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Preface

Quantum optics is the study of interactions between matter and

the radiation field where quantum effects are important. Much of

the fundamental interest in quantum optics is connected with its

implications for the conceptual foundations of quantum mechanics.

However, the major quantum optics problem is whether we have

to quantize the electromagnetic field in order to get the correct

picture of the interaction between matter and the field. The

theoretical prediction and experimental verifications of photon

antibunching and squeezing—the two nonclassical phenomena

which do not exist in semiclassical theory—convinced researchers

that the electromagnetic field should be quantized and stimulated

considerable attention in other nonclassical effects such as quantum

interference and entanglement.

This book is an extended and updated version of lecture

notes published in 2004 as Quantum Optics: Fundamentals and
Applications by the International Islamic University Malaysia Press,
Kuala Lumpur, Malaysia. It is a compilation of the lectures given for

postgraduate students at the University of Queensland, Brisbane,

Australia, the University of Malaya and the International Islamic

University, Malaysia in years 1995–2008. The chapters cover the

background theory of various effects discussed from first principles,

and as clearly as possible, to introduce students to the main ideas

of quantum optics and to teach the mathematical methods and

techniques used by researchers working in the fields of quantum

and atom optics. Some of the key problems of quantum optics

are also described, concentrating on the techniques, results, and

interpretations. Although the chapters in the book do not provide

a complete exploration of all the problems of quantum and atom

optics, it is hoped that the problems explored will provide a useful
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xiv Preface

starting point for those interested in learning more. The selected

problems are not necessarily the most recent or advanced, but have

been most influential in the directions of research in quantum and

atom optics. Furthermore, the chapters contain numerous valuable

derivations and calculations that are hard to find in scientific

articles and textbooks on quantum optics. The goal of this book

is to provide a compact logical exposition of the fundamentals

of quantum optics and their application to atomic and quantum

physics and to study quantum properties of matter and radiation.

We are witnessing the development of new fields “atom optics”

and “quantum information.” As offsprings of quantum optics, they

possess many resemblances to their parent field. These new fields

can be approached and understood by using many of the same

mathematical tools.

The chapters constitute the basic ideas and principles of

quantum optics put in the order of the development of this subject,

which is sophisticated enough to establish a firm basis for advanced

study in this area. Current key problems of quantumoptics, quantum

information, and atom optics are included and treated in adequate

depth to illustrate the basic concepts and also provide a nontrivial

background in a diverse number of areas of current interest.

Moreover, a number of exercises have been included at the end of

each chapter. These exercises have been designed not only to help

students learn how to apply the fundamental principles to many

situations, but also to derive a number of important results not

explicitly presented in the chapters.

Over the years we have collaborated with many colleagues and

students, who directly or indirectly contributed to this work. We

are particularly grateful to H. J. Carmichael, P. D. Drummond, G. J.

Milburn, H. S. Freedhoff, B. J. Dalton, S. Swain, R. Tanaś, R. K. Bullough,

S. S. Hassan, A. Messikh, M. R. Ferguson, T. Rudolph, U. Akram, andM.

Salihi Abd Hadi. We are also indebted to students whose interesting

questions and remarks havemade the chaptersmore interesting and

have helped purge them of typographical errors.

Zbigniew Ficek
Mohamed Ridza Wahiddin

Winter 2013
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Chapter 1

General Description and Quantization
of EM Fields

1.1 Introduction

We will begin our journey through the background of quantum

optics with an elementary, but quantitative, classical theory of

radiative fields.Wewill first briefly outline the electromagnetic (EM)

theory of radiation, and describe how the EM radiation may be

understood as a wavewhich can be represented by a set of harmonic

oscillators. We shall describe how the free or non-interacting EM

field may be understood as a collection of harmonic oscillators

which is quantized in the standard manner, and whose energy

cannot be zero as a consequence of the basic non-commutability of

the canonical field variables. This chapter discusses the properties

of plane EM waves and normalization of the EM field in one

dimension. This is followed by a description of the Hamiltonian

and the amplitudes of the EM field in terms of the annihilation

and creation operators. Based on this chapter, it is possible to

considerably simplify the formulation of the physical basis for the

mathematical description of the major problems of quantum optics.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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2 General Description and Quantization of EM Fields

Why do we apply the quantum description of the EM field? The

answer lies in the recent theoretical and experimental developments

in quantum optics, which show that semiclassical radiation theory

based on the quantum description of the radiation sources and

classical description of EM fields does not always work. There are

some optical phenomena, we will discuss about which during the

course of this book, for which the field needs to be treated quantum

mechanically. These phenomena were recognized as representing

a radical departure from the traditional classical optics where the

existing treatments turn out to be less than completely satisfactory.

In other words, these phenomena are non-classical and do not exist

in semiclassical radiation theory.

1.2 Maxwell’s Equations for the EM Field

Let us consider the time-varying classical electric �E and magnetic �B
fields that satisfy the Maxwell’s equations [1]

∇ · �E = ρf/ε0, (1.1)

∇ · �B = 0, (1.2)

∇ × �E = − ∂

∂t
�B , (1.3)

∇ × �B = μ0
�J + 1

c2
∂

∂t
�E , (1.4)

where ρf is the density of free charges and �J is the density

of currents at a point where the electric and magnetic fields

are evaluated. The parameters ε0 and μ0 are constants that

determine the property of the vacuum and are called the electric

permittivity andmagnetic permeability, respectively. The parameter

c= 1/
√

ε0μ0 and its numerical value is equal to the speed of light in

vacuum, c = 3× 108 [ms−1].
In the Maxwell’s equations, the fields �E and �B depend on (�r , t),

the charge and current densities also depend on (�r , t). It is not
explicitly stated in the above equations, but we shall remember

about this dependence in the following calculations.

The fields �E and �B produced by the source charges ρf and

currents �J are found by solving the Maxwell’s equations (1.1)–(1.4).
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Maxwell’s Equations for the EM Field 3

Note that the Maxwell’s equations involve two fields that satisfy a

system of four coupled differential equations. Generally, we do not

find fields �E and �B by a direct integration of theMaxwell’s equations.
We rather first compute scalar and vector potentials from which the

fields may be found.

Let us illustrate the concept of vector and scalar potentials in

the solution of the Maxwell’s equations. First, note that the field �B
always has zero divergence, ∇ · �B = 0, and hence we can always

write

�B = ∇ × �A, (1.5)

where �A is the vector potential.
Since ∇ × ∇� ≡ 0, where � is an arbitrary scalar function

(scalar potential), we find from theMaxwell’s equation (1.3) that the

electric field can be written asa

�E = − ∂

∂t
�A − ∇�. (1.6)

The electric field (1.6) depends on the specific choice of the

potentials. However, theMaxwell’s equations should be independent

of the specific choice of the potentials.

Substituting Eq. (1.6) into Eq. (1.1), we get

∇ · �E = − ∂

∂t
∇ · �A − ∇2� = 0. (1.7)

Hence, the electric field (1.6) will satisfy the Maxwell’s equa-

tion (1.1) when

− ∂

∂t
∇ · �A − ∇2� = 0. (1.8)

If we now substitute Eqs. (1.5) and (1.6) into Eq. (1.4), and expand

the double curl∇×(∇× �A) to give∇(∇· �A)−∇2 �A, we obtain a three-
dimensional inhomogeneous wave equation for the vector potential

∇2 �A − 1

c2
∂2

∂t2
�A = ∇

(
∇ · �A + 1

c2
∂

∂t
�

)
. (1.9)

According to the Helmholtz theorem, a vector function is completely

specified by its divergence and curl. Since Eq. (1.5) gives only the

curl of �A, we can specify the divergence of �A in any way we choose.
aIn the static limit of ∂ �A/∂t = 0, the scalar function � reduces to the familiar

electrostatic potential.
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4 General Description and Quantization of EM Fields

We can define new potentials

�A′ = �A + ∇ψ, �′ = � − ∂ψ

∂t
, (1.10)

without changing the �E and �B fields, where ψ is an arbitrary scalar

potential. This transformation is called a gauge transformation, and

the invariance of the fields under such transformation is called gauge

invariance.

Equation (1.8) implies that the electric field will satisfy the

Maxwell’s equations when

∇2� = − ∂

∂t
∇ · �A, (1.11)

which is only for a specific choice of the potentials. However, the

freedom of choosing �A means that we can choose the potentials as
∇ · �A = 0, � = 0. (1.12)

This choice is called the Coulomb gauge, and this equation reduces
Eq. (1.9) to

∇2 �A − 1

c2
∂2

∂t2
�A = 0, (1.13)

which is much simpler than Eq. (1.9), and can be readily solved in

terms of plane transverse waves.

1.3 Wave Equation

We have seen that the Maxwell’s equations can be transferred, with

the help of the Coulomb gauge, into a wave equation (1.13). The

general solution of the wave equation is in the well-known form of

an infinite set of plane wavesa

�A =
∑
�ks

�A�ks e
−i(ω�ks t−�k·�r), (1.14)

where �ks denotes the plane waves of the index of polarization s
propagating in the �k direction, |�k| = ω�ks/c, and �A�ks is the amplitude
of the wave of frequency ω�ks .

aThe solution (1.14) is readily verified by substitution into Eq. (1.13).
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The Coulomb gauge condition, ∇ · �A = 0, gives

�k · �A�ks = 0, (1.15)

which is the transversal condition showing that the amplitude

vectors of the field are orthogonal to the propagation direction. The

amplitudes �A�ks being orthogonal to �k can be specified in terms of
components along twomutually orthogonal directions transverse to
�k. Unit vectors along these directions, denoted by �e�ks (s = 1, 2), obey

the relations

�e�ki · �e�k j = δi j , �e�ks · �k = 0, �e�k1 × �e�k2 = �k, (1.16)

and �e�ks are usually called the unit vectors of the field polarization. In
other words, they specify the polarization directions of the field.

Thus, we can represent the vector potential of the EM field in

terms of plane waves

�A =
∑
�ks

[
�A�ks e

−i(ω�ks t−�k·�r) + �A∗
�ks e

i(ω�ks t−�k·�r)
]

=
∑
�ks

[
�e�ks A�ks e

−i(ω�ks t−�k·�r) + �e�ks A
∗
�ks e

i(ω�ks t−�k·�r)
]
, (1.17)

propagating in the ±�k directions. Equation (1.17) allows us to

calculate the transverse EM field vectors �E and �B at any space–time
point through the relations (1.5) and (1.6).

1.4 Energy of the EMWave

Consider an EM wave confined in a space of volume V . The energy
of the three-dimensional EM field is given by the Hamiltonian

HF = 1

2

∫
V
dV
[
ε0| �E |2 + 1

μ0

| �B|2
]
, (1.18)

which is given by the integral of the energy density over the volume

occupied by the field. Here, ε0| �E 2|/2 is the energy density of the
electric field, and | �B|2/(2μ0) is the energy density of the magnetic

field.

First, we will impose periodic boundary conditions on the field

and normalize the energy to that contained in the finite volume V .
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Next we will express the Hamiltonian in terms of the energy of

discrete harmonic oscillators and quantize the Hamiltonian in the

standard manner by associating the complex field amplitudes with

creation and annihilation operators.

1.4.1 Normalization of the EM Field

In order to proceed further with the energy formula, Eq. (1.18),

we have to formulate the normalization procedure of the EM field

contained in a finite volume V . In general, the field is confined

into three dimensions, but for simplicity and without loss of the

generality, we will illustrate the normalization procedure in one

dimension only.

Consider a plane-wave electric field confined between two

perfectly reflecting walls, linearly polarized in the x-direction and
propagating in one dimension, the z-direction, as illustrated in

Fig. 1.1.

The field can be written as

�E (z, t) = �i Ex (z, t) = �i q (t) sin(kz). (1.19)

The walls of the field enclosure, located at z = 0 and z = Lare taken
as perfectly reflecting surfaces, which implies that

Ex (0, t) = Ex (L, t) = 0, (1.20)

and hence

sin(kL) = 0. (1.21)

From this result we see that the wave number k is given by

k = nπ
L
. (1.22)

z = 0 z = L

Figure 1.1 Plane wave electric field propagating in the z-direction and

polarized in the x-direction.
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Thus, the normalized EM field is represented by standing waves of

the discrete wave (propagation) number k.

1.4.2 Hamiltonian of the EMWave

In order to find the Hamiltonian (energy) of the EM field, we need

both the electric �E and magnetic �B fields. The electric field is given
by Eq. (1.19), and we will use the Maxwell’s equations to find

magnetic field.

The procedure of finding the magnetic field is as follows. Accord-

ing to the Maxwell’s equations and the plane-wave representation

of the EM field, the magnetic vector �B of the field is perpendicular
to �E and oriented along the y-axis. Substituting Eq. (1.19) into the
Maxwell’s equation (1.4), we obtain

∇ × �B = �i 1
c2
q̇ (t) sin(kz). (1.23)

Since Bx = Bz = 0 and By �= 0, the curl on the left-hand side

contains only two non-zero terms. Thus, the equation takes the form

−�i ∂By
∂z

+ �k ∂By
∂x

= �i 1
c2
q̇ (t) sin(kz). (1.24)

The coefficients on both sides of the equation at the same unit

vectors should be equal. Hence, we find that

∂By
∂x

= 0 and
∂By
∂z

= − 1

c2
q̇ (t) sin(kz). (1.25)

Integration of ∂By/∂z gives

By (z, t) = − 1

c2
q̇ (t)

∫
dz sin(kz) = 1

kc2
q̇ (t) cos(kz). (1.26)

This equation gives the expression that determines the magnetic

field of the one-dimensional EMwave propagating in the z-direction.
According to Eq. (1.18), the energy of the one-dimensional EM

field is given by the Hamiltonian

HF = 1

2

∫ L

0

dz
{

ε0| �E |2 + 1

μ0

| �B|2
}

= 1

2

∫ L

0

dz
{

ε0q2 (t) sin2(kz)+ 1

k2c4μ0

(q̇ (t))2 cos2(kz)
}
. (1.27)
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Since ∫ L

0

dz sin2(kz) =
∫ L

0

dz cos2(kz) = 1

2
L, (1.28)

the Hamiltonian (1.27) reduces to

HF = 1

4
ε0q2 (t) L+ 1

4

ε0

ω2
L(q̇ (t))2 . (1.29)

It is convenient to compare this energy with that of an harmonic

oscillator given by the well-known formula

Hosc = 1

2
mω2x2 + 1

2
m (ẋ)2 . (1.30)

In this case, we find that

q = αx , (1.31)

where

α =
√
2mω2

ε0L
. (1.32)

Hence, the electric andmagnetic fields can bewritten in terms of the

harmonic oscillator variables as

Ex (z, t) =
√
2mω2

ε0L
x (t) sin(kz),

By (z, t) = 1

kc2

√
2mω2

ε0L
ẋ (t) cos(kz). (1.33)

Example 1.1 (EM field in terms of canonical variables) An
alternative representation of the EM field amplitudes is in terms of a
pair of real canonical variables qk (t) and pk (t), defined as

qk (t) = √
ε0
[
Ak (t)+ A∗

k (t)
]
,

pk (t) = −iωk√ε0
[
Ak (t)− A∗

k (t)
]
. (1.34)

Since in harmonic motion Ak (t) = Ak exp(−iωkt), the two canonical
variables are related by

∂

∂t
qk (t) = pk (t) ,

∂

∂t
pk (t) = −ω2

kqk (t) . (1.35)

Since pk is obtained from the derivative of qk and vice versa, qk is
obtained from the derivative of pk, there is a phase shift between qk
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and pk. For example, if qk varies as a cosine function then pk varies as
a sine function.

Having the normalization procedure formulated in one dimension,

we can now generalize the fields into three dimensions where the

electric and magnetic fields, derived from Eqs. (1.5) and (1.6) with

help of Eq. (1.17), can be written in the form

�E = i
∑
k

ωk√
V

[
�Ak (t) ei�k·�r − c.c.

]
,

�B = i
∑
k

1√
V

[
�k× �Ak (t) ei�k·�r − c.c.

]
. (1.36)

Here, c.c. stands for the complex conjugation of the first term in

the bracket, k ≡ (�k, s), and we have normalized the fields to the
volume

√
V .

Substituting above equation into Eq. (1.18) and performing the

integration with

1

V

∫
V
ei(

�k−�k′)·�rdV = δ
(
�k− �k′

)
, (1.37)

and a vector relation(
�k× �Ak

)
·
(
�k× �A∗

k

)
= k2

∣∣∣ �Ak∣∣∣2 , (1.38)

we obtain

HF = 2ε0
∑
k

ω2
k

∣∣∣ �Ak∣∣∣2 . (1.39)

Since in terms of the canonical variables

2ε0ω
2
k

∣∣∣ �Ak∣∣∣2 = 1

2

[
p2k (t)+ ω2

kq
2
k (t)
]
, (1.40)

we get

HF = 1

2

∑
k

[
p2k (t)+ ω2

kq
2
k (t)
]
, (1.41)

which means that the EM field can be expressed as a set of harmonic

oscillators, and the canonical variables qk and pk can be related to
the position and momentum of the harmonic oscillator.

The energy can also be written as

HF = 2ε0
∑
k

ω2
k |Ak (t)|2

= ε0
∑
k

ω2
k

[
A∗
k (t) Ak (t)+ Ak (t) A∗

k (t)
]
. (1.42)
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Introducing a new variable

ak (t) =
√
2ε0ωk Ak (t) , (1.43)

we finally can write the Hamiltonian of the classical EM field as

HF = 1

2

∑
k

ωk
[
a∗
k(t)ak(t)+ ak(t)a∗

k(t)
]
. (1.44)

Note the proportionality of the energy to frequency, the proportion-

ality predicted in quantum physics, see, for example, [2]. However,

so far we have used the classical description of the field.

1.5 Quantization of the EM Field

The most straightforward approach to the quantization of the EM

field is to replace the classical canonical variables qk (t) and pk (t) by
quantummechanical operators q̂k (t) and p̂k (t) such that

[q̂k(t), q̂k′(t)] = 0, [ p̂k(t), p̂k′(t)] = 0,

[q̂k(t), p̂k′(t)] = i�δkk′ , (1.45)

that is, we associate with each mode k of the EM field a quantum

mechanical harmonic oscillator.

The complex amplitudes a∗
k and ak for the field mode k of the

classical vector potential are quantized via the substitution

ak → âk, a∗
k → â†k . (1.46)

The creation and annihilation operators are related to the quantum

mechanical operators q̂k and p̂k as

âk = 1√
2

(√
ωkq̂k + i√

ωk
p̂k

)
,

â†k = 1√
2

(√
ωkq̂k − i√

ωk
p̂k

)
. (1.47)

Using the commutation relations (1.45), we readily find the

commutation relation for the annihilation and creation operators[
âk (t) , â

†
k′ (t)
]

= �δkk′ . (1.48)

Hence, the Hamiltonian of the EM field takes the form

ĤF =
∑
k

�ωk

(
â†k (t) âk (t)+ 1

2

)
, (1.49)
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where we rescaled the operator âk → âk/
√

� in order to have the

commutation relation [âk, â
†
k′] = δkk′ .

In classical description of the EM field, the average energy is

proportional to the intensity I of the field:

〈HF〉 = 2ε0
∑
k

ω2
k 〈|Ak (t)|2〉 ∼ I (t). (1.50)

If the intensity I (t) = 0 then 〈HF〉 = 0. Thus, in classical description

of the field, the average energy can be equal to zero.

In quantum description of the field the average energy (the

expectation value of the energy) is given by

〈ĤF〉 =
∑
k

�ωk

[
〈â†k âk〉 + 1

2

]
=
∑
k

�ωk

[
〈n̂k〉 + 1

2

]
, (1.51)

where 〈n̂k〉 is the average number of photons in the kth mode of
the field. In contrast to the classical energy, the average energy of

a quantum field is different from zero even if 〈n̂k〉 = 0.

The average energy depends on the state of the field, but is

different from zero independent of the state of the field

〈ψ |ĤF|ψ〉 =
∑
k

�ωk

[
〈ψ |â†â|ψ〉 + 1

2

]
. (1.52)

Since for any state |ψ〉 the expectation value 〈ψ |â†â|ψ〉 ≥ 0, we have

that the average energy 〈ψ |ĤF|ψ〉 > 0.

1.6 Summary

We have seen that in quantum optics the EM field is represented as

a set of independent quantized harmonic oscillators of energy

ĤF =
∑
k

�ωk

(
â†k (t) âk (t)+ 1

2

)
. (1.53)

Moreover, we express the vector potential and the electric field

in terms of plane waves whose amplitudes are quantized and

determined by the creation â†k and annihilation âk operators
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associated with the mode k of the field as

�̂A (�r , t) =
∑
k

√
�

2ωkε0V

[
�ekâk (t) ei�k·�r + H.c.

]
, (1.54)

�̂E (�r , t) = i
∑
k

√
�ωk

2ε0V

[
�ekâk (t) ei�k·�r − H.c.

]

= �̂E
(+)
(�r , t)+ �̂E

(−)
(�r , t) , (1.55)

where H.c. stands for the Hermitian conjugate of the first term in the

bracket, and

�̂E
(+)
(�r , t) =

(
�̂E
(−)
(�r , t)

)†
= i
∑
k

√
�ωk

2ε0V
�ekâk(t) ei�k·�r . (1.56)

The constant
√

�ωk/(2ε0V ) is called the quantum unit of electric

strength.

Exercises

1.1 Explain the usefulness of the scalar and vector potentials in

the solution of the Maxwell’s equations.

1.2 Show that the �E and �B fields are invariant under the gauge

transformation, Eq. (1.10).

1.3 Show that under the Coulomb gauge and in the presence of

currents and charges, the wave equation for �A involves only
the transverse part of the current density.

1.4 Consider a source of electric �E and magnetic �B fields. If the

fields are arranged so that �E ⊥ �B , should we expect to see an
EM wave propagating in the direction determined by �E × �B?

1.5 Show that in addition to the conditions (1.16), the unit

polarization vectors �e�k1, �e�k2 and the unit propagation vector�k/k form an orthonormal system

2∑
s=1

(�e∗
�ks)i (�e�ks) j + kikj

k2
= δi j , i, j = x , y, z,

where (�e�ks)i is the i th component of the unit polarization vec-
tor.
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1.6 Show that the quantized electric field confined to a volume V
can be expressed in terms of the annihilation and creation

operators as

�̂E (�r , t) = i
∑
k

√
�ωk

2ε0V

[
�ekâk (t) ei�k·�r − H.c.

]
.

1.7 An electron moves in the xy-plane in a uniform magnetic

field �B propagating in the z-direction. The Hamiltonian of the
electron is

H = 1

2m

(
�p− e �A

)2
,

where m is the mass of the electron, e is its charge, �p is the
linear momentum, and �A is the vector potential of the field.
(a) Show that

H = 1

2m

[
p2x + p2y + eB(ypx − xpy)+ 1

4
e2B2(x2 + y2)

]
.

(b) Show that the operators

b̂ = 1√
2eB�

(
1

2
eBx̂ + i p̂x + 1

2
ieB ŷ − p̂y

)
,

b̂† = 1√
2eB�

(
1

2
eBx̂ − i p̂x − 1

2
ieB ŷ − p̂y

)
,

have the same relation to the Hamiltonian as the

annihilation and creation operators â and â† of the one-
mode EM field, that is

b̂b̂† = H
�ω0

+ 1

2
, b̂†b̂ = H

�ω0
− 1

2
,

where ω0 = eB/m.

1.8 Show that for a single-mode EM field described by the

annihilation and creation operators â and â†:

ei ĤFt/�âe−i ĤFt/� = âe−iω0t , ei ĤFt/�â†e−i ĤFt/� = â†eiω0t ,

where ĤF = �ω0(â†â + 1/2).

1.9 Calculate the commutation relation between components of

the quantized electric field to show that[
Ê (+)i (�r , t) , Ê (−)j

(�r ′, t
)] = �ω0

2ε0
�δ T
i j

(�r − �r ′) ,
where ω0 is the central frequency of the field and �δ T

i j (�r − �r ′) is
the three-dimensional transverse Dirac delta function.
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1.10 Consider the expression for the momentum of the EM field

�p = ε0

∫
dV
(

�E × �B
)
.

(a) Write the momentum �p in terms of the creation and

annihilation operators.

(b) Show that the momentum of a photon corresponding to

the quantized EM plane wave of wave vector �k is ��k.
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Chapter 2

Hamiltonians for Quantum Optics

2.1 Introduction

We often hear at seminars and presentations ‘Show me the

Hamiltonian of your problem and I will tell you what problem you

are talking about’. Therefore, to understand what quantum optics

is about, we start from the description of a standard Hamiltonian

of the problems considered in quantum optics. We illustrate the

method of derivation of the explicit form of the Hamiltonian for

a simple system that is composed of two subsystems that interact

(communicate) with each other. As we shall see, the explicit form of

the Hamiltonian is essential to explicitly calculate energy levels of a

given combined system and the temporal evolution of an arbitrary

operator representing the system.

Hamiltonian for a standard quantum optics problem involving

two systems that can interact with each other is composed of three

terms

Ĥ = ĤS + ĤF + Ĥint, (2.1)

where the first term, ĤS describes a system Hamiltonian, the second

term ĤF describes the field Hamiltonian and the third term Ĥint
is the Hamiltonian of the interaction between the system and

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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the field. Examples of systems considered in quantum optics are

atoms, molecules, and solids. The field is usually taken as the free

electromagnetic (EM) field represented as a set of independent

quantized harmonic oscillators. Systems are usually represented as

charge particles and the system–EM field interaction is considered

as the interaction between the charge particles and the free EMfield.

The Hamiltonian (2.1) represents a closed system that is composed

of two subsystems interacting with each other. We shall consider

each term separately and illustrate a standard approach to obtain

explicit forms of these terms.

2.2 Interaction Hamiltonian

Let us first consider the term representing the interaction between

two subsystems. In quantum optics a free independent system

is represented by charged particles and then the interaction

Hamiltonian is the energy of the charges in the EM field. Following

this observation, we now derive an explicit form of the interaction

Hamiltonian involving charges in an external EM field.

From the EM theory, we know that energy of the charge particles

of a volume density ρ (�r) located in an external field is given by the
energy of the charges in the potential� (�r) of the field

Hint =
∫
d3�r ρ (�r)� (�r) , (2.2)

where the integral is over the volume occupied by the charged

particles.

We can expand the position-dependent potential � (�r) into the
Taylor series around a point r0 = 0, and find

� (�r) = � (0)+ �r · ∇� (0)+ 1

2

∑
i j

ri r j
∂2�

∂ri∂r j
(0)+ · · · . (2.3)

Since �E = −∇� (0), we can write the potential as

� (�r) = � (0)− �r · �E (0)− 1

2

∑
i j

ri r j
∂E j

∂ri
(0)+ · · · . (2.4)

Since for the free field∇ · �E = 0, we can add to the last term a factor

1

6
r2∇ · �E (0) (2.5)
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and then the potential takes the form

� (�r) = � (0)− �r · �E (0)− 1

6

∑
i j

(
3rir j − r2δi j

) ∂E j

∂ri
(0)+ · · · .

(2.6)

Substituting this equation into Eq. (2.2) and performing the

integration, we obtain

Hint = q� (0)− �μ · �E (0)− 1

6

∑
i j

Qi j
∂E j

∂ri
(0)+ · · · , (2.7)

where

�μ = q�r (2.8)

is the dipole moment, and

Qi j = (3rir j − r2δi j
)

(2.9)

is the quadrupole moment of the particles.
Equation (2.7) gives us a clear evidence how fields interact with

systems that are represented by charges, dipole moments, etc. Thus,

referring to Eq. (2.7), we conclude that

(1) The charge q interacts with potential� (0).

(2) The electric dipole moment �μ interacts with the field �E .
(3) The electric quadrupole moment Q interacts with the gradient

of the field.

As we shall see latter, most of the models in quantum optics

considers only the electric dipole interaction between systems and

the EM field, that the interaction Hamiltonians are of the form

Hint = −�μ · �E (0). This choice of the interaction Hamiltonians is a
consequence of the fact that in practice external fields such as lasers

are often used to excite single-electron systems. Systems composed

of a collection of free or bounded charges are difficult to be excited

in a controlled way due to the presence of internal fields and forces

between the charges.

2.3 Hamiltonian of an Atom

In quantum optics, a free independent system is represented by

charges (electrons) and the system–field interaction is simply the
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ω0

|1 >

|2 >

Figure 2.1 A schematic diagram of the simplest system in quantum optics:

A two-level atom composed of a ground state |1〉 and an excited state |2〉
separated by frequency ω0.

charge–field interaction.We know from the quantummechanics that

the motion of the electron in an atom is quantized and the electron

can only be in some discrete energy states (the stationary energy

levels). There is a non-zero probability that upon the interaction

with an external field, the electron makes transitions between the

quantized energy levels.

How do we model all of these behaviours of the electron? To

answer this question, consider the simplest system used in quantum

optics: a single-electron atom in which the electron can make

transitions only between two energy states.

2.3.1 A Two-Level System

Figure 2.1 shows a schematic diagram of a two-level system, called

a two-level atom, with the ground state |1〉 and the upper (excited)
state |2〉. In fact, the electron can make transitions between many
energy states, but we can limit the transitions to only between two

states. In practice, it is done by a suitable choice of the frequency of

an external field that will force the electron to oscillate only between

these two selected states [3, 4]. Multi-level transitions involving

more than two energy states are much more complex and we are

not intend to consider them here, but the formalism presented here

can be extended to multi-level cases.a

aFor the derivation of the explicit form of the Hamiltonian of a multi-level atom see,

for example, Z. Ficek and R. Tanaś, Quantum-Limit Spectroscopy (Springer, New York,
2014).
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The energy of the electron in the selected states |2〉 and |1〉 is
determined by the stationary Schrödinger equation

ĤA |1〉 = E1 |1〉 , ĤA |2〉 = E2 |2〉 , (2.10)

where ĤA is the Hamiltonian of the atom whose explicit form is to

be determine.

Note that the energy states of the two-level atom are orthonor-

mal and satisfy the completeness relation, that is

〈i | j〉 = δi j and

2∑
i=1

|i〉〈i | = 1. (2.11)

Let us first determine energies of the two states. If the atomic states

are separated in energy by �ω0, we can determine their energies

relative to an average energy E0 of the states

E1 = E0 − 1

2
�ω0, E2 = E0 + 1

2
�ω0, (2.12)

we may choose E0 = 0, which corresponds to the zero energy of the

atom to be midway between the ground and excited states.

An obvious question arises: How to write the Hamiltonian of the

electron which would contain information on the states in which the

electron is?

This can be done by introducing the energy (population)

difference operator, which in terms of the projection operators can

be written as

Sz = 1

2
(|2〉〈2| − |1〉〈1|) . (2.13)

Since

〈1| ĤA |1〉 = −1
2

�ω0 and 〈2| ĤA |2〉 = 1

2
�ω0, (2.14)

the Hamiltonian ĤA can be written in terms of the energy operator

Sz as

ĤA = �ω0Sz. (2.15)

This equation is the explicit form of the Hamiltonian of a two-level

atom, and shows that the energy of the electron in the two-level

atom is determined by the operator Sz, the average value of which
is between 〈− 1

2
: 1
2
〉.
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2.3.2 Spin Operators

An electron interacting with an EM field jumps from the state |1〉 to
|2〉, absorbing the energy, and from |2〉 to |1〉 emitting the energy. A
jump (transition) can be represented by the spin operators S+ and
S− (S+: jump up) (S−: jump down), as

S+|1〉 = |2〉, S− |2〉 = |1〉 ,
S+ |2〉 = 0, S− |1〉 = 0. (2.16)

S+ and S− can be represented in terms of the projection operators
of the two states involved as

S+ = |2〉〈1|, S− = |1〉〈2|, (2.17)

and then it is easy to show that the spin operators satisfy the

following properties(
S+)2 = (S−)2 = 0,[
S+, S−] = 2Sz,{
S+, S−} = [S+, S−]

+ = 1. (2.18)

Since the spin operators S+ and S− are not Hermitian, it is

convenient to introduce two Hermitian spin operators

Sx = 1

2

(
S+ + S−) , Sy = 1

2i

(
S+ − S−) . (2.19)

It follows from Eqs. (2.18) and (2.19) that the Hermitian spin

operators obey the cyclic commutation relations

[S�, Sm] = i ∈�mn Sn, l , m, n = x , y, z, (2.20)

where ∈�mn is the Levi–Civita tensor defined as

∈�mn=
⎧⎨
⎩

1 lmn = xyz, yzx , zxy (even permutation of xyz)
−1 lmn = xzy, yxz, zyx (odd permutation of xyz)
0 when two or more indices are equal.

(2.21)

On the basis of the states |1〉 and |2〉, the Hermitian spin

operators are represented by matrices

Sx = 1

2
σx = 1

2

(
0 1

1 0

)
, Sy = 1

2
σy = 1

2

(
0 i
−i 0

)
,

Sz = 1

2
σz = 1

2

(−1 0
0 1

)
, (2.22)

where σx , σy and σz are the familiar Pauli spin matrices.
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2.3.3 Atomic Dipole Moment

We have already shown that the operator Sz represents the energy
of the electron. We can readily relate the spin raising and lowering

operators, S+ and S− to the dipole moment �μ of the atom. To show

this, we will use the completeness relation for the atomic states and

multiply the dipole moment on both sides by unity in the form

1 =
2∑
i=1

|i〉〈i |, (2.23)

and obtain

�μ =
(

2∑
i=1

|i〉〈i |
)

�μ
⎛
⎝ 2∑

j=1
| j〉〈 j |

⎞
⎠

= �μ22S+S− + �μ11S−S+ + �μ12S− + �μ21S+, (2.24)

where �μi j = 〈i | �μ | j〉 are dipole matrix elements.
The diagonal matrix elements �μ11 and �μ22 determine dipole

moments of the electron in the states |1〉 and |2〉, and are non-zero
only in atoms with permanent dipole moments. The off-diagonal

matrix elements �μ12 and �μ21 are transition dipole moments, which

arise from a change of the size of the atomdue to the transition of the

electron from the state |1〉 to the state |2〉 and vice versa. The matrix
element �μ12 can be real or complex and �μ21 = �μ∗

12. The transition

dipole moments are real for
m = 0 transitions in an atom, and are

complex for
m = ±1 transitions.
Let us consider a practical example to clarify the difference

between the
m = 0 and
m = ±1 transition dipole moments. We
wish to calculate the transition dipole moment between two energy

states of atomic hydrogen.

Example 2.1 (Dipole moment of a�m= 0 transition) Consider,
two energy states ψ100 = |1〉 and ψ210 = |2〉 of atomic hydrogen
corresponding to a
m = 0 transition

ψ100 =
√
2N e−r/ao ,

ψ210 = 1

4
N r
ao
e−r/2ao cos θ , (2.25)
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where

N = 1/

√
2πa3o (2.26)

is the normalization constant and ao is the Bohr radius.
The dipole matrix element �μ12 between the states (2.25) has the

form

�μ12 = 〈1| �μ |2〉 =
∫
dVψ∗

100e�rψ210. (2.27)

Before integrating, we resolve �r vector into components in the
Cartesian coordinates, and next perform the integration in the
spherical coordinates, where the dipole matrix element (2.27) can be
written as

�μ12 = e
∫ ∫ ∫

dr dθ dφ sin2 θ ψ∗
100 (x x̂ + yŷ + zẑ)ψ210, (2.28)

with the components

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ , (2.29)

and x̂ , ŷ, ẑ are orthogonal unit vectors in the directions x , y and z,
respectively.

Since ψ100 and ψ210 are independent of the azimuthal angle φ, the
integrals over φ of the x and y components of the dipole moment are
zero, but the integral over φ of the z component is non-zero, that is∫ 2π

0

dφ cosφ =
∫ 2π

0

dφ sinφ = 0,

∫ 2π

0

dφ = 2π. (2.30)

Clearly, the dipole matrix element �μ12 of the
m = 0 transition is real
and oriented in the z-direction. Evaluating the remaining integrations
over θ and r, we arrive to the following result

�μ12 = 128
√
2

243
eaoẑ. (2.31)

In terms of polarization, the dipole matrix element �μ12 of the 
m =
0 transition in a two-level atom is a vector linearly polarized in the
z-direction.

In the following example, we calculate polarization and magnitude

of the dipole moment of a
m = ±1 transition.
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Example 2.2 (Dipolemoment of a�m= ±1 transition) In order
to calculate the dipole moment of a 
m = ±1 transition, we choose
two energy states ψ100 = |1〉 and ψ211 = |2〉. The state ψ100 is given
in Eq. (2.25), and the state ψ211 is of the form

ψ211 = 1

8
√

πa3o

r
ao
e−r/2aoeiφ sin θ . (2.32)

Since ∫ 2π

0

dφ eiφ = 0,

∫ 2π

0

dφ eiφ cosφ �= 0, (2.33)

the z-component of the dipole moment is zero, whereas x , y
components are non-zero. Hence

�μ12 = −128
243

eao (x̂ + i ŷ) . (2.34)

Thus, for a 
m = ±1 transition, the dipole matrix elements are
complex numbers. In terms of polarization, the dipole matrix element
�μ12 of a
m = ±1 transition in a two-level atom is a vector circularly
polarized in the xy-plane.

In the following we will consider atoms with zero permanent dipole

moments (�μ11 = �μ22 = 0) , and therefore we will write the dipole

moment in terms of the dipole-lowering (S−) and the dipole-raising
(S+) operators as

�μ = �μ12S− + �μ21S+. (2.35)

We can conclude that the dynamics of a two-level atom are

completely described by the three spin operators Sx , Sy , Sz or
S+, S−, Sz that obey the commutation relations (2.18) and (2.20).

2.4 Total Hamiltonian and the Rotating Wave
Approximation

The Hamiltonian of the simplest system in quantum optics, a two-

level atom interacting with the free EM field, is composed of three

terms

Ĥ = Ĥ0 + ĤF + Ĥint, (2.36)
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where

Ĥ0 = �ω0Sz (2.37)

is the Hamiltonian of the atom,

ĤF =
∑
k

�ωk

(
â†k âk + 1

2

)
(2.38)

is the Hamiltonian of the field, and

Ĥint = −�μ · �E (0, t) = −�μ ·
[
�E (+) (0, t)+ �E (−) (0, t)

]

= −i
∑
k

√
�ωk

2ε0V
[�μ · �ekâk (t)− H.c.]

= −1
2
i�
∑
k

√
2ωk

�ε0V

[�μ12 · �ekS−âk (t)+ �μ21 · �ekS+âk (t)

−�μ∗
12 · �e∗

k S
+â†k (t)− �μ∗

21 · �e∗
k S

−â†k (t)
]

(2.39)

is the interaction Hamiltonian between the atom and the field.

For
m = 0 transitions, the transition dipolemoment is real, and

then the interaction Hamiltonian simplifies to

Ĥint = −1
2
i�
∑
k

gk
[
S−âk(t)+ S+âk(t)− S+â†k(t)− S−â†k (t)

]
,

(2.40)

where

gk = (�μ12 · �ek)
√

2ωk

�ε0V
(2.41)

is the coupling constant (real) between the system and the EM field.

It is often called the Rabi frequency of the atom–field interaction as

it is proportional to the strength of the coupling between the atom

and the field.

Note, that the interaction Hamiltonian Ĥint contains both, the
energy conserving terms S+âk and S−â†k as well as energy non-
conserving terms S−âk and S+â†k .

We can make the so-called rotating wave approximation (RWA),

in which we ignore the energy non-conserving terms. More

precisely, in the RWA approximation, we replace(
S+ + S−) [âk (t)− â†k (t)

]
(2.42)
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by

S+âk (t)− S−â†k (t) , (2.43)

that is, we exclude processes in which a photon is annihilated as

the atommakes a downward transition (corresponding to S−âk (t)),
or a photon is created as the atom makes an upward transition

(corresponding to S+â†k (t)).
The RWA is a good approximation for long time processes,

and is less valid for short time processes where the uncertainty

of the energy is very large. As we will show later in Chapter 9,

for weak couplings between a system and the field (gk � 1)

that are typical for the atom–vacuum field interaction, the non-

RWA processes produce only a small frequency shift (the Bloch–

Siegert shift). However, for strong couplings (gk � 1), typical

to the couplings inside optical cavities, they can have important

dynamical consequences. For example, the Jaynes–Cummings model

can exhibit chaotic dynamics, called “quantum chaos”, that is,

the question of how classical chaos might carry over into the

corresponding quantum dynamics [5]. Some other interesting

effects predicted when the RWA is not made include bifurcations

in the phase space [6], a fine structure in the optical Stern–Gerlach

effect [7], and entanglement between two atomic ensembles even if

there is no initial excitation present in the system [8].

Exercises

2.1 Explain, why the spin operators Sx , Sy , Sz are often called spin-
half (spin- 1

2
) operators?

2.2 Using the definition of the spin operators:

(a) Prove the commutation relations[
S+, S−] = 2Sz,

[
S±, Sz

] = ∓S±.

(b) Prove that the spin operators are unitary and that

S2x = S2y = S2z = 1

4
.

(c) Prove that

e−iπ(Sz+ 1
2
)S+eiπ(Sz+

1
2
) = e−iπ S+ = −S+.
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(d) Show that

Sx Sy = 1

2
i Sz, SySz = 1

2
i Sx , SzSx = 1

2
i Sy .

2.3 For the spin operators Sx , Sy , Sz of a two-level atom with

energy states |1〉 and |2〉, prove the following results
Sx |1〉 = 1

2
|2〉, Sy|1〉 = −1

2
i |2〉, Sz|1〉 = −1

2
|1〉,

Sx |2〉 = 1

2
|1〉, Sy|2〉 = 1

2
i |2〉, Sz|2〉 = 1

2
|2〉.

2.4 What is the physical consequence of the fact that theHermitian

spin operators Sx , Sy and Sz do not commute?
2.5 Show that the Pauli spin matrices satisfy the relation

σnσm = δnm + i ∈nmk σk, n, m, k = x , y, z.

2.6 Consider the Pauli matrices representing the spin opera-

tors σ̂x , σ̂y and σ̂z of a two-level system in the basis of the

states |1〉 and |2〉.
(a) Show that the operators σ̂x , σ̂y , σ̂z each has eigenval-

ues+1, −1.
(b) Determine the normalised eigenvectors of each. Are |1〉

and |2〉 the eigenvectors of any of the matrices?
2.7 In the example on transition dipole moment between two

energy states with 
 = 0 we have chosen energy states ψ100

and ψ210 of atomic hydrogen.

(a) What is the transition dipolemoment between statesψ100

and ψ200 of atomic hydrogen?

(b) How does the transition dipole moment depend on the

parity of the energy states ψnlm?

2.8 Calculate dipole matrix element �μ12 of a 
m = ±2 transition
between two states of the hydrogen atom. What is the

polarization of the dipole moment?

2.9 Write the Hamiltonian (8.1) in the interacting picture to

show that the energy non-conserving terms (counter rotating

terms) contain time-dependent fast oscillating factors of the

form exp[±i(ω0+ωk)t], whereas the energy conserving terms
contain slowly oscillating factors of the form exp[±i(ω0 −
ωk)t].
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2.10 Consider the Jaynes–Cummings model, which under the RWA

is determined by the Hamiltonian

Ĥ = �ω0Sz + �ω

(
â†â + 1

2

)
− 1

2
i�g
(
S+â − S−â†

)
.

(a) Find the matrix representation of the Hamiltonian in the
basis of the product states |1〉|n〉 and |2〉|n − 1〉, where
|1〉 and |2〉 are the energy states of a two-level atom and

|n〉 is the n-photon energy state of the field.
(b) Find the eigenvalues and normalized eigenstates of

the Hamiltonian of the Jaynes–Cummings model by the

diagonalization of the matrix found in (a).
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Chapter 3

Detection of the EM Field and
Correlation Functions

3.1 Introduction

In this chapter, we will address one of the basic questions

in quantum optics: How do we find an unknown state of the

electromagnetic (EM) field, or in general, how do we find quantum

state of a given system? The question is essentially about what are

detectors and how an external field, that wewant to detect, interacts

with them. We may also see how the formulation of problems in

quantum optics depends on the detection schemes.

In a laboratory, light fields are directly measured by pho-

todetectors, devices in which an external field interacts with a

photocathode composed of atoms (detectors) ionizing them. This

process results in the emission of photoelectrons that form a

photoelectric current, whose intensity or fluctuations are then

measured. More precisely, the direct-detection experiments are

sensitive to the intensity of the detected field and its fluctuations

that are associated with statistical or spectral properties of the

measured field. The direct measurement with photodetectors has

a disadvantage that it destroys the incident field as the detector

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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absorbs all the field that falls on it and converts the field into a

photocurrent. Moreover, the direct-detection experiments are not

sensitive to the amplitude of the field and its fluctuations. Those

require phase-sensitive detection schemes such as homodyne or

heterodyne detectors.

3.2 Semiclassical Theory of Photodetection

Let us begin with a semiclassical theory of photodetection. This will

give us some understanding of the process of detection of external

fields and how it is formulated. Consequently, it will show which

quantities are measured in the process of photodetection and what

information they carry about the detected field.

In the semiclassical theory of photodetection, the probability

to detect a classical field of intensity I ( �R , t) falling upon a

photodetector in the time interval (t, t + 
t) is defined as

P ( �R , t)
t = η〈I ( �R , t)〉
t, (3.1)

where η is the efficiency of the photodetector and 〈I ( �R , t)〉 is the
average intensity of the light evaluated at the location �R of the

photodetector. The average is taken over all possible instantaneous

values of I ( �R , t), the ensemble average.

3.2.1 First-Order Correlation Function

In terms of the field amplitudes, 〈I ( �R , t)〉 = 〈E ∗( �R , t)E ( �R , t)〉, the
probability can be written as

P ( �R , t)
t = ηG(1)( �R , t)
t, (3.2)

where

G(1)( �R , t) = 〈E ∗( �R , t)E ( �R , t)〉 (3.3)

is called the first-order correlation (coherence) function.
From Eqs. (3.2) and (3.3) it is evident that an experimental mea-

surement of the average intensity immediately provides information

about the first-order correlation function of the detected field.
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3.2.2 Second-Order Correlation Function

Consider two photodetectors located at points �R1 and �R2, re-
spectively. The probability for the detector �R1 to register a

photodetection at time t1 within
t1 is

P ( �R1, t1)
t1 = η1 I ( �R1, t1)
t1, (3.4)

and the probability for the detector �R2 to register a photodetection
at time t2 within
t2 is

P ( �R2, t2)
t2 = η2 I ( �R2, t2)
t2. (3.5)

If the two detection processes are independent of each other, the

joint probability of the two detections is defined as

P2( �R1, t1; �R2, t2)
t1
t2 = η1η2〈I ( �R1, t1)〉〈I ( �R2, t2)〉
t1
t2. (3.6)

We can use the joint probability to find whether the two detection

processes are correlated or independent of each other. A correlation

between the two detection processes can be determined from the

joint probability of the form

P2( �R1, t1; �R2, t2)
t1
t2 = η1η2〈I ( �R1, t1)I ( �R2, t2)〉
t1
t2. (3.7)

If the two detection processes are correlated

〈I ( �R1, t1)I ( �R2, t2)〉 �= 〈I ( �R1, t1)〉〈I ( �R2, t2)〉, (3.8)

otherwise the detection processes are independent of each other.

We can write the joint probability in terms of the amplitudes of

the EM field as

P2( �R1, t1; �R2, t2)
t1
t2 = η1η2G(2)( �R1, t1; �R2, t2)
t1
t2, (3.9)

where

G(2)( �R1, t1; �R2, t2) = 〈E ∗( �R1, t1)E ∗( �R2, t2)E ( �R2, t2)E ( �R1, t1)〉
(3.10)

is called the second-order correlation (coherence) function.
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3.2.3 Average Number of Photocounts

It follows from Eqs. (3.7) and (3.9) that the joint probability of

photodetection is proportional to the normally ordered correlation

function of the fourth order in the field amplitude, or of the

second order in the light intensity. Since the probability of a

single photodetection is proportional to ηI , the average number of
photocounts (classical particles) is given by

〈n〉 = η〈I 〉, (3.11)

from which we get that the probability of detection of n photoelec-
tron counts has a Poisson distribution

Pn = 1

n!
〈(ηI )n e−ηI 〉, (3.12)

where the average is the ensemble average over the intensity

fluctuations.

Proof. Using the definition of statistical average, we obtain

〈n〉 =
∑
n

nPn =
〈∑

n

n(ηI )n

n!
e−ηI

〉

=
〈
(ηI )

d
d(ηI )

[∑
n

(ηI )n

n!

]
e−ηI

〉
= η〈I 〉, (3.13)

as required.

If the intensity of the detected light fluctuates during the detection

time, the probability of photocounts in the interval t to t+T is given
by the ensemble average over the Poisson distribution

Pn(t, T ) = 1

n!

〈
[ηU (t, T )]n e−ηU (t,T )〉 , (3.14)

where

U (t, T ) = 1

T

∫ t+T

t
dt′ I (t′) (3.15)

is the average intensity of the light in the interval t to t + T .
If the detection time is very short, so that the instantaneous

intensity I (t′) can be substantially constant during the detection
time T , the average intensity reduces to U (t, T ) = I , and then the
distribution (3.14) simplifies to that given in Eq. (3.13).
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3.2.4 Variance of the Number of Photocounts

We can also calculate the variance of the number of counts n. Since

〈n2〉 =
∑
n

n2Pn =
〈[

(ηI )
d

d(ηI )

]2 [∑
n

(ηI )n

n!

]
e−ηI

〉

= η 〈I 〉 + η2〈I 2〉, (3.16)

we find that the variance of the number of counts is

〈(
n)2〉 = 〈n2〉 − 〈n〉2 = 〈n〉 + η2〈(
I )2〉. (3.17)

The formula (3.17) has a simple physical interpretation. The

fluctuations of the photocounts are proportional to the fluctuations

of the intensity of the incident field. For a non-fluctuating field, as

it may be for a laser beam, the distribution of the photons obeys

the Poisson distribution, 〈(
n)2〉 = 〈n〉, whereas for a fluctuating
field, as it may be for a thermal field, 〈(
n)2〉> 〈n〉. The first term in

Eq. (3.17) is often called the shot noise associated with the random
generation of discrete photoelectron counts in the detector. The

second term is the noise in excess of the standard shot noise, and

is often called the wave noise. Thus, for a non-fluctuating field only
the shot noise is present.

The formula (3.17) also shows that the variance 〈(
n)2〉 can
never be smaller than 〈n〉. Wewill see in Chapter 4 that this is true for
classical fields, but for certain quantum fields the variance 〈(
n)2〉
can be smaller than 〈n〉.

3.3 Quantum Theory of Photodetection

We shall now give a quantum description of the detection theory [9,

10]. From quantum physics, we know that the probability of

finding a system, located at �R and described at time t by the total
state |�( �R , t)〉 in a particular state |n〉 is given by

Pn( �R , t) = |〈n|�( �R , t)〉|2. (3.18)

The total state vector at time t is related to the initial state |� (0)〉 by
the relation

|�( �R , t)〉 = |� (0)〉 + 1

i�

∫ t

0

dt1 Ĥint(t1)|� (0)〉, (3.19)

which is a perturbation solution of the Schrödinger equation.
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If the detection time is short, and we are interested only in

transitions up (absorption of the external field), the probability of

the transition takes the form

Pn( �R , t) = A2t2

�2
|〈n|Ê (+)( �R , t)|�(0)〉|2, (3.20)

where A is a constant.
However, we cannot predict the final state of the atom as the

electron in the detector can be in any state. Therefore, we have to

sum the probabilities Pn over all possible final states, which gives

P ( �R , t) = A2t2

�2

∑
n

|〈n|Ê (+)( �R , t)|� (0)〉|2

= A2t2

�2
〈� (0) |Ê (−)( �R , t)Ê (+)( �R , t)|� (0)〉

= A2t2

�2
G(1)( �R , t) = A2t2

�2
I ( �R , t), (3.21)

where

G(1)( �R , t) = 〈� (0) |Ê (−)( �R , t)Ê (+)( �R , t)|� (0)〉 (3.22)

is the quantum first-order correlation (coherence) function.

Proceeding in a similar way, we can find the joint probability that

a system described by the total state |�( �R , t)〉 will be found in the
state |m〉 at the time t2 > t1 if it was found in the state |n〉 at time t1:

P ( �R1, t1; �R2, t2) = A4t21 t
2
2

�4

∑
n

∑
m

|〈n|Ê (+)( �R1, t1)|� (0)〉|2

×|〈m|Ê (+)( �R2, t2)|� (0)〉|2

= A4t21 t
2
2

�4
G(2)( �R1, t1; �R2, t2), (3.23)

where

G(2)( �R1, t1; �R2, t2) = 〈T : Î1( �R1, t1) Î2( �R2, t2) :〉
= 〈Ê (−)( �R1, t1)Ê (−)( �R2, t2)Ê (+)( �R2, t2)Ê (+)( �R1, t1)〉 (3.24)

is the quantum second-order correlation function, with T and ::

denoting respectively the time and normal ordering of the field

operators. In otherwords, the correlation functionG(2)( �R1, t1; �R2, t2)
is a relativemeasure of the joint probability that a photon is detected
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OUTPUT

SIGNAL
 BEAM

50/50 BEAM
 SPLITTER

DETECTOR 1

DETECTOR 2

I1

I2

Figure 3.1 Experimental scheme for measurement of the second-order

correlation function.

at a point �R2 in time t2 if one was detected at point �R1 in time
t1. The time-ordering symbol T rearranges creation operators in

forward time order and annihilation operators in backward time

order, whereas the normal ordering symbol :: has the effect of

rearranging the operators such that all the creation operators stand

on the left of the annihilation operators.

Figure 3.1 shows an experimental scheme for measurement of

the second-order correlation function. An incident signal beam is

split on the 50/50 beam splitter into two beams I1 and I2 which are
registered by two separate detectors. The signals from the detectors

are then multiplied and averaged over all detected values to give the

second order correlation function 〈I1 I2〉. The correlation function
is usually varied as a function of time difference between the two

signals or difference in the position of the detectors.

In the laboratory, one canmeasure not only the first- and second-

order correlation functions, that is, the real functions, but also

complex functions such as average values of the field amplitude

〈Ê ( �R , t)〉 = 〈�|Ê ( �R , t)|�〉, (3.25)

and the variance of the field amplitude

〈
(

Ê ( �R , t)

)2
〉 = 〈�|Ê 2( �R , t)|�〉 −

(
〈�|Ê ( �R , t)|�〉

)2
, (3.26)

which are dependent on the phase of the field. Of course, as these

are complex quantities, the average amplitude and its variance
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cannot be measured (detected) directly. The quantities depend on

the phase of the field, which is a relative quantity, that is, it could

be determined relative to some other well-known phase. It is done

in practice by mixing the unknown measured light beam with

the highly coherent light of the well-known amplitude and phase,

usually derived from an intense narrow-band laser, and to study

the intensity and fluctuations of the superposed beams. We will

discuss later in Chapter 6 some experimental schemes for the non-

direct measurement of the average value of the field amplitude and

its fluctuations. The measurement schemes are different form that

discussed above, referred as homodyne or heterodyne detection

techniques.

In closing this section, we briefly comment about the need to

measure higher order correlation functions. Although the foregoing

detection schemes all measure the correlation functions only to the

second order, the complete knowledge of a detected field requires

measurements of the correlation functions to all orders of the field

amplitude. However, the correlation functions of order higher than

two have as yet played a negligible role in practice. The usefulness of

the concept of higher order correlations still remains to be shown.

For optical fields generated by lasers or thermal sources, the first-

and second-order correlation functions contain all the required

information about the field, and no correlation functions of order

greater than two are required. A laser field is in general expressible

in terms of the first-order correlation functions, whereas a thermal

field is expressible in terms of products of second-order correlation

functions.

Exercises

3.1 Using the time-dependent perturbation theory, show that to

the first order in Ĥint(t), the solution of the Schrödinger

equation is of the form

|�( �R , t)〉 = |� (0)〉 + 1

i�

∫ t

0

dt1 Ĥint (t1) |� (0)〉.
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3.2 Show that the correlation functions G(1)( �R , t) ≡ G(1) and
G(2)( �R1, t1; �R2, t2) ≡ G(2) satisfy the wave equation(

∇2 − 1

c2
∂2

∂t2

)
G(i) = 0, i = 1, 2.

3.3 Using the definition of statistical average

〈nm〉 =
∑
n

nmPn =
〈∑

n

nm(ηI )n

n!
e−ηI

〉
,

calculate the average 〈n(n− 1)(n− 2)〉.
3.4 (a) Write the average intensity square 〈 Î 2〉 of a quantum field

in terms of the correlation functions G(2) and G(1).
(b) Find the average 〈 Î 3〉 of a quantum field in terms of the

correlation functions G(3), G(2) and G(1).
(c) What would be the values of 〈 Î 2〉 and 〈 Î 3〉 in terms of the

correlation functions if the field was classical?

3.5 Write the quantum first- and second-order correlation func-

tions in terms of the creation and annihilation operators.

3.6 Consider the joint probability of two simultaneous detections

of a stationary or slowly varying field of intensity I (t):

P2(t)
t1
t2 = η2〈I (t)I (t)〉
t1
t2.
(a) Show that the joint probability can be written as

P2(t)
t1
t2 = η2〈I (t)〉2 [1+ λ(t)]
t1
t2,

where λ(t) is the normalized intensity-fluctuations corre-
lation function

λ(t) = 〈(
I (t))2〉
〈I (t)〉2 .

(b) Show that in terms of the number of photocounts n, the
joint probability takes the form

P2(t)
t1
t2 = 〈n〉2
[
1+ 〈(
n)2〉 − 〈n〉

〈n〉2
]


t1
t2.

From this equation it then follows that when 〈(
n)2〉 <

〈n〉, the joint probability of the two photodetections is
smaller than that of two independent detections. It is

often said in the literature that these two photodetections

are negatively correlated, since in this case λ(t) < 0. Con-

versely, when 〈(
n)2〉 > 〈n〉, these two photodetections
are strongly correlated.
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Chapter 4

Representations of the EM Field

4.1 Introduction

In this chapter, we will introduce different representations of

the electromagnetic (EM) field. One may ask, why do we need

different representations for the EMfield? The answer is that usually

we do not know the state of the EM field which in quantum

optics is represented by the annihilation and creation operators.

However, results of measurements of the field are given in terms

of real variables, for example, intensity. The representations allow

us to recognize the state of the field from values of the measured

quantities such as average amplitude, intensity, and correlation

functions. The nature of the state is present in terms of the

interpretation of the apparently classical (measured) variables.

We will discuss two basic types of representations often used in

quantum optics, Fock state (photon number) representation and

coherent states representation, the later one introduced by Glauber.a

We also discuss properties of fields with thermal and Poisson

distribution of photons. The photon number states are very often

aRoy Glauberwas granted theNobel prize in 2005 for his contribution to the quantum

theory of optical coherence.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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used as a basis for quantum optics problems, and despite of many

difficulties have recently been generated experimentally [11–13].

4.2 Fock States Representation

In this representation, a state |n〉 of the EM field is characterized by

the well-defined number of photons n. We will illustrate the concept
of photon number states for a single-mode field and next we will

generalize it to multi-mode fields.

4.2.1 Single-Mode Number States

Suppose, the EMfield is composed of a singlemode k, andwe use the
notation for the annihilation operator â = âk.

Definition 4.1. Eigenstates |n〉 of the photon number operator n̂ =
â†â of the single-mode field are eigenstates of the Hamiltonian

ĤF |n〉 = �ω

(
â†â + 1

2

)
|n〉 = En |n〉 , (4.1)

and are called photon number states or Fock states.

The photon number states have the following properties

n̂ |n〉 = n |n〉 ,
ĤF |0〉 = 1

2
�ω |0〉 . (4.2)

The zero photon’s state, that is, the eigenstate of n̂ with the

eigenvalue equal to zero, is called the vacuum state and has the

energy 1
2
�ω.

The number state |n〉 can be generated by repeated application
of the creation operator â† on the vacuum state

|n〉 =
(
â†
)n

√
n!

|0〉 . (4.3)

Example 4.1 (A property of the EM field in a photon number
state) Consider the amplitude of a single-mode EM field of the
polarization in the x-direction and propagating in the z-direction

Êx = E
(
â + â†

)
sin(kz). (4.4)
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Ex

t

Figure 4.1 Illustration of a field of the definite amplitude but phase

randomly distributed.

It is easy to show that the expectation value of the amplitude of the EM
field in the photon number state |n〉 is equal to zero. Since

〈n| Ê x |n〉 = E 〈n|â + â†|n〉 sin(kz), (4.5)

and

â |n〉 = √
n |n− 1〉 , â† |n〉 = √

n+ 1 |n+ 1〉 , (4.6)

with 〈n|m〉 = δnm, we obtain
〈n| Ê x |n〉 = 0. (4.7)

Note that 〈n|Ê x |n〉 = 0 independent of n, that is, 〈n|Ê x |n〉 = 0

even if n → ∞. This is unusual property of the quantum field as

in the limit of n → ∞ the properties of the photon-number state

should convert into that corresponding to a classical state. However,

we know that the classical field performs harmonic oscillations in

time.

An alternative explanation of vanishing the expectation value

of the field is that the field in the photon number state has a

definite amplitude but phase randomly distributed over 2π , as it is

schematically illustrated in Fig. 4.1. It therefore average to zero at

any period of time.

Somehow surprising is that the expectation value of the square of

the field amplitude Ê 2x in the photon number state is different from
zero, that is,

〈n| Ê 2x |n〉 �= 0. (4.8)
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Proof. Since

〈n| Ê 2x |n〉 = E 2〈n| â†â† + ââ† + â†â + ââ |n〉 sin2(kz), (4.9)

we calculate expectation values of the four combinations of the field

operators, and obtain

〈n| â†â† |n〉 =
√
(n+ 1) (n+ 2) 〈n|n+ 2〉 = 0,

〈n| ââ |n〉 =
√
n (n− 1) 〈n|n− 2〉 = 0,

〈n| ââ† |n〉 = (n+ 1) 〈n|n〉 = n+ 1,

〈n| â†â |n〉 = n 〈n|n〉 = n. (4.10)

Hence,

〈n| Ê 2x |n〉 = 2E 2
(
n+ 1

2

)
sin2(kz) �= 0, (4.11)

as required.

In addition, since the average over all possible positions, sin2(kz) =
1/2, we find after averaging Eq. (4.11) over z that

〈n| Ê 2x |n〉 = E 2
(
n+ 1

2

)
. (4.12)

The expectation value of the square of the field amplitude is

different from zero even when n = 0. This simply shows that a

vacuum field not only has a non-zero energy but also has non-

zero fluctuations. We shall see later that these vacuum fluctuations

lead to many interesting effects in quantum optics. An important

challenge in quantum optics and quantum information science is

a preparation or excitation of the field into a particular photon

number state [12, 13]. It is a great practical difficulty to realize a

single photon number state. In practice the only pure number state

state commonly achieved is the vacuum state |0〉. Any attempt to
excite a particular photon number state |n〉 with n > 0 leads also

to a non-zero excitation of the neighbouring states |n±m〉.
In summary of this section, a field in the number state has a well-

definite amplitude, but the phase is indefinite. The fluctuations of

the field amplitude are different from zero even when n = 0. This

feature is known as the vacuum fluctuations.
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4.2.2 Multi-Mode Number States

We can generalize the concept of single-mode photon number states

to the case of multi-mode fields. For a multi-mode field, we can

define a state vector characterizing the entire field by taking the

product of photon number states corresponding to different modes

|{n}〉 =
∏
k

|nk〉 , (4.13)

where {n} is to be interpreted as the set of all n. This simple
generalization arises from the fact that the annihilation and creation

operators corresponding to different modes commute.

The multi-mode Fock state |{n}〉 is an eigenstate of the photon
number operator for the mode k

n̂k |{n}〉 = nk |{n}〉 . (4.14)

We can define the total number operator by summing n̂k over all
modes

n̂ =
∑
k

n̂k, (4.15)

and find that the Fock state |{n}〉 is also an eigenstate of n̂ with an
eigenvalue n, which is the total number of photons in the modes

n̂ |{n}〉 =
(∑

k

nk

)
|{n}〉 = n |{n}〉 . (4.16)

Since the energy of the field represented by a set of harmonic

oscillators (modes) is a linear combination of the operators n̂k, see
Eq. (1.49), it follows that the Fock states are also eigenstates of the

Hamiltonian Ĥ :

Ĥ |{n}〉 =
∑
k

(
n̂k + 1

2

)
�ωk |{n}〉 =

∑
k

(
nk + 1

2

)
�ωk |{n}〉 .

(4.17)

Similar to the single-mode Fock states, we can create a multi-mode

Fock state from the vacuum

|{n}〉 =
∏
k

⎧⎨
⎩
(
â†k
)n

√
n!

⎫⎬
⎭ |0〉 . (4.18)
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4.3 Correlation Functions for a Field in a Photon Number
State

Having the photon number states defined, we shall now analyse

characteristic properties of a single-mode field in the photon

number state |n〉. For a single-mode case, the field operator takes
a simple form

Ê = Ê (+) + Ê (−) = λ
(
â + â†

)
, (4.19)

and with a little algebra, we find the following values for the

correlation functions 〈
Ê
〉 = 0,〈(


Ê
)2〉 = λ2(2n+ 1),〈

Ê (−) Ê (+)
〉 = λ2

〈
â†â
〉 = λ2n,〈

Ê (−) Ê (−) Ê (+) Ê (+)
〉 = λ4

〈
â†â†ââ

〉 = λ4n(n− 1). (4.20)

In order to get a dipper insight into the properties of the field in

the photon number state, we define the normalized second-order

correlation function and variances of the so-called in-phase and out-

of-phase components of the field amplitudes.

4.3.1 Normalized Second-Order Intensity Correlation
Function

It is convenient to analyse second-order correlations in terms of the

the normalized second-order correlation function that determines

the correlations relative to the intensity of the field. The normalized

second-order correlation function is defined as

g(2)( �R1, t1; �R2, t2)

= 〈Ê (−)( �R1, t1)Ê (−)( �R2, t2)Ê (+)( �R2, t2)Ê (+)( �R1, t1)〉
〈Ê (−)( �R1, t1)Ê (+)( �R1, t1)〉〈Ê (−)( �R2, t2)Ê (+)( �R2, t2)〉

. (4.21)

Let us confine to the case of �R1 = �R2 and t1 = t2. For a single-
mode field, Eq. (4.19), and dropping the time and space arguments,

the correlation function simplifies to

g(2) = 〈â†â†ââ〉
〈â†â〉〈â†â〉 = 〈â†(ââ† − 1)â〉

〈â†â〉2 = 〈â†ââ†â〉 − 〈â†â〉
〈â†â〉2 . (4.22)
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We can express the correlation function in terms of the photon

number operator. Since â†â = n̂, we obtain

g(2) =
〈
n̂2
〉− 〈n̂〉
〈n̂〉2 . (4.23)

Introducing the variance of the number of photons

〈(
n̂)2〉 = 〈n̂2〉 − 〈n̂〉2, (4.24)

we can finally write

g(2) = 1+ 〈(
n̂)2〉 − 〈n̂〉
〈n̂〉2 . (4.25)

This formula shows that depending on the fluctuations of the

number of photons, the correlation function g(2) can take the values
g(2) < 1, g(2) = 1 or g(2) > 1. Since the correlation function g(2)

depends explicitly on the variance of the photon number. In quantum

optics the function g(2) is often used to determine statistics of a given
field.

Example 4.2 (Field in the photon number state) When the field is
in the photon number state |n〉, the variance and the average number
of photons are

〈(
n̂)2〉 = 0,

〈n̂〉 = n. (4.26)

Hence, the normalized second-order correlation function takes the
form

g(2) = 1− 1

n
. (4.27)

Thus, for a single-photon field, n = 1, the correlation function reduces
to

g(2) = 0, (4.28)

whereas for a multi-photon field with n → ∞
g(2) → 1. (4.29)

A value of the correlation function g(2) < 1 expresses the very

interesting fact that photons in the field are separated from each
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other and move individually rather than in groups. This phenom-

enon is called ungrouping effect or photon anticorrelation [14, 15].
The photons are anticorrelated in the sense that the probability

of appearance of a pair of photons at any particular time is very

small. When photons are separated in time, they may exhibit

the phenomenon of photon antibunching—that is, the correlation

function may satisfy the inequality g(2)(t, τ ) > g(2)(t, 0). Physically,
the inequality means that the probability of detecting two photons

separated by time τ is more likely than the probability of detecting

two photons at the same time.

4.3.2 Two-Level Atom as a Source of Antibunched Light

As an example of a source of antibunched light, we consider a

two-level atom that is represented by the spin operators S±. The
normalized two-time second-order correlation function of the field

detected by a single photodetector and expressed in terms of the

atomic spin operators can be written as

g(2)(t, τ ) ≡ g(2)( �R , t; �R , t + τ )

= 〈S+(t)S+(t + τ )S−(t + τ )S−(t)〉
〈S+(t)S−(t)〉〈S+(t + τ )S−(t + τ )〉 . (4.30)

Since (S±)2 ≡ 0, we see that at τ = 0 the correlation function

g(2)(t, 0) = 0, indicating that a two-level atom is an ideal source of

antibunched light. Physically, the vanishing of g(2)(t, 0) for a single
two-level atom implies that just after a photon is emitted, the atom

is in the ground state, and cannot emit again until is re-excited so

that a photon may be emitted again.

Using sodium atoms as a source of light, Dagenais, Kimble and

Mandel [16] demonstrated experimentally photon anticorrelation,

g(2) (0) < 1, and photon antibunching, g(2) (t, τ ) > g(2) (t, 0) from
direct measurement of the second-order correlation function of

the emitted resonance fluorescence. Their experiment provided

evidence that light is composed of particles. Photon antibunching

has also been observed in similar experiments involving trapped

atoms [17] and a cavity quantum electrodynamic (QED) system [18].

We will show later that g(2)(t, τ ) = 1 corresponds to a coherent

state of the field, while g(2)(t, τ ) < 1 corresponds to a non-classical
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state of the field (quantum field with no analogue in classical

physics). Thus, the photon number state |n〉 is a non-classical state of
the field with the fluctuations of the number of photons suppressed

below the quantum (coherent) level.

4.3.3 Fluctuations of the Field Amplitudes

We can consider not only the photon number fluctuations, but also

fluctuations in the electric field amplitude. The electric field Ê can

be expressed in terms of the so-called in-phase and out-off phase

quadrature (phase) components defined as

Ê in = 1

2

(
â + â†

)
, Êout = 1

2i

(
â − â†

)
. (4.31)

The quadrature components obey the commutation relation[
Ê in, Êout

] = i
2
, (4.32)

from which we find that they satisfy the Heisenberg uncertainty

relation √〈(

Ê in

)2〉〈(

Êout

)2〉 ≥ 1

4
, (4.33)

where the factor 1/4 on the right-hand side determines the vacuum

level of the fluctuations.

For a field in the Fock state |n〉, the variances of the two

quadrature components are equal and linearly increase with n:〈(

Ê in

)2〉 =
〈(


Êout
)2〉 = 1

2

(
n+ 1

2

)
. (4.34)

In summary of this section, a field in the Fock state |n〉 is
characterized by thewell-defined number of photons (intensity), but

the amplitude of the field exhibits large fluctuations which increase

with increasing number of photons n.

4.4 Probability Distributions of Photons

In many problems in quantum optics, we face with a difficulty of

a lack of knowledge of the state of the field. However, in some

situations that wewill explore here, we know or at least we can infer
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the probability distribution of photons in the field. As we shall see,

this is enough to determine the statistics of the field.

Let us introduce this idea with a simple question: What is the

expectation value 〈n̂〉 = 〈ψ |n̂| ψ〉 if, for example, |ψ〉 is a thermal
state of the field?

We do not know the explicit form of the state, but if the

probability distribution of photons is known, the expectation values

〈n〉 , 〈n2〉 , . . . still can be explicitly calculated. Namely, we find the
expectation values from the definition of the statistical moments〈

nm
〉 =
∑
n

nmPn, m = 1, 2, . . . , (4.35)

where Pn is the probability distribution function.
We illustrate the procedure for EM fields that are determined by

the two well-known probability distribution functions, the thermal

and Poisson distribution functions.

4.4.1 Thermal Distribution

The probability distribution function for a thermal field at tempera-

ture T is given by the Boltzmann distribution

Pn = e−nx
∞∑
n=0

e−nx
, (4.36)

where

x = �ω

kBT
, (4.37)

with kB is the Boltzmann constant, and T is the absolute tempera-

ture.

Example 4.3 (Pn in terms of the average number of photons)
For some problems, it is convenient to have the distribution function Pn
in terms of the average number of photons as

Pn = 〈n〉n
(1+ 〈n〉)n+1 . (4.38)

To show it, consider first the sum
∑∞

n=0 exp(−nx) appearing in the
denominator of Eq. (4.36). The sum is a particular example of a
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geometric series. Since | exp(−nx)| < 1, the sum tends to the limit
∞∑
n=0

e−nx = 1

1− e−x . (4.39)

Hence, we can write the probability distribution function (4.36) as

Pn = e−nx (1− e−x) = e−nx e
x − 1

ex
= (ex − 1)n (ex − 1)

(ex − 1)n (ex)n+1

= (ex − 1)n+1

(ex − 1)n (ex)n+1
=

(
1

ex−1
)n

(
1+ 1

ex−1
)n+1 . (4.40)

We furthermore have that the expectation number of photons can be
written as

〈n〉 =
∑
n

nPn = (1− e−x)∑
n

ne−nx . (4.41)

In order to evaluate the sum in Eq. (4.41), we introduce a notation

z =
∑
n

e−nx = 1

1− e−x , (4.42)

and find that∑
n

ne−nx = − d
dx

∑
n

e−nx

= − d
dx

(
1

1− e−x

)
= −e−x

(1− e−x)2
. (4.43)

Therefore,

〈n〉 = 1

ex − 1
, (4.44)

and the expression for the distribution function becomesa

Pn = 〈n〉n
(1+ 〈n〉)n+1 , (4.46)

as required.

aAn interesting observation: According to Eq. (4.44), by measuring the average

number of photons one can extract a temperature of the source

T = �ω

kB ln
( 〈n〉+1

〈n〉
) . (4.45)

This formula is often used in cold atom optics to determine temperature of cooled

trapped atoms.
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Consider now the fluctuations of a thermal field. Since we know

the distribution function Pn, we can calculate 〈(
n)2〉, the variance
of the number of photons in the thermal field. Following the same

procedure as in the above proof of Eq. (4.38), we find that

〈n2〉 =
∑
n

n2Pn = ex + 1

(ex − 1)2
= 1

ex − 1
+ 2

(ex − 1)2

= 〈n〉 + 2 〈n〉2 , (4.47)

from which we find that the variance is composed of two terms〈
(
n)2

〉 = 〈n〉 + 〈n〉2 . (4.48)

With this result, we find from Eqs. (4.25) and (4.48) that the

normalized second-order correlations for a field with the thermal

distribution of photons is equal to

g(2) = 2. (4.49)

This particular value of the correlation function means that in a

thermal field correlations between the photons are large. In other

words, the photons group together (move in large groups). We call

this effect photon bunching.

Example 4.4 (Continuous versus discrete n) Assume that n is a
continuous rather than a discrete variable. The continuous variable
approach makes the calculation of 〈(
n)2〉 appropriate to classical
field. In this case when calculating 〈n2〉, we replace the sum over n by
integration over n, and obtain

〈n2〉 =
∫∞
0
dn n2e−nx∫∞

0
dn e−nx = (1/x)′′

(1/x)
= 2〈n〉2, (4.50)

where ′′ denotes second derivative of 1/x with respect to x.
Hence, the variance of the number of photons is given by

〈(
n)2〉 = 〈n〉2. (4.51)

Comparing Eqs. (4.48) and (4.51), we see that the classical

(continuous energy) and quantum (discrete energy) results differ by

〈n〉. The quantum result shows that radiation possess both a wave

character, which gives the 〈n〉2, and a particle character, which gives
the 〈n〉 term.
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4.4.2 Poisson Distribution

We now consider correlation functions for a field with a Poisson

distribution of photons

Pn = 〈n〉n
n!

e−〈n〉, (4.52)

where 〈n〉 is the average number of photons in the field.
For example, light emitted from a perfectly stabilized laser

working well above threshold can be described by the Poisson

distribution function, see Chapter 18.

In this case, the first statistical moment (m = 1) is given by

〈n〉 =
∑
n

n 〈n〉n
n!

e−〈n〉 = 〈n〉 e−〈n〉∑
n

〈n〉n−1
(n− 1)!

= 〈n〉 , (4.53)

which confirms the Poisson distribution of photons.

Similarly, we can find the higher statistical moments and the

variance of the number of photons. First, calculate 〈n2〉. Using the
definition of the statistical moments, Eq. (4.35), we find

〈n2〉 =
∑
n

n2e−〈n〉 〈n〉n
n!

= 〈n〉 e−〈n〉∑
n

n 〈n〉n−1
(n− 1)!

. (4.54)

To proceed further with the sum over n, we change the variable by
substituting n− 1 = k, and obtain

〈n2〉 = 〈n〉 e−〈n〉
{∑

k

k 〈n〉k
k!

+
∑
k

〈n〉k
k!

}
. (4.55)

The two sums over k are easy to evaluate, and finally we obtain

〈n2〉 = 〈n〉2 + 〈n〉 . (4.56)

Thus, the variance of the number of photons in a field with the

Poisson distribution of photons is given by

〈(
n)2〉 = 〈n〉, (4.57)

and with this result, we find from Eq. (4.25) that in this case the

normalized second-order correlation function is

g(2) = 1. (4.58)

The value of the correlation function g(2) = 1 means that photons

in the coherent field are independent of each other. It is clearly seen
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Figure 4.2 The Poisson distribution (solid line) and the thermal distribu-

tion (dashed line) as a function of n for 〈n〉 = 20.

from the definition of g(2), Eq. (4.21), that g(2) = 1 when the second-

order correlation function factorizes into a product

〈Ê (−) Ê (−) Ê (+) Ê (+)〉 = 〈Ê (−) Ê (+)〉〈Ê (−) Ê (+)〉. (4.59)

Figure 4.2 shows the thermal and Poisson distributions of photons.

It is seen that for the thermal field, photons are randomly distributed

over a large range of n as the fluctuations are large. For the

Poisson distribution, photons group around the average 〈n〉 and are
distributed over the average in a range determined by the variance

〈(
n)2〉.
Fluctuations in the photon number are often described in terms

of the Mandel Q-parameter defined by [19]

Q = 〈(
n)2〉 − 〈n〉
〈n〉 . (4.60)

Positive values of the Q-parameter indicate super-Poissonian statis-
tics, whereas negative values indicate sub-Poissonian statistics, and

the value of Q = 0 corresponds to a Poissonian statistics.a

According to Eqs. (4.25) and (4.60), the Mandel Q-parameter can
be expressed in terms of the normalized second-order correlation

aIn the laser theory, the signature of threshold behaviour is determined by the so-

called Fano factor defined as F = 〈(
n)2〉/〈n〉. Below and at the threshold F > 1

and F = 1 above the threshold indicating coherent nature of the laser field. The

Fano factor is related to the Mandel Q parameter as F = Q+ 1.
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function as

Q = 〈n〉 (g(2) − 1
)
. (4.61)

Thus, photon antibunching corresponds to sub-Poissonian statistics

of photons, whereas photon bunching corresponds to super-

Poissonian statistics.

4.5 Coherent States of the EM Field

The number states (Fock states) visualize a field with defined

amplitude but with phase randomly distributed. Then a question

arises: Are there any states which, in the limit of large amplitude,

reproduce a state of a classical field of stable amplitude and fixed

phase?

The closest quantum states to classical states are coherent states

that are defined as eigenstates of the annihilation operator

â |α〉 = α |α〉 . (4.62)

Since the operator â is non-Hermitian, we cannot use the coherent
states as eigenstates of any observable. However, the states

correspond to measurable features.

To establish the formof the coherent statewe begin by expanding

|α〉 in terms of the Fock states, which act as an appropriate basis due
to their orthogonality

|α〉 =
∞∑
n=0

|n〉〈n|α〉 =
∑
n

cn |n〉 , (4.63)

where cn = 〈n|α〉 is the transformation from the coherent state to

the number state representation. The |〈n|α〉|2 is the probability that
the n photons in the field being in the coherent state |α〉 .

In order to determine the coefficients cn we write

â |α〉 =
∑
n

cnâ |n〉 =
∞∑
n=1

cn
√
n |n− 1〉 . (4.64)

On the other hand

â |α〉 = α |α〉 =
∞∑
n=0

αcn |n〉 . (4.65)
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Hence, comparing Eqs. (4.64) and (4.65), we obtain a recurrence

relation for the coefficients cn:

cn+1
√
n+ 1 = αcn. (4.66)

By iterations, we find that

cn = αn√
n!
c0. (4.67)

Therefore, the coherent state can be written as a superposition of

the photon number states as

|α〉 =
∞∑
n=0

αn√
n!
c0 |n〉 . (4.68)

We choose c0 such that the |α〉 will be normalized, 〈α|α〉 = 1. Then,

using Eq. (4.68), we find

|c0|2 = e−|α|2 , (4.69)

and finally, we obtain

|α〉 = e− 1
2
|α|2

∞∑
n=0

αn√
n!

|n〉 . (4.70)

Thus, the probability of finding n photons in the field being in a
coherent state is given by

Pn = |〈n|α〉|2 = |α|2n
n!

e−|α|2 , (4.71)

which is a Poisson distribution.

With the distribution (4.71), we find that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈n〉 = 〈α| n |α〉 = |α|2 ,

g(2) = 1,

〈(

Ê in

)2〉 =
〈(


Êout
)2〉 = 1

4
.

(4.72)

The coherent states, first introduced by Glauber [20], have a

close analogy with classical states of definite amplitudes which is

apparent from the definition â |α〉 = α |α〉. For this reason, coherent
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Figure 4.3 Representation of the coherent state |α〉 in terms of the

quadrature amplitudes E in and Eout.

states are often called the “most classical” states. It is interesting to

note that the fluctuations of the field amplitudes in the coherent

state are equal to the vacuum level fluctuations independent of

α. This is in contrast to the field in the Fock state, where the

fluctuations depend on the number of photons n, see Eq. (4.34).
This property makes the field in a coherent state very useful in

experimental physics, as the noise produced by the field is always

on the same vacuum level independent of the intensity of the field.

Laser light is a good approximation to the ideal coherent field which

exhibits Poisson fluctuations.

Figure 4.3 shows the mean values and variances of the

quadrature amplitudes E in and Eout of the field in a coherent state
|α〉. The state is represented by a circle of radius 1/4 displaced

from the origin by α. The coordinates of the centre of the circle are

(〈E in〉, 〈Eout〉) = (Re(α), Im(α)).

Since the repeated application of the annihilation operator on

a coherent state does not change the state, the photons can be

continuously absorbed without changing the state of the field. Thus,

the field remains in the coherent state during the interaction with

another system.

What about the phase of the field? Before we answer the

question, let us introduce some useful representations of the

coherent states.
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4.5.1 Displacement Operator

Since the photon number state |n〉 can be obtained from the vacuum

state |0〉 by successive application of the creation operator

|n〉 =
(
â†
)n

√
n!

|0〉 , (4.73)

we can express a coherent state in terms of the vacuum state as

|α〉 = e− 1
2
|α|2∑

n

αn√
n!

(
â†
)n

√
n!

|0〉

= e− 1
2
|α|2∑

n

(
αâ†
)n

n!
|0〉 = e− 1

2
|α|2eαâ† |0〉 . (4.74)

Note that

e−α∗â |0〉 = |0〉 , (4.75)

which allows us to write the coherent state as

|α〉 = e− 1
2
|α|2eαâ†e−α∗â |0〉 . (4.76)

We can apply the Campbell–Baker–Hausdorff operator identity

e Â+B̂ = e ÂeB̂e− 1
2 [ Â, B̂], (4.77)

which is valid for two operators satisfying the commutation

relations

[ Â, [ Â, B̂]] = [B̂ , [ Â, B̂]] = 0. (4.78)

The condition (4.78) is obviously satisfied for any pair of operators

Â, B̂ whose commutator [ Â, B̂] is a c-number. If we put Â = αâ† and
B̂ = −α∗â, we obtain

|α〉 = eαâ†−α∗â |0〉 = D̂ (α) |0〉 , (4.79)

where D̂ (α) is called the displacement operator. Thus, a coherent
state is obtained by applying the displacement operator on the

vacuum state. The coherent state is therefore the displaced form of

the harmonic oscillator ground state.
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4.5.2 Properties of the Displacement Operator

The displacement operator has the following properties:

D̂† (α) = D̂−1 (α) = D̂ (−α) ,

D̂† (α) D̂ (α) = D̂ (α) D̂† (α) = 1, (Unitary operator). (4.80)

Further

â D̂ (α) = D̂ (α) â + α D̂ (α) . (4.81)

Therefore, the operator D̂ (α) represents a displacement operator in
the sense that

D̂† (α) â D̂ (α) = â + α,

D̂† (α) â† D̂ (α) = â† + α∗. (4.82)

The action of successively applied displacement operators is also

additive up to phase factors

D̂ (α) D̂ (β) = D̂ (α + β) exp

[
1

2
(αβ∗ − βα∗)

]
. (4.83)

Note that the extra phase on the right-hand side makes the

displacement operators non-commutative in general.

4.5.3 Representation in Terms of Coherent States

The number state |n〉may be represented in terms of coherent states
|α〉. Multiplying the expansion

|α〉 = e− 1
2
|α|2∑

n

αn√
n!

|n〉 (4.84)

by a factor

1

π

α∗n
√
n!
e− 1

2
|α|2 , (4.85)

and integrating overall α, we obtain

|n〉 = 1

π

∫
d2α e− 1

2
|α|2 α∗n

√
n!

|α〉 , (4.86)

where d2α = d (Reα) d (Imα) = r dr dψ denotes a double integra-

tion over the whole complex α-space.
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From the completeness of the Fock state
(∑

n |n〉〈n| = 1
)
, we

readily obtain the completeness relation for coherent states

1

π

∫
d2α|α〉〈α| = 1, (4.87)

where we have used the integral property∫
d2α αnα∗me−s|α|2 = πn!

sn+1
δnm. (4.88)

Thus, coherent states are complete.

However, the coherent states are not orthogonal. To show this,

we calculate a product of two coherent states

〈β|α〉 = e− 1
2
|α|2− 1

2
|β|2∑

n,m

β∗n
√
n!

αm√
m!

〈n|m〉

= e− 1
2
|α|2− 1

2
|β|2∑

n

(αβ∗)n

n!

= e− 1
2 (|α|2+|β|2)+αβ∗

. (4.89)

Then, we find

|〈β|α〉|2 = e−|α−β|2 �= δαβ , (4.90)

which shows that the two coherent states are not orthogonal.

The coherent states become approximately orthogonal when

the difference |α − β|2 → ∞. Since the coherent states are not

orthogonal they are sometimes called over-complete.

Exercises

4.1 The state |n〉 is an eigenstate of the photon number opera-
tor n̂ = â†â with eigenvalue n. Show that

(a) the state â|n〉 is also an eigenstate of n̂with eigenvalue n−
1.

(b) the state â†|n〉 is also an eigenstate of n̂ with eigen-

value n+ 1.

4.2 Show that Tr
[
D̂ (α)

] = πδ(α), where δ(α) is the two-

dimensional Dirac delta function.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Exercises 59

4.3 Using Tr
[
D̂ (α)

] = πδ(α), show that the δ(α)-function can be

represented by a Fourier integral in the complex form

δ(α) = 1

π2

∫
d2β exp(αβ∗ − α∗β).

4.4 Show that

D̂ (α) D̂ (β) = D̂ (α + β) exp

[
1

2
(αβ∗ − βα∗)

]
,

D̂−1 (α) â D̂ (α) = â + α,

D̂−1 (α) â† D̂ (α) = â† + α∗.

4.5 Prove the identity∫
d2α αnα∗me−s|α|2 = πn!

sn+1
δnm.

4.6 Prove that

D̂(α) ≡ eαâ†−α∗â = e− 1
2
|α|2eαâ†e−α∗â = e

1
2
|α|2e−α∗âeαâ† .

4.7 Show that the expectation value of the displacement opera-

tor D̂ (α) for a chaotic (thermal) field is given by

〈D̂ (α)〉 = exp

[
− |α|2

(
〈n̂〉 + 1

2

)]
,

where 〈n̂〉 is the mean number of photons in the field. A

thermal field is characterized by the following correlation

functions

〈â〉 = 〈â†〉 = 0,

〈â2〉 = 〈(â†)2〉 = 0,

〈â†â〉 = 〈n̂〉,
〈ââ†〉 = 1+ 〈n̂〉.

4.8 Assume that the field is in a superposition state

|�〉 = C1 |α〉 + iC2 |β〉 ,
where |α〉 , |β〉 are two different coherent states, 〈�|�〉 = 1

and all four numbers C1, C2, α, β are real. Consider theMandel
Q parameter defined as

Q = 〈(
n̂)2〉 − 〈n̂〉
〈n̂〉 .

The parameter Q determines the statistics of the field. For a
Poissonian statistics Q = 0, for a sub-Poissonian statistics Q <

0, and Q > 0 for a super-Poissonian statistics.
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(a) Under which conditions the statistics of the field being in
the superposition state |�〉 is sub-Poissonian?

(b) Under which conditions Q = 0?

4.9 The probability of finding n photons in the mode being in a
coherent state |α〉 is given by the Poisson distribution

Pn = 〈n〉n
n!

e−〈n〉.

Use the Sterling’s formula for the factorial to show that this

distribution can be approximated by

Pn ≈ 1√
2π〈n〉 exp

[
− (n− 〈n〉)2

2〈n〉
]
.

In what limit is this a good approximation?

4.10 Calculate the variances of the position and momentum

operators of a harmonic oscillator in a coherent state |α〉 to
prove that irrespectively of α the coherent states areminimum

uncertainty states.

4.11 Show that in the coordinates of the quadrature phase

components, Ê in and Êout, the average amplitudes 〈Ê in〉, 〈Êout〉
and the associated variances in a coherent state |α〉 can be
represented by a circle of radius 1/4 centred on the complex

amplitude vector α.
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Chapter 5

Photon Phase Operator

5.1 Introduction

We have already shown that the coherent states are very close

to the classical state of the well-defined amplitude and phase.

A question not answered yet is: Does there exist an analogous

quantum mechanical observable for the phase that is given by some

Hermitian operator? We know from classical optics that phase of

an EM field is an observable quantity. Hence, in quantum physics it

should be associated with a Hermitian operator. In order to set up

a quantitative description of the phase operator, we will introduce

some of the ideas presented in the literature which led to the

formulation of the Hermitian phase operator.

5.2 Exponential Phase Operator

In classical optics, an electric field �E (�r , t) is often written as
�E (�r , t) = �E0(�r , t)eiψ , (5.1)

where �E0(�r , t) is the amplitude of the field, whose modulus square
is the intensity of the field, and the argument ψ is the phase.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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Both intensity and the phase can be measured simultaneously with

arbitrary accuracy.

In quantum optics the situation is completely different. The field

amplitude becomes an operator acting in a Hilbert space of field

states. In addition, the polar decomposition of the field amplitude,

which is trivial for classical fields, becomes far from being trivial for

quantum fields because of the problemwith proper definition of the

Hermitian phase operator.

The early studies of the quantum field (photon) phase were

concerned with the exponential form of the phase operator. We start

from the concept of the exponential phase operator, introduced by

Dirac [21], to develop interesting concepts of the Hermitian phase

operator.

It is well known from the complex analysis that an arbitrary

complex number can be written as

z = |r| eiψ , (5.2)

where |r| is themodulus andψ (real) is the argument of the complex

number.

By analogy, Diraca proposed to decompose the annihilation (non-

Hermitian) operator

â = ĝeiψ̂ , (5.3)

where ψ̂ can be treated as a phase operator.

An obvious question arises: Is this decomposition valid? Suppose,

the decomposition is valid. Then the Hermitian conjugate of â is
given by

â† = e−iψ̂ ĝ, (5.4)

and the product of â and â† gives

ââ† = n̂+ 1 = ĝ2, (5.5)

from which we have

ĝ = (n̂+ 1)1/2 . (5.6)

Using the above results, we can write

eiψ̂ = 1

(n̂+ 1)1/2
â, e−iψ̂ = â†

1

(n̂+ 1)1/2
. (5.7)

aPaul Dirac was granted the Nobel prize in 1933 for the discovery of new productive

forms of atomic theory.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Susskind–Glogower Phase Operator 63

Hence, the properties of the phase operator can be calculated using

the properties of the annihilation, creation and photon number

operators.

Wefind fromEq. (5.7) that the product of the two exponents gives

eiψ̂e−iψ̂ = 1

(n̂+ 1)1/2
ââ†

1

(n̂+ 1)1/2

= (n̂+ 1)

(n̂+ 1)1/2 (n̂+ 1)1/2
= 1. (5.8)

However, the product

e−iψ̂eiψ̂ = â†
1

n̂+ 1
â �= 1, (5.9)

and it gives zero when it operates either to the left or to the right on

the vacuum state.

Evidently, eiψ̂ is not unitary and hence ψ̂ is not Hermitian.

5.3 Susskind–Glogower Phase Operator

Susskind and Glogower [22] argued that a consistent way out of

the difficulty of the exponent phase operator is to introduce ĉosψ

and ŝinψ operators that are combinations of the exponent phase

operator

ĉosψ = 1

2

[
eiψ̂ + e−iψ̂†

]
, (5.10)

ŝinψ = 1

2i

[
eiψ̂ − e−iψ̂†

]
, (5.11)

where, as before, eiψ̂ = (1/ (n̂+ 1)1/2
)
â.

It is obvious that ĉosψ and ŝinψ are Hermitian, despite the fact

that eiψ̂ is not unitary.

Proof. Matrix elements of a Hermitian operator Â should satisfy the
following relation 〈

i
∣∣ Â∣∣ j〉 = 〈 j ∣∣ Â∣∣ i〉∗ . (5.12)

We will check whether the operators ĉosψ and ŝinψ satisfy this

relation. First, we consider

eiψ̂ |n〉 = (n̂+ 1)−1/2 â |n〉 = (n̂+ 1)−1/2
√
n |n− 1〉 . (5.13)
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However, there is a square root of (n̂+ 1) in the denominator. In

order to have this operator in its basic form, the function (n̂+ 1)−1/2

has to be expanded into a power series with respect to n̂.
Let n̂ = x , then

(1+ x)−1/2 = 1− 1

2
x + 1

2

3

4
x2 − 1

2

3

4

5

6
x3 + · · · (5.14)

Hence

(n̂+ 1)−1/2 |n− 1〉 =
{
1− 1

2
n̂+ 1

2

3

4
n̂2 − · · ·

}
|n− 1〉

=
{
1− 1

2
(n− 1)

+ 1

2

3

4
(n− 1)2 − · · ·

}
|n− 1〉 , (5.15)

where we have used the relation

(n̂)k |n− 1〉 = (n− 1)k |n− 1〉 . (5.16)

Thus,

(n̂+ 1)−1/2 |n− 1〉 = [1+ (n− 1)]−1/2 |n− 1〉
= 1√

n
|n− 1〉 . (5.17)

Using this result in Eq. (5.13), we obtain

eiψ̂ |n〉 = |n− 1〉 . (5.18)

Similarly, we can show that

e−iψ̂† |n〉 = |n+ 1〉 . (5.19)

Using these relations, we find that the non-zero matrix elements of

the ĉosψ and ŝinψ operators are

〈n− 1| ĉosψ |n〉 = 〈n| ĉosψ |n− 1〉 = 1

2
, (5.20)

〈n− 1| ŝinψ |n〉 = − 〈n| ŝinψ |n− 1〉 = 1

2i
. (5.21)

From this we can derive that

〈i | ĉosψ | j〉 = 〈 j | ĉosψ |i〉∗ ,
〈i | ŝinψ | j〉 = 〈 j | ŝinψ |i〉∗ , (5.22)

as required.
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We therefore may conclude that ĉosψ and ŝinψ are Hermitian and

can represent the observable phase properties of the EM field.

However, ĉosψ and ŝinψ do not commute[
ĉosψ , ŝinψ

]
= 1

2i

{
â†

1

(n̂+ 1)
â − 1

}
, (5.23)

and therefore do not determine the same phase operator [23].

Proof. Calculate a commutator[
ĉosψ , ŝinψ

]
|n〉 =

[
1

2

(
eiψ̂ + e−iψ̂†

)
,
1

2i

(
eiψ̂ − e−iψ̂†

)]
|n〉

= 1

2i

{
e−iψ̂†

eiψ̂ − eiψ̂e−iψ̂†
}

|n〉. (5.24)

We have shown before that

eiψ̂ = 1

(n̂+ 1)1/2
â, (5.25)

e−iψ̂† = â†
1

(n̂+ 1)1/2
. (5.26)

Hence,

e−iψ̂†
eiψ̂ |n〉 = â† (n̂+ 1)−1 â|n〉, (5.27)

and

eiψ̂e−iψ̂† |n〉 = |n〉. (5.28)

Collecting the above results, we finally obtain[
ĉosψ , ŝinψ

]
|n〉 = 1

2i

{
â† (n̂+ 1)−1 â − 1

} |n〉, (5.29)

as required.

We can calculate the matrix elements of the commutator[
ĉosψ , ŝinψ

]
〈m|
[
ĉosψ , ŝinψ

]
|n〉 = 1

2i
〈m| â† (n̂+ 1)−1 â − 1 |n〉

= 1

2i

[
〈m| e−iψ̂†

eiψ̂ |n〉 − δmn

]
. (5.30)

Since

eiψ̂ |n〉 = |n− 1〉 = 0, for n = 0,

e−iψ̂† |n〉 = |n+ 1〉 , (5.31)
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we therefore obtain

〈m|
[
ĉosψ , ŝinψ

]
|n〉 = 0, n �= 0,

〈m|
[
ĉosψ , ŝinψ

]
|n〉 = − 1

2i
δm0, n = 0. (5.32)

Only one of the infinite number of the matrix elements of the

commutator is different from zero, the diagonal ground state matrix

element,m = n = 0.

Can we find states of the EM field which are simultaneous

eigenstates of the photon number and the photon phase? To answer

this question, we will calculate two commutators
[
n̂, ĉosψ

]
and[

n̂, ŝinψ
]
, using the photon number representation

[
n̂, ĉosψ

]
|n〉 = 1

2

{[
n̂, eiψ̂

]
+
[
n̂, e−iψ̂†

]}
|n〉 , (5.33)[

n̂, ŝinψ
]
|n〉 = 1

2i

{[
n̂, eiψ̂

]
−
[
n̂, e−iψ̂†

]}
|n〉 . (5.34)

First, we calculate the commutator[
n̂, eψ̂

]
|n〉 = n̂ |n− 1〉 − neiψ̂ |n〉

= (n− 1) |n− 1〉 − n |n− 1〉 = − |n− 1〉
= −eiψ̂ |n〉 . (5.35)

Similarly, we find [
n̂, e−ψ̂†

]
|n〉 = e−iψ̂† |n〉 (5.36)

and finally, we combine the results given in Eqs. (5.33) and (5.34),

and obtain [
n̂, ĉosψ

]
= −i ŝinψ , (5.37)[

n̂, ŝinψ
]

= i ĉosψ . (5.38)

The above commutation relations show that the number and phase

operators do not commute, and therefore, it is not possible to set

up states of the radiation field which are simultaneous eigenstates

of the two operators. The amplitude of an EM field, associated with

n̂, and the phase, associated with ĉosψ or ŝinψ , cannot be both

precisely specified.
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The commutation relation (5.37) immediately leads to the

uncertainty relation

(
n) (
 cosψ) ≥ 1

2
|〈ŝinψ〉|, (5.39)

where

(
n)2 = 〈n̂2〉 − 〈n̂〉2 (5.40)

and

(
 cosψ)2 = 〈(ĉosψ)2〉 − 〈ĉosψ〉2. (5.41)

In a Fock state


n = 0,


 cosψ = 1√
2
. (5.42)

The above result shows that the EM field which corresponds to the

state |n〉 has a definite amplitude but the phase has an arbitrary
value.

We have introduced two operators, ĉosψ and ŝinψ , to represent

the phase properties of the radiation field. In classical physics, the

phase is a single quantity and it seems unnecessary to represent

it by two different operators in quantum optics. Since the phase

operators do not commute, it is impossible to form states which are

simultaneously eigenstates of ĉosψ and ŝinψ .

5.4 Unitary Exponential Phase Operator

To preserve the concept of exponential phase operators and to

remove the non-unitary properties, we can define the exponential

phase operator

V̂ = eiψ̂ =
∑
n

|n〉 〈n| eiψ̂ =
∑
n

|n〉 〈n+ 1| , (5.43)

with

V̂ † = e−iψ̂† =
∑
n

e−iψ̂† |n〉 〈n| =
∑
n

|n+ 1〉 〈n| . (5.44)

Hence,

V̂ V̂ † =
∑
n,m

|n〉 〈n+ 1| m+ 1〉 〈n| =
∑
n

|n〉 〈n| = 1, (5.45)
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and

V̂ †V̂ =
∑
n,m

|n+ 1〉 〈n| m〉 〈m+ 1| =
∑
n

|n+ 1〉 〈n+ 1|

= 1− |0〉 〈0| . (5.46)

This is still a non-unitary operator.

However, we can remove the non-unitarity by extending the

lower limit of the sum over n to−∞, and obtain

V̂ V̂ † =
∞∑

n,m=−∞
|n〉〈n+ 1|m+ 1〉〈n| = 1, (5.47)

and

V̂ †V̂ =
∞∑

n=−∞
|n+ 1〉〈n+ 1| = 1. (5.48)

Clearly, in this case the operator V̂ is an unitary operator and then ψ̂

is Hermitian.

If ψ̂ is a Hermitian operator then there exists an eigenstate such

that (postulate)

V̂ |�〉 = eiψ |�〉 . (5.49)

We can expand the state |�〉 in terms of the number states |n〉 as
|�〉 =

∑
n

an |n〉 , (5.50)

which gives

V̂ |�〉 =
∑
n

anV̂ |n〉 =
∑
n,m

an|m〉〈m+ 1|n〉 =
∑
n

an+1 |n〉 . (5.51)

The right-hand side of Eq. (5.49) is equal to

eiψ |�〉 =
∑
n

aneiψ |n〉 . (5.52)

Hence, comparing Eqs. (5.51) and (5.52), we obtain a recurrence

relation for the coefficients an:

an+1 = aneiψ . (5.53)

By iteration, we find that

an = a0einψ . (5.54)
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Therefore, the state |�〉 can be written as
|�〉 = a0

∑
n

einψ |n〉 . (5.55)

From the normalization condition∫
d�|�〉〈�| = 1, (5.56)

we find that a0 = 1/
√
2π , and then the state |�〉 takes the form

|�〉 = 1√
2π

∞∑
n=−∞

einψ |n〉 . (5.57)

Example 5.1 (Phase properties of the field in a coherent state.)
We wish to calculate the uncertainty relation 
n
 cosψ for the field
in a coherent state |α〉.

First, we calculate the expectation value of the phase operator
ĉosψ in the coherent state |α〉:

〈α| ĉosψ |α〉 = 1

2
(α + α∗) e−|α|2∑

n

|α|2n
n!

1√
n+ 1

= |α| cos θe−|α|2∑
n

|α|2n
n!

1√
n+ 1

, (5.58)

where α = |α| eiθ .
Similarly, we find

〈α| (ĉosψ)2 |α〉 = 1

2
− 1

4
e−|α|2 + |α|2

(
cos2 θ − 1

2

)
e−|α|2

×
∑
n

|α|2n
n!

√
(n+ 1) (n+ 2)

. (5.59)

Unfortunately, it is not possible to evaluate the summations in the
above equations analytically. There are, however, some simplifications
in the limit of |α| � 1, where

∑
n

|α|2n
n!

√
n+ 1

� 1

|α|e
|α|2
(
1− 1

8 |α|2 + · · ·
)

(5.60)

and∑
n

|α|2n
n!

√
(n+ 1) (n+ 2)

= 1

|α|2 e
|α|2
(
1− 1

2 |α|2 + · · ·
)
. (5.61)
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Figure 5.1 The dependence of the fluctuations of the phase 
 cosψ (solid

line), the average number of photons (dashed line), and the fluctuations of

the photon number (dashed-dotted line) on the amplitude of the coherent

state.

In this case, we find that


 cosψ = 1

2 |α| sin θ , (5.62)

which can be written as


n
 cosψ = 1

2
sin θ , |α| � 1, (5.63)

where
n = |α| are the fluctuations of the number of photons.
This result shows that in the limit of |α| � 1, the coherent state

|α〉 is the minimum uncertainty state for the photon number and the
phase (ĉosψ) operators.

In Fig. 5.1, we plot 
 cosψ = |α|−1, the average number of

photons 〈n〉 = |α|2, and the fluctuations
n= |α|.
Although the fluctuations 
n increase linearly with |α|, the

fractional uncertainty
n/〈n〉= |α|−1, which determines the fluctu-
ations of the amplitude, decreases with increasing |α|. In addition,
the fluctuations of the phase 
 cosψ vary like |α|−1. Therefore, for
|α| � 1 the field is well defined in both the amplitude and phase.
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5.5 Pegg–Barnett Phase Operator

The failure of ĉosψ and ŝinψ to commute, and the absence of a

ready, intuitive interpretation of their eigenvalues, have led Pegg and

Barnett to construct a Hermitian phase operator and a phase state

|ψ〉 on a finite-dimensional Hilbert space [24]. The phase state |ψ〉,
defined by the expansion in terms of the Fock states as

|ψ〉 = 1√
s + 1

s∑
n=0

einψ |n〉 , (5.64)

behaves in some ways as a state of definite phase ψ when s is
large, that the state |ψ〉 can be the common eigenstate of ĉosψ and

ŝinψ in a certain limiting sense. In other words, the phase state

is represented by the (s + 1)-dimensional Hilbert space expanded

on the complete basis of the photon number states |n〉, with the
expansion coefficients weighted by the factor exp(inψ).

However, the states |ψ〉 are not orthonormal unless we assume
that the phase is a discrete quantity

ψ → ψm = ψ0 + 2πm
s + 1

, m = 0, 1, 2, . . . , s. (5.65)

Proof. Consider a scalar product of two phase states

〈ψm′ | ψm〉 = 1

s + 1

s∑
n, p

ei(nψm−pψm′ )〈p|n〉 = 1

s + 1

s∑
n

ein(ψm−ψm′ ).

(5.66)

If we choose

ψm = ψ0 + 2πm
s + 1

, (5.67)

we obtain

1

s + 1

s∑
n=0

e
2πn
s+1 (m−m′) = 1

s + 1

1− e2π i(m−m′)[
1− e2π i(m−m′)/(s+1)] = δm,m′ , (5.68)

as required.

It is natural to try and introduce a Hermitian operator in terms of

projectors of the type |ψ〉〈ψ |. Hence, we can say that the state |ψm〉
is the eigenstate of the Hermitian (Pegg–Barnett) phase operator

ψ̂ =
s∑

m=0
ψm|ψm〉〈ψm|, (5.69)
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with the corresponding eigenvalues ψm, that is,

ψ̂ |ψm〉 = ψm |ψm〉 . (5.70)

The eigenvalues ψm are restricted to lie within a phase window

between ψ0 and ψ0 + 2πs/(s + 1).

In order to overcome the limit problem of finite s , Pegg and
Barnett have proposed to work with finite s and letting s → ∞ after

expectation values have been calculated.

Example 5.2 (Difficulties of the Hermitian phase operator) Let
us consider an example that illustrates a difficulty with the concept of
the Hermitian phase operator.

If the state |ψ〉 is the eigenstate of ψ̂ then |ψ〉 should also be the
eigenstate of ĉosψ and ŝinψ . We calculate ĉosψ |ψ〉, and find

ĉosψ |ψ〉 = cosψ |ψ〉
+ 1

2
lim
s→∞

1√
s + 1

{
eisψ |s + 1〉

− ei(s+1)ψ |s〉 − e−iψ |0〉} . (5.71)

The state |ψ〉 thus fails to be a strict eigenstate of ĉosψ because of the
contribution of the second term. However, themagnitude of the second
term tends to zero in the limit of s → ∞.

Hence,

ĉosψ |ψ〉 = cosψ |ψ〉 for s → ∞. (5.72)

In a similar way, we can show that

〈ψ | ŝinψ |ψ〉 = sinψ,

〈ψ | (ĉosψ)2 |ψ〉 = cos2 ψ,

〈ψ | (ŝinψ)2 |ψ〉 = sin2 ψ. (5.73)

Therefore, the uncertainties tend to

(
 cosψ) = (
 sinψ) = 0 for s → ∞. (5.74)

These results show that in the limit of s → ∞, the phase state |ψ〉
behaves as a common eigenstate of the operators ĉosψ and ŝinψ .
Thus, ψ is the observable phase angle.

It is interesting to note that the number state |n〉 can be expanded in
terms of the phase state basis |ψm〉 as

|n〉 =
s∑

m=0
|ψm〉〈ψm|n〉 = 1√

s + 1

s∑
n=0

e−inψn |ψn〉 . (5.75)
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It is seen from Eqs. (5.64) and (5.75) that a system in a number state

is equally likely to be found in any state |ψm〉, and a system in a phase

state is equally likely to be found in any number state |n〉.
However, there is a problem when one calculates the number of

photons present in the field being in a phase state |ψ〉. We explore
the problem in the following example.

Example 5.3 (Expectation value in the Hermitian phase state)
Let us calculate the expectation values 〈ψ | n̂ |ψ〉 and 〈ψ | n̂2 |ψ〉, for
which we find

〈ψ | n̂ |ψ〉 = lim
s→∞

1

2
s → ∞,

〈ψ | n̂2 |ψ〉 = lim
s→∞

s (2s + 1)

6
→ ∞. (5.76)

The photon number expectation values are thus infinite and so is the
uncertainty
n.

However, the ratio of the uncertainty 
n to the expectation
number of photons is finite


n
〈n̂〉 =

√
〈n̂2〉 − 〈n̂〉2

〈n̂〉 = lim
s→∞

1√
3

√
s(s + 2)

s
= 1√

3
. (5.77)

Thus, we may conclude that |ψ〉 is not a physical state, as it is rather
impossible to excite a field to state |ψ〉 in a practical experiment. This
property reflects one of the difficulties encountered in the search for

a physical phase operator.

Despite the difficulties, the Hermitian phase operator or quan-

tum phase became the subject of a great research activity in 1990s

and in early 2000s. Intensive studies were done on aspects such as

the phase probability [25] and quantum phase properties of various

linear and nonlinear processes [26].

Exercises

5.1 Show that for a coherent state α = |α| exp(iθ), with |α| � 1,

the mean values

〈α|ĉosψ |α〉 ≈ cos θ and 〈α|ŝinψ |α〉 ≈ sin θ .

This shows that in the limit of |α| � 1, the coherent state

behaves as a classical wave with phase θ .
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5.2 Suppose, there exists a Hermitian operator Â canonically

conjugated with photon number operator n̂ such that

[ Â, n̂] = i.

(a) Show that the exponential operator exp(i Â) is unitary.
(b) Use the Baker–Hausdorff formula to show that

ei Â n̂e−i Â = n̂− 1.

5.3 Calculate the expectation value of the operator Â† Â in the

coherent state |α〉, where Â = (n̂+ 1)−1/2 â, and n̂ = â†â.
5.4 Calculate ĉosψ |ψ〉, where ĉosψ is given in Eq. (5.10), and |ψ〉

is the photon phase state

|ψ〉 = lim
s→∞(s + 1)−1/2

s∑
n=0

exp(inψ) |n〉 .

5.5 Calculate the expectation value of the electric field operator

�̂E (�r , t) of a single-mode field in the photon phase state |ψ〉.
What would you conclude about the phase of the field?

5.6 Find the average value and variance of the Hermitian Pegg–

Barnett phase operator

ψ̂ = lim
s→∞

s∑
m=0

ψm|ψm〉〈ψm| (5.78)

in the photon number state |n〉.
5.7 For an arbitrary state |�〉 calculate the probability distribution

|〈ψ |�〉|2 of the Pegg–Barnett phase state |ψ〉 as a function of
the coefficients cn of the decomposition of |�〉 in the basis of
photon number states |n〉.

5.8 Find the probability distribution P (ψ) = |〈ψ |α〉|2 of the Pegg–
Barnett phase state |ψ〉 in a coherent state α.

5.9 Using the result of Question 5.8, show that:

(a) The expectation value of the phase operator is

〈ψ̂〉 = lim
s→∞〈α|ψ̂ |α〉 = θ ,

where θ is the phase angle of the coherent state α =
|α| exp(iθ).
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(b) Then calculate the fluctuations of the phase operator to
show that

〈(
ψ̂)2〉 = 〈ψ̂2〉 − 〈ψ̂〉2 = 1

3
π2 − 4|α|.

5.10 Show that in the limit of s → ∞, the photon phase state

|ψ〉 = (s + 1)−1/2
s∑

n=0
exp(inψ) |n〉

is an eigenstate of V̂ †.
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Chapter 6

Squeezed States of Light

6.1 Introduction

In Chapter 4 we defined different representations of the elec-

tromagnetic (EM) field: the Fock, thermal and coherent state

representations, and discussed in details properties of the EM field

in these representations. We have seen that in the coherent state

the fluctuations in the two quadratures of the EM field amplitudes

are equal and minimize the uncertainty product given by the

Heisenberg’s uncertainty relation. In other words, the quantum

fluctuations of the field in a coherent state are equal to the zero-

point fluctuations and are randomly distributed in phase. These

zero-point fluctuations represent the standard quantum limit to the

reduction of noise in a signal. Even an ideal laser operating in a pure

coherent state would still possess quantum noise due to zero-point

fluctuations.

In this chapter, we consider special states of the EM field

which have less fluctuations in one quadrature component than a

coherent state at the expense of increased fluctuations in the other

quadrature component. Such states are called squeezed states. The
basic ideas underlying squeezed states of light involve quantum

noise (or fluctuations) in the so-called quadrature components of

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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the electric field and the Heisenberg uncertainty principle. These

concepts and the properties of squeezed states will be discussed in

this chapter.

6.2 Definition of Squeezed States of Light

We introduce the concept of squeezed states of light using the single-

mode representation of the EM field. This treatments will be later

generalized to include multi-mode fields. Consider a single-mode

electric field represented by the operator

Ê (�r , t) = iλ
[
âe−i(ωt−�k·�r) − â†ei(ωt−�k·�r)

]
, (6.1)

where λ is a constant. In what follows the spatial dependence of the

field will usually be suppressed for convenience.

We introduce two Hermitian operators

Ê1 = 1

2

(
â + â†

)
, Ê2 = 1

2i

(
â − â†

)
, (6.2)

satisfying the commutation relation[
Ê1, Ê2

] = i
2
. (6.3)

These two Hermitian operators are completely equivalent to the

in-phase and out-off phase quadrature components, defined in

Eq. (4.31). In terms of Ê1 and Ê2, the electric field operator (6.1)
takes the form

Ê (t) = 2λ
[
Ê1 sin

(
ωt − �k · �r

)
− Ê2 cos

(
ωt − �k · �r

)]
(6.4)

in which we can identify Ê1 and Ê2 as the amplitudes of the two
quadrature components of the field. In general, the electric field

operator can be written as

Ê (t) = 2λ
[
Êφ sin

(
ωt − �k · �r + φ

)
− Êφ+π/2 cos

(
ωt − �k · �r + φ

)]
, (6.5)

where Êφ and Êφ+π/2 are two quadrature components shifted in

phase by π/2 and specified by the phase angle φ. In the following,

we will consider the special case of φ = 0, in which E0 = E1 and
Eπ/2 = E2. The results can be generalized to an arbitrary φ.
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The non-commuting quadrature components satisfy the Heisen-

berg uncertainty relation√〈(

Ê1
)2〉〈(


Ê2
)2〉 ≥ 1

4
, (6.6)

where 〈(
Ê i)2〉 is the variance of the i th quadrature component
of the field being in a state |�〉 and the factor 1/4 determines

the vacuum level of the fluctuations. The Heisenberg uncertainty

relation predicts that it is never possible to be absolutely precise in

measuring one of two non-commuting observables.

It follows from the Heisenberg uncertainty relation (6.6) that

there is no restriction on the magnitude of each of the variances

〈(
Ê1)2〉 and 〈(
Ê2)2〉 as long as the inequality in (6.6) is satisfied.
For example, we have shown in Chapter 4 that the variances of the

field in a thermal or in a Fock state (random phase fluctuating field)

are 〈(

Ê1
)2〉

>
1

4
and

〈(

Ê2
)2〉

>
1

4
. (6.7)

Thus, for the field in a thermal or in a Fock state the variances in both

quadrature components are larger than that of the vacuum level.

For a field in the vacuum or coherent state, the variances are〈(

Ê1
)2〉 =

〈(

Ê2
)2〉 = 1

4
. (6.8)

In this case, both variances are equal to the vacuum level of the

fluctuations. Hence, the vacuum or coherent state of the field is a

minimum uncertainty state with the fluctuations distributed sym-

metrically between the two quadratures, as illustrated in Fig. 6.1.

Now, wewill define squeezed states of the EM field or a squeezed

field, or simply squeezing. Namely, a squeezed field is characterized

by fluctuations reduced below the vacuum level, that is, either〈(

Ê1
)2〉

<
1

4
or

〈(

Ê2
)2〉

<
1

4
, (6.9)

such that the Heisenberg uncertainty relation is not violated.

In other words, squeezing is defined by the requirement that

the variance of one of two non-commuting Hermitian operators

must be less than half of the absolute value of their commutator.

The variance of the other Hermitian operator is at the same
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E1

E2

Figure 6.1 Graphical representation of the variances of a vacuum field and

a squeezed vacuum field. The fluctuations of the vacuum field are isotropic

which can be represented by a circle of radii 1/4. The squeezed vacuum

field is characterized by reduced fluctuations in one of the quadrature

components, which is represented by an ellipse with the length of the

shorter axis reduced below1/4 and the length of the longer axis respectively

larger than 1/4.

time correspondingly larger than half of the absolute value of

their commutator in order to preserve the Heisenberg uncertainty

relation. This means that the reduction in the fluctuations of one

of the quadrature components occurs at the expense of increased

fluctuations in the other component. In the E1, E2 coordinates,
squeezing is represented by an ellipse with the length of the shorter

axis reduced below 1/4, as illustrated in Fig. 6.1.

The variances of the quadrature components can be expressed as〈(

Ê i
)2〉 =

〈
:
(

Ê i
)2
:
〉

+ 1

4
, i = 1, 2, (6.10)

where the pair of colons (::) denote the normal ordering of the

operators in which all the creation operators are placed to to the left

of all the annihilation operators.

Proof.〈(

Ê1
)2〉 = 1

4

〈(
â + â†

) (
â + â†

)〉− 1

4

〈(
â + â†

)〉2
= 1

4

〈
ââ + ââ† + â†â + â†â†

〉− 1

4

〈
â + â†

〉2
= 1

4

〈
2â†â + ââ + â†â†

〉− 1

4

〈
â + â†

〉2 + 1

4

=
〈
:
(

Ê1
)2
:
〉

+ 1

4
, (6.11)

as required.
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Similarly, we can show that〈(

Ê2
)2〉 =

〈
:
(

Ê2
)2
:
〉

+ 1

4
. (6.12)

Since the left-hand side of Eq. (6.10) has to be less than 1/4 for

a squeezed field, another definition of a squeezed field is that the

normally ordered variance of the quadrature component must be

negative 〈
:
(

Ê i
)2
:
〉

< 0. (6.13)

Consider the normally ordered variance 〈: (
Ê1)2 :〉, which can be
written as〈
:
(

Ê1
)2
:
〉

= 1

4

〈
2â†â + ââ + â†â†

〉− 1

4

〈
â + â†

〉2
= 1

2

〈

â†
â

〉+ 1

4

(〈(

â†
)2〉+ 〈(
â)2〉)

= 1

2

〈

â†
â

〉+ 1

2

[|〈ââ〉| cosψ − |〈â〉|2 cos 2θ] ,
(6.14)

where
 Â = Â − 〈 Â〉, and
〈ââ〉 = |〈ââ〉| eiψ , 〈â〉 = |〈â〉| eiθ . (6.15)

It follows from Eq. (6.14) that the condition for squeezing is that the

correlation functions |〈ââ〉| and/or |〈â〉| are non-zero. The variance
might be negative if 0> cosψ > − 1 and 1> cos(2θ)> 0, that

is, when the second term in Eq. (6.14) is negative. The minimum

value of 〈: (
Ê1)2 :〉, corresponding to maximum squeezing can be

obtained for ψ = π and θ = 0. The correlation function 〈ââ〉 can be
produced by nonlinear two-photon processes whereas a non-zero

amplitude 〈â〉 can be produced by a coherent field. Thus, squeezing
can be generated by two different processes, a nonlinear two-photon

process or a coherent field.

Consider two simple examples illustrating the level of fluctua-

tions in a single-mode EM field being in a photon number state and

in a coherent state.

Example 6.1 (Field in a photon number state) For the field in
the photon number state |n〉, the correlation functions appearing in
Eq. (6.14) are 〈


â†
â
〉 = n, 〈ââ〉 = 0, 〈â〉 = 0, (6.16)
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and then both the normally ordered variances are equal and positive〈
:
(

Ê1
)2
:
〉

=
〈
:
(

Ê2
)2
:
〉

= 1

2
n ≥ 0. (6.17)

Hence, there is no squeezing in the field being in a Fock state. The
fluctuations of the field amplitudes are isotropic and increase with the
number of photons n. This property arises from the fact that a Fock
state has complete uncertainty in phase.

Example 6.2 (Field in a coherent state) As a second example,
consider the field in the coherent state |α〉. In this case, the correlation
functions are〈


â†
â
〉 = 0, |〈ââ〉| = |α|2 , |〈â〉|2 = |α|2 . (6.18)

Hence, the normally ordered variances are〈
:
(

Ê1
)2
:
〉

=
〈
:
(

Ê2
)2
:
〉

= 0. (6.19)

Thus, for the field in the coherent state |α〉 = D̂ (α) |0〉, the fluctuations
of the field amplitudes are isotropic and equal to the vacuum level of
fluctuations. Note that the fluctuations are equal to the vacuum level
independent of the amplitude α of the coherent field.

6.3 Squeezed Coherent States

In connection with two-photon processes responsible for reduction

of the field fluctuations, we may define squeezed states of the EM

field in an alternative but equivalent way by introducing an unitary

two-photon operator, called the squeezed operator

Ŝ (s) = exp

{
1

2
s∗â2 − 1

2
sâ†2
}
, (6.20)

where s = r exp(iθ) and r is a real number. The parameter s
determines the size of squeezing and depends on the type of the two-

photon process.

The combined action of the squeezing operator Ŝ (s) and the
displacement operator D̂ (α) on the vacuum state |0〉 generates
a minimum uncertainty squeezed states, often called squeezed
coherent states. There are, however, two equivalent but different
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definitions of the squeezed state. Yuen [27] defined the squeezed

coherent states as

|α, s〉 = Ŝ (s) D̂ (α) |0〉 , (6.21)

whereas Caves [28] defined the squeezed states as

|α, s〉 = D̂ (α) Ŝ (s) |0〉 . (6.22)

Since the operators D̂ (α) and Ŝ (s) do not commute, the definitions
(6.21) and (6.22) are not equal. However, the definitions are related

as

Ŝ (s) D̂ (α) = Ŝ (s) D̂ (α) Ŝ† (s) Ŝ (s) = D̂ (β) Ŝ (s) , (6.23)

where

β = α cosh r + α∗eiθ sinh r. (6.24)

The Yuen and Caves definitions for coherent squeezed states can be

used interchangeably, one or the othermy be particularly convenient

for a specific problem. The two definitions lead to the same results

for squeezing, but produce different results for antibunching.

For α = 0, the squeezed coherent states (6.21) and (6.22) reduce

to the squeezed vacuum state

|0, s〉 = Ŝ (s) |0〉 , (6.25)

which has an interesting property, b̂ |0, s〉 = 0, that it is an eigenstate

with a zero eigenvalue of the annihilation operators b̂, which can be
obtained from the operators â and â† by the unitary transformation,
called the Bogoliubov transformation

b̂ = Ŝ(s)âŜ†(s) = â cosh r + â†eiθ sinh r,

b̂† = Ŝ(s)â† Ŝ†(s) = â† cosh r + âe−iθ sinh r. (6.26)

Proof. Applying the identity relation

eλ Â B̂e−λ Â = B̂ + λ

1!
[ Â, B̂]+ λ2

2!

[
Â, [ Â, B̂]

]+ · · · (6.27)

and introducing a notation Â = (s∗â2 − sâ†2)/2, we can write the
unitary transformation as

b̂ = Ŝ(s)âŜ†(s) = e Â âe− Â = â + [ Â, â]+ 1

2!

[
Â, [ Â, â]

]+ · · ·
(6.28)
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(a) (b)

Figure 6.2 Example of (a) squeezed vacuum state and (b) squeezed

coherent state with the variance of the quadrature component E1 reduced
(squeezed) below the vacuum level.

Using the well-known commutation relations[
â,
(
â†
)n] = n

(
â†
)n−1

,
[
ân, â†

] = nân−1, (6.29)

we get

[ Â, â] =
[
1

2
s∗â2 − 1

2
sâ†2, â

]
= sâ†, (6.30)

and

[ Â, â†] =
[
1

2
s∗â2 − 1

2
sâ†2, â†

]
= s∗â. (6.31)

Upon substitution of the results (6.30) and (6.31) into Eq. (6.28), we

obtain

b̂ = â
(
1+ r2

2!
+ r4

4!
+ · · ·

)
+ eiθ â†

(
r + r3

3!
+ r5

5!
+ · · ·

)
= â cosh r + â†eiθ sinh r, (6.32)

as required.

Examples of squeezed vacuum and squeezed coherent states are

shown in Fig. 6.2. The state is represented by a point located at the

origin (vacuum state) or in a distance α from the origin (coherent

state) surrounded by an ellipse representing the magnitude of the

fluctuations.

We can use the operators b̂ and b̂† to obtain the formula for the
squeezed vacuum state (6.25) in the photon number representation.

We expand the squeezed vacuum state in terms of the Fock states as

|0, s〉 =
∑
n

cn|n〉. (6.33)
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Since

b̂ |0, s〉 = “0” |0, s〉 (6.34)

and using Eq. (6.26), we obtain

cosh(r)
∑
n

cn
√
n|n− 1〉 + eiθ sinh(r)

∑
n

cn
√
n+ 1|n+ 1〉

=
∑
n

cn“0”|n〉. (6.35)

Applying the orthogonality property of the Fock states, we find that

the coefficients cn satisfy a recurrence relation

cosh(r)cn+1
√
n+ 1+ eiθ sinh(r)cn−1

√
n = “0”cn. (6.36)

We keep the zero term on the right-hand side of Eq. (6.36)

to show that the recurrence relation for the coefficients cn can
be transformed to a recurrence relation identical to the familiar

recurrence relation for the Hermite polynomials.

Substituting μ = cosh(r), ν = exp(iθ) sinh(r) and

cn = 1√
2nn!

(
ν

μ

) 1
2
n

an, (6.37)

we obtain

μ
√
n+ 1cn+1 =

√
μν

2

1√
2nn!

(
ν

μ

) 1
2
n

an+1,

ν
√
ncn−1 = 2n

√
μν

2

1√
2nn!

(
ν

μ

) 1
2
n

an−1. (6.38)

Hence, the recurrence relation (6.36) takes a simple form

2nan−1 + an+1 = 2zan, (6.39)

where z = “0”/
√
2μν.

The above recurrence relation is identical to that for the Hermite

polynomials Hn(z). Hence, an ≡ Hn(0), and then

cn = a0√
2nn!

(
ν

μ

) 1
2
n

Hn(0), (6.40)

where a0 is the normalization constant.
Thus, the squeezed vacuum state can be written as

|0, s〉 =
∑
n

a0√
2nn!

(
ν

μ

) 1
2
n

Hn(0)|n〉. (6.41)
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From the normalization of |0, s〉 and using the property of the

Hermite polynomials∑
n

1

n!

(
t
2

)n
H 2
n (z) = (1− t2

)− 1
2 e

2z2t
1−t2 , (6.42)

we find that

1 = |a0|2
∑
n

1

2nn!

(
ν

μ

)n
H 2
n (0) = |a0|2

(
1− ν2

μ2

)− 1
2

= μ|a0|2.

(6.43)

Hence, a0 = 1/
√

μ, and the squeezed vacuum state takes the form

|0, s〉 =
∑
n

1√
μ

1√
2nn!

(
ν

μ

) 1
2
n

Hn(0)|n〉. (6.44)

However,

H2n(0) = (−1)n (2n)!
n!

and H2n+1(0) = 0, (6.45)

and then we obtain

|0, s〉 =
∑
n

1√
μ

1√
22n(2n)!

(
ν

μ

)n
(−1)n (2n)!

n!
|2n〉

=
∑
n

(−eiθ tanh r)n√
cosh r

(2n!)
1
2

2nn!
|2n〉. (6.46)

It follows from Eq. (6.46) that the squeezed vacuum state is a

superposition of only even Fock states. This clearly shows the two-
photon nature of the squeezed states.

Having the photon number representation of the squeezed

vacuum state, we can find the coherent state representation of |0, s〉.
Inserting the completeness relation (4.87) into Eq. (6.44), we

obtain

|0, s〉 = 1

π

∑
n

1√
μ

1√
2nn!

(
ν

μ

) 1
2
n

Hn(0)
∫
d2α〈α|n〉|α〉

= 1

π
√

μ

∫
d2α
∑
n

α∗n

n!

(
ν

2μ

) 1
2
n

e− 1
2
|α|2Hn(0)|α〉

= 1

π
√

μ

∫
d2α
∑
n

1

n!

(
να∗2

2μ

) 1
2
n

e− 1
2
|α|2Hn(0)|α〉. (6.47)
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Since ∑
n

Hn(0)
tn

n!
= e−t2 , (6.48)

we finally obtain

|0, s〉 = 1

π
√

μ

∫
d2α exp

[
−1
2

|α|2 − να∗2

2μ

]
|α〉. (6.49)

The dependence of the state on α∗2 again confirms the two-photon
nature of the squeezed vacuum states.

Using one of the definitions of the squeezed coherent states,

Eq. (6.21) or Eq. (6.22), we find that expectation values of the field

operators in the squeezed coherent state are given by

〈â〉 = αs , 〈â†〉 = α∗
s ,

〈â†â〉 = |αs |2 + sinh2(r),

〈â2〉 = α2s − eiθ sinh(r) cosh(r),

〈â†2〉 = α∗2
s − e−iθ sinh(r) cosh(r), (6.50)

where αs = α cosh(r)− α∗eiθ sinh(r).
Then the normally ordered variance (6.14) takes the form〈

:
(

Ê1
)2
:
〉

= 1

2
sinh2(r)− 1

2
cos(θ) sinh(r) cosh(r). (6.51)

Note that the variance (6.51) is independent ofα despite the fact that

the correlation functions (6.50) depend explicitly on α.

Simple manipulations with the sinh and cosh functions lead to〈
:
(

Ê1
)2
:
〉

= 1

2
sinh2(r)− 1

2
cos(θ) sinh(r) cosh(r)

= 1

2

{(
er − e−r

2

)2
− cos(θ)

er − e−r

2

er + e−r

2

}

= 1

8

{
e2r + e−2r − 2− (e2r − e−2r) cos(θ)}

= 1

8

{
e2r [1− cos(θ)]+ e−2r [1+ cos(θ)]− 2

}
= 1

4

{
e2r sin2

(
1

2
θ

)
+ e−2r cos2

(
1

2
θ

)
− 1

}
.

(6.52)
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Hence, for θ = 0, we find〈
:
(

Ê1
)2
:
〉

= 1

4

(
e−2r − 1

)
< 0, (6.53)

which shows that the fluctuations in the Ê1 component of the field
are less than for the coherent field, thus the field is squeezed.

Similarly, we can show that〈
:
(

Ê2
)2
:
〉

= 1

4

(
e2r − 1

)
, (6.54)

and then we can show that the squeezed coherent states satisfy the

minimumuncertainty product. This fact justifies the use of the name

coherent squeezed states.
Since the mean photon number in the squeezed vacuum state

〈n〉 = 〈â†â〉 = sinh2 r , the photon number probability distribution
Pn for the squeezed vacuum state (6.46) is given by

P2n = 1

cosh r
(2n)!
(n!)22n

(tanh r)2n

= 1√
1+ 〈n〉

(2n)!
(n!)22n

( 〈n〉
1+ 〈n〉

)n
,

P2n+1 = 0. (6.55)

All of the probabilities corresponding to odd number of photons are

zero.

Note that the probability distribution for even terms is the same

as that for a thermal field except for a factor (2n)!/(n!)22n. This
factor may give observable differences between the thermal and

squeezed vacuum field distributions.

Moreover, non-zero values for even terms clearly show the

two-photon nature of the squeezed vacuum field. Note that the

probabilities sum to unity, as required, since the n-dependent factors
in Eq. (6.55) are the terms of the binomial expansion of (1 −
tanh2 r)−1/2 = cosh r .

In Fig. 6.3, we plot the photon number distribution (6.55) and

compare it with the photon number distribution of a thermal field.

It is seen from Fig. 6.3 that the photon number distribution of

the squeezed vacuum state exhibits unusual oscillations and its

amplitude decays with n. The distribution peaks sharply at n =
0 and has a very long tail, similar to a thermal distribution. The
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Figure 6.3 The photon number distribution of the squeezed vacuum state

(plotted as bars) for 〈n〉 = 4. The shaded area corresponds to the photon

number distribution of a thermal field with the same mean photon number.

probabilities corresponding to odd number of photons are zero. This

shows explicitly that squeezed photons are emitted in pairs and that

these pairs are emitted at random.

Squeezed states are produced in two-photon nonlinear optical

processes in which a classical laser field drives a nonlinear medium.

These processes are distinguished by the simultaneous or nearly

simultaneous production of a pair of photons in momentum

conserving phase-matched modes. In the degenerate processes,

where a single output mode plays the role of both signal and idler,

squeezed states may be produced with reduced fluctuations in one

of the output quadrature component. The situation is somewhat

more complicated for non-degenerate processes, where the signal

and idler are distinct. Here, the individual output modes display

isotropic distribution of the fluctuations, similar to those usually

associated with chaotic or thermal fields. However, the combined

two-mode state can exhibit reduced (squeezed) fluctuations in

modes formed by superposing the signal and idler modes.

We distinguish two different types of parametric down conver-

sion processes in both the degenerate and non-degenerate cases.

One is parametric amplifier, when the parametric process appears
above the threshold, that is, the output modes have non-zero

coherent amplitudes. The other type is a parametric oscillator, when
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the parametric process appear below the threshold, that is, the

output modes are in a thermal state.

Example 6.3 (Squeezing in a degenerate parametric amplifier)
Consider a degenerate parametric amplifier (DPA) that can produce
photon pairs in a single mode of frequency ω. The Hamiltonian of the
DPA process can be written as

Ĥ = �ωâ†â − 1

2
iχ�
(
â2e2iωt − â†2e−2iωt) , (6.56)

where the energy is provided by a pump field, which is treated
classically.a

With the Hamiltonian (6.56), and working in the interaction
picture, we find Heisenberg equations of motion for the field â and â†

operators
d
dt
˜̂a = 1

i�

[
˜̂a, Ĥ
] = χ ˜̂a†,

d
dt
˜̂a† = 1

i�

[
˜̂a†, Ĥ

] = χ ˜̂a, (6.57)

where
˜̂a = âeiωt and ˜̂a† = â†e−iωt (6.58)

are slowly varying dynamical operators which are free from the rapid
oscillations at the optical frequency ω.

The equations of motion (6.57) have simple solutions
˜̂a (t) = ˜̂a (0) cosh(χt)+ ˜̂a† (0) sinh(χt). (6.59)

Using the equations ofmotion (6.57), we canwrite equations ofmotion
for the Hermitian components Ê1 and Ê2 as

d
dt
Ê1 = χ Ê1, and

d
dt
Ê2 = −χ Ê2. (6.60)

Solutions of these equations are readily obtained, and are given by

Ê1 (t) = Ê1 (0) eχt ,

Ê2 (t) = Ê2 (0) e−χt . (6.61)

Then, the variances of the field amplitudes are〈(

Ê1(t)

)2〉 =
〈(


Ê1 (0)
)2〉

e2χt , (6.62)

aIn the Hamiltonian, we have omitted the �ω/2 term since it is a constant and it does

not affect the dynamics of the field mode.
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and 〈(

Ê2(t)

)2〉 =
〈(


Ê2 (0)
)2〉

e−2χt . (6.63)

It is evident from the above equations that the noise reduction depends
on the strength of the nonlinearity χ and the interaction time. Taking
that initially at t = 0 the field was in the vacuum (coherent) state,
〈(
Ê1(0))2〉 = 〈(
Ê2(0))2〉 = 1/4, the Ê2 quadrature component
becomes squeezed for t > 0. Note the product of the variances satisfies
the minimum uncertainty relation.

6.4 Multi-Mode Squeezed States

Our analysis so far has been concerned with a single-mode

squeezing, the reduction of fluctuations in single-mode fields.

Consider now a non-degenerate parametric oscillator (NDPO) that

can produce multi-mode squeezed fluctuations in the correlation

between the signal and idler modes. Mathematically, one can create

amulti-mode squeezed state using the unitarymulti-mode squeezed

operator

|ψk〉 = D (ωk) S (s (ωk)) |01, . . . , 0k, . . .〉 , (6.64)

with

S (s (ωk)) =
∑
k

exp

{
1

2
s∗(ωk) â (ωc+ωk) â (ωc−ωk)− H.c.

}
,

(6.65)

where â (ωc + ωk) and â (ωc − ωk) are the annihilation operators

of the signal (ωc + ωk) and idler (ωc − ωk) modes, respectively,

and ωc is the frequency of the pumping field. In practice, multi-

mode squeezed states can be generated in both NDPA and NDPO

processes.

In the multi-mode squeezed state, apart from the single-mode

correlation functions, there are non-zero correlation functions

between two different modes k and k′, (k �= k′)

〈âkâk′ 〉 = αkαk′ − eiθk sinh(rk) cosh(rk′),〈
â†k â

†
k′

〉
= α∗

kα
∗
k′ − e−iθk sinh(rk) cosh(rk′). (6.66)
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However, for k = k′ the two-photon correlations are

〈âkâk〉 = α2k ,
〈
â†k â

†
k

〉
= α∗2

k , (6.67)

and the average number of photons in the mode k is〈
â†k âk
〉

= |αk|2 + sinh2(rk). (6.68)

Let us assume that the field has no coherent amplitude (αk = 0).

Then the only non-zero correlations are〈
â†k âk
〉

= sinh2(rk) = Nk,

〈âkâk′ 〉 = −eiθk sinh(rk) cosh(rk′) = Mkk′ ,〈
â†k â

†
k′

〉
= −e−iθk sinh(rk) cosh(rk′) = M∗

kk′ . (6.69)

The parameters Nk and Mkk′ are not independent and satisfy an

inequality

|Mkk′ |2 ≤ Nk (Nk′ + 1) = Nk′ (Nk + 1) . (6.70)

Proof. Consider an operator Â = zkâk + z∗k′ â†k′ . Then from the

definition of the mean value〈
Â† Â
〉 = |zk|2

〈
â†k âk
〉

+ zkzk′ 〈âkâk′ 〉

+z∗kz∗k′

〈
â†k â

†
k′

〉
+ |zk′ |2

〈
âk′ â†k′

〉
≥ 0. (6.71)

The above equation can be written in a matrix form as

〈
Â† Â
〉 = (z∗kzk′

)⎛⎝
〈
â†k âk′

〉 〈
â†k â

†
k′

〉
〈âkâk′ 〉

〈
âk′ â†k

〉
⎞
⎠( zk

z∗k′

)

= (z∗kzk′
)( Nk M∗

kk′

Mkk′ Nk′ + 1

)(
zk
z∗k′

)
. (6.72)

Since
〈
Â† Â
〉 ≥ 0, the determinant of the 2×2 matrix is positive, so

that

|Mkk′ |2 ≤ Nk (Nk′ + 1) , (6.73)

as required.
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We might ask whether it is enough to create two-photon correla-

tions, 〈âkâk′ 〉 �= 0, in order to get squeezing between the modes.

To answer this question, consider a multi-mode field in a

squeezed vacuum state

Ê (+) =
∑
k

λkâk e−iωkt , (6.74)

where

λk = i

√
�ωk

2ε0V
�ek ei�k·�r . (6.75)

We can define two Hermitian field operators, equivalent to the

quadrature components

Ê1 = 1

2

(
Ê (+) + Ê (−)

)
, Ê2 = 1

2i

(
Ê (+) − Ê (−)

)
. (6.76)

Then, in the squeezed vacuum state, the average amplitudes are〈
Ê1
〉 = 0,

〈
Ê2
〉 = 0, (6.77)

and the normally ordered variance is〈
:
(

Ê1
)2
:
〉

= 1

4

{
2
〈
Ê (−) Ê (+)

〉+〈Ê (−) Ê (−)〉+〈Ê (+) Ê (+)〉} .
(6.78)

However, using the multi-mode description of the field, Eq. (6.74),

and the correlation functions (6.69), we find that〈
Ê (−) Ê (+)

〉 =
∑
k

|λk|2 Nk,
〈
Ê (+) Ê (+)

〉 =
∑
kk′

λkλk′Mkk′e−i(ωk+ωk′ )t . (6.79)

Assume that the modes are correlated with a central frequency ωc

such that ωk + ωk′ = 2ωc . Then〈
Ê (+) Ê (+)

〉 =
∑
k

λkλ2kc−kMk, 2kc−ke
−2iωct . (6.80)

For simplicity, we assume that λk = λ2kc−k, and Mk, 2kc−k = Mk. Then〈
:
(

Ê1
)2
:
〉

= 1

4

∑
k

|λk|2
{
2Nk + Mke−2iωct + M∗

ke
2iωct
}

= 1

4

∑
k

|λk|2
{
2Nk + |Mk| eiψ + |Mk| e−iψ}

= 1

2

∑
k

|λk|2 (Nk + |Mk| cosψ) , (6.81)
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where ψ = φs − 2ωct, and φs is the phase of the two-photon

correlations.

Thus, for ψ = π , the normally ordered variance reduces to〈
:
(

Ê1
)2
:
〉

= 1

2

∑
k

|λk|2 (Nk − |Mk|) . (6.82)

Hence, we get squeezing when the two-photon correlations over-

weight the number of photons in the field modes, |Mk| > Nk, and
there is no squeezing when |Mk| ≤ Nk.

From the matrix representation of the mean value 〈 Â† Â〉:

〈 Â† Â〉 = (z∗kzk′
)⎛⎝
〈
â†k âk′

〉 〈
â†k â

†
k′

〉
〈âkâk′ 〉

〈
âk′ â†k

〉
⎞
⎠( zk

z∗k′

)
, (6.83)

we see that with a classical field, for which 〈â†k âk′ 〉 = 〈a∗
kak′ 〉 = Nk

and 〈âk′ â†k 〉 = 〈ak′a∗
k 〉 = Nk, we obtain |Mk|2 ≤ N2k . However, for

a quantum field, for which 〈âkâ†k′ 〉 = Nk + 1, we obtain |Mk|2 ≤
Nk (Nk + 1). Therefore, squeezing which results from |Mk| > Nk is
a quantum effect.

In the literature, a field with |Mk| ≤ Nk is called classically
squeezed field, and a field with Nk < |Mk| ≤ √

Nk (Nk + 1) is called

a quantum squeezed field [29]. The field with |Mk| ≤ Nk is called
classically squeezed field since it exhibits anisotropic distribution of

the noise, but the noise is not reduced below the vacuum level. In this

sense, the classically squeezed field is always clearly distinguishable

from its quantummechanical counterpart.

In summary, we have seen that an anisotropic distribution of

field fluctuations (noise) can be achieved with both classical and

quantum fields, but reduction of the fluctuations below the vacuum

(quantum) limit, 〈: (
Ê1)2 :〉< 0 or 〈: (
Ê2)2 :〉< 0, can be achieved

onlywith a quantum field.

6.5 Squeezed States of Atomic Spin Variables

In the previous three sections, we dealt with squeezed states of

the field boson annihilation and creation operators. The idea of

squeezed states or squeezing can be extended to other quantum
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systems [30, 31]. Of particular interest is the description of

squeezing in the atomic spin variables Sx , Sy and Sz. Since
[Sx , Sy] = i Sz, (6.84)

the spin components satisfy the Heisenberg uncertainty relation√
〈(
Sx)2〉〈(
Sy)2〉 ≥ 1

2
|〈Sz〉|. (6.85)

This uncertainty can be thought of as due to the impossibility of

simultaneous measurement of all three components of the atomic

spin. Note that the uncertainty relation for the spin operators is

fundamentally different from that for the boson operators. This is

because for the spin operators the right-hand side of the uncertainty

relation, that is equal to |〈Sz〉|/2, depends on the state of the system.
This means that the quantum level of the fluctuations of the spin

components may vary during the evolution of the atomic system.

In analogy to squeezing in bosonic variables, squeezing in the

spin atomic variables is defined as [32, 33]

〈(
Si )2〉 <
1

2
|〈Sz〉|, i = x , y. (6.86)

Thus, squeezing in the atomic spin variables means reduction of

quantum fluctuations in one of the components of the atomic dipole

moment below the spin quantum limit |〈Sz〉|/2, as illustrated in

Fig. 6.4. In literature, squeezing in the context of the definition

(6.86) is called the natural definition of squeezing. This has been
introduced to distinguish between squeezing and spin squeezing,

which is discussed in the next section.

As a measure of degree of natural squeezing in the atomic spin

components, we can introduce a parameter

ξi = 〈(
Si )2〉
1
2
|〈Sz〉|

. (6.87)

When ξi < 1, we say that the i th component of the atomic spin is
squeezed, and ξi = 0 corresponds to maximum squeezing.

As an example illustrating the idea of squeezing in atomic

variables, consider the fluctuations of the spin operators of a single

two-level atom. The variance, for instance of the x component of the
atomic spin can be written as

〈(
Sx)2〉 = 1

4
〈(S+ + S−)2〉 − 1

4
〈S+ + S−〉2

= 1

4
− 1

4
〈S+ + S−〉2. (6.88)
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< Sz >

< Sx >

< Sy >

S

Figure 6.4 Graphical representation of squeezed fluctuations of an average

atomic spin S oriented in the z-direction. The ellipse represents the

fluctuations of the spin that are reduced (squeezed) in the x-direction with
the corresponding increase of the fluctuations in the y-direction.

Since 1
2
|〈Sz〉| ≤ 1

4
, squeezing is possible only if the atom has a non-

vanishing average dipole moment 〈S±〉. If the atom is in the ground

state |1〉 or in the excited state |2〉, the average dipole moment
〈S±〉 = 0, and there is no natural squeezing in the atomic spin

components. In order to obtain a non-zero atomic dipole moment,

〈S±〉 �= 0, we have to prepare the atom in a linear superposition of

its ground and excited states. For example, if the atom is prepared in

a linear superposition

|�〉 = 1

2
|1〉 +

√
3

2
|2〉, (6.89)

the atomic dipole moment in this state is different from zero with

〈S±〉 = √
3/4. Since in the state (6.89) the average inversion

〈�|Sz|�〉 = 1/4, the atomic spin component prepared in the state

(6.89) is squeezed to the degree of ξx = 1/2.

Note that the maximal squeezing that could be achieved in a two-

level atom does not correspond to maximal coherence between the

atomic levels. To illustrate this, let us consider an initial state

|�〉 = 1√
2
(|1〉 + |2〉) , (6.90)

for which there is maximal initial coherence between the atomic

levels, 〈S±〉= 1/2. Since in the state (6.90) the average inver-

sion 〈�|Sz|�〉= 0, squeezing of the dipole fluctuations requires
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〈(
Si )2〉< 0, which is not possible to achieve, as the variance

〈(
Si )2〉 is a positively defined quantity.

6.6 Spin Squeezing

In the preceding section, we have shown that a two-level atom can

exhibit natural squeezing in the spin variables only if is prepared in

a suitable linear superposition of its ground and excited states. The

situation is different when we consider a multi-atom system.

As an example, consider two identical two-level atoms. In this

case, the total dipolemoment is S± = S±
1 +S±

2 and the total inversion

is Sz = Sz1 + Sz2. Hence, the variance 〈(
Sx)2〉 takes the form

〈(
Sx)2〉 = 1

2

{
〈(S+

1 + S+
2

) (
S−
1 + S−

2

)〉 + 〈S+
1 S

+
2 〉 + 〈S−

1 S
−
2 〉

− 1

2

[〈S+
1 + S+

2 〉 + 〈S−
1 + S−

2 〉]2} . (6.91)

Equation (6.91) shows that the variance of the x-component of the
atomic spin can be reduced below the spin quantum limit not only

through the non-vanishing dipole moments 〈S±
i 〉, but also through

the two-photon correlations 〈S+
1 S

+
2 〉 and 〈S−

1 S
−
2 〉. This dependence

suggests that there are two different processes that can lead to

squeezing in multi-atom systems.

If the mean values of the spin components 〈Sx〉, 〈Sy〉 and 〈Sz〉 are
different from zero, we can rotate the coordinate frame such that the

mean value of one of the spin components, say 〈S�nk〉, will be different
from zero, while the mean values of the other components 〈S�ni 〉 and
〈S�n j 〉 will be equal to zero. Here, �ni , �n j and �nk are three mutually
orthogonal unit vectors oriented along the rotated coordinate axis.

We can calculate the variances 〈(
S�ni )
2〉 and 〈(
S�n j )

2〉 of the spin
components which are in the plane orthogonal to the mean spin

direction �nk. This is the main idea of spin squeezing introduced by
Kitagawa and Ueda [34]. A system with the variance reduced below

the standard quantum limit in one direction normal to themean spin

direction is called spin squeezed.
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ni

nj

nk

Sn

ni

nj

nk

Sn

Figure 6.5 Two identical spins Sn oriented in the same nk direction. The
circle indicates the level of fluctuations of the rotating spins.

We can introduce a parameter ξ�ni as a measure of degree of spin
squeezing in the �ni direction

ξ�ni = 〈(
S�ni )
2〉

(S/2)
, (6.92)

where S is the maximal spin of the system (S = 1 for two two-level

atoms).

A systemwith the variance reduced below the standard quantum

limit in one direction normal to the mean spin direction is

characterized by ξ�ni < 1, that is, spin squeezed in the direction �ni .
In Fig. 6.5, we show two identical spins oriented in one direction

and that can have non-zero fluctuations around the mean spin

direction �nk. Since 〈S�ni 〉 = 〈S�n j 〉 = 0, single two-level atoms cannot

be spin squeezed. However, an interaction between the atoms, which

may create the two-photon correlations 〈S±
1 S

±
2 〉, can lead to a spin

squeezing.

There is another definition of spin squeezing, introduced by

Winelanda et al. [35], called the spectroscopic spin squeezing, which
involves an error in a measurement of a rotating spin oriented in the

�nk direction
〈(
S�ni )

2〉
|〈S�nk〉|2

. (6.93)

aDavid Wineland was granted the Nobel prize in 2012 for his experimental work that

enabled measuring and manipulation of individual quantum systems.
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It is easy to derive that the minimum value of the ratio (6.93) is

1/(2S). Therefore, we can introduce a parameter

ξ R�ni = 2S
〈(
S�ni )

2〉
|〈S�nk〉|2

, (6.94)

which is a measure of degree of spin squeezing in the fluctuations

relative to |〈S�nk〉|2/(2S). The superscript R is used to signify the

relative fluctuations. Since the mean value |〈S�nk〉| ≤ S , it follows that
spin squeezing ξ R�ni < 1 implies ξ�ni < 1, but not the vice versa.

Spin squeezing has been proposed as a measure of entanglement

in multi-atom systems, which opens interesting applications in

quantum information and quantum computation [36]. It has also

been shown [37] that the parameter (6.92) is a bettermeasure of en-

tanglement than the spectroscopic spin squeezing parameter (6.94).

6.7 Squeezing Spectrum of the EM Field

In experiments the fluctuations are measured using the photon-

counting technique where the variance 〈(
Êφ)
2〉 is measured as

a function of the phase angle φ. The condition 〈(
Êφ)
2〉< 1/4,

or equivalently 〈: (
Êφ)
2 :〉< 0, refers to the squeezing of the

total field. For multi-mode fields it does not exhaust all possible

forms of squeezing. Therefore, another technique has been proposed

of filtering the frequencies before detection and measure the

fluctuations at the filtered frequencies. This form of squeezing is

described in terms of the squeezing spectrum.

The squeezing spectrum of a stationary EM field is defined as

the Fourier transform of the two-time normally ordered correlation

function

Sφ (ω) = lim
t→∞

∫
dτ
〈
: Êφ (t + τ ) , Êφ (t) :

〉
eiωτ , (6.95)

where〈
Êφ(t + τ ) , Êφ(t)

〉 = 〈Êφ(t + τ )Êφ(t)
〉− 〈Êφ(t + τ )

〉〈
Êφ(t)

〉
,

(6.96)

and φ is a phase angle that may be chosen at will.

A negative value of Sφ (ω) is non-classical and indicates photocur-

rent noise at frequencyω below the quantum limit. In otherwords, it
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indicates squeezing at the frequency ω of the phase field component

Êφ .

Integrating the squeezing spectrum Sφ (ω) over all frequencies,

we obtain the normally ordered variance of the total field∫ +∞

−∞
dω Sφ (ω) =

〈
:
(

Êφ

)2
:
〉
. (6.97)

It can happen that for a broadband field the spectrum Sφ (ω) may dip

below the shot noise at some frequencies (Sφ (ω) < 0) even though

〈: (
Êφ)
2 :〉, which is the integral of Sφ(ω) over all frequencies, is

positive. We may refer to this as spectral component squeezing at

selected frequencies. Also, when 〈: (
Êφ)
2 :〉 < 0, some selected

modes may not exhibit squeezing or may exhibit more squeezing

than the total field. Failure to recognize these frequency-dependent

features led at the early stage of the research on squeezing to rather

pessimistic predictions of attainable squeezing [38, 39].

6.8 Detection of Squeezed States of Light

We have already learnt that squeezing is a phase dependent

phenomenon. How then one could identified that a given field is

in a squeezed state? Direct photoelectric counting experiments are

not sensitive to the phase-dependent nature such as squeezing

in the incident field, but only to light intensity. Therefore, direct

photon counting as a way of detecting squeezing is impractical.

Hence, a phase sensitive measurement system is needed to observe

squeezing. As we shall see, it is provided by phase-sensitive

interference of a measured field with another optical field in a

coherent state, followed by photoelectric detection of the resulting

intensity fluctuations.

6.8.1 Homodyne Detection Scheme

Typical experimental schemes used to measure phase-dependent

fields, which can be applied to detect squeezing, are homodyne and

heterodyne detection techniques. An example of the experimental

scheme is shown in Fig. 6.6. In these techniques the measured field
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D
E1(t)

E2 (t)

Ec (t)

COUNTER

SPECTRAL
ANALYZER

Figure 6.6 Schematic diagram of homodyne or heterodyne detection

scheme. A field of a complex amplitude E1(t) is mixed with the highly

coherent field of an amplitude E2(t). The mixing is accomplished by a

beam splitter and the resulting field Ec(t) is detected photoelectrically

by a detector D and the resulting photocurrent is then analyzed by a

photoelectron counter or a spectral analyzer. When both fields have the

same frequency, we refer to the procedure as homodyning. Otherwise, when

the frequencies are different, the procedure is referred to as heterodyning.

of an unknown amplitude E1(t) is mixed (beat) with the known
strong coherent light of an amplitude E2(t) (local oscillator). The
beats occurring in the superposed light of amplitude Ec(t) are
analysed by either photoelectric counting or photocurrent spectral

measurements.

To illustrate phase dependence in homodyne or heterodyne

detection scheme, consider two fields Ê1(t) and Ê2(t) of the same
frequency (homodyne detection), combined on a lossless beam

splitter of transmissivity β . The fields can be written in terms of the

annihilation and creation operators as

Ê1 (t) = λ
(
â (t)− â† (t)

)
, Ê2 (t) = λ

(
b̂ (t)− b̂† (t)

)
, (6.98)

and we assume that both fields have the same polarization.

The total field emerging from the beam splitter is

Êc (t) = λ
(
ĉ (t)− ĉ† (t)

)
, (6.99)

where

ĉ =
√

β â + i
√
1− β b̂, (6.100)

and the factor i indicates a π/2 phase shift between the reflected

and transmitted fields. The detector D can be adjusted to respond to
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the intensity of the field, I ∼ 〈ĉ† (t) ĉ (t)〉 or to the field fluctuations
〈(
ĉ†ĉ)2〉. The intensity at the detector is given by

I ∼ 〈ĉ†ĉ〉 = β〈â†â〉 + (1− β) 〈b̂†b̂〉
−i
√

β (1− β)
(〈â〉〈b̂†〉 − 〈â†〉〈b̂〉) , (6.101)

where we have assumed that the fields Ê1 and Ê2 are not correlated.
Suppose, the field Ê2 is a coherent laser field (local oscillator)

of a large amplitude α, whereas the signal (detected) field is weak.

As a result, the terms proportional to 〈b̂†b̂〉 and 〈b̂†〉, 〈b̂〉 dominate
over those without b̂† and b̂. Hence, the terms independent of the
amplitude of the local oscillator can be discarded. Thus, we can

ignore the term β〈â†â〉, and denoting 〈b̂〉 = |α| exp(iφ), 〈b̂†〉 =
|α| exp(−iφ), the resultant light intensity at the detector is then

I ≈ (1− β) |α|2 + 2 |α|
√

β (1− β)
〈
Êφ

〉
, (6.102)

where 〈
Êφ

〉 = 1

2i

(〈â〉e−iφ − 〈â†〉eiφ) , (6.103)

and φ is the phase of the laser. The first term on the right-hand side

of Eq. (6.102) is equal to the intensity of the reflected coherent beam.

The second term is an interference term between the coherent

and the signals beams. This term contains the phase-dependent

quadrature amplitude of the signal beam.

Similarly, we can show that the variance of photoelectric counts

can be expressed as〈
(
n̂c)

2
〉 ≈ (1− β)2 |α|2 + |α|2 β (1− β)

〈(

Êφ

)2〉
, (6.104)

where n̂c = ĉ†ĉ is the number of photons in the mode c. In the
derivation of Eq. (6.104) we have retained terms of second order

in |α|. We see that the variance of the superposed field contains
the reflected local oscillator noise, (1 − β)2|α|2, and the variance of
the phase-dependent quadrature noise of the signal field, 〈(
Êφ)

2〉.
The detected fluctuations are determined by the fluctuations of the

measured field 〈(
Êφ)
2〉, the measured quadrature phase operator.

Figure 6.7 shows the variance 〈(
Êφ)
2〉 as a function of φ for

a squeezed input field. As the local oscillator phase φ is varied,

the variance of photoelectric counts changes from being large to
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Figure 6.7 The variance 〈(
Eφ

)2〉 as a function of the laser phase φ for

a squeezed input field. The dashed line indicates the vacuum level of the

fluctuations.

very small values. It is seen that for certain values of the phase the

variance is smaller than the vacuum level of the fluctuations.

In practice, the signal field is first blocked to determine the

vacuum noise level. The signal field is then allowed to reach

the beam spitter and the variance is determined with reference to

the vacuum level. Note, however, that the intensity measurements in

homodyne detection scheme are quite different from those in direct

detection. In the homodyne detection intensity fluctuations directly

measure the fluctuations in a quadrature of the input and the signal

field and its variance depend upon the local oscillator phase angle,

which is an external parameter.

In conclusion of this section, we point out that apart from the

homodyne and heterodyne detection schemes, it is also possible to

use a balanced homodyne detection [40, 41]. In a balance homodyne

detection scheme, two output fields of the beamsplitter are

detected by two identical photodetectors. Photocurrents from these

photodetectors are subtracted electronically and the fluctuations of

the difference current are analysed. In this scheme, the measured

fluctuations are not affected by the noise of the local oscillator that

is cancelled when the photocurrents are subtracted.
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Exercises

6.1 Verify that the variances of the field quadrature operators are

the same for the vacuum state when the field is in a coherent

state |α〉.
6.2 Consider the superposition state of two field modes

|�〉 = a|0〉 + b|1〉,
where a and b are complex parameters satisfying the

normalization condition, |a|2 + |b|2 = 1.

(a) Calculate the variances 〈(
X̂ 1)2〉 and 〈(
X̂ 2)2〉.
(b) Show that there exits values of the parameters a and b for

which either of the quadrature variances is reduced below

the vacuum level.

(c) For the cases where the quadrature variances are reduced
below the vacuum level, verify if the uncertainty principle

is not violated.

6.3 Calculate the variances 〈(
Ŷ1)2〉 and 〈(
Ŷ2)2〉 of the quadra-
ture operators Ŷ1 and Ŷ2 defined as

Ŷ1 = 1

2

(
âe−iθ/2 + â†eiθ/2

)
,

Ŷ2 = 1

2i

(
âe−iθ/2 − â†eiθ/2

)
,

assuming that the field is in a squeezed coherent state |�〉 =
|α, s〉.

6.4 Consider two Hermitian operators corresponding to the real

and imaginary parts of the square of the complex amplitude of

the field

X̂ 1 = 1

2

(
â2 + (â†)2

)
, X̂ 2 = 1

2i

(
â2 − (â†)2

)
.

Show that the squeezing condition for the above operators is〈
(
X̂ i )2

〉
<

(
〈â†â〉 + 1

2

)
, (i = 1, 2) .

6.5 The Hamiltonian Ĥ of a degenerate parametric amplifier is

given by

Ĥ = �ωâ†â − 1

2
i�κ
(
â2e2iωt − â†2e−2iωt) .
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(a) Calculate the intensity correlation function
g(2) (0) = 〈â†(t)â†(t)â(t)â(t)〉/〈â†(t)â(t)〉2

assuming that initially (t = 0) the field was in a coherent

state.

(b) Calculate the variances 〈(
Ŷ1)2〉 and 〈(
Ŷ2)2〉 defined in
Exercise 6.3, assuming that initially the field was in a

coherent state.

6.6 Show that a field in a squeezed vacuum state |0, s〉 always
exhibits super-Poissonian statistics.

6.7 Show that the degree of squeezing ξx = 1/2 obtained for the

superposition state (6.89) is the optimum value of squeezing

that can occur in a two-level atom.

6.8 Calculate the variance of photons in the squeezed vacuum

state, and compare it with the variance of photons in a thermal

state of the same mean photon number.

6.9 Consider a single-mode field in the superposition state

|�〉 = 1√
2
(|n〉 + |n+ 2〉) ,

where |n〉 is a Fock state with n photons. For what value of n is
(a) the quadrature E2 squeezed?
(b) the second-order correlation function g(2) < 1?

6.10 Express the operators n̂2 and n̂3 in normal and in antinormal
orders, where n̂ = â†â.

6.11 Consider an operator

b̂ = μâ + νâ†,
where â, â† are the annihilation and creation operators of the
field, and |μ|2 − |ν|2 = 1.

(a) Show that
[
b̂, b̂†
] = 1.

(b) Calculate mean values 〈â〉, 〈â†〉, 〈â2〉 and 〈â†〉 in the

state |β〉, which is an eigenstate of b̂with an eigenvalue β .

6.12 Consider properties of squeezed vacuum states.

(a) Show that squeezed vacuum states, similar to the coher-

ent states, are not mutually orthogonal.

(b) Find the overlap between the coherent state |α〉 and
the squeezed vacuum state |0, s〉. Are the coherent and
squeezed states orthogonal?
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Chapter 7

Phase Space Representations of the
Density Operator

7.1 Introduction

In Chapter 4, we introduced the concept of the photon number

representation of the electromagnetic (EM) field that is based on

the number states, the eigenstates of the Hamiltonian of the EM

field. However, this is not the only possible representation, in fact

not always the most convenient. In this chapter, we introduce the

concept of phase space representations of a quantum system which

is in a state described by the density operator ρ̂. The density

operator of a given system encodes classical as well as non-classical

(quantum) properties of the system. How to distinguish these

two kinds of properties is of basic importance in quantum optics.

Therefore, we shall address this issue by using representations of

the density operator that are based on the parametric space of

complex eigenvalues of the annihilation operator â in a coherent
state |α〉. We first determine what we mean by the density operator
of a quantum system and discuss its basic properties. Next, we

introduce different representations of the density operator in terms

of coherent state projectors |α〉〈α|. The representations show that

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
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a state of the EM field or of an arbitrary quantum system may

be regarded as a mixture of coherent states. Along the way, we

will learn how to find the P , Q and Wigner representations of the
density operator, what are their properties, how to interpret the

properties and how to calculate relations between the different

representations. Most importantly, certain field states exhibit non-

classical features and these non-classical features can be manifested

in the phase space representations. Accordingly, we will learn how

the representations are very convenient tools to describe quantum

states of simple systems.

7.2 Density Operator

Before studying the representations of the density operator, we first

determine what we mean by the density operator and review its

basic properties.

In statistical physics, an expectation or average or mean value

of an arbitrary quantity A is obtained by weighting each measured
value Ai by the associated probability Pi and summing over all the
measurements. Thus

〈A〉 =
∑
i

Pi Ai , i = 1, 2, . . . , N, (7.1)

where Pi is a probability of measuring the value Ai .
In quantum physics it is slightly different. A quantum system can

be in a pure or mixed state. If the state of the system is determined

by a single state vector |ψ〉, we say that the system is in the pure state
|ψ〉. If the state of the system cannot be precisely specified, only the

probabilities that the system is in a range of possible states can be

determined, we say that the system is in amixed state.

7.2.1 Density Operator of a Pure State

Consider an operator Â acting on a pure state |ψ〉. Then, the
quantum-mechanical expectation value of the operator Â of a system
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in the pure state |ψ〉 is defined as
〈 Â〉 = 〈ψ | Â|ψ〉 =

∑
n

〈ψ | Â|n〉〈n|ψ〉

=
∑
n

〈n|ψ〉〈ψ | Â|n〉 =
∑
n

〈n|ρ̂ Â|n〉 = Tr
(
ρ̂ Â
)
, (7.2)

where

ρ̂ = |ψ〉〈ψ | (7.3)

is the density operator of the pure state. Thus, the density operator

is essential in calculating expectation values of operators.

7.2.2 Density Operator of a Mixed State

If we do not have enough information to specify the state vector of

a given system, but know only the probabilities Pi that the system
is in a state |ψi 〉, we then can introduce, in analogy to the statistical
definition of the expectation value, the density operator of a mixed

state as

ρ̂ =
∑
i

Pi |ψi 〉〈ψi |, (7.4)

where Pi is the probability that a given system is in the state |ψi 〉.
This equation expresses ρ as an incoherent superposition of pure

state density operators, |ψi 〉〈ψi |. If one of the Pi = 1 and all the

others are zero, the density operator corresponds to a pure state.

Note that the states |ψi 〉 are assumed to be normalized but do not
need to be orthogonal. The density operator provides a complete

description of the statistical properties of the system spanned by the

basis states |ψi 〉.

7.2.3 The Basic Properties of the Density Operator

Density operator of an arbitrary physical system must satisfy the

following properties:

Property 1. Hermitian: ρ̂† = ρ̂.

Proof.
ρ̂† =

∑
i

Pi (|ψi 〉〈ψi |)† =
∑
i

Pi |ψi 〉〈ψi | = ρ̂,

as required.
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Property 2. Normalized: Tr (ρ̂) = 1.

Proof.

Tr (ρ̂) =
∑
n

〈ψn| ρ̂ |ψn〉

=
∑
n

∑
i

Pi 〈ψn|ψi 〉〈ψi |ψn〉 =
∑
n

∑
i

Pi |〈ψn|ψi 〉|2

=
∑
i

Pi = 1.

as required.

Note that we have used the fact that the states |ψi 〉 are normalized
but have not assumed that the states are orthogonal.

Property 3. Positive operator: ρ̂ ≥ 0.

Proof. If ρ̂ is a positive operator, then for any state |φ〉, the
expectation value 〈φ|ρ̂|φ〉 ≥ 0 is a positive number

〈φ|ρ̂|φ〉 =
∑
i

Pi 〈φ|ψi 〉〈ψi |φ〉 =
∑
i

Pi |〈φ |ψi 〉|2 ≥ 0,

as required.

Property 4. For a pure state: ρ̂2 = ρ̂.

Proof.

ρ̂2 =
∑
i, j

Pi P j |ψi 〉〈ψi | ψ j 〉〈ψ j | =
∑
i

P 2i |ψi 〉〈ψi | ,

as required.

Property 5. Tr
(
ρ̂2
) ≤ 1.

Proof.

Tr
(
ρ̂2
) =
∑
n

∑
i

P 2i 〈ψn|ψi 〉〈ψi |ψn〉 =
∑
i

P 2i ≤ 1,

as required.
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The properties 1–3 can be alternatively expressed in terms of the

eigenvalues λi of the density operators. Namely, the property 1

means that all the eigenvalues of ρ̂ are real numbers, λi ∈ R. The
property 2 means that the sum of all the eigenvalues is equal to

1,
∑

i λi = 1, and the property 3 means that the eigenvalues are

positive numbers, λi ≥ 0. The property 5 is very often used to check

whether a given system is in a pure or a mixed state. For a pure state

Tr
(
ρ̂2
) = 1, whereas Tr

(
ρ̂2
)

< 1 for a mixed state.

7.3 Number State Representation

The density operatormay be represented in terms of arbitrary states

of a given system. For example, the completeness relation for the

photon number states ∑
n

|n〉〈n| = 1, (7.5)

can be used to represent the density operator in terms of the photon

number states. This is done by multiplying the density operator by

the unity given by Eq. (7.5) both on the right and the left, and then

we obtain the density operator in terms of the projection operators

|n〉〈m| as

ρ̂ =
(∑

n

|n〉〈n|
)

ρ̂

(∑
m

|m〉〈m|
)

=
∑
n,m

〈n| ρ̂ |m〉|n〉〈m| =
∑
n,m

anm |n〉〈m| . (7.6)

The diagonal terms are probabilities Pn = ann = 〈n |ρ̂| n〉, that ann is
the probability of having n photons in the field being in the state |n〉.
The off-diagonal elements anm(n �= m) are coherencies between two
different photon number states.

The number states representation holds not only for the field

states, but also for the system states [42, 43]. For example, ρ̂ can

be the density operator of a system (e.g., a two-level atom) and

then |n〉, |m〉 represent the energy states of the system. In this case
the diagonal terms are populations of the atomic states, while off-

diagonal terms are atomic coherences equal to the mean value of

the induced atomic dipole moments (ρnm = 〈n|S+|m〉).
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7.4 Coherent States P Representation

Since the coherent states are complete

1

π

∫
d2α |α〉〈α| = 1, (7.7)

we can use this relation to represent the density operator in terms

of coherent states. If we formally multiply the density operator ρ̂ by

the unity given by Eq. (7.7) both on the right and the left, we obtain

ρ̂ = 1

π2

∫ ∫
〈α| ρ̂ |β〉 |α〉〈β| d2αd2β. (7.8)

This is a complicated representation involving two integrals (in fact

four integrals as d2α = d (Reα) d (Imα)).

We can now ask whether we can expand ρ̂ in a simpler form

ρ̂ =
∫
d2αP (α) |α〉〈α| , (7.9)

which is an analogue to ρ̂ = ∑i Pi |ψi 〉 〈ψi | for discrete states, and
whether we can call P (α) as a probability of finding the field in the
coherent state |α〉.

The above representation, called P representation or the

Glauber–Sudarshan P representation [20, 44], is very useful for

calculating expectation values of normally ordered field operators

that appear, for example, in 〈n〉, g(2) or in 〈: (
Eθ )
2 :〉.

For example, the average number of photons can be written as

〈n〉 = 〈â†â〉 = Tr
(
ρ̂â†â

) = Tr

(∫
d2αP (α) |α〉〈α| â†â

)

=
∫
d2αP (α) 〈α| â†â |α〉 =

∫
d2αP (α) |α|2 . (7.10)

Hence, the averages are calculated in the same way as that in

classical statistics with P (α) playing the role of the probability
distribution.

Since Tr (ρ̂) = 1, we obtain

1 = Tr (ρ̂) =
∫
d2αP (α) Tr (|α〉〈α|) =

∫
d2αP (α) . (7.11)

Thus, P (α) is normalized as a classical probability distribution.
We know that the coherent states are the closest quantum states

to the classical description of the field. Can we then treat P (α) as a
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quantum analogue of the classical probability distribution? In order

to answer this question, we calculate an average

〈β| ρ̂ |β〉 =
∫
d2αP (α) 〈β| α〉〈α| β〉

=
∫
d2αP (α) |〈β| α〉|2 =

∫
d2αP (α) e−|α−β|2 . (7.12)

Since exp(− |α − β|2) is not a δ-function, the diagonal elements

〈β| ρ̂ |β〉 �= P (β) , (7.13)

that are not probabilities of finding the system in the coherent state

|β〉.
Moreover, the average 〈β| ρ̂ |β〉 must be positive. However, the

integral
∫
d2αP (α) exp(− |α − β|2) does not require P (β) to be

positive.

The following two examples may help to clarify this observation.

Example 7.1 (Photon antibunching as a non-classical pheno-
menon) Consider the normalized second-order correlation function

g(2) = 1+ 〈(
n̂)2〉 − 〈n̂〉
〈n̂〉2 = 1+ 〈: (
n̂)2 :〉

〈n̂〉2 . (7.14)

In the P representation, the normally ordered variance of the number
of photons can be written as

〈: (
n̂)2 :〉 = 〈â†â†ââ〉 − 〈â†â〉2

=
∫
d2αP (α) |α|4 −

[∫
d2α′P

(
α′) ∣∣α′∣∣2]2

=
∫
d2αP (α)

[
|α|2 −

∫
d2α′P

(
α′) ∣∣α′∣∣2]2 . (7.15)

As the normally ordered variance must be negative for antibunching
and the above equation involves the phase space integral of the
product of the P (α) functionwith a function that is real and positive, it
follows that antibunching is associated with a negative P (α) function.
Thus, photon antibunching (g(2) < 1) requires P (α) < 0. We say that
photon antibunching is non-classical by the criterion that P (α) for any
classical field cannot be negative.
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Example 7.2 (Squeezing as a non-classical phenomenon) In
the P representation, the normally ordered variance of the in-phase
quadrature component can be written as

〈: (
Ê1)2 :〉 = 1

4
〈2â†â + ââ + â†â†〉 − 1

4
〈â + â†〉2

= 1

4

{∫
d2αP (α)

[
2 |α|2 + α2 + α∗2]

−
[∫

d2α′P
(
α′) (α′ + α′∗)]2}

= 1

4

∫
d2αP (α)

{
(α + α∗)

−
[∫

d2α′P
(
α′) (α′ + α′∗)]}2 . (7.16)

Thus, similarly to photon antibunching, squeezing 〈: (
Ê1)2 :〉 < 0

is associated with a negative P (α) function, P (α) < 0, and therefore
can also be regarded as non-classical.

Hence, unlike a classical probability, P (α) can take negative values
and therefore P (α) is not a true probability distribution function.
Sometimes P (α) is called as a quasi-distribution function or a quasi-
probability function.

How do we find P (α)?
Since we can write the density operator as

ρ̂ =
∫
d2αP (α) |α〉〈α| , (7.17)

we then can find P (α) inverting the above equation. This is made
possible using the relation

Tr
{

ρ̂ei z
∗â†ei zâ

}
= Tr

{[∫
d2αP (α) |α〉 〈α|

]
ei z

∗â†ei zâ
}

=
∫
d2αP (α) ei z

∗α∗
ei zα . (7.18)

The right-hand side of the above equation is just a two-dimensional

Fourier transform of P (α). The inverse transform gives

P (α) = 1

π2

∫
d2zTr

(
ρ̂ei z

∗â†ei zâ
)
e−i z∗α∗

e−i zα . (7.19)
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However, the Tr under the integral is the characteristic function of

the normally ordered â, â† operators

χN (z) = Tr
(
ρ̂ei z

∗â†ei zâ
)
. (7.20)

Therefore

P (α) = 1

π2

∫
d2zχN (z) e−i z∗α∗

e−i zα . (7.21)

Thus, P (α) representation the is the Fourier transform of the

normally ordered characteristic function.

The relation (7.20) represents a mapping from the operator ρ̂,

which is a function of the two operators â and â†, to the scalar
function χN (z), which is a function of the complex variable z.

Example 7.3 (P (α) representation for a pure coherent state) In
this example, we illustrate how to find P (α) representation for a pure
coherent state |α0〉, represented by the density operator ρ̂ = |α0〉〈α0|.

First, according to Eq. (7.21), we have to calculate the characteris-
tic function

χN (z) = Tr
{

|α0〉〈α0|eiz∗â†eizâ
}

= 〈α0|eiz∗â†eizâ|α0〉 = eiz
∗α∗

0+i zα0 . (7.22)

Next, substituting the result for χN (z) into Eq. (7.21), we obtain

P (α) = 1

π2

∫
d2ze−i z(α−α0)e−i z∗(α∗−α∗

0)

= δ2 (α − α0) , (7.23)

that is, the P representation of a pure coherent state is a two-
dimensional delta function.

7.5 Generalized P Representations

The generalized P representations are defined by the following

expansion of the density operator using coherent state projectors

ρ̂ =
∫
d (α, β) P (α, β)

|α〉〈β∗|
〈β∗|α〉 , (7.24)

where d(α, β) is the integration which can be chosen to define

different representations. Note that this is non-diagonal expansion

of ρ̂.
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A choice d (α, β) = δ2 (α∗ − β) d2αd2β gives the P representa-
tion. However, a choice

d (α, β) = d2αd2β (7.25)

gives a positive P representation, introduced by Gardiner and

Drummond [45]. Here the states denoted |α〉 are the n-fold coherent
states of n mode operators labelled â1 . . . ân. That is, these states
correspond to a superposition of different number states with the

property âk |α〉 = αk |α〉.
The initial distribution function P (α, β) can be chosen to be

a positive function defined on the 4N-dimensional phase space
spanned by the complex coordinates α and β . This includes all

diagonal and off-diagonal coherent states components of the density

matrix. It is less obvious that a positive function exists in all cases,

but it can be constructed, even for non-classical fields. A non-

classical field necessarily corresponds to a superposition of coherent

states. These are represented by the off-diagonal terms in the

coherent expansion, in which α �= β .

In order to calculate an operator expectation value, there is a

direct correspondence between the distribution and the normally

ordered operator product

〈â†n . . . âm〉 =
∫ ∫

d2αd2βP (α, β)β∗
n . . . αm. (7.26)

The important property here is the direct relation between the

representation and the normally ordered moments, which are

characteristic of photodetector measurements. If other types of

moments are needed, then the operator commutation relationsmust

be used to calculate them.

7.6 Q Representation

There are other orderings possible for the â†, â operators. For

example, we can use the antisymmetric ordering and define the

antinormally ordered characteristic function

χA (z) = Tr
(
ρ̂ei zâei z

∗â†
)
. (7.27)
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Its Fourier transform is called Q representation

Q (α) = 1

π2

∫
d2zχA (z) e−i z∗α∗

e−i zα . (7.28)

The Q (α) representation, sometimes called the Husimi function, is a
non-negative function and has a simple form

Q (α) = 1

π
〈α |ρ̂| α〉 ≥ 0. (7.29)

Thus, πQ (α) is strictly the probability of finding a system of the

density operator ρ̂ in the coherent state |α〉.

Proof. From the definition of the Q function, and the completeness
of the coherent states, we obtain

Q (α) = 1

π2

∫
d2zχA (z) e−i z∗α∗

e−i zα

= 1

π2

∫
d2zTr

[
ρ̂ei zâ

1

π

∫
d2β |β〉〈β| ei z∗â†

]
e−i z∗α∗

e−i zα .

(7.30)

Since

ei zâ |β〉 = ei zβ |β〉 ,
〈β| ei z∗â† = 〈β| ei z∗β∗

, (7.31)

and

1

π2

∫
d2ze−i z(α−β)e−i z∗(α∗−β∗) = δ2 (α − β) , (7.32)

we find

Q (α) = 1

π

∫
d2β 〈β| ρ̂ |β〉

[
1

π2

∫
d2ze−i z(α−β)e−i z∗(α∗−β∗)

]

= 1

π
〈α |ρ̂| α〉 , (7.33)

as required.

The Q representation has the advantage of existing for states where
no P representation exists and unlike the P representation is always
positive.
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Example 7.4 (Q representation for a pure coherent state) A
pure coherent state is given by the density operator ρ̂ = |β〉〈β|. Hence

Q (α) = 1

π
〈α |ρ̂| α〉 = 1

π
〈α|β〉〈β|α〉 = 1

π
|〈β|α〉|2 = 1

π
e−|(α−β)|2 .

(7.34)

Thus, the Q (α) representation of the pure coherent state |β〉 is a
Gaussian function centred at β .

Example 7.5 (Q representation for a Fock state) For a Fock state
ρ̂ = |n〉〈n| and then the Q (α) representation is

Q (α) = 1

π
|〈n|α〉|2 = |α|2n

πn!
e−|α|2 . (7.35)

Thus, the Q (α) representation of the photon number state is a Poission
function.

7.7 Wigner Representation

For symmetric or Weyl order of the operators, the characteristic

function is defined as

χS (z) = Tr
{

ρ̂ei z
∗â†+i zâ

}
, (7.36)

and its Fourier transform is called the Wignera representation [46]

W (α) = 1

π2

∫
d2zχS (z) e−i z∗α∗

e−i zα . (7.37)

The symmetric order of the â†, â operators is the average (permuta-
tion) of all possible orderings of the operators

(
â†â
)
S

= 1

2

(
â†â + ââ†

)
,

(
â†2â
)
S

= 1

3

(
â†2â + â†ââ† + ââ†2

)
. (7.38)

In order to illustrate the general method of finding Wigner

representations, we consider two examples.

aEugene Wigner was given the Nobel prize in 1963 for his contributions to the

theory of the atomic nucleus and the elementary particles, particularly through the

discovery and application of fundamental symmetry principles.
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Example 7.6 (Wigner representation of the field in a pure
coherent state) As a first example, we calculate theWigner function
of the field in a pure coherent state given by the density operator
ρ̂ = |α0〉〈α0|.

First, we calculate the symmetrically ordered characteristic
function

χS (z) = Tr
{

ρ̂e−z∗â†ezâ
}
e− 1

2
|z|2

= Tr
{

|α0〉〈α0|e−z∗â†ezâ
}
e− 1

2
|z|2

= e− 1
2
|z|2e−z∗α∗

0ezα0 , (7.39)

where we redefined z ≡ i z.
Next, substituting this into Eq. (7.37), we obtain

W (α) = 1

π2

∫
d2zez

∗(α∗−α∗
0)e−z(α−α0)e− 1

2
|z|2

= 1

π2

∫
d2zez

∗(α∗−α∗
0)−z(α−α0)− 1

2
|z|2 . (7.40)

The integral can be evaluated using the identity

1

π

∫
d2ze−γ |z|2+μz+νz∗ = 1

γ
e

μν

γ , (7.41)

which holds for Re(γ ) > 0 and arbitrary μ, ν.
This gives the Wigner function of the form

W (α) = 2

π
e−2|(α−α0)|2 . (7.42)

Since α is a complex number, it is convenient to express the Wigner

function in terms of two (real) quadrature components 2x = α +
α∗, and 2y = −i(α − α∗). In the (x , y) representation, the Wigner
function (7.42) takes the form

W (x , y) = 2

π
e−2[(x−x0)2+(y−y0)2]. (7.43)

We can use the general form of a Gaussian function and write the

Wigner function as

W (x , y) = 1

2πσxσy
exp

[
−1
2

(x − x0)2

σ 2
x

− 1

2

(y − y0)2

σ 2
y

]
, (7.44)
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Figure 7.1 The Wigner function W(x , y) for the pure coherent state with
x0 = 2 and y0 = 0.

with σ 2
x = σ 2

y = 1/4, where σ 2
x = 〈(
E1)2〉 and σ 2

y = 〈(
E2)2〉 are
the variances of the electric field amplitudes.

The Wigner function of the pure coherent state is a Gaussian

centred at α0, or equivalently at (x0, y0), see Fig. 7.1, with the

fluctuations symmetrically distributed around (x0, y0). This simple
example shows that the Wigner function is usually less singular

than the corresponding P function. For the pure coherent state

considered in this example, the P function is a two-dimensional

delta function (singular function), whereas the Wigner function is

a Gaussian.

Since the squeezed vacuum state is a special case of the squeezed

coherent state, the Wigner function of the squeezed vacuum state is

also a Gaussian, but with either σ 2
x < 1/4 or σ 2

y < 1/4. In Fig. 7.2,

we plot the Wigner function of of the squeezed vacuum state. We

assume that the fluctuations in the y-component are reduced in the
expense of an increase in the fluctuations in the x-component, so
that σ 2

x > 1/4 and σ 2
y < 1/4. Nevertheless, the product of the

variances takes the minimum value, that is, σxσy = 1/4. The Wigner

function of the squeezed vacuum state is always positive, and can be

considered as a classical probability distribution.
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Figure 7.2 The Wigner function of the squeezed vacuum state with the

fluctuations reduced in the y component with σ 2
x = 5 and σ 2

y = 1/20.

Example 7.7 (Wigner representation of the field in a Fock state.)
As a second example, we calculate the Wigner function of the field in
the Fock state |n〉.

In the pure Fock state ρ̂ = |n〉〈n|, and then the symmetrically
ordered characteristic function takes the form

χS (z) = Tr
{

ρ̂e−z∗â†ezâ
}
e− 1

2
|z|2

= e− 1
2
|z|2
(
1− n|z|2 + 1

4
n(n− 1)|z|4 − · · ·

)
. (7.45)

Substituting this into Eq. (7.37) and using Eq. (7.41), we obtain

W|n〉 (α) = 2

π
(−1)n e−2|α|2Ln(4|α|2), (7.46)

where Ln(4|α|2) is the Laguerre polynomial of order n. This Wigner
function can be negative for n > 0. It is shown in Fig. 7.3, where we
plot W|n〉 (α) for the Fock state with n = 0, 1 and n = 2 photons.
The negativities of the Wigner function W|n〉 (α) for n > 0 indicate the
non-classicality of these quasi-probabilities.
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Figure 7.3 TheWigner function of the first three Fock states, that is (a) the

vacuum state |0〉, (b) the Fock state |1〉 with one photon, (c) the Fock state
|2〉with two photons.

7.8 Relations between the Wigner, Q and P
Representations

We now turn to a brief discussion of useful relations between the P ,
Q and Wigner representations.

A useful relation between the Wigner or Q representation and
the P representation is obtained via the characteristic functions by
replacing the density operator by

ρ̂ =
∫
d2βP (β) |β〉〈β| . (7.47)
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This leads to the following form of the Wigner function

W (α) = 2

π

∫
d2βP (β) e−2|β−α|2 , (7.48)

which is a Gaussian convolution of the P functions.
We now further introduce the relation between the Q and the P

representations, that is

Q (α) = 1

π

∫
d2βP (β) e−|β−α|2 . (7.49)

Note that the Q function like the Wigner function is a Gaussian

convolution of the P function. The width of the Gaussian is larger

than for the Wigner function. It is 1/
√
2 times the width of the

Wigner function, which can be accounted for the rather more well-

behaved properties.

The above equations show how to find W (α) and Q (α), if we
know P (α). These equations also allow us to find P (α) if we know
W (α) or Q (α). For example, if we know Q (α), we can write

Q (β) = 1

π

∫
d2αP (α) e−|α|2e−|β|2eαβ∗+α∗β . (7.50)

Then

Q (β) e|β|2 = 1

π

∫
d2α
[
P (α) e−|α|2

]
eαβ∗+α∗β . (7.51)

Hence, the function Q (β) exp(|β|2) is the Fourier transform of

the function P (α) exp(−|α|2). On taking the Fourier inverse of

Eq. (7.51), we obtain

P (α) = e|α|2

π

∫
d2β
[
Q (β) e|β|2

]
e−αβ∗−α∗β . (7.52)

We can summarize that the P , Q and Wigner representations are

related to each other, and we can combine these relations by intro-

ducing a single mathematical formula linking the representations.

This can be done as follows. We can define an operator

T̂ (α, u) = 1

π

∫
d2β D̂ (β, u) eαβ∗−α∗β , (7.53)

where

D̂ (β, u) = D̂ (β) eu|β|2/2 (7.54)

is a generalized displacement operator.
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A complex quasiprobability distribution can be defined as the

expectation value of the T̂ (α, u) operator

U (α, u) = 1

π
Tr
[
ρ̂T̂ (α, u)

]
, (7.55)

where the complex number u determines the ordering of the field
operators and hence, the type of the quasi-distribution function.

For u = 0, which determines the symmetric ordering, we get

the Wigner function, while for u = +1 (normal ordering) and

u = −1 (antinormal ordering), we obtain the P and Q functions,
respectively.

7.9 Distribution Functions in Terms of Quadrature
Components

We have introduced three representations of the density operator of

the EM field and discussed relations between them. This would be

a good time to give a second look at the representations. The phase

space is the complex plane of eigenvalues α (Reα, Imα). Since α is

the eigenvalue of a non-Hermitian operator, it is more convenient

to represent the distribution functions in terms of eigenvalues of

Hermitian operators.

We can express the annihilation operator â or the eigenvalue α in

terms of the position and the momentum operators (eigenvalues) as

â =
√
mω

2�
q̂ + i

√
1

2m�ω
p̂,

â† =
√
mω

2�
q̂ − i

√
1

2m�ω
p̂, (7.56)

or in terms of quadrature operators

â = x̂ + i ŷ,

â† = x̂ − i ŷ, (7.57)

and present the distribution functions in the (p, q) or (x , y)
coordinates.

For example, the Wigner function of the field in a pure coherent

state (7.42) in terms of the quadratures (α = x + iy) is given by

W (α) = 2

π
e−2[(x−x0)2+(y−y0)2], (7.58)
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which is a Gaussian centred at (x0, y0). The cross-section is a circle
indicating that the the fluctuations in both quadratures of the

coherent field are equal.

7.10 Summary

We have seen that each of the representations has advantages

and disadvantages connected with its use. The P representation

describes a quantum state in terms of the probability that the

system is in a given coherent state. This distribution function is

highly singular or negative for quantum states without classical

analogues. This apparent disadvantage is often used as the signature

of genuine quantum mechanical effects. The use of the generalized

P distribution allows the calculations of normally ordered prod-

ucts without the attendant non-analyticity. The Wigner function

may become negative for some quantum states, but it has the

considerable advantage for squeezed states that its contours map

out the variances of the field quadratures. The Q representation

is a positive define distribution function, but its simple relation to

antinormally ordered characteristic function makes it difficult to

interpret in terms of conventional photon counting or squeezing

measurements. The reader interested in a further study of the

role of the representations in quantum optics problems is referred

especially to the book by Schleich [47].

Exercises

7.1 Show that 〈 Â〉 = Tr(ρ Â) for a general mixed state described
by the density operator ρ.

7.2 Starting from the time-dependent Schrödinger equation de-

rive the equation of motion for the density operator ρ, the

Liouville–von Neumann equation

i�
∂ρ

∂t
= [Ĥ , ρ],

and show that the equation holds both for the pure and mixed

states.
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7.3 Starting from the Liouville–von Neumann equation show that:

(a) ∂Tr(ρ)/∂t = 0.

(b) Tr(ρ2) is a constant of motion. In other words, there is no
change in the purity of the state during the evolution of

the system.

7.4 The entropy of a quantum system determined by the density

operator ρ is defined by

S = −kBTr (ρ ln ρ) ,

where S describes the degree of order in the system and kB is
the Boltzmann constant. Calculate the entropy of a pure state

ρ = |ψ〉〈ψ | to show that for a pure state, S = 0.

7.5 Show that in the Glauber–Sudarshan P representation

〈: (
n̂)2 :〉 =
∫
d2α P (α)

[
|α|2 −

∫
d2α′ P

(
α′) ∣∣α′∣∣2]2 ,

and

〈: (
Ê1)2 :〉 = 1

4

∫
d2α P (α)

{
(α + α∗)

−
[∫

d2α′P
(
α′)(α′ + α′∗)]}2.

7.6 Show that for arbitrary μ, ν and Re γ > 0

1

π

∫
d2z e−γ |z|2+μz+νz∗ = 1

γ
e

μν

γ .

7.7 Write in the symmetric order the â2â†2 product of the

annihilation and creation operators.

7.8 Prove that a product of m annihilation operators and n
creation operators can be symmetrically ordered in (n +
m)!/(n!m!).

7.9 Show that the Wigner function W(α) can be written as a

Gaussian convolution of the P functions

W (α) = 2

π

∫
d2β P (β)e−2|β−α|2 .

7.10 Show that if in theWigner representation the density operator

is of the form

ρ = �


p
q
e−(q−q0)2/2(
q)2e−(p−p0)2/2(
p)2 ,
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then the condition

Tr(ρ2) = 1

2π�

∫ ∞

−∞

∫ ∞

−∞
dp dq ρ2 ≤ 1

is equivalent to the uncertainty relation


p
q ≥ �

2
.

7.11 Derive Eq. (7.46) for the Fock state with one photon (n = 1) to

show thatW|1〉 (α) < 0 for |α|2 < 1
4
.

7.12 The density operator of a thermal field in the photon number

representation can be written as

ρ̂ =
∞∑
n=0

Nn

(1+ N)n+1
|n〉〈n| ,

where N is the average number of photons in the field.

(a) Find the Q (α) representation of the thermal field.
(b) Using the relation between Q (β) and the diagonal P (α)

representation, show that P (α) for the thermal field is a
Gaussian.

(c) Using the Gaussian form of the P (α) representation, find
the variances σ 2

x = 〈(
Ê1)2〉 and σ 2
y = 〈(
Ê2)2〉 of a

single mode thermal field amplitudes.

(d) Verify the result of the point (c) by calculating the

variance from the definition of σ 2
x using the correlation

properties of the thermal field operators

〈â〉 = 〈â†〉 = 〈â2〉 = 〈(â†)2〉 = 0,

〈â†â〉 = N,

〈ââ†〉 = 1+ N.

Does the result for σ 2
x agree with that found in the

point (c)? Explain your answer.

(e) Show that the variance found in the point (d) agrees with

that predicted from the Wigner distribution.
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Chapter 8

Single-Mode Interaction

8.1 Introduction

In a quantum physics scenario, atoms whose quanta are fermions

interact with force fields whose quanta are bosons. From this

perspective, the interaction of a fermion with a boson is one of

the fundamental systems in quantum physics. The interaction of

a single mode of the electromagnetic (EM) field with a single

two-level atom in the absence of any dissipation process, such as

spontaneous emission, and any input or output from the cavity is the

simplest example of interaction between fermions and bosons. This

elementary model is an example of reversible system in which an

initial energy is continuously and periodically exchanged between

the atom and the cavity field. Mathematically, only two states are

involvedmaking theHamiltonian of the system simple to diagonalize

analytically.

An understanding and exploring of the properties of such a

system is of great use since:

(1) It is a perennial problem in quantum optics.

(2) It has exact analytical solutions for arbitrary coupling constants.

(3) It exhibits certain periodic collapse and revival phenomena due
to the quantum nature of the field.

(4) It has recently become possible to realize it experimentally.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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In this chapter, we will examine this elementary model as a prelude

tomore complicated systems involving atoms interactingwithmulti-

mode fields. We shall find that the state of the combined system is

a pure entangled state between the atom and the field and study

in details the time evolution of the atomic population for different

initial states of the single-mode EM field.

8.2 The Jaynes–Cummings Model

The model of the interaction between a single two-level atom and

a quantized single-mode field in the rotating wave approximation

(RWA) was introduced independently by Jaynes and Cummings [48]

and by Paul [49] in 1963, and is called the Jaynes–Cummings model.

In this model the atom is coupled to a single-mode EM field of

frequency ωc being on resonance with the atomic transition, that

is, ω = ω0. The atom is represented by two energy states: the

ground state |1〉 and the excited state |2〉, and is described by the
spin operators S+, S− and Sz. The field mode is represented by a
Fock state |n〉, and is described by the annihilation and creation
operators â and â†.

8.2.1 The Jaynes–Cummings Hamiltonian

Consider a two-level atom described by the Hamiltonian Eq. (2.15)

interacting in the electric dipole approximation with a single-mode

electric field. For the interaction of the atom with a single mode of

the EM field, ωk = ωc and under the rotating-wave approximation,

the Hamiltonian of the system simplifies to

Ĥ = �ω0Sz + �ωc

(
â†â + 1

2

)
− 1

2
i�g
(
S+â − S−â†

)
, (8.1)

where

g = (�μ · �e)
√

2ω0

�ε0V
(8.2)

is the atom–field coupling constant, called one-photon Rabi fre-

quency.
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The Hamiltonian (8.1) is called the Jaynes–Cummings Hamil-

tonian. It describes the simplest model of the atom–field interaction,

a single two-level atom interacting with a single-mode field.

8.2.2 State Vector of the System

In the absence of the interaction between the atom and the field,

(g = 0), the Hilbert space of the system can be spanned by product

states |n, 1〉 = |n〉 ⊗ |1〉 and |n− 1, 2〉 = |n− 1〉 ⊗ |2〉, where n is
the number of photons in the field mode, and |1〉, |2〉 are the atomic
states. The states group into manifolds, which we can label as E(n),
where n is the number of excitations of the states in E(n). It can
be easily verified that the manifold E(0) is a singlet |0, 1〉, whereas
the manifolds corresponding to n > 0 are doublets. When ωc = ω0,

the inter-doublet states are degenerate in energy whereas the states

are non-degenerate when ωc �= ω0, as it is illustrated in Fig. 8.1.

We now use these states as the basis states for the state vector of

the total (interacting) system to find the time evolution of the state.

|0,1 > |0,1 >

|1,1 > |0,2 >

|2,1 > |1,2 >

|3,1 > |2,2 >

|1,1 >

|0,2 >
Δ

|2,1 >

|1,2 >
Δ

|3,1 >

|2,2 >
Δ

ωc

ωc

ωc

(a) (b)

Figure 8.1 Energy levels of the non-interacting atom and the cavity mode

for (a) degenerate frequencies 
 = ωc − ω0 = 0, and (b) non-degenerate

frequencies
 �= 0.
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Consider a state vector of the system at time t:

|ψ(t)〉 = C1n(t)|n, 1〉 + C2n(t)|n− 1, 2〉, (8.3)

where C1n(t) and C2n(t) are probability amplitudes of the states
|n, 1〉 and |n− 1, 2〉, respectively. The time evolution of the prob-
ability amplitudes is found from the time-dependent Schrödinger

equation

i�
d
dt

|ψ(t)〉 = Ĥ |ψ(t)〉, (8.4)

which leads to the following differential equation for the probability

amplitudes

i�
[
Ċ1n(t)|n, 1〉 + Ċ2n(t)|n− 1, 2〉] = Ĥ |ψ(t)〉. (8.5)

To proceed further, we need the explicit form of the Hamiltonian Ĥ .
According to Eq. (8.1), the Hamiltonian is composed of three terms.

Thus, we have three terms on the right-hand side of Eq. (8.5). Let

us consider separately these three terms, which in the case of the

resonant coupling (ωc = ω0) can be written as

�ω0

(
â†â + 1

2

)
|ψ(t)〉 = �ω0

{(
n+ 1

2

)
C1n(t)|n, 1〉

+
(
n− 1

2

)
C2n(t)|n− 1, 2〉

}
,

�ω0Sz|ψ(t)〉 = �ω0

[
−1
2
C1n(t)|n, 1〉

+ 1

2
C2n(t)|n− 1, 2〉

]
,

−1
2
ig�
(
S+â − â†S−)|ψ(t)〉 = −1

2
i�g
{
C1n(t)

√
n|n− 1, 2〉

−C2n(t)
√
n|n, 1〉} . (8.6)

Projecting Eq. (8.5) onto 〈1, n| on the left results in a differential
equation for the amplitude C1n(t):

i�Ċ1n(t) = �nω0C1n(t)+ 1

2
i�g

√
nC2n(t). (8.7)

Projecting Eq. (8.5) onto 〈2, n− 1| on the left results in a differential
equation for the amplitude C2n(t):

i�Ċ2n(t) = �nω0C2n(t)− 1

2
i�g

√
nC1n(t). (8.8)
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Thus, we have obtained two coupled differential equations that can

be written in the form⎧⎨
⎩
Ċ1n(t) = −inω0C1n(t)+ 1

2
g
√
nC2n(t),

Ċ2n(t) = −inω0C2n(t)− 1
2
g
√
nC1n(t).

(8.9)

The set of the equations (8.9) can be solved for arbitrary initial

conditions using, for example, the Laplace transform method. The

solution for the amplitude C2n (t) is given by

C2n(t) = 1

2
e−inω0t

{
[iC2n(0)− C1n(0)] e

1
2
i�t

+ [iC2n(0)+ C1n(0)] e− 1
2
i�t
}
, (8.10)

where� = g
√
n is the Rabi frequency and

Cin(0) = 〈i, n|ψ(0)〉 , i = 1, 2, (8.11)

is the probability amplitude that the system was initially in the

state |i, n〉.
Note that, in general, the state vector (8.3) is a superposition

state, which cannot be written as a product of the atomic and field

states. It is therefore an example of an entangled state between the

atom and the field mode. Only for particular times at which C1n(t) =
0 or C2n(t) = 0, the state is in the form of a product states that at

these particular times the atomand the field are independent of each

other (disentangled).

8.2.3 Population of the Atomic Excited State

The probability amplitudes Cin(t) continuously evolve in time

indicating a continuous exchange of an excitation between the atom

and the cavity mode. Let us look closely at the time evolution of the

population of the atomic excited state.

Consider first the initial state of the system

|ψ(0)〉 = |1, n0〉, (8.12)

in which the atom is in its ground state and n0 photons are present
in the cavity mode. In this case, the initial values of the probability

amplitudes are

C2n (0) = 0, C1n(0) = 〈1, n|1, n0〉 = δn,n0 , (8.13)
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Figure 8.2 Time evolution of the population P2(t) for the atom initially in

the ground state |1〉 and the definite (fixed) number of photons present in
the cavity mode, n0 = 5.

so that the time evolution of the amplitude C2n(t) takes the form

|C2n (t)|2 = sin2
(
1

2
�t
)

δn,n0 . (8.14)

Hence, the population of the state |2〉 is given by

P2 (t) =
∑
n

|C2n (t)|2 = sin2
(
1

2
�t
)
. (8.15)

The time evolution of the population P2(t) for a definite number
of photons present in the cavity mode is shown in Fig. 8.2. The

population oscillates with the Rabi frequency and at certain times

P2(t) = 1, indicating that all the population is in the upper state (the

total population inversion). Physically, Eq. (8.15) says that the atom

initially in its ground state can absorb a photon from the initially

excited field mode, and that the atom and the field then sinusoidally

and continuously exchange this photon of energy.

8.3 Collapses and Revivals of the Atomic Evolution

The results derived in the previous section can be generalized to the

casewhere the initial state of the field is not a state of definite photon
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number, but rather some superposition of such number states. For

example, assume that the initial state of the system was |ψ(0)〉 =
|1, α〉, that the atomwas in the ground state |1〉, while the fieldwas in
the coherent state |α〉. In this case, the initial values of the probability
amplitudes are

C2n(0) = 0, C1n (0) = 〈n|α〉, (8.16)

which gives

|C1n (0)|2 = |α|2n
n!

e−|α|2 , (8.17)

whereα is a complex number. Then, the population P2 takes the form

P2 (t) =
∑
n

〈n〉n
n!

e−〈n〉 sin2
(
1

2

√
ngt
)
, (8.18)

where 〈n〉 = |α|2 is the mean number of photons in the cavity field.
No exact analytic expression for the sum in Eq. (8.18) exists, but

one can notice that due to the Poisson distribution of the photon

number n, there will be a spread in the Rabi frequency over different
n. As a result the Rabi oscillationswill dephase and next will collapse
after some time t.

Figure 8.3 shows the time evolution of the population P2(t) for
the mean photon number 〈n〉 = 20. The oscillations collapse after

0 50 100 150 200 250
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2gt
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Figure 8.3 Time evolution of the population P2(t) for an initial coherent
state of the field with the mean photon number 〈n〉 = 20.
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few Rabi periods, remain constant over a finite interval of time and

then the oscillations reappear again. This revival then collapses and

again after a finite time a new, but longer, revival begins. This process

repeats but disappears after a long time, not shown in the figure.

This phenomenon is called collapses and revivals of the atomic
evolution [50], and can be explained as follows:

Consider the population P2 (t), given in Eq. (8.18). Usually, no
analytical expression for the sum (8.18) exists, but the general

behaviour of P2 (t) can be described by noting that Eq. (8.18) can
be rewritten as the product of a rapidly oscillating term and a slowly

varying envelope function, that is

P2 (t) = 1

2

[
1−
∑
n

〈n〉n
n!

e−〈n〉 cos
(
g
√
nt
)]

= 1

2

[
1−
∑
n

〈n〉n
n!

e−〈n〉Re
(
eig

√
nt
)]

= 1

2

{
1− Re

[
ei

√〈n〉gt D (t)
]}
, (8.19)

where

D (t) =
∑
n

〈n〉n
n!

e−〈n〉eig(
√
n−√〈n〉)t (8.20)

is the slowly oscillating envelope function.

Note that D (t) oscillates with two opposite phases, one (nega-
tive) for n < 〈n〉 and the other (positive) for n> 〈n〉. Interferences
between the different components (with different phases) in the

summation cause D(t) to first approach zero (collapse) and then
increase again (revival).

A collapse appears when the phases of the two components, n <

〈n〉 and n > 〈n〉, differ by π (are opposite). To show this explicitly,

consider two phases which differ by the standard deviation 
n.
These phases have the most significant effect on the modulation

of D(t). Thus, for two phases to get different by π :(√
〈n〉 + 1

2

n−

√
〈n〉
)
gt ≈

(√
〈n〉 − 1

2

n−

√
〈n〉
)
gt + π,

(8.21)
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which gives the time

tc = 2π

g

√〈n〉

n

, (8.22)

that for a Poisson distribution reduces to

tc = 2π

g
. (8.23)

Revival time tR is determined by how long it takes two phases

differing by 1 to rephase, that is(√
〈n〉 + 1−

√
〈n〉
)
gt ≈ 2π, (8.24)

which gives the time

tR ≈ 4π

g

√
〈n〉. (8.25)

The ratio of the revival to the collapse time is

tR
tC

= 2
n. (8.26)

Since 
n � 1, the revival time is longer compared to the collapse

time.

We have illustrated the collapse and revival phenomena for the

initial coherent state of the field. It is not difficult to extend the

analysis to other initial field states, for example, thermal or squeezed

states, which also produce collapses and revivals. The collapse and

revival times then depend on the details of the photon number

probability distributions of the field states.

An obvious question ariseswhether the Jaynes–Cummingsmodel

could be realized in practice. Recently it has become possible

to create cavities composed of a single mode of sufficiently high

quality factor Q. The quality factor indicates the lifetime of a single
photon in the cavity Q/ω, where ω is the photon frequency. In the

laboratory of Harochea, a high-Qmicrowave cavity, Q ∼ 6×109, was
fabricated [51]. In such cavity, light travels 39,000 km before leaving

the cavity. To increase the coupling of the atom to the cavity mode,

Rydberg atoms were used. The Rydberg atoms are highly excited

atoms which have large sizes and therefore can have huge dipole

aSerge Haroche was granted the Nobel prize in 2012 for his experimental work that

enabled measuring and manipulation of individual quantum systems.
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moments, proportional to n2, where n is the principal quantum

number [52]. Because the dipole moments of Rydberg atoms are so

large, the atoms can strongly couple to the cavity mode.

Another possibility where the interaction between a two-level

atom and a single photon can be studied is a superconducting qubit

placed in a superconducting strip line cavity. The coplanar strip line

cavity can be viewed as a squashed coaxial cable. The length of

the cavity corresponds to the microwave wavelength. In the first

realization of this system, by the group of Schoelkopf [53], the

quality factor of Q ∼ 7500 was achieved.

Exercises

8.1 (a) Show that the operator

N̂ = Sz + â†â

commutes with the Jaynes–Cummings Hamiltonian (8.1).

(b) What is the physical meaning of the operator N̂ and the

fact that it commutes with Ĥ ?
(c) What would be the result of the commutator [N̂ , Ĥ ] if the

Hamiltonian included the counter-rotating terms?

8.2 Show that in the basis of product states |1, n〉 and |2, n− 1〉,
the Jaynes–Cummings Hamiltonian (8.1) can be written in a

matrix form as

Ĥ = �ω

(
n+ 1

2

)
I + �

(
1
2

 g

√
n

g
√
n − 1

2



)
,

where I is the 2 × 2 unit matrix and 
 = ω0 − ω is the

detuning of the atomic transition frequency ω0 from the field

mode frequency ω.

8.3 Diagonalize the Hamiltonian given in Exercise 8.2 to find

energies and the corresponding energy states of the Jaynes–

Cummings model.

8.4 Solve the time-dependent Schrödinger equation with the

Jaynes–Cummings Hamiltonian (8.1) to find the evolution

operator

Û (t) = e−i Ĥ t/�.
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8.5 Show that the free part Ĥ0 = �ω0Sz + �ω(â†â + 1/2) and

the interaction part HI = − 1
2
i�g(S+â − S−â†) of the Jaynes–

Cummings Hamiltonian commute.

8.6 Calculate the evolution of the population P2(t) for a two-level
atom interacting with a single-mode EM field of frequency

ω detuned from the atomic frequency ω0; that is, ω �= ω0.

Assume the initial state of the system |ψ(0)〉 = |1, n0〉.
8.7 Using computer programs, plot the time evolution of the

population P2(t) for the atom initially in the ground state |1〉,
interacting with a resonant cavity field initially in

(a) thermal (chaotic) state with 〈n〉 = 1.

(b) squeezed coherent state |α, r〉 = D(α)S(r)|0〉.
(c) superposition state |n0〉 = (|0〉 + |2〉)/√2.
(d) Does the population P2(t) experience the collapses and

revival phenomena?

8.8 Evaluate the variance 
n for the squeezed coherent

state |α, r〉= D(α)S(r)|0〉 to show that depending on the phase
of α the collapse time may be shorter or longer than for the

initial coherent state.

8.9 Show that an increase in the collapse time is accompanied by

a delay in the onset of the revival.

8.10 Show that for a highly excited coherent state, 〈n〉 � 1, the

infinite sum in Eq. (8.18) can be converted into integrals

that can be evaluated analytically by standard saddle point

methods.
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Chapter 9

Open Quantum Systems

9.1 Introduction

We have now reached a point where it is possible to consider more

advanced and currently intensively developing topics in quantum

optics. These particular topics have been chosen because of their

importance in the development of modern laser physics, quantum

atom optics, quantum information and computation. We start by

considering the dynamics of an atom coupled in a free space to

a multi-mode electromagnetic (EM) vacuum field. In free space

an atom is coupled to many modes of the EM field and then an

initial excitation in the system is irreversibly emitted from the atom

into the field modes, never again to be reabsorbed by the atom,

in contrast to a close system such as the Jaynes–Cummings model

where an excitation was periodically exchanged between the atom

and the field. The evolution of an excited atom coupled to a multi-

mode EM field is a particular example of an open quantum system.

We will consider a two-level atom coupled to a multi-mode

EM field and work in the electric dipole approximation. First, we

will formulate the Hamiltonian of the system in which we will

describe different subsystems and the interactions between them.

Next, we will derive a master equation of the system that describes

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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dynamics of the atom interacting with a multi-mode EM field.

The term master equation refers to an equation of motion for the
reduced density operator of the atom interacting with the multi-

mode EM field treated as an external reservoir. In many problems,

the reservoir plays the role of environment upon which we have

neither control nor influence. This leads to the irreversible process

of spontaneous emission that is intrinsically connected with the

process of decoherence.

9.2 Hamiltonian of the Multi-Mode Interaction

We start from the Hamiltonian of a combined system that is

composed of a two-level atomdriven by a single-mode laser field and

coupled to the multi-mode EM field. The combined system is treated

as a closed system and its Hamiltonian can be written as

Ĥ = Ĥ0 + ĤL + ĤF + V̂ + Ĥint, (9.1)

where

Ĥ0 = �ω0Sz (9.2)

is the Hamiltonian of the free atom,

ĤL = �ωL

(
â†â + 1

2

)
(9.3)

is the Hamiltonian of a single-mode laser field driving the atom,

ĤF = �
∑
k

ωk

(
â†k âk + 1

2

)
(9.4)

is the Hamiltonian of the multi-mode field (reservoir) surrounding

the atom,

V̂ = −1
2
i��
(
S+e−iωLt − S−eiωLt

)
(9.5)

is the interaction between the laser (classical) field and the atom,

and � is the Rabi frequency which, for simplicity, we assume is a

real number, and the final term in Eq. (9.1)

Ĥint = −1
2
i�
∑
k

[
gkS+âk (t)− g∗

k S
−â†k (t)

]
(9.6)

is the interactionHamiltonian between the atomand themulti-mode

field.We treat the interactions between the atom and the fields in the

electric dipole approximation.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Derivation of the Master Equation 143

9.3 Derivation of the Master Equation

The combined system is usually in a mixed state. Therefore, the

dynamics of a two-level atom coupled to an external field are

conveniently studied in terms of the density operator of the com-

bined atom–field system.a The density operator ρT of the combined

atom–field system obeys the equation of motion, the Liouville–

von Neumann equation [54]

i�
∂

∂t
ρT (t) = [Ĥ , ρT (t)

]
. (9.7)

We first consider the interaction between the atom and the multi-

mode field and assume that there is no coherent driving field. It is

useful to work in the interaction picture in which

ρ̃T = ei Ĥ
′
0t/�ρTe

−i Ĥ ′
0t/�,

˜̂Hint = ei Ĥ
′
0t/� Ĥinte−i Ĥ ′

0t/�, (9.8)

where

Ĥ ′
0 = Ĥ0 + ĤL + V̂ + ĤF. (9.9)

This simplifies the equation of motion for the density operator to

i�
∂

∂t
ρ̃T (t) = [Ĥint (t) , ρ̃T (t)

]
, (9.10)

which shows clearly that the evolution of the density operator is

governed by the interaction Hamiltonian Ĥint (t) alone.
Formally integrating Eq. (9.10) with respect to time, we obtain

ρ̃T (t) = ρ̃T (0)+ 1

i�

∫ t

0

dt′
[
Ĥint
(
t′
)
, ρ̃T

(
t′
)]
, (9.11)

This is a Volterra-type integral equation which can be solved by

successive substitution in the form of an absolutely and uniformly

convergent series.

Substituting Eq. (9.11) into the right-hand side of Eq. (9.10), we

obtain

i�
∂

∂t
ρ̃T (t) = [Ĥint (t) , ρ̃T (0)

]
+ 1

i�

∫ t

0

dt′
[
Ĥint (t) ,

[
Ĥint
(
t′
)
, ρ̃T

(
t′
)]]

. (9.12)

aFor a generalization of the procedure to the case of N multi-level atoms see Z.

Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments
(Springer, Berlin, New York, Heidelberg, 2005).
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We can continue the same procedure to obtain an infinite series of

integral terms, which can be regarded as an exact explicit solution

for ρ̃T(t). In practice, the series is terminated at the second order,
which gives a sufficiently good approximation to the solution.

To proceed further, we assume that no correlation exists between

the atom and the EM field at the initial time t = 0, that is

ρ̃T (0) = ρ (0)⊗ ρF (0) , (9.13)

where ρ (0) is the density operator of the atom, so called

reduced density operator, and ρF (0) is the density operator of

the multi-mode vacuum field. No approximation is involved in this

decorrelation.

We now employ weak coupling or Born Approximation in which
the atom–field interaction is assumed to be weak, and there is no

back reaction of the atom on the reservoir. In this approximation, the

state of the reservoir does not change in time, remains unchanged

during the interaction and retains its initial value. Moreover, the

Born approximation involves treating the effects of the reservoir

correct to order g2k in the coupling constant. In this case, the time-
dependent density operator of the combined system can be written

as

ρ̃T

(
t′
) = ρ

(
t′
)⊗ ρF (0) . (9.14)

It is equivalent to say that the future state of the system–reservoir

density operator ρ̃T(t′) is determined by the state of the system
ρ (t′), and is not a function of the history of the reservoir.

Under this assumption and then by tracing over the field

variables, we can limit the calculation to the dynamics of the density

operator of the atom alone:

TrF
{
ρ̃T

(
t′
)} = TrF

{
ρ
(
t′
)
ρF(0)

} = ρ
(
t′
)
TrF {ρF(0)} = ρ

(
t′
)
.

(9.15)

Thus, after tracing over the field variables in Eq. (9.12), the master

equation takes the form

i�
∂

∂t
ρ (t) = TrF

{[
Ĥint (t) , ρ (0) ρF (0)

]}
+ 1

i�

∫ t

0

dt′TrF
{[
Ĥint (t)

[
Ĥint
(
t′
)
, ρ
(
t′
)
ρF (0)

]]}
.

(9.16)
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Substituting the explicit form of the interaction Hamiltonian Hint (t),
we get

∂

∂t
ρ (t) = −1

2

∑
k

{
gkS+ (t) ρ (0) 〈âk (t)〉 − g∗

k S
− (t) ρ (0) 〈â† (t)〉 − H.c.

}

+1

4

∑
k,k′

∫ t

0

dt′ gkg∗
k′
{
S+ (t) S− (t′) ρ (t′) 〈âk (t) â†k′ (t′)〉

+ [ρ (t′) S+ (t) S− (t′) − S− (t) ρ
(
t′
)
S+ (t′)] 〈âk (t) â†k′ (t′)〉

−S− (t′) ρ (t′) S+ (t) 〈âk
(
t′
)
â†k′ (t)〉

}
+ · · · 12 terms. (9.17)

The 12 terms explicitly not listed in Eq. (9.17) involve combinations

of the atomic operators giving the two-photon correlation functions

〈â†k′ (t) â†k′ (t′)〉, 〈âk (t) âk′ (t′)〉 and number of photons 〈â†k (t) âk′ (t′)〉.
It is seen from Eq. (9.17) that the evolution of the density

operator depends on the correlation functions of the field operators.

In the following, we assume the temperature of the reservoir to be

absolute zero that all modes of the EM field are in the ordinary

vacuum state for which the correlation functions are given by

〈âk〉 = 〈â†k′ 〉 = 0,

〈â†k′ (t) â†k′
(
t′
)〉 = 〈âk (t) âk′

(
t′
)〉 = 0,

〈â†k (t) âk′
(
t′
)〉 = 0,

〈âk (t) â†k′
(
t′
)〉 = eiωkte−iωk′ t′δkk′ . (9.18)

This step reduces the number of contributions that govern the evo-

lution of the density operator. Effectively, the 16 terms contributing

to themaster equation (9.17) reduce to only four contributions. Care

must be taken when selecting terms that are different from zero in

the ordinary vacuum field. In Eq. (9.18), there are terms of the form

S+ρ(t′)S−TrF
{
âk (t) ρF(0)â

†
k′
(
t′
)}
, (9.19)

and

S−ρ(t′)S+TrF
{
â†k (t) ρF(0)âk′

(
t′
)}
. (9.20)

One can think that in the ordinary vacuum, the term (9.19)will make

a non-zero contribution to themaster equation as 〈âk (t) â†k (t′)〉 �= 0.

However,

TrF

{
âk (t) ρF(0)â

†
k′
(
t′
)} = TrF

{
ρF(0)â

†
k′
(
t′
)
âk (t)

}
= 〈â†k′

(
t′
)
âk (t)〉 = 0, (9.21)
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and

TrF

{
â†k (t) ρF(0)âk′

(
t′
)} = TrF

{
ρF(0)âk′

(
t′
)
â†k (t)

}
= 〈âk′

(
t′
)
â†k (t)〉 �= 0. (9.22)

Thus, the terms of the form (9.19) are zero for the ordinary vacuum

field, and only terms of the form (9.20) will contribute to the master

equation.

Hence, for the ordinary vacuum field the master equation (9.17)

reduces to

∂

∂t
ρ (t) = −1

4

∑
k

∫ t

0

dt′|gk|2
{
S+S−ρ

(
t′
)
ei(ω0−ωk)(t−t′)

+ ρ
(
t′
)
S+S−e−i(ω0−ωk)(t−t′) − S−ρ

(
t′
)
S+ei(ω0−ωk)(t−t′)

− S−ρ
(
t′
)
S+e−i(ω0−ωk)(t−t′)

}
. (9.23)

We now change the time variable to τ = t − t′, which leads to

∂

∂t
ρ (t) = −1

4

∑
k

|gk|2
{
S+S−

∫ t

0

dτ ρ (t − τ ) ei(ω0−ωk)τ

+
∫ t

0

dτ ρ (t − τ ) e−i(ω0−ωk)τ S+S−

−
∫ t

0

dτ S−ρ (t − τ ) S+ei(ω0−ωk)τ

−
∫ t

0

dτ S−ρ (t − τ ) S+e−i(ω0−ωk)τ

}
. (9.24)

This is an integro-differential equation for ρ which includes the non-

Markovian evolution of the density operator ρ, that ρ (t) depends on
the past ρ (t − τ ).

We can eliminate the integral over τ by making the Markov
approximation. In this approximation, we assume that in time τ

the density operator ρ (t − τ ) changes slowly compared to the

exponents. Then we can write that ρ (t − τ ) ≈ ρ (t) and formally
perform the integration. In a typical atom, the density operator

changes on the time scale corresponding to the spontaneous

emission rate, ts ∼ 10−8s, and if ω0 is an optical frequency, the

exponents oscillate on the time scale t0 ∼ 10−15s, which is much
shorter than the atomic time scale. Thus, the Markov approximation
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is justified for atoms interacting with the ordinary vacuum field, and

we can replace ρ (t − τ ) by ρ (t).
In the limit of large t, the integral∫ t

0

dτ e±i(ω0−ωk)τ (9.25)

can be approximated by the function

lim
t→∞

∫ t

0

dτ e±i(ω0−ωk)τ = πδ (ωk − ω0)± i
P

ω0 − ωk
, (9.26)

where the real part is a delta function whose area is π and the

imaginary part is the Cauchy’s principal value P of the integral. If

we now introduce two frequency parameters defined as

π

4

∑
k

|gk|2δ (ωk − ω0) = 1

2
�, (9.27)

1

4

∑
k

|gk|2 P
ω0 − ωk

= 
, (9.28)

we obtain the master equation of the form

∂

∂t
ρ (t) = −i
 [S+S−, ρ (t)

]
−1
2

�
[
S+S−ρ (t)+ ρ (t) S+S− − 2S−ρ (t) S+] . (9.29)

Remember that the density operator ρ (t) is in the interaction

picture. Going back to the Schrödinger picture, we finally get

∂

∂t
ρ = −1

�
i
[
Ĥ ′
0, ρ
]− i


[
S+S−, ρ

]
−1
2

�
(
S+S−ρ + ρS+S− − 2S−ρS+) . (9.30)

The terms � and 
 arise from the non-zero correlations 〈âkâ†k′ 〉 and
therefore could be attributed to quantum fluctuations of the vacuum

field. Theymight be regarded as characteristic consequences of field

quantization and would be absent if the field was treated classically.

9.4 Spontaneous Emission and Decoherence

Our first problem using the master equation is the phenomenon

of spontaneous emission from an excited two-level atom. It is well
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known that the coupling of the excited atom to the vacuum field

will result in a spontaneous transition of the electron to the ground

state of the atom. We have already shown that the coupling of the

atom to the vacuum field results in a shift of the atomic levels and

in the appearance of an incoherent part in the master equation of

the atom. In view of this, the analysis of spontaneous emission from

the excited atom will allow us to find the physical interpretation of

the parameters � and
.

If only the vacuum field is involved in the interaction with the

atom, that is, there is no coherent driving field, the Hamiltonian Ĥ ′
0

then reduces to Ĥ0, so that we can write the master equation as

∂

∂t
ρ = −i (ω0 + 
)

[
S+S−, ρ

]
−1
2

�
(
S+S−ρ + ρS+S− − 2S−ρS+) . (9.31)

It is clear that the parameter
 combines with the atomic transition

frequency ω0 and, therefore, represents a shift of the atomic energy

levels.

9.4.1 The Lamb Shift

The shift of the atomic transition frequency, that appears in

Eq. (9.31), can be identified with the Lamba shift. Its magnitude is

calculated from Eq. (9.28). In the continuous-mode approximation,

in which we convert the mode sum over transverse plane waves into

an integral


 = 1

4
P
∫
dωk |gk|2 1

ω0 − ωk
. (9.32)

The integral is non-zero, and in fact is infinite for an unbounded

set of modes. In first sight, the infinite shift appears to be totally

unphysical. However, a close look into Eq. (9.32) shows that

the infinity is a consequence of the infinitely high frequencies

in the integration, that in fact are not observable in practice.

Hence, an approximate cutoff of the frequency at ωk = ωmax ∼ c/r0
needs to be added at an atomic dimension r0, in order for the

aWillis Lamb was granted the Nobel prize in 1955 for his discoveries concerning the

fine structure of the hydrogen spectrum.
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present approximation to be valid and to obtain an approximate

analytical formula for the Lamb shift. Moreover, in order to obtain

a complete calculation of the Lamb shift, it is necessary to extend

the calculations to higher order terms in the Hamiltonian including

electron mass re-normalization [55], and to include effects of the

other atomic levels [56, 57]. If these are included the standard non-

relativistic vacuum Lamb shift result is obtained. In fact, it is only

in the case of a fully relativistic Hamiltonian that the Lamb shift can

be made finite, and even then, only after quantum electrodynamic

re-normalization, which involves the removal of infinities.

In 1947, Lamb and Rutherford used a microwave frequency

method to examine the finite structure of the n = 2 energy

level of atomic hydrogen. Earlier, high resolution optical studies

of the Hα line have indicated a discrepancy between experiment

and the Dirac relativistic theory of the hydrogen atom. The Dirac

theory predicts that the 22S1/2 and 22P1/2 energy levels should

be degenerated. The early experiments suggested that these levels

were not in fact degenerated but separated by about 0.033 cm−1.
Lamb and Rutherford used an elegant combination of atomic beam

and microwave techniques and showed that the 22S1/2 level is

higher in energy than the 22P1/2 level by about 1000 MHz. The

lifting of the degeneracy was explained theoretically by Bethe as

arising from the interaction of the bound electron with the vacuum

fluctuations. These calculations predicted 1000 MHz for the shift.

In the interaction with the vacuum field only the 22S1/2 is affected

because non-relativistic atomic wavefunctions vanish at the origin

except for the s-states with l = 0, see Eq. (2.25):

|ψn00|2 = 1

πn3a3o
, (9.33)

where ao is the Bohr radius.

9.4.2 Spontaneous Emission Rate and Decoherence

Consider now an evolution of the atomic dipole moment
〈
S+〉. Since〈

S+〉 = Tr
(
ρS+) = Tr (ρ |2〉〈1|) = ρ12, (9.34)

where ρ12 = 〈1|ρ|2〉 is the coherence between the states |1〉 and
|2〉, we can apply the master equation (9.31) to calculate the time
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evolution of the atomic dipole moment. We can find the equation of

motion for
〈
S+〉, or equivalently for the coherence ρ12, by projecting

the master equation (9.31) onto |2〉 on the right and 〈1| on the left
∂

∂t

〈
S+〉 = ∂

∂t
ρ12 = −i (ω0 + 
) 〈1| [S+S−, ρ

] |2〉
−1
2

� 〈1| (S+S−ρ + ρS+S− − 2S−ρS+) |2〉
= i (ω0 + 
) ρ12 − 1

2
�ρ12. (9.35)

This differential equation has a simple solution

ρ12 (t) = ρ12 (0) e
− 1

2
�tei(ω0+
)t , (9.36)

where ρ12 (0) is the initial coherence between the atomic states.

This shows that the dynamics of the atomic coherence is strongly

influenced by � and 
. The initially non-zero dipole moment

oscillates in time at a shifted frequency ω0 + 
, and its amplitude

is damped exponentially with the rate �/2. Thus, the obvious effect

of having � is seen to be the damping of the atomic coherence.

Physically, the damping is due to spontaneous emission and its pure

exponential form is the result of the Markov approximation made in

the derivation of the master equation.

The off-diagonal density matrix element ρ12 determines the

coherence between the two atomic levels. Therefore, we may say

that spontaneous emission causes decay of the coherence or, in

other words, spontaneous emission is a source of decoherence.

Note that the coherence ρ12 is different from zero only if the atom

is in a superposition state of the ground and the excited states.

Equivalently, we can say that spontaneous emission causes decay of

the superposition state.

The role of spontaneous emission as a damping process is more

evident if we consider the time evolution of the population of the

state |2〉. The equation of motion for the population ρ22 = 〈2|ρ|2〉 is
found by projecting the master equation (9.31) onto |2〉 on both the
left and the right

∂

∂t
ρ22 = −1

2
� 〈2| (S+S−ρ + ρS+S− − 2S−ρS+) |2〉

= −1
2

� 〈2| S+S−ρ |2〉 − 1

2
� 〈2| ρS+S− |2〉 + � 〈2| S−ρS+ |2〉

= −�ρ22. (9.37)
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The solution of the above equation is in a simple exponential form

ρ22 (t) = ρ22 (0) e
−�t , (9.38)

where ρ(0) is the initial population of the state |2〉. The initial
population of the excited state decays exponentially in time with

the rate �. Equation (9.38) gives a physical interpretation of the

coefficient � as the damping rate of the atomic excitation.

9.4.3 Einstein’s A Coefficient

In order to complete our derivation of themaster equation for a two-

level atom and obtain a clear meaning of the parameters involved,

we prove that the parameter� is equal to the Einstein’s A coefficient
for spontaneous emission.

The parameter � has been defined as

� = π

2

∑
k

|gk|2δ (ωk − ω0) , (9.39)

where k ≡ (�k, s). Inserting the explicit form of gk, Eq. (2.41), we get

� = π

�ε0V

∑
k

ωk | �μ · �ek|2 δ (ωk − ω0) . (9.40)

In order to evaluate the sum over k, we assume that �μ has only x-
component, �μ = μ[1, 0, 0], where μ = |�μ|, and will consider the
polarization vectors �ek in spherical coordinates. If we take the unit
propagation vector as

�k = [sin θ cosφ , sin θ sinφ , cos θ], (9.41)

then the unit orthogonal polarization vectors �ek1 and �ek2 can be
chosen as

�ek1 = [− cos θ cosφ , − cos θ sinφ , sin θ],

�ek2 = [sinφ , − cosφ , 0]. (9.42)

With this choice of the polarization vectors, the sum over s
appearing under the sum over k, becomes

2∑
s=1

| �μ · �ek|2 = μ2
(
cos2 θ cos2 φ + sin2 φ

)
. (9.43)

We may assume a continuous distribution of the field modes, which

is the case when the modes are redistributed in free space. This
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allows us to make the formal replacement of the sum over k by an
integral

∑
k

→ V
(2πc)3

∫ ∞

0

dωk ω2
k

∫ π

0

dθ sin θ

∫ 2π

0

dφ . (9.44)

All the integrations in the above equation can be performed

analytically. Since∫ 2π

0

dφ sin2 φ =
∫ 2π

0

dφ cos2 φ = π, (9.45)

and ∫ π

0

dθ
(
1+ cos2 θ

)
sin θ = 8

3
, (9.46)

we obtain for the damping rate

� = 1

4πε0

4μ2ω3
0

3�c3
, (9.47)

which is the Einstein’s A coefficient for spontaneous emission. The
damping rate is given in terms of the atomic parameters, which

comes from a fully quantum treatment of the atom–field interaction.

9.5 The Bloch–Siegert Shift: An Example of Non-RWA
Effects

In Chapter 2, we showed that the exact interaction Hamiltonian

between a two-level atom and an EM field contains the energy non-

conserving terms called the counter-rotating terms. These terms are

usually ignored as being rapidly oscillating over the time scale t ∼
1/ω0, and an obvious question arises whether there are situations

where these terms could generate physical observable phenomena.

In this section, we discuss the effect of the counter-rotating terms on

spontaneous emission from a two-level atom coupled to a vacuum

field. The counter-rotating terms are included into the interaction

by not making the RWA on the interaction Hamiltonian between the

atom and the vacuum field. As we shall see, the counter-rotating

terms can produce a small shift of the atomic levels, known in the

literature as the Bloch–Siegert shift.
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The exact interaction Hamiltonian that includes the counter-

rotating terms is of the form

Ĥint = −1
2
i�
∑
k

gk
[
S+âk(t)− S−â†k(t)+ S−âk(t)− S+â†k(t)

]
.

(9.48)

In addressing the question of the role of the counter-rotating

terms, we derive, with the procedure outlined in Section 9.3, the

master equation for the reduced density operator of the atom. The

derivation, the details of which are left for the reader as a tutorial

exercise, shows that the counter-rotating terms, appearing in the

Hamiltonian (9.48), lead to additional terms in the master equation

which takes the form

∂ρ

∂t
= −i (ω0 + 
)

[
S+S−, ρ

]− i

(
S+ρS+ − S−ρS−)

−1
2

�
{
S+S−ρ + ρS+S− − 2S−ρS+

−2S+ρS+ − 2S−ρS−} . (9.49)

There are no terms present like S+S+ρ or S−S−ρ, since S+S+ =
S−S− ≡ 0.

An important modification of the master equation is the

appearance of additional terms of the form S+ρS+ and S−ρS−,
which indicates a two-photon nature of the counter-rotating terms.

In the following, we will ignore the effect of the additional terms on

the small Lamb shift, and we will check how the two extra terms in

the dissipative part of the master equation modify the spontaneous

emission.

To identify the role of the counter-rotating terms, we consider

the evolution of the atomic dipole moment (coherence). Using

the master equation (9.49), we obtain two coupled differential

equations for the off-diagonal density matrix elements

ρ̇12 = iω0ρ12 − 1

2
�ρ12 + �ρ21,

ρ̇21 = −iω0ρ21 − 1

2
�ρ21 + �ρ12. (9.50)

Thus, the additional terms brought by the counter-rotating terms

couple the coherencies ρ12 to its conjugate ρ21. This is the
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modification of the dynamics of the atoms due to the presence of

the counter-rotating terms.a

We can solve the set of the coupled differential equations using,

for example, the Laplace transform method, which allows us to

transform the differential equations into a set of two coupled

algebraic equations. We can write the set of the transformed

equations in a matrix form as((
z+ �

2
− iω0

) −�

−�
(
z+ �

2
+ iω0

))(ρ12 (z)
ρ21 (z)

)
=
(

ρ12 (0)

ρ21 (0)

)
.

(9.51)

According to the Laplace transform method, the time evolution of

the atomic coherence is determined by the roots of the determinant

of the 2× 2 matrix. The determinant is of the form

D(z) =
(
z+ �

2

)2
+ ω2

0 − �2 =
(
z+ �

2

)2
+ ω2

0

(
1− �2

ω2
0

)

=
[
z+ �

2
+ i
(

ω0 − �2

2ω0

)][
z+ �

2
− i
(

ω0 − �2

2ω0

)]
.

(9.52)

The roots of the polynomial D(z) determine the time evolution of
the atomic coherence such that the real parts of the roots contribute

damping rates, while the imaginary parts contribute frequencies of

the oscillations. According to the expression (9.52), the counter-

rotating terms contribute to the imaginary parts
(
ω0 − �2/2ω0

)
,

that is, they give rise to a shift of the atomic resonance by the amount

of �2/2ω0. We identify this shift with the spontaneous emission

Bloch–Siegert shift. Since typically � � ω0, it is apparent that the

shift is very small.

In summary of this section, we may state that the counter-

rotating terms (the energy non-conserving terms) can have a

physical effect on the atomic dynamics. For an atom interacting with

a multi-mode reservoir, the terms cause a small shift of the atomic

levels, known as the Bloch–Siegert shift.

aThe coupling of the atomic coherence to its conjugate is formally similar to that

appearing in the equations of motion for a two-level atom interacting with a

squeezed vacuum.
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Exercises

9.1 Show that the master equation (9.30) for the reduced density

operator preserves the basic properties of a density operator

(normalization, hermiticity, etc.).

9.2 The state of a system is described by the density operator ρ(t),
and its evolution is determined by the Liouville–von Neumann

equation

i�
∂

∂t
ρ (t) = [Ĥ (t), ρ(t)] ,

where Ĥ (t) is the Hamiltonian of the system, which in general
can be time dependent. Show that the transformed density

operator ρ̃(t) = U (t)ρ(t)U †(t) evolves according to the

Liouville–von Neumann equation

i�
∂

∂t
ρ̃ (t) =

[
˜̂H (t), ρ̃(t)

]
,

where

˜̂H (t) = U (t)Ĥ (t)U †(t)+ i�U̇ (t)U †(t).

9.3 Consider spontaneous emission from a two-level atom initially

prepared in the excited state |2〉, that is, ρ22(0) = 1.

(a) Find the time evolution of the density matrix elements of
the system.

(b) Verify the conservation of the trace during the evolution,
that is, show that Trρ(t) = 1 for all t.

(c) Calculate the time evolution of Trρ2(t). At which time

Trρ2(t) is minimal? What is the state of the atom at that

time?

9.4 Show that the spontaneous emission rate � of a two-level

atom is equal to the Einstein’s A coefficient independent of the
polarization of the atomic dipole moment.

9.5 Consider a three-level atom in the ∨ configuration with two

degenerated upper states |1〉, |3〉 and a single ground state |2〉.
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The master equation of this system is given by

dρ
dt

= −1
2

�
(
S+
1 S

−
1 ρ + ρS+

1 S
−
1 − 2S−

1 ρS+
1

)
−1
2

�12
(
S+
1 S

−
2 ρ + ρS+

1 S
−
2 − 2S−

2 ρS+
1

)
−1
2

�12
(
S+
2 S

−
1 ρ + ρS+

2 S
−
1 − 2S−

1 ρS+
2

)
−1
2

�
(
S+
2 S

−
2 ρ + ρS+

2 S
−
2 − 2S−

2 ρS+
2

)
,

where S+
1 = |1〉〈2|(S−

1 = |2〉〈1|), S+
2 = |3〉〈2|(S−

2 = |2〉〈3|), are
the dipole raising (lowering) operators of the atomic tran-

sitions, and the parameters � and �12 are the spontaneous

emission damping rates, such that �12 ≤ �.

(a) Calculate equations of motion of the following density

matrix elements ρ11, ρ33, ρ13 and ρ31.

(b) Under what condition the parameter

α = ρ11 + ρ33 − ρ13 − ρ31

is a constant of motion.

(c) Using the condition that α is a constant of motion find the

time evolution of the population ρ11.

(d) Find the stationary (t → ∞) population of the state |1〉
assuming that initially ρ11(0) = 1 and ρ33(0) = ρ13(0) =
ρ31(0) = 0.

(e) What would be the stationary population of the state |1〉
if the atom was initially prepared in a superposition

state |�〉 = (|1〉 + |3〉) /√2.
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Chapter 10

Heisenberg Equations of Motion

10.1 Introduction

In the master equation method, we have already illustrated a

powerful technique for the calculation of the dynamics of an atomic

system interacting with the vacuum field. Another technique for

calculating the dynamics of an atomic system coupled to the elec-

tromagnetic (EM) field involves Heisenberg equations of motion for

the system’s operators. A difference between the master equation

and the Heisenberg equations is that the later involves dynamics of

the operators, which allows to analyse the evolution of an atomic

system in terms of the field and atomic operators. This creates some

problems with handling the Heisenberg equations as, in general,

operators do not commute and then in the course of solution of the

equations we may face the problem of ordering of the operators.

It is usually resolved by putting the operators in the normal order.

We have gained some experience with the Heisenberg equations

of motion in Chapter 6, Example 6.3, where we studied squeezing

generation in the nonlinear degenerate parametric amplifier (DPA)

process. Here, we illustrate the technique on the standard model

of a two-level atom interacting with a multi-mode field. We then

generalize the technique to some specific models such as Lorenz–

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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Maxwell and Langevin equations, the derivation of which involves

some approximations that can be applied only in some limited cases.

We also present in detail the Floquet approach, which is usually

applied to problems determined by differential equations with time-

dependent coefficients.

10.2 Heisenberg Equations of Motion

The Heisenberg equation of motion for an arbitrary operator of a

given system is found from the Hamiltonian of the system, and has

the form

d
dt
Â = i

�

[
Ĥ , Â

]
, (10.1)

where Â is an arbitrary operator of the system.
To illustrate the Heisenberg equation technique, we take a two-

level atom interacting with the EM field. The atom and the field are

described by the standard atomic spin and the field annihilation and

creation operators. The Hamiltonian of the system is of the form

Ĥ = �ω0Sz +
∑
k

�ωk

(
â†k âk + 1

2

)

−1
2
i�
∑
k

gk
(
S+âk − â†k S

−
)
, (10.2)

where, without loss of generality, we have assumed that the coupling

constant gk is a real number.
The Hamiltonian (10.2) generates the following Heisenberg

equations of motion for the atomic dipole moment S−, the atomic
inversion Sz and the annihilation operator of the k mode of the EM
field:

d
dt
S− = −iω0S− +

∑
k

gkâkSz , (10.3)

d
dt
Sz = −1

2

∑
k

gk
(
S+âk + â†k S

−
)
, (10.4)

d
dt
âk = −iωkâk + 1

2
gkS−, (10.5)
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and the equations ofmotion for the S+ and â† operators are obtained
by taking the Hermitian conjugate of the equation of motion for the

S− and â operators, respectively.
We see that the operator’s equations are in a form of nonlinear

equations of motion, as they contain product terms âkSz and
S+âk, â

†
k S

−. The average values of the operators, however, produce
linear set of equations of motion. For example, the equation of mo-

tion for the average dipole moment 〈S−〉 depends on the correlation
function 〈âkSz〉. Of course, an exact solution of these equations is
rather impossible, but we can make some approximations. In the

following, we illustrate the commonly used approximate methods of

solving the set of the Heisenberg equations of motion, Eqs. (10.3)–

(10.5).

10.3 Lorenz–Maxwell Equations

We first illustrate a method of solving the Heisenberg equations of

motion for the average atomic and field operators. After averaging

the Heisenberg equations of motion over an arbitrary atomic and

field state, we obtain

d
dt

〈S−〉 = −iω0〈S−〉 + g〈âSz〉,
d
dt

〈Sz〉 = −1
2
g
(〈S+â〉 + 〈â†S−〉) ,

d
dt

〈â〉 = −iω〈â〉 + 1

2
g〈S−〉, (10.6)

where, for simplicity, we have assumed that the atom is coupled to

a single mode of the EM field. This can happen, for example, if the

atom is located inside a cavity that tailors the EM field modes to a

single mode, called the cavity mode.

As we have said earlier, the Heisenberg equations of motion

for average values of the field and the atomic variables form a

set of c-number linear equations. However, the set of equations
is in fact composed of an infinite number of equations. It is easy

to derive how the set of equations (10.6) develops into a set of

infinite number of equations. For example, the equation of motion

for 〈S−〉 depends on the second-order correlation function 〈âSz〉.
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Thus, we have to find the equation of motion for the second-order

correlation function to determine 〈S−〉. By writing the equation of
motion for the second-order correlation function 〈âSz〉, we will find
that the equation depends on a third-order correlation function. This

procedure continues up to infinity.

How to deal with this problem? One of the possible approaches

is to truncate the set of equations by factoring out the field and atom

variables

〈âSz〉 = 〈â〉〈Sz〉, 〈âS+〉 = 〈â〉〈S+〉 , etc. (10.7)

This factorization is called the semiclassical approximation that the
field and the atom evolutions are independent of each other without

any quantum correlations between them. It is valid when the field

amplitude is large, |〈a〉| � 1.

The semiclassical approximation closes the equations. In the next

step, we add phenomenologically damping rates to the right-hand

sides of the equations of motion, as the atom and field can be treated

as two independent classical damped oscillators, and obtaina

d
dt

〈S−〉 = − (iω0 + �p

) 〈S−〉 + g〈â〉〈Sz〉,
d
dt

〈Sz〉 = −�d − �d〈Sz〉 − 1

2
g
(〈â〉〈S+〉 + 〈â†〉〈S−〉) ,

d
dt

〈â〉 = − (iω + κ) 〈â〉 + 1

2
g〈S−〉, (10.8)

where �p is the damping rate of the atomic polarization, �d is the

damping rate of the atomic inversion and κ is the damping rate of

the field mode. To remove the effect of the fast oscillations with the

frequencies ω0 and ω, we introduce a rotating frame through the

relations

〈 ˜̂a〉 = 〈â〉eiωt , 〈 ˜̂a†〉 = 〈â†〉e−iωt , 〈S̃±〉 = 〈S±〉e∓iω0t . (10.9)

After substituting Eq. (10.9) into Eq. (10.8) and introducing a

notation P (t) = 〈S̃±〉, D(t) = 〈Sz〉, and E (t) = 〈 ˜̂a〉 = 〈 ˜̂a†〉, the

aNote that by inclusion of the damping rates, the Heisenberg equations of motion

account, partially, for quantum fluctuations.
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equations of motion (10.8) take the form

d
dt
P (t) = −�pP (t)+ gE (t)D(t),

d
dt
D(t) = −�d − �dD(t)− gP (t)E (t),

d
dt
E (t) = −κE (t)+ 1

2
gP (t), (10.10)

where, we have assumed that the field frequency is resonant with

the atomic transition frequency, ω = ω0.

These equations are known in literature as the Lorenz–

Maxwell equations. Despite the decorrelation approximation, these

equations are still too complicated to be handled analytically, and

are usually solved by a numerical integration. The decorrelation

converted the infinite set of linear equation into a finite set of

nonlinear equations.

An important property of the equations is that their nonlinear

character can lead to chaotic instabilities (classical chaos) in the

atomic and field dynamics. This is illustrated in Fig. 10.1, where

-20
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20
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P(t)

D
(t
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Figure 10.1 Three-dimensional plot of the time evolution of the polar-

ization P (t), inversion D(t), and the field amplitude E (t) for g/κ = 46,

�p/κ = 0.66 and �d/κ = 0.16. (Figure courtesy Greg Kociuba).
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we plot the time evolution of the atomic and field variables. The

evolution forms attractors display the multi-stability of the atomic

and field variables.

10.4 Langevin Equations

Here we illustrate an approximate technique of solving the Heisen-

berg equations of motion in which we adiabatically eliminate the
field operators âk and â

†
k from the Heisenberg equations of motion,

Eqs. (10.3)–(10.5), leaving the analyses of the dynamics to the

atomic operators only. The adiabatic approximation is equivalent to

assume that the field does not change during the evolution, which is

a good approximation when the field is composed of a large number

of modes.

The technique proceeds as follows. In the first step, we solve

approximately the Heisenberg equation of motion for the field

operator âk. Note from Eq. (10.5) that the equation of motion for âk
contains no operator products. Therefore, we can formally integrate

the equation to obtain

âk (t) = âok (t)+ 1

2
gk

∫ t

0

dt′S− (t′) e−iωk(t−t′), (10.11)

where the first part

âok (t) = âk (0) e−iωkt (10.12)

is the free evolution part of the field that is not disturbed by the

atom. The second part of the solution (10.11) is a contribution from

the atom. It is the source field or radiation reaction field of the

atomic dipole and gives a field generated by the emitting atom.

In the next step, we substitute the solution (10.11) into

the equations of motion for the atomic operators. Before doing

this, we introduce few assumptions about the evolution of the

field amplitude that will allow us to perform the integration in

Eq. (10.11). First, we change the time variable under the integral to

τ = t − t′, giving

âk (t) = âok (t)+ 1

2
gk

∫ t

0

dτ S− (t − τ ) e−iωkτ . (10.13)
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There is a atomic operator under the integral and its time evolution

is unknown. Therefore, to remove the operator from the integral we

make an approximation, which in fact is equivalent to the Markov

approximation. In this approximation we assume that the evolution

of the atomic operator is close to a harmonic evolution with the

atomic frequency ω0, so that we can write

S− (t − τ ) � S− (t) eiω0τ . (10.14)

Then, we obtain the following equation for the time evolution of the

field operator

âk (t) = âok (t)+ 1

2
gkS− (t)

∫ t

0

dτ ei(ω0−ωk)τ , (10.15)

Thus, a major simplification has been achieved by the Markov

approximation. The remaining integral can be handled analytically

and, as before in the derivation of the master equation, the integral

can be approximated, in the limit of t → ∞, by the zeta function,

Eq. (9.26).

We now substitute the solution for âk (t) into the Heisenberg
equations of motion for S− and Sz, we find that the equation of
motion for the atomic operators become

Ṡ−(t) = −i (ω0 + 
) S−(t)− 1

2
�S−(t)+

∑
k

gk âok(t) Sz(t) , (10.16)

Ṡz(t) = −1
2

� − �Sz(t)

−1
2

∑
k

gk
[
âok (t) S

+(t)+ âo†k (t) S−(t)
]
. (10.17)

The last terms on the right-hand side of Eqs. (10.16) and (10.17)

depend on the state of the free field. For the vacuum state,

âok (t) |0〉 = 0, and then the terms vanish. For a coherent field, the

terms give the coherent field amplitude, which will lead to the Rabi

frequency of the field.

The operator equations that we have just derived for Ṡ− (t) and
Ṡz (t) are known in the literature as the quantum Langevin equations
for a two-level atom. The equations are usually written in the form

Ṡ− (t) = −i (ω0 + 
) S− (t)− 1

2
�S− (t)+ Sz (t) F (t) ,

Ṡz (t) = −1
2

� − �Sz (t)− 1

2
S+ (t) F (t)− 1

2
F + (t) S− (t) ,

(10.18)
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where

F (t) =
∑
k

gkâok (t) (10.19)

is called the Langevin operator.

The Langevin equations are commonly used in the study of the

effects of external fields on atoms where higher order statistics are

important as thermal or squeezed fields. For these fields 〈âk〉 and
〈â†k 〉 are zero and the higher order moments are important.

10.5 Optical Bloch Equations

Optical properties of a coherently driven two-level atom are often

studied in terms of the optical Bloch equations. These equations

are in fact equations of motion for the expectation values of the

atomic spin operators obtained from the Heisenberg equations of

motion averaged over the initial state of the atom and the field. The

equations can be written as

d
dt

〈S+〉 = −
(
1

2
� − iω0

)
〈S+〉 + �(t)〈Sz〉,

d
dt

〈S−〉 = −
(
1

2
� + iω0

)
〈S−〉 + �∗(t)〈Sz〉,

d
dt

〈Sz〉 = −1
2

� − �〈Sz〉 − 1

2

(
�∗(t)〈S+〉 + �(t)〈S−〉) , (10.20)

where the interaction of the atomwith the multi-mode vacuum field

results in damping of the atomic dipole moment 〈S±〉 with rate �/2

and the atomic population inversion 〈Sz〉with rate�. The interaction

of the atom with the driving laser field is determined by the time-

dependent Rabi frequency�(t).
The optical Bloch equations (10.20) are coupled first-order

differential equations with time-dependent coefficients. In order to

solve the set of the Bloch equations, we have to know explicitly the

time dependence of�(t). For a monochromatic laser field

�(t) = � ei(ωLt+φL), (10.21)

where ωL is the frequency of the laser field and φL is its phase. In

this case, one can find a rotating frame in which the coefficients will
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be independent of time. To show this, we introduce new (rotated)

variables for the expectation values of the atomic operators that are

free from the rapid oscillations at optical frequencies

〈S̃± (t)〉 = 〈S±〉e∓i(ωLt+φL). (10.22)

In terms of the new variables, the optical Bloch equations become

d
dt

〈S̃+〉 = −
(
1

2
� − iδL

)
〈S̃+〉 + �〈Sz〉,

d
dt

〈S̃−〉 = −
(
1

2
� + iδL

)
〈S̃−〉 + �〈Sz〉,

d
dt

〈Sz〉 = −1
2

� − �〈Sz〉 − 1

2
�
(〈S̃+〉 + 〈S̃−〉) , (10.23)

where δL = ω0 − ωL is the detuning of the laser frequency from

the atomic transition frequency ω0. Equations (10.23) are first-

order differential equations with time-independent coefficients.

In principle, the equations can be solved analytically by direct

integration, or by the Laplace transformation to an easily solvable

algebraic equations.

We can rewrite Eqs. (10.23) in terms of components of the atomic

spin vector by introducing a real vector �B = (〈Sx〉, 〈Sy〉, 〈Sz〉), called
the Bloch vector. The components of the Bloch vector satisfy the

following equations of motion

d
dt

〈Sx〉 = −1
2

�〈Sx〉 − δL〈Sy〉 + �〈Sz〉,
d
dt

〈Sy〉 = −1
2

�〈Sy〉 + δL〈Sx〉,
d
dt

〈Sz〉 = −1
2

� − �〈Sz〉 − �〈Sx〉. (10.24)

The components 〈Sx〉 and 〈Sy〉 are, respectively, the real and

imaginary parts of the coherence between the atomic levels, and 〈Sz〉
is the population inversion. In terms of the components of the Bloch

vector, and in the absence of damping (� = 0), Eq. (10.24) may be

written as [3, 4]

d �B
dt

= ��B × �B , (10.25)

where ��B = (0, �, δL) is the pseudo-field vector of magnitude

| ��B | = (�2 + δ2L)
1/2.
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ΩBB

<Sx>

<Sy>
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Figure 10.2 The Bloch sphere showing the Bloch vector �B precessing about
the pseudo-field vector ��B for the case of an off-resonant driving with

δL �= 0.

The solutions of Eq. (10.25) describe the precession of the atomic

spin vector around the ��B axis. It is clear that the evolution of �B
depends on its orientation relative to ��B . In general, �B precesses

about ��B in such a way that the relative angle between the two

vectors remains constant, that is, �B precesses in a cone about ��B ,

as illustrated in Fig. 10.2. For the resonant driving (δL = 0), the

Bloch vector precesses in the (〈Sx〉, 〈Sz〉) plane. For δL � 0, the

Bloch vector remains almost constant in time and pointing towards

the south pole of the Bloch sphere.

If we prepare the system in a state such that �B is initially

parallel or antiparallel to ��B , the Bloch vector will stay in this

position forever. This phenomenon is sometimes referred to as spin

locking [60]. Thus, the simple representation of the system in terms

of the Bloch vector provides a useful picture for understanding

dynamics of a driven two-level atom.

10.6 Floquet Method

For non-stationary (time-dependent) fields the expectation values

of the atomic operators can depend on time even in the stationary
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(steady-state) limit. In this section, we illustrate a method of solving

the optical Bloch equations for time-dependent driving fields.

If the driving field is composed of more than one frequency

component, the time dependence of the Rabi frequency�(t) is quite
complicated and in general can involve many different parameters.

In this case, it is not possible to find a rotating frame in which the

coefficients of the Bloch equations would be time independent. This

renders the problemdifficult to solve, except for those cases inwhich

the time dependence involves only few, two or three, frequencies or

many frequencies separated by a constant detuning.

An example of such fields is a bichromatic field containing two

components of different frequencies

�(t) = �
[
ei(ωL1t+φL1) + ei(ωL2t+φL2)

]
= �

(
1+ ei(δt+δφ)

)
ei(ωL1t+φL1), (10.26)

where δ = ωL2 − ωL1 is the frequency difference between the

frequency components, and δφ = φL2−φL1 is the difference between

initial phases of the fields.

Another example is an amplitude-modulated field [58]

� (t) = � [1± a cos(δt)] , (10.27)

where a = 2�m/� is the modulation amplitude, or a phase-

modulated field

� (t) = � [1± ia cos(δt)] , (10.28)

where�m is the Rabi frequency of the modulating (sideband) fields,

and δ is the modulation frequency.

The optical Bloch equations with time-dependent (time-

periodic) coefficients are solved by the Floquet method, in which the

atomic dynamics are described in terms of Fourier harmonics of the

expectation values of the atomic spin operators. In this approach, we

make the Fourier decomposition of the expectation values

X k (t) =
∞∑

l=−∞
X (l)k (t)e

i lδt , k = 1, 2, 3, (10.29)

where X 1 = 〈S̃+〉, X 2 = 〈S̃−〉, X 3 = 〈Sz〉 and X (l)k (t) are slowly
varying harmonic amplitudes. The Fourier decomposition (10.29)
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shows that the atomic variables will respond at harmonics of the

modulation frequency δ, and knowledge of X (l)k (t) gives all the
information about the system evolution.

Let us illustrate the Floquet method for the case of a two-

level atom driven by a bichromatic field. We choose a frame

rotating at frequency ωL1 and, for simplicity, we assume δL1 =
0. Hence, substituting Eq. (10.29) into Eq. (10.23) and comparing

coefficients of the same powers in lδ, we obtain the following set of
infinite number of coupled first-order differential equations for the

harmonic amplitudes

∂

∂t
X (l)1 = −

(
1

2
� + i lδ

)
X (l)1 + �

(
X (l)3 + X (l−1)3

)
,

∂

∂t
X (l)2 = −

(
1

2
� + i lδ

)
X (l)2 + �

(
X (l)3 + X (l+1)3

)
,

∂

∂t
X (l)3 = −1

2
�δl , 0 − (� + i lδ) X (l)3

−1
2

�
(
X (l)1 + X (l+1)1 + X (l)2 + X (l−1)2

)
, (10.30)

where δ = ωL2 − ωL1, and δl , 0 is the Kronecker delta function.

Thus, the Floquet method transforms the three Bloch equa-

tions with time-dependent coefficients into an infinite number

of equations with time-independent coefficients. We can solve

Eq. (10.30) by using the continued fraction technique, or we can

write Eq. (10.30) in a matrix form and solve by matrix inversion. In

both techniques, we have to use truncated basis rather than infinite

basis of the harmonic amplitudes. The validity of the truncation

is ensured by requiring that the solution does not change as the

number of truncated harmonics increases or decreases by one.

Equation (10.30) can be written in the form of a recurrence

relation

d
dt

�X (�) (t) = −�

2
δ�, 0

�I
−A�

�X (�) (t)− B�
�X (�−1) (t)− D�

�X (�+1) (t) , (10.31)
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where �I is a column vector with the components I1 = I2 = 0, I3 = 1,

and A�, B� and D� are the matrices

A� =
⎛
⎝
(
1
2
� + i�δ

)
0 −�

0
(
1
2
� + i�δ

) −�
1
2
� 1

2
� (� + i�δ)

⎞
⎠ , (10.32)

B� =
⎛
⎝0 0 −�

0 0 0

0 1
2
� 0

⎞
⎠ , D� =

⎛
⎝ 0 0 0

0 0 −�
1
2
� 0 0

⎞
⎠ . (10.33)

One method of solving a recurrence relation is to use continued

fractions. However, we choose instead to solve in terms of the

eigenvalues and eigenvectors of the infinite-dimensional (Floquet)

matrix, which we construct by arranging the amplitudes X (�)(t) in
the order

�Y (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

X (1) (t)
X (0) (t)
X (−1) (t)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (10.34)

Equation (10.31) can then be written as the matrix differential

equation

d
dt

�Y (t) = K̄ �Y (t)+ �P , (10.35)

where K̄ is an infinite-dimensional tridiagonal (Floquet) matrix

composed of the 3×3 matrices A�, B� and D�, and �P is an infinite-
dimensional vector with the non-zero component− 1

2
�δ�, 0 I .

The matrix equation (10.35) is a simple differential equation

with time-independent coefficients that can be solved by direct

integration. For an arbitrary initial time t0, the integration of

Eq. (10.35) leads to the following formal solution for �Y (t):
�Y (t) = �Y (t0) eK̄ t −

(
1− eK̄ t

)
K̄−1 �P . (10.36)

In order to proceed further, we have to truncate the dimension

of the vector �Y (t). The validity of the truncation is ensured by
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requiring that the solution (10.36) does not change as the dimension

of �Y (t) increases or decreases by one. Because the determinant of
the finite-dimensional (truncated) matrix K̄ is different from zero,

there exists a complex invertible matrix T̄ which diagonalises K̄ ,
and λ = T̄ −1 K̄ T̄ is the diagonal matrix of complex eigenvalues. By

introducing �L= T̄ −1 �Y and �R = T̄ −1 �P , we can rewrite Eq. (10.36) as
�L(t) = �L(t0) eλt − (1− eλt) λ−1 �R , (10.37)

or, in component form

Li (t) = Li (t0) eλi t −
q∑
j=1

(
λ−1)

i j

(
1− eλ j t

)
R j , (10.38)

where q is the dimension of the truncated matrix. To obtain

solutions for the components X (�)i (t), we determine the eigenvalues
λi and eigenvectors Li (t) by a numerical diagonalization of the

matrix K̄ .
The steady state values of the harmonics X (�)i (t) can be found

from Eq. (10.38) by taking t → ∞, or more directly by setting the

left-hand side of Eq. (10.35) equal to zero. Thus

Yi (∞) = −
q∑
j=1

(
K̄−1)

i j P j . (10.39)

The quantity X (0)3 (∞) has an important interpretation in terms of

directly measurable quantities, besides being the stationary energy

expectation value of the atom in units of �ω0.

The stationary intensity Is = 〈E (−)( �R , ∞)E (+)( �R , ∞)〉 of

the fluorescence field radiated by the atom and detected by a

photodetector at a point �R in the far field zone may be expressed

with help of the commutation relations (2.18) in the form

Is =
[
1

2
+ X (0)3 (∞)

]
. (10.40)

It follows that the quantity 1
2

+ X (0)3 (∞) is a measure of the light

intensity in the far-field zone.

We now present some numerical calculations that illustrate

the behaviour of the stationary intensity of the fluorescence field.
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Is

Ω/Γ

(a)

Is

δ/Γ

(b)

Figure 10.3 The stationary fluorescence intensity for a bichromatic driving

field plotted in frame (a) as a function of �/� and constant δ = 5�, and in

frame (b) as a function of δ/� and constant� = 20�.

Figure 10.3(a) shows the stationary intensity as a function of � for

a fixed δ, whereas Fig. 10.3(b) shows the variation of the intensity

with δ for a constant �. We see that the periodic modulation of

the Rabi frequency introduces new features. The intensity no longer

increases steadily to the saturation value when the Rabi frequency

� increases, as in the case of the monochromatic driving with a

constant Rabi frequency. The intensity exhibits oscillations at the

harmonics of the modulation frequency δ. The intensity is far from

the saturation, Is = 1/2, when δ is large, evenwhen� is much larger

than saturating values for the monochromatic driving [59].
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Exercises

10.1 Consider the Jaynes–Cummings Hamiltonian

Ĥ = �ω0Sz + �ω

(
â†â + 1

2

)
− 1

2
i�g
(
S+â − S−â†

)
.

(a) Find the Heisenberg equations of motion for the atomic
and field operators.

(b) Show that in the case of exact resonance (ω = ω0),

2S̈z + g2Sz + 2g2SzN̂ = 0,

where N̂ = Sz + â†â is a constant of motion, N̂(t) = N̂(0).

10.2 Equations of motion for average values of the atomic spin

operators S+, S− and Sz of a two-level atom driven by a

coherent laser field are
d
dt

〈S+〉 = −
(
1

2
� − iω0

)
〈S+〉 + �〈Sz〉eiωLt ,

d
dt

〈S−〉 = −
(
1

2
� + iω0

)
〈S−〉 + �〈Sz〉e−iωLt ,

d
dt

〈Sz〉 = −1
2

� − �〈Sz〉 − 1

2
�
(〈S+〉e−iωLt + 〈S−〉eiωLt

)
,

where ωL is the laser frequency, ω0 is the atomic transition

frequency and� is the Rabi frequency of the laser field.

(a) Transform the equations of motion to a rotating frame,

where the equations of motion for the transformed

average values of the atomic spin operators have no

explicit time dependence.

(b) Find the time evolution of the average atomic dipole

moment 〈S+(t)〉 assuming that initially the atom was in

its ground state.

(c) Show that there is a threshold value for the Rabi

frequency � above which the dipole moment of the atom

oscillates with three different frequencies:ωL andωL±�.

For simplicity, assume that ωL = ω0.

10.3 Using the results of Exercise 10.2 for the time evolution

of 〈S±(t)〉 and 〈Sz(t)〉, show that in the absence of the

spontaneous emission (� = 0), the magnitude of the Bloch

vector is conserved, that is, 〈Sx(t)〉2 + 〈Sy(t)〉2 + 〈Sz(t)〉2 = 1

for all times t.
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10.4 Verify, using the results of Exercise 10.2 that in the steady

state (t → ∞) the expression for 〈Sz(t)〉 is of the form of a

Lorentzian centred at δL = ω0 − ωL = 0. The expression is

known as the absorption spectrum of the atom or stationary

line shape.

10.5 Show that the configurations with the Bloch vector �B parallel
or antiparallel to ��B correspond to an excitation of the atom

to particular superposition states of the atomic states |1〉 and
|2〉.

10.6 Show that an arbitrary 2× 2 matrix M can be written as

M = u0 I + �u · �σ ,
where u0 = 1

2
Tr(M), �u = 1

2
Tr(M�σ ), I is the 2 × 2 unit matrix

and �σ = (σx , σy , σz) are the Pauli matrices.

10.7 Using the result of Exercise 10.6, show that the density matrix

of a two-level atom can be written as

ρ = 1

2

(
I + �B · �σ

)
,

where all information about the state of the atom is contained

in the Bloch vector �B .
10.8 The most general state of a two-level atom is described by the

density matrix

ρ =
(

ρ11 ρ12

ρ21 ρ22

)
,

where the diagonal matrix elements ρ11, ρ22 are populations

of the atomic states and the off-diagonal elements ρ12, ρ21 are

coherences between them.

(a) Diagonalize the density matrix to show that the density

operator can be written in diagonal form

ρ = ραα|α〉〈α| + ρββ |β〉〈β|,
where |α〉, |β〉 are the eigenstates and ραα , ρββ are

the corresponding eigenvalues (energies) of the density

matrix ρ.

(b) The diagonal states |α〉 and |β〉 are superposition states
that can be written as

|α〉 = cos θ |1〉 + sin θ eiφ|2〉,
|β〉 = − sin θ |1〉 + cos θ eiφ|2〉.

Find cos θ in terms of the density matrix elements.
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(c) Show that the state |α〉 can be written in an alternative
form as

|α〉 = (1+ |z|2)− 1
2 exp(zS+)|1〉,

if we choose z = tan θ exp(iφ).
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Chapter 11

Dressed-AtomModel

11.1 Introduction

In this chapter, we present a powerful method of solving the Bloch

equations or the master equation of a driven system called the

dressed-atom model. The method is valid in situations where the

Rabi frequency of the applied driving field is much larger than

the spontaneous emission rate of the atom, � � �. Under such

conditions, one can make the secular approximation that consists of

dropping terms oscillating in time with frequencies 2� and higher.

These terms, if kept in the master equation, would make corrections

to the dynamics of the system of the order of �/�, and thus are

negligible. Although limited in the range of parameters for which it

can be used, the dressed-atommodel provides a physical insight into

the properties and dynamics of the system. Within this model, one

can explicitly calculate energy states and transition rates between

them in a relatively simple way. The knowledge of the energy states

and transition rates is for most of the problems enough to fully

understand the underlying physics. There are two mathematically

different approaches to the dressed-atommodel, but giving the same

results, depending on whether we treat the driving field classically

or quantum mechanically. These are the semiclassical and quantum

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
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dress-atom models. In the following we explain in details these two

dressed-atommodels.

11.2 Semiclassical Dressed-AtomModel

First, we illustrate the concept of the semiclassical dressed-atom

model in which the atom is treated as a quantum system composed

of two energy states |1〉 and |2〉, but the applied driving field is
treated classically, that is, the field is treated as a c-number not
as an operator. We have encountered this situation in the optical

Bloch equations (10.23), which describe the interaction of a two-

level atom with a classical coherent laser field.

By introducing a complex Bloch vector �Y = (〈S+〉, 〈S−〉, 〈Sz〉), we
can put the optical Bloch equations (10.23) into a matrix form

d �Y
dt

= A �Y − �G �Y + � �F , (11.1)

where A and G are 3× 3 matrices of the form

A =
⎛
⎝ iδL 0 �

0 −iδL �

− 1
2
� − 1

2
� 0

⎞
⎠ , G =

⎛
⎝ 1

2
0 0

0 1
2
0

0 0 1

⎞
⎠ , (11.2)

and �F is a column vector with the components F1 = F2 = 0,

F3 = −1/2. The matrix G is composed of the damping rates � and

for this reason can be called as a dissipative matrix. The matrix A
is composed of the parameters δL and � that are characteristic of

the driving field. For this reason we can call the matrix as a driving

matrix.

Note that the matrix A is not diagonal in the basis of the

complex components (〈S+〉, 〈S−〉, 〈Sz〉). We may find a new basis

in which the dynamics of the system would be determined by

diagonal matrices. The new basis is called the semiclassical dressed-

atombasis that determines dynamics between semiclassical dressed

states of the system. The dressed states are found from noting that

the Hamiltonian of the two-level atom driven by a classical field,

which leads to the non-dissipative part of the Bloch equations

Ĥ = �δLSz + 1

2
��
(
S− + S+) (11.3)
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is not diagonal in the basis of the atomic states |1〉 and |2〉. Diagonal-
ization of the Hamiltonian (11.3) results in the semiclassical dressed

states

|1̃〉 = cosφ|1〉 + sinφ|2〉,
|2̃〉 = sinφ|1〉 − cosφ|2〉, (11.4)

where cos2 φ = (1+ δL/�̃)/2 with �̃ = (4�2 + δ2L)
1/2 and the angle

φ defined such that 0 ≤ φ ≤ π/2. Let us introduce the raising,

lowering and population difference operators in the dressed-atom

basis

R21 = |2̃〉〈1̃|, R12 = |1̃〉〈2̃|, R3 = |2̃〉〈2̃| − |1̃〉〈1̃|. (11.5)

Using Eq. (11.4) it is easy to verify that dressed-atom operators

satisfy the commutation relations

[R21, R12] = R3, [R3, R21] = 2R21, [R3, R12] = −2R21.
(11.6)

The Hamiltonian and the master equation of a given system written

in terms of the dressed-atom operators are usually simpler in form,

easier to deal with mathematically and to interpret the physics

involved.

11.2.1 Dressing Transformation on the Interaction
Hamiltonian

Let us illustrate the dressing transformation on the interaction

Hamiltonian of the driven two-level atom interacting with a multi-

mode (reservoir) vacuumfield, Eq. (9.6). First, we replace the atomic

operators by the dressed-state operators

S− = −1
2
sin(2φ)R3 + sin2 φR21 − cos2 φR12,

S+ = −1
2
sin(2φ)R3 + sin2 φR12 − cos2 φR21,

Sz = − cos(2φ)R3 + sin(2φ) (R12 + R21) , (11.7)

where Ri j = |ĩ〉〈 j̃ | are the dressed-atom dipole operators and R3 =
R22 − R11. Then, we make the following unitary transformation

H̃int = exp(i H̃0t)Hint exp(−i H̃0t), (11.8)
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with

H̃0 = �R3 +
∑

λ


λa
†
λaλ, (11.9)

where 
λ = ωλ − ωL, and obtain the interaction Hamiltonian

between the dressed atom and the vacuum field

H̃int = i�
∑

λ

gλ

(
sca†λR3e

i
λt + c2a†λR12e
i(
λ−2�)t

−s2a†λR21ei(
λ+2�)t − H.c.
)
, (11.10)

in which s = sinφ and c = cosφ.

In the dressed-atom picture, the vacuum modes are tuned

to the dressed-state transitions that occur at three characteristic

frequencies,
λ and
λ±2�. If one considers a broadband reservoir
that is characterized by bandwidth much larger than �, then all

of the reservoir modes couple with the same strengths to the

dressed-atom transition frequencies. However, when the reservoir

field has a finite bandwidth that is much smaller than �, the

vacuum field modes then couple to the dressed-atom frequencies

with unequal strengths. In this case, spontaneous emission can

be dynamically suppressed by Rabi shifting the atomic transition

away from the reservoir central frequency. In this way, one can

control spontaneous emission from the driven atom by a suitable

matching of the frequencies of the reservoir field to the dressed-

atom frequencies [61].

11.2.2 Master Equation in the Dressed-Atom Basis

Let us now derive, using the Hamiltonian (11.10) given in the

dressed-atom basis, the master equation for the reduced density

operator of the system coupled to a vacuum field reservoir. We

shall assume that the reservoir has a finite bandwidth that is

broad enough for the Markov approximation to be valid but much

smaller than the Rabi frequency of the driving field. On carrying

out this procedure in the dressed-atom basis, it is found that in

the dissipative part of the master equation certain terms are slowly

varying in time while the others are oscillating with frequencies 2�

and 4�. Sincewe are interested in the casewhere the Rabi frequency

� is much larger than the atomic damping rate, � � �, we can
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invoke the secular approximation that consists of dropping these

rapidly oscillating terms. These terms, if kept in themaster equation,

would make corrections to the dynamics of the system of the order

of �/�, and thus completely negligible. After discarding the rapidly

oscillating terms in the dissipative part of the master equation, the

time evolution of the reduced density operator takes the form

∂ρ

∂t
= 1

2
�0 (R3ρR3 − ρ)+ 1

2
�− (R21ρR12 − R12R21ρ)

+1
2

�+ (R12ρR21 − R21R12ρ)+ H.c. (11.11)

The parameters

�0 = s2c2�|D(ωL)|2,
�− = s4�|D(ωL − 2�)|2,
�+ = c4�|D(ωL + 2�)|2, (11.12)

determine the damping rates between the dressed states of the

system. They also include the frequency-dependent density of

the vacuum modes, which may arise from a finite bandwidth of

the reservoir field. It is represented by the frequency-dependent

function D(ωλ), which is also known as the transfer function of the

reservoir. The absolute value square of D(ωλ) can be identified as

the Airy function of a frequency-dependent radiation reservoir. The

coefficient �0 corresponds to spontaneous emission occurring at

two transitions of the dressed atom. One from the dressed state

|1̃〉 to the state |1̃〉 of the manifold below, and the other from the

dressed state |2̃〉 to the state |2̃〉 of the manifold below. These

transitions occur at frequency ωL. The coefficient �+ corresponds

to spontaneous emission from the upper dressed state to the lower

dressed state of themanifold below and occurs at frequencyωL+2�,
whereas the coefficient �− corresponds to spontaneous emission

from the lower dressed state to the upper dressed state of the

manifold below and occurs at frequency ωL − 2�.

An important feature of the master equation (11.11), derived in

the limit of � � �, is that spontaneous transitions occur at three

well-separated frequencies, ωL, ωL + 2� and ωL − 2�. Thus, each

transition can be considered as a single two-level system, which

makes the master equation simple to solve.
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11.3 Quantum Dressed-AtomModel

We now illustrate the fully quantum-mechanical dressed-atom

model of a driven two-level atom first introduced by Cohen–

Tannoudjia and Reynaud [62, 63]. As we shall see, the quantum

description in which both the atom and field are treated as quantum

systems is more elegant than the semiclassical model that gives a

better insight into the processes involved in the dynamics of the

system. In the quantum description we clearly see the meaning of

dressing. The atoms are dressed in photons of the applied field to
form an effective single-cascade multi-level quantum system.

The fully quantummechanical Hamiltonian of the system is

Ĥ = Ĥ0 + V̂ , (11.13)

where

Ĥ0 = �ω0Sz + �ωL

(
â†â + 1

2

)
(11.14)

is the non-interacting atom-plus-field Hamiltonian and V̂ is the

interaction (in the rotatingwave approximation (RWA)) between the

atom and the laser field

V̂ = 1

2
�g
(
â†S− + S+â

)
, (11.15)

where the coefficient g describes the strength of the coupling

between the atom and the field.

11.4 Atom–Field Entangled States

The basis states for the quantum description of the system are the

eigenstates of the non-interacting atom-plus-field Hamiltonian Ĥ0,
which are the product states of the atomic and the field states

|ψ0〉 = |i〉 ⊗ |n〉 ≡ |i, n〉 , (11.16)

where |i〉 (i = 1, 2) is an atomic state, and |n〉 is the photon
number state of the field. We will call the product states (11.16) the

undressed states of the system.

aClaude Cohen–Tannoudji was granted the Nobel prize in 1997 for development of

methods to cool and trap atoms with laser light.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Atom–Field Entangled States 181

|1,0>

|1,1>

|1,2>

|1,3> |2,2>

|2,1>

|2,0>

ω0

ω0

ω0

Figure 11.1 Energy level diagram of undressed states of the system

composed of a two-level atom and a resonant (
 = 0) quantum field. The

ground state is a singlet state, whereas the excited (n > 0) states form

doublets of degenerate states separated in frequency by ω0.

In the energy level diagram, the undressed states group into

manifolds. The lowest manifold is composed of a single state |1, 0〉,
and the higher energy manifolds are composed of degenerate (when


 = ωL − ω0 = 0) or non-degenerate (when 
 �= 0) doublets.

Figure 11.1 shows the energy levels of the undressed states of the

system for the resonant case of 
 = 0. We see that in the basis of

the undressed states the energy levels form a ladder of degenerate

doublets separated by ω0.

The next step in the dressed-atom procedure is to include

the interaction V̂ and find the matrix representation of the total

Hamiltonian of the system in the basis of the undressed states. This

interaction appears as a perturber to the undressed states and we

will analyse the effect of the perturber on the undressed states of the

system. We show the detailed procedure for manifold n composed
two undressed states |1, n〉 and |2, n− 1〉. In the state |1, n〉, the
atom is in the ground state |1〉, and there are n photons present in
the laser mode. In the state |2, n− 1〉, the atom is in the excited state

|2〉, with n− 1 photons present in the laser mode.

We find the matrix representation of the Hamiltonian Ĥ in the

basis of the undressed states |1, n〉 and |2, n− 1〉. It is easy to show
that in the basis of the undressed states, the matrix elements of Ĥ
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are

〈1, n|Ĥ |1, n〉 = �nωL + 1

2
�
,

〈2, n− 1|Ĥ |2, n− 1〉 = �nωL − 1

2
�
,

〈1, n|Ĥ |2, n− 1〉 = 〈2, n− 1|Ĥ |1, n〉 = 1

2
�g

√
n. (11.17)

Note that the diagonal elements are determined solely by the free

Hamiltonian Ĥ0, whereas the off-diagonal elements are determined
solely by the interaction V̂ .

11.4.1 Resonant Field, 
 = 0

With the matrix elements (11.17) and at 
 = 0, the Hamiltonian of

the system written in the basis of the undressed states is given by a

2× 2 matrix

Ĥ = �

(
nω0 1

2
g
√
n

1
2
g
√
n nω0

)
. (11.18)

The eigenvalues (energies) and eigenstates of Ĥ are found by the

diagonalization of the matrix (11.18). From the diagonalization, we

find that the matrix has two non-degenerate eigenvalues

E± = �nω0 ± 1

2
�g

√
n, (11.19)

which indicates that the interaction V̂ lifts the degeneracy and leads
to new non-degenerate states |ψn〉, called the dressed states of the
system, that satisfy the eigenvalue equation

Ĥ |ψn〉 = E± |ψn〉 . (11.20)

Note that the splitting between the states |ψn〉 depends on n and
increases with n. However, for large n the splitting is almost constant
and we can replace n by 〈n〉.

In order to find the explicit form of the eigenvectors (dressed

states) |ψn〉, consider a linear superposition
|ψn〉 = a |1, n〉 + b |2, n− 1〉 . (11.21)

For the eigenvalue E+, the eigenvalue equation (11.20) written in a
matrix form (

�nω0 1
2
�g

√
n

1
2
�g

√
n �nω0

)(
a
b

)
= E+

(
a
b

)
, (11.22)
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yields the relation

�nω0a + 1

2
�g

√
nb = �nω0b+ 1

2
�g

√
na, (11.23)

from which we find that a = b. Hence, we write

|ψn+〉 = a (|1, n〉 + |2, n− 1〉) , (11.24)

where the remaining constant a is found from the normalization,

which gives a = 1/
√
2.

Thus, the eigenstate corresponding to the eigenvalue E+ is of the
form

|ψn+〉 = 1√
2
(|1, n〉 + |2, n− 1〉) . (11.25)

Similarly, we find that the eigenstate corresponding to the eigen-

value E− is of the form

|ψn−〉 = 1√
2
(|1, n〉 − |2, n− 1〉) . (11.26)

The eigenstates |ψn+〉 and |ψn−〉 are called the quantum dressed
states of the system. In other words, the laser field dresses the
atom in photons, and forms along with it a single, entangled

quantum system. Physically, this reflects the fact that photons are

exchanged between the atom and the driving field via absorption

and stimulated emission processes many times between successive

spontaneous emissions by the atom into the vacuummodes.

The dressed states of the system are shown in Fig. 11.2. In the

dressed state representation, the atom and the driving field evolve

as a single system, where the states cannot be written as a product

of the atomic and the field states. Since the dressed states (11.25)

and (11.26) are given in a form of linear superpositions of two

product states with equal amplitudes, we call them maximally
entangled states of the system. Note that the dressed states result
from the presence of off-diagonal terms (coherencies) in the matrix

representation of the Hamiltonian. Thus, the entanglement results

from the presence of the coherence between the atom and the field.

11.4.2 Vacuum Rabi Splitting and AC Stark Effect

The splitting of the first pair (n = 1) of the states is called the

vacuum Rabi splitting. Using the master equation of the driven and



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

184 Dressed-Atom Model

|1,0 >

|1,1 > |2,0 >

|1,2 > |2,1 >

|1,3 > |2,2 >

         Coupled 
undressed states

     Quantum 
dressed states

Ω1

Ω2

Ω3

g

g

g

|ψ1->
|ψ1+>

|ψ2+>

|ψ3+>

|ψ3->

|ψ2->

Figure 11.2 Energy level diagram of the coupled undressed states and

the resulting quantum dressed states of the system. The coupling between

the atom and the field lifts the degeneracy between the undressed states

resulting in two non-degenerate dressed states separated in frequency by

the Rabi frequency�n = √
ng.

spontaneously damped atom, we can find spontaneous dynamics of

the dressed system.

Before going into detailed calculations, wemay notice interesting

effects just by looking into the energy structure of the dressed

states. For example, spontaneous transitions from the first pair of

the dressed states to the ground state, n = 1 → n = 0, show

the vacuum Rabi doublet, as illustrated in Fig. 11.3, whereas the

transitions between two neighbouring doublets with n � 1 show

the Mollow triplet, as illustrated in Fig. 11.4. The constant splitting

in the Mollow triplet is equal to the Rabi frequency� = g
√〈n〉. The

splitting of the dressed states by the Rabi frequency� is sometimes

called the ac Stark effect.

It is interesting to note that the dressing process reduces

the spontaneous emission rate (decoherence). To show this more

explicitly, recall that the damping rate of an atom is proportional to
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|ψ1+>

|ψ1−>

1
2ω0+ g 1

2

g

|1,0>

ω0 g−

Figure 11.3 Spontaneous transitions from n = 1 doublet to the ground

state |1, 0〉 that give rise to the vacuum Rabi doublet.

n+|ψ    >

|ψ    >n−

ω0−Ωω0ω0 ω0+ Ω

(n−1)+|ψ        >

(n−1)−|ψ        >

Ω

Ω

Figure 11.4 Spontaneous transitions from the manifold n (n � 1) to the

manifold below, n − 1, that give rise to the Mollow triplet. For a large n, the
Rabi frequencies do not vary much with n, so that�n ≈ �n−1 ≡ �.

the dipole moment between the two atomic levels

�a ∼ |μ12|2, (11.27)

where μ12 = 〈1|μ|2〉.
In analogy, the damping rate between the dressed state |ψ1+〉 and

the ground state |1, 0〉 is proportional to
�+ ∼ |μ+0|2, (11.28)
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where

μ+0 = 〈ψ+|μ|1, 0〉 = 1√
2
(〈1, 1| + 〈2, 0|)μ|1, 0〉

= 1√
2

〈1|μ|2〉 = 1√
2

μ12. (11.29)

Thus, the damping rate is given by

�+ = 1

2
�a . (11.30)

Similarly, we can show that the damping rate between the dressed

state |ψ1−〉 and the ground state |1, 0〉 is given by

�− = 1

2
�a . (11.31)

Hence, the damping rates between the n = 1 dressed states and the

ground state is a half of that between the bare atomic levels of an

undriven atom.

11.4.3 Non-resonant Driving, 
 �= 0

We have seen that the dressed states of the system for the exact

resonance, 
 = ωL − ω0 = 0, are maximally entangled states. For

a detuned field with 
 �= 0, the diagonalization of the Hamiltonian

(11.13) leads to two non-degenerate eigenvalues

E± = �nω0 ± �

√

2 + 1

4
ng2, (11.32)

and corresponding dressed statesa

|ψn+〉 = sin θ |1, n〉 + cos θ |2, n− 1〉 ,
|ψn−〉 = cos θ |1, n〉 − sin θ |2, n− 1〉 , (11.33)

where

cos2 θ = 1

2
+ 


2

√

2 + 1

4
ng2

. (11.34)

It is evident from Eq. (11.33) that for
 �= 0 the dressed states of the

system are not maximally entangled states, and for 
 � √
ng, the

states reduce to the product states |2, n− 1〉 and |1, n〉. This fact is
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Figure 11.5 Variation of the n = 1 dressed-state frequencies ω± with

detuning 
 around the unperturbed frequency ω0 for g = 4 (solid lines)

and g = 0 (dashed lines).

simply related to the distinguishability problem of two systems that

for
 �= 0 one could distinguish between the atom and the field.

Figure 11.5 shows a variation of the dressed-state frequencies

ω± = E±/� of the n = 1 eigenvectors with the detuning 
 around

the unperturbed energy ω0. We see a crossing of the energy levels

in the absence of the coupling at 
 = 0, and the appearance of the

avoided crossing effect when g �= 0.

Perhaps the most interesting aspects of the non-maximally

entangled dressed states relate to their imbalanced populations.

Detailed calculation of the populations of the dressed states of a

detuned field is left as an exercise, see Exercise 11.6. The imbalanced

populations result in a population inversion between dressed states

of two neighbouring manifolds. This implies that a field coupled to

the system can be amplified if tuned to resonance with the dressed

states for which there exists the population inversion. If the field is

a cavity field, one can obtain a lasing action [64]. Since there is no

population inversion between the upper |2〉 and lower |1〉 atomic
bare states, one obtains lasing without population inversion [65].

aDetails of the derivation of the eigenvalues and the corresponding eigenvectors

(dressed states) for a detuned field are left for the reader as a tutorial exercise.
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|ψ(n-1)- >

|ψ(n-1)+ >

|ψ(n+1)+ >

|ψ(n+1)- >

|ψn- >

|ψn+ >

Ω

Ω

ωL + Ω

ωL + Ω/2

ωL + Ω/2

Figure 11.6 Dressed states of a two-level atom driven by an off-

resonant strong laser field. The dressed states of each doubled have

imbalanced populations, which is indicated by different thicknesses of

the lines representing the states. Inverted one-photon transition occurs at

frequency ωL + � (short dashed line), and two-photon transition occurs at

frequency ωL + �/2 (long dashed line).

It has also been predicted and demonstrated experimentally that

a two-photon lasing can be realized between dressed states of two

manifolds separated in frequency by 2ωL for which a population

inversion exists [66, 67]. Figure 11.6 shows dressed states of a two-

level atom driven by an off-resonant (
 �= 0) strong laser field (n �
1). The energy difference between two dressed states within each

manifold is constant and equal to the Rabi frequency� of the driving

field. The lines representing the dressed states have thicknesses that

indicate their populations. One-photon population inversion exists

at frequency ωL + �, and two-photon inversion exists at frequency

ωL + �/2.
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11.5 Summary

Let us summarize this chapter by listing the successful steps in an

application of the dressed-atom technique:

(1) Consider the fully quantumversion of the Hamiltonian of a given

system inwhich both the atomic system and the driving field are

quantized.

(2) Write the Hamiltonian in a matrix form using as the basis

product states of the atomic and field (photon number) states.

(3) Diagonalise the matrix using the standard diagonalization

techniques.

(4) The eigenvectors of the matrix are the dressed states of the

system, and the corresponding eigenvalues are the energies of

the dressed states. In general, the dressed states group into

manifolds.

(5) Draw the dressed states of two neighbouring manifolds, n and
n− 1 or n+ 1 and n, and calculate dipole moments between the
dressed states. If the atomic system has no permanent dipole

moments, non-vanishing matrix elements of the atomic dipole

moment operator occur only between neighbouring manifolds.

(6) The dressed-atom method is most useful when the energy dif-

ference between the dressed states of a givenmanifold are large

compared to the damping rates of the bare atomic transitions. It

is then possible to make the secular approximation in which we

neglect coupling between diagonal and off-diagonal elements of

the density matrix of the system.

Further discussion of the dressed-atom technique is left to the

exercises.

Exercises

11.1 Show that dressed states of a two-level atom driven by a

detuned laser field are not maximally entangled states.

11.2 Calculate damping rates between dressed states of a two-level

atom driven by a detuned laser field.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

190 Dressed-Atom Model

(a) How the damping rates vary with the detuning?

(b) What are the values of the damping rates for
 → ±∞?

11.3 Calculate dressed states of a three-level atom in the vee
configuration with two non-degenerate transitions |1〉 → |2〉
and |3〉 → |2〉 driven by a single laser field of frequency
ωL = (ω1 + ω2)/2, where ω1 and ω2 are the frequencies of

the |1〉 → |2〉 and |3〉 → |2〉 transitions, respectively.
11.4 Calculate dressed states of a three-level atom in the vee

configuration with two non-degenerate transitions |1〉 → |2〉
and |3〉 → |2〉 driven by two lasers each coupled to only
one of the atomic transitions. Assume that the lasers are

on resonance with the atomic transitions to which they are

coupled.

11.5 Using equations of motion for the expectation values of the

spin operators S+, S− and S of a two-level atom driven by a

coherent laser field

(a) Find the expectation values of the atomic dipole mo-

ments 〈S±〉 and the atomic inversion 〈Sz〉 in the steady-
state limit (t → ∞).

(b) Show that the magnitude of the average dipole moment is
maximal for� = �/

√
2.

(c) Are the spin oscillations coherent? Comment on the re-
sult.

(d) Find for what values of � the x-component of the atomic
spin (Sx) is squeezed?

11.6 Using the results of Exercise 11.5 for the steady-state solutions

for the atomic dipole moments 〈S±〉 and the atomic inversion
〈Sz〉, show that

(a) 〈Sz〉 < 0 for any values of the parameters involved, that

in the bare states basis, there is no population inversion

between the upper |2〉 and lower |1〉 atomic states.
(b) Find the populations of the dressed-states to show that

even there is no population inversion in the bare state

basis, there can be a population inversion between the

dressed states. Underwhich condition, the population can

be inverted between the dressed states?
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11.7 Consider a two-level atomwith no permanent dipolemoments

and driven by a resonant single-mode laser field.

(a) Show that the induced dipole moments are different from
zero only between dressed states of two neighbouring

manifolds.

(b) There are four possible dipole transitions between

dressed states of two neighbouring manifolds. Which

pairs of the possible transitions can produce interference

fringes in the emitted field?
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Chapter 12

Fokker–Planck Equation

12.1 Introduction

In Chapter 9, we derived the master equation for a reduced density

operator of a two-level atom coupled to a multi-mode vacuum field.

We have seen that the master equation is an operator type equation

that, in general, is not easy to solve. We have illustrated the solution

of the master equation by representing the density operator in

the basis of the two states of the two-level atom. The purpose of

the representation of the master equation was to obtain c-number
differential equations that are equivalent to the operator equations,

but are more readily soluble.

In this chapter, we continue the presentation of approaches

to solve problems described by the density operator using as an

example the master equation of a harmonic oscillator interacting

with a broadband thermal reservoir. As we shall see, with the theory

of the photon number and the coherent state P representations

developed earlier in this book, it is possible to transform the

master equation into c-number differential equations. First, we
will consider the photon number representation of the density

operator and show that the master equation can be transformed

into a hierarchy of first-order differential equations that can be

Quantum Optics for Beginners
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Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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solved by the standard mathematical methods. Next, we will discuss

the coherent state representation, P representation, that transforms
the master equation into a c-number differential equation called
the Fokker–Planck equation (FPE). We then show how the equation

can be viewed as a stochastic equation that, for specific initial

conditions, can be solved analytically by a direct integration. The

latter part of the chapter illustrates the technique of solving

the FPE when direct solutions are not possible. This technique

involves stochastic differential equations (SDE) approach andwill be

illustrated on two examples of typical problems in quantum optics:

(i) single-cavity mode driven by a classical coherent field and (ii)

effect of two-photon losses on the driven cavity mode. Thus, the

reader will have an opportunity to study applications of stochastic

methods to quantum optics problems.

12.2 Master Equation of a Harmonic Oscillator

Consider a simple one-mode harmonic oscillator interacting with a

multi-mode field (reservoir), whose modes are in vacuum thermal

states. An understanding of the dynamics of such system is of great

use in quantum optics since, in principle at least, all problems

involving bosonic fields can be represented in terms of the harmonic

oscillator.

The interaction Hamiltonian of a single-mode harmonic oscilla-

tor and a vacuum thermal field is given by

Ĥint = −1
2
i�
∑
k

gk
[
â†b̂k (t)− âb̂†k (t)

]
, (12.1)

where â and â† are the annihilation and creation operators of the
single-mode harmonic oscillator, and b̂k and b̂

†
k are the annihilation

and creation operators of the multi-mode vacuum field.

The thermal state of the reservoir is characterized by the

following correlation functions

〈b̂k (t) b̂†k′
(
t′
)〉 = (1+ N) δkk′δ

(
t − t′

)
,

〈b̂†k (t) b̂k′
(
t′
)〉 = Nδkk′δ

(
t − t′

)
, (12.2)

where N is the number of photons in the thermal modes.
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Assuming that the reservoir is a broadband thermal field

(Markovian), and after tracing with respect to the reservoir field, the

master equation of the density operator of the system can bewritten

as

∂

∂t
ρ = −iω0

[
â†â, ρ

]− 1

2
� (1+ N)

(
â†âρ + ρâ†â − 2âρâ†

)
−1
2

�N
(
ââ†ρ + ρââ† − 2â†ρâ

)
, (12.3)

where � is the damping (pumping) rate of the harmonic oscillator.

The first term in the above equation leads to the coherent (Hamil-

tonian) evolution, while the other two terms lead to dissipation

of the evolution. The dissipation is enhanced by the presence of

thermal photons in the reservoir.

12.3 Photon Number Representation

In many practical problems involving single-mode fields, such us

a cavity field, the photon number representation is very useful in

finding the density operator of the field. Here, we illustrate the

application of the photon number representation to the evolution

of the single-mode harmonic oscillator. In the photon number

representation, the density operator of the harmonic oscillator can

be written as

ρ =
∑
mn

ρnm|n〉〈m|. (12.4)

Using this representation, the master equation (12.3) takes the form

∑
mn

∂

∂t
ρnm|n〉〈m| = −iω0

∑
mn

(
â†â|n〉〈m| − |n〉〈m|â†â) ρnm

−�

2
(1+ N)

∑
mn

ρnm
(
â†â|n〉〈m| + |n〉〈m|â†â − 2â|n〉〈m|â†)

−�

2
N
∑
mn

ρnm
(
ââ†|n〉〈m| + |n〉〈m|ââ† − 2â†|n〉〈m|â) . (12.5)
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After carrying out the operations of the creation and annihilation

operators on the number states, we get∑
mn

∂

∂t
ρnm|n〉〈m| = −iω0

∑
mn

(n−m) ρnm|n〉〈m|

−�

2
(1+ N)

∑
mn

ρnm

(
n|n〉〈m| +m|n〉〈m|

−2√nm|n− 1〉〈m− 1|
)

−�

2
N
∑
mn

ρnm

[
(n+ 1) |n〉〈m| + (m+ 1) |n〉〈m|

−2
√
(n+ 1)(m+ 1)|n+ 1〉〈m+ 1|

]
. (12.6)

Now, by comparing the coefficients standing at the same |n〉〈n|, we
find that the density matrix elements satisfy the following equation

of motion

∂

∂t
ρnm = −iω0 (n−m) ρnm

−�

2
(1+ N)

[
(n+m) ρnm − 2

√
(n+ 1) (m+ 1)ρn+1m+1

]
−�

2
N
[
(n+m+ 2) ρnm − 2

√
nmρn−1m−1

]
. (12.7)

This differential equation for the density matrix elements gives an

infinite hierarchy of differential (c-number) equations. Note that in
this simple case, the equations of motion for the off-diagonal (n �=
m) matrix elements are decoupled from the equations of motion for

the diagonal (n = m) matrix elements. This decoupling significantly
simplifies the solution of the system of the differential equations.

Example 12.1 (Steady-state solution for the diagonal matrix
elements) Let us solve the set of the differential equations (12.7)
for the diagonal matrix elements. The diagonal elements ρnn represent
populations of the number states. Thus, ρnn given in function of n is the
probability distribution of the population among the number states.
The diagonal elements satisfy the following equations of motion

∂

∂t
ρnn = −� (1+ N) [nρnn − (n+ 1) ρn+1n+1]

−�N [(n+ 1) ρnn − nρn−1n−1] . (12.8)
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Consider the steady-state population distribution for which ∂
∂tρnn = 0.

In this case, we can find the exact expression for Pn = ρnn. For n = 0,
we get from Eq. (12.8)

0 = −NP0 + (1+ N) P1, (12.9)

from which we find

P1 = N
1+ N

P0. (12.10)

For n = 1, Eq. (12.8) yields

0 = NP0 − (1+ 3N) P1 + 2 (1+ N) P2, (12.11)

from which we find

P2 = N2

(1+ N)2
P0. (12.12)

Finally, by iteration, we find

Pn = Nn

(1+ N)n
P0, (12.13)

where P0 can be found from the normalization P0 = 1/(1+ N), which
gives

Pn = Nn

(1+ N)n+1
. (12.14)

Thus, the distribution of photons is a thermal distribution, as one could
expect.

Hence, in the steady state (thermal equilibrium), the density

operator of the harmonic oscillator can be written as

ρ =
∑
n

Pn |n〉〈n| =
∑
n

Nn

(1+ N)n+1
|n〉〈n| . (12.15)

It is interesting to find the stationary density operator of the

harmonic oscillator in the coherent state representation when

we know the photon number representation. We can find P (α)
from Eq. (7.52)

P (α) = e|α|2

π2

∫
d2β 〈β| ρ |β〉 e|β|2e−αβ∗−α∗β . (12.16)
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Using the number state representation of the coherent state |β〉
and Eq. (12.14), we obtain

〈β| ρ |β〉 =
∑
n

Nn

(1+ N)n+1
∑
m,k

β∗mβk√
m!k!

〈m| n〉 〈n| k〉e−|β|2

=
∑
n

Nn

(1+ N)n+1
|β|2n
n!

e−|β|2

= 1

1+ N

∑
n

(
N|β|2
1+ N

)n
1

n!
e−|β|2

= 1

1+ N
exp

(
− |β|2
1+ N

)
. (12.17)

Substituting Eq. (12.17) into Eq. (12.16), and performing the

integration, we obtain

P (α) = 1

πN
exp

(
−|α|2

N

)
. (12.18)

Thus, P (α) obeys the Gaussian distribution. The probability

distribution function may be regarded as a statistical distribution

superposed by a large number of electromagnetic (EM) modes of

random phases.

In the following subsection, we will show how to find the

probability distribution function P (α) from the master equation of

the density operator of the harmonic oscillator in the coherent state

representation (FPE).

12.4 P Representation: Fokker–Planck Equation

We now turn to a consideration of the coherent state, or P
representation of the master equation [68]. We will illustrate the

major steps of the derivation of the FPE on a simplified master

equation with N = 0, and next will extend the derivation to the case

of N �= 0. The reader wishing to pursue the theory of the FPE further

is referred to the book by Carmichael [69].

Suppose, there exists a time-dependent P distribution P (α, t).
Then, using the P representation for the density operator of the

harmonic oscillator

ρ̂ =
∫
d2αP (α) |α〉〈α| , (12.19)
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we can transform the master equation, with N = 0, into an integro-

differential equation∫
d2α

∂

∂t
P (α, t) |α〉〈α| =

∫
d2αP (α, t)

× {−iω0 (â†â|α〉〈α| − |α〉〈α|â†â)
−�

2

(
â†â|α〉〈α| + |α〉

× 〈α|â†â − 2â|α〉〈α|â†)} . (12.20)

We now perform the action of the annihilation and creation

operators on the coherent state using the following relations

â†â|α〉〈α| = α

(
α∗ + ∂

∂α

)
|α〉〈α|,

|α〉〈α|â†â = α∗
(

α + ∂

∂α∗

)
|α〉〈α|,

â|α〉〈α|â† = |α|2|α〉〈α|. (12.21)

Before we go further with the derivation of the FPE, we stop for a

moment to prove the relations (12.21). In fact, in order to prove the

above relations, it is enough to show that

â†|α〉〈α| =
(

α∗ + ∂

∂α

)
|α〉〈α|. (12.22)

Proof. First, we will show that

â†|α〉 =
(
1

2
α∗ + ∂

∂α

)
|α〉. (12.23)

In the photon number representation, we can write

â†|α〉 = e− 1
2
|α|2

∞∑
n=0

αn√
n!
â† |n〉 = e− 1

2
|α|2

∞∑
n=0

αn
√
n+ 1√
n!

|n+ 1〉

= e− 1
2
|α|2

∞∑
n=0

(n+ 1)αn√
(n+ 1)!

|n+ 1〉

= e− 1
2
|α|2 ∂

∂α

∞∑
n=0

αn+1√
(n+ 1)!

|n+ 1〉

= e− 1
2
|α|2 ∂

∂α

∞∑
k=1

αk√
k!

|k〉 = e− 1
2
|α|2 ∂

∂α

∞∑
k=0

αk√
k!

|k〉 . (12.24)
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However,

∂

∂α
|α〉 = ∂

∂α
e− 1

2
|α|2

∞∑
n=0

αn√
n!

|n〉

= −1
2

α∗|α〉 + e− 1
2
|α|2 ∂

∂α

∞∑
n=0

αn√
n!

|n〉 . (12.25)

Thus,

â†|α〉 =
(
1

2
α∗ + ∂

∂α

)
|α〉, (12.26)

and then

â†|α〉〈α| =
[(

1

2
α∗ + ∂

∂α

)
|α〉
]

〈α|. (12.27)

Since

∂

∂α
|α〉〈α| =

(
∂

∂α
|α〉
)

〈α| + |α〉 ∂

∂α
〈α|, (12.28)

and

∂

∂α
〈α| = ∂

∂α

(
e− 1

2
|α|2

∞∑
n=0

(α∗)n√
n!

〈n|
)

= −1
2

α∗〈α|, (12.29)

we finally obtain

â†|α〉〈α| = 1

2
α∗|α〉〈α| + ∂

∂α
(|α〉〈α|)− |α〉 ∂

∂α
〈α|

=
(

α∗ + ∂

∂α

)
|α〉〈α|, (12.30)

as required.

Using Eq. (12.21), the master equation simplifies to∫
d2α

∂

∂t
P (α, t) |α〉〈α| =

∫
d2αP (α, t)

{
−iω0

(
α

∂

∂α
− α∗ ∂

∂α∗

)

−1
2

�

[
α

∂

∂α
+ α∗ ∂

∂α∗

]
|α〉〈α|

}
. (12.31)

The partial derivatives that act to the right on |α〉〈α| can be

transferred to the distribution P (α, t) by integrating by parts. Since
P (α, t) vanishes at±∞ the integration by parts gives∫

d2αP (α, t)α
(

∂

∂α
|α〉〈α|

)
= −

∫
d2α
(

∂

∂α
αP (α, t)

)
|α〉〈α|.
(12.32)
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Finally, we get

∂

∂t
P (α, t) =

[(
1

2
� + iω0

)
∂

∂α
α +
(
1

2
� − iω0

)
∂

∂α∗ α∗
]
P (α, t) .

(12.33)

This is the FPE for the damped harmonic oscillator in the P
representation. It contains only the first derivative terms.

We now assume that the reservoir is in a thermal state. In this

case the master equation of the density operator of the harmonic

oscillator is of the form

∂

∂t
ρ = −iω0

[
â†â, ρ

]− 1

2
� (1+ N)

(
â†âρ + ρâ†â − 2âρâ†

)
−1
2

�N
(
ââ†ρ + ρââ† − 2â†ρâ

)
. (12.34)

The extra term introduced by N will produce the second-order

derivative in the FPE:

â†|α〉〈α|â =
(

∂

∂α
+ α∗

)(
∂

∂α∗ + α

)
|α〉〈α|, (12.35)

which results in the FPE of the form

∂

∂t
P (α, t) =

{(
1

2
� + iω0

)
∂

∂α
α +
(
1

2
� − iω0

)
∂

∂α∗ α∗

+�N
∂2

∂α∂α∗

}
P (α, t) . (12.36)

The proof is left to the reader as an exercise.

Thus, the master equation for the system density operator ρ can

be transformed into a FPE describing the evolution of the quasi-

probability distribution function. The FPEs generally do not have

exact solutions, except for linear cases or one-dimensional systems.

Despite this, an approximate solution can often be found, especially

in cases where nonlinear effects do not arise.

12.5 Drift and Diffusion Coefficients

The FPE, which is the equation of motion for the P distribution is

often called the phase space equation of motion for the damped
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harmonic oscillator. This equation can be written as

∂

∂t
P
(
xi , x j , t

) =
[
− ∂

∂xi
A(xi )+ 1

2

∂2

∂xi∂x j
D
(
xi , x j

)]
P
(
xi , x j , t

)
,

(12.37)

where x1 = α, x2 = α∗, and

A1 = −
(
1

2
� + iω0

)
α, A2 = −

(
1

2
� − iω0

)
α∗,

D12 = 2�N. (12.38)

The first derivative term determines the deterministic motion and

is called the drift term. The second derivative term will cause a

broadening (narrowing) or diffusion of P (α, t) and is called the
diffusion term.

In order to show more explicitly that A and D are drift and

diffusion coefficients, respectively, we consider the one-dimensional

FPE with the variable x and calculate the average value and variance
of x , defined as

〈x(t)〉 =
∫ ∞

−∞
dx x P (x , t) ,

σ 2 (t) = 〈x2(t)〉− 〈x(t)〉2 , (12.39)

with 〈
x2(t)

〉 =
∫ ∞

−∞
dx x2P (x , t) , (12.40)

where P (x , t) is given by the one-dimensional FPE

∂

∂t
P (x , t) =

[
− ∂

∂x
A (x)+ 1

2

∂2

∂x2
D (x)

]
P (x , t) . (12.41)

Consider equations of motion for 〈x(t)〉 and σ 2 (t):

〈ẋ(t)〉 = d
dt

∫ ∞

−∞
dx x P (x , t) =

∫ ∞

−∞
dx x

∂

∂t
P (x , t)

= −
∫ ∞

−∞
dx x

∂

∂x
(AP )+ 1

2

∫ ∞

−∞
dx x

∂2

∂x2
(DP ). (12.42)

Integrating by parts, and assuming that P and its derivatives vanish
sufficiently fast at infinity, we obtain

〈ẋ(t)〉 =
∫ ∞

−∞
dx AP = 〈A(x)〉 . (12.43)
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Similarly,

˙〈x2(t)〉 = −
∫ ∞

−∞
dx x2

∂

∂x
(AP )+ 1

2

∫ ∞

−∞
dx x2

∂2

∂x2
(DP )

= 2 〈x A(x)〉 + 〈D(x)〉 . (12.44)

Hence,

˙(σ 2) = 2 〈x A(x)〉 − 2 〈x〉 〈A(x)〉 + 〈D(x)〉 . (12.45)

If the FPE is linear, with A(x) = Ax and D(x) = D, where A and D
are constant, the equations of motion for 〈x〉 and σ 2 become

〈ẋ〉 = A 〈x〉 ,
σ̇ 2 = 2Aσ 2 + D. (12.46)

The solutions of the above equations are

〈x(t)〉 = 〈x(0)〉 eAt ,
σ 2 (t) = σ 2 (0) e2At −

(
D
2A

)(
1− e2At

)
. (12.47)

The meaning of the coefficients A and D is now clear. The coefficient
A determines the motion of the average. Since the maximum of

the distribution P coincidences with the average, the coefficient

A determines motion (drift) of the distribution. The coefficient D
broadens the distribution. For example, for D > 0 and A < 0 the

initial distribution σ 2(0) increases in time, thus D acts as a source of
fluctuations and, therefore, is called the diffusion term or fluctuation

term.

12.6 Solution of the Fokker–Planck Equation

The linear multi-dimensional FPE, Eq. (12.36), is complicated and

cannot be solved analytically with an arbitrary initial conditions.

However, the FPE can be solved analytically for some specific initial

conditions and in this section, we show that the analytical solution

is possible with the initial condition that at t = 0 the harmonic

oscillator was in a coherent state |α0〉, for which
P (α, 0) = δ2 (α − α0) . (12.48)
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Before trying to solve the FPE, we first simplify the FPE by

transforming the variables α and α∗ into a frame rotating at

frequency ω0:

α̃ = αeiω0t , α̃∗ = α∗e−iω0t , (12.49)

and

P̃ (α̃, t) = P (α, t) . (12.50)

With this transformation, we have

∂

∂t
P̃ = ∂ P

∂t
+ ∂ P

∂α

∂α

∂t
+ ∂ P

∂α∗
∂α∗

∂t

= ∂ P
∂t

− iω0

(
α

∂ P
∂α

− α∗ ∂ P
∂α∗

)

= ∂ P
∂t

− iω0

(
∂

∂α
α − ∂

∂α∗ α∗
)
P . (12.51)

Substituting this into the FPE, and employing the results

∂

∂α
= ∂

∂α̃

∂α̃

∂α
= ∂

∂α̃
eiω0t ,

∂

∂α∗ = ∂

∂α̃∗
∂α̃∗

∂α∗ = ∂

∂α̃∗ e
−iω0t , (12.52)

we obtain

∂

∂t
P̃ (α̃, t) =

[
�

2

(
∂

∂α̃
α̃ + ∂

∂α̃∗ α̃∗
)

+ �N
∂2

∂α̃∂α̃∗

]
P̃ (α̃, t) . (12.53)

We now change the variables from α̃ and α̃∗ to their real and

imaginary parts

α̃ = x + iy, α̃∗ = x − iy, (12.54)

and obtain

∂

∂α̃
α̃ = 1

2

(
∂

∂x
x + ∂

∂y
y
)
,

∂

∂α̃∗ α̃∗ = 1

2

(
∂

∂x
x + ∂

∂y
y
)
,

∂2

∂α̃∂α̃∗ = 1

4

(
∂2

∂x2
+ ∂2

∂y2

)
. (12.55)

Substituting Eq. (12.55) into Eq. (12.53), we obtain the following

FPE

∂

∂t
P̃ (x , y, t) =

[
�

2

(
∂

∂x
x+ ∂

∂y
y
)

+ �N
4

(
∂2

∂x2
+ ∂2

∂y2

)]
P̃ (x , y, t) .

(12.56)
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Since the terms dependent on x and y are separated from each other,

we look for a solution of the equation of the form

P̃ (x , y, t) = X (x , t) Y (y, t) . (12.57)

From Eq. (12.56), we see that the functions X and Y satisfy the

independent equations

∂

∂t
X =

(
�

2

∂

∂x
x + �N

4

∂2

∂x2

)
X , (12.58)

∂

∂t
Y =

(
�

2

∂

∂y
y + �N

4

∂2

∂y2

)
Y. (12.59)

The right-hand sides of these equations contain first- and second-

order derivatives. We can simplify these to a equation containing

only first-order derivatives by taking Fourier transform on both

sides of the equations. Let

F (u, t) =
∫ ∞

−∞
dx X (x , t) ei xu , (12.60)

then

∂F
∂t

=
∫ ∞

−∞
dx

∂

∂t
X (x , t) ei xu

= �

2

∫ ∞

−∞
dx
(

∂

∂x
x X
)
ei xu + �N

4

∫ ∞

−∞
dx

∂2X
∂x2

ei xu . (12.61)

Integrating by parts and assuming that X and its derivatives vanish
sufficiently fast at infinity, we obtain

∂F
∂t

= −
(

�

2
u

∂

∂u
+ �N

4
u2
)
F . (12.62)

We will solve Eq. (12.62) by the method of characteristics. The

subsidiary (characteristic) equation is

dt
1

= du
(�/2)u

= − dF
(�N/4)u2F

. (12.63)

Its solutions are

u exp
(

−�

2
t
)

= const.,

F exp
(
N
4
u2
)

= const. (12.64)
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Thus, F must have the general form

F (u, t) = �
(
ue− �

2
t
)
e− N

4
u2 , (12.65)

where � is an arbitrary function. We find � from the initial

conditions that

F (u, 0) =
∫ ∞

−∞
dx X (x , 0) ei xu

=
∫ ∞

−∞
dxei xuδ (x − x0) = ei x0u , (12.66)

which gives

� (u) = ei x0ue
N
4
u2 . (12.67)

Hence,

F (u, t) = exp
[
i x0ue− �

2
t
]
exp

[
−N
4
u2
(
1− e−�t)] . (12.68)

Taking the inverse Fourier transform, we get

X (x , t) = 1

2π

∫ ∞

−∞
du F (u, t) e−i xu

= 1√
πN (1− e−�t)

exp

⎡
⎢⎣−
(
x − x0e− �

2
t
)2

N (1− e−�t)

⎤
⎥⎦ . (12.69)

Equation (12.59) for Y (y, t) can be solved in the similar fashion, and
then

P (x , y, t) = 1

πN (1− e−�t)

× exp

⎡
⎢⎣−
(
x − x0e− �

2
t
)2

+
(
y − y0e− �

2
t
)2

N (1− e−�t)

⎤
⎥⎦ , (12.70)

or in terms of α and α∗:

P (α, t) = 1

πN (1− e−�t)
exp

⎡
⎢⎣−

∣∣∣α − α0e
− �

2
te−iω0t

∣∣∣2
N (1− e−�t)

⎤
⎥⎦ . (12.71)

Thus, P (α, t) is a two-dimensional Gaussian distribution. For t →
∞, the distribution reduces to its steady-state value

P (α) = 1

πN
e− |α|2

N , (12.72)
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which is the samewe have obtained before using the photon number

distribution (see Eq. (12.18)).

For t = 0 the distribution is a delta function, the width of the

distribution increases with time and reaches the value N for t → ∞.

We have seen in the above example, that a linear FPE can be

solved analytically even when it is multi-dimensional. Nonlinear

FPEs are difficult to solve analytically, but the one-dimensional case

can be easily solved in the steady state. To illustrate this, consider

the one-dimensional FPE, which in the steady state can be written

as

d
dx

(
−A(x)Pss(x)+ 1

2

d
dx

D(x)Pss(x)
)

= 0. (12.73)

Integrating over x , we get the first-order differential equation
d
dx

(D(x)Pss(x)) = 2A(x)Pss(x)+ const. (12.74)

Since Pss(x) and (d/dx)Pss(x) vanish at infinity, the constant is zero.
Therefore, we get

1

D(x)Pss(x)
d
dx

(D(x)Pss(x)) = 2
A(x)
D(x)

. (12.75)

Its solution is

Pss(x) = 1

N
1

D(x)
exp

(
2

∫
dx

A(x)
D(x)

)
, (12.76)

whereN is a normalization constant.

In summary, we point out that the analytical solution (12.76) is

valid for any form of A(x) and D(x).

12.7 Stochastic Differential Equations

We have shown that in the special case of initial coherent state, a

direct solution of the multi-dimensional FPE can be found. In cases,

where direct solutions are not possible, one can alternatively employ

the SDE approach [70]. This approach is based on the fact that for a

FPE with positive diffusion matrix, there exists a set of equivalent

SDE. The positive defined diffusion matrix Di j (α) can always be
factorized into the form

Di j (α) = Bi j (α) BTi j (α) . (12.77)
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Then, according to the Ito rule, a set of SDE equivalent to the FPE can

be written in the following (Ito) form

d�α
dt

= −A (�α)+ B (�α) �ψ (t) , (12.78)

where �α is a column vector (α1, . . . , αN , α
∗
1, . . . , α

∗
N), and

�ψ is a

column vector. Its components ψi (t) are real independent Gaussian
white noise terms with zero mean value 〈ψi (t)〉 = 0 and delta-δ

correlated in time

〈ψi (t)ψ j
(
t′
)〉 = δi jδ

(
t − t′

)
. (12.79)

The above SDE can be treated using direct numerical simulation

techniques or analytical methods.

Example 12.2 (Single-cavitymode driven by a classical coherent
field) Consider the simplest and the most well-known example in
quantum optics of a single mode cavity driven by a classical coherent
laser field coupled to the external environment.

The dynamics of the cavity mode are represented by the master
equation

∂

∂t
ρ = − i

�

[
Ĥsys, ρ

]− 1

2
�
(
â†âρ + ρâ†â − 2âρâ†

)
, (12.80)

where � is the damping rate of the cavity mode resulting from the
coupling of the cavity into the environment (reservoir), and Ĥsys is the
system Hamiltonian of the form

Ĥsys = �ωâ†â + i�
(
Ee−iωLtâ† − E ∗eiωLtâ

)
, (12.81)

where E is the amplitude (Rabi frequency) and ωL is the angular (or
carrier) frequency of the driving field, respectively.

The master equation contains time-dependent coefficient, and it is
straightforward to transform the equation into a type interaction pic-
ture (rotating frame) in which the coefficients are time independent.
This can be done introducing a Hamiltonian

Ĥ0 = �ωLâ†â, (12.82)

and the transformed density operator ρ̃ = exp(−i Ĥ0t/�)ρ

exp(i Ĥ0t/�), giving master equation of the interaction picture
∂

∂t
ρ̃ = [−i
â†â + E â†−E ∗â, ρ̃

]− 1

2
�
(
â†âρ̃ + ρ̃â†â − 2âρ̃â†

)
,

(12.83)
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where 
 = ω − ωL is the detuning between the cavity mode and the
laser frequency. In practical terms, the detuningmust bemuch smaller
that the cavity mode spacing for the single-mode approximation to be
applicable.

Next step of the calculations is to transform the master equation
(12.83) into a FPE for the P function, giving the result

∂

∂t
P (α, t) =

{
∂

∂α

[(
1

2
� + i


)
α − E

]

+ ∂

∂α∗

[(
1

2
� − i


)
α∗ − E ∗

]}
P (α, t) . (12.84)

The FPE can be transformed using the Ito rule to obtain the
corresponding stochastic equations. In the case considered here,
however, since there is no diffusion term, there is no noise term. Hence,
the SDE are of the form

dα
dt

= −
(
1

2
� + i


)
α + E ,

dα∗

dt
= −

(
1

2
� − i


)
α∗ + E ∗. (12.85)

The steady-state solution of Eqs. (12.85) is

αss = E(
1
2
� + i


) , (12.86)

and using the operator correspondences, this results in

〈â〉ss = E(
1
2
� + i


) . (12.87)

As a consequence, the intra-cavity photon number is given by

〈â†â〉 =
∣∣∣∣∣ E(

1
2
� + i


)
∣∣∣∣∣
2

= E 2
1
4
� + 
2

. (12.88)

This demonstrates the usual, expected classical behaviour of a Fabry–
Perot interferometer, that the intensity of the cavity field has a peak at
the cavity resonance frequency, with a Lorentzian line-shape.

The equations of motion for α and α∗ are not coupled to each

other, thus can be solved exactly for an arbitrary time t by a simple
integration, giving the result

α(t) = α(0)e−( 12�+i
)t + E
∫ t

0

dt′e−( 12�+i
)(t−t′). (12.89)



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

210 Fokker–Planck Equation

Equation (12.89) shows that α(t) is a deterministic quantity, so that
〈ân〉 = 〈αn(t)〉 = αn(t). This means that operators moments simply
factorize to result in

〈(â†)mân〉 = 〈(α∗(t))m (α(t))n〉 = (α∗(t))m (α(t))n

= 〈â†〉m〈â〉n. (12.90)

The above relation is only true for coherent states, and can even be

used as alternative definition of the coherent states. Therefore, the

coherently driven and damped cavity preserves the coherence, so

that the cavity field is always in the coherent state. This preservation

of coherence under damping is one of the remarkable properties

of coherent states, that have made them a very universal and basic

entity of laser physics.

However, the coherence is not preserved if a nonlinear cavity

damping is included. We will illustrate it in the next example, where

we will include a two-photon damping of the cavity mode. Similar

conclusions can be obtained with one-photon damping.

Example 12.3 (Effect of two-photon losses on the driven cavity
mode) Suppose, apart from the ordinary damping, considered in the
Example 12.2, the cavitymode is also damped by two-photon losses, for
example, due to a two-photon absorption. Then, the master equation
of the system can be written as

∂

∂t
ρ = − i

�

[
Ĥsys, ρ

]− 1

2
�
(
â†âρ + ρâ†â − 2âρâ†

)
−1
2

κ
(
â†2â2ρ + ρâ†2â2 − 2â2ρâ†2

)
, (12.91)

where κ is the two-photon loss coefficient, and Ĥsys is given in
Eq. (12.81). Following the standard procedure, we first transform the
master equation to an interaction picture and next into a FPE, which
is of the form

∂

∂t
P (α, t) =

{
∂

∂α

[(
1

2
� + i


)
α + κα2α∗ − E

]

+ ∂

∂α∗

[(
1

2
� − i


)
α∗ + κα∗2α − E ∗

]

+1
2

∂2

∂α2

(−κα2
)+ 1

2

∂2

∂α∗2
(−κα∗2)} P (α, t) . (12.92)
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Using the Ito rule, we turn the FPE into the following SDE
dα
dt

= −
(
1

2
� + i


)
α − κα2α∗ + E + B11ψ1(t),

dα∗

dt
= −

(
1

2
� − i


)
α∗ − κα∗2α + E ∗ + B22ψ2(t), (12.93)

where ψi (t) are independent Gaussian noise terms with zero means
and the following non-zero correlations

〈ψ1 (t)ψ1

(
t′
)〉 = δ

(
t − t′

)
,

〈ψ2 (t)ψ2

(
t′
)〉 = δ

(
t − t′

)
. (12.94)

The parameters B11 and B22 appearing in Eq. (12.93), are the
diagonal matrix elements of the matrix B, which can be found from
the diffusion matrix D(D = BBT ):

D =
(−κα2 0

0 −κα∗2

)
. (12.95)

Then, the matrix B is of the form:

B =
(
i
√

κα 0

0 −i√κα∗

)
. (12.96)

However, there is a problem with the equations (12.93). Since ψ1

and ψ2 are independent stochastic processes, the equation of motion
for α∗ is not the complex conjugate of α. This example allows us to
understand why we have to employ the positive P representation
in this type of problems rather than the Glauber–Sudarshan P
representation.

If we use the positive P representation, the FPE becomes
∂

∂t
P (α, β, t) =

{
∂

∂α

[(
1

2
� + i


)
α + κα2β∗ − E

]

+ ∂

∂β∗

[(
1

2
� − i


)
α∗ + κβ∗2α − E ∗

]

+1
2

∂2

∂α2

(−κα2
)+ 1

2

∂2

∂β∗2
(−κβ∗2)} P (α, β, t) ,

(12.97)

from which, we find the following Ito SDE
dα
dt

= −
(
1

2
� + i


)
α − κα2β∗ + E + i

√
καψ1(t),

dβ∗

dt
= −

(
1

2
� − i


)
β∗ − κβ∗2α + E ∗ − i

√
κβ∗ψ2(t). (12.98)
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Hence, we see that employing the positive P representation resolves
the problem since β∗ is independent of α.

Exercises

12.1 Using the general formalism for the derivation of the master

equation in the Born–Markov approximations (Chapter 9),

derive the master equation for the density operator of the

harmonic oscillator coupled to a broadband thermal reservoir

∂

∂t
ρ = −iω0

[
â†â, ρ

]− 1

2
�(1+ N)

(
â†âρ + ρâ†â − 2âρâ†

)
−1
2

�N
(
ââ†ρ + ρââ† − 2â†ρâ

)
,

where N is the number of photons in the reservoir modes.
12.2 Consider the master equation for the density operator of the

harmonic oscillator in a thermal reservoir derived in Exercise

12.1.

(a) What is the physical interpretation of the terms in the
master equation? Give a graphical sketch of the processes

involved.

(b) Calculate the diagonal elements of the density operator,
ρnn, which give the probability of finding n photons in the
harmonic oscillator mode.

(c) What is the condition for the steady state? Find the photon
number distribution in this case.

12.3 Calculate the time evolution of a coherent state of the

harmonic oscillator, ρ(0) = |α〉〈α|, when the oscillator evolves
in a zero-temperature (T = 0) reservoir.

12.4 Show that the master equation of the density operator of the

harmonic oscillator in a thermal reservoir can be converted

into the FPE of the form

∂

∂t
P (α, t) =

{(
1

2
� + iω0

)
∂

∂α
α +
(
1

2
� − iω0

)
∂

∂α∗ α∗

+�N
∂2

∂α∂α∗

}
P (α, t) .
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Chapter 13

Quantum Trajectory Theory

13.1 Introduction

We have already introduced major techniques used in quantum

optics to solve various problems. Those techniques involve either in-

tegrating differential equations or transforming themaster equation

into c-number differential equations. But, there is yet anotherway to
solve problems in quantum optics, in particular those involving non-

Markovian systems, a powerful procedure based on the statistical

and photodetection theories.

Most quantum optical systems are open quantum systems, that

is, are systems that interact with their surroundings via energy

exchange. Hence, one may resort to approximate perturbation

techniques to analyse these interactions. On the other hand, the

master equation approach describes the behaviour of statistical

ensemble rather than the individual behaviour of the element of

the ensemble. However, new theories, which describe the evolution

of single-quantum systems, are being developed. These include

the quantum trajectory theory [71, 72], Monte Carlo wavefunction

method [73], waiting-time distributions and quantum stochastic

equations. Here, we will briefly describe the bare essentials of the

quantum trajectory theory based on direct photoelectric detection.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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13.2 Quantum Trajectories

The quantum trajectory theory, first introduced by Carmichael [71],

is constructed around the standard theory of photoelectric detection

and the master equation theory of a photoemissive source. It

therefore links the statistics of photoelectron emissions to a

dynamical process involving photon emissions taking place at the

source. The quantum trajectory approach also provides a powerful

computational method. It is quite easy to implement on a personal

computer. The computer simulation can generate trajectories for
a stochastic wavefunction that describes the current state of the

quantum mechanical source, conditioned on a particular past

history of coherent evolution and collapses. These would clarify the

physical interpretation, since they can give the intuition of what is

going on with respect to the source in a visible form; the standard

master equation approach does not allow this concrete visualization.

The connection between the conditioned wavefunction and the

master equation is that an ensemble average taken over a large num-

ber of trajectories, with respect to the conditioned wavefunction,

reproduces the results of a master equation calculation. The unrav-
elling of the master equation has been applied to various quantum
optical systems including the driven Jaynes–Cummings model, field-

quadrature measurements and optical second harmonic generation.

Note that different unravellings can be constructed for different

measurement schemes to give complimentary pictures of a quan-

tized source. The quantum trajectory theory has essentially the

following two main features.

The dynamics of an individual quantum system: the dynamics of

an open system is composed of (i) continuous coherent evolution

and (ii) discrete quantum jumps (emission/absorption of energy

quanta). Randomness is introduced in the jump processes, an inher-

ent property of quantum systems as opposed to the deterministic

evolution of classical systems.

The path in the configuration space (Hilbert space) that the

individual system takes in the course of time evolution, the dynamics

of the corresponding wavefunction |�〉, is regarded as a quantum
trajectory.
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13.2.1 Formulation of the Quantum Trajectory Theory

The formulation of the quantum trajectory treatment starts with a

master equation. A typical master equation is of the form

ρ̇ = 1

i�

[
ĤS, ρ

]+ 1

2

(
2ĈρĈ+ − Ĉ+Ĉρ − ρĈ+Ĉ

)
, (13.1)

where HS is the Hamiltonian of the closed system and Ĉ is the

collapse operator that determines the way the wavefunction |�〉
changes in the course of energy exchange. The master equation

of the form (13.1), normally called the Lindblad form, describes

many systems coupled to different type of reservoirs. We now

determine the quantum trajectory method, also called the Monte

Carlo wavefunction method.

The quantum trajectory theory determines whether an element

of an ensemble described by Eq. (13.1) is subjected to either one of

the following dynamics:

(a) Coherent dynamics (between jumps)

i�
d
dt

|�〉 = H̃ |�〉 , (13.2)

where H̃ = ĤS− 1
2
i�Ĉ+Ĉ is a non-Hermitian Hamiltonian.

(b) Jumps

|�〉 ←− Ĉ |�〉 . (13.3)

We see from Eq. (13.2) that the norm of |�〉 (= 〈�|�〉) is not
conserved since H̃ is not Hermitian. Thus, we call |�〉 in Eq. (13.2)
an un-normalized wavefunction and write it as

∣∣�̄〉. Let us rewrite
Eq. (13.2) as

i�
d
dt

∣∣�̄〉 = H̃
∣∣�̄〉 . (13.4)

The question now is: When do the quantum jumps occur? The

answer is: Quantum trajectory theory prescribes that the event of

a jump is determined by the following rule.

Rule: A jump occurs during the time interval [t, t + 
t).
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In order to decide whether a quantum jump has occurred,

we define a machine-generated random number R ∈ [0, 1) and

compare it to


p(t) = 
t

〈
�̄
∣∣ Ĉ+Ĉ |�̄〉〈
�̄|�̄〉 . (13.5)

If 
p(t) is greater than or equal to a machine-generated random
number R ∈ [0, 1) then a jump occurs. Since
p(t) is determined by∣∣�̄〉, it follows that ∣∣�̄(t + 
t)

〉
is determined by

∣∣�̄〉. In quantum
trajectory language we say

∣∣�̄〉 is conditioned on its dynamics

history, and therefore we call the wavefunction
∣∣�̄〉 a conditioned

wavefunction. We will denote it as
∣∣�̄C
〉
.

In summary, we give a typical algorithm to highlight the main

features of the quantum trajectory theory.

t = 0

(∗) If
p(t) = 
t 〈�̄C |Ĉ+Ĉ |�̄C 〉
〈�̄C | �̄C 〉 ≥ R ∈ [0, 1)

then
∣∣�̄C
〉← Ĉ

∣∣�̄C
〉

else i� d
dt

∣∣�̄C
〉 = H̃

∣∣�̄C
〉

end if

t ← t + 
t
Go to (∗)

(13.6)

Hence, one needs to find only H̃ and Ĉ . It is also important to choose

t so that 
p(t) � 1. But we need to compromise so that the

computation time is not too long.

13.3 Cavity QED Laser

The quantum trajectory approach was born more or less for the

needs in the field of cavity QED (quantum electrodynamics). For

some cavity QED problems the standard methods are either invalid

or difficult to apply, but the quantum trajectory approach provides a

new and usefulway to proceed.We now illustrate the theory to study

the photon statistics of a cavity QED laser. Theoretically, enhancing

the generation of photons in the laser cavity mode may decrease the

threshold-pumping rate in a laser. The fraction of pumped photons,

which enter the cavity mode β may be enhanced by using a laser
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cavity with a width on the order of the wavelength of the laser

light. In such a cavity, spontaneous decay out of the laser mode

is inhibited by the boundary conditions of the cavity. This cavity

QED effect causes a reduction in threshold [74]. The ideal cavity

QED laser (β = 1) would have a number of laser-mode photons

proportional to pump power P , and consequently this device also
does not have a well-defined pump threshold [75], or even could

work as a thresholdless laser [76].

Consider a single-mode laser theory based on a three-level

homogeneously broadened gain medium. The laser mode and lasing

transition are assumed to be exactly resonant. The lower level of the

lasing transition is rapidly depleted so that to a good approximation

it remains empty. We give below the corresponding rate equations,

which generalize the semiclassical theory by including spontaneous

emission into the laser mode

γ −1ṅ = −λn+ βnN + βN,

γ −1 Ṅ = −N + P − βnN. (13.7)

Here, γ is the modified spontaneous emission rate to modes other

than the laser mode, n is the photon number in the laser mode,
N is the carrier number (atoms in the upper level of the lasing

transition), λ is the cavity decay rate and P is the pumping rate,

measured in units of the spontaneous emission rate.

Note that the rate equations tell us about the intensity of the

emitted light. They cannot, however, tell us what kind of light

is emitted. Further information can be obtained by considering

an associated birth–death model, which includes some probability

treatment. The model is essentially a translation of the Einstein rate

equation theory into probabilistic language for a fieldwith uncertain

energy density proportional to n. The pumping is included in a

form that produces Poisson fluctuations in the carrier number. The

model is mathematically represented by the master equation for

the probability pn,N of finding n photons in the laser mode and N
carriers:

γ −1 ṗn,N = −λ[npn,N − (n+ 1)pn+1,N]

−β[nNpn,N − (n− 1)(N + 1)pn−1,N+1]

−β[Npn,N − (N + 1)pn−1,N+1]+ P [pn,N−1 − pn,N]

−(1− β)[Npn,N − (N + 1)pn,N+1]. (13.8)
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The average photon and carrier numbers in this case satisfy

γ −1〈ṅ〉 = −λ〈n〉 + β 〈nN〉 + β 〈N〉 ,
γ −1〈Ṅ〉 = − 〈N〉 + P − β 〈nN〉 . (13.9)

Equations (13.9) reduce to Eq. (13.7) if we make the factorization

〈nN〉 = 〈n〉 〈N〉 . (13.10)

We now apply the quantum trajectory method to solve the birth–

death master equation (13.8) for the case of a thresholdless cavity

QED laser. The following is an outline of the scheme.

For a given state at time t:

(1) Construct three jump probabilities.

(2) Get three uniformly distributed random numbers.

(3) Compare and decide which jump to make or no jump at all.

Three processes are involved here. Namely, pumping process, cavity

losses and stimulated/spontaneous emissions into the laser mode.

We therefore get the following three types of probabilities:

(1) Probability of pumping process, Probpump(ti ) = P
t.
(2) Probability of losses, Probloss(ti ) = n(ti )λ
t.
(3) Probability of emission into the laser mode,

Probemission(ti ) = N(ti )[n(ti )+ 1]
t.

One must also generate three uniformly distributed random

numbers, r1(ti ), r2(ti ) and r3(ti ) ∈ (0, 1) respectively to be compared

with the probabilities above.

If Probpump(ti ) ≥ r1(ti ), then the number of carriers is increased
by one. Otherwise, if Probloss(ti ) ≥ r2(ti ), then the losses process
will cause the number of photons to be reduced by 1. Furthermore,

if Probemission(ti ) ≥ r3(ti ) then the stimulated/spontaneous

emission will cause the number of carriers to decrease by 1 and

simultaneously the number of photons increases by 1.

One can then easily investigate the photon statistics of the laser

by calculating the photon number n and the ensemble averages

〈n〉 and 〈n2〉. Figures 13.1 and 13.2 show the photon and carrier

numbers vs. dimensionless time τ for the case of P = 1.0, λ = 0.1

and β = 1.0.
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Figure 13.1 Individual trajectory and ensemble average of the photon

number versus dimensionless time for P = 1.0, λ = 0.1, and β = 1.0.

Figure 13.2 Individual trajectory and ensemble average of the carrier

number vs. dimensionless time for P = 1, λ = 0.1 and β = 1.
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Exercises

13.1 Determine the H̃ and the collapse operators Ĉ1 and Ĉ2 for a
two-level atom in thermal equilibrium.

13.2 Explain why the master equation (13.8) is insufficient to

calculate the linewidth of the laser.

13.3 Sketch the flowchart to implement the quantum trajectory

method to determine 〈N〉, 〈n〉 and 〈n2〉 for the above cavity
QED model.
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Chapter 14

Interaction-Free Measurements

14.1 Introduction

In Chapter 3, we have discussed the direct measurement scheme in

which a measured field is directly absorbed by photodetectors. In

the direct detection process, the field is destroyed as the detector

absorbs all the field interacting with it. From the point of view of

quantum physics, the measurement destroys the state vector of the

field such that the state collapses to the appropriate eigenstate of the

measured field. For example, if prior to the measurement the state

vector of the field is |α〉 + |β〉, at the measurement the state vector
collapses to |α〉 if the value α is obtained, or |β〉 if β is obtained.

Apart from the collapse of the wave function, the measurement

disturbs the field (system) such that it is impossible to predict

the future development of the system. This is the major difference

between the quantum and classical physics that in the quantum

physics the measurement disturbs the system to an extent that

cannot be made arbitrary small. This fact is clear from the

Heisenberg uncertainty relation that with an observation of the

position of a particle within an accuracy
x disturbs themomentum
of the particle with an uncertainty 
p such that 
x
p ≥
�/2. We may call it a disturbance interpretation of quantum

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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theory, that the physical act of detection disturbs the state of the

observed system uncontrollably, so that we cannot have complete

knowledge of the system, and we cannot therefore predict its future

development. Some experiments called negative-result experiments

and interaction-free measurements will help us to understand how

one can detect a photon without destroying it and how one could

detect an object without interacting with it.

14.2 Negative-Result Measurements

In negative-result experiments, the result of a photon detection is

obtained not through the occurrence of a physical event, detection

of a photoelectron, as for a normal measurement, but by the absence

of such an event.

Consider an experiment, shown in Fig. 14.1, which was proposed

by Epstein [77], and involves a Mach–Zehnder interferometer. In

the interferometer a beam of light is split by a 50/50 beam splitter

into two beam travelling in arms S1 and S2. The mirrors M1 and
M2 can be fixed or can move (recoil) under the impact of a photon,
but the mirrors do not absorb (destroy) the photon. Thus, we can

detect a photon by observing which mirror recoiled. Hence, the

B1

M1

M2

D2

D1

S1

S2

B2

Figure 14.1 Scheme to demonstrate negative-result measurement.
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measurements can be achieved seemingly without an interaction

between the complete measuring setup (detectors) and the photon.

Assume for amoment, that the arm S2 is blocked. Then, according
to quantum mechanics, if the mirror M1 recoiled we can say that
the collapse of the state vector of the photon to the state |φ〉,
corresponding to the arm S1 have been achieved without any

interaction. Now, assume that both arms are opened and both

mirrors are made moveable. Then, one of the mirrors will recoil as

each photon passes through the system. This tells us along which

arm the photon is passing, and as a result the coherence of the two

beams is lost and the photon has an equal probability to be detected

at D1 or D2.
Assume now that M1 is moveable and M2 is fixed. If M1 moves,

we deduce that the photon is in arm S1, if it does not move, we
deduce that the photon is in arm S2. In this case we have gain exactly
the same information as in the previous cases. However, in this

case we have seemingly performed a measurement and achieved a

collapse of the wave function without any direct detection of the

photon. Again, there is an equal probability of the photon being

detected at D1 or D2.
Finally, assume that both mirrors are fixed. In this case, the two

arms S1 and S2 are coherent, and the geometry of the interferometer
may be arranged such that every photon will be detected at one

of the detectors, say D1, with none detected at D2. In this case, we
observe photons only by the direct detection.

14.3 Experimental Schemes of Interaction-Free
Measurements

In this section we discuss an effect, referred to as interaction-

free measurement, which is based mostly on the same type of

physical situation as the negative-result measurement. However, the

arrangement is carefully constructed to make it natural to claim that

one is able to detect the presence of an object without interacting

with it at all. This type of measurement is not possible under

classical theory, but using the concepts of quantum theory the claim

can be justified. The method we use makes particular use of the
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fact that light consists of photons, and where a beam of light has

a choice of paths, we will talk of an individual photon taking one

pass or another. One can notice, that such an idea would be totally

inappropriate under a classical model of light.

We will analyse in details two schemes of the interaction-free

measurement, one proposed by Elitzur and Vaidman [78] and the

other proposed by Kwiat et al. [79].

14.3.1 The Elitzur and Vaidman Scheme

The Elitzur and Vaidman scheme uses a single Mach–Zehnder

interferometer, in a similar way as in the Epstein proposal. The

difference is that the present scheme assumes that the mirrors are

fixed and there is an object in the arm S1, as shown in Fig. 14.2.
Without the object in the arm S1, one can arrange the system such

that all the photons will be detected by D1, none by D2.
However, if there is an object in the arm S1, photonswill reach the

second beam splitter travelling only through the arm S2, and then
the probabilities of detecting the photons by the detectors D1 and
D2 are both equal to 1/2. Thus, in this arrangement, the detector D2
detects photons only if the blocking object is in one of the arms.

B1

M1

M2

D2

D1

S1

S2

B2

Figure 14.2 The scheme of Elitzur and Vaidman to demonstrate

interaction-free measurement.
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We can explain thismethod theoretically in the followingway.We

know from classical optics that a reflection changes the phase of the

wave by π/2, or alternatively in terms of quantum states of thewave,

multiplies the state vector by i . Let us indicate the state of a photon
moving to the right by |1〉, and that of a photon moving upwards by
|2〉. At the beam splitter B1, the state |1〉will change to

|1〉 → 1√
2
(|1〉 + i |2〉) . (14.1)

At the mirrors M1 and M2, the states will change into

|1〉 → i |2〉, |2〉 → i |1〉. (14.2)

Thus, if the object is absent, the evolution of the initial state |1〉 will
be as follows:

|1〉 → 1√
2
(|1〉 + i |2〉) → 1√

2
(i |2〉 − |1〉)

→ 1

2
(i |2〉 − |1〉)− 1

2
(|1〉 + i |2〉) = −|1〉. (14.3)

Hence, if the object is absent, the photon leaves B2 moving towards
the right and is detected by the detector D1. On the other hand, if the
object is present, the evolution of the initial state |1〉 is as follows:

|1〉 → 1√
2
(|1〉 + i |2〉) → 1√

2
(i |2〉 + i |s〉)

→ 1

2
(i |2〉 − |1〉)+ i√

2
|s〉, (14.4)

where |s〉 is the state of a photon scattered by the object. This

equation shows that the detectors D1 and D2 will each click with
probability 1/4, and there is probability 1/2 that there is no

detection.

In summary of this section, if the detector D1 clicks, no

information is obtained about the object. This could happenwhether

the object is present in the arm S1 or not. If there is no click in
both D1 and D2, we have discovered that there is the object, but
our measurement has not been interaction free as the photon has

been scattered or absorbed by the object. However, if the detector

D2 clicks, we find that the object is present in the system and the

photon has not interacted with it, otherwise the photon would have

been scattered or absorbed.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

226 Interaction-Free Measurements

M

M M
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B
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d1

u1

dN

uN

N

Figure 14.3 The scheme of Kwiat et al. to demonstrate interaction-free
measurements.

14.3.2 The Kwiat et al. Scheme

In the scheme proposed by Kwiat et al. [79], instead of a single
Mach–Zehnder interferometer, a series of N interferometers is used,
the amplitude reflectivity r of each beam splitter being equal to

cos(π/2N), and the amplitude transmissivity t = sin(π/2N). The
scheme is shown in Fig. 14.3. A photon entering at the lower part of

the interferometer and passing through all N interferometers will be
transferred into the upper part of the interferometer. Thus, if there is

no object in one of the interferometers, each photon is certain to exit

via the up port of the last beam splitter. If there is the object, there is

a non-zero probability that the photon will leave through the down
port of the last beam splitter.

This experiment can be explained theoretically as follows. Let us

consider the state of the photon after leaving down the second beam

splitter, that is, the first interferometer. There are two contributions

to the state of the photon. The first one is from the pass Br1 →
Md1 → Br2 and the second one is from the pass Bt1 → Mu1 → Bt2,
where Bri and Bti mean reflection and transmission at the i thmirror,
respectively.

The first beam has been reflected twice at beam splitters and

once at the mirror Md1, three reflections giving a phase factor i3, and
the amplitude

α1 = −i cos2
( π

2N

)
. (14.5)

The second beam has been transmitted twice at the beam splitters

and reflected once at the mirror Mu1, giving the total transmission
coefficient multiplied by the factor i as

α2 = i sin2
( π

2N

)
. (14.6)
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Thus, after passing the first interferometer (two beam splitters), the

intensity of the light going downwards is given by

I2 = |α1 + α2|2 = cos2
(π

N

)
. (14.7)

Hence, after passing m beam splitters, the intensity downwards

will be

Im = cos2
(mπ

2N

)
. (14.8)

If the photon passes m = N beam splitters, intensity exiting the

whole system at the down port is equal to zero.
However, if there is an object in one of the arms of the

interferometer, the intensity IN will be different from zero, as in this

case m < N . Then, a detector located in the down port after the last
beam splitterwill click. Following our previous analysis, if there is an

object in one of the upper arms of the interferometer, the amplitude

α2 is suppressed and then the intensity of the light going downwards

at the end of the first interferometer is given by

Ĩ1 = |α1|2 = cos4
( π

2N

)
. (14.9)

Hence, if there are objects in the upper arms and after passing m
beam splitters, the intensity downwards will be

Ĩm = cos2m
( π

2N

)
. (14.10)

Thus, for m = N we find that the probability of the photon leaving

the system via the lower port is equal to cos2N (π/2N), which
becomes very close to unity when N is large.

The detection of the photon leaving the interferometers through

the lower port is equivalent to the observation that there is an

object inside the interferometer. This is measurement-free detection

as the photon was not scattered or absorbed by the object, and

the probability of obtaining this interaction-free measurement is

greater than the Elitzur and Vaidman maximum of 1/2, and tends

to unity for large N . The probability of the photon not leaving by
the lower port is equal to 1− cos2N (π/2N), and corresponds to the
probability that the photon was scattered by the object. Naturally,

this also corresponds to an observation that there is the object inside

the interferometer, but in this case is not, of course, interaction free.
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Exercises

14.1 A single photon is injected into a Mach–Zehnder interferome-

ter. The two beam splitters in the interferometer are identical

but not the 50/50 beam splitters.

(a) Write an expression for the state of one of the output
arms.

(b) What is the expectation value of the number of photons in
this output arm, expressed in the beam splitters reflection

and transmission coefficients?

14.2 Prove that in the Kwiat et al. experiment, the intensity

downwards after passing two interferometers (three beam

splitters) is

I3 = cos2
(
3π

2N

)
.

14.3 Show that, if after each beam splitter in the Kwiat et al.
experiment, a detector is placed in the path of one of the

two modes, the probability that the photon leaves the last

beam splitter in the other mode is converging to 1 for

large N . Explain why this corresponds to an “interaction-free”
measurement of the presence of the detectors.

14.4 Consider a single-mode field incident on a beam splitter of

the amplitude reflectivity r and the amplitude transmissivity t.
The incident beam splits into reflected and transmitted beams.

(a) Show that in the classical treatment of the process the

three fields, the incident i , reflected r and transmitted t
beams, satisfy the energy conservation.

(b) Show that in the quantum treatment of the process, where

the complex classical amplitudes are replaced by the

annihilation and creations operators, the commutation

relations for the three fields

[â j , â
†
j ] = 1 and [âr , â

†
t ] = 0, j = i, r, t

are satisfied only if one includes the fourth beam splitter

input port vertical to the incident beam and being in the

vacuum state.
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14.5 The evolution of a state as it passes a beam splitter is

equivalent to a rotation in Cartesian coordinates that it can be

represented by a unitary matrix

R(θ) =
(
cos θ i sin θ

i sin θ cos θ

)
.

The operatorR(θ) is often called as rotational operator.
Show that rotational operators multiply like exponentials, that

is,R(θ)R(φ) = R(θ + φ).
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Chapter 15

Classical and Quantum Interference

15.1 Introduction

Optical interference is regarded as a classical phenomenon and is

usually completely described in classical terms, in which optical

fields are represented by classical waves. Does it mean that optical

interference, which is fundamentally ascribable to the phenomenon

of a superposition of wave amplitudes, cannot be applied to test

quantum phenomena? The superposition principle is at the heart of

quantum physics and one could expect that it should distinguish the

quantum nature of light from thewave nature. Our experience based

on extensive theoretical analysis and experimental observations

shows that classical and quantum theories of optical interference

readily explain the presence of an interference pattern resulting

from the first-order coherence. However, there are interference

effects involving the higher order (second-order) coherence that

distinguish the quantum (photon) nature of light from the wave

nature. Quantum interference has recently returned to prominence

because of its utility in manipulating spontaneous emission and

other radiative properties of atomic systems. In this chapter, we

present elementary concepts and definitions of both the classical

Quantum Optics for Beginners
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SOURCE

P
E1

E2

r1

r2

r12

Figure 15.1 Schematic diagram of the Young’s double-slit experiment.

and quantum theory of optical interference and discuss similarities

and differences between these two approaches [80].

15.2 First-Order Coherence

The elementary model for a demonstration of the first-order

coherence is the Young’s double-slit experiment, shown in Fig. 15.1.

In this experiment, a light beam from a single source passes through

two slits, located at �r1 and �r2, where it undergoes splitting into two
beams of amplitudes �E1 and �E2, respectively. These two beams,
which act as if they came from two sources, are then detected on

a distant screen S . The average intensity of the beamsmeasured at a
point P on the screen can be written as

I ( �R , t) = 〈 �E ∗( �R , t) · �E ( �R , t)〉 = 〈( �E ∗
1 + �E ∗

2) · ( �E1 + �E2)〉
= I1 + I2 + 2Re

〈
E ∗
1E2
〉
, (15.1)

where Ii = 〈
E ∗
i Ei
〉
is the average intensity of the i th beam, and

2Re
〈
E ∗
1E2
〉
is the superposition term of the two amplitudes. This

term is responsible for the interference effect.a

aIn the derivation of Eq. (15.1), we have used the superposition principle for the

electric field that at any instance, the field at any point in space arising from several

sources is the vector sum of the contributions that each sourcewould have produced

if it were acting alone. Moreover, we have assumed that the vectors �E1 and �E2 lie
along the same line. This is a good approximation if the observation point P is very
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Let us analyse in details the dependence of the superposition

term in Eq. (15.1) on the geometry of the experiment. Since the

observation point P lies in the far-field zone of the radiation emitted
by the slits, R � r12, that is, the separation between the slits is
very small compared to the distance to the point P , the fields at the
observation point can be approximated by planewaves for whichwe

can write

E ( �Ri , t − ti ) ≈ E ( �Ri , t)e−i(ωi ti+φi )

= E ( �Ri , t)e−i(ωi Ri /c+φi ), i = 1, 2, (15.2)

where ωi is the angular frequency of the i th field and φi is its initial

phase which, in general, can depend on time. Since the observation

point lies in far-field zone of the radiation emitted by the slits, we

can write approximately

Ri = |�R − �ri | ≈ R − R̂ · �ri , (15.3)

where R̂ = �R/R is the unit vector in the direction �R .
Using the plane-wave approximation, we can write the intensity

as

I ( �R , t) = I1 + I2 + 2Re
{

〈E ∗
1E2〉eik0 R̂·�r12

}
= I1 + I2 + 2〈E ∗

1E2〉 cos(k0 R̂ · �r12)
= I1 + I2 + 2

√
I1 I2 g(1)( �R) cos(k0 R̂ · �r12), (15.4)

where �r12 = �r2 − �r1 is the distance between the slits, and

g(1)( �R) =
〈
E ∗
1E2
〉

√
I1 I2

(15.5)

is the normalized first-order coherence function. The coherence

function is a measure of correlation between the two beams relative

to the intensity of the beams. Note that in the derivation of Eq. (15.4)

we have assumed that the twowaves have the same frequency (ω1 =
ω2) and phases (φ1 = φ2).

Equation (15.4) shows that the average intensity detected at the

screen depends on the coherence between the beams. In the case of

perfectly correlated fields, |g(1)| = 1, and then the intensity can vary

from (
√
I1 − √

I2)2 to (
√
I1 + √

I2)2, giving the so-called interference

far from the slits, that is, the point P lies in the far-field zone of the radiation emitted
by the slits.
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pattern. When I1 = I2 = I0, the total average intensity varies from
〈I 〉min = 0 to 〈I 〉max = 4〈I0〉, giving perfect interference pattern. For
two independent fields, g(1) = 0, and than the resulting intensity is

just a sum of the intensities of the two fields, which does not vary

with the position of P .
In the quantum description of the electromagnetic (EM) field,

the field amplitude is represented by the field operators, and the

coherence effects are given in terms of the positive and negative

frequency parts of the field operator Ê . In this case, the average
intensity in the Young’s experiment can be written as

I ( �R , t) = 〈E (−)( �R , t)E (+)( �R , t)〉 = 〈(E (−)1 + E (−)2 )(E (+)1 + E (+)2 )〉
= I1 + I2 + 2Re〈E (−)1 E (+)2 〉. (15.6)

and the normalized first-order coherence takes the form

g(1)( �R) = 〈E (−)1 E (+)2 〉√
I1 I2

. (15.7)

The coherence function (15.7) described by the field operators is

formally similar to the coherence function (15.5) described by the

classical field amplitudes. The similarity arises from the fact that

an experiment cannot distinguish between classical and quantum

effects described by first-order correlation functions.

The usual measure of the depth of modulation (sharpness) of

interference fringes is a visibility in an interference pattern defined

as

V = 〈I ( �R , t)〉max − 〈I ( �R , t)〉min
〈I ( �R , t)〉max + 〈I ( �R , t)〉min

, (15.8)

where 〈I ( �R , t)〉max and 〈I ( �R , t)〉min represent the intensity maxima
and minima at the point P , respectively.

Since,

〈I 〉max = 〈I1〉 + 〈I2〉 + 2
√
I1 I2 |g(1)|, (15.9)

and

〈I 〉min = 〈I1〉 + 〈I2〉 − 2
√
I1 I2 |g(1)|, (15.10)

we obtain

V = 2
√
I1 I2

(I1 + I2)
|g(1)|. (15.11)
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Thus, |g(1)| determines the visibility of the interference fringes. In
the special case of equal intensities of the two fields (I1 = I2),
Eq. (15.11) reduces to V = |g(1)|, that is, |g(1)| is then simply equal
to the visibility. For perfectly correlated fields |g(1)| = 1, and then

V = 1, while V = 0 for uncorrelated fields.

15.3 Welcher Weg Problem

One may notice from Eq. (15.11) that in the case of I1 �= I2, the
visibility is always smaller than one even for perfectly correlated

fields. This fact is related to the problem of extracting which-way

(Welcher weg) information has been transferred through the slits

into the point P . The observation of an interference pattern and
the acquisition of which-way information has been transmitted are

mutually exclusive. We can introduce an inequality according to

which the fringe visibility V displayed at the point P and an absolute
upper bound on the amount of which-way informationD that can be

detected at the point P are related by

D2 + V2 ≤ 1. (15.12)

Hence, the extreme situations characterized by perfect fringe

visibility (V = 1) or full knowledge of which-way information

has been transmitted (D = 1) are mutually exclusive. In order to

distinguish which-way information has been transmitted, one can

locate an intensity detector at the point P and adjust it to measure
a field of a particular intensity Id. When the fields coming from
the slits have the same intensities, the detector cannot distinguish

which-way the detected field came to the point P , so there is no
which-way information available (D = 0) resulting in perfect fringe

visibility (V = 1). On the other hand, when the intensities of the

fields are different (I1 �= I2), the detector adjusted to measure a
particular intensity can distinguish which way the field came to the

point P resulting in the disappearance of the interference fringes.

This is clearly seen from Eq. (15.11), if I1 � I2 or I1 � I2, the
visibility V ≈ 0 even for |g(1)| = 1.

The first-order correlation function is very sensitive to the

frequency and phase of the detected fields. Suppose, the fields have
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different frequencies (ω1 �= ω2) and the phases (φ1 �= φ2). We

can centre the frequencies around the average frequency of the two

fields as

ω1 = ω0 + 1

2

, ω2 = ω0 − 1

2

, (15.13)

where ω0 = (ω1 + ω2)/2 is the average frequency of the fields

and 
 = ω1 − ω2 is the frequency difference (detuning) between

the fields. Substituting Eq. (15.2) with Eqs. (15.13) and (15.3) into

Eq. (15.5), we obtain

g(1)( �R) = |g(1)( �R)| exp (ik0 R̂ · �r12
)
exp

[
i
(
k0 R̃




ω0
+ δφ

)]
,

(15.14)

where R̃ = R + 1
2
R̂ · (�r1 + �r2), δφ = φ1 − φ2, k0 = ω0/c = 2π/λ0,

and λ0 represents the mean wavelength of the fields.

Let us analyse the physical meaning of the exponents appearing

on the right-hand side of Eq. (15.14). The first exponent depends

on the separation between the slits and the position �R of the

point P . For small separations the exponent slowly changes with
the position �R and leads to minima and maxima in the interference
pattern. The minima appear whenever

k0 R̂ · �r12 = (2l + 1)π, l = 0, ±1, ±2, . . . . (15.15)

The second exponent, appearing in Eq. (15.14), depends on the

sum of the position of the slits, the ratio 
/ω0 and the difference

δφ between the initial phases of the fields. This term introduces

limits on the visibility of the interference pattern and can affect

the pattern only if the frequencies and the initial phases of the

fields are different. Even for equal and well stabilized phases, but

significantly different frequencies of the fields such that 
/ω0 ≈ 1,

the exponent oscillates rapidly with �R leading to the disappearance
of the interference pattern. Thus, in order to observe an interference

pattern it is important to have two fields of well-stabilized phases

and equal or nearly equal frequencies. Otherwise, no interference

pattern can be observed even if the fields are perfectly correlated.

The dependence of the interference pattern on the frequencies

and phases of the fields is related to the problemof extractingwhich-

way information has been transferred to the observation point P .
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For perfectly correlated fields with equal frequencies (
 = 0) and

equal initial phases (φ1 = φ2), the total intensity at the point P is

〈I ( �R)〉 = 2〈I0〉
[
1+ cos

(
k0 R̂ · �r12

)]
, (15.16)

giving maximum possible interference pattern with the maximum

visibility of 100%. When 
 �= 0 and/or φ1 �= φ2, the total intensity

at the point P is given by

〈I ( �R)〉 = 2〈I0〉
{
1+ cos(k0 �R · �r12) cos

(
k0 R̃




ω0
+ δφ

)

− sin
(
k0 R̂ · �r12

)
sin

(
k0 R̃




ω0
+ δφ

)}
. (15.17)

In this case the intensity exhibits additional cosine and sine

modulations, and at the minima the intensity is different from

zero indicating that the maximum depth of modulation of 100% is

not possible for two fields of different frequencies and/or initial

phases. Moreover, for large differences between the frequencies

of the fields (
/ω0 � 1), the terms cos(k0 R̃ 

ω0

+ δφ) and

sin(k0 R̃ 

ω0

+ δφ) rapidly oscillate with �R and average to zero,

which washes out the interference pattern. In terms of which-way

information has been transferred, a detector located at the point

P and adjusted to measure a particular frequency or phase could

distinguish the frequency or the phase of the two fields. Clearly,

one could tell which way the detected field came to the point P .
Thus, whether which-way information is available or not depends

on the intensities aswell as frequencies and phases of the interfering

fields. Maximum possible which-way information results in the lack

of the interference pattern, and vice versa, the lack of which-way

information results in maximum interference pattern.

15.4 Second-Order Coherence

We can extend the analysis of interference phenomenon to higher

order correlation functions, which involve intensities of the mea-

sured fields. Here, we illustrate some properties of the second-order

correlation function of a classical field. In the following section, we

will extend the analysis to the second-order correlation function of

quantum fields.
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The second-order (intensity) correlation function of a classical

field of a complex amplitude E ( �R , t) is defined as
G(2)( �R1, t1; �R2, t2) = 〈E ∗( �R1, t1)E ∗( �R2, t2)E ( �R2, t2)E ( �R1, t1)〉

= 〈I ( �R1, t1)I ( �R2, t2)〉, (15.18)

where I ( �R1, t1) and I ( �R2, t2) are the instantaneous intensities of the
field detected at a point �R1 at time t1 and at a point �R2 at time t2,
respectively.

In the plane-wave approximation, the second-order correlation

function can be written as

G(2)( �R1, t1; �R2, t2) =
2∑

i, j,k, l=1
〈E ∗

i (t1) E
∗
k (t2)El(t2)E j (t1)〉

×eik(R̂1·�ri j+R̂2·�rkl)ei(φi+φk−φl−φ j), (15.19)

where k = 2π/λ and λ is the wavelength of the field. There

are 16 correlation functions contributing to the right-hand side of

Eq. (15.19), each accompanied by an phase factor that depends on

the relative phase of the fields.

The second-order correlation function has completely different

coherence properties than the first-order correlation function.

1. Interference pattern can be observed in the second-order

correlation function, but in contrast to the first-order correlation

function, the interference appears between two points located at
�R1 and �R2.

2. Interference pattern can be observed even if the fields are

produced by two independent sources for which the phase

difference φ1−φ2 is completely random. It is easy to verify that in

this case the second-order correlation function (15.19) takes the

form

G(2)( �R1, t1; �R2, t2) = 〈I 21 〉 + 〈I 22 〉 + 2〈I1 I2〉
+2〈I1 I2〉 cos

[
k�r12 · (R̂1 − R̂2

)]
, (15.20)

where Ii = Ii (ti ) (i = 1, 2).

We see that the second-order correlation function exhibits a cosine

modulation with the separation �R1 − �R2 of the two detectors. This is
an interference although it involves intensities of two independent
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fields. Thus, an interference pattern can be observed even for two

completely independent fields. Similar to the first-order correlation

function, the sharpness of the fringes depends on the relative

intensities of the fields and degrades with an increasing difference

between I1 and I2. For equal intensities, I1 = I2 = I0, the correlation
function (15.20) reduces to

G(2)( �R1, t; �R2, t) = 4〈I 20 〉
{
1+ 1

2
cos
[
k�r12 · (R̂1 − R̂2

)]}
. (15.21)

In analogy to the visibility in the first-order correlation function, we

can define the visibility of the interference pattern of the intensity

correlations as

V2 = G(2)max − G(2)min
G(2)max + G(2)min

. (15.22)

It can be verified from Eqs. (15.21) and (15.22) that in the case of

a classical field, an interference pattern can be observed with the

maximum possible visibility of V2 = 1
2
. Hence, we can conclude

that two independent fields of random and uncorrelated phases can

exhibit an interference pattern in the intensity correlation with a

maximum visibility of 50%. This is the classical limit for the second-

order interference. In the next section, we will discuss the second-

order correlations involving quantum fields. We will see that with

the quantum fields, visibilities larger than 50%may be observed.

15.5 Two-Photon Interference and Quantum Non-locality

The second-order correlation function can be completely different

if one considers the quantum description of the field. In quantum

optics, the most important quantity is the electric field, which

is represented by the field operator Ê ( �R , t). The correlation and
coherence properties are discussed in terms of the positive and

negative frequency parts Ê (+)( �R , t) and Ê (−)( �R , t). Here, we discuss
separately the spatial and temporal non-classical interference

effects in the two-photon correlations.
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15.5.1 Spatial Non-classical Two-Photon Interference

In the case of the quantum description of the field, the second-order

correlation function is defined in terms of the normally ordered field

operators Ê (+) and Ê (−) as

G(2)( �R1, t1; �R2, t2) = 〈Ê (−)( �R1, t1)Ê (−)( �R2, t2)
×Ê (+)( �R2, t2)Ê (+)( �R1, t1)〉, (15.23)

where the average is taken over a state |i〉 of the field. Usually, the
state |i〉 is taken as an initial state of the field.

If we know the density operator ρ for the field, we can calculate

the second-order correlation functions as

G(2)( �R1, t1; �R2, t2) = Tr
{

ρ Ê (−)( �R1, t1)Ê (−)( �R2, t2)

×Ê (+)( �R2, t2)Ê (+)( �R1, t1)
}
, (15.24)

where the trace is taken over the initial state |i〉.
The correlation functions described by the field operators are

similar to the correlation functions of the classical field. A closer

look at the first- and second-order correlation functions could

suggest that the only difference between the correlation functions

is the classical amplitudes E ∗( �R , t) and E ( �R , t) are replaced by

the field operators Ê (−)( �R , t) and Ê (+)( �R , t). This is true as long
as the first-order correlation functions are considered, where the

interference effects do not distinguish between the quantum and

classical theories of the EM field. However, there are significant

differences between the classical and quantum descriptions of the

field in the properties of the second-order correlation function.

To illustrate this, consider two independent single-mode fields

of equal frequencies and polarizations. Suppose there are initially

n photons in the field 1 and m photons in the field 2, and the state

vectors of the fields are the Fock states |ψ1〉 = |n〉 and |ψ2〉 = |m〉.
The initial state of the two fields is the direct product of the single-

field states, |ψ〉 = |n〉 ⊗ |m〉. Using the explicit form of E (±)( �R , t),
Eq. (1.56) simplified to a single-mode field and the expectation value

with respect to the initial state of the fields, we find that the equal

time t1 = t2 = t two-photon correlation function (15.23) takes the
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form

G(2)( �R1, t; �R2, t) =
(

�ω

2ε0V

)2
{n(n− 1)+m(m− 1)

+2nm
(
1+ cos

[
k�r12 · (R̂1 − R̂2

)])}
. (15.25)

We note that the first two terms on the right-hand side of Eq. (15.25)

vanish when the number of photons in each field is smaller than

two, that is, when n < 2 and m < 2. In this limit the correlation

function (15.25) reduces to

G(2)
(

�R1, t; �R2, t
)

= 2

(
�ω

2ε0V

)2 {
1+ cos

[
k�r12 · (R̂1 − R̂2

)]}
.

(15.26)

In order to examine the visibility of the interference pattern,

we substitute Eq. (15.26) into Eq. (15.22) and find that perfect

interference pattern with the visibility V2 = 1 can be observed in

the second-order correlation function of two quantum fields each

containing only one photon. As we have noted, the classical theory

predicts only a visibility of V2 = 0.5. Thus, a visibility V2 > 0.5

can be regarded as a non-classical effect. For n, m � 1, the first two

terms on the right-hand side of Eq. (15.25) are large, m(m − 1) ≈
n(n − 1) ≈ n2, and then the quantum correlation function (15.25)

reduces to that of the classical field.

It follows from Eq. (15.26) that the second-order correlation

function vanishes when

k�r12 · (R̂1 − R̂2
) = (2l + 1)π, l = 0, ±1, ±2, . . . (15.27)

This shows that two photons can never be detected at two points

separated by an odd number of λ/2r12, despite the fact that one
photon can be detected anywhere.

These spatial non-classical correlations were observed experi-

mentally by Ou and Mandel [81], who measured the variation of the

correlations between two output beams from a beam splitter with

the relative position of the detectors. In the experiment, two photons

produced by a degenerate parametric oscillator (DPO) fall on a beam

splitter BS from opposite sides, as illustrated in Fig. 15.2. The beam

splitter outputs are received and measured by two photodetectors

D1 and D2 located at different points and their positions can be
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BS

D1

D2

R1

R2

Figure 15.2 Schematic diagram of the Ou and Mandel experiment to

demonstrate the spatial variation of the two-photon correlations with

relative position of the two photodetectors.

varied transversely to the incident beams. The detected signals

are then multiplied at a coincidence counter which gives the joint

probability G(2)( �R1, t; �R2, t) as the function of the relative position
of the detectors. In the experiment, the detector D2 was fixed at a

constant position R2, and the relative distance R = R1 − R2 was
varied by moving the detector D1.

In Fig. 15.3, we plot the joint probability G(2)( �R1, t; �R2, t) as a
function of R1 − R2 = R . Clearly, for some relative positions of
the two detectors the joint probability vanishes indicating the non-

classical two-photon correlations between the beams.

0 5 10 15 20 25
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G
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) /E
02

Figure 15.3 The joint probability G(2)( �R1, t; �R2, t) as a function of the

relative position of the detectors for kr12 = 1 and E 20 = 2 (�ω/(2ε0V ))
2.
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The vanishing of G(2)( �R1, t; �R2, t) for two photons at widely

separated points �R1 and �R2 is an example of quantum-mechanical
non-locality, that the outcome of a detection measurement at �R1
appears to be influenced by where we have chosen to locate the �R2
detector. At certain positions �R2, we can never detect a photon at �R1
when there is a photon detected at �R2, whereas at other position �R2
it is possible. The photon correlation argument shows clearly that

quantum theory does not in general describe an objective physical

reality independent of observation.

Einstein–Podolsky–Rosen (EPR) took the view that local realism

must be valid [82]. They therefore argued that quantum mechanics

must be incomplete. One would have to assume the existence

of ‘hidden variables’, that are not part of quantum theory, in

order to describe the localized sub-systems consistently with the

quantum predictions. The argument is perhaps best viewed as a

demonstration of the inconsistency between quantummechanics as

we know it (that is without completion) and local realism. However,
the EPR paradox was refuted by an experimental demonstration

of the violation of the Bell inequalities [83]. Bell derived a set

of inequalities [84] that can be violated only if a given theory, in

our case the quantum mechanics, is inconsistent with any local

realism [85, 86].

15.5.2 Temporal Non-classical Two-Photon Interference

In the preceding section, we have shown that spatial correlations

between two photons can lead to non-classical interference effects

in the two-photon correlations. Here, we consider temporal correla-
tions between photons produced by the same source. As a detector

of the time correlations of photons, we consider a simple situation

of two-photon interference at a beam splitter, shown in Fig. 15.4.

The photons of the modes a and b incident on a beam splitter of

the reflectivity η and produce output modes c and d. The amplitudes
of the outputmodes are related to the amplitudes of the inputmodes

by

ĉ = i
√

η â +
√
1− η b̂,

d̂ = i
√

η b̂+
√
1− η â, (15.28)
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η

a

b

c

d

BS

Figure 15.4 The input (a, b) and output (c, d) beams at a beam splitter BS
of reflectivity η.

where the factor i indicates a π/2 phase shift between the reflected

and transmitted fields.

The joint (coincidence) probability that a photon is detected in

the arm c at time t and another one in the arm d at time t + τ is

proportional to the second-order correlation function

Pcd(τ ) = 〈�|Ê (−)c (t) Ê (−)d (t + τ ) Ê (+)d (t + τ ) Ê (+)c (t) |�〉, (15.29)

where |�〉 is the state of the input fields, Ê (+)u (t) = λû(t), (û = ĉ, d̂)
is the field amplitude of the output n-th mode and λ is a constant.

For an arbitrary state of the input fields, and in the limit of a long

time, the coincidence probability takes the form

Pcd(τ ) = |λ|4 {η(1− η)〈â†â†(τ )â(τ )â〉 + η(1− η)〈b̂†b̂†(τ )b̂(τ )b̂〉
−η(1− η)〈â†b̂†(τ )â(τ )b̂〉 + (1− η)2〈b̂†â†(τ )â(τ )b̂〉
+η2〈â†b̂†(τ )b̂(τ )â〉 − η(1− η)〈b̂†â†(τ )b̂(τ )â〉} . (15.30)

The first two terms on the right-hand side of Eq. (15.30) describe

correlations between reflected and transmitted photons of the same

input beam. These correlations vanish if there is only one photon

in each of the input beams. The third and fourth term describe

correlations between the amplitudes of the reflected–reflected and

transmitted–transmitted photons. The last two terms arise from the

interference between the amplitudes of the reflected–transmitted

and transmitted–reflected photons of the two beams mixed at the

beam splitter, and are the real quantum interference contributions

to the coincidence probability. If the state of the input fields is

|�〉 = |1〉a|1〉b, that each of the input fields contains only one photon,
and τ = 0, the coincidence probability takes the form

Pcd(0) = (1− 2η)2 . (15.31)
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Thus, if the beam splitter is either fully reflecting (η = 1) or fully

transmissive (η = 0), the probability that a coincidence will be

detected is 1. In other words, there is a photon in each of the output

ports. This agrees with our intuition: if the beam splitter is fully

reflective (transmissive), the photon in the mode a will be reflected
(transmitted) into mode c (d), and vice versa for the photon in the
mode b.

An interesting quantum interference effect arises when a

50/50 (η = 1/2) beam splitter is used. In this case, the probability

of detecting a coincidence goes to zero, indicating that both photons

are always found together in either c or d. This effect results from
quantum interference that the two paths are indistinguishable as the

detected photons have the same frequency and can come from either

of the two input modes. This effect is called in the literature as the

Hong–Ou–Mandel (HOM) dip.

Where the name HOM dip came from?

In the experiment, Hong, Ou and Mandel [87] measured time

separations between two photons by interference at a beam splitter.

The experimental setup is shown in Fig. 15.5. Two photons of the

same frequency are produced by a degenerate parametric down-

conversion process (DPO) and fall on the beam splitter BS from

opposite sides. In order to introduce a time delay between the

photons, the beam splitter can be translated slightly in the vertical

BS

D1

D2

DPO

C
C

Figure 15.5 The experimental setup to measure two-photon coincidence

for different delay times.
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direction. This shortens the path for one photon relative to the other.

The coincidences were detected by two photodetectors D1 and D2

and multiplied at the coincidence counter CC.

In the parametric down-conversion, photon pairs are randomly

produced with the cross-correlations between the idler and signal

modes given by a Gaussian distribution in time

〈â†b̂†(τ )â(τ )b̂〉 = 〈â†b̂〉〈b̂†(τ )â(τ )〉 = exp
[− (
ωτ )2

]
, (15.32)

where
ω is the bandwidth of the down-converted beam.

Hence, for a 50/50 beam splitter and quantum description of the

fields

Pcd(τ ) = |λ|4
2

(
1− e−
ω2τ 2

)
. (15.33)

Evidently, the coincidence probability vanishes at τ = 0. In

the case of classical description of the fields, the coincidence

probability (15.30) reduces to

Pcd(τ ) = |λ|4 I 2
2

(
1− 1

2
e−
ω2τ 2

)
, (15.34)

where I is the intensity of the input fields (assumed to be equal for
both fields). Thus, for classical fields the coincidence probability can

be reduced maximally to 1/2.

The coincidence probability of a quantum field is plotted in

Fig. 15.6. The figure clearly shows the presence of the HOM dip, that

the coincidence probability Pcd(τ ) vanishes at τ = 0 and approaches

the classical limit of Pcd(τ ) = 1/2 as τ → ∞.
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Figure 15.6 The time dependence of the two-photon coincidence

probability.
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15.6 Summary

Quantum interference, in particular the two-photon interference,

has played a major role in the development of new fields in quan-

tum optics called quantum information, quantum cryptography,

quantum teleportation and quantum computation. The fundamental

features of quantum physics, such as EPR paradox, entanglement,

Bell inequalities and photon polarization correlations have been

tested in quantum optics experiments. The reader wishing to learn

more about various applications of quantum interference and its

impact on the development of new fields of quantum optics is

referred to recent books [88–90].

Exercises

15.1 Explain the physical reason for which in the interference

between two beams of different intensities, I1 �= I2, the
visibility of the interference fringes V is not equal to the first-
order coherence |g(1)|.

15.2 Consider a three-level atom in two configurations: ∨ and �.

For the ∨-type atom the ground state is |2〉 and the upper
states are |1〉 and |3〉, whereas for the �-type atom the upper

state is |2〉 and the two ground states are |1〉 and |3〉. In both
atoms the only allowed transitions are |2〉 ↔ |1〉 and |2〉 ↔
|3〉.
(a) If we treat each transition as a source of light, find which

of these two systems has no coherence (interference)

terms in the total intensity of the emitted light.

(b) Show that the other systemhas non-zero coherence terms

only if it is in a linear superposition of the states |1〉 and
|3〉, that is,

|�〉 = a|1〉 + b|3〉, |a|2 + |b|2 = 1.

(c) Assuming that a and b are real numbers, for what values
of a and b does the emitted intensity equal to zero?
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15.3 Show that the transformation(
c
d

)
=
(
t −r
r t

)(
a
b

)
,

between annihilation operators of the input (a, b) and output
(c, d) beams at a beam splitter of reflectivity r and transmit-
tivity t can be associated with the interaction Hamiltonian

Ĥ = i�g(ab† − ba†),
where sin(gt) = r .

15.4 Beam-splitting a single photon. A transformation between

annihilation operators of the input (a, b) and output (c, d)
beams at a 50/50 beam splitter is of the form(

c
d

)
= 1√

2

(
1 −1
1 1

)(
a
b

)
.

(a) What is the physical interpretation of this transforma-
tion?

(b) What is the output state of the beam splitter if the input

state is a single photon state |�〉 = |1〉a|0〉b?
15.5 Beam-splitting a coherent state. What is the output state of a

50/50 beam splitter if the input state is |�〉 = |α〉a|0〉b, where
|α〉 is a coherent state of amplitude α.

15.6 Beam-splitting two photons. Consider the case when in total
two photons are present in the input beams exciting two arms

in a 50/50 beam splitter.

(a) What would be the output state if the two photons are
arranged such that each excite one of the two input

arms, |�〉 = |1〉a|1〉b ?
(b) Calculate the coincidence probability Pcd(0), given by

Eq. (15.30), for the state of the input beams |�〉 =
|0〉a|2〉b.

(c) What would be the coincidence probability if the

state of the input beams was a noon state |�〉 =
(|2〉a|0〉b + |0〉a|2〉b) /

√
2 ?

15.7 Beam-splitting multi-photon states. The input state of a beam
splitter with n photons in input arm a andm photons in input

arm b can be written in terms of the zero photon state |0, 0〉 as

|n, m〉 =
(
â†a
)n

√
n

(
â†b
)m

√
m

|0, 0〉.
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(a) If the input state is |2, 0〉, what would be the output state
of the beam splitter in terms of the |0, 0〉 state?

(b) What would be the output state in terms of the |0, 0〉 state
if the input state was changed to |1, 1〉?
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Chapter 16

Atom–Atom Entanglement

16.1 Introduction

In this chapter, we will discuss the central topic in the current

quantum optics studies, that is, entanglement. We focus mostly on

the problem of creation of entanglement between two atoms and

address the question how one could create multi-atom entangled

states. The term entanglement, one of themost intriguing properties

of multi-particle systems, was introduced by Schrödinger in his

discussions of the foundations of quantum mechanics. It describes

a multi-particle system that has the astonishing property that the

results of a measurement on one particle cannot be specified

independently of the results of measurements on the other particles.

Although entangled systems can be physically separated, they can

no longer be considered as independent, even when they are very

far from one another. Entanglement is not only at the heart of

the distinction between quantum and classical mechanics, but is

now regarded to be a resource central to the development of

quantum technologies ranging from quantum information, quantum

cryptography, teleportation and quantum computation to atomic

and molecular spectroscopy. These practical implementations all

stem from the realization that we may control and manipulate

Quantum Optics for Beginners
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Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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quantum systems at the level of single atoms and photons to store

information and transfer the information between distant systems

in a controlled way and with high fidelity. This field of study is

a relatively new one, and considerable research activity is taking

place at present. The most active ones are the studies of practical

schemes for creation of entanglement between trapped atoms or

ions [91, 94].

We first illustrate how one can create entanglement in a simple

system of two two-level atoms (two qubits). Next, we will illustrate

how the entanglement can be related to quantum interference.

Although the entangling procedure is illustrated for two-level atoms,

it can be extended into multi-atom systems or multi-level atoms

(qutrits).

16.2 Two-Atom Systems

We start with the analysis of the energy states of a two-atom

systems. In the absence of the interatomic interactions and the

driving laser field, the space of the two-atom system is spanned by

four product states

|g1〉|g2〉, |e1〉|g2〉, |g1〉|e2〉, |e1〉|e2〉, (16.1)

with corresponding energies

Egg = −�ω0, Eeg = −�
, Ege = �
, Eee = �ω0, (16.2)

where ω0 = (ω1 + ω2) /2 is the average frequency of the atomic

transition frequencies, 
 = (ω2 − ω1) /2 is the detuning of the

atomic frequencies, and |gi 〉 and |ei 〉 denote the ground and excited
states of the i th atom, respectively.

From the energy eigenvalues, we see that the product states

|e1〉|g2〉 and |g1〉|e2〉 form a pair of nearly degenerated states

differing in energy by 2�
, whereas the ground and the upper states

are separated by 2�ω0.

Suppose, the atoms can interact with each other through the

vacuum field by a coherent exchange of photons. The interaction

is represented by the dipole–dipole interaction, which depends on

the separation between the atoms and the orientation of the atomic
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dipole moments in respect to the interatomic axis [92–94]. The

explicit form of the dipole–dipole interaction strength is given by

�12 = 3

4
�

{
− [1− (μ̂ · r̂12)2

] cos (kr12)
kr12

+ [1− 3 (μ̂ · r̂12)2
] [sin (kr12)

(kr12)2
+ cos (kr12)

(kr12)3

]}
, (16.3)

where μ̂ is the unit vector along the dipole moments of the atoms,

which we have assumed to be parallel (μ̂ = μ̂1 = μ̂2), r̂12 is the unit
vector in the direction of �r12, k = ω0/c is the wave number of the
atomic transition and � is the spontaneous emission damping rate

of the atoms.

When we include the dipole–dipole interaction into the Hamil-

tonian of the two-atom system, the product states combine into two

linear superpositions (entangled states), with their energies shifted

from ±�
 by the dipole–dipole interaction energy. To check this

explicitly, we begin with writing the Hamiltonian of two atoms that

includes the dipole–dipole interaction

Ĥaa =
2∑
i=1

�ωi Szi + �
∑
i �= j

�i j S+
i S

−
j . (16.4)

Next, we write the Hamiltonian in the basis of the product

states (16.1) and arrive to a matrix of the form

Ĥaa = �

⎛
⎜⎜⎝

−ω0 0 0 0

0 −
 �12 0

0 �12 
 0

0 0 0 ω0

⎞
⎟⎟⎠ . (16.5)

Evidently, in the presence of the dipole–dipole interaction the

matrix (16.5) is not diagonal, which indicates that the product

states (16.1) are not the eigenstates of the two-atom system.

The actual energy states of the system are readily found by

the diagonalization of the matrix (16.5). We will diagonalize the

matrix (16.5) separately for the case of identical (
 = 0) and non-

identical (
 �= 0) atoms to find eigenstates of the systems and their

energies.
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16.3 Entangled States of Two Identical Atoms

Consider first a system of two identical atoms (
 = 0). As we

have alreadymentioned, in order to find energies and corresponding

energy states of the system,we have to diagonalize thematrix (16.5).

This is a relatively simple matrix to diagonalize and the resulting

energies and corresponding eigenstates are of the form

Eg = −�ω0, |g〉 = |g1〉|g2〉,
Es = ��12, |s〉 = 1√

2
(|e1〉|g2〉 + |g1〉|e2〉) ,

Ea = −��12, |a〉 = 1√
2
(|e1〉|g2〉 − |g1〉|e2〉) ,

Ee = �ω0, |e〉 = |e1〉|e2〉. (16.6)

The eigenstates (16.6), first introduced by Dicke [95] are known

as the collective states of two interacting atoms. They have few

interesting properties. Firstly, the energies of the ground state

|g〉 and the upper state |e〉 are not affected by the dipole–dipole
interaction. Secondly, the states |s〉 and |a〉 are shifted from their

unperturbed energies by the amounts ±�12, the dipole–dipole

energy. Finally, the most important property of the collective states

is that the states |s〉 and |a〉 are an example of maximally entangled
states of the two-atom system. The states are equallyweighted linear

superpositions of the product states which cannot be separated into

product states of the individual atoms.

We show the collective states of two identical atoms in Fig. 16.1.

It is seen that in the collective states representation, the two-

atom system behaves as a single four-level system, with the ground

state |g〉, the upper state |e〉, and two intermediate states: the

symmetric state |s〉 and the antisymmetric state |a〉. The energies
of the intermediate states depend on the dipole–dipole interaction

and these states suffer a large shift when the interatomic separation

is small. There are two transition channels |e〉 → |s〉 → |g〉 and
|e〉 → |a〉 → |g〉, each with two cascade non-degenerate transitions.
For two identical atoms, these two channels are uncorrelated, but

a detailed analysis involving the master equation of the two-atom

system shows that the transitions in these channels are dampedwith

significantly different rates. The transitions through the symmetric
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| e >

| a >

| g >

Figure 16.1 Collective states of two identical atoms. The energies of

the symmetric and antisymmetric states are shifted by the dipole–dipole

interaction�12. The arrows indicate possible one-photon transitions.

state are damped with an enhanced (superradiant) rate, while the

transitions through the antisymmetric state are damped with a

reduced (subradiant) rate. The details of the calculations of the

transition rates are left to the reader as a tutorial exercise.

16.4 Entangled States of Two Non-identical Atoms

As we have already seen, in the case of two identical atoms,

the dipole–dipole interaction leads to the maximally entangled

symmetric and antisymmetric states. These states decay indepen-

dently with different damping rates. Furthermore, in the case of

the small sample model of two atoms the antisymmetric state

decouples from the external coherent field and the environment, and

consequently does not decay. The decoupling of the antisymmetric

state from the coherent field prevents the state from the external

coherent interactions. This indicates that the initially non-populated

antisymmetric state remains unpopulated for all times and the

population is distributed only between three collective states.

When the atoms are non-identical with different transition

frequencies, the states (16.6) are no longer the eigenstates of the

Hamiltonian (16.2). However, we can still find the new eigenstates
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simply by the diagonalization of the matrix (16.5) with 
 �= 0. It

results in the following energies and corresponding eigenstates

Eg = −�ω0, |g〉 = |g1〉|g2〉,
Es ′ = �w, |s ′〉 = β|e1〉|g2〉 + α|g1〉|e2〉,
Ea′ = −�w, |a′〉 = α|e1〉|g2〉 − β|g1〉|e2〉,
Ee = �ω0, |e〉 = |e1〉|e2〉, (16.7)

where

α = d√
d2 + �2

12

, β = �12√
d2 + �2

12

, w =
√

�2
12 + 
2, (16.8)

and d = 
 +
√

�2
12 + 
2.

The energy level structure of the collective system of two non-

identical atoms is similar to that of the identical atoms, with the

ground state |g〉, the upper state |e〉 and two intermediate states |s ′〉
and |a′〉. The effect of the frequency difference 
 on the collective

atomic states is to increase the splitting between the intermediate

levels, which now is equal to w =
√

�2
12 + 
2. However, the most

dramatic effect of the detuning
 is on the degree of entanglement of

the intermediate states |s ′〉 and |a′〉 that in the case of non-identical
atoms the states are no longer maximally entangled states. For
 =
0 the states |s ′〉 and |a′〉 reduce to the maximally entangled states |s〉
and |a〉, whereas for 
 � �12 the entangled states reduce to the

product states |e1〉|g2〉 and |g1〉|e2〉, respectively.

16.5 Creation of Entanglement between Two Atoms

We now consider excitation processes that can lead to a preparation

of the two-atom system in only one of the collective states. In

particular, we will focus on processes that can prepare the two-

atom system in the entangled symmetric state |s〉. Our main

interest, however, is in the preparation of the system in the

maximally entangled antisymmetric state |a〉, which is known as
a decoherence-free state [94]. The central idea is to choose the

distance between the atoms such that the resulting level shift is large

enough to consider the possible transitions between the collective

states separately. This will allow to make a selective excitation of



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Creation of Entanglement between Two Atoms 257

the symmetric and antisymmetric states and, therefore, to create

controlled entanglement between the atoms.

16.5.1 Preparation of Atoms in Entangled Symmetric State

A system of two identical two-level atoms may be prepared in the

symmetric state |s〉 by a short laser pulse. The conditions for a
selective excitation of the collective atomic states can be analysed

from the interactionHamiltonian of the laser fieldwith the two-atom

system.

We start with the Hamiltonian of two interacting atoms driven by

an external (classical) laser field

Ĥ = �ω0

2∑
i=1

Szi + �

2∑
i �= j

�i j S+
i S

−
j + ĤL, (16.9)

where

ĤL = −1
2

�

2∑
i=1

[
� (�ri ) S+

i e
−i(ωLt+φL) + H.c.

]
(16.10)

is the interaction Hamiltonian of the atoms with the laser field of the

Rabi frequency� (�ri ), the angular frequency ωL and phase φL.

Note that the Rabi frequencies of the driving field are evaluated

at the positions of the atoms and are defined as

� (�ri ) ≡ �i = �μi · �ELe
i�kL·�ri /�, (16.11)

where �EL is the amplitude and �kL is the wave vector of the driving
field, respectively. The Rabi frequencies depend on the positions of

the atoms and can be different for the atoms located at different

points.

In the interaction picture and in the basis of the collective

states (16.6), the Hamiltonian (16.9) can be written as

Ĥ = Ĥa + ĤL, (16.12)

where

Ĥa = � {
L (|e〉〈e| − |g〉〈g|)+ (
L + �12) |s〉〈s|
+ (
L − �12) |a〉〈a|} , (16.13)

ĤL = −1
2

�

2∑
i=1

[
� (�ri ) S+

i + H.c.
]
, (16.14)
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and 
L = ωL − ω0 is the detuning of the laser frequency from the

atomic transition frequencies ω0.

We make the unitary transformation

H̃L = ei Ĥat/� ĤLe
−i Ĥat/�, (16.15)

and find that the transformed interaction Hamiltonian H̃L is given

by

H̃L = − �

2
√
2

{
(�1 + �2)

(
S+
ese

i(
L+�12)t + S+
sge

i(
L−�12)t
)

+ (�2 − �1)
(
S+
age

i(
L+�12)t + S+
eae

i(
L−�12)t
)+ H.c.

}
.

(16.16)

The Hamiltonian (16.16) represents the interaction of the laser

field with the collective two-atom system, and in the transformed

form contains terms oscillating at frequencies (
L ± �12), which

correspond to the two separate groups of transitions between

the collective atomic states at frequencies ωL = ω0 + �12 and

ωL = ω0 − �12. The 
L + �12 frequencies are separated from


L − �12 frequencies by 2�12, and hence the two groups of the

transitions evolve separately when �12 � �. Depending on the

frequency, the laser can be selectively tuned to one of the two

groups of the transitions. When ωL = ω0 + �12, the detuning


L = �12, so that the laser is then tuned to exact resonance with

the |e〉 − |a〉 and |g〉 − |s〉 transitions. In this case, the terms in
the Hamiltonian (16.16) corresponding to these transitions have

no explicit time dependence. In contrast, the |g〉 − |a〉 and |e〉 −
|s〉 transitions are off-resonant and the terms corresponding to

these transitions have an explicit time dependence exp(±2i�12t).
If �12 � �, the off-resonant terms rapidly oscillate with the

frequency 2�12, and then we can make a secular approximation in

which we neglect all those rapidly oscillating terms. The interaction

Hamiltonian can then be written in the simplified form

H̃L = − �

2
√
2

[
(�1 + �2) S+

sg + (�2 − �1) S+
ea + H.c.

]
. (16.17)

It is seen that the laser field couples to the transitions with

significantly different Rabi frequencies. The coupling strength of

the laser to the |g〉 − |s〉 transition is proportional to the sum of

the Rabi frequencies �1 + �2, whereas the coupling strength of the
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laser to the |a〉 − |e〉 transition is proportional to the difference of
the Rabi frequencies �1 − �2. According to Eq. (16.11) the Rabi

frequencies �1 and �2 of two identical atoms differ only by the

phase factor exp(i�kL · �r12). Thus, in order to selectively excite the
|g〉 − |s〉 transition, the driving laser field should be in phase with
both atoms, that is, �1 = �2. This can be achieved by choosing the

propagation vector �kL of the laser orthogonal to the line joining the
atoms. Under this condition we can make a further simplification

and truncate the state vector of the system into two states |g〉 and
|s〉. In this two-state approximation we find from the Schrödinger

equation the time evolution of the population Ps(t) of the state |s〉 as

Ps (t) = sin2
(
1√
2

�t
)
, (16.18)

where � = �1 = �2. The population oscillates with the Rabi

frequency of the |s〉 − |g〉 transition and at certain times Ps(t) = 1

indicating that all the population is in the symmetric state. This

happens at times

Tn = (2n+ 1)
π√
2�

, n = 0, 1, . . . . (16.19)

Hence, the system can be prepared in the state |s〉 by simply applying
a laser pulse, for example, with the duration T0, which is a standard
π pulse.

The two-state approximation is of course an idealization, and a

possibility that all the transitions can be driven by the laser imposes

significant limits on the Rabi frequency and the duration of the pulse.

Namely, the Rabi frequency cannot be too strong in order to avoid

the coupling of the laser to the |s〉−|e〉 transition, which could lead to
a slight pumping of the population to the state |e〉. On the other hand,
the Rabi frequency cannot be too small as for a small� the duration

of the pulse, required for the complete transfer of the population

into the state |s〉, becomes longer and then spontaneous emission
can occur during the excitation process. Therefore, the transfer of

the population to the state |s〉 cannot be made arbitrarily fast and, in
addition, requires a careful estimation of the optimal Rabi frequency,

which could be difficult to achieve in a real experimental situation.
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16.5.2 Preparation of Atoms in Entangled
Antisymmetric State

If we choose the laser frequency such that 
L + �12 = 0, the laser

field is then resonant to the |a〉 − |g〉 and |e〉 − |s〉 transitions and,
after the secular approximation, the Hamiltonian (16.16) reduces to

H̃L = − �

2
√
2

[
(�2 − �1) S+

ag + (�1 + �2) S+
es + H.c.

]
. (16.20)

Clearly, for �1 = −�2 the laser couples only to the |a〉 − |g〉
transition. Thus, in order to selectively excite the |g〉− |a〉 transition,
the atoms should experience opposite phases of the laser field. This

can be achieved by choosing the propagation vector �kL of the laser
along the interatomic axis, and the atomic separations such that

�kL · �r12 = (2n+ 1)π, n = 0, 1, 2, . . . , (16.21)

which corresponds to a situation where the atoms are separated by

a distance r12 = (2n+ 1)λ/2.

One can notice that the smallest distance at which the atoms

could experience opposite phases corresponds to r12 = λ/2.

However, it can be verified from Eq. (16.3) that at the separation

r12 = λ/2 the dipole–dipole interaction �12 is small, and then all of

the transitions between the collective states occur at approximately

the same frequency. In this case the secular approximation is not

valid and we cannot separate the transitions at 
L + �12 from the

transitions at
L − �12.

One possible solution to the problem of the selective excitation

with opposite phases is to use a standing laser field instead of the

running-wave field. If the laser amplitudes differ by the sign, that is,
�EL1 = −�EL2 = �E0 and �kL1 · �r1 = −�kL2 · �r2, the Rabi frequencies
experienced by the atoms are

�1 = 2i
�

�μ1 · �E0 sin
(
1

2
�kL · �r12

)
,

�2 = −2i
�

�μ2 · �E0 sin
(
1

2
�kL · �r12

)
, (16.22)

where �kL = �kL1 = �kL2 , and we have chosen the reference frame such
that �r1 = 1

2
�r12 and �r2 = − 1

2
�r12. It follows from Eq. (16.22) that the

Rabi frequencies oscillate with opposite phases independent of the

separation between the atoms. However, the magnitude of the Rabi

frequencies decreases with decreasing r12.
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16.5.3 Creation of Two-Photon Entangled States

In the previous subsection, we have discussed different excitation

processes that can prepare two atoms in the symmetric and

antisymmetric entangled states. However, apart from the symmetric

and antisymmetric states, there are two other collective states of

the two-atom system: the ground state |g〉 = |g1〉|g2〉 and the

upper state |e〉 = |e1〉|e2〉. These states are not entangled states.
They are product states of the individual atomic states and, the

most interesting, their energies are not affected by the dipole–dipole

interaction�12.

As we shall demonstrate, one can create entangled states involv-

ing those two product states. However, this requires the application

of an external coherent field, resonant or near resonant with the

two-photon frequency 2ω0 separating these states. Moreover, more

conditions should be satisfied. The problem is that a coherent field

resonant to the |g〉 ↔ |e〉 two-photon transition couples also to one-
photon transitions, |g〉 ↔ |s〉 and |g〉 ↔ |a〉. Thus, the field populates
not only the upper state |e〉 but also the intermediate states |s〉
and |a〉. The two-photon entangled states are superpositions of

the collective ground and excited states with no contribution from

the intermediate collective states |s〉 and |a〉. Therefore, some
arrangements should be done to excite the two-photon transition

and at the same time eliminate the coupling of the field to the one-

photon transitions.

Let us now investigate how this could be arranged. Suppose, the

density matrix of the two-atom system is given by

ρ̂ =

⎛
⎜⎜⎝

ρgg 0 0 ρge

0 ρss 0 0

0 0 ρaa 0

ρeg 0 0 ρee

⎞
⎟⎟⎠ . (16.23)

where ρi j are the non-zero density matrix elements.

It is seen from Eq. (16.23) that the density matrix of the system

is not diagonal due to the presence of the two-photon coherencies

ρge and ρeg . This indicates that in the presence of the two-photon

coherences, the collective states |g〉, |s〉 and |e〉 are no longer

eigenstates of the system. The density matrix can be re-diagonalized
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by including ρeg and ρge to give the new (entangled) states

|u〉 = (Pu − ρee)|g〉 + ρeg|e〉√
(Pu − ρee)

2+∣∣ρeg∣∣2 , |d〉 = ρge|g〉 + (Pd − ρgg
)|e〉√(

Pd − ρgg
)2+∣∣ρeg∣∣2 ,

(16.24)

and the collective states |s〉 and |a〉 remain unchanged. The

probabilities (eigenvalues) of the diagonal states are

Pu = 1

2

(
ρgg + ρee

)+ 1

2

√(
ρgg − ρee

)2 + 4
∣∣ρeg∣∣2,

Pd = 1

2

(
ρgg + ρee

)− 1

2

√(
ρgg − ρee

)2 + 4
∣∣ρeg∣∣2,

Ps = ρss ,

Pa = ρaa . (16.25)

The two-photon behaviour of the entangled states (16.24) suggests

that the simplest technique for generating the two-photon excitation

(TPE) states would be by applying a TPE process. An obvious

candidate is a squeezed vacuum field which, as we have seen in

Chapter 6, is characterized by strong two-photon correlations, which

would enable the transition |g〉 → |e〉 to occur effectively in a

single step without populating the intermediate states. It has been

demonstrated that the entangled states (16.24) are analogous to

the pairwise atomic states [96–98], or the multi-atom squeezed

states predicted in the small sample (Dicke)model of two interacting

atoms [99].

16.6 Quantum Interference of the Field Radiated by
Two-Atom Systems

In Chapter 15, we investigated quantum interference effects

involving classical and quantum electromagnetic (EM) fields. We

were not interested in sources that could generate these fields in

practice. In this chapter, we focus on practical sources of the field,

two-level atoms, and discuss quantum interference effects involving

radiation fields emitted by the atoms. We consider both the Young’s

and the Hanbury Brown and Twiss (HBT) experiments in which we

determine, respectively, the first and second-order correlations in
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the field emitted by two two-level atoms. The advantage of using

two-level atoms instead of slits is that at a given time each atom

cannot emit more than one photon. Therefore, the two-level atoms

can be regarded as sources of single photon fields. The atoms

interacting with the vacuum field may decay spontaneously from

their upper energy states to the ground states emitting their energy

to the surrounding vacuummodes.

16.6.1 First-Order Interference of the Field Radiated by a
Two-Atom System

Consider a Young’s type experiment with the slits replaced by two-

level atoms. The atoms are sources of the field registered in the far-

field zone by a detector P , as illustrated in Fig. 16.2. We assume that
(a) initially only one atomwas in the excited state and the other was

in its ground state, and (b) initially both atoms were excited.

Since the electric field emitted by an atom is proportional to the

radiating dipole moment

Ê (−)i ∼ μ̂i = |μi |S+
i , Ê (+)i ∼ μ̂

†
i = |μi |S−

i , (16.26)

r12

R1

R2

P

1

2

Figure 16.2 Schematic diagram of a Young’s type experiment in which

slits are replaced by atoms distance r12 and radiating fields registered by
a detector P located in the far-field zone of the radiating atoms, R1 ≈ R2 =
R � r12.
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we can write the average intensity at the detector P in terms of the
atomic spin operators as

I ( �R , t) = �
[〈
S+
1 S

−
1

〉+ 〈S+
2 S

−
2

〉+ 2
〈
S+
1 S

−
2

〉
cos
(
kR̂ · �r12

)]
,

(16.27)

where � is the spontaneous emission rate, equal for both atoms.

In the basis of the collective states, the radiation intensity can be

written as

I ( �R , t)/� = [ρee(t)+ ρss(t)]
[
1+ cos

(
kR̂ · �r12

)]
+ [ρee(t)+ ρaa(t)]

[
1− cos

(
kR̂ · �r12

)]
+ i [ρsa(t)− ρas(t)] sin

(
kR̂ · �r12

)
, (16.28)

where ρss and ρaa are the populations of the entangled states |s〉 and
|a〉, respectively, and ρsa , ρas are coherencies between them.

Example 16.1 (Initially one atom excited) Assume that only one
atom was initially excited. In this case

ρss(0) = ρaa(0) = ρsa(0) = ρas(0) = 1

2
, ρee(0) = 0. (16.29)

Then, the radiation intensity (16.28) reduces to

I ( �R , t)/� = ρss(t)+ ρaa(t)+ [ρss(t)− ρaa(t)] cos
(
kR̂ · �r12

)
.

(16.30)

It follows that an interference can be observed only if ρss(t) �= ρaa(t).
This happens when ρ12(t) and ρ21(t) are different from zero, that is,
when there is a coherence between the atoms.

At first thought, the result (16.30) can be surprising. One could

argue that with only one atom excited initially, say the atom 1, and

the path of the emitted photon is known, the photon travels to the

detector along the path R1, so this should rule out the interference
effect. This is true as long as the atoms are independent and in

this case one can readily show that ρss(t) = ρaa(t) for all times t.
However, when the atoms are coupled to each other, which could

happen when the atoms are located in a common reservoir, then the

photon emitted by the excited atom could travel to the detector along

the path R1 but also could be absorbed by the second atom and then

travel to the detector along the path R2. Since we do not knowwhich
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path the emitted photon travelled to the detector, an interference

effect occurs.

Example 16.2 (Initially both atoms excited) If initially both
atoms were prepared in their excited states, then

ρee(0) = 1, ρss(0) = ρaa(0) = ρsa(0) = ρas(0) = 0. (16.31)

In this case, the radiation intensity (16.28) simplifies to

I ( �R , t) = 2�ρee(t). (16.32)

Clearly, there are no terms involved that depend on the position of the
detector �R. Thus, no variation of the intensity with �R, which on the
other hand means no quantum interference can be observed in this
case.

The result of the example 16.2 can be understood by referring to

Fig. 16.1 When both atoms are initially excited, the population is

initially in the upper state |e〉 and due to spontaneous emission the
population can decay to the intermediate states |s〉 and |a〉. There
are two paths the population decays, |e〉 → |s〉 and |e〉 → |a〉.
Then, by measuring the population of either |s〉 or |a〉, one could
recognize which path the population decayed to the lower energy

states. Knowledge of the path eliminates the interference fringes.

Example 16.3 (Twonon-identical atoms) When the atoms are not
identical with different transition frequencies, ω1 �= ω2, the radiation
intensity can be written as

I ( �R , t)/� = I1(t)+ I2(t)+ 2〈E (−)1 E (+)2 〉 cos (kR̂ · �r12 + 
t
)
,

(16.33)

where 
 = ω2 − ω1. In this case for any initial conditions, the
interference term depends on time. The magnitude of the term
decreases with increasing
 and the observation time t, and vanishes
for long observation times, t � 0.

The reason for the vanishing of the interference term when the

atoms are not identical is that a long observation time allows to

determine the frequency of the detected photon, so that it can be

known from which atom the photon came to the detector.
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16.6.2 Two-Photon Interference in a Two-Atom System

We have seen that one-photon interference is sensitive to the

one-photon coherences. In contrast, the second-order correlation

function can exhibit an interference pattern independent of the

one-photon coherences. This type of interference results from the

detection process that a detector does not distinguish between two

simultaneously detected photons.

We illustrate the temporal and spatial properties of the second-

order correlation function with few examples.

Example 16.4 (One-time second-order correlation function)
As a first example, consider the one-time second-order correlation
function

G(2)( �R , t) = 〈E (−)( �R , t)E (−)( �R , t)E (+)( �R , t)E (+)( �R , t)〉
= �2ρee(t)

[
1+ cos

(
kR̂ · �r12

)]
, (16.34)

where, for simplicity, we have assumed that �R1 = �R2. We see that
interference takes place only when the population of the upper state
ρee(t) �= 0, and no first-order coherence is required to see interference.
This type of interference can be achieved by preparing both atoms in
their upper states.

Now consider a more general two-photon correlation function and

also assume that the atoms are not identical.

Example 16.5 (Two initially excited non-identical atoms)
Consider now two initially excited non-identical atoms, ρee(0) = 1.
If both photons were detected at the same time t, the second-order
correlation function takes the form

G(2)( �R1, t; �R2, t) = �2
[
1+ cos

(
kR̂ · �r12

)]
e−4�t . (16.35)

This shows that even for two significantly different (distinguishable)
photons detected at the same time, the second-order correlation
function exhibits perfect interference pattern. This surprising result
arises from the fact that a detector cannot distinguish between
two simultaneously detected photons, even if the photons have
significantly different frequencies.

Example 16.6 (Photons detected at different times) When
initially both atoms were excited (ρee(0) = 1) and the two emitted
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photons were detected at different times, the first at t and the other at
t + τ , the two-time second-order correlation function takes the form

G(2)( �R1, t; �R2, t + τ ) = �2
[
1+ cos

(
kR̂ · �r12 + 
τ

)]
e−2�(2t+τ ).

(16.36)

We see that at the interference term is independent of t. It depends
on the time difference τ , but only when the atoms are not identical,

 �= 0. Thus, for identical atoms perfect interference is observed even
if the photons are detected at significantly different times that could
even go to infinity. For non-identical atoms, the interference degrades
with an increasing τ , and is expected to vanish for τ � 0. To put
it another way, when photons emitted from non-identical atoms are
well separated in time, it is possible to determine from which atom
the photon came to the detector by examining its frequency. This rules
out any interference, which is always a manifestation of the intrinsic
indistinguishability of possible paths of the detected photons.

16.7 Summary

In summary of this chapter, we can thus state: Any attempt to

interfere with the interference phenomenon to find out from which

atom the detected photon was emitted leads to a degradation or

even elimination of the interference fringes. The observation of an

interference pattern and the acquisition of from which atom the

photon came to a photodetector are mutually exclusive.

Exercises

16.1 Show that〈
S+
1 S

−
1

〉+ 〈S+
2 S

−
2

〉 = ρss + ρaa + 2ρee,〈
S+
1 S

−
2

〉 = 1

2
(ρss − ρaa + ρas − ρsa) .

16.2 Write the purity condition Trρ2 in terms of the populations

and coherences of the collective (Dicke) states.
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16.3 The master equation for two interacting atoms in the ordinary

vacuum has the same form as the master equation for the

∨ system, given in the Exercise 9.5 of Chapter 9. The only

difference is that now S+
1 = |e1〉 〈g1| and S+

2 = |e2〉 〈g2|.
(a) Assuming that initially only one atom was excited, cal-

culate the time evolution of the populations ρss(t), ρaa(t)
and the coherence ρsa(t).

(b) Under what condition ρss(t) �= ρaa(t)?
(c) Find the time evolution of the intensity I (t).
(d) Analyse the dependence of the intensity on time t and

the damping rate �12 and find conditions for t and �12 at

which one can observe interference pattern.

16.4 Consider two identical two-level atoms interacting with a

multi-mode broadband reservoir whose modes are in a

squeezed vacuum state. If the atoms are confined to a region

much smaller than the atomic transition wavelength (the

Dicke model), the density matrix elements in the basis of the

collective states satisfy the following equations of motion

ρ̇ee = −2� (N + 1) ρee + 2N�ρss + �|M|ρu ,
ρ̇ss = 2� [N − (3N + 1) ρss + ρee − |M|ρu] ,
ρ̇aa = 0,

ρ̇u = 2�|M| − � (2N + 1) ρu − 6�|M|ρss ,
where N is the number of photons in the modes of the

squeezed field, M is the two-photon correlation between the

modes, see Eq. (6.69), and ρu = ρeg + ρge.

(a) Show that the steady-state values of the density matrix

elements are

ρee = N2 (2N + 1)− (2N − 1) |M|2
(2N + 1)

(
3N2 + 3N + 1− 3|M|2) ,

ρss = N (N + 1)− |M|2
3N2 + 3N + 1− 3|M|2 ,

ρu = 2|M|
(2N + 1)

(
3N2 + 3N + 1− 3|M|2) .

(b) Show that in the case of a thermal field with |M| = 0 and

a classical squeezed field, with the maximal correlations
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|M| = N , the stationary populations obey a Boltzmann
distribution with ρgg > ρss > ρee.

(c) Show that in the case of a quantum squeezed field with

themaximal correlations |M|2 = N(N+1), the Boltzmann
distribution of the populations is violated, that ρee > ρss .

16.5 Using the results of Exercise 16.4, show that in the case of a

quantum squeezed field with the maximal correlations |M|2 =
N(N+1), the stationary state of the system is a pure entangled

state. Is it maximally or non-maximally entangled state? Under

which condition, the state becomes maximally entangled?
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Chapter 17

Classical and Quantum Lithography

17.1 Introduction

We have learnt in Chapter 5 how to reduce fluctuations of an

electromagnetic (EM) field below the quantum (Heisenberg) limit

imposed by the quantum nature of light. It has been shown that

the quantum limit can be beaten using non-classical squeezed light

of reduced fluctuations. Another issue of significant interest in

quantum optics is to beat the diffraction limit imposed on the

resolution of measured objects by the wave nature of light. In this

chapter, we will illustrate how one can beat the diffraction limit by

using the quantumnature of entangled light beams.We shall see that

entangled light can lead us to a new domain of quantum optics in

which detectors can resolve two closely spaced objects or spectral

lines with the minimal resolvable limit significantly reduced or even

completely suppressed. This subject is generally known as quantum

optical lithography and could be described in short as the ability to

print patterns onto certain materials using non-classical light. The

developments in this area are of fundamental interest, and they hold

promise for advances in optical interferometry and in applications

such as quantummetrology and gravitational wave studies.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-75-2 (Hardcover), 978-981-4411-76-9 (eBook)
www.panstanford.com
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17.2 Classical Optical Lithography

Optical lithography is a technology for writing features of very

small size onto substrates using coherent optical fields. However,

the resolution is limited by the Rayleigh diffraction criterion, which

states that the minimal resolvable feature size occurs at a spacing

corresponding to the distance between an intensity maximum and

an adjacent intensity minimum of the diffraction pattern. The

Rayleigh diffraction limit is
xmin = λ/2, where
xmin is the fringe

separation and λ is the optical wavelength. This is the best resolution

that can be achieved with classical fields. Hence, it has become

necessary to use optical fields of very short wavelengths to fabricate

smaller objects.

A modification of optical lithography, called classical interfer-
ometric lithography, involves two coherent plane waves of laser

radiation intersecting at an angle 2θ , as shown in Fig. 17.1. A phase

shifter (PS) located in one of the two arms introduces a phase

difference between the two coherent optical paths producing an

interference pattern on the screen S (lithographic plate), with the

resolution given by the diffraction formula


x = λ

2 sin θ
. (17.1)

Then, in the grazing incidence limit of θ → π/2, the minimum

resolution is
xmin = λ/2.

BS

M

a

cd

b

PS

M

S
θ

Figure 17.1 Schematic diagram of an interferometric lithography

experiment.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Quantum Lithography 273

17.3 Quantum Lithography

Consider now a quantum description of interference lithography in

which we use the photon picture of the incident fields mixed at the

50/50 beam splitter BS. The photons are reflected by the mirrors M

onto the screen. We introduce a phase shifter placed in the upper

arm which produces a phase shift φ = ks , where k = 2π/λ and s is
the difference between the two optical paths. The input fields, ports

a and b, are represented by the annihilation operators â and b̂ that
obey the usual commutation relations

[â, â†] = [b̂, b̂†] = 1, [â, b̂] = 0. (17.2)

The output fields c and d are represented by two operators ĉ and
d̂, which are linear combinations of the reflected and transmitted
input-field operators as

ĉ = 1√
2

(
i â + b̂

)
eiφ , d̂ = 1√

2

(
â + i b̂

)
, (17.3)

where exp(iφ) represents the phase difference between the fields
impinging on the screen S . Hence, the annihilation operator of the
total field detected at the screen S is given by

û = ĉ + d̂ = 1√
2

(
1+ ieiφ

)
â + 1√

2

(
i + eiφ

)
b̂. (17.4)

The quantum lithography approach to sub-wavelength resolution

is based on n-photon absorption process. The n-photon absorption
rate, corresponding to the deposition rate of n photons on the

screen, is proportional to the n-order correlation function of the
total field operators as

An = 1

n!

〈(
û†
)n
(û)n
〉
, (17.5)

where û = ĉ+ d̂, and the average is taken over the initial state of the
field.

Let us now illustrate with few examples on how the absorption

rate, and then the resulting resolution, depend on the state of the

input field.

Example 17.1 (One-photon absorption rate) Consider first the
one-photon absorption rate for an input field in the state

|�1〉 = |1〉a|0〉b. (17.6)
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It is easy to show that in this state the one-photon absorption rate is
given by

A1 = 〈�1|û†û|�1〉 = 1− sinφ , (17.7)

which represents an interference pattern that varies with the phase φ.
The Rayleigh criterion demands φmin = π for theminimal distance

between a maximum and an adjacent minimum of the interference
pattern, from which we find the minimum fringe spacing xmin = λ/2

(for θ � π/2). This is the usual classical result, called the single-
photon diffraction limit.

Example 17.2 (Two-photon absorption rate with an input
classical state) Consider now the two-photon absorption rate with
an input state

|�2c〉 = |2〉a|0〉b. (17.8)

This state is an example of a so-called two-photon classical state. It
gets this name because it is possible to distinguish through which
channel the incident photons arrive. We then find

A2c = 1

2!
〈�2c|û†û†ûû|�2c〉

= (1− sinφ)2 = 3

2
− 2 sinφ − 1

2
cos 2φ . (17.9)

We see that there are three terms in the absorption rate. The first
is the spatially uniform term 3/2, which is three times larger than
desired. The effect of this term is to reduce the contrast of the fringe
pattern. The second term is the same as in the one-photon absorption
rate. This is an unwanted term since it will mask the effect of the
third term cos 2φ that oscillates in space with twice the frequency as
the one-photon absorption rate. This dependence leads to narrower
interference fringes than that for the one-photon absorption rate.

The two-photon absorption rate can exhibit even narrower features

with the fringe spacing reduced by a factor of two if the input state

is a quantum state.

Example 17.3 (Two-photon absorption rate with an input
quantum state) Consider the following a two-photon input state

|�2q〉 = |1〉a|1〉b. (17.10)
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The state |�2q〉 is an example of a quantum state—because there it
possesses a photon in each channel, so that when a photon is detected,
one cannot say from which channel it originated. With the input
state |�2q〉, the two-photon absorption rate takes the form

A2q = 1

2!
〈�2q |û†û†ûû|�2q〉 = 1+ cos 2φ . (17.11)

Comparing Eq. (17.11) with Eq. (17.9), we see that in the case of
the input quantum field, the slowly oscillating term sinφ has been
eliminated, and we are left with only the cos 2φ term, giving the
minimum resolution xmin = λ/4.

In Fig. 17.2, we plot the absorption rates as a function of the phase

shift φ. It is evident that the classical two-photon excitation pattern

has the same period but is narrower than the one-photon excitation

pattern, and the quantum two-photon excitation pattern has a

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

φ/π

A
n

Figure 17.2 The absorption rates An as a function of the phase shift

φ with one-photon excitation A1 (dashed-dotted line), uncorrelated two-
photon excitation A2c/2 (dashed line) and quantum (entangled) two-photon

excitation A2q (solid line).
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period half that of the corresponding classical interference pattern.

A spatial interference pattern with the modulation period reduced

by a factor of 2 has been observed experimentally by D’Angelo et
al. [100]. This unusual property of the interference pattern is a

consequence of the division of the two photons between the two

channels in the input state |�2q〉.
The resolution can even be improved beyond the λ/4 limit if an n-

photon correlated quantum field is used. It has been demonstrated

experimentally by the Steinberg’s group at University of Toronto

who achieved resolution to the limit of λ/6 with a quantum three-

photon correlated field [101], and the Zeilinger’s group at Vienna

University [102], who achieved resolution of order of λ/8 with a

quantum four-photon correlated field.

17.4 Summary

Quantum lithography has a very good chance of becoming im-

plemented in practice, especially as new sensitive multi-photon

lithographic materials are being developed [103, 104]. We have

also seen that classically simulated quantum lithography may be a

realistic alternative approach which could be much more readily

implemented [105, 106]. For example, Kiffner et al. [107] have
proposed to study spectral resolution in terms of the coherent

population trapping (CPT) rather than in terms of non-classical

n-photon absorption. The advantage of the CPT is that the sub-

wavelength resolution problem can be studied in terms of classical

rather than quantum fields. Other interesting schemes of classi-

cally simulated quantum lithography include methods where sub-

wavelength resolution was achieved by correlating wave vector and

frequency in a narrow-band multi-photon detection process [108,

109], or inducing the multi-Rabi oscillation between energy levels

of a two-level atom [110].

Exercises

17.1 The Rayleigh diffraction limit 
xmin = λ/2 is proportional to

the wavelength of light used. Explain, why it is not a common
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practice to increase the resolution simply by using light of a

shorter wavelength?

17.2 Suppose, two plane waves characterized by wave vectors �k1
and �k2 fall on a surface at an angle θ from the normal to the

surface. The wave vectors are given by

�k1 = k(sin θ , cos θ), �k2 = k(− sin θ , cos θ).

(a) Find the interference pattern in the intensity I (�r) of the
two plane waves at position �r on the surface. Assume that
the plane waves have the same amplitudes.

(b) Find the Rayleigh limit for the resolution of a feature size

x on the surface oriented in the direction x .

(c) Show that the classical diffraction limit is 
x = λ/4 that

occurs at grazing incidence of the waves, where λ is the

wavelength of the incident waves.

17.3 Find the absorption rate for an input field being in the state

|�0〉 = |n〉a|m〉b,
where n andm are the numbers of photons in the modes a and
b, respectively. Determine the properties of the absorption rate
in the cases of n = m and n � m.

17.4 Evaluate the absorption rate of the output field when a pair of

input beams in the quantum state |�2q〉 = |1〉a|1〉b is fed into
an imperfect beam splitter with unequal reflection and trans-

mission coefficients. Show that in this case the absorption rate

contains both the slowly and rapidly oscillating terms, and

explain what is the meaning of this result.
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Chapter 18

Laser Model in the High-Q Limit

18.1 Introduction

In this chapter, we turn our considerations to the simplest model of

a laser that includes all the essential features of any practical laser.

The one-photon losses (due to coupling to the environment), linear

gain (due to inverted atoms) and saturation (due to nonlinear loss),

that are experienced by a single-mode (laser) cavity are all included

in the calculations and their role in the laser properties is fully

explored.We point out that all lasersmust have these three elements

to operate as a laser. If there is only a linear gain, then of course there

can be no output, since an output causes a loss. With both gain and

loss, but not saturation, the laser intensity is either near zero (well

below threshold), or else it rises infinitely (well above threshold).

Neither case is very useful as a model of a real laser, which has a

finite output above threshold. This is why a saturation mechanism is

needed, such as an intensity dependent nonlinear loss. This simple

model used here is then obtainable in the limit of a high-Q laser

operating not too far above threshold.

Quantum Optics for Beginners
Zbigniew Ficek and Mohamed Ridza Wahiddin
Copyright c© 2014 Pan Stanford Publishing Pte. Ltd.
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18.2 Master Equation

The laser model we consider here is based on the procedure of

converting the master equation of the reduced density operator

of the cavity mode into a Fokker–Planck equation (FPE) for the

P representation [111, 112]. The equation is equivalent to a set

of coupled stochastic differential equations (SDE) for the cavity

field amplitude, which we solve for the steady-state and for two-

time correlation functions using the phase diffusion model. These

solutions will give information on the laser intensity and linewidth.

Consider a single-mode cavity containing an ensemble of atoms

that decay to stationary states much faster than the cavity field.

In this case, we may adiabatically eliminate the atomic variables

and arrive to the reduced density operator of the cavity field alone.

Including the linear loss, gain and nonlinear loss of the cavity mode,

we can model the system (laser) by the following master equation

∂

∂t
ρ = −1

2
�
(
â†âρ + ρâ†â − 2âρâ†

)
−1
2
G
(
ââ†ρ + ρââ† − 2â†ρâ

)
−1
2

κ
(
â†2â2ρ + ρâ†2â2 − 2â2ρâ†2

)
, (18.1)

where � is a linear loss due to spontaneous emission, G is linear gain
and κ is nonlinear loss.

Transforming the master equation into the FPE for the Glauber–

Sudarshan P representation, we obtain

∂

∂t
P (α, t) =

{
∂

∂α

[
1

2
(� − G)α + κ|α|2α

]

+ ∂

∂α∗

[
1

2
(� − G)α∗ + κ|α|2α∗

]
+ ∂2

∂α∂α∗G
}
P (α, t) .

(18.2)

This FPE is equivalent to a set of coupled SDE for the field

amplitudes.
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18.3 Stochastic Differential Equations

The diffusion matrix D and the matrix B corresponding to the FPE,
given in Eq. (18.2), are of the form

D =
(
0 G
G 0

)
, B =

√
G
2

(
1 i
1 −i

)
. (18.3)

Using the Ito rule, we can write the following SDE

dα
dt

= −1
2
(� − G)α − κ|α|2α + F (t) ,

dα∗

dt
= −1

2
(� − G)α∗ − κ|α|2α∗ + F ∗ (t) , (18.4)

where F (t) and F ∗(t) are the noise terms corresponding to the
complex conjugate variables α and α∗, respectively. The noise terms
are given by

F (t) =
√
G
2
(ψ1 (t)+ iψ2 (t)) ,

F ∗ (t) =
√
G
2
(ψ1 (t)− iψ2 (t)) , (18.5)

where ψ1 (t) and ψ2 (t) are the independent real noise terms.
F ∗ is the complex conjugate of F , and therefore α and α∗ remain

complex conjugate. Thus, there is no the problem of employing the

Glauber–Sudarshan P representation to this model. Note that this

is only true because we have neglected in the FPE the diagonal

diffusion coefficients due to the nonlinear loss.

Using the usual correlation properties (12.79) of the indepen-

dent noise terms, we find that the only non-zero correlations of the

noise terms are

〈F (t)F ∗(t′)〉 = 〈F ∗(t)F (t′)〉 = Gδ(t − t′). (18.6)

Following the above developments, one might ask a question: Why

dowe need the two-photon absorption term in themaster equation?

From the SDE (18.4), when we put κ = 0 and ignore the noise

terms, we obtain a simple equation of motion for α:

dα
dt

= −1
2
(� − G)α. (18.7)
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Its solution is

α (t) = α (0) e− 1
2
(�−G)t . (18.8)

We see that for (� − G) > 0 (below threshold)

α (t) → 0 when t → ∞, (18.9)

whereas for (� − G) < 0 (above threshold)

α (t) → ∞ when t → ∞. (18.10)

Lasers operate in the steady-state regime and have a finite intensity,

thus we need a nonlinear absorption process to get laser systems

into a stable and finite steady-state intensity.

18.4 Semiclassical Steady-State Solution and Stability

The semiclassical steady-state solutions of the SDE follow immedi-

ately from Eq. (18.4). In the semiclassical limit the noise terms in

the SDE are dropped (F (t) = 0) on the assumption that quantum

fluctuations are small. Then, taking the steady-state limit (dα/dt =
0), we readily find[

κ |αs|2 + 1

2
(� − G)

]
αs = 0, (18.11)

where αs is the steady-state value of α. Equation (18.11) has two

solutions

1. αs = 0,

2. |αs|2 = G − �

2κ
. (18.12)

The second solution is physically meaningful for G − � > 0 (above

threshold), but contains no information about the steady-state phase

φs of the complex amplitude αs = |αs| exp(iφs).

Are the steady-state solutions stable?

We use the linearization technique to find whether the steady-

state solutions are stable. This means, we take

α (t) = αs + δα (t) , (18.13)
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and substitute into Eq. (18.4). We keep terms linear in δα, and put

the equations of motion for δα (t) and δα∗ (t) in a matrix form

d
dt

(
δα (t)
δα∗ (t)

)
= −A′

(
δα (t)
δα∗ (t)

)
+ noise. (18.14)

Next, we find the eigenvalues of the matrix A′.
The steady-state is stable if all the eigenvalues λi of the matrix A′

have positive real parts. If there is a negative real part of λi or λi = 0,

then the steady-state is unstable.

Consider the case 1. αs = 0.

Here, α (t) = δα (t), and then Eq. (18.4) reduces to

dδα
dt

= −1
2
(� − G) δα + noise,

dδα∗

dt
= −1

2
(� − G) δα∗ + noise. (18.15)

Thus, the matrix A′ is of the form

A′ =
(

1
2
(� − G) 0

0 1
2
(� − G)

)
, (18.16)

and its eigenvalues are

λ1,2 = 1

2
(� − G) . (18.17)

It is clear that the eigenvalues are positive for � > G. Thus, the
steady state is stable for � > G (below threshold).

Consider the case 2. |αs|2 = (G − �)/(2κ).

Here, Eq. (18.4) reduces to

dδα
dt

= −
[
1

2
(� − G)+ 2κ |αs|2

]
δα − κα2s δα

∗ + noise,

dδα∗

dt
= −

[
1

2
(� − G)+ 2κ |αs|2

]
δα∗ − κα∗2

s δα + noise, (18.18)

from which it can be found that the matrix A′ is of the form

A′ =
(

1
2
(� − G)+ 2κ |αs|2 κα2s

κα∗2
s

1
2
(� − G)+ 2κ |αs|2

)
. (18.19)

The eigenvalues of A′ are

λ1 = 0,

λ2 = 2κ |αs|2 . (18.20)
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We see that one of the eigenvalues is equal to zero. This means

that the steady-state solution is unstable. Thus, above threshold the

system cannot be analysed correctly by the assumption of small

fluctuations and using the linearization techniques. As we will show

below, this instability is physically due to the phenomenon of phase

diffusion.

18.5 Exact Steady-State Solution

In order to analyse the problem more carefully, we rewrite the FPE

in terms of intensity and phase variables

I = αα∗, φ = 1

2i
ln

α

α∗ . (18.21)

Using the polar coordinates (α = r exp(iφ)), we get

∂

∂α
= e−iφ 1

2

(
∂

∂r
− i

1

r
∂

∂φ

)
,

∂

∂α∗ = eiφ
1

2

(
∂

∂r
+ i

1

r
∂

∂φ

)
. (18.22)

Hence,

∂

∂α
α =
(

∂

∂α∗ α∗
)∗

= ∂

∂ I
I + 1

2i
∂

∂φ
,

∂2

∂α∂α∗ = I
∂2

∂ I 2
+ ∂

∂ I
+ 1

4I
∂2

∂φ2
, (18.23)

and then the FPE takes the form

∂

∂t
P (I , φ) =

{
∂

∂ I

[
(� − G) I + 2κ I 2 − G

]
+ 1

2

∂2

∂ I 2
(2GI )+ 1

2

∂2

∂φ2

(
G
2I

)}
P (I , φ) . (18.24)

The normalization condition will change to∫
d2αP (α, α∗) =

∫ 2π

0

dφ
∫ ∞

0

drr P
(
reiφ , re−iφ)

= 1

2

∫ 2π

0

dφ
∫ ∞

0

dI P (I , φ) = 1, (18.25)

where I = r2.
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The above FPE is still exact and can be solved for the steady state.

Since the I and φ terms are independent of each other, we look into

the solution of the form

Pss (I , φ) = Pss (I ) Pss (φ) . (18.26)

First, consider the part Pss (I ) ≡ Ps. This part satisfies a differential

equation

∂

∂t
Ps =

{
∂

∂ I
(−APs)+ 1

2

∂2

∂ I 2
(DPs)

}
, (18.27)

where

A = (G − �) I − 2κ I 2 + G,

D = 2GI . (18.28)

In the steady state, ∂ Ps/∂t = 0, and then the FPE simplifies to

∂

∂ I

{
−APs + 1

2

∂

∂ I
(DPs)

}
= 0. (18.29)

First integration gives

∂

∂ I
DPs = 2APs + const|∞0 . (18.30)

If APs and
∂
∂ I DPs vanish at infinity, the constant is zero, and then we

can write

1

DPs

d
dI
(DPs) = 2A

D
, (18.31)

whose solution is

Ps = N 1

D
exp

[
2

∫
dI

A
D

]
. (18.32)

Since

A
D

= 1

2

(G − �)

G
− κ I

G
+ 1

2I
, (18.33)

and assuming that I � 1, we obtain∫
A
D
dI = 1

2

(G − �)

G
I − 1

2

κ I 2

G
. (18.34)

Hence,

Ps = N exp

[
(G − �)

G
I − κ

G
I 2
]
. (18.35)
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Note that the phase part Pss(φ) does not contain a drift term A. Thus,
the solution for Pss(φ) is a constant. As a consequence, the distribu-

tion Pss (I , φ) depends only on the intensity I , not on the phase φ.

Example 18.1 (Exact value of the phase distribution) The exact
value of the phase distribution P (φ) = �(φ) can be found from the
normalization condition

1

2

∫ 2π

0

dφ
∫ ∞

0

dI P (I , φ) = 1, (18.36)

from which we have

�(φ) = 1

2

∫ ∞

0

dI P (I , φ), (18.37)

and ∫ 2π

0

dφ �(φ) = 1. (18.38)

Since�(φ) does not depend on φ, we obtain

�(φ) = 1

2π
. (18.39)

This result reflects the fact that the phase of the cavity field is
uniformly distributed over 2π and does not have a well-defined value,
which is due to the phase diffusion.

The intensity distribution function (18.35) exhibits a peak corre-

sponding to the most probable value of the intensity. The peak is

located at I = 0 in the below-threshold regime (� > G), and at

I
[
(G − �)

G
− κ

G
I
]

(18.40)

in the above-threshold regime, from which we find

I = G − �

κ
. (18.41)

The distribution function can be applied to calculate one-time

correlation functions. For example, we can calculate the average

number of photons

〈â†â〉 = 〈α∗α〉 = 1

2

∫ 2π

0

dφ
∫ ∞

0

dI I Ps (I , φ) = 2π

∫ ∞

0

dI I P1(I ),

(18.42)

where P1(I ) = Ps(I , φ)/2.



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Laser Linewidth 287

Integrating by parts, or approximately we can assume that 〈â†â〉
is maximal at the peak of P1(I ), and obtain

〈â†â〉 ≈ G − �

2κ
. (18.43)

Below the threshold, the term (�−G)/G dominates in P1(I ) (we can
ignore I 2 term), and integrating by parts, we get

〈â†â〉 ≈ G
� − G

. (18.44)

18.6 Laser Linewidth

The steady-state solution for P (I , φ) can provide exact results for
one-time (stationary) correlation functions, but it does not solve

the time-dependent problems, which are important to calculate the

spectrum of the field. The spectrum provides the information about

the laser linewidth. In order to evaluate the spectrum of the cavity

field, we must consider the full spectrum, with the noise terms SDE.

We will consider separately the below and above-threshold cases.

18.6.1 Below Threshold

In the below-threshold regime, the linearized approach to the

fluctuations is valid, as the system is stable. Since

α = α0 + δα, (18.45)

and below threshold α0 = 0, we find from the SDE the following

equations of motion

d
dt

δα = −1
2
(� − G) δα + F (t),

d
dt

δα∗ = −1
2
(� − G) δα∗ + F ∗(t), (18.46)

where the noise terms satisfy the relation

〈F (t)F ∗(t′)〉 = Gδ(t − t′). (18.47)

Integrating the equation for δα, we obtain

δα(t) =
∫ t

−∞
dt′e− 1

2
(�−G)(t−t′)F (t′). (18.48)
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This solution allows us to calculate the two-time correlation function

〈δα∗(t)δα(t + τ )〉. (18.49)

Its Fourier transform is the spectrum of the fluctuations.

〈δα∗(t)δα(t + τ )〉 =
∫ t

−∞
dt′
∫ t+τ

−∞
dt′′e− 1

2
(�−G)(t−t′)e− 1

2
(�−G)(t+τ−t′′)

× 〈F ∗(t′F (t′′)
〉

= Ge− 1
2
(�−G)(2t+τ )

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′e

1
2
(�−G)(t′+t′′)δ(t′ − t′′)

= Ge− 1
2
(�−G)(2t+τ )

∫ t

−∞
dt′e(�−G)t′ = Ge− 1

2
(�−G)(2t+τ ) 1

� − G
e(�−G)t

= G
� − G

e− 1
2
(�−G)|τ |. (18.50)

Thus, the spectrum of the fluctuations (intensity spectrum) is given

by

I (ω) =
∫ ∞

−∞
dτ
〈
ã†(t)ã(t + τ )

〉
ei(ω−ωc)τ

= G

(ω − ωc)
2 + 1

4
(� − G)2

, (18.51)

where ωc is the cavity central frequency, and

˜̂a(t) = â(t)eiωct , ˜̂a†(t) = â†(t)e−iωct (18.52)

are slowly varying parts of the field operators. We see that the

intensity spectrum is a Lorentzian with half width (� − G)/2. Since
� � G, the with is approximately equal to the cavity linewidth.

18.6.2 Above Threshold

To analyse the spectrum in the above-threshold regime, we use the

FPE for P (I , φ), from which, using the Ito rule, we get the following

SDE

dI
dt

= − (� − G) I − 2κ I 2 + G +
√
2GI ξI (t), (18.53)

dφ
dt

=
√

G
2I

ξφ(t), (18.54)

where 〈
ξ ∗
I (t)ξI (t

′)
〉 = 〈ξφ(t)ξφ(t′)

〉 = δ(t − t′). (18.55)
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Note that the equations for I and φ are decoupled from each other.

We first check if we can use the linearized theory for I . For this,
we look at the steady state of Eq. (18.53):

2κ I 20 − (G − �) I0 − G = 0, (18.56)

which has two solutions

I0(1,2) = G − �

4κ
± 1

4κ

√
(G − �)2 + 8Gκ . (18.57)

Since we can accept only the positive solution, we see that in the

steady state, I0 > (G − �)/(4κ).

We now check if the steady state is stable. In terms of the

linearized theory we can write I = I0 + δ I , and then we obtain from
Eq. (18.53)

dδ I
dt

= (G − �) δ I − 4κ I0δ I + noise, (18.58)

or equivalently

dδ I
dt

= − [4κ I0 − (G − �)] δ I + noise. (18.59)

Since I0 > (G − �)/(4κ), we see that the coefficient at δ I is positive,
so the steady-state solution is stable.

We will treat the intensity equation within the linearized theory,

but will solve the phase equation exactly.

Well above the threshold, we may assume that the fluctuations

are small compared to I0, and then replace I by I0. We can write the
phase equation as

dφ
dt

= F 0φ (t) , (18.60)

where

F 0φ (t) =
√
G/(2I0)ξφ(t) =√Dφξφ(t). (18.61)

The phase equation is equivalent to the FPE of the form of a diffusion

equation

∂

∂t
� (φ , t) = 1

2
Dφ

∂2

∂φ2
� (φ , t) , (18.62)

where

Dφ = G
2I0

. (18.63)
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We now solve the diffusion equation

∂

∂t
� = D

∂2

∂φ2
�, (18.64)

where D = Dφ/2. The equation is an analogue of the harmonic

oscillator equation, and will find the solution of this equation in

terms of harmonics of φ:

� =
∑
m

Cm(t)eimφ . (18.65)

Substituting Eq. (18.65) into Eq. (18.64), we obtain

Ċm(t) = −Dm2Cm(t). (18.66)

Its solution is

Cm(t) = Cm(0)e−Dm2t . (18.67)

We choose initial value for Cm as

Cm(0) = 1

2π
e−imφ0 . (18.68)

This initial value ensures that the function � will be periodic such

that�(φ + 2π) = �(φ). Then,

� (φ , t) = 1

2π

∑
m

eim(φ−φ0)e−Dm2t . (18.69)

Non-zero steady state is only atm = 0:

� (φ , t) = 1

2π
, (18.70)

which agrees with the earlier exact result.

Using the approximation of the stable intensity (I ≈ I0), and
Eq. (18.60), we can now calculate the two-time correlation function

〈â†(t)â(t+ τ )〉 and find the intensity spectrum of the laser operating

well above threshold. Replacing I by I0, we obtain for the correlation
function

〈â†(t)â(t + τ )〉 =
〈√

I (t)I (t + τ )e−i[φ(t+τ )−φ(t)]
〉

≈ I0
〈
e−i[φ(t+τ )−φ(t)]〉 . (18.71)

To evaluate the average exponent, we use the solution of the Ito

equation (18.60) for the phase

φ(t) = φ(t0)+
∫ t

t0
dt′F 0φ (t

′). (18.72)
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Since F (t) has statistical properties of a Gaussian variable, we can
use the relation for the Gaussian processes, that for a Gaussian

variable x such that 〈x〉 = 0, higher order moments factorize

according to

〈x2n+1〉 = 0,

〈x2n〉 = (2n)!
2nn!

〈x2〉n. (18.73)

This allows us to write

〈ex〉 = e
1
2
〈x2〉, (18.74)

which leads to the following result for the correlation function

〈â†(t)â(t + τ )〉 = I0
〈
e−i[φ(t+τ )−φ(t)]〉 = I0e− 1

2
〈[φ(t+τ )−φ(t)]2〉.

(18.75)

Since

φ(t + τ ) =
∫ t+τ

t0
dt′F 0φ (t

′), (18.76)

and

φ(t) =
∫ t

t0
dt′F 0φ (t

′), (18.77)

we obtain

φ(t + τ )− φ(t) =
∫ t+τ

t
dt′F 0φ (t

′). (18.78)

Hence 〈
[φ(t + τ )− φ(t)]2

〉 =
∫
dt′
∫
dt′′
〈
F 0φ (t

′)F 0φ (t
′′)
〉

= Dφ

∫ t+τ

t
dt′ = Dφτ . (18.79)

Finally, we arrive at the following result

〈â†(t)â(t + τ )〉 = I0e− 1
2
Dφτ . (18.80)

The laser intensity spectrum above threshold is therefore

I (ω) = I0Dφ

(ω − ωc)
2 + 1

4
D2φ
, (18.81)

where the diffusion coefficient is

Dφ = G/(2I0). (18.82)
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The intensity spectrum is a Lorentzian centred at ωc with half

width Dφ/2. The width is essentially due to the phase diffusion, and

becomes narrowed with increasing I0.
We can introduce the characteristic phase correlation time

tc ∼ 1

linewidth
= 2

Dφ

= 4I0
G
. (18.83)

For large I0, the coherence time is very long indicating that the laser
operating well above threshold produces essentially coherent light.

In otherwords, well above threshold the laser canmaintain the value

of its phase within a sufficiently long time period, since the phase

diffusion is slow (Dφ is small).

18.7 Summary

We have the following important results for the high-Q laser model:

(1) Above threshold, the steady-state solutions are stable when the

nonlinear losses are included.

(2) Below threshold, the intensity spectrum is a Lorentzian and its

linewidth is approximately equal to the cavity bandwidth.

(3) Above threshold, the intensity spectrum is a Lorentzian and its

linewidth is essentially due to the phase diffusion.

(4) Above threshold, the laser produces essentially coherent light.

Exercises

18.1 Two non-degenerate frequency and parametrically coupled

fieldmodes a and b satisfy the following Heisenberg equations
of motion

ȧ† = −γa† + 1

2
iGb+ √

γ ξ †(t),

ḃ = − (γ − i
) b− 1

2
iGa† + √

γ ξ(t),

where 
 is the detuning between the frequencies of the

modes, ξ(t) is the noise term, γ and G are (real) damping and
mode coupling parameters, respectively.
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(a) Under what conditions themodes decay to a stable steady
state?

(b) What would be the stability conditions if the modes were
degenerate in the frequency (
 = 0)?

18.2 Using the linearized theory and assuming that the noise

satisfied the Gaussian statistics, calculate the normalized

second-order correlation function g(2)(t)= 〈â†(t)â†(t)â(t)
â(t)〉/〈â†(t)â(t)〉2 below and above threshold.
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Chapter 19

Input–Output Theory

19.1 Introduction

An obvious question is, how to relate the internal cavity mode to

externallymeasured fields. Normally, themeasuring instruments are

external to the cavity. In this case, the input–output formalism is use-

ful. Strictly speaking, the input–output results are approximations,

and can be obtained from considering the boundary conditions at

lossy cavity mirrors. In this chapter, we consider the input–output

formalism for a single-sided cavity in which the cavity mode is

coupled to an external multi-mode environment through a partially

transparent broadband mirror.

19.2 Input–Output Relation

In the input–output formalism, wemay consider the modes external

to the cavity as a set of modes b̂k separate from the internal cavity

mode â.
The external modes can be divided into two sets of the so-called

input and output modes, as illustrated in Fig. 19.1. It is usual to

take the infinite-volume limit of these modes, which therefore have
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Figure 19.1 Schematic diagram illustrating the input–output formalism for

a single-sided cavity damped with rate � to an external environment. The

damping results from the coupling of the cavity mode to infinite number of

the continuous modes of the environment.

commutation relation [
b̂k, b̂

†
k′

]
= δ(k− k′). (19.1)

Taking the Fourier transform of these modes over some finite

bandwidth, we will take into account the fact that the output-

measuring instrument has a finite bandwidth. This gives an external

field for photons propagating in the+x direction, defined as

ĉ+(x) = c√
2π

∫ k0+
k

k0−
k
dkb̂keikx . (19.2)

This field has approximate equal-time commutators of the form[
ĉ+(t, x), ĉ

†
+(t, x ′)

]
= c2δ(x − x ′). (19.3)

Next, if the mirror boundary is at x = xm, the external photon flux
operator can be readily defined as

âout(t) = ĉ+(t, xm). (19.4)

From this it should be clear that there is also an input field, which

corresponds to the field modes with k = −k, of the form

âin(t) = ĉ−(t, xm). (19.5)

This input field is the source of quantum fluctuations inside the

cavity that leads to the �-damping term in the master equation.

The following input–output relation occurs:

âout(t) =
√

�â − âin(t). (19.6)
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19.3 Proof of the Input–Output Relation

Consider the Hamiltonian of the cavity field â interacting with the
external modes b̂k:

Ĥ = Ĥc + Ĥext + ĤI , (19.7)

where

Ĥc = �ωcâ†â,

Ĥext = �

∫
dωkωkb̂

†
kb̂k,

ĤI = i�
∫
dωkg(ωk)

[
b̂kâ† − âb̂†k

]
, (19.8)

where g(ωk) is a coupling constant between the cavity and the

external modes.

The Heisenberg equation of motion for b̂k is

˙̂bk = −iωkb̂k + g(ωk)â, (19.9)

and the cavity field operator â obeys the equation

˙̂a = − i
�

[
â, Ĥc

]− ∫ dωkg(ωk)b̂k. (19.10)

The solution of the equation of motion for b̂k can be written in
two ways depending on whether we choose to solve in terms of

initial conditions at time t0 < t (the input), or in terms of the final
conditions at times t1 > t (the output). The two solutions are

b̂k(t) = b̂k(0)e−iωk(t−t0) + g(ωk)
∫ t

t0
dt′â(t′)e−iωk(t−t′),

b̂k(t) = b̂k(t1)e−iωk(t−t1) − g(ωk)
∫ t1

t
dt′â(t′)e−iωk(t−t′), (19.11)

where t0 < t < t1, and b̂k(0) is the value of b̂k at t = t0, while b̂k(t1)
is the value of b̂k at t = t1.

Substituting the solution for b̂k with t0 < t into the equation of
motion for â, we get

˙̂a = − i
�

[
â, Ĥc

]− ∫ dωkg(ωk)b̂k(0)e−iωk(t−t0)

−
∫
dωkg2(ωk)

∫ t

t0
dt′â(t′)e−iωk(t−t′), (19.12)



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

298 Input–Output Theory

and in a similar manner, substituting the solution for b̂k with t < t1,
we get

˙̂a = − i
�

[
â, Ĥc

]− ∫ dωkg(ωk)b̂k(t1)e−iωk(t−t1)

+
∫
dωkg2(ωk)

∫ t1

t
dt′â(t′)e−iωk(t−t′). (19.13)

We nowmake the Markov approximation, that the bandwidth of the

external modes is large, sowe can assume that the coupling constant

g(ωk) changes slowly with k, and replace g(ωk) ≈ g(ωc).

Next, we use the following properties of the delta function∫ t

t0
dt′ f (t′)δ(t − t′) =

∫ t1

t
dt′ f (t′)δ(t − t′) = 1

2
f (t), (19.14)

where the factor 1
2
arises from the fact that the peak of the delta

function is at the end of the interval of integration.

We can also define the input and output operators, identical to ĉ+
and ĉ−, as

âin(t) = −1√
2π

∫
dωkb̂k(0)e−iωk(t−t0),

âout(t) = 1√
2π

∫
dωkb̂k(t1)e−iωk(t−t1), (19.15)

where the minus sign indicates that the input field propagates to the

left in the opposite direction to the output field.

Using the relation∫ ∞

−∞
dωke−iωk(t−t′) = 2πδ(t − t′), (19.16)

and using the Markov approximation that g(ωk) ≈ g(ωc), we obtain

˙̂a = − i
�

[
â, Ĥc

]+√
2πg(ωc)âin(t)− 1

2

(
2πg2(ωc)

)
â(t), t0 < t,

(19.17)

and

˙̂a = − i
�

[
â, Ĥc

]−√
2πg(ωc)âout(t)+ 1

2

(
2πg2(ωc)

)
â(t), t < t1.

(19.18)
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Recognizing that 2πg2(ωc) = � is the damping rate of the cavity

mode, we have

˙̂a = − i
�

[
â, Ĥc

]+ √
�âin(t)− �

2
â(t), t0 < t, (19.19)

˙̂a = − i
�

[
â, Ĥc

]− √
�âout(t)+ �

2
â(t), t < t1. (19.20)

The above equations are Langevin equations for the damped

amplitude â(t) in which the noise terms appear explicitly as the
input (output) field. In Eq. (19.20), the output operator âout(t)
represents the coupling of the system to future external modes.

Hence, this equation represents the backwards evolution of the

system resulting in the negative damping term.

Finally, the relation between the input, output and cavity fields

can be obtained by subtracting Eq. (19.20) from Eq. (19.19):

âout(t) =
√

�â − âin(t). (19.21)

This is the important result relating the input and output fields. It

shows that the output field that is the futurefield outside the cavity is
a sum of the input field and the field leaking the cavity with the rate

�. The minus sign at the input field reflects the fact that the output

and input fields have the opposite phase. If we consider normally

ordered correlation functions, then the effect of the input field in this

equation can be ignored, as long as the field is in the vacuum state (so

that the field has vanishing normally ordered correlation functions).

Otherwise, the measured functions include a contribution from the

input field as well as from the internal cavity field. For a narrow-

band external field, there is a finite correlation between the input

and the cavity field, which makes this problem more complicated.

Fortunately, it is generally possible to work with normally ordered

correlation functions, where these complexities do not occur.

We have only considered a single-sided cavity. The input–

output formalism can be extended to a two-sided cavity, where the

couplings of the cavity mode to the external environment through

partially transparent mirrors may not be the same [70].
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Exercises

19.1 Consider a single-mode cavity described by the Hamiltonian

Ĥc = �ωcâ†â. Using Eqs. (19.19) and (19.21) and resolving
the output, input and cavity field operators into the frequency

components via the Fourier transformation

âi (ω) = 1√
2π

∫ ∞

−∞
dt âi (t)e−iω(t−t0),

show that

âout(ω) =
(
i(ω − ωc)+ �/2

i(ω − ωc)− �/2

)
âin(ω).

(a) What is the phase shift between the output and input
fields at resonance (ω = ωc)?

(b) What is the phase shift between the output and input
fields at large detunings, (ω − ωc) � �?

(c) What is the relation between the intensities Ii (ω) =
〈â†i (ω)âi (ω)〉 of the output and input fields?

19.2 Consider the output–input relation (19.21). Under what

conditions:

(a) The average number of the output photons equates to the
average number of the cavity photons?

(b) The normally ordered variance of the output field equates
to the normally ordered variance of the cavity field?

19.3 Using the output–input relation (19.21):

(a) Show that the output field commutator[
âout(t), â

†
out(t

′)
]

= δ(t − t′).

(b) Show that the commutator of the cavity field operators[
â(t), â†(t)

]
is time-invariant despite the fact that the cavity field is

damped in time.

(b) Assuming that the input field is in a vacuum state, show

that the two-time correlation function of the output field

〈â†out(t)âout(t′)〉 = �〈â†(t)â(t′)〉.
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Chapter 20

Motion of Atoms in a Laser Field

20.1 Introduction

In quantum optical problems involving the interaction of atoms

with laser fields, the atoms are usually considered being stationary

during the interaction. Since every photon has a momentum, the

atomic momentum (motion) can be changed in the process of

absorption and emission of photons. This may force a stationary

atom to move or to change momentum of an already moving atom.

Therefore, the dynamical behaviour of atoms can be varied by

the interaction with a radiation field. For a weak driving field,

the influence of this field on the atomic motion can be neglected.

However, the intensities of laser fields are generally very strong,

and then the motion of the atoms can be considerably changed by

the laser field. Here, we discuss this aspect, especially the effect of

a driving field on the motion of atoms and the atomic momentum

distribution. In particular, we will consider diffraction of atoms by

a standing-wave laser field due to an exchange of momentum with

the photons of the wave, and radiation force on atoms driven by a

running- or standing-wave laser field.
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x

Y
P0

Figure 20.1 Illustration of the diffraction phenomenon of moving atoms.

The atoms of an initial momentum �P0 are sent to pass through a standing
wave propagating in the horizontal x-direction.

20.2 Diffraction of Atoms on a Standing-Wave Laser Field

Consider the process of diffraction of a moving atom passing

through a standing-wave laser field, as shown schematically in

Fig. 20.1. Suppose, the laser field propagates along the x-axis, and
the momentum of the atom, before entering into the laser field is

in the direction �P0 = Px�i + Py�j . The standing-wave laser field is
equivalent to a superposition of two running-wave fields of the same

amplitudes, but opposite propagation vectors

�E (x , t) = 2 �E0 cos(kx) cos(ωt)
=
[
�E0 cos(ωt − kx)+ �E0 cos(ωt + kx)

]
. (20.1)

The Hamiltonian of the system of a moving atom interacting with

a standing-wave laser field can be written in the standard form

Ĥ = ĤA + ĤF + Ĥint, (20.2)

where

ĤA = �ω0Sz + | �P |2
2m

(20.3)

is the Hamiltonian of the atom including the kinetic energy | �P |2/2m,

ĤF =
2∑
i=1

�ωLâ
†
i âi (20.4)

is the Hamiltonian of the laser field that is composed of two fields of

the same frequency ωL and wave-vectors �ki satisfying the relation
�k1 = −�k2 = �k. (20.5)
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The interaction Hamiltonian of the moving atom with the standing-

wave laser field can be written as

Ĥint = 1

2
ig�

2∑
i=1

[
S+âieiki x − S−â†i e

−iki x
]
, (20.6)

where x is the coordinate of the atom along the direction of the

propagation of the laser field. Using the Hamiltonian (20.2), we find

from the Schrödinger equation the state vector of the system, from

which we can analyse the time evolution of the atomic momentum

due to the interaction with the laser field.

Assume that initially the atomwas in its ground state |g〉, and had
amomentum �P0. Moreover, assume that therewere ni photons in the
i th field. Therefore, the initial state of the system can be written as

|�0〉 = |n1〉 |n2〉
∣∣∣g, �P0

〉
. (20.7)

Moving atom enters to the field, and then can absorb photons from

either of the two running-wave laser fields. When the atom absorbs

a photon from the field ‘1’, the state vector changes to

|�1〉 = |n1 − 1〉 |n2〉
∣∣∣e, �P0 + ��k1

〉
, (20.8)

where |e〉 is the excited state of the atom.
When the atom absorbs a photon from the field ‘2’, the state

vector changes to

|�2〉 = |n1〉 |n2 − 1〉
∣∣∣e, �P0 + ��k2

〉
. (20.9)

Suppose, the interaction of the atom with the laser fields is strong

and the time of passing the field is short such that we can ignore

spontaneous emission from the atom leaving only a possibility of

stimulated emission to either of the two laser fields.

If the system is in the state |�1〉, the atom can be stimulated to

emit a photon of the wave vector �k1 or �k2. If the wave-vector of the
emitted photon is �k1, the system returns to the initial state |�0〉. If
the wave-vector of the emitted photon is �k2, the state vector changes
to

|�3〉 = |n1 − 1〉 |n2 + 1〉
∣∣∣g, �P0 + ��k1 − ��k2

〉
. (20.10)

Similarly, if the system was in the state |�2〉 and the atom emits a

photon of the momentum ��k1, the state vector changes to
|�4〉 = |n1 + 1〉 |n2 − 1〉

∣∣∣g, �P0 + ��k2 − ��k1
〉
. (20.11)
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Since the interaction of the atomwith the laser fields is strong, there

is a large number of absorption and emission processes during the

time of passing through the field, which leads to the final state

|�n〉 =
∣∣∣n1 − n

2

〉 ∣∣∣n2 + n
2

〉 ∣∣∣g, �P0 + n
2

��k1 − n
2

��k2
〉
, (20.12)

when n is an even number, and

|�n〉 =
∣∣∣∣n1 − n+ 1

2

〉 ∣∣∣∣n2 + n− 1

2

〉

⊗
∣∣∣∣e, �P0 + n+ 1

2
��k1 − n− 1

2
��k2
〉
, (20.13)

when n is an odd number. We will treat the states |�n〉 as complete
basis states of the non-interacting system, and will find the state

vector of the atom–field interacting system as a linear superposition

|�(t)〉 =
∫
d �P
∑
n

Cn
(

�P , t
)

|�n〉 . (20.14)

Substituting the Hamiltonian (20.2) and Eq. (20.14) into the

Schrödinger equation, we obtain the following set of coupled

differential equations for the probability amplitudes

i�
d
dt
Cn =

{(
n1 − n

2

)
�ωL +

(
n2 + n

2

)
�ωL

+ 1

2m

(
�P0 + n

2
��k1 − n

2
��k2
)2

− 1

2
�ω0

}
Cn

+ i
g
2

�

(√
n1 − n

2
Cn−1 −

√
n2 + n

2
Cn+1

)
, (20.15)

when n is an even number, and

i�
d
dt
Cn =

{(
n1 − n+ 1

2

)
�ωL +

(
n2 + n− 1

2

)
�ωL

+ 1

2m

(
�P0 + n+ 1

2
��k1 − n− 1

2
��k2
)2

+ 1

2
�ω0

}
Cn

+i g
2

�

(√
n1 − n− 1

2
Cn−1 −

√
n2 + n− 1

2
Cn+1

)
,

(20.16)

when n is an odd number.
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We can simplify the differential equations by introducing a

notation

EN =
(
n1 + n2 − 1

2

)
�ωL + 1

2m

(
P 2x + P 2y

)
, (20.17)

and a transformation

C̃n = Cnei ENt . (20.18)

With these simplifications, the differential equations reduces to (n
even)

i
d
dt
C̃n = 1

2

C̃n +

[
n2�
8m

(
�k1 − �k2

)2
+ n �P0
2m

(
�k1 − �k2

)]
C̃n

+ i
g
2

(√
n1 − n

2
C̃n−1 −

√
n2 + n

2
C̃n+1

)
, (20.19)

and (n odd)

i
d
dt
C̃n = −1

2

C̃n +

{
�

8m

[
(n+ 1) �k1 − (n− 1) �k2

]2

+
�P0
2m

[
(n+ 1) �k1 − (n− 1) �k2

]}
C̃n

+ i
g
2

(√
n1 − n− 1

2
C̃n−1 −

√
n2 + n− 1

2
C̃n+1

)
,

(20.20)

where
 = ωL − ω0 is the detuning between the laser frequency ωL

and the atomic transition frequency ω0.

For an intense driving field, the number of photons in the field

modes is large, n1, n2 � 1, which prompts us to make the following

approximations √
ni − n

2
≈ √

ni ≈
√
N ,√

ni ± n− 1

2
≈ √

ni ≈
√
N , (20.21)

where N = 〈ni 〉 is the average number of photons in the laser fields.
Hence, the differential equations for C̃n simplify to

i
d
dt
C̃n = 1

2

C̃n +

[
�
n2k2

2m
+ nPxk

m

]
C̃n

+ i
2

�
(
C̃n−1 − C̃n+1

)
, n even, (20.22)
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and

i
d
dt
C̃n = −1

2

C̃n +

[
�
n2k2

2m
+ nPxk

m

]
C̃n

+ i
2

�
(
C̃n−1 − C̃n+1

)
, n odd, (20.23)

where� = g
√
N is the Rabi frequency of the laser field.

We may introduce two parameters

�b = �2k2

2m
, q = Px

�k
. (20.24)

The parameter �b corresponds to the recoil kinetic energy of the
atom after absorption or emission of a photon, and q is the ratio
of the initial momentum of the atom in the x-direction to the

momentum of photons.

With the parameters (20.24), the differential equations for C̃n
reduce to

d
dt
C̃n = −i

[
1

2

 + b

(
n2 + 2nq

)]
C̃n

+1
2

�
(
C̃n−1 − C̃n+1

)
, n even, (20.25)

and

d
dt
C̃n = −i

[
−1
2


 + b
(
n2 + 2nq

)]
C̃n

+1
2

�
(
C̃n−1 − C̃n+1

)
, n odd. (20.26)

Wenow illustrate solutions of the above differential equations for C̃n,
fromwhich wewill find the time evolution of the atomic momentum

under the interaction of the atom with a standing-wave laser field.

We will discuss two cases:

1. Px = 0, 
 = 0,

2. Px �= 0, 
 = 0. (20.27)

20.2.1 The Case Px = 0 and 
 = 0

In this case, the parameter q = 0, and assuming that the Rabi

frequency is much larger than the recoil energy, we obtain

d
dt
C̃n = 1

2
�
(
C̃n−1 − C̃n+1

)
. (20.28)



April 3, 2014 17:4 PSP Book - 9in x 6in Ficek-and-Wahiddin

Diffraction of Atoms on a Standing-Wave Laser Field 307

−20
−10

0
10

20

5

10

15

20

0

0.2

0.4

0.6

0.8

1

n
Ωt

P
n(t

)

Figure 20.2 The atomic momentum distribution function for different

values of�t.

Introducing a parameter s = �t, we find that the coefficients C̃n
satisfy a recurrence relation

2
d
ds
C̃n(s) = C̃n−1(s)− C̃n+1(s). (20.29)

Note, that the above recurrence relation is the same as that for the

Bessel functions. Therefore, the probability amplitudes are

C̃n(t) = J n(�t), (20.30)

where J n is the nth order Bessel function.
Hence, the atomic momentum n�k in the x-direction is

Pn(t) = ∣∣C̃n(t)∣∣2 = J 2n (�t). (20.31)

The momentum distribution is illustrated in Fig. 20.2. One can see

that for t = 0, Pn = 0 for all n. As t increases, Pn(t) increases and
then the probability of finding atomswithmomentum n�k increases.

20.2.2 The Case Px �= 0 and 
 = 0

Consider now the second case in which Px �= 0. In this case, the

term 2nbq in Eqs. (20.25) and (20.26) is different from zero. Then

ignoring the recoil energy, we obtain

d
dt
C̃n = −2inbqC̃n + 1

2
�
(
C̃n−1 − C̃n+1

)
. (20.32)
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It is convenient to make a further transformation

C̄n = C̃neinbqt . (20.33)

Then

d
dt
C̄n = −inbqC̄n + 1

2
�
(
C̄n−1eibqt − C̄n+1e−ibqt)

= −inbqC̄n + 1

2
� cos(bqt)

(
C̄n−1 − C̄n+1

)
+ i
2

� sin(bqt)
(
C̄n−1 + C̄n+1

)
. (20.34)

Introducing a parameter

z = �

bq
sin(bqt), (20.35)

we then can transform Eq. (20.34) into

2
d
dz
C̄n = −i bq

� cos(bqt)

[
2nC̄n − z

(
C̄n−1 + C̄n+1

)]
+ (C̄n−1 − C̄n+1

)
. (20.36)

Notice the recurrence relations for the Bessel functions

2nJ n(x) = x [ J n−1(x)+ J n+1(x)] ,

2
d
dx

J n(x) = J n−1(x)− J n+1(x), (20.37)

and then, we find that

C̄n(t) = J n

(
�

bq
sin bqt

)
. (20.38)

Hence, the atomic momentum distribution function is

Pn = ∣∣C̄n(t)∣∣2 = J 2n

(
�

bq
sin bqt

)
. (20.39)

We see that the atomic distribution oscillates in time with the

frequency bq.
In Fig. 20.3 we show the distribution for different values of

bqt. As t increases from the initial value t = 0, the width of the

distribution increases to its maximum value at bqt = π/2, and

then the width decreases and reduces to zero for bqt = π . The

maximum amplitude of the atomic distribution during each period

of oscillation is equal to±�/(bq).
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Figure 20.3 The atomic momentum distribution function for �/bq = 15

and different values of bqt.

Thus, the diffraction of atoms with an initial momentum Px �=
0 is fundamentally different from that of Px = 0. Instead of a

continuous spreading of the atoms, the atomic distribution oscillates

in time, periodically focusing and defocusing. This periodicity is

observed in momentum space as an oscillation of the populations

between the different momentum components.

In the derivation of Eqs. (20.31) and (20.39), we have ignored

spontaneous emission from the atoms. It might be difficult to

achieve this in actual experimental situations, in particular when the

detuning 
L = 0. Alternatively, one can assume large detunings,


L � �, �. Then spontaneous emission can be neglected, as the

atoms mostly reside in their ground states, with the upper atomic

level adiabatically eliminated. To illustrate this, consider again the

equations of motion (20.25) and (20.26), which in the Raman–Nath

regime and with Px = 0, reduce to

∂

∂t
C̃2n = − i

2

LC̃2n + 1

2
�
(
C̃2n−1 − C̃2n+1

)
, (20.40)

and

∂

∂t
C̃2n−1 = i

2

LC̃2n−1 + 1

2
�
(
C̃2n−2 − C̃2n

)
. (20.41)

According to Eq. (20.13), the equation of motion (20.41) for odd n
corresponds to the time evolution of the probability amplitude of
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the excitation of the atomic upper state |1〉. When 
L � �, we

can adiabatically eliminate C̃2n−1 assuming that the amplitude does
not change in time. Then, we put ∂C̃2n−1/∂t = 0 in Eq. (20.41), and

obtain

C̃2n−1 = i
�




(
C̃2n−2 − C̃2n

)
. (20.42)

Substituting Eq. (20.42) into Eq. (20.40) and solving for C̃2n, we find
the probability amplitudes of the ground state

C̃2n =
[
1+ 2

(
�




)2]− 1
2

exp

[
−i
(
1

2

L + �2


L

)
t
]
J n

(
�2t

L

)
,

(20.43)

and then the probability distribution function is given by

P2n =
[
1+ 2

(
�




)2]−1
J 2n

(
�2t

L

)
. (20.44)

The above result holds for large detunings, but is in a form similar

to Eq. (20.31), obtained for 
L = 0. However, the result (20.44)

is realistic experimentally, as for 
L � � spontaneous emission is

negligible and can be ignored. The momentum distribution function

(20.44) is an even function of n corresponding to the absorption of
a photon from the +�k component of the standing wave, followed by
emission of a photon into the −�k component. In this process, the
atoms transfer photons from one component of the standing wave

to the other, remaining in their ground states, but their momentum

changes by 2n��k.

20.3 Radiation Force on Atoms

In the previous section, we have shown that atoms can be diffracted

by the interaction with a standing-wave laser field. The diffraction

arises from a force acting on the atoms from the laser field. In other

words, the force results from the transfer of momentum of laser

photons to the atoms.

In the calculations, we have ignored spontaneous emission from

the atoms. Aswe know, the atom being in its ground state can absorb
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v

ωL

Figure 20.4 An atommovingwith velocity �v in the direction opposite to the
direction of propagation of a running laser field.

one photon to make a transition to its excited state. In this transition

process, the atom not only absorbs the photon energy, but also gains

momentum (equal to the photonmomentum) along the propagation

direction of the laser field. After a short time (the lifetime of the

atomic excited state), the atom spontaneously emits a photon and

returns to its ground state. In the spontaneous emission process

the atom also gains momentum (recoil momentum). Since the

spontaneous emission is random and isotropic, the effective recoil

momentum gained by the atom in many spontaneous emissions is

zero. Thus, the momentum gained by the atom is only that along

the propagation direction of the laser field, which results from the

absorption of photons from the laser field.

Consider a two-level atom moving with a velocity �v and

interacting with a classical coherent field, as illustrated in Fig. 20.4.

The Hamiltonian of the system, in the electric-dipole approximation,

is given by

Ĥ = | �P |2
2m

+ �ω0Sz − �μ · �E ( �R , t), (20.45)

where �P is the momentum of the atom, and the electric field is

evaluated at the position �R of the atom. In the case of many atoms,
�P and �R correspond, respectively, to the momentum and position of

the centre of mass.

We will use the full quantum mechanical picture of the atomic

motion. Therefore, �P and �R will be treated as operators. In the

Heisenberg picture, the operators �̂P and �̂R obey the following
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equations of motion

d
dt

�̂R = 1

i�

[
�̂R , Ĥ

]
=

�̂P
m
,

d
dt

�̂P = 1

i�

[
�̂P , Ĥ

]
= −∇ Ĥ = ∇

(
�μ · �E ( �̂R , t)

)
. (20.46)

For simplicity, we assume that the spread of the atomic wave packet


r is small compared with the laser wavelength, that is, 
r � λ.

In this case, we can replace the atomic position operator �̂R by its

expectation value �r = 〈 �̂R〉. Therefore, the average radiation force
acting on the atom can be given by

�F = m
d2

dt2
�r = 〈∇(�μ · �E )〉. (20.47)

Suppose, the laser field is a single-mode plane wave of polarization

�e and amplitude E0:
�E ( �R , t) = 1

2
�eE0 exp[i(ωLt − �k · �R)]+ c.c. (20.48)

Then

�F = 〈�μ · �e ∇E( �R , t)〉 = 〈�μ · �e〉∇E(�r , t), (20.49)

where

E( �R , t) = 1

2
E0 exp[i(ωLt − �k · �R)]+ c.c. (20.50)

Thus, in order to find the force acting on the atom, we have to

calculate the time evolution of the atomic dipole moment. In order

to do it, we express the atomic dipole moment in terms of the atomic

dipole operators

〈 �μ · �e 〉 = μeg
(〈S+〉 + 〈S−〉) , (20.51)

and employ the Bloch equations to find the steady-state value of the

average values of the atomic operators 〈S+〉 and 〈S−〉. For a two-level
atom driven by a classical laser field, the Bloch equations are

d
dt

〈Sz〉 = −1
2

� − �〈Sz〉 − 1

2
�
(〈S̃+〉 + 〈S̃−〉) ,

d
dt

〈S̃+〉 = −
[
1

2
� + i

(

 + d

dt
θ(r)
)]

〈S̃+〉 + �〈Sz〉,
d
dt

〈S̃−〉 = −
[
1

2
� − i

(

 + d

dt
θ(r)
)]

〈S̃−〉 + �〈Sz〉, (20.52)
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where
 = ωL − ω0 is the detuning of the laser frequency from the

atomic transition frequency, � is the spontaneous emission rate, �

is the Rabi frequency of the laser field,

〈S̃±〉 = 〈S±〉 exp [∓i (ωLt + θ(t))] (20.53)

are the slowly varying parts of the atomic operators, and θ(r) = −�k ·
�r .

Substituting Eqs. (20.51) and (20.50) into Eq. (20.49), and

neglecting terms rapidly oscillating with frequencies±2ωL, we get

�F = 1

2
� (U∇� + V�∇θ) , (20.54)

where

U = 〈S+〉 + 〈S−〉, V = −i (〈S+〉 − 〈S−〉) . (20.55)

Note that

d
dt

θ(r) = −�k · d�r
dt

= −�k · �v ,
∇θ(r) = −�k. (20.56)

Then, solving the Bloch equations for the steady state, we find

U = −
�
(

 − �k · �v

)
4
(

 − �k · �v

)2
+ 2�2 + �2

,

V = − 2��

4
(

 − �k · �v

)2
+ 2�2 + �2

. (20.57)

Hence, the force �F on the atom exerted by the radiation field is given

by

�F = −�

(

 − �k · �v

)
∇�2 + ��2∇θ

4
(

 − �k · �v

)2
+ 2�2 + �2

. (20.58)

It is seen that the force depends on the gradient of the Rabi

frequency, ∇�2. If � is independent of r , which happens for a

running-wave laser field, ∇�2 = 0, and then the force reduces to

�F = ��2��k
4
(

 − �k · �v

)2
+ 2�2 + �2

= I (
)��k. (20.59)
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The force is in the direction of the wave vector �k, and is equal to the
Doppler shifted photon scattering rate

I (
) = ��2

4
(

 − �k · �v

)2
+ 2�2 + �2

, (20.60)

multiplied by the photon recoil momentum ��k.

20.3.1 Slowing and Confining Atoms

Let us discuss in more details the relationship between the detuning

of the laser field from the atomic resonance and themagnitude of the

radiation force. We shall distinguish between Doppler force useful

for slowing downmoving atoms and dipole force useful for confining

atoms into a very small region.

Let us assume for a moment that the atom is stationary, �v =
0. We see that even in this case, the force is different from zero,

proportional to ��k. When we take into account the atom’s motion,
�v �= 0, the direction of the force is still the same as the direction of

the laser field.

Figure 20.5 shows the force as a function of 
 for two different

directions of the moving atom. The force is a Lorentzian centred

at 
 = �k · �v , where �k · �v is the Doppler frequency shift.
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Figure 20.5 The force �F per momentum ��k plotted as a function of the
detuning 
 for � = � and two different directions of the moving atom,
�k · �v = 5� (solid line) and �k · �v = −5� (dashed line).
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Therefore, the force is called the Doppler force. For 
 > 0,

that is, when the laser frequency is blue-detuned from the atomic

resonance, and the atom moving in the direction of the laser

field, �k · �v = kv , the force on the atom is large. However, when

the atom is moving in the opposite direction to the direction

of the laser field, �k · �v = −kv , and then the force is small.

The situation changes when 
 < 0, that is, when the laser

frequency is red-detuned from the atomic resonance. In this case,

the force is large when the atom moves in the direction opposite to

the laser field, and is small when the atom moves in the direction

of the laser field. The case of 
 < 0 is used in experiments to slow

down (cool) trapped atoms.

Suppose now that � depends on r and θ is independent of r ,
which happens for a standing-wave laser field, the force �F reduces
to

�F = −�



4
2 + 2�2 + �2
∇�2. (20.61)

The force exhibits a dispersive dependence on
, and its magnitude

is proportional to the gradient of the field intensity. This force is

called the dipole force. For 
 > 0, the direction of the force is

in direction of negative gradient of the field (decreasing intensity).

For 
 < 0, the direction of the force is in the direction of positive

gradient of the field (increasing intensity). The force is zero for a

resonant (
 = 0) driving field. This shows that the dipole force

attracts the atom to regions of intense field when the laser is tuned

below resonance, and repels the atom from these regions when

tuned above resonance. This property of the dipole force is used in

experiments to trap atoms in a very small area of a focused laser

beam.

20.4 Summary

In this chapter, we have demonstrated the following:

(1) Atoms can be diffracted by the interaction with a standing-wave

laser field. The diffraction arises from a force acting on the

atoms from the laser field.
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(2) The dipole force is different from zero only for a detuned laser

field.

(3) The dipole force attracts the atom to regions of intense field

when the laser is tuned below resonance, and repels the atom

from these regions when tuned above resonance.

We conclude this chapter with a brief comment that laser-cooling

techniques have developed to the level that led to create Bose–

Einstein condensate [113–115] and to achieve ultra-low temper-

atures of optical lattices and single ions [116, 117]. A new area

of science, ultra-cold physics have been developed [118] and a

significant progress has been made towards not only to achieve

ultra-low temperatures but also in coolingmacroscopic objects, such

as metallic or dielectric plates and biological samples (membranes)

to temperatures of few microkelvins [119, 120].

Exercises

20.1 Using the Bloch equations (20.52), find the steady-state value

of the average population inversion, 〈Sz〉. Then, show that

Eq. (20.60) represents the steady-state photon scattering rate,

defined as I (
) = �(〈Sz〉 − 1/2).

20.2 A driven two-level atoms undergoes dressing by the driving

field.

(a) Starting with the expression from Eq. (20.54), write the

force �F in terms of the populations and coherences of the
dressed states.

(b) Under what conditions the force would depend only on
the populations of the dressed state?

20.3 The Doppler force is asymmetric with 
 that the case 
 < 0

is better for slowing down moving atoms than
 > 0. Explain

in your own words, why a red-detuned laser works better for

slowing down moving atoms than a blue-detuned laser?

20.4 In practice, atoms may move with an uniform velocity.

Assuming that the atomic velocities obey the Maxwell–
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Boltzmann distribution

ρ(v) = 1√
πσ

exp(−v2/σ 2),

where σ is the width of the distribution, calculate the average

force by integrating expression (20.58) over the velocity

distribution.What is the average force in the limit σ 2 � 2�2+
�2?
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Final Remark

Although this book focuses on backgrounds of quantum optics,

it is nevertheless appropriate to conclude by emphasizing the

importance of quantum optics in the development of new areas

in science and technology. The predictions of quantum optics have

turned research and technology into new directions and have led

to numerous technological innovations and the development of a

new technology on the scale of single atoms and electrons, called

quantum technology, or nanotechnology. The ability to manufacture

tiny structures, such as quantum dots, and to control their

dimensions allows us to engineer the unique properties of these

structures and predict new devices such as quantum computers.

A quantum computer can perform mathematical calculations much

faster and store much more information than a classical computer

by using the laws of quantum physics. The technology for creating

a quantum computer is still in its infancy because it is extremely

difficult to control quantum systems, but is developing very rapidly

with little sign of the progress slowing.

We have seen in our journey through the backgrounds of

quantum optics that despite its long history and the development

toward quantum technology, quantum optics still challenges our

understanding and continues to excite our imagination.We hope this

book has provided a good guide toward current developments in

quantum optics and has encouraged the reader to learn more.
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