crossing to the lower lying triplet state. Since
its lifetime is rather long, molecules get trapped in this state, thus reducing the ground state
population. The observed fluorescence is a measure of the ground state population. Resonant
irradiation of triplet transitions changes the fraction of spins in the electronic ground state and
is therefore observed as an increase in the fluorescence.

Another experimental approach to single-spin detection uses a scanning tunneling mi-
croscope (STM) [MMRO00, DW02]. While the details of the experiment must be considered
unknown, it appears that the tunneling current contains an oscillating component at the Larmor
frequency if the tip is placed over a paramagnetic molecule. The oscillating signal component
is separated from the d¢ component and fed into a microwave spectrum analyzer.
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Figure 12.3: Spatial distribution of STM-EPR signal on graphite surface. The clevated regions
correspond to four adsorbed BDPA molecules. The right-hand part of the figure shows the STM-
detected EPR spectrum of TEMPO clusters. The three resonance lines are due to the hyperfine
interaction with the **N nuclear spin.

By setting the detection frequency to the EPR frequency, it is possible to map the spin
density on the surface. The example shown in Figure 12.3 represents the signal from four
organic radical molecules (BDPA) that were deposited on a graphite surface [DW02]. The
right-hand part shows the STM-detected EPR signal from TEMPO molecules, another stable
radical. In this case, the electron spin couples to the nuclear spin of the '*N nuclear spin. The
hyperfine interaction splits the EPR resonance into three resonance lines, corresponding to the
three nuclear spin states.

Both techniques — optical and STM-EPR allow for the detection of individual electronic
spins. While this is not a readout of the spin state, it can be used as such if the spin being
detected is not the qubit to be read out, but coupled to the computational qubit: the coupling
shifts the EPR frequency, allowing one to detect the spin state of the computational qubit
through the EPR frequency of the readout qubit.

A difficulty of the optical readout is that the spatial resolution is limited by the optical
wavelength. Near-field optical techniques reach better spatial resolution, but their collection
efficiency is too low for efficient readout of qubit states. STM-based systems require me-
chanical motion, resulting in a slow readout process. For an all solid state system, electronic
readout would provide the possibility to eliminate external optical and mechanical (STM) ac-
cessories. A possible approach is to use single electron transistors (SET’s), in combination
with spin-dependent tunneling processes [KMD ™00, BRB" 03], but their viability for single-
spin readout has still to be verified.

12.2 Superconducting systems

12.2.1 Charge qubits

Superconducting materials owe their specific properties to a liquid formed by Cooper pairs,
i.e., pairs of electrons held together by a coupling to lattice vibrations. The pairs have zero
total spin and are therefore Bosons that can occupy a single quantum state subject to a simple
effective Hamiltonian. As shown in Figure 12.4, typical qubit systems consist of a small
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“box”" of superconducting material that is in contact with a reservoir of Cooper pairs through
a Josephson junction (i.e., a thin layer of insulating material) [MSSO1]. In addition, a control
electraode can change the electrostatic potential of the box.
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Figure 12.4: Components of a superconducting qubit (left) and its lowest energy levels as a
function of the gatc voltage (right).

The Coulomb energy required to bring a single electron charge e onto a neutral qubit
island is E¢ = &2 /2(C,+C ), where C; and (7 are the capacitances to the control electrode
and the reservoir. In addition to the mutual repulsion of the electrons, the Coulomb energy
depends on the potential applied through the control electrode. Since this energy contribution
also depends on the net charge on the box, it is convenient to write the electrostatic part of the
Hamiltonian as

Ho = ALie(n — ny)?, (12.1)

where 7 is the number of excess Cooper pairs in the box' and n, — C;V,,/2¢ parametrizes the
control voltage. The control electrode therefore changes the number of excess Cooper pairs
where the island is effectively neutral.

The so-called charge qubits are defined by the number 7 of excess Cooper pairs on the
island. Each n valuc yiclds one of the dashed parabolas in Figure 12.4, showing the quadratic
dependence on the control voltage for each of the Cooper pair number eigenstates |r:). These
states are coupled by Cooper pair tunneling to the reservoir, represented by the Josephson
coupling energy ;. Choosing states |n) and |re 4+ 1) as the qubit states (and neglecting all
other states), we can write an effective Hamiltonian for the qubit as

E¢ Fy
H = 4—]_)—(1 — 271,”)Sz — TI

whete we have shifted the origin of the energy axis to the mean of the two states. The pseudo-
spin defined by the qubit therefore interacts with an adjustable magnetic field along its z-axis
that is defined by the control electrode’s potential, plus an effective field along the z-axis,
which is determined by the Josephson splitting.

An obvious difficulty for this type of qubit is that the the Hamiltonian is not diagonal in
the chosen basis: the transverse field, which is determined by the tunnel splitting, cannot be
switched off. The control voltage, which affects the longitudinal field, can be used to apply

Sx, (12.2)

U 1t is assumed that the box contains no unpaired conduction electrons. To suppress states with broken Cooper pairs,
puarameters can be chosen such that the superconducting energy gap A is the largest energy scale in the problem.
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gates, but the qubits are never in a completely quiet state where the information does not
evolve. A way to circumvent this problem was suggested by Makhlin er al. [MSS99]: if the
junction to the reservoir is replaced by a loop with two junctions, the magnetic flux through
this loop can adjust the effective tunnel splitting.

12.2.2 Flux qubits

Rather than encoding the information in the charge degrees of freedom of small superconduct-
ing islands, it is also possible to associate the qubit states with two states of distinct magnetic
flux through a superconducting ring {MOL*99]. Compared to the charge qubits, flux qubits
should offer longer decoherence times, since they are not subject to electrostatic couplings to
stray charges.

Energy
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Figure 12.5: A simple flux qubit (left) consist of a loop that includes a Josephson junction. The
second version allows control of the Josephson energy by the flux ®’. The total encrgy forms a
double well potential as a function of the flux.

Figure 12.5 shows the basic element of a flux qubit, a superconducting ring with a Joseph-
son junction. The energy of the system is

P (®-d,)% @
Hy = —E, cos | 2m— —_—t — 12.3
H {1(Ob<7r(p()>+ 9L +20J ( )
where E; is the Josephson energy, &, = h/2e is the flux quantum, ®, is an external flux

bias, L the self-inductance of the loop, () the charge, and C; the capacitance of the junction.
The first term represents the Josephson coupling energy of the junction, which is a periodic
function of the flux ¢ through the loop. The second term is the magnetic field energy of the
flux, and the third the Coulomb energy of the charge over the junction.

For suitable parameters, the total energy forms a double well potential, as shown on the
right-hand side of Figure 12.5. The two minima correspond to the two basis states of the flux
qubit, which are coupled by the junction energy E;. The longitudinal component of the ef-
fective magnetic field is now determined by the external flux, while the transverse component
depends on the junction energy. In close analogy to the charge qubit, it is again possible to
tune the junction energy by inserting a small loop and adjusting the flux through this control
loop, as shown in the center of Figure 12.5.
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12,2.3 Gate operations

As discussed above, the Hamiltonians that describe the charge as well as the flux qubits can
be brought into the form of effective spin-1/2 systems, which are acted upon by effective mag-
netic ficlds. Depending on the details of the implementation, the components of this effective
field can be changed over a certain range by suitable control parameters. Two different ap-
proaches have been used to implement gate operations: the control parameters can be switched
between different values and left there at constant values for the suitable duration, or they can
be modulated to resonantly excite a transition between the basis states.

If dc (unmodulated) pulses are used, the whole process of switching the control field on,
letting the system evolve, and switching back, should be fast on the timescale of the unper-
turbed evolution of the system. With dc pulses, a coherent superposition of the two states can
be created by initialization of the system into the ground state and then suddenly pulsing the
control field to equalize the energy of the two states [NPT99]. Leaving them in the degenerate
states for a quarter of the tunneling cycle time, creates an equal superposition of the two states.
This superposition remains if the control field is switched off sufficiently rapidly. These very
demanding requirements can be relaxed if resonant irradiation is used [VAC*02, YHC02].
The resulting evolution is then exactly that of a spin-1/2 under resonant irradiation.

Like in any other implementation, two-qubit gates require a coupling between qubits. This
can be implemented directly between qubits either through the Coulomb interaction between
charges, which yields a coupling operator SZS¥, in the basis of Eq. (12.2), or through induc-
tive coupling between flux states, which can be written in the form S{JSf} For flux qubits,
gate operations can be implemented by suitably time-dependent bias currents [SJID103]:
Such two-qubit gates were demonstrated by Yamamoto ef al. [YPA™ 03] and by Berkley et
al. [BXRT03].

For larger systems, it may be advantagcous not 1o use pairwise couplings, but rather to
couple each qubit to a common degree of (reedom, such as an LC oscillator. The resulting
system has a common “bus” qubit, in analogy to the trapped ions, where the motion is used as
4 common bus qubit. Such a procedure may simplity the coupling network and also lower the
amount of decoherence introduced into the system by the gate clectrodes.

Apart from the systems discussed here, superconducting qubits have also been imple-
mented that are intermediate between the charge and flux qubit. Choosing such an interme-
diate state allows one to optimize, in particular, the decoherence by choosing the basis states
such that the effect of external noise sources are minimized.

12.2.4 Readout

For charge qubits, readout can be performed for the charge-type quantum dots by an SET,
which is very sensitive to small changes in the electric field. For flux qubits, SQUIDs (super-
conducting quantum interference devices) represent the most sensitive detection device. An
early experiment |NPT99] used a probe electrode that was coupled to the box by a tunnel
junction, which provides an escape route for excess electrons in the box: if an excess Cooper
pair is in the box, a tunnel current is registered through the probe gate. This electrode was
also used to initialize the system into the ground state. In this experiment, the clectrode was
permanently coupled to the qubit box. The escape path for the electrons therefore presented
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a significant contribution to the decay of the coherence in the system. Since the coupling is
an efficient source of decoherence for the system, it will have to be switched off for an actual
quantum information processing device.
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Figure 12.6: Signal from superconducting qubit undergoing Rabi oscillations as a function of
control charge [NPT99].

In the system displayed in Figure 12.6, Rabi oscillations have been initiated with an intense
electrical field pulse. While the readout is done on a single system, it represents an average
over a large number of pulse cycles. The measured quantity was therefore the probe current,
not the number of electrons. It is proportional to the probability of finding the qubit in the
upper state, from where electrons can tunnel out into the probe electrode. The oscillation
period is given by the tunnel splitting, which can be tuned with the flux ¢ through the loop
that includes the two tunnel junctions between the reservoir and the box. It agrees with the
splitting that was measured by microwave spectroscopy. At larger offsets, the cycle Rabi
frequency increases, but the oscillation amplitude decreases. To reduce noise, the experiment
was performed at a temperature of 30 mK in a dilution refrigerator. Coherent dynamics of a
single flux qubit have also been observed by {CNHMO03].

12.3 Semiconductor qubits

12.3.1 Materials

Semiconductor materials provide the richest set of tools for constructing qubits. Some of the
proposed solid state spin based implementations use semiconductor materials in some form
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and were discussed in Section 12.1. Here we concentrate on other suggested systems that do
not use impurity spins for the qubit implementation.

The extensive use and associated technology base for semiconductor materials in conven-
tional clectronics is also one of the attractive features for quantum computing implementa-
tions: no other material base has a similar range of tools available, not only for generating
structures with dimensions in the nanometer range, but also for adjusting material properties
like conductivity, potential, bandgap elc.

Apart from the impurity spins discussed in Section 12.1, semiconductor materials offer
a range of additional possibilities for defining qubits. This includes excitons, electron spins,
nuclear spin, electric charges, and more. Most of these systems, however, have only been
suggested as implementations and only a few, if any of them, are likely to be implemented for
more than one qubit.

While the group IV materials Si and Ge were mostly used in implementations on the basis
of impurity spins, I1I/V materials like GaAs are preferred for most of the other approaches.
Using 11I/V malerials s particularly important for implementations that use optical excitation
or readout, which requires direct bandgap materials. In addition, the high electron mobilities
that can be reached in high-purity 2D electron systems, promise slow decoherence.

One possible basis for semiconductor qubits are quantum dots, i.e., structures that confine
electrons in three dimensions in such a way that the energies become discrete. Typical sizes
of these structures range from 5 to 50 nm.

Figure 12.7: Two coupled quantum dots as qubits; left: schematic representation; right: trans-
mission clectron micrograph; height of dots is 1-2 nm, dot separation 4 nm, dot radius §-
12 nm [(BHH' 01,0YvH ' 04].

Quantum dots form spontaneously when some semiconductor materials are deposited on
a substrate with a different lattice constant, c.g., during the growth of InAs on a GaAs sub-
strate. The difference in lattice constant implies that the material grown on top is significantly
strained. The elastic energy associated with this strain can be minimized if the layer grows
not as a film, but assembles into islands; this process is called Stranski—Krastanow growth.

Stopping the growth process at the right moment leaves an assembly of mesa-like struc-
turcs behind, whose dimensions can be adjusted to match the range where quantum confine-
ment effects are significant. If additional layers of GaAs and InAs are grown over the quantum
dots, the dots in the second layer tend to align with the existing dots. One has therefore a good
chance to obtain coupled dots, as in the example shown in Figure 12.7.
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12.3.2 Excitons in quantum dots

The confinement of the electrons in the quantum dots makes the energy levels discrete, thus
offering the possibility of using them for encoding quantum information. One possibility is
to use excitonic states [CBST00, BHH' 01], i.e., electron-hole pairs, which are created by the
absorption of light. The energy I, of excitons is determined by F., = E, — E,, where F,
is the bandgap and E), the binding energy of the electron-hole pair.

Dotl Dot2 Dot1 Dot2 Dotl Det2 Dot1 Dot2

m e—— [ ‘ﬂf- [ — = | — s

Physical ; : P F.
state L . . 4.
-_.rq;ﬁ- D ] S m— -_f- -?- —— e w E
Logeal 100> 01> 110> 1

Figure 12.8: Possible encoding of two qubits by a single electron-hole pair in (wo quantum
dots. State |0} is identified with the particle being in dot 1, state |1) with the particle in dot 2.

Using an exciton in a pair of coupled qubits, quantum information may be encoded into
the electron and hole being in one or the other quantum dot: identifying the logical |0) with
the left quantum dot, the four states shown in Figure 12.8 correspond to |0, 0), |1,0), |1,1),
and |0, 1), respectively. At a separation of 4-8 nm, the electron wavefunctions of the two
quantum dots overlap, allowing electrons and holes to tunnel between them. The eigenstates
are therefore the symmetric and antisymmetric linear combinations, which are observed in the
photoluminescence spectrum.

Readout of excitonic states is relatively straightforward in principle: the electron-hole
pairs recombined after a time of the order of 1 ns, emitting a photon that can be detected.
The wavelength of the photon indicates the state occupied by the particles before their de-
cay. Depending on the coding scheme, the eigenstates of the system, which determine the
photon wavelength, may not be the qubit states, but a modification of the algorithm could
still make use of the information gained from the photoluminescence data. Unfortunately,
the recombination destroys the quantum information stored in the exciton and the probabil-
ity that an electron—hole pair emits a photon, which is subsequently detected, is too low to
allow for reliable readout in a single event. Instead of detecting an emitted photon, it is also
possible to convert the photoexcited electrons into free carriers, which can then be detected
electrically [ZBST02].

12.3.3 Electron spin qubits

Using the spin degree of freedom rather than the charge has two essential advantages. The
Hilbert space consist only of the two spin states, thus minimizing any “leakage” of quantum
information into other states. Second, the spin is less strongly coupled to the environment
than the charge. As a result, the dephasing time of electron spins in semiconductor quantum
dots can be as long as a few microseconds [KA98]. Compared to nuclear spins, electron spins
offer stronger couplings to magnetic fields and therefore faster gate operation, and they may
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be controlled by electric fields also. The advantages of electron spins (fast gates) and nuclear
spin (slow decoherence) may also be combined by storing the information in nuclear spin and
switching it into electron spins for processing [TMLO3].

Specific spin states of electrons in quantum dots can be created either by optical excitation
with circularly polarized light or by spin injection [OHH"99, ZRK*01,0YB*99] from mag-
netic materials. Manipulation of the spin states can be achieved either optically [CDF*03],
using pulses of circularly polarized light, or electrically, if the quantum dot structures are
defined by electrostatic potentials. Modulation of the potentials then modulates the tunnel
splittings, which can be exploited for logical gate operations [LD98].

In contrast to silicon-based systems, where isotopically enriched 2®Si material is free of
nuclear spins, GaAs has three nuclear isotopes with spin 1=3/2. Electron spins therefore al-
ways are subject to hypertine interaction with the nuclei over which the electron wavefunction
extends. This interaction therefore yields a significant contribution to the dephasing of elec-
tron spins in GaAs [KLGO02, SS03].

Readout of single electronic spins presents a significant challenge. Two approached are
currently investigated: optical readout, similar as in the case of excitons, and the conversion
of spin into charge degrees of freedom followed by electrical detection [RSL.OO, BLO3].

Like in superconducting systems, readout may be easier in intermediate systems that
do not rely on individual spins, but on ecnsembles with pseudospin, such as “quantum hall
droplets” [SPS03].
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13 Quantum communication

This chapter deals with quantum aspects of the transfer of information. It is divided into
two parts. The first part discusses tasks which cannot be performed classically but which
can be performed quantum mechanically. The second part is an introduction to some notions
and topics in classical and quantum information theory. We include it in order to supply our
readers with some basic notions which are useful in studying the growing body of research
literature in quantum information theory.

13.1 ‘“Quantum only” tasks

Before we start discussing tasks which can only be performed quantum mechanically but not
classically, we recall the no-cloning theorem (Section 4.2.11) where it is just the other way
round. Any piece of classical information can be copied arbitrarily often and with arbitrary
precision, but there is no way to copy an arbitrary quantum state. This inability to copy quan-
tum information is the basis for secure communication by means of quantum key distribution,
which we will discuss in Section 13.1.3. Before, in Section 13.1.2, we will show how one
qubit may be used to transfer the information of two classical bits by a scheme known as
(super-) dense coding. We will start, however, with quantum teleportation.

13.1.1 Quantum teleportation

We may be unable to give a copy of a quantum state to a friend, but under certain circum-
stances we are able to transmit some classical information which allows him or her to prepare
precisely the state that we originally had. Our state will then be destroyed, of course, because
otherwise we would have been able to violate the no-cloning theorem. A necessary resource
for this teleportation of an unknown state is entanglement, that is, both partners must share
among them two qubits (in the simplest case) in an entangled state. Quantum teleportation
was discovered in 1993 by Bennett ef al. [BBCT93] and is surprisingly simple.

We consider the usual characters, Alice and Bob. Let Alice be in possession of a qubit in
the state

[¢) = a]0) + 3]1). (13.1)

(Of course she does not know « and §3, otherwise the problem would be trivial.) Furthermore
Alice and Bob share a pair of qubits prepared in one of the Bell states (4.60), often also called
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Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA
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an EPR pair,
|
V2

where Alice can manipulate only the first qubit and Bob only the second one. The initial state
of the combined three-qubit system is thus

) = —=(]00) + {11)), (13.2)

1
V2
Alice applies a CNOT(1,2) gate to the two qubits in her possession, followed by a Hadamard

gate H, acting on the first qubit (the one initially containing |¢)). This entangles the two
states |+0) and |¢) with each other.

Ix) == [} e) = —= []0)(|00) + [11)) + S]1)(]00) + [11))]. (13.3)

[X) = H| CNOT (1.2)]) = H%

= % le(J0) + 1)) (J00) + [11)) + B(J0) — [1))(J10) +[01))]. (13.4)

[|0)(J00Y + |11)) + A[1)(j10) 4 {01))]

We rewrite this state in order to bring out clearly what has happened on Bob’s end

0=
1100} (a0} + A1) + 1013 (1) + H10)) + [10)(el0) — A1) + [11)(a]1) — Bl0))

o |

[00Y o) 4 [0 Ky lh) + [1TOVZs |y 4 [11) (—=iY3) [¢)

X7y

Sl -
S

i 1 L

-5 ST IMM)XEZ ), (13.5)
My =0 A,=0

where X, Y5, and Z; arc the Pauli matrices (4.28-4.30) applied to the qubit 3, that is, Bob’s
qubit.

Bob now possesses a superposition of four distorted variants of Alice’s original state.
Alice performs a measurement (in the computational basis) on the two qubits 1,2 to which she
has access. She obtains one of the four combinations |M| M) (M, M, = 0, 1) with equal
probabilities. After the measurement the state of the complete system has been projected to

|ALy M)y XA 22 ) (13.6)

so that Bob possesses a definite modification of the desired state |¢), but he does not vet
know which one! To let him know, Alice transmits the two measured classical bits (M, Al)
through a classical channel. The transmission through the classical channel is limited by the
special theory of relativity and prevents superluminal communication, or, as Einstein put it,
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“spukhafte Fernwirkungen” (spooky actions at a distance). Bob then applies to his qubit the
operator

Zy" X3 = (XyRzy) (13.7)

and can enjoy the state |¢») which is now in his possession, while Alice’s original qubit is in
the state | M ).

It is important to note that in this process neither matter nor energy were transported “ex-
plicitly”, only two classical bits. Surprisingly enough these two classical bits were sufficient
to reconstruct on Bob’s side the state |¢) which requires three real numbers for its complete
specification (one amplitude, and two phases, assuming normalization}. In a sense, these
three real numbers contain infinitely more information than was transmitted; unfortunately
(see the following subsection) this information cannot be retrieved completely. Neverthe-
less, the possibility of teleportation clearly shows how powerful a resource a shared EPR pair
is. On the other hand, the necessity to have a shared EPR pair for every qubit (or electron,
nucleon) whose state is to be teleported makes it very clear that we are still quite far away
from any kind of “beam me up, Scotty” scenario. Nevertheless, single-qubit states have been
successfully teleported in more than one laboratory, using optical and NMR techniques. Ref-
erences to those experiments (and to critical comments on them) can be found in [GMDO02]
and in [NCO1], p. 59.

13.1.2 (Super-) Dense coding

An arbitrary normalized pure single-qubit state is completely specified by three real numbers,
for example, the two angles # and ¢ in the Bloch sphere representation (4.39), plus an overall
phase which is usually irrelevant. These real numbers contain much more information than
the single binary digit contained in a classical bit, and it is interesting whether that much
information can be reliably transmitted by a single qubit. The answer is no, unfortunately.
However, transmission capacity can be doubled by using quantum instead of classical bits, as
discovered by Bennett and Wiesner in 1992 [BW92], whose scheme has become known as
superdense coding . In a sense, it is the inverse process of teleportation. Alice and Bob share
an EPR pair and can transmit two classical bits by a single qubit. The method is difficult to
implement and it is not important as a means of practical fast communication. However, it
demonstrates one possibility of secure communication, as we shall see.

As in the preceding subsection, Alice and Bob are supposed to share the EPR pair state

1

ﬂ(;oo>+|11>). (13.8)

)

(By the way, there is no need for any prior direct communication between Alice and Bob: they
could have obtained their respective qubits from an “EPR pair distribution agency”.) Now, if
Alice wants to send the two classical bits (M7, Ms) to Bob, she applies X{wl Z{WZ (to the only
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qubit accessible to her, that is, qubit 1). This yields

[boo) = X{Zjlg) = |¢> (13.9)
Wm> i X{Z?I(/)> = ﬁ“ 10) + |()1>)

o) = X{Zylg) = \/3(|()U> 111))

ou) = XiZlle) = <i¥\l9) = Z=(10) = o)),

Then Alice transmits her qubit to Bob. Note that the four states on the right-hand side are an
orthonormal set (the Bell basis which we have already encountered in Chapter 4) and thus can
be distinguished by an appropriate measurement. Bob might first apply CNOT(12) and then
measure the target bit 2. This yields

CNOT |ggo) ~ 100) + [10) — (13.10)
CNOT |g1g) ~ |11} +[01) —s

CNOT ¢y}~ [00) — |10>H0

CNOT |¢n) ~ [11) —j0l) —

Obviously this yields the first classical bit A1y transmitted by Alice. The second qubit now has
been used up in the measurement. The remaining classical bit M, is encoded in the relative
sign in the four superpositions (13.9) above. Bob can decode it by applying the Hadamard
gatc H = %(X + Z) to his remaining qubit and then measuring it :

H(\1)+l0)):—— Oy + {0 +10) = 1)) ~ |0) (13.11)

S

(for [¢a) and [¢h1g)),

1 , ,
H(]0) - 1)) = iﬁﬂU) = 11) = 10) 1) ~ [1). (13.12)

Experimentally this has been implemented by both optical and NMR techniques, see
|GMDO2} for the references.

What about the security of this procedure for information transmission between Alice
and Bob? Can a malignant person (usually called Eve, the eavesdropper) intercept the qubit
transmitted by Alice and decode the information? Of course she can intercept and measure the
qubit, but, regardless of the two classical bits Afy and M, encoded by Alice, Eve will measure
|0} and |1} with equal probabilities, so that she obtains no information whatsoever. Formally
inclined readers may convince themselves that the reduced density matrix (see Chapter 4)
of the state intercepted by Eve does not depend on the classical bits to be transmitted. The
information is encoded in the way the two qubits are entangled, and it can only be decoded by
using information on both qubits. In the following subsection we will see how entanglement
can be employed to generate keys for data encryption.
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13.1.3 Quantum key distribution

Secure communication is a field where quantum mechanics may contribute in several ways to
create or destroy security. In Section 8.3 we saw how quantum mechanics may help to break
classical codes by Shor’s algorithm. Here we will discuss how quantum mechanics helps to
make secure communication possible by quantum key distribution, one of the central ideas
in the field of quantum cryptography [GRTZ02]. Alice and Bob exchange qubits in order to
generate a key which can be used later to encrypt a message transmitted by a classical (and
public) channel. The encrypted message can only be decrypted by means of the key. Quantum
mechanics can be used to make sure that only two persons are in possession of the key. This
should be contrasted to old-fashioned techniques such as providing secret agents with “code
books™ which may get lost, stolen, or copied.

A key is a (random) sequence of (classical) bits {k;}(¢ = 1,..., N) which Alice uses to
encrypt the N-bit message {m;} and transform it to the code {¢;} by

¢ =k, ©m; = k; XOR m; = (k; + m;) mod 2. (13.13)
Bob can decrypt the code if he possesses the key:
m; =¢; Dk, (13.14)

as can be easily verified for all four possible combinations (k;, m;).
This method of encryption is only safe it the key is used only once. If two messages m
and m/ are encoded with the same key and the codes ¢ and ¢’ are intercepted, the relation

¢ =m; m) (13.15)

can be used to eliminate the deliberate irregularities introduced by encoding. Subsequently
standard correlation analyses (as available at any secret service) can be applied in an attempt
to separate m from m’. Given this situation there is obviously a need to distribute fresh keys
among Alice and Bob. Quantum key distribution serves that purpose. There exist several
schemes or “protocols” to do this quantum mechanically, see [GMDO2]. Here we will discuss
only two schemes which are closely related to each other.

First we discuss the four-state protocol known as BB84 [BB84]. This protocol uses four
pairwise orthogonal states

1
V2

(the eigenstates of the Pauli matrices Z and X, respectively) which can be easily prepared as
linearly polarized photons with electric field E along &, 9, and = £ ¢, where & and ¢ are unit
vectors along the coordinate axes. Measurements are performed with linear polarizers along
these directions, and detectors. A photon polarized along % passes through a polarizer along
and is detected, one along ¢ is not. To get an unambiguous result the observer must know that
a photon should be coming along his way and that it is polarized either along & or along 4.
A photon polarized along one of the diagonal directions Z &£ 4 will not yield any information
when analyzed with a polarizer along &, because both possibilities will give a signal in half of
all cases.

0),11), %) = —=(10) £ |1)) (13.16)
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Alice prepares 2n qubits randomly in one of the four states. Each qubit ¢ contains two
classical bits, namely:

e b, telling which basis, {|0), 1)} or {| +),|—)}, was used to prepare the state, and
e s, telling which state (1st or 2nd) of the given basis was prepared.

Bob (ideally) receives all these qubits and measures them, randomly switching the basis
used for measuring. He also obtains two bits for each qubit, namely

e b, ., telling which basis was used to measure the qubit, and

o s, ;, telling which state of the given basis was measured.

Alice now (after the transmission) tells Bob (over a public channel) the sequence {b, ,}
which Bob compares to his sequence {hy, ; }. Both parties keep only qubits with b, ; = b,,,
and throw away all the others (roughly ), because they do not contain useful information, as
discussed above. For the remaining qubits the classical bits s, ; = $,, ; are known (0 both
Alice and Bob. They constitute the key.

The security aspects of this procedure become visible if Eve intercepts and measures the
qubits. During transmission Eve neither knows which basis Alice uses tor preparing the
qubits, nor which basis Bob uses for measuring them. Nevertheless she has to supply Bob
with qubits resembling thosc transmitted by Alice, in order not to be discovered immediately.
Eve’s only possible strategy is to use one of the two measurement bases randomly for each
qubit. After each measurement she prepares a fresh qubit in the basis state just measured and
passes it on to Bob. After the transmission is complete, Alice and Bob discuss their bases and
agree to discard about half of their measurements as useless. (Eve of course listens to the con-
versation and discards the same measurements.) Let us discuss what effect Eve’s attack has on
the code, that is, on those qubits which have been measured by Bob in the same basis as used
by Alice to prepare them. For about 50 % of these qubits Eve has performed her measurement
in the right basis, causing no disturbance. The remaining 50 % of the qubits have been mea-
surcd in the wrong basis by Eve and then passed on to Bob. The final measurement by Bob
(in the right basis) has projected half of these qubits back into the state originally prepared by
Alice, so the overall error rate caused by Eve is 25 %.

Alice and Bob can agree to publicly compare a certain share of the key (thereby sacrificing
that share, of course), and if they detect no differences they can be pretty certain that no
eavesdropping has occurred. (It m bits are compared the probability that they are all correct
by chance in the presence of eavesdropping is (%)""’ = 3- 1071 form = 100.) Of coursc Eve
might be clever enough not to intercept every qubit, and also there might be errors other than
those caused by eavesdropping in a less than perfect transmission line. All these problems
have been analyzed and may be overcome, see [Ste98, GMDO02].

The scheme has been demonstrated using 23 km of public telecom glass fiber beneath
Lake Geneva by Zbinden ¢f al. 1997 [ZGG197], see [GRTZ02] for a review of more recent
work. In that experiment polarized light pulses with < (.1 photons per pulse were used: there
must be (practically) no pulses with two or more photons hecause an cavesdropper might
intercept just one photon and go unnoticed. (By the way, this problem is one of the reasons
for the interest in “single photon on demand” sources.) The bit error rate was ~ 1% and the
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data transfer rate was of the order of MHz instead of the usual (in non-secure communication)
GHz.

Other protocols for secure communication involve entangled states, for example EPR
pairs, and it was shown that the Bell inequalities (mentioned in Chapter 4) distinguishing
genuine quantum correlations from classical ones can be used to detect eavesdroppers. An
extremely simple scheme involving EPR pairs but no Bell inequalities was suggested by Ben-
nett, Brassard, and Mermin in 1992 [BBMO92]. This scheme is essentially equivalent to the
BB84 protocol just discussed, as we will see. Alice and Bob share 2n EPR pairs

SN
o) = 7

in the usual way, that is, each qubit is accessible to one person only. Both measure the qubit
accessible to them, and thus project it on one of the eigenstates of X or Z (at random). They
inform each other publicly about the (X, Z) sequence used, but not about the results of the
measurements. They discard all measurements where one has measured X and the other Z.
The remaining measurement results are perfectly anticorrelated and can be used to produce
two equal bit strings of length ~ n. A part of the key may again be sacrificed to detect
eavesdropping. The scheme has an additional advantage: the EPR pairs can be left untouched
until just before the key is needed so that the time during which the key is kept in classical
storage and can be copied by a thief is minimal. Of course this requires the ability to preserve
EPR pairs over long times, but that is a different story.

For further information on quantum cryptography, interested readers are referred to
[GRTZ02]. This review article treats a broad range of topics, from theoretical foundations
to detailed discussions of fiber optical transmission systems.

(j01) — 110)) (13.17)

13.2 Information theory

Information theory has developed over the past five or six decades in parallel to computer
science. Tts roots are in communication theory, that is, in the theory of transmission of infor-
mation by telephone or radio. Of course, all parts of this book deal with information theory
in a wider sense, but as the subfields have developed, questions of computation and algorithm
development have been separated from information theory in a narrower sense. In this section
we will restrict ourselves to some problems dealing with the transmission of information.
The most fundamental questions of course are, what is information, or, more precisely,
how can it be quantified? These questions were dealt with in the pioneering contributions
of Claude Shannon [Sha48] in the late 1940s. The historical (or socio-economic) context
was the rapid growth of communication by telephone lines. Consequently the problem was
formulated as the problem of effectively transmitting information through a given “channel”.
The channel, for example a telephone line, may connect two points in space, but it may also
connect two points in time, in which case we are dealing with effective data sforage. As
every channel has physical limits, there is an obvious interest in precisely determining these
limits and extending them if possible. To do that, a measure of the information content of
a communication must be developed and related to the capacity of the channel. That is the
content of Shannon’s noiseless channel coding theorem. Of course channels are always noisy,
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and questions of error-correction immediately come to mind. Actually there is a large subfield
of classical information theory dealing with the development of error-correcting codes. The
fundamental limits are fixed by Shannon’s noisy channel coding theorem.

In contrast to the theory of quantum (or classical) algorithms, here we are not dealing with
a small number of (qu-)bits which must be processed, but with large quantities of transmitted
data. From the point of view of the communications engineer these data form a random
sequence of symbols about which only some statistical properties may be known. It turns
out (not unexpectedly) that some key concepts from statistical mechanics, such as entropy are
useful also in information theory, both classical and quantum.

After discussing some notions of classical information theory we will try (o generalize the
concepts to the quantum regime. Unfortunately it turns out that the use of qubits does not
significantly speed up the transmission of classical information (such as this text) through a
noiseless channel. Nevertheless it is interesting to study how the notion of classical infor-
mation may be generalized to quantum information, how strongly quantum information may
be compressed (looking for the quantum analogs of Shannon’s theorems), and how quantum
noise (i.e., continuous fluctuations in both amplitude and phase in contrast 10 mere bit flips)
may affect the transmission.

13.2.1 A few bits of classical information theory
Information content and entropy

The Tirst question is, how to quantify information. lmagine you are told that
X =2 (13.18)

How much information do you gain? That depends on your previous knowledge: if you knew
already that X was 2, you learn nothing. If you only knew that X was determined by throwing
a die you gain information. The information content of X is a measure of your ignorance:
how much information would you gain if you learned the value of X'? That depends obviously
on the number of values 2 of the random variable X and their probabilities p(x). The general
formula for the information content of X is

S(X) = S({p(» Zp Vlogs plx). (13.19)

Since 0 < p() < 1, S(X) > 0. Let us look at more examples to see if this definition makes
sense:

o p() =, (for integer x) = S(X) = 0.
{Nothing is learned if we know already that X = 2.)

e p(w) = & forx =1,..., N and zero otherwise = S = log, N.
N=¢6 é S = 2.58 (lhc fdll die)
N = 2" = § = m: m bits must be specified to convey the information

o p(6)=4,p(1) = ... =p(5) = ; = 5 = 2.16 (a loaded die).
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The comparison between the fair die and the loaded die shows that the potential information
gain decreases if the information about the probability distribution increases. The uniform
probability distribution is the one with “maximal ignorance”. Obviously S is closely related
to the entropy well-known from Statistical Mechanics, and it is indeed often called information
entropy or Shannon entropy. A simple but important special case is a binary variable (X = 0
or 1, say), with p(1) = p = p(0) = 1 — p. S(x) is then a function of p only:

S(X) = H(p) = —plogyp — (1 = p) logy (1 — p). (13.20)
The binary entropy function H (p) assumes its maximum value 1 atp = 3.
1 :
o5t ]
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Figure 13.1: The binary entropy function H (p).

Mutual information and the data processing inequality

For two random variables X and Y we can define the conditional probability p(y|x) that the
random variable Y assumes the value y under the condition that X = x, and the conditional
entropy

S(Y]X) = ZP ) > plyle) log, p(yla). (13.21)
Y

Since — 3, p(y|r)log, p(ylz) is the information content of Y for given value of X, the
conditional entropy S(Y'|X) is the average information content remaining in Y if we were to
learn the value of X. (Where the average is performed over the possible values of X.) Since
the (“simultaneous”) probability p(x, y) that X = z and Y = y is given by

p(z,y) = p(z)ply|x), (13.22)



210 13 Quantum communication

we can rewrite (13.21) as

~S°N ) logy plyl). (13.23)
& U
We now define the mutual informationcontent of X and Y as
p(l Y)
(X:Y):= pla,y) log, =I{Y:X). (13.24)
Z Z ¥ 2 ple)n(y) (

It X and Y are independent random variables, that is, p{x,y) = p{x)ply}, the mutual infor-
mation /(X : Y) = 0 and this indicates that I(X : Y') in fact measures how much X and Y
“know about each other”., We can relate the mutual information to the conditional entropy by
noting that

ZZ})J y) log 2 G U) ZZ[II y) log, p(y)

= ZZ[} x,y) logy ply|z) Zp y)log,p(y) = —S(Y1X) + 5(Y) (13.25)

where we have used (13.22), (13.23), and p(y) = >_ p(x,y). Due to the symmetry of
[(X :Y) we also have

[(X:Y)=IY: X)=—S(X|Y) + S(X). (13.26)

Defining the information content of the “two-component” random variable (X, Y') by
=— ZZp(l’,y)log2 pla,y) (13.27)
i Y

and using the normalization conditions p(x) = Zu p(x,y) and p(y) = > plx,y) we see
that ‘

I(X:Y)==S(X.Y)+ 5(X) + S(Y) (13.28)

where S(X,Y) is the information content of the “vector” random variable (X, V).

During data processing, information can only decrease. To sce this we reconsider the
fundamental step (2.1) of data processing from a probabilistic point of view. The register is
described by a random variable which is capable of a certain set of states (or values). The
set of rules (the program) determining the transition from one state of the register to the next
state is encoded in conditional probabilities. In this language, data processing is a stochastic
process (a Markov chain). We consider two steps of data processing involving three random
variables X - Y+ Z where successive variables are connected by conditional probabilities
p(ylr) and 7}( lyy) and where the simultaneous probability p(xz,y, 2) = p(a)p(yle)p(zly).
Under these conditions the data processing inequality says

S(X)> (X :Y)z (X :7), (13.29)
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that is, Z cannot know more about X than Y knew which is less than the information content
of X. This highly plausible inequality (a corollary to which is the well-known rule “garbage
in, garbage out”) can be deduced from the properties of the various entropy functions dis-
cussed above. (Compare, for example, [NCO1], Chap. 11).

Data compression and Shannon’s noiseless channel coding theorem

The basic idea of data compression is very simple and also very old. Determine which se-
quences of symbols or words occur most frequently and use abbreviations for them, that is,
code these words in short strings of the symbols (bits, for example) used for data transmission.
We illustrate this principle with a very simple example. Suppose we wish to transmit infor-
mation from a source X with a four-letter alphabet with unequal probabilities. Four symbols
can be distinguished by using two bits and there is a “natural” (or naive) way to do this. In the
table we show both the naive code and a “clever” code which we analyze below.

symbol | probability | naive code | clever code
1 % 00 0
2 3 0l 10
3 2 10 110
4 é 11 111

Note that in the naive code ail symbols are stored in two bits each. The clever code uses
bit strings of variable length, but nevertheless the boundaries of the symbols are always well
defined: after a “0” or after at most three bits. The average length of the cleverly coded string
in bits per symbol then is

1 1 2 7
- 1l4+--24--3=-<2 13.30
y ' TieTRY s (13.30)
Let us compare this to the entropy of the source:
1 L1 2 11 1 2 7
{(X)=—=logy, = —=-logy — ——log, = =—--14+—--24+_--3=—. 13.31
S5(X) 5 0825 — yl0B g — 2B g = 5 T3 +8 3 1 ( )

The fact that the two numbers are equal is no coincidence. Also, no compression scheme can
be constructed which works with a smaller number of bits per symbol on average. This is the
contents of Shannon’s noiseless channel coding theorem.

To illustrate the idea a little more generally (but without going into full generality) we
consider a source sending a stream of binary symbols: X = 0,1 ; p(1) = p,p(0) =1 —p
with p # % (Remember: the central elements of data compression were the fact that not all
strings are equally probable, and the use of short codes for frequent symbols.) We will not
encode individual symbols but blocks of n symbols with n large. In the typical case such a
block will contain np ones and n(1 — p) zeros. (Let us postpone for a moment the discussion
of what “typical” really means.) There are many blocks of n symbols np of which are ones.
The probability of any such sequence of zeros and ones is

Pryp =P (1 —p)" P (13.32)
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Now note that
logy pryy = nplogy p+n(l=p)logy(l—p) = —nll(p) = py, = 97" H(P) (13.33)

where H (p) is the binary entropy function defined earlier. As these typical sequences all have
equal probability 2-/1(") their total number is 2"#/(»)and they can be numbered, from 1 to
21 H(r) | To communicate which one of the 2"//() possible typical sequences are transmitted,
only nf1(p) bits are needed, not 7 bits as in the case where bits are transmitted one by one.
It is not possible to distinguish the typical sequences by sending fewer than nH (p) bits, since
they are all equally probable, so the compression from 7 to nH (p) is optimal.

So, how typical is typical, and why is the above argument relevant? Why do we really
encounter (almost) only typical sequences? Tt turns out that the answer to these questions is
provided by one of the “laws of large numbers™ arguments which are possibly familiar from
elementary statistical mechanics. There it is shown, for example, that the energy per particle
may be allowed to fluctuate arbitrarily, but nevertheless the total energy of a large number of
particles practically does not deviate from its mean value. By a similar argument we will now
show that, although the individual symbols of a sequence may fluctuate between 0 and 1, a
long sequence will never deviate much from the typical number of zeros and ones, that is, np
ones and {1 — p) zeros. The probability of finding m ones in a sequence of n symbols is

T T n—m R
p(m) = ( m )p (1—p)m, (13.34)

the binomial distribution. For fixed p and large v, the binomial distribution is excellently
approximated by a Gaussian distribution. To see this we write down In p{m), approximating
the logarithm of the binomial coetficient with the help of Stirling’s formula

Inn! =nlun - n+ O(nn) (13.35)
valid for large n. (We assume that n, m, and (n — m) are all sufficiently large.) We then

calculate the first and second derivatives of Inp(m) which we need for a Taylor expansion.
The results are

1 .
l(— Inp(m)=Inp—In(l —p) —Inm + In(n —m) (13.36)
drn
and
d? 1 1 n
—s Inp(m) = —— — = - . 13.37
dm? up(m) m  n-—-m m{n —m) ( )
The first derivative of lnp(m) vanishes if b= o or m = np, and we see that np is

indeed the most probable number of ones in a sequence of length 7. A Taylor expansion of
I p(m) about the value i = np then reads

(m — np)? |
2 np(1 —p)

Inp(m) = lnp(np) — (13.38)
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This shows clearly that p(m) is a Gaussian

1 (rn—np)?
pim) ~ 2T 202 3
p(m) Gy} € 2 (13.39)

with standard deviation o = y/np(1 — p). (We have adjusted the normalization of the Gauss-
ian (13.39) by hand, because we used the crude form (13.35) of Stirling’s asymptotic expan-
sion. Taking into account a few more terms in this expansion leads to the correct normaliza-
tion automatically, but makes the calculation somewhat less transparent.) Note that, while the
mean value np grows linearly with the sequence length n, the standard deviation only grows
as v/n. That is, the relative fluctuations of the number of ones in a sequence becomes smaller
as the sequence grows longer and for long enough sequences we can be pretty sure that almost
all sequences are typical.

Thus we only have to transmit H(p) < 1 bits per symbol for our binary source. More
generally, for a source producing random variables X (capable of d values so that coding
the symbols one by one would require log, d bits per symbol) with an information content
S(X) we need n.S(X) < nlog, d bits to communicate n values of X. This fact about the
compressibility of data is known as Shannon’s noiseless channel coding theorem.

For practical purposes it is of course not always possible to wait until a large number
n of symbols have accumulated before starting the transmission. However, there are near-
optimal coding schemes for blocks of a few (say, four) symbols only. They are based on
the same idea as the example we started with: use shorter transmission codes for the most
frequently occurring blocks of symbols. An example for such a scheme is the Huffinan code
(compare [Ste98]).

The binary symmetric channel and Shannon’s noisy channel coding theorem

We have to think about signal transmission in the presence of noise, because noise is unavoid-
able in real-world systems. Depending on the physical nature of the signal and the transmis-
sion channel, different types of noise are possible. We will concentrate on the important and
simple case of binary digital transmission (of zeros and ones, that is) and symmetric bit-flip
noise. That means that every single bit is flipped with a certain probability p on its way down
the channel, regardless of its value (0 or 1) and regardless of the fate of all other bits. Such a
channel is called a binary symmetric channel, and we want to know its capacity, measured in
(useful) bits out per bit in. Tt turns out (see |Ste98] for details) that for the maximum infor-
mation content of the source, S(X) = 1 (that is, 0 and | are equally probable in the input bit
stream) the channel capacity is

C(p) =1~ H(p) (13.40)

where H (p) is again the binary entropy function defined earlier and p is the bit flip probability.
For a noisy channel one must use some redundancy, that is, one must employ error-correcting
codes. Shannon’s noisy channel coding theorem tells us that, for any given channel capacity
C'(p), there exist error-correcting codes which allow for transmission with an arbitrarily small
error probability.
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Unfortunately the theorem is an existence theorem and does not tell us immediately how
such a code may be constructed, but fortunately, a variety of clever error-correcting codes
have been constructed (see [GMDO02] for some examples), for example, for the transmission
of image data from satellites traveling the solar system to Jupiter and beyond.

13.2.2 A few bits of quantum information theory
The von Neumann entropy

It turns out that a useful quantum analog to Shannon’s entropy (information content) for a
classical set of probabilities p; (which characterize the possible values w; of a random variable
X)

S{pi}) = =D _pilogyp, (13.41)

is the von Neumann entropy

S(p)=—-Trplog, p (13.42)

which is defined for any density operator, that is, any operator p with p = pf > 0, Trp = 1.
Any such p can be decomposed in projectors onto normalized but not necessarily orthogonal
pure states,

p= pild )b (>0, ) pi=1). (13.43)

This is possible in many ways for any given p, and to any of these possibilities we can assign
a (classical) Shannon entropy S{{p}); it can be shown that

S({p:}) > S(p), (13.44)

with equality if and only if the vectors |¢;) are pairwise orthogonal. (Take, for example, the
eigenstates of p.) This inequality has a fairly obvious interpretation in terms of the distin-
guishability of two quantum states. Imagine a person (Alice) sending a string of classical
symbols z; down a line to another person (Bob), according to probabilities p;. We have
learned that the information content of this transmission is S({p; }).

Now let us assume that Alice is a dedicated follower of fashion and goes into the quantum
communication business. Instead of sending classical symbols x; she sends quantum states
|¢;). While Bob can easily distinguish all possible x;, he can only distinguish two states with
certainty if they are orthogonal to each other. This is also related to the no-cloning theorem:
imagine Bob could clone arbitrary unknown quantum states. He then could make many copies
of the incoming state and perform rmany measurements comparing clones of Alice’s state (o
clones of all possible states and determine Alice’s state with high probability.

It is instructive to consider a simple example involving a two-dimensional Hilbert space

spanned by the vectors |) = ( (1) > and |v) = ( 0

| ) Let us define a third vector

|3) := cos ¢ly) + «in pla) (13.45)
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and the density matrix

— p)sin® — p) cos ¢sin
pi= ool + (L-pla)ia) = (17T U IPem0me ) 130

The easiest way to calculate the von Neumann entropy S(p) is via the eigenvalues A; of p:

S(p)=—>_ Ailogy Ai. (13.47)

The eigenvalues of the above density matrix are

1 1 .
A= §i\/z—p(1ﬂp)cosz¢» (13.48)
For ¢ = 0 the states o) and |3) are distinguishable, the eigenvalues of p are A = p and
A = 1—pandthus S(p) = H(p) (the binary entropy function) whereas for ¢ # 0 |a) and
|3) cannot be distinguished with certainty, and S(p) is strictly smaller than H(p), as seen in
the figure.

0 05 1
p

Figure 13.2: The von Neumann entropy for a simple two-dimensional density matrix. Curves
arc for ¢ = 0,0.17,0.27,0.37, and 0.4, respectively (top Lo bottom). Sec text for details.

The quantum entropy has some non-classical properties. Whereas classical random vari-
ables X, Y always fulfill

5(X) < S(X,Y), (13.49)
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that is, the entropy of a subsystem is never greater than that of the total system, this is possible
for a quantum system. Consider two qubits A, B in the (pure!) state

1
Y

However, the reduced density matrix of subsystem A (obtained from p op by performing the
trace over the Hilbert space of B) is p4 = él = S(pa) = L.

Evidently this is related to the entanglement between A and B. In general A and I3 can be
considered entangled if and only if

|¢) (100) + [11)); pan = [d)(¢] = S(pay) = 0. (13.50)

S(pag) < S{pa) (or S(pr)), (13.51)

where, of course, p is again the reduced density matrix. The von Neumann entropy can thus
be used to define more gencral measures of entanglement than the concurrence discussed in
Chapter 4.

Most theorems concerning entropy, which are relevant to quantum information theory,
can be derived from a few fundamental properties which are discussed, proved and applied
in [NCO1] and which we just quote here for the sake of completeness:

1) Concavity
AMLS(pr) + AeS(p2) < S(Aip1 + Aupa) (13.52)

(A1 = 0, A1 + A == 1), In statistical mechanics, the concavity of the entropy is related
to thermodynamical stability.

1) Strong subadditivity

S(pape)+ Sipr) < S(pan) + S(psc). (13.53)
i) Triangularity

1S(pa) — S(ps)| < S(pap < S(pa) +5(pu) (13.54)

All of these incqualities also hold (in appropriately modified form) for the Shannon entropy,
cxcept the first one in iii).

The accessible information and Holevo’s bound

We are still dealing with the transmission of classical data through a quantum channel. Let
Alice have a classical information source X, that is, a random variable with values x;; and
probabilities p;(¢ - 0,...,n). According to the value x; to be transmitted, Alice prepares
one quantum state p; from a fixed set of (mixed, in general) states po, ..., P, and gives it
to Bob who measures the state and gets a result which can be treated as a classical random
variable Y capable of values v, ..., y,,. Let us discuss Bob’s measurement a little more
precisely. Bob has a set of measurement operators M;(i = 0,...,m) which he can apply
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to any incoming state vector [¢) (and also, with appropriate changes in notation, to mixed
states). The probability of finding the result ¢ is

P = (MM, [) (13.55)
and the state immediately after the measurement is

M, [)
\/ (1M M |1))

The operators E; := MM, are positive, and if 3 " | E; = 1 they are called POVM
elements (positive operator valued measure elements). (If the sum is smaller than one, Bob’s
measurement misses some possibilities of the incoming ]1/).) An extremely simple example
for a set of POVM elements are the projectors P; on the states of a basis.

Turning back to the result Y of Bob’s measurement (described by the POVM elements
Eq,...,E,,), it is clear that what Bob can learn about Alice’s message is (X : Y'), the
mutual information, which depends on the cleverness of his measurement strategy. The ac-
cessible information is the maximum of [(X : Y') over all measurement strategies. There is
no prescription to calculate the accessible information, but there is a bound by Holevo (also
often spelled Kholevo). Under the conditions described above, and with p := > p;p;, we

have

(13.56)

HX:Y)<S(p) =Y pSlp) = x (13.57)

where Y is sometimes called the Holevo information. (For the simplest possible example
compare Section 12.1.2 of [NCO1].)

Schumacher’s noiseless channel coding theorem

Consider a “quantum alphabet” of states |¢;) (not necessarily orthogonal to each other) with
probabilities p;. Such an alphabet can be described by a density operator

||

p =" pild) (el (13.58)
i=1

A message is a sequence of n “quantum characters™ |¢;, )[¢i,) - .. |d;,). The ensemble of
n-symbol messages is described by the density operator p®™ which lives in a Hilbert space
$H®" of dimension

|A]'n, — o log, |A| (13.59)

(or smaller, if the alphabet states are not linearly independent).

Is it possible to compress the information contained in p®"? Schumacher’s 1995 theorem
provides an affirmative answer. For sufficiently large n, p®™ is compressible to a state in a
Hilbert space of dimension 2% (that is, in n.S(p) qubits) with a fidelity (probability that
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after decompression the original state is recovered) approaching |. This means that S{p) is
the number of qubits of essential quantum information, per character of the alphabet.

The proof rests on the same ideas as that of Shannon’s noiseless channel coding theorem,
namely typical sequences and the laws of large numbers. The density operator p can be
decomposed into its eigenstates | ;) (which are orthonormal), with eigenvalues p(z):

p=> pl))z| (13.60)

Then the von Neumann entropy is equal to the Shannon entropy

S(p) = S({p()}). (13.61)
We can then definc a typical sequence

T, L9, Ty (13.62)
of classical symbols «x; and associate with it a typical state

|y ) o) oo ) (13.63)
in the Hilbert space ™. The typical states span the typical subspace and by the laws of large
numbers a few facts can be shown about the typical subspace for sufticiently large n which are

very similar to the properties of the typical sequences leading to Shannon’s noiseless channel
coding theorem. (See [NCO1] for a nice parallel treatment of both theorems.)

e p® has almost all of its weight in the typical subspace:
TrP(n)p“" >1-8 (5 —0) (13.64)
where P(n) is the projector on the typical subspace.
e The dimension of the typical subspace is asymptotically 275(2).
TrP(n) ~ 2"5P) (13.65)
implying that compression is possible.

e The weight of p®™ in any smaller subspace is negligible. Let Q(n) be a projector on any

subspace of H®" of dimension at most 2" with 2 < S(p). Then for any § > 0 and n.
sufficiently large
TrQ(n)p®" < (13.66)

implying that compression is limited: if one tries to press too hard, the data will get lost.
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Classical information over noisy quantum channels

This is a subject of ongoing research (as is, even more so, the subject of quantum information
over noisy quantum channels). The usage of quantum states for information transfer offers
many possibilities which do not exist classically. Many of these possibilities are related to
entanglement. For example, two or more successive qubits transmitted may be entangled,
and there may also be entanglement between transmitter and receiver. (This leads to the
fascinating possibilities of quantum cryptography and teleportation discussed in the first part
of this chapter.) Many of the schemes involving entanglement between the transmitted qubits
are not explored very well. The simplest case is that of product state transmission, that is, the
n-symbol quantum message is just a product state of n factors (no entanglement). For that
case an analogy of Shannon’s noisy channel coding theorem has been shown which gives a
lower bound for the capacity of a noisy quantum channel. That lower bound is known as the
Holevo—Schumacher—Westmoreland (HSW) bound. Some researchers suspect that the bound
is in fact the exact value of the capacity, but this has not yet been proved. Details on the HSW
theorem, together with some simple examples, can be found in [NCO1].
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A Two spins-1/2: Singlet and triplet states

Consider two spins—é, S, and Sz. The Hilbert space of this system is spanned by the four
simultaneous eigenstates of S . and Sp., | ) 4@ | L) =: | T1), | L1),| 11),and | []), with

h h
SAJ* Ti> = 5 Tl) 3 SB,Z’ Hr> = _5’ Tl> (A.D)

etc. If the two spins are coupled by an exchange interaction [Mat81]
H:;§A'§B (A2)
2

it is more convenient to organize the Hilbert space in terms of the singlet and triplet states to
be defined now. The total spin vector operator of the system is

Sy =S4 +Sg, (A3)
and its square
G2 _ g2 . @ 403 .& 21 (1 ..
S’]‘:SA_‘_SB_;_ZSASB:Qhé' 5‘{‘1 +QSASB (A.4)
serves to express the exchange interaction by the square of the total spin
wl |5 3.
H=_-|S]-n*|. AS
h2 [ Tog } (A-5)

The eigenvalues of H thus depend only on the total spin quantum number S7 defined by
§% = h?2S7(Sy + 1), which may assume the values S = 0 or 1. By the standard properties
of angular momentum operators there must be three eigenstates with S = 1 and Sy, =
0, £ (the triplet states) and one state with S = 0, and consequently St , = 0 (the singlet
state). The two states

[Ty):=]11)and |T_) =] |]) (A.6)

have S, = +h and thus are triplet states. The remaining triplet state is found by acting with
the total spin raising operator S} = S, + S}, on |T_) and normalizing. This yields

V2
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1T0> =

(T +1in). (A7)
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The singlet state must be a normalized superposition of the two S, = Ostates | T]) and | | T)
which is orthogonal to [Ty}, that is,

1
V2

Note that both total spin raising and lowering operators annihilate
rero character of this state.

For w > 0 (called antiferromagnetic coupling in the language of magnetism) the ground
state of H is the singlet,

15) r= —=( T1) = [ 11))- (A.8)

S), demonstrating the spin-

3
H|S) —Z}w]ﬂ (A.9)
whereas
1 .
H‘T()yi> = Zhu)|T()d:>. (A.10)

The two-spin product states withS, ., = 0 can be expressed in terms of singlet and triplet
states:

' , 1
7 (ITo) +18) and [ 11) = 7

The time evolution of these states is simply

[11) = (ITo) = 18)). (A.11)

(1)) = exp (—Erf) ST £ 18)) = e T (T £, A

(3]
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B Symbols and abbreviations

Symbol Explanation (chapter)

] XOR logical operation, addition modulo 2 (3)
& direct product (4)

[ 1,1 1) basis states of spin-1/2 (2)

0y, 1) basis states of qubit (1)

1 unit operator (4)

A operators: boldface (4)

A; gate operators (6)

[A,B]=AB-BA commutator (2)

at, a creation and annihilation operators (6)

B = (B,. B,, B,) magnetic flux density in frequency units (4)
B magnetic flux density, magnetic field (4,9)
B radio-frequency amplitude (10)

Erf- radio-frequency magnetic field (10)

bt, b creation and annihilation operators (6)

C concurrence (entanglement measure) (4)

c vacuum speed of light (2)

cl e creation and annihilation operators (6)
CHSH Clauser, Horne, Shimony, and Holt (inequality) (4)
{c:} code (13)

CMOS complementary metal-oxide semiconductor (2)
CNOT controlled NOT operation (1, 3)

CSS Calderbank, Shor, and Steane (codes) (7)

D diffusion constant (6)

d dimension of Hilbert space (4)

diT] description of Turing machine 7" (3)

dij Kronecker symbol (4)

det determinant (4)

DFES decoherence-free subspace (7)

E energy (2)

E; POVM element (13)

EPR Einstein—-Podolsky-Rosen (4)

EPR electron paramagnetic resonance (12)

£ energy eigenvalue (4)
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F:y

FET
FFT
FID

~

ged

H(p)
H(X:Y)
i=+v-1
int

kp

{ki}
In

My, M,

N g

{m.}
1l
NMR
NP

R'ﬁ (9)

B Symbols and abbreviations

total (electronic and nuclear) angular momentum (11)
generator of decoherence (7)

field effect transistor (1)

fast Fourier transformation (8)

free induction decay (10)
gyromagnetic ratio (9)

greatest common divisor (8)
Hamiltonian operator (4)

Hadamard gate (4)

Hilbert space (4)

binary entropy (13)

mutual information content (13)
imaginary unit (2)

integer part (of a recal number) (8)
Boltzmann constant (2)

key (13)

eigenvalue of observable (9)

natural logarithm (2)

classical bits (13)

total magnetic quantum number (11)
measurement operator (13)

message (13)

unit vector (5)

nuclear magnetic resonance (10)
nondeterministic polynomial (complexity class) (3)
angular frequency (7)

Larmor frequency (7)

polynomial (complexity class) (3)
polarization vector (4)

probability density (6)

probabilities (13)

conditional probability (13)
simultancous probability (13)
projection operator (4)

probability (4)

probubility (6)

magnetic flux (12)

magnetic flux quantum (12)

positive operator-valued measure (4)
quantum state (1)

creation and annihilation operators (6)
quantum Fourier transformation (8)
quantum nondemolition detection (1)
rotation operator (5)



B Symbols and abbreviations

0®3) =CCNOT=C2NOT
Tr

TTL

U

U

X.Y,Z

XY

Ty

Ty

phase gate (8)

radio-frequency (10)

density operator (2)

entropy (2)

information content, Shannon entropy (13)
conditional entropy (13)

von Neumann entropy (13)

spin raising and lowering operators (4)
spin - 1/2 operators (4)

scanning tunneling microscope (12)
absolute temperature (2)

Turing machine (3)

dephasing time (7)

Toffoli gate (3)

trace operation (2)

transistor to transistor logic (1)

universal Turing machine (3)

unitary transformation (8)

Pauli operators (4)

unit vectors along coordinate axes (4, 5, 13)
random variables (13)

possible values of random variables (13)
x AND ¥ (3)
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