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Preface

Quantum optics is the study of interactions between matter and
the radiation field where quantum effects are important. Much of
the fundamental interest in quantum optics is connected with its
implications for the conceptual foundations of quantum mechanics.
However, the major quantum optics problem is whether we have
to quantize the electromagnetic field in order to get the correct
picture of the interaction between matter and the field. The
theoretical prediction and experimental verifications of photon
antibunching and squeezing—the two nonclassical phenomena
which do not exist in semiclassical theory—convinced researchers
that the electromagnetic field should be quantized and stimulated
considerable attention in other nonclassical effects such as quantum
interference and entanglement.

This book is an extended and updated version of lecture
notes published in 2004 as Quantum Optics: Fundamentals and
Applications by the International Islamic University Malaysia Press,
Kuala Lumpur, Malaysia. It is a compilation of the lectures given for
postgraduate students at the University of Queensland, Brisbane,
Australia, the University of Malaya and the International Islamic
University, Malaysia in years 1995-2008. The chapters cover the
background theory of various effects discussed from first principles,
and as clearly as possible, to introduce students to the main ideas
of quantum optics and to teach the mathematical methods and
techniques used by researchers working in the fields of quantum
and atom optics. Some of the key problems of quantum optics
are also described, concentrating on the techniques, results, and
interpretations. Although the chapters in the book do not provide
a complete exploration of all the problems of quantum and atom
optics, it is hoped that the problems explored will provide a useful
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starting point for those interested in learning more. The selected
problems are not necessarily the most recent or advanced, but have
been most influential in the directions of research in quantum and
atom optics. Furthermore, the chapters contain numerous valuable
derivations and calculations that are hard to find in scientific
articles and textbooks on quantum optics. The goal of this book
is to provide a compact logical exposition of the fundamentals
of quantum optics and their application to atomic and quantum
physics and to study quantum properties of matter and radiation.
We are witnessing the development of new fields “atom optics”
and “quantum information.” As offsprings of quantum optics, they
possess many resemblances to their parent field. These new fields
can be approached and understood by using many of the same
mathematical tools.

The chapters constitute the basic ideas and principles of
quantum optics put in the order of the development of this subject,
which is sophisticated enough to establish a firm basis for advanced
study in this area. Current key problems of quantum optics, quantum
information, and atom optics are included and treated in adequate
depth to illustrate the basic concepts and also provide a nontrivial
background in a diverse number of areas of current interest.
Moreover, a number of exercises have been included at the end of
each chapter. These exercises have been designed not only to help
students learn how to apply the fundamental principles to many
situations, but also to derive a number of important results not
explicitly presented in the chapters.

Over the years we have collaborated with many colleagues and
students, who directly or indirectly contributed to this work. We
are particularly grateful to H. J. Carmichael, P. D. Drummond, G. J.
Milburn, H. S. Freedhoff, B.]. Dalton, S. Swain, R. Tana$, R. K. Bullough,
S.S. Hassan, A. Messikh, M. R. Ferguson, T. Rudolph, U. Akram, and M.
Salihi Abd Hadi. We are also indebted to students whose interesting
questions and remarks have made the chapters more interesting and
have helped purge them of typographical errors.

Zbigniew Ficek
Mohamed Ridza Wahiddin
Winter 2013



Chapter 1

General Description and Quantization
of EM Fields

1.1 Introduction

We will begin our journey through the background of quantum
optics with an elementary, but quantitative, classical theory of
radiative fields. We will first briefly outline the electromagnetic (EM)
theory of radiation, and describe how the EM radiation may be
understood as a wave which can be represented by a set of harmonic
oscillators. We shall describe how the free or non-interacting EM
field may be understood as a collection of harmonic oscillators
which is quantized in the standard manner, and whose energy
cannot be zero as a consequence of the basic non-commutability of
the canonical field variables. This chapter discusses the properties
of plane EM waves and normalization of the EM field in one
dimension. This is followed by a description of the Hamiltonian
and the amplitudes of the EM field in terms of the annihilation
and creation operators. Based on this chapter, it is possible to
considerably simplify the formulation of the physical basis for the
mathematical description of the major problems of quantum optics.

Quantum Optics for Beginners

Zbigniew Ficek and Mohamed Ridza Wahiddin

Copyright (©) 2014 Pan Stanford Publishing Pte. Ltd.
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2 | General Description and Quantization of EM Fields

Why do we apply the quantum description of the EM field? The
answer lies in the recent theoretical and experimental developments
in quantum optics, which show that semiclassical radiation theory
based on the quantum description of the radiation sources and
classical description of EM fields does not always work. There are
some optical phenomena, we will discuss about which during the
course of this book, for which the field needs to be treated quantum
mechanically. These phenomena were recognized as representing
a radical departure from the traditional classical optics where the
existing treatments turn out to be less than completely satisfactory.
In other words, these phenomena are non-classical and do not exist
in semiclassical radiation theory.

1.2 Maxwell’s Equations for the EM Field

Let us consider the time-varying classical electric E and magnetic B
fields that satisfy the Maxwell’s equations [1]

V- E = pg/e, (1.1)
V.B=0, (1.2)
o 9 -

VxE=——B8, 1.3
x o (1.3)
V x B J+225 (1.4)
X = —- L, .

Ho c2 ot

where pr is the density of free charges and ] is the density
of currents at a point where the electric and magnetic fields
are evaluated. The parameters &y and po are constants that
determine the property of the vacuum and are called the electric
permittivity and magnetic permeability, respectively. The parameter
¢ =1/./eoi0 and its numerical value is equal to the speed of light in
vacuum, ¢ = 3 x 108 [ms™1].

In the Maxwell’s equations, the fields E and B depend on (7, t),
the charge and current densities also depend on (7, t). It is not
explicitly stated in the above equations, but we shall remember
about this dependence in the following calculations.

The fields E and B produced by the source charges pr and
currents] are found by solving the Maxwell’s equations (1.1)-(1.4).
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Note that the Maxwell’s equations involve two fields that satisfy a
system of four coupled differential equations. Generally, we do not
find fields E and B by a direct integration of the Maxwell’s equations.
We rather first compute scalar and vector potentials from which the
fields may be found.

Let us illustrate the concept of vector and scalar potentials in
the solution of the Maxwell’s equations. First, note that the field B
always has zero divergence, V - B = 0, and hence we can always
write

B=V x4, (1.5)

where 4 is the vector potential.
Since V x V® = 0, where ® is an arbitrary scalar function
(scalar potential), we find from the Maxwell’s equation (1.3) that the

electric field can be written as?
Fo-2i_ve. (1.6)
at
The electric field (1.6) depends on the specific choice of the
potentials. However, the Maxwell’s equations should be independent
of the specific choice of the potentials.

Substituting Eq. (1.6) into Eq. (1.1), we get
. 9 -
V-E:—&V~A—V2<D:0. (1.7)

Hence, the electric field (1.6) will satisfy the Maxwell’s equa-
tion (1.1) when
9 -
——V-A-Vip=0. (1.8)
at
If we now substitute Egs. (1.5) and (1.6) into Eq. (1.4), and expand
the double curl V x (V x A) to give V(V-A) — V2 A, we obtain a three-
dimensional inhomogeneous wave equation for the vector potential
1 92 109
VA——ZBZA V{V. A—i——zﬁcb (1.9)
According to the Helmholtz theorem, a vector function is completely
spec1f1ed by its divergence and curl. Since Eq (1.5) gives only the
curl of 4, we can specify the divergence of Ain any way we choose.

aIn the static limit of Bﬁ/at = 0, the scalar function ® reduces to the familiar
electrostatic potential.
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We can define new potentials

A=A+Vy, & =0- % (1.10)
without changing the E and B fields, where Y is an arbitrary scalar
potential. This transformation is called a gauge transformation, and
the invariance of the fields under such transformation is called gauge
invariance.

Equation (1.8) implies that the electric field will satisfy the
Maxwell’s equations when

d_ -
Vi) = —&V-A, (1.11)

which is only for a specific choice of the potentials. However, the
freedom of choosing A means that we can choose the potentials as

V.A=0, ® = 0. (1.12)

This choice is called the Coulomb gauge, and this equation reduces
Eq. (1.9) to
-~ 1 9%
VIA— = —A=0, 1.13
c? ot? (1.13)
which is much simpler than Eq. (1.9), and can be readily solved in
terms of plane transverse waves.

1.3 Wave Equation

We have seen that the Maxwell’s equations can be transferred, with
the help of the Coulomb gauge, into a wave equation (1.13). The
general solution of the wave equation is in the well-known form of
an infinite set of plane waves?

A= Aj eilont k), (1.14)
ks

where ks denotes the plane waves of the index of polarization s
propagating in the k direction, |k| = wy,/c, and Aj, is the amplitude
of the wave of frequency wy.

2The solution (1.14) is readily verified by substitution into Eq. (1.13).



Energy of the EM Wave

The Coulomb gauge condition, V - A=0, gives
k-Az =0, (1.15)

which is the transversal condition showing that the amplitude
vectors of the field are orthogonal to the propagation direction. The
amplitudes Aks being orthogonal to k can be specified in terms of
components along two mutually orthogonal directions transverse to
k. Unit vectors along these directions, denoted by é;, (s = 1, 2), obey
the relations

€€ =0ij, e k=0, ey xep=k (1.16)

and é;, are usually called the unit vectors of the field polarization. In
other words, they specify the polarization directions of the field.

Thus, we can represent the vector potential of the EM field in
terms of plane waves

A= Z [;1}5 G ;125 ei(w;st—}f)}
ks
=3 [GrAr e (o) g a7 @lnt D] (117)
ks
propagating in the +k directions. Equgtion (}.17) allows us to

calculate the transverse EM field vectors E and B at any space-time
point through the relations (1.5) and (1.6).

1.4 Energy of the EM Wave

Consider an EM wave confined in a space of volume V. The energy
of the three-dimensional EM field is given by the Hamiltonian

1 - 1 -
Hp = 7/ av |:80|E|2+|B|2:|, (1.18)
2 Jy Mo

which is given by the integral of the energy density over the volume
occupied by the field. Here, 80|E2|/2 is the energy density of the
electric field, and |§|2/(2u0) is the energy density of the magnetic
field.

First, we will impose periodic boundary conditions on the field
and normalize the energy to that contained in the finite volume V.

5
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Next we will express the Hamiltonian in terms of the energy of
discrete harmonic oscillators and quantize the Hamiltonian in the
standard manner by associating the complex field amplitudes with
creation and annihilation operators.

1.4.1 Normalization of the EM Field

In order to proceed further with the energy formula, Eq. (1.18),
we have to formulate the normalization procedure of the EM field
contained in a finite volume V. In general, the field is confined
into three dimensions, but for simplicity and without loss of the
generality, we will illustrate the normalization procedure in one
dimension only.

Consider a plane-wave electric field confined between two
perfectly reflecting walls, linearly polarized in the x-direction and
propagating in one dimension, the z-direction, as illustrated in
Fig. 1.1.

The field can be written as

E(z t) =1Ey (z t) =1 q (¢) sin(kz). (1.19)
The walls of the field enclosure, located at z = 0 and z = L are taken
as perfectly reflecting surfaces, which implies that

Ex(0,)=E,(Lt)=0, (1.20)
and hence

sin(kL) = 0. (1.21)

From this result we see that the wave number k is given by

nmw
k=—. 1.22
: (1.22)
z=0 z=L

Figure 1.1 Plane wave electric field propagating in the z-direction and
polarized in the x-direction.
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Thus, the normalized EM field is represented by standing waves of
the discrete wave (propagation) number k.

1.4.2 Hamiltonian of the EM Wave

In order to find the Hamiltonian (energy) of the EM field, we need
both the electric E and magnetic B fields. The electric field is given
by Eq. (1.19), and we will use the Maxwell’s equations to find
magnetic field.

The procedure of finding the magnetic field is as follows. Accord-
ing to the Maxwell’s equations and the plane-wave representation
of the EM field, the magnetic vector B of the field is perpendicular
to E and oriented along the y-axis. Substituting Eq. (1.19) into the
Maxwell’s equation (1.4), we obtain

VxB=1i —q (&) sin(kz). (1.23)

Since By = B, = 0 and B, # 0, the curl on the left-hand side
contains only two non-zero terms. Thus, the equation takes the form
-dB, -0B,
=

+k—2 =i —q (£) sin(kz). (1.24)
0z 0x

The coefficients on both sides of the equation at the same unit
vectors should be equal. Hence, we find that

oB oB 1
Txy =0 and sz = —szq (t) sin(kz). (1.25)
Integration of 9 By/az gives
B,(z t) = ——q (t]/dzsm(kz) 2q (£) cos(kz). (1.26)

This equation gives the expression that determines the magnetic
field of the one-dimensional EM wave propagating in the z-direction.

According to Eq. (1.18), the energy of the one-dimensional EM
field is given by the Hamiltonian

1 (L - 1 -
HF=E/ dz{ao|E|2+—|B|2}

2/ dz{soq () sin (kz)+ 1 (q ()2 cos (kz)} (1.27)

7
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Since

L L
1
/ dzsin?(kz) = / dzcos?(kz) = L (1.28)
Jo 0
the Hamiltonian (1.27) reduces to

1 1e
Hp = 180‘72 )L+ Z%L(q (0)2. (1.29)
w

It is convenient to compare this energy with that of an harmonic
oscillator given by the well-known formula

1 1
Hose = EmeXZ + Em (X)z . (130)

In this case, we find that

q = ax, (1.31)

2 2
o= (1.32)
80L

Hence, the electric and magnetic fields can be written in terms of the
harmonic oscillator variables as

Ec(zt) = 2:"22 X (£) sin(kz),
0
B,(z t) = k—iﬂ / ZZ:ZZX (t) cos(kz). (1.33)

Example 1.1 (EM field in terms of canonical variables) An
alternative representation of the EM field amplitudes is in terms of a
pair of real canonical variables qy (t) and py (t), defined as

ak (t) = eo [Ax (8) + A5 (8)],
P (8) = —iw/50 [Ar (8) — A3 (8)] (134)

Since in harmonic motion Ay (t) = Ay exp(—iwgt), the two canonical
variables are related by

where

SaO=p©, SaO=-cfa®. (13

Since py is obtained from the derivative of qi and vice versa, qy is
obtained from the derivative of py, there is a phase shift between qy
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and py. For example, if qi varies as a cosine function then py, varies as
a sine function.

Having the normalization procedure formulated in one dimension,
we can now generalize the fields into three dimensions where the
electric and magnetic fields, derived from Egs. (1.5) and (1.6) with
help of Eq. (1.17), can be written in the form

E=iS 25 (4, 0e* —ccl,

5 [oet -]

o 1 - > 2

B=i) —— |kx Ax(t)e*" —cc.|. (1.36)
Sy oo —cd

Here, c.c. stands for the complex conjugation of the first term in
the bracket, k = (I}, s), and we have normalized the fields to the
volume +/V.

Substituting above equation into Eq. (1.18) and performing the
integration with

%/ (k) gy — 5 (% - l?) , (1.37)
v

and a vector relation
2

(k x Zlk) : (% x Zx;‘;) gy ‘Zlk , (1.38)
we obtain
o2
Hp =280 Y o | Ay (1.39)
k
Since in terms of the canonical variables
-2 1
2600} | A = 5 [P} (0 + 0af ()], (1.40)
we get
1
He =2 > [} (0 + widf (0], (1.41)

k
which means that the EM field can be expressed as a set of harmonic
oscillators, and the canonical variables g and pj can be related to
the position and momentum of the harmonic oscillator.

The energy can also be written as

Hp = 2¢g Zwﬁ |Ak ()1
X

=y op [AA(OA@B+ A @A), (142)
k

9
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Introducing a new variable

ai (£) = /20w Ax (1), (1.43)
we finally can write the Hamiltonian of the classical EM field as
1
He = 2 > ok [ai () + a(ai(0)] (1.44)
k

Note the proportionality of the energy to frequency, the proportion-
ality predicted in quantum physics, see, for example, [2]. However,
so far we have used the classical description of the field.

1.5 Quantization of the EM Field

The most straightforward approach to the quantization of the EM
field is to replace the classical canonical variables gy (t) and py (t) by
quantum mechanical operators §y (¢t) and py (t) such that

[Gk(®), G (O] =0,  [Pi(t), Pie ()] =0,

[Gx(t), Pi(t)] = 1 hdpe, (1.45)
that is, we associate with each mode k of the EM field a quantum
mechanical harmonic oscillator.

The complex amplitudes a; and ai for the field mode k of the
classical vector potential are quantized via the substitution
a — b, @ — a. (1.46)

The creation and annihilation operators are related to the quantum
mechanical operators gy and py as

1 i
e = —= | Vordr + f’k) ,
ﬁ ( Wk
1 . i

=\ V@G — ——PDk | -
V2 ( VoK )
Using the commutation relations (1.45), we readily find the
commutation relation for the annihilation and creation operators

[ak ©), al (t)} — e (1.48)
Hence, the Hamiltonian of the EM field takes the form

Ap =" hoy (a,ﬁ (t) ax (£) + ;) ) (1.49)
k

a = (1.47)



Summary

where we rescaled the operator d; — @/~/% in order to have the
commutation relation [dk, &,i,] = Sk

In classical description of the EM field, the average energy is
proportional to the intensity I of the field:

(Hp) =260 »_ wp(lAx (O7) ~ 1(D). (1.50)
k

If the intensity I (t) = 0 then (Hy) = 0. Thus, in classical description
of the field, the average energy can be equal to zero.

In quantum description of the field the average energy (the
expectation value of the energy) is given by

Zhwk [ akak :| Zhwk [ l’lk 1:| B (1.51)

where (fix) is the average number of photons in the kth mode of
the field. In contrast to the classical energy, the average energy of
a quantum field is different from zero even if (fi;) = 0.

The average energy depends on the state of the field, but is
different from zero independent of the state of the field

N 1
WIARY) = hoy [(Waww + 2} . (1.52)
k

Since for any state |1) the expectation value (y|afa|y) > 0, we have
that the average energy (W|I:Ip|1p) > 0.

1.6 Summary

We have seen that in quantum optics the EM field is represented as
a set of independent quantized harmonic oscillators of energy

Hp =" hoy (a,i (£) a (t) + ;) . (1.53)
k

Moreover, we express the vector potential and the electric field

in terms of plane waves whose amplitudes are quantized and

determined by the creation &1 and annihilation &, operators

11



12 | General Description and Quantization of EM Fields

associated with the mode k of the field as

5 h . 7o
AGRD=3"4/ T {ekak () e + H.c.] . (154)
k
EGO=iY fiox [ékak () eFF — H.c.}
" 28()V

a() a(=)
=E [ O+E (10, (1.55)

where H.c. stands for the Hermitian conjugate of the first term in the
bracket, and

A Ne t
5 7, t) = (E( )(F, t)) =iy
k

The constant /fiwg/(2e9V) is called the quantum unit of electric
strength.

hog k-7
a,(t) e'™". (1.56
NG exay(t) e™". (1.56)

Exercises

1.1 Explain the usefulness of the scalar and vector potentials in
the solution of the Maxwell’s equations.

1.2 Show that the E and B fields are invariant under the gauge
transformation, Eq. (1.10).

1.3 Show that under the Coulomb gauge and in the presence of
currents and charges, the wave equation for A involves only
the transverse part of the current density.

1.4 Consider a source of electric E and magnetic B fields. If the
fields are arranged so that E L 73, should we expect to see an
EM wave propagating in the direction determined by E x B?

1.5 Show that in addition to the conditions (1.16), the unit
polarization vectors é;,, €;, and the unit propagation vector
I?/k form an orthonormal system

2

ok P k’k .o
Z(e}s)i(el?s)j + TZJ =68, Lj=xY2
s=1

where (€;,); is the ith component of the unit polarization vec-
tor.



1.6

1.7

1.8

1.9

Exercises

Show that the quantized electric field confined to a volume V
can be expressed in terms of the annihilation and creation
operators as

s howy
E(r t)=i
( ) Xk: 28()V
An electron moves in the xy-plane in a uniform magnetic

field B propagating in the z-direction. The Hamiltonian of the
electron is

[ékak () e — H.c.} .

He1 (p—ea)
= — — e ,

2m (p )
where m is the mass of the electron, e is its charge, p is the

linear momentum, and A is the vector potential of the field.

(a) Show that
H = % [pi + Py +eB(ypx — xpy) + %esz(xz +y2)] :
(b) Show that the operators
ho 1 (1er(+ipx + 1iijz— b )
V2eBh \ 2 2 7))’
R <1er< —ipy— 1ieBy— b >
V2eBh \ 2 2 7

have the same relation to the Hamiltonian as the
annihilation and creation operators @ and &' of the one-
mode EM field, that is
aa H 1 ... H 1
bt = — + -, b'h=— -2,
ha)() 2 ha)(] 2
where wy = eB/m.
Show that for a single-mode EM field described by the
annihilation and creation operators a and at:
eiﬁFt/hae—iﬂFt/h

_ ae—iwot’ eiﬁpt/haTefiﬁFt/h _ a’reiwot’
where Hp = hiwg(ata + 1/2).
Calculate the commutation relation between components of
the quantized electric field to show that
Bz o O (o] o oz o

[Ei 7, 1), E; (¥, t)} = 2—80811- (F—7),
where wy is the central frequency of the field and SIJT (F—7)is
the three-dimensional transverse Dirac delta function.
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1.10 Consider the expression for the momentum of the EM field

ﬁ:eo/dv (ExB).

(a) Write the momentum p in terms of the creation and
annihilation operators.

(b) Show that the momentum of a photon correspondlng to
the quantized EM plane wave of wave vector kis hk.



Chapter 2

Hamiltonians for Quantum Optics

2.1 Introduction

We often hear at seminars and presentations ‘Show me the
Hamiltonian of your problem and I will tell you what problem you
are talking about’. Therefore, to understand what quantum optics
is about, we start from the description of a standard Hamiltonian
of the problems considered in quantum optics. We illustrate the
method of derivation of the explicit form of the Hamiltonian for
a simple system that is composed of two subsystems that interact
(communicate) with each other. As we shall see, the explicit form of
the Hamiltonian is essential to explicitly calculate energy levels of a
given combined system and the temporal evolution of an arbitrary
operator representing the system.

Hamiltonian for a standard quantum optics problem involving
two systems that can interact with each other is composed of three
terms

A = As + Ap + Hin, (2.1)

where the first term, I:Is describes a system Hamiltonian, the second
term Hp describes the field Hamiltonian and the third term Hiy
is the Hamiltonian of the interaction between the system and
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the field. Examples of systems considered in quantum optics are
atoms, molecules, and solids. The field is usually taken as the free
electromagnetic (EM) field represented as a set of independent
quantized harmonic oscillators. Systems are usually represented as
charge particles and the system-EM field interaction is considered
as the interaction between the charge particles and the free EM field.
The Hamiltonian (2.1) represents a closed system that is composed
of two subsystems interacting with each other. We shall consider
each term separately and illustrate a standard approach to obtain
explicit forms of these terms.

2.2 Interaction Hamiltonian

Let us first consider the term representing the interaction between
two subsystems. In quantum optics a free independent system
is represented by charged particles and then the interaction
Hamiltonian is the energy of the charges in the EM field. Following
this observation, we now derive an explicit form of the interaction
Hamiltonian involving charges in an external EM field.

From the EM theory, we know that energy of the charge particles
of a volume density p (¥) located in an external field is given by the
energy of the charges in the potential ® (i) of the field

Hine = / & p () @ (7), 2.2)

where the integral is over the volume occupied by the charged
particles.

We can expand the position-dependent potential ® (¥) into the
Taylor series around a pointry = 0, and find

- . 1 2P
PF)=d(0 VO (0)+ = ri—— (0)+---. (2.3
M =0 +7-V0O 45 3y o O+ 29)
Since E = -~V (0), we can write the potential as
- o = 1 dE;
@(r):@(O)—r-E(O)—ZEU r,-rja—ri(O)+~-~. (2.4)

Since for the free field V - E = 0, we can add to the last term a factor

%rzv - E (0) (2.5)
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and then the potential takes the form

S - 1 0E;
q’(r)=¢(0)—r'5(0)—g;(3mr}-—rzsij)a—ri’(O)+--~.
(2.6)
Substituting this equation into Eq. (2.2) and performing the
integration, we obtain

. = 1 0FE ;
Hie=q®(0) = E(0) = 2> Q5 20+, (27)
ij !

where

-

is the dipole moment, and
Qij = (3?','1"]' —I"Z(S,'j) (29)
is the quadrupole moment of the particles.
Equation (2.7) gives us a clear evidence how fields interact with

systems that are represented by charges, dipole moments, etc. Thus,
referring to Eq. (2.7), we conclude that

(1) The charge q interacts with potential ® (0).

(2) The electric dipole moment ji interacts with the field E.

(3) The electric quadrupole moment Q interacts with the gradient
of the field.

As we shall see latter, most of the models in quantum optics
considers only the electric dipole interaction between systems and
the EM field, that the interaction Hamiltonians are of the form
Hip = —1 - E (0). This choice of the interaction Hamiltonians is a
consequence of the fact that in practice external fields such as lasers
are often used to excite single-electron systems. Systems composed
of a collection of free or bounded charges are difficult to be excited
in a controlled way due to the presence of internal fields and forces
between the charges.

2.3 Hamiltonian of an Atom

In quantum optics, a free independent system is represented by
charges (electrons) and the system-field interaction is simply the

17
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7y 12 >
W

Y

1>

Figure 2.1 A schematic diagram of the simplest system in quantum optics:
A two-level atom composed of a ground state |1) and an excited state |2)
separated by frequency wy.

charge-field interaction. We know from the quantum mechanics that
the motion of the electron in an atom is quantized and the electron
can only be in some discrete energy states (the stationary energy
levels). There is a non-zero probability that upon the interaction
with an external field, the electron makes transitions between the
quantized energy levels.

How do we model all of these behaviours of the electron? To
answer this question, consider the simplest system used in quantum
optics: a single-electron atom in which the electron can make
transitions only between two energy states.

2.3.1 A Two-Level System

Figure 2.1 shows a schematic diagram of a two-level system, called
a two-level atom, with the ground state |1) and the upper (excited)
state |2). In fact, the electron can make transitions between many
energy states, but we can limit the transitions to only between two
states. In practice, it is done by a suitable choice of the frequency of
an external field that will force the electron to oscillate only between
these two selected states [3, 4]. Multi-level transitions involving
more than two energy states are much more complex and we are
not intend to consider them here, but the formalism presented here
can be extended to multi-level cases.?

aFor the derivation of the explicit form of the Hamiltonian of a multi-level atom see,
for example, Z. Ficek and R. Tana$, Quantum-Limit Spectroscopy (Springer, New York,
2014).
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The energy of the electron in the selected states |2) and |1) is
determined by the stationary Schrodinger equation

Holl) = Eq]1), Hol2) = E212), (2.10)

where H, is the Hamiltonian of the atom whose explicit form is to
be determine.

Note that the energy states of the two-level atom are orthonor-
mal and satisfy the completeness relation, that is

2
(ilj)=8; and Y |i)il=1. (2.11)
i=1

Let us first determine energies of the two states. If the atomic states
are separated in energy by hwjy, we can determine their energies
relative to an average energy E of the states

1 1
E1=E0—Ehw0, Ez =E0+Eﬁa)0, (212)

we may choose Ey = 0, which corresponds to the zero energy of the
atom to be midway between the ground and excited states.

An obvious question arises: How to write the Hamiltonian of the
electron which would contain information on the states in which the
electron is?

This can be done by introducing the energy (population)
difference operator, which in terms of the projection operators can
be written as

1
S:=3 (12)(2] = 11)(1)). (2.13)
Since
N 1 N 1
(11 Ha 11) = _Eha)o and (2| Ha|2) = Ehwo' (2.14)
the Hamiltonian A4 can be written in terms of the energy operator
S, as
Ha = hay S, (2.15)

This equation is the explicit form of the Hamiltonian of a two-level
atom, and shows that the energy of the electron in the two-level

atom is determined by the operator S,, the average value of which

is between (—% : %).
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2.3.2 Spin Operators

An electron interacting with an EM field jumps from the state |1) to
|2), absorbing the energy, and from |2) to |1) emitting the energy. A
jump (transition) can be represented by the spin operators S* and
S~ (ST:jump up) (S™: jump down), as
S = 12), S712) =11),
§t12) =0, ST|11)=0. (2.16)
St and S~ can be represented in terms of the projection operators
of the two states involved as
ST =12)(1], ST =11)(2], (2.17)
and then it is easy to show that the spin operators satisfy the
following properties
(57 = ()" =0
[$*,57] =25,
{st,57} = [S*, S’L =1 (2.18)
Since the spin operators St and S~ are not Hermitian, it is

convenient to introduce two Hermitian spin operators
Sy = % (s*+57), S = % (st —57). (2.19)
It follows from Egs. (2.18) and (2.19) that the Hermitian spin
operators obey the cyclic commutation relations
[Se, Sm]l =1 €omn Sn, Lmn=x,y,z (2.20)
where €, is the Levi-Civita tensor defined as
1 Imn = xyz yzx, zxy (even permutation of xyz)
€mn= 1 —1 Imn=xzy, yxz, zyx (odd permutation of xyz)
0 when two or more indices are equal.
(2.21)
On the basis of the states |1) and |2), the Hermitian spin
operators are represented by matrices

1 1/01 1 1/0
Sx GX_2<10)' S_ZUY_Z(—I'O)'
o}

2
1 1/-10
_22_2<01>, (2.22)

where oy, 0, and o, are the familiar Pauli spin matrices.

Sz
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2.3.3 Atomic Dipole Moment

We have already shown that the operator S, represents the energy
of the electron. We can readily relate the spin raising and lowering
operators, ST and S~ to the dipole moment /i of the atom. To show
this, we will use the completeness relation for the atomic states and
multiply the dipole moment on both sides by unity in the form

2
1= Z i), (2.23)
i=1
and obtain
2 2
ji = (Z |i><i|> i[>
i=1 j=1

= ﬁ225+57+ﬁ11575++/11257+/_1:21S+, (2.24)

where fi;; = (i| i |j) are dipole matrix elements.

The diagonal matrix elements ji;; and ji; determine dipole
moments of the electron in the states |1) and |2), and are non-zero
only in atoms with permanent dipole moments. The off-diagonal
matrix elements ji1, and jip; are transition dipole moments, which
arise from a change of the size of the atom due to the transition of the
electron from the state |1) to the state |2) and vice versa. The matrix
element i1, can be real or complex and (21 = j1f,. The transition
dipole moments are real for Am = 0 transitions in an atom, and are
complex for Am = £1 transitions.

Let us consider a practical example to clarify the difference
between the Am = 0 and Am = =£1 transition dipole moments. We
wish to calculate the transition dipole moment between two energy
states of atomic hydrogen.

Example 2.1 (Dipole moment of a Am = 0 transition) Consider,
two energy states V100 = |1) and V210 = |2) of atomic hydrogen
corresponding to a Am = 0 transition

Y00 = V2Ne /%,
1
Y210 = ZNaLe"/Z% cos 6, (2.25)
o

21
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where
N =1/y/2na3 (2.26)
is the normalization constant and a, is the Bohr radius.

The dipole matrix element ji1, between the states (2.25) has the
form

faz = (11 |2) = /dVWikOOGFI/f210- (2.27)

Before integrating, we resolve ¥ vector into components in the
Cartesian coordinates, and next perform the integration in the
spherical coordinates, where the dipole matrix element (2.27) can be
written as

fiz = e///dr dO de sin® 0 Yoy (XX + Y + 22) Y210,  (2.28)

with the components

X =rsinf cos ¢,
y =rsinfsing,
Z =rcosb, (2.29)

and %, §, zZ are orthogonal unit vectors in the directions x, y and z,
respectively.

Since Y100 and Y219 are independent of the azimuthal angle ¢, the
integrals over ¢ of the x and y components of the dipole moment are
zero, but the integral over ¢ of the z component is non-zero, that is

2 2 2w
/ d¢ cos¢p = / d¢sing =0, / d¢ =2n. (2.30)
0 0 0

Clearly, the dipole matrix element ji1, of the Am = 0 transition is real
and oriented in the z-direction. Evaluating the remaining integrations
over 6 and r, we arrive to the following result

/lez = 1222-\3/56002. (231)
In terms of polarization, the dipole matrix element ji1, of the Am =
0 transition in a two-level atom is a vector linearly polarized in the
z-direction.

In the following example, we calculate polarization and magnitude
of the dipole moment of a Am = =1 transition.



Total Hamiltonian and the Rotating Wave Approximation

Example 2.2 (Dipole moment of a Am = +1 transition) Inorder
to calculate the dipole moment of a Am = +1 transition, we choose
two energy states Y100 = |1) and ¥,11 = |2). The state 19 is given
in Eq. (2.25), and the state Vr,1; is of the form

1 r )
= — e "2 i¢ gin g, 2.32
vau 8/maz o (2:32)
Since
2 ) 2 )
/ dg e =0, / d¢ e cos¢ # 0, (2.33)
0 0

the z-component of the dipole moment is zero, whereas X,y
components are non-zero. Hence

- 128 A in
M1z = —meao x+1iy). (2.34)
Thus, for a Am = =1 transition, the dipole matrix elements are

complex numbers. In terms of polarization, the dipole matrix element
ii12 of a Am = %1 transition in a two-level atom is a vector circularly
polarized in the xy-plane.

In the following we will consider atoms with zero permanent dipole
moments (ji11 = jizz = 0), and therefore we will write the dipole
moment in terms of the dipole-lowering (S~) and the dipole-raising
(S5*) operators as

A=pR12S" + ST (2.35)

We can conclude that the dynamics of a two-level atom are
completely described by the three spin operators Sy, S, S, or
S+t, 87, S, that obey the commutation relations (2.18) and (2.20).

2.4 Total Hamiltonian and the Rotating Wave
Approximation

The Hamiltonian of the simplest system in quantum optics, a two-
level atom interacting with the free EM field, is composed of three
terms

= Ao+ Ay + Hin, (2.36)

23
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where
= hwyS, (2.37)

is the Hamiltonian of the atom,
N N 1
Ay = zk:ha)k <a;[ak + 2> (2.38)

is the Hamiltonian of the field, and

A

Pui = —fi- E(0,8) = —i - [E(H (0, 8) + EC (0, t)}

:_’Z hwk [iz - éxay (t) — H.c]

Za)k
= Z [fi12 - €S~k (¢) + fiz1 - €S Tk (¢)

iy G5 (©) - iy - S 7al ()] (2:39)
is the interaction Hamiltonian between the atom and the field.

For Am = 0 transitions, the transition dipole moment is real, and
then the interaction Hamiltonian simplifies to

A 1 N A A .
B = =21k ge [S*ak(t) +Sta(t) - S*ale) - STal@)|,
k

(2.40)
where

Za)k
hé‘o V

is the coupling constant (real) between the system and the EM field.
It is often called the Rabi frequency of the atom-field interaction as
it is proportional to the strength of the coupling between the atom
and the field.

Note, that the interaction Hamiltonian Hi, contains both, the
energy conserving terms S*d; and S‘ﬁ,f as well as energy non-
conserving terms S~ d and S+&,i.

We can make the so-called rotating wave approximation (RWA),
in which we ignore the energy non-conserving terms. More
precisely, in the RWA approximation, we replace

(St +57) [ak ) —al (© (2.42)

G = ([12 - &) (2.41)
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by
St (t) — S7a) (1), (2.43)

that is, we exclude processes in which a photon is annihilated as
the atom makes a downward transition (corresponding to S~ax (¢t)),
or a photon is created as the atom makes an upward transition
(corresponding to S*&; ().

The RWA is a good approximation for long time processes,
and is less valid for short time processes where the uncertainty
of the energy is very large. As we will show later in Chapter 9,
for weak couplings between a system and the field (g <K 1)
that are typical for the atom-vacuum field interaction, the non-
RWA processes produce only a small frequency shift (the Bloch-
Siegert shift). However, for strong couplings (gx > 1), typical
to the couplings inside optical cavities, they can have important
dynamical consequences. For example, the Jaynes-Cummings model
can exhibit chaotic dynamics, called “quantum chaos”, that is,
the question of how classical chaos might carry over into the
corresponding quantum dynamics [5]. Some other interesting
effects predicted when the RWA is not made include bifurcations
in the phase space [6], a fine structure in the optical Stern-Gerlach
effect [7], and entanglement between two atomic ensembles even if
there is no initial excitation present in the system [8].

Exercises

2.1 Explain, why the spin operators Sy, S, S, are often called spin-
half (spin-%) operators?
2.2 Using the definition of the spin operators:

(a) Prove the commutation relations
[S*,87] =28, [S%, S]] =FS"
(b) Prove that the spin operators are unitary and that
1

ﬁ:ﬁ:@:l

(c) Prove that
e it 3) gteim(Set3) —_ g-imgt — _ gt

25



26

Hamiltonians for Quantum Optics

2.3

2.4

2.5

2.6

2.7

2.8

29

(d) Show that
SS:liS SS:liS SS:L‘S.
0y = 510z Oysr = Sl 2ox = 515y
For the spin operators Sy, Sy, S, of a two-level atom with
energy states |1) and |2), prove the following results

1 1, 1
Sddl) = Z12), ST = —3il2), S|1) = —ZI1),

1 1, 1
Sxl2) = 5|1>. Syl2) = EIIZ), Sz12) = §|2>-

What is the physical consequence of the fact that the Hermitian
spin operators Sy, S, and S, do not commute?
Show that the Pauli spin matrices satisfy the relation

OnOm = Snm +1i €nmk Ok, n, m, k= X,y Z

Consider the Pauli matrices representing the spin opera-
tors 6y, 6, and &, of a two-level system in the basis of the
states |1) and |2).

(a) Show that the operators &y, 6y, 6, each has eigenval-
ues +1, —1.

(b) Determine the normalised eigenvectors of each. Are |1)
and |2) the eigenvectors of any of the matrices?

In the example on transition dipole moment between two
energy states with A = 0 we have chosen energy states ¥1po
and ;10 of atomic hydrogen.

(a) Whatis the transition dipole moment between states 199
and 90 of atomic hydrogen?

(b) How does the transition dipole moment depend on the
parity of the energy states ¥pm,?

Calculate dipole matrix element i1, of a Am = 42 transition
between two states of the hydrogen atom. What is the
polarization of the dipole moment?

Write the Hamiltonian (8.1) in the interacting picture to
show that the energy non-conserving terms (counter rotating
terms) contain time-dependent fast oscillating factors of the
form exp[=£i(wo + wi)t], whereas the energy conserving terms
contain slowly oscillating factors of the form exp[%i(wo —

wi)t].



Exercises

2.10 Consider the Jaynes—-Cummings model, which under the RWA
is determined by the Hamiltonian

A 1\ 1
A = hanS, + ho <afa + 2> — Sihg (Sta— s-a').

(a) Find the matrix representation of the Hamiltonian in the
basis of the product states |1)|n) and |2)|n — 1), where
|1) and |2) are the energy states of a two-level atom and
|n) is the n-photon energy state of the field.

(b) Find the eigenvalues and normalized eigenstates of
the Hamiltonian of the Jaynes-Cummings model by the
diagonalization of the matrix found in (a).
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Chapter 3

Detection of the EM Field and
Correlation Functions

3.1 Introduction

In this chapter, we will address one of the basic questions
in quantum optics: How do we find an unknown state of the
electromagnetic (EM) field, or in general, how do we find quantum
state of a given system? The question is essentially about what are
detectors and how an external field, that we want to detect, interacts
with them. We may also see how the formulation of problems in
quantum optics depends on the detection schemes.

In a laboratory, light fields are directly measured by pho-
todetectors, devices in which an external field interacts with a
photocathode composed of atoms (detectors) ionizing them. This
process results in the emission of photoelectrons that form a
photoelectric current, whose intensity or fluctuations are then
measured. More precisely, the direct-detection experiments are
sensitive to the intensity of the detected field and its fluctuations
that are associated with statistical or spectral properties of the
measured field. The direct measurement with photodetectors has
a disadvantage that it destroys the incident field as the detector
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absorbs all the field that falls on it and converts the field into a
photocurrent. Moreover, the direct-detection experiments are not
sensitive to the amplitude of the field and its fluctuations. Those
require phase-sensitive detection schemes such as homodyne or
heterodyne detectors.

3.2 Semiclassical Theory of Photodetection

Let us begin with a semiclassical theory of photodetection. This will
give us some understanding of the process of detection of external
fields and how it is formulated. Consequently, it will show which
quantities are measured in the process of photodetection and what
information they carry about the detected field.

In the semiclassical theory of photodetection, the probability
to detect a classical field of intensity I(i?, t) falling upon a
photodetector in the time interval (¢, t + At) is defined as

P(R, )At = n{I(R, ))At, (3.1)

where 7 is the efficiency of the photodetector and (I(f?, t)) is the
average intensity of the light evaluated at the location R of the
photodetector. The average is taken over all possible instantaneous
values of I(f?, t), the ensemble average.

3.2.1 First-Order Correlation Function

In terms of the field amplitudes, (I(ﬁ, t)) = (E*(T?, t)E(f?, t)), the
probability can be written as

P(R, At = nGW(R, H)At, (3.2)
where
GY(R, t) = (E*(R, E(R, 1)) (3.3)

is called the first-order correlation (coherence) function.

From Egs. (3.2) and (3.3) it is evident that an experimental mea-
surement of the average intensity immediately provides information
about the first-order correlation function of the detected field.
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3.2.2 Second-Order Correlation Function

Consider two photodetectors located at points R and 7?2, re-
spectively. The probability for the detector R; to register a
photodetection at time ¢; within At is

P(Ry, t))Aty = mI(Ry, )AL, (3.4)

and the probability for the detector R, to register a photodetection
at time t; within At is

P(Rz, t)At; = n21(Ra, &) Aty (3.5)

If the two detection processes are independent of each other, the
joint probability of the two detections is defined as

Pz(}_él, t1; I_éz, tz)AtlAtz = 7717]2(1(]_%1, t1)><1(1_é2, tz))AtlAtz. (36)

We can use the joint probability to find whether the two detection
processes are correlated or independent of each other. A correlation
between the two detection processes can be determined from the
joint probability of the form

Pz(iel, ty; }_éz, tz)AtlAtz = )717]2(1(?21, tl)l(i?z, tz))AtlAtz. (37)
If the two detection processes are correlated
(I(Ry, 1)1 (Ra, 1)) # (I(Ry, t))(I(Ro, 2)), (3.8)

otherwise the detection processes are independent of each other.
We can write the joint probability in terms of the amplitudes of
the EM field as

Pz(ﬁl, tl; }_)22, tz)At1At2 = 1’]11726(2)(;21, tl; I_éz, tz)AtlAtz, (39)
where

GP(Ry, ti; Ry, &) = (E*(R1, 1) E*(Ry, t)E (R, &)E (Ry, t1))
(3.10)

is called the second-order correlation (coherence) function.
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3.2.3 Average Number of Photocounts

It follows from Egs. (3.7) and (3.9) that the joint probability of
photodetection is proportional to the normally ordered correlation
function of the fourth order in the field amplitude, or of the
second order in the light intensity. Since the probability of a
single photodetection is proportional to n/, the average number of
photocounts (classical particles) is given by

(n) =n(I), (3.11)

from which we get that the probability of detection of n photoelec-
tron counts has a Poisson distribution

P, = %((nl)” e, (3.12)

where the average is the ensemble average over the intensity
fluctuations.

Proof. Using the definition of statistical average, we obtain

Y np, = <Z w)>

n

(n1)" .
<( ”d( i [Z 1 >—n<1>, (3.13)

as required. O

If the intensity of the detected light fluctuates during the detection
time, the probability of photocounts in the interval t to t+ T is given
by the ensemble average over the Poisson distribution

P.(t, T) = % (U (L, T)]"e VT, (3.14)

where

Ut T) = ;/ﬁm dt'1(t) (3.15)

is the average intensity of the light in the interval tto t + T.

If the detection time is very short, so that the instantaneous
intensity /(t') can be substantially constant during the detection
time T, the average intensity reduces to U (¢, T) = I, and then the
distribution (3.14) simplifies to that given in Eq. (3.13).
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3.2.4 Variance of the Number of Photocounts

We can also calculate the variance of the number of counts n. Since

d 1’| WD"| _,
wr=3rtn= (o] |07 o)

=n (1) +n*(I?%), (3.16)
we find that the variance of the number of counts is
((An)?) = (n*) — (n)? = (n) + n*((A1)?). (3.17)

The formula (3.17) has a simple physical interpretation. The
fluctuations of the photocounts are proportional to the fluctuations
of the intensity of the incident field. For a non-fluctuating field, as
it may be for a laser beam, the distribution of the photons obeys
the Poisson distribution, ((An)?) = (n), whereas for a fluctuating
field, as it may be for a thermal field, ((An)?) > (n). The first term in
Eq. (3.17) is often called the shot noise associated with the random
generation of discrete photoelectron counts in the detector. The
second term is the noise in excess of the standard shot noise, and
is often called the wave noise. Thus, for a non-fluctuating field only
the shot noise is present.

The formula (3.17) also shows that the variance ((An)?) can
never be smaller than (n). We will see in Chapter 4 that this is true for
classical fields, but for certain quantum fields the variance ((An)?)
can be smaller than (n).

3.3 Quantum Theory of Photodetection

We shall now give a quantum description of the detection theory [9,
10]. From quantum physics, we know that the probability of
finding a system, located at R and described at time ¢ by the total
state |\D(i€, t)) in a particular state |n) is given by

P.(R, ) = [(n|¥(R, £))2. (3.18)

The total state vector at time t is related to the initial state | W (0)) by
the relation

t
(R, B) = W (0)) + — / dt B (6)| (0)),  (3.19)
ih 0

which is a perturbation solution of the Schrodinger equation.
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If the detection time is short, and we are interested only in
transitions up (absorption of the external field), the probability of
the transition takes the form

- A%t? N o
Py(R, t) = FumE(“(R, )1 (0))1%, (3.20)

where A4 is a constant.

However, we cannot predict the final state of the atom as the
electron in the detector can be in any state. Therefore, we have to
sum the probabilities P, over all possible final states, which gives

- A%t? R -
P(R ) == > nEW(R 01w (0))I*
n
A%t? R - . S
= (WO EDOR OED(R, 0w (0))
A%t? 5 A%? .
=FG”)(R, t) = = I(R, t), (3.21)

where
GO(R, ) = (W (0) [EO(R, OED(R, |w (0))  (3.22)

is the quantum first-order correlation (coherence) function.
Proceeding in a similar way, we can find the joint probability that
a system described by the total state |\P(i?, t)) will be found in the
state |m) at the time t, > ¢ if it was found in the state |n) at time t;:
P Atdy 500 (B 2
P(Ry, ti; Ry, 1) = D> UnlED(Ry, 1) W (0))]
n m

h4
x| (m|EC) (Ry, )W (0))?
= #Gm(iﬂ, ti; Ry, &), (3.23)
where
GA(Ry, ti; Ry, 1) = (T : Ii(R1, 1) 2(R2, &) )
= (EO(Ry, 1) EO (Ry, ) ED(Ry, 6)EFI(Ry, 11))  (3.24)

is the quantum second-order correlation function, with 7 and ::
denoting respectively the time and normal ordering of the field
operators. In other words, the correlation function G(Z)(ﬁl, t; f?z, t)
is arelative measure of the joint probability that a photon is detected
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Figure 3.1 Experimental scheme for measurement of the second-order
correlation function.

at a point kz in time &, if one was detected at point ﬁl in time
t;. The time-ordering symbol 7 rearranges creation operators in
forward time order and annihilation operators in backward time
order, whereas the normal ordering symbol :: has the effect of
rearranging the operators such that all the creation operators stand
on the left of the annihilation operators.

Figure 3.1 shows an experimental scheme for measurement of
the second-order correlation function. An incident signal beam is
split on the 50/50 beam splitter into two beams I; and I, which are
registered by two separate detectors. The signals from the detectors
are then multiplied and averaged over all detected values to give the
second order correlation function (I1;). The correlation function
is usually varied as a function of time difference between the two
signals or difference in the position of the detectors.

In the laboratory, one can measure not only the first- and second-
order correlation functions, that is, the real functions, but also
complex functions such as average values of the field amplitude

(E(R, 1) = (W|E(R, W), (3.25)
and the variance of the field amplitude
A > 2 no o A o 2
(AER9)) = WIEAR O10) - (WIER 9I9),  (3:26)

which are dependent on the phase of the field. Of course, as these
are complex quantities, the average amplitude and its variance
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cannot be measured (detected) directly. The quantities depend on
the phase of the field, which is a relative quantity, that is, it could
be determined relative to some other well-known phase. It is done
in practice by mixing the unknown measured light beam with
the highly coherent light of the well-known amplitude and phase,
usually derived from an intense narrow-band laser, and to study
the intensity and fluctuations of the superposed beams. We will
discuss later in Chapter 6 some experimental schemes for the non-
direct measurement of the average value of the field amplitude and
its fluctuations. The measurement schemes are different form that
discussed above, referred as homodyne or heterodyne detection
techniques.

In closing this section, we briefly comment about the need to
measure higher order correlation functions. Although the foregoing
detection schemes all measure the correlation functions only to the
second order, the complete knowledge of a detected field requires
measurements of the correlation functions to all orders of the field
amplitude. However, the correlation functions of order higher than
two have as yet played a negligible role in practice. The usefulness of
the concept of higher order correlations still remains to be shown.
For optical fields generated by lasers or thermal sources, the first-
and second-order correlation functions contain all the required
information about the field, and no correlation functions of order
greater than two are required. A laser field is in general expressible
in terms of the first-order correlation functions, whereas a thermal
field is expressible in terms of products of second-order correlation
functions.

Exercises
3.1 Using the time-dependent perturbation theory, show that to

the first order in I:Iim(t), the solution of the Schrdodinger
equation is of the form

N 1 t A
(R B) =¥ () + /0 dty e (1) W (0)).
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3.5

3.6
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Show that the correlation functions GM(R, t) = GO and
GP(R4, ti; Ry, &) = G satisfy the wave equation
1 92 ;
vie = )60 =0, i=1,2
c? ot?
Using the definition of statistical average

(") =3 n" Py = <Z LIk e‘"’>.
calculate the average (n(n — 1)(n — 2)).
(a) Write the average intensity square (] 2) of a quantum field
in terms of the correlation functions G® and G(%.
(b) Find the average (13) ofa quantum field in terms of the
correlation functions G®), G® and GW.
(c) What would be the values of (I 2) and (] 3) in terms of the
correlation functions if the field was classical?
Write the quantum first- and second-order correlation func-
tions in terms of the creation and annihilation operators.
Consider the joint probability of two simultaneous detections
of a stationary or slowly varying field of intensity I (t):
Py ()AL AL, = n* (1) (£)) Aty Aty.
(a) Show that the joint probability can be written as
Py(H) Aty Aty = n?(1(£))% [1 + A()] Aty ALy,
where A(t) is the normalized intensity-fluctuations corre-
lation function
((A1()*
(1()? -
(b) Show that in terms of the number of photocounts n, the
joint probability takes the form
((An)?) — (n)
(n)?
From this equation it then follows that when ((An)?) <
(n), the joint probability of the two photodetections is
smaller than that of two independent detections. It is
often said in the literature that these two photodetections
are negatively correlated, since in this case A(t) < 0. Con-
versely, when {(An)?) > (n), these two photodetections
are strongly correlated.

A(t) =

Pz(t)AtlAtz = (n)z 1+ AtlAtz.






Chapter 4

Representations of the EM Field

4.1 Introduction

In this chapter, we will introduce different representations of
the electromagnetic (EM) field. One may ask, why do we need
different representations for the EM field? The answer is that usually
we do not know the state of the EM field which in quantum
optics is represented by the annihilation and creation operators.
However, results of measurements of the field are given in terms
of real variables, for example, intensity. The representations allow
us to recognize the state of the field from values of the measured
quantities such as average amplitude, intensity, and correlation
functions. The nature of the state is present in terms of the
interpretation of the apparently classical (measured) variables.
We will discuss two basic types of representations often used in
quantum optics, Fock state (photon number) representation and
coherent states representation, the later one introduced by Glauber.?
We also discuss properties of fields with thermal and Poisson
distribution of photons. The photon number states are very often

4Roy Glauber was granted the Nobel prize in 2005 for his contribution to the quantum
theory of optical coherence.
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Zbigniew Ficek and Mohamed Ridza Wahiddin
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used as a basis for quantum optics problems, and despite of many
difficulties have recently been generated experimentally [11-13].

4.2 Fock States Representation

In this representation, a state |n) of the EM field is characterized by
the well-defined number of photons n. We will illustrate the concept
of photon number states for a single-mode field and next we will
generalize it to multi-mode fields.

4.2.1 Single-Mode Number States

Suppose, the EM field is composed of a single mode k, and we use the
notation for the annihilation operator & = a.

Definition 4.1. Eigenstates |n) of the photon number operator i =
a'a of the single-mode field are eigenstates of the Hamiltonian

. 1
Ap |n) = ho (aTa + 2) In) = E, |n), (4.1)
and are called photon number states or Fock states.

The photon number states have the following properties
filn) =nin),
. 1
Hp |0) = EhwlO). (4.2)

The zero photon’s state, that is, the eigenstate of /i with the
eigenvalue equal to zero, is called the vacuum state and has the
energy 1 ho.

The number state |n) can be generated by repeated application

of the creation operator @' on the vacuum state

m =@, 43)
=@l |

Example 4.1 (A property of the EM field in a photon number
state) Consider the amplitude of a single-mode EM field of the
polarization in the x-direction and propagating in the z-direction

E, =E (a+a")sin(kz). (4.4)
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Figure 4.1 [llustration of a field of the definite amplitude but phase
randomly distributed.

It is easy to show that the expectation value of the amplitude of the EM
field in the photon number state |n) is equal to zero. Since
(n| Ex |n) = E (n|a + a'|n) sin(k2), (4.5)
and
aln)y=+vnln—1), a'in)=vn+1n+1), (4.6)
with (n|m) = §,,, we obtain
(n| Ex In) = 0. (4.7)

Note that (n|Ex|n) = 0 independent of n, that is, (n|Exln) = 0
even if n — oo. This is unusual property of the quantum field as
in the limit of n — oo the properties of the photon-number state
should convert into that corresponding to a classical state. However,
we know that the classical field performs harmonic oscillations in
time.

An alternative explanation of vanishing the expectation value
of the field is that the field in the photon number state has a
definite amplitude but phase randomly distributed over 27, as it is
schematically illustrated in Fig. 4.1. It therefore average to zero at
any period of time.

Somehow surprising is that the expectation value of the square of
the field amplitude £ 2 in the photon number state is different from
zero, that is,

(n| EZIn) # 0. (4.8)
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Proof. Since
(n|E%|n) = E*(n|a'a" + aa' + a'a + aa |n) sin®(kz), (4.9)

we calculate expectation values of the four combinations of the field
operators, and obtain

(nlafat |n)y =/ (n+1)(n+2)(njn+2) =0,
(nlaaln) =/nn—-1){(njn—-2) =0,
(n|aa’ |n) = (n+1) (njn) =n+1,
(n|@'a|n) = n{n|n) = n. (4.10)
Hence,
(n| E2|n) = 2E? (n + ;) sin?(kz) # 0, (4.11)
as required. O

In addition, since the average over all possible positions, sin?(kz) =
1/2, we find after averaging Eq. (4.11) over z that

(n| E?|n) = E* (n + ;) . (4.12)

The expectation value of the square of the field amplitude is
different from zero even when n = 0. This simply shows that a
vacuum field not only has a non-zero energy but also has non-
zero fluctuations. We shall see later that these vacuum fluctuations
lead to many interesting effects in quantum optics. An important
challenge in quantum optics and quantum information science is
a preparation or excitation of the field into a particular photon
number state [12, 13]. It is a great practical difficulty to realize a
single photon number state. In practice the only pure number state
state commonly achieved is the vacuum state |0). Any attempt to
excite a particular photon number state |n) with n > 0 leads also
to a non-zero excitation of the neighbouring states |n £ m).

In summary of this section, a field in the number state has a well-
definite amplitude, but the phase is indefinite. The fluctuations of
the field amplitude are different from zero even when n = 0. This
feature is known as the vacuum fluctuations.
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4.2.2 Multi-Mode Number States

We can generalize the concept of single-mode photon number states
to the case of multi-mode fields. For a multi-mode field, we can
define a state vector characterizing the entire field by taking the
product of photon number states corresponding to different modes

tn}) =[] Ina), (4.13)
k

where {n} is to be interpreted as the set of all n. This simple
generalization arises from the fact that the annihilation and creation
operators corresponding to different modes commute.

The multi-mode Fock state |{n}) is an eigenstate of the photon
number operator for the mode k

fir {n}) = ni |{n}). (4.14)

We can define the total number operator by summing 71 over all
modes

A= f (4.15)

and find that the Fock state |{n}) is also an eigenstate of 1 with an
eigenvalue n, which is the total number of photons in the modes

fl{n}) = <an> ln}) = nl{n}). (4.16)
k

Since the energy of the field represented by a set of harmonic
oscillators (modes) is a linear combination of the operators fiy, see
Eg. (1.49), it follows that the Fock states are also eigenstates of the
Hamiltonian H:

Hinh=>" (ﬁk + ;) hox [{n}) =) (nk + ;) hax {n}).

k k
(4.17)

Similar to the single-mode Fock states, we can create a multi-mode
Fock state from the vacuum

lah =114 "= 100 (4.18)

k
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4.3 Correlation Functions for a Field in a Photon Number
State

Having the photon number states defined, we shall now analyse
characteristic properties of a single-mode field in the photon
number state |n). For a single-mode case, the field operator takes
a simple form

E=EW+EO =) (a+a), (4.19)

and with a little algebra, we find the following values for the
correlation functions

(E) =0,
< > A(2n+ 1),
(EOVEMY =22 (a'a) = An,

(EQEOEMEMY = 3% (afataa) = A*n(n — 1).  (4.20)

(E
2

In order to get a dipper insight into the properties of the field in
the photon number state, we define the normalized second-order
correlation function and variances of the so-called in-phase and out-
of-phase components of the field amplitudes.

4.3.1 Normalized Second-Order Intensity Correlation
Function

It is convenient to analyse second-order correlations in terms of the
the normalized second-order correlation function that determines
the correlations relative to the intensity of the field. The normalized
second-order correlation function is defined as

9(2)@1, t; 7?2, t)
(EO(Ry, ) EO(Ry, ) ED(Ry, ) ED(Ry, 1))
(EO(Ry, ) ED(Ry, ) (EO(Ry, ) ED(Ry, 1))

(4.21)

Let us confine to the case of §1 = 722 and § = t;. For a single-
mode field, Eq. (4.19), and dropping the time and space arguments,
the correlation function simplifies to

(@'a'aa)  (a'(aa’ —1)a) (a'aata) —(a'a)
@tayatay — (@a? (@ta)?
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We can express the correlation function in terms of the photon
number operator. Since ata = fh, we obtain

2) _ <ﬁ2> — ()
= (4.23)

Introducing the variance of the number of photons

9

(AR)%) = (A%) — ()%, (4.24)
we can finally write

((AR)*) — (A)

1+ ———FF—.
e

This formula shows that depending on the fluctuations of the

number of photons, the correlation function g(® can take the values

g? < 1,9® = 1o0rg?® > 1. Since the correlation function g

depends explicitly on the variance of the photon number. In quantum

optics the function g(? is often used to determine statistics of a given
field.

g® = (4.25)

Example 4.2 (Field in the photon number state) When the field is
in the photon number state |n), the variance and the average number
of photons are

((AR)?)
(A1)

Hence, the normalized second-order correlation function takes the
form

0:
n (4.26)

1
g¥=1- — (4.27)

Thus, for a single-photon field, n = 1, the correlation function reduces
to

g¥ =0, (4.28)
whereas for a multi-photon field with n — oo
g® - 1. (4.29)

A value of the correlation function g®» < 1 expresses the very
interesting fact that photons in the field are separated from each
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other and move individually rather than in groups. This phenom-
enon is called ungrouping effect or photon anticorrelation [14, 15].
The photons are anticorrelated in the sense that the probability
of appearance of a pair of photons at any particular time is very
small. When photons are separated in time, they may exhibit
the phenomenon of photon antibunching—that is, the correlation
function may satisfy the inequality g (t, ) > g® (¢, 0). Physically,
the inequality means that the probability of detecting two photons
separated by time 7 is more likely than the probability of detecting
two photons at the same time.

4.3.2 Two-Level Atom as a Source of Antibunched Light

As an example of a source of antibunched light, we consider a
two-level atom that is represented by the spin operators S*. The
normalized two-time second-order correlation function of the field
detected by a single photodetector and expressed in terms of the
atomic spin operators can be written as

9Pt 1) =g® R, R t+1)
_(STOST(t+)S(t+1)S (D)
T SHOS(ONSH(E+)S(t+ 1))

(4.30)

Since (S*¥)? = 0, we see that at t = 0 the correlation function
g®@(t, 0) = 0, indicating that a two-level atom is an ideal source of
antibunched light. Physically, the vanishing of g®®(t, 0) for a single
two-level atom implies that just after a photon is emitted, the atom
is in the ground state, and cannot emit again until is re-excited so
that a photon may be emitted again.

Using sodium atoms as a source of light, Dagenais, Kimble and
Mandel [16] demonstrated experimentally photon anticorrelation,
g® (0) <1, and photon antibunching, g (t, ) > g® (¢t, 0) from
direct measurement of the second-order correlation function of
the emitted resonance fluorescence. Their experiment provided
evidence that light is composed of particles. Photon antibunching
has also been observed in similar experiments involving trapped
atoms [17] and a cavity quantum electrodynamic (QED) system [18].

We will show later that g (¢, t) = 1 corresponds to a coherent
state of the field, while g(z) (t, T) < 1 corresponds to a non-classical
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state of the field (quantum field with no analogue in classical
physics). Thus, the photon number state |n) is a non-classical state of
the field with the fluctuations of the number of photons suppressed
below the quantum (coherent) level.

4.3.3 Fluctuations of the Field Amplitudes

We can consider not only the photon number fluctuations, but also
fluctuations in the electric field amplitude. The electric field £ can
be expressed in terms of the so-called in-phase and out-off phase
quadrature (phase) components defined as

E‘in = % (fl +&T)’ Z\?out = % (ﬁ — aT) (431]

The quadrature components obey the commutation relation

PO i

[Ein; Eout] = E;

from which we find that they satisfy the Heisenberg uncertainty

relation
\/<(Aﬁin)2> (Afa)) = %, (4.33)

where the factor 1/4 on the right-hand side determines the vacuum
level of the fluctuations.

For a field in the Fock state |n), the variances of the two
quadrature components are equal and linearly increase with n:

((8Ew)") = ((ABw)") = <n + ;) L (434

In summary of this section, a field in the Fock state |n) is
characterized by the well-defined number of photons (intensity), but
the amplitude of the field exhibits large fluctuations which increase
with increasing number of photons n.

(4.32)

4.4 Probability Distributions of Photons

In many problems in quantum optics, we face with a difficulty of
a lack of knowledge of the state of the field. However, in some
situations that we will explore here, we know or at least we can infer
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the probability distribution of photons in the field. As we shall see,
this is enough to determine the statistics of the field.

Let us introduce this idea with a simple question: What is the
expectation value () = (¢ |i| ) if, for example, |{) is a thermal
state of the field?

We do not know the explicit form of the state, but if the
probability distribution of photons is known, the expectation values

(n), <n2>, ... still can be explicitly calculated. Namely, we find the
expectation values from the definition of the statistical moments
(nMy=>y"n"P, m=12,..., (4.35)

where P, is the probability distribution function.

We illustrate the procedure for EM fields that are determined by
the two well-known probability distribution functions, the thermal
and Poisson distribution functions.

4.4.1 Thermal Distribution

The probability distribution function for a thermal field at tempera-
ture T is given by the Boltzmann distribution

ean
Py = — : (4.36)
Z e—nx
n=0
where
hw
=@ 437
X =T (4.37)

with kg is the Boltzmann constant, and T is the absolute tempera-
ture.

Example 4.3 (P, in terms of the average number of photons)
For some problems, it is convenient to have the distribution function P,
in terms of the average number of photons as

"
(1 + ()"t

To show it, consider first the sum Y .-, exp(—nx) appearing in the
denominator of Eq. (4.36). The sum is a particular example of a

(4.38)

n
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geometric series. Since | exp(—nx)| < 1, the sum tends to the limit

= 4.39
Z e 1 _ €_X ( )

Hence, we can write the probablllty distribution function (4.36) as

1 (1) (e - 1)

Pp=e™(1—e™)= el

e (e -1 (e
(e — ™! =
= = . 4.40
(ex _ 1)n (ex)n+1 (1 + exil)n+1 ( )

We furthermore have that the expectation number of photons can be

written as
()= nPy=(1—e*)> ne™. (4.41)
n n

In order to evaluate the sum in Eq. (4.41] we introduce a notation

= = 4.42
=Y (442
and find that
d
-nx _ _ —nx
Sone =23 e
n n
d 1 —e*
-2 =% (443)
dx \1—e™* (1—-e™)
Therefore,
() = — (4.44)
e -1 '

and the expression for the distribution function becomes®
(m)"

=, 4.46

T @+ ()t (4.46)

as required.

3An interesting observation: According to Eq. (4.44), by measuring the average
number of photons one can extract a temperature of the source

r—_ e (4.45)

n)+1
kln (1)
This formula is often used in cold atom optics to determine temperature of cooled
trapped atoms.
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Consider now the fluctuations of a thermal field. Since we know
the distribution function P,, we can calculate ((An)z), the variance
of the number of photons in the thermal field. Following the same
procedure as in the above proof of Eq. (4.38), we find that

e+ 1 1 2
(') = n*Py = = +

er — 1) e —1 (er —1)?
= (n) +2(n)?, (4.47)
from which we find that the variance is composed of two terms
((An)*) = (n) + (n)?. (4.48)

With this result, we find from Eqgs. (4.25) and (4.48) that the
normalized second-order correlations for a field with the thermal
distribution of photons is equal to

g? =2. (4.49)

This particular value of the correlation function means that in a
thermal field correlations between the photons are large. In other
words, the photons group together (move in large groups). We call
this effect photon bunching.

Example 4.4 (Continuous versus discrete n) Assume thatn is a
continuous rather than a discrete variable. The continuous variable
approach makes the calculation of ((An)?) appropriate to classical
field. In this case when calculating (n?), we replace the sum over n by
integration over n, and obtain

_ Jy dnn?e™  (1/x)"

2
(%) = [Fdnem™ ~ (1)

2(n)?, (4.50)

where” denotes second derivative of 1/x with respect to x.
Hence, the variance of the number of photons is given by

((An?) = ()2, (4.51)

Comparing Eqgs. (4.48) and (4.51), we see that the classical
(continuous energy) and quantum (discrete energy) results differ by
(n). The quantum result shows that radiation possess both a wave
character, which gives the (n)?, and a particle character, which gives
the (n) term.
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4.4.2 Poisson Distribution

We now consider correlation functions for a field with a Poisson
distribution of photons

n
= ﬂe—“ﬂ, (4.52)
where (n) is the average number of photons in the field.

For example, light emitted from a perfectly stabilized laser
working well above threshold can be described by the Poisson
distribution function, see Chapter 18.

In this case, the first statistical moment (m = 1) is given by

n n—1
(n) = Z n <nr:> e ™ = (n)e ™ Z (’(7n)_ o = (n), (4.53)

which confirms the Poisson distribution of photons.

Similarly, we can find the higher statistical moments and the
variance of the number of photons. First, calculate (n?). Using the
definition of the statistical moments, Eq. (4.35), we find

2—<n><n n1

n?) =3 ”T Z E’nm_ 5 @8

n

To proceed further with the sum over n, we change the variable by
substituting n — 1 = k, and obtain

_ k (m)" ()
2y (n)
(n*) = (n)e {Xk: o +zk:W . (4.55)
The two sums over k are easy to evaluate, and finally we obtain
(n?) = (n)? + (n). (4.56)

Thus, the variance of the number of photons in a field with the
Poisson distribution of photons is given by

((An)?) = (n), (4.57)

and with this result, we find from Eq. (4.25) that in this case the
normalized second-order correlation function is

g¥ =1. (4.58)

The value of the correlation function g = 1 means that photons
in the coherent field are independent of each other. It is clearly seen
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0.1F

0.05f

Figure 4.2 The Poisson distribution (solid line) and the thermal distribu-
tion (dashed line) as a function of n for (n) = 20.

from the definition of g, Eq. (4.21), that g®¥ = 1 when the second-
order correlation function factorizes into a product

(EOEOEDE®Y = (FOEWy (5O Oy, (4.59)

Figure 4.2 shows the thermal and Poisson distributions of photons.
Itis seen that for the thermal field, photons are randomly distributed
over a large range of n as the fluctuations are large. For the
Poisson distribution, photons group around the average (n) and are
distributed over the average in a range determined by the variance
((An)?).
Fluctuations in the photon number are often described in terms
of the Mandel Q-parameter defined by [19]
2
o= ((am?) — () (4:60)
(n)
Positive values of the Q-parameter indicate super-Poissonian statis-
tics, whereas negative values indicate sub-Poissonian statistics, and
the value of Q = 0 corresponds to a Poissonian statistics.?
According to Egs. (4.25) and (4.60), the Mandel Q-parameter can
be expressed in terms of the normalized second-order correlation

2n the laser theory, the signature of threshold behaviour is determined by the so-
called Fano factor defined as F = ((An)?)/(n). Below and at the threshold F > 1
and F = 1 above the threshold indicating coherent nature of the laser field. The
Fano factor is related to the Mandel Q parameteras F = Q + 1.
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function as

Q=(n)(g¥-1). (4.61)

Thus, photon antibunching corresponds to sub-Poissonian statistics
of photons, whereas photon bunching corresponds to super-
Poissonian statistics.

4.5 Coherent States of the EM Field

The number states (Fock states) visualize a field with defined
amplitude but with phase randomly distributed. Then a question
arises: Are there any states which, in the limit of large amplitude,
reproduce a state of a classical field of stable amplitude and fixed
phase?

The closest quantum states to classical states are coherent states
that are defined as eigenstates of the annihilation operator

ala) =ola). (4.62)

Since the operator & is non-Hermitian, we cannot use the coherent
states as eigenstates of any observable. However, the states
correspond to measurable features.

To establish the form of the coherent state we begin by expanding
|a) in terms of the Fock states, which act as an appropriate basis due
to their orthogonality

) = n)(nla) = chm (4.63)

n=0
where ¢, = (n|a) is the transformation from the coherent state to
the number state representation. The |(n|a)|? is the probability that
the n photons in the field being in the coherent state |«) .
In order to determine the coefficients ¢, we write

o0
= clln) =) cay/nin—1). (4.64)
n n=1
On the other hand

ala) =ala) = Zacnln (4.65)
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Hence, comparing Egs. (4.64) and (4.65), we obtain a recurrence
relation for the coefficients c,:

Chiivn+1=acy. (4.66)
By iterations, we find that
a"
Ch = ﬁco_ (4.67)

Therefore, the coherent state can be written as a superposition of
the photon number states as

n

ad o
o) =§mco|n). (4.68)

We choose cj such that the |«) will be normalized, (@|x) = 1. Then,
using Eq. (4.68), we find

lcol? = elr, (4.69)
and finally, we obtain
112 ad o
o) = e~ 21! Z N In). (4.70)
n=0 '

Thus, the probability of finding n photons in the field being in a
coherent state is given by
B |O[|2n

—elel, (4.71)
n:

P, = [(n]a)|?

which is a Poisson distribution.
With the distribution (4.71), we find that

(n) = (a|nla) = |af?,
g¥ =1, (4.72)

(aBn)") = ((8Fad)") = 1.

The coherent states, first introduced by Glauber [20], have a
close analogy with classical states of definite amplitudes which is
apparent from the definition @ |&) = « |«). For this reason, coherent
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Eout

Im(@)f--=---- ¢

Re(a) Ei,

Figure 4.3 Representation of the coherent state |«) in terms of the
quadrature amplitudes E;, and Egy.

states are often called the “most classical” states. It is interesting to
note that the fluctuations of the field amplitudes in the coherent
state are equal to the vacuum level fluctuations independent of
«. This is in contrast to the field in the Fock state, where the
fluctuations depend on the number of photons n, see Eq. (4.34).
This property makes the field in a coherent state very useful in
experimental physics, as the noise produced by the field is always
on the same vacuum level independent of the intensity of the field.
Laser light is a good approximation to the ideal coherent field which
exhibits Poisson fluctuations.

Figure 4.3 shows the mean values and variances of the
quadrature amplitudes Ej, and E, of the field in a coherent state
|a). The state is represented by a circle of radius 1/4 displaced
from the origin by «. The coordinates of the centre of the circle are
((Ein), (Eou)) = (Re(e), Im()).

Since the repeated application of the annihilation operator on
a coherent state does not change the state, the photons can be
continuously absorbed without changing the state of the field. Thus,
the field remains in the coherent state during the interaction with
another system.

What about the phase of the field? Before we answer the
question, let us introduce some useful representations of the
coherent states.
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4.5.1 Displacement Operator

Since the photon number state |n) can be obtained from the vacuum
state |0) by successive application of the creation operator

(@)
|n) = [0), (4.73)
/n!
we can express a coherent state in terms of the vacuum state as

aT)

o) = e7ieF Z f

T .
=e 2y (aZr) 0y =e~zleFeed ). (4.74)
"

Note that
e ¥'%10) = |0), (4.75)
which allows us to write the coherent state as
o) = e 2l g g=a"d |0y (4.76)
We can apply the Campbell-Baker-Hausdorff operator identity
eMtB — eAgBe—3[AB] (4.77)

which is valid for two operators satisfying the commutation
relations

A A

[4, [4, B]] = [B, [4, B]] = 0. (4.78)

The condition (4.78) is obviously satisfied for any pair of operators
A, B whose commutator [4, B]isa c-number. If we put A = aa' and
B = —a*a, we obtain

) = e =" 10) = D (@) |0), (4.79)

where D («) is called the displacement operator. Thus, a coherent
state is obtained by applying the displacement operator on the
vacuum state. The coherent state is therefore the displaced form of
the harmonic oscillator ground state.
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4.5.2 Properties of the Displacement Operator
The displacement operator has the following properties:
D (@)=D"t(a) =D (~a),
Dt (@) D(@) =D (@)D (@) =1, (Unitary operator). (4.80)
Further
ab (@)= D(@)a+ab (). (4.81)

Therefore, the operator D («) represents a displacement operator in
the sense that

Dt @ ab(w)=a+a,
Dt (@)a'h () = af + . (4.82)

The action of successively applied displacement operators is also
additive up to phase factors

D(@)D(B)=D(x+ B)exp B (af* — ﬁa*)} . (4.83)

Note that the extra phase on the right-hand side makes the
displacement operators non-commutative in general.

4.5.3 Representation in Terms of Coherent States

The number state |[n) may be represented in terms of coherent states
|a). Multiplying the expansion

o) = e~ zlF Z f (4.84)

by a factor

*n
1« e_%‘a‘z

— 4.85
x v (4.85)
and integrating overall «, we obtain
1 2™
== [ dPae 2l = 4.86
[n) n/ ae NG la), ( )

where d?a =d (Rea) d (Ima) =r dr dyy denotes a double integra-
tion over the whole complex «-space.
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From the completeness of the Fock state (3, n)(n| = 1), we
readily obtain the completeness relation for coherent states

1
- /d2a|a)(a| =1, (4.87)
bid
where we have used the integral property
!
/ A2 oo Sl S’Tfl S, (4.88)

Thus, coherent states are complete.
However, the coherent states are not orthogonal. To show this,
we calculate a product of two coherent states

m

,,Zm:«/_x/_
_tap—tipp x (@B)"
— e~ Hel=his 5 4

— ez (leP+IB12)+ap* (4.89)

(Bla) = —3lel=31817

Then, we find

[(Bla)? = e 1P £ 8,5, (4.90)

which shows that the two coherent states are not orthogonal.

The coherent states become approximately orthogonal when
the difference |o — B|> — oo. Since the coherent states are not
orthogonal they are sometimes called over-complete.

Exercises

4.1 The state |n) is an eigenstate of the photon number opera-
tor i = a'a with eigenvalue n. Show that

(a) the state a|n) is also an eigenstate of /i with eigenvalue n —

1.
(b) the state af|n) is also an eigenstate of A with eigen-
value n + 1.
4.2 Show that Tr[D ()] = n8(«), where §(e) is the two-

dimensional Dirac delta function.



4.3

4.4

4.5

4.6

4.7

4.8

Exercises

Using Tr [D ()] = 78(c), show that the §()-function can be
represented by a Fourier integral in the complex form

1
S(a) = = /dzﬁ exp(af* — o*p).
Show that
A . 1
D(@)D(B)=D(a+B)exp [2 (ap” — ﬁa*)] ,
Dl (@ab(@)=a+a,
DY (@ ath(a) =a' +a*

Prove the identity

elwl? wn!
/dzot oo Me TSI = 8

gn+1omm

Prove that
2 at —a*a _ L2 at —a*a Ligl12 —a*a at
D(a)ze"‘" ot _ o 7 lat] ¥’ aa:ezlale atagaal

Show that the expectation value of the displacement opera-
tor D () for a chaotic (thermal) field is given by
n R 1
(D () = exp [— e |? ((n) + 2)} ,
where (/1) is the mean number of photons in the field. A
thermal field is characterized by the following correlation
functions

(@ = (") =0,
(@ = (@h* =o,
ata)y = (n),

Assume that the field is in a superposition state
W) = Cyla) +iC2[B),
where |@), |8) are two different coherent states, (¥|¥) = 1
and all four numbers C1, C», «, § are real. Consider the Mandel
Q parameter defined as
((AR)?) — (A)
Q=—"7-1—"7"
(1)
The parameter @ determines the statistics of the field. For a
Poissonian statistics Q = 0, for a sub-Poissonian statistics Q <
0,and Q > 0 for a super-Poissonian statistics.
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4.9

4.10

4.11

(a) Under which conditions the statistics of the field being in
the superposition state | W) is sub-Poissonian?
(b) Under which conditions Q = 0?

The probability of finding n photons in the mode being in a
coherent state |«) is given by the Poisson distribution

(" —m

n —

n!
Use the Sterling’s formula for the factorial to show that this
distribution can be approximated by

1 { (n— (n))z]
——exp | ————— | .
V2r(n) 2(n)

In what limit is this a good approximation?

Calculate the variances of the position and momentum
operators of a harmonic oscillator in a coherent state |«) to
prove that irrespectively of o the coherent states are minimum
uncertainty states.

Show that in the coordinates of the quadrature phase
components, Ein and E‘out, the average amplitudes (E‘in), (Eout)
and the associated variances in a coherent state |«@) can be
represented by a circle of radius 1/4 centred on the complex
amplitude vector «.

n ~



Chapter 5

Photon Phase Operator

5.1 Introduction

We have already shown that the coherent states are very close
to the classical state of the well-defined amplitude and phase.
A question not answered yet is: Does there exist an analogous
quantum mechanical observable for the phase that is given by some
Hermitian operator? We know from classical optics that phase of
an EM field is an observable quantity. Hence, in quantum physics it
should be associated with a Hermitian operator. In order to set up
a quantitative description of the phase operator, we will introduce
some of the ideas presented in the literature which led to the
formulation of the Hermitian phase operator.

5.2 Exponential Phase Operator

In classical optics, an electric field E’(F, t) is often written as
E(F t) = Eo(F, e, (5.1)

where Ej (7, t) is the amplitude of the field, whose modulus square
is the intensity of the field, and the argument i is the phase.
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Copyright (©) 2014 Pan Stanford Publishing Pte. Ltd.

ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com



62 | Photon Phase Operator

Both intensity and the phase can be measured simultaneously with
arbitrary accuracy.

In quantum optics the situation is completely different. The field
amplitude becomes an operator acting in a Hilbert space of field
states. In addition, the polar decomposition of the field amplitude,
which is trivial for classical fields, becomes far from being trivial for
quantum fields because of the problem with proper definition of the
Hermitian phase operator.

The early studies of the quantum field (photon) phase were
concerned with the exponential form of the phase operator. We start
from the concept of the exponential phase operator, introduced by
Dirac [21], to develop interesting concepts of the Hermitian phase
operator.

It is well known from the complex analysis that an arbitrary
complex number can be written as

z=|rle, (5.2)

where |r| is the modulus and ¢ (real) is the argument of the complex
number.

By analogy, Dirac? proposed to decompose the annihilation (non-
Hermitian) operator

a=ge, (5.3)
where ¥ can be treated as a phase operator.
An obvious question arises: Is this decomposition valid? Suppose,
the decomposition is valid. Then the Hermitian conjugate of a is
given by

at =e Vg, (5.4)
and the product of @ and a' gives
aat =n+1=g% (5.5)
from which we have
g=m+1"% (5.6)
Using the above results, we can write
elV = (n+11)1/2a eV = afmll)m. (5.7)

aPaul Dirac was granted the Nobel prize in 1933 for the discovery of new productive
forms of atomic theory.
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Hence, the properties of the phase operator can be calculated using
the properties of the annihilation, creation and photon number

operators.
We find from Eq. (5.7) that the product of the two exponents gives
elVemiV — ! aat !
(l”\l + 1)1/2 (fl+ 1)1/2
(h+1)
= T (h 1 ) =1 (5.8)
(A+1)7"(A+1)
However, the product
L 1
eV — gt a#1 5.9
efel =alo——a#l (5.9)

and it gives zero when it operates either to the left or to the right on
the vacuum state.
Evidently, e'? is not unitary and hence 1 is not Hermitian.

5.3 Susskind—Glogower Phase Operator

Susskind and Glogower [22] argued that a consistent way out of
the difficulty of the exponent phase operator is to introduce w
and ﬂ operators that are combinations of the exponent phase
operator

w = % {e"‘?’ + e_"‘z’q , (5.10)
siny = % [e“@ - e-"@*} , (5.11)

where, as before, !V = (1/(h+ 1)1/2) a.
It is obvious that cos ¢ and sin ¢ are Hermitian, despite the fact
that e’V is not unitary.

Proof. Matrix elements of a Hermitian operator A should satisfy the
following relation

(i)A|j)y= (A" (5.12)
We will check whether the operators gs\l/f and m satisfy this
relation. First, we consider

eV n)y = (A+1)2aln) = (A+1) "2 /nn—1). (5.13)
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However, there is a square root of (i1 + 1) in the denominator. In

order to have this operator in its basic form, the function (A + 1)~/
has to be expanded into a power series with respect to 7.
Let 1 = x, then
1 13 135
1 212 x4 5.14
(1+x) 2x+24x 526X + (5.14)
Hence
1 13
A1)y Y21y =Jd1—Za+=2a2_... -1
(A+1)"7""In—-1) S+ 530 In—1)
1
=q1—-=(n-1
{ S (1—1)

+;i(n—1)2_"'}|n_1)’ (5.15)

where we have used the relation

Mm-1=mn-1"n-1). (5.16)
Thus,
A+ -1 =[1+M0-1)]"n-1
= jﬁ In—1). (5.17)
Using this result in Eq. (5.13), we obtain
eV n)y=n—1). (5.18)
Similarly, we can show that
ey =n+1). (5.19)

Using these relations, we find that the non-zero matrix elements of
the cos ¢ and sin ¢ operators are

(n—1|cosy [n) = (n|cos ¥ |n — 1) = % (5.20)
(n — 1| sin ¥ |n) =—<n|sﬂ1\w|n—1)=%. (5.21)

From this we can derive that
(ilcos ¥/ |j) = {jlcos ¥ Ii)*,
(i|siny |j) = (j|siny [i)*, (5.22)

as required. O
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We therefore may conclude that SS\I/I and ﬂ are Hermitian and
can represent the observable phase properties of the EM field.
However, cos ¥ and sin ¢ do not commute

1. 3 }
{cosv/ smt//] { (n+1) 1, (5.23)

and therefore do not determine the same phase operator [23].

Proof. Calculate a commutator

55,555 = [ (¢ +). & (5 m

= 2i {e”"we"‘?’ - ei‘/}e’i‘/}T} n). (5.24)
i
We have shown before that
i 1
eV = —— a4, 5.25
(A+1)"2 (>23)
. 1
A AN | 5.26
(A4 1)Y? (526)
Hence,
e Ve ny = at (A + 1) aln), (5.27)
and
eVe 1" n) = |n). (5.28)

Collecting the above results, we finally obtain
[cosw sin w] n) = — {aJr (A+1)'a—1}n),  (5.29)
as required. O

We can calculate the matrix elements of the commutator

o5y,

— 1
(m| [cos Y, sin lﬁ} [n) = o mlat(a+1)"ra—1n)
1
1 U
== [<m| e e n) = S| . (5.30)
Since
eVIny=n—-1) =0, for n=0,

e ivT n) =In+1), (5.31)
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we therefore obtain

(m| [@ sﬁT/f} In)=0, n<0,

—_— —_— 1
(m| [cos 7, sin W} M) =—>-dm,  n=0.  (532)

i
Only one of the infinite number of the matrix elements of the
commutator is different from zero, the diagonal ground state matrix

element, m =n = 0.

Can we find states of the EM field which are simultaneous
eigenstates of the photon number and the photon phase? To answer

this question, we will calculate two commutators {fz, ES\I/I} and
{fz, sl/nT/f} , using the photon number representation
[ﬁ, gs\l//} In) = %{[n e"ﬂ + [n e*’ﬂ} ),  (5.33)
[ﬁ, sﬁT/f} In) = 2% { [n e“?f] - [n e’i"}f} } ).  (5.34)
First, we calculate the commutator

[ﬁ, eﬂ In) = fi|n — 1) — ne'? |n)

=Mn-1)In-1)—nn—-1)=—-In—-1)
= —eiV |n). (5.35)
Similarly, we find
[, e imy = e 1n) (536)
and finally, we combine the results given in Egs. (5.33) and (5.34),
and obtain
[ﬁ, 6&?} — —isiny, (5.37)
[fz, SET//} — icos ¥ (5.38)

The above commutation relations show that the number and phase
operators do not commute, and therefore, it is not possible to set
up states of the radiation field which are simultaneous eigenstates
of the two operators. The amplitude of an EM field, associated with
i, and the phase, associated with c/os\tﬂ or SEIT#, cannot be both
precisely specified.
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The commutation relation (5.37) immediately leads to the
uncertainty relation

(am) (& cosy) = S (5Tl (539)
where
(An)® = (%) — (R)? (5.40)
and
(A cosy)? = (cos ¥)?) — (cos w) (5.41)
In a Fock state
An =0,
Acosy = «/15 (5.42)

The above result shows that the EM field which corresponds to the
state |n) has a definite amplitude but the phase has an arbitrary
value.

We have introduced two operators, gs\w and m, to represent
the phase properties of the radiation field. In classical physics, the
phase is a single quantity and it seems unnecessary to represent
it by two different operators in quantum optics. Since the phase
operators do not commute, it is impossible to form states which are
simultaneously eigenstates ofm and ﬂ

5.4 Unitary Exponential Phase Operator

To preserve the concept of exponential phase operators and to
remove the non-unitary properties, we can define the exponential
phase operator

V=e"=3"In)(nle” =3 In)(n+1], (5.43)

with

Pt = e i —Ze—”/f In) (n| = Z|n+1 . (544

pot :Zm m+1m+1)(n = Zm =1, (5.45)
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and

VIV =3 In+1)(nlm)(m+1l=3 In+1)(n+1|

n,m

—1-10)(0]. (5.46)

This is still a non-unitary operator.
However, we can remove the non-unitarity by extending the
lower limit of the sum over n to —oo, and obtain

o0
VPt= " Imn+1m+1)(n =1, (5.47)
n,m=—o0
and
o0
vy = Z In+1n+1 =1 (5.48)
n=—00

Clearly, in this case the operator Visan unitary operator and then U
is Hermitian.

If { is a Hermitian operator then there exists an eigenstate such
that (postulate)

Vd) =€ |d). (5.49)
We can expand the state |®) in terms of the number states |n) as

) =) ayln), (5.50)

which gives

VI0)=> a,Vin)=> awm)(m+1n) =Y any1ln). (551)

The right-hand side of Eq. (5.49) is equal to
eV |d) = Za,,ei"’ n). (5.52)
n
Hence, comparing Egs. (5.51) and (5.52), we obtain a recurrence
relation for the coefficients ay:
Api1 = ape'’. (5.53)
By iteration, we find that

a, = age. (5.54)
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Therefore, the state |®) can be written as

|®) =aoy_e" |n). (5.55)
n
From the normalization condition
/dd>|cl>)(<1>| =1, (5.56)
we find that ag = 1/4/27, and then the state |®) takes the form
Z e |n). (5.57)
n_foo

Example 5.1 (Phase properties of the field in a coherent state.)
We wish to calculate the uncertainty relation AnA cos ¥ for the field
in a coherent state |a).

First, we calculate the expectation value of the phase operator
m in the coherent state |o):

(a+ot*)e el Z |0‘n|' \/F

(| cos ¥ |a)

(5.58)

|2n
|| cosBe™ lorl® Z
n' Jn+l

n
where o = || e?.
Similarly, we find
— 1 1 1
(| (cos ¥)? o) = = — Ze“"“z + |o)? (cos2 0 — 2> el
|2n
Z n'y/(n + Dn+2)

Unfortunately, it is not possible to evaluate the summations in the
above equations analytically. There are, however, some simplifications
in the limit of || > 1, where

Z |(X|2n 1 e‘a‘z <1 1 + > (5 60)
nu/n+1 lot] 8 |x|? '

|2n 1 ‘a‘z 1
Z N +—1) EDR <1 A > - (e

(5.59)

and
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Figure 5.1 The dependence of the fluctuations of the phase A cos ¢ (solid
line), the average number of photons (dashed line), and the fluctuations of
the photon number (dashed-dotted line) on the amplitude of the coherent
state.

In this case, we find that

1
Acosy = 27l sin 6, (5.62)

which can be written as
1
AnAcosy = 3 sin6, la| > 1, (5.63)

where An = |«| are the fluctuations of the number of photons.

This result shows that in the limit of |«| >> 1, the coherent state
|a) is the minimum uncertainty state for the photon number and the
phase (@) operators.

In Fig. 5.1, we plot Acosy = |¢|™!, the average number of
photons (n) = |«|?, and the fluctuations An = |«|.

Although the fluctuations An increase linearly with |«|, the
fractional uncertainty An/(n) = |« | =1, which determines the fluctu-
ations of the amplitude, decreases with increasing |«|. In addition,
the fluctuations of the phase A cos v vary like |a|~!. Therefore, for
|| > 1 the field is well defined in both the amplitude and phase.
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5.5 Pegg—Barnett Phase Operator

The failure of @ and ﬂ to commute, and the absence of a
ready, intuitive interpretation of their eigenvalues, have led Pegg and
Barnett to construct a Hermitian phase operator and a phase state
|Y) on a finite-dimensional Hilbert space [24]. The phase state |v/),
defined by the expansion in terms of the Fock states as

1 L.
Ze””/’ In), (5.64)
Js+1 =

behaves in some ways as a state of definite phase ¢ when s is
large, that the state [¢/) can be the common eigenstate ofgs\l// and
SH]T// in a certain limiting sense. In other words, the phase state
is represented by the (s 4+ 1)-dimensional Hilbert space expanded
on the complete basis of the photon number states |n), with the
expansion coefficients weighted by the factor exp(iny).

However, the states |{) are not orthonormal unless we assume
that the phase is a discrete quantity

V) =

2mm
’l'[/ Ipm—'lpo-i—? m:O,l,Z,...,S. (5.65)
Proof. Consider a scalar product of two phase states
1< 1 &
(| Yrm) = P > el (Mm— Pl//m/)<p|n) o e N¥m—Vu)
(5.66)
If we choose
2rm
Y=o+ (5.67)
we obtain
20 (1) 1 1 — e?rilm—m)
s+1 Z e T s+ 11— emitnmyGHI] T Smm» (5:68)
as requlred. O

It is natural to try and introduce a Hermitian operator in terms of
projectors of the type [¢) (¥ |. Hence, we can say that the state |y,)
is the eigenstate of the Hermitian (Pegg-Barnett) phase operator

U= VmlVm) (Vml, (5.69)

m=0
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with the corresponding eigenvalues v, that is,

U [¥m) = Y [¥m) - (5.70)
The eigenvalues ¢, are restricted to lie within a phase window
between vy and o + 27s/(s + 1).
In order to overcome the limit problem of finite s, Pegg and
Barnett have proposed to work with finite s and letting s — oo after
expectation values have been calculated.

Example 5.2 (Difficulties of the Hermitian phase operator) Let
us consider an example that illustrates a difficulty with the concept of
the Hermitian phase operator.
If the state | /) is the eigenstate of Vr then |y) should also be the
eigenstate of cos Y and sin . We calculate cos { |), and find
cosy |§) = cosyr [v)
1
+
2 s~>oo N
el +y |s) —e 'V 10)}. (5.71)

The state |\) thus fails to be a strict eigenstate of m because of the
contribution of the second term. However, the magnitude of the second
term tends to zero in the limit of s — oo.

Hence,

{e’s‘/’ s + 1)

CosV |Y) =cosy [¥)  for s — oo. (5.72)

In a similar way, we can show that
(Wlsiny [y) = siny,
(¥ (cos ¥)* [i) = cos® y,

(¥ (siny)? [y) = sin’ v (5.73)
Therefore, the uncertainties tend to
(Acosy) =(Asiny)=0 for s — oo. (5.74)

These results show that in the limit of s — oo, the phase state |r)
behaves as a common eigenstate of the operators cos vy and sin .
Thus, v is the observable phase angle.

It is interesting to note that the number state |n) can be expanded in
terms of the phase state basis |y,) as

lem ) (Yimln) = J_nzg—'""’"wn). (5.75)




Exercises

Itis seen from Egs. (5.64) and (5.75) that a system in a number state
is equally likely to be found in any state |,,), and a system in a phase
state is equally likely to be found in any number state |n).

However, there is a problem when one calculates the number of
photons present in the field being in a phase state |¢). We explore
the problem in the following example.

Example 5.3 (Expectation value in the Hermitian phase state)
Let us calculate the expectation values (V| A |y) and (| A% |y, for
which we find

(Ylhaly) = Sl_i)rgo %s — 00,

(v A% |¢) = lim s@s+1) — 00. (5.76)

5—00 6
The photon number expectation values are thus infinite and so is the
uncertainty An.
However, the ratio of the uncertainty An to the expectation

number of photons is finite

An (%) — (> 1 Js(s+2) _ 1

— =Y ' v - lim — =—. (577)
() () S /3 s 7
Thus, we may conclude that |¢) is not a physical state, as it is rather
impossible to excite a field to state |y) in a practical experiment. This
property reflects one of the difficulties encountered in the search for
a physical phase operator.

Despite the difficulties, the Hermitian phase operator or quan-
tum phase became the subject of a great research activity in 1990s
and in early 2000s. Intensive studies were done on aspects such as
the phase probability [25] and quantum phase properties of various
linear and nonlinear processes [26].

Exercises

5.1 Show that for a coherent state @ = || exp(i6), with |«| > 1,
the mean values
(alcos Yla) ~ cos® and (a|siny|a) ~ siné.
This shows that in the limit of || > 1, the coherent state
behaves as a classical wave with phase 6.
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5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Suppose, there exists a Hermitian operator A canonically
conjugated with photon number operator 7 such that

[4, A] = i.

(a) Show that the exponential operator exp(i A) is unitary.
(b) Use the Baker-Hausdorff formula to show that

elhed = p — 1.
Calculate the expectation value of the operator AfA in the
coherent state |o), where A = (4 + 1)""/? 4,and A = afa.
Calculate cos v |¢), where cos v is given in Eq. (5.10), and |y)
is the photon phase state

W) = lim (s +1)72 " exp(iny) n).

n=0
Calculate the expectation value of the electric field operator
E(F, t) of a single-mode field in the photon phase state |y/).
What would you conclude about the phase of the field?

Find the average value and variance of the Hermitian Pegg-
Barnett phase operator

U= lim Yy Yl vm) (Yinl (5.78)
m=0

in the photon number state |n).

For an arbitrary state |®) calculate the probability distribution
|(|®)|? of the Pegg-Barnett phase state |i/) as a function of
the coefficients c, of the decomposition of |®) in the basis of
photon number states |n).

Find the probability distribution P (y) = |(y|«)|? of the Pegg-
Barnett phase state |¢) in a coherent state «.

Using the result of Question 5.8, show that:

(@) The expectation value of the phase operator is
() = lim (a|/|or) = 6,
§—>00

where 0 is the phase angle of the coherent state « =
|| exp(iB).
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(b) Then calculate the fluctuations of the phase operator to
show that

A o o 1
((AY)?) = (F%) — (§)? = §n2 — 4al.

5.10 Show that in the limit of s — o0, the photon phase state

W) =(s+1)7"*)  exp(iny) n)

n=0

is an eigenstate of V7.






Chapter 6

Squeezed States of Light

6.1 Introduction

In Chapter 4 we defined different representations of the elec-
tromagnetic (EM) field: the Fock, thermal and coherent state
representations, and discussed in details properties of the EM field
in these representations. We have seen that in the coherent state
the fluctuations in the two quadratures of the EM field amplitudes
are equal and minimize the uncertainty product given by the
Heisenberg’s uncertainty relation. In other words, the quantum
fluctuations of the field in a coherent state are equal to the zero-
point fluctuations and are randomly distributed in phase. These
zero-point fluctuations represent the standard quantum limit to the
reduction of noise in a signal. Even an ideal laser operating in a pure
coherent state would still possess quantum noise due to zero-point
fluctuations.

In this chapter, we consider special states of the EM field
which have less fluctuations in one quadrature component than a
coherent state at the expense of increased fluctuations in the other
quadrature component. Such states are called squeezed states. The
basic ideas underlying squeezed states of light involve quantum
noise (or fluctuations) in the so-called quadrature components of
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the electric field and the Heisenberg uncertainty principle. These
concepts and the properties of squeezed states will be discussed in
this chapter.

6.2 Definition of Squeezed States of Light

We introduce the concept of squeezed states of light using the single-
mode representation of the EM field. This treatments will be later
generalized to include multi-mode fields. Consider a single-mode
electric field represented by the operator

EG o =ir [ae-i(wt-”) - aTe"(wf-”)] , (6.1)
where A is a constant. In what follows the spatial dependence of the

field will usually be suppressed for convenience.
We introduce two Hermitian operators

. 1 A 1
Elzi(&+?ﬂ), Ezzf(&—?ﬂ), (6.2)
i
satisfying the commutation relation
PO i
[E1, E2] = 5. (6.3)

These two Hermitian operators are completely equivalent to the
in-phase and out-off phase quadrature components, defined in
Eq. (4.31). In terms of £; and £, the electric field operator (6.1)
takes the form

E@)=2x [Elsin(wt—l??) —Ezcos(wt—ﬁ-rj)} (6.4)
in which we can identify E; and E, as the amplitudes of the two

quadrature components of the field. In general, the electric field
operator can be written as

B (©) =24 [Bysin (ot =Kk F+9)
— E 42 cos (a)t —k-T+ ¢>} ’ (6.5)

where £, and E, .2 are two quadrature components shifted in
phase by /2 and specified by the phase angle ¢. In the following,
we will consider the special case of ¢ = 0, in which Ey = E; and
Ez,2 = E;. The results can be generalized to an arbitrary ¢.
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The non-commuting quadrature components satisfy the Heisen-
berg uncertainty relation

\/<(Af?1)2> ((ak)") = 2, 6.6)

where ((AE’,-)Z) is the variance of the ith quadrature component
of the field being in a state |W) and the factor 1/4 determines
the vacuum level of the fluctuations. The Heisenberg uncertainty
relation predicts that it is never possible to be absolutely precise in
measuring one of two non-commuting observables.

It follows from the Heisenberg uncertainty relation (6.6) that
there is no restriction on the magnitude of each of the variances
((AE1)?) and ((AE32)?) as long as the inequality in (6.6) is satisfied.
For example, we have shown in Chapter 4 that the variances of the
field in a thermal or in a Fock state (random phase fluctuating field)
are

N 1 A 1
((aB)")>7  and  ((aF)")> 3. (6.7)
Thus, for the field in a thermal or in a Fock state the variances in both
quadrature components are larger than that of the vacuum level.
For a field in the vacuum or coherent state, the variances are

(AB)") = ((ak2)") = %. (6.8)
In this case, both variances are equal to the vacuum level of the
fluctuations. Hence, the vacuum or coherent state of the field is a
minimum uncertainty state with the fluctuations distributed sym-
metrically between the two quadratures, as illustrated in Fig. 6.1.
Now, we will define squeezed states of the EM field or a squeezed
field, or simply squeezing. Namely, a squeezed field is characterized
by fluctuations reduced below the vacuum level, that is, either

((aB1)") < L ((aB2)") < ) (6.9)
4 4
such that the Heisenberg uncertainty relation is not violated.
In other words, squeezing is defined by the requirement that
the variance of one of two non-commuting Hermitian operators

must be less than half of the absolute value of their commutator.
The variance of the other Hermitian operator is at the same
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Figure 6.1 Graphical representation of the variances of a vacuum field and
a squeezed vacuum field. The fluctuations of the vacuum field are isotropic
which can be represented by a circle of radii 1/4. The squeezed vacuum
field is characterized by reduced fluctuations in one of the quadrature
components, which is represented by an ellipse with the length of the
shorter axis reduced below 1/4 and the length of the longer axis respectively
larger than 1/4.

time correspondingly larger than half of the absolute value of
their commutator in order to preserve the Heisenberg uncertainty
relation. This means that the reduction in the fluctuations of one
of the quadrature components occurs at the expense of increased
fluctuations in the other component. In the E;, E; coordinates,
squeezing is represented by an ellipse with the length of the shorter
axis reduced below 1/4, as illustrated in Fig. 6.1.

The variances of the quadrature components can be expressed as

(AB)") = (: (aB) ) + %, i=12  (6.10)
where the pair of colons (::) denote the normal ordering of the

operators in which all the creation operators are placed to to the left
of all the annihilation operators.

Proof. L .
((aB1)") = 7 ((@a+ah) (a+a")) - 7 ((@+ah)’
_ % (aa+aa' +ala +alal) - % (a+al)’
1 1 2 1
— S (atataa+atat — Siarathia s
_4<2aa+aa+aa> 4<a+a>+4
= (- (B )+ (6.11)

as required. O
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Similarly, we can show that
a A 1
((aB2)") = (: (aB2)":) + 7. (6.12)
Since the left-hand side of Eq. (6.10) has to be less than 1/4 for
a squeezed field, another definition of a squeezed field is that the
normally ordered variance of the quadrature component must be
negative

(: (aB)*:) <o, (6.13)

Consider the normally ordered variance (: (Aﬁ‘l)z :), which can be
written as

<: (Aél)z :> =

7~
[\
Q>

il
Q>
_|_
Q
Q>

>
Q—u—
B>
Q

(< > ((aa))

[1(aa)| cos yr — |(@)|* cos 26],
(6.14)

/\
\/

NI RN RA R

where A4 = A — (A), and
(aa) = |(aa)| e, (a) = |(a)|e”. (6.15)
It follows from Eq. (6.14) that the condition for squeezing is that the
correlation functions [(aa)| and/or |{a)| are non-zero. The variance
might be negative if 0> cosy¥ > — 1 and 1> cos(26) > 0, that
is, when the second term in Eq. (6.14) is negative. The minimum
value of (: (AEl)z 1), corresponding to maximum squeezing can be
obtained for ¥ = and 6 = 0. The correlation function (Ga) can be
produced by nonlinear two-photon processes whereas a non-zero
amplitude (@) can be produced by a coherent field. Thus, squeezing
can be generated by two different processes, a nonlinear two-photon
process or a coherent field.
Consider two simple examples illustrating the level of fluctua-
tions in a single-mode EM field being in a photon number state and
in a coherent state.

Example 6.1 (Field in a photon number state) For the field in
the photon number state |n), the correlation functions appearing in
Eq. (6.14) are

(AaTAG) =n, (aa)=0, (a)=0, (6.16)
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and then both the normally ordered variances are equal and positive

<: (AEl)Z :> = <: (AEZ)Z :> = %n > 0. (6.17)

Hence, there is no squeezing in the field being in a Fock state. The
fluctuations of the field amplitudes are isotropic and increase with the
number of photons n. This property arises from the fact that a Fock
state has complete uncertainty in phase.

Example 6.2 (Field in a coherent state) As a second example,
consider the field in the coherent state |«). In this case, the correlation
functions are

(AafAa) =0, |@a)l=lel?, K@) =lel?.  (6.18)

Hence, the normally ordered variances are
<: (AEl)Z :> = <: (AEZ)Z :> =0. (6.19)

Thus, for the field in the coherent state |a) = D () |0), the fluctuations
of the field amplitudes are isotropic and equal to the vacuum level of
fluctuations. Note that the fluctuations are equal to the vacuum level
independent of the amplitude « of the coherent field.

6.3 Squeezed Coherent States

In connection with two-photon processes responsible for reduction
of the field fluctuations, we may define squeezed states of the EM
field in an alternative but equivalent way by introducing an unitary
two-photon operator, called the squeezed operator

A 1 1
S (s) = exp{ =s*a® — =saf? }, (6.20)
2 2
where s = rexp(if) and r is a real number. The parameter s

determines the size of squeezing and depends on the type of the two-
photon process.

The combined action of the squeezing operator $(s) and the
displacement operator D («) on the vacuum state |0) generates
a minimum uncertainty squeezed states, often called squeezed
coherent states. There are, however, two equivalent but different
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definitions of the squeezed state. Yuen [27] defined the squeezed
coherent states as

lo, s) = §(s) D () 0), (6.21)
whereas Caves [28] defined the squeezed states as
la, s) = D (@) S (5)10). (6.22)

Since the operators D («) and S (s) do not commute, the definitions
(6.21) and (6.22) are not equal. However, the definitions are related
as

$SE)D(@)=86) D@5 ()86)=D(B)S(s), (6:23)
where
B = acoshr + a*e’ sinhr. (6.24)

The Yuen and Caves definitions for coherent squeezed states can be
used interchangeably, one or the other my be particularly convenient
for a specific problem. The two definitions lead to the same results
for squeezing, but produce different results for antibunching.

For o = 0, the squeezed coherent states (6.21) and (6.22) reduce
to the squeezed vacuum state

10, s) = §(s)0), (6.25)

which has an interesting property, b |0, s) = 0, that it is an eigenstate
with a zero eigenvalue of the annihilation operators b, which can be
obtained from the operators & and a' by the unitary transformation,
called the Bogoliubov transformation

b = 8(s)a8t(s) = acoshr + a'e’ sinhr,
bt = §(s)a'87(s) = a' coshr + ae™? sinhr. (6.26)

Proof. Applying the identity relation

Aa o A A e oA AR
eMBe*MZBJrF[A, B]+5[A, [4, B]]+--- (627)

and introducing a notation A = (s*a% — sa'?)/2, we can write the
unitary transformation as

b=3(s)ast(s) = efae® =a+[A, a] +

83
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Figure 6.2 Example of (a) squeezed vacuum state and (b) squeezed
coherent state with the variance of the quadrature component E; reduced
(squeezed) below the vacuum level.

Using the well-known commutation relations

[a, (aT)”} =n(a")"", [a"a&']=na"",  (6:29)
we get
. 1,02 1 4 At
[4, a] = Es a“ — Esa ,a| =sa', (6.30)
and
A AT 1 * a2 1 At2 At * A
[4,a'] = ES ac — Esa ,a'| =s*a. (6.31)

Upon substitution of the results (6.30) and (6.31) into Eq. (6.28), we
obtain
. r2 ot 051 r3 rd
— A —_— —_— DRI ! a —_— —_— LI
b_a<1+2!+4!+ >+ea(r+3!+5!+ >
= dcoshr + a'e sinhr, (6.32)

as required. O

Examples of squeezed vacuum and squeezed coherent states are
shown in Fig. 6.2. The state is represented by a point located at the
origin (vacuum state) or in a distance « from the origin (coherent
state) surrounded by an ellipse representing the magnitude of the
fluctuations.

We can use the operators b and b’ to obtain the formula for the
squeezed vacuum state (6.25) in the photon number representation.
We expand the squeezed vacuum state in terms of the Fock states as

0, s) = ch|n). (6.33)
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Since
b0, s) =“0"10, s) (6.34)
and using Eq. (6.26), we obtain
cosh(r) Z ca/nin — 1) + €' sinh(r) Z cav/n + 1jn + 1)
n n

= c"0"In). (6.35)

Applying the orthogonality property of the Fock states, we find that
the coefficients c, satisfy a recurrence relation

cosh(r)cap1v/n + 1 + € sinh(r)c,_14/n = “07c,.  (6.36)

We keep the zero term on the right-hand side of Eq. (6.36)
to show that the recurrence relation for the coefficients ¢, can
be transformed to a recurrence relation identical to the familiar
recurrence relation for the Hermite polynomials.

Substituting 4 = cosh(r), v = exp(if) sinh(r) and

1 v 2"
Ch = W <M> dn, (637)

we obtain
1 2n
UV v
pvnt e =\ e (u) 1.
1
zn

_on L (2
v/ne,_1 = 2n > m(ﬂ) ay_1. (6.38)

Hence, the recurrence relation (6.36) takes a simple form

2na,_1 + apny1 = 2zay, (6.39)
where z = “0"//2uv.

The above recurrence relation is identical to that for the Hermite
polynomials H,(z). Hence, a, = H,(0), and then

_a v\
n = m@) H,(0), (6.40)

where qg is the normalization constant.
Thus, the squeezed vacuum state can be written as

1
2n

0,5)=3" % <;> H,,(0)|n). (6.41)
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From the normalization of |0, s) and using the property of the
Hermite polynomials

1 /t\" ., -1 2
Zn'(2> HX(z) = (1-t8) Zeie, (6.42)
n
we find that
2 1 v\" 2 2 v i 2
1= |ao| anz,,n! <M> H?(0) = |a| <1—M2) = julao|*.
(6.43)
Hence, ap = 1/,/i, and the squeezed vacuum state takes the form
1
1 1 v 2"
|0,s)=Z— () H,(0)|n). (6.44)
—~ /2! \ 1
However,
(ZH)

HZn(O) = ( l)n

and then we obtain

1 1 ,,(Zn)
'°'5>=mezny( ) o e

- Z " tanhr)" (2D} 12n). (6.46)

/coshr 2"n!

and H2n+1 (0) =0, (645)

It follows from Eq. (6.46) that the squeezed vacuum state is a
superposition of only even Fock states. This clearly shows the two-
photon nature of the squeezed states.
Having the photon number representation of the squeezed
vacuum state, we can find the coherent state representation of |0, s).
Inserting the completeness relation (4.87) into Eq. (6.44), we
obtain

1
2

0= 2 Zezm (i)

=[5 " e b 0)a)
E— o -_— o
T/ - n! \ 2u "

1

H,(0) / d2alan)a)

2\ 21
) e 2 1, (0)|a). (6.47)

1 2 1 /va*
i (e
n
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Since
n 2
> Hn(0)— = et (6.48)
- !

we finally obtain

1 1
0,s)=—— [ d? — o) -
0, s) nﬁ/ aexp[ 2IOéI

The dependence of the state on «*? again confirms the two-photon
nature of the squeezed vacuum states.

Using one of the definitions of the squeezed coherent states,
Eq. (6.21) or Eq. (6.22), we find that expectation values of the field
operators in the squeezed coherent state are given by

U(X*Z
2

} ).  (6.49)
"

= a*? — e7 sinh(r) cosh(r), (6.50)

where oy = o cosh(r) — a*e'? sinh(r).
Then the normally ordered variance (6.14) takes the form

<: (A :> - %sinhz(r) - %005(9) sinh(r) cosh(r). (6.51)

Note that the variance (6.51) is independent of « despite the fact that
the correlation functions (6.50) depend explicitly on «.
Simple manipulations with the sinh and cosh functions lead to

1 1
3 sinh?(r) — 3 cos(6) sinh(r) cosh(r)

1 e —e 2 e —e " e +e"
— ———— | —cos(8) +
2 2 2 2

% {e” +e 2 —2— (e —e ) cos(h)}

T
—
>

>
[an
N
)
~~——
I

% {e* [1 — cos(8)] + e *" [1 + cos(0)] — 2}

1 1 1
= _Jde¥sin® (=0 ) +e ¥ cos®(=0)—15}.
4 2 2

(6.52)
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Hence, for 0 = 0, we find

((aB)* ) =2 (e 1) <0, (6.53)

which shows that the fluctuations in the £, component of the field
are less than for the coherent field, thus the field is squeezed.
Similarly, we can show that

(: (ak2)* ) = % (e — 1), (6.54)

and then we can show that the squeezed coherent states satisfy the
minimum uncertainty product. This fact justifies the use of the name
coherent squeezed states.

Since the mean photon number in the squeezed vacuum state
(n) = (ata) = sinh®r, the photon number probability distribution
P, for the squeezed vacuum state (6.46) is given by

1 (2n)

Pn = Coshr (n)22n (tanh )
_ 1 (2n)! (ny \"
T+ () ()22 <1 + (")> '
Ponss = 0. (6.55)

All of the probabilities corresponding to odd number of photons are
Zero.

Note that the probability distribution for even terms is the same
as that for a thermal field except for a factor (2n)!/(n!)?2". This
factor may give observable differences between the thermal and
squeezed vacuum field distributions.

Moreover, non-zero values for even terms clearly show the
two-photon nature of the squeezed vacuum field. Note that the
probabilities sum to unity, as required, since the n-dependent factors
in Eq. (6.55) are the terms of the binomial expansion of (1 —
tanh?r)~1/2 = coshr.

In Fig. 6.3, we plot the photon number distribution (6.55) and
compare it with the photon number distribution of a thermal field.
It is seen from Fig. 6.3 that the photon number distribution of
the squeezed vacuum state exhibits unusual oscillations and its
amplitude decays with n. The distribution peaks sharply at n =
0 and has a very long tail, similar to a thermal distribution. The
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Figure 6.3 The photon number distribution of the squeezed vacuum state
(plotted as bars) for (n) = 4. The shaded area corresponds to the photon
number distribution of a thermal field with the same mean photon number.

probabilities corresponding to odd number of photons are zero. This
shows explicitly that squeezed photons are emitted in pairs and that
these pairs are emitted at random.

Squeezed states are produced in two-photon nonlinear optical
processes in which a classical laser field drives a nonlinear medium.
These processes are distinguished by the simultaneous or nearly
simultaneous production of a pair of photons in momentum
conserving phase-matched modes. In the degenerate processes,
where a single output mode plays the role of both signal and idler,
squeezed states may be produced with reduced fluctuations in one
of the output quadrature component. The situation is somewhat
more complicated for non-degenerate processes, where the signal
and idler are distinct. Here, the individual output modes display
isotropic distribution of the fluctuations, similar to those usually
associated with chaotic or thermal fields. However, the combined
two-mode state can exhibit reduced (squeezed) fluctuations in
modes formed by superposing the signal and idler modes.

We distinguish two different types of parametric down conver-
sion processes in both the degenerate and non-degenerate cases.
One is parametric amplifier, when the parametric process appears
above the threshold, that is, the output modes have non-zero
coherent amplitudes. The other type is a parametric oscillator, when
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the parametric process appear below the threshold, that is, the
output modes are in a thermal state.

Example 6.3 (Squeezing in a degenerate parametric amplifier)
Consider a degenerate parametric amplifier (DPA) that can produce
photon pairs in a single mode of frequency w. The Hamiltonian of the
DPA process can be written as

N 1 . .
A = hoa'a — S xh(a%e”t — at2e~2it), (6.56)

where the energy is provided by a pump field, which is treated
classically.?

With the Hamiltonian (6.56), and working in the interaction
picture, we find Heisenberg equations of motion for the field & and a'
operators

d: 1 .2 4 .
—a=—|a H] = xa,
i = e Hl = x
d - 1 e & .
—at == [at, A = xa 6.57
4= [af, A] = xa, (6.57)
where
a=ae* and &' =afe (6.58)

are slowly varying dynamical operators which are free from the rapid
oscillations at the optical frequency w.
The equations of motion (6.57) have simple solutions
a(t) = @ (0) cosh(xt) + a't (0) sinh(x¢t). (6.59)
Using the equations of motion (6.57), we can write equations of motion
for the Hermitian components £ and E, as
d d

—E, = xEq, and —E, = —xE,. 6.60
1= xE 2l xE> (6.60)

Solutions of these equations are readily obtained, and are given by

Ei(0) = E1(0) e,

E,(6) = E5 (0) e (6.61)
Then, the variances of the field amplitudes are
A 2 A 2

<(AE1(t)) > _ <(AE1 (0)) >e2Xt, (6.62)

2In the Hamiltonian, we have omitted the Aw/2 term since it is a constant and it does
not affect the dynamics of the field mode.



Multi-Mode Squeezed States

and
(aB2(0)") = (B2 (@) ) e (6.63)

Itis evident from the above equations that the noise reduction depends
on the strength of the nonlinearity x and the interaction time. Taking
that initially at t = 0 the field was in the vacuum (coherent) state,
<(AE1(0))2) = ((AEZ(O))Z) = 1/4, the E, quadrature component
becomes squeezed fort > 0. Note the product of the variances satisfies
the minimum uncertainty relation.

6.4 Multi-Mode Squeezed States

Our analysis so far has been concerned with a single-mode
squeezing, the reduction of fluctuations in single-mode fields.
Consider now a non-degenerate parametric oscillator (NDPO) that
can produce multi-mode squeezed fluctuations in the correlation
between the signal and idler modes. Mathematically, one can create
a multi-mode squeezed state using the unitary multi-mode squeezed
operator

[V¥k) = D () S (s (@) 101, - .., Opy -. ), (6.64)
with
S(s(@)) =) exp {;S*(a)k) a (wetwi) @ (we—wi) — H.c.} )
k
(6.65)

where a (w. + wg) and a (o, — wy) are the annihilation operators
of the signal (o, + wi) and idler (w. — wx) modes, respectively,
and w, is the frequency of the pumping field. In practice, multi-
mode squeezed states can be generated in both NDPA and NDPO
processes.

In the multi-mode squeezed state, apart from the single-mode
correlation functions, there are non-zero correlation functions
between two different modes k and k', (k # k')

) = agoy — e'% sinh(ry) cosh(ry),

<&,f&,f,> = o}, — e "% sinh(ry) cosh(ry). (6.66)

—
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However, for k = k’ the two-photon correlations are
@an =of,  (afal) =a?, (6.67)

and the average number of photons in the mode k is
<a,iak> = Jagl? + sinh?(ry). (6.68)

Let us assume that the field has no coherent amplitude (o = 0).
Then the only non-zero correlations are

<a,iak> — sinh?(r) = N,
(At ) = —e'% sinh(ry) cosh(ri) = Mk,
<a,1a,t,> = —e "% sinh(r) cosh(r) = M. (6.69)

The parameters Ny and M, are not independent and satisfy an
inequality

|Mkk’ < Ny (Nk + 1) Ny (Nk + 1) . (670)

Proof. Consider an operator A = zdy + z;;,a,j. Then from the
definition of the mean value

<21Tf4> = |zk|2< ,1 >+Zka (Gray)
+77, (alal) + |z (aval) 2 0. (671)

The above equation can be written in a matrix form as

Nk Mltk’ Zk
= (zfzp . 6.72
(Zka) <Mkk’ Nk’ +1 th, ( )

Since <21T21> > 0, the determinant of the 2 x 2 matrix is positive, so
that

| My |* < N (Nie + 1), (6.73)

as required. O
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We might ask whether it is enough to create two-photon correla-
tions, (axayx) # 0, in order to get squeezing between the modes.

To answer this question, consider a multi-mode field in a
squeezed vacuum state

EM =3 " ha e, (6.74)
where
ha)k 7=
e =1 e ek, 6.75
K 200V (6.75)

We can define two Hermitian field operators, equivalent to the
quadrature components

R 1,. A A 1 ,. A
Bi=3 (EW+ED),  E,= R (EW —EO) . (6.76)
i
Then, in the squeezed vacuum state, the average amplitudes are
(E)=0, (E;)=0, (6.77)

and the normally ordered variance is
<: (A’ :> _ %{2<,3~(—)g(+)>+<g(—)g(—)>+<g(+)g(+)>}.
(6.78)

However, using the multi-mode description of the field, Eq. (6.74),
and the correlation functions (6.69), we find that

(EOVEW) Zw N,

(EMED)Y = me/ Mygee ™ @tert, (6.79)
Kk
Assume that the modes are correlated with a central frequency w,
such that wy + wy = 2w,. Then
(EDED) =" Aihok, kM 2t 12", (6.80)
k
For simplicity, we assume that Ay = Azx —x, and My zx.—x = Mj. Then

(s (aBy)":) = %Z il {2V + M2t 4 Meioet)
k
1 : )
= 2 2 1l {2Ne+ Ml e + (M eV}
k

1
= 5 D 1l (Nic+ | Ml cos 1), (6:81)
k

93



94

Squeezed States of Light

where v = ¢; — 2wt, and ¢, is the phase of the two-photon
correlations.
Thus, for ¢ = =, the normally ordered variance reduces to

<: (A :> - %Z hkl? (N — | Mi]) . (6.82)
k

Hence, we get squeezing when the two-photon correlations over-
weight the number of photons in the field modes, |My| > N, and
there is no squeezing when | M| < Ng.

From the matrix representation of the mean value (AT A):

R > stat
PN a, dy a, a,,
(ATA) = (zize) < k k "T ({’;), (6.83)
b b z
(Arlye) ( ray k
we see that with a classical field, for which <a,iak,> = (afar) = Nk
and (&k/&,i) = (axa;) = Ni, we obtain [Mi|* < NZ. However, for
a quantum field, for which (aka,f,) = Ny + 1, we obtain |M|? <

Ni (Ng + 1). Therefore, squeezing which results from |My| > N is
a quantum effect.

In the literature, a field with |M;| < N is called classically
squeezed field, and a field with N, < [M;| < /N (Nx + 1) is called
a quantum squeezed field [29]. The field with |My| < N is called
classically squeezed field since it exhibits anisotropic distribution of
the noise, but the noise is not reduced below the vacuum level. In this
sense, the classically squeezed field is always clearly distinguishable
from its quantum mechanical counterpart.

In summary, we have seen that an anisotropic distribution of
field fluctuations (noise) can be achieved with both classical and
quantum fields, but reduction of the fluctuations below the vacuum
(quantum) limit, (: (AE1)? ;) <0or (: (AE;)? :) <0, can be achieved
only with a quantum field.

6.5 Squeezed States of Atomic Spin Variables
In the previous three sections, we dealt with squeezed states of

the field boson annihilation and creation operators. The idea of
squeezed states or squeezing can be extended to other quantum
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systems [30, 31]. Of particular interest is the description of
squeezing in the atomic spin variables Sy, S, and S,. Since

[Sx, Syl = 1S, (6.84)
the spin components satisfy the Heisenberg uncertainty relation
1
VSIS = SIS (6:85)

This uncertainty can be thought of as due to the impossibility of
simultaneous measurement of all three components of the atomic
spin. Note that the uncertainty relation for the spin operators is
fundamentally different from that for the boson operators. This is
because for the spin operators the right-hand side of the uncertainty
relation, that is equal to |(S;)|/2, depends on the state of the system.
This means that the quantum level of the fluctuations of the spin
components may vary during the evolution of the atomic system.
In analogy to squeezing in bosonic variables, squeezing in the
spin atomic variables is defined as [32, 33]
((AS)%) < %|<Sz>|. i=xy. (6.86)
Thus, squeezing in the atomic spin variables means reduction of
quantum fluctuations in one of the components of the atomic dipole
moment below the spin quantum limit [(S;)|/2, as illustrated in
Fig. 6.4. In literature, squeezing in the context of the definition
(6.86) is called the natural definition of squeezing. This has been
introduced to distinguish between squeezing and spin squeezing,
which is discussed in the next section.
As a measure of degree of natural squeezing in the atomic spin
components, we can introduce a parameter
(CE)E)
AT
When §; < 1, we say that the ith component of the atomic spin is
squeezed, and &; = 0 corresponds to maximum squeezing.
As an example illustrating the idea of squeezing in atomic
variables, consider the fluctuations of the spin operators of a single
two-level atom. The variance, for instance of the x component of the

atomic spin can be written as

(AS)?) = %(( 15)h - %<s+ +57)?

(6.87)

(ST +57)2 (6.88)

e

4
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<S,>

Figure 6.4 Graphical representation of squeezed fluctuations of an average
atomic spin S oriented in the z-direction. The ellipse represents the
fluctuations of the spin that are reduced (squeezed) in the x-direction with
the corresponding increase of the fluctuations in the y-direction.

Since %|(SZ)| < %, squeezing is possible only if the atom has a non-
vanishing average dipole moment (S¥). If the atom is in the ground
state |1) or in the excited state |2), the average dipole moment
(§*) = 0, and there is no natural squeezing in the atomic spin
components. In order to obtain a non-zero atomic dipole moment,
(§*) # 0, we have to prepare the atom in a linear superposition of
its ground and excited states. For example, if the atom is prepared in
a linear superposition

1 V3
W)= I1) + —-12), (6.89)
the atomic dipole moment in this state is different from zero with
(S*) = 4/3/4. Since in the state (6.89) the average inversion

(W|S,|¥) = 1/4, the atomic spin component prepared in the state
(6.89) is squeezed to the degree of &, = 1/2.

Note that the maximal squeezing that could be achieved in a two-
level atom does not correspond to maximal coherence between the
atomic levels. To illustrate this, let us consider an initial state

1
W) = 7 (1) +12)), (6.90)

for which there is maximal initial coherence between the atomic
levels, (S*)=1/2. Since in the state (6.90) the average inver-
sion (V|S,|V)=0, squeezing of the dipole fluctuations requires
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((AS))?) <0, which is not possible to achieve, as the variance
((AS)?) is a positively defined quantity.

6.6 Spin Squeezing

In the preceding section, we have shown that a two-level atom can
exhibit natural squeezing in the spin variables only if is prepared in
a suitable linear superposition of its ground and excited states. The
situation is different when we consider a multi-atom system.

As an example, consider two identical two-level atoms. In this
case, the total dipole moment is S* = S 4S5 and the total inversion
is S, = S,1 + S,. Hence, the variance ((ASX)Z) takes the form

1
(087 = {45 +7) (57 + 520+ (S5 + (5750)

N| =

(ST +85) + (57 ~|—Sz‘)]2}. (6.91)

Equation (6.91) shows that the variance of the x-component of the
atomic spin can be reduced below the spin quantum limit not only
through the non-vanishing dipole moments (S,-i), but also through
the two-photon correlations (S S;) and (S; S, ). This dependence
suggests that there are two different processes that can lead to
squeezing in multi-atom systems.

If the mean values of the spin components (S), (S,) and (S,) are
different from zero, we can rotate the coordinate frame such that the
mean value of one of the spin components, say (S5, ), will be different
from zero, while the mean values of the other components (Sj,) and
(Ss,) will be equal to zero. Here, n;, n; and ny are three mutually
orthogonal unit vectors oriented along the rotated coordinate axis.

We can calculate the variances ((AS5,)?) and ((AS;,j)Z) of the spin
components which are in the plane orthogonal to the mean spin
direction riy. This is the main idea of spin squeezing introduced by
Kitagawa and Ueda [34]. A system with the variance reduced below
the standard quantum limit in one direction normal to the mean spin
direction is called spin squeezed.
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n n.

1 1

Figure 6.5 Two identical spins S, oriented in the same n; direction. The
circle indicates the level of fluctuations of the rotating spins.

We can introduce a parameter &;, as a measure of degree of spin

squeezing in the 7; direction
(C ) (6.92)
’ (5/2)

where S is the maximal spin of the system (S = 1 for two two-level

atoms).

A system with the variance reduced below the standard quantum
limit in one direction normal to the mean spin direction is
characterized by &;, < 1, that is, spin squeezed in the direction #;.
In Fig. 6.5, we show two identical spins oriented in one direction
and that can have non-zero fluctuations around the mean spin
direction 7. Since (S;,) = (Sr;) = 0, single two-level atoms cannot
be spin squeezed. However, an interaction between the atoms, which
may create the two-photon correlations (SiS5), can lead to a spin
squeezing.

There is another definition of spin squeezing, introduced by
Wineland? et al. [35], called the spectroscopic spin squeezing, which
involves an error in a measurement of a rotating spin oriented in the
ny direction

((AS3)%)

: 6.93
(S5 12 (6:59)

4David Wineland was granted the Nobel prize in 2012 for his experimental work that
enabled measuring and manipulation of individual quantum systems.
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It is easy to derive that the minimum value of the ratio (6.93) is
1/(2S5). Therefore, we can introduce a parameter
2
e — 55 {(8Si)D)
’ (S5 ) 12
which is a measure of degree of spin squeezing in the fluctuations
relative to |(Sz,)|%/(2S). The superscript R is used to signify the
relative fluctuations. Since the mean value |(S5,)| < S, it follows that
spin squeezing 5;5 < 1implies &;, < 1, but not the vice versa.

Spin squeezing has been proposed as a measure of entanglement
in multi-atom systems, which opens interesting applications in
quantum information and quantum computation [36]. It has also
been shown [37] that the parameter (6.92) is a better measure of en-
tanglement than the spectroscopic spin squeezing parameter (6.94).

(6.94)

6.7 Squeezing Spectrum of the EM Field

In experiments the fluctuations are measured using the photon-
counting technique where the variance ((A§¢)2) is measured as
a function of the phase angle ¢. The condition ((Aﬁ'¢)2) <1/4,
or equivalently (: (AE‘¢)2 1) <0, refers to the squeezing of the
total field. For multi-mode fields it does not exhaust all possible
forms of squeezing. Therefore, another technique has been proposed
of filtering the frequencies before detection and measure the
fluctuations at the filtered frequencies. This form of squeezing is
described in terms of the squeezing spectrum.

The squeezing spectrum of a stationary EM field is defined as
the Fourier transform of the two-time normally ordered correlation
function

Sy (w):tlirgc/dr<: Ey(t+7), Ey(0) 1) e, (6.95)
where
(Ep(t+7), Eg(0) = (Es(t+ DE(0) — (Eolt+ ) (Es(D)),
(6.96)

and ¢ is a phase angle that may be chosen at will.
Anegative value of S, (w) is non-classical and indicates photocur-
rent noise at frequency w below the quantum limit. In other words, it
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indicates squeezing at the frequency w of the phase field component
Ed).

Integrating the squeezing spectrum Sy (@) over all frequencies,
we obtain the normally ordered variance of the total field

400 . 2
/ dow Sy () = <: (AEy) > (6.97)
—00

It can happen that for a broadband field the spectrum S, (w) may dip
below the shot noise at some frequencies (S, (w) < 0) even though
(: (AE‘¢)2 :), which is the integral of Sy(w) over all frequencies, is
positive. We may refer to this as spectral component squeezing at
selected frequencies. Also, when (: (AE(I,)Z ) < 0, some selected
modes may not exhibit squeezing or may exhibit more squeezing
than the total field. Failure to recognize these frequency-dependent
features led at the early stage of the research on squeezing to rather
pessimistic predictions of attainable squeezing [38, 39].

6.8 Detection of Squeezed States of Light

We have already learnt that squeezing is a phase dependent
phenomenon. How then one could identified that a given field is
in a squeezed state? Direct photoelectric counting experiments are
not sensitive to the phase-dependent nature such as squeezing
in the incident field, but only to light intensity. Therefore, direct
photon counting as a way of detecting squeezing is impractical.
Hence, a phase sensitive measurement system is needed to observe
squeezing. As we shall see, it is provided by phase-sensitive
interference of a measured field with another optical field in a
coherent state, followed by photoelectric detection of the resulting
intensity fluctuations.

6.8.1 Homodyne Detection Scheme

Typical experimental schemes used to measure phase-dependent
fields, which can be applied to detect squeezing, are homodyne and
heterodyne detection techniques. An example of the experimental
scheme is shown in Fig. 6.6. In these techniques the measured field
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Figure 6.6 Schematic diagram of homodyne or heterodyne detection
scheme. A field of a complex amplitude E;(t) is mixed with the highly
coherent field of an amplitude E;(t). The mixing is accomplished by a
beam splitter and the resulting field E.(t) is detected photoelectrically
by a detector D and the resulting photocurrent is then analyzed by a
photoelectron counter or a spectral analyzer. When both fields have the
same frequency, we refer to the procedure as homodyning. Otherwise, when
the frequencies are different, the procedure is referred to as heterodyning.

of an unknown amplitude E;(t) is mixed (beat) with the known
strong coherent light of an amplitude E,(t) (local oscillator). The
beats occurring in the superposed light of amplitude E.(t) are
analysed by either photoelectric counting or photocurrent spectral
measurements.

To illustrate phase dependence in homodyne or heterodyne
detection scheme, consider two fields £1(t) and E,(t) of the same
frequency (homodyne detection), combined on a lossless beam
splitter of transmissivity 8. The fields can be written in terms of the
annihilation and creation operators as

Exm=xr(a@m-a'@®), E@®=r0b®O-50'1®), (698)

and we assume that both fields have the same polarization.
The total field emerging from the beam splitter is

Ecm=xr(cm-2'@), (6.99)
where

¢=+/Ba+i/1-8b (6.100)

and the factor i indicates a /2 phase shift between the reflected
and transmitted fields. The detector D can be adjusted to respond to
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the intensity of the field, I ~ (¢ (t) ¢ (t)) or to the field fluctuations
((Aéfé)z). The intensity at the detector is given by

I~ (&e) = + (1 — ) (b'h)
—z\/ (1— B) ((ay(b"y — (a*)(by), (6.101)

where we have assumed that the fields E1 and Ez are not correlated.

Suppose, the field £, is a coherent laser field (local oscillator)
of a large amplitude «, whereas the signal (detected) field is weak.
As a result, the terms proportional to (b'h) and (b"), (b) dominate
over those without bt and b. Hence, the terms independent of the
amplitude of the local oscillator can be discarded. Thus, we can
ignore the term B(afa), and denoting (b) = |«|exp(i¢), (bT) =
|| exp(—i¢), the resultant light intensity at the detector is then

I~(1-pB)lel®+2lal/BA—B)(Es), (6.102)

where
(Ep) = 2% ((@ye™ — (a")e'?), (6.103)

and ¢ is the phase of the laser. The first term on the right-hand side
of Eq. (6.102) is equal to the intensity of the reflected coherent beam.
The second term is an interference term between the coherent
and the signals beams. This term contains the phase-dependent
quadrature amplitude of the signal beam.

Similarly, we can show that the variance of photoelectric counts
can be expressed as

((aR)?) ~ (1= Bl 1al +1a B(L - B ((aEy)"), (6108)

where i, = ¢'¢ is the number of photons in the mode c. In the
derivation of Eq. (6.104) we have retained terms of second order
in |o|. We see that the variance of the superposed field contains
the reflected local oscillator noise, (1 — ,B)2|a|2, and the variance of
the phase-dependent quadrature noise of the signal field, ((Al:?(p)z)
The detected fluctuations are determined by the fluctuations of the
measured field ((A E¢)2), the measured quadrature phase operator.

Figure 6.7 shows the variance ((AE¢)2) as a function of ¢ for
a squeezed input field. As the local oscillator phase ¢ is varied,
the variance of photoelectric counts changes from being large to
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Figure 6.7 The variance ((AE¢)2) as a function of the laser phase ¢ for
a squeezed input field. The dashed line indicates the vacuum level of the
fluctuations.

very small values. It is seen that for certain values of the phase the
variance is smaller than the vacuum level of the fluctuations.

In practice, the signal field is first blocked to determine the
vacuum noise level. The signal field is then allowed to reach
the beam spitter and the variance is determined with reference to
the vacuum level. Note, however, that the intensity measurements in
homodyne detection scheme are quite different from those in direct
detection. In the homodyne detection intensity fluctuations directly
measure the fluctuations in a quadrature of the input and the signal
field and its variance depend upon the local oscillator phase angle,
which is an external parameter.

In conclusion of this section, we point out that apart from the
homodyne and heterodyne detection schemes, it is also possible to
use a balanced homodyne detection [40, 41]. In a balance homodyne
detection scheme, two output fields of the beamsplitter are
detected by two identical photodetectors. Photocurrents from these
photodetectors are subtracted electronically and the fluctuations of
the difference current are analysed. In this scheme, the measured
fluctuations are not affected by the noise of the local oscillator that
is cancelled when the photocurrents are subtracted.
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Exercises

6.1 Verify that the variances of the field quadrature operators are

6.2

6.3

6.4

6.5

the same for the vacuum state when the field is in a coherent
state |a).
Consider the superposition state of two field modes

V) = al0) + b[1),

where a and b are complex parameters satisfying the
normalization condition, |a|? + |b|? = 1.

(a) Calculate the variances ((AX1)?) and ((AX)?)

(b) Show that there exits values of the parameters a and b for
which either of the quadrature variances is reduced below
the vacuum level.

(c) For the cases where the quadrature variances are reduced
below the vacuum level, verify if the uncertainty principle
is not violated.

Calculate the variances ((A¥1)?) and ((AY,)?) of the quadra-
ture operators ¥, and ¥, defined as

P, = ; (A e~i0/2 4 ate 19/2)

7, = 211 (ae—za/z TeiG/Z) )

assuming that the field is in a squeezed coherent state |V) =
|, s).

Consider two Hermitian operators corresponding to the real
and imaginary parts of the square of the complex amplitude of
the field

X, = % (@*+ @), X.= 21 (a* - (@"?).

Show that the squeezing condition for the above operators is

((AX)*) < ((afm + ;) ., (i=12).

The Hamiltonian A of a degenerate parametric amplifier is
given by

ha)a a— 715’( ( A2 2iot fZe—Ziwt) .



6.6

6.7

6.8

6.9

6.10

6.11

6.12

Exercises

(a) Calculate the intensity correlation function
g? (0) = @' (na’ (Ma(va(w)) /(@' (Ha(e)?
assuming that initially (¢ = 0) the field was in a coherent
state.
(b) Calculate the variances ((A¥1)?) and ((AY»)?) defined in
Exercise 6.3, assuming that initially the field was in a
coherent state.

Show that a field in a squeezed vacuum state |0, s) always
exhibits super-Poissonian statistics.

Show that the degree of squeezing & = 1/2 obtained for the
superposition state (6.89) is the optimum value of squeezing
that can occur in a two-level atom.

Calculate the variance of photons in the squeezed vacuum
state, and compare it with the variance of photons in a thermal
state of the same mean photon number.

Consider a single-mode field in the superposition state

W) = i(m) +in+2)
=7 ,

where |n) is a Fock state with n photons. For what value of n is
(a) the quadrature E;, squeezed?
(b) the second-order correlation function g < 1?

Express the operators 7% and A3 in normal and in antinormal
orders, where i = afa.
Consider an operator
b= ua + vat,

where &, a' are the annihilation and creation operators of the
field, and |u|? — |v|* = 1.
(a) Show that [, bf] = 1.
(b) Calculate mean values (@), (af), (4%) and (a') in the

state | 8), which is an eigenstate of b with an eigenvalue 8.
Consider properties of squeezed vacuum states.

(a) Show that squeezed vacuum states, similar to the coher-
ent states, are not mutually orthogonal.

(b) Find the overlap between the coherent state |«) and
the squeezed vacuum state |0, s). Are the coherent and
squeezed states orthogonal?
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Chapter 7

Phase Space Representations of the
Density Operator

7.1 Introduction

In Chapter 4, we introduced the concept of the photon number
representation of the electromagnetic (EM) field that is based on
the number states, the eigenstates of the Hamiltonian of the EM
field. However, this is not the only possible representation, in fact
not always the most convenient. In this chapter, we introduce the
concept of phase space representations of a quantum system which
is in a state described by the density operator p. The density
operator of a given system encodes classical as well as non-classical
(quantum) properties of the system. How to distinguish these
two kinds of properties is of basic importance in quantum optics.
Therefore, we shall address this issue by using representations of
the density operator that are based on the parametric space of
complex eigenvalues of the annihilation operator & in a coherent
state |«). We first determine what we mean by the density operator
of a quantum system and discuss its basic properties. Next, we
introduce different representations of the density operator in terms
of coherent state projectors |a){«|. The representations show that
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a state of the EM field or of an arbitrary quantum system may
be regarded as a mixture of coherent states. Along the way, we
will learn how to find the P, Q and Wigner representations of the
density operator, what are their properties, how to interpret the
properties and how to calculate relations between the different
representations. Most importantly, certain field states exhibit non-
classical features and these non-classical features can be manifested
in the phase space representations. Accordingly, we will learn how
the representations are very convenient tools to describe quantum
states of simple systems.

7.2 Density Operator

Before studying the representations of the density operator, we first
determine what we mean by the density operator and review its
basic properties.

In statistical physics, an expectation or average or mean value
of an arbitrary quantity A4 is obtained by weighting each measured
value A; by the associated probability P; and summing over all the
measurements. Thus

(A=S"PA, i=12..,N, (7.1)
i

where P; is a probability of measuring the value 4;.

In quantum physics it is slightly different. A quantum system can
be in a pure or mixed state. If the state of the system is determined
by a single state vector |{), we say that the system is in the pure state
|). If the state of the system cannot be precisely specified, only the
probabilities that the system is in a range of possible states can be
determined, we say that the system is in a mixed state.

7.2.1 Density Operator of a Pure State

Consider an operator A acting on a pure state |i/). Then, the
quantum-mechanical expectation value of the operator 4 of a system
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in the pure state |¢) is defined as

(A) = (W|Aly) = (¥IAln)(nly)

=Y (nly)ylAln) =Y (nipAn) =Tr (pA), (7.2)

n
where

p=1v) ¥l (7.3)
is the density operator of the pure state. Thus, the density operator
is essential in calculating expectation values of operators.

7.2.2 Density Operator of a Mixed State

If we do not have enough information to specify the state vector of
a given system, but know only the probabilities P; that the system
is in a state |y;), we then can introduce, in analogy to the statistical
definition of the expectation value, the density operator of a mixed
state as

p="1 Pilvi)(il, (7:4)

1

where P; is the probability that a given system is in the state |;).
This equation expresses p as an incoherent superposition of pure
state density operators, |{;)(y;|. If one of the P; = 1 and all the
others are zero, the density operator corresponds to a pure state.
Note that the states |¢;) are assumed to be normalized but do not
need to be orthogonal. The density operator provides a complete
description of the statistical properties of the system spanned by the
basis states |;).

7.2.3 The Basic Properties of the Density Operator

Density operator of an arbitrary physical system must satisfy the
following properties:

Property 1. Hermitian: p' = 5.
Proof.
pU =" Py Wid' = Pilyn)(yil = b,
i i

as required. O
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Property 2. Normalized: Tr (p) = 1.

Proof.

Tr(f))=z (Wal D 1¥n)
—ZZP Wl Wil¥n) = 323 Pl
=ZP,-=1.

as required. O

Note that we have used the fact that the states |y;) are normalized
but have not assumed that the states are orthogonal.

Property 3. Positive operator: p > 0.

Proof. If p is a positive operator, then for any state |¢), the
expectation value (¢|p|¢) > 0 is a positive number

ZP (plyi) (Wilp) = ZP|¢|w,
as required. O
Property 4. For a pure state: p? = p.

Proof.

= PP ¥ Wil v W—ZP il

Lj

as required. O
Property 5. Tr (p?) < 1.
Proof.

ZZP (Wl W) (Wi [Ym) = ZP2<1

as required. O
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The properties 1-3 can be alternatively expressed in terms of the
eigenvalues A; of the density operators. Namely, the property 1
means that all the eigenvalues of p are real numbers, ; € R. The
property 2 means that the sum of all the eigenvalues is equal to
1, > ;A = 1, and the property 3 means that the eigenvalues are
positive numbers, A; > 0. The property 5 is very often used to check
whether a given system is in a pure or a mixed state. For a pure state
Tr (p?) = 1, whereas Tr (p?) < 1 for a mixed state.

7.3 Number State Representation

The density operator may be represented in terms of arbitrary states
of a given system. For example, the completeness relation for the

photon number states
> Inynl =1, (7.5)
n

can be used to represent the density operator in terms of the photon
number states. This is done by multiplying the density operator by
the unity given by Eq. (7.5) both on the right and the left, and then
we obtain the density operator in terms of the projection operators

In)(m| as
p= (Z |n><n|) p (Z |m><m|>
—Z (n| p |m)|n)(m| = Zanmm (7.6)

The diagonal terms are probabilities P, = a,, = (n|p|n), that a,, is
the probability of having n photons in the field being in the state |n).
The off-diagonal elements a,,,(n # m) are coherencies between two
different photon number states.

The number states representation holds not only for the field
states, but also for the system states [42, 43]. For example, p can
be the density operator of a system (e.g., a two-level atom) and
then |n), |m) represent the energy states of the system. In this case
the diagonal terms are populations of the atomic states, while off-
diagonal terms are atomic coherences equal to the mean value of
the induced atomic dipole moments (0,, = (n|S*|m)).
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7.4 Coherent States P Representation

Since the coherent states are complete

1/alza lo) (| = 1, (7.7)
T

we can use this relation to represent the density operator in terms
of coherent states. If we formally multiply the density operator p by
the unity given by Eq. (7.7) both on the right and the left, we obtain

1
b=ﬁ//mmmmem%. (7.8)

This is a complicated representation involving two integrals (in fact
four integrals as d’a = d (Rea) d (Ima)).
We can now ask whether we can expand p in a simpler form

ﬁ=/ﬁ%PWHMWL (7.9)

which is an analogue to p = )", P; [¢;) (] for discrete states, and
whether we can call P («) as a probability of finding the field in the
coherent state |«).

The above representation, called P representation or the
Glauber-Sudarshan P representation [20, 44], is very useful for
calculating expectation values of normally ordered field operators
that appear, for example, in (n), g® orin (: (AEg)? ).

For example, the average number of photons can be written as

(n) = (a'a) = Tr (pa'a) = Tr (/ d*aP (o) o)« afa)

= /dzaP(a) (aléfa o) =/d2aP(a) la|?. (7.10)

Hence, the averages are calculated in the same way as that in
classical statistics with P («) playing the role of the probability
distribution.

Since Tr (p) = 1, we obtain

1=Tr(p) = /dZaP (@) Tr (o) (|) = /dZaP(a). (7.11)

Thus, P («) is normalized as a classical probability distribution.
We know that the coherent states are the closest quantum states
to the classical description of the field. Can we then treat P («) as a
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quantum analogue of the classical probability distribution? In order
to answer this question, we calculate an average

B1518) = /dZaP (@) (Bl a)lal B)
:/dzaP[a)|(ﬁ| o)? =/d2ap(a)e-‘a—ﬂ‘2. (7.12)

Since exp(— |a — /%) is not a §-function, the diagonal elements

(BIp1B) # P (B), (7.13)

that are not probabilities of finding the system in the coherent state
1B).

Moreover, the average (8] p |8) must be positive. However, the
integral [ d?aP («)exp(— |o — B1%) does not require P (8) to be
positive.

The following two examples may help to clarify this observation.

Example 7.1 (Photon antibunching as a non-classical pheno-
menon) Consider the normalized second-order correlation function

(f)?
In the P representation, the normally ordered variance of the number
of photons can be written as

((AR)%) — (f) (- (AR)* )
(7)?

¢ (AR)? ) = @tataa) — ata)?

2
= /dzaP (o) || — [/ d*o'P (o) !a/ﬂ

2
:/dzaP(a) {Ialz—/dzo/P (o) ;aﬂ . (7.15)

As the normally ordered variance must be negative for antibunching
and the above equation involves the phase space integral of the
product of the P («) function with a function that is real and positive, it
follows that antibunching is associated with a negative P («) function.
Thus, photon antibunching (g < 1) requires P («) < 0. We say that
photon antibunching is non-classical by the criterion that P («) for any
classical field cannot be negative.
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Example 7.2 (Squeezing as a non-classical phenomenon) In
the P representation, the normally ordered variance of the in-phase
quadrature component can be written as

) 1 1
¢ (AE1) 5 = = (2ata +aa +afal) — lat+aly

{/dZaP () [2 la|? + o? —|—a*2]

2
— |:/d205/P (CY/) (o/—l—a/*)} }
1 2 *
=32 d ocP(ot){(ot—i—oz )
2
U d*a'P (o) (a’+a’*)” : (7.16)
Thus, similarly to photon antibunching, squeezing (: (AE1)? :) < 0

is associated with a negative P («) function, P («) < 0, and therefore
can also be regarded as non-classical.

FYJENNN

Hence, unlike a classical probability, P (o) can take negative values
and therefore P (&) is not a true probability distribution function.
Sometimes P («) is called as a quasi-distribution function or a quasi-
probability function.

How do we find P («)?

Since we can write the density operator as

p = /dzap (o) |a) (|, (7.17)

we then can find P («) inverting the above equation. This is made
possible using the relation

Tr{,@e’“*efzﬁ} = Tr{[ / d*aP (o) o) <a|} eiz'd! giza }
= / d*a P (o) €7 el ™, (7.18)

The right-hand side of the above equation is just a two-dimensional
Fourier transform of P («). The inverse transform gives

1 At in e
P(a) = = /dzzTr (,be’z "Te’z") e iz gz (7.19)
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However, the Tr under the integral is the characteristic function of
the normally ordered 4, @' operators

xx (2) = Tr (f)efZ*a*e"Za) . (7.20)
Therefore
1 e
P (Ol) — T/dZZXN (Z) e—IZ o e—IZO(. (721)
T

Thus, P («) representation the is the Fourier transform of the
normally ordered characteristic function.

The relation (7.20) represents a mapping from the operator p,
which is a function of the two operators a and at, to the scalar
function xy (z), which is a function of the complex variable z.

Example 7.3 (P («) representation for a pure coherent state) In
this example, we illustrate how to find P («) representation for a pure
coherent state |w), represented by the density operator p = |ag){ag|.
First, according to Eq. (7.21), we have to calculate the characteris-
tic function
xn (2) = Tr{lao)(aole"zwe"z‘i}
iz*fﬂeiz& ) = eiz*agﬂzao. (7.22)

Next, substituting the result for yn (z) into Eq. (7.21), we obtain

1 . : * *
P (O() — P /d2ze—lz(a—a0)e—lz*(ot —ag)

= (aole

=82 (a — ag), (7.23)

that is, the P representation of a pure coherent state is a two-
dimensional delta function.

7.5 Generalized P Representations

The generalized P representations are defined by the following
expansion of the density operator using coherent state projectors
p=[dwpren DL
(B*|ex)
where d(«, B) is the integration which can be chosen to define
different representations. Note that this is non-diagonal expansion
of p.

(7.24)
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A choice d (a, B) = 6% (a* — B) d*ad?B gives the P representa-
tion. However, a choice

d (o, B) = d*ad?*B (7.25)

gives a positive P representation, introduced by Gardiner and
Drummond [45]. Here the states denoted |«) are the n-fold coherent
states of n mode operators labelled a; ... a,. That is, these states
correspond to a superposition of different number states with the
property ay o) = ag |o).

The initial distribution function P («, 8) can be chosen to be
a positive function defined on the 4N-dimensional phase space
spanned by the complex coordinates @ and g. This includes all
diagonal and off-diagonal coherent states components of the density
matrix. It is less obvious that a positive function exists in all cases,
but it can be constructed, even for non-classical fields. A non-
classical field necessarily corresponds to a superposition of coherent
states. These are represented by the off-diagonal terms in the
coherent expansion, in which « # g.

In order to calculate an operator expectation value, there is a
direct correspondence between the distribution and the normally
ordered operator product

<a;...am>=//d2ad2,3p(a, B)BE. .. am. (7.26)

The important property here is the direct relation between the
representation and the normally ordered moments, which are
characteristic of photodetector measurements. If other types of
moments are needed, then the operator commutation relations must
be used to calculate them.

7.6 Q Representation
There are other orderings possible for the af, @ operators. For

example, we can use the antisymmetric ordering and define the
antinormally ordered characteristic function

xa (z2) =Tr (,E)eizaeiz*m) . (7.27)



Q Representation

Its Fourier transform is called Q representation

Q) = / d?’zxa (2) e 179 717, (7.28)

The @ («) representation, sometimes called the Husimi function, is a
non-negative function and has a simple form

Qa) = = (alpla) = 0. (7.29)

Thus, 7 Q («) is strictly the probability of finding a system of the
density operator p in the coherent state |«).

Proof. From the definition of the Q function, and the completeness
of the coherent states, we obtain

Q(Ol) — /d ZXA (z)e —iz*a* —Izoz
- /dZZTI' |:pezza /dZ,B |/3><,3| eIZ an:| 7IZ*a*e7iZOl.
(7.30)
Since
e |B) =€ |B),
(Bl = (ple””, (7.31)
and
1 7 e * *
— / d?ze 1P 17 (=B — §2 (o — B), (7.32)
we find
1 2 A 1 2, —izla—pB) ,—iz*(a*—B*)
Qla)=— [ d°BBIpIB) | = | d°ze e
T w2
1,
= —(a|p|a), (7.33)
T
as required. O

The Q representation has the advantage of existing for states where
no P representation exists and unlike the P representation is always
positive.
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Example 7.4 (Q representation for a pure coherent state)
pure coherent state is given by the density operator p = |B)(B|. Hence
1 1
Qo) = —(a|pla) = <a|ﬂ><ﬂ|a> = ;I(ﬁlw)l2 = ;ef'(‘“ﬂ)‘z-
(7.34)

Thus, the Q («) representation of the pure coherent state |B) is a
Gaussian function centred at f.

Example 7.5 (Q representation for a Fock state) For a Fock state
0 = |n)(n| and then the Q (&) representation is

|a|2n

e ~lal? (7.35)

Q(@) = — l(nla)|?

Thus, the Q (&) representation of the photon number state is a Poission
function.

7.7 Wigner Representation

For symmetric or Weyl order of the operators, the characteristic
function is defined as

xs (z2) = Tr {f)e"z*m“za} , (7.36)
and its Fourier transform is called the Wigner® representation [46]
1 et
W) == / d*zxs (z) e 7% e i, (7.37)
b

The symmetric order of the af, @ operators is the average (permuta-
tion) of all possible orderings of the operators

[N

(a'a)g (a'a +aa'),

(a?a)y = - (a™a+a'aa’ + aa'). (7.38)

In order to illustrate the general method of finding Wigner
representations, we consider two examples.

dEugene Wigner was given the Nobel prize in 1963 for his contributions to the
theory of the atomic nucleus and the elementary particles, particularly through the
discovery and application of fundamental symmetry principles.
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Example 7.6 (Wigner representation of the field in a pure
coherent state) As a first example, we calculate the Wigner function
of the field in a pure coherent state given by the density operator
p = lao) (el

First, we calculate the symmetrically ordered characteristic
function

xs () = Tr{pe
= { Magle 4" et }e‘f'z‘z

2l gz e gzao, (7.39)

—z*at za} —11z)?

,l
2l

where we redefined z = iz
Next, substituting this into Eq. (7.37), we obtain

W(a) = iz /dzzez*“"*‘“5)e‘Z("“"‘[’)e‘%‘Z'Z
T

1 * * *
== / d?ze” (") -2lemen) =312, (7.40)
The integral can be evaluated using the identity
1 /dzzefy\zlﬂuzﬂz* — 16“7"’ (7.41)
0 14

which holds for Re(y) > 0 and arbitrary ., v.
This gives the Wigner function of the form

2
W (a) = ;e—zl(a—“o)‘z. (7.42)

Since « is a complex number; it is convenient to express the Wigner
function in terms of two (real) quadrature components 2x = « +
a*,and 2y = —i(a — «*). In the (x, y) representation, the Wigner
function (7.42) takes the form

2
W(x,y) = ;e—z[(x—xo)2+[y—YO)2]. (7.43)

We can use the general form of a Gaussian function and write the
Wigner function as

1(x—x0)" 10—y
exp |—= - =

N 2 2 ’
2moyoy 2 of 2 oy
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Figure 7.1 The Wigner function W(x, y) for the pure coherent state with
Xp = Zand_yo =0.

with o = 0} = 1/4, where 67 = ((AE1)?) and o) = ((AE2)?) are
the variances of the electric field amplitudes.

The Wigner function of the pure coherent state is a Gaussian
centred at «, or equivalently at (xo, yo), see Fig. 7.1, with the
fluctuations symmetrically distributed around (xo, yo). This simple
example shows that the Wigner function is usually less singular
than the corresponding P function. For the pure coherent state
considered in this example, the P function is a two-dimensional
delta function (singular function), whereas the Wigner function is
a Gaussian.

Since the squeezed vacuum state is a special case of the squeezed
coherent state, the Wigner function of the squeezed vacuum state is
also a Gaussian, but with either 0} < 1/4 or 0 < 1/4.In Fig. 7.2,
we plot the Wigner function of of the squeezed vacuum state. We
assume that the fluctuations in the y-component are reduced in the
expense of an increase in the fluctuations in the x-component, so
that 07 > 1/4 and 0 < 1/4. Nevertheless, the product of the
variances takes the minimum value, that is, ox0, = 1/4. The Wigner
function of the squeezed vacuum state is always positive, and can be
considered as a classical probability distribution.
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Figure 7.2 The Wigner function of the squeezed vacuum state with the
fluctuations reduced in the y component with 02 = 5 and aj =1/20.

Example 7.7 (Wigner representation of the field in a Fock state.)
As a second example, we calculate the Wigner function of the field in
the Fock state |n).

In the pure Fock state p = |n){(n|, and then the symmetrically
ordered characteristic function takes the form

xs (2) = Tr {f)e_z*‘ﬁeza} ezl

1 1
=g 2l (1 —njz|* + Zn(n —1)z|* —- ) . (7.45)
Substituting this into Eq. (7.37) and using Eq. (7.41), we obtain
2 n _—2|af? 2
Win (@) = — (=1)" ™" Ln(4l]%), (7.46)

where L, (4|a|?) is the Laguerre polynomial of order n. This Wigner
function can be negative for n > 0. It is shown in Fig. 7.3, where we
plot W, («) for the Fock state withn = 0,1 and n = 2 photons.
The negativities of the Wigner function W, («) for n > 0 indicate the
non-classicality of these quasi-probabilities.
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Figure 7.3 The Wigner function of the first three Fock states, that is (a) the
vacuum state |0), (b) the Fock state |1) with one photon, (c) the Fock state
|2) with two photons.

7.8 Relations between the Wigner, Q and P
Representations

We now turn to a brief discussion of useful relations between the P,
Q and Wigner representations.

A useful relation between the Wigner or Q representation and
the P representation is obtained via the characteristic functions by
replacing the density operator by

b= / &8P (B) 18)(BI. (7.47)
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This leads to the following form of the Wigner function

W(a) = ; / d?BP (B) e 2b—al (7.48)

which is a Gaussian convolution of the P functions.
We now further introduce the relation between the Q and the P
representations, that is

Q(a) = % / d?BP (B)e 1P’ (7.49)

Note that the Q function like the Wigner function is a Gaussian
convolution of the P function. The width of the Gaussian is larger
than for the Wigner function. It is 1/+/2 times the width of the
Wigner function, which can be accounted for the rather more well-
behaved properties.

The above equations show how to find W (@) and Q («), if we
know P («). These equations also allow us to find P («) if we know
W («) or Q (). For example, if we know Q (), we can write

Q(B) = l /dzaP (@) el o =B e +a*p (7.50)
T
Then
Qe = [da[p@et e sy

Hence, the function Q(B)exp(|8|%) is the Fourier transform of
the function P («)exp(—|x|?). On taking the Fourier inverse of
Eq. (7.51), we obtain

Plo)= S

/dzﬂ {Q (8) e‘ﬁlz} e b (7.52)

We can summarize that the P, Q and Wigner representations are

related to each other, and we can combine these relations by intro-

ducing a single mathematical formula linking the representations.
This can be done as follows. We can define an operator

T (o, u) = % / d*BD (B, u) e ~*F, (7.53)
where
b u)y=D(p)e"r"/? (7.54)

is a generalized displacement operator.
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A complex quasiprobability distribution can be defined as the
expectation value of the T (o, u) operator

U (o, u) = %Tr BT (o, w)], (7.55)

where the complex number u determines the ordering of the field
operators and hence, the type of the quasi-distribution function.
For u = 0, which determines the symmetric ordering, we get

the Wigner function, while for u = 41 (normal ordering) and
u = —1 (antinormal ordering), we obtain the P and @Q functions,
respectively.

7.9 Distribution Functions in Terms of Quadrature
Components

We have introduced three representations of the density operator of
the EM field and discussed relations between them. This would be
a good time to give a second look at the representations. The phase
space is the complex plane of eigenvalues o (Re¢, Ime). Since « is
the eigenvalue of a non-Hermitian operator, it is more convenient
to represent the distribution functions in terms of eigenvalues of
Hermitian operators.

We can express the annihilation operator @ or the eigenvalue « in
terms of the position and the momentum operators (eigenvalues) as

at = me. 1. 7.56
TNV 2mie” (7.56)

at =% —iy, (7.57)
and present the distribution functions in the (p,q) or (x,y)
coordinates.

For example, the Wigner function of the field in a pure coherent
state (7.42) in terms of the quadratures (¢ = x + iy) is given by

2
W(a) = ;e—z[(x—xo)zﬂy—yo)z]’ (7.58)
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which is a Gaussian centred at (X, yo). The cross-section is a circle
indicating that the the fluctuations in both quadratures of the
coherent field are equal.

7.10 Summary

We have seen that each of the representations has advantages
and disadvantages connected with its use. The P representation
describes a quantum state in terms of the probability that the
system is in a given coherent state. This distribution function is
highly singular or negative for quantum states without classical
analogues. This apparent disadvantage is often used as the signature
of genuine quantum mechanical effects. The use of the generalized
P distribution allows the calculations of normally ordered prod-
ucts without the attendant non-analyticity. The Wigner function
may become negative for some quantum states, but it has the
considerable advantage for squeezed states that its contours map
out the variances of the field quadratures. The Q representation
is a positive define distribution function, but its simple relation to
antinormally ordered characteristic function makes it difficult to
interpret in terms of conventional photon counting or squeezing
measurements. The reader interested in a further study of the
role of the representations in quantum optics problems is referred
especially to the book by Schleich [47].

Exercises

7.1 Show that (4) = Tr(pA) for a general mixed state described
by the density operator p.

7.2 Starting from the time-dependent Schrodinger equation de-
rive the equation of motion for the density operator p, the
Liouville-von Neumann equation

and show that the equation holds both for the pure and mixed
states.
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7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Starting from the Liouville-von Neumann equation show that:

(@) 9Tr(p)/dt = 0.

(b) Tr(p?) is a constant of motion. In other words, there is no
change in the purity of the state during the evolution of
the system.

The entropy of a quantum system determined by the density

operator p is defined by

S = —kgTr(plnp),

where S describes the degree of order in the system and kg is
the Boltzmann constant. Calculate the entropy of a pure state
p = |¥) (| to show that for a pure state, S = 0.

Show that in the Glauber-Sudarshan P representation

2
¢ (AR)? ) = /dza P () [|o¢|2 - /dzo/ P () ‘a/ﬂ ,

and

4

- [/dza/P (@) (a/+a/*)} }2.

Show that for arbitrary u, vand Re y > 0
1 /dZZefy\zleruervz* _ le"y—"
0 14
Write in the symmetric order the a%a? product of the
annihilation and creation operators.
Prove that a product of m annihilation operators and n
creation operators can be symmetrically ordered in (n +
m)!/(n!'m!).
Show that the Wigner function W(«) can be written as a
Gaussian convolution of the P functions

W () = ;/dzﬂ P(B)e 2FF,

Show that if in the Wigner representation the density operator
is of the form

{: (Agl)z )= 1/dzocP () { (o + ™)

h

— e~ (0=1)?/2(29) g=(p=p0)*/2(Ap)*
ApAq

0



7.11

7.12

Exercises

then the condition

1 o0 o0
Tr(o?) = ﬁ/ / dpdg p? <1

is equivalent to the uncertainty relation
ApAq > E
-2
Derive Eq. (7.46) for the Fock state with one photon (n = 1) to
show that Wy, () < 0 for |o|? < 1.
The density operator of a thermal field in the photon number
representation can be written as

p= ————— In)(n],
n:0(1+N)”

where N is the average number of photons in the field.

(a) Find the Q («) representation of the thermal field.
(b) Using the relation between @Q (8) and the diagonal P («)
representation, show that P («) for the thermal field is a

Gaussian.
(c) Using the Gaussian form of the P («) representation, find
the variances 07 = ((AE1)?) and 0 = ((AE2)?) of a

single mode thermal field amplitudes.

(d) Verify the result of the point (c) by calculating the
variance from the definition of o2 using the correlation
properties of the thermal field operators

Does the result for o? agree with that found in the
point (c)? Explain your answer.
(e) Show that the variance found in the point (d) agrees with

that predicted from the Wigner distribution.
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Chapter 8

Single-Mode Interaction

8.1 Introduction

In a quantum physics scenario, atoms whose quanta are fermions
interact with force fields whose quanta are bosons. From this
perspective, the interaction of a fermion with a boson is one of
the fundamental systems in quantum physics. The interaction of
a single mode of the electromagnetic (EM) field with a single
two-level atom in the absence of any dissipation process, such as
spontaneous emission, and any input or output from the cavity is the
simplest example of interaction between fermions and bosons. This
elementary model is an example of reversible system in which an
initial energy is continuously and periodically exchanged between
the atom and the cavity field. Mathematically, only two states are
involved making the Hamiltonian of the system simple to diagonalize
analytically.

An understanding and exploring of the properties of such a
system is of great use since:

(1) Itis a perennial problem in quantum optics.

(2) Ithas exact analytical solutions for arbitrary coupling constants.

(3) It exhibits certain periodic collapse and revival phenomena due
to the quantum nature of the field.

(4) It has recently become possible to realize it experimentally.
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In this chapter, we will examine this elementary model as a prelude
to more complicated systems involving atoms interacting with multi-
mode fields. We shall find that the state of the combined system is
a pure entangled state between the atom and the field and study
in details the time evolution of the atomic population for different
initial states of the single-mode EM field.

8.2 The Jaynes—Cummings Model

The model of the interaction between a single two-level atom and
a quantized single-mode field in the rotating wave approximation
(RWA) was introduced independently by Jaynes and Cummings [48]
and by Paul [49] in 1963, and is called the Jaynes-Cummings model.
In this model the atom is coupled to a single-mode EM field of
frequency w. being on resonance with the atomic transition, that
is, o = wg. The atom is represented by two energy states: the
ground state |1) and the excited state |2), and is described by the
spin operators S*, S~ and S,. The field mode is represented by a
Fock state |n), and is described by the annihilation and creation
operators @ and af.

8.2.1 The Jaynes—Cummings Hamiltonian

Consider a two-level atom described by the Hamiltonian Eq. (2.15)
interacting in the electric dipole approximation with a single-mode
electric field. For the interaction of the atom with a single mode of
the EM field, wx = w. and under the rotating-wave approximation,
the Hamiltonian of the system simplifies to

R 1 1
A = hwoS, + ho, (afa + 2) — ihg (sta—s-a"), (8.1)

where

2600
hé‘o v

g=(1-e (8:2)

is the atom-field coupling constant, called one-photon Rabi fre-
quency.



The Jaynes—Cummings Model

The Hamiltonian (8.1) is called the Jaynes-Cummings Hamil-
tonian. It describes the simplest model of the atom-field interaction,
a single two-level atom interacting with a single-mode field.

8.2.2 State Vector of the System

In the absence of the interaction between the atom and the field,
(g = 0), the Hilbert space of the system can be spanned by product
states |n, 1) = |n) ® |1)and |[n—1, 2) = |n— 1) ® |2), where n is
the number of photons in the field mode, and |1), |2) are the atomic
states. The states group into manifolds, which we can label as £(n),
where n is the number of excitations of the states in £(n). It can
be easily verified that the manifold £(0) is a singlet |0, 1), whereas
the manifolds corresponding to n > 0 are doublets. When o, = wy,
the inter-doublet states are degenerate in energy whereas the states
are non-degenerate when w. # wy, as it is illustrated in Fig. 8.1.

We now use these states as the basis states for the state vector of
the total (interacting) system to find the time evolution of the state.

(a) (b)

131> 122> 131>
--1A
S— 12,2>

1

12,1 > 11,2 >

e O = = — =
]
=
v

|1’1 > |0,2> } Pr— |1’1 >

) s

10,1 > Y 10,1 >

Figure 8.1 Energy levels of the non-interacting atom and the cavity mode
for (a) degenerate frequencies A = w. — wy = 0, and (b) non-degenerate
frequencies A # 0.
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Consider a state vector of the system at time ¢:

[¥(8)) = Cin(8)In, 1) + Con(8)In — 1, 2), (8.3)
where C1,(t) and C;,(t) are probability amplitudes of the states
In, 1) and |n — 1, 2), respectively. The time evolution of the prob-
ability amplitudes is found from the time-dependent Schrodinger
equation

.. d N
ih @)= Hy (@), (8:4)

which leads to the following differential equation for the probability
amplitudes

ih [C1a(B)In, 1) + Can(B)In — 1, 2)] = H|y (1)), (8.5)
To proceed further, we need the explicit form of the Hamiltonian A.
According to Eq. (8.1), the Hamiltonian is composed of three terms.
Thus, we have three terms on the right-hand side of Eq. (8.5). Let

us consider separately these three terms, which in the case of the
resonant coupling (w. = wy) can be written as

hag (a*a + ;) [y (8)) = hwo{<n + ;>cln(t)|n, 1)

+ < _ ;)cumm 1, 2>},

1
hawo S*| Y (t)) = hawo [—ZCl,,[t)m, 1)

1
+ 5 Can(In—1, 2>} )

—Sigh(sa — 1S )W () = ~2ihg {Cu®)Valn — 1,2
—Can(Oln, 1)} (5.6)

Projecting Eq. (8.5) onto (1, n| on the left results in a differential
equation for the amplitude C1,(¢):

. 1
ihC1n(t) = hnwoC1,(t) + Elhg\/ﬁCZn(t) (8.7)

Projecting Eq. (8.5) onto (2, n — 1| on the left results in a differential
equation for the amplitude C,,(t):

iRC20(£) = BnonCan(t) — 2 ihg/nC1n(0). 88)
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Thus, we have obtained two coupled differential equations that can
be written in the form

C1n(t) = —inwoC1a(t) + 39/NC2n(t),

(8.9)

CZn(t) = _ina)OCZH(t) - %g\/ﬁcln(t)-
The set of the equations (8.9) can be solved for arbitrary initial
conditions using, for example, the Laplace transform method. The
solution for the amplitude C,, (t) is given by

Conl®) = e {[iC20(0) — Crr(0)] €2
+[1C20(0) + Cua (O] e}, (8.10)
where Q = g./n is the Rabi frequency and
Cin(0) = (i, n|y(0)), i=1,2, (8.11)

is the probability amplitude that the system was initially in the
state |i, n).

Note that, in general, the state vector (8.3) is a superposition
state, which cannot be written as a product of the atomic and field
states. It is therefore an example of an entangled state between the
atom and the field mode. Only for particular times at which C1,(t) =
0 or C2,(t) = O, the state is in the form of a product states that at
these particular times the atom and the field are independent of each
other (disentangled).

8.2.3 Population of the Atomic Excited State

The probability amplitudes C;,(t) continuously evolve in time
indicating a continuous exchange of an excitation between the atom
and the cavity mode. Let us look closely at the time evolution of the
population of the atomic excited state.

Consider first the initial state of the system

1¥(0)) = 11, no), (8.12)

in which the atom is in its ground state and ny photons are present
in the cavity mode. In this case, the initial values of the probability
amplitudes are

C2n(0)=0,  C1a(0) = (L, nl1, ng) = 8pnyy  (8.13)
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0.8

0.6f
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0.4

0.2

0 5 10 gt 15

Figure 8.2 Time evolution of the population P,(t) for the atom initially in
the ground state |1) and the definite (fixed) number of photons present in
the cavity mode, ng = 5.

so that the time evolution of the amplitude C,,(t) takes the form

) 1
|C2n (B)]* = sin? <2§2t> 8n,ng- (8.14)

Hence, the population of the state |2) is given by
1
Py (t) = Z |Can (£)|% = sin® (29t> : (8.15)

The time evolution of the population P;(¢t) for a definite number
of photons present in the cavity mode is shown in Fig. 8.2. The
population oscillates with the Rabi frequency and at certain times
P,(t) = 1, indicating that all the population is in the upper state (the
total population inversion). Physically, Eq. (8.15) says that the atom
initially in its ground state can absorb a photon from the initially
excited field mode, and that the atom and the field then sinusoidally
and continuously exchange this photon of energy.

8.3 Collapses and Revivals of the Atomic Evolution

The results derived in the previous section can be generalized to the
case where the initial state of the field is not a state of definite photon



Collapses and Revivals of the Atomic Evolution

number, but rather some superposition of such number states. For
example, assume that the initial state of the system was [{(0)) =
|1, o), that the atom was in the ground state |1), while the field was in
the coherent state |«). In this case, the initial values of the probability
amplitudes are

C2n(0) =0,  C1,(0) = (nlar), (8.16)
which gives
2 _ jor 2" —la)?
IC1n (0)I" = e (8.17)
where « is a complex number. Then, the population P, takes the form
P, (t) = Z %e sin? ( fgt) (8.18)

n

where (n) = |«|? is the mean number of photons in the cavity field.

No exact analytic expression for the sum in Eq. (8.18) exists, but
one can notice that due to the Poisson distribution of the photon
number n, there will be a spread in the Rabi frequency over different
n. As aresult the Rabi oscillations will dephase and next will collapse
after some time t.

Figure 8.3 shows the time evolution of the population P,(t) for
the mean photon number (n) = 20. The oscillations collapse after

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1F

0 50 100 150 200 250
29t

Figure 8.3 Time evolution of the population P,(t) for an initial coherent
state of the field with the mean photon number (n) = 20.
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few Rabi periods, remain constant over a finite interval of time and
then the oscillations reappear again. This revival then collapses and
again after a finite time a new, butlonger, revival begins. This process
repeats but disappears after a long time, not shown in the figure.

This phenomenon is called collapses and revivals of the atomic
evolution [50], and can be explained as follows:

Consider the population P, (t), given in Eq. (8.18). Usually, no
analytical expression for the sum (8.18) exists, but the general
behaviour of P, (t) can be described by noting that Eq. (8.18) can
be rewritten as the product of a rapidly oscillating term and a slowly
varying envelope function, that is

P, (8) = % [1 -3 %e_m cos (gﬁt)]
= % ll - Z (Z)'n e MRe (eigﬁt)l
1 .
=2 {1 —Re [e'mng (t)} } (8.19)
where
D)= <’:Tin‘3*"’>e"9(ﬁfm)f (8:20)

n

is the slowly oscillating envelope function.

Note that D (t) oscillates with two opposite phases, one (nega-
tive) for n < (n) and the other (positive) for n > (n). Interferences
between the different components (with different phases) in the
summation cause D(t) to first approach zero (collapse) and then
increase again (revival).

A collapse appears when the phases of the two components, n <
(n) and n > (n), differ by = (are opposite). To show this explicitly,
consider two phases which differ by the standard deviation An.
These phases have the most significant effect on the modulation
of D(t). Thus, for two phases to get different by x:

( (n)—l—;An—\/(n))gt%( (n)—;An—\/(n)>gt+ﬂ,

(8.21)
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which gives the time

2
_ 2m i) (8.22)
g An
that for a Poisson distribution reduces to
2
£ =" (8.23)
g

Revival time tg is determined by how long it takes two phases
differing by 1 to rephase, that is

(\/(n) +1- \/ﬁ) gt~ 2m, (8.24)

which gives the time

4
th ~ - /(). (8.25)
9
The ratio of the revival to the collapse time is
t
R _2An. (8.26)
tc

Since An > 1, the revival time is longer compared to the collapse
time.

We have illustrated the collapse and revival phenomena for the
initial coherent state of the field. It is not difficult to extend the
analysis to other initial field states, for example, thermal or squeezed
states, which also produce collapses and revivals. The collapse and
revival times then depend on the details of the photon number
probability distributions of the field states.

An obvious question arises whether the Jaynes-Cummings model
could be realized in practice. Recently it has become possible
to create cavities composed of a single mode of sufficiently high
quality factor Q. The quality factor indicates the lifetime of a single
photon in the cavity Q/w, where w is the photon frequency. In the
laboratory of Haroche?, a high- Q microwave cavity, Q ~ 6 x 10%, was
fabricated [51]. In such cavity, light travels 39,000 km before leaving
the cavity. To increase the coupling of the atom to the cavity mode,
Rydberg atoms were used. The Rydberg atoms are highly excited
atoms which have large sizes and therefore can have huge dipole

aSerge Haroche was granted the Nobel prize in 2012 for his experimental work that
enabled measuring and manipulation of individual quantum systems.
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moments, proportional to n?, where n is the principal quantum
number [52]. Because the dipole moments of Rydberg atoms are so
large, the atoms can strongly couple to the cavity mode.

Another possibility where the interaction between a two-level
atom and a single photon can be studied is a superconducting qubit
placed in a superconducting strip line cavity. The coplanar strip line
cavity can be viewed as a squashed coaxial cable. The length of
the cavity corresponds to the microwave wavelength. In the first
realization of this system, by the group of Schoelkopf [53], the
quality factor of Q ~ 7500 was achieved.

Exercises

8.1 (a) Show that the operator
N=s,+a'a

commutes with the Jaynes-Cummings Hamiltonian (8.1).
(b) What is the physical meaning of the operator N and the
fact that it commutes with A ?
(c) What would be the result of the commutator [N, H] if the
Hamiltonian included the counter-rotating terms?

8.2 Show that in the basis of product states |1, n) and |2, n — 1),
the Jaynes-Cummings Hamiltonian (8.1) can be written in a
matrix form as

ﬁ:hw(n+1>1+h< 24 9}/5),
2 gv/n —3A
where [ is the 2 x 2 unit matrix and A = wg — w is the
detuning of the atomic transition frequency wy from the field
mode frequency w.

8.3 Diagonalize the Hamiltonian given in Exercise 8.2 to find
energies and the corresponding energy states of the Jaynes-
Cummings model.

8.4 Solve the time-dependent Schrédinger equation with the
Jaynes-Cummings Hamiltonian (8.1) to find the evolution
operator

0(6) = e om,



8.5

8.6

8.7

8.8

8.9

8.10

Exercises

Show that the free part Hy = hwoS, + hw(ata + 1/2) and
the interaction part H; = —%ihg(S*& — Sa') of the Jaynes-
Cummings Hamiltonian commute.

Calculate the evolution of the population P;(t) for a two-level
atom interacting with a single-mode EM field of frequency
o detuned from the atomic frequency wg; that is, ® # wy.
Assume the initial state of the system |y (0)) = |1, ng).

Using computer programs, plot the time evolution of the
population P;(t) for the atom initially in the ground state |1),
interacting with a resonant cavity field initially in

(a) thermal (chaotic) state with (n) = 1.

(b) squeezed coherent state |o, r) = D(«)S(r)|0).

(c) superposition state |ng) = (]0) + |2))/+/2.

(d) Does the population P;(t) experience the collapses and
revival phenomena?

Evaluate the variance An for the squeezed coherent
state |o, r) = D(«)S(r)|0) to show that depending on the phase
of « the collapse time may be shorter or longer than for the
initial coherent state.

Show that an increase in the collapse time is accompanied by
a delay in the onset of the revival.

Show that for a highly excited coherent state, (n) > 1, the
infinite sum in Eq. (8.18) can be converted into integrals
that can be evaluated analytically by standard saddle point
methods.
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Chapter 9

Open Quantum Systems

9.1 Introduction

We have now reached a point where it is possible to consider more
advanced and currently intensively developing topics in quantum
optics. These particular topics have been chosen because of their
importance in the development of modern laser physics, quantum
atom optics, quantum information and computation. We start by
considering the dynamics of an atom coupled in a free space to
a multi-mode electromagnetic (EM) vacuum field. In free space
an atom is coupled to many modes of the EM field and then an
initial excitation in the system is irreversibly emitted from the atom
into the field modes, never again to be reabsorbed by the atom,
in contrast to a close system such as the Jaynes-Cummings model
where an excitation was periodically exchanged between the atom
and the field. The evolution of an excited atom coupled to a multi-
mode EM field is a particular example of an open quantum system.
We will consider a two-level atom coupled to a multi-mode
EM field and work in the electric dipole approximation. First, we
will formulate the Hamiltonian of the system in which we will
describe different subsystems and the interactions between them.
Next, we will derive a master equation of the system that describes
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dynamics of the atom interacting with a multi-mode EM field.
The term master equation refers to an equation of motion for the
reduced density operator of the atom interacting with the multi-
mode EM field treated as an external reservoir. In many problems,
the reservoir plays the role of environment upon which we have
neither control nor influence. This leads to the irreversible process
of spontaneous emission that is intrinsically connected with the
process of decoherence.

9.2 Hamiltonian of the Multi-Mode Interaction

We start from the Hamiltonian of a combined system that is
composed of a two-level atom driven by a single-mode laser field and
coupled to the multi-mode EM field. The combined system is treated
as a closed system and its Hamiltonian can be written as

B =0+ A, + He + V + A, (9.1)
where
Hy = hwyS? (9.2)
is the Hamiltonian of the free atom,
N 1
A1, = hor, (a*a + 2) (9.3)
is the Hamiltonian of a single-mode laser field driving the atom,
. A 1
A = hzk:wk (a,iak + 2) (9.4)

is the Hamiltonian of the multi-mode field (reservoir) surrounding
the atom,

N 1 . .

V=-3ihQ (SteTort — gmelent) (9.5)
is the interaction between the laser (classical) field and the atom,
and Q is the Rabi frequency which, for simplicity, we assume is a

real number, and the final term in Eq. (9.1)

N 1. . .

i = =i [9e8* @ (0) - g;5~af (8] (9.6)
2 k

is the interaction Hamiltonian between the atom and the multi-mode

field. We treat the interactions between the atom and the fields in the

electric dipole approximation.



Derivation of the Master Equation

9.3 Derivation of the Master Equation

The combined system is usually in a mixed state. Therefore, the
dynamics of a two-level atom coupled to an external field are
conveniently studied in terms of the density operator of the com-
bined atom-field system.? The density operator pr of the combined
atom-field system obeys the equation of motion, the Liouville-
von Neumann equation [54]

i pr ()= (A, pr ()] (97)

We first consider the interaction between the atom and the multi-
mode field and assume that there is no coherent driving field. It is
useful to work in the interaction picture in which

br = eiﬁét/hpTe—iﬁlét/h’
B = /F6t/M it (9:8)
where
I:I(; = I:IO-I-I:IL—FV-FI:IF. (9.9)
This simplifies the equation of motion for the density operator to
0 " N
1N—pr = int » PT , '
hepr () [Hine (8), P (8)] (9.10)

which shows clearly that the evolution of the density operator is
governed by the interaction Hamiltonian H, (t) alone.
Formally integrating Eq. (9.10) with respect to time, we obtain

. L 1 [ N s
pr(t) = pr (0) + E/ dt' [Hine (t'), pr (t)], (9.11)
0
This is a Volterra-type integral equation which can be solved by
successive substitution in the form of an absolutely and uniformly
convergent series.
Substituting Eq. (9.11) into the right-hand side of Eq. (9.10), we

obtain

m% pr(6) = [An (8, 51 (0)]

i L . )
+E/o dt’ [Hine (8), [Hine (¢), £ (¢)]].  (9.12)

4For a generalization of the procedure to the case of N multi-level atoms see Z.
Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments
(Springer, Berlin, New York, Heidelberg, 2005).
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We can continue the same procedure to obtain an infinite series of
integral terms, which can be regarded as an exact explicit solution
for pr(t). In practice, the series is terminated at the second order,
which gives a sufficiently good approximation to the solution.

To proceed further, we assume that no correlation exists between
the atom and the EM field at the initial time ¢t = 0, thatis

pr (0) = p (0) ® pr (0), (9.13)
where p(0) is the density operator of the atom, so called
reduced density operator, and pg (0) is the density operator of
the multi-mode vacuum field. No approximation is involved in this
decorrelation.

We now employ weak coupling or Born Approximation in which
the atom-field interaction is assumed to be weak, and there is no
back reaction of the atom on the reservoir. In this approximation, the
state of the reservoir does not change in time, remains unchanged
during the interaction and retains its initial value. Moreover, the
Born approximation involves treating the effects of the reservoir
correct to order g2 in the coupling constant. In this case, the time-
dependent density operator of the combined system can be written
as

pr(t) =p(t)® pr(0). (9.14)
It is equivalent to say that the future state of the system-reservoir
density operator pr(t') is determined by the state of the system
p (t), and is not a function of the history of the reservoir.
Under this assumption and then by tracing over the field
variables, we can limit the calculation to the dynamics of the density
operator of the atom alone:

Try {pr(t)} = Tre {p (') pr(0)} = p(t') Tre {or (0} = o (t) .
(9.15)

Thus, after tracing over the field variables in Eq. (9.12), the master
equation takes the form

ih% p () = Tre{ [Aine (8), 0 (0) pr (0)] }

by [ dere ([ @i (¢). 0 (¢)pw 0)]].
J0
(9.16)
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Substituting the explicit form of the interaction Hamiltonian Hjy (t),
we get

a 1 .
P 0=-—3 > {9t (0 (0) (@ (8) — giS™ (B) p (0) (@' (£)) — He )
k

+% kzk: /0 dt gigs {s* S~ () p () (@ ©)a). (£))
+[p(¢)STOS(¢) =S (Op(t)ST ()] @ (@®a) ()
=57 (¢) o (¢) ST (O (@ (¢) af () )+ 12terms.  (917)

The 12 terms explicitly not listed in Eq. (9.17) involve combinations
of the atomic operators giving the two-photon correlation functions
(@, (£ a). (), (@ (t) @ (£')) and number of photons (a; (t) & (£)).
It is seen from Eq. (9.17) that the evolution of the density
operator depends on the correlation functions of the field operators.
In the following, we assume the temperature of the reservoir to be
absolute zero that all modes of the EM field are in the ordinary
vacuum state for which the correlation functions are given by

(@) = (@) =0,
(@ (af (£)) = @ @ ax (¢) =0,
(@ (9 aw (¢)) =0,
(@ (B) @) (¢)) = e e v 5y, (9.18)
This step reduces the number of contributions that govern the evo-
lution of the density operator. Effectively, the 16 terms contributing
to the master equation (9.17) reduce to only four contributions. Care

must be taken when selecting terms that are different from zero in
the ordinary vacuum field. In Eq. (9.18), there are terms of the form

S*p(t)STrr { i () pr(0)af () }. (9.19)
and

S~ p(t)S*Tre {a,i (t) pr(0)ar (t/)} . (9.20)
One can think that in the ordinary vacuum, the term (9.19) will make

anon-zero contribution to the master equation as (ay (t) &,ﬁ (t)) #£0.
However,

Trr {ﬁk () pr(0)a). (t')} = Trp {PF (0)af. (¢) (f)}
=@} (¢) ax () =0, (9.21)
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and
Tri {a] (©) pr(0)a (¢) b = Tre { pe(0)aw (¢) af (9}
= (ar (¢') af () # 0. (9.22)

Thus, the terms of the form (9.19) are zero for the ordinary vacuum
field, and only terms of the form (9.20) will contribute to the master
equation.

Hence, for the ordinary vacuum field the master equation (9.17)
reduces to

a 1 t .
—o(t) = —= dt 2 {S+57 t i(wo—wk)(t—t)
Btp() 2 Ek /0 |Gkl p(t)e

+p (t/) S+57efi(w07wk)(t7t’) _ 57[) (t/) S+ei(w97wk)(t7t’)
— 5 p(t) 5+e*f(wofwk)(rf)}, (9.23)

We now change the time variable to t = t — t/, which leads to

0 1 , t .
—p)=—= StS™ [ drp(t—1)elleomedr
0@ =3 St {55 [[arpe—ne
t
+/ dr p (t — v) e 0wt g+ 6=
0
t .
—/ dt S p (t — 1) Stell@—odr
0

t
— / dr S~ p(t—1) s+e"(w0wkﬁ}. (9.24)
0

This is an integro-differential equation for p which includes the non-
Markovian evolution of the density operator p, that p (t) depends on
the past p (t — 7).

We can eliminate the integral over t by making the Markov
approximation. In this approximation, we assume that in time t
the density operator p (t — 7) changes slowly compared to the
exponents. Then we can write that p (t — t) ~ p (t) and formally
perform the integration. In a typical atom, the density operator
changes on the time scale corresponding to the spontaneous
emission rate, t; ~ 1078s, and if wy is an optical frequency, the
exponents oscillate on the time scale t; ~ 10155, which is much
shorter than the atomic time scale. Thus, the Markov approximation
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is justified for atoms interacting with the ordinary vacuum field, and
we can replace p (t — 7) by p ().
In the limit of large ¢, the integral

t
/ dr et (9.25)
0
can be approximated by the function
t . 73
lim [ dref @0 = 7§ (wp — wp) £1i . (9.26)
t=o0 Jo wo — Wk

where the real part is a delta function whose area is 7 and the
imaginary part is the Cauchy’s principal value P of the integral. If
we now introduce two frequency parameters defined as

b4 1
23 ol (o — @) = T, (9.27)
k

1 P
2 2 o’ =4, (9:28)
k

wo — Wk

we obtain the master equation of the form
0 ) _
&p(t) = —iA[STS™, p(1)]
1
_EF [STSTp(O)+p([)STS™ =25 p(t)ST]. (9.29)

Remember that the density operator p (t) is in the interaction
picture. Going back to the Schrédinger picture, we finally get

a 1, 4

—p=—=i[H,, p] —iA[STS™,
5P = —71 [Ho p] —iA[STS™, p]

1
_EF (S*S’p+pS+S’ —25’,05*). (9.30)
The terms I" and A arise from the non-zero correlations (&k&,]:,) and
therefore could be attributed to quantum fluctuations of the vacuum

field. They might be regarded as characteristic consequences of field
quantization and would be absent if the field was treated classically.

9.4 Spontaneous Emission and Decoherence

Our first problem using the master equation is the phenomenon
of spontaneous emission from an excited two-level atom. It is well
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known that the coupling of the excited atom to the vacuum field
will result in a spontaneous transition of the electron to the ground
state of the atom. We have already shown that the coupling of the
atom to the vacuum field results in a shift of the atomic levels and
in the appearance of an incoherent part in the master equation of
the atom. In view of this, the analysis of spontaneous emission from
the excited atom will allow us to find the physical interpretation of
the parameters I" and A.

If only the vacuum field is involved in the interaction with the
atom, that is, there is no coherent driving field, the Hamiltonian 1:16
then reduces to I:IO, so that we can write the master equation as

a , _
aP =1 (wo + A) [STS™, p]

1
_EF (S*S™p+pStS™ =25 pST). (9.31)

It is clear that the parameter A combines with the atomic transition
frequency wg and, therefore, represents a shift of the atomic energy
levels.

9.4.1 The Lamb Shift

The shift of the atomic transition frequency, that appears in
Eq. (9.31), can be identified with the Lamb? shift. Its magnitude is
calculated from Eq. (9.28). In the continuous-mode approximation,
in which we convert the mode sum over transverse plane waves into
an integral

1 1
A= fP/da)k \gi| ———. (9.32)
4 wy — Wk

The integral is non-zero, and in fact is infinite for an unbounded
set of modes. In first sight, the infinite shift appears to be totally
unphysical. However, a close look into Eq. (9.32) shows that
the infinity is a consequence of the infinitely high frequencies
in the integration, that in fact are not observable in practice.
Hence, an approximate cutoff of the frequency at wy = wax ~ ¢/ro
needs to be added at an atomic dimension rg, in order for the

aWillis Lamb was granted the Nobel prize in 1955 for his discoveries concerning the
fine structure of the hydrogen spectrum.
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present approximation to be valid and to obtain an approximate
analytical formula for the Lamb shift. Moreover, in order to obtain
a complete calculation of the Lamb shift, it is necessary to extend
the calculations to higher order terms in the Hamiltonian including
electron mass re-normalization [55], and to include effects of the
other atomic levels [56, 57]. If these are included the standard non-
relativistic vacuum Lamb shift result is obtained. In fact, it is only
in the case of a fully relativistic Hamiltonian that the Lamb shift can
be made finite, and even then, only after quantum electrodynamic
re-normalization, which involves the removal of infinities.

In 1947, Lamb and Rutherford used a microwave frequency
method to examine the finite structure of the n = 2 energy
level of atomic hydrogen. Earlier, high resolution optical studies
of the H, line have indicated a discrepancy between experiment
and the Dirac relativistic theory of the hydrogen atom. The Dirac
theory predicts that the 22S;; and 2%Py,, energy levels should
be degenerated. The early experiments suggested that these levels
were not in fact degenerated but separated by about 0.033 cm™1.
Lamb and Rutherford used an elegant combination of atomic beam
and microwave techniques and showed that the 2231/2 level is
higher in energy than the 2?P;,; level by about 1000 MHz. The
lifting of the degeneracy was explained theoretically by Bethe as
arising from the interaction of the bound electron with the vacuum
fluctuations. These calculations predicted 1000 MHz for the shift.
In the interaction with the vacuum field only the 2281/2 is affected
because non-relativistic atomic wavefunctions vanish at the origin
except for the s-states with [ = 0, see Eq. (2.25):

1
[Yn00l® = —5— (9.33)

3)
rn3as

where q, is the Bohr radius.

9.4.2 Spontaneous Emission Rate and Decoherence
Consider now an evolution of the atomic dipole moment <S+>. Since
(§7) =Tr (pS*) = Tr (o 2)(1]) = p1z, (9.34)

where p12 = (1|p|2) is the coherence between the states |1) and
|2), we can apply the master equation (9.31) to calculate the time
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evolution of the atomic dipole moment. We can find the equation of
motion for <S+>, or equivalently for the coherence p1,, by projecting
the master equation (9.31) onto |2) on the right and (1] on the left

0 0

— (ST = —p1a=—i A) (1] [STS™, p] |2
8t< > atmz i (wo + )(I[ p]|)
1
_EF (11 (STS™p+pSTS™ =25 pST) [2)
1
=1(wo+ A) p12 — EFPIZ- (9.35)
This differential equation has a simple solution
prz (t) = p1z (0) e lellntA), (9.36)

where p1; (0) is the initial coherence between the atomic states.

This shows that the dynamics of the atomic coherence is strongly
influenced by I' and A. The initially non-zero dipole moment
oscillates in time at a shifted frequency wy + A, and its amplitude
is damped exponentially with the rate I'/2. Thus, the obvious effect
of having I" is seen to be the damping of the atomic coherence.
Physically, the damping is due to spontaneous emission and its pure
exponential form is the result of the Markov approximation made in
the derivation of the master equation.

The off-diagonal density matrix element p;; determines the
coherence between the two atomic levels. Therefore, we may say
that spontaneous emission causes decay of the coherence or, in
other words, spontaneous emission is a source of decoherence.
Note that the coherence p1; is different from zero only if the atom
is in a superposition state of the ground and the excited states.
Equivalently, we can say that spontaneous emission causes decay of
the superposition state.

The role of spontaneous emission as a damping process is more
evident if we consider the time evolution of the population of the
state |2). The equation of motion for the population p;; = (2|p|2) is
found by projecting the master equation (9.31) onto |2) on both the
left and the right

9 1
5 P2 = —EF (21 (STS"p+pSTS™ =25 pS*) 2)

1 1
o StS=p|2) — 5T (2| pSTST|2) + T (2| S~ pST2)
—F,Ozz. (937)
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The solution of the above equation is in a simple exponential form

p22 (£) = p22 (0) e, (9.38)
where p(0) is the initial population of the state |2). The initial
population of the excited state decays exponentially in time with
the rate I'. Equation (9.38) gives a physical interpretation of the
coefficient I" as the damping rate of the atomic excitation.

9.4.3 Einstein’s A Coefficient

In order to complete our derivation of the master equation for a two-
level atom and obtain a clear meaning of the parameters involved,
we prove that the parameter I' is equal to the Einstein’s A coefficient
for spontaneous emission.

The parameter I" has been defined as

T 2
r=> ij |gkl*8 (wr — wo), (9.39)

where k = (I}, s). Inserting the explicit form of g, Eq. (2.41), we get
T - 52
rzmzk:wkm.eu 8 (wx — wo). (9.40)

In order to evaluate the sum over k, we assume that i has only x-
component, & = p[1, 0, 0], where 1 = |ji|, and will consider the
polarization vectors € in spherical coordinates. If we take the unit
propagation vector as

k= [sin 6 cos ¢, sin 6 sin ¢, cos O], (9.41)

then the unit orthogonal polarization vectors é; and €, can be
chosen as

€1 = [— cos 6 cos ¢, — cosd sin ¢, sinb],
éx2 = [sin¢, — cos ¢, 0]. (9.42)

With this choice of the polarization vectors, the sum over s
appearing under the sum over k, becomes

2
Z |ii - 8l = n? (cos? 0 cos® ¢ + sin® @) . (9.43)
s=1

We may assume a continuous distribution of the field modes, which
is the case when the modes are redistributed in free space. This
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allows us to make the formal replacement of the sum over k by an
integral

174 o T 2
Yo / dwy, w} / do sin6 / de.  (9.44)
p (27c)® Jo 0 0

All the integrations in the above equation can be performed
analytically. Since

27 2
/ d¢ sin? ¢ = / d¢ cos® ¢ =, (9.45)
0 0
and
b4 5 ] 8
do (1 + cos” ) sin6 = 3 (9.46)
0
we obtain for the damping rate
1 4plwd

= —_—, 9.47
4mey 3hc3 ( )

which is the Einstein’s A coefficient for spontaneous emission. The
damping rate is given in terms of the atomic parameters, which
comes from a fully quantum treatment of the atom-field interaction.

9.5 The Bloch—Siegert Shift: An Example of Non-RWA
Effects

In Chapter 2, we showed that the exact interaction Hamiltonian
between a two-level atom and an EM field contains the energy non-
conserving terms called the counter-rotating terms. These terms are
usually ignored as being rapidly oscillating over the time scale t ~
1/wo, and an obvious question arises whether there are situations
where these terms could generate physical observable phenomena.
In this section, we discuss the effect of the counter-rotating terms on
spontaneous emission from a two-level atom coupled to a vacuum
field. The counter-rotating terms are included into the interaction
by not making the RWA on the interaction Hamiltonian between the
atom and the vacuum field. As we shall see, the counter-rotating
terms can produce a small shift of the atomic levels, known in the
literature as the Bloch-Siegert shift.
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The exact interaction Hamiltonian that includes the counter-
rotating terms is of the form

A

A = —;ihzk: g [s+ak(t) —STal(t) + S a(t) — s+a,1(t)} .
(9.48)

In addressing the question of the role of the counter-rotating
terms, we derive, with the procedure outlined in Section 9.3, the
master equation for the reduced density operator of the atom. The
derivation, the details of which are left for the reader as a tutorial
exercise, shows that the counter-rotating terms, appearing in the
Hamiltonian (9.48), lead to additional terms in the master equation
which takes the form

% =—i(wo+A)[STS™, p] —iA(STpST -5 pS7)

1
—5T{S*S"p+pS*S™ — 25 ps*
—25*pSt —25"pS~}. (9.49)

There are no terms present like STS*p or S~5 p, since STST =
S S~ =0.

An important modification of the master equation is the
appearance of additional terms of the form S*pSt and S~ pS~,
which indicates a two-photon nature of the counter-rotating terms.
In the following, we will ignore the effect of the additional terms on
the small Lamb shift, and we will check how the two extra terms in
the dissipative part of the master equation modify the spontaneous
emission.

To identify the role of the counter-rotating terms, we consider
the evolution of the atomic dipole moment (coherence). Using
the master equation (9.49), we obtain two coupled differential
equations for the off-diagonal density matrix elements

, . 1
P12 = lwgp12 — EFMZ + I'p21,

. . 1
P21 = —lwgp21 — Erpn + Ip12. (9.50)

Thus, the additional terms brought by the counter-rotating terms
couple the coherencies p;2 to its conjugate py;. This is the
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modification of the dynamics of the atoms due to the presence of
the counter-rotating terms.?

We can solve the set of the coupled differential equations using,
for example, the Laplace transform method, which allows us to
transform the differential equations into a set of two coupled
algebraic equations. We can write the set of the transformed
equations in a matrix form as

((Z+l;—iw0) -r ) <,012(Z)> _ <:012(0)>
- (Z—i— g + iwo) P21 (2) p21(0) )
(9.51)

According to the Laplace transform method, the time evolution of
the atomic coherence is determined by the roots of the determinant
of the 2 x 2 matrix. The determinant is of the form

r\? ., ry? r2
(s+5) +ei-r=(s+3) +ob (1‘0)9
r 2 r . 2
g (o g )| ot g (e )

(9.52)

D(z)

The roots of the polynomial D(z) determine the time evolution of
the atomic coherence such that the real parts of the roots contribute
damping rates, while the imaginary parts contribute frequencies of
the oscillations. According to the expression (9.52), the counter-
rotating terms contribute to the imaginary parts (a)g -T?% Zwo),
that is, they give rise to a shift of the atomic resonance by the amount
of T'?/2w,. We identify this shift with the spontaneous emission
Bloch-Siegert shift. Since typically I' <« wy, it is apparent that the
shift is very small.

In summary of this section, we may state that the counter-
rotating terms (the energy non-conserving terms) can have a
physical effect on the atomic dynamics. For an atom interacting with
a multi-mode reservoir, the terms cause a small shift of the atomic
levels, known as the Bloch-Siegert shift.

2The coupling of the atomic coherence to its conjugate is formally similar to that
appearing in the equations of motion for a two-level atom interacting with a
squeezed vacuum.
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Exercises

9.1

9.2

9.3

9.4

9.5

Show that the master equation (9.30) for the reduced density
operator preserves the basic properties of a density operator
(normalization, hermiticity, etc.).

The state of a system is described by the density operator p(t),
and its evolution is determined by the Liouville-von Neumann
equation

ih%p (0 = [A(), p(8)],

where £ (t) is the Hamiltonian of the system, which in general
can be time dependent. Show that the transformed density
operator p(t) = U(t)p(t)UT(t) evolves according to the
Liouville-von Neumann equation

9 <
ih=p (= [A©,50)],
where
A =U@©A@BUTE) + ik OUT ).

Consider spontaneous emission from a two-level atom initially
prepared in the excited state |2), that is, p;2(0) = 1.

(a) Find the time evolution of the density matrix elements of
the system.

(b) Verify the conservation of the trace during the evolution,
that is, show that Trp(t) = 1 for all ¢.

(c) Calculate the time evolution of Trp?(t). At which time
Trp?(t) is minimal? What is the state of the atom at that
time?

Show that the spontaneous emission rate I of a two-level
atom is equal to the Einstein’s A coefficient independent of the
polarization of the atomic dipole moment.

Consider a three-level atom in the Vv configuration with two
degenerated upper states |1), |3) and a single ground state |2).
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The master equation of this system is given by
dp 1 _ _ _
— = —<T (S{Syp+pS{Sy — 25 pS))
dt 2
1
—5T12 (8787 0+ pSTS; — 255 pS7)

1
—5T2 (S S1p + Sy St = 251 p57)

1 _ _ _
—5T (S3S;p+pS5S; — 25, pS5),

where S§ =[1)(2|(S] =[2)(1]), S5 =I3)(2/(S; =12)(3), are
the dipole raising (lowering) operators of the atomic tran-
sitions, and the parameters I' and I'1; are the spontaneous
emission damping rates, such that I';; < T'.

(a) Calculate equations of motion of the following density
matrix elements p11, 033, P13 and ps1.
(b) Under what condition the parameter

o = p11 + P33 — P13 — P31

is a constant of motion.

(c) Using the condition that « is a constant of motion find the
time evolution of the population p1;.

(d) Find the stationary (t — o0) population of the state |1)
assuming that initially p11(0) = 1 and p33(0) = p13(0) =
p31(0) = 0.

(e) What would be the stationary population of the state |1)
if the atom was initially prepared in a superposition

state W) = (/1) + [3)) /v/2.



Chapter 10

Heisenberg Equations of Motion

10.1 Introduction

In the master equation method, we have already illustrated a
powerful technique for the calculation of the dynamics of an atomic
system interacting with the vacuum field. Another technique for
calculating the dynamics of an atomic system coupled to the elec-
tromagnetic (EM) field involves Heisenberg equations of motion for
the system’s operators. A difference between the master equation
and the Heisenberg equations is that the later involves dynamics of
the operators, which allows to analyse the evolution of an atomic
system in terms of the field and atomic operators. This creates some
problems with handling the Heisenberg equations as, in general,
operators do not commute and then in the course of solution of the
equations we may face the problem of ordering of the operators.
It is usually resolved by putting the operators in the normal order.
We have gained some experience with the Heisenberg equations
of motion in Chapter 6, Example 6.3, where we studied squeezing
generation in the nonlinear degenerate parametric amplifier (DPA)
process. Here, we illustrate the technique on the standard model
of a two-level atom interacting with a multi-mode field. We then
generalize the technique to some specific models such as Lorenz-
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Maxwell and Langevin equations, the derivation of which involves
some approximations that can be applied only in some limited cases.
We also present in detail the Floquet approach, which is usually
applied to problems determined by differential equations with time-
dependent coefficients.

10.2 Heisenberg Equations of Motion

The Heisenberg equation of motion for an arbitrary operator of a
given system is found from the Hamiltonian of the system, and has
the form

d, i .5~ »
ZA=7 [H, A], (10.1)
where A is an arbitrary operator of the system.

To illustrate the Heisenberg equation technique, we take a two-
level atom interacting with the EM field. The atom and the field are
described by the standard atomic spin and the field annihilation and
creation operators. The Hamiltonian of the system is of the form

) 1
H = hwoS; + Zha)k (a,fak + 2)
k
1, n At e
—Elhzk:gk (s+ak—a,is ) (10.2)

where, without loss of generality, we have assumed that the coupling
constant gy is a real number.

The Hamiltonian (10.2) generates the following Heisenberg
equations of motion for the atomic dipole moment S, the atomic
inversion S, and the annihilation operator of the k mode of the EM
field:

%S* = —iwyS™ + Z Gk Sy , (10.3)
dg -1 ng (s+ak +ajs ) , (10.4)
dt

d, o _

Eak = —lwiay + Eng , (10.5)
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and the equations of motion for the S* and a' operators are obtained
by taking the Hermitian conjugate of the equation of motion for the
S~ and a operators, respectively.

We see that the operator’s equations are in a form of nonlinear
equations of motion, as they contain product terms @S, and
Stay, &,IS*. The average values of the operators, however, produce
linear set of equations of motion. For example, the equation of mo-
tion for the average dipole moment (S~) depends on the correlation
function (ayS;). Of course, an exact solution of these equations is
rather impossible, but we can make some approximations. In the
following, we illustrate the commonly used approximate methods of
solving the set of the Heisenberg equations of motion, Egs. (10.3)-
(10.5).

10.3 Lorenz—Maxwell Equations

We first illustrate a method of solving the Heisenberg equations of
motion for the average atomic and field operators. After averaging
the Heisenberg equations of motion over an arbitrary atomic and
field state, we obtain

d
E(S_) = —lwo(S™) +g(as,),
Doy 1o istay 4 ats-
dt(SZ> =59 ((s*a) +(@'s7)),
d 1
@) = —iw(@) + 5g(57), (10.6)

where, for simplicity, we have assumed that the atom is coupled to
a single mode of the EM field. This can happen, for example, if the
atom is located inside a cavity that tailors the EM field modes to a
single mode, called the cavity mode.

As we have said earlier, the Heisenberg equations of motion
for average values of the field and the atomic variables form a
set of c-number linear equations. However, the set of equations
is in fact composed of an infinite number of equations. It is easy
to derive how the set of equations (10.6) develops into a set of
infinite number of equations. For example, the equation of motion
for (S7) depends on the second-order correlation function (as,).
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Thus, we have to find the equation of motion for the second-order
correlation function to determine (S™). By writing the equation of
motion for the second-order correlation function (aS,), we will find
that the equation depends on a third-order correlation function. This
procedure continues up to infinity.

How to deal with this problem? One of the possible approaches
is to truncate the set of equations by factoring out the field and atom
variables

(aSz) = (a)(Sz), (@asty = (ay(sty, etc. (10.7)

This factorization is called the semiclassical approximation that the
field and the atom evolutions are independent of each other without
any quantum correlations between them. It is valid when the field
amplitude is large, |{a)| > 1.

The semiclassical approximation closes the equations. In the next
step, we add phenomenologically damping rates to the right-hand
sides of the equations of motion, as the atom and field can be treated
as two independent classical damped oscillators, and obtain?

d . _ N
8 == (iwo +Tp) (S7) + gla)(S,),
d 1
2p(85) =-Ta—Ta(S:) - 2g (@y(s*) +@"s),
%(&) =—(io+«){a)+ %g(S‘), (10.8)

where I';, is the damping rate of the atomic polarization, Iy is the
damping rate of the atomic inversion and « is the damping rate of
the field mode. To remove the effect of the fast oscillations with the
frequencies wy and w, we introduce a rotating frame through the
relations

(@) = (a)e', (@' =@he ™, (5%)=(s%)eT". (10.9)

After substituting Eq (10.9) into Eq. (10.8) and introducing a
notation P(t) = ), D(t) = (S,), and E(t) = = (&%), the

2Note that by inclusion of the damping rates, the Heisenberg equations of motion
account, partially, for quantum fluctuations.



Lorenz—Maxwell Equations

equations of motion (10.8) take the form

%P(t) =T, P(t)+gE(t)D(¢),
9 b = —ry ~ 14D - gPWED),

%E(t) = —kE() + %gP(t), (10.10)

where, we have assumed that the field frequency is resonant with
the atomic transition frequency, w = wy.

These equations are known in literature as the Lorenz-
Maxwell equations. Despite the decorrelation approximation, these
equations are still too complicated to be handled analytically, and
are usually solved by a numerical integration. The decorrelation
converted the infinite set of linear equation into a finite set of
nonlinear equations.

An important property of the equations is that their nonlinear
character can lead to chaotic instabilities (classical chaos) in the
atomic and field dynamics. This is illustrated in Fig. 10.1, where

D(t)

-1 E(t)

Figure 10.1 Three-dimensional plot of the time evolution of the polar-
ization P (t), inversion D(t), and the field amplitude E(t) for g/x = 46,
I'p/k = 0.66 and I'q /k = 0.16. (Figure courtesy Greg Kociuba).
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we plot the time evolution of the atomic and field variables. The
evolution forms attractors display the multi-stability of the atomic
and field variables.

10.4 Langevin Equations

Here we illustrate an approximate technique of solving the Heisen-
berg equations of motion in which we adiabatically eliminate the
field operators a; and 61,1 from the Heisenberg equations of motion,
Egs. (10.3)-(10.5), leaving the analyses of the dynamics to the
atomic operators only. The adiabatic approximation is equivalent to
assume that the field does not change during the evolution, which is
a good approximation when the field is composed of a large number
of modes.

The technique proceeds as follows. In the first step, we solve
approximately the Heisenberg equation of motion for the field
operator di. Note from Eq. (10.5) that the equation of motion for ay
contains no operator products. Therefore, we can formally integrate
the equation to obtain

1 t o
a (t) = a2 (t) + 9k / dt's™ (¢) e 'ttt (10.11)
0
where the first part
a (t) = ax (0) e 't (10.12)

is the free evolution part of the field that is not disturbed by the
atom. The second part of the solution (10.11) is a contribution from
the atom. It is the source field or radiation reaction field of the
atomic dipole and gives a field generated by the emitting atom.

In the next step, we substitute the solution (10.11) into
the equations of motion for the atomic operators. Before doing
this, we introduce few assumptions about the evolution of the
field amplitude that will allow us to perform the integration in
Eq. (10.11). First, we change the time variable under the integral to
T =t—t,giving

1 [ .
a () = a2 (6) + Egk/ dtS™ (t—t)e ™.  (10.13)
0
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There is a atomic operator under the integral and its time evolution
is unknown. Therefore, to remove the operator from the integral we
make an approximation, which in fact is equivalent to the Markov
approximation. In this approximation we assume that the evolution
of the atomic operator is close to a harmonic evolution with the
atomic frequency wy, so that we can write

ST (t—1)~ S (t)el“r, (10.14)
Then, we obtain the following equation for the time evolution of the
field operator

1 o
a (6) = al (6) + Egks— (®) / dr el@o—edt (10.15)
0

Thus, a major simplification has been achieved by the Markov
approximation. The remaining integral can be handled analytically
and, as before in the derivation of the master equation, the integral
can be approximated, in the limit of t — oo, by the zeta function,
Eq. (9.26).

We now substitute the solution for dy (t) into the Heisenberg
equations of motion for S~ and S% we find that the equation of
motion for the atomic operators become

$7(6) = —i (@o + A) S () — %FS‘(t) + 3" 940 S,(0), (10.16)
k
500 = 5T =TS0

1 [ —
5 2o [ OS5 0+a s o). (1017)
k

The last terms on the right-hand side of Egs. (10.16) and (10.17)
depend on the state of the free field. For the vacuum state,
ap (¢)10) = 0, and then the terms vanish. For a coherent field, the
terms give the coherent field amplitude, which will lead to the Rabi
frequency of the field.

The operator equations that we have just derived for S~ (t) and
S, (t) are known in the literature as the quantum Langevin equations
for a two-level atom. The equations are usually written in the form

S7(t) = —i(wo +A)S™ (t) — %FS‘ O+ S, (OF (),

5,0 = 3T TS, S O F @ - 3 F* (0 (0,
(10.18)
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where

F()=) g} (1) (10.19)
k

is called the Langevin operator.

The Langevin equations are commonly used in the study of the
effects of external fields on atoms where higher order statistics are
important as thermal or squeezed fields. For these fields (ax) and
<a,i> are zero and the higher order moments are important.

10.5 Optical Bloch Equations

Optical properties of a coherently driven two-level atom are often
studied in terms of the optical Bloch equations. These equations
are in fact equations of motion for the expectation values of the
atomic spin operators obtained from the Heisenberg equations of
motion averaged over the initial state of the atom and the field. The
equations can be written as

i +y - 1 _ i +

dt<S ) = (ZF 1600) (S™) + Q(8)(S2),

sy = — (Lrgim ) (57) + 20

E< )——(2 +1w0>< ) + Q5(6)(S2),

d _ 1 1 * + -
a<52>——51“—1“<52>—§(9 (B)(S™) + Q(e)(S )). (10.20)

where the interaction of the atom with the multi-mode vacuum field
results in damping of the atomic dipole moment (S*) with rate I'/2
and the atomic population inversion (S,) with rate I". The interaction
of the atom with the driving laser field is determined by the time-
dependent Rabi frequency ().

The optical Bloch equations (10.20) are coupled first-order
differential equations with time-dependent coefficients. In order to
solve the set of the Bloch equations, we have to know explicitly the
time dependence of €2(t). For a monochromatic laser field

Q(t) = Qeilerton), (10.21)

where wy, is the frequency of the laser field and ¢, is its phase. In
this case, one can find a rotating frame in which the coefficients will
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be independent of time. To show this, we introduce new (rotated)
variables for the expectation values of the atomic operators that are
free from the rapid oscillations at optical frequencies

(8% (£)) = (§F)eFilonten), (10.22)

In terms of the new variables, the optical Bloch equations become

d (§ty=- (;F - iaL) (87) +Q(S,),

dt

sy = (Lryis) ) raus

E< )——(2 +1L>( )+ (S,),

4 6= —LrTisy - La (5 + (5

E<SZ> _—Zr ['(S,) 29((5 y+(87)), (10.23)

where 1, = wp — wy, is the detuning of the laser frequency from
the atomic transition frequency wy. Equations (10.23) are first-
order differential equations with time-independent coefficients.
In principle, the equations can be solved analytically by direct
integration, or by the Laplace transformation to an easily solvable
algebraic equations.

We can rewrite Eqgs. (10.23) in terms of components of the atomic
spin vector by introducing a real vector B = ((Sx), (Sy), (Sz)), called
the Bloch vector. The components of the Bloch vector satisfy the
following equations of motion

d 1

E<S"> = —EF(S)A —8L(Sy) + Q(S2),

d S)) = 1F S (S,

E( y)—_E (y)+ L< x);

d 1

71(S = —oT = T(S,) — Q(S). (10.24)

The components (Sy) and (S,) are, respectively, the real and
imaginary parts of the coherence between the atomic levels, and (S;)
is the population inversion. In terms of the components of the Bloch
vector, and in the absence of damping (I" = 0), Eq. (10.24) may be
written as [3, 4]

dB

22 —Qp x B, 10.25
dt B X ( )

where Q5 = (0, 2, é1) is the pseudo-field vector of magnitude
Q2] = (@% +87) V2.
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A<S,>

<S >

<Sx>

Figure 10.2 The Bloch sphere showing the Bloch vector B precessing about
the pseudo-field vector Q5 for the case of an off-resonant driving with

8 # 0.

The solutions of Eq. (10 25) describe the precession of the atomlc
spin vector around the Qp axis. It is clear that the evolution of B
depends on its orientation relative to Q. In general, B precesses
about Qp in such a way that the relatlve angle between the two
vectors remains constant, that is, B precesses in a cone about Qp,
as illustrated in Fig. 10.2. For the resonant driving (61, = 0), the
Bloch vector precesses in the ((Sy), (S;)) plane. For §;, > 0, the
Bloch vector remains almost constant in time and pointing towards
the south pole of the Bloch sphere.

If we prepare the system in a state such that B is initially
parallel or antiparallel to 5, the Bloch vector will stay in this
position forever. This phenomenon is sometimes referred to as spin
locking [60]. Thus, the simple representation of the system in terms
of the Bloch vector provides a useful picture for understanding
dynamics of a driven two-level atom.

10.6 Floquet Method

For non-stationary (time-dependent) fields the expectation values
of the atomic operators can depend on time even in the stationary
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(steady-state) limit. In this section, we illustrate a method of solving
the optical Bloch equations for time-dependent driving fields.

If the driving field is composed of more than one frequency
component, the time dependence of the Rabi frequency 2(t) is quite
complicated and in general can involve many different parameters.
In this case, it is not possible to find a rotating frame in which the
coefficients of the Bloch equations would be time independent. This
renders the problem difficult to solve, except for those cases in which
the time dependence involves only few, two or three, frequencies or
many frequencies separated by a constant detuning.

An example of such fields is a bichromatic field containing two
components of different frequencies

Q)= [ei(me-d)u) + ei(wL2f+¢L2)]
-Q (1 + ei(5t+5¢)) ei(a)th-‘r(bLﬂ, (10.26)
where § = wp — wp is the frequency difference between the
frequency components, and 8¢ = ¢, — Py is the difference between

initial phases of the fields.
Another example is an amplitude-modulated field [58]

Q(t) = Q[1 £ acos(st)], (10.27)
where a = 29,/ is the modulation amplitude, or a phase-
modulated field

Q(t) = Q[1Liacos(st)], (10.28)

where ,, is the Rabi frequency of the modulating (sideband) fields,
and § is the modulation frequency.

The optical Bloch equations with time-dependent (time-
periodic) coefficients are solved by the Floquet method, in which the
atomic dynamics are described in terms of Fourier harmonics of the
expectation values of the atomic spin operators. In this approach, we
make the Fourier decomposition of the expectation values

(o]
Xe@®= > xP®e", k=123, (10.29)
I=—00

where X1 = (§1), X, = (§7), X3 = (S,) and X,((I)(t) are slowly
varying harmonic amplitudes. The Fourier decomposition (10.29)
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shows that the atomic variables will respond at harmonics of the
modulation frequency §, and knowledge of X ,E”[t) gives all the
information about the system evolution.

Let us illustrate the Floquet method for the case of a two-
level atom driven by a bichromatic field. We choose a frame
rotating at frequency w;; and, for simplicity, we assume §; =
0. Hence, substituting Eq. (10.29) into Eq. (10.23) and comparing
coefficients of the same powers in I8, we obtain the following set of
infinite number of coupled first-order differential equations for the
harmonic amplitudes

4 i18> xP+a(xP+x47),

X“) ( r+ i15> xP o (x{ +x{),
1 0

~ T80 = (T +i18) X§

1 _

Lo (xP x4 x0+x8),  (030)

where § = w2 — wy1, and §; ¢ is the Kronecker delta function.

Thus, the Floquet method transforms the three Bloch equa-
tions with time-dependent coefficients into an infinite number
of equations with time-independent coefficients. We can solve
Eq. (10.30) by using the continued fraction technique, or we can
write Eq. (10.30) in a matrix form and solve by matrix inversion. In
both techniques, we have to use truncated basis rather than infinite
basis of the harmonic amplitudes. The validity of the truncation
is ensured by requiring that the solution does not change as the
number of truncated harmonics increases or decreases by one.

Equation (10.30) can be written in the form of a recurrence
relation

d - r -
—XO ) = —=8401
X O =—7d0

—A, XD () = B XUV () — DXV (6), (10.31)
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where I is a column vector with the components [y = I, =0,I3 =1,
and A,, B, and D, are the matrices

(3T +i¢5) 0 -Q
Ay = 0 (3r+ies) -2 |, (1032)
19 32 (D +itd)
00 —Q 000
Bp={00 0 |, D= 00-Q|. (10.33)
0iQ 0 120 0

One method of solving a recurrence relation is to use continued
fractions. However, we choose instead to solve in terms of the
eigenvalues and eigenvectors of the infinite-dimensional (Floquet)
matrix, which we construct by arranging the amplitudes X “)(¢) in
the order

X(li ()
YO=| xO@ |. (10.34)
x=1 )

Equation (10.31) can then be written as the matrix differential
equation

%Y/ ()= KY () + P, (10.35)
where K is an infinite-dimensional tridiagonal (Floquet) matrix
composed of the 3x3 matrices Ay, By and D;, and P is an infinite-
dimensional vector with the non-zero component —%F(SLOI.

The matrix equation (10.35) is a simple differential equation
with time-independent coefficients that can be solved by direct
integration. For an arbitrary initial time ¢, the integration of
Eg. (10.35) leads to the following formal solution for Y (0):

Y () =Y (t) ekt — (1 - e’_“) k-1B. (10.36)

In order to proceed further, we have to truncate the dimension
of the vector Y (¢t). The validity of the truncation is ensured by
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requiring that the solution (10.36) does not change as the dimension
of ¥ (t) increases or decreases by one. Because the determinant of
the finite-dimensional (truncated) matrix K is different from zero,
there exists a complex invertible matrix T which diagonalises K,
and . = T KT is the diagonal matrix of complex eigenvalues. By
introducing L = T~1¥ and R = T 1P, we can rewrite Eq. (10.36) as

L) =L(t) e — (1 —e*) A IR, (10.37)

or, in component form

q
Li(t)=L(t)e" =) (A1), (1=e) Ry, (1038)

j=1

where g is the dimension of the truncated matrix. To obtain
solutions for the components X,-(Z) (£), we determine the eigenvalues
A; and eigenvectors L; (t) by a numerical diagonalization of the
matrix K.

The steady state values of the harmonics X,-(a (¢) can be found
from Eq. (10.38) by taking t — oo, or more directly by setting the
left-hand side of Eq. (10.35) equal to zero. Thus

M=

Yi(o)=—)» (K7'). Py (10.39)

ij
j=1

The quantity X 50] (c0) has an important interpretation in terms of

directly measurable quantities, besides being the stationary energy

expectation value of the atom in units of Aw.

The stationary intensity I, = (E()(R, c0)EM(R, 00)) of
the fluorescence field radiated by the atom and detected by a
photodetector at a point R in the far field zone may be expressed
with help of the commutation relations (2.18) in the form

I, = B +x (oo)} . (10.40)

It follows that the quantity % + Xgo) (o0) is a measure of the light
intensity in the far-field zone.

We now present some numerical calculations that illustrate
the behaviour of the stationary intensity of the fluorescence field.
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Figure 10.3 The stationary fluorescence intensity for a bichromatic driving
field plotted in frame (a) as a function of /I" and constant § = 5T, and in
frame (b) as a function of §/ I" and constant 2 = 20T".

Figure 10.3(a) shows the stationary intensity as a function of €2 for
a fixed §, whereas Fig. 10.3(b) shows the variation of the intensity
with § for a constant Q2. We see that the periodic modulation of
the Rabi frequency introduces new features. The intensity no longer
increases steadily to the saturation value when the Rabi frequency
Q increases, as in the case of the monochromatic driving with a
constant Rabi frequency. The intensity exhibits oscillations at the
harmonics of the modulation frequency §. The intensity is far from
the saturation, Iy = 1/2, when § is large, even when 2 is much larger
than saturating values for the monochromatic driving [59].

171



172

Heisenberg Equations of Motion

Exercises

10.1

10.2

10.3

Consider the Jaynes-Cummings Hamiltonian
. 1 1
A = hay S, + ho (afa + 2) — Sihg (Sta— s-a').

(a) Find the Heisenberg equations of motion for the atomic
and field operators.
(b) Show that in the case of exact resonance (o = wy),
28, + ¢S, + 29*S,N = 0,
where N = S, + ata is a constant of motion, N(t) = N(0).
Equations of motion for average values of the atomic spin
operators ST, S~ and S, of a two-level atom driven by a
coherent laser field are
£(5+> == <1F - iwo) (ST) + Q(S e,
dt 2
i<5—> =— <1r + ia)()) (S§7) + Q(S,)eient
dt 2 ’ ’
d 1

_ — 1T _ _1 +\ —loLt —\ Slopt
dt<Sz>_ ZF I'(S7) 29(<5 e + (S7)e'rh),

where oy, is the laser frequency, wy is the atomic transition
frequency and €2 is the Rabi frequency of the laser field.

(@) Transform the equations of motion to a rotating frame,
where the equations of motion for the transformed
average values of the atomic spin operators have no
explicit time dependence.

(b) Find the time evolution of the average atomic dipole
moment (S (t)) assuming that initially the atom was in
its ground state.

(c) Show that there is a threshold value for the Rabi
frequency 2 above which the dipole moment of the atom
oscillates with three different frequencies: wy, and wy, = 2.
For simplicity, assume that w;, = wy.

Using the results of Exercise 10.2 for the time evolution

of (S*(t)) and (S,(t)), show that in the absence of the

spontaneous emission (I" = 0), the magnitude of the Bloch

vector is conserved, that is, (Sy(£))? + (S, ()% + (S.())* = 1

for all times t.
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10.5

10.6

10.7

10.8

Exercises

Verify, using the results of Exercise 10.2 that in the steady
state (t — oo) the expression for (S,(t)) is of the form of a
Lorentzian centred at §;, = wy — wy, = 0. The expression is
known as the absorption spectrum of the atom or stationary
line shape.
Show that the configurations with the Bloch vector B parallel
or antiparallel to Q g correspond to an excitation of the atom
to particular superposition states of the atomic states |1) and
12).
Show that an arbitrary 2 x 2 matrix M can be written as
M=uyl +u-o,

where ug = 1Tr(M), 4 = ;Tr(M&), I is the 2 x 2 unit matrix
and ¢ = (oy, oy, 0;) are the Pauli matrices.
Using the result of Exercise 10.6, show that the density matrix
of a two-level atom can be written as

p= % (I +B- 8) )
where all information about the state of the atom is contained
in the Bloch vector B.
The most general state of a two-level atom is described by the

density matrix
o= (1011 ,012) ’
P21 P22

where the diagonal matrix elements p11, p22 are populations
of the atomic states and the off-diagonal elements p1,, p21 are
coherences between them.

(a) Diagonalize the density matrix to show that the density
operator can be written in diagonal form

P = Paclet) (el + pgsl B)(BI,
where |a), |8) are the eigenstates and pu., ppgs are
the corresponding eigenvalues (energies) of the density
matrix p.
(b) The diagonal states |«) and |8) are superposition states
that can be written as
la) = cos@|1) + sind e'?|2),
|B) = —sin®|1) + cos O e'?|2).
Find cos 6 in terms of the density matrix elements.
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(c) Show that the state |«) can be written in an alternative
form as

o) = (14 |2I%) "% exp(zSH)(1),

if we choose z = tan 6 exp(i¢).



Chapter 11

Dressed-Atom Model

11.1 Introduction

In this chapter, we present a powerful method of solving the Bloch
equations or the master equation of a driven system called the
dressed-atom model. The method is valid in situations where the
Rabi frequency of the applied driving field is much larger than
the spontaneous emission rate of the atom, & > I'. Under such
conditions, one can make the secular approximation that consists of
dropping terms oscillating in time with frequencies 22 and higher.
These terms, if kept in the master equation, would make corrections
to the dynamics of the system of the order of I'/ €2, and thus are
negligible. Although limited in the range of parameters for which it
can be used, the dressed-atom model provides a physical insight into
the properties and dynamics of the system. Within this model, one
can explicitly calculate energy states and transition rates between
them in a relatively simple way. The knowledge of the energy states
and transition rates is for most of the problems enough to fully
understand the underlying physics. There are two mathematically
different approaches to the dressed-atom model, but giving the same
results, depending on whether we treat the driving field classically
or quantum mechanically. These are the semiclassical and quantum
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dress-atom models. In the following we explain in details these two
dressed-atom models.

11.2 Semiclassical Dressed-Atom Model

First, we illustrate the concept of the semiclassical dressed-atom
model in which the atom is treated as a quantum system composed
of two energy states |1) and |2), but the applied driving field is
treated classically, that is, the field is treated as a c-number not
as an operator. We have encountered this situation in the optical
Bloch equations (10.23), which describe the interaction of a two-
level atom with a classical coherent laser field.

By introducing a complex Bloch vector Y = ((S™), (S7), (S,)), we
can put the optical Bloch equations (10.23) into a matrix form

vy - S
E:AY—FGY—FFF, (11.1)
where A and G are 3 x 3 matrices of the form
i, 0 Q 200
A=| 0 —isoQ|, G=|030], (11.2)
1 1
—5Q—-320 001
and F is a column vector with the components F; = F, = 0,
F3 = —1/2. The matrix G is composed of the damping rates I and

for this reason can be called as a dissipative matrix. The matrix A
is composed of the parameters é;, and 2 that are characteristic of
the driving field. For this reason we can call the matrix as a driving
matrix.

Note that the matrix A is not diagonal in the basis of the
complex components ((ST), (S7), (S,)). We may find a new basis
in which the dynamics of the system would be determined by
diagonal matrices. The new basis is called the semiclassical dressed-
atom basis that determines dynamics between semiclassical dressed
states of the system. The dressed states are found from noting that
the Hamiltonian of the two-level atom driven by a classical field,
which leads to the non-dissipative part of the Bloch equations

. 1
H = hévS, + 59 (S7+57) (11.3)
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is not diagonal in the basis of the atomic states |1) and |2). Diagonal-
ization of the Hamiltonian (11.3) results in the semiclassical dressed
states

|1) = cos¢|1) + sin ¢|2),
|2) = sin¢|1) — cos ¢|2), (11.4)
where cos? ¢ = (1 + 61,/$)/2 with Q@ = (4Q2 + §2)/2 and the angle
¢ defined such that 0 < ¢ < x/2. Let us introduce the raising,
lowering and population difference operators in the dressed-atom

basis
Ryi=12)(1, Riz=11)(2, R3=12)(2| —|1)(I]. (11.5)

Using Eq. (11.4) it is easy to verify that dressed-atom operators
satisfy the commutation relations

[R21, R12] = R3, [R3, Rz1] = 2Rz1, [Rs3, R12] = —2Ry1.
(11.6)

The Hamiltonian and the master equation of a given system written
in terms of the dressed-atom operators are usually simpler in form,
easier to deal with mathematically and to interpret the physics
involved.

11.2.1 Dressing Transformation on the Interaction
Hamiltonian

Let us illustrate the dressing transformation on the interaction
Hamiltonian of the driven two-level atom interacting with a multi-
mode (reservoir) vacuum field, Eq. (9.6). First, we replace the atomic
operators by the dressed-state operators

1
§” =~ sin(2¢)Rs + sin” ¢ Roy — cos” ¢ Ruz,
1
St — —= sin(2¢)Rs + sin? ¢ Rz — cos” ¢ Ry,
S, = —cos(2¢)R3 + sin(2¢) (R12 + Rz21), (11.7)

where R;; = 1) (j| are the dressed-atom dipole operators and Rz =
R77 — R1;1. Then, we make the following unitary transformation

Hiye = exp(i Hot) Hine exp(—i Hot), (11.8)
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with
Ho=QRs+ )Y Asala, (11.9)
A

where A, = w; — wr, and obtain the interaction Hamiltonian
between the dressed atom and the vacuum field

Hipye = ithk (scai R3e'™t 4 c2al Rygel(A 290
Py

—s2a] Rypel(4:+29t _ H.c.) . (11.10)

in which s = sin ¢ and ¢ = cos ¢.

In the dressed-atom picture, the vacuum modes are tuned
to the dressed-state transitions that occur at three characteristic
frequencies, A; and A; 2. If one considers a broadband reservoir
that is characterized by bandwidth much larger than €2, then all
of the reservoir modes couple with the same strengths to the
dressed-atom transition frequencies. However, when the reservoir
field has a finite bandwidth that is much smaller than 2, the
vacuum field modes then couple to the dressed-atom frequencies
with unequal strengths. In this case, spontaneous emission can
be dynamically suppressed by Rabi shifting the atomic transition
away from the reservoir central frequency. In this way, one can
control spontaneous emission from the driven atom by a suitable
matching of the frequencies of the reservoir field to the dressed-
atom frequencies [61].

11.2.2 Master Equation in the Dressed-Atom Basis

Let us now derive, using the Hamiltonian (11.10) given in the
dressed-atom basis, the master equation for the reduced density
operator of the system coupled to a vacuum field reservoir. We
shall assume that the reservoir has a finite bandwidth that is
broad enough for the Markov approximation to be valid but much
smaller than the Rabi frequency of the driving field. On carrying
out this procedure in the dressed-atom basis, it is found that in
the dissipative part of the master equation certain terms are slowly
varying in time while the others are oscillating with frequencies 292
and 4€2. Since we are interested in the case where the Rabi frequency
2 is much larger than the atomic damping rate, 2 > I', we can
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invoke the secular approximation that consists of dropping these
rapidly oscillating terms. These terms, if kept in the master equation,
would make corrections to the dynamics of the system of the order
of I'/ 2, and thus completely negligible. After discarding the rapidly
oscillating terms in the dissipative part of the master equation, the
time evolution of the reduced density operator takes the form

p 1 1
— = =I'o(R3pR3 — p) + =T'_ (R21pR12 — R12R210)
ot 2 2
1
+EF+ (R12pR21 — Ra1R12p) + Hec. (11.11)

The parameters

FO = SZCZF|D((,L)L)|2,
I_ =s'T|D(wr, — 2Q)%,
I, = c'T'|D(wr, + 2Q)1% (11.12)

determine the damping rates between the dressed states of the
system. They also include the frequency-dependent density of
the vacuum modes, which may arise from a finite bandwidth of
the reservoir field. It is represented by the frequency-dependent
function D(w,), which is also known as the transfer function of the
reservoir. The absolute value square of D(w;) can be identified as
the Airy function of a frequency-dependent radiation reservoir. The
coefficient I'y corresponds to spontaneous emission occurring at
two transitions of the dressed atom. One from the dressed state
|1) to the state |1) of the manifold below, and the other from the
dressed state |2) to the state |2) of the manifold below. These
transitions occur at frequency wy,. The coefficient I'; corresponds
to spontaneous emission from the upper dressed state to the lower
dressed state of the manifold below and occurs at frequency wy,+2£2,
whereas the coefficient I'_ corresponds to spontaneous emission
from the lower dressed state to the upper dressed state of the
manifold below and occurs at frequency wr, — 22.

An important feature of the master equation (11.11), derived in
the limit of 2 > T, is that spontaneous transitions occur at three
well-separated frequencies, wr,, o, + 22 and wy, — 2. Thus, each
transition can be considered as a single two-level system, which
makes the master equation simple to solve.
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11.3 Quantum Dressed-Atom Model

We now illustrate the fully quantum-mechanical dressed-atom
model of a driven two-level atom first introduced by Cohen-
Tannoudji® and Reynaud [62, 63]. As we shall see, the quantum
description in which both the atom and field are treated as quantum
systems is more elegant than the semiclassical model that gives a
better insight into the processes involved in the dynamics of the
system. In the quantum description we clearly see the meaning of
dressing. The atoms are dressed in photons of the applied field to
form an effective single-cascade multi-level quantum system.
The fully quantum mechanical Hamiltonian of the system is

A=~H,+7, (11.13)
where

R 1
Hy = haoS, + hor, (a*a + 2) (11.14)

is the non-interacting atom-plus-field Hamiltonian and V is the
interaction (in the rotating wave approximation (RWA)) between the
atom and the laser field

.1
V= Ehg (a's™ +s*a), (11.15)

where the coefficient g describes the strength of the coupling
between the atom and the field.

11.4 Atom-—Field Entangled States

The basis states for the quantum description of the system are the
eigenstates of the non-interacting atom-plus-field Hamiltonian H,
which are the product states of the atomic and the field states

[Yo) = 1i) @ |n) = [i, n), (11.16)

where |i) (i = 1, 2) is an atomic state, and |n) is the photon
number state of the field. We will call the product states (11.16) the
undressed states of the system.

2Claude Cohen-Tannoudji was granted the Nobel prize in 1997 for development of
methods to cool and trap atoms with laser light.
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Figure 11.1 Energy level diagram of undressed states of the system
composed of a two-level atom and a resonant (A = 0) quantum field. The
ground state is a singlet state, whereas the excited (n > 0) states form
doublets of degenerate states separated in frequency by wy.

In the energy level diagram, the undressed states group into
manifolds. The lowest manifold is composed of a single state |1, 0),
and the higher energy manifolds are composed of degenerate (when
A = wr, — wg = 0) or non-degenerate (when A # 0) doublets.
Figure 11.1 shows the energy levels of the undressed states of the
system for the resonant case of A = 0. We see that in the basis of
the undressed states the energy levels form a ladder of degenerate
doublets separated by wy.

The next step in the dressed-atom procedure is to include
the interaction V and find the matrix representation of the total
Hamiltonian of the system in the basis of the undressed states. This
interaction appears as a perturber to the undressed states and we
will analyse the effect of the perturber on the undressed states of the
system. We show the detailed procedure for manifold n composed
two undressed states |1, n) and |2, n — 1). In the state |1, n), the
atom is in the ground state |1), and there are n photons present in
the laser mode. In the state |2, n — 1), the atom is in the excited state
|2), with n — 1 photons present in the laser mode.

We find the matrix representation of the Hamiltonian A in the
basis of the undressed states |1, n) and |2, n — 1). It is easy to show
that in the basis of the undressed states, the matrix elements of bif
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are

N 1
(1, n|H|1, n) = hnwy, + EhA'

. 1
(2,n—1|H|2,n — 1) = hhwy, — EﬁA,

N N 1
(1,n|H|2,n—1)=(2,n—1|H|1, n) = Ehg\/ﬁ. (11.17)
Note that the diagonal elements are determined solely by the free

Hamiltonian ﬁo, whereas the off-diagonal elements are determined
solely by the interaction V.

11.4.1 Resonant Field, A =0

With the matrix elements (11.17) and at A = 0, the Hamiltonian of
the system written in the basis of the undressed states is given by a
2 X 2 matrix
1
=n ( 10 29ﬁ> . (11.18)
29/ nay

The eigenvalues (energies) and eigenstates of A are found by the
diagonalization of the matrix (11.18). From the diagonalization, we
find that the matrix has two non-degenerate eigenvalues

1
EL = hnwy + Ehg\/ﬁ, (11.19)

which indicates that the interaction V lifts the degeneracy and leads
to new non-degenerate states |y,), called the dressed states of the
system, that satisfy the eigenvalue equation

H 1Y) = Ex |ym). (11.20)
Note that the splitting between the states |¢,) depends on n and
increases with n. However, for large n the splitting is almost constant
and we can replace n by (n).
In order to find the explicit form of the eigenvectors (dressed
states) |y,), consider a linear superposition

W) =all,n)+b|2,n—1). (11.21)

For the eigenvalue E,, the eigenvalue equation (11.20) written in a

matrix form
hnwo ihgym\ (a\ _ a
(;hgﬁ finewg p)=E\p) (11.22)
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yields the relation

1 1
hnwya + Ehg\/ﬁb = hnwyb + Ehgﬁa, (11.23)
from which we find that a = b. Hence, we write
W) =a (1L, n)+12,n—1)), (11.24)

where the remaining constant a is found from the normalization,
which gives a = 1/+/2.

Thus, the eigenstate corresponding to the eigenvalue E is of the
form

i) = 7= (1, [2,m = ). (11.25)

Similarly, we find that the eigenstate corresponding to the eigen-
value E_ is of the form
1

1Y) = 7z

The eigenstates |,+) and |¢,_) are called the quantum dressed
states of the system. In other words, the laser field dresses the
atom in photons, and forms along with it a single, entangled
quantum system. Physically, this reflects the fact that photons are
exchanged between the atom and the driving field via absorption
and stimulated emission processes many times between successive
spontaneous emissions by the atom into the vacuum modes.

The dressed states of the system are shown in Fig. 11.2. In the
dressed state representation, the atom and the driving field evolve
as a single system, where the states cannot be written as a product
of the atomic and the field states. Since the dressed states (11.25)
and (11.26) are given in a form of linear superpositions of two
product states with equal amplitudes, we call them maximally
entangled states of the system. Note that the dressed states result
from the presence of off-diagonal terms (coherencies) in the matrix
representation of the Hamiltonian. Thus, the entanglement results
from the presence of the coherence between the atom and the field.

(I11,n) —12,n—-1)). (11.26)

11.4.2 Vacuum Rabi Splitting and AC Stark Effect

The splitting of the first pair (n = 1) of the states is called the
vacuum Rabi splitting. Using the master equation of the driven and
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Figure 11.2 Energy level diagram of the coupled undressed states and
the resulting quantum dressed states of the system. The coupling between
the atom and the field lifts the degeneracy between the undressed states
resulting in two non-degenerate dressed states separated in frequency by
the Rabi frequency 2, = /ng.

spontaneously damped atom, we can find spontaneous dynamics of
the dressed system.

Before going into detailed calculations, we may notice interesting
effects just by looking into the energy structure of the dressed
states. For example, spontaneous transitions from the first pair of
the dressed states to the ground state, n = 1 — n = 0, show
the vacuum Rabi doublet, as illustrated in Fig. 11.3, whereas the
transitions between two neighbouring doublets with n > 1 show
the Mollow triplet, as illustrated in Fig. 11.4. The constant splitting
in the Mollow triplet is equal to the Rabi frequency Q = g./(n). The
splitting of the dressed states by the Rabi frequency 2 is sometimes
called the ac Stark effect.

It is interesting to note that the dressing process reduces
the spontaneous emission rate (decoherence). To show this more
explicitly, recall that the damping rate of an atom is proportional to
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Figure 11.3 Spontaneous transitions from n = 1 doublet to the ground
state |1, 0) that give rise to the vacuum Rabi doublet.
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Figure 11.4 Spontaneous transitions from the manifold n (n > 1) to the
manifold below, n — 1, that give rise to the Mollow triplet. For a large n, the
Rabi frequencies do not vary much with n, so that 2, ~ Q,_; = Q.

the dipole moment between the two atomic levels
Lo ~ |zl (11.27)

where w1z = (1|n]2).
In analogy, the damping rate between the dressed state |1) and
the ground state |1, 0) is proportional to

Ty~ lugol?, (11.28)
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where
1
= 1,0) = —((1,11+ (2,0 1,0
pro = (¥4 |ull, 0) ﬁ(< |+ (2, 0)) ul1, 0)
= L iz = 2 (11.29)
- \/i /“l’ - \/i/""lZ' .
Thus, the damping rate is given by
1
r, = EFG' (11.30)

Similarly, we can show that the damping rate between the dressed
state |1—) and the ground state |1, 0) is given by

1
ro=re. (11.31)

Hence, the damping rates between the n = 1 dressed states and the
ground state is a half of that between the bare atomic levels of an
undriven atom.

11.4.3 Non-resonant Driving, A # 0

We have seen that the dressed states of the system for the exact
resonance, A = wy, — wp = 0, are maximally entangled states. For
a detuned field with A # 0, the diagonalization of the Hamiltonian
(11.13) leads to two non-degenerate eigenvalues

1
Ei = hnwy + h\/m, (11.32)

and corresponding dressed states?

[¥ny) = sin@ |1, n) +cos6 |2, n — 1),
|Yn_) = cos@ |1, n) —sinb |2, n — 1), (11.33)

where
A

24/ A2 + ing?

Itis evident from Eq. (11.33) that for A # 0 the dressed states of the
system are not maximally entangled states, and for A > ./ng, the
states reduce to the product states |2, n — 1) and |1, n). This fact is

1
cos’h = - + (11.34)



Atom—Field Entangled States

-10 -5

0
A

Figure 11.5 Variation of the n = 1 dressed-state frequencies w. with
detuning A around the unperturbed frequency w, for g = 4 (solid lines)
and g = 0 (dashed lines).

simply related to the distinguishability problem of two systems that
for A # 0 one could distinguish between the atom and the field.

Figure 11.5 shows a variation of the dressed-state frequencies
wy = E1/hof the n = 1 eigenvectors with the detuning A around
the unperturbed energy w,. We see a crossing of the energy levels
in the absence of the coupling at A = 0, and the appearance of the
avoided crossing effect when g # 0.

Perhaps the most interesting aspects of the non-maximally
entangled dressed states relate to their imbalanced populations.
Detailed calculation of the populations of the dressed states of a
detuned field is left as an exercise, see Exercise 11.6. The imbalanced
populations result in a population inversion between dressed states
of two neighbouring manifolds. This implies that a field coupled to
the system can be amplified if tuned to resonance with the dressed
states for which there exists the population inversion. If the field is
a cavity field, one can obtain a lasing action [64]. Since there is no
population inversion between the upper |2) and lower |1) atomic
bare states, one obtains lasing without population inversion [65].

2Details of the derivation of the eigenvalues and the corresponding eigenvectors
(dressed states) for a detuned field are left for the reader as a tutorial exercise.
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Figure 11.6 Dressed states of a two-level atom driven by an off-
resonant strong laser field. The dressed states of each doubled have
imbalanced populations, which is indicated by different thicknesses of
the lines representing the states. Inverted one-photon transition occurs at
frequency wr, + 2 (short dashed line), and two-photon transition occurs at
frequency wr, + 2/2 (long dashed line).

It has also been predicted and demonstrated experimentally that
a two-photon lasing can be realized between dressed states of two
manifolds separated in frequency by 2w;, for which a population
inversion exists [66, 67]. Figure 11.6 shows dressed states of a two-
level atom driven by an off-resonant (A # 0) strong laser field (n >
1). The energy difference between two dressed states within each
manifold is constant and equal to the Rabi frequency 2 of the driving
field. The lines representing the dressed states have thicknesses that
indicate their populations. One-photon population inversion exists
at frequency wy, + €2, and two-photon inversion exists at frequency
or, + /2.



Exercises

11.5 Summary

Let us summarize this chapter by listing the successful steps in an
application of the dressed-atom technique:

(1)

(2)
(3)
(4)

(5)

(6)

Consider the fully quantum version of the Hamiltonian of a given
system in which both the atomic system and the driving field are
quantized.

Write the Hamiltonian in a matrix form using as the basis
product states of the atomic and field (photon number) states.
Diagonalise the matrix using the standard diagonalization
techniques.

The eigenvectors of the matrix are the dressed states of the
system, and the corresponding eigenvalues are the energies of
the dressed states. In general, the dressed states group into
manifolds.

Draw the dressed states of two neighbouring manifolds, n and
n—1orn+ 1and n, and calculate dipole moments between the
dressed states. If the atomic system has no permanent dipole
moments, non-vanishing matrix elements of the atomic dipole
moment operator occur only between neighbouring manifolds.
The dressed-atom method is most useful when the energy dif-
ference between the dressed states of a given manifold are large
compared to the damping rates of the bare atomic transitions. It
is then possible to make the secular approximation in which we
neglect coupling between diagonal and off-diagonal elements of
the density matrix of the system.

Further discussion of the dressed-atom technique is left to the
exercises.

Exercises

11.1 Show that dressed states of a two-level atom driven by a

detuned laser field are not maximally entangled states.

11.2 Calculate damping rates between dressed states of a two-level

atom driven by a detuned laser field.
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11.3

114

11.5

11.6

(a) How the damping rates vary with the detuning?
(b) What are the values of the damping rates for A — £o00?

Calculate dressed states of a three-level atom in the vee
configuration with two non-degenerate transitions |1) — |2)
and |3) — |2) driven by a single laser field of frequency
w;, = (w1 + w2)/2, where w; and w, are the frequencies of
the |1) — |2) and |3) — |2) transitions, respectively.
Calculate dressed states of a three-level atom in the vee
configuration with two non-degenerate transitions |1) — |2)
and |3) — |2) driven by two lasers each coupled to only
one of the atomic transitions. Assume that the lasers are
on resonance with the atomic transitions to which they are
coupled.

Using equations of motion for the expectation values of the
spin operators S*, S”and S of a two-level atom driven by a
coherent laser field

(@) Find the expectation values of the atomic dipole mo-
ments (S*) and the atomic inversion (S,) in the steady-
state limit (¢ — o0).

(b) Show that the magnitude of the average dipole moment is
maximal for Q@ = I'/+/2.

(c) Are the spin oscillations coherent? Comment on the re-
sult.

(d) Find for what values of 2 the x-component of the atomic
spin (Sy) is squeezed?

Using the results of Exercise 11.5 for the steady-state solutions
for the atomic dipole moments (S*) and the atomic inversion
(S,), show that

(@) (S;) < 0O for any values of the parameters involved, that
in the bare states basis, there is no population inversion
between the upper |2) and lower |1) atomic states.

(b) Find the populations of the dressed-states to show that
even there is no population inversion in the bare state
basis, there can be a population inversion between the
dressed states. Under which condition, the population can
be inverted between the dressed states?
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11.7 Consider a two-level atom with no permanent dipole moments
and driven by a resonant single-mode laser field.

(@) Show that the induced dipole moments are different from
zero only between dressed states of two neighbouring
manifolds.

(b) There are four possible dipole transitions between
dressed states of two neighbouring manifolds. Which
pairs of the possible transitions can produce interference
fringes in the emitted field?






Chapter 12

Fokker—Planck Equation

12.1 Introduction

In Chapter 9, we derived the master equation for a reduced density
operator of a two-level atom coupled to a multi-mode vacuum field.
We have seen that the master equation is an operator type equation
that, in general, is not easy to solve. We have illustrated the solution
of the master equation by representing the density operator in
the basis of the two states of the two-level atom. The purpose of
the representation of the master equation was to obtain c-number
differential equations that are equivalent to the operator equations,
but are more readily soluble.

In this chapter, we continue the presentation of approaches
to solve problems described by the density operator using as an
example the master equation of a harmonic oscillator interacting
with a broadband thermal reservoir. As we shall see, with the theory
of the photon number and the coherent state P representations
developed earlier in this book, it is possible to transform the
master equation into c-number differential equations. First, we
will consider the photon number representation of the density
operator and show that the master equation can be transformed
into a hierarchy of first-order differential equations that can be
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solved by the standard mathematical methods. Next, we will discuss
the coherent state representation, P representation, that transforms
the master equation into a c-number differential equation called
the Fokker-Planck equation (FPE). We then show how the equation
can be viewed as a stochastic equation that, for specific initial
conditions, can be solved analytically by a direct integration. The
latter part of the chapter illustrates the technique of solving
the FPE when direct solutions are not possible. This technique
involves stochastic differential equations (SDE) approach and will be
illustrated on two examples of typical problems in quantum optics:
(i) single-cavity mode driven by a classical coherent field and (ii)
effect of two-photon losses on the driven cavity mode. Thus, the
reader will have an opportunity to study applications of stochastic
methods to quantum optics problems.

12.2 Master Equation of a Harmonic Oscillator

Consider a simple one-mode harmonic oscillator interacting with a
multi-mode field (reservoir), whose modes are in vacuum thermal
states. An understanding of the dynamics of such system is of great
use in quantum optics since, in principle at least, all problems
involving bosonic fields can be represented in terms of the harmonic
oscillator.

The interaction Hamiltonian of a single-mode harmonic oscilla-
tor and a vacuum thermal field is given by

1 ” »
b= —Eih;gk [aTbk () — ab} (8], (12.1)

where @ and a' are the annihilation and creation operators of the
single-mode harmonic oscillator, and Bk and B,t are the annihilation
and creation operators of the multi-mode vacuum field.

The thermal state of the reservoir is characterized by the
following correlation functions

(b ()b (£)) = (1 + N) s (¢ =) ,
(b () bie (¢)) = Nowes (¢ —¢), (12.2)

where N is the number of photons in the thermal modes.
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Assuming that the reservoir is a broadband thermal field
(Markovian), and after tracing with respect to the reservoir field, the
master equation of the density operator of the system can be written
as

%p = —iwg [a'a, p] — %r (1+ N) (a'ap + pa'a — 2apa')

—%FN (aa'p + paa' — 2atpa), (12.3)
where I' is the damping (pumping) rate of the harmonic oscillator.
The first term in the above equation leads to the coherent (Hamil-
tonian) evolution, while the other two terms lead to dissipation
of the evolution. The dissipation is enhanced by the presence of
thermal photons in the reservoir.

12.3 Photon Number Representation

In many practical problems involving single-mode fields, such us
a cavity field, the photon number representation is very useful in
finding the density operator of the field. Here, we illustrate the
application of the photon number representation to the evolution
of the single-mode harmonic oscillator. In the photon number
representation, the density operator of the harmonic oscillator can
be written as

P = pumln)(ml. (12.4)

Using this representation, the master equation (12.3) takes the form

9 ot t
D 5 Pamin)(ml = —iwo Y (a'aln)(m| — n)(m|a'a) pum

mn

r
—5 1+ N) > pum (@'aln)(m| + n)(ml|a‘a — 2aln)(m|a’)

r
—ENanm (aa'|n)(m| + |n)(mlaa’ — 2a'|n)(m|a). (12.5)
mn
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After carrying out the operations of the creation and annihilation
operators on the number states, we get

> %pnm|n><m| = —iwy mz (n — m) pum|n) (m|

mn

r
—5 L+ M) pun (nln) | 4 min) (|

—2/nmin — 1)(m — 1|)

r
—5 N pun| (1) ) ml + (m+ 1) In) (m|

—2/(n+ D(m~+ Dln+ 1)(m + 1|}. (12.6)

Now, by comparing the coefficients standing at the same |n)(n|, we
find that the density matrix elements satisfy the following equation
of motion

d .
Epnm = —lwg (7’1 - m) Pnm

2+ N [0 m) pun— 20/ ) G D]

r
_EN [(n +m+2) ppm — 2+ nmpnflmfl} . (12.7)

This differential equation for the density matrix elements gives an
infinite hierarchy of differential (c-number) equations. Note that in
this simple case, the equations of motion for the off-diagonal (n #
m) matrix elements are decoupled from the equations of motion for
the diagonal (n = m) matrix elements. This decoupling significantly
simplifies the solution of the system of the differential equations.

Example 12.1 (Steady-state solution for the diagonal matrix
elements) Let us solve the set of the differential equations (12.7)
for the diagonal matrix elements. The diagonal elements p,, represent
populations of the number states. Thus, pp, given in function of n is the
probability distribution of the population among the number states.
The diagonal elements satisfy the following equations of motion

0
&pnn = —T (14 N)[npan — (n + 1) pusint1]
-I'N [(I’l + 1) Pnn — nlonflnfl] . (128)
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Consider the steady-state population distribution for which % onn = 0.
In this case, we can find the exact expression for P, = pu,. Forn = 0,
we get from Eq. (12.8)

0=—-NPy+(1+N) Py, (12.9)
from which we find
p=-N _p (12.10)
YT1eNT” '

Forn =1, Eq. (12.8) yields

0=NPy—(1+3N)P1+2(1+ N) Py, (12.11)
from which we find
N2
P, = mPo. (12.12)
Finally, by iteration, we find
N (12.13)

P,=——P,,
"Ta+ N
where Py can be found from the normalization Py = 1/(1+ N), which
gives
Nn
- (1 + N)n+1 *
Thus, the distribution of photons is a thermal distribution, as one could
expect.

(12.14)

n

Hence, in the steady state (thermal equilibrium), the density
operator of the harmonic oscillator can be written as

n

N
p=>_ Pyln)(n|=>_ oy el (12.15)

It is interesting to find the stationary density operator of the
harmonic oscillator in the coherent state representation when
we know the photon number representation. We can find P(«)
from Eq. (7.52)

Pla) ="

o2
> /dzﬂ (Bl p|B) el e b —F, (12.16)

T
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Using the number state representation of the coherent state |8)
and Eq. (12.14), we obtain

*m ok
(Blolp) = Z s N),,+1 Z P ﬂ - ml n) (n] kye A"
N" Iﬂl _1812
R
_ ! Nl o IBP
_1+N;<1+N) n®

1 1B
= — - . 12.17
1+ N8P ( 1+ N (12.17)
Substituting Eq. (12.17) into Eq. (12.16), and performing the
integration, we obtain

ot |?

P(a) = 1N exp (_N) . (12.18)

Thus, P («) obeys the Gaussian distribution. The probability
distribution function may be regarded as a statistical distribution
superposed by a large number of electromagnetic (EM) modes of
random phases.

In the following subsection, we will show how to find the
probability distribution function P («) from the master equation of
the density operator of the harmonic oscillator in the coherent state
representation (FPE).

12.4 P Representation: Fokker—Planck Equation

We now turn to a consideration of the coherent state, or P
representation of the master equation [68]. We will illustrate the
major steps of the derivation of the FPE on a simplified master
equation with N = 0, and next will extend the derivation to the case
of N # 0. The reader wishing to pursue the theory of the FPE further
is referred to the book by Carmichael [69].

Suppose, there exists a time-dependent P distribution P (e, t).
Then, using the P representation for the density operator of the
harmonic oscillator

= /dzaP (o) ) (], (12.19)
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we can transform the master equation, with N = 0, into an integro-
differential equation

/dza%P (o, t) )| = /dZaP (o, t)
x {—iwy (a'ala)(a| — |a)(«la’a)
...
-5 (aaja) ] + o)
x (ala'a — 2ale)(wla’)}.  (12.20)

We now perform the action of the annihilation and creation
operators on the coherent state using the following relations

i (o +3%)
alaloyal =a | o™+ — | la){a],
oo

ATA ) ( 8 )
o) (la’a = o o) {er],
da*
ale)(@la’ = |af*|a)(al. (12.21)

Before we go further with the derivation of the FPE, we stop for a
moment to prove the relations (12.21). In fact, in order to prove the
above relations, it is enough to show that

. 0
a'la)(a| = (oz* + ) |y (). (12.22)
o
Proof. First, we will show that
1 |
afe) = [ Za* + — | o). (12.23)
2 Jo

In the photon number representation, we can write

s n n
A1) — e 2 N Y Aty = e dler g2V EL
a'la) =e 2 E —a'n)=e"2 E — — —|n+1)
«/n! o V/n!

Ll (I’I+1)Ol
- Z = +1)' n+1)

n+1

2 0
— a3l %
- Z /(n + 1 +1)|
1,2 0 > C( 2 0 >
— ol — —5\‘1\ i
—e 80[,;@ =e o z::f k). (12.24)
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However,
0 2
_ 9 Al
8a| e 2 Zf
1 d e a
_ _ = e 9
= 205 “lay +e72 aagmM). (12.25)
Thus,
1 d
afle) = [ Za* + — | o), (12.26)
2 oo
and then
N 1 B
atle) (o = | =a* + — ) |@)| («l. (12.27)
2 oo
Since
0 0 0
—layal = | —la) | (| + |a) —{«], (12.28)
oo o oo
and

] d [ 1= (@) 1
i - 7l E 7 — %
da of = o (e — J/n! (n|> - (o, (12:29)

we finally obtain

a'la) (] = %a*IOt)(OtI + % (o) {e]) — IW)%WI
= <a* + 8) la) (], (12.30)
oo
as required. O

Using Eq. (12.21), the master equation simplifies to

2 0 _ 2 . i_ % d
/d aaP(a, t) |o) (o] —/d aP (o, t){ iwg (aaa o Ba*>

1F 9 + o 9 lo) (] p. (12.31)
—TI lao— 4+« a){a
2 oo da*

The partial derivatives that act to the right on |«¢)(x| can be
transferred to the distribution P (e, t) by integrating by parts. Since
P («, t) vanishes at +o0o the integration by parts gives

/dzotP (o, ) x (a|a)(o¢|> = —/dzot (aaP (e, t)> lo) {
da Ja

(12.32)
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Finally, we get

a 1 a 1 0
—P(e, )= || =T +iwo) — I —i —a*|P (o, B).
o (o, ) [(2 +1a)0> Baa+(2 1w0> ol ] (o, 8)
(12.33)
This is the FPE for the damped harmonic oscillator in the P
representation. It contains only the first derivative terms.
We now assume that the reservoir is in a thermal state. In this

case the master equation of the density operator of the harmonic
oscillator is of the form

d 1

5P = e la'a, p] — ST +N) (atap + pa'a — 2apa’)
1 AAT AA-I— A-I— A

_EFN (aa'p + paa® — 2a'pa) . (12.34)

The extra term introduced by N will produce the second-order
derivative in the FPE:

alla)(ala = (a +a*> ( 9 +a) la) (], (12.35)
o da*

which results in the FPE of the form
0 1 0 1 0
—P, )= (=T +iwy) — T —i *
ol @8 {(2 +'w°> aa“+<2 'w°> dar

i } P(a, 0). (12.36)

N dada*
The proofis left to the reader as an exercise.

Thus, the master equation for the system density operator p can
be transformed into a FPE describing the evolution of the quasi-
probability distribution function. The FPEs generally do not have
exact solutions, except for linear cases or one-dimensional systems.
Despite this, an approximate solution can often be found, especially
in cases where nonlinear effects do not arise.

12.5 Drift and Diffusion Coefficients

The FPE, which is the equation of motion for the P distribution is
often called the phase space equation of motion for the damped
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harmonic oscillator. This equation can be written as

ad a 1 92
EP(XI" Xj, t) = _axiA(Xi)+§mD(Xi’ Xj) P(X,', Xj, t),

(12.37)

where x1 = «, x, = «*, and

1 1
A1=—<2F+1w0) a, A2=—(2F—1w0> Ol*,

Dyz = 2T'N. (12.38)

The first derivative term determines the deterministic motion and
is called the drift term. The second derivative term will cause a
broadening (narrowing) or diffusion of P (e, t) and is called the
diffusion term.

In order to show more explicitly that A and D are drift and
diffusion coefficients, respectively, we consider the one-dimensional
FPE with the variable x and calculate the average value and variance
of x, defined as

x(t)) = /oo dxxP (x,t),
ol (8) = (x*(8) — (x(8))%, (12.39)
with
(x*(8)) = /oo dx x?P (x, t), (12.40)

where P (x, t) is given by the one-dimensional FPE

2

9 9 19
S P = {—MA(X)—F ZaxzD(X):| P(x 0. (12.41)

Consider equations of motion for (x(t)) and o2 (¢):

(x(t)) = %/00 dxxP (x,t) = /00 dxx%P (x,t)

00 9 1 00 32
= — —(AP = —(DP). (1242
/_oodxxax( )—I—Z/_ocdxxaxz( ) )

Integrating by parts, and assuming that P and its derivatives vanish
sufficiently fast at infinity, we obtain

(x(8)) = /jc dxAP = (A(x)). (12.43)

o0
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Similarly,

<x2.(t)> = —/OO dxxza%(AP) + % /oo dx x* —(DP)

=2 <X:40<(>X)> + (D(x)) . - (12.44)
Hence,
(oz) =2 (xA(x)) — 2 (x) (A(x)) + (D(x)). (12.45)

If the FPE is linear, with A(x) = Ax and D(x) = D, where A and D
are constant, the equations of motion for (x) and o> become

(%) = A(x),
2= 240%+ D. (12.46)

The solutions of the above equations are
(x(8)) = (x(0)) e**
D
o?(t) = 0% (0) et — (ZA) (1—e*4). (12.47)

The meaning of the coefficients A and D is now clear. The coefficient
A determines the motion of the average. Since the maximum of
the distribution P coincidences with the average, the coefficient
A determines motion (drift) of the distribution. The coefficient D
broadens the distribution. For example, for D > 0 and A < 0 the
initial distribution o2(0) increases in time, thus D acts as a source of
fluctuations and, therefore, is called the diffusion term or fluctuation
term.

12.6 Solution of the Fokker—Planck Equation

The linear multi-dimensional FPE, Eq. (12.36), is complicated and
cannot be solved analytically with an arbitrary initial conditions.
However, the FPE can be solved analytically for some specific initial
conditions and in this section, we show that the analytical solution
is possible with the initial condition that at ¢ = 0 the harmonic
oscillator was in a coherent state |«g), for which

P (a, 0) = 8% (a — ag). (12.48)
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Before trying to solve the FPE, we first simplify the FPE by
transforming the variables « and «* into a frame rotating at
frequency wy:
& = ael®t, a* = afe oot (12.49)
and
P@t)y=P(at). (12.50)

With this transformation, we have
0 - oP 9P 8£ oP dua*

ot. ~ ot T aa ot T oar ot

P 0P . OP
= — —iwg|la— —«a
oo da*

ot
opP d d

=— —iwg | —a — a* | P. (12.51)
ot o da*

Substituting this into the FPE, and employing the results
d d oa 0 it
7 T alo
da  0& da O ’
9 d Ja* 9
= 2% _ 9 et (12.52)
dor* ao* da*  oa*

we obtain

. r/ao 0 02 -

—P@ )= |- | -—=a & I'N P(a, t). (12.53
el @0 [2 <a&a+ 9a+" ) + a&aa*} @8. (12.53)
We now change the variables from & and &@* to their real and
imaginary parts

a=x+1iy, a*=x—1iy, (12.54)
and obtain
a . 1/9 d
%azi (axx—l-ayy),
Y
oo+ 2 \ ox ay
02 1/ 9° 02

Substituting Eq. (12.55) into Eq. (12.53), we obtain the following
FPE
313(x yt)= [F (ax+8y) +”V<82+82ﬂ P(x,y,0)
ac 7 2\ox" ay 4 \ 9x2  9y? A
(12.56)



Solution of the Fokker—Planck Equation

Since the terms dependent on x and y are separated from each other,
we look for a solution of the equation of the form

Px,y, ) =X(x, )Y (y, t). (12.57)

From Eq. (12.56), we see that the functions X and Y satisfy the
independent equations

9 rs TN
Ix=(z2xs 2% )x, 12.58
ot (2 x T 8x2> (12.58)
9 rao I'N 92
Ty (z2y+ =)y (12.59)
ot 20y” " 4 oy

The right-hand sides of these equations contain first- and second-
order derivatives. We can simplify these to a equation containing
only first-order derivatives by taking Fourier transform on both
sides of the equations. Let

F (u, t) :/ dxX (x, t) e, (12.60)
—0o0
then
oF o0 0 .
— = / dx—X (x, t) e
ot o Ot
r [« ad : N [*  3°X .
= —/ dx | —xX e”“‘+—/ dx——e™". (12.61)
2 J o ax 4 J_  0x?

Integrating by parts and assuming that X and its derivatives vanish
sufficiently fast at infinity, we obtain

oF __(L,2 +FNu2 F (12.62)
ot 2 du 4 ' '

We will solve Eq. (12.62) by the method of characteristics. The
subsidiary (characteristic) equation is
dt  du dF

1 @/2u_ (TN/Au’F (12.63)

r
u exp _Et = const,,

N
F exp (4u2) = const. (12.64)

Its solutions are
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Thus, F must have the general form
F(ut)=d (ue’%t> e ¥, (12.65)

where @ is an arbitrary function. We find & from the initial
conditions that

F(u,0) = / dxX (x, 0) e'X¥

o0
= / dxe™ s (x — xq) = e'*0Y, (12.66)
which gives
@ (u) = eMuer?, (12.67)

Hence,
: -Tt N , Tt
F (u, t) = exp [Ixoue 2 } exp | —u (1—e")|. (12.68)
Taking the inverse Fourier transform, we get

1 o0 )
X(x,t)= E/ duF (u, t)e "™

0]

o\ 2
1 (X - Xoe_7t>

= —— eX _—
VaN([1—eTH P N(1-eTH

Equation (12.59) for Y (y, t) can be solved in the similar fashion, and

(12.69)

then
P(x,y t)= !
Y= N = e
r 2 r 2
o=t + )
, 12.70
* eXp N(—eT9 (12.70)
or in terms of & and «*:
2
’(x — aoe’%te’i“"’t
Pla,t) = ————e 12.71
(8= N T =T &P N(l—eTo (12.71)

Thus, P (e, t) is a two-dimensional Gaussian distribution. For t —
0o, the distribution reduces to its steady-state value
1 w2

Pla)= e 7, (12.72)
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which is the same we have obtained before using the photon number
distribution (see Eq. (12.18)).

For t = 0 the distribution is a delta function, the width of the
distribution increases with time and reaches the value N for t — oo.

We have seen in the above example, that a linear FPE can be
solved analytically even when it is multi-dimensional. Nonlinear
FPEs are difficult to solve analytically, but the one-dimensional case
can be easily solved in the steady state. To illustrate this, consider
the one-dimensional FPE, which in the steady state can be written
as

d 1d
- (—A(x)Pss(x) + ZdXD(x)Pss(x)> 0. (1273)

Integrating over x, we get the first-order differential equation
d
= (D(x) Pss(x)) = 2A(x) Pss(x) + const. (12.74)
X

Since Pgs(x) and (d/dx) Pss(x) vanish at infinity, the constant is zero.
Therefore, we get

! AX)
md (D(x) Pss(x)) = ZW (12.75)
Its solution is
A(x)
Py(x) = /\/D( e (Z/dx D(X)), (12.76)

where A is a normalization constant.
In summary, we point out that the analytical solution (12.76) is
valid for any form of A(x) and D(x).

12.7 Stochastic Differential Equations

We have shown that in the special case of initial coherent state, a
direct solution of the multi-dimensional FPE can be found. In cases,
where direct solutions are not possible, one can alternatively employ
the SDE approach [70]. This approach is based on the fact that for a
FPE with positive diffusion matrix, there exists a set of equivalent
SDE. The positive defined diffusion matrix D;; («) can always be
factorized into the form

Dij (@) = Bjj («) B} (). (12.77)
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Then, according to the Ito rule, a set of SDE equivalent to the FPE can
be written in the following (Ito) form

da - o o

i —A@)+B@)y (1), (12.78)
where @ is a column vector (ay,..., ay, af, ..., ay), and 1} is a
column vector. Its components ; (t) are real independent Gaussian
white noise terms with zero mean value (y; (t)) = 0 and delta-§
correlated in time

(Wi (D) Y, (t“)) = §;;6 (t—t’). (12.79)

The above SDE can be treated using direct numerical simulation
techniques or analytical methods.

Example 12.2 (Single-cavity mode driven by a classical coherent
field) Consider the simplest and the most well-known example in
quantum optics of a single mode cavity driven by a classical coherent
laser field coupled to the external environment.

The dynamics of the cavity mode are represented by the master

equation
0 ion 1 At A Ata A At
4= [Hys, p] — EF (atap + pa'a — 2apa'), (12.80)

where T is the damping rate of the cavity mode resulting from the
coupling of the cavity into the environment (reservoir), and I:ISyS is the
system Hamiltonian of the form

Ay = hwa'a + ik (Ee7'rat — E*e'rta),  (12.81)
where E is the amplitude (Rabi frequency) and wy, is the angular (or
carrier) frequency of the driving field, respectively.

The master equation contains time-dependent coefficient, and it is
straightforward to transform the equation into a type interaction pic-

ture (rotating frame) in which the coefficients are time independent.
This can be done introducing a Hamiltonian

Hy = hopata, (12.82)
and the transformed density operator p = exp(—iHot/h)p
exp(i Hot/ 1), giving master equation of the interaction picture

0

ap = [-ind'a+ Ea'—E*a, p| - %F(&T&ﬁ + pa‘a —2apat),

(12.83)
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where A = w — wy, is the detuning between the cavity mode and the
laser frequency. In practical terms, the detuning must be much smaller
that the cavity mode spacing for the single-mode approximation to be
applicable.

Next step of the calculations is to transform the master equation
(12.83) into a FPE for the P function, giving the result

O p L2 (Iryia E
e @0 ={g; |(gr+ia)e-s]

3 /1
oo [(Zr - iA> ot — E] } P(a, t). (12.84)

The FPE can be transformed using the Ito rule to obtain the
corresponding stochastic equations. In the case considered here,
however, since there is no diffusion term, there is no noise term. Hence,
the SDE are of the form
do
dt

1

do* 1
=—(=C—iA|a*+ E*. 12.85
dt (2 : ) o (12.85)
The steady-state solution of Egs. (12.85) is

E
I — 12.86
T Ir+ia) (12.86)

and using the operator correspondences, this results in

T (Ar+ia)’

As a consequence, the intra-cavity photon number is given by
2
EZ
= . 12.88
iT + A2 ( )

(12.87)

E
1 .
(T +iA)
This demonstrates the usual, expected classical behaviour of a Fabry-

Perot interferometer, that the intensity of the cavity field has a peak at
the cavity resonance frequency, with a Lorentzian line-shape.

(a'ay =

The equations of motion for &« and «* are not coupled to each
other, thus can be solved exactly for an arbitrary time t by a simple
integration, giving the result

t
a(t) = a(0)e~ (i) L g / dte~(Gr+ia)e=0 (12.89)
0
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Equation (12.89) shows that «(t) is a deterministic quantity, so that
(@")y = («¢"(t)) = «"(t). This means that operators moments simply
factorize to result in

(@Hma") = (@)™ (@@)") = (" ()" (@(®)"
= (a")™(@a)". (12.90)

The above relation is only true for coherent states, and can even be
used as alternative definition of the coherent states. Therefore, the
coherently driven and damped cavity preserves the coherence, so
that the cavity field is always in the coherent state. This preservation
of coherence under damping is one of the remarkable properties
of coherent states, that have made them a very universal and basic
entity of laser physics.

However, the coherence is not preserved if a nonlinear cavity
damping is included. We will illustrate it in the next example, where
we will include a two-photon damping of the cavity mode. Similar
conclusions can be obtained with one-photon damping.

Example 12.3 (Effect of two-photon losses on the driven cavity
mode) Suppose, apart from the ordinary damping, considered in the
Example 12.2, the cavity mode is also damped by two-photon losses, for
example, due to a two-photon absorption. Then, the master equation
of the system can be written as

a ia

1., ata oA
5P =7 [Hys, o] — EF (a'ap + pata — 2apat)
1
—5K (aa*p + pa't?a® — 2a°pa'?), (12.91)

where « is the two-photon loss coefficient, and Iflsys is given in
Eq. (12.81). Following the standard procedure, we first transform the
master equation to an interaction picture and next into a FPE, which
is of the form

aP( t) 9 1F+iA +kaa* — E
—P (o, t) = — — o+ koo —
Jat o 2

0 1
+ T —iA ) o* + ka™®a — E*
Ja* 2
1 92 s 19
*20a2 (K F 550

(—m*z)} P (o, t). (12.92)
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Using the Ito rule, we turn the FPE into the following SDE

do 1 . 2
Pl El“+1A a —ka“a* + E 4+ By (t),

do* 1
LA (zr _ iA) o — kaa + E* + Byya(t),  (12.93)

where V;(t) are independent Gaussian noise terms with zero means
and the following non-zero correlations

1@y (t) =68(t—-1),
(Y2 (Y2 (Y)) =68 (t—t). (12.94)

The parameters Byy and By, appearing in Eq. (12.93), are the
diagonal matrix elements of the matrix B, which can be found from
the diffusion matrix D(D = BBT):

—ka? 0
D= ( 0 —Ka*2> . (12.95)
Then, the matrix B is of the form:
ivka 0
B = . 12.
( 0 —iﬁa*) (12.96)

However, there is a problem with the equations (12.93). Since {1
and vr, are independent stochastic processes, the equation of motion
for o* is not the complex conjugate of . This example allows us to
understand why we have to employ the positive P representation
in this type of problems rather than the Glauber-Sudarshan P
representation.

If we use the positive P representation, the FPE becomes

3P( t) = DN irfin)atratp—E
el @B =5, |\ g TiA Jatwep

J 1 : * *2 *
0B {<2F—1A)a + kp ot—E]

1 82 1 82 *2
*25a (4 g BT [P0,
(12.97)

from which, we find the following Ito SDE

da

1
i <2F +iA) o — ka’B* + E +ivkay(t),

df: =— (;r — iA) B* — kB a4+ E* —i/kB Yo (). (12.98)
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Hence, we see that employing the positive P representation resolves
the problem since B* is independent of «.

Exercises

12.1

12.2

12.3

12.4

Using the general formalism for the derivation of the master
equation in the Born-Markov approximations (Chapter 9),
derive the master equation for the density operator of the
harmonic oscillator coupled to a broadband thermal reservoir

%,0 = —iwo [a'a, p| — %ru + N)(a'ap + pa'a — 2apat)

1
—EFN(&&T,D + paa’ — 24’ pa),

where N is the number of photons in the reservoir modes.
Consider the master equation for the density operator of the
harmonic oscillator in a thermal reservoir derived in Exercise
12.1.

(a) What is the physical interpretation of the terms in the
master equation? Give a graphical sketch of the processes
involved.

(b) Calculate the diagonal elements of the density operator,
pnn, Which give the probability of finding n photons in the
harmonic oscillator mode.

(c) Whatis the condition for the steady state? Find the photon
number distribution in this case.

Calculate the time evolution of a coherent state of the
harmonic oscillator, p(0) = |«) (x|, when the oscillator evolves
in a zero-temperature (T = 0) reservoir.

Show that the master equation of the density operator of the
harmonic oscillator in a thermal reservoir can be converted
into the FPE of the form

5 - { (T sron) Lat (A o) L
gt TN T ) 5 YT 2 T e

2
}P(oz, t).

I'N
+ doda*




Chapter 13

Quantum Trajectory Theory

13.1 Introduction

We have already introduced major techniques used in quantum
optics to solve various problems. Those techniques involve either in-
tegrating differential equations or transforming the master equation
into c-number differential equations. But, there is yet another way to
solve problems in quantum optics, in particular those involving non-
Markovian systems, a powerful procedure based on the statistical
and photodetection theories.

Most quantum optical systems are open quantum systems, that
is, are systems that interact with their surroundings via energy
exchange. Hence, one may resort to approximate perturbation
techniques to analyse these interactions. On the other hand, the
master equation approach describes the behaviour of statistical
ensemble rather than the individual behaviour of the element of
the ensemble. However, new theories, which describe the evolution
of single-quantum systems, are being developed. These include
the quantum trajectory theory [71, 72], Monte Carlo wavefunction
method [73], waiting-time distributions and quantum stochastic
equations. Here, we will briefly describe the bare essentials of the
quantum trajectory theory based on direct photoelectric detection.
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13.2 Quantum Trajectories

The quantum trajectory theory, first introduced by Carmichael [71],
is constructed around the standard theory of photoelectric detection
and the master equation theory of a photoemissive source. It
therefore links the statistics of photoelectron emissions to a
dynamical process involving photon emissions taking place at the
source. The quantum trajectory approach also provides a powerful
computational method. It is quite easy to implement on a personal
computer. The computer simulation can generate trajectories for
a stochastic wavefunction that describes the current state of the
quantum mechanical source, conditioned on a particular past
history of coherent evolution and collapses. These would clarify the
physical interpretation, since they can give the intuition of what is
going on with respect to the source in a visible form; the standard
master equation approach does not allow this concrete visualization.

The connection between the conditioned wavefunction and the
master equation is that an ensemble average taken over a large num-
ber of trajectories, with respect to the conditioned wavefunction,
reproduces the results of a master equation calculation. The unrav-
elling of the master equation has been applied to various quantum
optical systems including the driven Jaynes-Cummings model, field-
quadrature measurements and optical second harmonic generation.
Note that different unravellings can be constructed for different
measurement schemes to give complimentary pictures of a quan-
tized source. The quantum trajectory theory has essentially the
following two main features.

The dynamics of an individual quantum system: the dynamics of
an open system is composed of (i) continuous coherent evolution
and (ii) discrete quantum jumps (emission/absorption of energy
quanta). Randomness is introduced in the jump processes, an inher-
ent property of quantum systems as opposed to the deterministic
evolution of classical systems.

The path in the configuration space (Hilbert space) that the
individual system takes in the course of time evolution, the dynamics
of the corresponding wavefunction |V), is regarded as a quantum
trajectory.
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13.2.1 Formulation of the Quantum Trajectory Theory

The formulation of the quantum trajectory treatment starts with a
master equation. A typical master equation is of the form

1 5 1, a ar ain pin
== [Hs, p] + 3 (2CpCT —CTCp—pCtC), (13.1)

p
where Hg is the Hamiltonian of the closed system and C is the
collapse operator that determines the way the wavefunction |V)
changes in the course of energy exchange. The master equation
of the form (13.1), normally called the Lindblad form, describes
many systems coupled to different type of reservoirs. We now
determine the quantum trajectory method, also called the Monte
Carlo wavefunction method.

The quantum trajectory theory determines whether an element
of an ensemble described by Eq. (13.1) is subjected to either one of
the following dynamics:

(@) Coherent dynamics (between jumps)
ihd W) = H |W) (13.2)
de ' ’ '
where i = IA_IS—%ih@*@ is a non-Hermitian Hamiltonian.
(b) Jumps
W) «— C ). (13.3)

We see from Eq. (13.2) that the norm of |¥) (= (W|W)) is not
conserved since H is not Hermitian. Thus, we call |¥) in Eq. (13.2)
an un-normalized wavefunction and write it as ]lil> Let us rewrite
Eq. (13.2) as

d | - U
ih— |W)=H |V). 13.4
The question now is: When do the quantum jumps occur? The
answer is: Quantum trajectory theory prescribes that the event of

a jump is determined by the following rule.

Rule: A jump occurs during the time interval [¢, t + At).
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In order to decide whether a quantum jump has occurred,
we define a machine-generated random number R € [0, 1) and
compare it to

o

(U|C*C1P)
(1¥)

Ap(t) = At (13.5)
If Ap(t) is greater than or equal to a machine-generated random
number R € [0, 1) then a jump occurs. Since Ap(t) is determined by
|¥), it follows that |W(t + At)) is determined by |¥). In quantum
trajectory language we say ]‘IJ> is conditioned on its dynamics
history, and therefore we call the wavefunction ’\i1> a conditioned
wavefunction. We will denote it as |¥¢ ).

In summary, we give a typical algorithm to highlight the main
features of the quantum trajectory theory.

t=20
() 1f ap(e) = acttl v

then “i’c> ~C |‘i/(;>

elseihd% |Uc) = H |¥c) (13.6)
end if

t < t+ At

Go to (%)

>Re[0,1)

Hence, one needs to find only A and C. It is also important to choose
At so that Ap(t) « 1. But we need to compromise so that the
computation time is not too long.

13.3 Cavity QED Laser

The quantum trajectory approach was born more or less for the
needs in the field of cavity QED (quantum electrodynamics). For
some cavity QED problems the standard methods are either invalid
or difficult to apply, but the quantum trajectory approach provides a
new and useful way to proceed. We now illustrate the theory to study
the photon statistics of a cavity QED laser. Theoretically, enhancing
the generation of photons in the laser cavity mode may decrease the
threshold-pumping rate in a laser. The fraction of pumped photons,
which enter the cavity mode 8 may be enhanced by using a laser
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cavity with a width on the order of the wavelength of the laser
light. In such a cavity, spontaneous decay out of the laser mode
is inhibited by the boundary conditions of the cavity. This cavity
QED effect causes a reduction in threshold [74]. The ideal cavity
QED laser (8 = 1) would have a number of laser-mode photons
proportional to pump power P, and consequently this device also
does not have a well-defined pump threshold [75], or even could
work as a thresholdless laser [76].

Consider a single-mode laser theory based on a three-level
homogeneously broadened gain medium. The laser mode and lasing
transition are assumed to be exactly resonant. The lower level of the
lasing transition is rapidly depleted so that to a good approximation
it remains empty. We give below the corresponding rate equations,
which generalize the semiclassical theory by including spontaneous
emission into the laser mode

y'h = —An+ BnN + BN,

y 'N=—N+ P — gnN. (13.7)
Here, y is the modified spontaneous emission rate to modes other
than the laser mode, n is the photon number in the laser mode,
N is the carrier number (atoms in the upper level of the lasing
transition), A is the cavity decay rate and P is the pumping rate,
measured in units of the spontaneous emission rate.

Note that the rate equations tell us about the intensity of the
emitted light. They cannot, however, tell us what kind of light
is emitted. Further information can be obtained by considering
an associated birth-death model, which includes some probability
treatment. The model is essentially a translation of the Einstein rate
equation theory into probabilistic language for a field with uncertain
energy density proportional to n. The pumping is included in a
form that produces Poisson fluctuations in the carrier number. The
model is mathematically represented by the master equation for
the probability p, y of finding n photons in the laser mode and N
carriers:

¥ ban = —A[npan — (4 1) paia,n]
—B[nNpnny — (n —1)(N + 1) pp—1,n+1]
—BINpun — (N + 1) ppn-1,n+1] + P[pn,n-1 — Pn,N]
—(1 = B)INpn,n — (N + 1) py,n41]- (13.8)
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The average photon and carrier numbers in this case satisfy

y~NA) = —x(n) + B (nN) + B (N),
y YN)y=—(N)+ P — B(nN). (13.9)

Equations (13.9) reduce to Eq. (13.7) if we make the factorization
(nN) = (n) (N). (13.10)

We now apply the quantum trajectory method to solve the birth-
death master equation (13.8) for the case of a thresholdless cavity
QED laser. The following is an outline of the scheme.

For a given state at time t:

(1) Construct three jump probabilities.
(2) Getthree uniformly distributed random numbers.
(3) Compare and decide which jump to make or no jump at all.

Three processes are involved here. Namely, pumping process, cavity
losses and stimulated/spontaneous emissions into the laser mode.
We therefore get the following three types of probabilities:

(1) Probability of pumping process, Prob,ump () = P At.

(2) Probability of losses, Probjoss(t) = n(t)AAt.

(3) Probability of emission into the laser mode,
PrObemission(ti) = N(tl)[n(tl) + 1]At

One must also generate three uniformly distributed random
numbers, r1(t), r2(t) and r3(&) € (0, 1) respectively to be compared
with the probabilities above.

If Probyump () = r1(t), then the number of carriers is increased
by one. Otherwise, if Probjoss(t;) > r2(t), then the losses process
will cause the number of photons to be reduced by 1. Furthermore,
if Probemission(ti) = r3(t) then the stimulated/spontaneous
emission will cause the number of carriers to decrease by 1 and
simultaneously the number of photons increases by 1.

One can then easily investigate the photon statistics of the laser
by calculating the photon number n and the ensemble averages
(n) and (n?). Figures 13.1 and 13.2 show the photon and carrier
numbers vs. dimensionless time t for the case of P = 1.0, A = 0.1
and 8 = 1.0.
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Figure 13.1 Individual trajectory and ensemble average of the photon
number versus dimensionless time for P = 1.0, . = 0.1,and 8 = 1.0.
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Figure 13.2 Individual trajectory and ensemble average of the carrier
number vs. dimensionless time for P = 1, A = 0.1and 8 = 1.
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Exercises

13.1 Determine the A and the collapse operators C; and C, for a
two-level atom in thermal equilibrium.

13.2 Explain why the master equation (13.8) is insufficient to
calculate the linewidth of the laser.

13.3 Sketch the flowchart to implement the quantum trajectory
method to determine (N), (n) and (n?) for the above cavity
QED model.



Chapter 14

Interaction-Free Measurements

14.1 Introduction

In Chapter 3, we have discussed the direct measurement scheme in
which a measured field is directly absorbed by photodetectors. In
the direct detection process, the field is destroyed as the detector
absorbs all the field interacting with it. From the point of view of
quantum physics, the measurement destroys the state vector of the
field such that the state collapses to the appropriate eigenstate of the
measured field. For example, if prior to the measurement the state
vector of the field is |«@) + |8), at the measurement the state vector
collapses to |«) if the value « is obtained, or | 8) if 8 is obtained.
Apart from the collapse of the wave function, the measurement
disturbs the field (system) such that it is impossible to predict
the future development of the system. This is the major difference
between the quantum and classical physics that in the quantum
physics the measurement disturbs the system to an extent that
cannot be made arbitrary small. This fact is clear from the
Heisenberg uncertainty relation that with an observation of the
position of a particle within an accuracy Ax disturbs the momentum
of the particle with an uncertainty Ap such that AxAp >
h/2. We may call it a disturbance interpretation of quantum
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theory, that the physical act of detection disturbs the state of the
observed system uncontrollably, so that we cannot have complete
knowledge of the system, and we cannot therefore predict its future
development. Some experiments called negative-result experiments
and interaction-free measurements will help us to understand how
one can detect a photon without destroying it and how one could
detect an object without interacting with it.

14.2 Negative-Result Measurements

In negative-result experiments, the result of a photon detection is
obtained not through the occurrence of a physical event, detection
of a photoelectron, as for a normal measurement, but by the absence
of such an event.

Consider an experiment, shown in Fig. 14.1, which was proposed
by Epstein [77], and involves a Mach-Zehnder interferometer. In
the interferometer a beam of light is split by a 50/50 beam splitter
into two beam travelling in arms S; and S,. The mirrors M; and
M, can be fixed or can move (recoil) under the impact of a photon,
but the mirrors do not absorb (destroy) the photon. Thus, we can
detect a photon by observing which mirror recoiled. Hence, the

e
l

\

§
\V
?

Figure 14.1 Scheme to demonstrate negative-result measurement.
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measurements can be achieved seemingly without an interaction
between the complete measuring setup (detectors) and the photon.

Assume for a moment, that the arm S; is blocked. Then, according
to quantum mechanics, if the mirror M; recoiled we can say that
the collapse of the state vector of the photon to the state |¢),
corresponding to the arm S; have been achieved without any
interaction. Now, assume that both arms are opened and both
mirrors are made moveable. Then, one of the mirrors will recoil as
each photon passes through the system. This tells us along which
arm the photon is passing, and as a result the coherence of the two
beams is lost and the photon has an equal probability to be detected
at Dy or Ds.

Assume now that M; is moveable and M; is fixed. If M; moves,
we deduce that the photon is in arm S, if it does not move, we
deduce that the photon is in arm S. In this case we have gain exactly
the same information as in the previous cases. However, in this
case we have seemingly performed a measurement and achieved a
collapse of the wave function without any direct detection of the
photon. Again, there is an equal probability of the photon being
detected at D; or D,.

Finally, assume that both mirrors are fixed. In this case, the two
arms S; and S, are coherent, and the geometry of the interferometer
may be arranged such that every photon will be detected at one
of the detectors, say Di, with none detected at D,. In this case, we
observe photons only by the direct detection.

14.3 Experimental Schemes of Interaction-Free
Measurements

In this section we discuss an effect, referred to as interaction-
free measurement, which is based mostly on the same type of
physical situation as the negative-result measurement. However, the
arrangement is carefully constructed to make it natural to claim that
one is able to detect the presence of an object without interacting
with it at all. This type of measurement is not possible under
classical theory, but using the concepts of quantum theory the claim
can be justified. The method we use makes particular use of the
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fact that light consists of photons, and where a beam of light has
a choice of paths, we will talk of an individual photon taking one
pass or another. One can notice, that such an idea would be totally
inappropriate under a classical model of light.

We will analyse in details two schemes of the interaction-free
measurement, one proposed by Elitzur and Vaidman [78] and the
other proposed by Kwiat et al. [79].

14.3.1 The Elitzur and Vaidman Scheme

The Elitzur and Vaidman scheme uses a single Mach-Zehnder
interferometer, in a similar way as in the Epstein proposal. The
difference is that the present scheme assumes that the mirrors are
fixed and there is an object in the arm S;, as shown in Fig. 14.2.
Without the object in the arm Sj, one can arrange the system such
that all the photons will be detected by D;, none by D,.

However, if there is an object in the arm S1, photons will reach the
second beam splitter travelling only through the arm S, and then
the probabilities of detecting the photons by the detectors D; and
D, are both equal to 1/2. Thus, in this arrangement, the detector D,
detects photons only if the blocking object is in one of the arms.

S, /
/B, M3

Figure 14.2 The scheme of Elitzur and Vaidman to demonstrate
interaction-free measurement.
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We can explain this method theoretically in the following way. We
know from classical optics that a reflection changes the phase of the
wave by 7r/2, or alternatively in terms of quantum states of the wave,
multiplies the state vector by i. Let us indicate the state of a photon
moving to the right by |1), and that of a photon moving upwards by
|2). At the beam splitter By, the state |1) will change to

1 .
1) — 7 (11) +112)). (14.1)

At the mirrors M; and M;, the states will change into
1) — 1]2), |2) — i]1). (14.2)

Thus, if the object is absent, the evolution of the initial state |1) will
be as follows:

1 1
1) —» —= (1) +i2 —
|>—>ﬁ(|>+1| >)—>ﬁ

1 1
— 5 (12 =11) = S (1) +112)) = —[1). (14.3)

(i12) — 1))

Hence, if the object is absent, the photon leaves B, moving towards
the right and is detected by the detector D;. On the other hand, if the
object is present, the evolution of the initial state |1) is as follows:

1) — \/15 (1) +i]2)) — \;E (i12) +ils))

1 . i
— 2 112y — 1)) + ﬁb‘), (14.4)

where |s) is the state of a photon scattered by the object. This
equation shows that the detectors D; and D, will each click with
probability 1/4, and there is probability 1/2 that there is no
detection.

In summary of this section, if the detector D; clicks, no
information is obtained about the object. This could happen whether
the object is present in the arm S; or not. If there is no click in
both D; and D,, we have discovered that there is the object, but
our measurement has not been interaction free as the photon has
been scattered or absorbed by the object. However, if the detector
D; clicks, we find that the object is present in the system and the
photon has not interacted with it, otherwise the photon would have
been scattered or absorbed.
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Figure 14.3 The scheme of Kwiat et al. to demonstrate interaction-free
measurements.

14.3.2 The Kwiat et al. Scheme

In the scheme proposed by Kwiat et al. [79], instead of a single
Mach-Zehnder interferometer, a series of N interferometers is used,
the amplitude reflectivity r of each beam splitter being equal to
cos(w/2N), and the amplitude transmissivity ¢ = sin(z/2N). The
scheme is shown in Fig. 14.3. A photon entering at the lower part of
the interferometer and passing through all N interferometers will be
transferred into the upper part of the interferometer. Thus, if there is
no object in one of the interferometers, each photon is certain to exit
via the up port of the last beam splitter. If there is the object, there is
a non-zero probability that the photon will leave through the down
port of the last beam splitter.

This experiment can be explained theoretically as follows. Let us
consider the state of the photon after leaving down the second beam
splitter, that is, the first interferometer. There are two contributions
to the state of the photon. The first one is from the pass B,y —
My — By, and the second one is from the pass Byy — M1 — Be,
where B,; and B;; mean reflection and transmission at the ith mirror,
respectively.

The first beam has been reflected twice at beam splitters and
once at the mirror My, three reflections giving a phase factor i3, and
the amplitude

. 2 ( T
a1 = —icos (ﬁ) . (14.5)
The second beam has been transmitted twice at the beam splitters
and reflected once at the mirror M,;, giving the total transmission
coefficient multiplied by the factori as

oy = i sin? (%) . (14.6)
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Thus, after passing the first interferometer (two beam splitters), the
intensity of the light going downwards is given by

I = |y + a|? = cos? (%) . (14.7)

Hence, after passing m beam splitters, the intensity downwards
will be

mm
I, = cos® (—) . 14.8
m = cos” | o (14.8)
If the photon passes m = N beam splitters, intensity exiting the

whole system at the down port is equal to zero.

However, if there is an object in one of the arms of the
interferometer, the intensity Iy will be different from zero, as in this
case m < N. Then, a detector located in the down port after the last
beam splitter will click. Following our previous analysis, if there is an
object in one of the upper arms of the interferometer, the amplitude
ay is suppressed and then the intensity of the light going downwards
at the end of the first interferometer is given by

Ty = oy |? = cos* (%) . (14.9)

Hence, if there are objects in the upper arms and after passing m
beam splitters, the intensity downwards will be

7 2m d

I, = cos <ﬁ) .
Thus, for m = N we find that the probability of the photon leaving
the system via the lower port is equal to cos?" (7/2N), which
becomes very close to unity when N is large.

The detection of the photon leaving the interferometers through
the lower port is equivalent to the observation that there is an
object inside the interferometer. This is measurement-free detection
as the photon was not scattered or absorbed by the object, and
the probability of obtaining this interaction-free measurement is
greater than the Elitzur and Vaidman maximum of 1/2, and tends
to unity for large N. The probability of the photon not leaving by
the lower port is equal to 1 — cos?V (/2 N), and corresponds to the
probability that the photon was scattered by the object. Naturally,
this also corresponds to an observation that there is the object inside
the interferometer, but in this case is not, of course, interaction free.

(14.10)
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Exercises

14.1

14.2

14.3

14.4

A single photon is injected into a Mach-Zehnder interferome-
ter. The two beam splitters in the interferometer are identical
but not the 50/50 beam splitters.

(a) Write an expression for the state of one of the output
arms.

(b) What is the expectation value of the number of photons in
this output arm, expressed in the beam splitters reflection
and transmission coefficients?

Prove that in the Kwiat et al experiment, the intensity
downwards after passing two interferometers (three beam

splitters) is
5 3m
I3 =cos" | — | .
2N

Show that, if after each beam splitter in the Kwiat et al
experiment, a detector is placed in the path of one of the
two modes, the probability that the photon leaves the last
beam splitter in the other mode is converging to 1 for
large N. Explain why this corresponds to an “interaction-free”
measurement of the presence of the detectors.

Consider a single-mode field incident on a beam splitter of
the amplitude reflectivity r and the amplitude transmissivity t.
The incident beam splits into reflected and transmitted beams.

(@) Show that in the classical treatment of the process the
three fields, the incident i, reflected r and transmitted t
beams, satisfy the energy conservation.

(b) Show thatin the quantum treatment of the process, where
the complex classical amplitudes are replaced by the
annihilation and creations operators, the commutation
relations for the three fields

[a,a1=1 and [4,4{1=0, j=int

are satisfied only if one includes the fourth beam splitter
input port vertical to the incident beam and being in the
vacuum state.
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14.5 The evolution of a state as it passes a beam splitter is
equivalent to a rotation in Cartesian coordinates that it can be
represented by a unitary matrix

cos@ isinf
isinfd cos@ /'

R(6) = (

The operator R(6) is often called as rotational operator.
Show that rotational operators multiply like exponentials, that
is, R(O)R(¢) = R(6 + ¢).






Chapter 15

Classical and Quantum Interference

15.1 Introduction

Optical interference is regarded as a classical phenomenon and is
usually completely described in classical terms, in which optical
fields are represented by classical waves. Does it mean that optical
interference, which is fundamentally ascribable to the phenomenon
of a superposition of wave amplitudes, cannot be applied to test
quantum phenomena? The superposition principle is at the heart of
quantum physics and one could expect that it should distinguish the
quantum nature of light from the wave nature. Our experience based
on extensive theoretical analysis and experimental observations
shows that classical and quantum theories of optical interference
readily explain the presence of an interference pattern resulting
from the first-order coherence. However, there are interference
effects involving the higher order (second-order) coherence that
distinguish the quantum (photon) nature of light from the wave
nature. Quantum interference has recently returned to prominence
because of its utility in manipulating spontaneous emission and
other radiative properties of atomic systems. In this chapter, we
present elementary concepts and definitions of both the classical
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Figure 15.1 Schematic diagram of the Young’s double-slit experiment.

and quantum theory of optical interference and discuss similarities
and differences between these two approaches [80].

15.2 First-Order Coherence

The elementary model for a demonstration of the first-order
coherence is the Young’s double-slit experiment, shown in Fig. 15.1.
In this experiment, a light beam from a single source passes through
two slits, located at 7; and 7, where it undergoes splitting into two
beams of amplitudes 12"1 and Ez, respectively. These two beams,
which act as if they came from two sources, are then detected on
a distant screen S. The average intensity of the beams measured at a
point P on the screen can be written as
I(R,6) = (E*(R, ) - E(R, 0)) = ((E} + E3) - (E1 + E2))
=11+ I, + 2Re (E{E,), (15.1)
where I; = (E}E;) is the average intensity of the ith beam, and
2Re <EIE2> is the superposition term of the two amplitudes. This
term is responsible for the interference effect.?

2In the derivation of Eq. (15.1), we have used the superposition principle for the
electric field that at any instance, the field at any point in space arising from several
sources is the vector sum of the contributions that each source would have produced
if it were acting alone. Moreover, we have assumed that the vectors El and 75'2 lie
along the same line. This is a good approximation if the observation point P is very



First-Order Coherence

Let us analyse in details the dependence of the superposition
term in Eq. (15.1) on the geometry of the experiment. Since the
observation point P lies in the far-field zone of the radiation emitted
by the slits, R > rqy, that is, the separation between the slits is
very small compared to the distance to the point P, the fields at the
observation point can be approximated by plane waves for which we
can write

E(Ri, t — ) ~ E(R;, t)e (@iti+e)
= E(R;, e '@Ri/et0)  j =12 (15.2)
where w; is the angular frequency of the ith field and ¢; is its initial
phase which, in general, can depend on time. Since the observation
point lies in far-field zone of the radiation emitted by the slits, we
can write approximately
Ri=|R—Fi|~R—R-F, (15.3)

where R = i?/R is the unit vector in the direction R.
Using the plane-wave approximation, we can write the intensity
as

I(R, &) = I, + I, + 2Re {(E;"Ez>e"k°f?'7u}
=L+1L+ 2<ETE2) COS(k()i? . Flz)
=5+ +2Vhil,gM(R)cos(koR - F12), (15.4)

where 1y, = I, — 'y is the distance between the slits, and

(15.5)

is the normalized first-order coherence function. The coherence
function is a measure of correlation between the two beams relative
to the intensity of the beams. Note that in the derivation of Eq. (15.4)
we have assumed that the two waves have the same frequency (w; =
) and phases (¢1 = ¢2).

Equation (15.4) shows that the average intensity detected at the
screen depends on the coherence between the beams. In the case of
perfectly correlated fields, |g(*)| = 1, and then the intensity can vary

from (/I — /12)? to (v/T1 + +/12)?, giving the so-called interference

far from the slits, that is, the point P lies in the far-field zone of the radiation emitted
by the slits.
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pattern. When Iy = I; = I, the total average intensity varies from
(I)min = 0to (I)max = 4(lp), giving perfect interference pattern. For
two independent fields, g/ = 0, and than the resulting intensity is
just a sum of the intensities of the two fields, which does not vary
with the position of P.

In the quantum description of the electromagnetic (EM) field,
the field amplitude is represented by the field operators, and the
coherence effects are given in terms of the positive and negative
frequency parts of the field operator E. In this case, the average
intensity in the Young’s experiment can be written as

IR, ) = (EOR QEDR, 1) = (B + EYNEL + ESD))
= I + I, + 2Re(E TV ELH). (15.6)
and the normalized first-order coherence takes the form
(E1E5")
VIl
The coherence function (15.7) described by the field operators is
formally similar to the coherence function (15.5) described by the
classical field amplitudes. The similarity arises from the fact that
an experiment cannot distinguish between classical and quantum
effects described by first-order correlation functions.
The usual measure of the depth of modulation (sharpness) of

interference fringes is a visibility in an interference pattern defined
as

gB(R) = (15.7)

V= (I(I_é’ t))max B (1(1_%: t))min

(I(R, O))max + (I(R, ))min’

where (1(1}, t))max and (I(fx’, t))min represent the intensity maxima
and minima at the point P, respectively.

(15.8)

Since,
(Dmax = (I1) + (I2) + 23/T1 12 |9V, (15.9)
and
(Dmin = (I1) + (I2) = 23/ 11 1 1™, (15.10)
we obtain
V= ﬂmﬂn. (15.11)

(b4 D)



Welcher Weg Problem

Thus, |g®V)| determines the visibility of the interference fringes. In
the special case of equal intensities of the two fields (I; = I3),
Eq. (15.11) reduces to V = |gW|, that is, |gV| is then simply equal
to the visibility. For perfectly correlated fields |g()| = 1, and then
V = 1, while V = 0 for uncorrelated fields.

15.3 Welcher Weg Problem

One may notice from Eq. (15.11) that in the case of I; # I, the
visibility is always smaller than one even for perfectly correlated
fields. This fact is related to the problem of extracting which-way
(Welcher weg) information has been transferred through the slits
into the point P. The observation of an interference pattern and
the acquisition of which-way information has been transmitted are
mutually exclusive. We can introduce an inequality according to
which the fringe visibility V displayed at the point P and an absolute
upper bound on the amount of which-way information D that can be
detected at the point P are related by

D4+ VE < 1. (15.12)

Hence, the extreme situations characterized by perfect fringe
visibility (V' = 1) or full knowledge of which-way information
has been transmitted (D = 1) are mutually exclusive. In order to
distinguish which-way information has been transmitted, one can
locate an intensity detector at the point P and adjust it to measure
a field of a particular intensity I5. When the fields coming from
the slits have the same intensities, the detector cannot distinguish
which-way the detected field came to the point P, so there is no
which-way information available (D = 0) resulting in perfect fringe
visibility (V = 1). On the other hand, when the intensities of the
fields are different (I; # I,), the detector adjusted to measure a
particular intensity can distinguish which way the field came to the
point P resulting in the disappearance of the interference fringes.
This is clearly seen from Eq. (15.11), if I; > I, or I; < I, the
visibility V ~ 0 even for |g(V] = 1.

The first-order correlation function is very sensitive to the
frequency and phase of the detected fields. Suppose, the fields have
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different frequencies (w; # ;) and the phases (¢1 # ¢2). We
can centre the frequencies around the average frequency of the two
fields as

1 1
a)lza)o-i-EA, wzzwo—iA, (15.13)
where wy = (w1 + w;)/2 is the average frequency of the fields

and A = w; — w; is the frequency difference (detuning) between
the fields. Substituting Eq. (15.2) with Egs. (15.13) and (15.3) into
Eq. (15.5), we obtain

> 2 oo (5 A
g (R) =g (R)lexp (iko R - 1) exp [z (kon + 6¢>} :
0
(15.14)

where R =R+ %}A? . (71 +72), 8¢ = ¢1 — ¢2, k() = a)o/C = 27‘[/)»0,
and A represents the mean wavelength of the fields.

Let us analyse the physical meaning of the exponents appearing
on the right-hand side of Eq. (15.14). The first exponent depends
on the separation between the slits and the position R of the
point P. For small separations the exponent slowly changes with
the position R and leads to minima and maxima in the interference
pattern. The minima appear whenever

koR P12 =@l + 1w, 1=0,+1,42,.... (15.15)

The second exponent, appearing in Eq. (15.14), depends on the
sum of the position of the slits, the ratio A /wy and the difference
3¢ between the initial phases of the fields. This term introduces
limits on the visibility of the interference pattern and can affect
the pattern only if the frequencies and the initial phases of the
fields are different. Even for equal and well stabilized phases, but
significantly different frequencies of the fields such that A /wg ~ 1,
the exponent oscillates rapidly with R leading to the disappearance
of the interference pattern. Thus, in order to observe an interference
pattern it is important to have two fields of well-stabilized phases
and equal or nearly equal frequencies. Otherwise, no interference
pattern can be observed even if the fields are perfectly correlated.
The dependence of the interference pattern on the frequencies
and phases of the fields is related to the problem of extracting which-
way information has been transferred to the observation point P.



Second-Order Coherence

For perfectly correlated fields with equal frequencies (A = 0) and
equal initial phases (¢; = ¢,), the total intensity at the point P is

(I(R)) = 2(Io) [1 + cos (koR - F12)], (15.16)
giving maximum possible interference pattern with the maximum

visibility of 100%. When A # 0 and/or ¢; # ¢», the total intensity
at the point P is given by

(I(R)) = 2(Ip) {1 + cos(koR - F12) cos (koi?j + 5¢,>
0

. < A
— sin (ko R - F12) sin (kOR + 8¢) } (15.17)
wo

In this case the intensity exhibits additional cosine and sine
modulations, and at the minima the intensity is different from
zero indicating that the maximum depth of modulation of 100% is
not possible for two fields of different frequencies and/or initial
phases. Moreover, for large differences between the frequencies
of the fields (A/wy > 1), the terms Cos(koi?w% + 8¢) and
sin[koi?w% + 38¢) rapidly oscillate with R and average to zero,
which washes out the interference pattern. In terms of which-way
information has been transferred, a detector located at the point
P and adjusted to measure a particular frequency or phase could
distinguish the frequency or the phase of the two fields. Clearly,
one could tell which way the detected field came to the point P.
Thus, whether which-way information is available or not depends
on the intensities as well as frequencies and phases of the interfering
fields. Maximum possible which-way information results in the lack
of the interference pattern, and vice versa, the lack of which-way
information results in maximum interference pattern.

15.4 Second-Order Coherence

We can extend the analysis of interference phenomenon to higher
order correlation functions, which involve intensities of the mea-
sured fields. Here, we illustrate some properties of the second-order
correlation function of a classical field. In the following section, we
will extend the analysis to the second-order correlation function of
quantum fields.
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The second-order (intensity) correlation function of a classical
field of a complex amplitude E (R, t) is defined as

GA(Ry, ti; Ry, ) = (E*(Ry, ) E*(Rz, t)E (Ra, ) E(Ry, 1))
= (I(Ry, t1)I(Ra, &), (15.18)

where I(Rl, t;) and I(Rz, tz) are the instantaneous intensities of the
field detected at a point R1 at time ¢ and at a point Rz at time &,
respectively.
In the plane-wave approximation, the second-order correlation
function can be written as
2
ARy, t; Ry, ) = Y (E} () Ef () Ei(R)E; (1))
ijkl=1
Xeik(Rﬂ-’ijJrszkl)ei(¢i+¢k*¢l*¢j)’ (15.19)

where k = 2m/) and XA is the wavelength of the field. There
are 16 correlation functions contributing to the right-hand side of
Eq. (15.19), each accompanied by an phase factor that depends on
the relative phase of the fields.

The second-order correlation function has completely different
coherence properties than the first-order correlation function.

1. Interference pattern can be observed in the second-order
correlation function, but in contrast to the first-order correlation
function, the interference appears between two points located at
7?1 and 7%2.

2. Interference pattern can be observed even if the fields are
produced by two independent sources for which the phase
difference ¢ — ¢, is completely random. It is easy to verify thatin
this case the second-order correlation function (15.19) takes the
form

GB(Ry, ti; Ry, &) = (I2) + (I2) + 2(I1 1)
+2(I113) cos [kF1z - (R1 — Rz)], (15.20)
where I,‘ = Il(t,) [l = 1, 2)

We see that the second-order correlation function exhibits a cosine
modulation with the separation R; — R; of the two detectors. This is
an interference although it involves intensities of two independent
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fields. Thus, an interference pattern can be observed even for two
completely independent fields. Similar to the first-order correlation
function, the sharpness of the fringes depends on the relative
intensities of the fields and degrades with an increasing difference
between I and I,. For equal intensities, [; = I, = Iy, the correlation
function (15.20) reduces to

S 1 L e s
GA(Ry, t; Ry, t) = 4(I) {1 + - cos [kfiz2 - (R1 — R2)] } (15.21)

In analogy to the visibility in the first-order correlation function, we
can define the visibility of the interference pattern of the intensity
correlations as
2 2
2, )

Gl + Gy

min

V= (15.22)

It can be verified from Eqgs. (15.21) and (15.22) that in the case of
a classical field, an interference pattern can be observed with the
maximum possible visibility of V, = % Hence, we can conclude
that two independent fields of random and uncorrelated phases can
exhibit an interference pattern in the intensity correlation with a
maximum visibility of 50%. This is the classical limit for the second-
order interference. In the next section, we will discuss the second-
order correlations involving quantum fields. We will see that with
the quantum fields, visibilities larger than 50% may be observed.

15.5 Two-Photon Interference and Quantum Non-locality

The second-order correlation function can be completely different
if one considers the quantum description of the field. In quantum
optics, the most important quantity is the electric field, which
is represented by the field operator 137(;3, t). The correlation and
coherence properties are discussed in terms of the positive and
negative frequency parts £ (R, t) and EC)(R, t). Here, we discuss
separately the spatial and temporal non-classical interference
effects in the two-photon correlations.
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15.5.1 Spatial Non-classical Two-Photon Interference

In the case of the quantum description of the field, the second-order
correlation function is defined in terms of the normally ordered field
operators £ and £ as

G(Z)(iél» ti; Ry, &) = (E(i)(ﬁl, t1)E(7)(k2. &)
x E®(Ry, ) ED(Ry, 1)),  (15.23)

where the average is taken over a state |i) of the field. Usually, the
state |i) is taken as an initial state of the field.

If we know the density operator p for the field, we can calculate
the second-order correlation functions as

GA(Ry, t1; Ry, tp) = Tr {PE(_)(R’L t)EO (R, t)

¥ B (Ry, 6)EWD(Ry, tl)}, (15.24)

where the trace is taken over the initial state |7).

The correlation functions described by the field operators are
similar to the correlation functions of the classical field. A closer
look at the first- and second-order correlation functions could
suggest that the only difference between the correlation functions
is the classical amplitudes E*(i?, t) and E(FR, t) are replaced by
the field operators E()(R, t) and EM(R, t). This is true as long
as the first-order correlation functions are considered, where the
interference effects do not distinguish between the quantum and
classical theories of the EM field. However, there are significant
differences between the classical and quantum descriptions of the
field in the properties of the second-order correlation function.

To illustrate this, consider two independent single-mode fields
of equal frequencies and polarizations. Suppose there are initially
n photons in the field 1 and m photons in the field 2, and the state
vectors of the fields are the Fock states |y1) = |n) and |y2) = |m).
The initial state of the two fields is the direct product of the single-
field states, |) = |n) ® |m). Using the explicit form of E®(R, ),
Eq. (1.56) simplified to a single-mode field and the expectation value
with respect to the initial state of the fields, we find that the equal
time t{ = t; = t two-photon correlation function (15.23) takes the
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form

2
GO (Ry, t; Ry, t) = (;Z";/) {n(n — 1) + m(m — 1)
0
+2nm (1 + cos [kf1z - (R1 — Rz)])}. (15.25)

We note that the first two terms on the right-hand side of Eq. (15.25)
vanish when the number of photons in each field is smaller than
two, that is, when n < 2 and m < 2. In this limit the correlation
function (15.25) reduces to

2
6@ (Ry, 6 Ry ) = 2 (Zh“’v) {1+ cos [Krz - (Ry — Ry)] ).
(15.26)

In order to examine the visibility of the interference pattern,
we substitute Eq. (15.26) into Eq. (15.22) and find that perfect
interference pattern with the visibility 1, = 1 can be observed in
the second-order correlation function of two quantum fields each
containing only one photon. As we have noted, the classical theory
predicts only a visibility of V, = 0.5. Thus, a visibility V, > 0.5
can be regarded as a non-classical effect. For n, m > 1, the first two
terms on the right-hand side of Eq. (15.25) are large, m(m — 1) ~
n(n — 1) ~ n?, and then the quantum correlation function (15.25)
reduces to that of the classical field.

It follows from Eq. (15.26) that the second-order correlation
function vanishes when

kiiz - (Ri— Rp) = (2l + )7, 1=0,41,+2,... (15.27)

This shows that two photons can never be detected at two points
separated by an odd number of A/2r;,, despite the fact that one
photon can be detected anywhere.

These spatial non-classical correlations were observed experi-
mentally by Ou and Mandel [81], who measured the variation of the
correlations between two output beams from a beam splitter with
the relative position of the detectors. In the experiment, two photons
produced by a degenerate parametric oscillator (DPO) fall on a beam
splitter BS from opposite sides, as illustrated in Fig. 15.2. The beam
splitter outputs are received and measured by two photodetectors
D1 and D2 located at different points and their positions can be
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Figure 15.2 Schematic diagram of the Ou and Mandel experiment to
demonstrate the spatial variation of the two-photon correlations with
relative position of the two photodetectors.

varied transversely to the incident beams. The detected signals
are then multiplied at a coincidence counter which gives the joint
probability G@(Ry, t; Ry, t) as the function of the relative position
of the detectors. In the experiment, the detector D2 was fixed at a
constant position R, and the relative distance R = R; — R; was
varied by moving the detector D1.

In Fig. 15.3, we plot the joint probability G (Ry, t; R, t) as a
function of Ry — R, = R. Clearly, for some relative positions of
the two detectors the joint probability vanishes indicating the non-
classical two-photon correlations between the beams.

2.5

Figure 15.3 The joint probability G®(Ry, t; R,, t) as a function of the
relative position of the detectors for kr;; = 1 and EZ = 2 (hw/(2€0 V)
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The vanishing of G@(Ry, t; R, t) for two photons at widely
separated points ﬁl and R, is an example of quantum-mechanical
non-locality, that the outcome of a detection measurement at f?l
appears to be influenced by where we have chosen to locate the Rz
detector. At certain positions Ry, we can never detect a photon at Rl
when there is a photon detected at Rz, whereas at other position Rz
it is possible. The photon correlation argument shows clearly that
quantum theory does not in general describe an objective physical
reality independent of observation.

Einstein-Podolsky-Rosen (EPR) took the view that local realism
must be valid [82]. They therefore argued that quantum mechanics
must be incomplete. One would have to assume the existence
of ‘hidden variables’, that are not part of quantum theory, in
order to describe the localized sub-systems consistently with the
quantum predictions. The argument is perhaps best viewed as a
demonstration of the inconsistency between quantum mechanics as
we know it (that is without completion) and local realism. However,
the EPR paradox was refuted by an experimental demonstration
of the violation of the Bell inequalities [83]. Bell derived a set
of inequalities [84] that can be violated only if a given theory, in
our case the quantum mechanics, is inconsistent with any local
realism [85, 86].

15.5.2 Temporal Non-classical Two-Photon Interference

In the preceding section, we have shown that spatial correlations
between two photons can lead to non-classical interference effects
in the two-photon correlations. Here, we consider temporal correla-
tions between photons produced by the same source. As a detector
of the time correlations of photons, we consider a simple situation
of two-photon interference at a beam splitter, shown in Fig. 15.4.

The photons of the modes a and b incident on a beam splitter of
the reflectivity n and produce output modes c and d. The amplitudes
of the output modes are related to the amplitudes of the input modes
by

¢=iyna+1—nb,
d=iynb++/1-na, (15.28)
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BS n

Figure 15.4 The input (a, b) and output (¢, d) beams at a beam splitter BS
of reflectivity 7.

where the factor i indicates a 77 /2 phase shift between the reflected
and transmitted fields.

The joint (coincidence) probability that a photon is detected in
the arm c at time t and another one in the arm d at time ¢t + 7 is
proportional to the second-order correlation function

Po(D) = (WIEO O ET ¢+ ) EP ¢+ ) ED (0|w), (15.29)

where |W) is the state of the input fields, £(Y) (£) = rii(t), (& = ¢, d)
is the field amplitude of the output n-th mode and 1 is a constant.
For an arbitrary state of the input fields, and in the limit of a long
time, the coincidence probability takes the form
Pea(z) = [M* {n(1 = m)(@'a" ()a()a) + n(1 — b’ (D)b(x)b)
—n(1 = n)a'b'(1a(1)b) + (1 — n)*(b'a' ()a(x)b)
+n° (@b (r)b(x)a) — n(1 — n)(b'a' (r)b(x)a)}. (15.30)
The first two terms on the right-hand side of Eq. (15.30) describe
correlations between reflected and transmitted photons of the same
input beam. These correlations vanish if there is only one photon
in each of the input beams. The third and fourth term describe
correlations between the amplitudes of the reflected-reflected and
transmitted-transmitted photons. The last two terms arise from the
interference between the amplitudes of the reflected-transmitted
and transmitted-reflected photons of the two beams mixed at the
beam splitter, and are the real quantum interference contributions
to the coincidence probability. If the state of the input fields is
[W¥) = |1)4|1)p, that each of the input fields contains only one photon,
and t = 0, the coincidence probability takes the form

P.qa(0) = (1 — 2n)?. (15.31)
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Thus, if the beam splitter is either fully reflecting (n = 1) or fully
transmissive (n = 0), the probability that a coincidence will be
detected is 1. In other words, there is a photon in each of the output
ports. This agrees with our intuition: if the beam splitter is fully
reflective (transmissive), the photon in the mode a will be reflected
(transmitted) into mode ¢ (d), and vice versa for the photon in the
mode b.

An interesting quantum interference effect arises when a
50/50 (n = 1/2) beam splitter is used. In this case, the probability
of detecting a coincidence goes to zero, indicating that both photons
are always found together in either c or d. This effect results from
quantum interference that the two paths are indistinguishable as the
detected photons have the same frequency and can come from either
of the two input modes. This effect is called in the literature as the
Hong-Ou-Mandel (HOM) dip.

Where the name HOM dip came from?

In the experiment, Hong, Ou and Mandel [87] measured time
separations between two photons by interference at a beam splitter.
The experimental setup is shown in Fig. 15.5. Two photons of the
same frequency are produced by a degenerate parametric down-
conversion process (DPO) and fall on the beam splitter BS from
opposite sides. In order to introduce a time delay between the
photons, the beam splitter can be translated slightly in the vertical

D1

D_
S
]

D2

y4

Y

Figure 15.5 The experimental setup to measure two-photon coincidence
for different delay times.
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direction. This shortens the path for one photon relative to the other.
The coincidences were detected by two photodetectors D1 and D2
and multiplied at the coincidence counter CC.

In the parametric down-conversion, photon pairs are randomly
produced with the cross-correlations between the idler and signal
modes given by a Gaussian distribution in time

(@b (v)a(r)by = (@'b)(b' (v)a(r)) = exp [- (Awr)?], (15.32)
where Aw is the bandwidth of the down-converted beam.

Hence, for a 50/50 beam splitter and quantum description of the
fields

A Aol
Paa(t) = - (1 —e ) . (15.33)
Evidently, the coincidence probability vanishes at 7 = 0. In
the case of classical description of the fields, the coincidence
probability (15.30) reduces to
Pa(t) = AT (1 - 1eAw2f2), (15.34)
2 2
where [ is the intensity of the input fields (assumed to be equal for
both fields). Thus, for classical fields the coincidence probability can
be reduced maximally to 1/2.

The coincidence probability of a quantum field is plotted in
Fig. 15.6. The figure clearly shows the presence of the HOM dip, that
the coincidence probability P.4(7) vanishes at t = 0 and approaches
the classical limit of P.4(7) = 1/2as t — oo.

0.7,

0.6

4
P

-10 -5 0 5 10
Aot

Figure 15.6 The time dependence of the two-photon coincidence
probability.



Exercises

15.6 Summary

Quantum interference, in particular the two-photon interference,
has played a major role in the development of new fields in quan-
tum optics called quantum information, quantum cryptography,
quantum teleportation and quantum computation. The fundamental
features of quantum physics, such as EPR paradox, entanglement,
Bell inequalities and photon polarization correlations have been
tested in quantum optics experiments. The reader wishing to learn
more about various applications of quantum interference and its
impact on the development of new fields of quantum optics is
referred to recent books [88-90].

Exercises

15.1 Explain the physical reason for which in the interference
between two beams of different intensities, Iy # I, the
visibility of the interference fringes V is not equal to the first-
order coherence [g(1].

15.2 Consider a three-level atom in two configurations: v and A.
For the Vv-type atom the ground state is |2) and the upper
states are |1) and |3), whereas for the A-type atom the upper
state is |2) and the two ground states are |1) and |3). In both
atoms the only allowed transitions are |2) < |1) and |2) <
13).

(a) If we treat each transition as a source of light, find which
of these two systems has no coherence (interference)
terms in the total intensity of the emitted light.

(b) Show that the other system has non-zero coherence terms
only if it is in a linear superposition of the states |1) and
|3), that is,

W) =all) +bI3),  lal*+b* =1

(c) Assuming that a and b are real numbers, for what values
of a and b does the emitted intensity equal to zero?
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15.3

15.4

15.5

15.6

15.7

Show that the transformation
c t —r a
(a)-C7) ()
between annihilation operators of the input (a, b) and output
(c, d) beams at a beam splitter of reflectivity r and transmit-
tivity t can be associated with the interaction Hamiltonian
A =ihg(ab’ — ba®),
where sin(gt) =r.
Beam-splitting a single photon. A transformation between
annihilation operators of the input (a, b) and output (c, d)
beams at a 50/50 beam splitter is of the form
cy 1 /1-1 a
(2)-703) ()
(a) What is the physical interpretation of this transforma-
tion?
(b) What is the output state of the beam splitter if the input
state is a single photon state |¥) = |1)4]0),?

Beam-splitting a coherent state. What is the output state of a
50/50 beam splitter if the input state is |¥) = |a),4|0),, Where
|} is a coherent state of amplitude «.

Beam-splitting two photons. Consider the case when in total
two photons are present in the input beams exciting two arms
in a 50/50 beam splitter.

(a) What would be the output state if the two photons are
arranged such that each excite one of the two input
arms, W) = [1)q]1)p ?

(b) Calculate the coincidence probability P.4(0), given by
Eq. (15.30), for the state of the input beams |V) =
10)al2)s-

(c) What would be the coincidence probability if the
state of the input beams was a noon state |V) =
(12)al0)s +10)al2)s) /v/2?

Beam-splitting multi-photon states. The input state of a beam

splitter with n photons in input arm a and m photons in input

arm b can be written in terms of the zero photon state |0, 0) as

(ap)" (ab)"
Jnoom

In, m) = |0, 0).
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(a) If the input state is |2, 0), what would be the output state
of the beam splitter in terms of the |0, 0) state?

(b) What would be the output state in terms of the |0, 0) state
if the input state was changed to |1, 1)?






Chapter 16

Atom-Atom Entanglement

16.1 Introduction

In this chapter, we will discuss the central topic in the current
quantum optics studies, that is, entanglement. We focus mostly on
the problem of creation of entanglement between two atoms and
address the question how one could create multi-atom entangled
states. The term entanglement, one of the most intriguing properties
of multi-particle systems, was introduced by Schrédinger in his
discussions of the foundations of quantum mechanics. It describes
a multi-particle system that has the astonishing property that the
results of a measurement on one particle cannot be specified
independently of the results of measurements on the other particles.
Although entangled systems can be physically separated, they can
no longer be considered as independent, even when they are very
far from one another. Entanglement is not only at the heart of
the distinction between quantum and classical mechanics, but is
now regarded to be a resource central to the development of
quantum technologies ranging from quantum information, quantum
cryptography, teleportation and quantum computation to atomic
and molecular spectroscopy. These practical implementations all
stem from the realization that we may control and manipulate
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quantum systems at the level of single atoms and photons to store
information and transfer the information between distant systems
in a controlled way and with high fidelity. This field of study is
a relatively new one, and considerable research activity is taking
place at present. The most active ones are the studies of practical
schemes for creation of entanglement between trapped atoms or
ions [91, 94].

We first illustrate how one can create entanglement in a simple
system of two two-level atoms (two qubits). Next, we will illustrate
how the entanglement can be related to quantum interference.
Although the entangling procedure is illustrated for two-level atoms,
it can be extended into multi-atom systems or multi-level atoms
(qutrits).

16.2 Two-Atom Systems

We start with the analysis of the energy states of a two-atom
systems. In the absence of the interatomic interactions and the
driving laser field, the space of the two-atom system is spanned by
four product states

lg1)1g2),  le1)lgz), 1g1)lez), lei)lez), (16.1)
with corresponding energies
Egg = —hwy, Eeg=—hA, Ege=hA, E¢ =hwy, (16.2)

where wy = (w1 + w2) /2 is the average frequency of the atomic
transition frequencies, A = (w2 —w;1)/2 is the detuning of the
atomic frequencies, and |g;) and |e;) denote the ground and excited
states of the ith atom, respectively.

From the energy eigenvalues, we see that the product states
le1)|g2) and |gi)le;) form a pair of nearly degenerated states
differing in energy by 22 A, whereas the ground and the upper states
are separated by 2hwy.

Suppose, the atoms can interact with each other through the
vacuum field by a coherent exchange of photons. The interaction
is represented by the dipole-dipole interaction, which depends on
the separation between the atoms and the orientation of the atomic
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dipole moments in respect to the interatomic axis [92-94]. The
explicit form of the dipole-dipole interaction strength is given by

Qn=ir{—h—u»ﬂﬁﬂ“if?ﬂ
sin (kri2) | cos [krlz)] } 163)

(kri2)? (kri2)?

+[1—3m~ﬁﬂﬂ{

where (i is the unit vector along the dipole moments of the atoms,
which we have assumed to be parallel (& = (i1 = fi2), F12 is the unit
vector in the direction of 713, k = wq/c is the wave number of the
atomic transition and I is the spontaneous emission damping rate
of the atoms.

When we include the dipole-dipole interaction into the Hamil-
tonian of the two-atom system, the product states combine into two
linear superpositions (entangled states), with their energies shifted
from £AA by the dipole-dipole interaction energy. To check this
explicitly, we begin with writing the Hamiltonian of two atoms that
includes the dipole-dipole interaction

2
Hoa =) honST+ 1Y QuyStS;. (16.4)
i=1 i#j

Next, we write the Hamiltonian in the basis of the product
states (16.1) and arrive to a matrix of the form

—w 0 0 0

N 0 —AQp 0

Hoa=10| 95 A 0 (16.5)
0 0 0 wo

Evidently, in the presence of the dipole-dipole interaction the
matrix (16.5) is not diagonal, which indicates that the product
states (16.1) are not the eigenstates of the two-atom system.
The actual energy states of the system are readily found by
the diagonalization of the matrix (16.5). We will diagonalize the
matrix (16.5) separately for the case of identical (A = 0) and non-
identical (A # 0) atoms to find eigenstates of the systems and their
energies.
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16.3 Entangled States of Two Identical Atoms

Consider first a system of two identical atoms (A = 0). As we
have already mentioned, in order to find energies and corresponding
energy states of the system, we have to diagonalize the matrix (16.5).
This is a relatively simple matrix to diagonalize and the resulting
energies and corresponding eigenstates are of the form

Ey = —hwy, lg) = 1g1)192),
1
Es = hQqa, Is) = 7 (lex)lg2) + lg1)le2)),

1
Es=—hQqz, a)= NG (le1)lg2) — lg1)lez)),
E. = hawy, le) = |e1)lez). (16.6)

The eigenstates (16.6), first introduced by Dicke [95] are known
as the collective states of two interacting atoms. They have few
interesting properties. Firstly, the energies of the ground state
|g) and the upper state |e) are not affected by the dipole-dipole
interaction. Secondly, the states |s) and |a) are shifted from their
unperturbed energies by the amounts +i,, the dipole-dipole
energy. Finally, the most important property of the collective states
is that the states |s) and |a) are an example of maximally entangled
states of the two-atom system. The states are equally weighted linear
superpositions of the product states which cannot be separated into
product states of the individual atoms.

We show the collective states of two identical atoms in Fig. 16.1.
It is seen that in the collective states representation, the two-
atom system behaves as a single four-level system, with the ground
state |g), the upper state |e), and two intermediate states: the
symmetric state |s) and the antisymmetric state |a). The energies
of the intermediate states depend on the dipole-dipole interaction
and these states suffer a large shift when the interatomic separation
is small. There are two transition channels |e) — |s) — |g) and
le) — |a) — |g), each with two cascade non-degenerate transitions.
For two identical atoms, these two channels are uncorrelated, but
a detailed analysis involving the master equation of the two-atom
system shows that the transitions in these channels are damped with
significantly different rates. The transitions through the symmetric
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Figure 16.1 Collective states of two identical atoms. The energies of
the symmetric and antisymmetric states are shifted by the dipole-dipole
interaction ;. The arrows indicate possible one-photon transitions.

state are damped with an enhanced (superradiant) rate, while the
transitions through the antisymmetric state are damped with a
reduced (subradiant) rate. The details of the calculations of the
transition rates are left to the reader as a tutorial exercise.

16.4 Entangled States of Two Non-identical Atoms

As we have already seen, in the case of two identical atoms,
the dipole-dipole interaction leads to the maximally entangled
symmetric and antisymmetric states. These states decay indepen-
dently with different damping rates. Furthermore, in the case of
the small sample model of two atoms the antisymmetric state
decouples from the external coherent field and the environment, and
consequently does not decay. The decoupling of the antisymmetric
state from the coherent field prevents the state from the external
coherent interactions. This indicates that the initially non-populated
antisymmetric state remains unpopulated for all times and the
population is distributed only between three collective states.
When the atoms are non-identical with different transition
frequencies, the states (16.6) are no longer the eigenstates of the
Hamiltonian (16.2). However, we can still find the new eigenstates
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simply by the diagonalization of the matrix (16.5) with A # 0. It
results in the following energies and corresponding eigenstates

Eg = —hawy, lg) = 191)192),

Eg = hw, sy = Ble1)lgz) + «lg1)lez),

Eqy = —hw, ld') = ale1)lgz) — Blgi)lez),

E. = hay, le) = le1)lez), (16.7)

where
d Q1 5
0=———, B=——— w=4/Q},+A% (16.8)
Vd? 4+ Q1, Vd? 4+ Q1,

andd = A +4/Q%, + A2

The energy level structure of the collective system of two non-
identical atoms is similar to that of the identical atoms, with the
ground state |g), the upper state |e) and two intermediate states |s’)
and |a’). The effect of the frequency difference A on the collective
atomic states is to increase the splitting between the intermediate
levels, which now is equal to w = Q%Z + AZ2. However, the most
dramatic effect of the detuning A is on the degree of entanglement of
the intermediate states |s’) and |a’) that in the case of non-identical
atoms the states are no longer maximally entangled states. For A =
0 the states |s’) and |a’) reduce to the maximally entangled states |s)
and |a), whereas for A > ;, the entangled states reduce to the
product states |e1)|g2) and |g1)|ez), respectively.

16.5 Creation of Entanglement between Two Atoms

We now consider excitation processes that can lead to a preparation
of the two-atom system in only one of the collective states. In
particular, we will focus on processes that can prepare the two-
atom system in the entangled symmetric state |s). Our main
interest, however, is in the preparation of the system in the
maximally entangled antisymmetric state |a), which is known as
a decoherence-free state [94]. The central idea is to choose the
distance between the atoms such that the resulting level shift is large
enough to consider the possible transitions between the collective
states separately. This will allow to make a selective excitation of
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the symmetric and antisymmetric states and, therefore, to create
controlled entanglement between the atoms.

16.5.1 Preparation of Atoms in Entangled Symmetric State

A system of two identical two-level atoms may be prepared in the
symmetric state |s) by a short laser pulse. The conditions for a
selective excitation of the collective atomic states can be analysed
from the interaction Hamiltonian of the laser field with the two-atom
system.

We start with the Hamiltonian of two interacting atoms driven by
an external (classical) laser field

2 2
H=hoo) SI+h> QuSts; + H, (16.9)
i=1 i#j
where

2
] 1 = —i(w
j2 - —Eh; [Q (7)) Sielontton) 4 Hel (16.10)
is the interaction Hamiltonian of the atoms with the laser field of the
Rabi frequency Q2 (#;), the angular frequency wr, and phase ¢r..
Note that the Rabi frequencies of the driving field are evaluated
at the positions of the atoms and are defined as

QF) = Qi = i - Erefemin, (16.11)
where E L is the amplitude and l;L is the wave vector of the driving
field, respectively. The Rabi frequencies depend on the positions of
the atoms and can be different for the atoms located at different
points.

In the interaction picture and in the basis of the collective
states (16.6), the Hamiltonian (16.9) can be written as
A =H0,+H, (16.12)
where

A, = R{AL (le) (el — 19)(gD) + (AL + Q12) Is)(s]
+ (AL — Q12) la)(al}, (16.13)

A 1 < .
Ay, = _Ehiz:; [Q@F) S +He], (16.14)
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and A;, = wr, — wy is the detuning of the laser frequency from the
atomic transition frequencies wy.
We make the unitary transformation

L (16.15)

and find that the transformed interaction Hamiltonian Hy, is given
by

. h . )
Hy = _2\/2 {(Ql + ) (Sggel(ALJrle)t + S;grqel(ALfQu)f)

+ (2 — 1) (S;'Lgei(AL*i’le)t + S‘;Zei[AL*QH]t) + H.C.}.
(16.16)

The Hamiltonian (16.16) represents the interaction of the laser
field with the collective two-atom system, and in the transformed
form contains terms oscillating at frequencies (Ay, + ©12), which
correspond to the two separate groups of transitions between
the collective atomic states at frequencies w;, = wy + 212 and
w;, = wg — R12. The Ay, + Q17 frequencies are separated from
A1, — Q1; frequencies by 292;,, and hence the two groups of the
transitions evolve separately when €1, > TI'. Depending on the
frequency, the laser can be selectively tuned to one of the two
groups of the transitions. When w;, = wy + 21, the detuning
A1, = Q12, so that the laser is then tuned to exact resonance with
the |e) — |a) and |g) — |s) transitions. In this case, the terms in
the Hamiltonian (16.16) corresponding to these transitions have
no explicit time dependence. In contrast, the |g) — |a) and |e) —
|s) transitions are off-resonant and the terms corresponding to
these transitions have an explicit time dependence exp(32i£2;,t).
If Q12 > T, the off-resonant terms rapidly oscillate with the
frequency 221, and then we can make a secular approximation in
which we neglect all those rapidly oscillating terms. The interaction
Hamiltonian can then be written in the simplified form

i h
L= 22
It is seen that the laser field couples to the transitions with
significantly different Rabi frequencies. The coupling strength of
the laser to the |g) — |s) transition is proportional to the sum of
the Rabi frequencies ©2; 4 €2, whereas the coupling strength of the

(@14 Q) S+ (Q2— Q1) S, +He].  (16.17)
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laser to the |a) — |e) transition is proportional to the difference of
the Rabi frequencies ©2; — ;. According to Eq. (16.11) the Rabi
frequencies 2; and 2, of two identical atoms differ only by the
phase factor exp(il?L - 712). Thus, in order to selectively excite the
|g) — |s) transition, the driving laser field should be in phase with
both atoms, that is, 21 = Q. This can be achieved by choosing the
propagation vector ki, of the laser orthogonal to the line joining the
atoms. Under this condition we can make a further simplification
and truncate the state vector of the system into two states |g) and
|s). In this two-state approximation we find from the Schrodinger
equation the time evolution of the population P;(t) of the state |s) as

Ps (t) = sin® (;EQt> , (16.18)

where Q = Q; = Q). The population oscillates with the Rabi
frequency of the |s) — |g) transition and at certain times P;(t) = 1
indicating that all the population is in the symmetric state. This
happens at times

T
V29

Hence, the system can be prepared in the state |s) by simply applying
a laser pulse, for example, with the duration Ty, which is a standard
7 pulse.

The two-state approximation is of course an idealization, and a
possibility that all the transitions can be driven by the laser imposes
significant limits on the Rabi frequency and the duration of the pulse.
Namely, the Rabi frequency cannot be too strong in order to avoid
the coupling of the laser to the |s) —|e) transition, which could lead to
a slight pumping of the population to the state |e). On the other hand,
the Rabi frequency cannot be too small as for a small €2 the duration
of the pulse, required for the complete transfer of the population
into the state |s), becomes longer and then spontaneous emission
can occur during the excitation process. Therefore, the transfer of
the population to the state |s) cannot be made arbitrarily fast and, in
addition, requires a careful estimation of the optimal Rabi frequency,
which could be difficult to achieve in a real experimental situation.

T, = (2n+1) n=01,.... (16.19)
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16.5.2 Preparation of Atoms in Entangled
Antisymmetric State

If we choose the laser frequency such that Ay, 4+ 1, = 0, the laser
field is then resonant to the |a) — |g) and |e) — |s) transitions and,
after the secular approximation, the Hamiltonian (16.16) reduces to

. h
iy, = ~375 [(Q2— Q1) S+ (21 +2)S; +He].  (16.20)
Clearly, for 2; = —Q; the laser couples only to the |a) — |g)

transition. Thus, in order to selectively excite the |g) — |a) transition,
the atoms should experience opposite phases of the laser field. This
can be achieved by choosing the propagation vector l;L of the laser
along the interatomic axis, and the atomic separations such that

ky Fiz=(@n+1)7, n=0,1,2,..., (16.21)
which corresponds to a situation where the atoms are separated by
adistance ri; = (2n+ 1)1/2.

One can notice that the smallest distance at which the atoms
could experience opposite phases corresponds to ri; = XA/2.
However, it can be verified from Eq. (16.3) that at the separation
riz = A/2 the dipole-dipole interaction €21 is small, and then all of
the transitions between the collective states occur at approximately
the same frequency. In this case the secular approximation is not
valid and we cannot separate the transitions at Ay, + 24, from the
transitions at Ay, — Q13.

One possible solution to the problem of the selective excitation
with opposite phases is to use a standing laser field instead of the
running-wave field. If the laser amplitudes differ by the sign, that is,
ELl = —E'Lz — E, and 7<L1 - o= _hz - 2, the Rabi frequencies
experienced by the atoms are

2i ., - . (1o
QlZ%MrEoSln EkL'Hz )

2i . o (1o
Qz:—gﬂz-Eosln EkL-rlz , (1622)

where I;L = ELl = Ez, and we have chosen the reference frame such
thatr, = %Flz and 7, = —%7‘12. It follows from Eq. (16.22) that the
Rabi frequencies oscillate with opposite phases independent of the
separation between the atoms. However, the magnitude of the Rabi
frequencies decreases with decreasing ry;.
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16.5.3 Creation of Two-Photon Entangled States

In the previous subsection, we have discussed different excitation
processes that can prepare two atoms in the symmetric and
antisymmetric entangled states. However, apart from the symmetric
and antisymmetric states, there are two other collective states of
the two-atom system: the ground state |g) = |g1)lg2) and the
upper state |e) = |ej)|ez). These states are not entangled states.
They are product states of the individual atomic states and, the
most interesting, their energies are not affected by the dipole-dipole
interaction 1.

As we shall demonstrate, one can create entangled states involv-
ing those two product states. However, this requires the application
of an external coherent field, resonant or near resonant with the
two-photon frequency 2w, separating these states. Moreover, more
conditions should be satisfied. The problem is that a coherent field
resonant to the |g) <> |e) two-photon transition couples also to one-
photon transitions, |g) <> |s) and |g) <> |a). Thus, the field populates
not only the upper state |e) but also the intermediate states |[s)
and |a). The two-photon entangled states are superpositions of
the collective ground and excited states with no contribution from
the intermediate collective states |s) and |a). Therefore, some
arrangements should be done to excite the two-photon transition
and at the same time eliminate the coupling of the field to the one-
photon transitions.

Let us now investigate how this could be arranged. Suppose, the
density matrix of the two-atom system is given by

Pgg 0 O pge

o 0 ps 0 O
= 16.23
P 0 0 pg O ( )

Peg 0 0 pee

where p;; are the non-zero density matrix elements.

It is seen from Eq. (16.23) that the density matrix of the system
is not diagonal due to the presence of the two-photon coherencies
Pge and peg. This indicates that in the presence of the two-photon
coherences, the collective states |g), |s) and |e) are no longer
eigenstates of the system. The density matrix can be re-diagonalized
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by including pey and pge to give the new (entangled) states

_ (Pu — pec)lg) + Pegle)

_ :Oge|g) + (Pd - ng)|e>
\/(Pu - pee)2+|peg|2

\/(Pd - pgg)2+|peg‘2
(16.24)

[u) |d)

and the collective states |s) and |a) remain unchanged. The
probabilities (eigenvalues) of the diagonal states are

1 1
P, =~ (ng + pee) + *\/(pgg - ,Oee)2 +4 |,Oeg|2

’

2 2
1 1
Pi = 2 (Pgg + Pee) — E\/(ng - Pee)z +4 |'089’2'
Ps = Pss»
Py = pua. (16.25)

The two-photon behaviour of the entangled states (16.24) suggests
that the simplest technique for generating the two-photon excitation
(TPE) states would be by applying a TPE process. An obvious
candidate is a squeezed vacuum field which, as we have seen in
Chapter 6, is characterized by strong two-photon correlations, which
would enable the transition |g) — |e) to occur effectively in a
single step without populating the intermediate states. It has been
demonstrated that the entangled states (16.24) are analogous to
the pairwise atomic states [96-98], or the multi-atom squeezed
states predicted in the small sample (Dicke) model of two interacting
atoms [99].

16.6 Quantum Interference of the Field Radiated by
Two-Atom Systems

In Chapter 15, we investigated quantum interference effects
involving classical and quantum electromagnetic (EM) fields. We
were not interested in sources that could generate these fields in
practice. In this chapter, we focus on practical sources of the field,
two-level atoms, and discuss quantum interference effects involving
radiation fields emitted by the atoms. We consider both the Young’s
and the Hanbury Brown and Twiss (HBT) experiments in which we
determine, respectively, the first and second-order correlations in
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the field emitted by two two-level atoms. The advantage of using
two-level atoms instead of slits is that at a given time each atom
cannot emit more than one photon. Therefore, the two-level atoms
can be regarded as sources of single photon fields. The atoms
interacting with the vacuum field may decay spontaneously from
their upper energy states to the ground states emitting their energy
to the surrounding vacuum modes.

16.6.1 First-Order Interference of the Field Radiated by a
Two-Atom System

Consider a Young’s type experiment with the slits replaced by two-
level atoms. The atoms are sources of the field registered in the far-
field zone by a detector P, as illustrated in Fig. 16.2. We assume that
(a) initially only one atom was in the excited state and the other was
in its ground state, and (b) initially both atoms were excited.

Since the electric field emitted by an atom is proportional to the
radiating dipole moment

ES ~pi=lwilSt,  E ~pl=ulST,  (1626)
P
\
N
NN
! N
R1I \\
| \
1 \
|
|
|
1
1 r12

Figure 16.2 Schematic diagram of a Young’s type experiment in which
slits are replaced by atoms distance ry, and radiating fields registered by
a detector P located in the far-field zone of the radiating atoms, Ry & R; =
R > riz.

263



264

Atom—Atom Entanglement

we can write the average intensity at the detector P in terms of the
atomic spin operators as

I(R, ) =T [(SFS7) + (S587) +2(SF 87 ) cos (kR -F12)],
(16.27)

where T' is the spontaneous emission rate, equal for both atoms.
In the basis of the collective states, the radiation intensity can be
written as

I(R, )/ T = [pee(t) + pos ()] [1 + cos (kR - F12)]
+ [Pee(t) + Paa(t)] [1 — COs (ki? : 712)]
+1i [psa(t) — Pas (t)] sin (k}Ae . 712) ’ (16-28)

where pgs and pgq are the populations of the entangled states |s) and
|a), respectively, and psq, pgs are coherencies between them.

Example 16.1 (Initially one atom excited) Assume that only one
atom was initially excited. In this case

1
Ps5(0) = paa(0) = psq(0) = pas(0) = E' Pee(0) = 0. (16.29)
Then, the radiation intensity (16.28) reduces to

I(R, ©)/ T = pss(8) + Paa(t) + [pss (£) = paa(t)] cos (KR - Fiz) .
(16.30)

It follows that an interference can be observed only if pss(t) # Paa(t).
This happens when p1,(t) and p,1(t) are different from zero, that is,
when there is a coherence between the atoms.

At first thought, the result (16.30) can be surprising. One could
argue that with only one atom excited initially, say the atom 1, and
the path of the emitted photon is known, the photon travels to the
detector along the path R, so this should rule out the interference
effect. This is true as long as the atoms are independent and in
this case one can readily show that pg(t) = pgq(t) for all times ¢.
However, when the atoms are coupled to each other, which could
happen when the atoms are located in a common reservoir, then the
photon emitted by the excited atom could travel to the detector along
the path R; but also could be absorbed by the second atom and then
travel to the detector along the path R,. Since we do not know which
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path the emitted photon travelled to the detector, an interference
effect occurs.

Example 16.2 (Initially both atoms excited) If initially both
atoms were prepared in their excited states, then

pee(o) =1, pss(o) = ;Oaa(o) = psa(o) = pas(o) =0. (1631)
In this case, the radiation intensity (16.28) simplifies to
I(R, £) = 2T pee(t). (16.32)

Clearly, there are no terms involved that depend on the position of the
detector R. Thus, no variation of the intensity with R, which on the
other hand means no quantum interference can be observed in this
case.

The result of the example 16.2 can be understood by referring to
Fig. 16.1 When both atoms are initially excited, the population is
initially in the upper state |e) and due to spontaneous emission the
population can decay to the intermediate states |s) and |a). There
are two paths the population decays, |e) — |s) and |e) — |a).
Then, by measuring the population of either |s) or |a), one could
recognize which path the population decayed to the lower energy
states. Knowledge of the path eliminates the interference fringes.

Example 16.3 (Two non-identical atoms) When the atoms are not
identical with different transition frequencies, w, # w,, the radiation
intensity can be written as

I(R, ©)/T = Li(t) + L(6) + 2(5 7€) cos (kR - 1z + At),
(16.33)

where A = w; — ws. In this case for any initial conditions, the
interference term depends on time. The magnitude of the term
decreases with increasing A and the observation time t, and vanishes
for long observation times, t > 0.

The reason for the vanishing of the interference term when the
atoms are not identical is that a long observation time allows to
determine the frequency of the detected photon, so that it can be
known from which atom the photon came to the detector.
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16.6.2 Two-Photon Interference in a Two-Atom System

We have seen that one-photon interference is sensitive to the
one-photon coherences. In contrast, the second-order correlation
function can exhibit an interference pattern independent of the
one-photon coherences. This type of interference results from the
detection process that a detector does not distinguish between two
simultaneously detected photons.

We illustrate the temporal and spatial properties of the second-
order correlation function with few examples.

Example 16.4 (One-time second-order correlation function)
As a first example, consider the one-time second-order correlation
function

GA(R, t) = (EC)(R, OECN(R, HED(R, ) E(R, 1))
=T pee(t) [1 + cos (kR - F12)], (16.34)

where, for simplicity, we have assumed that 721 = ;?2. We see that
interference takes place only when the population of the upper state
pee(t) # 0, and no first-order coherence is required to see interference.
This type of interference can be achieved by preparing both atoms in
their upper states.

Now consider a more general two-photon correlation function and
also assume that the atoms are not identical.

Example 16.5 (Two initially excited non-identical atoms)
Consider now two initially excited non-identical atoms, p..(0) = 1.
If both photons were detected at the same time t, the second-order
correlation function takes the form

GB(Ry, t; Ry, £) = T? [1 4 cos (kR - F12)] e, (16.35)
This shows that even for two significantly different (distinguishable)
photons detected at the same time, the second-order correlation
function exhibits perfect interference pattern. This surprising result
arises from the fact that a detector cannot distinguish between
two simultaneously detected photons, even if the photons have
significantly different frequencies.

Example 16.6 (Photons detected at different times) When
initially both atoms were excited (p.(0) = 1) and the two emitted
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photons were detected at different times, the first at t and the other at
t + t, the two-time second-order correlation function takes the form

G(Z](iél, t; kz, t+ ‘[) = Fz [1 + COS(k& . ?12 + AT)] 672F(2t+r].
(16.36)

We see that at the interference term is independent of t. It depends
on the time difference t, but only when the atoms are not identical,
A # 0. Thus, for identical atoms perfect interference is observed even
if the photons are detected at significantly different times that could
even go to infinity. For non-identical atoms, the interference degrades
with an increasing t, and is expected to vanish for T > 0. To put
it another way, when photons emitted from non-identical atoms are
well separated in time, it is possible to determine from which atom
the photon came to the detector by examining its frequency. This rules
out any interference, which is always a manifestation of the intrinsic
indistinguishability of possible paths of the detected photons.

16.7 Summary

In summary of this chapter, we can thus state: Any attempt to
interfere with the interference phenomenon to find out from which
atom the detected photon was emitted leads to a degradation or
even elimination of the interference fringes. The observation of an
interference pattern and the acquisition of from which atom the
photon came to a photodetector are mutually exclusive.

Exercises

16.1 Show that
<Si‘_51_> + <S;SZ_> = Pss + Paa + Zpee:
_ 1
<SIF52 > = E (pss — Paa + Pas — /Osa)-

16.2 Write the purity condition Trp? in terms of the populations
and coherences of the collective (Dicke) states.
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16.3 The master equation for two interacting atoms in the ordinary
vacuum has the same form as the master equation for the
Vv system, given in the Exercise 9.5 of Chapter 9. The only
difference is that now S} = |e1) (91| and S; = |e2) (g2 |-

(a) Assuming that initially only one atom was excited, cal-
culate the time evolution of the populations ps(t), 0aq(t)
and the coherence psq(8).

(b) Under what condition pg(t) # 0qa(t)?

(c) Find the time evolution of the intensity I (¢).

(d) Analyse the dependence of the intensity on time t and
the damping rate I';; and find conditions for ¢t and I';; at
which one can observe interference pattern.

16.4 Consider two identical two-level atoms interacting with a
multi-mode broadband reservoir whose modes are in a
squeezed vacuum state. If the atoms are confined to a region
much smaller than the atomic transition wavelength (the
Dicke model), the density matrix elements in the basis of the
collective states satisfy the following equations of motion

Pee = —2I' (N + 1) pee + 2NTpgs + | M| py,
pss = 2I' [N — (3N + 1) pss + pee — |M|pu],
paa =0,
pu = 2T M| =T (2N + 1) py — 6I'| M| pss,
where N is the number of photons in the modes of the

squeezed field, M is the two-photon correlation between the
modes, see Eq. (6.69), and py, = peg + Oge-

(@) Show that the steady-state values of the density matrix
elements are
N%(2N+1)— (2N — 1) |M|?

Pee = 2N+1) 3N+ 3N + 1 —3|MP2)’
NN+ 1)— |MP?
Pss = 3NZ L3N+ 1— 3|M2’
2| M|
Pu =

(2N +1) (BN?+3N+1-3|M?)

(b) Show that in the case of a thermal field with |M| = 0 and
a classical squeezed field, with the maximal correlations
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|[M| = N, the stationary populations obey a Boltzmann
distribution with pgg > g5 > pee.

(c) Show that in the case of a quantum squeezed field with
the maximal correlations |M|?> = N(N+ 1), the Boltzmann
distribution of the populations is violated, that pee > pss-

16.5 Using the results of Exercise 16.4, show that in the case of a
quantum squeezed field with the maximal correlations |M|? =
N(N+1), the stationary state of the system is a pure entangled
state. Is it maximally or non-maximally entangled state? Under
which condition, the state becomes maximally entangled?






Chapter 17

Classical and Quantum Lithography

17.1 Introduction

We have learnt in Chapter 5 how to reduce fluctuations of an
electromagnetic (EM) field below the quantum (Heisenberg) limit
imposed by the quantum nature of light. It has been shown that
the quantum limit can be beaten using non-classical squeezed light
of reduced fluctuations. Another issue of significant interest in
quantum optics is to beat the diffraction limit imposed on the
resolution of measured objects by the wave nature of light. In this
chapter, we will illustrate how one can beat the diffraction limit by
using the quantum nature of entangled light beams. We shall see that
entangled light can lead us to a new domain of quantum optics in
which detectors can resolve two closely spaced objects or spectral
lines with the minimal resolvable limit significantly reduced or even
completely suppressed. This subject is generally known as quantum
optical lithography and could be described in short as the ability to
print patterns onto certain materials using non-classical light. The
developments in this area are of fundamental interest, and they hold
promise for advances in optical interferometry and in applications
such as quantum metrology and gravitational wave studies.
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17.2 Classical Optical Lithography

Optical lithography is a technology for writing features of very
small size onto substrates using coherent optical fields. However,
the resolution is limited by the Rayleigh diffraction criterion, which
states that the minimal resolvable feature size occurs at a spacing
corresponding to the distance between an intensity maximum and
an adjacent intensity minimum of the diffraction pattern. The
Rayleigh diffraction limit is Ax,,;, = A/2, where Axy,;, is the fringe
separation and X is the optical wavelength. This is the best resolution
that can be achieved with classical fields. Hence, it has become
necessary to use optical fields of very short wavelengths to fabricate
smaller objects.

A modification of optical lithography, called classical interfer-
ometric lithography, involves two coherent plane waves of laser
radiation intersecting at an angle 26, as shown in Fig. 17.1. A phase
shifter (PS) located in one of the two arms introduces a phase
difference between the two coherent optical paths producing an
interference pattern on the screen S (lithographic plate), with the
resolution given by the diffraction formula

A
X = .
2sin6

(17.1)

Then, in the grazing incidence limit of 6 — /2, the minimum
resolution is Axpyi, = A/2.

Figure 17.1 Schematic diagram of an interferometric lithography
experiment.
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17.3 Quantum Lithography

Consider now a quantum description of interference lithography in
which we use the photon picture of the incident fields mixed at the
50/50 beam splitter BS. The photons are reflected by the mirrors M
onto the screen. We introduce a phase shifter placed in the upper
arm which produces a phase shift ¢ = ks, where k = 27/A and s is
the difference between the two optical paths. The input fields, ports
a and b, are represented by the annihilation operators & and b that
obey the usual commutation relations
[4,a"]=1[b, b'] =1, [4, b] = 0. (17.2)
The output fields c and d are represented by two operators ¢ and
51, which are linear combinations of the reflected and transmitted
input-field operators as
¢ = JE (ia+b)e?, d= JE (a+ib), (17.3)
where exp(i¢) represents the phase difference between the fields
impinging on the screen S. Hence, the annihilation operator of the
total field detected at the screen S is given by
i=¢+d= \2 (1+ie"¢)a+jz (i+e?) b (17.4)
The quantum lithography approach to sub-wavelength resolution
is based on n-photon absorption process. The n-photon absorption
rate, corresponding to the deposition rate of n photons on the
screen, is proportional to the n-order correlation function of the
total field operators as
1' <(m)" (a)”>, (17.5)
n!
where il = ¢+ 3, and the average is taken over the initial state of the
field.
Let us now illustrate with few examples on how the absorption
rate, and then the resulting resolution, depend on the state of the
input field.

Ap =

Example 17.1 (One-photon absorption rate) Consider first the
one-photon absorption rate for an input field in the state

1) = [1)]0). (17.6)
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It is easy to show that in this state the one-photon absorption rate is
given by

Ay = (ot W) =1 —sing, (17.7)

which represents an interference pattern that varies with the phase ¢.

The Rayleigh criterion demands ¢min, = 7 for the minimal distance
between a maximum and an adjacent minimum of the interference
pattern, from which we find the minimum fringe spacing Xmin = A/2
(for 6 ~ m/2). This is the usual classical result, called the single-
photon diffraction limit.

Example 17.2 (Two-photon absorption rate with an input
classical state) Consider now the two-photon absorption rate with
an input state

[Wac) = 12)q]0)p. (17.8)
This state is an example of a so-called two-photon classical state. It
gets this name because it is possible to distinguish through which
channel the incident photons arrive. We then find

1 ptatan
Ay = E(chlu u' ot | Wy)

= (1—sin¢g)? = % — 2sing — %cos 2¢. (17.9)

We see that there are three terms in the absorption rate. The first
is the spatially uniform term 3/2, which is three times larger than
desired. The effect of this term is to reduce the contrast of the fringe
pattern. The second term is the same as in the one-photon absorption
rate. This is an unwanted term since it will mask the effect of the
third term cos 2¢ that oscillates in space with twice the frequency as
the one-photon absorption rate. This dependence leads to narrower
interference fringes than that for the one-photon absorption rate.

The two-photon absorption rate can exhibit even narrower features
with the fringe spacing reduced by a factor of two if the input state
is a quantum state.

Example 17.3 (Two-photon absorption rate with an input
quantum state) Consider the following a two-photon input state

W2q) = 11)al1)s. (17.10)
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The state |Wyq) is an example of a quantum state—because there it
possesses a photon in each channel, so that when a photon is detected,
one cannot say from which channel it originated. With the input
state |Wyq), the two-photon absorption rate takes the form

1 .
Ayq = 2!<w2q|afa'aﬁ|xy2q> =1+ cos 2¢. (17.11)

Comparing Eq. (17.11) with Eq. (17.9), we see that in the case of
the input quantum field, the slowly oscillating term sin¢ has been

eliminated, and we are left with only the cos2¢ term, giving the
minimum resolution X, = A/4.

In Fig. 17.2, we plot the absorption rates as a function of the phase
shift ¢. It is evident that the classical two-photon excitation pattern
has the same period but is narrower than the one-photon excitation
pattern, and the quantum two-photon excitation pattern has a
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Figure 17.2 The absorption rates A, as a function of the phase shift
¢ with one-photon excitation A; (dashed-dotted line), uncorrelated two-

photon excitation A,./2 (dashed line) and quantum (entangled) two-photon
excitation Ay, (solid line).
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period half that of the corresponding classical interference pattern.
A spatial interference pattern with the modulation period reduced
by a factor of 2 has been observed experimentally by D’Angelo et
al. [100]. This unusual property of the interference pattern is a
consequence of the division of the two photons between the two
channels in the input state |Wy,).

The resolution can even be improved beyond the A /4 limit if an n-
photon correlated quantum field is used. It has been demonstrated
experimentally by the Steinberg’s group at University of Toronto
who achieved resolution to the limit of A/6 with a quantum three-
photon correlated field [101], and the Zeilinger’s group at Vienna
University [102], who achieved resolution of order of A/8 with a
quantum four-photon correlated field.

17.4 Summary

Quantum lithography has a very good chance of becoming im-
plemented in practice, especially as new sensitive multi-photon
lithographic materials are being developed [103, 104]. We have
also seen that classically simulated quantum lithography may be a
realistic alternative approach which could be much more readily
implemented [105, 106]. For example, Kiffner et al. [107] have
proposed to study spectral resolution in terms of the coherent
population trapping (CPT) rather than in terms of non-classical
n-photon absorption. The advantage of the CPT is that the sub-
wavelength resolution problem can be studied in terms of classical
rather than quantum fields. Other interesting schemes of classi-
cally simulated quantum lithography include methods where sub-
wavelength resolution was achieved by correlating wave vector and
frequency in a narrow-band multi-photon detection process [108,
109], or inducing the multi-Rabi oscillation between energy levels
of a two-level atom [110].

Exercises

17.1 The Rayleigh diffraction limit Ax,,;, = A/2 is proportional to
the wavelength of light used. Explain, why it is not a common



17.2

17.3

17.4

Exercises

practice to increase the resolution simply by using light of a
shorter wavelength?

Suppose, two plane waves characterized by wave vectors ki
and k; fall on a surface at an angle 6 from the normal to the
surface. The wave vectors are given by

El = k(sin @, cos9), 7(2 = k(—sin®, cos6).

(a) Find the interference pattern in the intensity I(#) of the
two plane waves at position 7 on the surface. Assume that
the plane waves have the same amplitudes.

(b) Find the Rayleigh limit for the resolution of a feature size
Ax on the surface oriented in the direction x.

(c) Show that the classical diffraction limit is Ax = 1 /4 that
occurs at grazing incidence of the waves, where A is the
wavelength of the incident waves.

Find the absorption rate for an input field being in the state
[Wo) = |n)alm)p,

where n and m are the numbers of photons in the modes a and
b, respectively. Determine the properties of the absorption rate
in the cases of n = mand n > m.

Evaluate the absorption rate of the output field when a pair of
input beams in the quantum state [W;,) = [1)4]1)}, is fed into
an imperfect beam splitter with unequal reflection and trans-
mission coefficients. Show that in this case the absorption rate
contains both the slowly and rapidly oscillating terms, and
explain what is the meaning of this result.
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Chapter 18

Laser Model in the High-Q Limit

18.1 Introduction

In this chapter, we turn our considerations to the simplest model of
a laser that includes all the essential features of any practical laser.
The one-photon losses (due to coupling to the environment), linear
gain (due to inverted atoms) and saturation (due to nonlinear loss),
that are experienced by a single-mode (laser) cavity are all included
in the calculations and their role in the laser properties is fully
explored. We point out that all lasers must have these three elements
to operate as a laser. If there is only a linear gain, then of course there
can be no output, since an output causes a loss. With both gain and
loss, but not saturation, the laser intensity is either near zero (well
below threshold), or else it rises infinitely (well above threshold).
Neither case is very useful as a model of a real laser, which has a
finite output above threshold. This is why a saturation mechanism is
needed, such as an intensity dependent nonlinear loss. This simple
model used here is then obtainable in the limit of a high-Q laser
operating not too far above threshold.
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18.2 Master Equation

The laser model we consider here is based on the procedure of
converting the master equation of the reduced density operator
of the cavity mode into a Fokker-Planck equation (FPE) for the
P representation [111, 112]. The equation is equivalent to a set
of coupled stochastic differential equations (SDE) for the cavity
field amplitude, which we solve for the steady-state and for two-
time correlation functions using the phase diffusion model. These
solutions will give information on the laser intensity and linewidth.
Consider a single-mode cavity containing an ensemble of atoms
that decay to stationary states much faster than the cavity field.
In this case, we may adiabatically eliminate the atomic variables
and arrive to the reduced density operator of the cavity field alone.
Including the linear loss, gain and nonlinear loss of the cavity mode,
we can model the system (laser) by the following master equation

——« (a'%a%p + pa'?a® — 2a*pa'?), (18.1)

N[N

where I' is a linear loss due to spontaneous emission, G is linear gain
and « is nonlinear loss.

Transforming the master equation into the FPE for the Glauber-
Sudarshan P representation, we obtain

%P (o, t) = {ai B (r —G)oe+/c|oz|2a}

2

Jdooa*

d

+8a*

[; (F—G)a*+/c|a|zot*} + G}P(a, t).

(18.2)

This FPE is equivalent to a set of coupled SDE for the field
amplitudes.
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18.3 Stochastic Differential Equations

The diffusion matrix D and the matrix B corresponding to the FPE,
given in Eq. (18.2), are of the form

0G G (1 i
D:(GO), B = 2(1_1,). (18.3)

Using the Ito rule, we can write the following SDE

da 1

— =——T-Qa- 2 F (1),

= T =Ga—klafa+ F (0

da* 1 * 2 % *

er ——E(F—G)a —Klo|?a™ + F* (1), (18.4)

where F(t) and F*(t) are the noise terms corresponding to the
complex conjugate variables « and «*, respectively. The noise terms
are given by

Ft)= \E(I/n (O +iy2 (1),

F* () = \/f(l/n () —iy2 (1), (18.5)

where 1 (t) and v, (t) are the independent real noise terms.

F* is the complex conjugate of F, and therefore o and «* remain
complex conjugate. Thus, there is no the problem of employing the
Glauber-Sudarshan P representation to this model. Note that this
is only true because we have neglected in the FPE the diagonal
diffusion coefficients due to the nonlinear loss.

Using the usual correlation properties (12.79) of the indepen-
dent noise terms, we find that the only non-zero correlations of the
noise terms are

(F(O)F*(t)) = (F*(O)F (£)) = G8(t — t). (18.6)

Following the above developments, one might ask a question: Why
do we need the two-photon absorption term in the master equation?

From the SDE (18.4), when we put x = 0 and ignore the noise
terms, we obtain a simple equation of motion for «:

da 1
— =—— (- . 18.7
=T -G (18.7)
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Its solution is
a(t) = o (0)e 20, (18.8)
We see that for (I' — G) > 0 (below threshold)
a(t)—0 when t — oo, (18.9)
whereas for (I' — G) < 0 (above threshold)
a(t) > oo when t — oo. (18.10)

Lasers operate in the steady-state regime and have a finite intensity,
thus we need a nonlinear absorption process to get laser systems
into a stable and finite steady-state intensity.

18.4 Semiclassical Steady-State Solution and Stability

The semiclassical steady-state solutions of the SDE follow immedi-
ately from Eq. (18.4). In the semiclassical limit the noise terms in
the SDE are dropped (F(t) = 0) on the assumption that quantum
fluctuations are small. Then, taking the steady-state limit (do/dt =
0), we readily find

1
clagl* + 2 (0= 6) | &y =0, (18.11)
where o4 is the steady-state value of «. Equation (18.11) has two
solutions
1' as = 01
G-T
2. lagl? = ——. (18.12)
2k

The second solution is physically meaningful for G — I" > 0 (above
threshold), but contains no information about the steady-state phase
¢ of the complex amplitude oy = |os| exp(is).

Are the steady-state solutions stable?

We use the linearization technique to find whether the steady-
state solutions are stable. This means, we take

a(t) =as+dal(t), (18.13)
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and substitute into Eq. (18.4). We keep terms linear in §«, and put
the equations of motion for S« (t) and do* (¢) in a matrix form

d (sa@®) _ [ da(® _
dt <8a* (Q) =—-A ((Sa* (t)) + noise. (18.14)

Next, we find the eigenvalues of the matrix A’.

The steady-state is stable if all the eigenvalues %; of the matrix A’
have positive real parts. If there is a negative real part of A; or A; = 0,
then the steady-state is unstable.

Consider the case 1. o = 0.

Here, « (t) = é« (t), and then Eq. (18.4) reduces to

dé 1
d—:[ =-3 (I' = G) 8« + noise,
déa* 1
d‘z = — ([ = 6) 80" + noise. (18.15)
Thus, the matrix A’ is of the form
Lr-o6 0
A= ( 2 ( . ) , (18.16)
0 (M -6)
and its eigenvalues are
1
hz=5 (T =6). (18.17)

It is clear that the eigenvalues are positive for I' > G. Thus, the
steady state is stable for I' > G (below threshold).

Consider the case 2. |og|? = (G — ') /(2«).

Here, Eq. (18.4) reduces to

dé 1
D __|= (I — G) + 2« |os|?| 8o — Kafaa* + noise,
dt 2
déa* 1
d‘: = — [2 (I —G) + 2« Ias|2] Sa* — ka**8a + noise, (18.18)
from which it can be found that the matrix A’ is of the form
1 2 2
, > (T — G) + 2« |os| Ko
A = 2 S . (18.1
( o2 L —6)+ 2clay? ) 1819

The eigenvalues of A’ are
A =0,
Ao = 2k |as)?. (18.20)
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We see that one of the eigenvalues is equal to zero. This means
that the steady-state solution is unstable. Thus, above threshold the
system cannot be analysed correctly by the assumption of small
fluctuations and using the linearization techniques. As we will show
below, this instability is physically due to the phenomenon of phase
diffusion.

18.5 Exact Steady-State Solution

In order to analyse the problem more carefully, we rewrite the FPE

in terms of intensity and phase variables
1
I =aa*, ¢=—In—. (18.21)
20 aF
Using the polar coordinates (« = r exp(i¢)), we get

a _igl [0 190
—=e - —=i-——],
Ja 2 \or r dg

0 (8 + i18> . (18.22)

1
da* 2

0 . * 0 1 0
—u = o =—I+—=—
oo da* al 2i 0¢
92 _182+8+1 92
dada* 312 Al 4l 9¢?’
and then the FPE takes the form

d i)
5P U9) = {31 (T =G)I+261* = G)

Hence,

(18.23)

1 92 10° /G
+EW(ZG”+EW (U)}P(I'd)) (18.24)

The normalization condition will change to

2 o0 . .
/dZaP (o, ™) = / d¢/ drrP (re'®, re™'?)
0 0

1

2 o0
= E/0 d¢/0 dIP (I, ¢)=1, (18.25)

where [ = r2,
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The above FPE is still exact and can be solved for the steady state.
Since the I and ¢ terms are independent of each other, we look into
the solution of the form

Py (1, ¢) = Pss (1) Pss (8).- (18.26)
First, consider the part Py (I) = Ps. This part satisfies a differential
equation
1 92
2912

3 d
—p,={— (—AP,
o7 Car

o (DPS)}, (18.27)

where

A=(G-T)I-2I*+G,

D = 2GI. (18.28)
In the steady state, d P;/dt = 0, and then the FPE simplifies to
d 10
— < —AP,+ -— (DP); = 0. 18.29
ol { + 201 ( )} ( )

First integration gives
0
8—IDPS = 2APs + const|’. (18.30)

If AP, and %DPS vanish at infinity, the constant is zero, and then we
can write
1 d 2A

—(DPs) = —, 18.31
D Py dI( ) D ( )
whose solution is
P = N ex Z/dIA (18.32)
s=ND P D]’ '
Since
A 16G-T) «I 1
- == -+ —, 18.33
D 2 G G + 21 ( )
and assuming that / >> 1, we obtain
A 1(G-T 1xl?
/—dl _le=n, 1« (18.34)
D 2 G 2 G
Hence,
G-T
P, = Nexp {[ - )1—’212} (18.35)
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Note that the phase part Ps(¢) does not contain a drift term A. Thus,
the solution for Pgs(¢) is a constant. As a consequence, the distribu-
tion Py (I, ¢) depends only on the intensity I, not on the phase ¢.

Example 18.1 (Exact value of the phase distribution) The exact
value of the phase distribution P(¢) = ®(¢) can be found from the
normalization condition

2 00
3/ d¢>/ dIP(I,¢) =1, (18.36)
2 Jo 0
from which we have
1 oo
D(p) = E/ dIP(l, ¢), (18.37)
0
and
2
do ®(¢) = 1. (18.38)
0
Since ®(¢) does not depend on ¢, we obtain
() = i (18.39)
2m

This result reflects the fact that the phase of the cavity field is
uniformly distributed over 2 and does not have a well-defined value,
which is due to the phase diffusion.

The intensity distribution function (18.35) exhibits a peak corre-
sponding to the most probable value of the intensity. The peak is
located at I = 0 in the below-threshold regime (I" > ), and at

G-T
p|E-n_«, (18.40)
G G
in the above-threshold regime, from which we find
G-T
I = . (18.41)
K

The distribution function can be applied to calculate one-time
correlation functions. For example, we can calculate the average
number of photons

2 o) o0
(@'a) = (a*a) =1/ d¢>/ dIIP(I, ¢):27‘r/ dI1P(I),
2 0 0 0
(18.42)
where Pi(I) = Ps(I, ¢)/2.
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Integrating by parts, or approximately we can assume that (afa)
is maximal at the peak of P;(I), and obtain
G-T
AT A ~ .
(a'a) P
Below the threshold, the term (I" — G) /G dominates in P;(I) (we can
ignore I? term), and integrating by parts, we get

G
At A\ A
a'ay~ . 18.44
( ) r—a ( )

(18.43)

18.6 Laser Linewidth

The steady-state solution for P (I, ¢) can provide exact results for
one-time (stationary) correlation functions, but it does not solve
the time-dependent problems, which are important to calculate the
spectrum of the field. The spectrum provides the information about
the laser linewidth. In order to evaluate the spectrum of the cavity
field, we must consider the full spectrum, with the noise terms SDE.
We will consider separately the below and above-threshold cases.

18.6.1 Below Threshold

In the below-threshold regime, the linearized approach to the
fluctuations is valid, as the system is stable. Since

o = oy + 8, (18.45)
and below threshold ¢y = 0, we find from the SDE the following

equations of motion

d 1
Jde =2 (= G)éa + F(0)

dt
d8 = 1(F G)sa™ + F*(t) (18.46)
a’® T2 “ ’ '
where the noise terms satisfy the relation

(F(OF*(£)) = Gs(t — t). (18.47)

Integrating the equation for d«, we obtain

t
Sa(t) = / dt'e O F ), (18.48)

o0
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This solution allows us to calculate the two-time correlation function
(a*(t)da(t + T)). (18.49)

Its Fourier transform is the spectrum of the fluctuations.
(S (O8a(t + 1)) = /t i /t+r 4t e T-6)(—1) g~ 3 (M-G)(t+7—1")
—00 —0o0
X <F*(tJF(t”)>
t t+t
_ Ge—%(r—a)(zwr)/ dt// dtue%(r—a)(ﬁw’)&(tj —¢)
—00 —00

t
_ Ge_%(r_c)(z”f)/ dt' eT-6 _ o= 31(T-6)(2t+1) 1 eT—6)t
—o0 r—-a
G
-6
Thus, the spectrum of the fluctuations (intensity spectrum) is given
by

e~ 2Tl (18.50)

[o¢]
I(w) = / dr (a'(a(t + 7)) e'l=e)"
—00
_ G
C(w—w)+ i -6
where w, is the cavity central frequency, and
aee) = a(pe'>t, a'(e) =af(e ot (18.52)

are slowly varying parts of the field operators. We see that the
intensity spectrum is a Lorentzian with half width (I" — ¢)/2. Since
I" > G, the with is approximately equal to the cavity linewidth.

(18.51)

18.6.2 Above Threshold

To analyse the spectrum in the above-threshold regime, we use the
FPE for P (I, ¢), from which, using the Ito rule, we get the following
SDE

I
% =—(T—=G)I—2«I*+G+~2GIg (), (18.53)

d \/?
= ng)(t), (18.54)

(7 (DE(1)) = (Es(DE,(£)) = (¢ — 1). (18.55)

where
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Note that the equations for I and ¢ are decoupled from each other.
We first check if we can use the linearized theory for I. For this,
we look at the steady state of Eq. (18.53):

21 —(G—T)Iy— G =0, (18.56)

which has two solutions

G-T 1
Ioq1,2) = e + ™" (G — I')? + 8Gk. (18.57)

Since we can accept only the positive solution, we see that in the
steady state, Iy > (G — I")/(4«).

We now check if the steady state is stable. In terms of the
linearized theory we can write I = Iy + §1, and then we obtain from
Eq. (18.53)

dsl

e (G—T)81 — 4k 1y81 + noise, (18.58)
or equivalently

dsl :

Since Iy > (G — I')/(4«), we see that the coefficient at §I is positive,
so the steady-state solution is stable.

We will treat the intensity equation within the linearized theory,
but will solve the phase equation exactly.

Well above the threshold, we may assume that the fluctuations
are small compared to Iy, and then replace I by Iy. We can write the
phase equation as

dp
5= E)(t), (18.60)
where
FJ () = V/G/(210)85(8) = /Dy (2). (18.61)

The phase equation is equivalent to the FPE of the form of a diffusion

equation
a 1 92
—0(p,t) = =Dy—D (¢, t), 18.62
500 =305 50 (9,1 (18:62)

where

Dy=—. (18.63)
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We now solve the diffusion equation

a 02
— & =D—9, (18.64)
ot A2

where D = Dy/2. The equation is an analogue of the harmonic

oscillator equation, and will find the solution of this equation in
terms of harmonics of ¢:

D= Cn(t)e™. (18.65)
m
Substituting Eq. (18.65) into Eq. (18.64), we obtain
Cm(t) = —DmM*Cp(8). (18.66)
Its solution is
Cr(6) = Cp(0)e Pt (18.67)

We choose initial value for C, as
1 .
Cm(0) = ——e 'm0, (18.68)
2
This initial value ensures that the function ® will be periodic such
that ®(¢ + 27) = ®(¢). Then,
1 ; 2
D(p,t)=— ) emétle=Dme 18.69
(.= ij (18.69)
Non-zero steady state is only at m = 0:

1
(g, t) = 7 (18.70)

which agrees with the earlier exact result.

Using the approximation of the stable intensity (I ~ Ij), and
Eq. (18.60), we can now calculate the two-time correlation function
(a*(t)a(t + t)) and find the intensity spectrum of the laser operating
well above threshold. Replacing I by Iy, we obtain for the correlation
function

@@ace+1)) = < 1(O)I(t+ t)e—i[<1>(t+r)—¢(t)]>
~ 10 <efi[¢(t+f)7¢(t)]> . (1871)

To evaluate the average exponent, we use the solution of the Ito
equation (18.60) for the phase

¢>(t)=¢(to)+/ dt'Fj(t). (18.72)
to
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Since F(t) has statistical properties of a Gaussian variable, we can
use the relation for the Gaussian processes, that for a Gaussian

variable x such that (x) = 0, higher order moments factorize
according to
(X2n+1> =0
2n)!
ity = B (18.73)
2n!

This allows us to write
() = ez, (18.74)
which leads to the following result for the correlation function

@tace+ 1) = I <e—i[¢(t+f)—¢(t)]> — Ioe—%([¢(t+r)—¢(t)]2>.

(18.75)
Since
t+t
dt+1)= / dt'F)(t), (18.76)
to
and
t
o(t) = / dt'F)(t), (18.77)
to
we obtain
t+1
¢>(t+t)—¢(t):/ dt'Fj(t). (18.78)
t
Hence

([p(t+ 1) — ¢(O)]*) = /df/dt”<Fg(f)Fg(t”)>

t+1

= Dy / dt' = Dyt. (18.79)
t

Finally, we arrive at the following result

@ (alt + 1)) = loe 22, (18.80)
The laser intensity spectrum above threshold is therefore
IoD,

[(w) = 0% (18.81)

2 )
(0 —we)” + %Dd)
where the diffusion coefficient is

Dy = G/(21Iy). (18.82)
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The intensity spectrum is a Lorentzian centred at w, with half
width Dy /2. The width is essentially due to the phase diffusion, and
becomes narrowed with increasing I;.

We can introduce the characteristic phase correlation time

_ 1 2 41 18.83
™ finewidth Dy G (18.83)
For large Iy, the coherence time is very long indicating that the laser
operating well above threshold produces essentially coherent light.
In other words, well above threshold the laser can maintain the value
of its phase within a sufficiently long time period, since the phase
diffusion is slow (D is small).

18.7 Summary

We have the following important results for the high-Q laser model:

(1) Above threshold, the steady-state solutions are stable when the
nonlinear losses are included.

(2) Below threshold, the intensity spectrum is a Lorentzian and its
linewidth is approximately equal to the cavity bandwidth.

(3) Above threshold, the intensity spectrum is a Lorentzian and its
linewidth is essentially due to the phase diffusion.

(4) Above threshold, the laser produces essentially coherent light.

Exercises

18.1 Two non-degenerate frequency and parametrically coupled
field modes a and b satisfy the following Heisenberg equations
of motion

1
at = —yat + ~1Gb + JYEND),

h=—(y —iA)b— %iGaT +JVE,

where A is the detuning between the frequencies of the
modes, £(t) is the noise term, y and G are (real) damping and
mode coupling parameters, respectively.
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(@) Under what conditions the modes decay to a stable steady
state?

(b) What would be the stability conditions if the modes were
degenerate in the frequency (A = 0)?

18.2 Using the linearized theory and assuming that the noise
satisfied the Gaussian statistics, calculate the normalized
second-order correlation function g®(t)=(af(t)at(t)a(t)
a(t))/(at(t)a(t))? below and above threshold.






Chapter 19

Input—Output Theory

19.1 Introduction

An obvious question is, how to relate the internal cavity mode to
externally measured fields. Normally, the measuring instruments are
external to the cavity. In this case, the input-output formalism is use-
ful. Strictly speaking, the input-output results are approximations,
and can be obtained from considering the boundary conditions at
lossy cavity mirrors. In this chapter, we consider the input-output
formalism for a single-sided cavity in which the cavity mode is
coupled to an external multi-mode environment through a partially
transparent broadband mirror.

19.2 Input—Output Relation

In the input-output formalism, we may consider the modes external
to the cavity as a set of modes by separate from the internal cavity
mode a.

The external modes can be divided into two sets of the so-called
input and output modes, as illustrated in Fig. 19.1. It is usual to
take the infinite-volume limit of these modes, which therefore have
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ain

T
dout

Figure 19.1 Schematic diagram illustrating the input-output formalism for
a single-sided cavity damped with rate I to an external environment. The
damping results from the coupling of the cavity mode to infinite number of
the continuous modes of the environment.

commutation relation
[Bk, BH — 8(k—K). (19.1)

Taking the Fourier transform of these modes over some finite
bandwidth, we will take into account the fact that the output-
measuring instrument has a finite bandwidth. This gives an external
field for photons propagating in the +x direction, defined as

c ko+Ak _—
ti(x) = —/ dkbpe'™*. (19.2)
* V21 Jky—nk

This field has approximate equal-time commutators of the form
[mr, x), (e, x/)] — 25(x — x). (19.3)

Next, if the mirror boundary is at x = x;,, the external photon flux
operator can be readily defined as

Aout () = E4(t, xm)- (19.4)
From this it should be clear that there is also an input field, which
corresponds to the field modes with k = —k, of the form

Gin(t) = C_(t, Xm)- (19.5)

This input field is the source of quantum fluctuations inside the
cavity that leads to the I'-damping term in the master equation.
The following input-output relation occurs:

foue(t) = VT — ain(0). (19.6)
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19.3 Proof of the Input—Output Relation

Consider the Hamiltonian of the cavity field a interacting with the
external modes Bk:

A =A.+ Hew + H;, (19.7)
where
. = ho.a'a,

I:Iext = h/da)kwkﬁii)k,

A =in / dorg (@) [Bkm - aBH, (19.8)

where g(wy) is a coupling constant between the cavity and the
external modes.
The Heisenberg equation of motion for by is

Bk = —ia);j)k —i—g(a)k)&, (199)
and the cavity field operator @ obeys the equation
b= ‘lﬁ la, ] — / dorg ()b (19.10)

The solution of the equation of motion for by can be written in
two ways depending on whether we choose to solve in terms of
initial conditions at time ¢ < t (the input), or in terms of the final
conditions at times t; > t (the output). The two solutions are

t
bi(t) = bi(0)e =) + g(ax) / dt'a(t)e 1),
b

. tl .
bi(t) = bi(t)e =8 — g(ay) / dta(t)e = (19.11)
t

where t) < t < t;, and b,(0) is the value of by at t = t,, while by (t;)
is the value of Bk att = ty.
Substituting the solution for Bk with ty < t into the equation of
motion for 4, we get
b= _% a, A.] - / dwyg(wi)by(0)e -0

t
- / dwrg® (wi) / dt'a(t)e =), (19.12)
to
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and in a similar manner, substituting the solution for Bk with t < ¢,
we get
i

a= % a, Ac] - /dwkg[wk)i)k(tl)e_iwk(t_m

t . ,
+ / dwrg® (wi) / dta(t)e it=t), (19.13)
t

We now make the Markov approximation, that the bandwidth of the
external modes is large, so we can assume that the coupling constant
Jg(wy) changes slowly with k, and replace g(wx) = g(w.)-

Next, we use the following properties of the delta function

/t dt f(E)s(t—t) = /tl dt’ f(t)s(t—t) = %f(t), (19.14)
to t

where the factor % arises from the fact that the peak of the delta
function is at the end of the interval of integration.

We can also define the input and output operators, identical to ¢
and ¢_, as

-1 . .
int) = —— / dwybi(0)e ™" =0),

1 . .
Aoue(t) = T / dwyby(ty)e ottt (19.15)

where the minus sign indicates that the input field propagates to the
left in the opposite direction to the output field.
Using the relation

oo
/ dwge™ ) = 278(t — t), (19.16)

o0

and using the Markov approximation that g(wy) ~ g(w.), we obtain

b =~ [a, A +V2rg(0)an (0~ (2762 (@)a(0), o <t
(19.17)
and
&= _% [fl, I:Ic] —mg(wc)ﬁout(t)-i‘%(Zﬂgz(wc))a(t): t<t.

(19.18)
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Recognizing that 27rg?(w.) = T is the damping rate of the cavity
mode, we have

a

@, ] + vTaw(t) — ga(t), th <t (19.19)

-
I

;H ~.:H ~.

N r
(@, Hc] — VTagu(t) + a(), t <t (19.20)

The above equations are Langevin equations for the damped
amplitude a(t) in which the noise terms appear explicitly as the
input (output) field. In Eq. (19.20), the output operator ao(t)
represents the coupling of the system to future external modes.
Hence, this equation represents the backwards evolution of the
system resulting in the negative damping term.

Finally, the relation between the input, output and cavity fields
can be obtained by subtracting Eq. (19.20) from Eq. (19.19):

Aout(t) = VTa — a(0). (19.21)

This is the important result relating the input and output fields. It
shows that the output field that is the future field outside the cavity is
a sum of the input field and the field leaking the cavity with the rate
I". The minus sign at the input field reflects the fact that the output
and input fields have the opposite phase. If we consider normally
ordered correlation functions, then the effect of the input field in this
equation can be ignored, as long as the field is in the vacuum state (so
that the field has vanishing normally ordered correlation functions).
Otherwise, the measured functions include a contribution from the
input field as well as from the internal cavity field. For a narrow-
band external field, there is a finite correlation between the input
and the cavity field, which makes this problem more complicated.
Fortunately, it is generally possible to work with normally ordered
correlation functions, where these complexities do not occur.

We have only considered a single-sided cavity. The input-
output formalism can be extended to a two-sided cavity, where the
couplings of the cavity mode to the external environment through
partially transparent mirrors may not be the same [70].
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Exercises

19.1

19.2

19.3

Consider a single-mode cavity described by the Hamiltonian
A. = ho.ata. Using Eqgs. (19.19) and (19.21) and resolving
the output, input and cavity field operators into the frequency
components via the Fourier transformation

1 [ .
a;(w) = Nz / dt a;(t)e elt=0),

show that
N _filo—w)+T/2
Gout(@) = (i(a) “w)—T/2 Gin(w).
(a) What is the phase shift between the output and input
fields at resonance (w = w.)?
(b) What is the phase shift between the output and input
fields at large detunings, (0 — w.) > I'?
(c) What is the relation between the intensities [;(w) =
(&,-T (w)a; (w)) of the output and input fields?
Consider the output-input relation (19.21). Under what
conditions:

(@) The average number of the output photons equates to the
average number of the cavity photons?

(b) The normally ordered variance of the output field equates
to the normally ordered variance of the cavity field?

Using the output-input relation (19.21):
(@) Show that the output field commutator

[0uc(0), b)) = (e = ¢,
(b) Show that the commutator of the cavity field operators
la(), a' ()]
is time-invariant despite the fact that the cavity field is
damped in time.

(b) Assuming that the input field is in a vacuum state, show
that the two-time correlation function of the output field

(@l (D80 (t)) = Ti@f (Bace)).



Chapter 20

Motion of Atoms in a Laser Field

20.1 Introduction

In quantum optical problems involving the interaction of atoms
with laser fields, the atoms are usually considered being stationary
during the interaction. Since every photon has a momentum, the
atomic momentum (motion) can be changed in the process of
absorption and emission of photons. This may force a stationary
atom to move or to change momentum of an already moving atom.
Therefore, the dynamical behaviour of atoms can be varied by
the interaction with a radiation field. For a weak driving field,
the influence of this field on the atomic motion can be neglected.
However, the intensities of laser fields are generally very strong,
and then the motion of the atoms can be considerably changed by
the laser field. Here, we discuss this aspect, especially the effect of
a driving field on the motion of atoms and the atomic momentum
distribution. In particular, we will consider diffraction of atoms by
a standing-wave laser field due to an exchange of momentum with
the photons of the wave, and radiation force on atoms driven by a
running- or standing-wave laser field.
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Figure 20.1 Illustration of the diffraction phenomenon of moving atoms.
The atoms of an initial momentum P, are sent to pass through a standing
wave propagating in the horizontal x-direction.

20.2 Diffraction of Atoms on a Standing-Wave Laser Field

Consider the process of diffraction of a moving atom passing
through a standing-wave laser field, as shown schematically in
Fig. 20.1. Suppose, the laser field propagates along the x-axis, and
the momentum of the atom, before entering into the laser field is
in the direction Py = Pyi + Py}. The standing-wave laser field is
equivalent to a superposition of two running-wave fields of the same
amplitudes, but opposite propagation vectors

E(x, t) = 2E, cos(kx) cos(wt)
= [Eo cos(wt — kx) + Eo cos(wt + kx)} . (20.1)

The Hamiltonian of the system of a moving atom interacting with
a standing-wave laser field can be written in the standard form

A= Ha + Hr + i, (20.2)
where .
; ., IPP
Hp = hooS* + — (20.3)
2m

is the Hamiltonian of the atom including the kinetic energy |f’ 12/2m,
2

Ay =" hova]a (20.4)
i=1
is the Hamiltonian of the laser field that is composed of two fields of
the same frequency wr, and wave-vectors k; satisfying the relation

ki = —k, = k. (20.5)
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The interaction Hamiltonian of the moving atom with the standing-
wave laser field can be written as

2
f) 1. A Aikix — At —ikix
Hine = E’gh; {S+Gie kix _ g a,-Te kx| (20.6)

where x is the coordinate of the atom along the direction of the
propagation of the laser field. Using the Hamiltonian (20.2), we find
from the Schrodinger equation the state vector of the system, from
which we can analyse the time evolution of the atomic momentum
due to the interaction with the laser field.

Assume that initially the atom was in its ground state |g), and had
amomentum 130. Moreover, assume that there were n; photons in the
ith field. Therefore, the initial state of the system can be written as

(@0} = n1) In2) |g, o) (207)

Moving atom enters to the field, and then can absorb photons from
either of the two running-wave laser fields. When the atom absorbs
a photon from the field ‘1’, the state vector changes to

e, Py + h%1>, (20.8)

|P1) = [ng — 1) |ng)

where |e) is the excited state of the atom.
When the atom absorbs a photon from the field ‘2, the state
vector changes to

|P2) = [ng) [nz — 1)

e, Po+ hﬁz> . (20.9)

Suppose, the interaction of the atom with the laser fields is strong
and the time of passing the field is short such that we can ignore
spontaneous emission from the atom leaving only a possibility of
stimulated emission to either of the two laser fields.

If the system is in the state |®;), the atom can be stimulated to
emit a photon of the wave vector ﬁl or l:’z. If the wave-vector of the
emitted photon is %1, the system returns to the initial state |®y). If
the wave-vector of the emitted photon is I}Z, the state vector changes
to

|®3) = In1 — 1) |ny + 1) ’g, Py+ ki —hk, ). (20.10)

Similarly, if the system was in the state |®;) and the atom emits a
photon of the momentum %k, the state vector changes to

|®4) = In1 + 1) Iny — 1) ’g, Py+ ko — hky ). (20.11)
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Since the interaction of the atom with the laser fields is strong, there
is a large number of absorption and emission processes during the
time of passing through the field, which leads to the final state

n n
(@) =[m =5 ) [m2 +3)

g, By + ghkl — gh@, (20.12)

2
when n is an even number, and
n+1 n—1
d,) = —
|Dy) = N1 > >n2+ 5 >

®

. 1. n-1-
H P0+”;L hkl—nz hk2>, (20.13)

when n is an odd number. We will treat the states |®,) as complete
basis states of the non-interacting system, and will find the state
vector of the atom-field interacting system as a linear superposition

|D(t)) = /dﬁch (13, t) |D,) . (20.14)

Substituting the Hamiltonian (20.2) and Eq. (20.14) into the
Schrodinger equation, we obtain the following set of coupled
differential equations for the probability amplitudes

ih%cn = {(nl - g) hor, + (nz n g) hor,

1 /- n- n-\2 1
— (Po+ -hks — -hky) — Zh c
+2m(0+2 175 2) Zwo}n

.g n n
+iSh (,/nl — 561 - mcnﬂ) . (20.15)

when n is an even number, and

. d n+1 n—1
IHEC,,Z {(7’11— > )th+ <n2+2> th

1 /- 1 - -1-\* 1
+(P0+n+ hk1—n2 hkz) +2hw0}cn

2m 2
.g / n—1 / n—1
—Hih < n — 2 Cho1— /N2 + ch+1> ,
(20.16)

when n is an odd number.
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We can simplify the differential equations by introducing a
notation
1 1 2 7
Ey= (m +ny — 2) hor, + 5 (PE+PF),  (20.17)
and a transformation

C, = Cne'fnt, (20.18)
With these simplifications, the differential equations reduces to (n
even)

-

o (-R) 5 () 2

and (n odd)
d . 1 . h N )
ldtcn_—zAanr{gm[(n+1)k1—(n—1)k2}

+ 21% [(n+1)}1—(n—1)7(2}}6n

+i% (\/n n—lg \/n Lrle
11— - n— - 4 Un I
2 1 2 1 2 2 +1

(20.20)

where A = wr, — wy is the detuning between the laser frequency wr,
and the atomic transition frequency wy.

For an intense driving field, the number of photons in the field
modes is large, ny, n; > 1, which prompts us to make the following
approximations

n
ni_E%Jn_i%\/Ni

1
n — N VN, (20.21)

where N = (n;) is the average number of photons in the laser fields.
Hence, the differential equations for €, simplify to

n,-:t

ide = Lac + hnzkz +nPXk ¢
de " 277" 2m m .
+1lg (Coci — Coy1), neven, (20.22)

2
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and
d . 1 . n’k?® nP.k] -
| —C, = —=AC h C
: dt " 2" + [ 2m m ] !
+ IEQ (€1 = Cns1), nodd, (20.23)
where Q = g+/N is the Rabi frequency of the laser field.
We may introduce two parameters
h2k? P,
hb = , = —. 20.24
2m 1= Tk (20.24)

The parameter /b corresponds to the recoil kinetic energy of the
atom after absorption or emission of a photon, and ¢ is the ratio
of the initial momentum of the atom in the x-direction to the
momentum of photons.

With the parameters (20.24), the differential equations for C,

reduce to
EC‘ = —i 1A—i—b(nz—i-Zn )| C
e 2 q n
1. .
—i—EQ (Co1 = Cota), n even, (20.25)
and
d . 1 -
EC" =i [—ZA +b (n* + an)] C,
1 . .
+5sz (Cn1 = Cota), n odd. (20.26)

We now illustrate solutions of the above differential equations for C,,
from which we will find the time evolution of the atomic momentum
under the interaction of the atom with a standing-wave laser field.
We will discuss two cases:

1. P,=0, A =0,
2. P, #0, A =0. (20.27)
20.2.1 The Case P, =0and A =0
In this case, the parameter ¢ = 0, and assuming that the Rabi
frequency is much larger than the recoil energy, we obtain
d . 1. ~
—Cp==Q(Cpho1 —Cpy1) - 20.28
dt > ( 1 +1) ( )
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Figure 20.2 The atomic momentum distribution function for different
values of Qt.

Introducing a parameter s = Qt, we find that the coefficients C,
satisfy a recurrence relation

28 605) = Cos(s) = Crra (). (20.29)
ds

Note, that the above recurrence relation is the same as that for the
Bessel functions. Therefore, the probability amplitudes are

Cal0) = Ju(Q0), (20.30)

where ], is the nth order Bessel function.
Hence, the atomic momentum n#k in the x-direction is

p 2
Pa(t) = |Ca(8)]” = J F(R0). (20.31)
The momentum distribution is illustrated in Fig. 20.2. One can see

that for t = 0, P, = 0 for all n. As t increases, P,(t) increases and
then the probability of finding atoms with momentum n#k increases.

20.2.2 The Case Py #0and A =0

Consider now the second case in which P, # 0. In this case, the
term 2nbq in Egs. (20.25) and (20.26) is different from zero. Then
ignoring the recoil energy, we obtain

d 1. .
1;Cn=—2inbqCy + 5@ (Caoy = Cona) - (20.32)
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It is convenient to make a further transformation
C, = Cneinhat, (20.33)
Then

| =

- _ 1 _ : _ ;
Cn = —inbqCy + 29 (Cpoq€™* — Cpyqe™9)

Q

t
_ 1 _ _
= —inbqC, + EQ cos(bqt) (Cn—y — Cny1)
i _ )
+EQ sin(bqt) (Cn—1 + Cpy1) . (20.34)
Introducing a parameter
Q .
z = — sin(bqt), (20.35)
bq
we then can transform Eq. (20.34) into

d . b ] ] ]
—C0= _iW‘quﬂ [2nCy — 2 (€t + Cui1)]
+ (Cn—l - Cn+1) . (20.36)

Notice the recurrence relations for the Bessel functions
2nJn(x) = x Un-1(x) + Jn+1(x)],
d
22Ja0) = Jot () = S (), (20.37)

and then, we find that

Co(t) = Jn (bgé sin bqt) . (20.38)

Hence, the atomic momentum distribution function is

Po=|Ca0] =2 <;; sin bqt> . (20.39)

We see that the atomic distribution oscillates in time with the
frequency bgq.

In Fig. 20.3 we show the distribution for different values of
bqt. As t increases from the initial value t = 0, the width of the
distribution increases to its maximum value at bqt = /2, and
then the width decreases and reduces to zero for bqgt = m. The
maximum amplitude of the atomic distribution during each period
of oscillation is equal to +2/(bq).
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Figure 20.3 The atomic momentum distribution function for Q2/bg = 15
and different values of bqt.

Thus, the diffraction of atoms with an initial momentum P, #
0 is fundamentally different from that of P, = 0. Instead of a
continuous spreading of the atoms, the atomic distribution oscillates
in time, periodically focusing and defocusing. This periodicity is
observed in momentum space as an oscillation of the populations
between the different momentum components.

In the derivation of Egs. (20.31) and (20.39), we have ignored
spontaneous emission from the atoms. It might be difficult to
achieve this in actual experimental situations, in particular when the
detuning Ay, = 0. Alternatively, one can assume large detunings,
A1, > T, Q. Then spontaneous emission can be neglected, as the
atoms mostly reside in their ground states, with the upper atomic
level adiabatically eliminated. To illustrate this, consider again the
equations of motion (20.25) and (20.26), which in the Raman-Nath
regime and with P, = 0, reduce to

d i ~ 1 - ~

3l = _EALCZn + EQ (Can-1—Cons1), (20.40)
and

0 - i N 1 - ~

SCana = 2001 + 52 (Cona = Can). (2041)

According to Eq. (20.13), the equation of motion (20.41) for odd n
corresponds to the time evolution of the probability amplitude of
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the excitation of the atomic upper state |1). When A, > €, we
can adiabatically eliminate C,_1 assuming that the amplitude does
not change in time. Then, we put 3C,_1/dt = 0 in Eq. (20.41), and
obtain

Con1=i7 (Can—2 — Can) . (20.42)

Substituting Eq. (20.42) into Eq. (20.40) and solving for Cs,, we find
the probability amplitudes of the ground state

_1
2 exp i A + t j
2 L n ’

. Q\°
Cop=1(1+2 (A)
(20.43)
and then the probability distribution function is given by
Py = 142 <9>2 ljnz (QZt> . (20.44)
A Ay,

The above result holds for large detunings, but is in a form similar
to Eq. (20.31), obtained for Ay, = 0. However, the result (20.44)
is realistic experimentally, as for Aj, 3> I' spontaneous emission is
negligible and can be ignored. The momentum distribution function
(20.44) is an even function of n corresponding to the absorption of
a photon from the +k component of the standing wave, followed by
emission of a photon into the —k component. In this process, the
atoms transfer photons from one component of the standing wave
to the other, remaining in their ground states, but their momentum
changes by 2nhk.

20.3 Radiation Force on Atoms

In the previous section, we have shown that atoms can be diffracted
by the interaction with a standing-wave laser field. The diffraction
arises from a force acting on the atoms from the laser field. In other
words, the force results from the transfer of momentum of laser
photons to the atoms.

In the calculations, we have ignored spontaneous emission from
the atoms. As we know, the atom being in its ground state can absorb
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Figure 20.4 An atom moving with velocity v in the direction opposite to the
direction of propagation of a running laser field.

one photon to make a transition to its excited state. In this transition
process, the atom not only absorbs the photon energy, but also gains
momentum (equal to the photon momentum) along the propagation
direction of the laser field. After a short time (the lifetime of the
atomic excited state), the atom spontaneously emits a photon and
returns to its ground state. In the spontaneous emission process
the atom also gains momentum (recoil momentum). Since the
spontaneous emission is random and isotropic, the effective recoil
momentum gained by the atom in many spontaneous emissions is
zero. Thus, the momentum gained by the atom is only that along
the propagation direction of the laser field, which results from the
absorption of photons from the laser field.

Consider a two-level atom moving with a velocity v and
interacting with a classical coherent field, as illustrated in Fig. 20.4.
The Hamiltonian of the system, in the electric-dipole approximation,
is given by

. |PP? e
f= % + hwoS” — ji - E(R, 1), (20.45)

where P is the momentum of the atom, and the electric field is
evaluated at the position R of the atom. In the case of many atoms,
Pand R correspond, respectively, to the momentum and position of
the centre of mass.

We will use the full quantum mechanical picture of the atomic
motion. Therefore, P and R will beA treateq as operators. In the

Heisenberg picture, the operators P and R obey the following

311



312

Motion of Atoms in a Laser Field

equations of motion

dt ih
%fa _ % [P A =-VA =V (i E(R0). (2046)

For simplicity, we assume that the spread of the atomic wave packet
Ar is small compared with the laser wavelength, that is, Ar <« .

A
In this case, we can replace the atomic position operator R by its

A
expectation value ¥ = (R). Therefore, the average radiation force
acting on the atom can be given by

2

- d .-
F=m_3F = (V(i-E)). (20.47)

Suppose, the laser field is a single-mode plane wave of polarization
¢ and amplitude &o:

E(R ) = %é&) expli(wnt — k- R)] + c.c. (20.48)
Then
F={(1-8VER, 1) = (i -VEF D), (20.49)
where
E(R, ) = %50 expli(wrt — k- R)] + c.c. (20.50)

Thus, in order to find the force acting on the atom, we have to
calculate the time evolution of the atomic dipole moment. In order
to do it, we express the atomic dipole moment in terms of the atomic
dipole operators

(7L-8) = teg (ST +1(57)), (20.51)

and employ the Bloch equations to find the steady-state value of the
average values of the atomic operators (S*) and (S~). For a two-level
atom driven by a classical laser field, the Bloch equations are

d 1 S
*(5)2—51“ F(5>—*Q(<5 +(57),

dt

d T+ 1 + z

80 = [2r+z<A+9(r)>} Sy + Q(5%,

d ... [1 .

T8 =- {Zr —i (A+ e(r)ﬂ )+ Q(S%),  (20.52)
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where A = w1, — wy is the detuning of the laser frequency from the
atomic transition frequency, I' is the spontaneous emission rate, 2
is the Rabi frequency of the laser field,

($%) = (5%) exp [Fi (ort + 6(1))] (20.53)

are the slowly varying parts of the atomic operators, and 9(r) = —k-
r.
Substituting Eqs. (20.51) and (20.50) into Eq. (20.49), and

neglecting terms rapidly oscillating with frequencies +2wy,, we get

-1
F = Eh (UvQ+1VaQve), (20.54)
where
U=(St)+(S7), V=-i((SH)—(S7)). (20.55)
Note that
d - dr -
—0(r) = k- — = —k-V,
') dt Y
vo(r) = —k. (20.56)
Then, solving the Bloch equations for the steady state, we find
2(a-k7)
U=- = 5 ,
4(a-k9) +202 417
2IrQ
V=— (20.57)

> 2 '
4(a-k-9) +222 417
Hence, the force F on the atom exerted by the radiation field is given
by

. (A —k- ‘7) VQ? + IQ?Ve
F=—h

N 2
4(A—k-\7) +2Q% + T2

(20.58)

It is seen that the force depends on the gradient of the Rabi
frequency, VQ2. If Q is independent of r, which happens for a
running-wave laser field, VQ? = 0, and then the force reduces to

- rQ2hk
F =

— = I(A)hk. (20.59)
4(A—k.ﬁ) +2Q2 4 T2
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The force is in the direction of the wave vector 7{, and is equal to the
Doppler shifted photon scattering rate

ra?

1(A) = , (20.60)

N 2
4(A—k-\7) 4+2Q% + T2

multiplied by the photon recoil momentum hk.

20.3.1 Slowing and Confining Atoms

Let us discuss in more details the relationship between the detuning
of the laser field from the atomic resonance and the magnitude of the
radiation force. We shall distinguish between Doppler force useful
for slowing down moving atoms and dipole force useful for confining
atoms into a very small region.

Let us assume for a moment that the atom is stationary, v =
0. We see that even in this case, the force is different from zero,
proportional to hk. When we take into account the atom’s motion,
v # 0, the direction of the force is still the same as the direction of
the laser field.

Figure 20.5 shows the force as a function of A for two different
directions of the moving atom. The force is a Lorentzian centred
at A = k- v, where k - v is the Doppler frequency shift.

0.35,

0.3

0.25]

F/T

0.15

Figure 20.5 The force F per momentum nk plotted as a function of the
detuning A for @ = I and two different directions of the moving atom,
k-v = 5T (solid line) and k - v = —5TI" (dashed line).



Summary

Therefore, the force is called the Doppler force. For A > 0,
that is, when the laser frequency is blue-detuned from the atomic
resonance, and the atom moving in the direction of the laser
field, k-v = kv, the force on the atom is large. However, when
the atom is moving in the opposite direction to the direction
of the laser field, k-v = —kv, and then the force is small.
The situation changes when A < 0, that is, when the laser
frequency is red-detuned from the atomic resonance. In this case,
the force is large when the atom moves in the direction opposite to
the laser field, and is small when the atom moves in the direction
of the laser field. The case of A < 0 is used in experiments to slow
down (cool) trapped atoms.

Suppose now that 2 depends on r and 6 is independent of r,
which happens for a standing-wave laser field, the force F reduces
to

A

=

4A% 4+ 2Q2 +T7?
The force exhibits a dispersive dependence on A, and its magnitude
is proportional to the gradient of the field intensity. This force is
called the dipole force. For A > 0, the direction of the force is
in direction of negative gradient of the field (decreasing intensity).
For A < 0, the direction of the force is in the direction of positive
gradient of the field (increasing intensity). The force is zero for a
resonant (A = 0) driving field. This shows that the dipole force
attracts the atom to regions of intense field when the laser is tuned
below resonance, and repels the atom from these regions when
tuned above resonance. This property of the dipole force is used in
experiments to trap atoms in a very small area of a focused laser
beam.

F=— vQ2. (20.61)

20.4 Summary

In this chapter, we have demonstrated the following:

(1) Atoms can be diffracted by the interaction with a standing-wave
laser field. The diffraction arises from a force acting on the
atoms from the laser field.
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(2) The dipole force is different from zero only for a detuned laser
field.

(3) The dipole force attracts the atom to regions of intense field
when the laser is tuned below resonance, and repels the atom
from these regions when tuned above resonance.

We conclude this chapter with a brief comment that laser-cooling
techniques have developed to the level that led to create Bose-
Einstein condensate [113-115] and to achieve ultra-low temper-
atures of optical lattices and single ions [116, 117]. A new area
of science, ultra-cold physics have been developed [118] and a
significant progress has been made towards not only to achieve
ultra-low temperatures but also in cooling macroscopic objects, such
as metallic or dielectric plates and biological samples (membranes)
to temperatures of few microkelvins [119, 120].

Exercises

20.1 Using the Bloch equations (20.52), find the steady-state value
of the average population inversion, (S?). Then, show that
Eq. (20.60) represents the steady-state photon scattering rate,
defined as I(A) = '((S?) — 1/2).

20.2 A driven two-level atoms undergoes dressing by the driving
field.

(a) Starting with the expression from Eq. (20.54), write the
force F in terms of the populations and coherences of the
dressed states.

(b) Under what conditions the force would depend only on
the populations of the dressed state?

20.3 The Doppler force is asymmetric with A that the case A < 0
is better for slowing down moving atoms than A > 0. Explain
in your own words, why a red-detuned laser works better for
slowing down moving atoms than a blue-detuned laser?

20.4 In practice, atoms may move with an uniform velocity.
Assuming that the atomic velocities obey the Maxwell-



Exercises

Boltzmann distribution

exp(—vz/oz),

1
V) =
pv) Jro
where o is the width of the distribution, calculate the average
force by integrating expression (20.58) over the velocity
distribution. What is the average force in the limit o2 > 2Q2 +
r2?
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Final Remark

Although this book focuses on backgrounds of quantum optics,
it is nevertheless appropriate to conclude by emphasizing the
importance of quantum optics in the development of new areas
in science and technology. The predictions of quantum optics have
turned research and technology into new directions and have led
to numerous technological innovations and the development of a
new technology on the scale of single atoms and electrons, called
quantum technology, or nanotechnology. The ability to manufacture
tiny structures, such as quantum dots, and to control their
dimensions allows us to engineer the unique properties of these
structures and predict new devices such as quantum computers.
A quantum computer can perform mathematical calculations much
faster and store much more information than a classical computer
by using the laws of quantum physics. The technology for creating
a quantum computer is still in its infancy because it is extremely
difficult to control quantum systems, but is developing very rapidly
with little sign of the progress slowing.

We have seen in our journey through the backgrounds of
quantum optics that despite its long history and the development
toward quantum technology, quantum optics still challenges our
understanding and continues to excite our imagination. We hope this
book has provided a good guide toward current developments in
quantum optics and has encouraged the reader to learn more.






References

. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,
1999).

2. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998).

O© 0O N O

10.
11.

12.

13.
14.
15.
16.
17.
18.
19.
20.

. L. Allen and |. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley,
New York, 1975).

. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge
University Press, Cambridge, 2005).

. P.W. Milonnj, J. R. Ackerhalt and H. W. Galbraith, Phys. Rev. Lett. 50, 966
(1983).

. S.]. D. Phoenix, J. Mod. Opt. 38, 695 (1991).

. V.E. Lembessis, Phys. Rev. A 78, 043423 (2008).

. H. T. Ng and K. Burnett, New J. Phys. 10, 123014 (2008).

. L. Mandel, E. C. G. Sudarshan and E. Wolf, Proc. Phys. Soc. (London) 84,
435 (1964).

]. Perina, Coherence of Light (Kluwer, Dordrecht, 1985).

B. T. Varcoe, S. Brattke, M. Weidinger and H. Walther, Nature (London)
403, 743 (2000).

D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, ]. M. Gambetta, A.
Blais, L. Frunzio, ]. Majer, B. Johnson, M. H. Devoret, S. M. Girvin and R.
J. Schoelkopf, Nature (London) 445, 515 (2007).

M. Hotheinz et al., Nature 454, 310 (2008).

H.]. Carmichael and D. F. Walls, J. Phys. B9, 1199 (1976).

H.]. Kimble and L. Mandel, Phys. Rev. A 13,2123 (1976).

M. Dagenais, H. J. Kimble and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).

G.T. Foster, S. L. Mielke and L. A. Orozco, Phys. Rev. A 61,053821 (2000).
L. Mandel, Opt. Lett. 4, 205 (1979).

R.]. Glauber, Phys. Rev. 130, 2529 (1963); Phys. Rev. 131, 2766 (1963).



322

References

21.
22.
23.
24.
25.

26.

27.
28.
209.
30.

31

32.
33.
34.
35.

36.
37.

38.
39.

40

43.

44,
45.
46.
47.
48.

P. A. M. Dirac, Proc. R. Soc. A 114, 243 (1927).

L. Susskind and ]. Glogower, Physics 1, 49 (1964).

P. Carruthers and M. Nieto, Rev. Mod. Phys. 40,411 (1968).
D. T. Pegg and S. M. Barnett, Phys. Rev. A 41, 3427 (1989).

S. M. Barnett and ]. A. Vacaro (eds.) The Quantum Phase Operator
(Taylor and Francis, London, 2007).

R. Tanas, A. Miranowicz and Ts. Gantsog, Progress in Optics, vol. XXXV
(Elsevier, Amsterdam, 1996), p. 355.

H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

C. M. Caves, Phys. Rev. D 23,1693 (1981).

Z. Ficek and P. D. Drummond, Phys. Today 50, 34 (1997).

J. S. Peng and G. X. Li, Introduction to Modern Quantum Optics (World
Scientific, Singapore, 1998).

P. D. Drummond and Z. Ficek (eds.) Quantum Squeezing (Springer,
Berlin, 2004).

D. F. Walls and P. Zoller, Phys. Rev. Lett. 47,709 (1981).

K. Wédkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 458 (1985).

M. Kitagawa and M. Ueda, Phys. Rev. A 47,5138 (1993).

D. ]. Wineland, . . Bollinger, W. M. Itano and D. ]. Heinzen, Phys. Rev. A
50, 67 (1994).

A.S.Sorensen, L. M. Duan, ].I. Cirac and P. Zoller, Nature 409, 63 (2001).
A. Messikh, Z. Ficek and M. R. B. Wahiddin, Phys. Rev. A 68, 064301
(2003).

L. Lugiato and G. Strini, Optics Commun. 41, 67 (1982).

G. ]. Milburn and D. F. Walls, Optics Commun. 39, 401 (1981).

. H.P. Yuen and V. W. S. Chan, Optics Lett. 8,177 (1983).
41.
42.

B. L. Schumaker, Optics Lett. 9, 189 (1984).

D. F. Walls and G. ]. Milburn, Quantum Optics (Springer-Verlag, Berlin,
1994).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University
Press, Cambridge, 1997).

E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353 (1980).

E. P. Wigner, Phys. Rev. 40, 749 (1932).

W. P. Schleich, Quantum Optics in Phase Space (Wiley, New York, 2001).
E. T. Jaynes and F. W. Cummings, IEEE Proc. 51, 89 (1963).



49.
50.

51.
52.

53.

54.

55.
56.

57.

58.
59.
60.

61.
62.
63.

64.

65.
66.

67.

68.
69.

70.
71.

References

H. Paul, Ann. der Phys. 466,411 (1963).

J. H. Eberly, N. B. Narozhny and J. ]. Sanchez-Mondragon, Phys. Rev. Lett.
44,1323 (1980).

S. Gleyzes, et al.,, Nature 446, 297 (2007).

T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge,
1994).

A. Wallraff, D. L. Schuster, A. Blais, L. Frunzio, R.-S. Huang, ]. Majer, S.
Kumar, S. M. Girvin and R. ]. Schoelkopf, Nature (London) 431, 162
(2004).

W. Louisell, Quantum Statistical Properties of Radiation (Wiley, New
York, 1973).

H. A. Bethe, Phys. Rev. 72, 339 (1947).

D. W. Wang, L. G. Wang, Z. H. Li and S. Y. Zhu, Phys. Rev. A 80, 042101
(2009).

S. Yang, H. Zheng, R. Hong, S. Y. Zhu and M. S. Zubairy, Phys. Rev. A 81,
052501 (2010).

S.E Chien, M. R. B. Wahiddin and Z. Ficek, Phys. Rev. A 57,1295 (1998).
Z. Ficek and H. S. Freedhoff, Prog. Optics 40, 389 (2000).

C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin,
1980).

M. Lewenstein and T. W. Mossberg, Phys. Rev. A 37, 2048 (1988).
C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10, 345 (1977).

C. Cohen-Tannoudji, ]J. Dupont-Roc and G. Grynberg, Atom-Photon
Interactions (Wiley, New York, 1992).

J. Zakrzewski, M. Lewenstein and T. W. Mossberg, Phys. Rev. A 44,7717
(1991); 44, 7732 (1991); 44, 7746 (1991).

N. Lu and P. R. Berman, Phys. Rev. A 44, 5965 (1991).

Y. Zhu, Q. Wu, S. Morin and T. W. Mossberg, Phys. Rev. Lett. 65, 1200
(1990).

D.]. Gauthier, Q. Wu, S. E. Morin and T. W. Mossberg, Phys. Rev. Lett. 68,
464 (1992).

H. Risken, The Fokker Planck Equation (Springer-Verlag, Berlin, 1984).

H. J. Carmichael, Statistical Methods in Quantum Optics (Springer,
Berlin, 1999).

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000).
H.]. Carmichael, Phys. Rev. Lett. 70, 2273 (1993).

323



324

References

72.

73.
74.
75.

76.
77.
78.
79.

80.
81.
82.
83.
84.
85.

86.

87.
88.

89.

90.

91.

92.

93.

94.
95.
96.

H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture
Notes in Physics, Vol. 18 (Springer-Verlag, Berlin, 1993).

J. Dalibard, Y. Castin and K. Molmer, Phys. Rev. Lett. 68, 580 (1992).
P.R. Rice and H.]. Carmichael, Phys. Rev. A 50, 4318 (1994).

M. S. A. Hadi, M. R. Wahiddin and T. H. Hassan, Phys. Rev. A 68, 063804
(2003).

G. X. Li, M. Luo and Z. Ficek, Phys. Rev. A 79, 053847 (2009).

P.S. Epstein, Am. J. Phys. 13, 127 (1945).

A. Elitzur and L. Vaidman, Foundation Phys. 23,987 (1993).

P. G. Kwiat, H. Weinfurter, T. Herzog, A. Zeillinger and M. A. Kasevich,
Phys. Rev. Lett. 74, 4763 (1995).

Z.Ficek and S. Swain, J. Mod. Opt. 49, 3 (2002).

Y. Ou and L. Mandel, Phys. Rev. Lett. 62, 2941 (1989).

A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49, 91 (1982).
J. S. Bell, Science 177, 880 (1972).

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A.
Bachor, U. L. Andersen and G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009).

Q. Y. He, M. D. Reid, T. G. Vaughan, C. Gross, M. Oberthaler and P. D.
Drummond, Phys. Rev. Lett. 106, 120405 (2011).

C.K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

Z.Ficek and S. Swain, Quantum Interference and Coherence: Theory and
Experiments (Springer, New York, 2005).

P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics
and Quantum Information (Springer-Verlag, Berlin, 2007).

M. A. Nielsen and 1. J. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, 2000).

R. H. Lehmberg, Phys. Rev. A 2,883 (1970); 2, 889 (1970).

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission
and Their Relation to Other Approaches, Vol. 70 of Springer Tracts in
Modern Physics (Springer-Verlag, Berlin, 1974).

Z.Ficek and R. Tanas$, Phys. Rep. 372,369 (2002).
R. H. Dicke, Phys. Rev. 93, 99 (1954).
G. M. Palma and P. L. Knight, Phys. Rev. A 39, 1962 (1989).



97
98
99

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.
110.

111.
112.
113.

114.
115.
116.

117.
118.
119.
120.

References

. G.S. Agarwal and R. R. Puri, Phys. Rev. A 41, 3782 (1990).

. Z. Ficek, Phys. Rev. A 44, 7759 (1991).

. S. M. Barnett and M. A. Dupertuis, J. Opt. Soc. Am. B 4, 505 (1987).

M. D’Angelo, M. V. Chekhova and Y. Shih, Phys. Rev. Lett. 87, 013602
(2001).

M. W. Mitchell, ]. S. Lundeen and A. M. Steinberg, Nature 429, 161
(2004).

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni and A.
Zeilinger, Nature 429, 158 (2004).

G. S. He, L. S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev. 108, 1245
(2008).

E. C. Spivey, E. T. Ritschdorff, ]. L. Connell, C. A. McLennon, C. E. Schmidt
and J. B. Shear, Adv. Funct. Mater. 22 (2012).

G. S. Agarwal, R. W. Boyd, E. M. Nagasako and S. ]. Bentley, Phys. Rev.
Lett. 86,1389 (2001).

R. W. Boyd and S. ]. Bentley, J. Mod. Opt. 53, 713 (2006).

M. Kiffner, J. Evers and M. S. Zubairy, Phys. Rev. Lett. 100, 073602
(2008).

P. R. Hemmer, A. Muthukrishnan, M. O. Scully and M. S. Zubairy, Phys.
Rev. Lett. 96, 163603 (2006).

Q. Sun, P. R. Hemmer and M. S. Zubairy, Phys. Rev. A 75, 065803 (2007).
Z. Liao, M. Al-Amri and M. S. Zubairy, Phys. Rev. Lett. 105, 183601
(2010).

M. Lax and W. H. Louisell, Phys. Rev. 185, 568 (1969).

H. Haken, Laser Theory (Springer, Berlin, 1984).

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A.
Cornell, Science 269, 198 (1995).

D.]. Heinzen, Int. J. Mod. Phys. B 11, 3297 (1997).

J.R. Anglin and W. Ketterle, Nature (London) 416, 211 (2002).

C. Zipkes, S. Palzer, C. Sias and M. Kohl, Nature (London), 464, 388
(2010).

G. K. Campbell, Nature (London) 480, 463 (2011).

L. Bloch, Science 319, 1202 (2008).

H.]. Kimble, Nature (London) 453, 1023 (2008).

M. Aspelmeyer, S. Groblacher, K. Hammerer and N. Kiesel, J. Opt. Soc.
Am. B27,A189 (2010).

325






Prof. Howard Carmichael
The University of Auckland, New Zealand

Prof. Terence Rudolph
Imperial College, London

Prof. Ryszard Tanas
Adam Mickiewicz University, Poznan

Dr. Omar M. Al-dossary
King Saud University, Saudi Arabia

is professor at the King Abdulaziz City for Science and Technology,
Riyadh, Saudi Arabia. He is the author and coauthor of over 140 scientific papers and
two research books. He is particularly well known for his contributions to the field
multi-atom effects, spectroscopy with squeezed light, quantum interference, multi-
chromatic spectroscopy, and entanglement.

is professor at the Department of Computer Science,
International Islamic University Malaysia (IlUM), Malaysia. His research interest
focuses on quantum optics, and he also spends considerable time assisting schools
and organizations in strategic planning.

/ V369

1
ISBN 978-981-4411-75-2

—— PAN STANFORD PUBLISHING

"l www.panstanford.com 789814 411752




	Front Cover
	Dedication
	Contents
	Preface
	Contents
	Chapter 1 General Description and Quantization of EM Fields
	Chapter 2 Hamiltonians for Quantum Optics
	Chapter 3 Detection of the EM Field and Correlation Functions
	Chapter 4 Representations of the EM Field
	Chapter 5 Photon Phase Operator
	Chapter 6 Squeezed States of Light
	Chapter 7 Phase Space Representations of the Density Operator
	Chapter 8 Single- Mode Interaction
	Chapter 9 Open Quantum Systems
	Chapter 10 Heisenberg Equations of Motion
	Chapter 11 Dressed- Atom Model
	Chapter 12 Fokker– Planck Equation
	Chapter 13 Quantum Trajectory Theory
	Chapter 14 Interaction- Free Measurements
	Chapter 15 Classical and Quantum Interference
	Chapter 16 Atom– Atom Entanglement
	Chapter 17 Classical and Quantum Lithography
	Chapter 18 Laser Model in the High-
	Chapter 19 Input– Output Theory
	Chapter 20 Motion of Atoms in a Laser Field
	Final Remark
	References
	Back Cover

