

QuantumMachine Learning

and Optimisation in Finance

On the Road to Quantum Advantage

Antoine Jacquier

Oleksiy Kondratyev

BIRMINGHAM—MUMBAI

QuantumMachine Learning and Optimisation in
Finance

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Senior Publishing Product Manager: Tushar Gupta
Acquisition Editor – Peer Reviews: Saby D’silva
Project Editor: Amit Ramadas
Development Editor: Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Presentation Designer: Sandip Tadge

First published: October 2022

Production reference: 1211022

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-357-0

www.packt.com

www.packt.com

To Loulou and the three musketeers

A.J.

To my family and in memory of Viktor Yatsunyk

O.K.

Foreword

As far as computational prospects (including hardware and software) and related develop-

ments are concerned, we live in the most exciting times. Every day brings new achievements,

new promises, and, on occasion, new disappointments. Presently, some of the ideas dis-

cussed for decades are reaching the usable stage, the most exciting developments being

thermonuclear fusion, all-purpose artificial intelligence, distributed ledger technology, and

quantum computing. However, not surprisingly, breakthroughs in these fields are very

hard to achieve, so, despite strenuous government and private efforts and lavish funding,

their stated goals have not been reached yet.

Jacquier and Kondratyev, two of the strongest quants of their generation, have written a

remarkable book about quantum computers and their applications in finance, emphasizing

practical aspects of quantum machine learning and optimisation. To put the subject of

this book in a proper context, let us briefly touch upon the history of computing devices.

Without exaggeration, one can claim that the history of human progress is closely related

to the history of computing devices. Original simple but beneficial instruments, such

as abacuses, were invented at the dawn of civilization. Eventually, computing devices

developed into potent tools, such as supercomputers, that define our day-to-day existence

and future as species.

To start with, it is worth mentioning some milestones. Abacuses were used in Babylonia

as early as c. 2700–2300 BC; eventually, they spread worldwide and became known as

Roman abacuses. Computational devices were used together with memory devices, such

as tally sticks and clay tablets. In classical antiquity, analog computers, such as the fabled

Antikythera, probably intended for astronomical calculations, were actively used. Subse-

quently, medieval Muslim astronomers and engineers brought such devices to the next

level. As a result, they developed remarkable objects, such as sundials, planispheres, and

astrolabes.

Eventually, the center of progress moved to Europe and later to North America, where

various calculating tools, such as the slide rule and mechanical calculator, were introduced

in early modern times. However, the real breakthrough was achieved in 1804 when Jacquard

created a loom programmable via punched cards. Babbage, “the father of the computer”,

invented the first mechanical computer programmable with punch cards in the United

Kingdom. Unfortunately, his Difference Engine and Analytical Engine were never com-

pleted because their execution involved severe practical issues, including insurmountable

engineering obstacles, lack of funding, and general ridicule (Babbage’s story should serve

as a fair warning to all the intrepid inventors who come with ideas centuries ahead of their

time). Several decades later, the American inventor Hollerith was much more successful.

He used punched cards to store data readable by a tabulator machine; IBM can trace its

origins to these humble cards.

In the late 1800s to early 1900s, analog computers, such as tide-predicting machines, using

physical phenomena to model the problem they were built to solve, became all the rage.

Specifically, an analog computer’s developers must find physical processes governed by the

same or similar equations as the problem of actual interest. Since, by design, such computers

use noisy continuous values subject to various errors, they produce approximate solutions.

However, such solutions are highly beneficial in many applications, including warfare,

navigation, and economics, to mention but a few. One of the more remarkable examples

of analog computers is the Phillips Hydraulic Computer, using simple tools to control the

water’s flow to model the national economy of the United Kingdom with a 2% accuracy.

Others are the battleship’s fire-control systems and bomb sights. Shortly before and during

World War II, digital computers evolved into formidable competitors of analog computers

and, by the 1950s, replaced them altogether, except for some highly specialized applications.

Stemming from theoretical insights due to Turing, who invented the celebrated eponymous

Turing Machine, and several other pioneers and practical engineering inventions, such

as vacuum tubes and transistors, digital computers conquered the world. Initially, digital

computers, such as the Ananasov-Berry computer, the Colossus, and the ENIAC, to mention

but a few, were enormous machines built to serve military needs, including nuclear weapons

design and cryptography. Eventually, computers found a wide plethora of commercial

applications.

Modern digital computers store the necessary data in a magnetic memory in the form of

0-1 bits; they operate on this data via logical gates. The fact that the data is digitised has

profound implications. On the one hand, while undeniably humongous, the amount of data

a computer can store and the speed at which it can process this data are limited. On the

other hand, inevitable errors inherent in any physical device are relatively easy to control.

Quantum computers were independently conceived in the early 1980s by Benioff, who

proposed a quantum version of the Turing Machine, Feynman, and Manin. Feynman,

with his usual eloquence, stated: “Nature isn’t classical, dammit, and if you want to make

a simulation of nature, you’d better make it quantum mechanical, and by golly, it’s a

wonderful problem because it doesn’t look so easy”. Quantum computers use quantum

mechanical phenomena to solve computational problems that conventional computers

cannot solve efficiently (or at all). To build a working quantum computer, one must

overcome tremendous difficulties and achieve conditions such that quantum effects become

dominant or, at least, noticeable. For example, such a computer must operate at low

temperatures close to absolute zero. The primary distinction between quantum computers

and their classical brethren is how they store and operate on the data. Instead of the

0-1 bits used by digital computers, quantum computers use the so-called qubits, capable

of storing continuous information represented by a point on the so-called Bloch sphere;

however, once measured, the data collapse to the classical 0-1 state. In theory, qubits

should be entangled so that their quantum states depend on the state of all other qubits.

The data, stored by a quantum computer, is processed via quantum gates. Since the data

is continuous rather than discrete, the storage problem is not an issue per se; however,

the continuity of the data makes quantum computers prone to inevitable errors. As a

result, fault-tolerant quantum computing with suitably many qubits remains a very distant

possibility. Furthermore, building an actual qubit is very difficult. Different possibilities

have been tried, such as Josephson’s junctions, trapped ions, and many others.

Quantum computing has numerous exciting prospective goals, although it is unclear if all

(or any) of them can be reached. The best known is cryptography, more concretely, factoris-

ing huge integers into prime factors using Shor’s algorithm, thus breaking conventional

asymmetric encryption. It is worth mentioning that Shor’s algorithm is probabilistic; hence,

it is particularly well adapted to quantum computers. The promise of achieving the factori-

sation breakthrough galvanised governments and private companies into pouring billions

of dollars into quantum computing and related fields. For instance, the US government

launched the National Quantum Initiative to explore and promote Quantum Information

Science. In addition, the National Institute of Standards and Technology evaluates and

standardizes quantum-resistant public-key cryptographic algorithms. However, the biggest

number reliably factored by Shor’s algorithm is 35, factored in 2021 using a computer with

very few qubits. Another exciting application is to search problems, which can be efficiently

handled with Grover’s algorithm, although practical implementations are lacking. Several

research groups, such as the Google-NASA collaboration, actively study machine learning

applications. Nevertheless, large-scale applications are still far from being conquered.

This situation brings us back to the Jacquier and Kondratyev book. Given the relatively

slow progress achieved in quantum computation, it is natural to go back to the early days of

modern computing hardware and see if one can use a quantum-like computer as a modern

analog computer; this is precisely what Jacquier and Kondratyev do. Specifically, rather

than waiting for quantum computers to reach their top form, they advocate using quantum

annealing computers and similar analog machines to perform the required calculations.

Such computers start with a simple Hamiltonian with a known ground state and slowly (adi-

abatically) evolve the original Hamiltonian into the Hamiltonian of interest while always

preserving the ground state. Thus, when the process is completed, the measurement allows

one to find the ground state for the actual problem rather than a simplified one. Jacquier

and Kondratyev use analog quantum computers to solve several exciting mathematical

finance problems with verve and panache. Specifically, they discuss quantum boosting and

demonstrate how to apply it to predict credit card defaults and solve classification prob-

lems. Subsequently, Jacquier and Kondratyev turn their attention to quantum Boltzmann

machines and explain how to use them for distribution sampling.

Analog quantum computers can be used to solve many financial engineering problems.

For instance, a quantum annealer is a perfect tool for solving the multi-period integer

portfolio optimisation problem, which is NP-Complete. Monte Carlo simulations, which

are fundamental for derivatives pricing and other related tasks, are particularly natural

to perform using quantum computers since they can be viewed as true random number

generators.

When it comes to the digital gate model quantum computing, Jacquier and Kondratyev

discuss quantum neural networks and their applications to machine learning. Later, the

authors cover Quantum Circuit Born Machine, Variational Quantum Eigensolver, and the

Quantum Approximate Optimisation Algorithm. Finally, Jacquier and Kondratyev discuss

new quantum algorithms, such as quantum kernels, Bayesian Quantum Circuit, Quantum

Fourier Transform, and Quantum Monte Carlo Simulation.

Jacquier and Kondratyev are excited about quantum algorithms and their potential appli-

cations; however, they are not starry-eyed and approach quantum algorithms cautiously.

Specifically, they put much effort into showing how classical algorithms can solve problems

they are interested in and when quantum algorithms outperform their classical brethren.

While building quantum computers originally envisioned by Feynman and Manin might

still be decades away, more practical analog quantum computers already exist. Experience

suggests that finance is one of the fields where breakthroughs in computing tend to be

used in real-time. Quants who want to use quantum algorithms in their day-to-day work

could scarcely do better than starting their journey by studying this book.

Bon voyage!

Alexander Lipton and Marcos López de Prado,

Abu Dhabi Investment Authority

Endorsements

Quantum Computing is often described as a transformative and disruptive tech-

nology. The potential is clear; however, currently, hardware does not yet offer

the necessary performance to harness this potential. As the technology scales,

four main problem types will become addressable. Simulation – in areas such

as fluid dynamics, chemical catalysis, and structural biology; Machine Learning

– in areas such as the use of AI in autonomous vehicles, personalised medicine,

and fraud detection; Optimisation – in areas such as resourcing and logistics; and

Cryptography – in areas of security and systems resilience.

In this book, Antoine and Oleksiy marry their expertise in mathematics and

algorithm development with a deep understanding of and experience in global

banking to address the problem types and current approaches in quantum-enabled

machine learning and optimisation. Step by step, they take the reader through fa-

miliarisation with the methodology and mathematics of quantum mechanics and

implementations of machine learning and optimisation in quantum annealers and

gate model architectures. They describe both long-term, large-scale approaches

and more practical, near-term NISQ-era variational and approximate techniques.

Boston Consulting forecasts global financial services will see a $70-135bn impact

from quantum computing in the coming two decades. $12.6tr of managed portfolio

funds are located in the UK, with the UK finance sector contributing £132bn to

the UK economy, employing over 1.1m people in 2019.

Recent surveys of UK business leaders suggest that 94% believe quantum comput-

ing will impact their organisation or sector significantly, and 72% intend to start

strategic planning or create a pilot team by 2024. Only 6% have development

teams in place today. In this book, Antoine and Oleksiy have created a toolkit to

help focus development teams within the finance sector and beyond on the core

areas of understanding and impact of quantum computing.

Demonstrating value through the application of quantum computing from the

realms of physics and mathematics is a challenging one; nevertheless, the finance

sector is an area ripe with computational challenges – particularly in machine

learning and optimisation – that lend themselves both to business advantage and

opportunities for quantum advantage.

—Dr. Michael N Cuthbert, Director, National Quantum Computing Centre

This book reviews different types of quantum computers as well as some important

principles and algorithms. Quantum Machine Learning and Optimization in

Finance is a great book to learn more about these two important applications of

quantum computing.

—Dr. Ray O. Johnson, CEO, Technology Innovation Institute

The book is a wonderful guide for both the quantum computing scientist interested

in understanding the applications of quantum computing in quantitative finance

and the finance professional looking to explore the new computational tools offered

by quantum computing.

Without giving up mathematical rigour, the authors manage to explain clearly

and make order in the new and still growing discipline of quantum computing

applied to quantitative finance.

This is no small feat, and the authors take us on a journey that starts from the

foundations of quantum mechanics and leads to quantum annealing, gate-based

quantum computing, and their algorithms. The journey never departs from the

practical relevance of the subject to quantitative finance: several algorithms

and numerical finance use cases and applications are developed explicitly and

extensively.

Despite the complexity of the subject, the book is highly readable and successfully

manages to illustrate and combine rigorous quantum computing methods with

their numerous practical exemplifications in quantitative finance.

—Marco Paini, Director, Technology Partnerships Europe at Rigetti Computing

Jacquier and Kondratyev succeed in leading the reader on a journey through

both foundational concepts and selected research material in a very pedagogical

and pleasant way. By studying the book, readers will be well equipped to under-

stand, formulate, and attack the main challenges of current quantum computing

experiments applied to financial problems.

—Davide Venturelli, Ph.D., Associate Director of Quantum Computing, USRA

Contributors

About the authors
Antoine Jacquier graduated from ESSEC Business School before obtaining a PhD in

Mathematics from Imperial College London.

His research focuses on stochastic analysis, asymptotic methods in probability, volatility

modelling, and algorithms in quantum computing. He has published about 50 papers

and has co-written several books. He is also the Director of the MSc in Mathematics and

Finance at Imperial College and regularly works as a quantitative consultant for the Finance

industry.

He has a keen interest in running and whisky.

I would like to thank all the people who challenged and motivated me in Ap-

plied Mathematics, asking the right questions, pointing to interesting problems,

and proposing diverse solutions from many angles. Chief among them are Jim

Gatheral, Peter Friz, Mathieu Rosenbaum, Josef Teichmann, Mark Davis, Claude

Martini, and Aleksandar Mijatović, whose constant and generous ideas led to

numerous advances in my career.

My journey through quantum computing, while not on the obvious path dictated

by my mathematical background, started out of this scientific curiosity acquired

over the years. I am indebted to Kostas Kardaras, Mugad Oumgari, Alexandros

Pavlis, and Amine Assouel for crawling patiently with me through the dark

meanders of quantum computing and quantum mechanics.

Oleksiy Kondratyev obtained his PhD in Mathematical Physics from the Institute for

Mathematics, National Academy of Sciences of Ukraine, where his research was focused

on studying phase transitions in quantum lattice systems.

Oleksiy has over 20 years of quantitative finance experience, primarily in banking. He was

recognised as Quant of the Year 2019 by Risk magazine and joined Abu Dhabi Investment

Authority as a Quantitative Research & Development Lead in the summer of 2021.

Outside the world of finance and quantum computing, Oleksiy’s passion is for sailing,

in particular offshore racing. Oleksiy holds the RYA Yachtmaster Ocean certificate of

competence and is a member of the Royal Ocean Racing Club.

I would like to thank Davide Venturelli for introducing me to the wonderful world

of quantum computing. As a physicist, I am fascinated by the possibility of

performing computation using quantum mechanical systems and as a quant, I

appreciate the impact quantum computing will have on quantitative finance.

I am deeply grateful to Bill Winters for his support and interest in quantum

computing. It takes both vision and courage to back the development of new

emerging technology that does not promise immediate payoff but has the potential

to change the finance industry as we know it.

Writing a book is a long journey and a result of many years of intensive research.

This book would not have been possible without the discussions, collaborations,

exchange of ideas, and support of Majed Al Romaithi, Bhavesh Amin, David

Bell, Michael Brett, Kasper Christoffersen, Brian Coyle, Michael Cuthbert, Tushar

Gupta, Max Henderson, Mark Hodson, Blanka Horvath, Wendy Huang, Ray

Johnson, Elham Kashefi, Geoff Kot, Alexander Lipton, Charissa Liu, Marcos

López de Prado, Aaron Lott, Alex Manson, Roger McKinley, Ashley Montanaro,

Krzysztof Osiewalski, Marco Paini, Manos Papathanasiou, Amit Ramadas, Chad

Rigetti, Christian Schwarz, Elena Strbac, Robert Sutor, Agnieszka Verlet, José

Viñals, Colin Williams, Stefan Wörner, and Safis Editing.

About the reviewer
Gerhard Hellstern (Prof., Dr. rer. nat, graduate physicist, *1971) has been a professor

at the Faculty of Economics at the Baden-Württemberg Cooperative State University in

Ravensburg since 2018. From 1990 - 1995, he studied physics at the University of Tübingen

and the State University of New York at Stony Brook; in 1998, he graduated as Dr. rer.

nat. From 1998 to 2018, he was employed by several commercial banks and then for 17

years at Deutsche Bundesbank. He was in charge of the banking audits division for many

years. Gerhard Hellstern has been involved in the application of data science methods

(data analytics as well as machine and deep learning) in finance for many years. These

methods also include Quantum Computing and Quantum Machine Learning. He is a

Qiskit advocate at IBM and a member of the research network Quantum Computing of

the Fraunhofer Gesellschaft. His current research focuses on applications of Quantum

Computing / Quantum Machine Learning in the financial sector and beyond, and he has

published several papers in this domain.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

Table of Contents

Preface xxxiii

Chapter 1: The Principles of QuantumMechanics 1

1.1 Linear Algebra for Quantum Mechanics . 2

1.1.1 Basic definitions and notations • 2

1.1.2 Inner products • 3

1.1.3 From linear operators to matrices • 4

1.1.4 Condition number • 6

1.1.5 Matrix decompositions and spectral theorem • 8

1.1.6 Hermitian matrices • 9

1.1.7 Rotation matrices • 11

1.1.8 Polar coordinates • 12

1.1.9 Dirac notations • 14

1.1.10 Quantum operators • 15

1.1.11 Tensor product • 16

1.2 Postulates of Quantum Mechanics . 16

1.2.1 First postulate – Statics • 17

1.2.2 Second postulate – Dynamics • 19

1.2.3 Third postulate – Measurement • 21

1.2.4 Fourth postulate – Observable • 24

1.2.5 Fifth postulate – Composite System • 25

1.3 Pure and Mixed States . 26

1.3.1 Density matrix • 26

1.3.2 Pure state • 28

1.3.3 Mixed state • 29

Part I: Analog Quantum Computing – Quantum Annealing 35

Chapter 2: Adiabatic Quantum Computing 37

2.1 Complexity of Computational Problems . 38

2.2 Principles of Adiabatic Quantum Computing . 40

2.2.1 The Quantum Adiabatic Theorem • 43

2.2.2 Optimisation and metaheuristics • 46

Simulated annealing • 47

Quantum annealing and quantum tunnelling • 47

2.3 Implementations of AQC . 50

2.3.1 The short history of quantum annealing • 50

2.3.2 Inter-generational comparison of D-Wave quantum annealers • 51

2.3.3 Physical realisations of quantum annealers • 53

2.3.4 Chimera graph and embedding of the logical qubits • 55

2.4 Universality of AQC . 57

Chapter 3: Quadratic Unconstrained Binary Optimisation 61

3.1 Principles of Quadratic Unconstrained Binary Optimisation 62

3.1.1 QUBO to Ising transformation • 63

3.1.2 QUBO problem examples • 63

Number Partitioning • 63

Graph Partitioning • 64

Binary Integer Linear Programming • 65

Knapsack with Integer Weights • 65

3.2 Forward and Reverse Quantum Annealing . 67

3.2.1 Forward quantum annealing • 67

3.2.2 Reverse quantum annealing • 68

3.3 Discrete Portfolio Optimisation . 70

3.3.1 QUBO encoding • 71

3.3.2 The coarse-grained encoding scheme • 72

3.3.3 Construction of the instance set for numerical experiments • 73

3.3.4 Classical benchmark – Genetic Algorithm • 74

3.3.5 Establishing quantum speedup • 79

Chapter 4: Quantum Boosting 83

4.1 Quantum Annealing for Machine Learning . 84

4.1.1 General principles of the QBoost algorithm • 85

4.1.2 QUBO to Ising • 86

4.2 QBoost Applications in Finance . 87

4.2.1 Credit card defaults • 88

4.2.2 QUBO classification results • 90

4.3 Classical Benchmarks . 93

4.3.1 Artificial neural network • 93

4.3.2 Training artificial neural networks • 95

4.3.3 Decision trees and gradient boosting • 98

4.3.4 Benchmarking against standard classical classifiers • 100

Chapter 5: Quantum Boltzmann Machine 105

5.1 From Graph Theory to Boltzmann Machines . 106

5.2 Restricted Boltzmann Machine . 108

5.2.1 The RBM as an energy-based model • 108

5.2.2 RBM network architecture • 111

5.2.3 Sample encoding • 113

5.2.4 Boltzmann distribution • 113

5.2.5 Extensions of the Bernoulli RBM • 114

5.3 Training and Running RBM . 116

5.3.1 Training RBM with Boltzmann sampling • 116

5.3.2 The Contrastive Divergence algorithm • 116

5.3.3 Generation of synthetic samples • 118

5.4 Quantum Annealing and Boltzmann Sampling . 122

5.4.1 Boltzmann sampling • 123

5.4.2 Mapping • 125

5.4.3 Hardware embedding and parameters optimisation • 126

5.4.4 Generative models • 129

5.5 Deep Boltzmann Machine . 130

5.5.1 Training DBMs with quantum annealing • 131

5.5.2 A DBM pipeline example • 132

Part II: Gate Model Quantum Computing 135

Chapter 6: Qubits and Quantum Logic Gates 137

6.1 Binary Digit (Bit) and Logic Gates . 138

6.1.1 Logic gates • 138

6.1.2 NAND as a universal logic gate • 139

6.1.3 Building an addition operator from the NAND gates • 140

6.2 Physical Realisations of Classical Bits and Logic Gates . 142

6.2.1 Implementation of the NAND gate • 142

6.2.2 Implementation of the RAM memory cell • 144

6.3 Quantum Binary Digit (Qubit) and Quantum Logic Gates . 145

6.3.1 Computation according to the laws of quantum mechanics • 145

6.3.2 Qubit • 148

6.3.3 One-qubit quantum logic gates • 150

6.3.4 Two-qubit quantum logic gates • 153

6.3.5 The Toffoli gate • 156

6.4 Reversible Computing . 159

6.5 Entanglement . 161

6.5.1 Quantum entanglement and why it matters • 161

6.5.2 Entangling qubit states with two-qubit gates • 163

6.6 Quantum Gate Decompositions . 164

6.7 Physical Realisations of Qubits and Quantum Gates . 168

6.7.1 The DiVincenzo criteria • 168

6.7.2 Superconducting qubits • 170

From classical to quantum harmonic oscillator • 170

Physical representation of the QHO • 174

Controlling and measuring superconducting qubits • 177

Entanglement with superconducting qubits • 178

6.7.3 Photonic qubits • 179

6.7.4 Trapped ion qubits • 181

6.8 Quantum Hardware and Simulators . 184

Chapter 7: Parameterised Quantum Circuits and Data Encoding 189

7.1 Parameterised Quantum Circuits . 190

7.2 Angle Encoding . 193

7.2.1 The basic encoding scheme • 193

7.2.2 Encoding two features per quantum register • 195

7.2.3 Mapping a classical data sample into a quantum state • 196

7.3 Amplitude Encoding . 196

7.4 Binary Inputs into Basis States . 198

7.5 Superposition Encoding . 199

7.6 Hamiltonian Simulation . 202

Chapter 8: Quantum Neural Network 207

8.1 Quantum Neural Networks . 208

8.2 Training QNN with Gradient Descent . 211

8.2.1 The finite difference scheme • 211

8.2.2 The analytic gradient approach • 213

8.2.3 The parameter shift rule for analytic gradient calculation • 214

8.3 Training QNN with Particle Swarm Optimisation . 217

8.3.1 The Particle Swarm Optimisation algorithm • 217

8.3.2 PSO algorithm for training quantum neural networks • 219

8.4 QNN Embedding on NISQ QPU . 224

8.4.1 NISQ QPU connectivity • 224

8.4.2 QNN embedding scheme • 225

8.5 QNN Trained as a Classifier . 226

8.5.1 The ACA dataset and QNN ansatz • 226

8.5.2 Training an ACA classifier with the PSO algorithm • 227

8.6 Classical Benchmarks . 229

8.6.1 Logistic Regression and Random Forest • 229

8.6.2 Benchmarking against standard classical classifiers • 230

8.7 Improving Performance with Ensemble Learning . 231

8.7.1 Majority voting • 232

8.7.2 Quantum boosting • 235

Chapter 9: Quantum Circuit Born Machine 239

9.1 Constructing QCBM . 240

9.1.1 QCBM architecture • 240

9.1.2 QCBM embedding • 242

9.2 Differentiable Learning of QCBM . 244

9.2.1 Sample encoding • 244

9.2.2 Choosing the right cost function • 247

9.3 Non-Differentiable Learning of QCBM . 249

9.3.1 The principles of Genetic Algorithm • 249

9.3.2 Training QCBM with a Genetic Algorithm • 250

9.4 Classical Benchmark . 254

9.5 QCBM as a Market Generator . 256

9.5.1 Non-parametric modelling of market risk factors • 256

9.5.2 Sampling from the learned probability distributions • 257

9.5.3 Training algorithm convergence and hyperparameter optimisation • 263

Chapter 10: Variational Quantum Eigensolver 269

10.1 The Variational Approach . 270

10.2 Calculating Expectations on a Quantum Computer . 272

10.2.1 The one-qubit case • 272

10.2.2 The two-qubit case • 276

10.2.3 The multi-qubit case • 278

10.3 Constructing the PQC . 279

10.3.1 One-qubit ansatz • 280

10.3.2 Multi-qubit ansatz • 281

10.4 Running the PQC . 283

10.4.1 Experimenting with the two-qubit ansatz • 283

10.4.2 Analysis of the obtained results • 285

10.5 Discrete Portfolio Optimisation with VQE . 288

Chapter 11: Quantum Approximate Optimisation Algorithm 293

11.1 Time Evolution . 294

11.2 The Suzuki-Trotter Expansion . 296

11.3 The Algorithm Specification . 298

11.4 The Max-Cut Problem . 299

11.4.1 QAOA gates • 301

11.4.2 QAOA circuit • 305

Chapter 12: The Power of Parameterised Quantum Circuits 309

12.1 Strong Regularisation . 310

12.1.1 Lipschitz constant • 311

12.1.2 Regularisation example • 312

12.2 Expressive Power . 315

12.2.1 Multilayer PQC • 316

12.2.2 Tensor network PQC • 317

12.2.3 Measures of expressive power • 318

12.2.4 Expressive power of PQC • 322

Chapter 13: Looking Ahead 325

13.1 Quantum Kernels . 326

13.1.1 Classical kernel method • 326

13.1.2 Quantum kernel method • 327

13.1.3 Quantum circuits for the feature maps • 328

13.2 Quantum Generative Adversarial Networks . 331

13.3 Bayesian Quantum Circuit . 335

13.4 Quantum Semidefinite Programming . 337

13.4.1 Classical semidefinite programming • 338

13.4.2 Maximum risk analysis • 338

13.4.3 Robust portfolio construction • 339

13.4.4 Quantum semidefinite programming • 340

13.5 Beyond NISQ . 342

13.5.1 Quantum Fourier Transform • 342

13.5.2 Quantum Phase Estimation • 343

13.5.3 Monte Carlo speedup • 344

Classical Monte Carlo • 345

Quantum Monte Carlo • 345

QMC speedup • 347

13.5.4 Quantum Linear Solver • 349

Theoretical aspects • 349

Solving PDEs • 352

Application to portfolio optimisation • 355

Bibliography 357

Index 385

Other Books You Might Enjoy 393

Standard notations

C Complex numbers

H Hamiltonian

I Identity operator

log Natural logarithm

log2 Logarithm base 2

N Natural numbers

P Probability

P Projection operator (measurement operator)

q Vector of binary variables, q := (q1, . . . , qN), (qi ∈ {0, 1})i=1,...,N

R Real numbers

s Vector of spin variables, s := (s1, . . . , sN), (si ∈ {−1,+1})i=1,...,N

σiα Pauli operator (α ∈ {x, y, z}) acting on qubit i

u Variable (scalar)

u Column vector

u⊤ Transpose of a column vector

u∗ Complex conjugate of a column vector

|u⟩ Ket: column vector in Dirac notation

⟨u| Bra: complex conjugate transpose of column vector in Dirac notation

⟨u|v⟩ Inner product

|u⟩⟨v| Outer product

|u⟩ ⊗ |v⟩ Tensor product

U Matrix

U Quantum logic gate

U Operator

U† Adjoint operator

⟨ψ|U|ψ⟩ Expectation value of operator U in state |ψ⟩

Standard abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

AQC Adiabatic Quantum Computing

BQC Bayesian Quantum Circuit

CD Contrastive Divergence

CNN Convolutional Neural Network

DBM Deep Boltzmann Machine

DNN Deep Neural Network

FN False Negative

FP False Positive

GA Genetic Algorithm

GAN Generative Adversarial Network

LSTM Long Short Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

MPQC Multilayer Parameterised Quantum Circuit

MPS Matrix Product State

MPT Modern Portfolio Theory

NISQ Noisy Intermediate Scale Quantum

NP Non-deterministic Polynomial

PDE Partial Differential Equation

PDF Probability Density Function

PQC Parameterised Quantum Circuit

PSO Particle Swarm Optimisation

QA Quantum Annealing

QAO Quantum Anharmonic Oscillator

QAOA Quantum Approximate Optimisation Algorithm

QAML Quantum Annealing for Machine Learning

QBM Quantum Boltzmann Machine

QCBM Quantum Circuit Born Machine

QCNN Quantum Convolutional Neural Network

QFT Quantum Fourier Transform

QGAN Quantum Generative Adversarial Network

QHO Quantum Harmonic Oscillator

QLS Quantum Linear Solver

QLSTM Quantum Long Short Term Memory

QMC Quantum Monte Carlo

QML Quantum Machine Learning

QNN Quantum Neural Network

QPE Quantum Phase Estimation

QPU Quantum Processing Unit

QRAM Quantum Random Access Memory

QSDK Quantum Software Development Kit

QSDP Quantum Semidefinite Programming

QUBO Quadratic Unconstrained Binary Optimisation

QVA Quantum Variational Autoencoder

RAM Random Access Memory

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

SVD Singular Value Decomposition

SVM Support Vector Machine

TN True Negative

TP True Positive

TPQC Tensor Network Parameterised Quantum Circuit

TTS Time-to-Solution

VQE Variational Quantum Eigensolver

Preface

Quantum Machine Learning – Most

overhyped and underestimated
field at the same time

Iordanis Kerenidis

Introduction
Why Quantum Computing?

Quantum computing and AI will revolutionise and disrupt our society in the same way as

classical digital computing did in the second half of the 20th century and the internet did

in the first two decades of the 21st century.

Quantum computing (or, more generally, Quantum Information Theory) has been the

subject of extensive research since the 1960s, but it was only in the last decade that progress

on the hardware side has made it possible to test quantum computing algorithms; and it was

only in the last several years that quantum computing’s supremacy was finally claimed as

an experimental fact (i.e., a landmark experiment conducted on Google’s 53-qubit Sycamore

quantum chip [16]).

The story of quantum computing is, in this respect, similar to the story of AI: AI was

born in the 1950s but then experienced two “winters”, when interest in AI and Machine

Learning declined considerably (following the Lighthill report in the UK and the Speech

Understanding Research debacle in the US in the 1970s, and the LISP collapse in the 1990s),

before becoming widely used and adopted to the point that we can no longer imagine our

xxxiv Preface

life without it.

Even though we cannot rule out a “quantum computing winter” before quantum computing

technology becomes embedded in everyday life to the same extent as the internet, smart-

phones, and AI, the whole range of quantum computing breakthroughs we have witnessed

in the last few years makes it somewhat unlikely.

With recent advances in the field, we have finally reached the era of Noisy Intermediate-

Scale Quantum (NISQ) computing [237]. NISQ-era computers are powerful enough to test

quantum computing algorithms and solve non-trivial real-world problems – and establish

quantum speedup and quantum advantage over comparable classical hardware.

However, it is likely that the first real-world production-level business applications will be

a hybrid quantum-classical protocol, where most of the computation and data processing is

done classically, but the hardest problems are outsourced to the quantum chip. In finance,

discrete portfolio optimisation problems, which are NP-hard, are such examples and clear

objectives to tackle.

Why Quantum Machine Learning?

It is a combination of quantum computing and AI that will likely generate the most exciting

opportunities, including a whole range of possible applications in finance, but also in

medicine, chemistry, physics, etc. We have already witnessed the first promising results

achieved with Parameterised Quantum Circuits trained as either generative models (such

as Quantum Circuit Born Machine, which can be used as a synthetic data generator)

or discriminative models (such as a Quantum Neural Network that can be trained as a

classifier). The possible use cases include market generators, data anonymisers, credit

scoring, and the generation of trading signals.

All the models and techniques mentioned so far rely on the existence of universal, gate

model quantum computers. However, there is another type of quantum hardware – quan-

tum annealers – which realise the principle of adiabatic quantum computing. Quantum

annealers are analog quantum computers that are very well suited for solving complex op-

timisation problems that are NP-hard for classical computers. Optimisation problems form

Preface xxxv

a large class of hard-to-solve financial problems, not to mention the fact that many super-

vised and reinforcement learning tools used in finance are trained via solving optimisation

problems (minimisation of a cost function, maximisation of reward).

An example of discriminative machine learning problems solved using quantum annealers

includes building a strong classifier from several weak ones – the Quantum Boosting

algorithm. The strong classifier is highly resilient against overtraining and against errors

in the correlations of the physical observables in the training data. The quantum annealing-

trained classifiers perform comparably to the state-of-the-art classical machine learning

methods. However, in contrast to these methods, the annealing-based classifiers are simple

functions of directly interpretable experimental parameters with clear physical meaning

and demonstrate some advantage over traditional machine learning methods for small

training datasets.

Another application of quantum annealing is in generative learning. In Deep Learning, a

well-known approach for training a deep neural network starts with training a generative

Deep Boltzmann Machine, typically using the Contrastive Divergence (CD) algorithm,

then fine-tuning the weights using backpropagation or other discriminative techniques.

However, generative training is often time consuming due to the slow mixing of Boltzmann

(Gibbs) sampling. The quantum sampling-based training approach can achieve compa-

rable or better accuracy with significantly fewer iterations of generative training than

conventional CD-based training.

The main focus of this book is therefore on tackling practical real-world applications of

Quantum Machine Learning (QML) algorithms executable on NISQ hardware rather than

adopting the more traditional quantum computing textbook approach, diligently describing

standard quantum computing algorithms (Shor’s, Grover’s, . . .), the quantum hardware

demands of which are well beyond the capabilities of NISQ computers. The focus is also on

the hybrid quantum-classical computational protocols that reflect the most productive way

of harnessing the power of quantum computing – it is in tandem with classical computing

that quantum computing solutions can provide maximum benefits to the users.

xxxvi Preface

In this book, we cover all major QML algorithms that have been the subject of intensive

research by the industry and that have shown early signs of potential quantum advantage.

We also provide a balanced view of both analog and digital quantum computers and do

not try to make a call on which quantum computing technology (superconducting qubits,

trapped ions, neutral atoms, etc.) will be the eventual winner. The material is presented in

a hardware-agnostic way with a strong emphasis on the fundamental characteristics of the

algorithms rather than their hardware realisations, although we do not ignore the question

of algorithms’ embedding and the practical limitations of the existing quantum computing

hardware.

Why Finance?

It is reasonable to expect that the incredibly fast rate of quantum hardware improvements

we have witnessed over the last several years will lead to the widespread adoption of

quantum computing techniques in finance. The finance industry is already investigating

the potential of QML to solve classically hard practical problems and assist in achieving

digital transformation. We might have moved past the point of quantum computing

supremacy, but our quest to establish quantum computing advantage has just begun.

Quantitative finance is a discipline rich in interesting but computationally hard problems.

Many such problems are interdisciplinary in nature and often require the transformation

and adoption of mathematical and computational techniques developed in other fields.

Here, we can mention, for example, the application of the theory of stochastic differential

equations to option pricing [226], methods of optimal control theory to management

science and economics [260], machine learning techniques to portfolio construction, and

optimisation [193].

This is why we turn to finance when we are looking for a wide range of real-world use

cases to test (and improve!) quantum computing algorithms. The book provides many

examples of the quantum computing techniques and algorithms applied to solving practical

financial problems such as portfolio optimisation, credit card default prediction, credit

approvals, and generation of synthetic market data. At the same time, the methods and

Preface xxxvii

techniques are formulated and presented in the most general form – we hope our readers

will discover many new exciting quantum computing use cases in finance and beyond.

Who this book is for
The book is primarily aimed at three main groups: academic researchers and STEM students;

finance professionals working in the field of quantitative finance and related areas; computer

scientists and ML/AI experts. At the same time, the book is organised in such a way as to

be accessible and useful to a much wider audience.

The book does not require any prior knowledge of quantum mechanics and the complexity

of the mathematical apparatus should not feel intimidating: although we do not sacrifice

mathematical rigour, the emphasis is very much on the understanding of the fundamental

properties of the models and algorithms.

What this book covers
The book is split into two parts reflecting the natural progression from analog to digital

quantum computing, with an increasing depth in the analysis and understanding of al-

gorithms. However, we start with a chapter that covers the basic principles of quantum

mechanics and provides the motivation for the computational methods based on those

principles.

Chapter 1, The Principles of Quantum Mechanics, covers the basic mathematical principles

of quantum mechanics. It provides the necessary definitions and discusses the postulates

of quantum mechanics and their relevance to quantum computing.

Part I: Analog Quantum Computing – Quantum Annealing

For a number of years, quantum annealers were the only large-scale quantum computing

devices available for experiments in solving non-trivial NP-hard combinatorial optimisa-

tion problems. Although quantum annealing specifically targets solving classically hard

optimisation problems, it can also be used for many different hybrid quantum-classical

problems, such as samplers and classifiers. The book provides detailed coverage of these

xxxviii Preface

applications and illustrates them on specific financial use cases.

Chapter 2, Adiabatic Quantum Computing, introduces the concept of analog quantum com-

puting. The chapter starts with the principles of adiabatic quantum computing and proceeds

with the quantum adiabatic theorem. The physical realisation of adiabatic quantum comput-

ing is quantum annealing, which is explained alongside its classical counterpart – simulated

annealing. The chapter also discusses the implementation, limitations, and universality of

adiabatic quantum computing.

Chapter 3, Quadratic Unconstrained Binary Optimisation, describes the single most impor-

tant application of quantum annealing: solving classically hard optimisation problems.

A wide range of combinatorial optimisation problems can be formulated as Quadratic

Unconstrained Binary Optimisation (QUBO) problems (or, equivalently, as Ising problems)

solvable on a quantum annealer. The chapter provides in-depth coverage of the forward and

reverse quantum annealing techniques and demonstrates the power of quantum annealing

on a discrete portfolio optimisation use case.

Chapter 4, Quantum Boosting, extends the range of QUBO applications beyond combinatorial

optimisation and outlines the Quantum Boosting algorithm designed to combine a large

number of weak classical classifiers into a strong classifier. The algorithm is formulated as

a QUBO problem executable on a quantum annealer and applied to the use case of building

a strong predictor of credit card defaults from a large number of weak predictors.

Chapter 5, Quantum Boltzmann Machine, explores further machine learning applications

of quantum annealing. The Quantum Boltzmann Machine can be used as a generative

model for sampling from a learned probability distribution as well as an efficient method

of pre-training deep feedforward neural networks.

Part II: Gate Model Quantum Computing

Gate model quantum computing hardware has demonstrated enormous progress in recent

years and is quickly approaching the quantum advantage threshold. The search for quantum

advantage – the real-world productive application of a quantum computing solution that

outperforms any viable classical alternative – is one of the strongest motivations for

Preface xxxix

quantum computing research in finance and elsewhere. The book explores the main

quantum computing algorithms implementable on existing NISQ devices and highlights a

range of possible financial applications that may benefit from this new quantum computing

paradigm.

Chapter 6, Qubits and Quantum Logic Gates, introduces the paradigm of gate model quantum

computing. We start with the basic concepts of classical digital computing and expand the

computational logic to accommodate the new principles of superposition and entanglement.

The chapter draws parallels between and contrasts classical and quantum logic gates and

shows how to assemble quantum circuits from individual quantum logic gates.

Chapter 7, Parameterised Quantum Circuits and Data Encoding, proceeds with the con-

struction of quantum algorithms covering both the theoretical and the practical aspects of

building Parameterised Quantum Circuits (PQCs), and demonstrates how classical samples

can be encoded into quantum states processed by the PQCs. The chapter provides a detailed

description of specific data encoding techniques.

Chapter 8, Quantum Neural Network, considers parameterised quantum circuits trained as

classifiers. Throughout this chapter, we show how differentiable and non-differentiable

learning algorithms can be used to efficiently train quantum neural networks. The chapter

also discusses the limitations of existing QPUs and how to design quantum circuits that

extract maximum benefit from the available quantum computing hardware. We investigate

QNN performance on a credit approval use case and benchmark it against several standard

classical classifiers.

Chapter 9, Quantum Circuit Born Machine, introduces a quantum counterpart to classical

generative models such as Boltzmann Machines – the Quantum Circuit Born Machine

(QCBM). The chapter starts with the definition of QCBM and how it can be efficiently con-

figured and run on available QPUs, continues with the differentiable and non-differentiable

learning and training procedures, and concludes with the market generator use case bench-

marked against classical Restricted Boltzmann Machine.

Chapter 10, Variational Quantum Eigensolver, introduces the variational principle and

xl Preface

formulates the Variational Quantum Eigensolver (VQE) approach to optimisation problems.

The chapter discusses a hybrid quantum-classical approach to training the VQE and looks

at the practical aspects of running it on NISQ devices.

Chapter 11, Quantum Approximate Optimisation Algorithm, describes the gate model quan-

tum computing approach (inspired by quantum annealing) to solving QUBO-type problems,

such as NP-hard Max-Cut optimisation problems.

Chapter 12, The Power of Parameterised Quantum Circuits, investigates the main sources of

quantum advantage we expect to demonstrate on practical applications of parameterised

quantum circuits. The chapter focuses on two elements: strong regularisation provided by

quantum neural networks and the expressive power of quantum generative models.

Chapter 13, Looking Ahead, discusses new promising quantum algorithms and techniques

such as the quantum kernel method, quantum GAN, Bayesian quantum circuit, and quantum

semi-definite programming.

To get the most out of this book
This book is intended as an in-depth introduction to the power of quantum computing

techniques for quantitative finance problems. While it is designed as self-contained, this

book assumes that the reader has some familiarity with basic mathematical concepts in

algebra, analysis, and computing. Knowledge of quantum mechanics is not required, and

the main tools thereof shall be explained and made accessible to non-physicists.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText indicates code words in the text, software packages, folder names, path names,

etc.

When we wish to draw your attention to a particular definition or notation, the relevant

lines or items are set in either italic or bold.

Preface xli

Important remarks and conclusions are shown in boxes.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the

subject of your message. If you have questions about any aspect of this book, please email

us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book, we would be grateful if you could

report this to us. Please visit http://www.packtpub.com/submit-errata, select your book,

click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have exper-

tise in, and you are interested in either writing or contributing to a book, please visit

http://authors.packtpub.com.

Share your thoughts
Once you’ve read Quantum Machine Learning and Optimisation in Finance, we’d love to

hear your thoughts! Please click here to go straight to the Amazon review page

for this book and share your feedback.

Your review is important to us and the tech community and helps us deliver excellent

content.

mailto:feedback@packtpub.com
mailto:questions@packtpub.com
http://www.packtpub.com/submit-errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801813574
https://packt.link/r/1801813574

xlii Preface

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781801813570

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801813570

1
The Principles of Quantum
Mechanics

Quantum mechanics is a framework for the development of physical theories; it is not itself

a physical theory [80]. Actual physical theories are built upon a foundation of quantum

mechanics. This is why quantum mechanics plays such an important role in all natural

sciences. Information theory is no exception and also derives inspiration from the ideas

and methods of quantum mechanics.

Understanding quantum computing requires some familiarity with the basic principles

of quantum mechanics. This book does not assume any prior knowledge of quantum

mechanics and provides all the necessary definitions and explanations when needed. At

the same time, the reader is encouraged to learn more about this fascinating subject at the

level of mathematical formalism that she is comfortable with. Out of the extensive universe

of textbooks on quantum mechanics that provide an introduction to this discipline, it is

necessary to mention the classical book by Landau and Lifshitz [182] as well as the equally

classical book on quantum computing by Nielsen and Chuang [223], which covers the most

2 The Principles of Quantum Mechanics

relevant aspects of quantum mechanics from the quantum computing perspective. For

someone taking their first steps in quantum computing who would like to get the overall

picture and some historical perspective, the excellent book by Bernhardt [32] provides

both without the heavy usage of complex mathematical apparatus. Readers looking for a

more formal modern take on the subject of quantum mechanics may find it in the book

by Robinett [249]. The practical aspects of quantum computing are covered in great

detail in the book by Sutor [278], and anyone looking for a python quantum computing

programming textbook will find it in the work by Loredo [195].

1.1 Linear Algebra for QuantumMechanics
Quantum computing and quantum mechanics rely on a specific notational formalism, due

to Dirac, and are supported by classical linear algebra, in particular Hermitian structures of

matrices and tensor products. We provide here a self-contained review of these tools to facil-

itate the understanding of the rest of the book. We start with basic linear algebra principles

before introducing Dirac notations and the quantum counterparts of linear algebra tools.

Sections 1.1.1 to 1.1.4 concentrate on standard definitions of finite-dimensional Hilbert

spaces and matrices, while Sections 1.1.5 to 1.1.7 review the key details and properties

of complex matrices (decompositions, Hermitian property, and rotations). Sections 1.1.9

to 1.1.11 introduce Dirac’s formalism and the essential aspects of quantum operators.

1.1.1 Basic definitions and notations
We let F denote either the real field R or the complex one C. For a complex number

z = x + iy ∈ C, with x, y ∈ R, we write the conjugate z∗ := x − iy. We letMm,n(F)

denote the space of matrices of dimension m× n with entries in F andMn(F) whenever

m = n. For A := (aij)1≤i≤m; 1≤j≤n ∈ Mm,n(F), A∗ := (a∗ij)1≤i≤m; 1≤j≤n is the

complex conjugate. If A ∈ Mn(F), we write A⊤ for its transpose and A† := (A∗)⊤

for its Hermitian conjugate. We finally denote I the identity matrix and write In whenever

we wish to emphasise the dimension, and 0m,n the null matrix inMm,n(F). Recall that

a matrix A ∈Mn(F) is invertible (or non-singular) if there exists B ∈Mn(F) such that

AB = BA = In. Given two matrices A ∈ Mp,m(F) and B ∈ Mq,n(F), we define their

Chapter 1 3

tensor product as

A⊗ B :=

a11B . . . a1mB

...
. . .

...

ap1B . . . apmB

 ∈Mpq,mn(F).

Since a vector is a particular case of a matrix, for u ∈ Fm and v ∈ Fn, we can write

u⊗ v =

u1
...

um

⊗

v1
...

vn

 =

u1v1
...

u1vn

u2v1
...

umvn

∈ Fmn.

1.1.2 Inner products
A vector space V over the field F is a set endowed with

• a commutative, associative addition operation,

• an operation of multiplication by a scalar.

The addition and the multiplication by a scalar have the following properties (for scalars

α, β ∈ F and vectors u, v ∈ V):

• v + 0 = v;

• v + (−v) = 0;

• α(βv) = (αβ)v;

• (α+ β)v = αv + βv;

• α(u + v) = αu + αv;

• 1 · v = v.

Armed with this, we can now define an inner product on V:

4 The Principles of Quantum Mechanics

Definition 1. A map ⟨·, ·⟩ : V ×V→ F is called an inner product if, for u, v,w ∈ V and

α ∈ F,

• (Positive definiteness) ⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 if and only if u = 0;

• (Conjugate symmetry) ⟨u, v⟩ = ⟨v,u⟩∗;

• (Linear in the first argument) ⟨u + v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ and ⟨αu, v⟩ = α⟨u, v⟩;
• (Antilinear in the second argument) ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u,w⟩ and ⟨u, αv⟩ =
α∗⟨u, v⟩.

The inner product is further called non-degenerate if ⟨u, v⟩ = 0 for all v ∈ V \ {0} implies

u = 0.

For example, the following spaces carry a natural inner product:

• The vector space Cn with the inner product ⟨u, v⟩ := u†v =
∑n

i=1 u
∗
i vi;

• The space of complex-valued continuous functions on [0, 1]with ⟨f, g⟩ :=
∫ 1
0 f(t)

∗g(t)dt;

• If X,Y ∈ Mm,n(R), then ⟨X,Y⟩ := Tr(X⊤Y) =
∑m

i=1

∑n
j=1XijYij defines an

inner product on the space of (real) matrices.

Projection matrices are particularly useful for geometric purposes:

Definition 2. A matrix P ∈Mn(F) is called a (orthogonal) projection if P2 = P.

In particular, if W is a vector subspace of Fn with some orthonormal basis (w1, . . . ,wd),

it is then easy to check that the map PW : Fn → Fn onto W satisfying

PW(v) :=
d∑
i=1

⟨v,wi⟩wi, for any v ∈ Fn,

defines an orthogonal projection.

1.1.3 From linear operators to matrices
Let V be a finite-dimensional vector space over F and ⟨·, ·⟩ a non-degenerate inner product

on V. Given a linear operatorA : V→ V, then, by the Riesz representation theorem [309,

Section III-6], there exists a unique linear operatorA† : V→ V, called the adjoint operator,

Chapter 1 5

such that

⟨Au, v⟩ = ⟨u,A†v⟩, for all u, v ∈ V.

Indeed, for any v ∈ V, the map u ∈ V 7→ ⟨Au, v⟩ is a linear functional, hence an element

of the dual space V† (the space of bounded linear functionals on V), therefore for each

v ∈ V, there exists v′ ∈ V such that ⟨Au, v⟩ = ⟨u, v′⟩. It is then easy to show that the

map v 7→ v′ is linear, proving that the adjoint operator is uniquely defined. In the particular

case where A = A†, the operator A is called Hermitian, a key requirement in quantum

mechanics:

Definition 3. The operator A is called Hermitian, or self-adjoint, if A = A†.

For a Hermitian operator A, we then have, for any u ∈ V,

⟨Au, u⟩ = ⟨u,A†u⟩ = ⟨u,Au⟩ = ⟨Au,u⟩∗

by conjugate symmetry (Definition 1), and therefore ⟨Au,u⟩ is real. Conversely, if ⟨Au,u⟩
is real, then

⟨Au,u⟩ = ⟨Au,u⟩∗ = ⟨u,Au⟩ = ⟨A†u,u⟩.

Therefore,
〈(
A−A†) u,u〉 = 0; since this is true for all u ∈ V, then A = A†.

The following property of operators shall be useful to ensure that systems driven by

operators preserve distances, or norms:

Definition 4. The linear operator A : V → V is called unitary if it is surjective and

⟨Au, Av⟩ = ⟨u, v⟩, for all u, v ∈ V.

Recall that a linear operator between two finite-dimensional normed spaces is bounded,

and therefore continuous. For any u ∈ V, this implies that ∥Au∥ = ∥u∥, so that a unitary

operator A preserves the norm. In that case, A is an isometry, therefore injective. Being

also surjective, it is bijective and therefore its inverse exists. For a unitary operator A and

6 The Principles of Quantum Mechanics

any u, v ∈ V, we have

⟨u, v⟩ = ⟨Au,Av⟩ = ⟨u,A†Av⟩

by definition of the adjoint, implying that

A†A = I = AA†,

where I is the identity operator.

Example (Real Matrices): If V = Rn with inner product ⟨u, v⟩ := u⊤v for u, v ∈ Rn,

the linear operator A can now be viewed as a matrix A inMn(R). Its adjoint is nothing

other than the transpose A⊤, and therefore A is self-adjoint if and only if it is symmetric.

In this case, if A is unitary (or orthogonal), then it is invertible with A−1 = A⊤. Rotation

matrices in R2, which will play an important role later when constructing quantum circuits,

are the only unitary maps of R2 onto itself and are of the formcos(θ) δ sin(θ)

sin(θ) −δ cos(θ)

 , (1.1.1)

for θ ∈ [0, 2π) and δ ∈ {−1,+1}.

Example (Complex Matrices): IfV = Cn with inner product ⟨u, v⟩ := v†u for u, v ∈ Cn,

the linear operator A can now be viewed as a matrix inMn(C). The adjoint of such a

matrix is then the Hermitian conjugate A† and A is called Hermitian if A = A† and unitary

if A†A = In. We shall denote by Un(C) the set of unitary matrices inMn(C). We will

discuss Hermitian matrices over C in more detail in Section 1.1.6.

1.1.4 Condition number
In order to manipulate matrices and measure them, we require matrix norms:

Definition 5. A matrix norm ∥ · ∥ :Mm,n(F)→ R is a function satisfying, for any α ∈ F

and A,B ∈Mm,n(F),

• (positively valued) ∥A∥ ≥ 0;

Chapter 1 7

• (definite) ∥A∥ = 0 if and only if A = 0m,n;

• (absolutely homogeneous) ∥αA∥ = |α|∥A∥;
• (triangle inequality) ∥A+ B∥ ≤ ∥A∥+ ∥B∥.

The norm is further called sub-multiplicative if ∥AB∥ ≤ ∥A∥∥B∥.

The condition number of a matrix is an important tool to understand the stability of linear

equations of the form Ax = b, for A ∈Mn(F), b ∈ Fn. Assuming A to be non-singular,

the true solution is clearly x∗ := A−1b. Suppose, however, that the vector b is only known

up to some (not necessarily quantum) measurement error, and one observes instead b+∆b.

The solution is then A−1(b + ∆b) = x∗ +∆x, with ∆x := A−1∆b. In particular, we can

write, for any (sub-multiplicative) matrix norm ∥ · ∥,

∥∆x∥
∥x∥

=
∥A−1∆b∥
∥A−1b∥

≤ ∥A−1∥ ∥b∥
∥A−1b∥

∥∆b∥
∥b∥

≤ ∥A−1∥∥A∥∥∆b∥
∥b∥

.

From this inequality, we see that the quantity ∥A−1∥∥A∥ bounds the relative error in the

solution with respect to the relative error in the measurement of the input vector b. This

leads to the following terminology:

Definition 6. Given a matrix A ∈Mn(F) and a sub-multiplicative norm ∥ · ∥, we call

κ∥·∥(A) := ∥A−1∥∥A∥

the condition number (with respect to the norm ∥ · ∥) of the matrix A (and assign to it

infinite value if A is singular).

Remark: The definition of the condition number above holds for any matrix norm ∥ · ∥,
but admits a more explicit representation in the particular case of the spectral norm ∥ · ∥2,

defined as

∥A∥2 := sup
x ̸=0

∥Ax∥2
∥x∥2

,

where ∥x∥2 :=
(∑n

i=1 |xi|2
) 1

2 is the L2 norm for vectors. If the matrix A is not singular,

8 The Principles of Quantum Mechanics

then

κ(A) :=
|λmax(A)|
|λmin(A)|

,

where λmax(A) and λmin(A) denote the largest and smallest eigenvalues of A.

1.1.5 Matrix decompositions and spectral theorem
Having defined essential properties of (complex) matrices, we now introduce several

essential tools that allow us to gain a better understanding of their properties.

The Singular Value Decomposition is a key tool to analyse the properties and behaviours

of matrices. It is ubiquitous in applied statistics and machine learning and allows us to

reduce the explanatory dimension of a large matrix into a small number of meaningful

components.

Theorem 1 (Singular Value Decomposition). Let A ∈ Mm,n(F) and p := min(m,n).

There exist U ∈ Um(F), V ∈ Un(F) and σ1 ≥ · · · ≥ σp ≥ 0 such that A = UΣV†,

where Σ ∈Mm,n(F) is diagonal with Σii = σi for i = 1, . . . , p and Σii = 0 for i > p.

The numbers {σ1, . . . , σp} are called the singular values of A and are uniquely defined.

The columns of U and V are the left-singular and right-singular vectors of A, in the sense

that, if σ ∈ {σ1, . . . , σp}, then there exist a column u of U and a column v of V such that

Av = σu and A†u = σv. Recall that the rank of a matrix is defined as the dimension of the

span of its columns. As a corollary of the Singular Value Decomposition theorem, the rank

of a matrix is therefore equal to the number of non-zero singular values. The Singular Value

Decomposition is general in the sense that it holds for any matrix. In the particular case of

square matrices, the Schur decomposition and the Spectral Theorem provide refinements.

The Spectral Theorem is a cornerstone result in the theory of linear operators, and in

particular for (finite-dimensional) matrices. Recall that an operator A : V→ V is called

normal if it commutes with its adjoint, namely if AA† = A†A. Self-adjoint (or Hermitian)

operators are clearly normal, yet the converse is not true in general. Recall further that an

eigenvector of A is a non-zero vector u ∈ V such that Au = λu for some λ ∈ C, and we

denote by σ(A) the set of eigenvalues of A.

Chapter 1 9

The following result, which is more general than the subsequent spectral theorem, allows

us to decompose any arbitrary complex square matrix.

Theorem 2 (Schur Decomposition). For any A ∈Mn(C) there exits a unitary matrix U ∈
Un(C) and an upper triangular matrix T such that A = UTU−1.

Note that since U is unitary, then U−1 = U†. We call the matrix T the Schur transform of A

and the identity in the theorem means that A and T are similar, so in particular, possess

the same eigenvalues, all located on the diagonal of T. If A is a normal matrix, then so is T,

and therefore T must be diagonal and we write T = D for clarity. In this case, we say that

the matrix A is diagonalisable with A = UDU†, where the diagonal entries of D are the

eigenvalues of A and the column vectors of U are the orthonormal eigenvectors of A.

Theorem 3 (Spectral Theorem). The linear operator A : V→ V is normal if and only if

there exists an orthonormal basis of V consisting of eigenvectors of A.

For each eigenvalue λ ∈ σ(A), denote the corresponding eigenspace

Vλ := {u ∈ V : Au = λu} .

Since the vector space V is the orthogonal direct sum of the eigenspaces (indexed by the

eigenvalues of A), we can then write the spectral decomposition

A =
∑

λ∈σ(A)

λPλ,

where Pλ is the orthogonal projection operator onto Vλ. Note that such an operator is

naturally self-adjoint [309, Theorem 2, Section III-1].

1.1.6 Hermitian matrices
We introduced above Hermitian matrices as the set of matrices A over the complex field C

such that A = A†. As fundamental building blocks of quantum computing, we investigate

their properties further. Clearly, a real matrix is Hermitian if and only if it is symmetric, in

which case A⊤ = A.

10 The Principles of Quantum Mechanics

Proposition 1. The eigenvalues of a Hermitian matrix are real.

Proof. If Ax = λx for λ ∈ C and x ∈ Cn, then

⟨Ax, x⟩ = x†Ax = λx†x = λ∥x∥2,

⟨x,Ax⟩ = (Ax)†x = (λx)†x = λ∗x†x = λ∗∥x∥2.

Since both are equal by the Hermitian property, then λ = λ∗, proving the proposition.

The Singular Value Decomposition (Theorem 1) takes a particular flavour in the case of

Hermitian matrices:

Theorem 4. With the notations of Theorem 1, if A ∈ Mn(C) is Hermitian, then the

matrices U and V are equal and the matrix Σ is diagonal with real entries.

Theorem 5. For a Hermitian matrix A ∈Mn(C), the following are equivalent:

(i) The eigenvalues are non-negative.

(ii) There exists a Hermitian matrix B ∈Mn(C) such that A = B2.

(iii) There exists a matrix B ∈Mn(C) such that A = B†B.

(iv) For every x ∈ Cn, ⟨Ax, x⟩ ≥ 0.

Such a matrix is called positive semi-definite.

Proof. The Spectral Theorem shows that there exist a unitary matrix U ∈ Un(C) and a

diagonal matrix Σ ∈Mn(C) such that A = UΣU†, where the diagonal elements of Σ are

the eigenvalues of A. Assuming (i), we can define B = U
√
ΣU† ∈Mn(C). Then clearly

B† = B and B2 =
(
U
√
ΣU†

)(
U
√
ΣU†

)
= A,

since U is unitary. The equality A = B†B is also obvious. The latter implies that

⟨Ax, x⟩ = ⟨B†Bx, x⟩ = ⟨Bx,Bx⟩ = ∥Bx∥2 ≥ 0, for any x ∈ Cn.

Chapter 1 11

Finally, assume (iv) and let λ be an eigenvalue of A with eigenvector u. Then

⟨Au, u⟩ = ⟨λu, u⟩ = λ⟨u, u⟩ = λ∥u∥2.

Since the latter is strictly positive, then clearly λ ≥ 0.

The following property lies at the core of Hamiltonian simulation of quantum systems:

Theorem 6. If A ∈ Mn(C) is Hermitian, then, for any t ∈ R, eitA is unitary; conversely,

every unitary matrix has the form eitA for some Hermitian matrix A.

Recall that for a matrix A ∈ Mn(C), its exponential is given by

eA =
∑
k≥0

Ak

k!
.

In practice, though, given a Hermitian matrixA, finding the corresponding unitary matrixU

is not easy. The Hamiltonian simulation problem is defined as follows.

Hamiltonian Problem: Given a Hermitian matrix A ∈Mn(C), a time t > 0, a tolerance

level ε > 0, and some matrix norm ∥ · ∥, find a unitary matrix U such that
∥∥U− eitA

∥∥ ≤ ε.
1.1.7 Rotation matrices
Rotation matrices, and later their quantum gate equivalents will play a key role in building

quantum circuits. Let us start with the following lemma:

Lemma 1. If a matrix A ∈Mn(C) is such that A2 = I, then for any θ ∈ R,

eiθA = cos(θ)I+ i sin(θ)A.

Proof. This follows directly from the series expansion

ex =
∑
k≥0

xk

k!
,

12 The Principles of Quantum Mechanics

which has an infinite radius of convergence.

Lemma 1 will prove essential for computational purposes. As simple examples, consider

the following:

Exercise: Compute eiθA for A ∈ {X,Y,Z} and θ ∈ R, where

X =

0 1

1 0

 , Y =

0 −i
i 0

 , Z =

1 0

0 −1

 .
For any α ∈ [0, 2π), consider now the mapRα : R2 → R2 such that

Rα
(
r cos(θ), r sin(θ)

)
:=
(
r cos(θ + α), r sin(θ + α)

)
,

for any r ∈ R and θ ∈ [0, 2π),

which is basically a rotation of angle α and does not affect the norm of the input vector. To

the map Rα, we can associate the (rotation) matrix Rα such that Rα(u) = Rαu for any

u ∈ R2. It is easy (exercise) to show the following:

Lemma 2. The matrix Rα has the form

Rα =

cos(α) − sin(α)

sin(α) cos(α)

 .
This representation is the general form of a rotation matrix in R2 (introduced in (1.1.1)).

Exercise: Write the matrices eiθA for A ∈ {X,Y,Z} from the previous exercise as rotation

matrices.

1.1.8 Polar coordinates
Recall that a point z = x + iy, with x, y ∈ R, lying on the unit circle can be written

as z = eiθ with θ ∈ [0, 2π). Indeed, simply let x = r cos(θ), y = r sin(θ) and add the

Chapter 1 13

constraint r = 1. Consider now a general vector u ∈ C2 of the form

u = αe1 + βe2,

with α, β ∈ C such that |α|2 + |β|2 = 1. Here, (e1, e2) forms a basis of R2:

e1 :=

1
0

 , e2 :=

0
1

 .
In polar coordinates, we can then write

u = rαe
iθαe1 + rβe

iθβe2.

Note that arbitrary multiplication phases have no influence – a fact of key importance in

quantum mechanics – because, for any γ ∈ R,

|eiγα|2 = (eiγα)∗eiγα = α∗e−iγeiγα = α∗α = |α|2,

so that in fact, multiplying u by the global phase e−iθα and letting θ := θβ−θα, we consider

u = rαe1 + rβe
iθe2.

Write temporarily rβeiθ = x+ iy. Insisting on u being on the unit sphere further imposes

∥u∥2 = 1, namely

1 = ∥u∥2 =
(
rαe1 + (x+ iy)e2

)†(
rαe1 + (x+ iy)e2

)
=
(
rαe

⊤
1 + (x− iy)e⊤2

)(
rαe1 + (x+ iy)e2

)
= r2α + x2 + y2,

14 The Principles of Quantum Mechanics

since (e1, e2) is orthonormal. This is nothing more than the equation of the unit sphere. In

polar coordinates, we can write

x = r sin(θ) cos(ϕ), y = r sin(θ) sin(ϕ), rα = r cos(θ),

and clearly r = 1 since we are on the unit sphere. Therefore

u = cos(θ)e1 +
(
sin(θ) cos(ϕ) + i sin(θ) sin(ϕ)

)
e2

= cos(θ)e1 + sin(θ)eiϕe2.

1.1.9 Dirac notations
Given a vector v ∈ Cn, Dirac’s ket and bra notations read

|v⟩ :=

v1

v2
...

vn

 and ⟨v| := [v∗1, v
∗
2, . . . , v

∗
n].

With these notations, the operation ⟨u, v⟩ := ⟨u|v⟩ defines an inner product on Cn. The

notation for the standard orthonormal basis in Cn is (|i⟩)i=0,...,n−1, i.e.,

|0⟩ :=

1

0
...

0

 , |1⟩ :=

0

1
...

0

 , . . . |n− 1⟩ :=

0

0
...

1

 . (1.1.2)

In coordinates, we can write, for any u, v ∈ Cn,

|u⟩ =
∑
i

ui |i⟩ and |v⟩ =
∑
i

vi |i⟩ ,

Chapter 1 15

and therefore,

⟨u, v⟩ =
∑
i

u∗i vi.

1.1.10 Quantum operators
In the language of Dirac’s notations, we can define the outer product |u⟩ ⟨v| (for u ∈ U and

v ∈ V) as a linear operator from V to U, two vector spaces, as

(
|u⟩ ⟨v|

)
|w⟩ := ⟨v|w⟩ |u⟩ , for any w ∈ V.

In particular, |v⟩ ⟨v| is the projection on the one-dimensional space generated by |v⟩. Any

linear operator can be expressed as a linear combination of outer products as

A =
∑
ij

Aij |i⟩ ⟨j| ,

where |i⟩ and |j⟩ are the standard basis vectors (1.1.2).

Similarly to the linear algebra setting above, we can define an eigenvector of a linear

operator A : V→ V as a non-zero vector |v⟩ such that

A |v⟩ = λ |v⟩

for some complex eigenvalue λ. Associated with any linear operator A, the adjoint opera-

tor A† satisfies

⟨u|Av⟩ = ⟨A†u|v⟩ .

Indeed, in the language of linear operators above, we have

⟨u,Av⟩ = ⟨Av, u⟩∗ = ⟨v,A†u⟩∗ = ⟨A†u, v⟩,

by definition of the inner product (Definition 1).

16 The Principles of Quantum Mechanics

1.1.11 Tensor product
Given two vector spaces U and V of dimensions m and n, the tensor product U ⊗ V

is a vector space of dimension mn. For u ∈ U and v ∈ V, we can form the vector

|uv⟩ := |u⟩ ⊗ |v⟩ ∈ U⊗V with the following properties:

• |(u + u′)v⟩ = |uv⟩+ |u′v⟩, for any u′ ∈ U;

• |u(v + v′)⟩ = |uv⟩+ |uv′⟩, for any v′ ∈ V;

• α |uv⟩ = |(αu)v⟩ = |u(αv)⟩, for any α ∈ C.

Given the linear operators A : U→ U and B : V→ V, we can then define their tensor

product as an operator A⊗ B on U⊗V:

(
A⊗ B

)
|uv⟩ := |(Au), (Bv)⟩ ,

which can be represented in matrix form as A⊗ B ∈Mmn,mn(C).

This Dirac formalism, fully anchored in (classical) linear algebra, now opens the gates to a

proper dive into the foundations of quantum mechanics.

1.2 Postulates of QuantumMechanics
Quantum mechanics states several mathematical postulates that a physical theory must

satisfy. It turns out that the mathematics of quantum mechanics allows for more general

computation: more general definition of the memory state in comparison with classical

digital computing and a wider range of possible transformations of such memory states.

A natural question arises: what is the reason for this superior mode of computation not

being used until very recently? The answer is that although quantum mechanics was

formulated almost a century ago (Paul Dirac’s seminal work “The Principles of Quantum

Mechanics” [86] was published in 1930), the realisation of the rules of quantum mechanics in

the computational protocol performed on classical digital computers requires an enormous

amount of memory. Exponential gains in computing power are offset by exponential

memory requirements.

Chapter 1 17

In order to perform quantum computations efficiently, we need to use actual quantum

mechanical systems, with their ability to encode information in their states. To illustrate

this point, the state of a quantum system consisting of n quantum bits (qubits) can be

described by specifying 2n probability amplitudes – this is a huge amount of information

even for very small systems (n ∼ 100) and it would be impossible to store this information

in classical memory. It took decades of technological progress before quantum processing

units (QPUs) – devices that control quantum mechanical systems performing computations –

became feasible.

Let us now proceed with the formulation of the mathematical postulates that lie at the

foundation of quantum mechanics. These postulates specify a general framework for

describing the behaviour of a physical system [80, 182, 249]:

1. How to describe the state of a closed system.

2. How to describe the evolution of a closed system.

3. How to describe the interactions of a system with external systems.

4. How to describe observables of a system.

5. How to describe the state of a composite system in terms of its component parts.

1.2.1 First postulate – Statics
Postulate 1. Associated to any physical system is a complex inner product space known as

the state space of the system. The system is completely described at any given point in time by

its state vector, which is a unit vector in its state space.

What is the importance of the first postulate from the quantum computing point of view?

The answer is that quantum mechanics offers us a straightforward generalisation of the

classical binary digit (bit). The classical bit is a two-state system with controlled transitions

between them. As an example, we can use an electrical switch that can exist in one of

the two discrete, stable states (“on” and “off”). Although electrical switches may seem an

odd physical realisation of bits in the age of transistors, they illustrate an important point

about computation in general: it is substrate independent. Exactly the same computational

results can be obtained using electrical relays and CMOS transistors.

18 The Principles of Quantum Mechanics

The quantum mechanical version of a bit, called a quantum binary digit (qubit), is a quantum

mechanical two-state system. The first postulate of quantum mechanics tells us that the

state of such a system can be represented mathematically by a unit vector in the two-

dimensional complex vector space. This also means that such a system can exist in a

superposition of basis states. Indeed, any vector |v⟩ in the two-dimensional complex vector

space,

|v⟩ =

α
β

 ,
can be represented as a linear combination of the standard basis vectors:α

β

 = α

1
0

+ β

0
1

 , |v⟩ = α |0⟩+ β |1⟩ .

Since the state vector is a unit vector, the coefficients α and β must satisfy

|α|2 + |β|2 = 1.

The coefficients α and β are probability amplitudes. Even though a qubit can exist in a

superposition of basis states, once measured (see Postulate 3), its state collapses to one of

the basis states: |α|2 and |β|2 give us the probability of finding the qubit, respectively, in

states |0⟩ and |1⟩ after measurement.

One can draw an analogy with how the space of natural numbers, N, can be extended to the

space of real numbers, R, and then to the space of complex numbers, C. We have a much

wider range of functions that can operate on and take values in R and C than in N. Similarly,

allowing the two-state system to exist in a superposition of states significantly extends the

range of possible operators that can transform such states (i.e., perform computation).

For example, there is no Boolean function f that, when applied twice to a classical bit,

would result in a NOT gate: f(f(0)) = 1 and f(f(1)) = 0. But there is such an operator in

Chapter 1 19

quantum computing. We can easily verify by direct calculations that the matrix

M :=
1

2

1 + i 1− i

1− i 1 + i

 ,
applied twice to the basis vector |0⟩ would transform it to the basis vector |1⟩, and applied

twice to the basis vector |1⟩ would transform it to the basis vector |0⟩. M is an example of

a quantum logic gate – an operator that transforms the state of a qubit, thus implementing

the computation.

Remark: The state space of a physical system can be infinite-dimensional. The quantum

computing paradigm based on infinite-dimensional Hilbert spaces is called continuous-

variable quantum computing, which is realised in, e.g., some photonic quantum computing

systems. However, in the context of digital quantum computing, we will restrict our

analysis to finite-dimensional state spaces.

The state of a qubit (the fundamental memory unit of quantum computing

that generalises the concept of a classical bit) can be described mathemati-

cally as a unit vector in the two-dimensional complex vector space. Any

physical system whose state space can be described by C2 can serve as an

implementation of a qubit.

1.2.2 Second postulate – Dynamics
Postulate 2. The time evolution of a closed quantum system is described by the Schrödinger

equation

iℏ
d |ψ(t)⟩

dt
= H |ψ(t)⟩ , (1.2.1)

where ℏ is Planck’s constant andH is a time-independent Hermitian operator known as the

Hamiltonian of the system.

The Hamiltonian of a quantum system is an operator corresponding to the total energy of

20 The Principles of Quantum Mechanics

that system, and its eigenvalues are the possible energy levels of the system. The knowledge

of the Hamiltonian provides all the necessary information about system dynamics.

In the Schrödinger equation (1.2.1), the state |ψ(t1)⟩ of a closed quantum system at time t1

is related to the state |ψ(t2)⟩ at time t2 by a unitary operator U(t1, t2) that depends only

on t1 and t2 via

|ψ(t2)⟩ = U(t1, t2) |ψ(t1)⟩ , (1.2.2)

where U(t1, t2) is obtained from the HamiltonianH as

U(t1, t2) = exp

(
− iH(t2 − t1)

ℏ

)
. (1.2.3)

Unitary operators preserve the inner product (and therefore norms, lengths, and distances),

which means that for two vectors |u⟩ and |v⟩, if U is a unitary operator, then the inner

product between U |u⟩ and U |v⟩ is the same as the inner product between |u⟩ and |v⟩:

⟨u| U†U |v⟩ = ⟨u|v⟩ .

A unitary operator is a complex generalisation of a rotation: unitary operators take an

orthonormal basis to another orthonormal basis, and any operator with this property is

unitary. In quantum mechanics, physical transformations such as rotations, translations

and time evolution correspond to maps that take quantum states to other quantum states.

These maps should be linear and preserve the inner product. This allows us to look at the

unitary operators as the quantum logic gates implementing quantum computation protocols.

Furthermore, unitary operators are invertible, a key property that ensures that quantum

computing is reversible.

Quantum logic gates (quantum counterparts of the Boolean logic gates in

classical computing) are unitary operators that transform quantum states,

thus implementing the computation.

Chapter 1 21

1.2.3 Third postulate – Measurement
Given a Hermitian operator A, the spectral theorem implies that the state |ψ⟩ of a system

can be written as a superposition

|ψ⟩ =
N∑
i=1

αi |ψi⟩ , (1.2.4)

where the coefficients (αi)i=1,...,N are complex probability amplitudes, assumed to be

normalised with
∑N

i=1 |αi|2 = 1, and where (|ψi⟩)i=1,...,N are eigenfunctions of A. The

measurement postulate then reads as follows:

Postulate 3. If we measure the Hermitian operator A in the state |ψ⟩ given in (1.2.4),

the possible outcomes for the measurement are the eigenvalues (λi)i=1,...,N of A, and the

probability pi to measure λi is given by pi = |αi|2. After the outcome λi, the state of the

system becomes

|ψ⟩ = |ψi⟩ .

An immediate measurement in the same computational basis will deliver the same result

without any uncertainty.

The quantum measurements are described by measurement operators (Pi)i=1,...,N , acting

on the state space of the system with N possible outcomes. If the state of the system is |ψ⟩
before the measurement, then the probability of outcome i is

P(i) = ⟨ψ| P†
iPi |ψ⟩ .

The measurement operators should also satisfy the completeness condition

N∑
i=1

P†
iPi = I, (1.2.5)

where I is the identity operator. This ensures that the sum of the probabilities of all

outcomes adds up to 1.

22 The Principles of Quantum Mechanics

These measurement operators are linear but not unitary. From the quantum computing

perspective, we are interested in measurement operators that are projections (Definition 2)

onto the computational basis, such as the standard orthonormal basis given by (1.1.2).

For example, the measurement operators for a single qubit can be defined as

P0 := |0⟩ ⟨0| =

1 0

0 0

 and P1 := |1⟩ ⟨1| =

0 0

0 1

 .
We can easily verify that P2

0 = P0 and P2
1 = P1, as should be the case for projection

operators, and that the completeness condition (1.2.5) is satisfied. If the qubit is in state

|ψ⟩ = α |0⟩+β |1⟩, then the measurement operatorP0 will give us |0⟩with probability |α|2,

and the measurement operator P1 will give us |1⟩ with probability |β|2. Indeed,

P0 |ψ⟩ = |0⟩ ⟨0|
(
α |0⟩+ β |1⟩

)
= α |0⟩ ⟨0| |0⟩+ β |0⟩ ⟨0| |1⟩ = α |0⟩ ,

P1 |ψ⟩ = |1⟩ ⟨1|
(
α |0⟩+ β |1⟩

)
= α |1⟩ ⟨1| |0⟩+ β |1⟩ ⟨1| |1⟩ = β |1⟩ .

The measurement postulate of quantum mechanics states that an immediate measurement

in the same computational basis will deliver the same result without any uncertainty. The

key words here are “the same computational basis”. What would happen if the subsequent

measurement is performed in another basis (the basis specified by another set of linearly

independent unit vectors from the state space)? For example, assume that the qubit is in

state

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ .

Measuring |ψ⟩ in {|0⟩ , |1⟩} computational basis will result in observing states |0⟩ and |1⟩
with equal probability 1/2. Let us assume that we measured |0⟩. The qubit state is now

|ψ′⟩ = 1 · |0⟩+ 0 · |1⟩ .

If we repeat the measurement in the same {|0⟩ , |1⟩} computational basis, we obtain state |0⟩

Chapter 1 23

with probability 1 in accordance with the measurement postulate. However, had we

measured state |ψ′⟩ in the Hadamard basis {|+⟩ , |−⟩}, given by

|+⟩ := 1√
2
(|0⟩+ |1⟩) and |−⟩ := 1√

2
(|0⟩ − |1⟩), (1.2.6)

we would have equal probabilities of |+⟩ and |−⟩ outcomes. Let us assume that we measured

|−⟩ and the state of the qubit is now

|ψ′′⟩ = 0 · |+⟩+ 1 · |−⟩ .

If we repeat the measurement of state |ψ′′⟩ in the Hadamard basis {|+⟩ , |−⟩}, we obtain

state |−⟩ with probability 1. But the state of the qubit is an equal superposition of states |0⟩
and |1⟩ from the {|0⟩ , |1⟩} computational basis perspective and we have an equal chance

of measuring either |0⟩ or |1⟩ in this basis.

Remark: The basis vectors |0⟩ and |1⟩ that form the standard computational basis can be

transformed into the basis vectors |+⟩ and |−⟩ that form the Hadamard basis by applying

the following unitary operator (rotation), called the Hadamard gate:

H =
1√
2

1 1

1 −1

 .
Chapters 6, 10 and 11 provide examples of applications of the Hadamard gate.

The measurement plays a crucial role in quantum computing. This is the process of

collapsing a quantum state and reading out the classical information: measuring qubits

encoding a quantum state will produce a classical bit string. The measurement process

generates probabilistic outcomes. Therefore, we need to perform measurements on the

same quantum state multiple times to generate a sufficiently large number of classical bit

strings to produce reliable statistics.

24 The Principles of Quantum Mechanics

The process of measurement describes the collapse of the quantum state

due to contact with the environment. After measurement, the states of the

qubits are known without any uncertainty. It is possible to extract at most 1

bit of information from a qubit. In order to extract more information about

the probability distribution encoded in a given quantum state, it is necessary

to perform measurement of the same state multiple times.

1.2.4 Fourth postulate – Observable
Postulate 4. For every measurable property of a physical system, there exists a corresponding

Hermitian operator. The values of the physical observables correspond to the expectation

values of Hermitian operators. The expectation value ⟨A⟩ of the Hermitian operator A in the

normalised state |ψ⟩ is given by

⟨A⟩ := ⟨ψ| A |ψ⟩ . (1.2.7)

Let us consider the general case where the expectation value of a Hermitian operator A is

calculated in state |ψ⟩, which is not an eigenfunction of A. By the Spectral Theorem 3 (see

also (1.2.4)), the state |ψ⟩ of a system can be represented as the superposition

|ψ⟩ =
N∑
i=1

αi |ψi⟩ ,

where (|ψi⟩)i=1,...,N are the eigenfunctions of A and (αi)i=1,...,N the corresponding prob-

ability amplitudes.

Therefore, the expectation value of A in state |ψ⟩, given in (1.2.7), is calculated as

⟨A⟩ =
N∑
i=1

N∑
j=1

α∗
iαj ⟨ψi| A |ψj⟩ =

N∑
i=1

N∑
j=1

α∗
iαjλj ⟨ψi|ψj⟩ ,

where (λi)i=1,...,N are the eigenvalues of A. The only terms that survive in the expression

Chapter 1 25

for ⟨A⟩ are those with i = j due to the orthogonality of the eigenfunctions, so that

⟨A⟩ =
N∑
i=1

α∗
iαiλi =

N∑
i=1

|αi|2λi.

Therefore, the value of the observable is a weighted average of the eigenvalues of the

corresponding Hermitian operator. The weights are the coefficients (|αi|2)i=1,...,N , which

are the probabilities of measuring the corresponding eigenstate of A.

Hermitian operators play an exceptionally important role in quantum me-

chanics since their expectation values correspond to physical observables.

1.2.5 Fifth postulate – Composite System
Postulate 5. The state space of a composite physical system is the tensor product of the state

spaces of the individual component physical systems.

If the first component physical system is in state |ψA⟩ and the second component physical

system is in state |ψB⟩, then the state of the combined system, |ψ⟩, is given by the tensor

product

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ . (1.2.8)

Not all states of a combined system can be separated into the tensor product of states of

individual components. If the state of a system cannot be separated into component parts,

we say that the component parts are entangled.

The entanglement of quantum systems is one of the major sources of computational

power of quantum computing. It allows us to store exponentially more information in the

correlations between the states of individual subsystems (in the limit – individual qubits)

than directly in the states of individual subsystems.

To illustrate this point, we can look at the number of probability amplitudes needed to

describe the state of an n-qubit system. An individual qubit can be found in one of the

26 The Principles of Quantum Mechanics

two possible states after measurement – one of the two basis states, |0⟩ or |1⟩. This means

that we need to specify two probability amplitudes to fully describe the state of the qubit

before measurement. If all our qubits are independent and the state of the system can be

represented as a tensor product of individual qubit states,

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψn⟩ ,

then we need to specify 2n probability amplitudes (two for each individual quantum states)

to describe the state |ψ⟩ of the system. If, however, all individual qubits are entangled and

the tensor product representation of the system state |ψ⟩ does not exist, we need to specify

2n probability amplitudes – this is an effective measure of useful information that can be

stored in the system.

The power of quantum computing is derived from the principles of super-

position and entanglement. Entanglement allows us to store most of the

information in correlations between the qubit states.

1.3 Pure and Mixed States
There are situations where the state of a quantum mechanical system cannot be described

with the help of a state vector. Here, we look at such situations and provide a mathematical

tool for describing them.

1.3.1 Density matrix
Let us start with the state of a combined two-component physical system given by (1.2.8).

Let (|i⟩)i=1,...,N and (|j⟩)j=1,...,M denote, respectively, the standard orthonormal bases of

the Hilbert spaces of systems A and B:

|ψA⟩ =
N∑
i=1

αi |i⟩ , |ψB⟩ =
M∑
j=1

βj |j⟩ , (1.3.1)

Chapter 1 27

where (αi)i=1,...,N and (βj)j=1,...,M are some probability amplitudes. The states that allow

the state vector representation (1.3.1) are called pure states. In this case, the state of the

combined system is

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ =
N∑
i=1

M∑
j=1

αiβj |i⟩ ⊗ |j⟩ .

However, in general, the state of the combined system would look like

|ψ⟩ =
N∑
i=1

M∑
j=1

γij |i⟩ ⊗ |j⟩ , (1.3.2)

where γij are probability amplitudes that may not necessarily be factorised as the product

of probability amplitudes (αi)i=1,...,N and (βj)j=1,...,M . If γij cannot be factorised as αiβj ,

then the component systems A and B are entangled and their states cannot be represented

by the state vectors (1.3.1). Such states of systems A and B are called mixed states.

The more general setup is that of an ensemble of states of the form {pk, |ψk⟩}k=1,...,N ,

where each |ψi⟩ is a quantum state whose wavefunction is known with certainty (although

this does not necessarily provide full knowledge of the measurement statistics), and each pk

is the associated probability (not amplitude) in [0, 1]. In order to define properly pure and

mixed states, introduce the density operator as follows:

Definition 7. A density operator ρ is a positive semidefinite Hermitian operator with unit

trace and takes the form

ρ :=
N∑
k=1

pk |ψk⟩ ⟨ψk| ,

where
∑N

k=1 pk = 1 and ⟨ψk|ψl⟩ equals 1 if k = l and zero otherwise.

Mathematically, such a density operator ρ corresponds to a density matrix (ρkl)k,l=1,...,N

such that

ρ = ρ†, Tr(ρ) ≡
N∑
k=1

ρkk = 1, ρkk ≥ 0, for all k = 1, . . . , N.

28 The Principles of Quantum Mechanics

1.3.2 Pure state
A pure state is one that can be represented by a state vector

|ψ⟩ =
N∑
i=1

αi |i⟩ , (1.3.3)

where (αi)i=1,...,N are probability amplitudes in C such that
∑N

i=1 |αi|2 = 1. In the

ensemble setup above, this means that there exists k∗ ∈ {1, . . . , N} such that pk∗ = 1

and hence |ψ⟩ = |ψk∗⟩ and therefore ρ = |ψ⟩ ⟨ψ|. The density matrix also allows us to

compute expectations of the form (1.2.7):

Lemma 3. Let ρ be the density matrix associated to the pure state (1.3.3) and let A be an

observable (Hermitian operator), then

⟨A⟩ := ⟨ψ| A |ψ⟩ = Tr(ρA).

Proof. The lemma follows from the immediate computation

⟨ψ| A |ψ⟩ = ⟨ψ| A
N∑
i=1

αi |i⟩

=
N∑
i=1

αi ⟨ψ| A |i⟩

=

N∑
i=1

⟨i|ψ⟩ ⟨ψ| A |i⟩

=
N∑
i=1

⟨i| ρA |i⟩ = Tr(ρA).

Chapter 1 29

With the state |ψ⟩ given by (1.3.3), we obtain

⟨A⟩ =
N∑
i=1

N∑
j=1

αiα
∗
j ⟨j| A |i⟩ . (1.3.4)

At the same time we have

⟨A⟩ = Tr(ρA) =
N∑
i=1

N∑
j=1

ρij ⟨j| A |i⟩ . (1.3.5)

Comparison of (1.3.4) and (1.3.5) yields the following expression for the density matrix of a

pure state:

ρij = αiα
∗
j , ρ =

N∑
i=1

N∑
j=1

αiα
∗
j |i⟩ ⟨j| = |ψ⟩ ⟨ψ| .

Example: An example of a pure state is the Hadamard state

|+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

1
1

 ,
with corresponding density matrix

ρ = |+⟩ ⟨+| = 1

2

1 1

1 1

 .

1.3.3 Mixed state
A mixed state is one that cannot be represented by a single pure state vector, and is therefore

represented as a statistical distribution of pure states in the form of an ensemble of quantum

states {pk, |ψk⟩}k=1,...,N , where
∑N

k=1 pk = 1 and pk ∈ [0, 1] for each k. The density of a

mixed state therefore reads

ρ =
N∑
k=1

pk |ψk⟩ ⟨ψk| . (1.3.6)

30 The Principles of Quantum Mechanics

Similarly to Lemma 3, we can write expectations of observables with respect to mixed

states using the density matrix:

Lemma 4. Let ρ be the density matrix associated to the mixed state (1.3.6) and let A be an

observable (Hermitian operator), then

Tr(ρA) =
N∑
k=1

pk ⟨ψk| A |ψk⟩ .

Proof. The lemma follows from the immediate computation

Tr(ρA) =
N∑
i=1

⟨i| ρA |i⟩

=
N∑
i=1

⟨i|

(
N∑
k=1

pk |ψk⟩ ⟨ψk|

)
A |i⟩

=
N∑
k=1

pk

(
N∑
i=1

⟨i|ψk⟩ ⟨ψk| A |i⟩

)

=
N∑
k=1

pk ⟨ψk| A |ψk⟩ .

Let us see now how the density matrix formalism can help us describe the state of a

combined system. Consider an entangled state of two systems, A and B, given by (1.3.2),

and a Hermitian operator A that only acts within the Hilbert space of system A. What

would be the expectation value of A in this state? Starting with (1.2.7), we obtain

⟨A⟩ =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

γijγ
∗
kl ⟨k| A |i⟩ ⟨l|j⟩ . (1.3.7)

Since only terms with l = j survive in (1.3.7) due to the orthogonality of the basis states,

Chapter 1 31

we have

⟨A⟩ =
N∑
i=1

N∑
k=1

 M∑
j=1

γijγ
∗
kj

 ⟨k| A |i⟩ .
Thus, the density matrix that describes the mixed state of system A is

ρik =

M∑
j=1

γijγ
∗
kj .

Note that in the case where the probability amplitudes γij can be factorised as the product

of probability amplitudes (αi)i=1,...,N and (βj)j=1,...,M , we obtain

ρik =

M∑
j=1

αiβjα
∗
kβ

∗
j = αiα

∗
k

M∑
j=1

|βj |2 = αiα
∗
k,

which describes a pure state.

A simple criterion to distinguish a pure state from a mixed state is the following:

Lemma 5. Let ρ be a density matrix. The inequalityTr(ρ2) ≤ 1 always holds andTr(ρ2) = 1

if and only if ρ corresponds to a pure state.

Proof. Consider an ensemble of pure states {pi, |ψi⟩}i=1,...,N , with density matrix given

by (1.3.6). Therefore

Tr(ρ2) = Tr

(N∑
i=1

pi |ψi⟩ ⟨ψi|

) N∑
j=1

pj |ψj⟩ ⟨ψj |

= Tr

 N∑
i=1

N∑
j=1

pipj |ψi⟩ ⟨ψi| |ψj⟩ ⟨ψj |

= Tr

(
N∑
i=1

p2i |ψi⟩ ⟨ψi|

)
=

N∑
i=1

p2iTr
(
|ψi⟩ ⟨ψi|

)
=

N∑
i=1

p2i ⟨ψi|ψi⟩ =
N∑
i=1

p2i ,

which is smaller than 1 since the pi are probabilities in [0, 1] summing up to 1. Assume

32 The Principles of Quantum Mechanics

now that Tr(ρ2) equals one, then so does
∑N

i=1 p
2
i . If pi ∈ (0, 1) for all i = 1, . . . , N , then

1 =

N∑
i=1

p2i <

N∑
i=1

pi = 1,

which is a contradiction, and therefore there exists i∗ ∈ {1, . . . , N} such that pi∗ = 1, so

that ρ = |ψi∗⟩ ⟨ψi∗ | is a pure state. Conversely, if ρ = |ψi⟩ ⟨ψi| for some i ∈ {1, . . . , N}
represents a pure state, then

Tr(ρ2) = Tr(|ψi⟩ ⟨ψi| |ψi⟩ ⟨ψi|) = Tr(|ψi⟩ ⟨ψi|) = ⟨ψi|ψi⟩ = 1.

Example: An example of a mixed state is a statistical ensemble of states |0⟩ and |1⟩. If a

physical system is prepared to be either in state |0⟩ or state |1⟩ with equal probability, it

can be described by the mixed state

ρ =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| = 1

2

1 0

0 1

 . (1.3.8)

Note that this is different from the density matrix of the pure state

|ψ⟩ = 1√
2
(|0⟩+ |1⟩),

which reads

ρψ = |ψ⟩ ⟨ψ| = 1

2
(|0⟩+|1⟩)(⟨0|+⟨1|) = 1

2
(|0⟩ ⟨0|+|1⟩ ⟨0|+|0⟩ ⟨1|+|1⟩ ⟨1|) = 1

2

1 1

1 1

 .

Chapter 1 33

Unlike pure quantum states, mixed quantum states cannot be described by

a single state vector. However, the pure states and the mixed states can be

described by the density matrix.

Summary
In this chapter, we learned the key principles of quantum mechanics, starting with a review

of the basic elements of linear algebra, followed by an introduction to Dirac notations.

We then covered the main postulates of quantum mechanics and their relevance to quantum

computing. We learned how to describe the state (statics) and the evolution (dynamics)

of a closed system, the interactions of a system with external systems (measurement),

observables, as well as the state of a composite system in terms of its component parts.

We finally introduced the density operator, which allows us to describe both pure and

mixed quantum states, contrasting with the state vector, which can only represent pure

quantum states.

In the next chapter, we will look at an application of the principles of quantum mechanics

to analog quantum computing – quantum annealing.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

PART I

ANALOG QUANTUM
COMPUTING – QUANTUM

ANNEALING

2
Adiabatic Quantum
Computing

Search algorithms are among the most important and fundamental algorithms in computer

science, the most basic example being that of finding one special item among a list of N

items. Classical algorithms are known to solve this problem in time proportional to the

problem size, N , which becomes highly untractable when the latter grows large. In 1996,

Grover [117] devised a quantum algorithm to solve such search problems with a quadratic

speedup, with the obvious caveat that quantum computers did not exist at the time. Soon

after, Farhi, Goldstone, Gutmann and Sipser [98] recast the Grover problem as a satisfiability

problem in the context of quantum computation by adiabatic evolution.

Another class of problems hard to solve classically is that of combinatorial optimisation

problems. The truck dispatching problem, originally proposed by Dantzig and Ramser [78],

searches the optimal routing of delivery trucks, and is a generalisation of the famous

travelling salesman problem. Other well-known optimisation problems of the same class

include partitioning problems and binary integer linear programming, to name just a

38 Adiabatic Quantum Computing

few. The exact algorithms are only efficient for small-scale instances. Heuristics and

metaheuristics (e.g., evolutionary search heuristics such as Genetic Algorithm and Particle

Swarm Optimisation) are often more suitable for practical applications, because real-world

problems are considerably larger in scale. Since search time scales exponentially with

problem size, there has always been a strong motivation for finding alternative approaches

to solve such problems with a wide range of practical applications, not least in finance.

Adiabatic Quantum Computing (AQC) was ready to enter the stage.

2.1 Complexity of Computational Problems
In this and the following chapters, we will often speak about computational problems that

are hard for classical computers but can be solved efficiently using quantum algorithms

and hardware. How can we quantify the hardness of a computational problem? One way

to answer this is to analyse problems from the computational resource perspective: how

much time and memory are needed to solve them? This leads to the concept of complexity

classes. Important examples are as follows:

• The class P (polynomial) is the set of decision problems solvable by a deterministic

Turing machine in polynomial time.

• The class NP (non-deterministic polynomial) is the set of decision problems solvable

by a non-deterministic Turing machine in polynomial time.

These definitions, in turn, require us to specify the following objects:

• A decision problem is a computational problem that can be posed as a Yes-No question

of the input values.

• Polynomial time means that the running time of the algorithm is bounded above by

a polynomial expression in the size of the input for the algorithm.

• A Turing machine is an abstract model of computation that is general enough to

embody any computer problem.

• A deterministic Turing machine is the most basic type of Turing machine that uses a

Chapter 2 39

fixed set of rules to determine its future actions.

• A non-deterministic Turing machine is a Turing machine that is able to explore

multiple alternative future actions from a given state.

In terms of computational hardness, we will pay special attention to the problems that are

NP-complete and NP-hard.

A problem is NP-complete when

i) the correctness of each solution can be verified in polynomial time and a brute-force

search algorithm can find a solution by trying all possible solutions;

ii) it can be used to simulate every other problem for which we can verify in polynomial

time that a solution is correct.

NP-complete problems are the hardest, for which solutions can be verified quickly (in

polynomial time). If we could find solutions to some NP-complete problems quickly, we

could quickly find the solutions to every other problem to which a given solution can be

easily verified.

A problem is NP-hard when every problem in NP can be reduced to it in polynomial time.

Alternatively, a problem is NP-hard when every NP-complete problem can be reduced to

it in polynomial time. Since every problem in NP reduces to an NP-complete problem in

polynomial time, the second definition implies the first one.

The NP-hard class is not restricted to decision problems and also includes search problems

and optimisation problems. This means that NP-hard problems do not have to be elements

of the complexity class NP.

Arguably, the most important open problem in computer science is whether P = NP. It is

widely believed, although it has not been proven yet, that P ̸= NP. Figure 2.1 shows the

relationship between complexity classes for both scenarios.

40 Adiabatic Quantum Computing

P ̸= NP P = NP

P

P = NP

= NP-complete

NP-hardNP-hard

NP

NP-complete
C

om
pl

ex
ity

C
om

pl
ex

ity

Figure 2.1: Schematic illustration of the relationship between P, NP, NP-complete and NP-hard sets
of problems.

2.2 Principles of Adiabatic Quantum Computing
Adiabatic quantum optimisation is a promising approach to solving NP-complete and

NP-hard problems [97]. Assume that a solution to the optimisation problem is encoded

in the ground state (i.e., the quantum state corresponding to the lowest eigenvalue) of a

quantum Hamiltonian HF . By the second postulate of quantum mechanics (Section 1.2.2),

the dynamics of a quantum system is fully specified by its Hamiltonian. If we know how to

encode the objective function that we want to minimise in the Hamiltonian of a quantum

system, then finding the ground state of the Hamiltonian is equivalent to finding the set of

decision variables that minimises the objective function.

As a simple example of equivalence between the minimum of a function and the ground

state of a Hamiltonian, consider a function f : {0, 1}n → R that needs to be minimised

and take the Hamiltonian

HF :=
∑

z∈{0,1}n
f(z) |z⟩ ⟨z| .

Chapter 2 41

Clearly, for any z0 ∈ {0, 1}n,

HF |z0⟩ =

 ∑
z∈{0,1}n

f(z) |z⟩ ⟨z|

 |z0⟩ = f(z0) |z0⟩ ⟨z0|z0⟩ = f(z0) |z0⟩ ,

since the computational basis (|z⟩)z∈{0,1}n is orthonormal. Therefore any z0 ∈ {0, 1}n

is an eigenstate ofHF with eigenvalue f(z0). Minimising f is thus clearly equivalent to

finding the lowest eigenvalue of the HamiltonianHF .

Let us further assume that we have another quantum Hamiltonian, H0, whose ground

state is easy to find and easy to prepare in an experimental setup. Then, if we prepare a

quantum system to be in the ground state ofH0, and then adiabatically (slowly) change

the system Hamiltonian,H(t), fromH0 at t = 0 toHF at t = τ according the following

time evolution:

H(t) =
(
1− t

τ

)
H0 +

t

τ
HF , (2.2.1)

then if τ is large enough, andH0 andHF do not commute, the quantum system will remain

in the ground state at all times according to the quantum adiabatic theorem. Measuring

the quantum state at t = τ will produce a solution of our problem (a bitstring that encodes

an optimal configuration of binary decision variables).

We provide a detailed explanation of the adiabatic quantum optimisation algorithm as

well as the quantum adiabatic theorem in Section 2.2.1. In terms of potentially achievable

quantum speedup in comparison with the best classical algorithms, for a problem of

size N , quantum optimisers solve NP-hard combinatorial optimisation problems in time

proportional to

exp(βNγ), (2.2.2)

as N tends to infinity, for positive coefficients β and γ, which may be smaller than known

classical algorithms [197]. In fact, early experiments on quantum annealers that realised

the principles of adiabatic quantum computing demonstrated several orders of magnitude

quantum speedup (ignoring various computational overheads that are likely to be reduced

42 Adiabatic Quantum Computing

as the quantum annealing technology matures) [175, 201, 296].

The coefficient γ is by far the most important. This can be illustrated by the following

table that provides the estimates of the computation time as a function of problem size.

Assuming that a single operation takes 1 microsecond, and the number of operations scales

as either 2N (“classical benchmark”) or e
√
N (“quantum optimisation” with γ = 0.5), we

obtain the following results:

N 2N e
√
N

10 1 millisecond 0.024 milliseconds

50 35.7 years 1.2 milliseconds

100 4× 1016 years 22 milliseconds

500 10137 years 1.4 hours

Table 2.1: Computational time as a function of the problem size.

The asymptotic estimate of the duration of adiabatic system evolution, T , which is expo-

nential in problem size, is a consequence of the requirement that the system should always

stay in the ground state of the local Hamiltonian. As the gap between the ground state and

the first excited state becomes small at some point, the system evolution process should

slow down accordingly.

However, if we only are interested in an approximate solution (and are willing to accept

some deterioration in the quality of the obtained solution), we can expect the NP-hard

combinatorial problems to be solved in polynomial time proportional to Nγ for γ > 0,

as N becomes large [23, 253].

The power of adiabatic quantum computing lies in its ability to solve hard

computational problems through the natural evolution of a physical system.

Chapter 2 43

2.2.1 The Quantum Adiabatic Theorem
In the Schrödinger equation (1.2.1) (normalised with ℏ = 1) with constant HamiltonianH,

if the system starts in |ψ(0)⟩ then the solution moves to

|ψ(t)⟩ = e−iHt |ψ(0)⟩

at time t ≥ 0. This in particular implies that any eigenstate |ψ0⟩ ofH, satisfyingH |ψ0⟩ =
λ0 |ψ0⟩ for some eigenvalue λ0, will evolve through the Schrödinger equation from |ψ0⟩ to

|ψ(t)⟩ = e−iHt |ψ0⟩ = e−iλ0t |ψ0⟩ ,

namely the eigenstate only gains a phase e−iλ0t and there is no transition over time

between different eigenstates. The more interesting case, which we consider now, is that

of a time-dependent Hamiltonian.

Consider again the Schrödinger equation (1.2.1) (normalised with ℏ = 1) over the time

interval [0, τ], where now the HamiltonianH is a function of time. The time change t(·),
such that t(0) = 1 and t(1) = τ , yields

i
d |ψ(s)⟩

ds
= t′(s)H(s) |ψ(s)⟩ (2.2.3)

over the unit time interval [0, 1]. It is important to note here that the HamiltonianH has

no dependence on the time horizon τ itself. This excludes in particular Hamiltonians with

multiple timescales as in [206]. Here, we are chiefly interested in Hamiltonians of the

(slightly generalised) form (2.2.1),

H(s) = r(s)H0 + (1− r(s))HF , (2.2.4)

for two given Hamiltonians H0 and HF , where r(·) is a continuous adiabatic evolution

path decreasing from r(0) = 1 to r(1) = 0. The standard adiabatic schedule is given by

r(s) = 1− s.

44 Adiabatic Quantum Computing

The gist of the quantum adiabatic theorem is the following. Assume that the system starts

from the ground state ofH0. If the time evolution of the Hamiltonian is sufficiently slow,

then the system remains in the ground state of the evolving Hamiltonian up to time 1. It

was originally proposed by Born and Fock [41] and generalised by Kato [156] using the

theory of perturbation of linear operators.

In order to state it properly, denote by |ψ(·)⟩ the solution to the Schrödinger equation (2.2.3),

so that for any s ∈ [0, 1], there exists a unitary operator U for which

|ψ(s)⟩ = U(s) |ψ(0)⟩ .

Consider a Hamiltonian of the form (2.2.4) and a time-change t(s) = sτ (hence t′(s) = τ),

so that the Schrödinger evolution dynamics reads

i
d |ψ(t)⟩

dt
= τH(t) |ψ(t)⟩ , (2.2.5)

over the interval [0, 1]. For each t ∈ [0, 1], we denote |ϕ(t)⟩ the ground state ofHt.

We finally present the following version of the quantum adiabatic theorem, due to Jansen,

Seiler and Ruskai [149]. We recall that an eigenvalue is called non-degenerate if there

exists only one eigenstate associated with this eigenvalue. For any t ∈ [0, 1], given the

HamiltonianH(t), we denote by ∆t the (strictly positive) energy gap between the lowest

eigenvalue ofHt and the next one.

Theorem 7 (Quantum Adiabatic Theorem). Assume that, for any t ∈ [0, 1] the Hamilto-

nianH(t) admits a non-degenerate ground state and that there exists ε > 0 such that

2

ε

{
c0
∥H′(0)∥

∆2
0

+ c1
∥H′(1)∥

∆2
1

+

∫ 1

0

[(
3c21 + c1 + c3

) ∥H′(s)∥2

∆3
s

+ c2
∥H′′(s)∥

∆2
s

]
ds

}
≤ τ.

Then, starting the system (2.2.5) in the state |ψ(0)⟩ = |ϕ(0)⟩, the Schrödinger evolution yields

at time 1 a state |ψ(1)⟩ satisfying

∥|ϕ(1)⟩ − |ψ(1)⟩∥ ≤ ε.

Chapter 2 45

This quantitative version of the adiabatic theorem provides an estimate on how large the

time horizon τ needs to be be in order to achieve sufficient accuracy ε. Consider, for

example, the interpolation scheme (2.2.4) with r(s) = 1− s, so that

H(s) = (1− s)H0 + sHF ,

and, therefore,H′(s) = −H0 +HF andH′′(s) = 0. In that case, the quantitative estimate

in Theorem 7 simplifies to the following:

Corollary 1. With the same assumptions as in Theorem 7 and with the interpolation scheme

above, the quantitative estimate

τ ≥ 2

ε

{
c0
∥HF −H0∥

∆
2 +

(
3c21 + c1 + c3

) ∥HF −H0∥2

∆
3

}
,

with ∆ := mins∈[0,1]∆s, ensures again that ∥|ϕ(1)⟩ − |ψ(1)⟩∥ ≤ ε.

This corollary in particular highlights the importance of the spectral gap ∆. The smaller

it is, the longer one has to wait to see the adiabatic property become efficient. There

exist different versions of the quantum adiabatic theorem, each with slightly different

assumptions. A weak form was proved by Avron and Elgart [19] and by Bornemann [40]

without the gap condition.

The proof of the quantum adiabatic theorem is rather technical and many versions ex-

ist, with slightly different proofs. They all rely, however, on analysing the evolution

operator U(·) corresponding to the Hamiltonian, which clearly solves

dU(t)
dt

= −iτH(t)U(t)

starting from the identity. In particular, one needs to construct an adiabatic operator UA(·)
solving the same Schrödinger equation, replacingH(·) by its adiabatic version

HA(t) = H(t) +
i

τ
[P ′(t),P(t)],

46 Adiabatic Quantum Computing

where P(t) denotes the projection operator onto the desired eigenstate ofH(t). The proof

then follows from showing that UA and U are close enough as τ becomes large.

By connecting the geometric properties of the adiabatic limit of the quantum system to

parallel transport in a vector bundle, Berry’s [33] and Simon’s [267] works gave rise to

Geometric Quantum Computing. Van Dam, Mosca and Vazirani [291] showed that it is

possible to construct a discrete-time approximation of the evolution operator U with only

polynomial time overheads.

The quantum adiabatic theorem provides the theoretical background for

adiabatic quantum computing.

2.2.2 Optimisation and metaheuristics
Metaheuristics are used to find “good” approximate solutions to general optimisation

problems. In plain terms, a metaheuristic is a search policy that explores the optimisation

function f(·) by evaluating it at certain points. There are myriad metaheuristic algorithms

that decide where next (at which value of x) to evaluate f(x) given the history of function

evaluations, but all are based on the same essential principle that good solutions are likely

to be near other good solutions, or in other words that the optimisation surface has some

smoothness. This in turn reveals the exploration versus exploitation trade-off that all

metaheuristics must make.

A metaheuristic can exploit its “current” position, by descending incrementally. The risk is

that this returns a (possibly not very good) local minimum. Alternatively, a metaheuristic

can explore the optimisation surface by making “large movements” to discover whether

another part of the optimisation surface returns smaller values of f(x). In this case, the

global minimum may be found, but the value of x returned may only be a fairly poor

approximation of the actual global minimum.

Chapter 2 47

Simulated annealing

Simulated annealing is a metaheuristic inspired by thermal annealing. Consider the min-

imisation of a given function f : D → R over some domainD ⊂ Rn. The algorithm works

as follows:

1: Start with an initial value x ∈ D and compute f(x).

2: Randomly choose a neighbour y of x and evaluate f(y).

3: If f(y) < f(x), then set x = y.

4: Else, either keep x as is or set x = y.

5: Repeat until an end criterion is attained.

The crucial step is the random choice in Step 4, designed to avoid being stuck in a local

minimum and to favour, at least at the beginning of the algorithm, exploration rather than

exploitation. In the case where f(y) ≥ f(x), we shall hence make the switch y 7→ x with

the probability

P(switch) = exp

(
−f(y)− f(x)

τ

)
,

where τ plays the role of the thermal annealing temperature: when the system is hot,

particles move (exploration), and it cools down when refinement (exploitation) is required.

Quantum annealing and quantum tunnelling

Quantum annealing combines the idea of simulated annealing with the quantum adiabatic

theorem by considering the time-dependent Hamiltonian

H(t) = HF + Γ(t)H0,

where HF is the final, longitudinal field Hamiltonian whose ground state encodes the

optimal solution of the minimisation problem andH0 is the initial, transverse field Hamil-

tonian, assumed not to commute withHF . The function Γ is the transverse field coefficient,

playing the role of the thermal temperature, namely a continuous decreasing function

of t converging to zero as t approaches the final time horizon. By the quantum adiabatic

theorem (Theorem 7), if the system is in the ground state ofH(0), andH(·) evolves slowly

48 Adiabatic Quantum Computing

with time, then it will remain in the ground state of H(t) for each t, and therefore will

converge to the ground state ofHF (hence to the optimal solution of the problem). We note

in passing that the quantum equivalent of the jump over the local hills in the simulated

annealing framework is now the quantum tunnelling through the hill.

En
er

gy

State

11
01

10
10

01
10

00
01

10
01

01
10

01
00

10
01

00
11

01
00

01
00

00
01

10
00

01
10

01
01

10
11

01
11

11
01

11
10

01
11

10
11

11
00

11

En
er

gy

State

11
01

10
10

01
10

00
01

10
01

01
10

01
00

10
01

00
11

01
00

01
00

00
01

10
00

01
10

01
01

10
11

01
11

11
01

11
10

01
11

10
11

11
00

11

adiabatic
system

evolution

Initial Hamiltonian Final Hamiltonian

Figure 2.2: Schematic illustration of solving optimisation problems with quantum annealing. The
objective is to keep the system in the ground state of H(t) through adiabatic evolution.

Figure 2.2 illustrates the practical application of quantum annealing to solving optimisation

problems. We start by putting the system in the ground state of some easy-to-prepare

transverse field Hamiltonian H 0. This initial Hamiltonian is then slowly (adiabatically)

transformed into the final longitudinal field Hamiltonian HF . If the system stays in the

ground state of the local Hamiltonian throughout the quantum annealing process, then

the readout will give us the optimal configuration of the binary decision variables (qubit

values) that correspond to the global minimum of the objective function encoded in the

final Hamiltonian.

Recall the following definition of the Hamming distance between two sets of (bit) strings:

Definition 8 . Let a := (a1, . . . , an) and b := (b1, . . . , bn) denote two bit strings in {0, 1}n.

Chapter 2 49

The Hamming distance between a and b is defined as

n∑
i=1

|ai − bi|.

There are two important mechanisms in finding the global minimum: thermal annealing

and quantum tunnelling. In Figure 2.2, the final Hamiltonian has a global minimum at

state 101101 and two local minima at states 010110 and 111001. Although the energy of

both local minimum states is the same, the Hamming distances from the global minimum

are different. The Hamming distance between state 010110 and the global minimum state

101101 is 5: it is necessary to flip 5 bits to get from this local minimum state to the global

minimum. The Hamming distance between state 111001 and the global minimum is 2.

However, it is more difficult to get from state 111001 to the global minimum state 101101

because they are separated by the tall energy barrier, while getting from state 010110 to

the global minimum is straightforward: a series of sequential bit flips over a relatively low

and flat energy barrier can be achieved with the help of thermal annealing. Fortunately,

we also have a quantum tunnelling effect that allows the system to go through the tall

but narrow energy barriers. Flipping 5 bits (wide barrier) in one go could be a challenging

task for the quantum tunnelling but flipping 2 bits (narrow barrier) is something that can

happen with sufficiently high probability.

Quantum annealing is a practical implementation of the principles of adi-

abatic quantum computing and can be benchmarked against its classical

counterpart – simulated annealing. Quantum annealing derives its power

from two sources: thermal annealing and quantum tunnelling. It is the

combination of these classical and quantum effects that allows quantum

annealing to achieve superior performance.

50 Adiabatic Quantum Computing

2.3 Implementations of AQC
How do we build quantum annealers? What is their physical realisation? Can we find a

suitable metric that would objectively quantify their performance? Do we observe steady

progress in their development? In this section, we provide answers to these questions that

are the results of two decades of intensive research.

2.3.1 The short history of quantum annealing
The first major patent was devised by Amin and Steininger [11] for D-Wave Systems,

leading to the seminal paper [151]. Since then, numerous works investigated the value of D-

Wave computers, in particular McGeoch and Wang [211], who proved significant speedup

of specific problems on one of the earlier D-Wave processors (D-Wave Two with 512 qubits).

More experiments followed this early research with two results that, arguably, stand out

from many other interesting findings.

First, the contribution of quantum tunnelling to the performance of D-Wave quantum

annealers has been established through experiments on D-Wave Two [38]. Multi-qubit

tunnelling has been observed and has been experimentally shown to play a computational

role in a programmable quantum annealer.

Then an 8-order of magnitude speedup has been established on a 1,152-qubit D-Wave 2X

processor relative to the classical benchmark (simulated annealing) for a crafted problem

designed to have tall and narrow energy barriers separating local minima by Denchev

et al. [83]. For instances with 945 variables, the D-Wave 2X quantum annealer achieved

time-to-99%-success-probability that is 100 million times faster than simulated annealing

running on a single processor core.

Additionally, a fully connected graph problem has been addressed with the help of forward

and reverse quantum annealing performed on the more recent 2,048-qubit D-Wave 2000Q

processor by Venturelli and Kondratyev [175,296]. Chapter 3 provides a detailed description

of this use case.

At the time of writing, the most advanced D-Wave machine is the 5,760-qubit Advantage

Chapter 2 51

system, which also boasts lower noise and much better qubit connectivity – a physical

qubit can be directly connected with up to 15 other physical qubits in comparison with D-

Wave 2000Q where a physical qubit could only be connected with at most 6 other physical

qubits [92]. Therefore, logical qubits that represent binary variables consist of shorter and

more stable chains of physical qubits. For example, for the problem size N = 64 (which

corresponds to the largest fully connected graph that can be embedded on D-Wave 2000Q),

the chain length is 17 for the D-Wave 2000Q Chimera graph but only 7 for the Advantage

Pegasus graph.

Interestingly, quantum computing algorithms prompted intensive improvement of their clas-

sical counterparts and recent developments in optimised classical algorithms proved [259]

to be able to at least match D-Wave machines.

2.3.2 Inter-generational comparison of D-Wave quantum
annealers

The technological progress in the development of D-Wave quantum annealers has been

investigated by Pokharel et al [235]. The performance of four generations of D-Wave

quantum annealers has been studied on the task of solving an identical ensemble of

a parameterised family of scheduling problems. These problems are NP-hard and find

numerous practical applications.

The performance of quantum annealers was measured by a metric known as Time-to-

Solution (TTS). In benchmarking studies, the data collected from multiple runs of the

quantum annealer was used to calculate the probability of finding the ground state solution

for the given configuration of adjustable parameters. This probability is given by the

expression

p =
Number of ground state solutions

Total number of runs
.

The equivalent TTS is defined as the expected time to obtain the ground state solution at

52 Adiabatic Quantum Computing

least once with α success probability and is computed as

TTS = trun
log(1− α)
log(1− p)

,

where trun is the annealing time for a single run of the quantum annealer, and α is by

default taken equal to 99%.

Since scheduling problems are NP-hard, TTS should scale exponentially with the problem

size N in the asymptotic limit as shown by (2.2.2) with γ = 1. It is a question of what

value of parameter β (the scaling exponent) would best fit the experimental results

TTS = T0 exp(βN), (2.3.1)

for some constant T0 > 0. As established in [235], the scaling exponent ranges from 1.01

for D-Wave Two to 0.17 for D-Wave Advantage.

To illustrate the magnitude of this improvement let us setN = 10 and TTS = 100 microsec-

onds for both cases (β = 1.01 and β = 0.17). This produces the following impressive

results for TTS as a function of N as shown in Table 2.2:

N TTS (β = 1.01) TTS (β = 0.17)

10 100 microseconds 100 microseconds

15 16 milliseconds 234 microseconds

20 2.4 seconds 547 microseconds

25 6.3 minutes 1.3 milliseconds

30 16.5 hours 3.0 milliseconds

Table 2.2: TTS as a function of problem size, N , for different values of scaling exponent.

Chapter 2 53

2.3.3 Physical realisations of quantum annealers
Being adiabatic, the quantum annealer is a device that works by first specifying an initial

Hamiltonian with an easily computable ground state, and then evolving it slowly to the

final problem Hamiltonian. On the hardware side, to ensure quantum coherence, the system

lives in a closed environment, away from external magnetic sources, and is kept at a very

low temperature. The states of the system are viewed as superpositions of qubits, each

represented as a superconducting loop in such a way that the state of the qubit is defined

as the electric current in the loop. During computation, the direction of the current is

unknown, but when the system decoheres (due to observation or noise), it becomes known.

The direction of the spin of each qubit is physically represented by a magnetic field applied

to the loop, acting as a noise that may stir the qubit from its current spin. The qubits are

also connected to each other via ferromagnetic (antiferromagnetic) couplings forcing their

spins in the same or in opposite directions.

The D-Wave quantum annealers rely on the Ising formulation of the Hamiltonian. This is

justified by the fact that Barahona [24] showed that finding the ground state of an Ising

spin glass is NP-hard. It means that any NP-complete problem can be reduced to an

Ising spin glass problem with polynomial overhead (see Section 2.1). Mathematically, the

optimisation problem is formulated as the minimisation of the cost function

LIsing(s) =
N∑
i=1

gisi +
N∑
i=1

N∑
j=i+1

Jijsisj , (2.3.2)

where s := (s1, . . . , sN) is a vector of binary decision variables (classical spin variables

taking values {−1,+1}), and (gi)i=1,...,N and (Jij)1≤i<j≤N are coefficients encoding the

parameters of the optimisation problem.

According to the quantum mechanical description of a spin, we need to replace the classical

spin variables with the corresponding operators – the Pauli operators σx, σy and σz (see

Section 6.3.3 for their matrix representations). The problem or final Hamiltonian then takes

54 Adiabatic Quantum Computing

the following Ising form [147]:

HF =

N∑
i=1

giσ
i
z +

N∑
i=1

N∑
j=i+1

Jijσ
i
zσ

j
z, (2.3.3)

where gi is the bias applied to qubit i and Jij is the coupling between qubits i and j.

The initial Hamiltonian has the form

H0 =
N∑
i=1

σix, (2.3.4)

where the operator σx (see Section 6.3.3) is the quantum NOT gate that flips the qubit state:

NOT |0⟩ = |1⟩ and NOT |1⟩ = |0⟩ .

Recalling the quantum states |+⟩ and |−⟩ defined in (1.2.6), we have

NOT |+⟩ = 1√
2
NOT
(
|0⟩+ |1⟩

)
=

1√
2

(
|1⟩+ |0⟩

)
= |+⟩

NOT |−⟩ = 1√
2
NOT
(
|0⟩ − |1⟩

)
=

1√
2

(
|1⟩ − |0⟩

)
= − |−⟩ ,

so that |+⟩ and |−⟩ are the two eigenstates.

The eigenstate of the initial Hamiltonian (2.3.4) is the equal superposition of the states |0⟩
and |1⟩ of all individual qubits:

[
1√
2
(|0⟩+ |1⟩)

]⊗N
.

The HamiltonianH0 is the transverse field Hamiltonian. Its role is to create disorder and to

prevent spins from aligning with each other (along the z-axis). The HamiltonianHF is the

longitudinal field Hamiltonian. At the end of the annealing process, when the transverse

field and the σx terms go to zero, spins should be aligned either parallel or anti-parallel with

each other along the z-direction (depending on the values of the corresponding coupling

Chapter 2 55

factors and their individual biases).

The architecture of D-Wave quantum annealers is based on a particular graph (the Chimera

graph in the case of D-Wave 2000Q or the Pegasus graph in the case of the Advantage system)

that realises a particular connectivity pattern between the physical qubits. These graphs

are not fully connected as mentioned earlier, which means that a concrete optimisation

problem to be solved on the quantum annealer must first be transformed (embedded) into

a graph. We refer the reader to [63, 64] for a theoretical description of these embeddings.

Here, we only present a schematic rendering of the Chimera graph and show how logical

qubits can be constructed from the chains of multiple physical qubits.

Apart from D-Wave, Steffen [273] built an adiabatic quantum computation using nuclear

magnetic resonance, available at room temperature, based on the discrete-time approxima-

tion of the quantum adiabatic theorem. Another nuclear magnetic resonance implementa-

tion was developed in [305] for integer factoring.

Finally, it is necessary to mention a perspective approach to building analog quantum

computers based on the neutral atoms technology [131, 163]. Neutral atom quantum

annealers have potential to outperform quantum annealers built using other technologies

and to bridge the gap between NISQ and fault-tolerant advantage.

2.3.4 Chimera graph and embedding of the logical qubits
The Chimera graph topology [76, 91] has a recurring structure of a bipartite graph, called

a unit cell, as shown in Figure 2.3. The unit cell consists of two groups of four qubits

each with pairwise connections between qubits from different groups and no connections

between qubits from the same group. Thus, each unit cell graph consists of 8 vertices

(physical qubits) and 16 edges (connections between physical qubits). These physical qubits

(superconducting loops) are connected via internal couplers. Connections between unit

cells are achieved via external couplers.

Each physical qubit in a Chimera graph is connected to six other physical qubits (via four

internal couplers and two external couplers). This puts severe limitations on the type

56 Adiabatic Quantum Computing

of problems that can be embedded in the graph if we would like to establish a one-to-

one mapping between the binary decision variable (logical qubit) and the corresponding

physical qubit. However, the effective connectivity between logical qubits can be improved

if the logical qubit can be represented by a chain of physical qubits. This would allow us to

reach distant corners of the graph and solve the fully connected graph problems. Figure 2.3

displays an example of a qubit chain formed by qubits A, B, C and D (dark shaded qubits

connected by bold lines). While individual qubits have only six connections, the qubit

chain A-B-C-D has 18 external connections.

C D

B A

unit cell

Figure 2.3: Chimera graph. The figure displays a cropped view of four unit cells. Individual physi-
cal qubits are shown as circles, internal couplers are shown as straight lines, and external couplers
are shown as curved lines. Qubits A, B, C and D form a qubit chain (logical qubit).

Chapter 2 57

To ensure that qubits A, B, C and D operate as a single logical qubit, we need to make

connections between them strong enough such that their states are aligned at all times and

they would flip simultaneously if the logical qubit is flipped. Since now they represent a

single binary decision variable (logical qubit), the corresponding bias g (in (2.3.2) and (2.3.3))

will be shared equally across all four physical qubits in the chain.

We expect all physical qubits in the chain to have the same value after measurement but

this is not always the case. When the qubit chain becomes too long with too many internal

and external couplers between the physical qubits, it is likely that the chain would be

broken at some point. This will be seen as a disagreement between the physical qubits

forming the chain – some of them will be measured as −1 and some as +1. The solution is

to apply the majority voting rule: the value of a logical qubit is given by the mode of all

constituent physical qubit values. For example, if physical qubits A, B and C are measured

as −1 and qubit D is measured as +1, the value of the logical qubit is assumed to be −1.

The longer the chain, the easier it is to break it. This is why the improved connectivity of

the new Pegasus graph in comparison with the old Chimera graph that results in shorter

chains for the fully connected graph problems leads to a significant reduction in TTS.

Quantum annealing has been successfully implemented using supercon-

ducting qubits controlled by pulses of microwave radiation. With significant

progress in improving connectivity and scaling up the systems observed

over the last several years, quantum annealers have demonstrated their

potential as powerful optimisers.

2.4 Universality of AQC
Quantum computing has the theoretical advantage of being able to represent an exponential

number of states at once, thereby proving exponential speedup compared to classical

algorithms. The historically important examples are Shor’s integer factorisation [265] and

Grover’s database search [117]. On a practical level though, it remains unclear whether

58 Adiabatic Quantum Computing

this speedup is actually within reach, in particular for NP-hard problems.

Adiabatic quantum computing is a completely different paradigm to gate model quantum

computing – although they bear some resemblance – and rests upon the quantum adiabatic

theorem. Contrary to gate model quantum computing, AQC has inherent fault tolerance,

as proved in [61]. Since its performance depends on the spectral gap from the adiabatic

theorem, environmental decoherence can be minimised by running an AQC device at

temperatures much lower than this gap.

Key insights connecting gate model quantum computing and its adiabatic version were

provided by Aharonov et al. [7], and by Farhi et al. [97]. The former proved that AQC can

simulate any algorithm with only polynomial overheads compared to gate model quantum

computing while the latter showed that gate model quantum computers can reproduce any

AQC computation. These two results therefore imply that AQC and gate model quantum

computing are in fact polynomially equivalent. The proof in [7] assumes that the initial and

final Hamiltonians in the adiabatic formulation are so-called k-local, meaning that they can

be represented as sums of independent Hamiltonians each acting on k qubits only. Existing

AQC algorithms rely on a certain number of assumptions regarding the final Hamiltonian,

the main one being that the latter has null off-diagonal elements with a 2-local connectivity

structure, as in the case of the D-Wave quantum annealer. Unfortunately, this currently

falls outside the scope of [7], leaving a question mark about the universality of this setup.

Other AQC algorithms exist, in particular involving stoquastic Hamiltonians [45] with real

and non-positive off-diagonal elements or even more restrictive considerations [35].

The standard background for comparing algorithms – classical, quantum, or adiabatic – is

that of complexity classes. We shall not delve into too many technicalities here though,

but refer to [197] for details. There, the mathematical formulations of Ising problems

(the standard problems solved by AQC) for a large number of NP-complete and NP-hard

problems are presented, including precise formulations of Karp’s 21 fundamental NP-

complete problems [155], a perfect playground to compare quantum algorithms.

Chapter 2 59

Summary
At the beginning of this chapter, we introduced several basic complexity classes and dis-

cussed their relationships. The time needed to solve NP-hard problems grows exponentially

with the problem size, which is a strong motivation for exploring alternative approaches,

such as analog adiabatic quantum computing. Even though quantum optimisers also

solve NP-hard combinatorial optimisation problems in time that grows exponentially with

problem size, the prefactor in the exponent may be smaller than for known classical algo-

rithms. Additionally, we can expect to find an approximate solution in polynomial time,

which provides a strong motivation for many practical applications of adiabatic quantum

computing.

We then introduced the principles of AQC based on the adiabatic quantum theorem. The

physical realisation of AQC – quantum annealing – has been contrasted with its classical

counterpart – simulated annealing. We highlighted two main sources of computational

power of quantum annealing: thermal annealing, which helps us find the minima of

the objective function separated by wide but moderate energy barriers; and quantum

tunnelling, which allows us to penetrate through the narrow and steep energy barriers.

Their combination ensures efficient convergence to the global minimum of the objective

function for many practical problems.

Having established the principles of AQC and the corresponding theoretical framework,

we looked at the practical implementation of AQC in the form of quantum annealers

based on superconducting qubits. We also introduced the Ising model, which provides a

mathematical description of the problems solvable on quantum annealers.

We learned about the importance of the quantum chip layout (graph) and how several

physical qubits can be coupled together to form a chain representing a single logical qubit.

Finally, we touched on the universality of AQC.

In the next chapter, we will learn how quantum annealing can be used to solve practical

NP-hard optimisation problems such as discrete portfolio optimisation.

60 Adiabatic Quantum Computing

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

3
Quadratic Unconstrained
Binary Optimisation

Undoubtedly, Quadratic Unconstrained Binary Optimisation (QUBO) is a flagship use case

of quantum annealing. We only need to have a closer look at the name of this class of

optimisation problems to see why:

• Quantum annealers operate on binary spin variables. It is straightforward to perform

mapping between binary decision variables (represented by the logical qubits) and

spin variables.

• The objective functions of quadratic optimisation problems have only linear and

quadratic terms. This significantly simplifies the models and allows their embedding

on existing quantum annealing hardware.

• Unconstrained optimisation means that although QUBO allows us to specify condi-

tions that must be satisfied, they are not hard constraints. The violation of constraints

is penalised through the additional terms in the QUBO objective function, but it is

still possible to find solutions that violate specified constraints.

62 Quadratic Unconstrained Binary Optimisation

All these features make QUBO problems solvable on quantum annealers. At the same time,

the QUBO formulation exists for many important NP-hard combinatorial optimisation

problems, such as graph partitioning, job-shop scheduling, binary integer linear program-

ming, and many others. This class also includes the discrete portfolio optimisation problem,

which we consider in this chapter. We should also mention here some of the recent attempts

to address the problem of discrete portfolio optimisation using classical methods, such as

the knapsack problem formulation by Vaezi et al. [289] and the application of evolutionary

search methods such as genetic algorithms by Anagnostopoulos and Mamanis [12]. Both

the knapsack problem with integer weights and genetic algorithms are discussed in this

chapter.

3.1 Principles of Quadratic Unconstrained
Binary Optimisation

QUBO represents optimisation problems in which a quadratic function of N binary vari-

ables, q1, . . . , qN , has to be minimised over all possible 2N assignments of its variables.

The function to be minimised is referred to as the cost function, and it can be written as

LQUBO(q) =
N∑
i=1

aiqi +
N∑
i=1

N∑
j=i+1

bijqiqj , (3.1.1)

where q := (q1, . . . , qN) ∈ {0, 1}N represents the assignment of N binary decision

variables.

A broad class of optimisation problems with many practical applications admits a QUBO

formulation [197]. To solve hard QUBO instances in an exact way, known classical al-

gorithms require exponential time (in the problem size defined as the number of binary

decision variables, N) [120]. Several approximate classical methods have been devised to

reduce the computational cost; however, it is the fast maturing quantum annealing that

aspires to demonstrate material speedup on the hardest QUBO instances, such as NP-hard

discrete portfolio optimisation problems [175, 296].

Chapter 3 63

3.1.1 QUBO to Ising transformation
A QUBO problem can be easily translated into a corresponding Ising problem solvable

on a quantum annealer. The Ising cost function of N spin variables s := (s1, . . . , sN) ∈
{−1,+1}N is given by

LIsing(s) =

N∑
i=1

gisi +

N∑
i=1

N∑
j=i+1

Jijsisj .

The Ising and QUBO models are related through the transformation si = 2qi − 1, hence

the relationship with (3.1.1) is

Jij =
1

4
bij and gi =

1

2
ai +

1

4

(
i−1∑
k=1

bki +
N∑

l=i+1

bil

)

disregarding an unimportant constant offset for the optimisation.

3.1.2 QUBO problem examples
There are many examples of important QUBO problems that can be directly applied to

practical use cases arising in finance. Here, following Lucas [197], we mention a few of

them in their traditional formulation.

Number Partitioning

Given a set of N positive numbers {n1, . . . , nN}, is there a partition of this set of numbers

into two disjoint subsets such that the sum of the elements in both sets is the same? For

example, we can think about the set {n1, . . . , nN} as a collection of assets that must be

divided equally between two parties. The Ising formulation of this problem is

L(s) =

(
N∑
i=1

sini

)2

,

where spin variables (si)i=1,...,N ∈ {−1,+1} are the decision variables. If there is a

solution to the Ising model with L = 0, then there is a configuration of spins where the

64 Quadratic Unconstrained Binary Optimisation

sum of the ni for the +1 spins is the same for the sum of the ni for the −1 spins. The

number partitioning problem finds numerous applications in economics and finance, from

routing and scheduling problems [71] to signal detection and time series analysis [148].

Graph Partitioning

Consider an undirected graph

G = (V,E),

where V stands for the set of vertices and E stands for the set of edges, with an even

number N of vertices. The task is to partition the set V into two subsets of equal size N/2,

such that the number of edges connecting the two subsets is minimised. This problem has

many applications: finding these partitions can allow us to run some graph algorithms in

parallel on the two partitions, and then make some modifications due to the few connecting

edges at the end [36]. The spin variables represent the graph vertices, with values +1

and −1 denoting the vertex being in either the {+} set or the {−} set. The problem is

solved with the cost function consisting of two components:

L(s) = LA(s) + LB(s),

where

LA(s) = A

N∑
i=1

si

provides a penalty if the number of elements in the {+} set is not equal to the number in

the {−} set, and

LB(s) = B
∑

(u,v)∈E

1− susv
2

is a term that provides a penalty for each time that an edge connects vertices from different

subsets. If B > 0, then we wish to minimise the number of edges between the two subsets;

if B < 0, we will choose to maximise this number. Should we choose B < 0, we must

ensure that B is small enough so that it is never favorable to violate the LA constraint. The

graph partitioning problem can be applied to studying clustering in financial markets [271].

Chapter 3 65

Both problems, number and graph partitioning, are NP-hard problems [155].

Binary Integer Linear Programming

Let q := (q1, . . . , qN) be a vector of N binary variables. The task is to maximise c · q, for

some vector c, given the constraint

Sq = b

with S ∈ Mm,N (R) and b ∈ Rm. Many problems can be posed as binary integer linear

programming, for example, a maximisation of profit subject to regulatory constraints [255].

The cost function L(q) corresponding to this problem can be constructed as a sum of two

terms, L(q) = LA(q) + LB(q), where the first term is

LA(q) = A

m∑
j=1

(
bj −

N∑
i=1

Sijqi

)2

,

for some constant A > 0. Note that LA = 0 enforces the constraint Sq = b. The second

term is

LB(q) = −B
N∑
i=1

ciqi,

with another positive constant B < A.

Knapsack with Integer Weights

We have a list ofN objects, labelled by indices i = 1, . . . , N , with the weight of each object

given by wi ∈ N, and its value given by ci, and we have a knapsack that can only carry

some weight up to Wmax ∈ N. If qi is a binary variable denoting whether (qi = 1) or not

(qi = 0) object i is contained in the knapsack, the total weight in the knapsack is

W =

N∑
i=1

wiqi,

and the total value is

C =

N∑
i=1

ciqi.

66 Quadratic Unconstrained Binary Optimisation

The task is to maximiseC subject to the constraint thatW ≤Wmax. The knapsack problem

finds multiple applications in economics and finance [159, 289].

We introduce a binary variable, yn, for each n = 1, . . . ,Wmax, which is 1 if the final weight

of the knapsack is n, and 0 otherwise. As before, the cost function consists of two terms,

L(q) = LA(q) + LB(q), with

LA(q) = A

(
1−

Wmax∑
n=1

yn

)2

+A

(
Wmax∑
n=1

nyn −
N∑
i=1

wiqi

)2

,

which enforces that the weight can only take on one value and that the weight of the

objects in the knapsack equals the value we claimed it did, and

LB(q) = −B
N∑
i=1

ciqi.

As we require that it should not be possible to find a solution where LA is weakly violated

at the expense of LB becoming more negative, we require 0 < Bmaxi=1,...,N ci < A

(adding an item to the knapsack, which makes it too heavy, is not allowed).

Many other famous NP-hard optimisation problems can be solved on quantum annealers.

Here, we can mention the Map Colouring Problem [76] and the Job-Shop Scheduling

Problem [295], which were successfully solved on the D-Wave quantum annealers. In

this chapter, we provide detailed description and analysis of an important finance-related

QUBO problem – a discrete portfolio optimisation problem investigated by Venturelli and

Kondratyev [175, 296]. This is a hard, fully connected graph problem that can be best

addressed using a newly developed technique of reverse quantum annealing.

Many famous NP-hard problems can be solved with practical efficiency on

quantum annealers in their QUBO formulation, up to a non-trivial number

of variables. This makes quantum annealing a useful tool in dealing with

classically hard optimisation problems.

Chapter 3 67

3.2 Forward and Reverse Quantum Annealing
Having defined the QUBO problem, we now review how quantum annealing can act as an

efficient solver.

3.2.1 Forward quantum annealing
The quantum annealing protocol, inspired by the adiabatic principle of quantum mechanics

detailed in Chapter 2, dictates driving the system from an easy-to-prepare ground state of

an initial HamiltonianH0 to the unknown low-energy subspace of states of the problem

HamiltonianHF , ideally to the lowest energy state corresponding to the global minimum of

the objective function. This forward quantum annealing procedure can be ideally described

as attempting to drive the evolution of the time-dependent Hamiltonian

H(t) = A(t)H0 +B(t)HF , (3.2.1)

starting from

H0 =
N∑
i=1

(
Nc∑
c=1

σicx

)
, (3.2.2)

whereH0 is a Hamiltonian describing an independent collection of local transverse fields

for each spin of the system (σx is the Pauli X spin operator, or the quantum NOT gate,

detailed in Section 6.3.3).

In expression (3.2.2), the first sum runs over all logical qubits representing binary decision

variables in the QUBO formulation of the optimisation problem, and the second sum runs

over all physical qubits in the chain that represents a logical qubit. The construction of

a logical qubit from a chain of physical qubits is explained in Chapter 2 and a sample

embedding of the qubit chain on the quantum chip is shown in Figure 2.3 for the Chimera

graph. No physical qubit can be an element of more than one qubit chain. Assuming the

most dense embedding scheme, we have N ×Nc = K , where K is the total number of

physical qubits in the quantum chip. However, in practice we have N ×Nc < K for most

problems of realistic size that require full connectivity between the logical qubits. For

68 Quadratic Unconstrained Binary Optimisation

example, in the case of a D-Wave 2000Q Chimera graph consisting of K = 2,048 physical

qubits, the maximum number of fully connected logical qubits is 64 and the maximum

number of physical qubits in a chain is 17, meaning that N ×Nc = 1,088.

Figure 3.1 shows how A(t) and B(t) vary over the scale of total annealing time τ .

M
od

el
co

effi
ci

en
ts

t ∈ [0, τ]

A(t)

B(t)

Figure 3.1: Schematic forward annealing schedule. A(t) indicates the strength of the transverse
magnetic field and B(t) indicates the strength of the longitudinal magnetic field.

At the end of the annealing run, A(τ) = 0 and the system is projected on the computational

basis by a measurement of each qubit magnetisation. The duration of the anneal, τ , is a

free parameter, hence it is often useful to define the fractional completion of the annealing

schedule s = t/τ .

3.2.2 Reverse quantum annealing
Figure 3.2 illustrates the quantum annealing protocol when the quantum annealer is set to

operate as a reverse annealer.

Chapter 3 69

M
o d

el
co

effi
ci

en
ts

t ∈ [0, τ] t ∈ [τ, ρ+ τ] t ∈ [ρ+ τ, ρ+ 2τ]

BR(t)

AR(t)

BP (t)

AP (t)

BF (t)

AF (t)

reverse annealing pause forward annealing

Figure 3.2: Schematic reverse annealing schedule. A(t) indicates the strength of the transverse
magnetic field and B(t) indicates the strength of the longitudinal magnetic field.

The system is initialised with B(0) = max{B} and A(0) = 0, with spins set to a classical

bitstring. The evolution then undergoes an inverse schedule up to a point where the

Hamiltonian time-dependence is temporarily paused. With reference to the Hamiltonian

evolution in (3.2.1), the transverse field evolution that we program for this protocol is the

following three-phase function (analogous equations for B(t)):

AR(t) := A(τ + (sp − 1)t) Reverse Annealing: t ∈ [0, τ],

AP (t) := A(spτ) Annealing Pause: t ∈ [τ, τ + ρ],

AF (t) := A((1− sp)(t− ρ)− (1− 2sp)τ) Forward Annealing: t ∈ [τ + ρ, 2τ + ρ],

where ρ is the duration of the pause and sp ∈ [0, 1] indicates the location of the forward

schedule where the pause is implemented. The total duration of the selected reverse anneal

protocol is 2τ + ρ as opposed to τ for the forward anneal. While the theory of reverse

annealing is just starting to be investigated, the physics rationale of reverse annealing

70 Quadratic Unconstrained Binary Optimisation

is to be found in the oversimplified idea that, if the system is initialised in a state S
corresponding to a local minimum of the objective function, the interplay of quantum and

thermal fluctuations might help the state tunnel out of the energy trap during the reverse

annealing, while the annealing pause (and to some extent the final forward annealing)

allows the system to thermalise and relax in the neighborhood of the newfound minimum.

The quality of the initial state S is likely to influence dramatically the reverse annealing

process. For the portfolio optimisation use case presented in this chapter, a classical greedy

algorithm to set S can be used as described in [296].

The combination of reverse quantum annealing with a classical greedy

search algorithm has the potential to massively speed up a QUBO solver,

thus realising a promising hybrid quantum-classical algorithm.

3.3 Discrete Portfolio Optimisation
The optimal portfolio construction problem is one of the most extensively studied problems

in quantitative finance. The Modern Portfolio Theory (MPT) [202] has laid the foundation

for highly influential mean-variance portfolio optimisation approach. According to the

MPT, a typical portfolio optimisation problem can be formulated as follows. Let N be the

number of assets, µi be the expected return of asset i, Σij be the covariance between the

returns for assets i and j, and R be the target portfolio return. Then the decision variables

are the weights wi, i.e., the investment associated with the asset i (wi ∈ R). The standard

Markowitz mean-variance approach consists in the constrained, quadratic optimisation

problem

min
N∑
i=1

N∑
j=1

wiwjΣij , subject to
N∑
i=1

wi = 1 and
N∑
i=1

wiµi = R. (3.3.1)

Quadratic problems of this form are efficiently solvable by standard computational means

(e.g., quadratic programming with linear constraints) if the covariance matrix is positive def-

Chapter 3 71

inite. However, related discrete portfolio optimisation problems (with discrete weights wi)

are much harder to solve. In fact, they are known to be NP-complete [158].

Interestingly, the problem can also be cast into an unconstrained quadratic optimisation

problem, which is a suitable formulation for quantum annealers [116, 205, 234, 251]. The

problem we are trying to solve here is a construction of the optimal portfolio from the

universe of assets with known characteristics, such as asset returns, volatilities, and pairwise

correlations. A stylised portfolio optimisation problem consists of selecting M assets from

the universe of N investable assets. These M assets should ideally be the best possible

choice according to some criteria.

The scenario we target is a Fund of Funds portfolio manager who is facing a task of

selecting the best funds that follow particular trading strategies in order to maximise the

risk-adjusted returns according to some model [175] with a constraint that the assets are

selected with equal preference weights [82]. Should we want to generalise the portfolio

with larger allocation to a given asset, we could allow for multiples of the reference weight

by cloning an asset and treating it as a new one.

3.3.1 QUBO encoding
The task of encoding the relationship among the choices of M funds (without replacement)

from the universe of N funds can then be formulated as a quadratic form:

L(q) =

N∑
i=1

aiqi +

N∑
i=1

N∑
j=i+1

bijqiqj , (3.3.2)

where qi = 1 means that asset i is selected and qi = 0 means that asset i is not selected.

The task is then to find a configuration of q := (q1, . . . , qN) that minimises L(q) subject to

satisfying the cardinality constraint (i.e., selection of exactly M assets). A common way to

deal with the cardinality constraint would be to add a term Lpenalty(q) to the cost function

given by (3.3.2) such that the unsatisfying selections would be penalised by a large value

72 Quadratic Unconstrained Binary Optimisation

P ≫ 1, which would force the global minimum to be such that
∑N

i=1 qi =M :

Lpenalty(q) = P

(
M −

N∑
i=1

qi

)2

. (3.3.3)

The coefficients (ai)1≤i≤N reflect asset attractiveness on a standalone basis and can be

derived from the individual assets’ expected risk-adjusted returns. Assets with large

expected risk-adjusted returns should be rewarded with negative values of ai, while assets

with small expected risk-adjusted returns should be penalised with positive values of ai.

The coefficients (bij)1≤i<j≤N reflect pairwise diversification penalties (positive values) and

rewards (negative values). These coefficients can be derived from the pairwise correlations.

The minimisation of the QUBO cost function given by (3.3.2) and (3.3.3) should optimise

the risk-adjusted returns by the use of the metrics of the Sharpe ratio. The Sharpe ratio

(excess asset return measured in the asset volatility units) is calculated as (r−r0)/σ, where

r is the expected annualised asset return, r0 is the applicable risk-free interest rate, and σ is

asset volatility (annualised standard deviation of the asset returns). The higher the fund’s

Sharpe ratio, the better the fund’s returns have been relative to the risk it has taken on.

Volatility can be estimated as the historical annualised standard deviation of the net asset

value returns (per share). Expected return can be either estimated as the historical return

on fund investment or derived independently by the analyst/portfolio manager taking into

account different considerations about the future fund performance.

3.3.2 The coarse-grained encoding scheme
Instead of using the raw real numbers obtained from the financial data for the QUBO

coefficients, we opt to coarse-grain the individual funds Sharpe ratios and their mutual

correlations down to integer values by grouping intervals in buckets (the sample mapping

schemes are shown in Table 3.1). By using bucketed values, we define a scorecard, which

is loosely based on the past fund performances but can be easily adjusted by portfolio

managers according to their personal views and any new information not yet reflected in

the funds reports.

Chapter 3 73

Sharpe ratio bucket Coefficient ai

Equally spaced buckets, Mapping scheme:

from worst to best A B C

1st 15 25 30

2nd 12 16 24

3rd 9 9 18

4th 6 4 12

5th 3 1 6

6th 0 0 0

7th −3 −1 −6

8th −6 −4 −12

9th −9 −9 −18

10th −12 −16 −24

11th −15 −25 −30

Correlation bucket Coefficient bij
Mapping scheme:

D E F

−1.00 ≤ ρij < −0.25 −5 −9 −10

−0.25 ≤ ρij < −0.15 −3 −4 −6

−0.15 ≤ ρij < −0.05 −1 −1 −2

−0.05 ≤ ρij < 0.05 0 0 0

0.05 ≤ ρij < 0.15 1 1 2

0.15 ≤ ρij < 0.25 3 4 6

0.25 ≤ ρij ≤ 1.00 5 9 10

Table 3.1: Specification of the sample QUBO coefficients from NAV time series market data.

The choice of QUBO coefficients as small integer numbers is dictated by the technical

realisation of the existing quantum annealer architecture (precision of the superconducting

chip circuitry). Within this restriction, the portfolio manager may choose any linear or non-

linear scale for QUBO coefficients. For example, the quadratic mapping scheme B strongly

penalises low Sharpe ratio funds and strongly rewards high Sharpe ratio funds. The linear

mapping schemes A and C distinguish better between funds with average performances.

Similarly, the mapping scheme E penalises large positive correlations and rewards large

negative correlations stronger than the mapping scheme D.

3.3.3 Construction of the instance set for numerical

experiments
The instance set used for our case study is obtained by simulating asset values with the help

of correlated geometric Brownian motion processes with a constant correlation ρ, drift µ,

and log-normal volatility σ. The specific values of these parameters were derived from a

wide range of fund industry researches (see [79] for the Sharpe ratio distributions) and,

74 Quadratic Unconstrained Binary Optimisation

therefore, can be viewed as representative of the industry. The simulation time horizon

was chosen to be one year and the time step was set at one month.

Every simulated (or “realised”) portfolio scenario consists of 12 monthly returns for each

asset. From these returns, we calculated the total realised return and realised volatility for

each asset (which, obviously, differ from their expected values µ and σ) and for the portfolio

as a whole. We also calculated realised pairwise correlations between all assets according

to the input uniform correlation ρ. Finally, we calculated individual assets and portfolio

Sharpe ratios. For reference, with ρ = 0.1, µ = 0.075, σ = 0.15, and the constant risk-free

interest rate set at r0 = 0.015, the expected Sharpe ratio for each asset in the portfolio

is 0.4. The expected Sharpe ratio for the portfolio of N assets is significantly larger due to

the diversification and low correlation between the assets, e.g., for a 48-asset portfolio we

would expect Sharpe ratio values from 0.5 (25th percentile) to 2.1 (75th percentile) with a

mean around 1.4.

3.3.4 Classical benchmark – Genetic Algorithm
We selected Genetic Algorithm (GA) as a classical benchmark heuristic, which is a popular

choice for solving hard combinatorial optimisation problems. GAs are adaptive methods

of searching a solution space by applying operators modelled after natural genetic inheri-

tance and simulating the Darwinian struggle for survival. There is a rich history of GA

applications to portfolio optimisation problems, including [172, 179] recently.

In the case of portfolio optimisation, the solution (chromosome) is a vector q := (q1, . . . , qN)

consisting of N elements (genes) that can take binary values in {0, 1}. The task is to find a

combination of genes that minimises the cost (fitness) function L(q). Due to the solution

being represented by a relatively short bit string, we do not use the crossover recombina-

tion mechanism as it provides very little value in improving the algorithm convergence.

Algorithm 1 provides a detailed description of the GA procedure.

Chapter 3 75

Algorithm 1: GA − portfolio optimisation with cardinality constraint
Result: Optimal portfolio.

1: Generate L initial solutions by populating solutions with random draws from a

pool of possible element values {0, 1}, with the restriction that “1” is assigned to

the values of exactly M elements and “0” is assigned to the values of remaining

N −M elements.

2: Evaluate the cost (fitness) function for each solution.

3: Rank the solutions from “best” to “worst” according to the cost function

evaluation results.

for i from 0 to number of iterations − 1 do
a) Select K best solutions from the previous generation and produce L new

solutions by randomly swapping the values of two elements with opposite

values. With L = mK , every one of the “best” solutions will be used to

produce m new solutions.

b) Evaluate the cost (fitness) function for each solution.

c) Rank the solutions from “best” to “worst” according to the cost function

evaluation results.
end

The optimal values of the parameters L and K depend on the problem size and the specific

QUBO coefficient mapping scheme, and can be found through trial and error. The objective

here is to achieve the target convergence with the smallest number of objective function

calls.

Our first task is to verify that the proposed mapping schemes are sensible in the sense

that the minimisation of the objective functions (3.3.2) and (3.3.3) indeed leads to the

construction of optimal portfolios. One possible approach to the problem of selecting M

best assets from the universe of N investable assets is to select M individually best assets

according to their individual Sharpe ratios. This approach would ignore the potential

negative impact on diversification due to a probable large positive correlation between

some of individually best assets, and there is no reason to believe that such a portfolio

76 Quadratic Unconstrained Binary Optimisation

would be optimal. Therefore, we should demand that the optimal portfolio constructed

by minimising L(q) + Lpenalty(q) should outperform the portfolio of M individually best

assets.

For example, we can compare the results for the optimal 24-asset portfolio selected from

the universe of 48 assets (for 10,000 portfolio instances simulated with ρ = 0.1, µ = 0.075,

σ = 0.15; as before, we assumed a constant risk-free interest rate r0 = 0.015). Table 3.2

displays the Sharpe ratio distribution statistics obtained for the sample QUBO coefficient

mapping schemes provided by Table 3.1 [296]. The results are presented in the format:

mean (25th percentile; 75th percentile).

Mapping schemes for bij
D E F

Mapping A 4.7 (2.5; 6.4) 4.5 (2.1; 6.1) 4.0 (1.7; 5.5)

schemes B 4.8 (2.7; 6.5) 4.3 (2.0; 5.9) 4.2 (2.0; 5.8)

for ai C 5.0 (3.0; 6.7) 4.8 (2.6; 6.3) 4.6 (2.5; 6.1)

Table 3.2: Sharpe ratio distribution statistics for different mapping schemes.

For the portfolio of individually best assets, the Sharpe ratio distribution statistics look as

follows:

mean: 3.8 25th percentile: 2.6 75th percentile: 4.7

On average, the Sharpe ratio of the optimal portfolio is larger than that of the portfolio of

individually best assets by 0.8, although some QUBO coefficient mapping schemes produce

better results than others. Figure 3.3 illustrates a better performance of the optimal portfolio

found through the minimisation of the cost function L(q)+Lpenalty(q) in comparison with

the portfolio consisting of 24 individually best assets for the mapping schemes A and D.

Our second task is to understand how the time to solution scales with the problem size

and whether quantum annealing can demonstrate a material speedup compared with the

classical algorithm. It would be interesting to see what happens when we remove the

constraint on the number of assets in the optimal portfolio. The portfolio optimisation

Chapter 3 77

results shown in Figure 3.3 were obtained for M = N/2, which is arguably the hardest

combinatorial problem with a constraint on the number of assets, based on the size of the

search space [175]. From a brute force approach perspective, the problem becomes even

harder computationally if we remove this constraint due to the solution space growing

with N as 2N instead of N !
M !(N−M)! .

−5 0 5 10 15 20
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Sharpe ratio

Fr
eq

ue
nc

y

Full portfolio (48 assets)
Top individual performers (24 assets)
Optimal portfolio (24 assets)

Figure 3.3: Sharpe ratio histogram (QUBO coefficients mapping schemes A and D). M = N/2.

The removal of the cardinality constraint is also warranted by the fact that a large energy

scale P in expression (3.3.3) is typically associated with precision issues connected to the

analog nature of the quantum annealing machine and the fact that there is a physical

maximum to the energy that can be controllably programmed on local elements of the

quantum chip. However, several hybrid quantum-classical strategies can be put in place to

overcome this limitation.

78 Quadratic Unconstrained Binary Optimisation

For instance, we observe that shifting artificially the Sharpe ratio values by a constant

amount ±∆ (and adding buckets according to the prescription chosen, e.g., Table 3.1) will

essentially amount to forcing the ground state solution of the unconstrained problem to have

more or less a desired number of assets selected. Hence, while not solving the same problem,

we could imagine a solver of a similarly constrained problem that will enclose the quantum

annealing runs in a classical loop that checks for the number of selected assets m(∆) in

the best found solution with ∆ = 0, then increases or decreases the individual desirability

of the assets according to whether m is larger or smaller than M and runs again until

m(∆) =M for ∆ = ∆⋆. While in this case it is an approximation of the original problem,

this sort of hybridisation scheme is not uncommon for quantum-assisted solvers [285] and

the number of expected rounds of runs should scale proportionally to log2(∆
⋆) as per a

binary search, introducing a prefactor over the time-to-solution complexity that should stay

manageable. Other hybrid approaches could also be put forward to deal with the constraint,

such as fixing some asset selections in pre-processing via sample persistence [154].

As per the preceding arguments, in our benchmark case study, we focus on running

the unconstrained problem, setting ∆ = 0. Table 3.3 provides the characteristics of

the benchmark instance set [296]. For a problem of the given size, the table reports the

median number of assets in the optimal portfolio (and the minimum and the maximum in

parenthesis), over 30 instances, for the unconstrained portfolio optimisation problem.

Problem Number of assets

size in the optimal portfolio

N (unconstrained problem)

42 16 (−7,+6)

48 17 (−6,+5)

54 19 (−7,+12)

60 23 (−13,+15)

Table 3.3: Benchmark instance set characterisation.

Chapter 3 79

3.3.5 Establishing quantum speedup
The aim is to solve representative portfolio instances at the limit of programmability for the

D-Wave 2000Q quantum annealer. D-Wave 2000Q features 2,048 physical qubits; however,

due to the limited connectivity of the D-Wave 2000Q Chimera graph, we can embed a

maximum of 64 logical binary variables on a fully connected graph. Practically, we limit

ourselves by working with up to 60 logical qubits, which means that the largest search

space for our benchmarks is around 60!/(30!)2 ≃ 1017 if M = N/2. This constraint

dictates the configuration of the instance set, which consists of 30 randomly generated

instances for N = {42, 48, 54, 60} assets.

As mentioned in Chapter 2, a common metric to benchmark the performance of non-

deterministic iterative heuristics against quantum annealing is the Time-to-Solution (TTS)

[250]. The latter is defined as the expected number of independent runs of the annealer in

order to find the ground state with probability (confidence level) α ∈ (0, 1):

TTS = trun
log(1− α)
log(1− p)

,

where trun is the running time elapsed for a single run – either τ for forward annealing (see

Section 3.2.1), or 2τ + ρ for reverse annealing (see Section 3.2.2) – and p is the probability

of finding the optimum of the objective function in that single shot.

Figure 3.4 displays the TTS results for the GA, the forward QA solver, and the reverse QA

solver for the unconstrained portfolio optimisation problem encoded using the mapping

schemes A and D [296]. In the figure, the markers are the median values and the error bars

indicate the 30th and the 70th percentiles over the 30-instance set. All TTS are measured,

not counting the time required to run the greedy descent that initialises the initial ansatz S ,

nor the overhead times for operating the quantum annealer.

80 Quadratic Unconstrained Binary Optimisation

42 48 54 60
101

102

103

104

105

106

107

108

Problem size

M
ed

ia
n

T
T

S
(9

9%
co

nfi
de

nc
e

le
ve

l,
in

µs
)

GA: Start from random starting point (all instances)
GA: Start from the greedy search local minimum (harder instances)
Forward QA: τ = 1 µs
Reverse QA: τ = 1 µs; ρ = 1 µs

Figure 3.4: Time-to-solution (99% confidence level): GA, forward and reverse quantum annealing.
Unconstrained portfolio optimisation problem encoded using the mapping schemes A and D.

The GA can also be initialised by the greedy search heuristics, and this also decreases the

TTS required for the GA to find the global minimum. As was experimentally established

in [296], the best results are obtained for the smallest possible annealing time and pause

time (1 µs). In the median case, we observe one to three orders of magnitude in speedup

when applying reverse quantum annealing with respect to forward quantum annealing or

classical benchmark.

Chapter 3 81

It is likely that the non-monotonic behaviour of the reverse quantum annealing TTS for

N = 54 is not of fundamental significance but is due to the noise associated with the

finite, small size of our instance set. Although the small size of the instance set makes it

difficult to draw a definite conclusion about the scaling of QA with the problem size, it

appears that reverse quantum annealing displays similar scaling to GAs for portfolios of

up to N = 54 assets – as illustrated by the dashed regression lines. A worse scaling for the

limit case of N = 60 assets is probably due to the fact that, in this case, the physical qubit

chains become too long and more likely to be broken. It is worth noting that for the same

reason, N = 60 is also a very hard case for forward annealing. Reverse annealing displays

significantly better scaling in comparison with forward annealing. While parameter β

in (2.3.1) for forward annealing is equal to 0.3, it becomes 0.1 for reverse annealing.

Discrete portfolio optimisation is an NP-hard problem that can be solved

on a quantum annealer using a hybrid quantum-classical reverse annealing

technique with several orders of magnitude in quantum speedup (ignoring

the measurement and system reset computational overheads). Although it is

too early to say whether quantum annealing can become a widely adopted

portfolio optimisation tool, there are indications that as technology and

theory progress, it could represent a viable choice.

Summary
In this chapter, we applied quantum annealing to solving a discrete portfolio optimisation

problem. We started with the principles of quadratic unconstrained binary optimisation and

looked at several examples of NP-hard optimisation problems and their QUBO formulations.

Then, we introduced the concept of a quantum annealing protocol and specified two

such protocols: forward annealing and reverse annealing. We also specified the classical

benchmark: the genetic algorithm, an evolutionary search heuristic ideally suited for

operations on binary variables.

82 Quadratic Unconstrained Binary Optimisation

Once we had all the necessary building blocks, we translated a sample discrete portfolio

optimisation problem into QUBO and experimented with solving its instances on a D-Wave

2000Q quantum annealer. We collected sufficient statistics on various problem sizes to

compare the performance of forward and reverse quantum annealing with the classical

benchmark. We obtained encouraging results in terms of TTS, especially for the reverse

quantum annealing protocol.

In the next chapter, we will learn how to apply quantum annealing to the problem of

construction of a robust classifier. The proposed solution – quantum boosting – is a hybrid

quantum-classical classifier (trained quantumly and run classically) that performs on a par

with the standard classical models and, sometimes, outperforms them.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

4
Quantum Boosting

In this chapter, we consider a quantum version of the classical boosting meta-algorithm –

a family of machine learning algorithms that convert weak classifiers into strong ones.

Classically, boosting consists of two main operations: i) adaptive (iterative) training of the

weak classifiers, thus improving their individual performance, and ii) finding an optimal

configuration of weights applied to the individual weak learners when combining them

into a single strong one.

Adaptive learning consists of iterative re-weighting of the samples from the training dataset,

forcing the model to improve its performance on the difficult-to-classify samples by giving

them heavier weights. These weights are adjusted at each algorithm iteration. Arguably,

the best-known and most successful example of such algorithms is the popular adaptive

boosting (AdaBoost) model. It was first formulated in 1997 by Freund and Schapire [107],

whose work has been recognised by the awarding of the prestigious Gödel Prize in 2003.

The main principle of AdaBoost is that the base classifiers (weak learners) are trained

in sequence and each base classifier is trained using a weighted form of the dataset: the

84 Quantum Boosting

weighting coefficient associated with each sample depends on the performance of the

previous classifiers. Samples that are misclassified by one of the base classifiers are given

larger weights when used to train the next base classifier in the sequence. Once all base

classifiers have been trained, their predictions are combined through some kind of weighted

majority voting scheme [37]. Therefore, AdaBoost can be seen as a general framework

that allows many possible realisations with various degrees of sophistication rather than a

narrowly defined algorithm.

In contrast to AdaBoost, a boosting approach that consists of finding an optimal set of

weights for the individual weak learners (with the weak learners being trained in the

usual way) is straightforward to implement and relies on standard optimisation routines.

However, this task becomes a hard combinatorial problem when an additional set of

constraints is introduced. When the weights are only allowed to take binary values, the

problem naturally lends itself to being formulated as a QUBO problem.

This is where quantum annealing has a role to play, as we have seen in Chapter 3. For a

large enough number of weak classifiers, the search space becomes enormous, and classical

algorithms (such as various evolutionary search heuristics) may take a non-trivial amount

of time to find an optimal configuration of weights (or, at least, a good approximation).

This is an ideal scenario for quantum annealing to demonstrate its strong points, including

the possibility of achieving a material quantum speedup.

Quantum boosting is a QUBO-based technique combining individual weak

learners into a single strong classifier by constructing an optimal linear

combination of binary classifiers. It is transparent, easy to interpret, and

resistant to overfitting.

4.1 Quantum Annealing for Machine Learning
Quantum boosting is the first QML algorithm we will consider in this book. This is also

the algorithm that plays to the natural strengths of quantum annealing.

Chapter 4 85

4.1.1 General principles of the QBoost algorithm
We start with the general principles of the Quantum Boosting (QBoost) algorithm before

exploring a specific finance-related application. In the formulation of QBoost, we will be

using the following definitions and notations:

Object Definition

xτ = (x1(τ), x2(τ), . . . , xN (τ)) Vector of N variables (features)

yτ = ±1 Binary label indicating whether xτ corre-

sponds to Class 0 (−1) or Class 1 (+1)

{xτ , yτ}τ=1,...,M Set of training events

ci(xτ) = ± 1
N Value of the weak classifier i on the event τ

q := (q1, q2, . . . , qN) Vector of binary (0 or 1) weights associated

with each weak classifier

Table 4.1: QBoost algorithm notations.

We first specify the classification error for sample τ , which is given by the squared error

(
N∑
i=1

ci(xτ)qi − yτ

)2

.

The total cost function to minimise is then the sum of squared errors across all samples:

L(q) =

M∑
τ=1

(
N∑
i=1

ci(xτ)qi − yτ

)2

=
M∑
τ=1

 N∑
i=1

ci(xτ)qi

N∑
j=1

cj(xτ)qj − 2yτ

N∑
i=1

ci(xτ)qi + y2τ

 .

Note that y2τ does not depend on q and therefore has no influence on the minimisation of L.

Adding a penalty λ > 0 to prevent overfitting, the objective function to minimise is thus

86 Quantum Boosting

L̃(q) =

M∑
τ=1

 N∑
i=1

ci(xτ)qi

N∑
j=1

cj(xτ)qj − 2yτ

N∑
i=1

ci(xτ)qi

+ λ

N∑
i=1

qi

=

M∑
τ=1

 N∑
i=1

N∑
j=1

qiqjci(xτ)cj(xτ)− 2

N∑
i=1

qici(xτ)yτ

+ λ

N∑
i=1

qi

=

N∑
i=1

N∑
j=1

(
M∑
τ=1

ci(xτ)cj(xτ)

)
qiqj − 2

N∑
i=1

(
M∑
τ=1

ci(xτ)yτ

)
qi + λ

N∑
i=1

qi

=
N∑
i=1

N∑
j=1

Cijqiqj +
N∑
i=1

(λ− 2Ci) qi,

with

Cij :=
M∑
τ=1

ci(xτ)cj(xτ) and Ci :=
M∑
τ=1

ci(xτ)yτ .

Remark: Adding a penalty term controlled by the coefficient λ is analogous to the LASSO

regression method [6] with L1 penalty, which is ubiquitous in machine learning. Ridge

regression [243] withL2 penalty could also be used and would also lead to a QUBO problem.

4.1.2 QUBO to Ising
As developed in Chapter 3.1.1, we now perform a transformation from QUBO to Ising

from the binary decision variables q := (q1, . . . , qN) ∈ {0, 1}N to spin variables s :=

(s1, . . . , sN) ∈ {−1,+1}N using

s = 2q− 1 or q =
1

2
(s + 1).

Chapter 4 87

Therefore, the Ising problem to be solved on the quantum annealer reads

H = L̃(s) =

N∑
i,j=1

(
1

2
si +

1

2

)(
1

2
sj +

1

2

)
Cij +

N∑
i=1

(
1

2
si +

1

2

)
(λ− 2Ci)

=
1

4

N∑
i,j=1

sisjCij +
1

2

N∑
i,j=1

siCij +
1

4

N∑
i,j=1

Cij

+
1

2

N∑
i=1

siλ+
λN

2
−

N∑
i=1

siCi −
N∑
i=1

Ci.

Since the three terms
1

4

N∑
i,j=1

Cij ,
λN

2
, and

N∑
i=1

Ci

do not depend on s, they can be removed from the cost function. The substitution λ = 1
2λ

then yields the final Ising problem

H =
1

4

N∑
i,j=1

sisjCij +
1

2

N∑
i,j=1

siCij +
N∑
i=1

si(λ− Ci).

The problem that quantum annealing attempts to solve is to minimiseH and to return the

minimising, ground-state spin configuration (sgi)i=1,...,N . The strong classifier is then built

as

R(x) =

N∑
i=1

sgi ci(x) ∈ [−1, 1], (4.1.1)

for each new event x that we wish to classify [218].

4.2 QBoost Applications in Finance
Quantum Annealing for Machine Learning (QAML) has been applied productively to

a wide range of financial and non-financial use cases. It demonstrated a performance

advantage in comparison with standard classical machine learning models such as the

binary decision tree-based Extreme Gradient Boosting (XGBoost) and Deep Neural Network

(DNN) classifiers, especially on relatively small datasets. The QAML use cases come

88 Quantum Boosting

from such diverse fields as high-energy physics (the Higgs boson detection [218]) and

computational biology (the classification and ranking of transcription factor binding [186]).

In finance, the most obvious application of QAML is to credit scoring and fraud detection

as well as to the construction of strong trading signals from large numbers of weak binary

(buy/sell) trading signals.

In this section, we analyse QBoost performance on the more conventional binary classifica-

tion problem – forecasting credit card client defaults. We also provide classical benchmarks

(gradient boosting and feedforward neural network classifiers) and analyse QBoost perfor-

mance from different angles. The chosen dataset is relatively large, with tens of thousands of

samples, which should help standard classical classifiers avoid overfitting and demonstrate

their best qualities.

It has been established in [218] that the QBoost algorithm is resistant to overfitting because

it involves an explicit linearisation of correlations (hence its better performance on the

smaller dataset in comparison with classical benchmarks). Another useful aspect of the

model is that it is interpretable directly, with each weak classifier corresponding to a specific

feature or a combination of features (or their functions), and the strong classifier being a

simple linear combination thereof. This compares favourably with the “black box” machine

learning discriminants, such as when using gradient boosting or DNNs. This is especially

important for financial products aimed at retail customers.

4.2.1 Credit card defaults
The default of credit card clients (DCCC) dataset is available from the UCI Machine Learning

Repository [307, 308]. The dataset consists of 30,000 samples with binary classification: a

client defaults on the credit card payment (Class 1) and a client does not default (Class 0).

There are 23 features (F1-F23) that have at least some predictive power and can be used for

the classification decision:

• F1: Amount of the given credit (NT dollar): it includes both the individual consumer

credit and his/her family (supplementary) credit.

Chapter 4 89

• F2: Gender (1 = male; 2 = female).

• F3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).

• F4: Marital status (1 = married; 2 = single; 3 = others).

• F5: Age (years).

• F6-F11: History of past payments. F6 – the repayment status in the previous month,

F7 – the repayment status two months ago, and so on. The measurement scale for the

repayment status is: −1 = pay duly; 1 = payment delay for one month; 2 = payment

delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay

for nine months and above.

• F12-F17: Amount of bill statement (NT dollar). F12 – amount of bill statement

previous month, F13 – amount of bill statement two months ago, and so on.

• F18-F23: Amount of previous payment (NT dollar). F18 – amount paid last month,

F19 – amount paid two months ago, and so on.

The weak classifiers were constructed in the following way: each feature was used sepa-

rately as an input into the logistic regression classifier with the aim of making a binary

prediction: −1/N for Class 0 (no default) and +1/N for Class 1 (default), where N = 23

is the total number of weak classifiers (number of features in the dataset). Note that this is

not the only possible approach. It is perfectly feasible to build the weak classifiers through

some (possibly non-linear) combination of original features. This should be done every

time we have a clear understanding of which combination of features would produce a

more meaningful and insightful result. However, in this particular example, our objective is

to illustrate the general principles of QBoost algorithm and we do not assume any subject

matter expertise that would allow us to construct better derived features.

We have used sklearn.linear_model.LogisticRegression from the scikit-learn pack-

age [230] for the weak classifiers. The dataset was split into training and testing datasets at

a 70:30 ratio with the help of the sklearn.model_selection.train_test_split module.

The class labels were encoded as −1 for Class 0 and +1 for Class 1, as per the QBoost

90 Quantum Boosting

algorithm requirements.

The following configuration of the LogisticRegression model was used in constructing

the weak classifiers dataset (all other parameters were set at their default values):

• penalty = ‘l2’

• C = 1.0

• solver = ‘lbfgs’

• max_iter = 1000

Therefore, we have a training dataset (21,000 samples) and a testing dataset (9,000 samples),

each consisting of the predictions of 23 weak classifiers (taking values {−1/23, +1/23})

and class labels (taking values in {−1, +1}). If the prediction of the strong classifier is given

by the sum of predictions of the weak classifiers (a simple majority voting approach), its

value will be in the [−1, 1] range, with the values of −1 and +1 achieved if all the weak

classifiers are in perfect agreement with each other.

QBoost provides an improvement on this approach by finding an optimal configuration

of the weak classifiers such that the majority voting is performed on a subset of available

weak classifiers. In other words, a majority voting performed on all weak classifiers is just

a special case of the QBoost (one of the possible configurations to explore). Therefore, it is

necessary to compare QBoost performance with more advanced classical machine learning

models such as gradient boosting and neural networks. We provide this comparison in

Section 4.3.

4.2.2 QUBO classification results
Each feature in the DCCC dataset is uniquely mapped to the corresponding (weak) logistic

regression classifier and associated binary decision variable (qi)i=1,...,23. These decision

variables are represented by the logical qubits/spin variables in the QUBO/Ising formulation

of the optimisation problem.

The number of non-zero decision variables (weights) depends on the degree of regularisation

we would like to impose. Table 4.2 shows the optimal configurations of the weights as

Chapter 4 91

a function of the penalty λ obtained for the training dataset. Given the relatively small

number of weak classifiers in our example, the optimal configuration can be found by an

exhaustive search. As one would expect, the larger the value of the penalty λ, the smaller

the number of non-zero weights.

λ non-zero weights

500 {q1, q6, q7, q8, q9, q10, q11}
600 {q6, q7, q8, q9, q10, q11}
700 {q6, q7, q10, q11}
800 {q6, q10, q11}
900 {q6, q11}
1000 {q6}

Table 4.2: Optimal configurations of QUBO weights q for various values of the penalty λ. The
optimal configurations list all non-zero weights.

Given a configuration of weights, we can build the strong classifier as per (4.1.1). Then, we

can compare the performance of the obtained strong classifier on both training (in-sample)

and testing (out-of-sample) datasets. The performance metrics of choice are accuracy,

precision, and recall. The classifier performance can also be visualised with the help of a

confusion matrix. Here are their definitions.

• Accuracy is the ratio of correctly predicted observations to the total observations.

Accuracy is a good metric for classes of roughly the same size and equivalent im-

portance. However, it is a poor metric for the dataset in our example: the Class 0

samples (no default) are far more numerous but the relative importance of Class 1

samples (default) is much higher.

• Precision is the ratio of correctly predicted positive observations to the total pre-

dicted positive observations. High precision corresponds with a low false positive

rate. This is a metric we would like to maximise in the context of credit card defaults

if there is a high cost associated with the incorrect default predictions.

92 Quantum Boosting

• Recall is the ratio of correctly predicted positive observations to all observations in

the positive class. In the context of credit card defaults, this metric shows how many

of the actual defaults were predicted by the classifier. We would like to maximise

this metric from the risk management perspective.

• Confusion matrix for a binary classifier is a 2× 2 matrix whose elements are the

counts of the true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) predictions of a classifier, as shown in Figure 4.1.

P N

P

N

TP

FP

FN

TN

Predicted class

A
ct

ua
lc

la
ss

Figure 4.1: Confusion matrix for a binary classifier.

Accuracy, precision, and recall are then defined as follows:

Accuracy :=
TP + TN

TP + TN + FP + FN
,

Precision :=
TP

TP + FP
,

Recall :=
TP

FN + TP
.

Figure 4.2 displays in-sample and out-of-sample confusion matrices for the strong QBoost

classifier assuming that Class 1 (default) is the positive class and Class 0 (no default) is the

negative class. The penalty was set at λ = 103, thus enforcing strong regularisation.

The in-sample and out-of-sample results are quite close, as one would expect from a strongly

regularised classifier. Table 4.3 summarises the results.

Chapter 4 93

Class 1 Class 0

C
la

ss
1

C
la

ss
0

Class 1 Class 0

C
la

ss
1

C
la

ss
0

1,534

684

3,162

15,620

643

269

1,297

6,791

Predicted class

A
ct

ua
lc

la
ss

Predicted class

A
ct

ua
lc

la
ss

In-sample Out-of-sample

Figure 4.2: Confusion matrices for the QBoost classifier (DCCC dataset).

Accuracy Precision Recall

In-sample 0.82 0.69 0.33

Out-of-sample 0.83 0.71 0.33

Table 4.3: Accuracy, precision, and recall for the QBoost classifier trained and tested on the DCCC
dataset.

4.3 Classical Benchmarks
Classical benchmarking is an important element of the testing of quantum algorithms.

Small-scale (or even stylised) problems are ideally suited for this task. Let us see how the

QBoost model performs in comparison with the standard classical ML classifiers: neural

networks and gradient boosting.

4.3.1 Artificial neural network
An Artificial Neural Network (ANN) is a network of interconnected activation units (or

artificial neurons), where each activation unit performs three main functions (Figure 4.3):

• Summation of the input signals (xi)i=1,...,N , from all the upstream units to which it

is connected with multiplication by the corresponding weights (wi)i=1,...,N ;

94 Quantum Boosting

• Non-linear transformation of the aggregated input;

• Sending the result to the downstream units to which it is connected.

Sometimes the activation unit also performs binarisation (or, more generally, digitisation)

of the output – typically, this is a task of the activation units in the output layer of an ANN

trained as a classifier.

x1

x2

...

xN

w1

w2

wN

s =
∑N

i=1wixi y = f(s)
y ≤ θ : 0
y > θ : 1

aggregation
of input

non-linear
transformation

binarisation
(optional)

Figure 4.3: Schematic representation of an artificial neuron (perceptron).

In its simplest form, an ANN is organised as layers of activation units: an input layer, an

output layer, and one or several hidden layers, as schematically pictured in Figure 4.4.

input hidden layers output

Figure 4.4: Schematic representation of a feedforward ANN.

Chapter 4 95

The activation unit in Figure 4.3 is known as a perceptron, and the ANNs consisting of

layers of perceptrons are known as Multi-Layer Perceptrons (MLPs). MLPs are feedforward

neural networks: the signal travels in one direction from the input layer to the output

layer. ANNs can be organised differently with signal travelling back and forth between the

layers, and we will explore one such model in the next chapter. However, when it comes to

building a classifier, the simple feedforward architecture works well in practice.

The practical approach to the ANN architecture is based on the fundamental result obtained

by Cybenko [75]. It states that arbitrary decision regions can be arbitrarily well approxi-

mated by continuous feedforward neural networks with only a single hidden layer and

any continuous sigmoidal non-linearity. This result was further generalised to the wider

range of activation functions by Hornik, Stinchcombe, and White [141]. It was established

that multilayer feedforward networks with only a single hidden layer and an appropriately

smooth hidden layer activation function are capable of arbitrarily accurate approximating

any arbitrary function and its derivatives. In fact, these networks can even approximate

functions that are not differentiable in the classical sense, but possess only generalised

derivatives [224].

4.3.2 Training artificial neural networks
The process of training an ANN consists in finding an optimal configuration of network

parameters (weights and biases) such that the new unseen input is transformed in the

desired way. The network is trained on what is known as a training dataset. The samples

from the training dataset can be labelled (each sample is assigned a class label, either

numerical or categorical). In this case, we can perform supervised learning, where the

network is tasked with learning the mapping between the features and the class labels – an

ANN trained in the supervised learning mode becomes a classifier. When the samples are

not labelled, we can train the network as a regressor. Although ANNs trained as classifiers

may seem to be the most obvious practical decision-making tools, regressors too find

numerous applications in various fields of quantitative finance, for example in learning the

natural dynamics and transformations of interest rate curves [169].

96 Quantum Boosting

However, we would like to focus here on the labelled datasets since our objective is to

consider a classical counterpart of the QBoost classifier. The standard approach to training

a feedforward ANN is the backpropagation of error with gradient descent [113]. We briefly

explain the main idea of this method.

The starting point is the specification of some suitable cost function that indicates how

far we are from the correct classification. Without loss of generality, assume that we

work with a training dataset consisting of M samples, where each sample is a pair of an

N -dimensional vector of features and a binary class label:

{xj , yj}j=1,...,M , with xj := (xj1, . . . , x
j
N) and (yj)j=1,...,M ∈ {0, 1}. (4.3.1)

Let (ŷj)j=1,...,M be the class labels assigned to the corresponding training samples by the

ANN for some configuration of the network weights w = (w1, . . . , wK). Then, we can

define the cost function as

L(w) :=
M∑
j=1

g
(
yj , ŷj(w)

)
, (4.3.2)

where g(yj , ŷj(w)) is the estimation error for sample j. There are many possible ways of

specifying the error function, the most popular being the squared error

g(yj , ŷj) :=
(
yj − ŷj

)2
. (4.3.3)

Given the cost function L(·), we can calculate its sensitivities (derivatives) ∂L(w)/∂wk , for

each k = 1, . . . ,K , with respect to the network weights. We can then update the weights

by changing them in the direction that would reduce the estimation error, i.e., by moving

in the opposite direction of the corresponding gradients:

wk ←− wk − η
∂L(w)

∂wk
, (4.3.4)

where the coefficient η is called the learning rate, which can be either constant or dynamic.

Chapter 4 97

We then iterate the procedure given by (4.3.2), (4.3.3), and (4.3.4) until either the estimation

error drops below a predefined threshold or a maximum number of iterations is reached.

Often the learning rate is set initially at some relatively large value and then decays

exponentially with the number of iterations.

The gradients can be calculated numerically (e.g., using the finite difference method)

or analytically, the latter being obviously preferable. The most widely used non-linear

activation functions and their gradients are listed in Table 4.4 and their plots are shown in

Figure 4.5:

Activation function Notation Function Derivative

Logistic sigmoid σ(x)
(
1 + e−x

)−1
σ(x)(1− σ(x))

Hyperbolic tangent tanh(x)
ex − e−x

ex + e−x
1− tanh2(x)

Rectified Linear Unit ReLU(x) max(0, x) 0 if x < 0; 1 if x > 0

Table 4.4: Activation functions.

-2 -1 0 1 2 -4 -2 0 2 4 -1 0 1

0

1

0.5

1

0

1

Hyperbolic tangent Logistic sigmoid ReLU

Figure 4.5: Activation functions.

98 Quantum Boosting

Remark: The sigmoid activation functions, such as logistic sigmoid and hyperbolic tangent,

are the activation functions of choice for shallow neural networks with only a couple of

hidden layers. In this case, it is possible to exploit the smoothness of the sigmoid functions

in order to achieve the best possible approximation of the function we are trying to learn.

However, in the case of deep neural networks with a large number of hidden layers, we

face the problem of vanishing gradients – gradients of σ(x) and tanh(x) become null as

x → ±∞. At the same time, ReLU always has a non-zero gradient for all x > 0, which

makes it the activation function of choice for deep neural networks whenever it makes

sense to sacrifice the smoothness of the activation function for non-zero gradients.

Finally, the problem of overfitting can be addressed by adding a regularisation penalty term

to (4.3.2), for example the following L2 penalty, which discourages large network weights

associated with strong non-linearity:

L(w) :=
M∑
j=1

g
(
yj , ŷj(w)

)
+ λ||w||2,

where the parameter λ controls the degree of regularisation.

4.3.3 Decision trees and gradient boosting
The decision tree approach to classification is based on the concept of splitting a dataset

on the available features in order to maximise the information gain, defined as

G(D, f) = I(D)−
M∑
j=1

Nj

N
I(dj),

where D is the dataset of the parent node, (dj)j=1,...,M are the datasets of the child nodes

into which the parent node is split, N is the number of samples in the parent node,

(Nj)j=1,...,M are the number of samples in the child nodes, and I is the chosen impurity

measure. The latter indicates the presence of the samples from the different classes in the

same node: it is zero if the node holds samples from a single class and is maximal if the

node holds an equal number of samples from the available classes. Therefore, maximisation

Chapter 4 99

of the information gain is achieved through minimisation of the child node impurities.

Figure 4.6 provides a schematic representation of a decision tree based on the binary

(“rainy/not rainy”) and continuous (“wind speed”) features. The decision tree algorithm

starts at the root, which is shown in the figure as a shaded box. Splitting the dataset on the

root feature results in the largest information gain. The splitting leads to the creation of

branches (shown in the figure as arrows going from the parent node to the child nodes) and

leaves (shown in the figure as white boxes). The terminal leaves (classes) are represented

as dashed boxes. The splitting continues until either no more branches can be created or

the maximum allowed depth is reached. It is good practice to avoid the construction of a

too deep tree by imposing pruning – a strict limit on the maximum depth of the tree, in

order to avoid overfitting.

Go to the beach Go sailing

Stay at home Is it windy today?

Is it rainy today?

Yes No

Wind speed < 10 knots Wind speed ≥ 10 knots

Figure 4.6: Schematic representation of a decision tree.

100 Quantum Boosting

The most widely used impurity measures are Gini impurity and entropy. Let (pli)i=1,...,C be

the proportion of the samples that belong to class i for node l. Then the impurity measures

are defined as

IGini :=

C∑
i=1

pli(1− pli) and IEntropy := −
C∑
i=1

pli log2(p
l
i).

Decision trees can be seen as weak learners that can be boosted to be strong learners. One

of the most popular methods of combining weak classifiers into a single strong classifier is

gradient boosting. The main principle of gradient boosting is as follows [185].

The objective is to improve the weak classifier through an iterative process with the

improvement measured as a minimisation of the estimation error (for example, the squared

error given by (4.3.3)). As before, without loss of generality, we assume that we deal with

the binary classification problem (4.3.1). Further, assume that at the k-th iteration, the weak

learner returns the estimate ŷk(xj) for sample xj . In order to improve the classification

results, the algorithm should add some estimator hk, such that for the given sample xj we

have

ŷk+1(x
j) := ŷk(x

j) + hk(x
j) = yj ,

where yj is the correct class label for sample xj . In other words, the task is to fit the new

estimator hk to the residuals yj − ŷk(xj), j = 1, . . . ,M . We also notice that the estimator

hk is proportional to the negative gradient of the squared error (4.3.3) with respect to ŷk:

hk(x
j) := yj − ŷk(xj) = −

1

2

∂g(yj , ŷk(x
j))

∂ŷk
.

Therefore, gradient boosting combines boosting with the gradient descent algorithm.

4.3.4 Benchmarking against standard classical classifiers
The classical benchmarks of choice are the MLP classifier (sklearn.neural_network.-

MLPClassifier) and the gradient boosting classifier (sklearn.ensemble.GradientBoosting-

Classifier). Table 4.5 holds weakly optimised model parameters: we did not search for

Chapter 4 101

the absolute best set of model parameters but tried just a few configurations. We can think

of it as a very rough grid search method that produces a viable configuration of model

parameters but is not necessarily optimal. All other model parameters were set at their

default values.

Gradient Boosting Classifier MLP Classifier

loss = ‘deviance’ hidden_layer_sizes = (20)

learning_rate = 0.1 activation = ‘tanh’

n_estimators = 1000 solver = ‘adam’

criterion = ‘friedman_mse’ alpha = 0.1

max_depth = 3 max_iter = 5000

alpha = 0.01

Table 4.5: Model parameters for classical benchmarks.

Figure 4.7 displays out-of-sample confusion matrices for the classical benchmarks and

Table 4.6 provides a direct comparison of the out-of-sample results for the QBoost and

classical classifiers.

Class 1 Class 0

C
la

ss
1

C
la

ss
0

Class 1 Class 0

C
la

ss
1

C
la

ss
0

672

300

1,268

6,760

672

304

1,268

6,756

Predicted class

A
ct

ua
lc

la
ss

Predicted class

A
ct

ua
lc

la
ss

Gradient Boosting MLP

Figure 4.7: Confusion matrices for the gradient boosting and MLP classifiers (DCCC dataset, out-of-
sample results).

102 Quantum Boosting

Accuracy Precision Recall

Gradient Boosting 0.83 0.69 0.35

MLP 0.83 0.69 0.35

QBoost 0.83 0.71 0.33

Table 4.6: Out-of-sample accuracy, precision, and recall for the QBoost, gradient boosting, and MLP
classifiers (DCCC dataset).

QBoost achieves similar out-of-sample results to those of gradient boosting and MLP

classifiers. A comparison of in-sample and out-of-sample QBoost performance confirms

QBoost’s ability to impose strong regularisation and avoid overfitting. At the same time,

QBoost provides full transparency in terms of which features contribute to the strong

classifier. We also obtain an explicit optimal configuration of features for any given degree

of regularisation. This is not the case when we deal with the conventional machine learning

models, which may require an extensive analysis of sensitivities and feature importances

to unpack their “black boxes”.

Quantum boosting can be applied to financial optimisation problems where

the emphasis is on transparency, interpretability, and robustness.

Summary
In this chapter, we learned how to apply quantum annealing to build a strong classifier

from several weak ones. We started with the general principles of quantum boosting and

its corresponding QUBO formulation.

We then illustrated the application of the QBoost algorithm to solving a practical real-world

financial problem, namely predicting credit card clients defaulting on their payments. The

chosen dataset is reasonably large and complex enough to provide a meaningful challenge

while remaining easy to understand and interpret the obtained results.

Chapter 4 103

It is important to have an objective comparison with the corresponding classical counter-

parts. With this in mind, we introduced several classical classifiers based on the concepts

of a feedforward neural network and a decision tree. We benchmarked QBoost against the

MLP and gradient boosting models using such metrics as accuracy, precision, and recall.

In the next chapter, we will learn how quantum annealing can assist in training powerful

generative machine learning models.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

5
Quantum Boltzmann
Machine

As we saw in Chapters 3 and 4, quantum annealing can be used to solve hard optimisation

problems. However, the range of possible applications of quantum annealing is much

wider than that. In this chapter, we will consider two distinct but related use cases that

go beyond solving optimisation problems: sampling and training deep neural networks.

Specifically, we will focus on the Quantum Boltzmann Machine (QBM) – a generative

model that is a direct quantum annealing counterpart of the classical Restricted Boltzmann

Machine (RBM), and the Deep Boltzmann Machine (DBM) – a class of deep neural networks

composed of multiple layers of latent variables with connections between the layers but

not between units within each layer.

We start by providing detailed descriptions of the classical RBM, including the correspond-

ing training algorithm. Due to the fact that an RBM operates on stochastic binary activation

units, one can establish the correspondence between the RBM graph and the QUBO graph

embedded onto the quantum chip. This provides the main motivation for performing

106 Quantum Boltzmann Machine

Boltzmann sampling (the key stage in training RBMs and DBMs) using quantum annealing.

DBMs can be trained as both generative and discriminative models. In both cases, since a

DBM can be constructed by stacking together layers of RBMs, efficient Boltzmann sampling

is the key element of the training process. Quantum annealing, which can be integrated

into the hybrid quantum-classical training routine, has the potential to improve speed and

accuracy. Quantum speedup is an especially appealing element of the envisaged quantum

advantage since it can be achieved not only during the RBM training stage but also during

the process of generating new samples.

5.1 From Graph Theory to Boltzmann Machines
We provide here a short self-contained review of graph theory in order to introduce

Boltzmann machines (or energy-based models), which one can view as particular types of

connected graphs or networks.

A graph is a set of vertices (points or nodes) and edges that connect the vertices. A directed

graph is a type of graph that contains ordered pairs of vertices while an undirected graph is

a type of graph that contains unordered pairs of vertices.

We consider a graph G = (V, E) characterised by a finite number of vertices V and

undirected edges E . For a given vertex v ∈ V , its neighbourhood is defined as the set of all

vertices connected to it by some edge, or

N (v) := {w ∈ V : {v, w} ∈ E} .

Finally, a clique C is a subset of V such that all vertices in C are pairwise connected by some

edge in E .

To each vertex v ∈ V , we associate a random variable Xv taking values in some space X .

The vector X ∈ X |V| is called a Markov random field if

Law
(
Xv|(Xw){w∈V\{v}}

)
= Law

(
Xv|(Xw){w∈N (v)}

)
.

Chapter 5 107

The following theorem, originally proved by Hammersley and Clifford [125] (see also [167,

Theorem 4.2]), provides a way to express the law of Markov random fields over graphs in a

convenient form. The Markovian property is fundamental here, as dynamics (for example,

the passing of a signal from a hidden layer to a visible layer of an RBM network) should

only depend on the current state and not on the whole path followed by the system.

Theorem 8 (Hammersley-Clifford Theorem). A strictly positive distribution satisfies the

Markov property with respect to an undirected graph if and only if it factorises over it.

Phrased differently, the theorem says that X is Markovian over G if its distribution can be

written as

PX(x) := P(X = x) =
1

Z

∏
C∈C

ψC(xC), for all x ∈ X |V|, (5.1.1)

for a set {ψC}C∈C of functions called the potential over all the cliques C ∈ C and where Z

is a normalisation constant such that the probabilities integrate to unity. Here xC naturally

corresponds to the elements of the vector x over the clique C . The factorisation is often

taken over the so-called maximal cliques, namely the cliques that are no longer cliques if any

node is added. If the distribution ofX is strictly positive, then so are the functions {ψC}C∈C

and therefore (5.1.1) can be written as

PX(x) =
1

Z
exp

(∑
C∈C

log(ψC(xC))

)
=:

1

Z
e−E(x), (5.1.2)

for all x ∈ X |V|. The function

E(x) := −
∑
C∈C

log(ψC(xC))

is called the energy function. Because of their uses in statistical physics, strictly positive

distributions of Markov random fields, taking the form (5.1.2), are also called Boltzmann or

Gibbs distributions.

108 Quantum Boltzmann Machine

Energy-based models are generative models that discover data dependencies

by applying a measure of compatibility (scalar energy) to each configuration

of the observed and latent variables. The inference consists of finding the

values of latent variables that minimise the energy given the values of the

observed variables. Energy-based models posses many useful properties

(simplicity, stability, flexibility, compositionality) – this makes them models

of choice for learning complex multivariate probability distributions.

5.2 Restricted Boltzmann Machine
5.2.1 The RBM as an energy-based model
The RBM corresponds to a special structure of such a graph, called bipartite, where the

set V of vertices can be split into two groups of visible vertices VV and hidden vertices VH
such that the set E of edges only consists of elements of the form {v, h} ∈ VV × VH .

Figure 5.1 provides a schematic representation of the RBM that implements the bipartite

graph structure. This in particular implies that cliques can only be of size one (all the

singleton nodes) or two (all the pairs (v, h) in VV × VH). For simplicity, we shall denote v

an element of X |VV | and h an element of X |VH |, and identify the random variable X with

the vertices. The following lemma gives us the general form of the energy function (5.1.2)

for RBMs.

Lemma 6 (RBM Energy Lemma). In a Restricted Boltzmann Machine, the energy function

takes the form

E(v,h) =

N∑
i=1

Ev(vi) +

M∑
j=1

Eh(hj) +

N∑
i=1

M∑
j=1

Ev,h(vi, hj),

for any v := (v1, . . . , vN) ∈ X |VV |, h := (h1, . . . , hM) ∈ X |VH |. Here, N is the number of

visible vertices and M is the number of hidden vertices.

Proof. By the Hammersley-Clifford theorem, for any v ∈ X |VV |, h ∈ X |VH |, we have the

Chapter 5 109

factorisation

P(v, h) =
1

Z

∏
C∈C

ψC((vC , hC) ∈ C)

=
1

Z

∏
{{v}:v∈VV }

ψ{v}(v)
∏

{{h}:h∈VH}

ψ{h}(h)
∏

{{v,h}∈VV ×VH}

ψ{v,h}(v, h)

=
1

Z
exp {−E(v, h)} ,

over all singletons (cliques of size one) and couples (cliques of size two), where the term

−E(v, h) reads

−E(v, h) = log

 ∏
{{v}:v∈VV }

ψ{v}(v)
∏

{{h}:h∈VH}

ψ{h}(h)
∏

{{v,h}∈VV ×VH}

ψ{v,h}(v, h)

= log

 ∏
{{v}:v∈VV }

ψ{v}(v)

+ log

 ∏
{{h}:h∈VH}

ψ{h}(h)

+ log

 ∏
{{v,h}∈VV ×VH}

ψ{v,h}(v, h)

=

∑
{{v}:v∈VV }

log
(
ψ{v}(v)

)
+

∑
{{h}:h∈VH}

log
(
ψ{h}(h)

)
+

∑
{{v,h}∈VV ×VH}

log
(
ψ{v,h}(v, h)

)
= −

N∑
i=1

Ev(vi)−
M∑
j=1

Eh(hj)−
N∑
i=1

M∑
j=1

Ev,h(vi, hj),

which concludes the proof of the lemma.

110 Quantum Boltzmann Machine

The standard example of an RBM is when the random variables follow Bernoulli distribution,

i.e., with X = {0, 1}|V|. In this case, their energies read

Ev(vi) = −aivi, Eh(hj) = −bjhj , Ev,h(vi, hj) = −wijvihj , (5.2.1)

for some parameters ai, bj , wij , i = 1, . . . , N , j = 1, . . . ,M . In particular, for a given vi,

we can write, using Bayes’ formula,

P(vi = 1|vvi , h) =
P(vi = 1, vvi , h)

P(vi = 1, vvi , h) + P(vi = 0, vvi ,h)

=
exp (−E(vi = 1, vvi ,h))

exp (−E(vi = 1, vvi , h)) + exp (−E(vi = 0, vvi ,h))
. (5.2.2)

where we denote vvi the states of all the nodes in V \ {vi}. Now, using the RBM energy

lemma, we can single out the energy arising from the particular node v using (5.2.1) as

E(vi, vvi , h) = −Φv(vi)−Ψv(vvi ,h),

where

Φv(vi) := aivi +
M∑
j=1

wijvihj =

ai + M∑
j=1

wijhj

 vi,
Ψv(vvi ,h) :=

N∑
k=1(k ̸=i)

akvk +

M∑
j=1

bjhj +

N∑
k=1(k ̸=i)

M∑
j=1

wkjvkhj .

Plugging this into (5.2.2) then yields

P(vi = 1|vvi , h) =
exp (Φv(vi = 1) + Ψv (vvi , h))

exp (Φv(vi = 1) + Ψv (vvi ,h)) + exp (Φv(vi = 0) + Ψv (vvi ,h))

=
exp (Φv(vi = 1))

exp (Φv(vi = 1)) + 1

= σ (Φv(vi = 1)) ,

Chapter 5 111

since Φv(vi = 0) = 0, where

σ(x) :=
1

1 + e−x
(5.2.3)

is the sigmoid function.

Similarly, we can single out the contribution of the energy on a given hidden node hj ,

using the RBM energy lemma:

E(v, hj ,hhj) = −Φh(hj)−Ψh(v,hhj),

where

Φh(hj) := bjhj +

N∑
i=1

wijvihj =

[
bj +

N∑
i=1

wijvi

]
hj ,

Ψh(v, hhj) :=

N∑
i=1

aivi +

M∑
k=1(k ̸=j)

bkhk +

N∑
i=1

M∑
k=1(k ̸=j)

wikvihk.

Plugging this into (5.2.2) then yields

P(hj = 1|v, hhj) =
exp

(
Φh(hj = 1) + Ψh

(
v, hhj

))
exp

(
Φh(hj = 1) + Ψh

(
v, hhj

))
+ exp

(
Φh(hj = 0) + Ψh

(
v, hhj

))
=

exp (Φh(hj = 1))

exp (Φh(hj = 1)) + 1

= σ (Φh(hj = 1)) ,

since again Φh(hj = 0) = 0.

5.2.2 RBM network architecture
As shown above, an RBM is thus a shallow two-layer neural network that operates on

stochastic binary activation units. The network forms a bipartite graph connecting stochas-

tic binary inputs (visible units) to stochastic binary feature detectors (hidden units) with

no connections between the units within the same layer, as shown in Figure 5.1 [102].

112 Quantum Boltzmann Machine

a1 a2 a3 ai aN

v1 v2 v3 . . . vi . . . vN

b1 b2 bj bM

h1 h2 . . . hj . . . hM

− visible layer units

− hidden layer units

− visible layer biases

− hidden layer biases

− network weightswNMw11

Figure 5.1: Schematic representation of an RBM with the visible layer units (white) and hidden
layer units (dark) forming a bipartite graph.

Only the visible layer of the network is exposed to the training dataset and its inputs

v := (v1, . . . , vN) flow through the network (forward pass) to the hidden layer, where

they are aggregated and added to the hidden layer biases b := (b1, . . . , bM). The hidden

layer sigmoid activation function (5.2.3) converts aggregated inputs into probabilities. Each

hidden unit then “fires” randomly and outputs a {0, 1} Bernoulli random variable with the

associated probabilities:

P(hj = 1|v) = σ

(
bj +

N∑
i=1

wijvi

)
and P(hj = 0|v) = 1− σ

(
bj +

N∑
i=1

wijvi

)
.

The outputs from the hidden layer h := (h1, . . . , hM) then flow back (backward pass) to

the visible layer, where they are aggregated and added to the visible layer biases a :=

(a1, . . . , aN). Similar to the hidden layer, the visible layer sigmoid activation function first

translates aggregated inputs into probabilities and then into Bernoulli random variables:

P(vi = 1|h) = σ

ai + M∑
j=1

wijhj

 and P(vi = 0|h) = 1− σ

ai + M∑
j=1

wijhj

 .

Chapter 5 113

Therefore, every unit communicates at most one bit of information. This is especially

important for the hidden units since this feature implements the information bottleneck

structure, which acts as a strong regulariser [134]. The hidden layer of the network can

learn the low-dimensional probabilistic representation of the dataset if the network is

organised and trained as an autoencoder.

5.2.3 Sample encoding
Figure 5.2 illustrates the binary representation of an input signal that enters the network

through the visible layer. The number of activation units in the visible layer is determined

by the number of features we have to encode and the desired precision of their binary

representation. For example, if our sample consists of m continuous features and each

feature is encoded as an n-digit binary number, the total number of activation units in the

visible layer is m× n.

v1 v2 . . . vn vn+1 vn+2 . . . v2n . . .

n-digit binary representation n-digit binary representation

variable 1 variable 2

Figure 5.2: Schematic binary encoding of continuous variables.

5.2.4 Boltzmann distribution
The network learns the probability distribution P(v, h) of the configurations of visible and

hidden activation units – the Boltzmann distribution – by trying to reconstruct the inputs

from the training dataset (visible unit values) through finding an optimal set of the network

weights and biases:

P(v, h) =
1

Z
e−E(v,h), (5.2.4)

114 Quantum Boltzmann Machine

where the energy function reads

E(v,h) = −
N∑
i=1

aivi −
M∑
j=1

bjhj −
N∑
i=1

M∑
j=1

wijvihj . (5.2.5)

Here, Z is the partition function:

Z =
∑
v,h

e−E(v,h).

However, we are usually interested either in learning the probability distribution of the

visible layer configurations if we want to generate new samples that would have the

same statistical properties as the original training dataset, or in learning the probability

distribution of the hidden layer configurations if we want to build a deep neural network

where the RBM layer performs the feature extraction and dimensionality reduction function.

The probabilities of the visible (hidden) states are given by summing over all possible hidden

(visible) vectors:

P(v) =
1

Z

∑
h

e−E(v,h) and P(h) =
1

Z

∑
v

e−E(v,h).

The most popular training algorithm for RBM, k-step Contrastive Divergence, was proposed

by Hinton [133,134]. The algorithm aims to maximise the log probability of a training vector,

i.e., to find such network weights and biases that the “energy” function E is minimised

for the samples from the training dataset (smaller value of energy corresponds to larger

probability of a configuration). The k-step CD algorithm is fully specified in Section 5.3.2

and the interested reader can also find an excellent introduction to the training of RBMs in

the work by Fischer and Igel [103].

5.2.5 Extensions of the Bernoulli RBM
The standard Bernoulli RBM setup we considered above restricts the visible layer v to

a Bernoulli distribution. In fact, as long as the Hammersley-Clifford theorem holds, we

can consider any distribution or any form of energy function. It was shown in [62, 178]

Chapter 5 115

for example, that a Bernoulli distribution for the hidden layer combined with a Gaussian

distribution for the visible layer are compatible with an energy function of the form

E(v,h) =
N∑
i=1

(vi − ai)2

2σ2i
−

M∑
j=1

bjhj −
N∑
i=1

M∑
j=1

wij
vihj
σ2i

,

for some parameters ai, σi, bj , wij , i = 1, . . . , N , j = 1, . . . ,M . In this case, for any

hj , the conditional probabilities P(hj = 1|v) remain of sigmoid form and the conditional

distribution of the visible layer is Gaussian as

Law(vi|h) = N

ai + M∑
j=1

wijhj , σ
2
i

 , for each i = 1, . . . , N.

The RBMs we have considered do not account for time series, i.e., probability structures

with temporal dependence. By enlarging the corresponding graph, in particular adding

a conditional layer with directed connections to the classical hidden and visible layers,

Taylor [280] showed that such dependence can be accounted for.

An RBM is a neural network represented by a bipartite graph. Its power is de-

rived from operating on stochastic binary activation units. It is a generative

model that encodes learned probability distribution in its weights and biases

and then generates new samples that are statistically indistinguishable from

the samples in the original dataset.

If it is organised as an autoencoder with the bottleneck information structure,

an RBM is able to learn the low-dimensional representation of the dataset.

This property suggests that an RBM can be used as a feature extraction layer

in a machine learning pipeline for certain supervised and unsupervised

learning problems.

116 Quantum Boltzmann Machine

5.3 Training and Running RBM
To build a neural network means to specify the network architecture and training algorithm.

Having described the RBM architecture in the previous section, we now outline the training

routines.

5.3.1 Training RBM with Boltzmann sampling
The goal of RBM training is to estimate the optimal vector θ of model parameters (weights

and biases) so that Pθ(v) = Pdata(v). For a given training sample v := (v1, . . . , vN), the

RBM aims at maximising the log-likelihood function, namely

max
θ

n∑
i=1

L(θ|vi),

where, for any v,

L(θ|v) = log(P(v)) = log

(
1

Z

∑
h

e−E(v,h)

)
= log

(∑
h

e−E(v,h)

)
−log

∑
v,h

e−E(v,h)

 .

The standard optimisation method, as proposed in [133], is a standard gradient ascent

method, i.e., starting from an initial guess θ0, we update it as

θk+1 = θk + ∂θ

N∑
i=1

L(θk|vi)

until we reach good enough convergence. In order to compute it, one first needs to

compute the joint probabilities P(vi, hj), which is classically done via Boltzmann (Gibbs)

sampling [3], which is possible since we know exactly the conditional distributions.

5.3.2 The Contrastive Divergence algorithm
While training RBMs can be performed with Boltzmann sampling, this is usually pro-

hibitively expensive to run. A more efficient training algorithm, the k-step Contrastive

Divergence (CD) algorithm, was proposed in [134].

Chapter 5 117

Algorithm 2: k-step Contrastive Divergence
Result: Weights and biases updates.

Input:

• Training minibatch S;

• Model parameters ai, bj , wij for i = 1, . . . , N, j = 1, . . . ,M (before update).

Initialisation: for all i, j : ∆wij = ∆ai = ∆bj = 0

for v ∈ S do
v(0) ← v

for t = 0, . . . , k − 1 do

for j = 1, . . . ,M do
sample Bernoulli random variable h(t)j ∼ P(hj |v(t))

end

for i = 1, . . . , N do
sample Bernoulli random variable v(t+1)

i ∼ P(vi|h(t))
end

end

for i = 1, . . . , N, j = 1, . . . ,M do
∆wij ← ∆wij + η

(
P(hj = 1|v(0))v(0)i − P(hj = 1|v(k))v(k)i

)
end

for i = 1, . . . , N do
∆ai ← ∆ai + η

(
v
(0)
i − v

(k)
i

)
end

for j = 1, . . . ,M do
∆bj ← ∆bj + η

(
P(hj = 1|v(0))− P(hj = 1|v(k))

)
end

end

The choice of k balances accuracy and speed. For many practical purposes k = 1 is an

optimal choice, even though the expectations may be biased in this case. However, the bias

tends to be small [53]. The network is trained through the updates of weights and biases,

118 Quantum Boltzmann Machine

which increase the log probability of a training vector and are given by the following

expressions:

∆wij = η
∂P(v)
∂wij

= η (⟨vihj⟩data − ⟨vihj⟩model) , (5.3.1)

∆ai = η
∂P(v)
∂ai

= η (⟨vi⟩data − ⟨vi⟩model) , (5.3.2)

∆bj = η
∂P(v)
∂bi

= η (⟨hj⟩data − ⟨hj⟩model) , (5.3.3)

where ⟨·⟩ denote expectations under the distribution specified by the subscript and η is

the chosen learning rate. Expectations ⟨·⟩data can be calculated directly from the training

dataset while getting unbiased samples of ⟨·⟩model requires performing alternating sampling

from the model Boltzmann distribution for a long time (this is needed to achieve the state

of thermal equilibrium), starting from some randomly initialised state. However, the k-

step CD method can be used to approximate ⟨·⟩model with another, easier-to-calculate

expectation, as shown in Algorithm 2.

5.3.3 Generation of synthetic samples
Once fully trained, the network can be used to generate new samples from the learned

distribution. For example, the RBM can be used as a market generator that produces new

market scenarios in the form of the new synthetic samples drawn from the multivariate

distribution of the market risk factors encoded in the network weights and biases.

The first step is the generation of a random input: each visible unit is initialised with a

randomly generated binary variable. The second step is performing a large number of

forward and backward passes between the visible and the hidden layers, until the system

reaches a state of thermal equilibrium: a state where the initial random vector is transformed

into a sample from the learned distribution. The number of cycles needed to reach the state

of thermal equilibrium is problem dependent and is a function of network architecture and

network parameters (weights and biases). In some cases, the generation of independent

samples requires 103 − 104 forward and backward passes through the network [173]. The

final step is the readout from the visible layer, which gives us a bitstring, encoding the

Chapter 5 119

sample from the target distribution.

Figure 5.3 displays the QQ-plots of the samples drawn from the distributions of daily returns

for two stock indices: German DAX and Brazilian BOVESPA. Recall that a quantile-quantile

(or QQ) plot is a scatter plot created by plotting two sets of quantiles against one another.

If both sets come from the same distribution, all points should lie close to the diagonal. The

dataset consists of 536 samples – daily index returns observed between 5 January 2009 and

22 February 2011 (UCI Machine Learning Repository [9, 10]). The “Normal” distribution

models daily returns as Normally distributed with a mean and variance that match those

from the historical dataset. The “RBM” distribution is a dataset of RBM-generated samples

that, ideally, should have exactly the same statistical properties as the original historical

dataset. If the samples drawn from two distributions have identical quantiles, the QQ-plots

will have all points placed on the diagonal and we can conclude that the two distributions

are identical. Figure 5.3 shows that this is indeed the case (with reasonably good accuracy)

for the samples from the “Data” and “RBM” distributions, while both demonstrate much

heavier tails in comparison with the fitted Normal distribution.

The results shown in Figure 5.3 were obtained with an RBM trained on a dataset of

daily returns. Each return from the training dataset was converted into a 12-digit binary

number. Every digit of the binary number was treated as a separate binary feature (12

features per index; 24 features in total) – this required placing 24 activation units in the

visible layer of the RBM network. The number of hidden units was set to 16. Thus, the

network was trained as a strongly regularised autoencoder. The generated returns (in

the binary format) were then converted back into their continuous representation. The

model was Bernoulli RBM (sklearn.neural_network.BernoulliRBM) from the open source

scikit-learn package [230] with the following set of parameters:

• n_components = 16 – number of hidden activation units

• learning_rate = 0.0005

• batch_size = 10 – size of the training minibatches

• n_iter = 40000 – number of iterations

120 Quantum Boltzmann Machine

The synthetic data generation approach can be formulated as Algorithm 3.

Algorithm 3: Synthetic Data Generation
1: The construction of the binary representation of the original dataset:

a) A continuous feature can be converted into an equivalent binary

representation with the required precision.

b) An integer feature x ∈ {x1, . . . , xn} can be translated into an N -digit binary

number through the standard procedure, where

2N−1 ≤ max
1≤j≤n

(xj)− min
1≤j≤n

(xj) < 2N .

c) A categorical feature can be binarised either through the one-hot encoding

method or following the same procedure as for the integer numbers since

categorical values can be enumerated.

d) The same applies to class labels, both integer and categorical.

2: The training of an RBM on the binary representation of the original dataset with

the help of a 1-step CD algorithm.

3: The generation of the required number of new synthetic samples in binary format.

4: For each synthetic data sample: the conversion of the generated binary features

into the corresponding categorical, integer, and continuous representations.

5: The generated synthetic dataset is ready to be used for the training of various

classifiers and regressors.

Chapter 5 121

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Normal

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Da
ta

a) DAX: Data vs. Normal

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Normal

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Da
ta

d) BOVESPA: Data vs. Normal

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Normal

0.06

0.04

0.02

0.00

0.02

0.04

0.06

RB
M

b) DAX: RBM vs. Normal

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Normal

0.06

0.04

0.02

0.00

0.02

0.04

0.06

RB
M

e) BOVESPA: RBM vs. Normal

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Data

0.06

0.04

0.02

0.00

0.02

0.04

0.06

RB
M

c) DAX: RBM vs. Data

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Data

0.06

0.04

0.02

0.00

0.02

0.04

0.06

RB
M

f) BOVESPA: RBM vs. Data

Figure 5.3: QQ-plots of the generated and historical returns. a)-c) DAX. d)-f) BOVESPA. The RBM
learns the heavy-tailed empirical distribution of stock index returns.

122 Quantum Boltzmann Machine

Kondratyev and Schwarz [173] proposed an RBM-based market generator and investigated

its properties on a dataset of daily spot FX log-returns. The time series of four currency

pairs’ log-returns covered a 20-year time interval (1999-2019), which allowed the RBM to

learn the dependence structure of the multivariate distribution and successfully reconstruct

linear and rank correlations as well as joint tail behaviour. Also, it was shown that an

RBM can be used to perform conditional sampling (e.g., from low-volatility/high-volatility

regimes) and achieve the desired degree of autocorrelation by varying the thermalisation

parameter. Other productive applications of RBM-based synthetic data generators are

data anonymisation, fighting overfitting, and the detection of outliers as demonstrated by

Kondratyev, Schwarz, and Horvath [174].

In addition to operating on stochastic binary activation units, the RBM gains

extra resistance to overfitting through the autoencoder architecture and

being trained with stochastic gradient ascent. This allows RBMs to learn

complex multivariate probability distributions from relatively small datasets

while avoiding overfitting.

5.4 Quantum Annealing and Boltzmann
Sampling

The application of quantum annealing to Boltzmann sampling is based on the direct

correspondence between the RBM energy function given by (5.2.5) and the Hamiltonian

in quantum annealing. Recall from Chapter 2 that quantum annealing is based on the

principles of adiabatic evolution from the initial state at t = 0 given by a HamiltonianH0

to a final state at t = T given by a HamiltonianHF , such that the system Hamiltonian at

time t ∈ [0, T] is given by

H(t) = r(t)H0 + (1− r(t))HF , (5.4.1)

Chapter 5 123

where r(t) decreases from 1 to 0 as t goes from 0 to T . An ideal adiabatic evolution scenario

envisages the system always staying in the ground state of H(t): if the system starts in

the ground state ofH0 and the evolution proceeds slowly enough to satisfy the conditions

of the quantum adiabatic theorem (Chapter 2), then the system will end up in the ground

state ofHF .

In practice, existing quantum annealing hardware does not strictly satisfy the conditions

of the quantum adiabatic theorem. Quantum annealers operate at very low temperatures

of about 15mK [90], but some residual thermal noise is still present. There is also some

amount of cross-talk between the qubits and the chains of physical qubits that represent

logical qubits can be broken. Cross-talk is the effect of a desired action on one or more

qubits unintentionally affecting one or more other qubits. In some cases, cross-talk is the

major source of computational errors. This poses serious issues for quantum annealers

solving optimisation problems where the main objective is to find an exact ground state.

But some residual amount of thermal and electromagnetic noise is desirable if we want to

use a quantum annealer as a sampler.

5.4.1 Boltzmann sampling
The quantum annealer as a sampling engine is based on the central proposal [4] that the

distribution of excited states can be modelled as a Boltzmann distribution:

P(x) =
1

Z
exp (−βHF (x)) , (5.4.2)

where β is some parameter (which can be seen as an effective inverse temperature) and Z

is the partition function:

Z =
∑
x

exp (−βHF (x)) . (5.4.3)

If we define the binary vector x to be the concatenation of the visible node vector v and

the hidden node vector h:

x := (v1, v2, . . . , vN , h1, h2, . . . , hM),

124 Quantum Boltzmann Machine

then, by comparing (5.2.4) and (5.4.2), we can establish a direct correspondence between

the energy function E and the HamiltonianHF . Therefore, we can suggest an alternative

way of calculating the expectations ⟨·⟩model formulated as in the following algorithm [4]:

Algorithm 4: Boltzmann Sampling
1: Use the RBM energy function E as the final HamiltonianHF .

2: Run quantum annealing K times and collect the readout statistics for vi(k)

and hj(k), i = 1, . . . , N , j = 1, . . . ,M , k = 1, . . . ,K .

3: Calculate the unbiased expectations:

⟨vihj⟩model :=
1

K

K∑
k=1

vi(k)hj(k),

⟨vi⟩model :=
1

K

K∑
k=1

vi(k),

⟨hj⟩model :=
1

K

K∑
k=1

hj(k).

There are two main motivations for using quantum annealing to perform Boltzmann sam-

pling as described in Algorithm 4. First, it bypasses the need for running the Contrastive

Divergence algorithm (Algorithm 2), which only provides approximations to the expecta-

tions ⟨·⟩model (even though these approximations can be sufficiently accurate). Second, the

anneal time needed to generate a new sample from the Boltzmann distribution is of the

order of∼1 microsecond regardless of the graph size. This is not the case with the classical

RBM, where it is often necessary to perform thousands of forward and backward passes

through the network before a new independent sample from the Boltzmann distribution

encoded in the network weights and biases can be read out [173]. For large RBM graphs, it

can easily take tens of milliseconds on standard hardware. Thus, we have two avenues of

exploring the potential quantum advantage offered by quantum annealing for Boltzmann

sampling: accuracy and speedup.

Chapter 5 125

5.4.2 Mapping
The first step in performing Boltzmann sampling on a quantum annealer is the mapping of

the RBM onto the quantum annealing hardware graph. We start with writing an expression

for the RBM energy function E in the following form:

E(v, h) = E(x) = βxTQx. (5.4.4)

Here, Q is the (N +M)× (N +M) matrix whose elements are RBM weights and biases:

Q =
1

β

a1 0 . . . 0 w11 w12 . . . w1M

0 a2 . . . 0 w21 w22 . . . w2M

...
...

. . .
...

...
...

. . .
...

0 0 . . . aN wN1 wN2 . . . wNM

0 0 . . . 0 b1 0 . . . 0

0 0 . . . 0 0 b2 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . bM

.

Quantum annealers operate on spin variables {−1,+1} instead of binary variables {0, 1}.

The vector of binary variables x can be transformed into the vector of spin variables s using

x −→ s = 2x− 1,

and we obtain the following expression for the RBM energy:

E = −
N∑
i=1

gisi −
N+M∑
j=N+1

gjsj −
N∑
i=1

N+M∑
j=N+1

Jijsisj − const = EIsing − const, (5.4.5)

126 Quantum Boltzmann Machine

where, for i = 1, . . . , N and j = N + 1, . . . , N +M ,

gi :=
ai
2

+
1

4

N+M∑
j=N+1

wij , gj :=
bj
2
+

1

4

N∑
i=1

wij , Jij :=
1

4
wij ,

and (si)i=1,...,N are spin variables corresponding to the visible nodes and (sj)j=N+1,...,N+M

are spin variables corresponding to the hidden nodes.

We can ignore the constant term in the RBM energy expression (5.4.5) since the same factor

will appear in the numerator and denominator of P(v,h). Thus, we have

⟨vihj⟩
EIsing
model = ⟨vihj⟩

E
model.

To express the Ising Hamiltonian using a quantum mechanical description of spins, we

replace the spin variables with their respective Pauli operators:

HIsing = −
N∑
i=1

giσ
i
z −

N+M∑
j=N+1

gjσ
j
z −

N∑
i=1

N+M∑
j=N+1

Jijσ
i
zσ

j
z, (5.4.6)

with σiz being the usual Pauli matrix representation for an Ising quantum spin. With the

initial Hamiltonian given by

H0 =

N+M∑
i=1

σix,

the time-dependent Hamiltonian (5.4.1) takes the form

H(t) = r(t)H0 + (1− r(t))HIsing.

5.4.3 Hardware embedding and parameters optimisation
In the standard programming practices of existing quantum annealers, each spin variable si

should ideally be assigned to a specific chip element, a superconducting flux qubit, modelled

Chapter 5 127

by a quantum two-level system that could represent the quantum Hamiltonian

Hlocal =
∑
i

giσ
i
z.

While each qubit supports the programming of the gi terms, the Jij parameters can then

be implemented energetically through inductive elements, meant to represent

Hcouplers =
∑
ij

Jijσ
i
zσ

j
z,

if and only if the required circuitry exists between qubits i and j, which cannot be manu-

factured too far apart in the spatial layout of the processor due to engineering considera-

tions [296]. In other words, Jij = 0 unless (i, j) ∈ G, where G is a particular quantum

annealing graph (e.g., Chimera or Pegasus graphs in the case of D-Wave quantum annealers).

It would be straightforward to embed the final Hamiltonian (5.4.6) on the quantum chip

had all the physical qubits been connected to each other. Unfortunately, this is not the case.

The existing quantum annealers have rather limited qubit connectivity. For example, in

the case of the Chimera (Pegasus) graph, a physical qubit is connected with a maximum of

six (fifteen) other physical qubits.

To get around this restriction, the standard procedure is to employ the minor-embedding

compilation technique for fully connected graphs. By means of this procedure, we obtain

another Ising form, where qubits are arranged in ordered 1D chains (forming the logical

qubits that represent the spin variables) interlaced on the quantum annealer graph:

HIsing = −
N∑
i=1

|JF |

[
Nc−1∑
c=1

σicz σ
i(c+1)
z

]
−

N+M∑
j=N+1

|JF |

[
Nc−1∑
c=1

σjcz σ
j(c+1)
z

]
(5.4.7)

−
N∑
i=1

gi
Nc

[
Nc∑
c=1

σicz

]
−

N+M∑
j=N+1

gj
Nc

[
Nc∑
c=1

σjcz

]
(5.4.8)

128 Quantum Boltzmann Machine

−
N∑
i=1

N+M∑
j=N+1

Jij

 Nc∑
ci,cj=1

δGij(ci, cj)σ
ici
z σ

jcj
z

 . (5.4.9)

In (5.4.7), we explicitly isolate the encoding of the logical quantum variable: the classical

binary variable si is associated with Nc Ising spins σicz , ferromagnetically coupled directly

by strength JF , forming an ordered 1D chain subgraph of G. The value of JF should

be strong enough to correlate the value of the magnetisation of each individual spin if

measured in the computational basis (⟨σicz ⟩ = ⟨σ
i(c+1)
z ⟩).

In (5.4.8) and (5.4.9), we encode the Ising Hamiltonian (5.4.6) through our extended set of

variables: the local field gi is evenly distributed across all qubits belonging to the logical

chain i, and each coupler Jij is active only between one specific pair of qubits (σic
⋆
i

z , σ
jc⋆j
z),

which is specified by the adjacency check function δGij(ci, cj), which assumes a unit value

only if (ci = c⋆i) and (cj = c⋆j), and is zero otherwise.

Given this particular embedding scheme, we can turn our attention to finding an optimal

value for the parameter β in (5.4.4), which can only be done experimentally. Since the final

Hamiltonian is programmed on the quantum annealer using dimensionless coefficients,

the parameter β cannot be expressed in the usual form 1/kT , where k is the Boltzmann

constant and T the effective temperature. Instead, it should be viewed as an empirical

parameter that depends on the network architecture, the embedding scheme, and the

physical characteristics of the quantum annealer (such as the operating temperature, the

anneal time, the energy scale of the superconducting flux qubit system, etc.).

The experimental approach of estimating β consists of the following five steps [4]:

1: Construct an RBM.

2: Map the RBM to a final Hamiltonian assuming a particular value of β (Alg. 4-Step 1).

3: Run quantum annealing (Alg. 4-Step 2).

4: Compute the model expectations using the quantum samples (Alg. 4-Step 3).

5: Compare the resulting expectations with the “correct” benchmark values (e.g., ob-

tained with the classical CD algorithm).

Chapter 5 129

This process is repeated for different choices of β. The value of β that gives the best fit

can then be used for the given RBM architecture. As noted in [4], even with the optimal

settings for β, the estimates of the model expectations will still have some error. However,

in comparison to the noise associated with the Boltzmann sampling in the Contrastive

Divergence algorithm, this may be sufficient to estimate the gradients in (5.3.1), (5.3.2), and

(5.3.3).

5.4.4 Generative models
The main application of the Boltzmann sampling we’ve considered so far is in providing an

unbiased estimate of the model expectations as specified in Algorithm 4. Once fully trained

with the help of quantum annealing, an RBM can be used in a conventional classical way

to generate new synthetic samples from the learned probability distribution. In this case,

quantum annealing is only used as a subroutine in the hybrid quantum-classical training

protocol.

However, it is possible to use a quantum annealer as a generator in its own right. Rather

than assisting in training the classical RBM, a quantum annealer can output the binary

representation of the continuous samples as per the distribution encoded in the final

Hamiltonian (5.4.6). The Quantum Variational Autoencoder [162] is another example of a

QBM that can be trained end to end by maximising a well-defined cost function: a quantum

lower bound to a variational approximation of the log-likelihood.

Botzmann sampling is the key element of RBM training and the generation of

new samples. Quantum annealing can provide orders of magnitude speedup

by replacing classical Boltzmann sampling with quantum sampling.

130 Quantum Boltzmann Machine

5.5 Deep Boltzmann Machine
Deep Boltzmann Machines (DBMs) can be constructed from several RBMs where the hidden

layer of the first RBM becomes the visible layer of the second, and so on, as shown in

Figure 5.4.

− visible layer RBM 1

− hidden layer RBM 1 /

visible layer RBM 2

− hidden layer RBM 2

Figure 5.4: Schematic representation of a DBM.

A DBM can be trained layer by layer, one RBM at a time. This will result in a powerful

generative model capable of learning complex multivariate distributions and dependence

structures. However, the generative training of the DBM can be used as the first step

towards building a discriminative model if the training dataset samples are labelled. In this

case all DBM weights and biases found with the help of either CD or quantum Boltzmann

sampling algorithms are seen as initial values of the weights and biases of the corresponding

feedforward neural network. The discriminative model will consist of all the layers of the

original DBM with an extra output layer performing assignment of the class labels. The

discriminative model can be fine tuned through the standard backpropagation of the error

algorithm.

Chapter 5 131

5.5.1 Training DBMs with quantum annealing
The generative training of DBMs can be seen as a pre-training of the discriminative model.

Figure 5.5 provides a schematic illustration of the hybrid quantum-classical training process.

predicted
class
labels

training
data

Generative training of RBMs with quantum Boltzmann sampling

RBM #1 RBM #2

1

Training the
classifier

2

Discriminative training of DBMs (fine tuning of network weights
with backpropagation of error)

3

Figure 5.5: Generative and discriminative training of a DBM.

In the DBM training scheme shown in Figure 5.5, only Step 1 relies on quantum annealing.

Steps 2 and 3 are completely classical. Step 3 is optional: without it we have a standard

machine learning “pipeline” where one or several RBMs (Step 1) perform “feature extraction”

by building a low-dimensional representation of the samples in the dataset, thus helping

the discriminative model (Step 2) to achieve better classification results.

132 Quantum Boltzmann Machine

5.5.2 A DBM pipeline example
The pipeline approach can be illustrated using the popular “King+Rook vs. King+Pawn”

dataset from the UCI Machine Learning Repository [262, 263]. The task is to classify the

end game positions with the black pawn one move from queening and the white side

(King+Rook) to move. The possible outcomes are “white can win” (Class 1) and “white

cannot win” (Class 0). The board is described by 36 categorical attributes that can be

encoded as 38 binary variables. The dataset consists of 3,196 samples (white can win in 52%

of all cases in the dataset).

The scikit-learn package provides all the necessary components for building the classical

part of a DBM pipeline. The pipeline itself can be constructed with the help of sklearn.-

pipeline.make_pipeline. The DBM is constructed from two RBMs implemented with the

help of sklearn.neural_network.BernoulliRBM. RBM #1 has 38 nodes in the visible layer

and 30 nodes in the hidden layer; RBM #2 has 30 nodes in the visible layer and 20 nodes in

the hidden layer. The exact pipeline configuration is as follows (all other parameters were

set at their default values):

RBM #1 RBM #2 MLP Classifier

n_components = 30 n_components = 20 hidden_layer_sizes = (20)

learning_rate = 0.00025 learning_rate = 0.00025 activation = ’tanh’

batch_size = 10 batch_size = 10 solver = ’adam’

n_iter = 100000 n_iter = 100000 alpha = 0.1

max_iter = 5000

Table 5.1: Configuration of the DBM pipeline for the “King+Rook vs. King+Pawn” classification
problem.

Thus, both RBMs are trained as autoencoders: the DBM translates each 38-feature sample

into its 20-feature low-dimensional representation. These new “extracted” features, ideally,

should have higher predicting power in comparison with the original features, assuming

that both RBMs learned the main characteristics and dependence structure of the dataset

Chapter 5 133

and stripped away the noise or the less important characteristics. The discriminator is

sklearn.neural_network.MLPClassifierwith 20 tanh activation units in its single hidden

layer.

With this setting, the DBM achieves the following out-of-sample classification results

(with the dataset split 70:30 into the training and testing datasets using sklearn.model_-

selection.train_test_split):

• Classification accuracy: 95.2%

This compares favourably with, for example, an ensemble learning classifier such as random

forest (sklearn.ensemble.RandomForestClassifier). The random forest classifier with

the number of estimators set at 1,000 and the maximum depth set equal to 5 has the

following out-of-sample classification results:

• Classification accuracy: 94.9%

The architecture of DBMs allows them to be trained as either generative

or discriminative models. In both cases, Boltzmann sampling can play an

important role in improving their performance.

Summary
In this chapter, we learned about energy-based models – a special class of powerful genera-

tive models. We learned how to build, train, and run RBMs in order to generate synthetic

samples that are statistically indistinguishable from the original training dataset.

We familiarised ourselves with the Boltzmann sampling and Contrastive Divergence algo-

rithms. Boltzmann sampling can be efficiently performed on NISQ-era quantum annealers

that may improve the quality of the model and achieve orders of magnitude of speedup in

generating new samples.

We learned how to combine individual RBMs together to construct a DBM. Quantum

134 Quantum Boltzmann Machine

annealing can be productively applied to the pre-training of a DBM before it is fine tuned

as a deep feedforward neural network classifier.

Finally, we explored the possibility of using RBMs and DBMs as the first model in the

machine learning pipeline for denoising and feature extraction.

In the next chapter, we will shift our attention to gate model quantum computing. We will

start with the concept of a classical binary digit (bit) and classical logic gates before introduc-

ing their quantum counterparts: the quantum binary digit (qubit) and one-qubit/multi-qubit

quantum logic gates and quantum circuits.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

PART II

GATE MODEL QUANTUM
COMPUTING

6
Qubits and Quantum Logic
Gates

A computation can be broadly defined as a transformation of one memory state into another.

Put slightly differently, a computation is a function that transforms information [281]. In

the case of classical digital computing, the fundamental memory unit is a binary digit

(bit) of information. Functions that operate on bits of information are called logic gates.

Logic gates are Boolean functions that can be combined into circuits capable of performing

addition and multiplication, as well as more complex operations. In logic gates, the number

of output bits does not have to be the same as the number of input bits.

A computation may seem to be an abstract mathematical concept but it always requires

some physical system in order to be executed. It does not matter what this physical

system is: billiard balls, electric switches, transistors, or anything else – the computation is

substrate independent. However, it is always some physical process that changes the state

of the system in a controlled way.

138 Qubits and Quantum Logic Gates

Classical digital computing requires some physical implementation of two distinct determin-

istic states (usually denoted as 0 and 1) and a set of gates that perform controlled transitions

between them. In the following sections, we will see how classical digital computation can

be implemented, what set of basis operations is required, and how the logic of classical

computation can be extended to more general logic of quantum computation, of which

classical computing is just a special case.

6.1 Binary Digit (Bit) and Logic Gates
In this section, we rapidly review classical logic gates and their universality, in order to

draw a parallel later to quantum gates.

6.1.1 Logic gates
A logic gate is an implementation of a Boolean function, a logical operation performed on

one or more binary inputs that produces a single binary output. Logic gates are represented

by their truth tables. A truth table has one column for each input variable, and one final

column showing all of the possible results of the logical operation that the table represents.

Each row of the truth table contains one possible configuration (a single bit or a bitstring)

of the input variables, and the result of the operation for those values.

Figures and Tables 6.1, 6.2, 6.3, and 6.4 are schematic circuit representations of the AND,

OR, NAND (not AND), and XOR (exclusive OR) logic gates as well as their corresponding truth

tables.

A

B
CAND

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Figure 6.1: AND gate diagram and truth table.

Chapter 6 139

OR
A

B
C

A B C

0 0 0

0 1 1

1 0 1

1 1 1

Figure 6.2: OR gate diagram and truth table.

A

B
CNAND

A B C

0 0 1

0 1 1

1 0 1

1 1 0

Figure 6.3: NAND gate diagram and truth table.

XOR
A

B
C

A B C

0 0 0

0 1 1

1 0 1

1 1 0

Figure 6.4: XOR gate diagram and truth table.

6.1.2 NAND as a universal logic gate
Logic gates can be combined into circuits where the output of one is the input of another.

This allows us i) to implement more complex operators than basic Boolean functions and

ii) to implement all necessary Boolean functions using only a small number of easy-to-build

140 Qubits and Quantum Logic Gates

logic gates. For example, all Boolean functions can be constructed using only a NAND gate

and a fan-out operation. This makes NAND a universal gate in classical computing. Figure 6.5

illustrates this by presenting the decomposition of four basic logic gates (NOT, AND, OR,

XOR) into circuits consisting only of NAND gates.

AND == NAND NAND

NOT == NAND

XOR == NAND

NAND

NAND

NAND

OR ==

NAND

NAND

NAND

Figure 6.5: Examples of logic gates decomposition into NAND gates and fan-out operations.

6.1.3 Building an addition operator from the NAND gates
Figure 6.6 shows how NAND and XOR gates can be combined into a circuit that implements

the basic addition operator. As we know, the XOR gate itself can be constructed from

Chapter 6 141

the combination of NAND gates. The addition operator takes three 1-bit binary numbers

as inputs and outputs two 1-bit binary numbers that can be read as a 2-bit bitstring (a

2-bit binary number). This 2-bit binary number can be translated into its integer number

representation – an integer number between 0 and 3 as shown in the truth table (Table 6.1).

+ ==

NAND

NAND

NAND

XOR

XOR

Figure 6.6: Addition operator: the input is three 1-bit binary numbers and the output is a single
2-bit binary number.

input 1 input 2 input 3 output 1 output 2 binary integer

0 0 0 0 0 00 0

0 0 1 0 1 01 1

0 1 0 0 1 01 1

1 0 0 0 1 01 1

0 1 1 1 0 10 2

1 0 1 1 0 10 2

1 1 0 1 0 10 2

1 1 1 1 1 11 3

Table 6.1: Addition operator truth table.

142 Qubits and Quantum Logic Gates

Computation is a transformation of one memory state into another. Func-

tions that perform such transformations are called logic gates. Logic gates

are fully specified by their truth tables. A universal logic gate is one from

which all other Boolean functions can be constructed. We only need to

find an efficient physical realisation of a universal gate in order to perform

computations of arbitrary complexity.

6.2 Physical Realisations of Classical Bits and
Logic Gates

We have so far defined bits and classical logic gates from a theoretical computer science

point of view. We now provide an overview of the most efficient hardware techniques used

to effectively implement such operations.

6.2.1 Implementation of the NAND gate
The NAND gate (together with the fan-out operator) is a universal gate in classical digital

computing. Therefore, it should be sufficient to find a practical physical implementation

of the NAND Boolean function in order to build a universal computer. Figure 6.7 displays

several possible realisations of the NAND gate using different technologies, from electrical

switches to semiconductors.

Relay Logic: Switches are interpreted as bits with 0 = open and 1 = closed. When

switches A and B are both closed, an electromagnet opens switch C. If either or both

of switches A and B are open, the circuit is broken and an electromagnet cannot open

switch C.

Resistor-Transistor (RT) Logic: Voltages are interpreted as bits with 0 = zero volts

and 1 = 3 volts. When wires A and B are both at +3 volts, the two transistors conduct

electricity and wire C drops to zero volts. If either or both of inputs A and B are zero volts,

the corresponding transistors do not conduct and output C stays at +3 volts.

Chapter 6 143

Complementary Metal-Oxide-Semiconductor (CMOS) Logic: Similar to RT logic,

voltages are interpreted as bits with 0 = zero volts and 1 = 3 volts. The PMOS transistor is

open when the input is 1 (+3 volts) and closed when the input is 0 (zero volts). NMOS is the

logical opposite of PMOS. The PMOS circuit is placed between the voltage and the output.

The NMOS circuit is placed between the output and the ground.

If both of the A and B inputs are high, both the NMOS transistors will conduct, neither of

the PMOS transistors will conduct, and a conductive path will be established between the

output, C, and the ground thus bringing the output low. If both of the A and B inputs are

low, then neither of the NMOS transistors will conduct, while both of the PMOS transistors

will conduct, establishing a conductive path between the output and the voltage source,

bringing the output high. If either of the A or B inputs is low, one of the NMOS transistors

will not conduct, one of the PMOS transistors will, and a conductive path will be established

between the output and the voltage source, bringing the output high. Therefore, the circuit

implements the NAND gate as the only configuration of the two inputs that results in a low

output is when both are high.

A B

C

A

B

C

+3V

A B

C

+3V +3V

A

B

a) Relay Logic b) Resistor-Transistor Logic c) CMOS Logic

PMOS PMOS

NMOS

NMOS

Figure 6.7: Physical realisations of the NAND gate.

144 Qubits and Quantum Logic Gates

6.2.2 Implementation of the RAMmemory cell
Random Access Memory (RAM) is used to store instructions and data currently used by

the CPU. It is called volatile memory in the sense that it is wiped out when the computer is

switched off. RAM may consist of many billions of elementary memory cells, with each

memory cell being able to store one bit of information.

Now that we know how to build a universal logic gate, we can try to design a circuit

that would implement the elementary memory unit we need to build RAM. For example,

Figure 6.8 shows how the memory cell can be built from four NAND logic gates.

NAND

NAND

NAND

NAND

D

E

Q

Q

Figure 6.8: Construction of the elementary memory cell from NAND gates.

D E Q Q

0 1 0 1

1 1 1 0

0 0 Q Q

1 0 Q Q

Table 6.2: Memory cell truth table.

The circuit in Figure 6.8 has two input pins, D (Data) and E (Enabler), and two output pins,

Q and Q (NOT Q). The truth table (Table 6.2) of the memory cell circuit explains how it

Chapter 6 145

works:

• When the enabler input E is set to 1, the output Q can be set to the data input D.

• When the enabler input E is set to 0, the output Q cannot be changed – it retains its

value.

These are the key features that allow the circuit to serve as a memory cell.

Computation is substrate independent. Any physical system that can exist

in two discrete, stable states with controlled transitions between them can

be used to implement gate model digital computing. At the same time, some

of the implementations are more efficient (faster, cheaper, more reliable)

than others.

These classical logic gates provide a natural framework to understand their quantum

formulations, which we’ll investigate now.

6.3 Quantum Binary Digit (Qubit) and Quantum
Logic Gates

Quantum bits and quantum logic gates are the quantum computing counterparts of classical

bits and logic gates. While they share common features, the quantum aspects yield a

multitude of specific properties, which are the subject of this section.

6.3.1 Computation according to the laws of quantum
mechanics

Classical logic gates operating on bits implement Boolean functions, forming the basis

of digital classical computing. As we have seen, there are many possible physical imple-

mentations of a classical bit – a system that has two distinct, stable states with controlled

transitions between them. What can we say about such a system from the quantum

mechanical point of view?

146 Qubits and Quantum Logic Gates

As we know from Chapter 1, any such system may exist in a superposition of states, and

the state of a qubit |ψ⟩ is described by the expression

|ψ⟩ = α |0⟩+ β |1⟩ ,

where α and β are complex numbers satisfying

|α|2 + |β|2 = 1. (6.3.1)

The coefficients α and β are probability amplitudes. Any attempt to measure the state |ψ⟩
results in getting |0⟩ with probability |α|2, and |1⟩ with probability |β|2. The measure-

ment consists in coupling the quantum system to the environment, which collapses the

superposition. After the measurement, the system is in the measured state and further

measurements on the same basis will always yield the same result.

Since the qubit state |ψ⟩ is described by two complex probability amplitudes satisfy-

ing (6.3.1), we can say that the state of a qubit is a unit vector in the two-dimensional

complex vector space. In other words, the state |ψ⟩ can be written as the vectorα
β

 = α

1
0

+ β

0
1

 .
This means that the basis states |0⟩ and |1⟩ are represented by the standard orthonormal

basis vectors

|0⟩ :=

1
0

 , |1⟩ :=

0
1

 .
The standard orthonormal basis |0⟩ and |1⟩ is not the only possible choice of the basis

vectors. Any pair of linearly independent unit vectors |u⟩ and |v⟩ from the complex two-

dimensional vector space can serve as a basis:

α |0⟩+ β |1⟩ = α′ |u⟩+ β′ |v⟩ .

Chapter 6 147

For example, we can use the Hadamard basis {|+⟩ , |−⟩} defined by

|+⟩ := 1√
2
|0⟩+ 1√

2
|1⟩ =

1√
2
1√
2

 and |−⟩ := 1√
2
|0⟩ − 1√

2
|1⟩ =

1√
2

− 1√
2

 .
The basis is determined by the measurement process or the physical realisation of the

quantum computer [80].

It is important to specify the choice of the basis. For example, the vector

1√
2
1√
2

measured in the standard orthonormal basis (the computational basis) gives outcomes |0⟩
and |1⟩ with equal probability 1/2. Measured in the Hadamard basis, it gives the outcome

|+⟩ with probability 1.

The state of a two-qubit system can be represented by a unit vector in the four-dimensional

complex vector space. In this case, the standard orthonormal basis consists of four or-

thonormal unit vectors

|00⟩ :=

1

0

0

0

 , |01⟩ :=

0

1

0

0

 , |10⟩ :=

0

0

1

0

 , |11⟩ :=

0

0

0

1

 , (6.3.2)

and the system state is described by four probability amplitudes:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ ,

with α, β, γ, δ ∈ C such that |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The basis vectors (6.3.2) of the

148 Qubits and Quantum Logic Gates

two-qubit states are constructed as tensor products of the individual qubit basis vectors:

|00⟩ = |0⟩ ⊗ |0⟩ =

1 ·

1
0

0 ·

1
0

 =

1

0

0

0

 , |01⟩ = |0⟩ ⊗ |1⟩ =

1 ·

0
1

0 ·

0
1

 =

0

1

0

0

 ,

|10⟩ = |1⟩ ⊗ |0⟩ =

0 ·

1
0

1 ·

1
0

 =

0

0

1

0

 , |11⟩ = |1⟩ ⊗ |1⟩ =

0 ·

0
1

1 ·

0
1

 =

0

0

0

1

 .

Generally, the n-qubit system can exist in any superposition of the 2n basis states and

requires 2n probability amplitudes to be fully specified.

Computation is a transformation of the memory state. The qubit states are

transformed by an application of quantum logic gates. Quantum logic gates

are unitary linear operators that are represented by unitary matrices. The

action of a quantum logic gate on a specific quantum state is found by mul-

tiplying the unitary matrix representing the gate by the vector representing

the state. The result is the new quantum state.

6.3.2 Qubit
It is convenient to visualise the state of a qubit as a point on the unit sphere, named the

Bloch sphere after physicist Felix Bloch. Every point on the Bloch sphere is uniquely

specified by two angles, θ ∈ [0, π] and ϕ ∈ [0, 2π], as shown in Figure 6.9.

Chapter 6 149

x

y

z

|0⟩

|1⟩

θ

ϕ

Figure 6.9: Quantum state |ψ⟩ on the Bloch sphere.

With the mapping

α = cos

(
θ

2

)
, β = eiϕ sin

(
θ

2

)
,

we obtain the canonical representation of the qubit state:

|ψ⟩ = α |0⟩+ β |1⟩ =

 cos

(
θ

2

)
eiϕ sin

(
θ

2

)
 .

A transformation of the qubit state can be visualised as a transition from one point on the

Bloch sphere to another. Therefore, the unitary matrix (quantum logic gate) that performs

this transformation can be seen as a rotation operator and we can speak about rotation as a

synonym of gate operation and rotation angles as gate parameters.

150 Qubits and Quantum Logic Gates

6.3.3 One-qubit quantum logic gates
Unlike classical computing where we can only define two logic gates operating on a single

bit (the identity gate and the NOT gate), quantum computing has infinitely many single

qubit logic gates: any unitary 2 × 2 matrix (rotation) is a quantum logic gate. Some of

these gates are more important (or easier to implement) than others. Below we provide

detailed descriptions of some of them, starting with the identity I and the Pauli matrices X,

Y, and Z. The action of the I gate is obvious – it leaves the state of the qubit unchanged;

Pauli matrices perform rotation of the qubit state by π radians around, respectively, the x,

y, and z axis:

I =

1 0

0 1

 , X =

0 1

1 0

 , Y =

0 −i
i 0

 , Z =

1 0

0 −1

 .
We can easily verify by performing simple algebraic operations that the X gate flips the bit

and that the Z gate flips the phase:

X gate:

0 1

1 0

1
0

 =

0
1

 ,
0 1

1 0

0
1

 =

1
0

 .

Z gate:

1 0

0 −1

1
0

 =

1
0

 ,
1 0

0 −1

0
1

 = −

0
1

 .
These operations can be visualised with the help of the following graphical representation

of the quantum gates:

|0⟩

|1⟩ X

X |1⟩

|0⟩

|0⟩

|1⟩ Z

Z |0⟩

− |1⟩

Figure 6.10: Graphical representation of the X and Z gates.

Chapter 6 151

Here, horizontal lines represent quantum registers and boxes represent quantum gates.

Together, quantum registers and quantum gates form the graphical representation of

quantum circuits – the sequence of quantum gates that transform the quantum state, thus

implementing quantum computation. The quantum circuits are read from left to right: the

initial quantum state is shown at the left end of the quantum circuit and the final state is

shown at the right end. Often, the last operator on the quantum register is the measurement

operator. Following measurement (in the computational basis), a qubit is transformed into

a classical bit and its value is a known binary number.

Since the X gate flips the state of the qubit, it is also called the NOT gate. Similarly, the Z

gate that flips the phase of the qubit state is known as the PHASE gate.

We can draw a direct analogy between the NOT gate in classical computing and the NOT gate

in quantum computing but there are quantum gates that perform operations that do not

exist in classical computing. One such example is the
√
NOT gate (represented by the matrix

M introduced in Section 1.2.1). In classical computing, we do not have a function that,

when applied twice, would flip the bit. But such a function exists in quantum computing:

√
NOT ≡

√
X =

1

2

1 + i 1− i

1− i 1 + i

 .
We know that one of the main sources of power of quantum computing is the ability

of a qubit to exist in a superposition of basis states. But how can we put a qubit that

was initialised as |0⟩ (or |1⟩) in a superposition of states |0⟩ and |1⟩? The answer is the

Hadamard gate, H, which creates an equal superposition of states |0⟩ and |1⟩ when applied

to either state |0⟩ or state |1⟩:

H =
1√
2

1 1

1 −1

 ,
H

1
0

 =
1√
2

1
0

+
1√
2

0
1

 and H

0
1

 =
1√
2

1
0

− 1√
2

0
1

 .

152 Qubits and Quantum Logic Gates

|0⟩ H
1√
2
|0⟩+ 1√

2
|1⟩ |1⟩ H

1√
2
|0⟩ − 1√

2
|1⟩

Figure 6.11: Graphical representation of the Hadamard H gate.

Interestingly, the Hadamard H gate is its own inverse, so that the second application of the

Hadamard gate reverses the action of the first (mathematically, H 2 = I, or H = H−1):

|0⟩ H H |0⟩ |1⟩ H H |1⟩

Figure 6.12: Hadamard H gate applied twice.

Some other useful one-qubit gates are the phase shift gates where the phase is shifted by

π/2 and π/4 rather than by π as is the case for the Z (PHASE) gate:

S =

1 0

0 eiπ/2

 and T =

1 0

0 eiπ/4

 .
Finally, it is necessary to mention the adjustable one-qubit gates that perform rotation of

the qubit state around a specific axis by an arbitrary angle θ. For any given gate G, define

RG(θ) := exp

(
−1

2
iθG

)
.

Using Lemma 1 in Chapter 1, we can then immediately compute RX, RY and RZ as

RX(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)
 ,

RY(θ) =

cos (θ2) − sin
(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
 ,

RZ(θ) =

e−iθ/2 0

0 eiθ/2

 .
(6.3.3)

Chapter 6 153

The adjustable gates play a very important role in Parameterised Quantum Circuits (PQC),

which we consider in the following chapters of this book.

6.3.4 Two-qubit quantum logic gates
Similar to one-qubit gates specified by unitary 2×2 matrices, we can construct any number

of multi-qubit gates. The n-qubit gates would be represented by 2n × 2n unitary matrices.

Since multi-qubit gates act on several qubits at the same time, they can be used to entangle

them – i.e., make their states depend on each other. We also have a possibility to create

conditional operators, where an operator is applied to a target qubit only if a control qubit

is in state |1⟩. Such gates are called controlled gates and we consider below some of them.

Controlled gates are shown in the quantum circuit as a straight line connecting two

quantum registers. One quantum register represents the control qubit, and is indicated by

the dot placed at the end of the line connecting the quantum registers. Another quantum

register represents the target qubit: the desired conditional operator is put on this register.

Figure 6.13 illustrates this by displaying a Controlled Y (CY) gate. Here, q1 is the quantum

register representing the control qubit, q2 is the quantum register representing the target

qubit, and the operator applied to the target qubit is Y.

CY =

1 0 0 0

0 1 0 0

0 0 0 −i
0 0 i 0

 .

q1

q2 Y

M

M

Figure 6.13: CY gate.

The Controlled NOT gate, usually denoted as CNOT or CX, is another example of a two-

154 Qubits and Quantum Logic Gates

qubit controlled gate. It consists of applying the Pauli X gate to the target qubit if the

control qubit is in state |1⟩ and is given by the following unitary matrix:

CNOT ≡ CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

This gate is often represented in the quantum circuit by an XOR logical symbol (circled

plus) placed on the target qubit quantum register since its truth table (for the target qubit)

coincides with the truth table of the XOR logic gate.

q1

q2

q′1

q′2

Figure 6.14: CX (CNOT) gate.

q1 q2 q′1 q′2

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 6.3: Truth table for CX (CNOT) gate.

Seen differently, note that we in fact have the equality

CX |q1q2⟩ = |q1⟩ |q1 ⊕ q2⟩ ,

for any q1, q2 ∈ {0, 1}, where ⊕ denotes addition modulo 2.

Chapter 6 155

The CZ gate is a Pauli Z (phase flip) applied to the target qubit conditional on the control

qubit being in state |1⟩ and is given by the following unitary matrix:

CPHASE ≡ CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

Interestingly, for CZ it does not really matter which qubit is the target qubit and which is

the control qubit – the result is the same:

q1

q2 Z

M

M

==

q1

q2

Z M

M

Figure 6.15: CZ (CPHASE) gates.

The SWAP gate swaps the states of two qubits. The
√
SWAP gate is universal in the sense

that any multi-qubit gate can be constructed from only
√
SWAP and single qubit gates.

SWAP =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,
√
SWAP =

1 0 0 0

0 1+i
2

1−i
2 0

0 1−i
2

1+i
2 0

0 0 0 1

 .

Very often, the choice of the set of universal gates from which all other gates can be

constructed is dictated by the characteristics of the physical system used to perform

quantum computation. The
√
SWAP is a native gate in the systems that exploit exchange

interactions [221]. Related gates such as iSWAP and
√
iSWAP are natural gates in the

156 Qubits and Quantum Logic Gates

systems with Ising-like interactions [244]:

iSWAP =

1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 ,
√
iSWAP =

1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

 .

An example of an adjustable two-qubit gate is the XY gate, which is a rotation by some

angle θ between the |01⟩ and |10⟩ states:

XY(θ) =

1 0 0 0

0 cos
(
θ
2

)
i sin

(
θ
2

)
0

0 i sin
(
θ
2

)
cos
(
θ
2

)
0

0 0 0 1

 .

Note that XY(π) = iSWAP and XY(π/2) =
√
iSWAP. Together with CZ, the iSWAP gate

plays an important role in the construction of quantum circuits since any two-qubit gate

can be expressed with at most three CZ or three iSWAP gates [2].

6.3.5 The Toffoli gate
The classical Toffoli gate, invented by Tommaso Toffoli [284], is a three-bit logic gate, which

is universal in classical computing. In quantum computing, it is a three-qubit Controlled

Controlled NOT (CCNOT) gate that is represented by the following quantum circuit, where

the qubit C is the target qubit and the qubits A and B are the control qubits:

A

B

C

A′

B′

C′

Figure 6.16: Toffoli (CCNOT) gate.

Chapter 6 157

The classical Toffoli gate is given by the following truth table:

A B C A′ B′ C′

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

1 1 0 1 1 1

0 0 1 0 0 1

1 0 1 1 0 1

0 1 1 0 1 1

1 1 1 1 1 0

Table 6.4: Truth table for Toffoli gate.

The quantum Toffoli gate is represented by the unitary matrix:

CCNOT =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

.

It is clear from the Toffoli gate truth table that it also implements the AND and NAND gates.

With C = 0 it can be viewed as the AND gate:

if C = 0 : C′ = A AND B.

158 Qubits and Quantum Logic Gates

And with C = 1 it can be viewed as the NAND gate:

if C = 1 : C′ = A NAND B.

The Toffoli gate can be decomposed into a quantum circuit consisting of CNOT and one-qubit

gates:

A

B

C H T† T T† T H

T T†

T A′

B′

C′

Figure 6.17: Decomposition of the Toffoli (CCNOT) gate. The “dagger” superscript after the
gate symbol such as T† indicates the adjoint operator (see Section 1.1.1).

The fact that the Toffoli circuit allows us to implement the NAND gate, which is universal

in classical computing, demonstrates the fact that quantum computing can perform all

operations which are possible on classical computers. In other words, quantum computers

can simulate classical computers. At the same time, we have seen examples of quantum

operations that do not have their analogues in classical computing. In the most general

case, classical simulation of an n-qubit quantum system would require the ability to

store 2n probability amplitudes – an impossible task for n larger than several hundred

as there would not be enough matter in the visible universe to implement such classical

memory. Consequently, quantum computation is more general than classical computation.

Computation, as a concept, is really quantum computation. Classical computation is just a

special case of quantum one [32].

Quantum computing offers a wider range of logic gates than classical com-

puting.

Chapter 6 159

The Toffoli gate demonstrates that quantum computers can perform all

operations implementable on classical computers. At the same time, an

attempt to simulate quantum computing classically will immediately run

into memory issues.

As discussed, quantum gates correspond to unitary matrices, which have the property of

being invertible. Since quantum circuits are fundamentally classical and tensor products of

such matrices, they can easily be inverted, yielding the concept of reversible computing,

which we focus on in the next section.

6.4 Reversible Computing
The importance of the Toffoli gate goes beyond mere universality. It is a universal reversible

logic gate, meaning that it can serve as a basis for reversible computing. Here, we should

note that all quantum logic gates that are represented by unitary matrices are reversible.

So, what does reversible computing mean?

Reversible computing is a model of computation where the computational process is time-

reversible. It also means that no information is lost through the computation process and

we can always reconstruct the initial state. The ability to physically realise reversible

computing is hugely important due to the deep physical link between loss of information

and generation of heat.

According to the principle formulated by Landauer [183], in order for a computational

process to be physically reversible, it must also be logically reversible. Fundamentally, this

is due to the fact that the act of computation can only be performed by some physical

system and is subject to the physical laws of thermodynamics.

The loss of information leads to the increase in information entropy. Similarly, the increase

in thermodynamic entropy leads to the generation of heat. In both cases, we are moving

from the more ordered state to the less ordered state, which is an irreversible process.

This can be illustrated by the definitions of entropy (as a measure of disorder) in both

160 Qubits and Quantum Logic Gates

statistical mechanics and information theory. Entropy in statistical mechanics is given by

S = −kB
∑
i

pi log(pi),

where kB is the Boltzmann constant and pi is the probability of the microstate i taken from

the equilibrium ensemble (macroscopic thermodynamic state), while entropy in information

theory is given by

H = −
∑
i

pi log2(pi),

where pi is the probability of the message i taken from the message space.

A very high probability of a particular microstate and a very high probability of a specific

message indicate highly ordered systems with low entropy. The entropy is maximised (and

information is minimised) when the microstates/messages are uniformly distributed.

Any probability distribution can be approximated arbitrarily closely by some thermody-

namic system [219]. If h is information (bits) per particle, then for N particles the entropy

measured in the natural unit of information (1 bit = log(2) nat) is given by the expression

S = −kB log(2)Nh.

In energy units, kBT log(2) of heat is generated for each bit of information lost. Here, T is

the temperature of the heat sink (in Kelvins). For example, if we take T = 300K (approx.

27C), then the minimum possible amount of energy required to erase one bit of information

is 2.87 zJ (zeptojoule).

In practical terms, it means that every logically irreversible operation (e.g., NAND or XOR

gates) must be accompanied by the corresponding entropy increase and generation of

heat. As the energy efficiency of the computation process becomes progressively more

important, efforts to develop reversible computing are increasing since it may prove difficult

for traditional technology based on the laws of classical physics to progress very far beyond

current levels of energy efficiency if reversible computing principles are not used [106].

Chapter 6 161

In contrast with classical computing, all quantum computing operations are

reversible (except measurement). This means that the quantum advantage is

likely to be demonstrated not only in quantum speedup and the expressive

power of quantum circuits but also in achieving superior energy efficiency.

We have so far seen forward and backward (reversible) quantum operations. However,

what fundamentally distinguishes quantum computing from classical computing is the

concept of entanglement.

6.5 Entanglement
The key aspect of quantum computing is entanglement, which allows for quantum states

to encode more information than the sum of their individual components. We explain this

in detail here and provide examples for two-qubit systems.

6.5.1 Quantum entanglement and why it matters
An n-qubit system can exist in any superposition of the 2n basis states:

2n−1∑
i=0

ci |i⟩ = c0 |00 . . . 00⟩+ c1 |00 . . . 01⟩+ . . .+ c2n−1 |11 . . . 11⟩ ,

with
2n−1∑
i=0

|ci|2 = 1.

If such a state can be represented as a tensor product of individual qubit states then the

qubit states are not entangled. For example, it is easy to check that

1

4
√
2

(√
3 |000⟩+ |001⟩+ 3 |010⟩+

√
3 |011⟩+

√
3 |100⟩+ |101⟩+ 3 |110⟩+

√
3 |111⟩

)
=

(
1√
2
|0⟩+ 1√

2
|1⟩
)
⊗

(
1

2
|0⟩+

√
3

2
|1⟩

)
⊗

(√
3

2
|0⟩+ 1

2
|1⟩

)
, (6.5.1)

162 Qubits and Quantum Logic Gates

so that the quantum state is not entangled (only in superposition). An entangled state

cannot be represented as a tensor product of individual qubit states.

For example, the two-qubit state

1√
2
|00⟩+ 1√

2
|11⟩ (6.5.2)

does not allow a tensor product decomposition. Namely, for any a, b, c, d ∈ C such that

|a|2 + |b|2 = |c|2 + |d|2 = 1, we have

1√
2
|00⟩+ 1√

2
|11⟩ ≠ (a |0⟩+ b |1⟩)⊗ (c |0⟩+ d |1⟩).

We notice that we need 2n probability amplitudes to describe the state on the left side

of (6.5.1) while we only need 2n probability amplitudes to describe the state on the right

side of (6.5.1). The number of probability amplitudes needed to fully describe the state of a

system is directly related to the amount of information the system can store. Entanglement

allows us to encode a significantly larger amount of information than is possible with

individual independent qubits. One can say that most of the information encoded in the

state of a quantum mechanical system is stored non-locally in the correlations between the

qubit states. This non-locality of information is one of the major distinguishing features of

quantum computing over classical computing and is essential for a number of applications.

What happens if we measure the entangled qubits? In (6.5.2) both qubits are in the state

of equal superposition, i.e., if we measure the first qubit we will get both 0 and 1 with

probability 1/2. If instead we measure the second qubit we will also get 0 and 1 with equal

probability. However, the situation is completely different if we measure the second qubit

after the first has already been measured. In this case, the state of the second qubit is fully

determined by the act of measuring the first qubit and there is no longer any uncertainty

about its value: if the first qubit was measured as 0, the second qubit is also in state 0 and

if the first qubit was measured as 1, the second qubit is also in state 1. In other words,

measuring one qubit collapses the superposition and has an immediate effect on the other.

Chapter 6 163

6.5.2 Entangling qubit states with two-qubit gates
Qubit states can be entangled with the help of two-qubit gates. The two-qubit state given

by (6.5.2) is known as one of the four maximally entangled Bell states. It can be constructed

from the unentangled state |00⟩:

|00⟩ = (1 · |0⟩+ 0 · |1⟩)⊗ (1 · |0⟩+ 0 · |1⟩)

by applying the Bell circuit consisting of H and CNOT gates:

|0⟩

|0⟩

H M

M

1√
2
|00⟩+ 1√

2
|11⟩

Figure 6.18: Bell circuit.

Running this circuit on the unentagled states |01⟩, |10⟩, and |11⟩ will result in the

construc-tion of the other three Bell states:

|01⟩ → 1√
2
(|01⟩+ |10⟩),

|10⟩ → 1√
2
(|01⟩ − |10⟩),

|11⟩ → 1√
2
(|00⟩ − |11⟩).

Entanglement can be achieved with other two-qubit gates as well. Depending on the

hardware implementation, it may be a SWAP, a CPHASE, or some other fixed two-qubit gate,

or it can be an adjustable two-qubit gate such as XY(θ).

Entanglement allows us to store most of the information in the correlations

between the states rather than in the states of individual qubits.

164 Qubits and Quantum Logic Gates

Entanglement is one of the main sources of the expressive power of quantum

circuits that underpins our search for the quantum advantage.

We saw that entanglement is a distinctive feature of quantum computing. We now see

how it comes into play when analysing the quantum equivalents of classical logic gate

decompositions studied in Section 6.1.

6.6 Quantum Gate Decompositions
The most widely used NISQ computing technologies are trapped ions and superconducting

qubits. In both cases, one-qubit gates are much faster than two-qubit gates (by an order of

magnitude). Additionally, one-qubit gates have much higher fidelity [46, 164]. This means

that we can treat one-qubit gates as computationally inexpensive and should not worry too

much about their quantities. At the same time, we have to be economical with two-qubit

gates: out of two equivalent circuits, the one with the smaller number of two-qubit gates

would generally perform better. Therefore, we should be aware of the two-qubit gates

that are native to any particular system – gates that can be implemented naturally using

standard hardware control techniques. More complex gates can be decomposed into a sub-

circuit of the native gates but an even better solution would be to specify the algorithm that

takes advantage of the native gates and bypasses the need of having non-native two-qubit

gates. For example, Rigetti’s Aspen system [275] is based on the superconducting qubits

with two native two-qubit gates CZ and XY – constructing a circuit based on these gates

rather than, e.g., SWAP gates would achieve better performance.

However, it is not always practical or desirable to make an algorithm hardware depen-

dent. And since the choice of the native gates is inevitably limited, it is useful to keep in

mind several basic decompositions. The following relationships can be verified by direct

calculations and play an important role in quantum circuit construction:

Chapter 6 165

q1

q2 Z

M

M

==

q1

q2 H H

M

M

Figure 6.19: CZ gate decomposition into CX and Hadamard gates.

q1 M

==

q1

q2

M

q2 M H Z H M

Figure 6.20: CX gate decomposition into CZ and Hadamard gates.

Given the limited connectivity of NISQ devices (nearest neighbours for most qubits),

the SWAP gate that swaps the states of the qubits is especially useful and its efficient

implementation using available native gates is very important. The SWAP gate can be

represented by a sub-circuit consisting of three CX gates:

q1

q2

M

M

==

q1

q2

M

M

==

q1

q2

M

M

q2 M

==

q2 ZH H

Figure 6.21: SWAP gate decomposition into three CX gates.

Taking into account the relationship between CX and CZ gates in Figure 6.20, the SWAP gate

can also be decomposed into a sub-circuit of three CZ and a handful of one-qubit Hadamard

gates:

q1q1 M H Z H H Z H M

M

Figure 6.22: SWAP gate decomposition into three CZ and six Hadamard gates.

166 Qubits and Quantum Logic Gates

Alternatively, the SWAP gate can be implemented with the help of three iSWAP gates:

q1

q2

M

M

==

q1

q2

√
X

√
X

√
X

M

M

iSWAP iSWAP iSWAP

Figure 6.23: SWAP gate decomposition into three iSWAP gates (iSWAP = XY(π)) and three
√
X gates.

It is easy to verify by direct calculations that the circuit on the right side of Figure 6.23

performs the following transformations:

|0⟩ ⊗ |1⟩ ≡

0

1

0

0

 −→

0

0

i

0

 = exp
(
i
π

2

)

0

0

1

0

 ≡ exp
(
i
π

2

)
|1⟩ ⊗ |0⟩ ,

|1⟩ ⊗ |0⟩ ≡

0

0

1

0

 −→

0

i

0

0

 = exp
(
i
π

2

)

0

1

0

0

 ≡ exp
(
i
π

2

)
|0⟩ ⊗ |1⟩ .

The coefficient exp (iπ/2) is a global phase and can be ignored. We can do this because a

global phase is not observable: measuring the states |ψ⟩ and exp(iϕ) |ψ⟩ will yield the same

result (i.e., the same states with the same probabilities) for any ϕ ∈ R. Said differently, two

states differing only by a global phase represent the same physical system.

Finally, we mention the iSWAP representation of the CNOT gate. To do this, we need two

iSWAP and several one-qubit gates as shown in Figure 6.24.

Chapter 6 167

q1

q2

M

M

==

q1

q2

RZ(−π/2)

RX(π/2)

RX(π/2)

RZ(π/2) RZ(π/2)

M

M

iSWAP iSWAP

Figure 6.24: CNOT gate decomposition into two iSWAP gates (iSWAP = XY(π)) and several one-
qubit rotation gates.

The CNOT gate applies the NOT gate to the target qubit if the control qubit is in state |1⟩
while leaving the control qubit state unchanged. This is exactly what we see when we

apply the circuit shown on the right side of Figure 6.24 to the states |10⟩ and |11⟩:

|1⟩ ⊗ |0⟩ ≡

0

0

1

0

 −→

0

0

0

1−i√
2

 = exp
(
−iπ

4

)

0

0

0

1

 ≡ exp
(
−iπ

4

)
|1⟩ ⊗ |1⟩ ,

|1⟩ ⊗ |1⟩ ≡

0

0

0

1

 −→

0

0

1−i√
2

0

 = exp
(
−iπ

4

)

0

0

1

0

 ≡ exp
(
−iπ

4

)
|1⟩ ⊗ |0⟩ .

Here, the accumulated unobservable global phase is exp (−iπ/4).

Decomposition of non-native two-qubit gates into the subcircuits consisting

of the native two-qubit gates and high fidelity one-qubit gates allows us to

build hardware-independent quantum algorithms.

Mimicking the setup for classical logic gates above, we now investigate how qubits and

quantum logic gates can be effectively (physically) realised.

168 Qubits and Quantum Logic Gates

6.7 Physical Realisations of Qubits and
Quantum Gates

Now that the theoretical framework for quantum bits and quantum gates has been set, it is

important to understand how these can actually be realised from a hardware point of view.

6.7.1 The DiVincenzo criteria
The modern approach to building quantum computing hardware was marked by the set of

requirements for the physical implementation of quantum computation proposed in 2000

by DiVincenzo [87]. These requirements, now known as the “DiVincenzo criteria”, are as

follows:

1. A scalable physical system with well characterised qubits. A qubit being “well

characterised” means the following:

• its physical parameters should be accurately known, including the internal Hamil-

tonian of the qubit, which determines the qubit energy eigenstates. Typically, the

ground state is taken as |0⟩ and the first excited state is taken as |1⟩;
• the presence of and couplings to other states of the qubit;

• the couplings to external fields, needed to manipulate the state of the qubit;

• the interactions with other qubits, needed to implement multi-qubit gates.

2. The ability to initialise the state of the system to a simple fiducial state, such

as an all-zero state. This requirement arises from the clear need to initialise quantum

registers to a known value before the start of the computation. Another motivation for

this requirement is the fact that quantum error correction requires a continuous, fresh

supply of qubits in a low-entropy state (|0⟩ state). The need for a continuous supply of 0s,

rather than just an initial supply, is a non-trivial problem that may rule out some of the

potentially promising qubit implementations.

3. Long relevant decoherence times, much longer than the gate operation time.

Decoherence can be viewed as the loss of information from a quantum system into the

environment. Coupling with the environment leads to entanglement between the system

Chapter 6 169

and environment and the transfer of quantum information to the surroundings. As a result,

the system dynamics is no longer unitary and the computation becomes irreversible (though

the combined system plus environment evolves in a unitary fashion). This means that the

quantum computer behaves as a classical machine. Therefore, it is important to preserve

coherence for sufficiently long time to ensure that the uniquely quantum features of this

style of computation have a chance to come into play. The term “relevant” emphasises

that a physical system that realises a qubit can have many decoherence times pertaining to

different degrees of freedom but many of these can be irrelevant to the functioning of this

system as a qubit.

4. A universal set of quantum gates. In all the physical implementations, only particular

sorts of Hamiltonians can be turned on and off. In most cases, we are limited by only two-

body (two-qubit) interactions. This poses a problem for a quantum computation specified

with multi-qubit unitary transformations. Fortunately, these can always be re-expressed in

terms of sequences of one- and two-qubit gates, and the two-qubit gates can be of just one

type, which is “native” to a particular implementation (e.g., CNOT, CPHASE, or XY).

5. A qubit-specific measurement capability. This is a straightforward requirement for

the efficient quantum computing process: the result of a computation must be read out,

and this requires the ability to measure specific qubits.

There are many possible realisations of quantum computers satisfying the DiVincenzo

criteria. The fundamental building blocks of quantum computers – qubits – can be con-

structed from electrons, photons, trapped ions, neutral atoms, superconducting circuits, to

name just a few possibilities. Essentially, any quantum mechanical system that can exist in

a superposition of two distinct states with controlled transitions between them can serve

as a physical realisation of a qubit. This can be the spin of an electron (“up”, “down”) or the

polarisation of a photon (“vertical”, “horizontal”). In this section, we start with considering

how the DiVincenzo criteria can be satisfied by superconducting qubits.

170 Qubits and Quantum Logic Gates

6.7.2 Superconducting qubits
Qubits constructed from tiny superconducting circuits are strong candidates for the scalable

physical realisation of the principles of digital quantum computing. In a normal conductor,

the charge carriers are individual electrons. Electrons are spin-12 elementary particles

(fermions) satisfying the Pauli principle: no two fermions can simultaneously occupy the

same state. In a superconducting circuit, the basic charge carriers are pairs of electrons

(known as Cooper pairs), which are bosons (the total spin of a Cooper pair is an integer

number) and can occupy the same quantum energy level. This effect is known as the

Bose-Einstein condensate. The condensate wave function allows designing and measuring

macroscopic quantum effects. The parameters of the superconducting circuits may be

designed by setting the classical values of the electrical elements that compose them, e.g.,

adjusting the capacitance and inductance.

This gives us a concrete idea of how to build macroscopic qubits with desired quantum

properties. Let us first have a look at the system known as Quantum Harmonic Oscillator

(QHO) shown schematically in Figure 6.25. Before explaining the physical aspects, let us

have a look at its mathematical justification.

From classical to quantum harmonic oscillator

Consider a simple harmonic oscillator, namely a spring on a flat frictionless surface, attached

on one side to an unmovable object and on the other side to a movable one (say, a weight).

In the equilibrium state, in the resting position, nothing moves. After applying some

force, say by pulling (or pushing) the movable object, the spring starts oscillating due to

its restoring force FR. Hooke’s law states that this force is proportional to the extension,

namely

FR(x(t)) = −kx(t),

starting from x(0) = x0 ∈ R, where x(t) denotes the position of the spring at time t and k

is the spring constant. Newton’s second law of motion also states that

FR(x(t)) = ma(t),

Chapter 6 171

for t ≥ 0, where a(t) denotes the acceleration at time t, and m is the mass of the spring.

Since a(t) = ẍ(t), combining the two equations yields, for each t ≥ 0,

ẍ(t) = − k
m
x(t),

starting from x(0) = x0, which is the equation of motion for the simple oscillator. It is a

simple one-dimensional second order linear ordinary differential equation, which can be

solved simply as

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt), for all t ≥ 0, (6.7.1)

where

ω :=

√
k

m
and v0 := ẋ(0)

are, respectively, the natural frequency of the oscillator and the speed. Trigonometric

manipulations show that (6.7.1) can equivalently be written as

x(t) = α cos(ωt− φ), for all t ≥ 0, (6.7.2)

where

α :=

√
x20 +

v20
ω2

and tan(φ) :=
v0
ωx0

.

Recall now that the potential energy V is the energy stored in the oscillator when it is

extended or compressed, i.e. (considering x = 0 as the equilibrium state),

V(x, t) = −
∫ x(t)

0
FR(z)dz =

k

2
x(t)2.

The total energy of the system is then the sum of the kinetic and the potential energies:

Etotal(t) = Ekinetic(t) +V(x(t))

=
m

2
v(t)2 +

k

2
x(t)2.

172 Qubits and Quantum Logic Gates

Using the explicit solution (6.7.2), with ω :=
√

k
m we obtain:

Etotal(t) =
m

2

(
d

dt

(
α cos(ωt− φ)

))2

+
k

2

(
α cos(ωt− φ)

)2
=
mα2ω2

2
sin(ωt− φ)2 + mα2ω2

2
cos(ωt− φ)2

=
mα2ω2

2
=
kα2

2
.

In this classical setting, we see that the total energy of the system can take a continuum of

values. The quantum counterpart is fundamentally different and we shall see below that it

is in fact quantised (giving rise to the “quantum” theory), as originally proposed by Bohr

in 1913, and later detailed by Schrödinger and Heisenberg in 1926. Recall now the general

form of the time-dependent Schrödinger equation describing the evolution of a system

over time:

iℏ
dΨ(x, t)

dt
= HΨ(x, t), (6.7.3)

where H represents the Hamiltonian of the system. Since the latter (representing the

energy of the system) is the sum of the kinetic energy and the potential energy, we have

H = Ekinetic + Epotential =
p2

2m
+V = − ℏ

2m

d2

dx2
+V,

where m is the mass of the particle, ℏ is the usual Planck constant, V is the potential

representing the environment, and p is the momentum operator:

p = −iℏ d

dx
.

Plugging this Hamiltonian into (6.7.3) yields

iℏ
dΨ(x, t)

dt
=

(
− ℏ2

2m

d2

dx2
+V(x)

)
Ψ(x, t).

Chapter 6 173

Since the potential V does not depend on time, separation of variables, with Ψ(x, t) =

ψ(x)u(t), gives

iℏψ(x)u′(t) =
(
− ℏ2

2m
ψ′′(x) +V(x)ψ(x)

)
u(t),

or else

iℏ
u′(t)

u(t)
=
− ℏ2

2mψ
′′(x) +V(x)ψ(x)

ψ(x)
.

Since both sides depend on a different variable, they must be equal to a constant, say E,

and we thus obtain the ordinary differential equation

iℏ
u′(t)

u(t)
= E,

as well as the eigenvalue equation

Hψ(x) = − ℏ2

2m
ψ′′(x) +V(x)ψ(x) = Eψ(x). (6.7.4)

The first one immediately admits the solution, with normalisation u(0) = 1,

u(t) = exp

(
− iEt

ℏ

)
.

The eigenvalue equation (6.7.4) can be solved, for example, by spectral method. In fact,

it can be proved (and we refer the interested reader to [258, Section 3.1] for details) that

the operatorH here admits a finite spectrum, with the set of (eigenvalues, eigenfunctions)

{(En, ψn)}n≥0 given by
En =

(
n+

1

2

)
ℏω,

ψn(x) =
1√
2nn!

(mω
πℏ

)1/4
exp

(
−mωx

2

2ℏ

)
Hn

(√
mω

ℏ
x

)
,

(6.7.5)

174 Qubits and Quantum Logic Gates

for each n ≥ 0, x ∈ R, where Hn denotes the n-th physicists’ Hermite polynomial

Hn(z) := (−1)nez2 dn

dzn

(
e−z

2
)
.

Physical representation of the QHO

A schematic representation of the QHO is shown in Figure 6.25. In this system, energy

oscillates between electrical energy in the capacitor C and magnetic energy in the induc-

tor L.

C L

−π −π/2 0 π/2 π
superconducting phase

|0⟩

|1⟩

|2⟩

|3⟩

ℏωr

ℏωr

ℏωr

En
er

gy

a) QHO circuit b) QHO energy levels

Figure 6.25: Quantum Harmonic Oscillator (QHO).

The Hamiltonian of this system is identical to the one describing a particle in a one-

dimensional quadratic potential [177]. The solution to the eigenvalue problem above

(see (6.7.5)) gives an infinite series of eigenstates (|n⟩)n≥0, whose corresponding eigenen-

ergies, (En)n≥0, are all equidistantly spaced as can be seem from (6.7.5):

En+1 − En = ℏωr, for all n ≥ 0,

Chapter 6 175

where the resonant frequency, ωr , is given by the Thompson formula [283]

ωr =
1√
LC

.

Our first task is to define a computational subspace consisting of only two energy states,

|0⟩ and |1⟩, usually the lowest two energy eigenstates in between which transitions can

be driven without also exciting other levels in the system. However, we cannot use the

lowest two energy eigenstates of the QHO for this purpose since the quantum logic gate

operations depend on frequency selectivity. The equidistant level-spacing of the QHO

makes this impossible.

Therefore, we need to add anharmonicity (or non-linearity) into the system. We require

the transition frequencies ω01 between eigenstates |0⟩ and |1⟩ and ω12 between eigenstates

|1⟩ and |2⟩ to be sufficiently different in order to be individually addressable. The required

non-linearity can be introduced by replacing the inductor L with the Josephson junction

module J , as shown schematically in Figure 6.26.

C J

−π −π/2 0 π/2 π
superconducting phase

|0⟩

|1⟩

|2⟩

|3⟩

ℏω01

ℏω12

ℏω23

En
er

gy

a) QAO circuit b) QAO energy levels

Figure 6.26: Qubit implemented as Quantum Anharmonic Oscillator (QAO). The two lowest energy
eigenstates |0⟩ and |1⟩ form the qubit’s computational space.

176 Qubits and Quantum Logic Gates

The Josephson junction is the key element that transforms a superconducting circuit into a

qubit. The description of the Josephson effect (the quantum tunnelling of the Cooper pairs)

is outside the scope of this book but interested readers are encouraged to learn more about

it from the excellent Feynman’s Lectures on Physics [101].

After introducing the Josephson module to the circuit (the electric circuit symbol for the

Josephson junction is an “X”), the potential energy no longer has the parabolic form (as

a function of the superconducting phase), but rather takes a cosinusoidal form, which

makes the energy spectrum non-equidistant. Now we can identify the two lowest energy

eigenstates as a qubit computational subspace [177, 204].

A superconducting loop with two Josephson junctions in either arm is very sensitive to the

magnetic flux enclosed [119]. In the following, we shall use a more compact symbol for the

Josephson junction subcircuit:

J ==

Figure 6.27: Josephson junction module subcircuit.

Remark: It may also be possible to form a computational subspace using the three lowest

energy eigenstates: |0⟩, |1⟩ and |2⟩. In this case, we would have a physical realisation of a

qutrit, whose superposition state vector, |ψ⟩, can be represented as a linear combination of

the three orthonormal basis states:

|ψ⟩ = α |0⟩+ β |1⟩+ γ |2⟩ ,

where α, β, γ ∈ C are probability amplitudes such that |α|2 + |β|2 + |γ|2 = 1. Qutrits

increase the amount of information encoded in a single element, enable techniques that

decrease readout errors [200] and reduce the cost of decomposing three-qubit gates into

basic two-qubit components [132].

Chapter 6 177

Controlling and measuring superconducting qubits

Having satisfied the first DiVincenzo requirement (well defined qubit), we have to demon-

strate how superconducting qubits can be controlled, coupled together to build scalable

systems, and measured. We start with the control and measurement of the superconducting

qubit states.

The capacitive coupling between a resonator (or a feedline) and the superconducting qubit

allows for microwave control to implement single-qubit rotations as well as certain two-

qubit gates [177]. Figure 6.28 provides a schematic representation of the superconducting

qubit coupled to a microwave source (also referred to as a qubit drive). The qubit is

controlled by the pulses of microwave radiation. The control parameters are the frequency,

the phase and the duration of the pulses.

QubitCouplingWiringVoltage

∼

∼20C ∼15mK

Figure 6.28: Qubit capacitively coupled to the feedline.

Figure 6.29 shows the qubit that is capacitively coupled to a microwave resonator (non-

linear) whose frequency is shifted by the qubit state [254]. This frequency shift is exploited

for reading the qubit state using the dispersive readout method. When sending a microwave

pulse to the resonator, the phase of the reflected (or transmitted) signal conveys information

on the qubit state.

178 Qubits and Quantum Logic Gates

Qubit Resonator

Figure 6.29: Qubit readout circuit that features a non-linear resonator with Josephson junction.

Entanglement with superconducting qubits
For the implementation of multi-qubit gates (and, therefore, entanglement), qubits must be

connected. The connectivity of superconducting qubits is realised via capacitive coupling –

either directly or with the help of a coupler as shown schematically in Figure 6.30, where

capacitive coupling is achieved via a coupler in the form of a linear resonator [177].

The fixed-frequency superconducting qubits typically feature longer coherence times and

are less sensitive to flux noise. The two-qubit gate developed for these qubits is the

cross-resonance gate CR. In the schematic circuit diagram of two fixed-frequency

superconducting qubits coupled through a linear resonator (Figure 6.30), the CR gate is

realised when qubit 1 is driven at the frequency of qubit 2.

Qubit 1 Qubit 2Coupler

ω1 ω2

Figure 6.30: Capacitive coupling via coupler (linear resonator). Qubit 1 and Qubit 2 are fixed-
frequency qubits with frequencies ω1 and ω2 respectively.

Chapter 6 179

The unitary matrix representation of the CR(θ) gate is given by the following [240]:

CR(θ) = RZ⊗X(θ) = exp

(
−1

2
iθσz ⊗ σx

)

=

cos
(
θ
2

)
−i sin

(
θ
2

)
0 0

−i sin
(
θ
2

)
cos
(
θ
2

)
0 0

0 0 cos
(
θ
2

)
i sin

(
θ
2

)
0 0 i sin

(
θ
2

)
cos
(
θ
2

)

 ,
(6.7.6)

where the effective rotation angle θ is a function of the physical characteristics of the

qubits, the coupler, and the driving microwave pulse.

Due to the form of (6.7.6), the CR(θ) gate can also be denoted as the ZX(θ) gate. This also

tells us how we can use the cross-resonance gate to generate a CNOT gate (up to a global

phase exp(−iπ/4)) in combination with only one-qubit gates:

q1

q2

M

M

==

q1

q2

RZ(π/2)

RX(π/2)

M

M

ZX(−π/2)

Figure 6.31: CNOT gate decomposition into ZX, RX and RZ gates.

6.7.3 Photonic qubits
At the time of writing, it is not clear which qubit construction technology will become

the industry standard, if any. There are a lot of exciting experiments and technological

breakthroughs ahead of us. The superconducting qubits clearly satisfy the DiVincenzo

criteria but there are many other interesting solutions at various stages of development.

One of the possibilities is to encode qubits in photons. Single photons are largely free of

noise and can be easily manipulated to realise one-qubit gates. A qubit can be encoded

in any of multiple photon’s degrees of freedom: temporal, path, and polarisation. One-

qubit gates can be implemented using birefringent waveplates and conversion between

polarisation and path encoding can be achieved using a polarising beam splitter [225], where

180 Qubits and Quantum Logic Gates

|0⟩ or |1⟩ represents a photon in the upper or lower path, respectively (see Figure 6.33).

As we know, in order to entangle qubits, we need to find a suitable physical implementation

of two-qubit gates. Let us have a look at the possible realisation of the CNOT gate using

photonic qubits. First of all, we notice that the CNOT gate can be expressed in terms of the

CPHASE gate, which can be naturally implemented on the photonics hardware:

q1

q2

M

M

==

q1

q2 ZH H

M

M

Figure 6.32: CNOT gate decomposition into CPHASE and H gates.

When the control qubit is in state |0⟩ the two H gates cancel each other, and when it is in

state |1⟩ the combination of the gates acts as a NOT gate.

Figure 6.33 displays schematic representation of the possible photonic implementation of

the CNOT gate [225]. The two paths used to encode the target qubit are mixed at a 50%

reflecting beam splitter (BS) that performs the Hadamard operation. If the phase shift is

not applied, the second beam splitter (second Hadamard gate) undoes the first by returning

the target qubit to the same state it started in. This is an example of classical interference.

If a π phase shift is applied, the target qubit is flipped.

|1⟩

|0⟩

|1⟩

|0⟩

Non-linear
phase shift

BS BS
Target
qubit

Control
qubit

Figure 6.33: Photonic implementation of the CNOT gate.

Chapter 6 181

When the control qubit is in state |0⟩, the π-phase shift is not applied, while it is applied

when the control qubit is in state |1⟩. A CNOT gate must implement this phase shift when

the control qubit is in the |1⟩ path, otherwise not.

Although the proposed realisation of the CNOT gate is simple in principle, it is a hard

practical problem to find a material with optical non-linearity strong enough to implement

the conditional phase shift [225]. However, it is possible to achieve a CNOT gate with the help

of single photon sources, single photon detectors, and linear optical circuits consisting of

beam splitters as was proposed by Knill, Laflamme, and Milburn [165]. The first integrated

photonic CNOT gate for polarisation-encoded qubits was demonstrated in [74].

6.7.4 Trapped ion qubits
Another promising approach to building large-scale quantum computers is based on the

trapped ion technology [68]. Ions (positively charged atoms that lost an electron) are

trapped in the electromagnetic field potential, which fixes their positions in space. The

quantum chip is cooled and placed in the vacuum chamber. The ions themselves are

cooled and made almost motionless by the laser beams that drain their energy through the

rapid absorption-emission of photons (ions emit photons of slightly higher frequency than

absorbed photons, thus losing their kinetic energy).

The most widely used technique is a linear trap shown in Figure 6.34. The two states

of the i-th qubit can be identified with the internal states of the corresponding ion: a

ground state |g⟩i and an excited state |e⟩i. The trapped ions do not sit perfectly still but

can oscillate around their equilibrium positions. Figure 6.34 depicts a situation where N

ions are confined in a linear trap and interact with different laser beams in standing wave

configurations [67].

The confinement of the motion along the x-, y-, and z-axes can be described by a harmonic

potential of frequencies ωx ≪ ωy , ωz respectively. Additionally, the Coulomb repulsion

between the positively charged ions provides the coupling of the motion of the ions along

the x-axis. The collective motion (excitation) along the x axis, if present, behaves as a

quasiparticle called a phonon. We denote the state of the Centre-of-Mass (CM) mode of N

182 Qubits and Quantum Logic Gates

ions moving in the x-direction as |0⟩ (no phonon) or |1⟩ (one phonon).

x

y

z

1 2 i j N

· · · · · · · · ·

la
se

r
be

am

la
se

r
be

am

Figure 6.34: Schematic representation of the linear ion trap.

Applying the laser beam at the right frequency, it is possible to exclusively excite either a

single ion or the CM mode. Addressing a single ion (and, thus, implementing a one-qubit

gate) is straightforward. Let us see how we can implement a multi-qubit gate needed to

create entanglement.

The following protocol that implements a two-qubit gate was proposed by Cirac and

Zoller [68]. First, we note that the excited state |e⟩i is not unique and depends on the

polarisation of the laser beam applied to ion i. If we have two possible polarisations, which

we denote as q = 0 and q = 1, then the corresponding excited states are denoted as |e0⟩i
and |e1⟩i. The computational basis is {|g⟩i , |e0⟩i}. The protocol reads as follows:

1: Apply a π laser pulse with polarisation q = 0 to excite the i-th ion. The π laser pulse

has the meaning of a laser pulse applied for time π/ω, where ω is a characteristic

frequency of the trapped ion system.

2: Direct the laser to the j-th ion and turn it on for a time of a 2π pulse with polarisation

q = 1.

3: Direct the laser back to the i-th ion and turn it on for a time of a π pulse with

polarisation q = 0.

Chapter 6 183

The effect of this procedure is to change the sign of the state only when both ions are

initially excited as shown in Table 6.5.

Initial state State after State after State after

step 1 step 2 step 3

|g⟩i |g⟩j |0⟩ |g⟩i |g⟩j |0⟩ |g⟩i |g⟩j |0⟩ |g⟩i |g⟩j |0⟩
|g⟩i |e0⟩j |0⟩ |g⟩i |e0⟩j |0⟩ |g⟩i |e0⟩j |0⟩ |g⟩i |e0⟩j |0⟩
|e0⟩i |g⟩j |0⟩ −i |g⟩i |g⟩j |1⟩ i |g⟩i |g⟩j |1⟩ |e0⟩i |g⟩j |0⟩
|e0⟩i |e0⟩j |0⟩ −i |g⟩i |e0⟩j |1⟩ −i |g⟩i |e0⟩j |1⟩ − |e0⟩i |e0⟩j |0⟩

Table 6.5: Two-qubit gate (CPHASE) with the trapped ion qubits.

We note that the state of the CM mode is restored to the initial state |0⟩ (no phonon) after

the process. The protocol realises the CPHASE two-qubit gate.

Trapped ion-based qubits are characterised by longer coherence time (how long the quan-

tum state survives) and higher fidelity (accuracy of the gate operations) in comparison

with the superconducting qubits. On the flip side, superconducting qubits enjoy orders of

magnitude shorter gate times.

Similar to many possible physical realisations of a classical bit, there exist

many competing quantum computing technologies. It is too early to say

which one will become the ultimate winner in the long run, or whether

multiple technologies will co-exist by occupying their respective niches.

We now have all the tools, theoretical and physical, to actually build quantum circuits. In

the next section, we discuss the quantum hardware and quantum simulators that would

allow us to do it.

184 Qubits and Quantum Logic Gates

6.8 Quantum Hardware and Simulators
The current state-of-the-art quantum computing technology demonstrates impressive qubit

fidelity and coherence time:

• Qubits made of superconducting circuits (coherence time: ∼ 10µs) [164]

one-qubit gate two-qubit gate

Gate time: ∼ 10−2µs Gate time: ∼ 10−2-10−1µs

Fidelity: 99.9% Fidelity: 99.7%

Table 6.6: Superconducting qubits.

• Qubits made of trapped ions (coherence time: > 107µs) [46]

one-qubit gate two-qubit gate

Gate time: ∼ 1-10µs Gate time: ∼ 10µs

Fidelity: 99.9999% Fidelity: 99.9%

Table 6.7: Trapped ion qubits.

Even more importantly, the pace of technological improvements remains very fast. Recent

experiments conducted by MIT researchers on superconducting qubits [277] demonstrated a

possibility to sharply reduce errors in two-qubit gates, bringing two-qubit gate fidelity for CZ

and iSWAP gates to near 99.9%. Interestingly, this improvement in two-qubit gate fidelity

has been achieved through the introduction of tunable couplers (Figure 6.30 schematically

shows a two-qubit interaction via a coupler). To eliminate the error generating qubit-

qubit interactions, the higher energy levels of the coupler were used to cancel out the

problematic interactions. As was schematically shown in Figure 6.26, the higher energy

levels are usually ignored, although they have a non-negligible contribution. Better control

and design of the coupler is key to tailoring the qubit-qubit interaction as needed.

Chapter 6 185

This is a big step towards implementing error correction: additional qubits can be added to

improve the robustness of quantum computation. Qubit errors can be actively addressed by

adding redundancy. However, in order for the hardware redundancy to be practical, higher

qubit fidelity is required. Different error correction protocols require different fidelity

thresholds, and 99.9% two-qubit gate fidelity is not a bad place to start.

However, we are still some years away from sufficiently fault-tolerant quantum computers.

This is why it is useful (and even necessary) to experiment with quantum simulators –

classical computers operating according to the logic of quantum computing. There is

nothing preventing classical digital computers from operating according to the laws of

quantum computing except for prohibitive memory requirements. The state of an n-qubit

quantum system can be stored in classical memory as 2n probability amplitudes. This

prevents most classical computers from performing quantum computing operations on

more than 35-40 qubits. But it is perfectly feasible to run quantum computing programs on

up to 25-30 quantum registers.

Although quantum simulators can only operate on a relatively small number of qubits,

they are ideal quantum computers that do not suffer from any type of quantum hardware

imperfections. This makes them invaluable in testing principles and small-scale versions

of quantum algorithms. They can be used for the proof-of-concept and to help develop

new ideas in a situation where actual quantum hardware is still too noisy and not readily

available.

There are many open-source quantum simulators (and, even, specialised quantum com-

puting programming languages). In this book, we investigate the performance of various

quantum algorithms using Qiskit [238] – an open-source Python package that implements

the logic of quantum computing in an intuitive and user-friendly way. Qiskit also owes its

popularity to a well-written and highly educational textbook with many well-thought-out

examples that make it a pleasure to learn the principles of quantum computing. The Qiskit

package and the textbook are available from

https://qiskit.org/

186 Qubits and Quantum Logic Gates

and

https://qiskit.org/textbook/preface.html

The field of quantum programming is growing fast and several languages or software devel-

opment kits are now competing. Quantum instruction sets such as Quil, cQASM, OpenQASM,

and Blackbird allow us to translate high-level algorithms into physical instructions run

on quantum computers. They are used in quantum software development kits (QSDKs) to

represent quantum circuits. The most important QSDKs at the time of writing are

• Ocean (D-Wave)

• Forest (Rigetti)

• Qiskit (IBM)

• Cirq (Google)

• Quantum Development Kit (Microsoft)

• Braket SDK (Amazon)

• ProjectQ (ETH Zurich)

• Strawberry Fields (Xanadu)

Parallel to these QSDKs, quantum programming languages have been developed, both of

the imperative type (step-by-step instructions) such as QCL, QMASM, and Silq and of the

functional type such as QML, Quantum Lambda Calculus, QFC, QPL, and Q♯.

We observed an exceptionally fast pace of quantum computing hardware

development over the last several years, with multiple technological break-

throughs. Additionally, the progress on the quantum software development

side assists in relaxing requirements for the physical qubits needed to build

fault-tolerant quantum computers.

Chapter 6 187

Summary
In this chapter, we covered and contrasted the basic elements of classical and quantum

computing. We started with the concept of a fundamental memory unit (bit) and functions

that transform the memory states (logic gates). We also provided examples of the possible

physical realisations of the logic gates and a memory cell – this highlights the fundamental

dualism of both classical and quantum computing: computation is substrate independent

but its practical realisation requires the existence of a suitable physical system.

Then, we introduced the concept of the qubit and its canonical mathematical represen-

tation. Visualisation of a qubit with the help of the Bloch sphere allows for the natural

representation of single qubit quantum gates as rotation operators.

Next, we studied two-qubit gates and their matrix representation. We learned how to

assemble one-qubit and multi-qubit gates into quantum circuits – a good example is the

Bell circuit, which creates a maximally entangled state of two qubits from the completely

unentangled initial states. We also touched on the important topics of reversible computing

and cutting edge quantum hardware.

In the next chapter, we will introduce a particular type of quantum circuit, so-called

Parameterised Quantum Circuits, that provide great flexibility for applications. We will

also explore various data encoding schemes – the mapping of samples from the classical

datasets into the corresponding quantum states.

188 Qubits and Quantum Logic Gates

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

7
Parameterised Quantum
Circuits and Data Encoding

Having built the quantum hardware, how can we use it to the maximum effect given its

scale, connectivity, and fidelity rate? This question can be best answered if we split it into

two parts. First, what problems are in principle solvable on NISQ computers? Second, how

do we encode classical data into quantum states?

The rest of this book focuses on the first part: problems and models that can be formulated

in a way that doesn’t require a massive number of qubits and that are, at least to some

extent, noise tolerant. The first step in this direction is the concept of the Parameterised

Quantum Circuit (PQC) as a generic quantum machine learning model.

The second part – data encoding – is equally important and relies on several practical

methods described in this chapter. This is an active area of research where we can expect

most of the progress to come from the quantum software side.

190 Parameterised Quantum Circuits and Data Encoding

7.1 Parameterised Quantum Circuits
We have seen how to combine quantum gates to form arbitrarily wide and deep quantum

circuits. A quantum circuit transforms an initial quantum state |ψ⟩ into a final quantum

state |ψ′⟩ by applying a sequence of unitary operators:

|ψ′⟩ = Um(θm) . . . U2(θ2)U1(θ1) |ψ⟩ .

Here, (Ui)i=1,...,m and (θi)i=1,...,m denote respectively the individual gates and the asso-

ciated vectors of gate parameters. Some gates may be fixed (e.g., a two-qubit CNOT gate

viewed as a controlled rotation of the target qubit state around the x-axis by a fixed angle

θ = π) while some gates may be adjustable (e.g., a one-qubit RX(θ) gate that rotates the

qubit state around x-axis by an arbitrary angle θ ∈ [−π, π]).

Once the final quantum state |ψ′⟩ is constructed, the individual qubits can be measured.

After measurement the qubit states stay the same in the basis in which they were measured,

which we always assume to be the standard computational basis unless explicitly specified

otherwise. Therefore, the final output of running the quantum circuit and then measuring

the qubits (not necessarily all qubits have to be measured) is a classical bitstring.

What we just described is a parameterised quantum circuit schematically shown in Fig-

ure 7.1. The PQC can be used in many different ways. First of all, let us note that the

PQC can be trained. Training the PQC has the meaning of finding an optimal set of ad-

justable parameters (the vectors θ1, . . . ,θm above, for example) given the overall PQC

ansatz (architecture). The meaning of “optimal” is problem dependent but generally means

a configuration of adjustable parameters that ensures maximum closeness of the final

quantum state |ψ′⟩ to some desired target quantum state that corresponds to a particular

probability distribution we aim to encode.

Chapter 7 191

1

2

3

...

n− 1

n

. . .

. . .

. . .

. . .

. . .

M

M

M

M

M

M

...
|ψ⟩

U1(θ1)

Um(θm)

Figure 7.1: Schematic representation of a Parameterised Quantum Circuit.

In the following chapters, we will see how PQCs can be used as discriminative ML models

(Chapter 8), as generative ML models (Chapter 9), and as optimisers (Chapters 10 and 11):

• In the case of the Variational Quantum Eigensolver, a PQC is used to construct the

final quantum state |ψ′⟩ that is close to the eigenstate of the problem Hamiltonian

that corresponds to the smallest eigenvalue (the ground state energy that is linked

to the minimum of the cost function).

• When we build a quantum discriminative model – a Quantum Neural Network

trained as a classifier – we are interested in measuring only a handful of qubits (or

even just a single qubit). This should give us the binary representation of the “class

label” for the given sample. The input (initial quantum state |ψ⟩) encodes the sample

we want to classify.

• When our objective is to build a quantum generative model – the Quantum Circuit

Born Machine – we measure all qubits. This gives us a bitstring that is a generated

sample from the probability distribution encoded in the final quantum state |ψ′⟩
constructed by the PQC. The initial state is initialised as |0⟩⊗n.

PQCs are invariably trained using hybrid quantum-classical protocols. The hybrid approach

is shown schematically in Figure 7.2 and consists of three components: the user, the classical

computer, and the quantum computer [29].

192 Parameterised Quantum Circuits and Data Encoding

User

Classical Computer Quantum Computer

initial data
pre-processing

post-processing:
parameters update
(minimisation of

cost function)

running
quantum circuit:
state preparation
and measurement

measurement
results

set of PQC
parameters

problem/model and
input/training data

Figure 7.2: Training PQCs – schematic process.

The user provides the model for the problem; the classical computer pre-processes the data

and produces the initial set of parameters for the PQC; the quantum computer runs the PQC

by preparing the quantum state as prescribed by the PQC and by performing measurements.

Measurement outcomes are then post-processed by the classical computer, which updates

the model parameters as per the chosen training algorithm (backpropagation of error with

gradient descent, non-differentiable learning method, etc.) The overall algorithm is run in

a closed loop between the classical and quantum computers.

PQC is one of the most successful frameworks for applying NISQ comput-

ers to solving non-trivial real-world problems. It follows the paradigm of

a hybrid quantum-classical computational protocol and can be used for

experimenting with the wide range of quantum machine learning models.

Chapter 7 193

7.2 Angle Encoding
Let us go back to the Bloch sphere (Figure 7.3) that visualises the canonical representation

of the qubit state – a unit vector in the 2-dimensional complex vector space:

|ψ⟩ =

 cos

(
θ

2

)
eiϕ sin

(
θ

2

)
 .

The angles θ ∈ [0, π] and ϕ ∈ [0, 2π] uniquely determine the position of the qubit on the

unit sphere. Since we need two continuous variables to specify the qubit state, a single

qubit can encode two real-valued features.

x

y

z

|0⟩

|1⟩

θ

ϕ

Figure 7.3: Quantum state |ψ⟩ on the Bloch sphere.

7.2.1 The basic encoding scheme
We can illustrate this with the following schematic example: let us assume that we have an

8-feature dataset consisting of N samples and that all features X1, . . . , X8 are real-valued

and such that their extremal values, Xmin
i and Xmax

i , i = 1, . . . , 8, can be computed. Then,

194 Parameterised Quantum Circuits and Data Encoding

for every sample j = 1, . . . , N from the dataset, we can establish a one-to-one mapping

between the values of the features Xj
i and the corresponding rotation angles θji :

θji =
Xj
i −Xmin

i

Xmax
i −Xmin

i

π, (7.2.1)

where Xmin
i := minj X

j
i and Xmax

i := maxj X
j
i . Rotation angles θji generalise angles θ

and ϕ in Figure 7.3.

x

y

z

|0⟩

|1⟩

A

B

C

D

q1

q2

q3

q4

Figure 7.4: Feature encoding – rotations around y axis. States of qubits q1, . . . , q4 are shown on the
same Bloch sphere. The initial state of all qubits is |0⟩ and the end states after rotations around the
y-axis by angles θ1, . . . , θ4 are denoted as A, B, C , and D.

The 8-feature sample can be encoded in a 4-qubit state (unentangled). For example, starting

with four quantum registers initialised as |0⟩ in the computational basis, we can first

perform rotations around the y-axis: rotation by θ1 for qubit 1, rotation by θ2 for qubit 2,

and so on. This is shown schematically in Figure 7.4 where qubits move from their initial

state |0⟩ to states A, B, C , and D.

Chapter 7 195

7.2.2 Encoding two features per quantum register
After that, we encode the remaining features by performing rotations around the z-axis:

rotation by θ5 for qubit 1, rotation by θ6 for qubit 2, and so on as shown in Figure 7.5.

x

y

z

|0⟩

|1⟩

A

B

C

D

E
F

G

H

q1 q2

q3
q4

Figure 7.5: Feature encoding – rotations around the z-axis. The initial states of qubits q1, . . . , q4
are A,B,C,D. After rotation around the z-axis by angles θ5, . . . , θ8, the final qubit states
are E,F,G,H .

The qubit states move from A to E, from B to F , from C to G, and from D to H . The

corresponding quantum circuit looks as follows:

|0⟩

|0⟩

|0⟩

|0⟩

RY(θ1)

RY(θ2)

RY(θ3)

RY(θ4)

RZ(θ5)

RZ(θ6)

RZ(θ7)

RZ(θ8)

M

M

M

M

Figure 7.6: 4-qubit quantum circuit for 8-feature sample encoding.

196 Parameterised Quantum Circuits and Data Encoding

7.2.3 Mapping a classical data sample into a quantum
state

We can summarise the angle encoding scheme as follows. For the classical data sample

Xj := (Xj
1 , . . . , X

j
K) ∈ RK , j = 1, . . . , N , angle encoding works by constructing the

map

Xj 7−→
K⊗
i=1

(
cos

(
θji
2

)
|0⟩+ sin

(
θji
2

)
|1⟩

)
,

where angles (θji)i=1,...,K;j=1,...,N are given by the expression (7.2.1). This scheme only

requires one rotation gate for each qubit, hence encodes as many features as the number

of qubits. However, we know that a single quantum register can encode two real variables.

The following scheme maps the classical sample into the quantum state with the help of

an extra phase gate:

Xj 7−→
K⊗
i=1

(
cos

(
θj2i−1

2

)
|0⟩+ exp (iθ2i) sin

(
θj2i−1

2

)
|1⟩

)
.

This scheme allows us to encode 2n features with n qubits.

n quantum registers have capacity to encode 2n continuous features with

just two layers of one-qubit gates.

7.3 Amplitude Encoding
So far we have not utilised the information encoding possibilities provided by entanglement

although, in principle, most of the information in large quantum systems can be stored

in correlations. In the case of our 8-feature dataset example considered in the previous

section, we can reduce the number of necessary qubits to just three if we use entanglement.

The first six rotation angles θ1, . . . , θ6 can still be used for the single-qubit rotations RY, RZ.

The last two, θ7 and θ8, can be used for controlled rotations that entangle qubits 1 and 2

and qubits 2 and 3 as shown in Figure 7.7:

Chapter 7 197

|0⟩

|0⟩

|0⟩

RY(θ1)

RY(θ2)

RY(θ3)

RZ(θ4)

RZ(θ5)

RZ(θ6)

RX(θ7)

RX(θ8)

M

M

M

Figure 7.7: 3-qubit quantum circuit for 8-feature sample encoding.

In principle, since the n-qubit state can be uniquely described by specifying 2n probability

amplitudes, we only need n qubits to encode 2n features. However, this superdense

encoding is not always practical or desirable. The amplitude encoding was used in the

seminal work by Harrow, Hassidim, and Lloyd [126], but obtaining the amplitude encoding

is a non-trivial task for problems of realistic size and this, usually, is the main bottleneck

for many quantum algorithms [184].

The amplitude encoding can be formalised in the following way. Consider anN -dimensional

(with N = 2n) data point x := (x1, . . . , xN) ∈ CN . We can associate quantum amplitudes

to the coordinates as

|ψx⟩ =
1

∥x∥

N∑
i=1

xi |i⟩ ,

where ∥x∥ :=
∑N

i=1 |xi|2 is the normalisation factor. We can therefore encode the dataset

D := (x1, . . . , xM) consisting of M points in RN as

|D⟩ = 1

CD

2p∑
i=1

xi |i⟩ ,

for some integer p, where

x = (xi)i=1,...,2p = (x11, . . . , x
1
N , x

2
1, . . . , x

2
N , . . . , x

M
1 , . . . , x

M
N) ∈ RMN

is the concatenation of all the data points and CD is a normalisation constant. Here the

constraint is hence that 2p ≥MN , namely p ≥ log2(MN). Note that there may again be

some sparsity in the case where 2p > MN .

198 Parameterised Quantum Circuits and Data Encoding

The clear advantage is that it can store 2n features with only n qubits, but unfortunately

has a depth O(2n) and is hence hard to build.

With the amplitude encoding, n quantum registers have capacity to encode

2n continuous features. However, this requires construction of the deep

quantum circuits with the circuit depth growing as O(2n). This solution

may not be practical for NISQ computers when dealing with a large number

of features.

7.4 Binary Inputs into Basis States
Consider a real number x ∈ R approximated with the binary representation

x ≈ x̂ = (xi, xi−1, · · · , x−d) := (−1)xi

 i−1∑
j=0

xj2
j +

d∑
j=1

x−j2
−j

7−→ |xixi−1 · · ·x−d⟩ =: |x⟩ ,

for some non-negative integers i, d, where xi ∈ {0, 1} accounts for the sign of x and

(xj)j=0,...,i−1 ∈ {0, 1}i and (xj)j=−1,...,−d ∈ {0, 1}d represent respectively the integer and

decimal parts of x. Consider now a vector x := (x1, . . . , xN) ∈ RN . We can concatenate

all the binary approximations x̂1, . . . , x̂N into one vector

(
x1i , x

1
i−1, · · · , x1−d, · · · , xNi , xNi−1, · · · , xN−d

)
∈ {0, 1}(1+i+d)N

to obtain a quantum state representation with (1 + i+ d)N qubits of the form

|x1i x1i−1 · · ·x1−d · · ·xNi , xNi−1 · · ·xN−d⟩ .

Since the vector thus obtained only contains 0 and 1, starting from the quantum state

|0⟩⊗(1+i+d)N , we only need to apply the NOT gate X whenever the corresponding value is

Chapter 7 199

equal to one, so that the encoding circuit simply reads

|0⟩⊗(1+i+d)N 7−→
N⊗
l=1

i⊗
k=−d

Xx
l
k |0⟩⊗(1+i+d)N .

While the algorithm is straightforward and only requires the use of the single-qubit quantum

gate X, it requires a large number of qubits and is in general not efficient in practice. Indeed,

for a given dimension N , there are 2N possible basis states. If a dataset contains only M

points with M being much smaller than N , the quantum representation will therefore be

sparse.

Example: Consider a dataset D = (x1, x2) with x1, x2 ∈ [−2, 2], each approximated with

four qubits:

x1 ≈ (−1)x11(20x10 + 2−1x1−1 + 2−2x1−2) = (−1)x11
(
x10 +

1

2
x1−1 +

1

4
x1−2

)
and

x2 ≈ (−1)x21(20x20 + 2−1x2−1 + 2−2x2−2) = (−1)x21
(
x20 +

1

2
x2−1 +

1

4
x2−2

)
,

with xik ∈ {0, 1} for each i = 1, 2 and k = −2,−1, 0, 1. Their quantum embeddings

therefore read |x11x10x1−1x
1
−2⟩ and |x21x20x2−1x

2
−2⟩, and the quantum circuit to encode the

dataset therefore takes the form

|0⟩⊗8 7−→
[(

Xx
1
1 ⊗ Xx

1
0 ⊗ Xx

1
−1 ⊗ Xx

1
−2

)
⊗
(
Xx

2
1 ⊗ Xx

2
0 ⊗ Xx

2
−1 ⊗ Xx

2
−2

)]
|0⟩⊗8 .

7.5 Superposition Encoding
As developed in [287, 294], it is possible to build such a superposition of data in time linear

in the number of points and features. We consider again a dataset D := (x1, . . . , xM), with

xk := (xk1, . . . , x
k
n) ∈ {0, 1}n for each k = 1, . . . ,M . We use a quantum system of the

200 Parameterised Quantum Circuits and Data Encoding

form

|ψ0⟩ := |0⟩⊗n |00⟩ |0⟩⊗n ,

where the left-most part with n qubits is called the loading register while the right-most

one (also with n qubits) is the storage register. The middle one is an ancilla register that will

be used to control manipulations between the loading and storage registers. The encoding

algorithm works recursively. We first apply an Hadamard gate to the second ancilla qubit

and store the first data point x1 into the storage register. Since(
n⊗
i=1

Xx
1
i

)
|0⟩⊗n = |x11 · · ·x1n⟩ = |x1⟩ ,

this can be achieved (after the Hadamard operation) by applying the unitary operator

I⊗n ⊗ I⊗ H⊗

(
n⊗
i=1

Xx
1
i

)

controlled with the second ancilla qubit, and the resulting quantum state reads

|ψ1⟩ :=
|0⟩⊗n |00⟩ |0⟩⊗n√

2
+
|0⟩⊗n |01⟩ |x1⟩√

2
.

This can easily be turned (see the proof of Lemma 7 below) into

|ψ1⟩ =
|0⟩⊗n |00⟩ |x1⟩√

2
+
|0⟩⊗n |01⟩ |0⟩⊗n√

2
.

After m steps, we arrive at a quantum state of the form

|ψm⟩ :=
1√
M

m∑
k=1

|0⟩⊗n |00⟩ |xk⟩+
√
M −m
M

|0⟩⊗n |01⟩ |0⟩⊗n . (7.5.1)

The following lemma guarantees the validity of the algorithm:

Chapter 7 201

Lemma 7. There exists a unitary operator U such that

U |ψm⟩ =
1√
M

m+1∑
k=1

|0⟩⊗n |00⟩ |xk⟩+
√
M − (m+ 1)

M
|0⟩⊗n |01⟩ |0⟩⊗n =: |ψm+1⟩

Proof. The proof is constructive and shows precisely what the operator U looks like.

1: Construct the successive maps

|ψm⟩ =
1√
M

m∑
k=1

|0⟩⊗n |00⟩ |xk⟩+
√
M −m
M

|0⟩⊗n |01⟩ |0⟩⊗n ,

7−→ 1√
M

m∑
k=1

|xm+1⟩ |00⟩ |xk⟩+
√
M −m
M

|xm+1⟩ |01⟩ |0⟩⊗n ,

7−→ 1√
M

m∑
k=1

|xm+1⟩ |00⟩ |xk⟩+
√
M −m
M

|xm+1⟩ |01⟩ |xm+1⟩ ,

7−→ 1√
M

m∑
k=1

|xm+1⟩ |00⟩ |xk⟩+
√
M −m
M

|xm+1⟩ |11⟩ |xm+1⟩ =: |ψ̃m⟩ .

The first one is easily achieved by applying the operator
(⊗n

i=1 X
xm+1
i

)
⊗I⊗2⊗I⊗n

to |ψm⟩. The second step is realised with controlled gates using the second qubit of

the ancilla register as control. The last one is trivial with a CNOT gate on the first

ancilla qubit using the second ancilla qubit as control.

2: Now define the unitary gate

Ũ :=
1√

M −m

√M −m− 1 1

−1
√
M −m− 1

 ,

and note that its controlled (by the first ancilla qubit a1) version a1 Ũ acts as

a1 Ũ |00⟩ = |00⟩ ,

a1 Ũ |11⟩ =
1√

M −m
|1⟩ ⊗

(
|0⟩+

√
M −m− 1 |1⟩

)
=
|10⟩+

√
M −m− 1 |11⟩√
M −m

.

202 Parameterised Quantum Circuits and Data Encoding

Applying it to the ancilla register of |ψ̃m⟩ in Step 1 (and leaving all other qubits

unchanged) yields

= I⊗n ⊗ a1 Ũ⊗ I⊗n |ψ̃m⟩

=
1√
M

m∑
k=1

|xm+1⟩ |00⟩ |xk⟩

+

√
M −m
M

|xm+1⟩
{
|10⟩+

√
M −m− 1 |11⟩√
M −m

}
|xm+1⟩

=
1√
M

m∑
k=1

|xm+1⟩ |00⟩ |xk⟩

+
1√
M
|xm+1⟩

{
|10⟩+

√
M −m− 1 |11⟩

}
|xm+1⟩

We then flip the first ancilla qubit to 0 in the |10⟩ case (easily achievable with SWAP

and CNOT gates) and, regrouping the same ancilla terms together we obtain

1√
M

m+1∑
k=1

|xm+1⟩ |00⟩ |xk⟩+
√
M − (m+ 1)

M
|xm+1⟩ |11⟩ |xm+1⟩ .

Resetting the registers as in (7.5.1) to obtain

1√
M

m+1∑
k=1

|0⟩⊗n |00⟩ |xk⟩+
√
M − (m+ 1)

M
|0⟩⊗n |01⟩ |0⟩⊗n

finishes the proof of the lemma.

7.6 Hamiltonian Simulation
Hamiltonian encoding, popular in quantum machine learning, is inspired by the Schrödinger

equation (1.2.1), which reads

iℏ
d|ψ(t)⟩

dt
= H|ψ(t)⟩,

Chapter 7 203

for some HamiltonianH, where ℏ is the Planck constant, and subject to some boundary

condition at t = 0. The solution to the equation reads

|ψ(t)⟩ = exp

(
− iHt

ℏ

)
|ψ(0)⟩ .

The idea of Hamiltonian encoding is to encode the initial data into the Hamiltonian H.

Consider a cloud of points X ∈Mn,n(C). If X is Hermitian, we can define the Hamiltonian

matrixHX := X, otherwise the augmented version

HX :=

0n,n X

X† 0n,n

is Hermitian by construction.

Our aim is, for a given precision level ε, to find a state |ψ̃⟩ (or an algorithm generating this

state) such that ∥∥∥|ψ̃⟩ − |ψ(t)⟩∥∥∥ ≤ ε,
for some given norm ∥ · ∥, where |ψ(t)⟩ solves the Schrödinger equation.

An important bottleneck of this method is the computation of exp (HXt) (where we ignore

the ratio −i/ℏ for simplicity). Suppose that the HamiltonianHX can be written as a sum

HX =

p∑
i=1

Hi

of easy-to-compute Hamiltonians (Hi)i=1,...,p. If the latter do not commute, then the

identity

exp

(
p∑
i=1

Hit

)
=

p∏
i=1

eHit

does not hold, but the first-order Suzuki-Trotter [220, 286] formula (used by Lloyd in [191])

exp

(
p∑
i=1

Hit

)
=

p∏
i=1

eHit +O(t2),

204 Parameterised Quantum Circuits and Data Encoding

for t small enough, allows us to bypass this issue.

Indeed, even if t is not so small, we may pick δ > 0 small enough and use the factorisation

exp

(
p∑
i=1

Hit

)
=

exp
 ∑
i=1,...,p

Hiδ

t/δ = [p∏
i=1

eHiδ +O(δ2)

]t/δ
,

which has a small error (albeit with the caveat that the operation needs to be computed

many times). In general, any n-qubit Hamiltonian H can be decomposed in at most 4n

elementary Hamiltonians (of the Pauli form) as

H =
1

2n

∑
i1,...,in∈{I,X,Y,Z}

Tr

(
n⊗
k=1

σikH

)
n⊗
k=1

σik ,

where σik is a Pauli operator. Of course, 4n appeals to Pauli operators may be too large

in general, but local features of the Hamiltonian (such as sparse [34] or diluted or degree-

reducted [8] Hamiltonians) help reduce the complexity.

Remark: An alternative approach, especially for QML problems analysed in the next

chapter, is to encode the data using Quantum Random Access Memory (QRAM), essentially

with the bucket-brigade algorithm developed in [110] (see also [15, 140]), and we refer the

interested reader to [65] for a good summary of the current state-of-the-art algorithms.

Encoding classical data into a quantum computer has seen many advances

recently and several competing techniques are now available depending on

the problem under investigation.

Summary
In this chapter, we introduced the concept of a parameterised quantum circuit as a generic

QML model. PQCs can be trained and used as discriminative and generative QML models

as well as optimisers. They can also be used to encode classical data samples into the

Chapter 7 205

corresponding quantum states.

We considered several popular data encoding methods. Arguably, the simplest and easiest

to implement is the angle encoding algorithm – we shall use this approach in the next

chapter. Other methods also have their strong points, although they tend to be either

more demanding in terms of the hardware capabilities or better suited for some niche

applications.

In the next chapter, we apply what we learned so far to the task of building the quan-

tum neural network trained as a classifier and compare its performance on the binary

classification problem with standard classical machine learning models.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

8
Quantum Neural Network

Quantum neural networks [100] are parameterised quantum circuits that can be trained as

either generative or discriminative machine learning models in direct analogy with their

classical counterparts. In this chapter, we will consider parameterised quantum circuits

trained as classifiers. In the most general case, a classifier is a function that takes an

N -dimensional input and returns one of M possible class values. The classifier can be

trained on a dataset of samples with known class labels by adjusting the configurable model

parameters in such a way as to minimise the classification error. Once the classifier is

fully trained, it can be exposed to new unseen samples for which correct class labels are

unknown. Therefore, it is critically important to avoid overfitting to the training dataset

and ensure that the classifier generalises well to the new data.

There are many similarities between quantum and classical neural networks. In both cases,

the key element is the forward propagation of the signal (input), which is transformed

by the network activation functions. Both quantum and classical neural networks can be

trained through the backpropagation of error (differentiable learning) as well as through

various non-differentiable learning techniques. However, there are also fundamental

208 Quantum Neural Network

differences. For example, classical neural networks derive their power from the non-linear

transformation of input. In contrast, all quantum gates are linear operators and the power of

quantum neural networks comes from the mapping of the input into the high-dimensional

Hilbert space where classification can be more easily done.

8.1 Quantum Neural Networks
Figure 8.1 provides a schematic representation of a typical Quantum Neural Network

(QNN) trained as a classifier. Let us have a look at the quantum circuit and understand

how it operates. The network consists of n quantum registers, a number of one-qubit

and two-qubit gates, and m measurement operators. The input is a quantum state |ψk⟩
encoding the k-th sample from the dataset. If our dataset is classical, then every classical

sample should first be encoded in the input quantum state (as explained in the previous

chapter). With m measurement operators, the output is a bitstring that can encode up

to 2m integer values (class labels). In the case of a binary classifier, it is sufficient to perform

measurement on a single qubit.

1

2

3

...
n−m

n−m+ 1

...
n− 1

n

. . .

. . .

. . .

. . .

. . .

. . .

. . .
•

RY(θ
1
1)

RX(θ
1
n−1)

RX(θ
1
n)

RY(θ
2
3)

RZ(θ
2
n)

RZ(θ
2
n−m)

RX(θ
l−2
1)

RX(θ
l−2
2)

RY(θ
l−1
n−1)

RY(θ
l−1
n)

M

M

M

M

M

M

M

M

M

m

n−m

|ψk⟩

...

Figure 8.1: Schematic representation of a quantum neural network – parameterised quantum circuit
– consisting of 1-qubit and 2-qubit gates and measurement operators on one or more quantum
registers. The initial state |ψk⟩ encodes the k-th sample from the dataset.

Chapter 8 209

The measurement process produces a single sample from the probability distribution

encoded in the quantum state. Therefore, we need to run the quantum circuit many times

for the same input in order to collect sufficient statistics for each qubit on which we perform

measurement.

For example, if our QNN is organised as a classifier that should be able to predict one of the

four possible classes (“0”, “1”, “2”, and “3”), then we would need to perform measurement

on 2 qubits with possible outcomes |00⟩ corresponding to class “0”, |01⟩ corresponding to

class “1”, |10⟩ corresponding to class “2”, and |11⟩ corresponding to class “3”. Let us assume

that we have run the quantum circuit 1,000 times and observed the following results as

shown in Table 8.1:

Measured bitstring Class label Number of observations

00 0 100

01 1 550

10 2 200

11 3 150

i

Table 8.1: 1,000 runs of the quantum circuit.

Then we can conclude that the most likely class label for the given input is class “1” (with

probability 55%). At the same time, we also obtain probabilities for all other possible class

values, which may be useful in some cases.

The network is organised as l layers of one-qubit and two-qubit gates. The gates can be

adjustable, meaning that they can be controlled by adjustable parameters, such as rotation

angles, or they can be fixed. The 2-qubit gates in Figure 8.1 are fixed CX gates but, in

principle, they can be adjustable controlled rotation gates. Although the network shown

schematically in Figure 8.1 can have up to n × l adjustable parameters (θj)i=1,...,n; j=1,...,l,

it is often the case that the two-qubit gates are fixed and we only have one-qubit rotations

as available degrees of freedom in training the network.

210 Quantum Neural Network

Similar to classical neural networks, QNNs can be trained through either differentiable

learning (for example, backpropagation of error with gradient descent) or non-differentiable

learning (e.g., evolutionary search heuristics). Both approaches have their relative strengths

and weaknesses. In theory, differentiable learning can be faster, but convergence is not

guaranteed due to the well-known problem of “barren plateaus” associated with the gra-

dients becoming vanishingly small [207] and is problem dependent. Non-differentiable

learning is, as a rule, slower but avoids being trapped in local minima and works well in

situations where the cost function is not smooth. Sections 8.2 and 8.3 provide detailed

descriptions of the QNN training procedures.

Obviously, the strongest motivation for using quantum classifiers is their ability to process

quantum data. The input quantum states that must be classified may be outputs of some

other quantum circuits. As we may not be able to store the information encoded in these

quantum states classically, a quantum classifier becomes an indispensable tool. However,

quantum classifiers have a realistic chance to demonstrate their advantage on purely

classical data too. There are several considerations that motivate our interest in trying to

apply QNNs to classical datasets.

First, parameterised quantum circuits possess a larger expressive power than equivalent

classical neural networks. Second, they are structurally able to efficiently fight overfitting.

Finally, quantum speedup is achievable on some types of quantum hardware for specific

use cases even at these very early stages of quantum computing development. Chapter 12

investigates these questions in more detail.

In this chapter, we focus on using QNNs to efficiently solve specific finance-related classifi-

cation use cases and provide a comparison with a number of standard classical classifiers.

While experimentally proving quantum speedup and larger expressive power of QNNs

requires powerful quantum hardware, the way QNNs fight overfitting can be verified

on relatively small and shallow quantum circuits with the help of open-source quantum

simulators.

Chapter 8 211

QNNs are PQCs trained as ML models such as classifiers. QNNs have a nat-

ural advantage over classical neural networks when it comes to classifying

quantum data. However, classical datasets can also be encoded as quantum

states and processed by QNNs with their larger expressive power, their

ability to efficiently fight overfitting, and, ultimately, with their quantum

speedup.

As we learned from Chapter 5, to specify the architecture of the neural network is not

sufficient to build the working ML model – it is also necessary to specify the training

algorithm. In the following sections, we show how a quantum neural network can be

trained with the help of differentiable and non-differentiable learning methods.

8.2 Training QNN with Gradient Descent
Since we are not only interested in building QNNs as standalone QML tools but also in

comparing and contrasting them with classical neural networks, we start our review of

QNN training methods with gradient descent – a ubiquitous classical ML algorithm.

8.2.1 The finite difference scheme
Training QNNs consists of specifying and executing a procedure that finds an optimal

configuration of the adjustable rotation parameters θ. Assume that a QNN is specified on

n quantum registers with l layers of adjustable quantum gates, where each adjustable gate

is controlled by a single parameter (θji)i=1,...,n; j=1,...,l. In this case, θ ∈Mn,l is an n× l
matrix of adjustable network parameters:

θ =

θ11 . . . θl1
...

. . .
...

θ1n . . . θln

 . (8.2.1)

Without loss of generality, we assume that we work with a binary classifier. The latter

takes an input (a quantum state that encodes a sample from the dataset), applies a sequence

212 Quantum Neural Network

of quantum gates (the parameterised quantum circuit controlled by at most n× l adjustable

parameters), and performs the measurement of an observable M on the chosen quantum

register. An example of an observable is the Pauli Z gate and the result of a single measure-

ment is ±1 for a qubit found in the state |0⟩ or |1⟩, respectively. The value of the measured

observable is mapped into a value of a binary variable {0, 1}. This process is repeated N

times for each sample in order to collect sufficient statistics for the classification result.

The first step in finding an optimal configuration of adjustable parameters θ is to choose

an appropriate cost function – an objective function that represents the total error in

classifying samples from the training dataset and which can be minimised by changing

the adjustable network parameters. Let y := (y1, . . . , yK) be a vector of binary labels and

f(θ) := (f1(θ), . . . , fK(θ)) a vector of binary classifier predictions for the training dataset

consisting of K samples. The cost function L(θ) can then be defined, for example, as the

sum of squared errors across all samples in the training dataset:

L(θ) :=
1

2

K∑
k=1

(yk − fk(θ))2 . (8.2.2)

The next step is an iterative update of the adjustable parameters in the direction that reduces

the value of the cost function. That direction is given by the cost function gradient – hence

the name of the method. The parameters are updated towards the direction of the steepest

descent of the cost function. At step u+ 1, we update the system to

u+1θ
j
i ←− uθ

j
i − η

∂L(θ)

∂θji
, for each i = 1, . . . , n, j = 1, . . . , l,

where η is the learning rate, namely a hyperparameter controlling the magnitude of the

update. For each i = 1, . . . , n, j = 1, . . . , l, the derivative can be calculated numerically

using a finite difference scheme:

∂L(θ)

∂θji
≈
L(θ11, . . . , θ

j
i +∆θji , . . . , θ

l
n)− L(θ11, . . . , θ

j
i −∆θji , . . . , θ

l
n)

2∆θji
,

Chapter 8 213

with an error of order O((∆θji)2), where ∆θji is a small rotation angle increment. The

physical characteristics of the NISQ devices put restrictions on how small this increment

can be: in most cases ∆θji should not be smaller than 0.1 radians. The rest of the training

routine follows the standard classical algorithm of training neural networks through the

backpropagation of error with gradient descent.

8.2.2 The analytic gradient approach
An alternative to the finite difference method, which can be unstable and ill-conditioned

due to truncation and round-off errors (for parameterised quantum circuits [29] or, in

fact, for classical neural networks [27]), is the analytic gradient approach. It can be a

viable choice for parameterised quantum circuits with adjustable one-qubit gates and fixed

multi-qubit gates. From (8.2.2), the cost function gradient with respect to the parameter θji
is given by

∂L(θ)

∂θji
= −

K∑
k=1

(yk − fk(θ))
∂fk(θ)

∂θji
,

so that the task of calculating the gradient of the cost function is reduced to the task of

calculating the partial derivative of the expected value of the measurement operator for each

sample quantum state that encodes the classical sample from the training dataset. Let |ψk⟩
be the quantum state that encodes the k-th sample from the training dataset and let U(θ)

denote the unitary operator that represents the sequence of QNN gates transforming the

initial state |ψk⟩. Then the expected value of the measurement operator M is given by

fk(θ) = ⟨ψk| U†(θ)MU(θ) |ψk⟩ .

According to the conventions we used in constructing the QNN ansatz, the parameter θji
only affects a single gate, which we will denote as G(θji). Therefore, the sequence of

gates U(θ) can be represented as

U(θ) = VG(θji)W,

214 Quantum Neural Network

where W and V are gate sequences that precede and follow gate G(θji). Let us absorb V into

the Hermitian observable Q = V†MV and W into the quantum state |ϕk⟩ = W |ψk⟩:

fk(θ) = ⟨ϕk| G†(θji)QG(θ
j
i) |ϕk⟩ .

Then the partial derivative of fk(θ) with respect to parameter θji is calculated as

∂fk(θ)

∂θji
=

∂

∂θji
⟨ϕk| G†(θji)QG(θ

j
i) |ϕk⟩

= ⟨ϕk|

(
∂G(θji)

∂θji

)†

QG(θji) |ϕk⟩+ ⟨ϕk| G
†(θji)Q

(
∂G(θji)

∂θji

)
|ϕk⟩ . (8.2.3)

Let us denote

B := G(θji) and C :=
∂G(θji)

∂θji
,

and notice that

⟨ϕk| C†QB |ϕk⟩+ ⟨ϕk| B†QC |ϕk⟩

=
1

2

(
⟨ϕk| (B+ C)†Q(B+ C) |ϕk⟩ − ⟨ϕk| (B− C)†Q(B− C) |ϕk⟩

)
.

(8.2.4)

Therefore, if we can find the way to implement the operator B ± C as part of an overall

unitary evolution then we can evaluate (8.2.3) directly.

8.2.3 The parameter shift rule for analytic gradient
calculation

Following [257], we outline the parameter shift rule for gates with generators with two

distinct eigenvalues – this covers all one-qubit gates. Being unitary, the gate G(θji) above

can be represented as

G(θji) = exp
(
−iθjiΓ

)
,

Chapter 8 215

for some Hermitian operator Γ (Theorem 6). The partial derivative with respect to θji reads

∂G(θji)

∂θji
= −iΓ exp

(
−iθjiΓ

)
= −iΓG(θji). (8.2.5)

Substituting (8.2.5) into (8.2.3) yields

∂fk(θ)

∂θji
= ⟨ϕ′

k| iΓQ |ϕ
′
k⟩+ ⟨ϕ

′
k| Q(−iΓ) |ϕ

′
k⟩ , (8.2.6)

where |ϕ′
k⟩ = G(θji) |ϕk⟩. If Γ has just two distinct eigenvalues we can shift the eigenvalues

to ±r, since the global phase is unobservable [257]. With I denoting the identity operator

we can rewrite (8.2.6) as

∂fk(θ)

∂θji
= r

(
⟨ϕ′
k|

iΓ

r
QI |ϕ′

k⟩ − ⟨ϕ
′
k| IQ

iΓ

r
|ϕ′
k⟩
)
. (8.2.7)

Denoting

B := I and C := − i

r
Γ,

and using (8.2.4) we obtain from (8.2.7):

∂fk(θ)

∂θji
=
r

2

[
⟨ϕ′
k|
(
I− i

r
Γ

)†
Q

(
I− i

r
Γ

)
|ϕ′
k⟩ − ⟨ϕ

′
k|
(
I+

i

r
Γ

)†
Q

(
I+

i

r
Γ

)
|ϕ′
k⟩

]
.

A straightforward computation [257, Theorem 1] shows that if the Hermitian generator Γ

of the unitary operator G(θ) = exp(−iθΓ) has at most two unique eigenvalues ±r, then

G
(
∓ π

4r

)
=

1√
2

(
I± i

r
Γ

)
.

In this case the gradient can be estimated using two additional evaluations of the quantum

circuit. Either the gate G(π/(4r)) or the gate G(−π/(4r)) should be placed in the original

circuit next to the gate we are differentiating. Since for unitarily generated one-parameter

gates G(a)G(b) = G(a+ b), this is equivalent to shifting the gate parameter, and we obtain

216 Quantum Neural Network

the “parameter shift rule” [257] with the shift s = π/(4r):

∂fk(θ)

∂θji
= r

(
⟨ϕk| G†(θji + s)QG(θji + s) |ϕk⟩ − ⟨ϕk| G†(θji − s)QG(θ

j
i − s) |ϕk⟩

)
.

If Γ is a one-qubit rotation generator given by Pauli X, Y, and Z operators, then r = 1/2

and s = π/2 [213, 257]:

∂fk(θ)

∂θji
=

1

2

(
⟨ϕk| G†

(
θji +

π

2

)
QG
(
θji +

π

2

)
|ϕk⟩

− ⟨ϕk| G†
(
θji −

π

2

)
QG
(
θji −

π

2

)
|ϕk⟩

)
.

(8.2.8)

Therefore, what we need to do in order to estimate the gradient is to execute two circuitsN

times to collect statistics and to calculate the expectations on the right-hand side of (8.2.8).

The first circuit will have the gate parameter shifted by π/2 and the second circuit will

have the gate parameter shifted by −π/2.

Although this procedure is not necessarily faster than the finite difference scheme, it can

produce a more accurate estimate of the cost function gradient. The main argument here

is the fact that the NISQ hardware operates with limited precision. The state-of-the-art

superconducting qubits have one-qubit gate fidelity ≤ 99.9% and two-qubit gate fidelity

≤ 99.7% with rotation angle precision of order 0.05 radians. Therefore, the finite difference

scheme cannot assume infinitesimal rotation angles ∆θ – they should not be smaller than

about 0.1 radians (and, probably, materially larger in most cases). This means that gradients

obtained with the finite difference scheme have some degree of built-in uncertainty that

can only be fixed with further improvements in the NISQ hardware.

QNNs can be trained with the gradient descent algorithm in full analogy with

the backpropagation of error in classical neural networks. The gradients

can be either calculated analytically or estimated numerically.

Chapter 8 217

8.3 Training QNN with Particle Swarm
Optimisation

Having specified the gradient descent scheme for training QNNs in the previous section,

we now turn our attention to a non-differentiable learning method based on the powerful

evolutionary search algorithm.

8.3.1 The Particle Swarm Optimisation algorithm
The Particle Swarm Optimisation (PSO) algorithm belongs to a wide class of evolution-

ary search heuristics where at each algorithm iteration (“generation” in the language of

evolutionary algorithms), the population of solutions (“chromosomes” or “particles”) is

evaluated in terms of their fitness with respect to the environment. In the standard PSO

formulation [236], a number of particles are placed in the solution space of some problem

and each evaluates the fitness at its current location. Each particle then determines its

movement through the solution space by combining some aspects of the history of its own

fitness values with those of one or more members of the swarm, and then moves through

the solution space with a velocity determined by the locations and processed fitness values

of those other members, along with some random perturbations.

It is a standard procedure [127, 172] to follow three steps in specifying the PSO algorithm.

First, we initialise the positions xik := (xik(1), . . . , x
i
k(n)) ∈ Rn of each particle i at

time k moving through the n-dimensional search space and taking values in some range

[xmin, xmax]. Next we initialise the velocities vik := (vik(1), . . . , v
i
k(n)) ∈ Rn of each

particle in the swarm. The initialisation process consists of distributing swarm particles

randomly across the solution space:

xi0 = xmin + ωx (xmax − xmin) , vi0 =
xmin + ωv (xmax − xmin)

∆t
, (8.3.1)

where ωx and ωv are uniformly distributed random variables on [0, 1] and ∆t is the time

step between algorithm iterations.

We then update the velocities of all particles at time k + 1 according to the specified

218 Quantum Neural Network

objective function which depends on the particles’ current positions in the solution space

at time k. The value of the objective function determines which particle has the best

position pglobalk in the current swarm and also determines the best position pi of each

particle over time, i.e., in the current and all previous moves. The velocity update formula

uses these two pieces of information for each particle in the swarm along with the effect of

the current motion vik to provide a search direction pik+1 for the next iteration. The velocity

update formula includes random parameters to ensure good coverage of the solution space

and to avoid entrapment in local optima. The three values that affect the new search

direction are the current motion, the particle’s own memory, and the swarm influence.

They are incorporated via a summation approach with three weight factors: inertia w,

self-confidence c1, and swarm confidence c2:

vik+1 = wvik + c1ω1

(
pi − xik

)
∆t

+ c2ω2

(
pglobalk − xik

)
∆t

,

where ω1 and ω2 are uniformly distributed random variables on [0, 1].

Finally, the position of each particle is updated using its velocity vector:

xik+1 = xik + vik+1∆t.

These steps are repeated until either a desired convergence criterion is met or until we reach

the maximum number of iterations. Various reflection rules (stopping at the boundary,

mirror reflection back into the allowed domain, etc.) [190] can be designed for the new

position xik+1 falling outside the [xmin, xmax] bounds and the dynamics can be normalised

with ∆t ≡ 1. If K is the last iteration of the algorithm, then the best solution found by

the PSO is pglobalK . Figure 8.2 provides a schematic illustration of the particle movement

through the solution space under the influence of three forces: momentum, attraction to

the globally best solution found by all particles at the previous iteration, and attraction to

the best solution found by the given particle across all previous iterations.

Chapter 8 219

pglobalk

xik+1

xik

pi

vik

vik+1

Figure 8.2: Schematic illustration of the PSO algorithm. Each particle moves through the solution
space under the influence of three forces: momentum, own memory, and swarm influence.

8.3.2 PSO algorithm for training quantum neural
networks

We are now ready to specify the PSO algorithm to train QNNs. We consider the most

general case of an n × l matrix of adjustable parameters (rotations) θ, where n is the

number of quantum registers and l is the number of network layers. The solution we look

for is the matrix (8.2.1) of adjustable parameters that minimises the chosen cost function.

The cost function can be specified in many different ways depending on what particular

aspects we want to encourage or penalise. Given the training dataset, we would like to

find a configuration of adjustable parameters θ such that as many samples as possible

are classified correctly. One possible choice of cost function, for example, may be the

ratio of incorrect to correct classification decisions. However, the classification process is

probabilistic in nature – we decide on the sample label after many runs of the quantum

circuit, which generate sufficient statistics. Therefore, each classification decision is not just

right or wrong but can be seen as “more right” or “more wrong”. If the correct sample label

is “1” and we get “0” 51% of the time then the classifier is slightly wrong: the chances are

220 Quantum Neural Network

that similar samples would be classified correctly or only a small change to the adjustable

network parameters is required to rectify the classification process. But if we get “0”, say,

90% of the time, then the classifier is “very wrong” and we need to penalise the outcome

more aggressively.

One possible realisation of the cost function that takes into account the above argument is

as follows: Without loss of generality, assume that we work with the binary class labels “0”

and “1”, and let y := (y1, . . . , yK) be a vector of sample labels (either “0” or “1”) from the

training dataset. Further, let P(θ) := (P1(θ), . . . , PK(θ)) be a vector of QNN estimated

probabilities of predicting class “1” for the given sample (i.e., the number of quantum

circuit runs that returned “1” after measurement divided by the total number of quantum

circuit runs). Then the cost function L(θ) is given by the following pseudo code:

cost_function = 0

for i in range(K):

if y[i] == 0:

if P[i] > 0.7:

cost_function += 4

if P[i] > 0.6 and P[i] <= 0.7:

cost_function += 2

if P[i] > 0.5 and P[i] <= 0.6:

cost_function += 1

else:

if P[i] < 0.5 and P[i] >= 0.4:

cost_function += 1

if P[i] < 0.4 and P[i] >= 0.3:

cost_function += 2

if P[i] < 0.3:

cost_function += 4

Chapter 8 221

This cost function penalises large errors in the class probability estimate more than small

errors and represents the total error across all samples in the training dataset.

We can now formulate the QNN training algorithm, which has the following inputs:

Variable Meaning

X := (X1, . . . ,XK) ∈ RM×K training dataset of features encoded as

rotation angles on [0, π]

y := (y1, . . . , yK) ∈ {0, 1}K vector of binary labels

Niter number of iterations

Nruns number of quantum circuit runs

M number of particles (solutions)

w momentum coefficient

c1 particle memory coefficient

c2 swarm influence coefficient

n number of quantum registers

l number of QNN layers

Table 8.2: Inputs of the QNN training algorithm

The algorithm operates on the following objects, where m = 1, . . . , M denotes the m-th

particle, and t = 0, . . . , Niter represents the algorithm iteration step:

• θ(t;m) ∈Mnl([−π, π]): position of particle m at time t;

• v(t;m) ∈Mnl([−π, π]): velocity of particle m at time t;

• Ξ(m) ∈Mnl([−π, π]): best position found by particle m across all iterations;

• Φ(t) ∈Mnl([−π, π]): the globally best position found by all particles at time t;

• L(θ): value of the cost function for the solution θ.

222 Quantum Neural Network

Algorithm 5: Particle Swarm Optimisation

Result: Optimal configuration of adjustable QNN parameters θ∗ := argminL(θ).

Initialisation and evaluation of the first set of solutions

(we set ∆t in (8.3.1) equal to 1):

for each particle m = 1, . . . ,M do

for i = 1, . . . , n, j = 1, . . . , l do
Randomly draw the rotation angle θji (0;m) from U([−π, π]).
Randomly draw the rotation angle vji (0;m) from U([−π, π]).

end

Initialise the individually best solution:

Ξ(m)← θ(0;m)

for k = 1, . . . ,K do
Run the quantum circuit Nruns times with configuration θ(0;m) on sample

Xk to estimate the probability Pk of reading out “1” on the target qubit.

end

Evaluate the cost function L(θ(0;m)) given the probabilities P := (P1, . . . ,PK).

end

Order solutions from best (minimal cost function) to worst (maximal cost function).

Φ(0)← configuration corresponding to the minimum of the cost function.

Initialise the optimal configuration:

θ∗ ← Φ(0)

Chapter 8 223

Iterations:

for t = 1, . . . , Niter do

for m = 1, . . . ,M do

for i = 1, . . . , n, j = 1, . . . , l do
Generate independent random numbers ω1 ∼ U [0, 1] and ω2 ∼ U [0, 1].

momentum← wvji (t− 1;m)

particle← c1ω1[Ξ
j
i (m)− θji (t− 1;m)]

swarm← c2ω2[Φ
j
i (t− 1)− θji (t− 1;m)]

vji (t;m)← momentum + particle + swarm

θji (t;m)← θji (t− 1;m) + vji (t;m)

end

for k = 1, . . . ,K do
Run the quantum circuit Nruns times with configuration θ(t;m) on

sample Xk to estimate the probability Pk of reading out “1” on the target

qubit.

end

Evaluate the cost function L(θ(t;m)) given P := (P1, . . . ,PK).

if L(θ(t;m)) < L(Ξ(m)) then
Ξ(m)← θ(t;m)

end

end

Order solutions from best (minimum value of the cost function) to worst

(maximum value of the cost function).

Φ(t)← configuration corresponding to the minimum of the cost function.

if L(θ∗) < L(Φ(t)) then
θ∗ ← Φ(t)

end

end

224 Quantum Neural Network

The non-differentiable learning based on the evolutionary search heuristic

works well for irregular, non-convex objective functions with many local

minima.

8.4 QNN Embedding on NISQ QPU
Ideally, parameterised quantum circuits should be constructed in a hardware-agnostic way,

only driven by the characteristics of the problem being solved. This, however, would require

the existence of large and exceptionally well-connected quantum computing systems with

very high qubit fidelity and coherence time. In other words, we would need QPUs with

capabilities that significantly exceed those of existing NISQ devices. The time for such

powerful quantum computing systems may come sooner than one may expect but we still

have to find a way of running PQCs efficiently on NISQ QPUs.

8.4.1 NISQ QPU connectivity
A typical approach to designing a PQC executable on the NISQ QPU would start with

observing two main characteristics of the quantum computing systems: the graph (qubit

connectivity) and the set of native gates. We can illustrate these points by looking at

Rigetti’s Aspen system [72] in Figure 8.3.

1

2

3

4

5

6

7

8

Figure 8.3: Rigetti’s Aspen system.

Chapter 8 225

As we can see, most qubits are only connected to their nearest neighbours on the linear

grid, with only four qubits having three connections. These extra connections form a

bridge between two 8-qubit islands that, otherwise, would be completely independent.

8.4.2 QNN embedding scheme
The shaded qubits in Figure 8.3 can be used to construct the 8-qubit tree network capable of

processing a dataset with up to 16 continuous features (two features per quantum register)

as shown in Figure 8.4. The thick lines in Figure 8.3 represent qubits connectivity used in

constructing the QNN. The thin lines represent all other available qubit connections that

have not been utilised in the QNN ansatz.

q1

q2

q3

q4

q5

q6

q7

q8

RG(θ
1
1)

RG(θ
1
2)

RG(θ
1
3)

RG(θ
1
4)

RG(θ
1
5)

RG(θ
1
6)

RG(θ
1
7)

RG(θ
1
8)

RG(θ
2
2)

RG(θ
2
4)

RG(θ
2
6)

RG(θ
2
8)

RG(θ
3
4)

RG(θ
3
8) RG(θ

4
8)

M

M

M

M

M

M

M

M0
0

G

G

G

G

G

G G

Figure 8.4: QNN for the Aspen system; the gate G is any of the {X, Y, Z} gates.

With the limited connectivity of existing QPUs, we need to fully utilise the

graph structure of the quantum chips to implement the most efficient QNN

embedding and extract the best possible performance.

226 Quantum Neural Network

8.5 QNN Trained as a Classifier
We now demonstrate how a binary QNN classifier can be trained on a classical credit

approval dataset using the non-differentiable learning approach.

8.5.1 The ACA dataset and QNN ansatz
One of the most fundamental use cases for a binary classifier in finance is credit approval.

The UCI Machine Learning Database [241,242] holds the Australian Credit Approval (ACA)

dataset consisting of 690 samples. There are 14 features (binary, integer, continuous)

representing various attributes of potential borrowers and a binary class label (accept/reject

credit application). The dataset is reasonably hard for classical classifiers due to the limited

predictive power of the features and its relatively small size. This makes it ideal for testing

and benchmarking the QNN performance.

We start with the simplest tree network that can be mapped onto Rigetti’s Aspen system

graph described in the previous section. Figure 8.5 shows the full quantum circuit consisting

of sample encoding and sample processing modules [171]. The proposed scheme allows us

to encode up to two continuous features per quantum register with the help of rotations

around the x- and the y-axes.

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

RX(ϕ
1
1)

RX(ϕ
1
2)

RX(ϕ
1
3)

RX(ϕ
1
4)

RX(ϕ
1
5)

RX(ϕ
1
6)

RX(ϕ
1
7)

RX(ϕ
1
8)

RY(ϕ
2
1)

RY(ϕ
2
2)

RY(ϕ
2
3)

RY(ϕ
2
4)

RY(ϕ
2
5)

RY(ϕ
2
6)

RX(θ
1
1)

RX(θ
1
2)

RX(θ
1
3)

RX(θ
1
4)

RX(θ
1
5)

RX(θ
1
6)

RX(θ
1
7)

RX(θ
1
8)

RY(θ
2
2)

RY(θ
2
4)

RY(θ
2
6)

RY(θ
2
8)

RX(θ
3
4)

RX(θ
3
8) RY(θ

4
8)

M

M

M

M

M

M

M

M

Z

Z

Z

Z

Z

Z Z

Sample encoding Sample processing

Figure 8.5: PQC for the credit approvals classifier.

Chapter 8 227

The features are encoded as rotation angles ϕ ∈ [0, π] according to the encoding scheme

described in Section 7.2. With all qubits initialised as |0⟩ in the computational basis, this

ensures the uniqueness of the encoded samples. The sample processing module consists of

layers of adjustable one-qubit gates (rotations around the x- and the y-axes) and fixed two-

qubit gates (CZ). We split the ACA dataset 50:50 into a training and a testing dataset using the

train_test_split() function provided by the sklearn.model_selection module. Our

objective is to train the QNN and various classical classifiers (classical benchmarks) on the

training dataset and compare their out-of-sample performance on the testing dataset. The

classical classifiers have a number of hyperparameters that can be fine-tuned to optimise

the classifier performance on the given dataset. In contrast, the QNN architecture (location

and types of one-qubit and two-qubit gates) is fixed.

8.5.2 Training an ACA classifier with the PSO algorithm
We first verify that the QNN can be efficiently trained with the Particle Swarm Optimisation

algorithm – a non-differentiable learning approach. Figure 8.6 illustrates PSO convergence

for the set of PSO parameters given in Table 8.3.

Parameter Notation Value

Inertia coefficient w 0.25

Self-confidence coefficient c1 0.25

Swarm confidence coefficient c2 0.25

Number of particles M 10

Number of iterations Niter 20

Number of quantum circuit runs Nruns 1000

Table 8.3: PSO parameters.

The sample algorithm run has reached the minimum of the objective function in just four

iterations with only ten particles, exploring the search space using the Qiskit quantum

simulator.

228 Quantum Neural Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
101.6

101.8

102

102.2

102.4

102.6

102.8

Iteration

M
in

im
um

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Best particle in the swarm
Average across all particles
Worst particle in the swarm

Figure 8.6: Minimum objective function values found by individual particles.

The configuration of adjustable parameters (rotations) that corresponds to the minimum of

the objective function found by the PSO algorithm is given by (8.5.1).

θ =

0.16π

−0.55π 0.66π

−0.13π
0.08π 0.72π 0.02π

0.33π

0.06π 0.95π

0.48π

0.19π −0.91π −0.83π 0.59π

. (8.5.1)

Figure 8.7 displays the in- and out-of-sample confusion matrices for the QNN classifier

obtained with the Qiskit quantum simulator assuming that Class 0 is the positive class.

Chapter 8 229

Class 0 Class 1

C
la

ss
0

C
la

ss
1

Class 0 Class 1

C
la

ss
0

C
la

ss
1

146

12

37

150

160

11

40

134

Predicted class

A
ct

ua
lc

la
ss

Predicted class

A
ct

ua
lc

la
ss

In-sample Out-of-sample

Figure 8.7: Confusion matrix for the QNN classifier (ACA dataset).

The results are robust with an in-sample accuracy of 0.86 and an out-of-sample accuracy

of 0.85. Interestingly, the in-sample and out-of-sample results are very close, indicating

that the QNN provides strong regularisation. The question of quantum and classical neural

networks regularisation will be tackled in Chapter 12.

8.6 Classical Benchmarks
In Chapter 4, we introduced two classical classifiers: a feedforward artificial neural network

(Multi-Layer Perceptron) and a decision tree algorithm. We now expand the range of

classical benchmark classifiers by adding Support Vector Machine (SVM) [70], Logistic

Regression [31], and Random Forest [136]. The SVM approach based on the kernel method

is covered in Chapter 13. Here, we briefly explain the main principles of logistic regression

and random forest classifiers.

8.6.1 Logistic Regression and Random Forest
Logistic regression can be seen as a special case of a feedforward neural network with a

single hidden layer consisting of an activation unit with the logistic activation function.

The model operates as shown in Figure 4.3 with

y(s) =
(
1 + e−s

)−1
.

230 Quantum Neural Network

The standard logistic regression model is a linear classifier because the outcome always

depends on the sum of the (weighted) inputs. Therefore, logistic regression performs well

when working with a dataset where the classes are more or less linearly separable.

Random forest is an ensemble learning model and, as the name suggests, is based on

combining the classification results of multiple decision trees. The ensemble technique

used by random forest is known as bootstrap aggregation, or bagging, by choosing random

subsets from the dataset. Hence, each decision tree is generated from samples drawn from

the original dataset with replacement (row sampling). This step of row sampling with

replacement is called the bootstrap. Each decision tree is trained independently. The final

output for the given samples is based on majority voting after combining the results of all

individual decision trees. This is the aggregation step.

8.6.2 Benchmarking against standard classical classifiers
The classical benchmarking can be done by training several popular scikit-learn models.

Table 8.4 provides classical benchmarking results in terms of out-of-sample F1 scores for

the following (weakly) optimised scikit-learn classifiers:

• a feedforward neural network (MLP) classifier: neural_network.MLPClassifier

• a support vector machine classifier: svm.SVC

• an ensemble learning model: ensemble.RandomForestClassifier

• a logistic regression classifier: linear_model.LogisticRegression

The F1 score is a harmonic average of two performance metrics, precision and recall:

F1 := 2
Precision× Recall
Precision + Recall

,

both introduced in Chapter 4. In the context of credit approvals, optimising for recall

helps with minimising the chance of approving a credit application that should be rejected.

However, this comes at the cost of not approving credit applications for some high-quality

borrowers. If we optimise for precision, then we improve the overall correctness of our

decisions at the cost of approving some applicants with bad credits. The F1 score is used

Chapter 8 231

to balance the positives and negatives in optimising precision and recall.

Classifier Average F1 score

Logistic Regression Classifier 0.88

Random Forest Classifier 0.87

MLP Classifier 0.86

QNN Classifier 0.85

Support Vector Classifier 0.84

Table 8.4: Out-of-sample F1 scores for the classical and QNN classifiers trained on the ACA dataset.

The QNN classifier performance, as measured by the average F1 score for Class 0 and

Class 1, falls somewhere in the middle of the range of out-of-sample F1 scores for the

chosen classical benchmarks. This is encouraging since the QNN ansatz was fixed and we

did not optimise the QNN hyperparameters – the placement and types of the two-qubit

gates. The classifier performance can be further improved by deploying the standard

ensemble learning techniques, as explained in the following section.

QNNs can be productively used for classification tasks on classical finance-

related datasets.

8.7 Improving Performance with Ensemble
Learning

The ensemble learning methods combine different weak classifiers into a strong classifier

that has better generalisation capabilities than each individual standalone classifier. In

Chapter 4, we saw how the principles of ensemble learning can be used in combination

with the methods of quantum annealing. Here, we look at them from the QNN perspective.

232 Quantum Neural Network

8.7.1 Majority voting
The popular ensemble learning methods are majority voting (binary classification) and

plurality voting (multiclass classification). Majority voting means what it says: the class

label for the given sample is the one that receives more than half of the individual votes.

Plurality voting chooses the class that receives the largest number of votes (the mode).

The ensemble of the individual classifiers can be built from different classification algo-

rithms. For example, by combining neural network classifiers, support vector machines,

decision trees, etc. On the other hand, the same basic classification algorithm can be used

to produce multiple classifiers by choosing different configurations of hyperparameters

and different subsets of the training dataset. The random forest classifier, which combines

different decision tree classifiers, illustrates the latter approach.

With these considerations in mind, we build a strong classifier from several individual

QNN classifiers by changing the QNN ansatz within the restrictions imposed by the QPU

qubit connectivity. In order to test the majority voting approach, we build two new QNN

classifiers by adding a few more two-qubit CZ gates to the baseline parameterised quantum

circuit, as shown in Figures 8.8 and 8.9.

In the case of PQC #2, we add two extra CZ gates, exploiting the “bridge” structure of the

Aspen system (Figure 8.3). This improves the overall system entaglement and allows for a

richer set of achievable quantum states. PQC #3 has three extra CZ gates in comparison

with the baseline circuit. The new classifiers can be trained with the same algorithm (PSO)

on the same training dataset but will have different optimal configurations of the adjustable

parameters and will make slightly different classification decisions on the testing dataset.

With three QNN classifiers, the majority voting leads to either a unanimous or a 2:1 decision.

Performance on the ACA dataset improves marginally with all three classifiers generally

in full agreement with each other. There are only a handful of instances where majority

voting adds value, but this improves the average out-of-sample F1 score from 0.85 to 0.87 –

on par with the random forest classifier trained on the same dataset.

Chapter 8 233

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

R
X
(ϕ

1 1
)

R
X
(ϕ

1 2
)

R
X
(ϕ

1 3
)

R
X
(ϕ

1 4
)

R
X
(ϕ

1 5
)

R
X
(ϕ

1 6
)

R
X
(ϕ

1 7
)

R
X
(ϕ

1 8
)

R
Y
(ϕ

2 1
)

R
Y
(ϕ

2 2
)

R
Y
(ϕ

2 3
)

R
Y
(ϕ

2 4
)

R
Y
(ϕ

2 5
)

R
Y
(ϕ

2 6
)

R
X
(θ

1 1
)

R
X
(θ

1 2
)

R
X
(θ

1 3
)

R
X
(θ

1 4
)

R
X
(θ

1 5
)

R
X
(θ

1 6
)

R
X
(θ

1 7
)

R
X
(θ

1 8
)

R
Y
(θ

2 2
)

R
Y
(θ

2 4
)

R
Y
(θ

2 6
)

R
Y
(θ

2 8
)

R
X
(θ

3 4
)

R
X
(θ

3 8
)

R
Y
(θ

4 8
)

M M M M M M M 0
M

0 0

Z Z Z Z

Z

Z Z
Z

Z

Sa
m

pl
e

en
co

di
ng

Sa
m

pl
e

pr
oc

es
si

ng

Figure 8.8: PQC #2 for the credit approvals classifier. New fixed 2-qubit gates are shaded grey.

234 Quantum Neural Network

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

R
X
(ϕ

1 1
)

R
X
(ϕ

1 2
)

R
X
(ϕ

1 3
)

R
X
(ϕ

1 4
)

R
X
(ϕ

1 5
)

R
X
(ϕ

1 6
)

R
X
(ϕ

1 7
)

R
X
(ϕ

1 8
)

R
Y
(ϕ

2 1
)

R
Y
(ϕ

2 2
)

R
Y
(ϕ

2 3
)

R
Y
(ϕ

2 4
)

R
Y
(ϕ

2 5
)

R
Y
(ϕ

2 6
)

R
X
(θ

1 1
)

R
X
(θ

1 2
)

R
X
(θ

1 3
)

R
X
(θ

1 4
)

R
X
(θ

1 5
)

R
X
(θ

1 6
)

R
X
(θ

1 7
)

R
X
(θ

1 8
)

R
Y
(θ

2 2
)

R
Y
(θ

2 4
)

R
Y
(θ

2 6
)

R
Y
(θ

2 8
)

R
X
(θ

3 4
)

R
X
(θ

3 8
)

R
Y
(θ

4 8
)

M M M M M M M 0
M

0 0

Z Z Z Z

Z Z

Z Z
Z

Z

Sa
m

pl
e

en
co

di
ng

Sa
m

pl
e

pr
oc

es
si

ng

Figure 8.9: PQC #3 for the credit approvals classifier. New fixed 2-qubit gates are shaded grey.

Chapter 8 235

Similar results can be achieved with the original QNN classifier trained on different subsets

of the training dataset. These subsets are produced by drawing the bootstrap samples –

random samples with replacement – from the original training dataset. The differently

trained QNN classifiers can then be combined into a single strong classifier using the

majority voting approach as described above.

8.7.2 Quantum boosting
We started by introducing the concept of ensemble learning where predictions produced by

various QNNs are combined into a more robust unified prediction via a classical majority

voting method. However, we can take a different approach to ensemble learning: predictions

of various classical classifiers can be treated as an input into the QNN that performs their

aggregation and comes up with a unified prediction. In other words, the QNN operates as

a quantum booster similar to the QUBO-based QBoost model introduced in Chapter 4.

Let us come back to the classical benchmarks used in Section 8.5. There are four different

machine learning models performing binary classifications. Their outputs (“0” for Class 0

and “1” for Class 1) are inputs into a 4-qubit QNN classifier. Since all quantum registers

are initialised as |0⟩, the outputs of individual classifiers can be encoded by either doing

nothing for Class 0 output (which is equivalent to applying an identity operator I) or by

applying a NOT gate X for Class 1 output.

2

1

4

3

Figure 8.10: Embedding of a 4-qubit QNN onto the bridge section of Rigetti’s Aspen system.

236 Quantum Neural Network

Figure 8.10 shows how a 4-qubit QNN can be efficiently embedded on the QPU and

Figure 8.11 shows the corresponding parameterised quantum circuit with adjustable one-

qubit gates (RX, RY) and fixed two-qubit gates (CZ).

|0⟩

|0⟩

|0⟩

|0⟩

G

G

G

G

RY(θ
1
1)

RY(θ
1
2)

RY(θ
1
3)

RY(θ
1
4)

RX(θ
2
2)

RX(θ
2
3)

RX(θ
2
4)

RY(θ
3
3)

RY(θ
3
4) RX(θ

4
4)

M

M

M

M

Z

Z

Z Z Z Z Z

Sample
encoding

Sample
processing

Figure 8.11: QBoost circuit. The sample encoding gate G is either an identity gate I if the input
is “0”, or a NOT gate X if the input is “1”.

Ensemble learning can improve QNN performance in the same way it

improves performance of the classical weak learners.

Summary
In this chapter, we introduced the concept of a quantum neural network as a parameterised

quantum circuit trained as a classifier. We considered two approaches to training QNNs:

differentiable (gradient descent) and non-differentiable (Particle Swarm Optimisation)

methods. Gradient descent is generally faster but can face the problem of barren plateaus

(vanishing gradients). The evolutionary search heuristics may be slower but can handle

the presence of multiple local minima and strike the right balance between exploration

and exploitation.

We also explored the embedding of QNNs on the NISQ QPUs with limited connectivity

between the qubits. As an example, we considered Rigetti’s Aspen system and proposed an

efficient embedding scheme that mirrors the “tree structure” architecture of the QNN.

Chapter 8 237

Once our QNN was fully specified and embedded into a QPU graph, we investigated its

performance on a real-world dataset of credit approvals and provided comparisons with

several standard classical classifiers.

Finally, we looked at several ensemble learning techniques that assist in improving QNN

performance in the context of a hybrid quantum-classical protocol.

In the next chapter, we will study a powerful generative QML model – the Quantum Circuit

Born Machine – which is a direct quantum counterpart of the classical Restricted Boltzmann

Machine we considered in Chapter 5.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

9
Quantum Circuit Born
Machine

The arrival of the new computational paradigm of quantum computing and the progress

achieved in developing quantum computing hardware prompted intensive research in

exploring the capabilities of quantum machine learning models and, more specifically,

quantum generative models that can be viewed as quantum counterparts of the classical

RBMs introduced in Chapter 5. Classical generative models form one of the most important

classes of unsupervised machine learning techniques with numerous applications in finance,

such as the generation of synthetic market data [48, 173], the development of systematic

trading strategies [176] or data anonymisation [174], to name just a few.

Quantum generative models have all the necessary qualities needed to establish quantum

advantage on NISQ devices. Probably the most well known example of such models is the

Quantum Circuit Born Machine (QCBM), which consists of several layers of adjustable and

fixed gates followed by measurement operators. The input is a quantum state where all

qubits are initialised as |0⟩ in the computational basis. The output is a bitstring, which is

240 Quantum Circuit Born Machine

a sample from the probability distribution encoded in the final state constructed by the

application of adjustable and fixed gates to the initial state.

The expectation of experimental proof of the quantum advantage is motivated by the

following observations: First, QCBMs have strictly larger expressive power than classical

RBMs when only a polynomial number of parameters is allowed (the number of qubits

in QCBM or the number of visible activation units in RBM) [88]. Second, generating

an independent sample from the learned distribution can be done in a single run of the

quantum circuit in the case of QCBM – this compares favorably with up to 103-104 forward

and backward passes through the network in the case of RBM, which are needed to achieve

the state of thermal equilibrium [173]. This points towards material quantum speedup.

Third, quantum generative models can be used to load data into a quantum state, thus

facilitating realisations of many promising quantum algorithms [314].

9.1 Constructing QCBM
As we have seen in Chapter 8, the art of building a QML model that can be run on a NISQ

computer consists of finding an optimal PQC architecture that can be embedded into the

chosen QPU graph. In this section, we show how it can be done for the QCBM compatible

with IBM’s Melbourne and Rochester systems.

9.1.1 QCBM architecture
QCBM is a parameterised quantum circuit where a layer of adjustable one-qubit gates is

followed by a layer of fixed two-qubit gates. Such a pattern can be repeated any number of

times, building a progressively deeper circuit. The input is a quantum state where all qubits

are initialised as |0⟩ in the computational basis. The final layer consists of measurement

operators producing a bitstring sample from the learned distribution. Therefore, to specify

the QCBM architecture means to specify the number of layers, the type of adjustable

gates, and the type of fixed gates for each layer. Since the theory of PQC is still being

developed [29], we can rely on similarities and analogies between PQCs and classical neural

networks to come up with some initial guesses about the possible QCBM architecture.

Chapter 9 241

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

R
X
(θ

1 1
)

R
X
(θ

1 2
)

R
X
(θ

1 3
)

R
X
(θ

1 4
)

R
X
(θ

1 5
)

R
X
(θ

1 6
)

R
X
(θ

1 7
)

R
X
(θ

1 8
)

R
X
(θ

1 9
)

R
X
(θ

1 1
0
)

R
X
(θ

1 1
1
)

R
X
(θ

1 1
2
)

R
Z
(θ

2 1
)

R
Z
(θ

2 2
)

R
Z
(θ

2 3
)

R
Z
(θ

2 4
)

R
Z
(θ

2 5
)

R
Z
(θ

2 6
)

R
Z
(θ

2 7
)

R
Z
(θ

2 8
)

R
Z
(θ

2 9
)

R
Z
(θ

2 1
0
)

R
Z
(θ

2 1
1
)

R
Z
(θ

2 1
2
)

R
Z
(θ

3 1
)

R
Z
(θ

3 2
)

R
Z
(θ

3 3
)

R
Z
(θ

3 4
)

R
Z
(θ

3 5
)

R
Z
(θ

3 6
)

R
Z
(θ

3 7
)

R
Z
(θ

3 8
)

R
Z
(θ

3 9
)

R
Z
(θ

3 1
0
)

R
Z
(θ

3 1
1
)

R
Z
(θ

3 1
2
)

R
X
(θ

4 1
)

R
X
(θ

4 2
)

R
X
(θ

4 3
)

R
X
(θ

4 4
)

R
X
(θ

4 5
)

R
X
(θ

4 6
)

R
X
(θ

4 7
)

R
X
(θ

4 8
)

R
X
(θ

4 9
)

R
X
(θ

4 1
0
)

R
X
(θ

4 1
1
)

R
X
(θ

4 1
2
)

R
Z
(θ

5 1
)

R
Z
(θ

5 2
)

R
Z
(θ

5 3
)

R
Z
(θ

5 4
)

R
Z
(θ

5 5
)

R
Z
(θ

5 6
)

R
Z
(θ

5 7
)

R
Z
(θ

5 8
)

R
Z
(θ

5 9
)

R
Z
(θ

5 1
0
)

R
Z
(θ

5 1
1
)

R
Z
(θ

5 1
2
)

R
Z
(θ

6 1
)

R
Z
(θ

6 2
)

R
Z
(θ

6 3
)

R
Z
(θ

6 4
)

R
Z
(θ

6 5
)

R
Z
(θ

6 6
)

R
Z
(θ

6 7
)

R
Z
(θ

6 8
)

R
Z
(θ

6 9
)

R
Z
(θ

6 1
0
)

R
Z
(θ

6 1
1
)

R
Z
(θ

6 1
2
)

R
X
(θ

7 1
)

R
X
(θ

7 2
)

R
X
(θ

7 3
)

R
X
(θ

7 4
)

R
X
(θ

7 5
)

R
X
(θ

7 6
)

R
X
(θ

7 7
)

R
X
(θ

7 8
)

R
X
(θ

7 9
)

R
X
(θ

7 1
0
)

R
X
(θ

7 1
1
)

R
X
(θ

7 1
2
)

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 9.1: QCBM(12, 7).

242 Quantum Circuit Born Machine

Figure 9.1 displays a 12-qubit QCBM with two layers of controlled rotation gates R = RG(ϕ)

for G ∈ {X, Y, Z} and ϕ ∈ [−π, π], where G and ϕ are fixed, and three layers of one-qubit

gates RX(θ) and RZ(θ) with a total of seven adjustable gates per quantum register. The

circuit is wide enough and deep enough to learn a complex distribution of a continuous

random variable while remaining implementable on existing NISQ devices: the 12-digit

binary representation of a continuous random variable provides sufficient precision and

seven adjustable parameters (rotation angles) per qubit provide sufficient flexibility. At the

same time, the circuit is not too deep to be compromised by the gate fidelity achievable in

existing quantum hardware [46, 164].

9.1.2 QCBM embedding
The chosen QCBM architecture is compatible with the limited connectivity observed in

the current generation of quantum processors. For example, the proposed circuit requires

sequential qubit connectivity where qubit n is directly connected with qubits n− 1 and

n+1 but does not have to be directly connected with other qubits. This architecture can for

example be supported by IBM’s Melbourne system [208] in Figure 9.2, where the 12 shaded

qubits correspond to the 12 quantum registers in Figure 9.1. The thick lines represent

connections used in the QCBM ansatz while the thin lines represent all other available

qubit connections.

12 11 10 9 8 7

1 2 3 4 5 6

Figure 9.2: IBM’s Melbourne system.

The 53-qubit Rochester device [208] in Figure 9.3 can also be used to implement this QCBM

architecture. Here, we have several choices for embedding the QCBM circuit (12 linearly

connected qubits forming a closed loop); shaded qubits show one such possibility.

Chapter 9 243

1 2 3 4 5

6

7891011

12

Figure 9.3: IBM’s Rochester system.

IBM systems, such as Melbourne and Rochester, are based on superconducting qubits. The

choice of the underlying technology means that there is a set of native gates – the quantum

gates derived directly from the types of interactions that occur in the given technical

realisation of the quantum chip.

In the case of IBM devices, the cross resonance gate generates the ZX interaction that leads

to a CNOT gate. When it comes to single-qubit gates, we note that RZ is a diagonal gate

given by (6.3.3) and can be implemented virtually in hardware via frame change (at zero

error and duration) [239]. Therefore, it is sufficient to have just an X drive to rotate the

qubit on the Bloch sphere (one can move a qubit between two arbitrary points on the Bloch

sphere with the help of just two gates, RX and RZ).

244 Quantum Circuit Born Machine

This means that we can introduce the concept of a hardware-efficient architecture not

only in terms of connectivity but also in terms of the choice of one-qubit and two-qubit

gates. Taking into account the CNOT and CPHASE gate decomposition shown in Figures 6.19

and 6.20, the hardware-efficient QCBM architecture for the Melbourne and Rochester

systems would consist of a combination of RX and RZ adjustable single-qubit gates and

CNOT and CPHASE fixed two-qubit gates [30, 153].

QCBM is a PQC trained as a generative ML model. QCBM operating on N

quantum registers transforms the initial quantum state |0⟩⊗N into the

quantum state encoding the learned probability distribution.

9.2 Differentiable Learning of QCBM

The output of a QCBM circuit is a bitstring that represents a sample from the probability

distribution encoded in the quantum state. The circuit itself is, essentially, a mechanism of

transforming an initial state |0⟩⊗n into a final state from which a sample is generated by

means of measuring the qubits in the computational basis.

Different configurations of one-qubit and multi-qubit gates encode different probability

distributions – the training of QCBM consists of finding an optimal circuit configuration

(ansatz) and an optimal set of adjustable parameters that minimise the distance between

the probability distribution encoded in the final quantum state (before measurement, or

“before sampling”) and the probability distribution of the training dataset.

Following the structure we adopted in Chapter 8, we start with the differentiable learning

approach, before moving to the non-differentiable learning method based on a different

kind of evolutionary search heuristic – Genetic Algorithm.

9.2.1 Sample encoding
In the most general case, a training dataset consists of samples containing continuous,

integer and categorical features. However, QCBM operates on binary variables. Therefore,

Chapter 9 245

we need to design a method to convert continuous features into binary ones and a method

for converting generated binary QCBM output (sampling) into continuous variables. The

integer and binary features can be treated as special cases of continuous features and

categorical features can be first converted into binary features through one-hot encoding.

Such a method can be realised as a two-step routine (Algorithm 6):

1: Conversion of a continuous variable into the corresponding integer variable.

2: Conversion of the integer variable into the corresponding binary variable.

Given the generated binary output, the same routine can be used in reverse mode to produce

continuous samples (Algorithm 7):

1: Conversion of the generated binary QCBM output into integer samples.

2: Conversion of integer samples into the corresponding continuous samples.

Algorithm 6: Continuous to integer to binary transformation (training phase)
Result: Conversion of continuous variables into M -digit binary features.

Input:
(
X

(n)
real(l)

)
l=1,...,Nsamples; n=1,...,Nvariables

– continuous data sample.

for n = 1, . . . , Nvariables do
X

(n)
min ← minl=1,...,Nsamples

(
X

(n)
real(l)

)
− ε(n)min, for ε(n)min ≥ 0

X
(n)
max ← maxl=1,...,Nsamples

(
X

(n)
real(l)

)
+ ε

(n)
max, for ε(n)max ≥ 0

for l = 1, . . . , Nsamples do

X
(n)
integer(l)← int

((
2M − 1

) X(n)
real(l)−X

(n)
min

X
(n)
max −X(n)

min

)

X
(n)
binary(l)← bin

(
X

(n)
integer(l)

)
end

end

Each data sample is represented by an M -digit binary number with every digit

becoming a separate feature. The total number of features is M ×Nvariables.

246 Quantum Circuit Born Machine

Algorithm 7: Binary to integer to continuous transformation (sampling phase)
Result: Conversion of the generated M -digit binary sample into continuous sample.

Input:
(
X̂

(n)
[m]

)
m=0,...,M−1; n=1,...,Nvariables

– generated M -digit binary sample.

for n = 1, . . . , Nvariables do

X̂
(n)
integer :=

M−1∑
m=0

2mX̂
(n)
[M−1−m]

X̂
(n)
real ← X

(n)
min +

1

2M − 1
X̂

(n)
integer

(
X(n)

max −X
(n)
min

)
end

Algorithms 6 and 7 describe the transformations of continuous variables into M -digit

binary variables and then back into continuous variables [173]. It is important to note

the role of the parameters εmin and εmax. They are non-negative and expand the interval

on which the variables are defined. In the case where εmin = εmax = 0, this interval

is determined by the minimum and maximum values of the variable as observed in the

training dataset. By allowing εmin and εmax to take positive values, we expand the interval

of possible values the variable can take. This allows the model to generate a wider range of

possible scenarios: with some (small) probability the generated values can fall outside the

interval given by the samples from the training dataset.

The precision of the binary representation is feature specific. More important features can

have more granular representation. The right choice of precision is important for NISQ

devices that operate with a limited number of quantum registers. For example, the QCBM

ansatz shown in Figure 9.1 can be used to encode two continuous variables with 6-digit

binary precision each. Alternatively, the more important variable can be encoded with, e.g.,

8-digit binary precision and the less important one with only 4-digit binary precision.

Figure 9.4 illustrates how the readout from 12 quantum registers can be translated into

a sample consisting of two continuous variables: the value of the first one is encoded as

a 7-digit binary number and the value of the second one is encoded as a 5-digit binary

number. In this example, we assume that both variables take values in the interval [−1, 1].

Chapter 9 247

qubits:

readout:

variable 1 variable 2

leading digit leading digit

binary: 1011010
integer: 90
continuous: 0.4173

binary: 01100
integer: 12
continuous: −0.2258

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 1 0 1 0 0 1 1 0 0

Figure 9.4: Sample QCBM readout and data transformation for two continuous variables taking
values in the interval [−1, 1] and where we set εmin = εmax = 0.

9.2.2 Choosing the right cost function
The differentiable learning of QCBM follows the same principles as that of training the

quantum neural networks outlined in Chapter 8: minimisation of the cost function with

the gradient descent method. The main difference is the form of the cost function. In the

case of a QNN-based classifier, the cost function represents the classification error while

the cost function for QCBM represents the distance between two probability distributions:

the distribution of samples in the training dataset and the distribution of samples in the

generated dataset.

Let θ denote the set of adjustable QCBM parameters, pθ(·) the QCBM distribution, and π(·)
the data distribution. Then we can define the cost function L(θ) as

L(θ) :=
∑
x

|pθ(x)− π(x)|,

where the sum goes over all samples x in the dataset. This cost function is a strong metric

but may not be the easiest to deal with [73]. An efficient alternative choice of the cost

function is the maximum mean discrepancy [189]:

248 Quantum Circuit Born Machine

L(θ) := E
x∼pθ,y∼pθ

[K(x, y)]− 2 E
x∼pθ,y∼π

[K(x, y)] + E
x∼π,y∼π

[K(x, y)],

where K(·, ·) is a kernel function, i.e., a measure of similarity between points in the sample

space. A popular choice of kernel function is the Gaussian mixture:

K(x, y) =
1

c

c∑
i=1

exp

(
−∥x− y∥2

2σ2i

)
,

for some c ∈ N and where (σi)i=1,...,c are the bandwidth parameters of each Gaussian

kernel and ∥ · ∥ is the L2 norm.

We can also explore the possibility of using quantum kernels. Quantum kernels can provide

an advantage over classical methods for kernels that are difficult to compute on a classical

device. For example, we can consider a non-variational quantum kernel method [232],

which uses a quantum circuit U(x) to map real data into a quantum state |ϕ⟩ via a feature

map:

|ϕ(x)⟩ = U(x) |0⟩⊗n . (9.2.1)

The kernel function is then defined as the squared inner product

K(x, y) = | ⟨ϕ(x)|ϕ(y)⟩ |2.

This quantum kernel is evaluated on a quantum computer and is hard to compute on a

classical one [129]. We investigate the question of expressive power of various models in

Chapter 12 and provide a detailed analysis of the quantum kernel approach in Chapter 13.

Taking into account the mapping (9.2.1) and denoting |0⟩ = |0⟩⊗n, the kernel becomes

K(x, y) = | ⟨0| U†(x)U(y) |0⟩ |2,

which is the probability of measuring the all-zero outcome. It can be calculated by mea-

suring, in the computational basis, the state which results from running the circuit given

by U(y), followed by that of U†(x).

Chapter 9 249

9.3 Non-Differentiable Learning of QCBM
The hardware-efficient ansatz we proposed for the QCBM architecture, while simple and in-

tuitive, may be vulnerable to barren plateaus, or regions of exponentially vanishing gradient

magnitudes that make training untenable [54, 139, 299]. This provides a strong motivation

for exploring a non-differentiable learning alternative such as Genetic Algorithm.

9.3.1 The principles of Genetic Algorithm
GA is a powerful evolutionary search heuristic [214] that was introduced in Chapter 3. It

performs a multi-directional search by maintaining a population of proposed solutions

(chromosomes) for a given problem. Each solution is represented in a fixed alphabet with

an established meaning (genes). The population undergoes a simulated evolution with

relatively good solutions producing offspring, which subsequently replace the worse ones,

and the quality of a solution is estimated with some objective function (environment).

GAs have found applications is such diverse fields as quantitative finance (for portfolio

optimisation problems [172]) and experiments with adiabatic quantum computing (as a

classical benchmark [296]).

The simulation cycle is performed in three basic steps. During the selection step, a new

population is formed by stochastic sampling (with replacement). Then, some of the members

of the newly selected populations recombine. Finally, all new individuals are re-evaluated.

The mating process (recombination) is based on the application of two operators: mutation

and crossover. Mutation introduces random variability into the population, and crossover

exchanges random pieces of two chromosomes in the hope of propagating partial solutions.

The training of the QCBM specified in Figure 9.1 consists of finding an optimal config-

uration of the rotation angles (θji)i=1,...,12; j=1,...,7 that would minimise a chosen cost

function given a particular choice of the fixed 2-qubit gates. Since we only deal with 84

adjustable parameters (rather than tens of thousands), we do not need to implement the

crossover mechanism and can rely on parameter mutations to achieve GA convergence to

the minimum of the cost function. This significantly simplifies the algorithm.

250 Quantum Circuit Born Machine

9.3.2 Training QCBMwith a Genetic Algorithm
Algorithm 8 outlines the proposed approach. However, before we provide a formal descrip-

tion of the algorithm, we have to specify the main individual components.

• Solution. The solution is a 12× 7 matrix of rotation angles:

θ =

θ11 . . . θ71
...

. . .
...

θ112 . . . θ712

 .

In GA language, the matrix θ plays the role of a chromosome and its components θji
play the roles of individual genes.

• Mutation. The genes can mutate from generation to generation. The mutation rate

can be either constant or time dependent. For example, the mutation rate can start

at some large value and then decrease exponentially such that it halves after each κ

generations. In Algorithm 8, we adopt the following mutation dynamics:

– A rotation angle (gene) can mutate to any of the allowed discrete values with

equal probability.

– Mutation is controlled by a single global parameter α ∈ (0, 1], which can be

either constant or exponentially decreasing at some fixed rate β ≥ 0.

– Mutations happen independently for each column in θ.

– For each column in θ, at each generation, a single rotation angle mutation hap-

pens with probability α. All rotation angles are equally likely to mutate. After

that, one more mutation can happen with probability α/2. Again, all rotation

angles are equally likely to mutate. This ensures that we can have scenarios

where two rotation angles within the same column can mutate simultaneously.

• Search Space. The rotation angles θji are defined in [−π, π], which we split into 2m

equal subintervals, so that the possible values for θji are (−π+nπ/2m−1)n=0,...,2m−1.

A rotation angle can mutate into any of these values. The search space can quickly

Chapter 9 251

become enormous even for the relatively small values of m. For example, for m = 7

we have 128 possible values for each rotation angle making the total number of

possible configurations ∼ 10177. The GA can only explore a tiny fraction of the

search space. But due to the GA’s ability to propagate best solutions and to avoid

being trapped in local minima, the algorithm can achieve reasonably fast convergence

to the solution in the vicinity of the global minimum. For a detailed analysis of the

rate of convergence of genetic algorithms, we refer the interested reader to [130,264].

• Cost Function. A cost function is a measure of how far the distribution of gen-

erated samples is from the distribution of original samples provided by the train-

ing dataset. Let u := (u1, . . . , uK) be a sample from the training dataset and

v(θ) := (v1(θ), . . . , vK(θ)) a sample from the QCBM generated dataset that corre-

sponds to a particular configuration of rotation angles θ. Let us order these samples

from the smallest to the largest with any suitable sort(·) function:

u = sort(u), v(θ) = sort(v(θ)). (9.3.1)

The cost function L(·) can then be defined as

L(θ) :=

K∑
k=1

(uk − vk(θ))2 . (9.3.2)

The sort(·) function in (9.3.1) can be, e.g., quicksort [137] or mergesort [166], which belong

to the class of divide-and-conquer algorithms. Alternatively, it can be, e.g., heapsort [303] –

a comparison-based sorting algorithm.

252 Quantum Circuit Born Machine

Algorithm 8: Genetic Algorithm

Result: Optimal configuration of the set of QCBM parameters θ∗ minimising the

cost function.

Input:

• u ∈ RK : vector of sample training dataset;

• L: number of iterations (generations);

• M : number of best solutions in the given generation, chosen for further mutation;

• N : number of solutions in each generation (N = DM , D ∈ N);

• α, β: mutation parameters;

• m: search space parameter.

The possible values of rotation angles are
(
−π +

νπ

2m−1

)
ν=0,...,2m−1

.

Initialise and evaluate the first generation of solutions:

for n = 1, . . . , N do
Generate a configuration θ(0;n) by randomly drawing each rotation

angle θji (0;n) from the uniform distribution on the set of possible values of

rotation angles given by m.

for k = 1, . . . ,K do
Run the quantum circuit with configuration θ(0;n) and generate new

sample vk(θ(0;n)).

end

Evaluate the cost function L(θ(0;n)).

end

Order solutions from best (minimum of cost function) to worst (maximum of cost

function).

θ∗ ← configuration corresponding to the minimum of cost function.

Chapter 9 253

Iterations:

for l = 1, . . . , L do

α← αe−β

Select M best solutions from generation l − 1 and generate new solutions

(θ(l;n))n=1,...,N by mutating the rotation angles using the updated mutation

rate α. Each of the M best solutions is used to produce D new solutions.

for n = 1, . . . , N do

for k = 1, . . . ,K do
Run the quantum circuit with θ(l;n) and generate new

sample vk(θ(l;n)).

end

Evaluate the cost function L(θ(l;n)).

end

Order solutions from best (minimum of the cost function) to worst (maximum of

the cost function).

θ∗(l)← configuration corresponding to the minimum of the cost function (l-th

generation).

if L(θ∗(l)) < L(θ∗) then
θ∗ ← θ∗(l)

end

end

Having described the training algorithm, we now specify the classical benchmark before

comparing the results obtained by the quantum and the classical generative models on the

sample datasets.

254 Quantum Circuit Born Machine

9.4 Classical Benchmark
There is a deep connection between QCBM and its classical counterpart – Restricted

Boltzmann Machine [60]. RBM, introduced and discussed in Chapter 5 in the context

of quantum annealing, is a generative model inspired by statistical physics, where the

probability of a particular data sample, v, is given by the Boltzmann distribution:

P(v) =
1

Z
e−E(v). (9.4.1)

Here, E(v) is the (positive) energy of the data sample (data samples with lower energy

have higher probabilities) and Z is the partition function, namely the normalisation factor

of the probability density:

Z =
∑
v

e−E(v).

Alternatively, we can use the inherent probabilistic nature of quantum mechanics that

allows us to model the probability distribution using a quantum state |ψ⟩:

P(v) = ⟨ψ|P†
vPv|ψ⟩, (9.4.2)

where Pv is the measurement operator introduced in Section 1.2.3 and, since the quantum

state |ψ⟩ is a unit vector, we have

⟨ψ|ψ⟩ = 1.

We realise this approach in the Quantum Circuit Born Machine, where generative modelling

of probability density is translated into learning a quantum state. The sole purpose of

QCBM’s parameterised circuit is to create the quantum state |ψ⟩ that encodes the desired

probability distribution starting from the initial state |0⟩⊗n, with sampling performed by

applying the measurement operators.

Therefore, providing a classical benchmark for QCBM consists in finding a suitable RBM

configuration that will allow us to compare two methods generating the probability distri-

bution P(v): one given by (9.4.1) for RBM and another one given by (9.4.2) for QCBM [170].

Chapter 9 255

Figure 9.5 shows an RBM with 12 stochastic binary visible activation units and 7 stochastic

binary hidden activation units, where (ai)i=1,...,12, (bj)j=1,...,7, and (wij)i=1,...,12; j=1,...,7

denote, respectively, the biases for the visible and hidden layers and the network weights.

This network architecture makes RBM equivalent to QCBM as described in Section 9.1 in

the sense that both generative models have the same number of adjustable parameters (the

number of RBM weights is equal to the number of adjustable rotation angles in QCBM)

and the number of visible activation units is equal to the number of quantum registers.

The latter ensures that both generative models can learn the empirical distribution of a

continuous random variable with the same precision (12-digit binary representation).

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

b1 b2 b3 b4 b5 b6 b7

h1 h2 h3 h4 h5 h6 h7

w1,1 w12,7

visible layer

hidden layer

Figure 9.5: RBM(12, 7).

256 Quantum Circuit Born Machine

QCBM performance should be compared against the performance of its

classical counterpart, the Restricted Boltzmann Machine. Both models

operate on the binary representation of the dataset and have a comparable

number of adjustable parameters.

9.5 QCBM as a Market Generator

The most obvious financial application of QCBM is as a market generator. An efficient

generation of realistic market scenarios, for example sampling from the joint distribution of

risk factors, is one of the most important and challenging problems in quantitative finance

today. We thus need to investigate how well QCBM can execute this task, and compare it

to classical benchmarks.

9.5.1 Non-parametric modelling of market risk factors

Historically, the problem of producing reliable synthetic market scenarios was solved

through sampling from some easy-to-calibrate parametric models, such as the multivariate

Normal distribution of risk factor log-returns (equities) or a Gaussian copula combining

the multivariate Normal dependence structure with heavy-tailed univariate marginal distri-

butions of individual risk factors (credit). However, there are well-known issues with this

approach that often outweigh the benefits provided by simplicity and transparency [217].

A parametric model is often a poor approximation of reality. To be useful, it has to

be relatively simple: one should be able to describe the key features of the risk factor

distribution with a handful of parameters achieving the best possible fit to either the

empirical distribution derived from historical data or from prices of traded instruments

observed in the market at the time of model calibration. Making the parametric model too

complex would lead to overfitting and poor generalisation.

It is even more difficult to model a realistic dependence structure. A typical parametric

approach used in most Monte Carlo risk engines starts with modelling the dynamics of

various risk factors independently, and then imposes a dependence structure by correlating

Chapter 9 257

the corresponding stochastic drivers. These are, almost invariably, Brownian motions, and

the linear correlations between them are supposed to be sufficient to construct the joint

distribution of risk factors.

An alternative approach is to use non-parametric modelling, where the joint and marginal

distributions of risk factors are learned directly from the available datasets. Classically,

we can realise this approach with the help of a Restricted Boltzmann Machine – the

classical benchmark of choice described in the previous section and successfully applied

to a number of financial use cases [173, 174]. Another possibility is to use the Generative

Adversarial Network (GAN) framework, where the distribution learned from the dataset by

a generative neural network is tested by a discriminative neural network trying to judge

whether samples are coming from the true distribution (data) or from the reconstructed

distribution (generated samples) [114].

Chapter 12 explores the question of the larger expressive power of QCBM in comparison

with classical neural networks (RBM). However, the first step should be an experimental

verification of their performance characteristics. With this in mind, we would like to test

the ability of both QCBM and RBM to learn relatively complex probability distributions

and then efficiently sample from them.

9.5.2 Sampling from the learned probability distributions
We are going to test the performance of QCBM and RBM on two datasets:

Dataset A. A heavy-tailed distribution of daily S&P 500 index returns observed

between 5 January 2009 and 22 February 2011 (UCI Machine Learning Repository [9,

10]). The dataset consists of 536 samples.

Dataset B. A specially constructed distribution of a continuous random variable with

a highly spiky probability density function (pdf) modelled as a mixture of Normal

distributions. The dataset consists of 5,000 generated samples from a mixture of four

Normal distributions with the following means, standard deviations, and weights:

258 Quantum Circuit Born Machine

Mean Standard deviation Weight

−3 0.3 0.1

−1 0.3 0.2

1 0.3 0.3

3 0.3 0.4

Table 9.1: Parameters of the mixture of standard Normal distributions.

In both cases, we convert the continuous samples into the corresponding 12-digit binary

representation as per Algorithm 6. Once the networks are trained (QCBM with Algorithm 8

and RBM with Algorithm 2), we generate new samples: 536 new samples for Dataset A and

5,000 new samples for Dataset B. This allows us to visualise the quality of the generated

samples (once they are converted into the corresponding continuous representation as per

Algorithm 7) by producing the empirical pdf and the QQ-plots as shown in Figures 9.6

and 9.7, which display sample simulation results for the fully trained models. We can

see that both QCBM(12, 7) and RBM(12, 7) can successfully learn complex empirical

distributions (heavy-tailed in the case of Dataset A and light-tailed with spiky pdf in the

case of Dataset B). We have chosen CX for the fixed gates in QCBM and used the Qiskit

quantum simulator to simulate the quantum parts of the training and sampling algorithms.

The following sets of hyperparameters were used to train the models:

• Genetic Algorithm for training QCBM (Algorithm 8)

N = 1000, M = 25, m = 7, α = 1.0, β = 0.013863, κ = 50, L = 200.

The value of β ensures that mutation rate halves after each κ generations.

• Contrastive Divergence algorithm for training RBM

(sklearn.neural_network.BernoulliRBM)

n_components = 7 – number of hidden activation units for RBM(12, 7)

learning_rate = 0.0005 – learning rate η in Algorithm 2

batch_size = 10 – size of the training minibatches S in Algorithm 2

n_iter = 40000 – number of iterations

Chapter 9 259

Although a visual inspection of the pdf and QQ-plots in Figures 9.6 and 9.7 suggests that

both QCBM and RBM are doing a good job in generating high-quality samples from the

learned empirical distributions encoded in model parameters, we would like to have a more

objective measure of the model performance. This is especially important since we deal

with generative models and very little can be concluded from a single model run.

Running the quantum circuit multiple times for a particular configuration of model pa-

rameters (e.g., an optimal set of rotation angles found with the help of GA) results in the

distribution of objective function values. This gives us an idea of what metrics can be used

to measure the performance of QCBM and RBM [170]. The cost function (9.3.2) we used

for training QCBM can be calculated on the samples generated by RBM. In other words,

we can compare the performance of QCBM and RBM by comparing the distributions of the

cost function values calculated for the samples generated by these models.

Table 9.2 shows the means and standard deviations of the cost functions calculated for 100

runs of QCBM(12, 7) and RBM(12, 7). Each run generated 5,000 samples from the learned

empirical distribution (the models were trained on Dataset B, which consists of 5,000

samples from the mixture of four Normal distributions).

Model Mean Standard deviation

QCBM(12, 7) 30.5 23.6

RBM(12, 7) 39.6 30.8

Table 9.2: Cost function statistics for the models trained on Dataset B.

It is clear from Table 9.2 that QCBM(12, 7) with a weakly optimised set of hyperparameters

performs better than RBM(12, 7) trained with equally weakly optimised hyperparameters

(a small learning rate combined with a large number of iterations and the small size of the

minibatches [134]). Although this cannot be seen as proper evidence of quantum advantage,

this nevertheless opens the gate to promising further research.

260 Quantum Circuit Born Machine

6 4 2 0 2 4 6
Normal

6

4

2

0

2

4

6
Da

ta
a) QQ-plot: Data vs. Normal

6 4 2 0 2 4 6
RBM

6

4

2

0

2

4

6

Da
ta

c) QQ-plot: Data vs. RBM

6 4 2 0 2 4 6
QCBM

6

4

2

0

2

4

6

Da
ta

e) QQ-plot: Data vs. QCBM

4 3 2 1 0 1 2 3 4
0

100

200

300

400

500

600
b) Original PDF: Data

4 3 2 1 0 1 2 3 4
0

100

200

300

400

500

600
d) Reconstructed PDF: RBM

4 3 2 1 0 1 2 3 4
0

100

200

300

400

500

600
f) Reconstructed PDF: QCBM

Figure 9.6: Mixture of Normal distributions.

Chapter 9 261

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Normal

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Da
ta

a) QQ-plot: Data vs. Normal

0.06 0.04 0.02 0.00 0.02 0.04 0.06
RBM

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Da
ta

c) QQ-plot: Data vs. RBM

0.06 0.04 0.02 0.00 0.02 0.04 0.06
QCBM

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Da
ta

e) QQ-plot: Data vs. QCBM

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0

20

40

60

80

100
b) Original PDF: Data

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0

20

40

60

80

100
d) Reconstructed PDF: RBM

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0

20

40

60

80

100
f) Reconstructed PDF: QCBM

Figure 9.7: Distribution of S&P 500 index returns.

262 Quantum Circuit Born Machine

Let us now turn our attention to Dataset A. The dataset consists of just 536 samples and, as

we can see in Figure 9.7, the empirical pdf displays pronounced heavy tails which are also

clearly seen in the QQ-plot against the Normal distribution. The relatively small number

of samples means that we have to deal with a substantial amount of noise. Therefore, we

need to use a robust statistical test to compare QCBM and RBM. Since we are working

with a univariate distribution, we can estimate the quality of generated samples with the

Kolmogorov-Smirnov test [233].

Table 9.3 provides the p-values and Kolmogorov-Smirnov statistics for the RBM and the

QCBM generated samples as well as a Normal distribution fitted to the original dataset

(by matching the first two moments). The p-value represents the probability of obtaining

test results supporting the null hypothesis of the two datasets coming from the same

distribution. In the context of our numerical experiments, the larger the p-value the more

likely the generated samples were drawn from the correct distribution.

Distribution p-value K-S statistic

Normal 0.004 ± 0.009 0.121 ± 0.017

RBM generated samples 0.46 ± 0.23 0.055 ± 0.011

QCBM generated samples 0.46 ± 0.11 0.053 ± 0.005

Table 9.3: p-value and K-S statistic for Normal, RBM and QCBM generated samples in the format:
mean ± standard deviation. Number of Normal, RBM and QCBM generated datasets: 20. Number of
samples in each generated dataset: 536 (equal to the number of samples in the original dataset).

The K-S statistic takes the largest absolute difference between the two distribution functions

across all values of the random variable. The larger the K-S statistic the less likely the

generated samples were drawn from the correct distribution. The K-S statistic can be

compared with the critical values calculated for the given confidence level and number of

samples. For example, the critical value corresponding to the 95th percentile confidence

level and 536 samples in both datasets is 0.0587. If the K-S statistic is larger then, with

Chapter 9 263

95% certainty, we can reject the null hypothesis that 536 generated samples were drawn

from the right distribution.

The first observation is that we can definitely reject the null hypothesis that the daily

S&P 500 index returns are Normally distributed. The corresponding p-value is much smaller

than 1, and the K-S statistic is twice the critical value. More importantly, QCBM performs

at par with RBM in terms of both the p-value and the K-S statistic: we therefore cannot

reject the null hypothesis that QCBM and RBM generated samples were drawn from the

same distribution as the original dataset.

9.5.3 Training algorithm convergence and
hyperparameter optimisation

Next, we would like to explore the GA behaviour for various model configurations. In

particular, it is interesting to investigate the algorithm convergence for different types

of fixed gates, not just CX, and for different choices of the mutation rate. The charts in

Figure 9.8 confirm our intuition about CX being the best choice of fixed gate given the

configuration of one-qubit gates (Figure 9.1) and the exponentially decreasing mutation

rate performing better than the constant mutation rates. Here, we continue working with

Dataset B.

As we can see in Figure 9.1, the fixed gates are flanked by one-qubit gates performing

rotations around the z-axis. Therefore, adding another rotation around the z-axis by ϕ = π

(Z = RZ(π)) may not offer the same flexibility as rotation around the x-axis by ϕ = π

(X = RX(π)). Controlled rotations around the z-axis by an angle ϕ < π are likely to perform

even worse. This is exactly what we see in Figure 9.8 (left chart) for three different types of

fixed gates: CX, CZ, and CRZ(π/4).

Our intuition about the optimal choice of mutation rate suggests that it should be productive

to start the algorithm with a really large mutation rate in order to explore the search space

as broadly as possible (the “exploration” phase). Then, as the algorithm finds progressively

better solutions, it should be useful to reduce the mutation rate in order to perform a more

detailed search in the vicinity of the best solutions found so far (the “exploitation” phase).

264 Quantum Circuit Born Machine

As the algorithm converges, we may want to perform more and more refined searches by

only mutating one or two parameters. Figure 9.8 (right chart) shows that this is indeed

the case. Here, the maximum value of the mutation rate is α = 1.0 and the minimum

value is α = 0.0625 – the value reached after L = 200 algorithm iterations when the

algorithm is run with the initial value of mutation rate α = 1.0 and exponential decay

factor β = 0.013863.

1 3 10 30 100

101

102

Number of iterations

m
in

im
um

of
ob

je
ct

iv
e

fu
nc

tio
n

CX

CZ

CRZ(π/4)

1 3 10 30 100

101

102

Number of iterations

exponentially decreasing
fixed at max value
fixed at min value

Figure 9.8: Left: GA convergence as a function of fixed gate type. Right: GA convergence as a
function of mutation rate for CX fixed gates. Dots indicate mean values and error bars indicate the
10th and the 90th percentiles. GA parameters: N = 1000, M = 25, m = 7, 20 GA runs.

Finally, we need to investigate the convergence of the algorithm as a function of the

rotation angle discretisation scheme. In principle, an arbitrary rotation poses a problem

as it must be approximated by a sequence of discrete gates because only discrete sets of

gates can be implemented fault-tolerantly [180]. Since a GA operates on a discrete set

of rotation angles, we face a trade-off between higher accuracy achieved through a finer

discretisation scheme and implementation efficiency in the case of a less granular set of

rotation angles. Additionally, all rotation gates can be executed with finite precision and

the discretisation scheme should take this into account. Hence, in order to facilitate the

Chapter 9 265

efficient implementation of the rotation gates RX(θ) and RZ(θ), the GA operates on the

rotation angles θ that take discrete values (−π + νπ/2m−1)ν=0,...,2m−1, thus splitting the

[−π, π] interval into 2m equal subintervals.

Therefore, we must answer the question of GA convergence for various values of m.

Figure 9.9 shows the minimum values of the objective function (9.3.2) as a function of the

number of algorithm iterations for three different values of m:

• m = 3, rotation angle step ∆θ = π/4;

• m = 5, rotation angle step ∆θ = π/16;

• m = 7, rotation angle step ∆θ = π/64.

We can see that the GA performance improves only marginally for m > 5. This is good

news suggesting that it may be sufficient to operate with rotation angle step ∆θ = π/16

to achieve the desired precision in learning the target distribution.

1 3 10 30 100

101

102

Number of iterations

m
in

im
um

of
ob

je
ct

iv
e

fu
nc

tio
n

m = 7,∆θ = π/64

m = 5,∆θ = π/16

m = 3,∆θ = π/4

Figure 9.9: GA convergence as a function of the rotation angle discretisation scheme for CX fixed
gates and exponentially decreasing mutation rate. Dots indicate mean values and error bars indicate
the 10th and the 90th percentiles. GA parameters: N = 1000, M = 25, α = 1.0, β = 0.013863,
20 GA runs.

266 Quantum Circuit Born Machine

The non-differentiable learning of QCBM with Genetic Algorithm is a viable approach to

the training of PQCs. QCBM trained with GA performs at least as well as an equivalent

classical neural network (RBM). The performance of QCBM and its classical counterpart

were tested on two different datasets (heavy-tail distributed samples derived from the

financial time series and light-tail distributed samples drawn from the specially constructed

distribution with spiky pdf) and in both cases QCBM demonstrated its ability to learn the

empirical distribution and generate new synthetic samples that have the same statistical

properties as the original ones, as can be seen in the pdf and QQ-plots.

Analysing the GA convergence for different sets of hyperparameters, we observe that the

best results were achieved with CX fixed gates and an exponentially decreasing mutation

rate (starting from the maximum value of the mutation rate and setting the decay rate at

a reasonably small value). More importantly, we see that more granular rotation angle

discretisation schemes provide progressively less incremental value beyond some point.

This means that for many practical purposes it is sufficient to implement rotations with

the step ∆θ = π/16 in order to encode target distribution with the desired accuracy for

deep enough QCBM architectures (at least two layers of fixed 2-qubit gates). Since qubit

rotations on NISQ devices can be implemented with finite precision, this ensures that

QCBMs can be used productively for many real-world use cases.

QCBM is a viable choice for building market generators. It performs at least

as well as its classical counterpart, RBM, and demonstrates potential for

achieving quantum advantage on near-term quantum processors.

Summary
In this chapter, we learned how to construct and train a generative QML model – Quantum

Circuit Born Machine. We started with the general concept of a PQC as a generative model,

where the readout operation produces a sample from the probability distribution encoded

in the PQC parameters.

Chapter 9 267

Next, we introduced the concept of a hardware-efficient PQC ansatz. Additionally, to build

a model that is compatible with QPU connectivity and can easily be embedded into a QPU

graph, we tried to use adjustable (one-qubit) and fixed (two-qubit) gates from the set of the

native quantum gates for the given system.

Then, we studied differentiable and non-differentiable learning algorithms and experi-

mented with the QCBM trained using Genetic Algorithm. Comparison with the classical

benchmark (RBM) demonstrated a realistic possibility of quantum advantage for generative

QML models.

Finally, we explored the question of training algorithm convergence for various sets of

model parameters.

In the next chapter, we will study another important and exceptionally promising QML

model – Variational Quantum Eigensolver.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

10
Variational Quantum
Eigensolver

Parameterised quantum circuits can find many possible applications outside the quantum

machine learning use cases considered in the previous chapters. They can be used to solve

problems as diverse as portfolio optimisation [168] and protein folding [248]. However,

one aspect remains the same regardless of the specifics of the particular algorithm: the

construction of a quantum state with desired characteristics through an optimal PQC

configuration (ansatz) and an optimal set of adjustable PQC parameters. This, in turn, is

done through the minimisation of some cost function – it can be a classification error in

the case of a QNN-based classifier or a distance between two distributions in the case of

QCBM.

The Variational Quantum Eigensolver (VQE) is a PQC-based algorithm that aims to find

the smallest eigenvalue (the lowest energy) of a problem Hamiltonian. As we know from

Chapter 3, the objective functions of many NP-hard combinatorial optimisation problems

can be encoded in the Hamiltonians of quantum systems – thus finding the ground state of

270 Variational Quantum Eigensolver

the Hamiltonian gives us the minimum of the objective function. The VQE was originally

proposed in [231] and quickly became one of the most popular tools for experimenting

with the wide range of optimisation problems solvable on NISQ devices [153, 215]. The

variational part of the algorithm refers to the systematic search for the best possible

approximation of the ground state by trying various PQC ansätze and configurations of

adjustable PQC parameters – the variational approach.

10.1 The Variational Approach
Let us start with recollecting the details of training discriminative (QNN) and generative

(QCBM) models. In both cases our task was to find an optimal configuration of PQC

parameters (e.g., rotation angles of adjustable one-qubit gates) such that the resulting

quantum state had the desired properties: we could either sample from the encoded

probability distribution (generative model) or obtain a class label for the given sample

(discriminative model). The process of finding an optimal configuration of PQC parameters

is called learning when we are dealing with QML use cases. This learning can be done either

in a differentiable or in a non-differentiable way, but it always consists of the minimisation

of some cost function through varying the adjustable circuit parameters.

What if the cost function we want to minimise is encoded in the problem Hamiltonian and

the task is formulated as finding its ground state? In Chapter 3, we saw how this problem

can be solved on a quantum annealer. But it is also possible to find the lowest energy

state of a quantum system (or at least a good approximation) using a gate model quantum

computer within the PQC framework.

The characteristic equation for the HamiltonianH reads

H |ψi⟩ = Ei |ψi⟩ ,

where |ψi⟩ is an eigenstate associated with the eigenvalue Ei. The objective is to find the

smallest eigenvalue E0 (the lowest energy) ofH corresponding to the ground state (the

lowest energy state) |ψ0⟩. This would be a straightforward task if the latter was known

Chapter 10 271

since the eigenvalue (energy) ofH is simply the expectation ofH:

⟨ψi|H |ψi⟩ = ⟨ψi|Ei |ψi⟩ = Ei ⟨ψi|ψi⟩ = Ei.

We will explain below how this expectation is calculated on a quantum computer. However,

in most cases the ground state is not known. In fact, the task is to find the ground state

that encodes the solution to the optimisation problem by searching for the state that

minimises the expectation value of H. What we can do is to construct a progressively

better approximation of the ground state, yielding a tighter and tighter upper bound for

the ground state energy E0.

The variational approach is motivated by the spectral theorem introduced in Chapter 1,

which allows us to expand the Hermitian HamiltonianH as

H =
∑
i

Ei |ψi⟩ ⟨ψi| . (10.1.1)

Assume that we constructed a state |ψ⟩, which is an approximation of the true ground state

|ψ0⟩. As we know from Chapter 1, the expectation value of H in state |ψ⟩ is ⟨ψ|H |ψ⟩.
SubstitutingH given by (10.1.1) into this, we obtain, by linearity,

⟨ψ|H |ψ⟩ = ⟨ψ|

(∑
i

Ei |ψi⟩ ⟨ψi|

)
|ψ⟩

=
∑
i

Ei ⟨ψ|ψi⟩ ⟨ψi|ψ⟩ =
∑
i

Ei |⟨ψ,ψi⟩|2 .
(10.1.2)

Expression (10.1.2) shows that the expectation ofH on any state |ψ⟩ can be expressed as a

linear combination of the eigenvalues ofH with all weights greater than or equal to zero,

since | ⟨ψ,ψi⟩ |2 ≥ 0 for each i. Therefore, we obtain

⟨ψ|H |ψ⟩ ≥ E0,

since E0 is the smallest eigenvalue ofH and all coefficients (weights) in the linear combi-

272 Variational Quantum Eigensolver

nation (10.1.2) are non-negative.

The role of PQC is to produce the candidate state |ψ⟩. The variational part of the algorithm

consists of iterative improvements of the candidate state (iterative updates of the adjustable

parameters). This is something that can be done as a classical part of the hybrid quantum-

classical protocol. The quantum part of the algorithm consists of running the PQC and

then measuring H on the constructed quantum state in order to obtain the expectation

value ofH.

The variational approach allows us to solve hard optimisation problems

encoded in the Hamiltonian on the digital gate model quantum computer –

an alternative to adiabatic quantum computing since not all optimisation

problems can be efficiently formulated in a QUBO format.

10.2 Calculating Expectations on a Quantum
Computer

The key element of the VQE algorithm is the calculation of the expectation value. We now

show how this can be performed on a quantum computer. We start with the one-qubit case

and then generalise the proposed approach to the two-qubit and multi-qubit cases.

10.2.1 The one-qubit case
Consider the simplest case of a one-qubit system. Since any 2× 2 unitary and Hermitian

matrix can always be decomposed into a sum of the Pauli matrices X, Y, Z and an identity

matrix I (more on this in Section 10.2.3), we can represent any one-qubit Hamiltonian as

H = aX+ bY+ cZ+ dI, (10.2.1)

Chapter 10 273

where a, b, c, and d are some real coefficients. For a given state |ψ⟩, the expectation value

of the Hamiltonian (10.2.1) is given by

⟨H⟩ ≡ ⟨ψ|H |ψ⟩ = a ⟨ψ| X |ψ⟩+ b ⟨ψ| Y |ψ⟩+ c ⟨ψ| Z |ψ⟩+ d ⟨ψ| I |ψ⟩ . (10.2.2)

The expectation value ofH is computed by adding the expectation values of all its terms,

which means that we can compute the expectation values of the Pauli terms independently

and then sum them up to obtain ⟨H⟩. We can do it by first constructing the state |ψ⟩ with

the help of a PQC and then by performing measurement in the computational basis. The

cycle of constructing the state and performing measurement should be repeated a sufficient

number of times in order to obtain accurate statistics. Let us go through the terms of the

Hamiltonian (10.2.1) one by one to see how it can be done.

We start with the last term, which is the identity operator I multiplied by the coefficient d.

This is a trivial case and we do not even need to run a quantum circuit to compute its

expectation value, since the expectation value of I is 1:

⟨ψ| I |ψ⟩ = ⟨ψ|ψ⟩ = 1,

so that this term will contribute d to ⟨H⟩.

We move now to the next term, cZ. The measurement is performed in the computational

basis, which is the z-basis. In this basis, |ψ⟩ can be represented as a superposition of the

basis states |0⟩ and |1⟩ as

|ψ⟩ = αz |0⟩+ βz |1⟩ ,

with αz, βz ∈ C. The expectation ⟨ψ| Z |ψ⟩ is then calculated as

⟨ψ| Z |ψ⟩ = |αz|2 ⟨0| Z |0⟩+ α∗
zβz ⟨0| Z |1⟩+ αzβ

∗
z ⟨1| Z |0⟩+ |βz|2 ⟨1| Z |1⟩

= |αz|2 ⟨0|0⟩ − α∗
zβz ⟨0|1⟩+ αzβ

∗
z ⟨1|0⟩ − |βz|2 ⟨1|1⟩

= |αz|2 − |βz|2,

274 Variational Quantum Eigensolver

using the definition of the Z-gate (Chapter 6) and orthogonality of the basis states.

By definition, |αz|2 and |βz|2 are the probabilities that after the z-basis measurement, the

quantum state |ψ⟩will become |0⟩ or |1⟩ respectively. In order to find that value, we should

run the quantum circuit (to construct state |ψ⟩) and then perform measurement N times.

The probability of finding a qubit in state |0⟩ is then estimated as n0/N , where n0 is the

number of state |0⟩ measurements. Similarly, the probability of finding a qubit in state |1⟩
can be estimated as n1/N , where n1 is the number of state |1⟩ measurements.

Therefore, the contribution of the Z-term to ⟨H⟩ is given by

c ⟨ψ| Z |ψ⟩ = c
n0 − n1
N

.

Now we can move to the first two terms on the right side of (10.2.2). Recall that |0⟩ and |1⟩
are the eigenstates of Z with corresponding eigenvalues +1 and −1, namely

Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩ . (10.2.3)

Furthermore, the eigenstates of X are

|+⟩ = |0⟩+ |1⟩√
2

and |−⟩ = |0⟩ − |1⟩√
2

,

and the eigenstates of Y are

|R⟩ = |0⟩+ i |1⟩√
2

and |L⟩ = |0⟩ − i |1⟩√
2

.

Their corresponding eigenvalues also are +1 and −1, so that

X |+⟩ = |+⟩ , X |−⟩ = − |−⟩ , Y |R⟩ = |R⟩ , Y |L⟩ = − |L⟩ . (10.2.4)

Therefore, the quantum state |ψ⟩ can also be decomposed into the superposition of the

Chapter 10 275

basis states {|R⟩ , |L⟩} (y-basis) and {|+⟩ , |−⟩} (x-basis):

|ψ⟩ = αx |+⟩+ βx |−⟩ = αy |R⟩+ βy |L⟩ .

If we can perform measurement in the x-basis and the y-basis, the expectations ⟨ψ| X |ψ⟩
and ⟨ψ| Y |ψ⟩ can be calculated in exactly the same way as the expectation ⟨ψ| Z |ψ⟩, namely

a ⟨ψ| X |ψ⟩ = a
n+ − n−

N
, b ⟨ψ| Y |ψ⟩ = b

nR − nL

N
.

Here, n+ and n− are the numbers of measurements in the x-basis that correspond, respec-

tively, to the |+⟩ and |−⟩ outcomes, and nR and nL are the numbers of measurements in

the y-basis that correspond, respectively, to |R⟩ and |L⟩ outcomes.

However, it may be the case that we can only perform measurement in the z-basis. In this

case, we need to apply some additional gates to |ψ⟩ before the measurement, such that the

probability of measuring |0⟩ in the z-basis is the same as the probability of measuring |+⟩
in the x-basis if we are calculating ⟨ψ| X |ψ⟩, or the probability of measuring |0⟩ in the

z-basis is the same as the probability of measuring |R⟩ in the y-basis if we are calculating

⟨ψ| Y |ψ⟩. Denoting these gates H and G, we have

H |ψ⟩ = H (αx |+⟩+ βx |−⟩) = αx |0⟩+ βx |1⟩ ,

with H |+⟩ = |0⟩ and H |−⟩ = |1⟩ and

G |ψ⟩ = G (αy |R⟩+ βy |L⟩) = αy |0⟩+ βy |1⟩ ,

with G |R⟩ = |0⟩ and G |L⟩ = |1⟩.

The operators H (which is simply the Hadamard operator) and G admit the matrix represen-

tations

H =
1√
2

1 1

1 −1

 and G =
1√
2

1 −i
1 i

 .

276 Variational Quantum Eigensolver

10.2.2 The two-qubit case
What if the problem Hamiltonian has terms involving more than a single qubit? Consider a

Hamiltonian with terms consisting of tensor products of Pauli matrices such as X⊗Y, Y⊗Z,

etc. The general approach remains the same: the expectation value of the Hamiltonian

consists of the sum of expectation values of all its terms. Thus, we need to know how to

calculate the expectation value of the product of Pauli matrices. Without loss of generality,

consider the X⊗ Y term – as the very same logic applies to all other Pauli tensor products.

Recall that X⊗ Y is the tensor product of the two Pauli operators X and Y, each acting on

their own qubits, not a sequential application of gates X and Y to the same qubit. Indeed,

given for two unitary operators U1 and U2, the tensor product U1 ⊗ U2 acts on the state of a

two-qubit system as

(U1 ⊗ U2) |ψ1⟩ ⊗ |ψ2⟩ =
(
U1 |ψ1⟩

)
⊗
(
U2 |ψ2⟩

)
. (10.2.5)

We immediately see from (10.2.5) that the tensor product of eigenvectors of X and Y is an

eigenvector of X⊗ Y. Indeed, if U |ψU⟩ = EU |ψU⟩ with EU ∈ C, for U ∈ {X, Y}, then

(X⊗ Y) |ψX⟩ ⊗ |ψY⟩ = X |ψX⟩ ⊗ Y |ψY⟩ = EX |ψX⟩ ⊗ EY |ψY⟩ = EXEY |ψX⟩ ⊗ |ψY⟩ .

We also remember that all eigenvectors of Pauli operators have eigenvalues equal to either

+1 or−1 (as detailed in (10.2.3) and (10.2.4)). Now, for the X⊗Y Pauli term, the eigenvectors

with eigenvalue +1 are

|+⟩ ⊗ |R⟩ = |+R⟩ and |−⟩ ⊗ |L⟩ = |−L⟩ ,

and the eigenvectors with eigenvalue −1 are

|+⟩ ⊗ |L⟩ = |+L⟩ and |−⟩ ⊗ |R⟩ = |−R⟩ ,

Chapter 10 277

which follow directly from the computations

(X⊗ Y) |+R⟩ = (X⊗ Y) |+⟩ ⊗ |R⟩ = X |+⟩ ⊗ Y |R⟩ = |+⟩ ⊗ |R⟩ = |+R⟩ ,

(X⊗ Y) |+L⟩ = (X⊗ Y) |+⟩ ⊗ |L⟩ = X |+⟩ ⊗ Y |L⟩ = |+⟩ ⊗ (− |L⟩) = − |+L⟩ ,

(X⊗ Y) |−R⟩ = (X⊗ Y) |−⟩ ⊗ |R⟩ = X |−⟩ ⊗ Y |R⟩ = (− |−⟩)⊗ |R⟩ = − |−R⟩ ,

(X⊗ Y) |−L⟩ = (X⊗ Y) |−⟩ ⊗ |L⟩ = X |−⟩ ⊗ Y |L⟩ = (− |−⟩)⊗ (− |L⟩) = |−L⟩ .

Let us write down the representation of a quantum state of the two-qubit system |ψ⟩ =
|ψ1⟩ ⊗ |ψ2⟩ in the basis of X⊗ Y eigenvectors:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩

= (αx |+⟩+ βx |−⟩)⊗ (αy |R⟩+ βy |L⟩)

= αxαy |+R⟩+ αxβy |+L⟩+ βxαy |−R⟩+ βxβy |−L⟩ ,

with (αx, βx, αy, βy) ∈ C4. We want to apply an operator allowing us to perform mea-

surements in the z-basis such that the probability amplitudes of the corresponding states

remain the same. It is easy to see that this operator is a tensor product of the H and G gates:

(H⊗ G) |ψ⟩ = (H⊗ G) (αxαy |+R⟩+ αxβy |+L⟩+ βxαy |−R⟩+ βxβy |−L⟩)

= αxαy(H⊗ G) |+⟩ ⊗ |R⟩+ αxβy(H⊗ G) |+⟩ ⊗ |L⟩

+ βxαy(H⊗ G) |−⟩ ⊗ |R⟩+ βxβy(H⊗ G) |−⟩ ⊗ |L⟩

= αxαy(H |+⟩ ⊗ G |R⟩) + αxβy(H |+⟩ ⊗ G |L⟩)

+ βxαy(H |−⟩ ⊗ G |R⟩) + βxβy(H |−⟩ ⊗ G |L⟩)

= αxαy(|0⟩ ⊗ |0⟩) + αxβy(|0⟩ ⊗ |1⟩) + βxαy(|1⟩ ⊗ |0⟩) + βxβy(|1⟩ ⊗ |1⟩)

= αxαy |00⟩+ αxβy |01⟩+ βxαy |10⟩+ βxβy |11⟩ .

The eigenvalues of Z⊗ Z corresponding to the eigenstates {|00⟩ , |01⟩ , |10⟩ , |11⟩} are the

278 Variational Quantum Eigensolver

same as the eigenvalues of X⊗Y corresponding to the eigenstates {|+R⟩ , |+L⟩ , |−R⟩ , |−L⟩}:

(Z⊗ Z) |00⟩ = (Z⊗ Z) |0⟩ ⊗ |0⟩ = Z |0⟩ ⊗ Z |0⟩ = |0⟩ ⊗ |0⟩ = |00⟩ ,

(Z⊗ Z) |01⟩ = (Z⊗ Z) |0⟩ ⊗ |1⟩ = Z |0⟩ ⊗ Z |1⟩ = |0⟩ ⊗ (− |1⟩) = − |01⟩ ,

(Z⊗ Z) |10⟩ = (Z⊗ Z) |1⟩ ⊗ |0⟩ = Z |1⟩ ⊗ Z |0⟩ = (− |1⟩)⊗ |0⟩ = − |10⟩ ,

(Z⊗ Z) |11⟩ = (Z⊗ Z) |1⟩ ⊗ |1⟩ = Z |1⟩ ⊗ Z |1⟩ = (− |1⟩)⊗ (− |1⟩) = |11⟩ .

Therefore, the expectation ⟨ϕ| Z⊗ Z |ϕ⟩, with

|ϕ⟩ = αxαy |00⟩+ αxβy |01⟩+ βxαy |10⟩+ βxβy |11⟩ ,

in the z-basis is given by

|αxαy|2 − |αxβy|2 − |βxαy|2 + |βxβy|2.

The values of the probabilities |αxαy|2, |αxβy|2, |βxαy|2, and |βxβy|2 can be found using

quantum computers in exactly the same way we found probabilities in the one-qubit case.

By counting the numbers nij of outcomes |ij⟩ (for i, j ∈ {0, 1}, with
∑

i,j∈{0,1} nij = N),

the expectation value of X⊗ Y is given by

⟨X⊗ Y⟩ = n00 − n01 − n10 + n11
N

.

10.2.3 The multi-qubit case
It is straightforward to scale this approach to more complex Pauli products and larger

Hamiltonians since any Hamiltonian may be written as

H =
∑
iα

hiασ
i
α +

∑
ijαβ

hijαβσ
i
ασ

j
β + . . .

for real h, where the superscripts i, j, . . . identify the subsystem (qubit) on which the

operator acts, and the subscripts α, β, . . . identify the Pauli operator. For example, i = 1,

Chapter 10 279

α = x, and σ1x = X acting on qubit 1. No assumption about the dimension or structure of

the Hermitian Hamiltonian is needed for this expansion to be valid [231].

We have already used the linearity of quantum observables that allows us to calculate the

expectation of the Hamiltonian as a sum of expectations of the individual terms:

⟨H⟩ =
∑
iα

hiα ⟨σiα⟩+
∑
ijαβ

hijαβ ⟨σ
i
ασ

j
β⟩+ . . .

As long as we consider Hamiltonians that can be written as a polynomial number of

terms with respect to the system size, the evaluation of ⟨H⟩ is reduced to the sum of a

polynomial number of expectation values of simple Pauli operators for some quantum

state |ψ⟩, multiplied by some real constants. As we have seen above, a quantum computer

can efficiently evaluate the expectation value of a tensor product of an arbitrary number of

simple Pauli operators [227].

Quantum computers can be used to efficiently calculate expectation values

of Hamiltonians consisting of tensor products of Pauli operators. Any Hamil-

tonian may be represented as a sum of tensor products of Pauli operators

(X, Y, Z, and I gates).

10.3 Constructing the PQC
The question of how to construct a high-quality candidate state used to calculate expec-

tations is of fundamental importance. Unless we have some prior knowledge about the

ground state and where to search for it in the Hilbert space of the n-qubit system, the first

task would be to generate a range of candidate states that will cover the whole Hilbert

space without being heavily concentrated in any one region. Let us see how this can be

done for the single-qubit and multi-qubit systems.

280 Variational Quantum Eigensolver

10.3.1 One-qubit ansatz
We return to the Bloch sphere that visualises the possible states of a one-qubit system.

Figure 10.1 shows how the qubit state can change from its initial state |0⟩ to the intermediate

state |ψi⟩ and then to the final state |ψf ⟩ through a rotation around the y-axis followed by

a rotation around the z-axis.

x

y

z

|0⟩

|1⟩

|ψi⟩
|ψf ⟩

Figure 10.1: Bloch sphere: visualisation of one-qubit rotations.

It is possible to reach any point on the Bloch sphere starting from |0⟩with just two rotations

around any two orthogonal axes. The corresponding circuit is shown in Figure 10.2.

|0⟩ RY(θ1) RZ(θ2) |ψf ⟩

Figure 10.2: PQC for a one-qubit system.

The PQC shown in Figure 10.2 is everything we need in the one-qubit case if we only have

Chapter 10 281

the Z and I terms in the problem Hamiltonian. If we want to calculate the expectation

value of the X term, we have to add an H gate to the circuit as shown in Figure 10.3.

|0⟩ RY(θ1) RZ(θ2) H

Figure 10.3: PQC with H gate to calculate ⟨X⟩.

Similarly, if we want to calculate the expectation value of the Y term, we have to add a G

gate to the circuit as shown in Figure 10.4.

|0⟩ RY(θ1) RZ(θ2) G

Figure 10.4: PQC with G gate to calculate ⟨Y⟩.

10.3.2 Multi-qubit ansatz
We now look at the multi-qubit case, and assume that the optimisation problem is encoded

in the two-qubit Hamiltonian

H = aX⊗ Y+ bY⊗ Z+ cZ⊗ X, (10.3.1)

for some coefficients a, b, c ∈ R. As we know, the expectation value of the Hamilto-

nian (10.3.1) is given by the sum of expectation values of individual terms:

⟨H⟩ ≡ ⟨ψ|H |ψ⟩ = a ⟨ψ| X⊗ Y |ψ⟩+ b ⟨ψ| Y⊗ Z |ψ⟩+ c ⟨ψ| Z⊗ X |ψ⟩ . (10.3.2)

We need to calculate all these expectations for the same quantum state |ψ⟩. To do so, we

need to construct a quantum circuit with sufficiently flexible adjustable gates to support

a wide range of possible candidate states. Since the problem Hamiltonian operates on

two-qubit states, the PQC that constructs the candidate states may look like the one shown

in Figure 10.5:

282 Variational Quantum Eigensolver

|0⟩

|0⟩

RY(θ1)

RY(θ3)

RZ(θ2)

RZ(θ4)

|ψ1⟩

|ψ2⟩

Figure 10.5: PQC for the construction of candidate states.

In the PQC shown in Figure 10.5, the parameters (rotation angles) θ1 and θ2 uniquely

specify state |ψ1⟩ of the first qubit, and the parameters θ3 and θ4 uniquely specify state |
ψ2⟩ of the second qubit. The full quantum circuit for the calculation of the expectation

value ⟨X ⊗ Y⟩ is shown in Figure 10.6, where the gates H (first quantum register) and G

(second quantum register) form the change of basis layer before the measurement in the

computational basis. Figures 10.7 and 10.8 display the PQCs for the calculation of ⟨Y ⊗ Z⟩
and ⟨Z ⊗ X⟩.

|0⟩

|0⟩

RY(θ1)

RY(θ3)

RZ(θ2)

RZ(θ4)

H

G

M

M

State construction Change of basis

Figure 10.6: PQC for the calculation of the ⟨X⊗ Y⟩ term.

|0⟩

|0⟩

RY(θ1)

RY(θ3)

RZ(θ2)

RZ(θ4)

G M

M

State construction Change of basis

Figure 10.7: PQC for the calculation of the ⟨Y⊗ Z⟩ term.

Chapter 10 283

|0⟩

|0⟩

RY(θ1)

RY(θ3)

RZ(θ2)

RZ(θ4) H

M

M

State construction Change of basis

Figure 10.8: PQC for the calculation of the ⟨Z ⊗ X⟩ term.

Note that the state construction circuits shown in Figures 10.6-10.8 consist of one-qubit

gates and do not contain two-qubit gates that would create entanglement. Adding two-qubit

gates, such as CNOT and CPHASE, would help explore a wider range of possible quantum

states and should be done as a matter of course as we know from the previous chapters.

However, our task here is to illustrate the general principle and compare the results obtained

by running the PQC with the calculations done “by hand”, as we shall see in the next section.

10.4 Running the PQC
We now run some numerical experiments for the optimisation problem encoded in the

Hamiltonian (10.3.1) and compare the obtained results with direct calculations to better

understand the mechanics of the algorithm and to build intuition.

10.4.1 Experimenting with the two-qubit ansatz
In line with the variational approach and taking into account the PQC architecture specified

in Figure 10.5, we need to build the candidate states controlled by the four adjustable

parameters θ1, θ2, θ3, and θ4. In Chapters 8 and 9, we considered two possible approaches

to train the PQC: differentiable and non-differentiable learning. Both methods have their

strong and weak points and can be used to find an optimal set of adjustable parameters

for the PQC of arbitrary size. However, the PQC shown in Figure 10.5 is only two-layer

deep and two-quantum register wide – it is perfectly feasible in this case to apply the brute

force method.

The brute force method consists of discretising the range of possible values of the rotation

angles with the elementary step (increment) kept reasonably small. The parameters θ1

284 Variational Quantum Eigensolver

and θ3 are rotation angles around the y-axis and are defined on the interval [0, π], which

we discretise as {
(2k + 1)π

2m

}
k=0,...,m−1

, (10.4.1)

for some integer m. Similarly, θ2 and θ4 are rotation angles around the z-axis defined on

[0, 2π], with range {
(2k + 1)π

2m

}
k=0,...,2m−1

. (10.4.2)

In both cases the increment is π/m. Taking, for example, m = 8 is a sensible compromise

between speed and accuracy. What is more, once the optimal configuration of adjustable

parameters is found, we can run an additional, more granular search in the vicinity of the

candidate optimal configuration in order to further improve it.

The algorithm looks as follows. For the given configuration of RY and RZ rotation angles

drawn from the sets (10.4.1) and (10.4.2), we execute 100,000 runs of PQCs specified in

Figures 10.6, 10.7, and 10.8 on the Qiskit quantum simulator. This gives us the expectation

values of X⊗ Y, Y⊗ Z, and Z⊗ X for the quantum state |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, where

|ψ1⟩ = cos

(
θ1
2

)
|0⟩+ eiθ2 sin

(
θ1
2

)
|1⟩

and

|ψ2⟩ = cos

(
θ3
2

)
|0⟩+ eiθ4 sin

(
θ3
2

)
|1⟩ .

We select the state |ψ∗⟩ with the smallest value of ⟨H⟩ given by (10.3.2), and denote the

corresponding rotation angles θ∗1, . . . , θ
∗
4 . After that, we perform a more refined search in

the neighbourhood of |ψ∗⟩. The new set values of the rotation angles are now{
θ∗i +

(k − 4)π

4m

}
k=0,...,m

, i = 1, . . . , 4,

with increment π/(4m). Again, we select the quantum state |ψ′⟩ with the smallest value

of ⟨H⟩ and denote the corresponding rotation angles θ′1, . . . , θ
′
4.

Chapter 10 285

With m = 8, a = 4, b = 3, c = 2, we obtain the results in Table 10.1:

1st search: θ∗1 = 1.7671 θ∗2 = 3.0434 θ∗3 = 1.7671 θ∗4 = 1.4726 ⟨H⟩min = −3.93

2nd search: θ′1 = 1.5708 θ′2 = 3.1416 θ′3 = 1.5708 θ′4 = 1.5708 ⟨H⟩min = −4.00

Table 10.1: Optimal configurations of adjustable PQC parameters that minimise the expectation
value of the Hamiltonian.

In Table 10.1, the values of ⟨H⟩ are in the units of coefficients a, b, and c, and the values

of rotation angles are in radians. Note that 3.1416 = π and 1.5708 = π/2. Therefore, the

optimal configuration of rotation angles that minimises ⟨H⟩ is

θ′1 = θ′3 = θ′4 =
π

2
and θ′2 = π.

The corresponding quantum states are

|ψ1⟩ =
1√
2
|0⟩ − 1√

2
|1⟩ , |ψ2⟩ =

1√
2
|0⟩+ i√

2
|1⟩ ,

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ =
1

2
|00⟩+ i

2
|01⟩ − 1

2
|10⟩ − i

2
|11⟩ .

10.4.2 Analysis of the obtained results
Do the obtained results make sense? Since the problem size is small and the circuit is not

too deep, we can verify the results by direct manual calculations. First, we visualise the

states |ψ1⟩ and |ψ2⟩. Figure 10.9 shows their positions on the Bloch sphere. State |ψ1⟩ is

the black dot at the intersection of the x-axis and the equator. We get to |ψ1⟩ from state |0⟩
by performing a π/2 radian rotation around the y-axis and then a π radian rotation around

the z-axis. State |ψ2⟩ is the gray dot at the intersection of the y-axis and the equator, which

is reached from |0⟩ by performing a π/2 radian rotation around the y-axis and then a π/2

radian rotation around the z-axis.

286 Variational Quantum Eigensolver

x

y

z

|0⟩

|1⟩

|ψ1⟩
|ψ2⟩

Figure 10.9: Visualisation of states |ψ1⟩ (black dot) and |ψ2⟩ (grey dot).

Consider the expectation ⟨X⊗ Y⟩. The operator X acts on |ψ1⟩, which is one of its eigenstates

in the x-basis:

|ψ1⟩ =
1√
2
|0⟩ − 1√

2
|1⟩ = |−⟩ ,

and Y acts on |ψ2⟩, which is also one of its eigenstates in the y-basis:

|ψ2⟩ =
1√
2
|0⟩+ i√

2
|1⟩ = |R⟩ .

We then perform measurements in the computational basis (z-basis). Before measurement,

the Hadamard operator H will transform |ψ1⟩ = |−⟩ into |1⟩, which is a basis state in the

z-basis. Similarly, the operator G will transform |ψ2⟩ = |R⟩ into |0⟩, which is also a basis

state in the z-basis.

Thus, measurement in the z-basis will give us the state |1⟩⊗|0⟩ = |10⟩with probability one.

If we performN measurements, we will obtain the state |10⟩N times and the corresponding

Chapter 10 287

expectation value ⟨X⊗ Y⟩ will be

⟨X⊗ Y⟩ = n00 − n01 − n10 + n11
N

=
0− 0−N + 0

N
= −1.

The value of the coefficient a in front of the X⊗ Y term was set equal to 4. Therefore, the

contribution of the first term to the expectation value of the Hamiltonian (10.3.1) is −4.

The expectations ⟨Y⊗ Z⟩ and ⟨Z⊗ X⟩ are equally straightforward to calculate. Let us start

with ⟨Y⊗ Z⟩. The operator Y acts on the first qubit in the state |ψ1⟩. Since we measure

the resulting state in the z-basis, we need to apply G before measurement. The operator G

transforms |ψ1⟩ into the state

1 + i

2
|0⟩+ 1− i

2
|1⟩ .

Measurement in the z-basis will result in |0⟩ and |1⟩ with equal probability 1/2.

The operator Z acts on the second qubit in state |ψ2⟩. Since we measure the operator Z

in the z-basis, we do not need to apply any gates. Measuring |ψ2⟩ in the z-basis will also

result in obtaining |0⟩ and |1⟩ with equal probability 1/2. Therefore, we are equally likely

to measure all four basis states (|00⟩, |01⟩, |10⟩, and |11⟩) with probability 1/4, and, as N

tends to infinity, the expectation value of ⟨Y⊗ Z⟩ in our experiment should converge to

⟨Y⊗ Z⟩ = n00 − n01 − n10 + n11
N

=
1
4N −

1
4N −

1
4N + 1

4N

N
= 0.

We are left now with ⟨Z⊗ X⟩. The operator Z acts on |ψ1⟩. The measurement is done in

the z-basis, so no transformation is needed. The measurement will result in obtaining

the states |0⟩ and |1⟩ with equal probability 1/2. The operator X acts on the second qubit

in the state |ψ2⟩. The measurement is performed in the z-basis, so we need to apply the

Hadamard gate H before measurement. Applying the H gate to |ψ2⟩ transforms it into

1 + i

2
|0⟩+ 1− i

2
|1⟩ ,

288 Variational Quantum Eigensolver

with measurement in the z-basis producing outcomes |0⟩ and |1⟩ with probability 1/2.

Thus, we find ourselves in the same situation as with ⟨Y⊗ Z⟩: all basis states are equally

likely. As N tends to infinity, the expectation value of ⟨Z⊗ X⟩ should also converge to

⟨Z⊗ X⟩ = n00 − n01 − n10 + n11
N

=
1
4N −

1
4N −

1
4N + 1

4N

N
= 0.

This is exactly what we observed in our numerical experiment. The total contribution of all

three terms of the HamiltonianH given by (10.3.1) with a = 4, b = 3, and c = 2 is equal

to −4. The X⊗ Y term has the largest coefficient, therefore it makes sense that the ground

state ofH is the one that minimises the expectation value ⟨X⊗ Y⟩ (with expectation values

⟨Y⊗ Z⟩ and ⟨Z⊗ X⟩ being zero).

PQC can be used to construct the candidate states for the VQE algorithm.

The selection and improvement of the candidate states is performed clas-

sically. This makes VQE a perfect example of a hybrid quantum-classical

algorithm.

10.5 Discrete Portfolio Optimisation with VQE
In Chapter 3, we investigated quantum annealing for NP-hard discrete portfolio optimisa-

tion problems. The same type of QUBO problems can be solved on gate model quantum

computers with the help of a hybrid VQE algorithm. The QUBO formulation of the discrete

portfolio optimisation problem consists of minimising the cost function (3.3.2):

L(q) =
N∑
i=1

aiqi +
N∑
i=1

N∑
j=i+1

bijqiqj ,

where q := (q1, . . . , qN) is a vector of binary decision variables indicating which (equally

weighted) assets are selected (from the universe of N investable assets): qi = 1 means

that asset i is selected and qi = 0 means that asset i is not selected. The task is to find a

configuration of q that minimises L(q).

Chapter 10 289

For each i, j = 1, . . . N , the coefficients ai, aj , and bij reflect, respectively, the individual

and joint attractiveness of assets i and j. For example, assets with larger expected returns

and lower volatilities would be assigned large negative values of a. Similarly, pairs of assets

with low positive or even negative correlation would be assigned negative values of b to

reward diversification. Assets with lower expected returns, higher volatility, and strongly

positively correlated with other assets would be penalised with positive values of a and b.

Quantum annealers solve QUBO problems in their Ising model formulation where binary

decision variables q := (q1, . . . , qN) are translated into spin variables s := (s1, . . . , sN)

taking values {+1,−1} through the transformation si = 2qi − 1. We analyse the simplest

case of an investable universe consisting of just two assets. In this case, the QUBO cost

function reads

L(q) = a1q1 + a2q2 + b12q1q2, (10.5.1)

or, in the Ising model formulation,

L(s) = g1s1 + g2s2 + J12s1s2 + const, (10.5.2)

where

g1 =
1

2
a1 +

1

4
b12, g2 =

1

2
a2 +

1

4
b12, J12 =

1

4
b12. (10.5.3)

The constant term in (10.5.2) does not depend on the decision variables s1 and s2 and can

hence be ignored. The cost function we want to minimise thus becomes

L(s) = g1s1 + g2s2 + J12s1s2. (10.5.4)

As we know from Chapter 2, transition from the classical to the quantum mechanical

description of the system consists of replacing variables corresponding to physical ob-

servables by their respective operators. In the case of the QUBO problem in its Ising

model formulation, it means replacing classical spin variables with the corresponding Pauli

operators σx, σy , and σz , which are represented in the quantum circuit by, respectively,

the quantum gates X, Y, and Z.

290 Variational Quantum Eigensolver

As we remember from Chapter 3, the Ising cost function (10.5.4) corresponds to the follow-

ing final Hamiltonian that encodes the same optimisation problem:

HF = g1σ
1
z + g2σ

2
z + J12σ

1
zσ

2
z . (10.5.5)

Here, the classical spin variables s1 and s2 are replaced by the σz operators, and σ1z is the Z

gate acting on qubit 1 while σ2z is the Z gate acting on qubit 2.

Note that the mapping between the binary QUBO decision variables q, classical spin

variables s, and the eigenstates of Z is as follows:

q = 0→ s = −1→ |1⟩ since Z |1⟩ = − |1⟩ ,

and

q = 1→ s = +1→ |0⟩ since Z |0⟩ = |0⟩ .

We now solve the QUBO problem (10.5.1) with

a1 = −2, a2 = 3, b12 = −2,

using both the classical method (in this case a simple exhaustive search given that the

solution space consists of just four possible solutions) and the VQE approach.

The classical exhaustive search results are straightforward to obtain via direct calculations

and are summarised in Table 10.2 with the optimal solution q∗ = (1, 0): asset 1 is selected,

while asset 2 is not.

q1 q2 L(q)

0 0 0

0 1 3

1 0 -2

1 1 -1

Table 10.2: Classical exhaustive search results.

Chapter 10 291

The VQE calculations are as follows. We first rewrite the Hamiltonian (10.5.5) in the

quantum gate form:

HF = g1Z
1 + g2Z

2 + J12Z
1 ⊗ Z2,

where Z1 is the Z gate acting on qubit 1, Z2 is the Z gate acting on qubit 2, and Z1 ⊗ Z2 is

the tensor product of the Z gates acting on qubits 1 and 2 respectively.

The next step is to calculate the expectation values ⟨Z⟩ and ⟨Z⊗ Z⟩. As we know, Z is a

PHASE gate that flips the phase of a qubit:

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ .

Therefore, we have

⟨0| Z1 |0⟩ = +1, ⟨1| Z1 |1⟩ = −1,
⟨0| Z2 |0⟩ = +1, ⟨1| Z2 |1⟩ = −1,

⟨00| Z1 ⊗ Z2 |00⟩ = +1, ⟨01| Z1 ⊗ Z2 |01⟩ = −1,
⟨10| Z1 ⊗ Z2 |10⟩ = −1, ⟨11| Z1 ⊗ Z2 |11⟩ = +1.

Here we calculated the expectation values of operators Z and Z⊗Z analytically but we would

obtain exactly the same values if we were to calculate them using a quantum computer as

described in Section 10.2. Now we need to calculate the values of the coefficients g1, g2,

and J12 using the transformation (10.5.3):

g1 = −1.5, g2 = 1, J12 = −0.5.

The expectation values ofHF in states |00⟩, |01⟩, |10⟩, |11⟩ can then be calculated as

|00⟩ : ⟨H⟩ = g1 · (+1) + g2 · (+1) + J12 · (+1) = −1,

|01⟩ : ⟨H⟩ = g1 · (+1) + g2 · (−1) + J12 · (−1) = −2,

|10⟩ : ⟨H⟩ = g1 · (−1) + g2 · (+1) + J12 · (−1) = 3,

|11⟩ : ⟨H⟩ = g1 · (−1) + g2 · (−1) + J12 · (+1) = 0.

292 Variational Quantum Eigensolver

The best solution found using VQE is therefore |01⟩ = |0⟩ ⊗ |1⟩, i.e., asset 1 is selected

while asset 2 is not, which is the same as the best solution found by exhaustive search.

A VQE is a viable tool for solving finance-related NP-hard optimisation

problems.

Summary
In this chapter, we introduced the Variational Quantum Eigensolver algorithm, a powerful

QML model based on the variational approach that allows us to solve hard optimisation

problems. We learned how to calculate expectation values using a quantum computer and

how to construct a PQC, creating the candidate quantum states.

We also experimented with running the VQE model on a sample problem encoded in a two-

qubit Hamiltonian and analysed and verified the results by performing manual calculations.

Finally, we demonstrated the applicability of the VQE to finance-related optimisation

problems, in particular to a stylised example of a discrete portfolio optimisation.

In the next chapter, we will introduce the Quantum Approximate Optimisation Algorithm,

another example of a hybrid quantum-classical approach to solving hard optimisation

problems.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

11
Quantum Approximate
Optimisation Algorithm

As the name suggests, the Quantum Approximate Optimisation Algorithm (QAOA) is an

optimisation algorithm. It is motivated by and draws upon two optimisation algorithms

considered in previous chapters: AQC and VQE. From AQC it borrows the concept of

solving an optimisation problem through encoding the corresponding objective function in

the problem Hamiltonian and then evolving the system in such a way that the ground state

of the final Hamiltonian provides the solution we are after (in a bitstring format). From

VQE it borrows the variational principle applied to the parameterised quantum circuit.

Roughly speaking, QAOA is a gate-model version of an optimisation solver that otherwise

could have been tackled with an analog AQC approach. We can also look at QAOA as a

special case of VQE with the constraints on the form of the Hamiltonian.

QAOA was introduced in the pioneering work by Farhi, Goldstone, and Gutmann [96] in

2014 and its potential for establishing quantum supremacy was investigated by Farhi and

Harrow in [99]. QAOA and its sister algorithm that generalises it, the Quantum Alternating

294 Quantum Approximate Optimisation Algorithm

Operator Ansatz (with the same acronym!), have been tested on a number of financial use

cases. Here we can mention the work by Hodson, Ruck, Ong, Garvin, and Dulma [138] on

portfolio rebalancing experiments and the one by Barkoutsos, Nannicini, Robert, Tavernelli,

and Woerner [26] using Conditional Value-at-Risk (CVaR) as the QAOA objective function.

The algorithm has significant potential and promises to become a standard tool in the

arsenal of quantum computing methods aimed at financial applications.

11.1 Time Evolution
Consider again the description of the dynamics of quantum mechanical systems, briefly

covered in Chapter 1 (as one of the postulates of quantum mechanics) and Chapter 2 (where

we introduced the principles of Adiabatic Quantum Computing). These dynamics are

governed by the Schrödinger equation (1.2.1):

iℏ
d |ψ(t)⟩

dt
= H |ψ(t)⟩ ,

with some initial condition |ψ(0)⟩, where |ψ(t)⟩ is the quantum state at time t and H is

the time-independent Hamiltonian. Its solution is given by (1.2.2), namely

|ψ(t)⟩ = U(0, t) |ψ(0)⟩ ,

where the operator U(0, t) is obtained from the HamiltonianH by (1.2.3):

U(0, t) = exp

(
− iHt

ℏ

)
.

We work with units where ℏ is set to 1, so that the system dynamics reads

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (11.1.1)

If the initial state of the system |ψ(0)⟩ is known then the state of the system at time t is

also known and is determined by the action of the HamiltonianH over the period of time t.

However, the solution (11.1.1) assumes that the system Hamiltonian is time-independent.

Chapter 11 295

At the same time, AQC works with time-dependent Hamiltonians of the form (2.2.1):

H(t) =
(
1− t

T

)
H0 +

t

T
HF ,

for some initial Hamiltonian H0 and some final or problem (encoding the optimisation

problem) HamiltonianHF . How do we reconcile this mismatch? The answer is that we

can approximate [272] the time-dependent HamiltonianH(t) that transforms the state over

[0, T] by a sequence of time-independent Hamiltonians:

H1, H2, . . . , Hm,

transforming the state over the corresponding shorter time intervals:

[t0 = 0, t1], [t1, t2], . . . , [tm−1, tm = T].

A good analogy is the approximation of a continuous function (e.g., sin(·)) by a piecewise

linear function as shown in Figure 11.1. The more granular the time intervals [ti−1, ti], the

better the approximation.

0 2 4

−1

−0.5

0

0.5

1

m = 3

0 2 4

−1

−0.5

0

0.5

1

m = 6

0 2 4

−1

−0.5

0

0.5

1

m = 12

Figure 11.1: Piecewise linear approximation of t 7→ sin(t).

296 Quantum Approximate Optimisation Algorithm

Similarly, we can approximate the operator U(0, T) as

U(0, T) ≈ U(tm−1, tm)U(tm−2, tm−1) · · · U(t2, t1)U(t0, t1).

Again, larger values of n give a better approximation.

The evolution of a quantum mechanical system over a long time interval can

be modelled as a sequence of time-independent Hamiltonians transforming

the system state over the corresponding shorter time intervals.

11.2 The Suzuki-Trotter Expansion
A particularly useful approximation of U(0, T) can be obtained using the Suzuki-Trotter

expansion [279]. If A1,A2, . . . ,Ak are operators that do not necessarily commute, then

exp
(
A1 +A2 + . . .+Ak

)
= lim

m→∞

[
exp

(
A1

m

)
exp

(
A2

m

)
· · · exp

(
Ak
m

)]m
.

Recall that two operators A and B are said to commute if AB = BA. Many operators

introduced in previous chapters do not commute, for example, rotations around different

axes do not, and the end result (the end quantum state) depends on how rotations are

ordered.

As mentioned in Chapter 1, the expectation values of Hermitian operators are real and

correspond to physical observables (e.g., the expectation of a Hermitian Hamiltonian is

the physically observable energy). If operators commute we can measure them in an

arbitrary order and obtain the same answer. There is no uncertainty in the values of the

corresponding physical observables.

The Suzuki-Trotter expansion, however, does not require operators to commute to remain

valid. This has important implications for QAOA as we shall see below. If U(0, T) has the

Chapter 11 297

form exp([A+ B]T) then we can use the Suzuki-Trotter expansion to obtain

exp([A+ B]T) = lim
m→∞

[
exp

(
AT
m

)
exp

(
BT
m

)]m
,

namely the time evolution of [A+ B]T can be approximated by applying alternatively A
and B over time intervals of length T/m.

In Chapter 3, we introduced detailed specifications of the AQC, where the HamiltoniansH0

andHF have the general form

H0 =
n∑
i=1

σix and HF =
n∑
i=1

aiσ
i
z +

n∑
i=1

n∑
j=i+1

bijσ
i
zσ

j
z,

for some coefficients (ai)i=1,...,n and (bij)i,j=1,...,n. We also refer the interested reader

to [304] for a precise connection between QAOA and AQC, in particular in the case of a

finite number of steps m.

The initial HamiltonianH0 is the operatorA – called the mixing Hamiltonian – and the final

HamiltonianHF is the operator B – called the phase Hamiltonian. Recall from Chapter 10

that the Pauli operators σx, σy , and σz are represented by the quantum gates X, Y, and Z,

and the superscript in σix refers to the qubit on which it acts.

The initial state is set in the equal superposition state of all possible solutions [122]:

|ψ(0)⟩ = 1√
2n

(
|0 . . . 00⟩+ |0 . . . 01⟩+ . . .+ |1 . . . 11⟩

)
=

1√
2n

2n−1∑
i=0

|i⟩ ,

which is the ground state of A and can be easily constructed from |0⟩⊗n by applying the

Hadamard gate H to every qubit, i.e.,

|ψ(0)⟩ = H⊗n |0⟩⊗n .

298 Quantum Approximate Optimisation Algorithm

Remark: For a one-qubit system, A is the X gate and the initial state is

|ψ(0)⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩ .

As we know from Chapter 10, state |+⟩ is the eigenstate of X with eigenvalue equal to 1,

namely X |+⟩ = |+⟩.

11.3 The Algorithm Specification
Now everything is in place for the formulation of the QAOA procedure [122].

Algorithm 9: Quantum Approximate Optimisation Algorithm
Input: A and B.

1: A parameterised quantum state |ψ(β,γ)⟩, β := (β1, . . . , βm), γ := (γ1, . . . , γm),

is created by alternately applying the operators A and B for m rounds, where the

duration in round i (i = 1, . . . ,m) is specified by the parameters βi and γi

respectively:

|ψ(β,γ)⟩ = e−iβmAe−iγmB · · · e−iβ2Ae−iγ2Be−iβ1Ae−iγ1B (H⊗n |0⟩⊗n) .
2: A computational basis (z-basis) measurement is performed on the obtained state,

which returns a candidate solution. Repeating the above state preparation and

measurement, the expected value of the cost function f over the returned solution

samples is given by

⟨f⟩ = ⟨ψ(β,γ)| B |ψ(β,γ)⟩ ,

which can be statistically estimated from the samples produced (as explained in

Chapter 10).

3: The above steps may then be repeated with the updated sets of time parameters β

and γ – the variational part of the algorithm – within the classical optimisation

loop that aims to minimise the expectation of the cost function ⟨f⟩.
Result: The algorithm returns the best found solution.

Chapter 11 299

It is important to apply operators exp(−iβA) and exp(−iγB) alternately to ensure that we

are not trapped in a local minimum. It is also important thatA and B do not commute [272].

Indeed, by applying only exp(−iγB), we are facing ending in an eigenstate of the phase

Hamiltonian. If this happens, we will be trapped there: any further application of a linear

operator to its eigenvector may change its length but not its direction. The same applies to

alternating between two commuting operators: ifA and B commute, then we can come up

with a set of basis states that are eigenstates of both A and B, and once we get into one

of these eigenstates we remain trapped in it. However, since σx and σz do not commute,

there is always a chance to escape from the local minimum.

The ongoing exploration of QAOA potential started with the foundational paper by Farhi,

Goldstone, and Gutmann [96] where it outperformed classical algorithms on the Max-Cut

problem on connected 3-regular graphs. A regular graph is one where each vertex has the

same number of neighbours. In the case of a 3-regular graph (also known as a cubic graph),

each vertex is connected with three other vertices. We consider the Max-Cut problem in

the next section in its most general formulation. It was a decisive result that prompted

active development of classical algorithms and, eventually, one with asymptotically much

better performance was constructed by Barak et al [25]. This, in turn, triggered further in-

vestigations: the performance comparison between QAOA and the best classical algorithms

was studied by Hastings in [128], and Bravyi, Kliesch, Koenig and Tang [44] established

that the locality and the symmetry of QAOA severely limit its performance. To overcome

these limitations, they proposed a non-local version that significantly outperforms standard

QAOA for a frustrated Ising model on random 3-regular graphs.

11.4 The Max-Cut Problem
The Max-Cut problem is one of the special cases of the graph partitioning problem intro-

duced in Chapter 3. The objective is to divide the vertices of the graph into two groups

such that either the maximum possible number of edges going between the two groups are

“cut” (if all edges have the same weight) or the total weight of these edges is maximised (if

they have different weights).

300 Quantum Approximate Optimisation Algorithm

The problem of maximisation of the total weight (or number of edges being cut) can be

formulated as the minimisation of a cost function, which is the sum of the costs of all

individual edges. Each individual cost cij , associated with the edge connecting vertices i

and j, is given by

cij =
1

2
wij(1− sisj), (11.4.1)

where si and sj are classical spin variables taking values {−1,+1} and wij is the weight

associated with the edge connecting vertices i and j. The two groups of vertices are those

where the spin variables take the same values (either −1 or +1). We can see from (11.4.1)

that when si and sj have the same sign, the cost cij is zero; however, when si and sj have

opposite signs, the cost cij is equal to the weight wij .

The cost function for the whole graph then has the form

L(s) =
∑

{ij}∈G

1

2
wij(1− sisj), (11.4.2)

where s := (s1, . . . , sn) is the set of decision variables associated with the n-node graph G

and the sum goes over all pairs of nodes connected by the graph edges.

There are many possible applications of the Max-Cut problem in finance, for example client

clustering or client segmentation, where the task can be formulated by creating a graph

containing a node for each client and an edge between each pair of clients. The weight

of an edge connecting any two clients is determined by the relative closeness of clients’

characteristics: the closer the clients, the smaller the weight of the edge that connects

them. The clusters that are formed by finding maximum weight cuts have the property

that clients in one cluster are more dissimilar from clients in other clusters.

However, the flagship application of Max-Cut in finance is portfolio optimisation. Dees,

Stanković, Constantinides, and Mandi [81] have shown that the graph-theoretic portfolio

partitioning technique can help devise robust and tractable asset allocation schemes by

virtue of a rigorous graph framework for considering smaller, computationally feasible, and

economically meaningful clusters of assets, based on graph cuts. Barkoutsos, Nannicini,

Chapter 11 301

Robert, Tavernelli, and Woerner [26] improved variational quantum optimisation using a

Conditional Value-at-Risk technique – ubiquitous in financial risk management. A portfolio

optimisation QAOA use case addressed by solving the maximum independent set problem

on a quantum simulator was presented in [276]. It is also necessary to mention portfolio

rebalancing experiments using the Quantum Alternating Operator Ansatz conducted by

Hodson, Ruck, Ong, Garvin, and Dulma [138].

11.4.1 QAOA gates
The mixing Hamiltonian A and the phase Hamiltonian B corresponding to the cost func-

tion (11.4.2) read

A =
n∑
i=1

σix and B =
∑

{ij}∈G

1

2
wij
(
1− σizσjz

)
,

where the spin variables s are replaced by the corresponding Pauli operators σ. We therefore

need to find the quantum gate representation of the operators

exp
(
−iβσix

)
and exp

(
−1

2
iγσizσ

j
z

)
. (11.4.3)

To do so, we require the following (see also Lemma 1, albeit with a slightly different proof):

Theorem 9. With I denoting the identity operator, the following holds for any unitary

Hermitian operatorH and any θ ∈ R:

Rθ(H) ≡ exp

(
−1

2
iθH

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
H. (11.4.4)

Proof. SinceH is a unitary Hermitian operator its eigenvalues are +1 and −1 (Chapter 1).

Let P± be projectors onto the eigenspace of eigenvalues ±1 respectively, so that

I = P+ + P−, H = P+ − P−. (11.4.5)

When a function (in this case Rθ) is applied to a matrix (in this caseH) it is applied to each

302 Quantum Approximate Optimisation Algorithm

of the eigenvalues:

Rθ(H) = exp

(
−1

2
iθ(+1)

)
P+ + exp

(
−1

2
iθ(−1)

)
P−

= exp

(
−1

2
iθ

)
P+ + exp

(
1

2
iθ

)
P−.

(11.4.6)

From (11.4.5) we have

P+ =
1

2
(I +H) and P− =

1

2
(I −H). (11.4.7)

Substituting (11.4.7) into (11.4.6) yields

Rθ(H) =
1

2
exp

(
−1

2
iθ

)
(I +H) + 1

2
exp

(
1

2
iθ

)
(I −H)

=
1

2

[
exp

(
−1

2
iθ

)
+ exp

(
1

2
iθ

)]
I + 1

2

[
exp

(
−1

2
iθ

)
− exp

(
1

2
iθ

)]
H

= cos

(
θ

2

)
I − i sin

(
θ

2

)
H.

We can use (11.4.4) to write down expressions for the operators (11.4.3) in matrix form. We

start with the first operator:

exp(−iβσx) = cos(β)I− i sin(β)X

= cos(β)

1 0

0 1

− i sin(β)

0 1

1 0

=

 cos(β) −i sin(β)
−i sin(β) cos(β)

 .
Since the operator RX(θ) has the following matrix representation

Chapter 11 303

RX(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)
 ,

(see, for example, Chapter 6 or Theorem 9), we have

exp(−iβσx) = RX(2β),

so that operator exp(−iβσix) should be represented in the circuit by the gate RX(2β) placed

on the quantum register i.

We can proceed now with the gate representation of operator exp
(
−1

2 iγσzσz
)
, where

σzσz represents the tensor product of two σz operators acting on two different qubits:

exp

(
−1

2
iγσzσz

)
= cos

(γ
2

)
I⊗ I− i sin

(γ
2

)
Z⊗ Z

= cos
(γ
2

)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− i sin
(γ
2

)

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

=

cos
(γ
2

)
− i sin

(γ
2

)
0 0 0

0 cos
(γ
2

)
+ i sin

(γ
2

)
0 0

0 0 cos
(γ
2

)
+ i sin

(γ
2

)
0

0 0 0 cos
(γ
2

)
− i sin

(γ
2

)

=

e−iγ/2 0 0 0

0 eiγ/2 0 0

0 0 eiγ/2 0

0 0 0 e−iγ/2

 .

304 Quantum Approximate Optimisation Algorithm

Where we used the fact that

exp

(
−1

2
iγ

)
= cos

(γ
2

)
− i sin

(γ
2

)
and

exp

(
1

2
iγ

)
= cos

(γ
2

)
+ i sin

(γ
2

)
.

The following lemma provides a quantum circuit for the operator exp
(
−1

2 iγσzσz
)
:

Lemma 8. The operator exp
(
−1

2 iγσ
i
zσ

j
z

)
can be represented by the following circuit:

qi RZ(γ)

qj RZ(−2γ) RZ(γ)

Proof. From (6.3.3), we can write

RZ(γ) =

e−iγ/2 0

0 eiγ/2

 = e−iγ/2

1 0

0 eiγ

 .
The multiplier exp

(
−1

2 iγ
)

is an unobservable global phase and can be ignored. Now,

RZ(γ)⊗ RZ(γ) =

1 0

0 eiγ

⊗
1 0

0 eiγ

 =

1 0 0 0

0 eiγ 0 0

0 0 eiγ 0

0 0 0 e2iγ

 .

Finally, the matrix representation of the CRz(−2γ) gate is

CRZ(−2γ) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−2iγ

 ,

Chapter 11 305

and the matrix representation of the whole circuit shown in the lemma is
1 0 0 0

0 eiγ 0 0

0 0 eiγ 0

0 0 0 e2iγ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−2iγ

 = eiγ/2

e−iγ/2 0 0 0

0 eiγ/2 0 0

0 0 eiγ/2 0

0 0 0 e−iγ/2

 .

Again, the global phase can be ignored and we arrive at the same matrix expression we

obtained for exp
(
−1

2 iγσzσz
)
.

11.4.2 QAOA circuit
As pointed out in Chapters 8 and 9, existing quantum processors often have limited qubit

connectivity, so that we need to use a particular embedding scheme in order to map the

Max-Cut graph onto the QPU graph. The simplest case is a one-to-one mapping of the

graph nodes and the connectivity edges. Figure 11.2 displays one such graph (implemented

in Rigetti’s Aspen system) consisting of eight nodes (embedded in qubits 1, . . . , 8) and

eight edges. Nodes 1, 3, 5, and 7 each have one connection and nodes 2, 4, 6, and 8 each

have three connections.

1

2

3

4

7

8

5

6

Figure 11.2: Embedding of the Max-Cut optimisation problem on Rigetti’s Aspen system.

The corresponding QAOA circuit is shown in Figure 11.3.

306 Quantum Approximate Optimisation Algorithm

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

|0
⟩

H H H H H H H H

R
Z
(−

2γ
)

R
Z
(−

2
γ
)

R
Z
(−

2
γ
)

R
Z
(−

2γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(γ
)

R
Z
(−

2
γ
)R
Z
(γ
)

R
Z
(γ
)

R
Z
(−

2γ
)R
Z
(γ
)

R
Z
(γ
)R
Z
(−

2
γ
)R
Z
(γ
)

R
Z
(γ
)R
Z
(−

2γ
)

R
Z
(γ
)

R
Z
(γ
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

R
X
(2
β
)

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

0
M

0 0

1
2

3
4

Figure 11.3: QAOA circuit for the Max-Cut problem.

Chapter 11 307

The circuit consists of four distinct layers. The first one is a layer of Hadamard gates

creating an equal superposition of states |0⟩ and |1⟩ – transformation of the basis states |0⟩
into the basis states |+⟩. The second layer represents the action of the phase Hamiltonian

controlled by the adjustable parameter γ. The third layer represents the action of the

mixing Hamiltonian controlled by the adjustable parameter β. The final layer consists of

measurement operators. The second and third layers can be applied multiple times with

different values of parameters γ and β.

The optimal solution found by the QAOA using Qiskit quantum simulator for the case of

equal weights (wij = 1 for all {i, j} ∈ G) is shown in Figure 11.4. The optimal solution

reads as the bitstring 10011001, and is represented by the dashed curve that separates

nodes into two equal subsets and cuts across all edges of the graph.

1

2

3

4

7

8

5

6

Figure 11.4: Visualisation of the Max-Cut problem solution.

Here, the graph nodes (qubits) {1, 4, 5, 8} belong to group “1” and the graph nodes

{2, 3, 6, 7} belong to group “0”.

In the case of unequal weights the circuit layout remains the same but the adjustable gate

parameters reflect the relative magnitude of the weights assigned to different edges. For

example, if the weight assigned to the connection between nodes 1 and 2 is increased

from 1 to 5 and all other weights remain equal to 1, then the phase Hamiltonian term that

corresponds to the connection between nodes 1 and 2 changes from exp
(
−1

2 iγσzσz
)

to

308 Quantum Approximate Optimisation Algorithm

exp
(
−5

2 iγσzσz
)
, and the corresponding segment of the quantum circuit changes to the

one shown in Figure 11.5, with the rest of the circuit remaining the same.

q1 RZ(5γ)

q2 RZ(−10γ) RZ(5γ)

Figure 11.5: Weight w12 increases from 1 to 5.

QAOA can successfully solve NP-hard combinatorial optimisation problems

in their QUBO formulations.

Summary
In this chapter, we studied a quantum optimisation algorithm inspired by the principles of

adiabatic evolution of quantum systems. In this regard, QAOA can be seen as a quantum gate

model counterpart of the AQC approach to solve classically hard optimisation problems.

We discussed the Suzuki-Trotter expansion, which provides an approximation of the time

evolution of quantum mechanical systems and which lies at the heart of the algorithm. We

illustrated QAOA implementation (gates and circuit) on the Max-Cut problem, which has

many applications in finance.

In the next chapter, we will explore the sources of power of parameterised quantum circuits.

12
The Power of Parameterised
Quantum Circuits

As we have seen in the previous chapters, there is a wide range of QML models based

on parameterised quantum circuits. One reason for this is their tolerance to noise [222],

which is important when we work with the NISQ hardware. However, this does not fully

explain the popularity of PQCs or why they are considered strong competitors to classical

ML models. There must be some fundamental properties of PQCs that make them superior

to their classical counterparts. In this chapter, we discuss two such properties: resistance

to overfitting and larger expressive power.

Resistance to overfitting is a direct consequence of the fact that a typical PQC – one without

mid-circuit measurement – can be represented by a linear unitary operator. Linear models

impose strong regularisation, thus preventing overfitting. At the same time, the model

remains powerful due to the mapping of the input into the higher-dimensional Hilbert space

where it may be easier to perform classification if the PQC is trained as a discriminative

model (QNN).

310 The Power of Parameterised Quantum Circuits

Expressive power is related to the model’s ability to express different relationships between

variables, i.e., its ability to learn complex data structures. It appears that PQCs trained

as generative models (QCBM) have strictly larger expressive power than their equivalent

classical versions (such as RBM).

12.1 Strong Regularisation
Parameterised quantum circuits trained as classifiers face the same challenge as classical

models: the need to generalise well to unseen data points. Classically, we have a wide

range of supervised learning models and regularisation techniques to choose from. These

regularisation techniques that fight overfitting are model specific. For example, we can try

to restrict the depth of the decision trees or to impose a penalty term in the cost function

when training neural networks.

Consider a conventional feedforward neural network as, arguably, the most direct classical

counterpart of a quantum classifier. In both classical and quantum cases, the signal travels

through the network in one direction and the layers of quantum gates can be compared to

the layers of classical activation units. Regardless of whether we apply L1 (Lasso) or L2

(Ridge) penalty terms, or use dropout techniques, we would like to have a measure of

regularisation present in the network. This is an interesting theoretical problem as well

as an important practical task that allows us to develop an optimal strategy for fighting

overfitting. Ideally, such a measure should be applicable to both classical and quantum

neural networks to provide a meaningful comparison of their respective regularisation

properties.

Very often, relatively small network weights are associated with a high degree of regu-

larisation and relatively high network weights are symptoms of overfitting. However, it

would be highly desirable to have a formal mathematical tool for quantifying the network

capacity to overfit. One such possible well-defined measure that captures the degree of

regularisation is the Lipschitz constant.

Chapter 12 311

12.1.1 Lipschitz constant
Following Gouk [115], given two metric spaces (X , dX) and (Y, dY) a function f : X → Y ,

is said to be Lipschitz continuous if there exists a constant k ≥ 0 such that

dY(f(x1), f(x2)) ≤ kdX (x1, x2), for all x1, x2 ∈ X .

The value of k is known as the Lipschitz constant, and the function is referred to as k-

Lipschitz. We are interested in the smallest possible Lipschitz constant or, at least, its upper

bound. To obtain the upper bound estimate, we should note some useful properties of

feedforward neural networks.

In the case of a j-th layer of a feedforward neural network, x1 and x2 are the n-dimensional

sample outputs of the previous layer, j − 1, and f(x1) and f(x2) are the m-dimensional

outputs of layer j. The metrics dX and dY can be, for example, L1 or L2 norms.

A feedforward neural network consisting of l fully connected layers can be expressed as a

series of function compositions:

f(x) = (ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ1)(x),

where each ϕj implements the j-th layer affine transformation of the n-dimensional input x,

parameterised by an m× n weight matrix Wj and an m-dimensional bias vector bj :

ϕj(x) = Wjx + bj .

The composition of a k1-Lipschitz function with a k2-Lipschitz function is a k1k2-Lipschitz

function [115]. Therefore, we can compute the Lipschitz constants for each layer separately

and combine them together to obtain an upper bound on the Lipschitz constant for the

entire network.

Choose dX and dY to be theL2 norms ∥·∥2. In this case, we obtain the following relationship

312 The Power of Parameterised Quantum Circuits

from the definition of Lipschitz continuity for the fully connected network layer j:

∥(Wjx1 + bj)− (Wjx2 + bj)∥2 ≤ k∥x1 − x2∥2.

Introducing a = x1 − x2 and assuming that x1 ̸= x2 we arrive at the estimate

∥Wja∥2
∥a∥2

≤ k. (12.1.1)

The smallest Lipschitz constant of the fully connected network layer, L(ϕj), is equal to the

supremum of the left-hand side of inequality (12.1.1):

L(ϕj) := sup
a̸=0

∥Wja∥2
∥a∥2

. (12.1.2)

The operator norm (12.1.2) is given by the largest singular value of the weight matrix Wj ,

which corresponds to the spectral norm – the maximum scale by which the matrix can

stretch a vector. It is straightforward to calculate using any of the suitable open-source

packages, for example sklearn.decomposition.TruncatedSVD from the scikit-learn

package.

In the case of quantum neural networks, any parameterised quantum circuit operating

on n qubits, regardless how complex and deep, can be represented by a 2n × 2n unitary

matrix. Since all singular values of the unitary matrix are equal to one, this gives us a

natural benchmark for comparison of regularisation capabilities of various networks.

12.1.2 Regularisation example
The Australian Credit Approval (ACA) dataset [241, 242] we analysed in Chapter 8 can

serve as a good illustrative example. We can compare the performance of classical and

quantum neural networks while monitoring regularisation as measured by the Lipschitz

constant.

The classical neural network is an MLP Classifier with two hidden layers. Each hidden

layer holds the same number of activation units as the number of features in the ACA

Chapter 12 313

dataset (14), so that we have to calculate the largest singular values for two 14× 14 square

matrices. The features are standardised with sklearn.preprocessing.StandardScaler.

We also use sklearn.neural_network.MLPClassifier to construct the classifier with the

set of hyperparameters shown in Table 12.1:

Hyperparameter Value

Number of hidden layers: 2

Number of activation units in each layer: 14

Activation function: tanh

Solver: adam

Intial learning rate: 0.01

Number of iterations: 5000

Random state: 0

Regularisation parameter, α: variable

Table 12.1: MLP Classifier hyperparameters.

The MLP Classifier regularisation parameter α is our control variable. It controls the L2

regularisation term in the network cost function: the larger this parameter, the more large

network weights are penalised. All other parameters were set at their default values.

The quantum neural network is shown in Figure 8.5. The parameterised quantum circuit

consists of just 7 fixed two-qubit gates (CZ) and 15 adjustable one-qubit gates (RX and RY).

Table 12.2 compares the MLP and the QNN classifiers on the in-sample and out-of-sample

datasets (the ACA dataset was split 50:50 into training and test datasets using sklearn.-

preprocessing.StandardScaler).

We observe that QNN provides strong regularisation with similar performance on the

in-sample and out-of-sample datasets as expected from the network represented by the

unitary matrix.

314 The Power of Parameterised Quantum Circuits

Classifier Average F1 score Average F1 score Lipschitz Constant

(in-sample) (out-of-sample) (upper bound)

MLP, α = 0.001 1.00 0.78 36.2

MLP, α = 0.01 1.00 0.79 33.5

MLP, α = 0.1 1.00 0.80 18.6

MLP, α = 1 0.99 0.83 7.4

MLP, α = 10 0.90 0.86 1.3

MLP, α = 40 0.85 0.86 0.5

MLP, α = 50 0.35 0.37 1e-05

QNN 0.86 0.85 1.0

Table 12.2: F1 scores and Lipschitz constants for MLP and QNN classifiers trained on the ACA
dataset.

Further, we observe that the equivalent degree of regularisation can be achieved by MLP

only with exceptionally large values of the regularisation parameter α. Making α any

larger completely destroys the learning abilities of the network. For the chosen MLP

configuration, the critical value of α is between 40 and 50.

Parameterised quantum circuits can be represented as (high-dimensional)

norm-preserving unitary matrices. This ensures strong regularisation prop-

erties of the quantum neural networks.

Now we can move to the next feature of the parameterised quantum circuits: their expressive

power. We can define the expressivity of a PQC as the circuit’s ability to generate pure

quantum states that are well representative of the Hilbert space [266]. In other words, from

the QML point of view, the expressive power of a PQC is its ability to learn (“express”)

complex data structures. In the following section, we will try to quantify the degree of

expressivity inherent in different PQC types.

Chapter 12 315

12.2 Expressive Power
We saw in previous chapters how PQCs can be applied to solving optimisation problems

(QAOA and VQE) as well as to various machine learning tasks covering both discriminative

(QNN classifier) and generative (QCBM market generator) use cases. In general, the PQCs

we used for quantum machine learning tasks can be divided into two types [88]: tensor

network PQC (similar to the QNN circuit in Figure 8.4) and multilayer PQC (similar to the

QCBM circuit in Figure 9.1). What is their expressive power and how can we rank them?

Before trying to answer this question, let us have a look at a simple illustrative example:

quantum circuits specified on a single quantum register.

|0⟩

|0⟩

|0⟩

|0⟩

H

H

H

H

RZ(θz)

RZ(θz)

RZ(θz)

RX(θx)

RX(θx) RY(θy)

|ψA⟩

|ψB⟩

|ψC⟩

|ψD⟩

θx ∼ U [−π, π], θy ∼ U [−π, π], θz ∼ U [−π, π],

PQC A:

PQC B:

PQC C:

PQC D:

Figure 12.1: PQCs with different expressive powers.

Figure 12.1 displays four one-qubit circuits with dramatically different expressive powers,

where U [−π, π] denotes the Uniform distribution over the closed interval [−π, π]. Let us

go through them one by one.

PQC A starts with the qubit state initialised as |0⟩ – North Pole on the Bloch sphere

(Figure 7.3). The only gate is the Hadamard gate H that moves |0⟩ to (|0⟩ + |1⟩)/
√
2. Thus,

state |ψA⟩ can only be a single point on the Bloch sphere.

316 The Power of Parameterised Quantum Circuits

PQC B also starts with the qubit state initialised as |0⟩ and applies the Hadamard gate

transforming the initial state into (|0⟩+ |1⟩)/
√
2 before applying the rotation RZ around the

z-axis by an angle θz drawn from the Uniform distribution on [−π, π]. The final state |ψB⟩
can be any point on the equator, all reached with equal probability.

PQC C adds a rotation RX to PQC B, by an angle θx drawn from the Uniform distribution

on [−π, π]. With two rotations around two orthogonal axes we can reach any point on the

Bloch sphere. However, with angles θz and θx drawn from the Uniform distribution on

[−π, π] we do not have a Uniform distribution of points on the Bloch sphere for state |ψC⟩.
We observe the highest density around points (|0⟩+ |1⟩)/

√
2 and (|0⟩ − |1⟩)/

√
2, which

are the points where the equator crosses the 0◦ and 180◦ meridians, and the lowest density

along the 90◦ and 270◦ meridians.

Finally, PQC D adds one more rotation RY around the y-axis by an angle θy drawn from the

Uniform distribution on [−π, π]. This rotation results in spreading the previously clustered

points more evenly around the Bloch sphere, thus making all points on the Bloch sphere

equally accessible.

Therefore, in terms of our ability to explore the Hilbert space, we have the following

hierarchy of the expressive power of the PQCs introduced above:

PQC D > PQC C > PQC B > PQC A.

We can now return to the PQCs developed in the previous chapters.

12.2.1 Multilayer PQC
A multilayer PQC (MPQC) consists of multiple blocks of quantum circuits in which the

arrangement of quantum gates in each block is identical [28, 189]. Figure 12.2 shows a

schematic representation of the MPQC.

Chapter 12 317

|0⟩

|0⟩

|0⟩

|0⟩
...

|0⟩

|0⟩

|0⟩

|0⟩

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

M

M

M

M

.

M

M

M

M

U(θ1) U(θ2) · · · U(θl)

Figure 12.2: Schematic representation of a multilayer PQC.

The following mathematical formalism can be used to describe MPQC. The input n-qubit

quantum state with all qubits initialised as |0⟩ in the computational basis is |0⟩⊗n, the total

number of blocks is denoted l, and the i-th block is denoted U(θi), where the number of

parameters is proportional to the number of qubits, and n is logarithmically proportional to

the dimension of the generated data (this reflects our assumption about the data encoding

scheme). The generated output state of the circuit thus reads

|ψ⟩ =
l∏

i=1

U(θi)|0⟩⊗n.

12.2.2 Tensor network PQC
A tensor network PQC (TPQC) treats each block as a local tensor. The arrangement of the

blocks follows a particular network structure, such as matrix product states or tree tensor

networks [144]. A schematic representation of TPQC is shown in Figure 12.3.

318 The Power of Parameterised Quantum Circuits

|0⟩

|0⟩

|0⟩

|0⟩
...

|0⟩

|0⟩

|0⟩

|0⟩

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

M

M

M

M

.

M

M

M

M

U(θ1) U(θ2) · · · U(θl)

Figure 12.3: Schematic representation of a tensor network PQC.

Mathematically, the i-th block U(θi) is composed ofMi local tensor blocks, withMi ∝ n/2i,
denoted as U(θi) =

⊗Mi
j=1 U(θ

i
j). Note that many of these tensor blocks may be identity

operators. The generated state is thus of the form

|ψ⟩ =
l∏

i=1

Mi⊗
j=1

U(θij)|0⟩⊗n.

12.2.3 Measures of expressive power
The main question to answer is whether MPQC and TPQC have larger expressive power

in comparison with their classical counterparts, such as classical neural networks. The

expressive power of a model can be defined in many different ways, for example, as a

model capacity to express different relationships between variables [22]. Deep neural

networks serve as a good example of powerful models capable of learning complex data

structures [94]. Therefore, the power of a model can be quantified by its complexity,

Chapter 12 319

with the Vapnik-Chervonenkis dimension being a complexity measure of choice [293]. The

objective is to provide an estimate of how well a model generalises to the unseen data.

Another popular approach is the Fisher information, which describes the geometry of a

model parameter space [247]. Arguably, the effective dimension based on Fisher information,

rather than Vapnik-Chervonenkis dimension, is a better measure to study the power of

quantum and classical neural networks [1].

However, one of the most natural metrics of expressive power is entanglement entropy,

which allows us to establish a well-defined ranking of quantum and classical machine

learning models. In this chapter, we will present the expressive power estimates obtained

in [88] for TPQC and MPQC based on entanglement entropy.

Let us recall the definitions of entropy in statistical mechanics (the Gibbs entropy S) and

in information theory (the Shannon entropy H) introduced in Chapter 6:

S := −kB
∑
i

pi log(pi) and H := −
∑
i

pi log2(pi). (12.2.1)

Here, pi is the probability that the microstate i is taken from an equilibrium ensemble in

the case of the Gibbs entropy, and that the message i is picked from the message space in

the case of the Shannon entropy.

These definitions of entropy can be extended to the quantum case. In Chapter 1, we

introduced the density matrix as a universal tool for describing pure and mixed quantum

states:

ρ :=

N∑
i=1

N∑
j=1

ρij |i⟩ ⟨j| ,

where (|i⟩)i=1,...,N are the basis vectors of a given quantum system. The von Neumann

entropy S is then defined as

S(ρ) := −Tr(ρ log(ρ)).

Since the density matrix is Hermitian, it is diagonalisable, so that there exists a basis

320 The Power of Parameterised Quantum Circuits

(|k⟩)k=1,...,N such that

ρ =
N∑
k=1

ρkk |k⟩ ⟨k| =:
N∑
k=1

pk |k⟩ ⟨k| , where
N∑
k=1

pk = 1.

The eigenvalues of the operator ρ log(ρ) are thus (pk log(pk))k=1,...,N , and we obtain the

following expression for the von Neumann entropy:

S(ρ) = −Tr(ρ log(ρ)) = −
∑
k

pk log(pk). (12.2.2)

From (12.2.1) and (12.2.2) we see that for the orthogonal mixture of quantum states, the

quantum and classical entropies coincide.

If the system has two component parts, A and B, we can define the reduced density matrix

as the partial trace of the density matrix over the subspace of the Hilbert space we are not

interested in. Let (|ai⟩)i=1,...,N be the standard orthonormal basis of the Hilbert space HA

of system A, and (|bj⟩)j=1,...,M be the standard orthonormal basis of the Hilbert space HB

of system B. The density matrix ρAB of the bipartite system AB on the tensor product

Hilbert space HA ⊗HB can then be represented as

ρAB =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

cijkl |ai⟩ ⟨ak| ⊗ |bj⟩ ⟨bl| ,

for some coefficients cijkl. The partial traces then read

TrB(ρAB) =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

cijkl |ai⟩ ⟨ak| ⟨bl|bj⟩ ,

which is a reduced density matrix ρA on HA, and

TrA(ρAB) =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

cijkl |bj⟩ ⟨bl| ⟨ak|ai⟩ ,

Chapter 12 321

which is a reduced density matrix ρB on HB . Note that Tr(|ai⟩ ⟨ak|) = ⟨ak|ai⟩ and

Tr(|bj⟩ ⟨bl|) = ⟨bl|bj⟩.

Example: Consider the two-qubit system in the state

|ψ⟩ = 1√
2
(|01⟩+ |10⟩),

which is one of the four maximally entangled Bell states (Section 6.5.2). We assume that

the first qubit is system A and the second qubit is system B. This state corresponds to the

following density matrix:

ρAB := |ψ⟩ ⟨ψ| = 1

2

(
|01⟩ ⟨01|+ |01⟩ ⟨10|+ |10⟩ ⟨01|+ |10⟩ ⟨10|

)
.

Let us now act on this state with the partial trace TrB(·):

ρA := TrB(ρAB) =
1

2

(
|0⟩ ⟨0| ⟨1|1⟩+ |0⟩ ⟨1| ⟨0|1⟩+ |1⟩ ⟨0| ⟨1|0⟩+ |1⟩ ⟨1| ⟨0|0⟩

)
=

1

2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|

)
=

1

2

1 0

0 1

 .
(12.2.3)

The reduced density matrix ρA in (12.2.3) is the same as the density matrix ρ in (1.3.8),

which describes a statistical ensemble of states |0⟩ and |1⟩ (mixed state), i.e., a physical

system prepared to be either in state |0⟩ or state |1⟩ with equal probability.

The entanglement entropy of a bipartite system AB is then defined as

S(ρA) := −Tr(ρA log(ρA)) = −Tr(ρB log(ρB)) =: S(ρB),

and can be used as a measure of expressive power of a model in the following way. First,

note that TPQC, MPQC and classical neural networks have a close connection with tensor

networks, such as matrix product states (MPS) [88]. The key question is then whether the

given quantum system can be efficiently represented by the MPS.

322 The Power of Parameterised Quantum Circuits

A quantum system that satisfies the area law (its entanglement entropy grows proportionally

with the boundary area) has an efficient MPS representation. At the same time, a quantum

system that satisfies the volume law (its entanglement entropy grows proportionally with

the volume) cannot be efficiently represented by MPS [88].

12.2.4 Expressive power of PQC
In Chapter 5, we introduced the Restricted Boltzmann Machine (RBM) – a neural network

operating on stochastic binary activation units, which is a natural classical counterpart of

parameterised quantum circuits. We considered two types of RBM:

• a shallow two-layer network where the activation units in the visible layer are

connected to the activation units in the hidden layer with no connections between

the activation units within the same layer;

• a deeper multi-layer network of stacked RBMs where the hidden layer of the k-th

RBM serves as the visible layer of the (k + 1)-th RBM. Such stacked RBMs (trained

sequentially) are called Deep Boltzmann Machines (DBMs).

It is also possible to impose further restrictions on the connections between the RBM layers.

In short-range RBMs, we restrict the connectivity of the hidden layer activation units such

that they are allowed to connect to the limited number of activation units in the visible

layer that are in close proximity to each other (local connectivity) [84]. In long-range

RBMs, we allow connections between the hidden layer activation units and the visible

layer activation units that are not necessarily local.

It has been established by Deng, Li, and Sarma [85] that the entanglement entropy of

all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition

geometry. For long-range RBM states, such states could exhibit volume law entangle-

ment. Therefore long-range RBMs are capable of representing quantum states with large

entanglement.

It is probably not surprising that a DBM would have even larger expressive power than a

single RBM. However, using entanglement entropy as a measure of expressive power, Du,

Chapter 12 323

Hsieh, Liu, and Tao have proven in [88] that MPQC have strictly larger expressive power

than DBM. The main result can be formulated as the following theorem:

Theorem 10 (Expressive Power Theorem). The expressive power of MPQC and TPQC with

O(poly(n)) single qubit gates and CNOT gates, and classical neural networks withO(poly(n))

trainable parameters, where n refers to the number of qubits or visible units, can be ordered as

MPQC > DBM > long-range RBM > TPQC > short-range RBM. (12.2.4)

Theorem 10 provides a solid theoretical foundation for experimental works aimed at

establishing quantum advantage of PQC-based QML models. The larger expressive power

of PQCs in comparison with their classical counterparts prompted the development of many

such models in recent years. For example, a hybrid quantum-classical approach, suitable

for NISQ devices and harnessing the greater expressive power of quantum entanglement,

was proposed in [59]. It was shown through numerical simulations that the Quantum Long

Short Term Memory (QLSTM) model learns faster than the equivalent classical LSTM with

a similar number of network parameters. In addition, the convergence of QLSTM was

shown to be more stable than that of its classical counterpart. A Quantum Convolutional

Neural Network (QCNN) was proposed in [58] which, due to its larger expressive power,

achieved greater test accuracy compared to classical CNNs. The source of expressive power

was the replacement of the classical convolutional filters with quantum convolutional

kernels based on variational quantum circuits.

Multi-layer parameterised quantum circuits such as QCBM have strictly

more expressive power than classical models such as RBM when only a

polynomial number of parameters is allowed. For systems that exhibit quan-

tum supremacy, a classical model cannot learn to reproduce the statistics

unless it uses exponentially scaling resources [29].

324 The Power of Parameterised Quantum Circuits

Summary
In this chapter, we learned where the power of parameterised quantum circuits comes from.

We started with the observation that quantum neural networks enjoy strong regularisation

inherent in their architecture. This is due to the fact that any PQC, however wide and deep,

is a unitary linear operator.

Next, we considered the expressive power of parameterised quantum circuits and estab-

lished the concept of the expressive power hierarchy. The main result (Theorem 10) supports

the experimental findings indicating the presence of the elements of quantum advantage

in various QML models compatible with the main characteristics of NISQ devices.

In the next chapter, we will go deeper into the less explored territory of new quantum

algorithms, an area of very active research.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

13
Looking Ahead

The first generation of quantum algorithms appeared in the 1990s when quantum computers

existed only as a concept. On the one hand, the absence of actual quantum hardware was

a huge disadvantage since it made direct experiments impossible; on the other hand,

it stimulated theoretical research not inhibited by the limitations and constraints of the

imperfect early quantum computers. Researchers focused on devising algorithms that would

achieve quadratic or even exponential speedup, assuming that powerful, error-free quantum

computers would be available one day. It was the time when Shor’s prime factorisation

algorithm [265] and Grover’s search algorithm [117] were discovered. Incidentally, as the

book was about to be released, Peter Shor was named one of the four recipients of the 2022

Breakthrough Prize in Fundamental Physics (along with C. H. Bennett, G. Brassard, and

D. Deutsch) for their foundational work in quantum information. Many such algorithms,

in turn, relied on basic building blocks such as Quantum Phase Estimation and Quantum

Fourier Transform [278]. These algorithms played an important role in demonstrating the

capabilities of universal gate model quantum computers – if only they were available!

A quarter of a century later we are facing a different problem: the development of practical

326 Looking Ahead

quantum computing algorithms and techniques that would allow us to extract value from

NISQ computers. While quantum computing hardware is improving at a breathtaking

pace, it is still too far from a state where it can break RSA encryption. What are existing

quantum computers capable of doing? What is their relative strength in comparison with

classical computers? In this chapter we look at several new, NISQ-friendly algorithms that

bring us one step closer to achieving the quantum advantage.

13.1 Quantum Kernels
We start with the popular classical kernel method and then describe its quantum counterpart

based on parameterised quantum circuits.

13.1.1 Classical kernel method
A kernel method is the key element of a powerful classical supervised learning algorithm:

Support Vector Machine (SVM). Unlike a feedforward-neural-network-based classifier

whose objective is to minimise the classification error, the SVM’s objective is to maximise

the margin, defined as the distance between a separating hyperplane (decision boundary

separating samples belonging to different classes) and the training samples that are closest

to this hyperplane [243]. The samples that are closest to the separating hyperplane are

called support vectors, thus giving its name to the algorithm.

The maximisation of the margins lowers the generalisation error and helps fight overfitting.

This is a very important property but finding the separating hyperplane is not an easy task

for non-linearly separable data. Fortunately, the kernel method allows us to overcome this

difficulty, by creating non-linear combinations of the original features and projecting them

onto a higher-dimensional space where the data samples become linearly separable.

Whereas an SVM with linearly separable data operates on the inner product ⟨xi, xj⟩ of the

training samples, the generalised version to non-linearly separable data operates on the

kernel function

k(xi, xj) := ϕ(xi)⊤ϕ(xj), (13.1.1)

where ϕ : RN → RM , with M ≫ N , is the feature map that projects the N -dimensional

Chapter 13 327

feature x := (x1, . . . , xN) onto theM -dimensional feature space. The inner product (13.1.1)

would be computationally expensive to calculate directly but the kernel function is com-

putationally inexpensive – this is known as the kernel trick. The kernel function can be

seen as a similarity function operating on a pair of samples. For example, the radial basis

function

k(xi, xj) = exp

(
−∥x

i − xj∥2

2σ2

)
,

translates the distance between samples xi and xj (defined on [0,∞)N) into a similarity

score (defined on the interval [0, 1]).

The right choice of kernel function can make the classification task much easier. However,

some kernels may be hard to compute. This is where quantum computing may play an

important role by providing efficient quantum circuits to compute them.

13.1.2 Quantum kernel method
Wang, Du, Luo, and Ta [298] have shown a close correspondence between classical and

quantum kernels. The feature map ϕ(·) coincides with the preparation of a quantum

state via a parameterised quantum circuit U(·), which maps the input data sample into a

high-dimensional Hilbert space described by n qubits:

ϕ(x)→ |ψ(x)⟩ = U(x) |0⟩⊗n .

The kernel function then coincides with applying measurements on the prepared quantum

states:

k(xi, xj)→
∣∣⟨ψ(xj)|ψ(xi)⟩∣∣2 , (13.1.2)

and allows for more expressive models in comparison with the alternative

k(xi, xj) = ϕ(xi)⊤ϕ(xj)→ ⟨ψ(xj)|ψ(xi)⟩ . (13.1.3)

Huang et al. [143] argued that even though the kernel function (13.1.3) seems to be more nat-

ural, the quantum kernel (13.1.2) can learn arbitrarily deep quantum neural networks (deep

328 Looking Ahead

PQC). This is a strong result, especially in combination with the hierarchy of expressive

power of parameterised quantum circuits (Chapter 12, Equation (12.2.4)).

Havlíček et al. [129] described how a quantum computer can be used to estimate the

kernel. The kernel entries are the fidelities between different feature vectors (analogous to

similarity scores in classical kernel methods). Burnham, Cleve, Watrous, and R. de Wolf [50]

and Cincio, Subaşi, Sornborger, and Coles [66] investigated various fidelity estimation

methods such as quantum fingerprinting and machine learning approach (both relying

on the application of a CSWAP gate implementing the swap test). However, by using the

fact that the states in the feature space are not arbitrary, the overlap between the quantum

states can be estimated from the transition probability:

∣∣⟨ψ(xj)|ψ(xi)⟩∣∣2 = | ⟨0| U†(xj)U(xi) |0⟩ |2,

where, for brevity, we used the notation |0⟩ := |0⟩⊗n. The first step is the application of

a composition of two consecutive feature map circuits (representing the operators U(xi)
and U†(xj)) to the initial state |0⟩. The second step is the measurement of the final state

in the computational basis K times and counting the number κ of all-zero strings |0⟩.
The frequency κ/K of the all-zero string is the estimate of the transition probability (the

“similarity score”).

The rest of the supervising learning protocol is classical, allowing for the natural embed-

ding of quantumly computed kernels into the overall framework: the algorithm remains

essentially classical with only the classically hard task outsourced to the quantum chip.

13.1.3 Quantum circuits for the feature maps
Figure 13.1 displays a schematic representation of the feature map circuit. In this example,

we work with an 8-dimensional dataset with features encoded in the rotation angles such

that there is a direct mapping of a sample xi := (xi1, . . . , x
i
8) into the vector of adjustable

circuit parameters θi := (θi1, . . . , θ
i
8). The first section of the circuit implements the

operator U(xi), creating an entangled state due to the layer of fixed two-qubit CZ gates,

Chapter 13 329

whereas the second section of the circuit implements U†(xj). Here we use the fact that

R
†
X(θ) = RX(−θ), R

†
Y(θ) = RY(−θ), CZ† = CZ.

It is easy to see that if the samples xi and xj are identical (so that θi = θj), then

U(xi)U†(xj) = I and all K measurements will return the all-zero string |0⟩.

|0⟩

|0⟩

|0⟩

|0⟩

RY(θ
i
1)

RY(θ
i
2)

RY(θ
i
3)

RY(θ
i
4)

RX(θ
i
5)

RX(θ
i
6)

RX(θ
i
7)

RX(θ
i
8)

RX(−θj5)

RX(−θj6)

RX(−θj7)

RX(−θj8)

RY(−θj1)

RY(−θj2)

RY(−θj3)

RY(−θj4)

M

M

M

M

Z

Z

Z

Z

Z

Z

Z

Z

U(xi) U†(xj)

Figure 13.1: Schematic quantum kernel circuit.

The rest of the protocol is classical – the quantum computer is used to assist the classi-

fier with the calculation of a kernel function that would not be feasible if only classical

computational resources were available.

Let us now apply the quantum kernel method to the Australian Credit Approval dataset

(introduced in Chapter 8) in order to estimate the degree of similarity between samples

drawn from the same class and samples drawn from two different classes. The ACA

dataset consists of 690 samples, with 383 samples labelled as Class 0 and 307 samples

labelled as Class 1, so the dataset is reasonably well balanced. Each sample consists of 14

features (continuous, integer, binary). In Chapter 8 we built a QNN classifier and tested its

performance on the ACA dataset, employing the angle encoding scheme as explained in

Section 7.2. We would like to build a feature map that is consistent with the angle encoding

scheme and does not require the construction of a too deep PQC. In fact, we would like

to build a feature map using the PQC that is as close as possible to the one shown in

Figure 13.1. The proposed scheme can be embedded into all existing NISQ systems we

330 Looking Ahead

considered earlier in this book. For example, we can use IBM’s Melbourne system shown

in Figure 13.2.

1 2 3 4 5 6 7

Figure 13.2: Embedding of the quantum kernel circuit into IBM’s Melbourne system.

We know that 7 quantum registers (shown as shaded qubits connected by the thick lines in

Figure 13.2) can encode a 14-feature data sample if we follow the angle encoding scheme.

The corresponding circuit is shown in Figure 13.3. The linear sequential connectivity

between the physical qubits makes the choice of the 2-qubit gates straightforward (and, in

fact, similar to the one in Figure 13.1).

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

RY(θ
i
1)

RY(θ
i
2)

RY(θ
i
3)

RY(θ
i
4)

RY(θ
i
5)

RY(θ
i
6)

RY(θ
i
7)

RX(θ
i
8)

RX(θ
i
9)

RX(θ
i
10)

RX(θ
i
11)

RX(θ
i
12)

RX(θ
i
13)

RX(θ
i
14)

RX(−θj8)

RX(−θj9)

RX(−θj10)

RX(−θj11)

RX(−θj12)

RX(−θj13)

RX(−θj14)

RY(−θj1)

RY(−θj2)

RY(−θj3)

RY(−θj4)

RY(−θj5)

RY(−θj6)

RY(−θj7)

M

M

M

M

M

M

M

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Figure 13.3: Quantum kernel circuit for the ACA dataset.

In the circuit shown in Figure 13.3, the angles θi and θj encode the data samples xi and

xj , which can be drawn either from the same class or from two different classes.

Running the circuit K times and calculating the number κ of all-zero bitstrings (after

measurement) gives us the measure of similarity between samples xi and xj (estimated

as the ratio κ/K). Figure 13.4 displays the mean values of the transition probabilities

Chapter 13 331

(similarity scores) obtained using the quantum kernel (13.1.2) by running the quantum

circuit on the Qiskit simulatorK = 10, 000 times for each pair of data samples. The mean

values were calculated across all possible pairs of samples from the corresponding classes.

Class 0 / Class 0 Class 1 / Class 1 Class 0 / Class 1
0

2

4

6

8

·10−2

8.1 · 10−2 8.4 · 10−2

3.8 · 10−2

m
ea

n(
κ
/
K

)

Figure 13.4: Mean values of the quantum kernel (13.1.2) for the ACA dataset.

As expected, samples drawn from the same class have, on average, significantly larger

similarity scores given by the quantum kernel compared with samples drawn from two

different classes.

Quantum kernels that can be efficiently calculated on quantum computers

have the potential to improve the performance of hybrid quantum-classical

machine learning models.

13.2 Quantum Generative Adversarial Networks
Generative Adversarial Networks (GANs) are powerful statistical techniques to generate (as

much as needed) data close enough (in some sense) to given samples. They were introduced

in [114] and originally tested on image data. Since then, they have seen wide applications

in finance, for time series generation [301, 302], tuning of trading models [176], portfolio

management [196], synthetic data generation [17], and diverse types of fraud detection [261].

332 Looking Ahead

The gist of it is to have a generator and a discriminator compete against each other in order

to improve themselves: the generator improves by becoming better at generating good

samples (i.e., close to real data) from random noise, whereas the discriminator improves by

being able to recognise real data from “fake” (namely generated) data. Both the generator

and the discriminator are usually built as neural networks with hyperparameters over

which to optimise. Mathematically, given a generatorG(·,θG) and a discriminatorD(·,θD),

where θG and θD represent the hyperparameters, the problem reads as follows:

min
θG

max
θD

{
Ex∼Pdata

[
log(D

(
x;θD

)]
+ Ez∼P

G(·,θG)

[
log
(
1−D

(
G
(
z;θG

)
;θD

))]}
,

where x ∼ Pdata means some sample x generated from the original dataset, whereas

z ∼ PG refers to sample generated from the generator G. We refer the interested reader

to [95] for an overview of the advantages and the pitfalls of GANs in finance. Given this

popularity and the existence of quantum neural networks (Chapter 8), it is thus natural to

explore the question of whether GANs can be extended to the quantum world, and whether

there is any advantage in doing so.

The main principles of Quantum Generative Adversarial Network (QGAN) – introduced

simultaneously by Lloyd and Weedbrook [192] and by Dallaire-Demers and Killoran [77] –

remain the same, relying on two actors, a generator and a discriminator, competing against

each other. In [192], the authors translated the classical problem in the language of density

matrices (described in Section 1.3.1): Given some data represented by a density matrix σ

(not necessarily describing a pure state) and a generator G generating some output density

matrix ρ, the discriminator is tasked with identifying the true data from the fake one. More

precisely, it makes a positive operator-valued measurement (Section 1.2.3) with outcomes T

(for True) or F (for False). The probability that the measurement yields a positive answer

given the true data is

P(T|σ) = Tr(Tσ),

Chapter 13 333

while the probability that it yields a positive answer given generated data is

P(T|G) = Tr(Tρ).

The adversarial game, similarly to the classical case, therefore reads

min
G

max
T

{
Tr(Tρ)− Tr(Tσ)

}
. (13.2.1)

Note that both the set of positive measurement operators T (with 1-norm less than one)

and the set of density matrices ρ are convex, ensuring that the optimisation problem (13.2.1)

admits at least one optimum. However, these two sets are infinite dimensional, making

the optimisation problem hard to solve. Following similar arguments, Dallaire-Demers

and Killoran [77] further proposed to model both the generator and the discriminator

as variational quantum circuits parameterised by some vector of parameters describing,

for example, the rotation angles of all the gates. A natural question then is whether

some optimal architecture of variational quantum circuit might exist. While there is no

clear answer at this stage – as far as we know – recent developments have improved our

understanding and the power of such circuits.

Starting from n qubits, a quantum generator G : C2n → C2n takes the form of a multi-layer

quantum neural network, for example of the following form:

G :=
1∏
l=L

Ul(θl). (13.2.2)

For each layer l ∈ {1, . . . , L}, the unitary gate Ul(θl) acts on all n qubits at the same time,

and depends on a vector of parameters (or hyperparameters) θl. In order to avoid (too

expensive) high-order qubit gates, entanglement takes the form of pairwise controlled

unitary gates, and we therefore assume that, for each l ∈ {1, . . . , L}, Ul is composed of one-

or two-qubit gates only. One possible (though not the only one) way to parameterise Ul is

with the following principles in mind:

334 Looking Ahead

• any one-qubit unitary gate can be decomposed into a sequence of three rotation

gates RZ, RX and RY, as proved in [223, Theorem 4.1];

• following [256], imprimitive two-qubit gates (i.e., two-qubit gates that map product

states to non-product states), together with one-qubit gates ensure quantum univer-

sality [47]. In particular the decomposition RX(θ)Q(ϕ) is universal [47, Corollary 9.2],

for θ, ϕ ∈ [0, 2π), where

Q(ϕ) :=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiϕ

 .

The general form of the L-layer neural network is therefore (13.2.2), where each layer

gate Ul(θl) takes the form

Ul(θl) =

{
n⊗
i=1

RX(θ
i
e)Q

1+(i mod n)(θiimp)

}
{(

n⊗
i=1

RZ(θ
i
Z,l)

)(
n⊗
i=1

RX(θ
i
X,l)

)(
n⊗
i=1

RY(θ
i
Y,l)

)}
,

where Qi means that qubit i is the control qubit and the gate acts on qubit (i+ 1). Note

that 1 + (i mod n) = 1 + i when i ∈ {1, . . . , n − 1} and is equal to 1 when i = n.

The total number of hyperparameters is therefore 5n per layer, thus 5nL in total. The

discriminator itself may or may not be of quantum nature (following a construction similar

to the generator), depending on the problem at hand (it is in [18] but not in [268] for

example), and the nature of the problem – in particular the potential need to encode/decode

data from quantum to classical (with a high cost) may influence this choice.

The finite-dimensional optimisation (13.2.1) is usually carried out via some gradient descent

method; the gradients themselves are computed via separate quantum circuits in [77], or

rather – more efficiently – using the parameter-shift rule, explained in Section 8.2.3 (see

Chapter 13 335

also [257]), which allows for an exact computation of the gradient from the original circuit.

QGANs are a very new and active research area, and promise to be one where NISQ-based

algorithms will be particularly fruitful. They are intimately linked with developments

of QNNs as a whole, and current advances in the field relate to the following, which we

encourage the reader to follow closely over the next few years:

• QGAN to generate probability distributions: we refer the interested reader to [18,

268, 314] for univariate distributions, mostly in the context of finance, and to [5, 312]

for multivariate distributions;

• Quantum Convolutional Neural Networks: In [160], the authors show how to handle

non-linearities in (quantum) deep neural networks; [69, 300] explain how reduce the

number of required gates (equivalently, the number of rotation parameters) in the

circuit, and [142] highlights the importance and sufficiency of two-qubit interactions,

more amenable to NISQ devices;

• Quantum Wasserstein GAN: In [55] – mimicking recent results in classical Wasser-

stein GANs [13, 121] – the authors introduced a Wasserstein semimetric between

quantum data, which they use to reduce the number of required quantum gates.

13.3 Bayesian Quantum Circuit
Parameterised quantum circuits can be used to construct a quantum state with desired

properties and to modify it in a controlled way. Measuring the final state is then equivalent

to drawing a sample from a probability distribution in a form of a bitstring. This is the key

concept behind the Quantum Circuit Born Machine (QCBM) we considered in Chapter 9.

The Bayesian Quantum Circuit (BQC) is another quantum generative machine learning

model that extends the capabilities of QCBM [88]. Unlike QCBM that operates only on data

qubits encoding the desired probability distribution, BQC has additional ancillary qubits

encoding the prior distribution. The BQC circuit is shown in Figure 13.5.

336 Looking Ahead

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

1

2

...

m

m+ 1

m+ 2

...

m+ n

M

M

M

M

M

M

M

M

...

...
U(γ1) U(γK). . .

U(β11) U(βl1)
. . . U(β12) U(βlm)

. . .

Figure 13.5: Schematic representation of BQC.

The first m quantum registers in the circuit are ancillary qubits. After applying K operator

blocks U(γi)i=1,...,K , to the initial state |0⟩⊗m, we construct the state |ψ⟩,

|ψ⟩ =
K∏
i=1

U(γi) |0⟩⊗m , (13.3.1)

and measuring it generates a sample from the prior distribution.

The next n quantum registers are data qubits. Quantum gates operating on them are

conditional on the states of the ancillary qubits. Conditionally applying l ×m operator

blocks to n data qubits, we obtain a state that is conditional on |ψ⟩. Measuring it will

generate a sample from the conditional distribution, which is exactly what is needed to

realise a Bayesian model. Bayesian modelling allows us to infer a posterior distribution over

the parameters θ of the model given some observed data D using Bayes’ theorem [57],

P(θ|D) =
P(D|θ)P(θ)

P(D)
=

P(D|θ)P(θ)∫
P(D|θ)P(θ)dθ

,

where P(D|θ) is the likelihood, P(D) is the marginal likelihood or evidence, and P(θ) is the

prior. We obtain P(θ) by repeatedly measuring the state |ψ⟩ given by (13.3.1), P(D|θ) by

Chapter 13 337

repeatedly measuring the final state after applying the conditional operators U(β), and P(D)

by repeatedly measuring the final state after applying the operators U(β) unconditionally.

In the case of BQC, the prior is parameterised by the parameters γ := (γ1, . . . , γK). The

posterior can be used to model new unseen data, D∗, using the posterior predictive [105]:

P(D∗|D) =

∫
P(D∗|θ)P(θ|D)dθ.

This integral averages predictions of all plausible models weighted by posterior probability

and is called the Bayesian model average.

The BQC can be trained by minimising the maximum mean discrepancy cost function

described in Chapter 9. In terms of expressive power, Du, Hsieh, Liu, and Tao [88] showed

that a better expressive power of BQC is obtained in comparison with MPQC from a

computational complexity perspective.

Bayesian networks can be used for financial asset price forecasting [21, 56], predicting

dynamics of limit order book market [199], predicting corporate bankruptcy [52], and to

model, analyse, and understand trading behaviour [282].

The Bayesian Quantum Circuit model extends the capabilities of parame-

terised quantum circuits trained as generative models (QCBM) through the

addition of ancillary quantum registers encoding the prior distribution. As

a result, it achieves greater expressive power than MPQC.

13.4 Quantum Semidefinite Programming
In Semidefinite Programming (SDP), one optimises a linear function subject to the con-

straint that an affine combination of symmetric matrices is positive semidefinite. Such a

constraint is non-linear and non-smooth, but convex, so semidefinite programs are convex

optimisation problems. Semidefinite programming unifies several standard problems (e.g.,

linear and quadratic programming) and finds many applications in engineering and com-

338 Looking Ahead

binatorial optimisation [292]. Similarly to finding a quantum counterpart to the classical

kernel method, we can specify a quantum version of the SDP.

13.4.1 Classical semidefinite programming
The SDP can be generally defined as the following optimisation problem:

max
X∈M+

N (R)
Tr(CX), subject to Tr(AjX) ≤ bj , for all j ∈ [[M]], (13.4.1)

where [[M]] := {1, . . . ,M},M+
n (R) denotes the set of positive semidefinite matrices of

sizeN×N . Here, Hermitian matrices (Aj)j=1,...,M andC inMN (R), and (bj)j∈[[M]] ∈ RM

are the inputs of the problem.

SDP can be applied to complex NP-hard optimisation problems [112], such as various

portfolio optimisation problems. For example, it is typically an unrealistic assumption that

the distribution of asset returns is known exactly. The necessary information may not be

complete and estimates are subject to estimation errors as well as modelling errors (e.g., an

assumption of stationarity of the distributions).

13.4.2 Maximum risk analysis
The classical maximum risk analysis problem, assuming there is uncertainty in the estimate

of the covariance matrix of asset returns, Σ, can be formulated as

max
Σ∈M+

N (R)
w⊤Σw, subject to ΣLij ≤ Σij ≤ ΣUij , for all i, j ∈ [[N]],

where w is the fixed vector of weights and Σ is the problem variable. For each i, j ∈ [[N]],

the matrices ΣLij and ΣUij are fixed constraints inM+
N (R). The task is to establish the

maximum possible portfolio risk for the known asset allocation, given uncertainty in

the estimate of covariance matrix of asset returns. The problem can be expressed as the

Chapter 13 339

following SDP [229]:

max
Σ∈M+

N (R)
Tr
(
w⊤Σw

)
,

subject to

 Tr(−EijΣ) ≤ −ΣLij ,
Tr(EijΣ) ≤ ΣUij ,

for all (i, j) ∈ [[N]]× [[N]],

where we denote (Eij)αβ := δiαδjβ . The maximum risk analysis problem can be expressed

in the same form with different risk measures such as VaR or Expected Shortfall.

13.4.3 Robust portfolio construction
The robust portfolio construction problem aims at finding an asset allocation method that

would achieve the minimum estimation error in the suggested asset allocation weights.

This problem has been addressed in [194] using Monte Carlo simulations to determine the

most robust asset allocation method with respect to small changes in the input covariance

matrix for the given portfolio.

In the most general case, it can be formulated as the Min-Max problem

min
w∈W

max
Σ∈S

w⊤Σw,

with

S :=
{
Σ ∈M+

N (R) : ΣLij ≤ Σij ≤ ΣUij , for all i, j ∈ [[N]]
}
,

W :=
{
w ∈ RN : 1⊤w = 1, µ⊤w ≥ Rmin

}
,

where w is the vector of weights, µ is the vector of expected asset returns, and Σ is the

covariance matrix of asset returns.

The following theorem (first proven by von Neumann [297] in 1928) establishes the equiva-

lence of the Min-Max and Max-Min optimisation problems [288]:

Theorem 11 (Minimax Theorem). Let X ⊂ Rn and Y ⊂ Rm be compact convex sets. If

340 Looking Ahead

the function f : X × Y → R is continuous and concave in x for fixed y and continuous and

convex in y for fixed x, then

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

Therefore, in general, the Min-Max robust portfolio construction problem (which is convex

in w and concave in Σ) is equivalent to the Max-Min problem and can be expressed for the

constraints above as an SDP in all variables [229].

13.4.4 Quantum semidefinite programming
The key idea behind Quantum Semidefinite Programming (QSDP) is based on the obser-

vation that a normalised positive semidefinite matrix can be naturally represented as a

quantum state. Operations on quantum states can sometimes be computationally cheaper

to perform on a quantum computer than classical matrix operations. This idea prompted

the development of quantum algorithms for SDPs [42].

Consider the SDP (13.4.1) and let ε > 0 be small. An algorithm is called an ε-approximate

quantum SDP oracle [290] if for all inputs g ∈ R and ζ ∈ (0, 1), it finds, with success

probability 1− ζ , a vector y ∈ RM+1 and a real number z such that for the density matrix

ρ =
exp

(
−
∑M

j=1 yjAj + y0C
)

Tr
(
exp

(
−
∑M

j=1 yjAj + y0C
)) , (13.4.2)

we have that zρ is an ε-feasible solution with objective value at least g − ε, that is Tr(zρAj) ≤ bj + ε, for all j ∈ [[M]],

Tr(zρC) ≥ g − ε,

or concludes that no such z and y exist even if we set ε = 0.

A general QSDP-solver for sparse matrices was implemented by Brandão and Svore [42]

using the Arora-Kale framework [14]. They observed that the density matrix ρ in (13.4.2)

Chapter 13 341

is in fact a log(N)-qubit Gibbs state and can be efficiently prepared as a quantum state on

a quantum computer.

The reader should already be familiar with the Gibbs state (Gibbs distribution) in the form

ρ =
e−βH

Tr(e−βH)
, (13.4.3)

where H is the problem Hamiltonian and Tr(exp(−βH)) is the partition function. The

Gibbs (Boltzmann) sampling and the Gibbs (Boltzmann) distribution were discussed in

Chapter 5 (in (5.4.2) and (5.4.3)). The form of the partition function in (13.4.3) should not

be confusing. Recall from (10.1.1), that since the Hamiltonian is a Hermitian operator, its

spectral decomposition yields the representation

H =
∑
i

Ei |ψi⟩ ⟨ψi| ,

which gives the following expression for the Gibbs state:

ρ =
e−βH

Z
=

1

Z

∑
i

e−βEi |ψi⟩ ⟨ψi| ,

where the partition function Z is given by

Z = Tr
(
e−βH

)
=
∑
i

e−βEi .

QSDP gives a square-root unconditional speedup over any classical method for solving

SDPs both in N and M [42].

Quantum Semidefinite Programming is yet another example where quan-

tum speedup can be achieved since operations on quantum states performed

on a quantum computer are less computationally expensive than the corre-

sponding matrix operations on a classical computer.

342 Looking Ahead

We would like to finish this chapter (and the book!) with a glance beyond the capabilities

of the NISQ computers. The last section presents several important algorithms which, one

day, will become the main building blocks of many quantum computing applications.

13.5 Beyond NISQ
In this section, we start with describing the workhorse of many important quantum

algorithms, the Quantum Fourier Transform (QFT), before moving to its flagship application,

the Quantum Phase Estimation (QPE), and then discussing the possibility of achieving

quantum speedup with the Quantum Monte Carlo (QMC) and the Quantum Linear Solver

(QLS) algorithms.

13.5.1 Quantum Fourier Transform
In the classical setting, the discrete Fourier transform maps a vector x := (x0, . . . , x2n−1) ∈
C2n to a vector y := (y0, . . . , y2n−1) ∈ C2n , the components of which read

yk =
1√
2n

2n−1∑
j=0

exp

(
2πijk

2n

)
xj , for each k = 0, . . . , 2n − 1.

Similarly, the quantum Fourier transform is the linear map

|k⟩ 7−→ 1√
2n

2n−1∑
j=0

exp

(
2πikj

2n

)
|j⟩ ,

and the operator

qF :=
1√
2n

2n−1∑
k,j=0

exp

(
2πikj

2n

)
|j⟩ ⟨k|

represents the Fourier transform matrix which is unitary as qFqF† = I . In an n-qubit

system with basis (|0⟩ , . . . , |2n − 1⟩), for a given state |j⟩, we use the binary representation

j := j1 · · · jn,

Chapter 13 343

with (j1, . . . , jn) ∈ {0, 1}n so that |j⟩ = |j1 · · · jn⟩ = |j1⟩⊗ . . .⊗ |jn⟩. Likewise, the nota-

tion 0.j1j2 . . . jn represents the binary fraction
∑n

i=1 2
−iji. Elementary algebra (see [223,

Section 5.1] for details) then yields

qF |j⟩ =
1√
2n

(
|0⟩+ e2πi 0.jn |1⟩

)
⊗
(
|0⟩+ e2πi 0.jn−1jn |1⟩

)
⊗ · · ·

· · · ⊗
(
|0⟩+ e2πi 0.j1...jn |1⟩

)
.

(13.5.1)

13.5.2 Quantum Phase Estimation
The goal of QPE is to estimate the unknown phase φ ∈ [0, 1) for a given unitary operator U
with an eigenvector |u⟩ and eigenvalue exp(2πiφ). Consider a register of sizem and define

b∗ := sup
j≤2mφ

{
j = 2m 0.j1 · · · jm

}
.

Thus with b∗ = b1 · · · bm, we obtain that 2−mb∗ = 0.b1 · · · bm is the best m-bit approxima-

tion of φ from below. The QPE procedure uses two registers, with the first containing m

qubits initially in the state |0⟩. Selecting m relies on the number of digits of accuracy for

the estimate of φ, and the probability with which we wish to obtain a successful phase

estimation procedure.

QPE allows us to implement a measurement for any Hermitian operator. Note that we

always measure individual qubits. If we want to measure a more complex observable,

we can use a QPE that implements the von Neumann’s measurement scheme [212]. The

routine prepares an eigenstate of the Hermitian operator in one register and stores the

corresponding eigenvalue in a second register.

Up to a SWAP transformation, the quantum phase circuit [223, Section 5.2] gives the output

|ψ⟩ = 1√
2m

(
|0⟩+ e2πi 0.φm |1⟩

)
⊗
(
|0⟩+ e2πi 0.φm−1φm |1⟩

)
⊗ · · ·

· · · ⊗
(
|0⟩+ e2πi 0.φ1...φm |1⟩

)
,

344 Looking Ahead

which is exactly equal to the QFT for the state |2mφ⟩ = |φ1φ2 . . . φm⟩ as in (13.5.1), and

therefore |ψ⟩ = qF |2mφ⟩. Since the QFT is a unitary transformation, we can inverse the

process to retrieve |2mφ⟩. Algorithm 10 below provides pseudocode for the QPE procedure,

and we refer the interested reader to [223, Chapter 5.2] for detailed explanations.

Algorithm 10: Quantum Phase Estimation
Input:

• Unitary matrix (gate) U with U |u⟩ = e2πiφ |u⟩;
• m ancilla qubits initialised at |0⟩.

1: Prepare the initial state with |0⟩⊗m being the m-qubit ancilla register and |u⟩
being the n-qubit eigenstate register.

2: Map to

1√
2m

2m−1∑
j=0

|j⟩ |u⟩

with Hadamard gates applied to the ancilla register.

3: Map to

1√
2m

2m−1∑
j=0

|j⟩ Uj |u⟩ = 1√
2m

2m−1∑
j=0

|j⟩ e2πijφ |u⟩

with Controlled Uj gates applied to the eigenstate register.

4: Compute

|φ̃⟩ |u⟩

using the inverse QFT, where φ̃ is an m-qubit approximation of φ.

5: Measure to deduce φ̃.

Result: Phase estimate φ̃.

13.5.3 Monte Carlo speedup
Leveraging on the speedup provided by the Quantum Phase Estimation, Montanaro [216]

devised a Monte Carlo scheme providing quantum speedup compared to the classical one.

Chapter 13 345

Classical Monte Carlo

Monte Carlo techniques represent a wide array of methods to simulate statistics of random

processes. We refer the interested reader to the excellent monograph [111] for a full

description and analysis. Consider a one-dimensional random variable X and a function

ϕ : R → [0, 1] such that both p := E[ϕ(X)] and σ2 := V[ϕ(X)] are well defined. By

the Central Limit Theorem, given an iid collection of random variables (X1, . . . , XN)

distributed as X , then
√
N

p̂N − p

σ

converges to a centered Gaussian with unit variance N (0, 1) as N tends to infinity, where

p̂N := 1
N

∑N
i=1Xi is the empirical mean. This implies that, for any ε > 0, we can estimate

P
(∣∣p̂N − p

∣∣ ≤ ε) = P

(
|N (0, 1)| ≤ ε

√
N

σ

)
,

so that, for any z > 0 and δ ∈ (0, 1), in order to get an estimate of the formP
(∣∣p̂N − p

∣∣ ≤ z) =
1− δ, we need N = O(1/ε2) samples.

QuantumMonte Carlo

Consider now an operator A of the form

A |0⟩⊗n =
∑

x∈{0,1}k
αx |ψx⟩ |x⟩ ,

for some k ≤ n, where each |ψx⟩ is a quantum state with n− k qubits and |x⟩ a quantum

state with k qubits, and αx ∈ C is some amplitude, the meaning of which will be made

clear below. We simply assume that {|ψx⟩}x∈{0,1}k forms an orthogonal family and are

in fact “garbage qubits”, i.e., qubits that are, for example, used as controlled to build the

solution vector |x⟩ from the data. Given the encoded data |x⟩, assume further the existence

of the operatorW :

W |x⟩ |0⟩ = |x⟩
(√

1− ϕ(x) |0⟩+
√
ϕ(x) |1⟩

)
.

346 Looking Ahead

This can be achieved for example by using the following lemma.

Lemma 9 (Conditional Rotation. Theorem 3.5 in [184]). Given a quantum state |ψa⟩,
encoding a ∈ [−1,−1] in q qubits, there exists a quantum circuit performing the unitary

mapping |ψa⟩ |0⟩ 7−→ |ψa⟩
(
a |0⟩+

√
1− a2 |1⟩

)
.

Consider now the operatorM:

M :=
(
In−k ⊗W

)(
A⊗ I

)
,

where In−k means the identity operator acting on n− k qubits, so that

|ψ⟩ :=M|0⟩⊗(n+1)

=
(
In−k ⊗W

) ∑
x∈{0,1}k

αx |ψx⟩ |x⟩

 |0⟩
=

∑
x∈{0,1}k

αx

(
In−k ⊗W

)
|ψx⟩ |x⟩ |0⟩

=
∑

x∈{0,1}k
αx |ψx⟩ |x⟩

(√
1− ϕ(x) |0⟩+

√
ϕ(x) |1⟩

)
=: |ΨB⟩ |0⟩+ |ΨG⟩ |1⟩ , (13.5.2)

where |ΨB⟩,
|ΨB⟩ :=

∑
x∈{0,1}k

αx

√
1− ϕ(x) |ψx⟩ |x⟩ ,

stands for the ‘bad’ state, and |ΨG⟩,

|ΨG⟩ :=
∑

x∈{0,1}k
αx

√
ϕ(x) |ψx⟩ |x⟩ , (13.5.3)

stands for the ‘good’ state.

Consider now the projector P := In |1⟩ ⟨1| and measure the probability of the last qubit

Chapter 13 347

of |ψ⟩ to be in state |1⟩, namely

⟨ψ| P†P |ψ⟩ = ⟨ψ| P |ψ⟩

=
(
⟨0| ⟨ΨB|+ ⟨1| ⟨ΨG|

)
P
(
|ΨB⟩ |0⟩+ |ΨG⟩ |1⟩

)
=
(
⟨0| ⟨ΨB|+ ⟨1| ⟨ΨG|

)(
|ΨB⟩ |1⟩ ⟨1|0⟩+ |ΨG⟩ |1⟩ ⟨1|1⟩

)
=
(
⟨0| ⟨ΨB|+ ⟨1| ⟨ΨG|

)
|ΨG⟩ |1⟩

= ⟨0| ⟨ΨB|ΨG⟩ |1⟩+ ⟨1| ⟨ΨG|ΨG⟩ |1⟩

= ⟨ΨB|ΨG⟩ ⟨0|1⟩+ ⟨ΨG|ΨG⟩ ⟨1|1⟩ = |ΨG|2.

Now, since the family {|ψx⟩}x is orthogonal, it is easy to see from (13.5.3) that

|ΨG|2 = ⟨ΨG|ΨG⟩

=

 ∑
x∈{0,1}k

α∗
x

√
ϕ(x) ⟨x| ⟨ψx|

 ∑
y∈{0,1}k

αy

√
ϕ(y) |ψy⟩ |y⟩

=

∑
x,y∈{0,1}k

α∗
xαy

√
ϕ(x)

√
ϕ(y) ⟨x| ⟨ψx|ψy⟩ |y⟩

=
∑

x∈{0,1}k
|αx|2ϕ(x),

which corresponds precisely to the expectation E[ϕ(X)] where the random variable X

is discretised over the set with labels {0, 1}k, and where each |αx|2 corresponds to the

discrete probability of X being in x.

In order to retrieve the expectation we are after, we therefore simply need to run the circuit

corresponding toM, measure the output in the computational basis, and determine the

probability of observing the state |1⟩.

QMC speedup

The actual speedup of QMC resides in a subtle application of the Amplitude Estimation

theorem and the Powering Lemma, which we present now.

348 Looking Ahead

Theorem 12 (Amplitude Estimation. Theorem 12 in [43]). Assume that we have access to

a quantum unitary operator U such that U |0⟩ =
√
1− p |ΨB⟩ |0⟩+

√
p |ΨG⟩ |1⟩, for some

states |ΨB⟩ , |ΨG⟩. Then, for any N ∈ N, the amplitude estimation algorithms outputs the

estimate p̂ such that ∣∣p̂− p
∣∣ ≤ 2π

√
p(1− p)

N
+
π2

N2

with probability at least 8/π2. To achieve this takes exactly N iterations.

Lemma 10 (Powering Lemma. Lemma 6.1 in [150]). Let p be a quantity to estimate and U
an algorithm that output p̂ such that

∣∣p̂− p
∣∣ ≤ ε except with probability smaller than 1/2.

Then, for any δ ∈ (0, 1), it suffices to repeat U about O(log(1/δ)) times and to take the

median to obtain
∣∣p̂− p

∣∣ ≤ ε with probability at least 1− δ.

In light of (13.5.2), the Amplitude Estimation theorem, combined with the Powering Lemma,

shows that in order to obtain an estimate of the empirical mean

⟨ψ| P†P |ψ⟩ = |ΨG|2

with probability at least 1− δ (for any δ ∈ (0, 1)), i.e.,

P
(∣∣p̂− p

∣∣ ≤ ε) ≥ 1− δ,

it suffices to apply the operatorsM and P about O(N log(1/δ)) times, with

ε = 2π

√
p(1− p)

N
,

so that, for any fixed δ ∈ (0, 1), the computational cost is of order O(1/ε), achieving

quadratic speedup compared to classical Monte Carlo.

Chapter 13 349

13.5.4 Quantum Linear Solver
Harrow, Hassidim and Lloyd [126] devised a quantum algorithm to solve linear systems,

beating classical computation times. Linear systems are ubiquitous in applications, and

many aspects of quantitative finance rely on being able to solve such (low- or high-

dimensional) systems. We highlight below two key examples of fundamental importance

in finance: solving Partial Differential Equations (PDEs) and portfolio optimisation.

Theoretical aspects

The problem can be stated as follows: given a matrix A ∈MN (C) and a vector b ∈ CN ,

find the vector x ∈ CN such that

Ax = b. (13.5.4)

In order for the algorithm to work, the matrix A needs to be Hermitian. If A is not so, we

can nevertheless consider the augmented system0N,N A

A† 0N,N

0N,1

x

 =

 b

0N,1

 ,

similarly to the Hamiltonian embedding in Section 7.6. We assume from now now that A

is indeed Hermitian. The first step of the algorithm is to assume that the vector b can be

encoded into a quantum state |b⟩ and to then rewrite (13.5.4) as

A |x⟩ = |b⟩ , (13.5.5)

where we now look for the solution, not as an element of CN , but as a quantum state.

Since A is Hermitian, it admits the spectral decomposition (Section 1.1.5)

A =
N−1∑
j=0

λj |ϕj⟩ ⟨ϕj | ,

where λ0, . . . , λN−1 are its (not necessarily distinct) strictly positive eigenvalues with

corresponding eigenstates |ϕ0⟩ , . . . , |ϕN−1⟩, and we immediately obtain that its inverse

350 Looking Ahead

reads

A−1 =
N−1∑
j=0

1

λj
|ϕj⟩ ⟨ϕj | .

We can also decompose |b⟩ into the (|ϕj⟩)j=0,...,N−1 basis as

|b⟩ =
N−1∑
j=0

bi |ϕj⟩ ,

and therefore the solution to (13.5.5) reads

|x⟩ = A−1 |b⟩ =
N−1∑
j=0

bj
λj
|ϕj⟩ .

The goal of the QLS algorithm is thus to construct such a state, and we summarise it as

Algorithm 11 below. Note that, since A is Hermitian then, for any t ∈ R, U := exp(iAt) is

unitary with decomposition

U =
N−1∑
j=0

eiλjt |ϕj⟩ ⟨ϕj | .

In total, the QLS algorithm requires nl + nb + 1 qubits, where nl is the number of qubits

used to encode the nl-bit binary representation of (λj)j=0,...,N−1 and nb is the number of

qubits used to convert b into |b⟩ (and also the number of qubits to write the solution state).

In terms of computation time, Harrow, Hassidim, and Lloyd showed that the stated runtime

is of order poly(log(N), κ) assuming that A is sparse with condition number κ, which

yields an exponential speedup compared to the classical O(N
√
κ) runtime.

Chapter 13 351

Algorithm 11: HHL Quantum Linear Solver

Input: Hermitian matrix A and nl + nb + 1 qubits initialised at |0⟩⊗nl |0⟩⊗nb |0⟩.
1: Load the data b into |b⟩ using nb qubits (with N = 2nb).

2: Apply QPE with U := exp(iAt), after which the quantum state of the register is

N−1∑
j=0

bj |λj⟩nl
|ϕj⟩nb

|0⟩ .

3: Rotate the ancillary qubit |0⟩ controlled by |λj⟩nl
to obtain

N−1∑
j=0

bj |λj⟩nl
|ϕj⟩nb

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
,

for some normalising constant C (with |C| < minj λj).

4: Apply the inverse QPE to obtain

N−1∑
j=0

bj |0⟩nl
|ϕj⟩nb

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
.

5: Measure the ancillary qubit in the computational basis. If the outcome is |1⟩, the

register is in the post-measurement state

C

N−1∑
j=0

bi
λi
|0⟩nl

|ϕj⟩nb
,

which up to a normalisation factor corresponds to the solution.

Result: Solution |x⟩:

|x⟩ = A−1 |b⟩ =
N−1∑
j=0

bj
λj
|ϕj⟩ .

352 Looking Ahead

Solving PDEs

One important example is finite-difference schemes for partial differential equations; stan-

dard tools can be consulted in [269] for example, and specific applications to finance can

be found in [89].

Consider for example the Black-Scholes parabolic PDE:

∂tVt + rS∂SVt +
σ2

2
S2∂2SSVt = rVt,

with boundary condition VT (S) (for instance for a European call option with maturity

T > 0 and strike K > 0, we have VT (S) = (ST −K)+ := max (ST −K, 0)). Before

trying to solve it, it is standard to simplify it. Let τ := T − t and define gτ (S) := Vt(S),

then ∂tVt(S) = −∂τgτ (S) and hence

−∂τgτ + rS∂Sgτ +
σ2

2
S2∂2SSgτ = rgτ ,

with boundary condition g0(S). Introduce now fτ (S) := erτgτ (S), so that

−∂τfτ + rS∂Sfτ +
σ2

2
S2∂2SSfτ = 0,

with boundary condition f0(S). The transformation x := log(S) and the map ψτ (x) :=

fτ (S) yield, after simplifications,

−∂τψτ +
(
r − σ2

2

)
∂xψτ +

σ2

2
∂2xxψτ = 0, (13.5.6)

with boundary condition ψ0(x). Finally, setting ϕτ via ψτ (x) =: eαx+βτϕτ (x) with

α := − 1

σ2

(
r − σ2

2

)
and β := − 1

2σ2

(
r − σ2

2

)2

,

Chapter 13 353

implies that equation (13.5.6) becomes the heat equation

∂τϕτ (x) =
σ2

2
∂2xxϕτ (x), (13.5.7)

for all x ∈ R with (Dirichlet) boundary condition ϕ0(x) = e−αxψ0(x).

We now discretise this PDE using an explicit scheme, where the time derivative ∂τ is eval-

uated by forward difference while the space derivative ∂xx is approximated with a central

difference scheme (implicit schemes or more general θ-schemes follow a similar logic). We

consider (13.5.7) for τ > 0 and x in some interval [xL, xU] ∈ R, with (Dirichlet) boundary

conditions ϕ(0, x) = f(x) (payoff at maturity), ϕ(τ, xL) = fL(τ), and ϕ(τ, xU) = fU (τ).

We start by constructing the time-space grid for the approximation scheme. For two

integersm andn, we consider a uniform grid, i.e., we split the space axis intom intervals and

the time axis into n intervals, and we denote V := {0, 1, . . . , n} andW := {0, 1, . . . ,m}.
This means that each point on the grid has coordinates (iδT , xL + jδx) for i ∈ V and

j ∈ W , where

δT :=
T

n
and δx :=

xU − xL
m

.

At each node, we let ϕi,j := ϕ(iδT , xL + jδx) denote the value of the function u. Note in

particular that the boundary conditions imply

ϕ0,j = f(xL + jδx), ϕi,0 = fL(iδT), ϕi,m = fU (iδT).

More precisely we consider the following approximations

∂τϕ(τ, x) =
ϕ(τ + δT , x)− ϕ(τ, x)

δT
+O (δT) ,

∂xxϕ(τ, x) =
ϕ(τ, x+ δx)− 2ϕ(τ, x) + ϕ(τ, x− δx)

δ2x
+O

(
δ2x
)
.

Ignoring the terms in δT and δ2x, the heat equation at the node (iδT , xL + jδx) becomes

ϕi+1,j − ϕi,j
δT

+O (δT) =
σ2

2

ϕi,j+1 − 2ϕi,j + ϕi,j−1

δ2x
+O

(
δ2x
)
, (13.5.8)

354 Looking Ahead

which we can rewrite

ϕi+1,j =
δT
δ2x

σ2

2
ϕi,j+1 +

(
1− δT

δ2x
σ2
)
ϕi,j +

δT
δ2x

σ2

2
ϕi,j−1,

for all i = 0, . . . , n − 1, j = 1, . . . ,m − 1. To rewrite this in matrix form, introduce for

each i = 0, . . . , n, ϕi ∈ Rm−1, Bi ∈ Rm−1 and the matrix A ∈Mm−1(R) by

ϕi := (ϕi,1, . . . , ϕi,m−1)
⊤ ,

Bi := (ϕi,0, 0, . . . , 0, ϕi,m)
⊤ ,

A := Tm−1

(
1− ασ2, ασ

2

2
,
ασ2

2

)
,

where

α :=
δT
δ2x

and where Tm−1(·) denotes the tridiagonal matrix of dimension (m− 1)× (m− 1).

The recursion (13.5.8) thus becomes

ϕi+1 = Aϕi +
ασ2

2
Bi, for each i = 0, . . . , n− 1, (13.5.9)

with the time boundary condition

ϕ0 = (ϕ0,1, . . . , ϕ0,m−1)
⊤ = (f(xL + δx), . . . , f(xL + (m− 1)δx))

⊤.

Leaving the boundary termBi aside, the recursion (13.5.9) thus is exactly of the form (13.5.4),

and can therefore be tackled using the HHL algorithm.

This is the obvious first step to investigate the use of HHL-type algorithms in quantitative

finance, and further developments have already been proposed in [104, 108, 188, 310], with

or without finance applications in mind.

Chapter 13 355

Application to portfolio optimisation

The second immediate application of QLS in finance is for portfolio optimisation. Indeed, the

standard Markowitz-type problem of the form (3.3.1) in Section 3.3 is readily formulated

(at least for weights in {0, 1}) as a linear problem, the constraints only increasing the

dimension as Lagrange multipliers. We shall not dive into the details here as this is a rather

novel development with huge potential but limited results so far, and instead refer the

reader to [187, 306] for promising implementations and details.

Summary
In this chapter, we introduced several new promising quantum algorithms. First, we learned

about quantum kernels, which can replace classical kernels in hybrid quantum-classical

protocols.

Next, we introduced the Bayesian quantum circuit model that expands the concept of a

Bayesian neural network to parameterised quantum circuits. BQC is a promising generative

model with larger expressive power than QCBM/MPQC (covered in Chapters 9 and 12).

Then we looked at quantum SDP and its potential to outperform classical SDP. This is a

topic of active research.

Finally, we covered several important quantum algorithms that rely on the existence of a

quantum computing hardware with characteristics that exceed the capabilities of currently

available NISQ computers. However, the very presence of these algorithms and their

potential to achieve quadratic or even exponential speedup provides strong motivation for

the rapid development of quantum computers.

This chapter completes the book. Looking ahead, we see a bright future for quantum

computing. In the update to their quantum computing development roadmap [145], IBM

outlined an exciting vision with the goal to build quantum-centric supercomputers. The

latter will incorporate quantum processors, classical processors, quantum communication

networks, and classical networks. The immediate deliverables are expected to be the

433-qubit Osprey processor (expected to be released in 2022) and the 1,121-qubit Condor

356 Looking Ahead

processor (expected to be released in 2023). The next step will be to develop ways to link

processors together into a modular system capable of scaling without physical limitations.

The modular, multi-chip scaling technology is also envisaged by Rigetti. Rigetti anticipates

the launch of their next generation single-chip 84-qubit quantum computer in 2023 and

336-qubit multi-chip processor later in 2023. The 336-qubit multi-chip processor is expected

to combine the anticipated improvements of the 84-qubit processor with the modular, multi-

chip scaling technology of Rigetti’s Aspen-M machine. These machines are expected to

deliver increased performance across the key dimensions of speed, scale, and fidelity [246].

We also expect to see significant progress in the trapped ion space. IonQ announced several

major breakthroughs that may have a major impact on the way quantum algorithms are

designed and run on trapped ion quantum computing hardware. This includes, for example,

a new family of n-qubit gates, such as the n-qubit Toffoli gate, which flips a select qubit if

and only if all the other qubits are in a particular state. Unlike standard two-qubit quantum

computing gates, the n-qubit Toffoli gate acts on many qubits at once, leading to more

efficient operations [146].

Quantum annealing is going from strength to strength. In a recent white paper [39], D-

Wave introduced the new Zephyr graph with better connectivity than its predecessors,

Chimera and Pegasus. Plans are in place for a 7,000-qubit chip based on Zephyr, scheduled

to be available in 2023-2024 [93]. Early benchmarks with smaller-scale prototype systems

consisting of 500+ qubits have demonstrated more compact embedding, lower error rates,

improved solution quality, and an increased probability of finding optimal solutions [210].

But, ultimately, it is up to the users to try and test various hardware and software solutions

on a variety of use cases. We encourage our readers to experiment and apply the methods of

quantum computing to their own spheres of interest and discover new quantum algorithms

and applications. This is an exciting journey and a great opportunity to participate in the

collective effort of achieving quantum advantage for the benefits of wider society.

Bibliography

[1] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli and S. Woerner. The power of

quantum neural networks. Nature Computational Science, 1, 2021.

[2] D.M. Abrams, N. Didier, B.R. Johnson, M.P. da Silva and C.A. Ryan. Implementation

of the XY interaction family with calibration of a single pulse. Nature Electronics, 3,

2020.

[3] D.H. Ackley, G.E. Hinton and T.J. Sejnowski. A learning algorithm for Boltzmann

machines. Cognitive Science, 9(1), 1985.

[4] S. Adachi and M. Henderson. Application of quantum annealing to training of deep

neural networks. arXiv:1510.06356, 2015.

[5] G. Agliardi and E. Prati. Optimal tuning of quantum generative adversarial networks

for multivariate distribution loading. Quantum Reports, 4(1), 2022.

[6] A. Agresti. Categorical Data Analysis. Wiley, 3rd Edition, 2013.

[7] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev. Adiabatic

quantum computation is equivalent to standard quantum computation. SIAM Review,

50(4), 2008.

[8] D. Aharonov and L. Zhou. Hamiltonian sparsification and gap-simulations.

arXiv:1804.11084, 2018.

https://arxiv.org/abs/1510.06356
https://arxiv.org/abs/1804.11084

358 Bibliography

[9] O. Akbilgic, H. Bozdogan and M.E. Balaban. Istanbul Stock Exchange Dataset. UCI

Machine Learning Repository. http://archive.ics.uci.edu/ml. UC Irvine, School

of Information and Computer Science, 2013.

[10] O. Akbilgic, H. Bozdogan and M.E. Balaban. A novel Hybrid RBF Neural Networks

model as a forecaster. Statistics and Computing, 24(3), 2013.

[11] M. Amin and M. Steininger. Adiabatic quantum computation with superconducting

qubits. US Patent US7135701B2, 2006.

[12] K.P. Anagnostopoulos and G. Mamanis. A portfolio optimization model with three

objectives and discrete variables. Computers & Operations Research, 37(7), 2010.

[13] M. Arjovsky, S. Chintala and L. Bottou. Wasserstein generative adversarial networks.

International conference on machine learning, 2017.

[14] S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs.

Journal of the ACM, 63(2), 2016.

[15] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca and P.V. Srinivasan.

On the robustness of bucket brigade quantum RAM. New Journal of Physics, 17(12),

2015.

[16] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo,

F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W.

Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R.

Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T.

Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly,

P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,

D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M.

Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov,

J.C. Platt, C. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V.

Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J.

Yao, P. Yeh, A. Zalcman, H. Neven and J.M. Martinis. Quantum supremacy using a

http://archive.ics.uci.edu/ml

Bibliography 359

programmable superconducting processor. Nature, 574, 2019.

[17] S.A. Assefa, D. Dervovic, M. Mahfouz, R.E. Tillman, P. Reddy and M. Veloso. Gener-

ating synthetic data in finance: opportunities, challenges and pitfalls. Proceedings of

the First ACM International Conference on AI in Finance, 2020.

[18] A. Assouel, A. Jacquier and A. Kondratyev. A quantum generative adversarial network

for distributions. Quantum Machine Intelligence, 4(2), 2022.

[19] J.E. Avron and A. Elgart. Adiabatic theorem without a gap condition. Communications

In Mathematical Physics, 203(445), 1999.

[20] J.E. Avron, R. Seiler and L.G. Yaffe. Adiabatic theorems and applications to the

quantum Hall effect. Communications In Mathematical Physics, 110(1), 1987.

[21] A. Back and W. Keith. Bayesian Neural Networks for Financial Asset Forecasting.

Degree Project in Mathematics, KTH Royal Institute of Technology, School of Engi-

neering Sciences, 2019.

[22] P. Baldi and R. Vershynin The capacity of feedforward neural networks. Neural

networks, 116, 2019.

[23] V. Bapst, L. Foini, F. Krzakala, G. Semerjian and F. Zamponi. The quantum adia-

batic algorithm applied to random optimization problems: the quantum spin glass

perspective. Physics Reports, 523(127), 2013.

[24] F. Barahona. On the computational complexity of Ising spin glass models. Journal of

Physics A, 15(10), 1982.

[25] B. Barak, A. Moitra, R. O’Donnell, P. Raghavendra, O. Regev, D. Steurer, L. Trevisan,

A. Vijayaraghavan, D. Witmer and J. Wright. Beating the random assignment on

constraint satisfaction problems of bounded degree. Approximation, Randomization,

and Combinatorial Optimization, Algorithms and Techniques (APPROX/RANDOM

2015), Leibniz International Proceedings in Informatics, 40, 2015.

[26] P. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli and S. Woerner. Improving

360 Bibliography

Variational Quantum Optimization using CVaR. Quantum, 4, 2020.

[27] A.G. Baydin, B.A. Pearlmutter, A.A. Radul and J.M. Siskind. Automatic differentiation

in machine learning: a survey. Journal of Machine Learning Research, 18, 2018.

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam and A.

Perdomo-Ortiz. A generative modeling approach for benchmarking and training

shallow quantum circuits. Quantum Information, 5(45), 2019.

[29] M. Benedetti, E. Lloyd, S. Sack and M. Fiorentini. Parameterized quantum circuits as

machine learning models. Quantum Science and Technology, 4(4), 2019.

[30] M. Benedetti, B. Coyle, M. Fiorentini, M. Lubasch and M. Rosenkranz. Variational

Inference with a Quantum Computer. Physical Review Applied, 16(044057), 2021.

[31] J. Berkson. Application of the Logistic Function to Bio-Assay. Journal of the American

Statistical Association, 39(227), 1944.

[32] C. Bernhardt. Quantum Computing for Everyone. MIT Press, 2019.

[33] M.V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of

the Royal Society of London A, 392(45), 1964.

[34] D. Berry, G. Ahokas, R. Cleve and B.C. Barry. Efficient quantum algorithms for

simulating sparse Hamiltonians. Communications in Mathematical Physics, 270(2),

2007.

[35] J.D. Biamonte and P.J. Love. Realizable Hamiltonians for universal adiabatic quantum

computers. Physical Review A, 78(1), 2008.

[36] A. Billionnet and B. Jaumard. A decomposition method for minimizing quadratic

pseudo-Boolean functions. Operations Research Letters, 8(3), 1989.

[37] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[38] S. Boixo, V.N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dykman, V.S. Denchev, M.H.

Amin, A.Y. Smirnov, M. Mohseni and H. Neven. Computational multiqubit tunnelling

in programmable quantum annealers. Nature Communications, 7(10327), 2016.

Bibliography 361

[39] K. Boothby, A.D. King and J. Raymond. Zephyr Topology of D-Wave Quantum

Processors. D-Wave Technical Report, 2021.

[40] V. Bornemann. Homogenization in Time of Singular Perturbed Mechanical Systems.

Lecture Notes in Mathematics, 1687, Springer, 1998.

[41] M. Born and V. Fock. Beweis des Adiabatensatzes. Zeitschrift für Physik, 51(3), 1928.

[42] F.G.S.L. Brandão and K.M. Svore. Quantum speed-ups for semidefinite programming.

58th Annual Symposium on Foundations of Computer Science, IEEE, 2017.

[43] G. Brassard, P. Hoyer, M. Mosca and A. Tapp. Quantum amplitude amplification and

estimation. Contemporary Mathematics, 305, 2002.

[44] S. Bravyi, A. Kliesch, R. Koenig and E. Tang. Obstacles to Variational Quantum

Optimization from Symmetry Protection. Physical Review Letters, 125(260505), 2020.

[45] S. Bravyi, D.P. DiVincenzo, R.I. Oliveira and B.M. Terhal. The complexity of stoquastic

local Hamiltonian problems. Quantum Information & Computation, 8(5), 2008.

[46] C.D. Bruzewicz, J. Chiaverini, R. McConnell and J.M. Sage. Trapped-ion quantum

computing: progress and challenges. Applied Physics Reviews, 6(2), 2019.

[47] J.-L. Brylinski and R. Brylinski. Universal quantum gates. Mathematics of Quantum

Computation. Chapman and Hall/CRC, 2002.

[48] H. Bühler, B. Horvath, T. Lyons, I. Perez Arribaz and B. Wood. A data-driven market

simulator of financial time series for small data environments. arXiv:2006.14498,

2020.

[49] H. Bühler, B. Horvath, T. Lyons, I. Perez Arribaz and B. Wood. Generating financial

markets with signatures. Risk, 34(6), 2021.

[50] H. Buhrman, R. Cleve, J. Watrous and R. de Wolf. Quantum fingerprinting. Physical

Review Letters, 87(167902), 2001.

[51] E. Campbell, A. Khurana and A. Montanaro. Applying quantum algorithms to con-

straint satisfaction problems. Quantum, 3, 2019.

https://arxiv.org/abs/2006.14498

362 Bibliography

[52] Y. Cao, X. Liu, J. Zhai and S. Hua. A two-stage Bayesian network model for corporate

bankruptcy prediction. International Journal of Finance & Economics, 27(1), 2022.

[53] M.A. Carreira-Perpiñán and G.E. Hinton. On contrastive divergence learning. AIS-

TATS, 2005.

[54] M. Cerezo, A. Sone, T. Volkoff, L. Cincio and P.J. Coles. Cost function dependent

barren plateaus in shallow parametrized quantum circuits. Nature Communications,

12, 2021.

[55] S. Chakrabarti, H. Yiming, T. Li, S. Feizi and X. Wu, Xiaodi. Quantum Wasserstein

generative adversarial networks. Advances in Neural Information Processing Systems,

32, 2019.

[56] R. Chandra and Y. He. Bayesian neural networks for stock price forecasting before

and during COVID-19 pandemic. PLoS ONE, 16(7), 2021.

[57] D.T. Chang. Bayesian Neural Networks: Essentials. arXiv:2106.13594, 2021.

[58] S.Y.-C. Chen, T.-C. Wei, C. Zhang, H. Yu and S. Yoo. Quantum Convolutional Neural

Networks for High Energy Physics Data Analysis. Physical Review Research, 4(1),

2022.

[59] S.Y.-C. Chen, S. Yoo and Y.-L.L. Fang. Quantum Long Short-Term Memory. IEEE

International Conference on Acoustics, Speech and Signal Processing, 2022.

[60] S. Cheng, J. Chen and L. Wang. Information perspective to probabilistic modeling:

Boltzmann machines versus Born machines. Entropy, 20(583), 2018.

[61] A.M. Childs, E. Farhi and J. Preskill. Robustness of adiabatic quantum computation.

Physical Review A, 65, 2001.

[62] K. Cho, A. Ilin and T. Raiko. Improved learning of Gaussian-Bernoulli restricted

Boltzmann machines. Proceedings of the 20th International Conference on Artificial

Neural Networks, 2011.

[63] V. Choi. Minor-embedding in adiabatic quantum computation: I. The parameter

https://arxiv.org/abs/2106.13594

Bibliography 363

setting problem. Quantum Information Processing, 7(5), 2008.

[64] V. Choi. Minor-embedding in adiabatic quantum computation: II. Minor-universal

graph design. Quantum Information Processing, 10(3), 2011.

[65] C. Ciliberto, M. Herbster, A.D. Ialongo, M. Pontil, A. Rocchetto, S. Severini and L.

Wossnig. Quantum machine learning: a classical perspective. Proceedings of the Royal

Society A, 474(2209), 2018.

[66] L. Cincio, Y. Subaşi, A.T. Sornborger and P.J. Coles. Learning the quantum algorithm

for state overlap. New Journal of Physics, 20(11), 2018.

[67] J.I. Cirac, R. Blatt, A.S. Parkins and P. Zoller. Preparation of Fock states by observation

of quantum jumps in an ion trap. Physical Review Letters, 70(6-8), 1993.

[68] J.I. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions. Physical

Review Letters, 74(20), 1995.

[69] I. Cong, S. Choi and M.D. Lukin. Quantum convolutional neural networks. Nature

Physics, 15(12), 2019.

[70] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3), 1995.

[71] L. Coslovich, R. Pesenti and W. Ukovich. Large-scale set partitioning problems:

Some real-world instances hide a beneficial structure. Technological and Economic

Development of Economy, 12(1), 2006.

[72] B. Coyle, M. Henderson, J. Chan Jin Le, N. Kumar, M. Paini and E. Kashefi. Quantum

versus classical generative modelling in Finance. Quantum Science and Technology,

6(2), 2021.

[73] B. Coyle, D. Mills, V. Danos and E. Kashefi. The Born supremacy: Quantum advantage

and training of an Ising Born machine. Quantum Information, 6(1), 2020.

[74] A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone

and P. Mataloni. Integrated photonic quantum gates for polarization qubits. Nature

Communications, 1570, 2011.

364 Bibliography

[75] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathematics

of Control, Signals and Systems, 2, 1989.

[76] E.D. Dahl. Programming with D-Wave: map coloring problem. D-Wave White Paper,

2013.

[77] . P.-L. Dallaire-Demers and N. Killoran. Quantum generative adversarial networks.

Physical Review A, 98(1), 2018.

[78] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management Science,

6(1), 1959.

[79] S. Darolles and C. Gouriéroux. Conditionally Fitted Sharpe Performance with an

Application to Hedge Fund Rating. Journal of Banking & Finance, 34(3), 2010.

[80] A. Dawar. Quantum Computing. https://www.cl.cam.ac.uk/teaching/1819/Quant-

Comp/notes18.pdf

[81] B.S. Dees, L. Stanković, A.G. Constantinides and D.P. Mandic. Portfolio Cuts: A Graph-

Theoretic Framework to Diversification. International Conference on Acoustics,

Speech and Signal Processing, 2020.

[82] V. DeMiguel, L. Garlappi and R. Uppal. Optimal Versus Naive Diversification: How

Inefficient is the 1/N Portfolio Strategy? The Review of Financial Studies, 22(5), 2009.

[83] V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis

and H. Neven. What is the computational value of finite-range tunneling? Physical

Review X, 6(3), 2016.

[84] D.-L. Deng, X. Li and S.D. Sarma. Machine Learning Topological States. Physical

Review B, 96(195145), 2017.

[85] D.-L. Deng, X. Li and S.D. Sarma. Quantum Entanglement in Neural Network States.

Physical Review X, 7(021021), 2017.

[86] P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, 1930.

[87] D.P. DiVincenzo. The physical implementation of quantum computation. Fortschritte

https://www.cl.cam.ac.uk/teaching/1819/QuantComp/notes18.pdf
https://www.cl.cam.ac.uk/teaching/1819/QuantComp/notes18.pdf

Bibliography 365

der Physik, 48(9–11), 2000.

[88] Y. Du, M.-H. Hsieh, T. Liu and D. Tao. Expressive power of parameterized quantum

circuits. Physical Review Research, 2(033125), 2020.

[89] D.J. Duffy. Finite Difference methods in financial engineering: a Partial Differential

Equation approach. John Wiley & Sons, 2013.

[90] D-Wave Systems. Practical quantum computing. D-Wave Technology Overview,

2020.

[91] D-Wave Systems. D-Wave QPU Architecture: Topologies. docs.dwavesys.com/docs

/latest/c_gs_4.html, 2021.

[92] D-Wave Systems. Advantage Performance Update. www.dwavesys.com/solutions

-and-products/systems, 2021.

[93] D-Wave Systems. Ahead of the Game: D-Wave Delivers Prototype of Next-Generation

Advantage2 Annealing Quantum Computer. www.dwavesys.com/company/newsroo

m/press-release, 2022.

[94] G.K. Dziugaite and D.M. Roy. Computing nonvacuous generalization bounds for

deep (stochastic) neural networks with many more parameters than training data.

arXiv:1703.11008, 2017.

[95] F. Eckerli and J. Osterrieder. Generative Adversarial Networks in finance: an overview.

arXiv:2106.06364, 2021.

[96] E. Farhi, J. Goldstone and S. Gutmann. A Quantum approximate optimisation algo-

rithm. arXiv:1411.4028, 2014.

[97] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda. A quan-

tum adiabatic evolution algorithm applied to random instances of an NP-Complete

problem. Science, 292(5516), 2001.

[98] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser. Quantum computation by adiabatic

evolution. arXiv:0001106, 2000.

docs.dwavesys.com/docs/latest/c_gs_4.html
docs.dwavesys.com/docs/latest/c_gs_4.html
www.dwavesys.com/solutions-and-products/systems
www.dwavesys.com/solutions-and-products/systems
www.dwavesys.com/company/newsroom/press-release
www.dwavesys.com/company/newsroom/press-release
https://arxiv.org/abs/1703.11008
arxiv.org/abs/2106.06364
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/quant-ph/0001106

366 Bibliography

[99] E. Farhi and A.W. Harrow. Quantum Supremacy through the Quantum Approximate

Optimization Algorithm. arXiv:1602.07674, 2016.

[100] E. Farhi and H. Neven. Classification with quantum neural networks on near-term

processors. arXiv:1802.06002, 2018.

[101] R. Feynman, R. Leighton and M. Sands. The Schrödinger equation in a classical

context: a seminar on superconductivity. The Feynman Lectures on Physics, The

Definitive Edition, 2006.

[102] A. Fischer and C. Igel. An introduction to restricted Boltzmann machines. Progress

in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture

Notes in Computer Science, 7441, Springer, 2012.

[103] A. Fischer and C. Igel. Training restricted Boltzmann machines: an introduction.

Pattern Recognition, 47(1), 2014.

[104] F. Fontanela, A. Jacquier and M. Oumgari. A quantum algorithm for linear PDEs

arising in finance. SIAM Journal on Financial Mathematics, 12(4), 2021.

[105] V. Fortuin. Priors in Bayesian deep learning: a review. International Statistical Review,

2022.

[106] M. Frank. Foundations of generalized reversible computing. International Conference

on Reversible Computation, 2017.

[107] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1), 1997.

[108] P. García-Molina, J. Rodríguez-Mediavilla and J.J. García-Ripoll. Solving partial

differential equations in quantum computers. arXiv:2104.02668, 2021.

[109] A. Gilyén, S. Lloyd and E. Tang. Quantum-inspired low-rank stochastic regression

with logarithmic dependence on the dimension. arXiv:1811.04909, 2018.

[110] V. Giovannetti, S. Lloyd and L. Maccone. Quantum random access memory. Physical

Review Letters, 100(16), 2008.

https://arxiv.org/abs/1602.07674
https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/2104.02668
https://arxiv.org/abs/1811.04909

Bibliography 367

[111] P. Glasserman. Monte Carlo Methods in Financial Engineering. Stochastic Modelling

and Applied Probability, 53, Springer, 2003.

[112] M.X. Goemans. Semidefinite programming in combinatorial optimization. Mathe-

matical Programming, 79, 1997.

[113] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. MIT Press, 2016.

[114] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville and Y. Bengio. Generative Adversarial Nets. NIPS Proceedings, 2014.

[115] H. Gouk. Regularisation of neural networks by enforcing Lipschitz continuity. Ma-

chine Learning, 110(2), 2021.

[116] E. Grant, T.S. Humble and B. Stump. Benchmarking Quantum Annealing Controls

with Portfolio Optimization. Physical Review Applied, 15(1), 2021.

[117] L.K. Grover. A fast quantum mechanical algorithm for database search. Proceedings

of the twenty-eighth annual ACM symposium on Theory of computing. ACM, 1996.

[118] L.K. Grover and T. Rudolph. Creating superpositions that correspond to efficiently

integrable probability distributions. arXiv:0208112, 2002.

[119] M. Grundmann. Quantum devices of reduced dimensionality. Encyclopedia of Con-

densed Matter Physics, Elsevier, 2005.

[120] G.G. Guerreschi. Solving quadratic unconstrained binary optimization with divide-

and-conquer and quantum algorithms. arXiv:2101.07813, 2021.

[121] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A.C. Courville. Improved

training of Wasserstein GANs. Advances in neural information processing systems, 30,

2017.

[122] S. Hadfield, Z. Wang, B. O’Gorman, E.G. Rieffel, D. Venturelli and R. Biswas. From the

Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator

Ansatz. Algorithms, 12(2), 2019.

[123] B.C. Hall. Quantum Theory for Mathematicians. Graduate Texts in Mathematics, 267,

https://arxiv.org/abs/quant-ph/0208112
https://arxiv.org/abs/2101.07813

368 Bibliography

Springer, 2013.

[124] R. Hamerly, T. Inagaki, P.L. McMahon, D. Venturelli, A. Marandi, E. Ng, C. Langrock,

K. Inaba, T. Honjo, K. Enbutsu, T.Umeki, R. Kasahara, S. Utsunomiya, S. Kako, K.

Kawarabayashi, R.L. Byer, M.M. Fejer, H. Mabuchi, D. Englund, E. Rieffel, H. Takesue

and Y. Yamamoto. Experimental investigation of performance differences between

coherent Ising machines and a quantum annealer. Science Advances, 5(5), 2019.

[125] J.M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpub-

lished, 1971.

[126] A.W. Harrow, A. Hassidim and S. Lloyd. Quantum algorithm for linear systems of

equations. Physical Review Letters, 103(150502), 2009.

[127] R. Hassan, B. Cohanim, O. de Weck and G. Venter. A comparison of particle swarm op-

timization and the genetic algorithm. 46th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference, 2005.

[128] M.B. Hastings. Classical and Quantum Bounded Depth Approximation Algorithms.

Quantum Information & Computation, 19(13-14), 2019.

[129] V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow and J.M.

Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567,

2019.

[130] J. He and L. Kang. On the convergence rates of genetic algorithms. Theoretical

Computer Science, 229, 1999.

[131] L.-P. Henry, S. Thabet, C. Dalyac and L. Henriet. Quantum evolution kernel: Machine

learning on graphs with programmable arrays of qubits. Physical Review A, 104(3),

2021.

[132] A.D. Hill, M.J. Hodson, N. Didier and M.J. Reagor. Realization of arbitrary doubly-

controlled quantum phase gates. arXiv:2108.01652, 2021.

[133] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural

https://arxiv.org/abs/2108.01652

Bibliography 369

Computation, 14(8), 2002.

[134] G. Hinton. A practical guide to training restricted Boltzmann machines. Neural

Networks: Tricks of the Trade. Lecture Notes in Computer Science, 7700, Springer,

2012.

[135] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313, 2006.

[136] T.K. Ho. Random Decision Forests. Proceedings of the 3rd International Conference

on Document Analysis and Recognition, 1995.

[137] C.A.R. Hoare. Algorithm 64: Quicksort. Communications of the ACM, 4(7), 1961.

[138] M. Hodson, B. Ruck, H. Ong, D. Garvin and S. Dulman. Portfolio rebalancing experi-

ments using the Quantum Alternating Operator Ansatz. arXiv:1911.05296, 2019.

[139] Z. Holmes, K. Sharma, M. Cerezo and P.J. Coles. Connecting ansatz expressibility to

gradient magnitudes and barren plateaus. PRX Quantum, 3(1), 2022.

[140] F.-Y. Hong, Y. Xiang, Z.-Y. Zhu, L.-Z. Jiang and L.-N. Wu. Robust quantum random

access memory. Physical Review A, 86(1), 2012.

[141] K. Hornik, M. Stinchcombe and H. White. Universal Approximation of an Unknown

Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural Net-

works, 3(5), 1990.

[142] T. Hur, L. Kim and D.K. Park. Quantum convolutional neural network for classical

data classification. Quantum Machine Intelligence, 4(1), 2022.

[143] H.Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven and J.R.

McClean. Power of data in quantum machine learning. Nature Communications,

12(2631), 2021.

[144] W. Huggins, P. Patel, K.B. Whaley and E.M. Stoudenmire. Towards quantum machine

learning with tensor networks. Quantum Science and Technology, 4(2), 2019.

[145] IBM Quantum Roadmap: Expanding the IBM Quantum roadmap to anticipate

https://arxiv.org/abs/1911.05296

370 Bibliography

the future of quantum-centric supercomputing. https://research.ibm.com/blog/ibm-

quantum-roadmap-2025, 2022.

[146] IonQ: Duke University and IonQ Develop New Quantum Computing Gate, Only

Possible on IonQ and Duke Systems. https://investors.ionq.com/news/news-

details/2022/Duke-University-and-IonQ-Develop-New-Quantum-Computing-Gate-

Only-Possible-on-IonQ-and-Duke-Systems/default.aspx, 2022.

[147] E. Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31(1), 1925.

[148] B. Jackson, J.D. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis, E. Gwin, P.

Sangtrakulcharoen, L. Tan and T.T. Tsai. An Algorithm for Optimal Partitioning of

Data on an Interval. IEEE Signal Processing Letters, 12(2), 2005.

[149] S. Jansen, R. Seiler and M.-B. Ruskai. Bounds for the adiabatic approximation with

applications to quantum computation. Journal of Mathematical Physics, 48(102111),

2007.

[150] M.R. Jerrum, L.G. Valiant and V. Vazirani. Random generation of combinatorial

structures from a uniform distribution. Theoretical Computer Science, 43, 1986.

[151] M. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J.

Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E.

Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva,

C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson and G. Rose. Quantum annealing with

manufactured spins. Nature, 473(7346), 2011.

[152] T. Kadowaki and H. Nishimori. Quantum annealing in the transverse Ising model.

Physical Review E, 58(5), 1998.

[153] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow and J.M.

Gambetta. Hardware-efficient variational quantum eigensolver for small molecules

and quantum magnets. Nature, 549, 2017.

[154] H. Karimi and G. Rosenberg. Boosting quantum annealer performance via sample

persistence. Quantum Information Processing, 16(7), 2017.

https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://investors.ionq.com/news/news-details/2022/Duke-University-and-IonQ-Develop-New-Quantum-Computing-Gate-Only-Possible-on-IonQ-and-Duke-Systems/default.aspx
https://investors.ionq.com/news/news-details/2022/Duke-University-and-IonQ-Develop-New-Quantum-Computing-Gate-Only-Possible-on-IonQ-and-Duke-Systems/default.aspx
https://investors.ionq.com/news/news-details/2022/Duke-University-and-IonQ-Develop-New-Quantum-Computing-Gate-Only-Possible-on-IonQ-and-Duke-Systems/default.aspx

Bibliography 371

[155] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations. Plenum Press, 1972.

[156] T. Kato. On the adiabatic theorem of quantum mechanics. Journal of the Physical

Society of Japan, 5(6), 1950.

[157] P. Kaye, R. Laflamme, Raymond and M. Mosca. An introduction to quantum comput-

ing. OUP, 2007.

[158] H. Kellerer, R. Mansini and M.G. Speranza. Selecting portfolios with fixed costs and

minimum transaction lots. Annals of Operations Research, 99(1-4), 2000.

[159] H. Kellerer and U. Pferschy. Knapsack problems. Springer, 2004.

[160] I. Kerenidis, J. Landman and A. Prakash. Quantum algorithms for deep convolutional

neural networks. arXiv:1911.01117, 2019.

[161] D. Khachatryan. Variational Quantum Eigensolver.

https://github.com/DavitKhach/quantum-algorithms-tutorials, 2020.

[162] A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi and M.H. Amin. Quan-

tum variational autoencoder. Quantum Science and Technology, 4(1), 2019.

[163] M. Kim, K. Kim, J. Hwang, E.-G. Moon and J. Ahn. Rydberg quantum wires for

maximum independent set problems. Nature Physics, 18, 2022.

[164] M. Kjaergaard, M.E. Schwartz, J. Braumüller, P. Krantz, J. I-Jan Wang, S. Gustavsson

and W.D. Oliver. Superconducting qubits: current state of play. Annual Review of

Condensed Matter Physics, 11, 2020.

[165] E. Knill, R. Laflamme and G.J. Milburn. A scheme for efficient quantum computation

with linear optics. Nature, 409, 2001.

[166] D. Knuth. The Art of Computer Programming, Volume 3 / Sorting and Searching.

Addison-Wesley, 2nd Edition, 1998.

[167] D. Koller and N. Friedman. Probabilistic graphical models. MIT Press, 2009.

arxiv.org/abs/1911.01117
https://github.com/DavitKhach/quantum-algorithms-tutorials

372 Bibliography

[168] I. Kolotouros and P. Wallden. An evolving objective function for improved variational

quantum optimisation. Physical Review Research, 4(2), 2022.

[169] A. Kondratyev. Curve dynamics with artificial neural networks. Risk, 31(6), 2018.

[170] A. Kondratyev. Non-differentiable learning of quantum circuit Born machine with

genetic algorithm. Wilmott, 2021(114), 2021.

[171] A. Kondratyev. Quantum Machine Learning. Presentation at the Quant Insights

Conference. SSRN:3865344, 2021.

[172] A. Kondratyev and G. Giorgidze. Evolutionary algos for optimising MVA. Risk, 30(12),

2017.

[173] A. Kondratyev and C. Schwarz. The market generator. Risk, 33(2), 2020.

[174] A. Kondratyev, C. Schwarz and B. Horvath. The data anonymiser. Risk, 33(8), 2020.

[175] A. Kondratyev and D. Venturelli. Beyond Markowitz with quantum annealing. Risk,

32(6), 2019.

[176] A. Koshiyama, N. Firoozye and P. Treleaven. Generative adversarial networks for

financial trading strategies fine-tuning and combination. Quantitative Finance, 21(5),

2021.

[177] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson and W.D. Oliver. A

quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2),

2019.

[178] A. Krizhevsky. Learning multiple layers of features from tiny images. University of

Toronto, Technical Report, 2009.

[179] S. Kshatriya and P.K. Prasanna. Genetic algorithm-based portfolio optimization with

higher moments in global stock markets. Journal of Risk, 20(4), 2018.

[180] D. Kudrow, K. Bier, Z. Deng, D. Franklin, Y. Tomita, K.R. Brown and F.T. Chong.

Quantum rotations: a case study in static and dynamic machine-code generation for

quantum computers. International Symposium on Computer Architecture, 2013.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3865344

Bibliography 373

[181] L. Lamata, U. Alvarez-Rodriguez, J.D. Martín-Guerrero, M. Sanz and E. Solano. Quan-

tum autoencoders via quantum adders with genetic algorithms. Quantum Science

and Technology, 4(1), 2018.

[182] L.D. Landau and E.M. Lifshitz. Quantum Mechanics. Non-Relativistic Theory. Perga-

mon Press, 1965.

[183] R. Landauer. Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development, 5(3), 1961.

[184] J. Landman. Quantum Algorithms for Unsupervised Machine Learning and Neural

Networks. arXiv:2111.03598, 2021.

[185] C. Li. A Gentle Introduction to Gradient Boosting. Northeastern Uni-

versity, College of Computer and Information Science – Tutorial.

http://www.chengli.io/tutorials/gradient_boosting.pdf

[186] R.Y. Li, R. Di Felice, R. Rohs and D.A. Lidar. Quantum annealing versus classical

machine learning applied to a simplified computational biology problem. Quantum

Information, 4(14), 2018.

[187] Q. Li, H. Wu, W. Qian, X. Li, Q. Zhu and S. Yang. Portfolio Optimization Based on

Quantum HHL Algorithm. International Conference on Artificial Intelligence and

Security, 2022.

[188] N. Linden, A. Montanaro and C. Shao. Quantum vs. classical algorithms for solving

the heat equation. Communications in Mathematical Physics, 2022.

[189] J.-G. Liu and L. Wang. Differentiable learning of quantum Circuit Born Machine.

Physical Review A, 98(062324), 2018.

[190] L. Liu, S. Yang and D. Wang. Particle swarm optimization with composite particles

in dynamic environments. IEEE Transations on Systems, Man, and Cybernetics, Part B:

Cybernetics, 40(6), 2010.

[191] S. Lloyd. Universal quantum simulators. Science, 273(5278), 1996.

https://arxiv.org/abs/2111.03598
http://www.chengli.io/tutorials/gradient_boosting.pdf

374 Bibliography

[192] S. Lloyd and C. Weedbrook. Quantum generative adversarial learning. Physical

Review Letters, 121(4), 2018.

[193] M. López de Prado. Advances in Financial Machine Learning. Wiley, 2018.

[194] M. López de Prado. A Robust Estimator of the Efficient Frontier. SSRN:3469961, 2019.

[195] R. Loredo. Learn Quantum Computing with Python and IBM Quantum Experience.

Packt, 2020.

[196] J. Lu, and S. Yi. Autoencoding Conditional GAN for Portfolio Allocation Diversifica-

tion. arXiv:2207.05701, 2022.

[197] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2(5), 2014.

[198] X.-Z. Luo, J.-G. Liu, P. Zhang and L. Wang. Yao.jl: Extensible, efficient framework

for quantum algorithm design. Quantum, 4, 2020.

[199] M. Magris, M. Shabani and A. Iosifidis. Bayesian Bilinear Neural Network for Pre-

dicting the Mid-price Dynamics in Limit-Order Book Markets. arXiv:2203.03613,

2022.

[200] F. Mallet, F.R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion and D. Esteve.

Single-shot qubit readout in circuit quantum electrodynamics. Nature Physics, 5,

2009.

[201] S. Mandrà and H.G. Katzgraber. A deceptive step towards quantum speedup detection.

Quantum Science and Technology, 3(4), 2018.

[202] H. Markowitz. Portfolio selection. Journal of Finance, 7(1), 1952.

[203] J. Marshall, D. Venturelli, I.Hen and E.G. Rieffel. The power of pausing: advancing

understanding of thermalization in experimental quantum annealers. Physical Review

Applied, 11(044083), 2019.

[204] J.M. Martinis. Superconducting phase qubits. Quantum Information Processing, 8,

2009.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3469961
arxiv.org/abs/2207.05701
https://arxiv.org/abs/2203.03613

Bibliography 375

[205] M. Marzec. Portfolio optimization: applications in quantum computing. Handbook

of high-frequency trading and modeling in Finance. John Wiley & Sons, 2016.

[206] K.-P. Marzlin and B.C. Sanders. Inconsistency in the application of the adiabatic

theorem. Physical Review Letters, 93(160408), 2004.

[207] J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush and H. Neven. Barren plateaus

in quantum neural network training landscapes. Nature Communications, 9(4812),

2018.

[208] D. McClure and J. Gambetta. Quantum computation center opens.

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center,

2019.

[209] C. McGeoch. Adiabatic quantum computation and quantum annealing: theory and

practice. Synthesis Lectures on Quantum Computing, Morgan & Claypool, 2014.

[210] C. McGeoch, P. Farre and K. Boothby. The D-Wave Advantage2 Prototype. D-Wave

Technical Report, 2022.

[211] C. McGeoch and C. Wang. Experimental evaluation of an adiabiatic quantum system

for combinatorial optimization. Proceedings of the ACM International Conference

on Computing Frontiers, CF, 2013.

[212] P.A. Mello. The von Neumann Model of Measurement in Quantum Mechanics.

Conference Proceedings, 1575(1), American Institute of Physics, 2014.

[213] K. Mitarai, M. Negoro, M. Kitagawa and K. Fujii. Quantum circuit learning. Physical

Review A, 98(032309), 2018.

[214] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[215] N. Moll, P. Barkoutsos, L.S. Bishop, J.M. Chow, A. Cross, D.J. Egger, S. Filipp, A.

Fuhrer, J.M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess,

G. Salis, J. Smolin, I. Tavernelli and K. Temme. Quantum optimization using varia-

tional algorithms on near-term quantum devices. Quantum Science and Technology,

376 Bibliography

3(030503), 2018.

[216] A. Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal

Society A, 471(2181), 2015.

[217] M. Morini. One more model risk when using Gaussian copula for risk management.

SSRN:1520670, 2009.

[218] A. Mott, J. Job, J.R. Vlimant, D. Lidar and M. Spiropulu. Solving a Higgs optimization

problem with quantum annealing for machine learning. Nature, 550, 2017.

[219] W.C. Myrvold. On the Relation of the Laws of Thermodynamics to Statistical Me-

chanics. Preprint. http://philsci-archive.pitt.edu/id/eprint/19361, 2021.

[220] H. Naomichi and M. Suzuki. Finding exponential product formulas of higher orders.

Quantum annealing and other optimization methods. Springer, 2005.

[221] J. Nemirovsky and Y. Sagi. Fast universal two-qubit gate for neutral fermionic atoms

in optical tweezers. Physical Review Research, 3(013113), 2021.

[222] N.H. Nguyen, E.C. Behrman and J.E. Steck. Quantum learning with noise and de-

coherence: a robust quantum neural network. Quantum Machine Intelligence, 2(1),

2020.

[223] M.A. Nielsen and I.S. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 10th Anniversary Edition, 2010.

[224] S.M. Nikolskii. Approximation of functions of several variables and imbedding

theorems. Springer, 1975.

[225] J.L. O’Brien. Optical quantum computing. Science, 318(5856), 2007.

[226] B. Øksendal. Stochastic differential equations. Springer, 5th Edition, 2000.

[227] G. Ortiz, J.E. Gubernatis, E. Knill and R. Laflamme. Quantum algorithms for fermionic

simulations. Physical Review A, 64(022319), 2001.

[228] R. Orús, S. Mugel and E. Lizaso. Quantum computing for finance: overview and

prospects. Reviews in Physics, 4, 2019.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1520670
http://philsci-archive.pitt.edu/id/eprint/19361

Bibliography 377

[229] M. Paini. Quantum Finance: The Road to Business Applications. Presentation at the

London Quantum Computing Meetup. Quantum Finance, 2018.

[230] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot and É. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12, 2011.

[231] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-

Guzik and J.L. O’Brien. A variational eigenvalue solver on a photonic quantum

processor. Nature Communications, 5213, 2014.

[232] E. Peters, J. Caldeira, A. Ho, S. Leichenauer, M. Mohseni, H. Neven, P. Spentzouris,

D. Strain and G.N. Perdue. Machine learning of high dimensional data on a noisy

quantum processor. Quantum Information, 7(1), 2021.

[233] R.C. Pfaffenberger and J.H. Patterson. Statistical methods for business and economics.

Irwin, 3rd Edition, 1987.

[234] F. Phillipson and H.S. Bhatia. Portfolio Optimisation Using the D-Wave Quantum An-

nealer. In: M. Paszynski, D. Kranzlmüller, V.V. Krzhizhanovskaya, J.J. Dongarra, and

P.M.A Sloot (eds). Computational Science – ICCS 2021. Lecture Notes in Computer

Science, 12747, Springer, 2021.

[235] B. Pokharel, Z.G. Izquierdo, P.A. Lott, E. Strbac, K. Osiewalski, E. Papathanasiou, A.

Kondratyev, D. Venturelli and E. Rieffel. Inter-generational comparison of D-Wave

quantum annealers in solving hard scheduling problems. arXiv:2112.00727, 2021.

[236] R. Poli. Analysis of the publications on the applications of particle swarm optimisa-

tion. Journal of Artificial Evolution and Applications, 2008.

[237] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2, 2018.

[238] Qiskit: An open-source framework for quantum computing. https://qiskit.org, 2019.

[239] Qiskit: Circuit Library – RZ Gate. https://qiskit.org/documentation/stubs/

https://everythingquantum.files.wordpress.com/2018/10/quantum-finance-the-road-to-business-applications-part-2-marco-paini.pdf
https://arxiv.org/abs/2112.00727
https://qiskit.org
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZGate.html

378 Bibliography

qiskit.circuit.library.RZGate.html, 2022.

[240] Qiskit: Circuit Library – RZX Gate. https://qiskit.org/documentation/stubs/

qiskit.circuit.library.RZXGate.html, 2022.

[241] J.R. Quinlan. Australian Credit Approval Dataset. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml. UC Irvine, School of Information and Computer

Science, 1987.

[242] J.R. Quinlan. Simplifying Decision Trees. International Journal of Man-Machine

Studies, 27(3), 1987.

[243] S. Raschka and V. Mirjalili. Python machine learning. Packt, 3rd Edition, 2019.

[244] S.E. Rasmussen and N.T. Zinner. Simple implementation of high fidelity controlled-

iSWAP gates and quantum circuit exponentiation of non-Hermitian gates. Physical

Review Research, 2(033097), 2020.

[245] P. Rebentrost and S. Lloyd. Quantum computational finance: quantum algorithm for

portfolio optimization. arXiv:1811.03975, 2018.

[246] Rigetti Quantum Roadmap: Rigetti Computing Reports First Quarter 2022 Financial

Results and Provides Business Update. https://investors.rigetti.com/node/7371/pdf,

2022.

[247] J.J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on

Information Theory, 42(1), 1996.

[248] A. Robert, P.K. Barkoutsos, S. Woerner and I. Tavernelli. Resource-efficient quantum

algorithm for protein folding. Quantum Information, 7(38), 2021.

[249] R. Robinett. Quantum mechanics: classical results, modern systems, and visualized

examples. Oxford University Press, 2nd Edition, 2006.

[250] T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A.

Lidar and M. Troyer. Defining and detecting quantum speedup. Science, 345(6195),

2014.

https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZXGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.RZXGate.html
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1811.03975

Bibliography 379

[251] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu and M. López De Prado.

Solving the optimal trading trajectory problem using a quantum annealer. IEEE

Journal of Selected Topics in Signal Processing, 10(6), 2016.

[252] R. Salakhutdinov, A. Mnih and G. Hinton. Restricted Boltzmann machines for col-

laborative filtering. Proceedings of the 24th International Conference on Machine

Learning, 2007.

[253] G.E. Santoro, R. Martonak, E. Tosatti and R. Car. Theory of quantum annealing of an

Ising spin glass. Science, 295(2427), 2002.

[254] V. Schmitt. Design, fabrication and test of a four superconducting quantum-bit

processor. PhD Thesis, Université Pierre et Marie Curie, Physics, 2015.

[255] A. Schrijver. Theory of integer and linear programming. Wiley, 1998.

[256] M. Schuld, A. Bocharov, K. Svore and N. Wiebe. Circuit-centric quantum classifiers.

Physical Review A, 101(3), 2020.

[257] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac and N. Killoran. Evaluating analytic

gradients on quantum hardware. Physical Review A, 99(3), 2019.

[258] F. Schwabl. Quantum mechanics. Springer, 4th Edition, 2007.

[259] A. Selby. D-Wave: comment on comparison with classical computers, 2013.

[260] S. Sethi. Optimal control theory. Applications to management science and economics.

Springer, 2019.

[261] A. Sethia, R. Patel and P. Raut. Data augmentation using generative models for credit

card fraud detection. 4th International Conference on Computing Communication

and Automation, 2018.

[262] A.D. Shapiro. King-Rook vs. King-Pawn Chess Dataset. UCI Machine Learning

Repository. http://archive.ics.uci.edu/ml. UC Irvine, School of Information

and Computer Science, 1987.

[263] A.D. Shapiro. Structured Induction in Expert Systems. Addison-Wesley, 1987.

http://archive.ics.uci.edu/ml

380 Bibliography

[264] R.R. Sharapov and A.V. Lapshin. Convergence of genetic algorithms. Pattern Recogni-

tion and Image Analysis, 16(3), 2006.

[265] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM Journal on Computing, 26(5), 1997.

[266] S. Sim, P.D. Johnson and A. Aspuru-Guzik. Expressibility and Entangling Capabil-

ity of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms.

Advanced Quantum Technologies, 2(12), 2019.

[267] B. Simon. Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Physical

Review Letters, 51(2167), 1983.

[268] H. Situ, Z. He, Y. Wang, L. Li and S. Zheng. Quantum generative adversarial network

for generating discrete distribution. Information Sciences, 538, 2020.

[269] G.D. Smith. Numerical solution of partial differential equations: finite difference

methods. Oxford University Press, 1985.

[270] P. Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. Parallel Distributed Processing Explorations in the Microstructure of

Cognition, 1: Foundations. MIT Press, 1986.

[271] K. Sörensen. Clustering in Financial Markets: A Network Theory Approach. Master

of Science Thesis, Royal Institute of Technology, Stockholm, 2014.

[272] M. Stechły. Variational Quantum Eigensolver explained.

https://www.mustythoughts.com/variational-quantum-eigensolver-explained, 2020.

[273] M. Steffen, W. van Dam, T. Hogg, G. Breyta and I. Chuang. Experimental implemen-

tation of an adiabatic quantum optimization algorithm. Physical Review Letters, 90(6),

2003.

[274] S.A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, B. Fang and S. Xu. QuGAN: A

Generative Adversarial Network Through Quantum States. arXiv:2010.09036, 2020.

[275] F.W. Strauch, P.R. Johnson, A.J. Dragt, C.J. Lobb, J.R. Anderson and F.C. Wellstood.

https://www.mustythoughts.com/variational-quantum-eigensolver-explained
arxiv.org/abs/2010.09036

Bibliography 381

Quantum logic gates for coupled superconducting phase qubits. Physical Review

Letters, 91(167005), 2003.

[276] M. Suchara. Quantum Algorithms and Their Applications. CQE-Protiviti Design

Thinking Workshop, 2021.

[277] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kannan, M. Kjaergaard, A. Greene,

G.O. Samach, C. McNally, D. Kim, A. Melville, B.M. Niedzielski, M.E. Schwartz, J.L.

Yoder, T.P. Orlando, S. Gustavsson and W.D. Oliver. Realization of high-fidelity CZ

and ZZ-free iSWAP gates with a tunable coupler. Physical Review X, 11(021058), 2021.

[278] R.S. Sutor. Dancing with Qubits: How quantum computing works and how it can

change the world. Packt, 2019.

[279] M. Suzuki. General Decomposition Theory of Ordered Exponentials. Proceedings of

Japan Academy, 69(B), 1993.

[280] G.W. Taylor, G.E. Hinton and S.T. Roweis. Two distributed-state models for generating

high-dimensional time series. Journal of Machine Learning Research, 12(28), 2011.

[281] M. Tegmark. Life 3.0. Being Human in the age of artificial intelligence. Allen Lane,

Penguin Random House, 2017.

[282] J.L. Ticknor. A Bayesian regularized artificial neural network for stock market fore-

casting. Expert Systems with Applications, 40(14), 2013.

[283] L. Tomawski, I. Mrózb and Z. Kukułac. From Thomson Formula to Resonant Equiva-

lent Diagrams. Acta Physica Polonica A, 139(3), 2021.

[284] T. Toffoli. Reversible Computing. International Colloquium on Automata, Languages,

and Programming. ICALP 1980: Automata, Languages and Programming, 1980.

[285] T.T. Tran, M. Do, E.G. Rieffel, J. Frank, Z. Wang, B. O’Gorman, D. Venturelli and J.C.

Beck. A hybrid quantum-classical approach to solving scheduling problems. The 9th

Annual Symposium on Combinatorial Search, 2016.

[286] H.F. Trotter. On the product of semi-groups of operators. Proceedings of the American

382 Bibliography

Mathematical Society, 10(4), 1959.

[287] C.A. Trugenberger. Probabilistic quantum memories. Physical Review Letters,

87(067901), 2001.

[288] H. Tuy. Minimax Theorems Revisited. Acta Mathematica Vietnamica, 29(3), 2004.

[289] F. Vaezi, S.J. Sadjadi and A. Makui. A portfolio selection model based on the knapsack

problem under uncertainty. PLoS ONE, 14(5), 2019.

[290] J. van Apeldoorn and A. Gilyén. Improvements in quantum SDP-solving with appli-

cations. arXiv:1804.05058, 2018.

[291] W. van Dam, M. Mosca and U. Vazirani. How powerful is adiabatic quantum com-

putation? Proceedings of Symposium on the Foundations of Computer Science,

2001.

[292] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1), 1996.

[293] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications, 16(2), 1971.

[294] D. Ventura and T. Martinez. Quantum associative memory. Information Sciences,

124(1), 2000.

[295] D. Venturelli, D.J.J. Marchand and G. Rojo. Quantum annealing implementation of

job-shop scheduling. arXiv:1506.08479, 2015.

[296] D. Venturelli and A. Kondratyev. Reverse quantum annealing approach to portfolio

optimization problems. Quantum Machine Intelligence, 1(3), 2019.

[297] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:

295-320, 1928.

[298] X. Wang, Y. Du, Y. Luo and D. Tao. Towards understanding the power of quantum

kernels in the NISQ era. Quantum, 5, 2021.

[299] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio and P.J. Coles. Noise-

induced barren plateaus in variational quantum algorithms. Nature Communications,

https://arxiv.org/abs/1804.05058
https://arxiv.org/abs/1506.08479

Bibliography 383

12(1), 2021.

[300] S. Wei, ShiJie, Y. Chen, Z. Zhou and G. Long. A quantum convolutional neural

network on NISQ devices. AAPPS Bulletin, 32(1), 2022.

[301] M. Wiese, B. Wood, A. Pachoud, R. Korn, H. Buehler, P. Murray and L. Bai. Multi-asset

spot and option market simulation. arXiv:2112.06823, 2021.

[302] M. Wiese, R. Knobloch, R. Korn and P. Kretschmer. Quant GANs: deep generation of

financial time series. Quantitative Finance, 20(9), 2020.

[303] J.W.J. Williams. Algorithm 232 — Heapsort. Communications of the ACM, 7(6), 1964.

[304] J. Wurtz and P.J. Love. Counterdiabaticity and the quantum approximate optimization

algorithm. Quantum, 6, 2022.

[305] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng and J. Du. Quantum factorization of 143

on a dipolar-coupling nuclear magnetic resonance system. Physical Review Letters,

108(13), 2012.

[306] R. Yalovetzky, P. Minssen, D. Herman and M. Pistoia. NISQ-HHL: Portfolio optimiza-

tion for near-term quantum hardware. arXiv:2110.15958, 2021.

[307] I.C. Yeh and C.H. Lien. Default of Credit Card Clients Dataset. UCI Machine Learning

Repository. http://archive.ics.uci.edu/ml. UC Irvine, School of Information

and Computer Science, 2009.

[308] I.C. Yeh and C.H. Lien. The comparisons of data mining techniques for the predic-

tive accuracy of probability of default of credit card clients. Expert Systems with

Applications, 36(2), 2009.

[309] K. Yosida. Functional analysis. Springer, 1965.

[310] T. Zhao, C. Sun, A. Cohen, J. Stokes and S. Veerapaneni. Quantum-inspired variational

algorithms for partial differential equations: Application to financial derivative

pricing. arXiv:2207.10838, 2022.

[311] X. Zhou, S. Li and Y. Feng. Quantum circuit transformation based on simulated

arxiv.org/abs/2112.06823
https://arxiv.org/abs/2110.15958
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2207.10838

384

annealing and heuristic search. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 39(12), 2020.

[312] E. Zhu, S. Johri, D. Bacon, M. Esencan, J. Kim, M. Muir, Mark N. Murgai, J. Nguyen,

N. Pisenti, A. Schouela, K. Sosnova and K. Wright. Generative quantum learning

of joint probability distribution functions. Bulletin of the American Physical Society,

2022.

[313] D. Zhu, N.M. Linke, M. Benedetti, K.A. Landsman, N.H. Nguyen, C.H. Alderete, A.

Perdomo-Ortiz, N. Korda, A. Garfoot, C. Brecque, L. Egan, O. Perdomo and C. Monroe.

Training of quantum circuits on a hybrid quantum computer. Science Advances, 5(10),

2019.

[314] C. Zoufal, A. Lucchi and S. Woerner. Quantum generative adversarial networks for

learning and loading random distributions. Quantum Information, 5(103), 2019.

Join our book’s Discord space
Join our Discord community to meet like-minded people and learn alongside more than

2000 members at: https://packt.link/quantum

https://packt.link/quantum

Index

A
activation functions 97

activation unit 93

AdaBoost 83

addition operator

building from NAND gates 140

Adiabatic Quantum Computing (AQC)

38

implementation 50

power 42

principles 40

universality 57

adjustable one-qubit gates 152

adjustable two-qubit gates 156

amplitude estimation 347

analytic gradient approach 213

ancillary qubits 200, 336

AND gate 138

ansatz 213, 226, 280, 281

Artificial Neural Network (ANN) 93

artificial neuron 93

B
backpropagation 96

bagging 230

Bayesian Quantum Circuit (BQC) 335

Bell circuit 163

Bell states 163

binary digit (bit) 17, 137

binary integer linear programming

problem 65

Black-Scholes parabolic PDE 352

Bloch sphere 148

Boltzmann distribution 107, 113

Boltzmann sampling 123

bootstrap 230

C
Chimera graph 55, 127, 356

classical benchmarking 74, 93, 229,

254

client clustering 300

client segmentation 300

CMOS logic 143

coherence 184

completeness condition 21

complexity classes 38

computation 20, 142, 148

computational basis 22, 147

Conditional Rotation Lemma 346

386 Index

confusion matrix 92

controlled gates 153

cost function 53, 62, 220, 247, 251

CR gate 179

CX (CNOT) gate 154

decomposition 165, 167, 179

CY gate 153

CZ (CPHASE) gate 155

decomposition 165

D
D-Wave quantum annealers 53, 356

architecture 55

inter-generational comparison

51

data encoding

amplitude encoding 196

angle encoding 193

binary inputs into basis states

198

Hamiltonian encoding 202

superposition encoding 199

dataset

Australian Credit Approval (ACA)

226, 312, 329

Default of Credit Card Clients

(DCCC) 88

King+Rook vs. King+Pawn 132

Stock Exchange 119, 257

decision tree 98

Deep Boltzmann Machine (DBM) 130

expressive power 323

pipeline 132

training 131

density matrix 27, 319

density operator 27

Dirac notations 14

discrete portfolio optimisation 70

solving with VQE 288

DiVincenzo criteria 168

E
effective dimension 319

elementary memory cell 144

energy function 107

energy-based models 108

ensemble learning 231

majority voting 232

quantum boosting 84, 235

entanglement 25, 161, 178

entropy

Gibbs (statistical mechanics)

160, 319

Shannon (information) 100, 160,

319

von Neumann (entanglement)

319, 321

error correction 185

expectation value 24, 271

calculation on a quantum

computer 272

external couplers 55

F
feature map 248, 328

feedforward neural network 95

Index 387

fidelity 184, 328

finite difference scheme 211

Fisher information 319

forward quantum annealing 67

Fund of Funds portfolio manager 71

G
Generative Adversarial Network (GAN)

257, 331

generative models 129

Genetic Algorithm (GA) 74, 249

QCBM training algorithm 250

Gibbs distribution 107

Gibbs state 341

global phase 166, 167

gradient boosting 101

graph partitioning problem 64

graph theory 106

directed graph 106

undirected graph 106

H
H (Hadamard) gate 23, 151

Hamiltonian 19

final 53, 295

initial 54, 295

Ising 54, 126

longitudinal field 47, 54

mixing 297

phase 297

transverse field 47, 54

Hamiltonian simulation 11, 202

Hammersley-Clifford Theorem 107

Hamming distance 48

Harrow-Hassidim-Lloyd (HHL) 349

Hermitian conjugate 2

Hermitian operator 5, 25

I
I gate 150

IBM Melbourne system graph 242

IBM Rochester system graph 243

impurity 98

Gini 100

information gain 98

inner product 3

internal couplers 55

Ising problem 63, 87

iSWAP gate 156

J
Josephson junction 176

K
k-step Contrastive Divergence (CD)

algorithm 117

kernel function 248, 326

kernel trick 327

knapsack with integer weights

problem 65

Kolmogorov-Smirnov (KS) 262

L
linear classifier 230

linear operator 5

Lipschitz constant 311

388 Index

logic gates 138

logical qubits 56

logistic regression 229

M
majority voting 57, 230, 232

market generator 256

Markovian property 107

Matrix Product State (MPS) 321

Max-Cut problem 299

measurement operator 21, 151

measurement process 23

metaheuristic 46

Minimax Theorem 339

mixed state 29, 319

Modern Portfolio Theory (MPT) 70

Monte Carlo

classical 345

quantum 345

quantum speedup 347

Multi-Layer Perceptron (MLP) 95,

101, 229, 313

Multilayer PQC (MPQC) 316

expressive power 323

N
NAND gate 138

natural unit of information (nat) 160

NISQ QPU

connectivity 224

Max-Cut problem, embedding on

305

QCBM, embedding on 242, 243

QNN, embedding on 224, 235

NP-complete problem 39, 53, 71

NP-hard problem 39, 53, 81

number partitioning problem 63

O
one-qubit quantum logic gates 150

OR gate 138

outer product 15

P
parameter shift rule 214

Parameterised Quantum Circuit (PQC)

189

expressive power 315, 322

schematic training process 192

Partial Differential Equation (PDE)

349

partial trace 320

Particle Swarm Optimisation (PSO)

217

QNN training algorithm 219

Pegasus graph 55, 127, 356

perceptron 95

phase shift gates 152

phonon 181

photonic qubits 179

physical qubits 55

polar coordinates 13

postulates of quantummechanics 16

composite system 25

dynamics 19

measurement 21

Index 389

observable 24

statics 17

Powering Lemma 347

probability amplitude 18, 146

projection operator 4, 22

pure state 28, 319

Q
QBoost algorithm 85

applications in finance 87

QUBO to Ising transformation

86

Qiskit 185

Quadratic Unconstrained Binary

Optimisation (QUBO)

61

Ising transformation 63

Quantum Adiabatic Theorem 43

quantum advantage 259, 323, 356

Quantum Anharmonic Oscillator (QAO)

175

quantum annealing 47, 50, 122

Quantum Annealing for Machine

Learning (QAML) 84

Quantum Approximate Optimisation

Algorithm (QAOA)

293

quantum binary digit (qubit) 18, 145

Quantum Boltzmann Machine (QBM)

105

mapping into hardware graph

125

quantum annealing and

Boltzmann sampling

122

quantum boosting 85, 235

Quantum Circuit Born Machine (QCBM)

239

differentiable learning 244

embedding 242

non-differentiable learning 249

quantum circuits 151

Quantum Convolutional Neural

Network (QCNN)

323, 335

Quantum Fourier Transform (QFT)

342

Quantum Generative Adversarial

Network (QGAN)

332

quantum hardware 184

Quantum Harmonic Oscillator (QHO)

170

quantum kernel 248, 327

Quantum Linear Solver (QLS) 349

quantum logic gates 19, 20, 145

Quantum Long Short Term Memory

(QLSTM) 323

Quantum Neural Network (QNN) 207

embedding 224

training with gradient descent

211

training with PSO 217

quantum operators 15

Quantum Phase Estimation (QPE)

343

390 Index

quantum registers 151

Quantum Semidefinite Programming

(QSDP) 340

quantum simulators 184

Quantum Software Development Kit

(QSDK) 186

quantum speedup 79, 347

quantum state 17, 26

quantum state vector 17, 26

quantum tunnelling 48, 49

Quantum Variational Autoencoder

(QVA) 129

R
radial basis function 327

Random Access Memory (RAM) 144

random forest 229

reduced density matrix 320

regularisation 310

relay logic 142

resistor-transistor logic 142

Restricted Boltzmann Machine (RBM)

108

expressive power 323

samples generation 118

training with CD algorithm 116

reverse quantum annealing 68

reversible computing 159

Rigetti Aspen system graph 224

rotation matrices 11

S
S gate 152

Schrödinger equation 19, 172, 202,

294

Schur Decomposition 9

search algorithms 37

Semidefinite Programming (SDP)

338

maximum risk analysis 338

robust portfolio construction

339

Sharpe ratio 72

simulated annealing 47

Singular Value Decomposition (SVD)

8

Spectral Theorem 8

statistical ensemble

of quantum states 27, 31

superconducting qubits 170

superposition 18, 161

supervised learning 95

Support Vector Machine (SVM) 229,

326

Suzuki-Trotter expansion 296

SWAP gate 155

decomposition 165, 166

synthetic data generation 118, 256

T
T gate 152

Tensor Network PQC (TPQC) 317

expressive power 323

tensor product 16

thermal annealing 49

Thompson formula 175

Index 391

time evolution, QAOA 294

Time-to-Solution (TTS) 51, 79

Toffoli gate 156

decomposition 158

transition probability 328

transverse field coefficient 47

trapped ion qubits 181

truth table 138

Turing machine 38

two-qubit quantum logic gates 153

U
unit cell 55

unitary operator 20

universal logic gate 139

V
Vapnik-Chervonenkis dimension 319

Variational Quantum Eigensolver (VQE)

269

volatile memory 144

X
X (NOT) gate 150

XOR gate 138

XY gate 156

Y
Y gate 150

Z
Z (PHASE) gate 150

Zephyr graph 356

ZX gate 179

Other Books You Might Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

ISBN: 978-1-83921-771-5

• Leverage market, fundamental, and alternative text and image data

• Research and evaluate alpha factors using statistics, Alphalens, and SHAP values

• Implement machine learning techniques to solve investment and trading problems

• Backtest and evaluate trading strategies based on machine learning using Zipline

and Backtrader

• Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio

• Create a pairs trading strategy based on cointegration for US equities and ETFs

• Train a gradient boosting model to predict intraday returns using AlgoSeek’s high-

quality trades and quotes data

https://www.packtpub.com/product/machine-learning-for-algorithmic-trading-second-edition/9781839217715

394 Other Books You Might Enjoy

Learn Quantum Computing with Python and IBM Quantum Experience

Robert Loredo

ISBN: 978-1-83898-100-6

• Explore quantum computational principles such as superposition and quantum

entanglement

• Become familiar with the contents and layout of the IBM Quantum Experience

• Understand quantum gates and how they operate on qubits

• Discover the quantum information science kit and its elements such as Terra and Aer

• Get to grips with quantum algorithms such as Bell State, Deutsch-Jozsa, Grover’s

algorithm, and Shor’s algorithm

• How to create and visualize a quantum circuit

https://www.packtpub.com/product/learn-quantum-computing-with-python-and-ibm-quantum-experience/9781838981006

Other Books You Might Enjoy 395

Dancing with Qubits

Dr. Robert S. Sutor

ISBN: 978-1-83882-736-6

• See how quantum computing works, delve into the math behind it, what makes it

different, and why it is so powerful with this quantum computing textbook

• Discover the complex, mind-bending mechanics that underpin quantum systems

• Understand the necessary concepts behind classical and quantum computing

• Refresh and extend your grasp of essential mathematics, computing, and quantum

theory

• Explore the main applications of quantum computing to the fields of scientific com-

puting, AI, and elsewhere

• Examine a detailed overview of qubits, quantum circuits, and quantum algorithm

https://www.packtpub.com/product/dancing-with-qubits/9781838827366

396 Other Books You Might Enjoy

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com

and apply today. We have worked with thousands of developers and tech professionals,

just like you, to help them share their insight with the global tech community. You can

make a general application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Quantum Machine Learning and Optimisation in Finance, we’d love to

hear your thoughts! If you purchased the book from Amazon, please click here to go

straight to the Amazon review page for this book and share your feedback or leave

a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

authors.packtpub.com
https://packt.link/r/1801813574
https://packt.link/r/1801813574

www.packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well

as industry leading tools to help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at packt.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a

range of free

www.packt.com
mailto:customercare@packtpub.com
www.packt.com

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781801813570

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801813570

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Principles of Quantum Mechanics
	Part I
	Chapter 2: Adiabatic Quantum
Computing
	Chapter 3: Quadratic Unconstrained
Binary Optimisation
	Chapter 4: Quantum Boosting
	Chapter 5: Quantum Boltzmann
Machine
	Part II
	Chapter 6: Qubits and Quantum Logic
Gates
	Chapter 7: Parameterised Quantum
Circuits and Data Encoding
	Chapter 8: Quantum Neural Network
	Chapter 9: Quantum Neural Network
	Chapter 10: Variational Quantum
Eigensolver
	Chapter 11: Quantum Approximate
Optimisation Algorithm
	Chapter 12: The Power of Parameterised
Quantum Circuits
	Chapter 13: Looking Ahead
	Index
	Other Books You Might Enjoy
	Packt Page

