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FROM THE PREFACE TO THE
FIRST ENGLISH EDITION

THE present book is one of the series on Theoretical Physics, in which we
endeavour to give an up-to-date account of various departments of that science.
The complete series will contain the following nine volumes:

1. Mechanics. 2. The classical theory of fields. 3. Quantum mechanics
(non-relativistic theory). 4. Relativistic quantum theory. 5. Statistical physics.
6. Fhud mechanics: 7. Theory of elasticity. 8. Electrodynamics of continuous
media. 9. Physical kinetics.

Of these, volumes 4 and 9 remain to be written.

The scope of modern theoretical physics is very wide, and we have, of
course, made no attempt to discuss in these books all that is now included in
the subject. One of the principles which guided our choice of material was
not to deal with those topics which could not properly be expounded without
at the same time giving a detailed account of the existing experimental results.
For this reason the greater part of nuclear physics, for example, lies cutside the
scope of these books. Another principle of selection was not to discuss very
complicated applications of the theory. Both these criteria are, of course,
to some extent subjective.

We have tried to deal as fully as possible with those topics that are included.
For this reason we do not, as a rule, give references to the original papers,
but simply name their authors. We give bibliographical references only to
work which contains matters not fully expounded by us, which by their com-
plexity lie “on the borderline’ as regards selection or rejection. We have
tried also to indicate sources of material which might be of use for reference.
Even with these limitations, however, the bibliography given makes no pre-
tence of being exhaustive.

We attempt to discuss general topics in such a way that the physical signifi-
cance of the theory 1s exhibited as clearly as possible, and then to build up the
mathematical formalism. In doing so, we do not aim at ‘“mathematical
rigour” of exposition, which in theoretical physics often amounts to self-
deception.

The present volume is devoted to non-relativistic quantum mechanics. By
“relativistic theory” we here mean, in the widest sense, the theory of all
quantum phenomena which significantly depend on the velocity of light. The
volume on this subject (volume 4) will therefore contain not only Dirac’s
relativistic theory and what is now known as quantum electrodynamics, but
also the whole of the quantum theory of radiation.

Institute of Physical Problems L. D. Lanpavu
USSR Academy of Sciences E. M. LiFsHITZ

August 1956
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PREFACE TO THE
SECOND ENGLISH EDITION

For this second edition the book has been considerably revised and en-
larged, but the general plan and style remain as before. Every chapter has
been revised. In particular, extensive changes have been made in the sections
dealing with the theory of the addition of angular momenta and with collision
theory. A new chapter on nuclear structure has been added; in accordance
with the general plan of the course, the subjects in question are discussed only
to the extent that is proper without an accompanying detailed analysis of the
experimental results.

We should like to express our thanks to all our many colleagues whose
comments have been utilized in the revision of the book. Numerous com-
ments were received from V. L. Ginzburg and Ya. A. Smorodinskil. We are
especially grateful to L. P. Pitaevskit for the great help which he has given in
checking the formulae and the problems.

Our sincere thanks are due to Dr. Sykes and Dr. Bell, who not only
translated excellently both the first and the second edition of the book, but
also made a number of useful comments and assisted in the detection of
various misprints in the first edition.

Finally, we are grateful to the Pergamon Press, which always acceded to
our requests during the production of the book.

L. D. Lanpavu
October 1964 E. M. LiFsHITZ



PREFACE TO THE
THIRD RUSSIAN EDITION

THE previous edition of this volume was the last book on which I worked
together with my teacher L. D. Landau. The revision and expansion that
we then carried out was very considerable, and affected every chapter.

For the third edition, naturally, much less revision was needed. Never-
theless, a fair amount of new material has been added, including some more
problems, and relating both to recent research and to earlier results that
have now become of greater significance.

Landau’s astonishing grasp of theoretical physics often enabled him to
dispense with any consultztion of original papers: he was able to derive
results by methods of his own choice. This may have been the reason why
our book did not contain certain necessary references to other authors. In
the present edition, I have tried to supply them as far as possible. I have
also added references to the work of Landau himself where we describe
results or methods that are due to him personally and have not been
published elsewhere.

As when dealing with the revision of other volumes in the Course of
Theoretical Physics, 1 have had the assistance of numerous colleagues who
informed me either of deficiencies in the treatment given previously, or of
new material that should be added. Many useful suggestions incorporated
in this book have come from A. M. Brodskii, G. F. Drukarev, I. G. Kaplan,
V P Krainov, I. B. Levinson, P. E. Nemirovskii, V. 1.. Pokrovskii,
I. I. Sobel’man, and 1. S Shapiro. My sincere thanks are due to ali of
these.

The whole of the work on revising this volume has been done in close
collaboration with L. P. Pitaevskii. In him I have had the good fortune
to find a fellow-worker who has passed likewise through the school of
Landau and is inspired by the same ideals in the service of science.

Moscow E. A LiFsHITZ
November 1973
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EDITOR’S PREFACE TO THE
FOURTH RUSSIAN EDITION

In this edition of Quantum Mechanics some misprints and errors noted
since the publication of the third edition have been corrected. Some
small improvements have also been made, and several problems have
been added.

I am grateful to all readers who have provided me with comments.

May 1988 L. P. PrITAEVSKII
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NOTATION

Operators are denoted by a circumflex: f
dl” volume element in coordinate space
dg element in configuration space

d3p element in momentum space

fam = f. = (n| f |m> matrix elements of the quantity f (see definition in §11)
wnm = (En— Em)/k transition frequency

{f, £} = fé—2f commutator of two operators

H Hamiltonian

8 phase shifts of wave functions

Atomic and Coulomb units (see beginning of §36)

Vector and tensor indices are denoted by Latin letters 7, &, /

e antisvmmetric unit tensor (see §26)

References to other volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English editcen, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition,
1975).

ROT or Relativistic Quantum Theory = Vol. 4 (Relativistic Quantum Theory,
first English edition, Part 1, 1971; Part 2, 1974); the second English edition

appeared in one volume as Quantum Electrodynamics, 1982.
All are published by Pergamon Press.
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CHAPTER 1

THE BASIC CONCEPTS OF
QUANTUM MECHANICS

§1. The uncertainty principle

WHEN we attempt to apply classical mechanics and electrodynamics to explain
atomic phenomena, they lead to results which are in obvious conflict with
experiment. This is very clearly seen from the contradiction obtained on
applying ordinary electrodynamics to a model of an atom in which the elec-
trons move round the nucleus in classical orbits. During such motion, as in
any accelerated motion of charges, the electrons would have to emit electro-
magnetic waves continually. By this emission, the electrons would lose their
energy, and this would eventually cause them to fall into the nucleus. Thus,
according to classical electrodynamics, the atom would be unstable, which
does not at all agree with reality.

This marked contradiction between theory and experiment indicates that
the censtruction of a theory applicable to atomic phenomena—that is, pheno-
mena <.curring in particles of very small mass at very small distances—
demands a fundamental modification of the basic physical concepts and laws.

As a starting-point for an investigation of these modifications, it is conveni-
ent to take the experimentally observed phenomenon known as electron
diffraction.t It is found that, when a homogeneous beam of electrons passes
through a crystal, the emergent beam exhibits a pattern of alternate maxima
and minima of intensity, wholly similar to the diffraction pattern cbserved
in the diffraction of electromagnetic waves. Thus, under certain conditions,
the behaviour of material particles—in this case, the electrons—displays
features belonging to wave processes.

How markedly this phenomenon contradicts the usual ideas of motion is
best seen from the following imaginary experiment, an idealization of the
experiment of electron diffraction by a crystal. Let us imagine a screen
impermeable to electrons, in which two slits are cut. On observing the
passage of a beam of electrons through one of the slits, the other being
covered, we obtain, on a continuous screen placed behind the slit, some pat-
tern of intensity distribution; in the same way, by uncovering the second

+ The phenomenon of electron diffraction was in fact discovered after quantum mechanics
was invented. In our discussion, however, we shall not adhere to the historical sequence of
development of the theory, but shall endeavour to construct 1t in such a way that the con-
nection between the basic principles of quantum mechanics and the expertmentally observed
phenomena 1s most clearly shown

1 The beam 1s supposed so rarefied that the interaction of the particles in it plays no part.

1



2 The Basic Concepts of Quantum Mechanics §1

slit and covering the first, we obtain another pattern. On observing the
passage of the beam through both slits, we should expect, on the basis of
ordinary classical ideas, a pattern which is a simple superposition of the other
two: each electron, moving in its path, passes through one of the slits and
has no effect on the electrons passing through the otherslit. The phenomenon
of electron diffraction shows, however, that in reality we obtain a diffraction
pattern which, owing to interference, does not at all correspond to the sum
of the patterns given by each slit separately. It is clear that this result can
in no way be reconciled with the idea that electrons move in paths.

Thus the mechanics which governs atomic phenomena—gquantum mechanics
or wave mechanics—must be based on 1deas of motion which are fundamentally
different from those of classical mechanics. In quantum mechanics there is
no such concept as the path of a particle. This forms the content of what is
called the uncertainty principle, one of the fundamental principles of quantum
mechanics, discovered by W. Heisenberg in 1927.¢

In that it rejects the ordinary ideas of classical mechanics, the uncertainty
principle might be said to be negative in content. Of course, this principle
in itself does not suffice as a basis on which to construct a new mechanics of
particles. Such a theory must naturally be founded on some positive asser-
tions, which we shall discuss below (§2). However, in order to formulate
these assertions, we must first ascertain the statement of the problems which
confront quantum mechanics. Te do so, we first examine the special nature
of the interrelation between quantum mechanics and classical mechanics. A
more general theory can usually be formulated in a logically complete manner,
independently of a less general theory which forms a limiting case of it. Thus,
relativistic mechanics can be constructed on the basis of its owr fundamental
principles, without any reference to Newtonian mechanics. Itis in principle
impossible, however, to formulate the basic concepts of quantum mechanics
without using classical mechanics. The fact that an electron] has no definite
path means that it has also, in itself, no other dynamical characteristics.||
Hence it is clear that, for a system composed only of quantum objects,
it would be entirely impossible to construct any logically independent
mechanics. The possibility of a quantitative description of the moticn of an
electron requires the presence alsc of physical objects which obey classical
mechanics to a sufficient degree of accuracy. If an electron interacts with
such a “‘classical object”, the state of the latter is, generally speaking, altered.
The nature and magnitude of this change depend on the state of the electron,
and therefore may serve to characterize it quantitatively

In this connection the *‘classical object” is usually called apparatus, and

+ It is of interest to note that the complete mathernatical formalism of gquantum mechanies
was constructed by W. Heisenberg and E. Schrédinger in 1925-6, before the discovery of
the uncertainty principle, which revealed the physical content of this formalism.

1 In this and the following sections we shall, for brevity, speak of *‘an electron™, meaning
in general anyv object of 2 quantum nature, i.e. a particle or system of particles obeving
quantum mechanics and not classical mechanics

. We refer to quantities which characterize the motion of the electron, and not to those,
such as the charge and the mass, which relate to it as a particle; these are parameters.



§1 The uncertainty principle 3

its interaction with the electron is spoken of as measurement. However, it
must be emphasized that we are here not discussing a process of measurement
in which the physicist-observer takes part. By measurement, in quantum
mechanics, we understand any process of interaction between classical and
quantum objects, occurring apart from and independently of any observer.
The importance of the concept of measurement in quantum mechanics was
elucidated by N. Bohr.

We have defined “‘apparatus” as a physical object which is governed, with
sufficient accuracy, by classical mechanics. Such, for instance, is a body
of large enough mass. However, it must not be supposed that apparatus is
necessarily macroscopic. Under certain conditions, the part of apparatus may
also be taken by an object which is microscopic, since the idea of “‘with
sufficient accuracy’ depends on the actual problem proposed. Thus, the
motion of an electron in a Wilson chamber is observed by means of the
cloudy track which it leaves, and the thickness of this is large-compared with
atornic dimensions; when the path is determined with such low accuracy,
the electron is an entirely classical object.

Thus quantum mechanics occupies a very unusual place among physical
theories: it contains classical mechanics as a limiting case, yet at the same
time it requires this limiting case for its own formulation.

We may now formulate the problem of quantum mechanics. A typical
problem consists in predicting the result of a subsequent measurement from
the known results of previous measurements. Moreover, we shall see later
that, in comparison with classical mechanics, quantum mechanics, generally
speaking, restricts the range of values which can be taken by various physical
quantities (for example, energy): that is, the values which can be obtained
as a result of measuring the quantity concerned. The methods of quantum
mechanics must enable us to determine these admissible values.

The measuring process has in quantum mechanics a very important pro-
perty: it always affects the electron subjected to it, and it is in principle
impossible to make its effect arbitrarily small, for a given accuracy of measure-
ment. The more exact the measurement, the stronger the effect exerted by
it, and only in measurements of very low accuracy can the effect on the mea-
sured object be small. This property of measurements is logically related
to the fact that the dynamical characteristics of the electron appear only as a
result of the measurement itself. It is clear that, if the effect of the measuring
process on the object of it could be made arbitrarily small, this would mean
that the measured quantity has in itself a definite value independent of the
measurement.

Among the various kinds of measurement, the measurement of the co-
ordinates of the electron plays a fundamental part. Within the limits of
applicability of quantum mechanics, a measurement of the coordinates of an
electron can always be performedt with any desired accuracy.

+ Once again we emphasize that, in speaking of “performing a measurement’’, we refer to
the interaction of an electron with a classical “apparatus”, which in ne way presupposes
the presence of an external observer,



4 The Basic Concepts of Quantum Mechanics §1

Let us suppose that, at definite time intervals At, successive measurements of
the coordinates of an electron are made. The results will not in general lie
on a smooth curve. On the contrary, the more accurately the measurements
are made, the more discontinuous and disorderly will be the variation of
their results, in accordance with the non-existence of a path of the electron.
A fairly smooth path is obtained only if the coordinates of the electron are
measured with a low degree of accuracy, as for instance from the condensa-
tion of vapour droplets in a Wilson chamber.

If now, leaving the accuracy of the measurements unchanged, we diminish
the intervals At between measurements, then adjacent measurements, of
course, give neighbouring values of the coordinates. However, the results
of a series of successive measurements, though they lie in a small region of
space, will be distributed in this region in a wholly irregular manner, lying on
no smooth curve. In particular, as At tends to zero, the results of adjacent
measurements by no means tend to lie on one straight line.

This circumstance shows that, in quantum mechanics, there is no such
concept as the velocity of a particle in the classical sense of the word, 1.e. the
limit to which the difference of the coordinates at two instants, divided by
the interval Az between these instants, tends as At tends to zero. However,
we shall see later that in quantum mechanics, nevertheless, a reasonable
definition of the velocity of a particle at a given instant can be constructed,
and this velocity passes into the classical velocity as we pass to classical mech-
anics. But whereas in classical mechanics a particle has definite coordinates
and velocity at any given instant, in quantum mechanics the situation is
entirely different. If, as a result of measurement, the electron is found to have
definite co~. dinates, then it has no definite velocity whatever. Conversely,
if the electron has a definite velocity, it cannot have a definite position in
space. For the simultaneous existence of the coordinates and velocity would
mean the existence of a definite path, which the electron has not. Thus, in
quantum mechanics, the coordinates and velocity of an electron are quantities
which cannot be simultaneously measured exactly, i.e. they cannot simultane-
ously have definite values. We may sav that the coordinates and velocity
of the electron are quantities which do not exist simultaneously. In what
follows we shall derive the quantitative relation which determines the pos-
sibility of an ineaact measurement of the coordinates and velocity at the same
Instant.

A complete description of the state of a physical system in classical mech-
anics 1s effected by stating all its coordinates and velocities at a given instant;;
with these initial data, the equations of motion completely determine the
behaviour of the system at all subsequent instants. In quantum mechanics
such a description is in principle impossible, since the coordinates and the
corresponding velocities cannot exist simultaneously. Thus a description
of the state of a quantum system is effected by means of a smaller number of
quantities than in classical mechanics, i.e. it is less detailed than a classical
description.

A very important consequence follows from this regarding the nature of the



§1 The uncertainty principle 5

predictions made in quantum mechanics. Whereas a classical description
suffices to predict the future motion of a mechanical system with complete
accuracy, the less detailed description given in quantum mechanics evidently
cannot be enough to do this. This means that, even if an electron is in a state
described in the most complete manner possible in quantum mechanics, its
behaviour at subsequent instants is still in principle uncertain. Hence quan-
tum mechanics cannot make completely definite predictions concerning the
future behaviour of the electron. For a given initial state of the electren, a
subsequent measurement can give various results. The problem in
quantum mechanics consists in determining the probability of obtaining vari-
ous results on performing this measurement. It is understood, of course,
that in some cases the probability of a given result of measurement may be
equal to unity, i.e. certainty, so that the result of that measurement is unique.

All measuring processes in quantum mechanics may be divided into two
classes. In one, which contains the majority of measurements, we find those
which do not, in any state of the system, lead with certainty to a unique
result. The other class contains measurements such that for every possible
result of measurement there is a state in which the measurement leads with
certainty to that result. These latter measurements, which may be called
predictable, play an important part in quantum mechanics. The quantitative
characteristics of a state which are determined by such measurements are
what are called physical quantities in quantum mechanics. If in some state
a measurement gives with certainty a unique result, we shall say thatin this
state the corresponding physical quantity has a definite value. In future we
shall always understand the expression ‘“‘physical quantity” in the sense given
here.

We shall often find in what follows that by no means every set of physical
quantities in quantum mechanics can be measured simultaneously, i.e. can
all have definite values at the same time. We have already mentioned one
example, namely the velocity and coordinates of an electron. An important
part is played in quantum mechanics by sets of physical quantities having
the following property: these quantities can be measured simultaneously,
but if they simultaneously have definite values, no other physical quantity
(not being a function of these) can have a definite value in that state. We
shall speak of such sets of physical quantities as complete sets.

Any description of the state of an electron arises as a result of some mea-
surement. We shall now formulate the meaning of a complete description of
a state in quantum mechanics. Completely described states occur as a result
of the simultaneous measurement of a complete set of physical quanti-
tiec. From the results of such a measurement we can, in particular, deter-
mine the probability of various results of any subsequent measurement,
regardless of the history of the electron prior to the first measurement.

From now on (except in §14) we shall understand by the states of a quan-
tum system just these completely described states.
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§2. The principle of superposition

The radical change in the physical concepts of motion in quantum
mechanics as compared with classical mechanics demands, of course, an
equally radical change in the mathematical formalism of the theory. We
must therefore consider first of all the way in which states are described in
quantum mechanics.

We shall denote by g the set of coordinates of a quantum system, and by dg
the product of the differentials of these coordinates. This dg is called an
element of volume in the configuration space of the system; for one particle,
dg coincides with an element of volume dJ in ordinary space.

The basis of the mathematical formalism of quantum mechanics lies in the
proposition that the state of a system can be described by a definite (in
general complex) function Y'(g) of the coordinates. The square of the
modulus of this function determines the probability distribution of the values
of the coordinates: |'V'|2dq is the probability that a measurement performed
on the system will find the values of the coordinates to be in the element dg
of configuration space. The function ¥ is called the wave function of the
system.}

A knowledge of the wave function allows us, in principle, to calculate the
probability of the various results of any measurement (not necessarily of the
coordinates) also. All these probabilities are determined by expressions
bilinear in 1" and 4. The most general form of such an expression is

[[¥@¥*a) ¢(a, ¢ dgd, (2.1)

where the function ¢(g, ¢') depends on the nature and the result of the mea-
surement, and the integration is extended over all configuration space. The
probability ¥"1"* of various values of the coordinates is itself an expression
of this type.1

The state of the system, and with it the wave function, in general varies
with time. In this sense the wave function can be regarded as a function of
time also. [f the wave function is known at some initial instant, then, from
the very meaning of the concept of complete description of a state, it i8 in
principle determined at every succeeding instant. The actual dependence
of the wave function on time is determined by equations which will be de-
rived later.

The sum of the probabilities of ali possible values of the coordinates of
the system must, by definition, be equal to unity. It is therefore necessary
that the result of integrating [¥'|? over all configuration space should be equal
to unity:

f [¥]2dg = 1. (2.2)

4+ It was first introduced into quantum mechanics by Schrédinger in 1926.

1 It is obtained from (2.1) when ¢(g, ¢") = 8(g—gqo) 8(¢"—g,), where & denotes the delta
function, defined in §5 below; g, denotes the value of the coordinates whose probability
is required,
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This equation is what is called the normalization condition for wave functions.
If the integral of |¥'|* converges, then by choosing an appropriate constant
coefficient the function ¥ can always be, as we say, normalized. However, we
shall see later that the integral of |'¥'|> may diverge, and then ¥ cannot be
normalized by the condition (2.2). In such cases \'1',2 does not, of course,
determine the absolute values of the probability of the coordinates, but the
ratio of the values of |'¥'{2 at two different points of configuration space detet-
mines the relative probability of the corresponding values of the coordinates.

Since all quantities calculated by means of the wave function, and having a
direct physical meaning, are of the form (2.1), in which ¥ appears multplied
by W*, it 1s clear that the normalized wave function is determined only to
within a constant phase factor of the form ef= (where 2 1s any real number).
This indeterminacy is in principle irremovable; it is, however, unimportant,
since it has no effect upon any physical results

The positive content of quantum mechanics is founded on a series of
propositions concerning the properties of the wave function These are as
follows.

Suppose that, in a state with wave function 'V',{g), some measurement leads
with certainty to a definite result (result 1), while in a state with ¥{g) it
leads to result 2. Then it is assumed that every linear combination of ¥
and Y, 1.e. every function of the form ¥ +¢,'t, (where ¢, and ¢, are con-
stants), gives a state in which that measurement leads to either result 1 or
result 2. Moreover, we can assert that, if we know the time dependence of
the states, which for the one case is given by the function ¥(g, ¢}, and for the
other by Wy{g, f), then any linear combination also gives a possible dependence
of a state on time. These propositions constitute what is called the principle
of superposition of states, the chief positive principle of quantum mechanics.
In parucular, it follows from this principle that all equations satisfied by
wave functions must be linear in 'V

Let us consider a system composed of two parts, and suppose that the state
of this system is given in such a way that each of its parts is completely
described.+ Then we can say that the probabilities of the coordinates ¢y of
the first part are independent of the probabilities of the coordinates g5 of the
second part, and therefore the probability distribution for the whole system
should be equal to the product of the probabilities of its parts. This means
that the wave function ¥;,(q,, ¢,) of the system can be represented in the form
of a product of the wave functions ¥(g,) and ¥y(g,) of its parts:

W1a(g1, 92) = W'i(g1) ¥a(ga)- (2.3)

If the two parts do not interact, then this relation between the wave function
of the system and those of its parts will be maintained at future instants also,

1 This, of course, means that the state of the whole system is completely described also.
However, we emphasize that the converse statement is by no means true: a complete descrip-
tion of the state of the whole svstem does not in general completely determine the states of
its individual parts (see also §14).
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l.e. we can write

Vio(q1s 925 1) = Fi(q1, 1) Yalges t). (2’4‘)

§3. Operators

Let us consider some physical quantity f which characterizes the state
of a quantum system. Strictly, we should speak in the following discussion
not of one quantity, but of a complete set of them at the same time.
However, the discussion is not essentially changed by this, and for brevity
and simplicity we shall work below in terms of only one physical quantity.

The values which a given physical quantity can take are called in quantum
mechanics its eigenvalues, and the set of these is referred to as the spectrum
of eigenvalues of the given quantity. In classical mechanics, generally speak-
1ng, quantities run through a continuous series of values. In quantum mech-
anics also there are physical quantities (for instance, the coordinates) whose
eigenvalues occupy a continuous range; in such cases we speak of a continuous
spectrum of eigenvalues. As well as such quantities, however, there exist in
quantum mechanics others whose eigenvalues form some discrete set; in
such cases we speak of a discrete spectrum.

We shall suppose for simplicity that the quantity f considered here has a
discrete spectrum; the case of a continuous spectrum will be discussed in §5.
The eigenvalues of the quantity f are denoted by f,, where the suffix n takes
the values 0, 1, 2, 3, .... We also denote the wave function of the system, in
the state where the quantity f has the value f,,, by ¥,,. The wave functions
Y, are called the efgenfunctions of the given physical quantity /. Each of these
funcuons is supposed normalized, so that

efN;qu==L (3.1)

If the system is in some arbitrary state with wave function ¥, a measure-
ment of the quantity f carried out on it will give as a result one of the eigen-
values f,,. In accordance with the principle of superposition, we can assert
that the wave function ¥ must be a linear combination of those eigenfunc-
tions ¥,, which correspond to the values f,, that can be obtained, with prob-
ability different from zero, when a measurement is made on the system and
it is in the state considered. Hence, in the general case of an arbitrary state,
the function ¥ can be represented in the form of a series

Y =2Xa,¥,, (3.2)

where the summation extends over all 7, and the a,, are some constant coeffi-
cients.

Thus we reach the conclusion that any wave function can be, as we say,
expanded in terms of the eigenfunctions of any physical quantity. A set of
functions in terms of which such an expansion can be made is called a complete
(or closed) set.

The expansion (3.2) makes it possible to determine the probability of find-
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ing (i.e. the probability of getting the corresponding result on measurement),
in a system in a state with wave function ¥, any given value f,, of the quantity
f. For, according to what was said in the previous section, these probabili-
ties must be determined by some expressions bilinear in ¥ and ¥'*, and
therefore must be bilinear in a,, and a,*. TFurthermore, these expressions
must, of course, be positive. Finally, the probability of the value f,, must
become unity if the system is in a state with wave function ¥' = ¥, and
must become zero if there is no term containing ¥, in the expansion (3.2)
of the wave function V. The only essentially positive quantity satisfying
these conditions 1s the square of the modulus of the coefhicient a,. Thus we
reach the result that the squared modulus |a,|? of each coefficient in the
expansion (3.2) determines the probability of the corresponding value f, of
the quantity f in the state with wave function ¥. The sum of the probabi-
lities of all possible values f;, must be equal to unity; in other words, the
relation

2 __
T la,)t — 1 (3.3)

must hold.

If the function 1" were not normalized, then the relation (3.3) would not
hold either. The sum X |a,|> would then be given by some expression
bilinear in ¥ and 1*, and becoming unity when ¥ was normalized. Only
the integral { ¥"'¥™ dg is such an expression. Thus the equation

S apa,* = f Yy dg (3.4)

must hold. _
On the other hand, multiplying by ¥ the expansion ¥* = Z ¢, *¥,* of
the function ¥* (the complex conjugate of ¥'), and integrating, we obtain

J‘ ¥+ dg = T a,” f ¥, %Y dg.

Comparing this with (3.4), we have

~

% Ana,* = ]12; a* J VoW dg,

from which we derive the following formula determining the coefficients a
in the expansion of the function ¥ in terms of the eigenfunctions ‘¥, :

n

a, — f Y, * dg. (3.5)
If we substitute here from (3.2), we obtain

Gy =3 a, [ ¥ ¥.*dg,

from which it is evident that the eigenfunctions must satisfy the conditions

[¥n¥a® dg =8, (3.6)
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where 6, = 1forn = mand 8,,, = Oforn # m. The fact that the integrals
of the products ¥, ¥, * with m $ u vanish is called the orthogonality of the
functions ¥,,. Thus the set of eigenfunctions ¥, forms a complete set of
normalized and orthogonal (or, for brevity, orthonormal) functions.

We shall now introduce the concept of the mean value f of the quantity f
in the given state. In accordance with the usual definition of mean values,
we define f as the sum of all the eigenvalues f,, of the given quantity, each
multiplied by the corresponding probability |a,|2. Thus

f=Sflal. (3.7)

We shall write fin the form of an expression which does not contain the
coefficients 4, in the expansion of the function ¥, but this function itself.
Since the products a,a,* appear in (3.7), it is clear that the required expres-
ston must be bilinear in ¥ and ¥* We introduce a mathematical opera-
tor, which we denotet by f and define as follows. Let (f¥) denote the result
of the operator f acting on the function ¥. We define f in such a way that
the integral of the product of {(f¥’) and the complex conjugate function ¥™*
is equal to the mean value f:

f= f () dg. (3.8)

It is easily seen that, in the general case, the operator f is a linear}
integral operator. For, using the expression (3.5) for a,,, we can rewrite the
definition (3.7) of the mean value in the form

f: %.’rﬂanaﬂ‘l = J.‘F*(E anfn ’n) dg'

Comparing this with (3.8), we see that the result of the operator f acting on
the function ¥ has the form

(f¥) = S apfu¥n (3.9)

If we substitute here the expression (3.5) for a,, we find that fis an integral
operator of the form

(f¥) = [ Kig, 9)¥(g) dg', (3.10)
where the function K(q, ¢’) (called the kernel of the operator) is
K(g,¢) = L f¥2"¢¥A(9)- (3.11)

Thus, for every physical quantity in quantum mechanics, there 1s a definite
corresponding linear operator.
It is seen from (3.9) that, if the function ¥ is one of the eigenfunctions ¥,

+ Bv convention, we shall alwavs denote operators by letters with circumfiexes.
1 An operator is said to be linear 1f 1t has the properties

f(‘{"x'i“}.z) =f\y1 +f‘*‘2 and f(a¥) = af"}',

where ¥, and ¥, are arbitrary functions and a is an arbitrary constant.
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(so that all the g, except one are zero), then, when the operator f acts on it,
this function is simply multiplied by the corresponding eigenvalue f, :

f¥n =1 ¥ (3.12)

(In what follows we shall always omit the parentheses in the expression
(f¥), where this cannot cause any misunderstanding; the operator is taken
to act on the expression which follows it.) Thus we can say that the eigen-
functions of the given physical quantity f are the solutions of the equation

f¥ =rv,

where f is a constant, and the eigenvalues are the values of this constant for
which the above equation has solutions satisfying the required conditions.
As we shall see below, the form of the operators for various physical
quantities can be determined from direct physical considerations, and then
the above property of the operators enables us to find the eigenfunctions
and eigenvalues by solving the equations f¥ = fF,

Both the eigenvalues of a real physical quantity and its mean value in
every state are real. This imposes a restriction on the corresponding
operators. Equating the expression (3.8) to its complex conjugate, we
obtain the relation

[we(f¥)dg = [w(f*E*) aq, (3.13)

where f* denotes the operator which is the complex conjugate of f.+ This
relation does not hold in general for an arbitrary linear operator, so that it is
a restriction on the form of the operator £ For an arbitrary operator f we
can find what is called the transposed operator f, defined in such a way that

." O(f¥) dg = J W(f ) dg, (3.14)

where ¥ and @ are two different functions. If we take, as the function @,
the function ¥* which is the complex conjugate of ¥, then a comparison with
(3.13) shows that we must have

F=re (3.15)

Operators satisfying this condition are said to be Hermitian.] Thus the
operators corresponding, in the mathematical formalism of quantum
mechanics, to real physical quantities must be Hermitian.

We can formally consider complex physical quantities also, i.e. those
whose eigenvalues are complex. Let f be such a quantity. Then we can
introduce its complex conjugate quantity f*, whose eigenvalues are the com-
plex conjugates of those of f. We denote by f* the operator corresponding
to the quantity f*. It is called the Hermitian conjugate of the operator f and,

4 By defimition, if for the operator f we have fd = ¢, then the complex conjugate operator
f* is that for which we have f*y%* = ¢*

1 For a linear integral operator of the form (3.10), the Hermitian condition means that
the kernel of the operator must be such that K(g, ¢) =K™*(¢’, g).
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in general, will be different from the definition of the operator /*: the mean
value of the quantity f* in a state ¥ is

fr=[wefrdg

We also have .
(f)* = [[ ¥=/¥" dg)*
= [ Wi*¥=* dg

= [Wrf*q dg.

Equating these two expressions gives
fr=/ 3 16)

from which it is clear that £~ is in general not the same as f*.
The condition (3 15) can now be written

f=7 (3.17)

1.e. the operator of a real physical quantity 1s the same as its Herminan
conjugate (Hermitian operators are also callec self-conjugate).

We shall show how the orthogonality of the eigenfunctions of an Hermitian
operator corrasponding to different eigenvalues can be directly proved. Let
fx and [, be two different eigenvalues of the real quantity f, and Y, ¥y, the
corresponding eigenfunctions:

f\}”“ =fanm f‘ym =f'm ’m-

Multiplying both sides of the first of these equations by ¥, *, and both
sides of the complex conjugate of the second by ¥,,, and subtracting corre-
sponding terms, we find

lpm*f‘yn '—\P‘n,f*qu* = (fn _fm)‘?n‘{rm*"

We integrate both sides of this equation over g. Since f* = f, by (3.14) the
integral on the left-hand side of the equation is zero, so that we have

(famfm) [ ¥ ¥ n* dg =0,

whence, since f,, # f,,, we obtain the required orthogonality property of the
functions ¥, and ¥,,.

We have spoken here of only one physical quantity f, whereas, as we said
at the beginning of this section, we should have spoken of a complete set
of simultaneouslv measurable physical quantities. We should then have
found that to each of these quantities f, g, ... there corresponds its operator
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f, &, --- . The eigenfunctions ¥, then correspond to states in which all the
quantities concerned have definite values, 1.e. they correspond to definite
sets of eigenvalues fy,, gu, ... , and are simultaneous solutions of the system
of equations

f¥ =f¥, f¥=g¥,...

§4. Addition and multiplication of operators

If fand § are th operators corresponding to two physical quantities f and
g, the sum f+g has a corresponding operator f+4. However, the signi-
ficance of adding different physical quantities in quantum mechanics
depends considerably on whether the quantities are or are not simul-
taneously measurable. If f and g are simultaneously measurable, the
operators f and # have common eigenfunctions, which are also eigen-
functions of the operator -+, and the eigenvalues of the latter operator are
equal to the sums f,, +gn. Butif fand g cannot simultaneously take definite
values, their sum f+ g has a more restricted significance. We can assert only
that the mean value of this quantity in any state is equal to the sum of the
mean values of the separate quantities:

f+g = f+e. (4.1)

The eigenvalues and eigenfunctions of the operator f+ ¢ will not, in general,
now bear any relation to those of the quantities f and g. It is evident that,
if the operators f and g are Hermitian, the operator f+# will be so too, so
that its eigenvalues are real and are equal to those of the new quantity f+¢
thus defined.

The following theorem should be noted. Let f, and g, be the smallest
eigenvalues of the quantities f and g, and (f+g), that of the quantity f4g.
Then

(f+8)o = fotgo (4-2)

The equality holds if f and g can be measured simultaneously. The proof
follows from the obvious fact that the mean value of a quantity is always
greater than or equal to its least eigenvalue. In a state in which the quantity
f+g has the value (f+g), we have f1g = (f+£)q and since, on the other
hand, f3g = f+8 = fo+ge we arrive at the inequality (4.2).

Next, let f and g once more be quantities that can be measured simultane-
ously. Besides their sum, we can also introduce the concept of their product
as being a quantity whose eigenvalues are equal to the products of those of the
quantities f and g. It is easy to see that, to this quantity, there corresponds
an operator whose effect consists of the successive action on the function
of first one and then the other operator. Such an operator is represented
mathematically by the product of the operators f and . For, if ¥, are the
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eigenfunctions common to the operators f and £, we have
fé‘yﬂ Zf(é‘yﬂ) = fgﬂl}'ﬂ = gﬂfl}'n = Zufn n

(the symbol f¢ denotes an operator whose effect on a function ¥ consists of
the successive action first of the operator § on the function ¥ and then of the
operator f on the function #¥). We could equally well take the operator §f
instead of f¢, the former differing from the latter in the order of its factors.
It is obvious that the result of the action of either of these operators on the
functions Y, will be the same. Since, however, every wave function ¥ can
be represented as a linear combination of the functions ¥, it follows that
the result of the action of the operators f§ and #f on an arbitrary function will
also be the same. This fact can be written in the form of the symbolic

equation f§ = gf or
fe-&f = 0. (+3)

Two such operators f and # are said to be commutatize, or to commute
with each other. Thus we arrive at the important result: if two quantities
f and g can simultaneously take definite values, then their operators com-
mute with each other.

The converse theorem can also be proved (§11): if the operators f and §
commute, then all their eigenfunctions can be taken common to both;
physically, this means that the corresponding physical quantities can be
measured simultaneously. Thus the commutability of the operators is a
necessary and sufficient condition for the physical quantities to be simultane-
ously measurable.

A particular case of the product of operators is an operator raised to some
power. From the above discussion we can deduce that the eigenvalues of an
operator f? (where p is an integer) are equal to the pth powers of the eigen-
values of the operator f. Any function ¢(f) of an operator can be defined
as an operator whose eigenvalues are equal to the same function ¢( f) of
the eigenvalues of the operator f. If the function ¢( f) can be expanded as a
Taylor series, this expresses the effect of the operator ¢( f) in terms of those
of various powers f 7.

In particular, the operator f -1 is called the inverse of the operator /. It is
evident that the successive action of the operators f and f ~ on any function
leaves the latter unchanged, ie. ff-1 = f-1f = 1.

If the quantities f and g cannot be measured simultaneously, the concept
of their product does not have the same direct meaning. This appears in
the fact that the operator f§ is not Hermitian in this case, and hence cannot
correspond to any real physical quantity. For, by the definition of the
transpose of an operator we can write

[ ¥f@ dg = [¥f(60) dg = [ (O F) d

Here the operator f acts only on the function ¥, and the operator § on @, so
that the integrand is a simple product of two functions £® and . Again
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using the definition of the transpose of an operator, we can write

[wfeo ag = [ (f¥)ge) dg = [ 07 ag.

Thus we obtain an integral in which the functions ¥ and ® have changed
places as compared with the original one. In other words, the operator §
is the transpose of f4, and we can write

=K (4.4)

i.e. the transpose of the product f§ is the product of the transposes of the
factors written in the opposite order. Taking the complex conjugate of both
sides of equation (4.4), we have

(fér =& f (+.5)

If each of the operators f and ¢ 1s Hermutian, then (foy =§f It follows

from this that the operator /¢ is Hermitian if and only if the factors f and £
commute.

We note that, from the products f§ and £ of two non-commuting Hermitian
operators, we can form an Hermitian operator, the symmetrized product

YfE+ED). (4.6)

It is easy to see that the difference f¢—gf is an anti- Hermitian operator
(i.e. one for which the transpose is equal to the complex conjugate taken with
the opposite sign). It can be made Hermitian by multiplying by z; thus

(f§—&f) (4.7)
1s again an Hermitian operator.
In what follows we shall sometimes use for brevity the notation

f8)y =fe-&f, (4.8)
called the commutator of these operators. It is easily seen that
U8, by = U, g +ftg, by (4.9)

We notice that, if {f, A} = 0 and {g, £} = 0, it does not in general follow
that fand § commute.

§5. The continuous spectrum

All the relations given in §§3 and 4, describing the properties of the eigen-
functions of a discrete spectrum, can be generahized without difficulty to the
case of a continuous spectrum of eigenvalues.

Let f be a physical quantity having a continuous spectrum. We shall
denote its eigenvalues by the same letter f simply, and the corresponding
eigenfunctions by 1';. Just as an arbitrary wave function '’ can be expanded
in a series (3.2) of eigenfunctions of a quanuty having a discrete spectrum,
1t can also be expanded (this time as an integral) in terms of the complete
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set of eigenfunctions of a quantity with a continuous spectrum. This
expansion has the form

¥(g) = [ a¥/(e) &, (5.1)

where the integration is extended over the whole range of values that can be
taken by the quantity f.

The subject of the normalization of the eigenfunctions of a continuous
spectrum 1s more complex than in the case of a discrete spectrum. The
requirement that the integral of the squared modulus of the function should
be equal to unity cannot here be satisfied, as we shall see below. Instead,
we try to normalize the functions 1"y in such a way that |as|2 df is the prob-
ability that the physical quantity concerned, in the state described by the
wave function ¥, has a value between f and f+df. Since the sum of the
probabilities of all possible values of f must be equal to unity, we have

[lad?dr =1 (5.2)

(similarly to the relation {3.3) for a discrete spectrum).
Proceeding in exactly the same way as in the derivation of formula (3.5),
and using the same arguments, we can write, firstly,

[ g [lait o
and, secondly,

f YP* dg = f f a ¥ MY dfdg.

By comparing these two expressions we find the formula which determines
the expansion coefficients,

a, = [ ¥(@¥"(9) dg, (5:3)

1n exact analogy to (3.5).
To derive the normalization condition, we now substitute (5.1) in (5.3),
and obtain

ay = f ap(J¥,¥,* dg) df".

This relation must hold for arbitrary ay, and therefore must be satisfied
identically. For this to be so, it is necessary that, first of all, the coefficient
of as. in the integrand (i.e. the integral [¥,‘Fs* dg) should be zero for
all ' #f. For f' = f, this coefficient must become infinite (otherwise the
integral over f’ would vanish). Thus the integral [ ¥ ¥ ,* dg is a function
of the difference f'—f, which becomes zero for values of the argument
different from zero and is infinite when the argument is zero. We denote
this function by &(f'—f):

J' V8 dg = 5(f'—f). (5.4)
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The manner in which the function 8(f'—f) becomes infinite for f'—f = 0
is determined by the fact that we must have

[ 8= apdf = a.

It is clear that, for this to be so, we must have

fS(f’--f) df’ = 1.

The function thus defined is called a delta function, and was first used in
theoretical physics by P. A. M. Dirac. We shall write out once more the

formulae which define it. They are

8(x) =0forx # 0, 8(0) = oo, (5.5)
while

fS(x) dx = 1. (5.6)

We can take as limits of integration any numbers such that x = 0 lies between
them. If f(x) is some function continuous at x = 0, then

[ 3e)f(x) dx = f(0). (5.7)
This formula can be written in the more general form

[ x—a)fx) dx = (a), (58)

where the range of integration includes the point x = g, and f(x) is continuous
at x = a. It is also evident that

8(—x) = 8(x), (5.9)

i.e. the delta function is even. Finally, writing
= r dy 1
Soax)dx = | §(y) — = —,
JHees= o=
we can deduce that
, 8(ax) = (1/]a) 8(x), (5.10)
where o Is any constant.

The formula (5.4) gives the normalization rule for the eigenfunctions of a
continuous spectrum; it replaces the condition (3.6) for a discrete spectrum.
We see that the functions ¥y and ¥y with f # f are, as before, orthogonal.
However, the integrals of the squared moduli |2 of the functions diverge
for a continuous spectrum.

The functions V' s(g) satisfy still another relation similar to (5.4). To derive
this, we substitute (5.3) in (5.1), which gives

Wlg) = [ (@) ¥ @)Y A(g) &) dg’,

whence we can at once deduce that we must have

[¥@)¥(9) of = 8(g'— ). (5.11)
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There is, of course, an analogous relation for a discrete spectrum:
LW MG Walg) = 8(g'—9)- (5.12)

Comparing the pair of formulae (5.1), (5.4) with the pair (5.3), (5.11), we
see that, on the one hand, the function ¥(g) can be expanded in terms of
the functions ¥ s(g) with expansion coefficients a;y and, on the other hand,
formula (5.3) represents an entirely analogous expansion of the function
a; = a(f) in terms of the functions ¥ *(g), while the ¥(g) play the part of
expansion coefficients. The function a(f), like W(g), completely determines
the state of the system; it is sometimes called a wave function in the f repre-
sentation (while the function ¥(g¢) is called a wave function in the ¢ representa-
tion). Just as |'¥(g)|? determines the probability for the system to have co-
ordinates lying in a given interval dg, so |a(f)|® determines the probability for
the values of the quantity f to lie in a given interval df. On the one hand,
the functions 1" /(g) are the eigenfunctions of the quantity f in the g representa-
tion; on the other hand, their complex conjugates are the eigenfunctions of
the coordinate ¢ in the f representation.

Let ¢(f) be some function of the quantity f, such that ¢ and f are related in
a one-to-one manner. Each of the functions ¥,(g) can then be regarded as
an eigenfunction of the quantity ¢. Here, however, the normalization of
these functions must be changed: the eigenfunctions ¥',(g) of the quantity ¢
must be normalized by the condition

[ War¥ao® dg = 814/~ (1)),

whereas the functions ¥';. are normalized by the condition (5.4). The argu-
ment of the delta function becomes zero only for f* = f. As f' approaches f,

we have ¢(f)—¢(f) = [d¢(){df] . (f'—=F)- By (5.10) we can therefore writef

1
[ )—(f)] = mﬂf =f)- (5.13)

Comparing this with (5.4), we see that the functions ¥y and ¥, are related
by
1
=,
V1dé(f)/df|

There are also physical quantities which in one range of values have a
discrete spectrum, and in another a continuous spectrum. For the eigen-
functions of such a quantity all the relations derived in this and the previous
sections are, of course, true. It need only be noted that the complete set
of functions is formed by combining the eigenfunctions of both spectra,

Yaon (5.14)

+ In general, if ¢(x) is some one-valued function (the inverse function need not be one-
valued), we have

1
U = 2 o), (5.13a)

where ¢ are the roots of the equation ¢(x) = 0.
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Hence the expansion of an arbitrary wave function in terms of the eigenfunc-
tions of such a quantity has the form

¥(g) = % a¥ula)+ [ a¥s(e) & (5.15)

where the sum is taken over the discrete spectrum and the integral over the
whole continuous spectrum.

The coordinate g itself is an example of a quantity having a continuous
spectrum. It is easy to see that the operator corresponding to it is simply
multiplication by ¢. For, since the probability of the various values of the
coordinate is determined by the square |¥(g)|2, the mean value of the
coordinate 1s

g=[q¥Izdg = [¥*q¥ dg.

Comparison of this with the definition (3.8) of an operator shows thatt

§=4q (5.16)

The eigenfunctions of this operator must be determined, according to the
usual rule, by the equation ¢¥, = ¢,'¥,,, where ¢, temporarily denotes the
actual values of the coordinate as distinct from the variable ¢. Since this
equation can be satisfied either by V', = 0 or by ¢ == g, it is clear that the
eigenfunctions which satisfy the normalization condition are}

¥e, = 3(g—g0)- (5.17)

§6. The passage to the limiting case of classical mechanics

Quantum mechanics contains classical mechanics in the form of a certain
limiting case. The question arises as to how this passage to the limit is
made.

In quantum mechanics an electron is described by a wave function which
determines the various values of its coordinates; of this function we so far
know only that it is the solution of a certain linear partial differential equation.
In classical mechanics, on the other hand, an electron is regarded as a material
particle, moving in a path which is completely determined by the equations
of motion. There is an interrelation, somewhat similar to that between
quantum and classical mechanics, in electrodynamics between wave optics

+ In future we shall always, for simplicity, write operators which amount to multiplication
by some quantity in the form of that quantity itself.

1 The expansion coefficients for an arbitrary function ¥ in terms of these eigenfunctions
are

a,, = f‘*’(q)atq—qo) dg = ¥(go)-
The probability that the value of the coordinate lies in a given interval dg, is
|‘7cl,]2 dgo = W(go)i* dy,
as it should be.
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and geometrical optics. In wave optics, the electromagnetic waves are
described by the electric and magnetic field vectors, which satisfy a definite
system of linear differential equations, namely Maxwell’s equations In
geometrical optics, however, the propagation of light along definite paths, or
rays, is considered. Such an analogy enables us to see that the passage from
quantum mechanics to the limit of classical mechanics occurs similarly to the
passage from wave optics to geometrical optics.

Let us recall how this latter transition is made mathematically (see Fields,
§53). Let u be any of the field components in the electromagnetic wave. It
can be written in the form u = aef¢ (with @ and ¢ real), where a is called the
amplitude and ¢ the phase of the wave (called in geometrical optics the
eikonal). The limiting case of geometrical optics corresponds to small wave-
lengths; this is expressed mathematically by saying that ¢ varies by a large
amount over short distances; this means, in parucular, that it can be
supposed large in absolute value.

Similarly, we start from the hypothesis that, to the limiting case of classical
mechanics, there correspond in quantum mechanics wave functions of the
form V' = ae'$, where a is a slowly varying function and ¢ takes large values.
As 1s well known, the path of a particle can be determined in mechanics by
means of the variational principle, according to which what is called the
action S of a mechanical system must take its least possible value (the principle
of least action). In geometrical optics the path of the rays is determined by
what is called Fermat's principle, according to which the optical path length
of the ray, i.e. the difference between its phases at the beginning and end of
the path, must t1ke its least (or greatest) possible value.

On the basis of this analogy, we can assert that the phase ¢ of the wave
function, in the limiting (classical) case, must be proportional to the mech-
anical action S of the physical system considered, ie. we must have
S = constant X ¢. The constant of proportionality is called Planck’s con-
stantt and 1s denoted by 4. It has the dimensions of action (since ¢ is
dimensionless) and has the value

h = 1-054 x 1027 erg sec.

Thus, the wave function of an ‘‘almost classical” (or, as we say, quasi-
classical) physical system has the form

¥ = gelS/n, (6.1)

Planck’s constant A plays a fundamental part in all quantum phenomena.
Its relative value (compared with other quantities of the same dimensions)
determines the “extent of quantization’ of a given physical system. The
transition from quantum mechanics to classical mechanics, corresponding to
large phase, can be formally described as 2 passage to the limit £ — 0 (just

+ It was introduced into physics by M. Planck in 1900. The constant £, which we use
everywhere in this book, is, strictly speaking, Planck’s constant divided by 2#; this is Dirac’s
notation.
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as the transition from wave optics to geometrical optics corresponds to a
passage to the limit of zero wavelength, A - 0).

We have ascertained the limiting form of the wave function, but the
question still remains how it is related to classical motion in a path. In
general, the motion described by the wave function does not tend to motion
in a definite path. Its connection with classical motion is that, if at some
initial instant the wave function, and with it the probability distribution of
the coordinates, is given, then at subsequent instants this distribution will
change according to the laws of classical mechanics (for a more detailed dis-
cussion of this, see the end of §17).

In order to obtain motion in a definite path, we must start from a wave
function of a particular form, which is perceptibly different from zero only
in a very small region of space (what is called a wave packet); the dimensions
of this region must tend to zero with 4. Then we can say that, in the quasi-
classical case, the wave packet will move in space along a classical path of a
particle.

Finally, quantum-mechanical operators must reduce, in the limit, simply
to multiplication by the corresponding physical quantity.

§7. The wave function and measurements

Let us again return to the process of measurement, whose properties have
been qualitatively discussed in §1; we shall show how these properties are
related to the mathematical formalism of quantum mechanics.

We consider a system consisting of two parts: a classical apparatus and
an electron (regarded as a quantum object). The process of measurement
consists in these two parts’ coming into interaction with each other, as a
result of which the apparatus passes from its initial state into some other;
from this change of state we draw conclusions concerning the state of the
electron. The states of the apparatus are distinguished by the values of some
physical quantity (or quantities) characterizing it—the “‘readings of the ap-
paratus’”’. We conventionally denote this quantity by g, and its eigenvalues
by g.; these take in general, in accordance with the classical nature of the
apparatus, a continuous range of values, but we shall—merely in order to
simplify the subsequent formulae—suppose the spectrum discrete. The
states of the apparatus are described by means of quasi-classical wave func-
tions, which we shall denote by @, (£), where the suffix n corresponds to the
“reading”’ g, of the apparatus, and ¢ denotes the set of its coordinates. The
classical nature of the apparatus appears in the fact that, at any given instant,
we can say with certainty that it is in one of the known states @, with some
definite value of the quantity g; for a quantum system such an assertion
would, of course, be unjustified.

Let @y(£) be the wave function of the initial state of the apparatus (before
the measurement), and ‘t'(¢) some arbitrary normalized initial wave function
of the electron (¢ denoting its coordinates). These functions describe the
state of the apparatus and of the electron independently, and therefore the
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initial wave function of the whole system is the product

F(g)Po(£)- (7.1)

Next, the apparatus and the electron interact with each other. Applying the
equations of quantum mechanics, we can in principle follow the change of
the wave function of the system with time. After the measuring process it
may not, of course, be a product of functions of ¢ and ¢g. Expanding the
wave function in terms of the eigenfunctions @, of the apparatus (which
form a complete set of functions), we obtain a sum of the form

Z AQ)0nl) (72)

where the 4,(¢) are some functions of q.

The classical nature of the apparatus, and the double role of classical
mechanics as both the limiting case and the foundation of quantum mechanics,
now make their appearance. As has been said above, the classical nature of
the apparatus means that, at any instant, the quantity g (the “‘reading of the
apparatus’’) has some definite value. This enables us to say that the state
of the system apparatus 4 electron after the measurement will in actual fact
be described, not by the entire sum (7.2), but by only the one term which
corresponds to the “‘reading” g, of the apparatus,

A, (Q) D). (7.3)

It follows from this that 4,(g) is proportional to the wave function of the
electron after the measurement. It is not the wave function itself, as is seen
from the fact that the function 4;(¢) is not normalized. It contains both
information concerning the properties of the resulting state of the electron
and the probability (determined by the initial state of the system) of the
occurrence of the nth “reading” of the apparatus.

Since the equations of quantumn mechanics are linear, the relation between
Ax(g) and the initial wave function of the electron ¥(g) is in general given by
some linear integral operator:

Anlg) = f Kn(g, ¢)¥(q) dg', (7.4)

with a kernel K, (g, ¢') which characterizes the measurement process con-
cerned.

We shall suppose that the measurement concerned is such that it gives a
complete description of the state of the electron. In other words (see §1),
in the resulting state the probabilities of all the quantities must be indepen-
dent of the previous state of the electron (before the measurement). Mathe-
matically, this means that the form of the functions 4,(g) must be determined
by the measuring process itself, and does not depend on the initial wave
function ¥(q) of the electron. Thus the 4, must have the form

An(q) = andn(@)s (7.5)
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where the ¢, are definite functions, which we suppose normalized, and only
the constants a, depend on'¥(g). Intheintegral relation (7.4) this corresponds
to a kernel K,,(q, ¢") which is a product of a function of ¢ and a function of ¢':

Kn(9: ") = én(q)¥n™(g"); (7.6)

then the linear relation between the constants a, and the function ¥{(g) is
ap = [ ¥(g)¥."(a) dg, (7.7)

where the ¥, (¢) are certain functions depending on the process of measure-
ment.

The functions ¢,(¢) are the normalized wave functions of the electron after
measurement. Thus we see how the mathematical formalism of the theory
reflects the possibility of finding by measurement a state of the electron
described by a definite wave function.

If the measurement is made on an electron with a given wave function
¥'(q), the constants a, have a simple physical meaning: in accordance with
the usual rules, ]a,|? is the probability that the measurement will give the
nth resuit. The sum of the probabilities of all results is equal to unity:

T |apf? = 1. (7.8)

In order that equations (7.7) and (7.8) should hold for an arbitrary nor-
malized function ¥(g), it is necessary (cf. §3) that an arbitrary function ‘¥(g)
can be expanded in terms of the functions ¥,(g). This means that the
functions ¥'»(¢) form a complete set of normalized and orthogonal functions.

If the initial wave function of the electron coincides with one of the func-
tions ¥, (g), then the corresponding constant a, is evidently equal to unity,
while all the others are zero. In other words, a measurement made on an
electron in the state ¥, (g) gives with certainty the nth result.

All these properties of the functions ¥, (¢) show that they are the eigen-
functions of some physical quantity (denoted by f ) which characterizes the
electron, and the measurement concerned can be spoken of as 2 measurement
of this quantity.

It is very important to notice that the functions ¥, (¢) do not, in general,
coincide with the functions ¢,(g); the latter are in general not even mutually
orthogonal, and do not form a set of eigenfunctions of any operator. This
expresses the fact that the results of measurements in quantum mechanics
cannot be reproduced. If the electron was in a state ¥, (¢), then a measure-
ment of the quantity f carried out on it leads with certainty to the value f,.
After the measurement, however, the electron is in a state ¢,(g) different
from its initial one, and in this state the quantity f does not in general take
any definite value. Hence, on carrying out a second measurement on the
electron immediately after the first, we should obtain for f a value which did
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not agree with that obtained from the first measurement.t To predict (in the
sense of calculating probabilities) the result of the second measurement from
the known result of the first, we must take from the first measurement the
wave function ¢,(¢g) of the state in which it resulted, and from the second
measurement the wave function ¥,(¢) of the state whose probability is re-
quired. This means that from the equations of quantum mechanics we deter-
mine the wave function ¢,(g, ) which, at the instant when the first measure-
ment 1s made, is equal to¢,(¢g); the probability of the mth result of the second
measurement, made at time ¢, is then given by the squared modulus of the
integral [¢.(q, £)¥,*(¢) dg.

We see that the measuring process in quantum mechanics has a “‘two-
faced” character: it plays different parts with respect to the past and future
of the electron. With respect to the past, it ““verifies” the probabilities of the
various possible results predicted from the state brought about by the previ-
ous measurement. With respect to the future, it brings about a new state
(see also §44). Thus the very nature of the process of measurement involves
a far-reaching principle of irreversibility.

This irreversibility is of fundamental significance. We shall see later (at
the end of §18) that the basic equations of quantum mechanics are in them-
selves symmetrical with respect to a change in the sign of the time; here
quantum mechanics does not differ from classical mechanics. The irrever-
sibility of the process of measurement, however, causes the two directions
of time to be physically non-equivalent, i.e. creates a difference between the
future and the past.

+ There is, however, an important exception to the statement that results of measurements
cannot be reproduced: the one quantity the result of whose measurement can be exactly
reproduced is the coordinate. Two measurements of the coordinates of an electron, made at
a sufficiently small interval of time, must give neighbouring values; if this were not so, it
would mean that the electron had an infinite velocity. Mathematically, this 1s related to the
fact that the coordinate commutes with the operator of the interaction energy between the
electron and the apparatus, since this energy is (in non-relativistic theory) a function of the
coordinates only. '



CHAPTER II

ENERGY AND MOMENTUM

§8. The Hamiltonian operator

THE wave function ¥ completely determines the state of a physical system
in quantum mechanics. This means that, if this function is given at some
instant, not only are all the properties of the system at that instant described,
but its behaviour at all subsequent instants is determined (only, of course, to
the degree of completeness which is generally admissible in quantum mech-
anics). The mathematical expression of this fact is that the value of the deri-
vative 2¥/dt of the wave function with respect to time at any given instant
must be determined by the value of the function itself at that instant, and,
by the principle of superposition, the relation between them must be linear.
In the most general form we can write

ih Fjét = HY, (8.1)

where H is some linear operator; the factor i/ is introduced here for a reason
that will become apparent.
Since the integral [\"*Y}" dg is a constant independent of ume, we have

d fpiflzd —f”‘*w +f‘¥*awd ~0
dt =) ar 1

Substituting here (8.1) and using in the first integral the definition of the
transpose of an operator, we can write (omitting the common factor i/A)

[WwAedg - [W*HY dg = [¥*E*4 dg ~ [¥*EY dg
— [W*H*—H)¥ dg = 0.

Since this equation must hold for an arbitrary function ', 1t follows that we
must have identically H+ = H; the operator H is therefore Hermitian. Let
us find the physical quantity to which it corresponds. To do this, we use
the limiting expression (6.1) for the wave function and write

0¥ i oS
& kot
the slowly varying amplitude @ need not be differentiated. Comparing this

equation with the definition (8.1), we see that, in the limiting case, the
operator H{ reduces to simply multiplying by —4S dt. This means that

25
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— &S ¢t is the physical quantity into which the Hermitian operator H
passes.

The derivative — ¢S &t is just Hamilton’s function H for a2 mechanical
system. Thus the operator H is what corresponds in quantum mechanics
to Hamilton’s function; this operator is called the Hamiltonian operator or,
more brieflv, the Hamiltonian of the system. If the form of the Hamiltonian
is known, equation (8.1) determines the wave functions of the phyvsical
system concerned. This fundamental equation of quantum mechanics 1s
called the wave equation

§9. The differentiation of operators with respect to time

The concept of the derivative of a physical quantity with respect to time
cannot be defined in quantum mechanics in the same way as in classical mech-
anics. For the definition of the derivative in classical mechanics involves
the consideration of the values of the quantity at two neighbouring but
distinct instants of time. In quantum mechanics, however, a quantity which
at some instant has a definite value does not in general have definite values at
subsequent instants; this was discussed in detail in §1.

Hence the idea of the derivative with respect to time must be differently
defined in quantum mechanics. It is natural to define the derivative f of a
quantity f as the quantity whose mean value is equal to the derivative, with
respect to time, of the mean value /. Thus we have the definition

f=7 (9.1)
Starting from this definition, it is easy to obtain an expression for the

quantum-mechanical operator f corresponding to the quantity f:

f=1 d f%f'qfd f‘i’*af‘i’d + fawf‘ifd +f\;f*fawd
& = a1 at ! ot T
Here 3f]0t is the operator obtained by differentiating the operator f with

respect to time; f may depend on the time as a parameter. Substituting for
0't/at, 9'1"* /ot their expressions according to (8.1), we obtain

of ] . 1 .
f= f\y Elpd”?afm ¥+ fig dq—;zf‘l’f(ﬁ‘i’)dq.
Since the operator H is Hermitian, we have
[ @ow) o) dg = [ WeBf¥ dg:
thus
= w*(a—f.;-fﬁf—ff}?)'}f dq
&t kK '

Since, on the other hand, we must have, by the definition of mean values,
f _]"i"’*‘f‘l* dg, it is seen that the expression in parentheses in the inte-
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grand is the required operator f‘]‘
of i
= —+—(Hf—/H). 9.2
f e s B~1R) (9.2)

If the operatorfis independent of time, f reduces, apart from a constant
factor, to the commurator of the operator f and the Hamiltonian,

A very important class of physical quantities is formed by those whose
operators do not depend explicitly on time, and also commute with the
Hamiltonian, so that f = 0. Such quantities are said to be conserved. For
these f = f = 0, that is, f is constant. In other words, the mean value of
the quantity remains constant in time. We can also assert that, if in a given
state the quantity f has a definite value (i.e. the wave funcuon is an eigen-
function of the operator f ), then it will have a definite value (the same one)
at subsequent instants also.

§10. Stationary states

The Hamiltonian of a closed system (and of a system in a constant external
field) cannot contain the time explicitly. This follows from the fact that,
for such a system, all times are equivalent. Since, on the other hand, any
operator of course commutes with itself, we reach the conclysion that
Hamilton’s function is conserved for systems which are not in a varying
external field. As is well known, a Hamilton’s function which is conserved
1s called the energy. The law of conservauon of energy in quantum mecha-
nics signifies that, if 1n a given state the energy has a definite value, this
value remains constant in time.

+ In classical mechanics we have for the toral derivartive, with respect to time, of a quantity
f which is 2 function of the generalized coordinates ¢; and momenta p; of the system

df of Z‘: aof  of,

Pl é‘t-'l' ‘ (?q:q.‘F?‘p“Pe)
Substituting, 1in accordance with Hamilton’s equations, ¢ = éH/[pi and p; = —éH[2qs, we
obtain

dfidt = of{ot+[H.f],

S (ra_
(Fs1= Z 39: opy  O; 39.')

is what is called the Poisson bracket for the quantities f and H (see Mechanics, §42). On
comparing with the expression (9.2), we see that, as we pass to the limit of classical mechanics,
the operator i(Ff—f H) reduces in the first approximation to zero, as it should, and in the
second approximation (with respect to /i) to the quantity A[H, f]. This result is true also
for any two quantities f and g; the operator z'(fg‘r—g‘rf) tends in the limit to the quantity
K[ £, g], where [ f, g] is the Poisson bracket

de of dg of
oS- 1)
; g s p: gy

This follows from the fact that we can always formally imagine a system whose Hamiltonian
1s Z.

where
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States in which the energy has definite values are called stationary states
of a system. They are described by wave functions ¥, which are the eigen-
functions of the Hamiltonian operator, i.e. which satisfy the equation
HY, = E,Y¥,, where E, are the eigenvalues of the energy. Correspondingly,
the wave equation (8.1) for the function ¥,

i#ho¥, /ot = HY, = E.Y,
can be integrated at once with respect to time and gives
\Fn - e_(i /mE"tlpbn(Q): (101)

where i, is a function of the coordinates only. This determines the relation
between the wave functions of stationary states and the time.

We shall denote by the small letter i the wave functions of stationary states
without the time factor. These functions, and also the eigenvalues of the
energy, are determined by the equation

Hy = Ey. (10.2)

The stationary state with the smailest possible value of the energy is called
the normal or ground state of the system.

The expansion of an arbitrary wave function ¥ in terms of the wave func-
tions of stationary states has the form

¥ = 5 a,etME(g). (10.3)

The squared moduli |a,|? of the expansion coefficients, as usual, determine
the probabilities of various values of the energy of the system.

The probability distribution for the ccordinates in a stationary state is
determined by the squared modulus [, |2 = |¢,|%; we see that it is indepen-
dent of time. The same is true of the mean values

F= Wi, dg = [ gu*fn dg

of any physical quantity f (whose operator does not depend explicitly on the
time).

As has been said, the operator of any quantity that is conserved commutes
with the Hamiltomian. This means that any physical quantity that is con-
served can be measured simultaneously with the energy.

Among the various stationary states, there may be some which correspond
to the same value of the energy (the same energy level of the system), but
differ in the values of some other physical quantities. Such energy levels,
to which several different stationary states correspond, are said to be
degenerate. Physically, the possibility that degenerate levels can exist is
related to the fact that the energy does not in general form by itself a com-
plete set of physical quantities.

If there are two conserved physical quantities f and g whose operators do
not commute, then the energy levels of the system are in general degenerate.
For, let ¢ be the wave function of a stationary state in which, besides the
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energy, the quantity f also has a definite value. Then we can say that the
function g¢s does not coincide (apart from a constant factor) with ¢; if it did,
this would mean that the quantity g also had a definite value, which is
impossible, since f and g cannot be measured simultaneously. On the other
hand, the function g is an eigenfunction of the Hamiltonian, corresponding
to the same value E of the energy as i:

H(gy) =0y = E(gy).

Thus we see that the energy E corresponds to more than one eigenfunction,
Le. the energy level is degenerate.

It is clear that any linear combination of wave functions corresponding
to the same degenerate energy level is also an eigenfunction for that value of
the energy. In other words, the choice of eigenfunctions of a degenerate
energy level is not unique. Arbitrarily selected eigenfunctions of a degener-
ate energy level are not, in general, orthogonal. By a proper choice of linear
combinations of them, however, we can always obtain a set of orthogonal
(and normalized) eigenfunctions (and this can be done in infinitely many
ways; for the number of independent coefficients in a linear transformation
of n functions is #2, while the number of normalization and orthogonality
conditions for n functions is 3n(n-1), i.e. less than n2).

These statements concerning the eigenfunctions of a degenerate energy
level relate, of course, not only to eigenfunctions of the energy, but also to
those of any operator. Only those functions are automatically orthogonal
which correspond to different eigenvalues of the operator concerned;
functions which correspond to the same degenerate eigenvalue are not in
general orthogonal.

If the Hamiltonian of the system is the sum of two (or more) parts,
H = H)+ Hs, one of which contains only the coordinates ¢; and the other
only the coordinates gz, then the eigenfunctions of the operator A can be
written down as products of the eigenfunctions of the operators H, and Hs,
and the eigenvalues of the energy are equal to the sums of the eigenvalues of
these operators.

The spectrum of eigenvalues of the energy may be either discrete or
continuous. A stationary state of a discrete spectrum always corresponds to
a finite motion of the system, i.e. one in which neither the system nor any
part of it moves off to infinity. For, with eigenfunctions of a discrete spec-
trum, the integral | |¥'|% dg, taken over all space, is finite. This certainly
means that the squared modulus [¥'|? decreases quite rapidly, becoming
zero at infinity. In other words, the probability of infinite values of the co-
ordinates 1s zero; that is, the system executes a finite motion, and is said to
be in a bound state.

For wave functions of a continuous spectrumn, the integral [ |2 dg diverges.
Here the squared modulus |¥'|? of the wave function does not directly deter-
mine the probability of the various values of the coordinates, and must be
regarded only as a quantity proportional to this probability. The divergence
of the integral [ [¥|2 dg 1s always due to the fact that ['¥|2 does not become
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zero at infinity (or becomes zero insufficiently rapidly). Hence we can say
that the integral [ [¥'|® dg, taken over the region of space outside any arbi-
trarily large but finite closed surface, will always diverge. This means that,
in the state considered, the system (or some part of it) is at infinity. For a
wave function which is a superposition of the wave functions of various
stationary states of a continuous spectrum, the integral | |[¥'|2 dg may
converge, so that the system lies in a finite region of space. However, in the
course of time, this region moves unrestrictedly, and eventually the system
moves off to infinity. This can be seen as follows. Any superposition of
wave functions of a continuous spectrum has the form

¥ — J' a pe-GMEL) p(0) dE.

The squared modulus of ¥ can be written in the form of a double integral :
V|2 = f J. a pa g et IMKET—E)ty, (g e*(g) dEAE".

If we average this expression over some time interval 7, and then let 7 tend
to infinity, the mean values of the oscillating factors e#/®(E"-E)t and there-
fore the whole integral, tend to zero in the limit. Thus the mean value,
with respect to time, of the probability of finding the system at any given
point of configuration space tends to zero. This is possible only if the
motion takes place throughout infinite space.{ Thus the stationary states of
a continuous spectrum correspond to an infinite motion of the system.

§11. Matriccs

We shall suppose for convenience that the system considered has a discrete
energy spectrum; all the relations obtained below can be generalized at once
to the case of a continuous spectrum. Let ¥ = Zqa,¥, be the expansion of
an arbitrary wave function in terms of the wave functions ¥, of the stationary
states. If we substitute this expansion in the definition (3.8) of the mean
value of some quantity f, we obtain

f=ZZ a*apfrm(t), (11.1)
where f,.,.(t) denotes the integral
Faml) = [ ¥of¥ , dg. (11.2)

The set of quantities fpm(t) with all possible n and # is called the matrix of the

1 Note that, for a function " which is a superposition of functions of 2 discrete spectrum,
we should have

[¥]* = ZX apan*e M EeEit o, * = I |aba(g))?,

i.e. the probability density remains finite on averaging over time.
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quantity f, and each of the f,,,,(?) is called the matrix element corresponding
to the transition from state m to state n.}

The dependence of the matrix elements f,,(¢) on time is determined (if
the operator f does not contain the time explicitly) by the dependence of the
functions ¥, on time. Substituting for them the expressions (10.1), we find
that |

Jam(®) =fnmeiw"’"t, (11.3)
where
Wy = (Ep—E )k (11.4)

is what is called the transition frequency between the states n and m, and the
quantities

fnm = J¢n.fﬁbm dg (115)

form the matrix of the quantity f which is independent of time, and which
is commonly used.]

The matrix elements of the derivative f are obtained by differentiating the
matrix elements of the quantity f with respect to time; this follows directly
from the fact that

f=f= 2 an* amfum(t). (11.6)
From (11.3) we thus have for the matrix elements of f
fﬂm(t) == iwnmfnm(t) (11.7)

or (cancelling the time factor e*“»n! from both sides) for the matrix elements
independent of time

(_f)nm == i.‘-"-’1'omfi'urn = (’/ﬁ)(En-Em)fnm (118)

To simplify the notation in the formulae, we shall derive all our relations
below for the matrix elements independent of time; exactly similar relations
hold for the matrices which depend on the time.

For the matrix elements of the complex conjugate f* of the quantity f we
obtain, taking into account the definition of the Hermitian conjugate operator,

() am = f ¢’n*f+¢m dg = f ',[‘n*f*‘ybm dg = fﬁbmj“;l’n* dg
or

(f*)nm = (fmn)*- (119)

For real physical quantities, which are the only ones we usually consider,

+ The matrix representation of physical quantities was introduced by Heisenberg in 1925,
before Schrédinger’s discovery of the wave equation ‘“Matrix mechanics’’ was later de-
veloped by M, Born, W. Hesenberg and P Jordan.

T Because of the indeterminacy of the phase factor 1n normalized wave functions (see §2),
the matrix elements fanm (and fam(2)) also are deterrmined only to within a factor of the form
%, —¢)  Here again this indeterminacy has no effect on any physical results,
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we consequently have

Jam = Fon* (11.10)

(fn™ stands for (f,.)*). Such marrices, like the corresponding operators,
are said to be Hermitian.

Matrix elements with # = m are called diagonal elements. These are
independent of time, and (11.10) shows that they are real. The element f,,,,
is the mean value of the quantity f in the state ¥,

It 1s not difficult to obtain the ‘multiplication rule” for matrices To do
so, we first observe that the formula

o = Z frnthim (11.11)

holds. This is simply the expansion of the function fif, in terms of the func-
tions i, the coefficients being determined in accordance with the general
formula (3.5). Remembering this formula, let us write down the result of
the product of two operators acting on the function i,,:

f.é'lb‘n :f(.é'}b") :f‘?‘gkn‘)bk = F-_'gknf'#k = Egknfmk‘ﬁm-
k k koam

Since, on the other hand, we must have
-f’é;"[‘n = E‘ (fg)mnsbms

we arrive at the result that the matrix elements of the product fg are deter-
mined by the formula
(f&)eon = &£ fmx8in- (11.12)

This rule is the same as that used in mathematics for the multiplication of
matrices: the rows of the first matrix in the product are multiphed by the
columns of the second matrix

If the matrix is given, then so i1s the operator itself. In particular, if the
matrix is given, it is in principle possible to determine the eigenvalues of the
phvsical quantity concerned and the corresponding eigenfunctions.

We shall now consider the values of all quantities at some definite instant,
and expand an arbitrary wave function ¥ (at that instant) in terms of the
eigenfunctions of the Hamiltonian, 1.e. of the wave functions iy of the
stationary states {these wave functions are independent of time).

Y =X cofm, (11.13)

where the expansion coefficients are denoted by ¢,,. We substitute this expan-
sion in the equation f¥' = f'¥ which determines the eigenvalues and eigen-
functions of the quantity f. We have

5 el fom) =1 Z b

We multiply both sides of this equation by ,,* and integrate over g. Each
of the integrals [ ¢:,,*fi,, dg on the left-hand side of the equation is the cor-
responding matrix element f,,,. On the right-hand side, all the integrals
{ . *Y,, dg with m s n vanish by virtue of the orthogonality of the functions
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o, and § fn*h, dg = 1 by virtue of their normalization.t Thus

Efﬂmcm =fcm (1114’)

or

E (fﬂm—fanm)cm = 0;

where 8,,, =0 form # nand = 1 for m = n.

Thus we have obtained a system of homogeneous algebraic equations of
the first degree (with the ¢,, as unknowns). As is well known, such a system
has solutions different from zero only if the determinant formed by the
coefficients in the equations vanishes, i.e. only if

| Fom—f3nm| = O. (11.15)

The roots of this equation (in which f is regarded as the unknown) are the
possible values of the quantity f. The set of values ¢, satisfying the equations
(11.14) when f is equal to any of these values determines the corresponding
eigenfunction,

If, in the definition (11.5) of the matrix elements of the quantity f, we take
as ,, the eigenfunctions of this quantity, then from the equation fif, = f, 4,
we have

fum = [ dn*fibm 8g = fn [ b d.

By virtue of the orthogonality and normalization of the functions iy, this
gives fum = 0 for n # m and fpm = fm. Thus only the diagonal matrix
elements are different from zero, and each of these is equal to the correspond-
ing eigenvalue of the quantity f. A matrix with only these elements different
from zero is said to be put in diagonal form. In particular, in the usual
representation, with the wave functions of the stationary states as the functions
iy, the energy matrix is diagonal (and so are the matrices of all other physical
quantities having definite values in the stationary states). In general, the
matrix of a quantity f, defined with respect to the eigenfunctions of some
operator §, is said to be the matrix of f in a representation in which g is diagonal.
We shall always, except where the subject is specially mentioned, understand
in future by the matrix of a physical quantity its matrix in the usual repre-
sentation, in which the energy is diagonal. Everything that has been said
above regarding the dependence of matrices on time refers, of course, only
to this usual representation.}

t In accordance with the general rule (§3), the set of coefficients ¢, in the expansion (11.13)
can be constdered as the wave function in the “energy representation’ (the variable being
the suffix n that gives the number of the energy eigenvalue). The matrix fam here acts as
the operator f in this representanion, the action of which on the wave function is given by
the left-hand side of (11.14) The formula f = XX ¢¥(fnmcn) then corresponds to the general
expression for the mean value of a2 quantitv in terms of its operator and the wave function of
the state concerned.

1 Bearing in mind the diagonalitv of the energy matrix, 1t is easy to see that equation (11.8)
1s the operator relaion (9 2) written in matrix form
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By means of the matrix representation of operators we can prove the
theorem mentioned in §4: if two operators commute with each other, they
have their entire sets of eigenfunctions in common. Let f and § be two
such operators. From f§ = gf and the matrix multiplication rule (11.12),
it follows that

%:fmkgkn = ‘E' gmkfkn-

If we take the eigenfunctions of the operator f as the set of functions ., with
respect to which the matrix elements are calculated, we shall have f,, = 0
for m +# k, so that the above equation reduces to0 f,,.,.8mn = €mnfnn» OF

gmﬂ(fm—fn) = 0.

If all the eigenvalues f,, of the quantity f are different, then for all m # n we
have f,,—f, # 0, so that we must have g, = 0. Thus the matrix g,,, is
also diagonal, i.e. the functions i,, are eigenfunctions of the physical quantity
g also. If, among the values f,,, there are some which are equal (i.e. if there
are eigenvalues to which several different eigenfunctions correspond), then
the matrix elements g,,,, corresponding to each such group of functions i,
are, in general, different from zero. However, linear combinations of the
functions ¢, which correspond to a single eigenvalue of the quantity f are
evidently also eigenfunctions of f; one can always choose these combinations
in such a way that the corresponding non-diagonal matrix elements g,,,, are
zero, and thus, in this case also, we obtain a set of functions which are
simultaneously the eigenfunctions of the operators f and §.
The following formula is v seful.in applications:

(8510 \un = 0Enjo), (11.16)

where A is a parameter on which the Hamiltonian H (and therefore the
energy eigenvalues E;) depends. It is proved as follows. Differennating
the equation (H — Ey)i, = 0 with respect to A and then multiplying on the
left by »*, we obtain

0E. aﬁ) do

oA oA

*( L _ 6’1,bn= *
dn*(H — En) %(

On integration with respect to ¢, the left-hand side gives zero, since

jsbn*(H—En)?; dg = j “8(H — En)* g da,

&

the operator H being Hermitian. The right-hand side gives the required
equation.
A widely used notation (introduced by Dirac) in recent literature is that
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which denotes the matrix elements f,;m byt

{n| f|m). (11.17)

This symbol is written so that it may be regarded as ‘“‘consisting” of the
quantity f and the symbols |m) and {#n| which respectively stand for the
initial and final states as such (independently of the representation of the
wave funcrions of the states). With the same symbols we can construct
notations for the expansion coefhicients of wave functions: if there is a
complete set of wave functions corresponding to the states |m), |72, ...,
the coefficients in the expansion in terms of these of the wave function of a
state |m) are denoted by

Cnilm> = [ dn*m dg. (11.18)

§12. Transformation of matrices

The matrix elements of a given physical quantity can be defined with
respect to various sets of wave functions, for example the wave functions of
stationary states described by various sets of physical quantities, or the wave
functions of stationary states of the same system in various external fields.
The problem therefore arises of the transformation of matrices from one
representation to another.

Let a(q) and '(¢) (n = 1, 2, ...) be two complete sets of orthonormal
functions, related by some linear transformation:

Yn' = X Smnthm, (12.1)

which is simply an expansion of the function ;" in terms of the complete set
of functions . This transformation may be conventionally written in the
operator form

n' = Su. (12.2)

The operator § must satisfy a certain condition in order that the functions
" should be orthonormal if the functions iy, are. Substituting (12.2) in
the condition

[ ' #gn’ dg = 812,

and using the definition of the transposed operator (3.14), we have
J (Sun)Sopm dg = [ 4m*3+S4n dg = S

If these equations hold for all m and n, we must have S$*S = 1, or

Sn = 5+ = §1, (12.3) -

+ Both notations are used in the present book. The form (11.17) is especially convenient
when each suffix has to be written as several letters.
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1.e. the inverse operator is equal to the Hermitian conjugate operator.
Operators having this property are said to be unitary. Owing to this property,
the transformation iy, = S“lgbn' inver.e to (12.1) is given by

gn = %Snm*ﬂbm'- (124)

Writing the equations $*+S = 1 and SS* = 1 in matrix form, we obtain
the following forms of the unitarity condition:

12 Slm*Sln = Smn, (lzq)
JE Sm*Spr = 8mn- (12-6)

Let us now consider some physical quantity f and write down its matrix
elements 1n the ‘‘new” representation, i.e. with raspect to the functions ;"
These are given by the integrals

[ # o’ dg = [ (SHpm*)(fSibm) dg

= [¢m‘§*ﬁ§¢n dg

= [ ym*$1/S¢n dg

Hence we see that the matrix of the operator f in the new representation is
equal to the matrix of the operator

fr=8ySs (12.7)

in the old representation.t
The sum of the diagonal elemerts of a matrix is called the trace or spur}
of the matrix and denoted by tr ;:

trf = £ fun. (12.8)

It may be noted first of all that the trace of a product of two matrices is
:ndependent of the order of multiplication:

tr (fg) = tr(gf), (12.9)
t If {f,§} = —ihé is the commutation rule for two operators f and £, the transformation
(12.7) gives {f*, &} = —iké, i.e. the rule is unchanged. We have shown in the footnote

in §9 that ¢ 1s the quantum analogue of the classical Poisson bracket [ f, g]. In classical
mechanics, however, the Poisson brackets are invariant under canonical transformations of
the variables (generalized coordinates and mc—enta); see Mechanics, §45. 1n this sense we
can say that unitary transformations 1in quant .n mechanics play a role analogous to that of
canonical transformations in classical mecha- <s.

1 From the German word Spur. The no  »n sp f1s also used. The trace can be defined,
of course, only if the sum over n is conver}
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since the rule of matrix multiplication gives

tr (fg) = Z X frxgin = T T genfrx = tr (gf).

Similarly we can easily see that, for a product of several matrices, the trace
is unaffected by a cyclic permutation of the factors; for example,

tr (fgh) = tr (Bfg) = tx (ghf). (12.10)

An important property of the trace is that it does not depend on the choice
of the set of functions with respect to which the matrix elements are defined,

since
(tr f) = tr (SYS) = tr (SS-1Yf) = ur f. (12.11)

A unitary transformation leaves unchanged the sum of the squared
moduli of the functions that are transformed: from (12.6) we have

I = Sk Sutdi* = T a8 = g2 (12.12)
Any unitary operator may be written-as
S = ek, (12.13)

where R is an Hermitian operator: since R+ = R, we have
A A
S+ = ¢-tB* = ¢-iR = §-1,

The expansion
fr= 8118 = f+{f iR} +H{f iR}, iR} + ... (12.14)

is easily verified by a direct expansion of the factors exp ( + iR) in powers of
R. 'This expansion may be useful when R is proportional to a small para-
meter, so that (12.14) becomes an expansion in powers of the parameter.

§13. The Heisenberg representation of operators

In the mathematical formalism of quantum mechanics described here, the
operators corresponding to various physical quantities act on functions of the
coordinates and do not usually depend explicitly on time. The time depen-
dence of the mean values of physical quantities is due only to the time
dependence of the wave function of the state, according to the formula

fty = [ g, 0f¥(q,1) da. (13.1)

The quantum-mechanical treatment can, however, be formulated also in a
somewhat different but equivalent form, in which the time dependence is
transferred from the wave functions to the operators. Although we shall not
use this Heisenberg representation (as opposed to the Schrédinger represen-
tation) of operators in the present volume, a statement of it is given here with
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a view to applications in the relativistic theory.
We define the operator (which is unitary; see (12.13))

S = exp[—(i/R)H1), (13.2)

where H is the Hamiltonian of the system. By definition, its eigenfunctions
are the same as those of the operator H, i.e. the stationary-state wave functions

Ym(g), where
Sn(g) = e HREt(g). (13.3)

Hence it foliows that the expansion (10.3) of an arbitrary wave function
¥ in terms of the stationary-state wave functions can be written in the
operator form

¥(g, 1) = $¥(g, 0), (13.4)

i.e. the effect of the operator .S is to convert the wave function of the system
at some Initial instant into the wave function at an arbitrary instant.
Defining, as in (12.7), the time-dependent operator

() = §-1fS, (13.5)

we have
J) = [ ¥, 0)f()¥ (g, 0) da, (13.6)

and thus obtain the formula (3.8) for the mean value of the quantity f in a
form in which the time dependence is entirely transferred to the operator (for
our definition of an operator rests on formula (3.8)).

It is evident that the matrix elements of the operator (13.5) with respect
to the stationary-state wave functions are the same :s the time-dependent
matrix elements fm(t) defined by formula (11.3).

Finally, differentiating the expression (13.5) with respect to time (assuming
that the operators f and H do not themselves involve ), we obtain

= 1A/ - f®H), (13.7)
which is similar in form to (9.2) but has a somewhat different significance:
the expression (9.2) defines the operator f corresponding to the physical
quantity f, while the left-hand side of equation (13.7) is the time derivative
of the operator of the quantity f itself.

2.
af(t)

§14. The density matrix

The description of a system by means of a wave function is the most
complete description possible in quantum mechanics, in the sense indicated
at the end of §1.

States that do not allow such a description are encountered if we consider
a system that is part of a larger closed svstem. We suppose that the closed
svstem as a whole is in some state described by the wave function ‘t'(g, x),
where x denotes the set of coordinates of the system considered, and ¢ the
remaining coordinates of the closed system. This function in general does
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not fall into a product of functions of x and of ¢ alone, so that the system
does not have its own wave function.t

Let f be some physical quantity pertaining to the system considered. Its
operator therefore acts only on the coordinates x, and not on ¢g. The mean
value of this quantity in the state considered is

7= [ ¥%a. %/ ¥(g») dgdx. (14.1)
We introduce the function p(x, x') defined by
p(x, x7) = J ¥(g, x)¥*(g, ") dg, (14.2)

where the integration is extended only over the coordinates ¢; this function
is called the density matrix of the system. From the definition (14.2) it is
evident that the function is ‘““Hermitian”:

p¥(x, x") = p(x', x). (14.3)

The ‘““diagonal elements” of the density matrix

plx,x) = [ [¥(g. %) dg

determine the probability distribution for the coordinates of the system.
Using the density matrix, we can write the mean value f in the form

f= [ [fo(® #)zmz dx. (14.4)

Here f acts only on the variables  in the function p(x, x'}; after calculating
the result of its action, we put x” = x. We see that, if we know the density
matrix, we can calculate the mean value of any quantity characterizing the
system. It follows from this that, by means of p(x, x"), we can also determine
the probabilities of various values of the physical quantities in the system.
Thus the state of a system which does not have a wave function can be
described by means of a density matrix. This does not contain the co-
ordinates ¢ which do not belong to the system concerned, though, of course,
it depends essentially on the state of the closed system as a whole.

The description by means of the density matrix is the most general form
of quantum-mechanical description of the system. The description by means
of the wave function, on the other hand, is a particular case of this, cor-
responding to a density matrix of the form p(x, x') = ¥ (x)¥*(x"). The
following important difference exists between this particular case and the
general one.; For a state having a wave function there is always a complete

1 In order that ¥(g, x) should (at a given instant) fall into such a product, the measurement
as a result of which this state was brought about must completely describe the system con-
sidered and the remainder of the closed system separately., In order that ¥(g, x) should
continue to have this form at subsequent instants, it is necessarv in addition that these parts of
the closed system should not interact (see §2). Neither of these conditions 1s now assumed.

1 States having a wave function are called “'pure’’ states, as disttnct from “‘mixed’ states,
which are described by a densitv matrix.



40 Energy and Momentum §14

set of measuring processes such that they lead with certainty to definite
results (mathematically, this means that 1" is an eigenfunction of some opera-
tor). For states having only a density matrix, on the other hand, there is no
complete set of measuring processes whose result can be uniquely predicted.

Let us now suppose that the system is closed, or became so at some instant.
Then we can derive an equation giving the change in the density matrix with
time, similar to the wave equation for the ¥ function. The derivation can be
simplified by noticing that the required linear differential equation for
p(x, x’, t) must be satisfied in the particular case where the system has a wave
function, i.e.

p(x, x', 1) = ¥(x, )1"*(x, 7).

Difterentiating with respect to time and using the wave equation (8.1), we
have

Y{x oV *(x'
(’t)-}—ih‘l’(x,t) (x',1)

op 0
ih— = iRF*(x', 1)
ot ot

= ¥*(x', ) HY¥ (x, ) —¥(x, ) H *F*(x', 1),

where H is the Hamiltonian of the system, acting on a function of x,
and H' is the same operator acting on a function of x'. The functions
¥*(x', t} and ¥(x, ¢) can obviously be placed behind the respective operators
H and H’, and we thus obtain the required equation:

th ep(x, x', t)/ét = (H—H*)p(x, x', t). (14.5)

Let Wy(x, t) be the wave functions of the stationary states of the system,
i.e. the eigenfunctions of its Hamiltonian. We expand the density matrix
in terms of these functions; the expansion consists of a double series in the
form

p%, ', 1) = BE ¥ 4z, OF (s 1)
= T @ nuthn*(x W (%)t X Ey—Emit, (14.6)
mn
For the density matrix, this expansion plays a part analogous to that of the
expansion (10.3) for wave functions. Instead of the set of coefficients a,,

we have here the double set of coefficients a4,,,,. These clearly have the pro-
perty of being ‘‘Hermitian”, like the density matrix itself:

Apm® = Apn- (147)
For the mean value of some quantity f we have, substituting (14.6) in (14.4),

f; f%‘:: Qmn quﬂ*(x) t)f‘Ym(x, t) dx,

or
7= ZZ arnfan(t) = IZ apfpme/MEEnl, (14.8)
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where fpm are the matrix elements of the quantity f. This expression is
similar to formula (11.1).1

The quantities a,,, must satisfy certain inecualities. The ‘‘diagonal
elements” p(x, x} of the density matrix, which determine the probability
distribution for the coordinates, must obviously be positive quantities. It
therefore follows from the expression (14.6) (with x” = x) that the quadratic

form
ZX appb ¥ m
nm

constructed with the coefficients amn (Where the ¢, are arbitrary complex
quantities) must be positive. This places certain conditions, known from the
theory of quadratic forms, on the quantities a,,. In particular, all the
““diagonal’ quantities must clearly be positive:

G 2> 0, (14.9)
and any three quantities a,,, 4,,, and a,,,, must satisfy the inequality
Qpnlmm = lamnlz- (1410)

To the “pure’” case, where the density matrix reduces to a product of
functions, there evidently corresponds a matrix a,,, of the form

G = @ ¥. (14.11)

We shall indicate a simple criterion which enables us to decide, from the
form of the matrix apn, whether we are concerned with a “pure” or a
“mixed” state, In the pure case we have

2 —
(a )mn - ‘% A Crn
= fl_c.‘ a*anaz*a,
_— ¥ 2
= Qpdy % |ak|

—_ ¥*
- amaﬂ ’
or

(8% mn = Gnms (14.12)

i.e. the density matrix is equal to its own square.

§15. Momentum

Let us consider a closed system of particles not 1n an external field. Since
all positions in space of such a system as a whole are equivalent, we can say,
in particular, that the Hamiltonian of the systern does not vary when the
systemn undergoes a parallel displacement over any distance. It is sufficient
that this condition should be fulfilled for an arbitrary small displacement.

An infinitely small parallel displacement over a distance 8r signifies-a trans-
formation under which the radius vectors r, of all the particles (a being the
number of the particle) receive the same increment dr : ¢, - r, + 8r. An

+ The quantities g.nn form the density matrix in the energy representation. The description
of the states of a system by means of this matrix was intreduced independently by L. Landau
and F Bloch in 1927.
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arbitrary function (ry, re, ...) of the coordinates of the particles, under
such a transformation, becomes the function

Y(r+08r,r,+-6r,...) = (), 1,, ... )+6r. zj Vb
= (14ér. %‘ Vao(ry, s, ... )

(Ve denotes the operator of differentiation with respecttorg). The expression
14+ér. %X VY,
a

is the operator of an infinitely small displacement, which converts the
function (ry, re, ...} into the function

J(r;+08r, r,4-0r, ... ).

The statement that some transformation does not change the Hamiltonian
means that, if we make this transformation on the function Hy, the result is
the same as if we make it only on the function ¢ and then apply the operator A.
Mathematically, this can be written as follows. Let O be the operator which
effects the transformation in question. Then we have O(Hy) = H(O), whence

OH—HO =0,

i.e. the Hamiltonian must commute with the operator O.

In the case considered, the operator O is the operator of an infinitely
small displacement. Since the unit operator (the operator of multiplying
by unity) commutes, of course, with any operator, and the constant factor ér
can be taken in front of H, the condition OH — HO = 0 reduces here to

(Z VoH—H(Z Vo) = 0. (15.1)

As we know, the commutability of an operator (not containing the time
explicitly) with H means that the physical quantity corresponding to that
operator is conserved. The quantity whose conservation for a closed system
follows from the homogeneity of space is the momentum of the system (cf.
Mechanics, §7). Thus the relation (15.1) expresses the law of conservation
of momentum in quantum mechanics; the operator X ¥V, must correspond,
apart from a constant factor, to the total momentum of the system, and
each term Vg of the sum to the momentum of an individual particle.

The coefhicient of proporticnality between the operator p of the momentum
of a particle and the operator ¥V can be determined by means of the passage
to the limit of classical mechanics, and i1s —ik4:

p = —ihV, (15.2)
or, IN cCOmponents,
pr = —ihdjox, P, = —ihojoy, p,= —iho[oz.
Using the limiting expression (6.1) for the wave function, we have

PY = —ik(i|H)¥'VS = ¥VS,
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i.e. in the classical approximation the effect of the operator p reduces to
multiplication by VS. The gradient VS of the action is the classical
momentum p of the particle (see Mechanics, §43).

It is easy to see that the operator (15.2) is Hermitian, as it should be.
For, with arbitrary functions (x) and ¢(x) which vanish at infinity, we have

f¢}3,¢dx= —ikf%dx:ihf:,bz—idx:f.pﬁ,*qsdx,

and this is the condition that the operator should be Hermitian.

Since the result of differentiating functions with respect to twe different
variables is independent of the order of differentiation, it is clear that the
operators of the three components of momentum commute with one another:

ﬁzﬁv_ﬁvﬁ:c =0, ﬁ:ﬁz_ﬁzﬁ: = 0; ﬁyﬁg—f)gﬁ, = 0. (153)
This means that all three components of the momentum of a particle can
simultaneously have definite values. '

Let us find the eigenfunctions and eigenvalues of the momentum operators.
They are determined by the vector equation

— kY = py. (15.4)

The solutions are of the form
b = Céérmpr, (15.5)

where C is a constant. If all three components of the momentum are given
simultaneously, we see that this completely determines the wave function
of the particle. In other words, the quantities pz, py, pz form one of the poss-
ible complete sets of physical quantities for a particle. Their eigenvalues
form a continuous spectrum extending from — ¢ t0 + co.

According to the rule (5.4) for normalizing the eigenfunctions of a con-
tinuous spectrum, the integral | ¢* ., dV taken over all space (dV = dx
dy dz) must be equal to the delta function 8(p" —p).T However, for reasons
that will become clear from subsequent applications, it is more natural to
normalize the eigenfunctions of the particle momentum by the delta function
of the momentum difference divided by 2n#:

| grspav = 5 (22E)

J‘ o *p AV = (2Zrh)? 8(p’ —p) (15.6)

or, equivalently,

(since each of the three factors in the three-dimensional delta function
is 8[(p'z —pz){2mk] = 2mh 8(p’' 1 — p~), and so on).

1 The three-dimensional function 8(a) of a vector a 1s defined as a product of delta functions
of the components of the vector a: 8(a) = 8(az)8(ay)d(az).
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The integration is effected by means of the formulat

1 f gl dg = 8(a). (15.7)
2

This shows that the constant in (15.5) is equal to unity if the normalization
is according to (15.6):]
f, = e/ner (15.8)

The expansion of an arbitrary wave function {i(r) of a particle in terms
of the eigenfunctions i, of its momentum operator is simply the expansion
as a Fourier integral:

) = [ atplnters 22 = | atprermeeZEs (15.9)

(where d% = dp_dp,dp,). The expansion coefficients a(p) are, according
to formula (5.3),

a(p) = [ YXWp*(x) AV = [ Y(rje-tmr= av. (15.10).

The function a(p) can be regarded (see §5) as the wave function of the
particle in the “‘momentum representation’’; |a(p)|? d3p/(27H4)? is the proba-
bility that the momentum has a value in the interval d3p.

Just as the operator P corresponds to the momentum, determining its
eigenfunctions in the coordinate representation, we can introduce the
operator ¥ of the coordinates of the particle in the momentum represen-
tation. It must be defined so that the mean value of the coordinates can be
represented in the form

d3p

P (15.11)

r = Ja*(p)fa(p)

On the other hand, this mean value is determined from the wave function
y(r) by
r— f g AV,

4+ The conventional meaning of this formula is that the function on the left-hand side has
the property (3.8) of the delta function. Substituting &(x —a) in the form (15.7), we obtain
from (5.8) the well-known Fourier integral formula

f(@) = | [f(x)eisiz-a ax dgizm

T Note that with this normaiization the probability density | ]2 = 1, i.e. the function is
normalized to *‘one particle per unit volume”. This agreement of normalizations is, of
course, no accident; see the last foctnote to §48.
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Substituting (r) in the form (15.9) we have (integrating by parts)

rf(r) = (2mh)3 [ ra(p)et/mer azp
= (2mh)=2 | ihet/P-"[2a(p)/2p] d%p.
Using this expression and (15.10), we find
T = (2mh)-3 j f J*(x)it[da(p)/dp)et /MPT d3pdV

d3p
(27h)3

- f iha*(p)[2a(p)/op]

Comparing with (15.11), we see that the radius vector operator in the
momentum representation is

§ — ih9/3p. (15.12)

The momentum operator in this representation reduces simply to multipli-
cation by p.

Finally, we shall express in terms of p the operator of a parallel displace-
ment in space over any finite (not only infinitesimal) distance a. By the
definition of this operator (7,) we must have

Tuf(r) = Y(r+a).
Expanding the function ¢(r+ a) in a Taylor series, we have
Y(r+a) = y(r)+a . af(r)/or+ ...,

or, introducing the operator p = —ikV,
V=Tt oii(ia.p):
Y(r+a) = [ ;ia .p+§(;ia . p) + ... ]z,b(r).

The expression in brackets is the operator
Ta = eirma-b, (15.13)

This is the required operator of the finite displacement.

§16. Uncertainty relations

Let us derive the rules for commutation between momentum and co-
ordinate operators. Since the result of successively differentiating with
respect to one of the variables x, y, # and multiplying by another of them
does not depend on the order of these operations, we have

Pey—3P: =0, Por—zp. =0, (16.1)

and similarly for p, §,.
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To derive the commutation rule for p_ and x, we write

(Porx—xp )Y = —ihi O(x))/Ox+ thx Op/Ox
= —1ihy.

We see that the result of the action of the operator p, x—xp . reduces to
multiplication by —i#%; the same s true, of course, of the commutation of p,
with ¥ and #, with z. Thus we havet

pax—xp, = —ih, p,y—yp, = —ih, p.z—2p, = —ih. (16.2)
All the relations (16.1) and (16.2) can be written jointly in the form
pox—x,py = —ihd,, (z, k = x,%3, 2). (16.3)

Before going on to examine the physical significance of these relations and
their consequences, we shall set down two formulae which will be useful
later. Let f(r) be some function of the coordinates. Then

Pfir)—f(r)p = —ihVf. (16.4)
For
(Bf—fP) = —ih[V(fp)—f VY] = —iiy VY.

A similar relation holds for the commutator of r with a function of the
momentum operator:

f@)x—rf(p) = —ihofjep. (16.5)

It can be derived in the same way as (16.4) if we calculate in the momentum
representation, using the expression (15.12) for the coordinate operators.

The relations (16.1) and (16.2) show that the coordinate of a particle along
cne of the axes can have a definite value at the same time as the components
of the momentum along the other two axes; the coordinate and momentum
component along the same axis, however, cannot exist simultaneously. In
particular, the particlz cannot be at a definite point in space and at the same
time have a definite momentum p.

Let us suppose that the particle 1s in some finite region of space, whose
dimensions along the three axes are (of the order of magnitude of) Ax, Ay, Az.
Also, let the mean value of the momentum of the particle be p,. Mathe-
matically, this means that the wave function has the form ¢ == u(r)et/mror,
where u(r) is a function which differs considerably from zero only in the
region of space concerned. We expand the function ¢ in terms of the eigen-
functions of the momentum operator (i.e. as 2 Fourier integral). The co-
efficients a(p) in this expansion are determined by the integrals (15.10) of
functions of the form u(r)et*/m®®-f, If this integral is to differ consider-
ably from zero, the periods of the oscillatory factor e*/m(®P)f must not be
small in comparison with the dimensions Ax, Ay, Az of the region in which
the function u(r) is different from zero. This means that a(p) will be con-

+ These relations, discovered in matrix form by Heisenberg in 1925, formed the genesis of
quantum mechanics.



§16 Uncertainty relations 47

siderably different from zero only for values of p such that (1/%)(py, —p.)dx <
1, etc. Since |a(p)|? determines the probability of the various values of the
momentum, the ranges of values of p,, p,, p, 1n which a(p) differs from zero
are just those in which the components of the momentum of the particle may
be found, in the state considered. Denocting these ranges by Ap,, Ap,, Ap,,
we thus have

ApAx ~ kK, Ap ANy ~ N, Ap Az ~ K, (16.6)

These relations, known as the uncertainty relations, were obtained by
Heisenberg in 1927.

We see that, the greater the accuracy with which the coordinate of the
particle is known (i.e. the less Ax), the greater the uncertainty Ap_ in the
component of the momentum along the same axts, and vice versa. In parti-
cular, if the particle is at some complately definite point in space (Ax =
Ay = Az = 0), then Ap, = Ap, = Ap, = 0. This means that all values
of the momentum are equally probable. Conversely, if the particle has a
completely definite momentum p, then all positions of it in space are equally
probable (this is seen directly from the wave function (15.8), whose squared
modulus is quite independent of the coordinates).

1f the uncertainties of the coordinates and momenta are specified by the
standard deviations

8x = V[(x—%)2, 8px = (P2 —P=)%),

we can specify exactly the least possible value of their product (H. Weyl). Let
us consider the one-dimensional case of a wave packet with wave function
J(x) depending on only one coordinate, and assume for simplicity that the
mean values of x and p, in this state are zero. We consider the obvious

inequality
s

where « is an arbitrary real constant. On calculating this integral, noticing
that

2
dx >0,

| e ax = e,

f (xd(‘;l’: ,,[,+x.,l,*c;_i dx = [xdli’lz de — — [w’lz dx = —1,

Y Y

dy* dy L N 1 .

we obtain
a?(8x)2 —a+ (1/h2)(6p2)% 2 0.
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If this quadratic (in «) trinomial is positive for all «, its discriminant must be
negative, which gives the inequality

Sx 8py > LA (16.7)

The least possible value of the product is $%, and occurs for wave packets with
wave functions of the form

iz

1 i X
T @ ) T (EP o 4(ax)2)’ (16.5)

where pg and bx are constants. The probabailities of the various values of the
coordinates in such a state are

o _ __l__ B x2
W = T o CXP( 2(3x)'2)'

and thus have a Gaussian distribution about the origin (the mean value ¥ = 0)
with standard deviation éx. The wave function in the momentum represen-
tation 1s

a(ps) = J Y(x)e- WP dx,

Calculation of the integral gives

a(pz) = constant x exp [_(6-75)2(P1_P0)2]'

k2

The distribution of probabilities of values of the momentum, |a(pz)|2, is also
Gaussian about the mean value p; = po, with standard deviation §p, =
#[28x, so that the product 8pz6x is indeed }A.

Finally, we shall derive another useful relation. Let fand g be two physical
quantities whose operators obey the commutation rule

fE—8f = —iké, (16:9)

where ¢ 1s the operator of some physical quantity ¢. On the right-hand side
of the equation the factor % is introduced in accordance with the fact that in
the classical limit (i.e. as % — 0) all operators of physical quantities reduce
to multiplication by these quantities and commute with one another. Thus,
in the *‘quasi-classical” case, we can, to a first approximation, regard the right-
hand side of equation (16.9) as being zero. In the next approximation, the
operator ¢ can be replaced by the operator of simple multiplication by the
quantity ¢. We then have

fo—gf = —ite

This equation is exactly analogous to the relation p_ x—xp, = -1k, the only
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difference being that, instead of the constant /i, we havet the quantity /.
We can therefore conclude, by analogy with the relation AxAp, ~ #, that
in the quasi-classical case there is an uncertainty relation

Afdg ~ ke (16.10)

for the quantities f and g.

In particular, if one of these quantities is the energy (f=H) and the
operator (£) of the other does not depend explicitly on the time, then by
(9.2) ¢ = g, and the uncertainty relation in the quasi-classical case 1s

AEAg ~ Fig. (16.11)

+ The classical quantity ¢ is the Poisson bracket of the quantities f and g; see the footnote
in §9.



CHAPTER III

SCHRODINGER’S EQUATION

§17. Schrodinger’s equation

THE form of the wave equation of a physical system is determined by its
Hamiltonian, which is therefore of fundamental significance in the whole
mathematical formalism of quantum mechanics.

The form of the Hamiltonian for a free partcle is established by the
general requirements imposed by the homogeneity and isotropy of space and
by Galileo'’s relativity principle. In classical mechanics, these requirements
lead to a quadratic dependence of the energy of the particle on its momentum:
E = p2/2m, where the constant m is called the mass of the particle (see
Mechanics, §4). In quantum mechanics, the same requirements lead to a
corresponding relation for the energy and momentum eigenvalues, these
quantities being conserved and simultaneously measurable (for a free
particle).

If the relation E = p%/2m holds for every eigenvalue of the energy and
momentum, the same relation must hold for their operators also:

B = (12m)(p 24P, +5:) (17.1)

Substituting here from (15.2), we obtain the Hamiltonian of a freely moving
particle in the form

B = —(@emL, (17.2)

where A = 0%[0x?4 0%/0y% 4 02/02? is the Laplacian operator.
The Hamiltonian of a system of non-interacting particles is equal to the
sum of the Hamiltonians of the separate particles:

B= -3 1/m)A, (17.3)

(the suffix a is the number of the particle; A, is the Laplacian operator in
which the differentiation is with respect to the coordinates of the ath particle).

In classical (non-relativistic) mechanics, the interaction of particles is
described by an additive term in the Hamiltonian, the potential energy of the
interaction U(ry, rg, ...), which is a function of the coordinates of the particles.
By adding a similar function to the Hamiltonian of the system, the interaction
of particles can be represented in quantum mechanics:+

B = —31* T A jme+ Ulry, 1y, ...). (17.4)

+ This statement is, of course, not a logical consequence of the basic principles of quantum
mechanics, and is to be regarded as a deduction from experiment.

50
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The first term can be regarded as the operator of the kinetic energy and the

second as that of the potential energy. In particular, the Hamiltonian for a
single particle in an external field is

H = p22m+U(x,y,2) = —(F2)2m)2 + U(x, y, 2), (17.5)

where U(x, ¥, z) is the potential energy of the particle in the external field.

Substituting the expressions (17.2) to (17.5) in the general equation (8.1),
we obtain the wave equations for the corresponding svstems. We shall write
out here the wave equation for a particle in an external field:

ih O |0t = —(R22m)AY + U(x, y, 2)¥. (17.6)
The equation (10.2), which determines the stationary states, takes the form
(R2m)Dg +[E—Ulx,y, )}y = 0. (17.7)

The equations (17.6) and (17.7) were obtained by Schrédinger in 1926 and
are called Schrddinger’s equations.
For a free particle, equation (17.7) has the form

(B22m) A+ EJ = 0. (17.8)

This equation has solutions finite in all space for any positive value of the
energy E. For states with definite directions of motion, these solutions are
eigenfunctions of the momentum operator, with £ = p2/2Zm. The complete
(time-dependent) wave functions of such stationary states are

¥ = constant x e~¢/RMEHI/RPx (17.9)

Each such function, a plane wave, describes a state in which the particle has a
definite energy E and momentum p. The angular frequency of this wave 1s
Ej/h and its wave vector k = p/A; the corresponding wavelength 27/4/p is
called the de Broglie wavelength of the particle.t

The energy spectrum of a freely moving particle is thus found to be con-
tinuous, extending from zero to +c0. Each of these eigenvalues (except
E = 0) is degenerate, and the degeneracy is infinite. For there corresponds
to every value of E, different from zero, an infinite number of eigenfunctions
(17.9), differing in the direction of the vector p, which has a constant absolute
magnitude.

Let us enquire how the passage to the limit of classical mechanics occurs
in Schrédinger’s equation, considering for simplicity only a single particle
in an external field. Substituting in Schrédinger’s equation (17.6) the limit-
ing expression (6.1) for the wave function, ¥ = gqe*/MS, we obtain, on per-
forming the differentiation,

oS .haa a oSy ih AS ihVS th U 0
a—a-t— ] é;-+é;—n( )_é;_na _m .Va—2; a+Ua = 0.

t+ The idea of a wave related to a particle was first introduced by L. de Broglie in 1924.
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In this equation there are purely real and purely imaginary terms (we recall
that S and a are real); equating each separately to zero, we obtain two
equations

s, VS)2+ U i JAY 0
—_—— — a = y
ot +2m( 2ma
da a 1
—4—LS+—VS. Va=0.
ot 2m m
Neglecting the term containing /% in the first of these equations, we obtain
oS 1
—+—(VSP+U =0, (17.10)
ot 2m

that is; the classical Hamilton-Jacobi equation for the action S of a particle,
as it should be. We see, incidentally, that, as # — 0, classical mechanics is
valid as far as quantities of the first (and not only the zero) order in 7 inclusive.

The second equation obtained above, on multiplication by 2a, can be re-
written in the form

Oa? vS
——+div(a2 = 0. (17.11)

ot m
This equation has an obvious physical meaning: 42 is the probability density
for finding the particle at some point in space (|'\¥'|2 = a2); V.S/m = p/m
is the classical velocity v of the particle. Hence equation (17.11) is simply
the equation of continuity, which shows that the probability density “moves”
according to the laws of classical mechanics with the classical velocity v at
every point.

PROBLEM
Find the transformation law for the wave function in a Galilean transformation.
SorLuTtion. Let us apply the transformation to the wave function for free motion of a
particle (a plane wave). Since any function ¥ can be expanded in plane waves, this will also
give the transformation law for any wave function.
The plane waves in the frames of reference K and K’ (K’ moving with velocity V relative

to K) are

Y(r, t) = constant x gli{/M-®r-Et)

¥'(r’, ) = constant x @A T —E 1)
where r = r’+Vt; the particle momenta and energies in the two frames are related by

p=p+mV,E=FE+Vp' +iml?
(see Mechanics, §8). Substitution of these expressions in ¥ gives

Y(r, ) = ¥'(r', t) exp [EI (mV.r' + ng?-‘t)]

= ¥(r Vi, 1) exp I:é (mVr — ﬁ-szl):I. 1

This formula does not contain the parameters of the free motion of the particle, and gives the
required general transformation law for the wave function of any state of the particle. Fora
systern of particles, the exponent in (1) contains a summation over the particles.
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§18. The fundamental properties of Schrodinger’s equation

The conditions which must be satisfied by solutions of Schrodinger’s
equation are very general in character. First of all, the wave function must
be single-valued and continuous in all space. The requirement of continuity
is maintained even in cases where the field U(x, ¥, 2) itself has a surface of
discontinuity. At such a surface both the wave function and its derivatives
must remain continuous. The continuity of the derivatives, however, does
not hold if there is some surface beyond which the potential energy U becomes
infinite. A particle cannot penetrate at all into a region of space where
U = <, 1.e. we must have y = 0 everywhere in this region. The continuity
of ) means that s vanishes at the boundary of this region; the derivatives of
i, however, in general are discontinuous in this case.

If the field U(x, y, z) nowhere becomes infinite, then the wave function
also must be finite in all space. The same condition must hold in cases where
U becomes infinite at some point but does so only as 1/#* with s < 2 (see
also §35).

Let Umin be the least value of the function U(x, y, 2). Since the Hamil-
tonian of a particle is the sum of two terms, the operators of the kinetic
energy (T) and of the potential energy, the mean value E of the energy in any
state is equal to the sum T+ U. But all the etgenvalues of the operator T
(which is the Hamiltonian of a free particle) are positive; hence the mean
value T > 0. Recalling also the obvious inequality U > U, we find that
E > U, . Since this inequality holds for any state, it is clear that it is valid
for all the eigenvalues of the energy:

E,.>U_,.- (18.1)

Let us consider a particle moving in an external field which vanishes at
infinity; we define the function U(x, y, 2), in the usual way, so that it vanishes
at infinity. It is easy to see that the spectrum of negative eigenvalues of the
energy will then be discrete, i.e. all states with E < 0 in a field which vanishes
at infinity are bound states. For, in the stationary states of a continuous
spectrum, which correspond to infinite motton, the particle reaches infinity
(see §10); however, at sufficiently large distances the field may be neglected,
the motion of the particle may be regarded as free, and the energy of a freely
moving particle can only be positive.

The positive eigenvalues, on the other hand, form a continuous spectrum
and correspond te an infinite motion; for £ > 0, Schrédinger’s equation
in general has no solutions (in the field concerned) for which the integral
§ [¥1%2 d¥ converges.t

Attention must be drawn to the fact that, in quantum mechanics, a particle
in a finite motion may be found in those regions of space where E « U;
the probability |¢|2 of finding the particle tends rapidly to zero as the distance
into such a region increases, yet it differs from zero at all finite distances.

+ However, it must be mentioned that, for some particular mathematical forms of the
function U(x, y, z) (which have no physical significance), a discrete set of values may be
absent from the otherwise continuous spectrum.
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Here there 1s a fundamental difference from classical mechanics, in which
a particle cannot penetrate into a region where U > E. In classical mechanics
the impossibility of penetrating into this region is related to the fact that,
for E < U, the kinetic energy would be negative, that is, the velocity would
be imaginary. In quantum mechanics, the eigenvalues of the kinetic energy
are likewise positive; nevertheless, we do not reach a contradiction here,
since, if by a process of measurement a particle 1s localized at some definite
point of space, the state of the particle is changed, as a result of this process,
in such a way that it ceases in general to have any definite kinetic energy.

If U(x,y, z) > Oinall space (and U — 0 atinfinity), then, by the inequality
(18.1), we have E,, > 0. Since, on the other hand, for E > 0 the spectrum
must be continuous, we conclude that, in this case, the discrete spectrum
is absent altogether, i.e. only an infinite motion of the particle is possible.

Let us suppose that, at some point (which we take as origin), U tends to
— oo in the manner

Uz —ars (e > 0). (18.2)

We consider a wave function finite in some small region (of radius ;) about
the origin, and equal to zero outside this region. The uncertainty in the
values of the coordinates of a particle in such a wave packet is of the order
of ry; hence the uncertainty in the value of the momentum is ~ #fr,. The .
mean value of the kinetic energy in this state is of the order of /%[mr2, and
the mean value of the potential energy is ~ —«/ry*. Let us first suppose
that s > 2. Then the sum
B2 [mr2—otjr 8

takes arbitrarily large negative values for sufficiently small r,. If, however,
the mean energy can take such values, this always means that the energy has
negative eigenvalues which are arbitrarily large in absolute value. The mo-
tion of the particle in a very small region of space near the origin corresponds
to the energy levels with large |E|. The *normal” state corresponds to a
particle at the origin itself, i.e. the particle ““falls” to the point r = 0.

If, however, s < 2, the energy cannot take arbitrarily large negative values.
The discrete spectrum begins at some finite negative value. In this case the
particle does not fall to the centre. It should be mentioned that, in classical
mechanics, the fall of a particle to the centre would be possible in principle
in any attractive field (i.e. for any positive s). The case s = 2 will be specially
constdered in §35.

Next, let us investigate how the nature of the energy spectrum depends on
the behaviour of the field at large distances. We suppose that, as r —+ oo,
the potential energy, which is negative, tends to zero according to the power
law (18.2) (r is now large in this formula), and consider a wave packet “filling”
a spherical shell of large radius 7y and thickness Ar € 7, Then the order
of magnitude of the kinetic energy is again #2/m(A7)2, and of the potential
energy, —afro. We increase 7g, at the same time increasing Az, In such a
way that A7 increases proportionally to 7. If s < 2, then the sum A2/m(Ar)2—
a/re* becomes negative for sufficiently large r,. Hence it follows that there
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are stationary states of negative energy, in which the particle may be found,
with a fair probability, at large distances from the origin. This, however,
means that there are levels of arbitrarily small negative energy (it must be
recalled that the wave functions rapidly tend to zero in the region of space
where U > E). Thus, in this case, the discrete spectrum contains an infinite
number of levels, which become denser and denser towards the level E = 0.

If the field diminishes as —1/#® at infinity, with s > 2, then there are not
levels of arbitrarily small negative energy. The discrete spectrum terminates
at a level with a non-zero absolute value, so that the total number of levels is
finite.

Schrédinger’s equation for the wave functions ¢ of stationary states is real,
as are the conditions imposed on its solution. Hence its solutions can always
be taken as real.t The eigenfunctions of non-degenerate values of the energy
are automatically real, apart from the umimportant phase factor. For y*
satisfies the same equation as i, and therefore must also be an eigenfunction
for the same value of the energy; hence, if this value is not degenerate, ¥ and
J* must be essentially the same, i.e. they can differ only by a constant factor
(of modulus umty). The wave functions corresponding to the same de-
generate energy level need not be real, however, but by a suitable choice of
linear combinations of them we can always obtain a set of real functions.

The complete (time-dependent) wave functions Y} are determined by an
equation in whose coefficients 7 appears. This equation, however, retains the
same form if we replace ¢ in it by — ¢ and at the same time take the complex
conjugate.! Hence we can always choose the functions ' in such a way that
¥ and ¥'* differ only by the sign of the time.

As is well known, the equations of classical mechanics are unchanged by
time reversal, i.e. when the sign of the time is reversed. In quantum mechanics,
the symmetry with respect to the two directions of time is expressed, as we
see, in the invariance of the wave equation when the sign of ¢ is changed and
¥ is simultaneously replaced by ¥*. However, it must be recalled that this
symmetry here relates only to the equation, and not to the concept of
measurement itself, which plays a fundamental part in quantum mechanics
(as we have explained in detail in §7).

§19. The current density

In classical mechanics the velocity v of a particle is related to 1ts momentum
by p = mv. A similar relation holds between the corresponding operators
in quantum mechanics, as we should expect. This is easily shown by cal-
culating the operator ¥ = t by the general rule (9.2) for the differentiation
of operators with respect to time:

¢ = (i/h)(Hr—rH).

t These assertions are not valid for systems in a magnetic field
1 It 1s assumed that the potential energy U does not depend explicitly on the time: the
system is either closed or in a constant (non-magnetic) field.
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Using the expression (17.5) for A and formula (16.5), we obtain

¢ =p,m. (19.1)

Similar relations will clearly hold between the eigenvalues of the velocity
and momentum, and between their mean values 1n any state.

The velocity, like the momentum of a particle, cannot have a definite value
simultaneously with the coordinates. But the velocity multiplied by an
infinitely short time interval dt gives the displacement of the particle in the
time d¢t. Hence the fact that the velocity cannot exist at the same time as
the coordinates means that, if the particle i1s at a definite point in space at
some instant, it has no definite position at an infinitely close subsequent
instant.

We may notice a useful formula for the operator f of the derivative, with
respect to time, of some quantity f(r) which is a function of the radius vector
of the particle. Bearing in mind that f commutes with U(r), we find

f = GIRYEBf—1H) = ('2mh) B —f$").
Using (16.4), we can write
P =P . (fP—ihVf)
JP* = (Bf+1hVf)-B.
Thus we obtain the required exf)ression:
f=Q2myp . v+ 7. B). (19.2)
Next, let us find the acceleration operator. We have
¥ = (i B)(HY — M) = (ijmh)(Hp — pH) = (ilmh)(Up — pU)
Using formula (16.4), we find
myv = —JU. (19.3)

This operator equation is exactly the same in form as the equation of motion
(Newton’s equation) in classical mechanics.

The integral | |\V'|? dV, taken over some finite volume V), is the probability
of finding the particle in this volume. Let us calculate the derivative of this
probability with respect to time. We have

d [ ¥z dV = f (‘F——+‘}’*a? V=i f (¥ H=Y*—¥+HY) dV.
ot i

Substituting here
H =H* = —(F2m)A+U(x,3, 2)
and using the identity

YAY*—¥*AY = div(FVT*-1*VY),
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we obtain d
afl‘i"]“‘dV—-—: — Jdivj dv,

where j denotes the vectort
j = ({H2m)(FVE* = V*VY). (19.4)
= L (wprrr L wepy).
2m

The integral of div j can be transformed by Gauss’s theorem into an integral
over the closed surface which bounds the volume ¥:

d .
- J. W2 dV = — §J . df. (19.5)

It 1s seen from this that the vector j may be called the probability current density
vector, or simply the current density. The integral of this vector over a surface
is the probability that the particle- will cross the surface during unit time.
The vector j and the probability density || satisfy the equation

a|%|2/ot +divj = O, (19.6)

which is analogous to the classical equation of continuity.

The wave function of free motion (the plane wave (17.9)) can be normalized
so as to describe a flow of particles with unit current density (in which, on
average, one particle crosses a unit cross-section of the flow per unit time).
This function is then

gy - _1__e ~(i/m (Et—p-) (19.7)

VU

where v is the velocity of the particle, since substitution of this in (19.4) gives
j = p/mv, 1.e. a unit vector in the direction of the motion.

It is useful to show how the orthogonality of the wave functions of
states with different energies follows immediately from Schrédinger’s
equation. Let ¢, and ¢, be two such functions; they satisfy the equations

“(kalzm)Al)&m"" U'lbm = Eml)bms
—(R2[2m) Dsip®* + Uipp®* = Epb*.

We multiply the first of these by ¢,* and the second by i, and subtract
corresponding terms; this gives

(Em— fn)‘nl’m'll'ﬂ'l = (halzm)(ﬁbmﬂlnbn‘—ﬁbn‘&'lbm)
= (]i2/2m) div ('ll'mv'#n‘“"lbr;* V'pbm)

t If ¢ is written as j$|e/®, then
i = (him)|¢2Va (19 4a)
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If we now integrate both sides of this equation over all space, the right-hand
side, on transformation by Gauss's theorem, reduces to zero, and we obtain

(En—Ey) [ AV =0,

whence, by the hypothesis E, | # E,, there follows the required orthogonality
relation

f Vot ® dV = 0.

§20. The variational principle

Schrodinger’s equation, in the general form Hy = Ey, can be obtained
from_the variational principle

5 f M H—E) dg = 0. (20.1)

Since i is complex, we can vary ¢ and J* independently. Varying ¢*, we
have

[ axB—EW g =0,

whence, because &/* is arbitrary, we obtain the required equation By = Ey.
The variation of ¢ gives nothing different. For, varying ¢ and using the
fact that the operator H is Hermitian, we have

[ BBy dg = [ sp(H*—Epr dg =0,

from which we obtain the complex conjugate equation H*Jy* = Ey*,

The variational principle (20.1) requires an unconditional extremum of
the integral. It can be stated in a different form by regarding E as a Lagran-
gian multiplier in a problem with the conditional extremum requirement

5 f y*By dg = 0, (20.2)

the condition being

f J* dg = 1. (20.3)

The least value of the integral in(20.2) (with the condition (20.3)) is the first
eigenvalue of the energy, i.e. the energy E, of the normal state. The func-
tion i which gives this minimum is accordingly the wave function g of the
normal state.t The wave functions ,, (n > 0) of the other stationary states
correspond only to an extremum, and not to a true minimum of the integral.

In order to obtain, from the condition that the integral in (20.2) is a2 mini-
mum, the wave function i1 and the energy E1 of the state next to the normal
one, we must restrict our choice to those functions ¢ which satisfy not only the

t In the rest of this section we shall suppose the wave functions ¢ to be real; they can
always be so chosen (if there is no magnetic field).
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normalization condition (20.3) but also the condition of orthogonality with
the wave function i, of the normal state: [isly dg == 0. In general, if the
wave functions g, ¥y, ... , ¥p_y of the first n states (arranged in order of in-
creasing energy) are known, the wave function of the next state gives a mini-
mum of the integral in (20.2) with the additional conditions

f¢2 dg =1, J Wimdg =0 (m=0,1,2,...,n—1). (20.4)

We shall give here some general theorems which can be proved from the
variational principle.t

The wave function ¢4 of the normal state does not become zero (or, as we
say, has no nodes) for any finite values of the coordinates.] In other words,
it has the same sign in all space. Hence, 1t follows that the wave functions
Y, (n > 0) of the other stationary states, being orthogonal to y;, must have
nodes (if ¢, is also of constant sign, the integral | g, dg cannot vanish).

Next, from the fact that y; has no nodes, it follows that the normal energy
level cannot be degenerate. For, suppose the contrary to be true, and let
g, g’ be two different eigenfunctions corresponding to the level E,. Any
linear combination afg4-¢'ysy’ will also be an eigenfunction; but by choosing
the appropriate constants ¢, ¢’, we can always make this function vanish at
any given point in space, 1.e. we can obtain an eigenfunction with nodes.

If the motion takes place in a bounded region of space, we must have
iy = 0 at the boundary of this region (see §18). To determine the energy
levels, it 1s necessary to find, from the variational principle, the minimum
value of the integral in (20.2) with this boundary condition. The theorem that
the wave function of the normal state has no nodes means in this case that
iy does not vanish anywhere inside this region.

We notice that, as the dimensions of the region containing the motion
increase, all the energy levels E, decrease; this follows immediately from
the fact that an extension of the region increases the range of functions which
can make the integral a minimum, and consequently the least value of the
integral can only diminish.

The expression

[oBydg = [ [ Z(R2magLap+ Ug?] dg

for the states of the discrete spectrum of a particle system may be transformed
into another expression which 1s more convenient in practice. In the first
term of the integrand we write

Lo = diva(y V) — (Vai)?

+ The proof of theorems concerning the zeros of eigenfunctions (see also §21) 1s given by
M. A. Lavrent'ev and L. A. Lyusternik, The Calculus of Variations (Kurs variatsionnogo
ischisleniya), 2nd edition, chapter 1X, Moscow, 1950; R. Courant and D. Hilbert, .Methods of
Mathematical Physics, volume I, chapter VI, Interscience, New York, 1933,

1 This theorem and its consequences are not in general valid for the wave functions of
systems consisting of several identical particles (see the end of §63).
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The integral of divg ( Vayb) over all space 1s transformed into an integral
over an infinitely distant closed surface, and since the wave functions of the
states of a discrete spectrum tend to zero sufficiently rapidly at infinity, this
integral vanishes. Thus

[ B dg = [ [Z (#2ma)(Vag)>+ Uy?] do. (20.5)

§21. General properties of motion in one dimension

If the potential energy of a particle depends on only one coordinate (x),
then the wave function can be sought as the product of a function of y and =
and a function of x only. The former of these is determined by Schrédinger’s
equation for free motion, and the second by the one-dimensional Schrédin-
ger’s equation

% sz U =0 21.1
B U =0. @11)

Similar one-dimensional equations are evidently obtained for the problem of
motion in a field whose potential energy 1s U(x, y, 2) = Ui(x)+ Up(y) + Us(2),
1.e. can be written as a sum of functions each of which depends on only one
of the coordinates. In §§22-24 we shall discuss a number of actual examples
of such ‘“‘one-dimensional” motion. Here we shall obtain some general
properties of the motion.

We shall show first of all that, in a one-dimensional problem, none of the
energy levels of a discrete spectrum is degenerate. To prove this, suppose
the contrary to be true, and let 4 and y, be two different eigenfunctions
corresponding to the same value of the energy. Since both of these satisfy
the same equation (21.1), we have

"My = (2m[R2)(U—E) = " b,

or Yn1""Yo— Y1fe’’ = O (the prime denotes differentiation with respect to x).
Integrating this relation, we find
" he—bpf,” = constant. (21.2)

Since y, = ¢, = 0 at infinity, the constant must be zero, and so

¢1'¢2_¢1¢2' =0,

or ¥,’ Yy = Yo' [h,. Integrating again, we obtain ¢, = constant x i, i.e. the
two functions are essentially identical.

The following theorem (called the oscillation theorem) may be stated for the
wave functions (%) of a discrete spectrum. The function y,,(x) correspond-
ing to the (#+1)th eigenvalue E,, (the eigenvalues being arranged in order of
magnitude), vanishes n times (for finitet values of x).

+ If the particle can be found only on a limited segment of the x-axis, we must consider
the zeros of Yn(x) within that segment.
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We shall suppose that the function U(x) tends to finite limiting values as
x — = oo (though it need not be a monotonic function). We take the limiting
value U(4-o0) as the zero of energy (i.e. we put U(+c0) = 0), and we denote
U(—o0) by U, supposing that U, > 0. The discrete spectrum lies in the
range of energy values for which the particle cannot move off to infinity; for
this to be so, the energy must be less than both limiting values U(4-c0),
i.e. it must be negative:

E <0, (21.3)

and we must, of course, have in any case £ > U, , i.e. the function U(x)
must have at least one minimum with U_.. < 0.

Let us now consider the range of positive energy values less than Uj:
0<E< U, (21.4)

In this range the spectrum will be continuous, and the motion of the particle
in the corresponding stationary states will be infinite, the particle moving off
towards x = 4 00. Itis easy to see that none of the eigenvalues of the energy
in this part of the spectrum is degenerate either. To show this, it is sufficient
to notice that the proof given above (for the discrete spectrum) still holds if
the functions iy, Y, are zero at only one infinity (in the present case they tend
to zero as X - —CO).

For sufficiently large positive values of x, we can neglect U(x) in Schro-
dinger’s equation (21.1):

§'+(2m|F)E) = 0.
This equation has real solutions in the form of a stationary plane wave
Jy = a cos(kx+3), (21.5)

where @ and 8 are constants, and the wave number k = pjhi = 1/(2mE)/k.
This formula determines the asymptotic form (for x -+ o) of the wave
functions of the non-degenerate energy levels in the range (21.4) of the
continuous spectrum. For large negative values of x, Schrodinger’s equation
1s

' —(2mfB?)(Uy—EY = 0.
The solution which does not become infinite as x - —o0 is
iy = bex®, where k = /[2m(U,— E)]/k. (21.6)

This is the asymptotic form of the wave function as x - —oo. Thus the
wave function decreases exponentially in the region where £ < U,
Finally, for

E>U, (21.7)

the spectrum will be continuous, and the motion will be infinite in both
directions. In this part of the spectrum all the levels are doubly degenerate.
This follows from the fact that the corresponding wave functions are deter-
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mined by the second-order equation (21.1), and both of the two independent
solutions of this equation satisfy the necessary conditions at infinity (whereas,
for instance, in the previous case one of the solutions became infinite as
x - —o0, and therefore had to be rejected). The asvmptotic form of the
wave function as x - 4o 18

¢, — aleik.z:_}_aze—ik.z:’ (21 8)

and similarly for x - —o0. The term e'** corresponds to a particle moving
to the right, and ¢=™*% corresponds to one moving to the left.

Let us suppose that the function U(x) is even [U(—x) = U(x)]. Then
Schrédinger’s equation (21.1) is unchanged when the sign of the co-
ordinate is reversed. It follows that, if (x) is some solution of this equation,
then (—x) is also a solution, and coincides with J(x) apart from a constant
factor: J(—x) = cf(x). Changing the sign of x again, we obtain J(x) =
c%f(x), whence ¢ = +1. Thus, for a potential energy which is symmetrical
(relative to x = 0), the wave functions of the stationary states must be either
even [Y{—x) = Y(x)] or odd [b—(x) = —(x)].+ In particular, the wave
function of the ground state is even, since it cannot have a node, while an
odd function always vanishes for x = 0 [(0) = —(0) = 0O].

To normalize the wave functions of one-dimensional motion (in a continu-
ous spectrum), there is a simple method of determining the normalization
coefficient directly from the asymptotic expression for the wave function for
large values of |x].

Let us consider the wave function of a motion infinite 1n one direction,
x> + co. The normalization integral diverges as x > o (as x > — co, the
function decreases exponentially, so that the integral rapidly converges).
Hence, to determine the normalization constant, we can replace ¢ by its
asymptotic value (for large positive v), and perform the integration, taking as
the lower limit any finite value of x, say zero; this amounts to neglecting a
finite quantity in comparison with an infinite one. We shall show that the
wave function normalized by the condition

J pp*idp dx = 8(%;—5) = 2nh 3(p—p’), (21.9)

where p 1s the momentum of the particle at infinity, must have the asymptotic
form (21.5) witha = 2:

Yp = 2 cos (kx+ 8) = eikz 8 4 g—itkz+s), (21.10)

Since we do not intend to verify the orthogonality of the functions corre-

+ In this discussion it is assumed that the stationary state 1s not degenerate, i.e. the motion
is not infinite in both directions. Otherwise, when the sign of x is changed, two wave functions
belonging to the energy level concerned mav be transformed into each other. In this case,
however, although the wave functions of the stationary states need not be even or odd, they
can always be made so (by choosing appropriate linear combinations of the original functions).
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sponding to different p, on substituting the functions (21.10) in the normali-
zation integral we shall suppose the momenta p and p’ to be arbitranly
close; we can therefore put 8 = &' (in general § is a function of p). Next, we
retain in the integrand only those terms which diverge for p = p’; in other
words, we omit terms containing the factorex!®+k92 Thus we obtain

[=o] [~ ¢] o)
[ Jp* iy dx = J' itk =Bz dy + J' e~k -z dy = J' itk -Bz dx,
0 0 -

which, from (15.7), 1s the same as (21.9).
The change to normalization by the delta function of energy is effected, 1n
accordance with (5.14), by multiplying ¢, by

d(pf2ai)\l2 1
( dE ) T V(2nhvy

where v 1s the velocity of the particle at infinity. Thus

1
Ve = \/(Zwﬁv)l‘bp

- __1___(ei(k.'z +0) 4 g~k +o)), (21.11)

v/ (2mh)

The current density is 1/274 in each of the travelling waves that make up the
stationary wave (21.11). Thus we can formulate the following rule for the
normalization of the wave function for a motion infinite in one direction by
the delta function of energy: having represented the asymptotic expression
for the wave function in the form of a sum of two plane waves travelling in
opposite directions, we must choose the normalization coefficient in such a
way that the current density in the wave travelling towards (or away from)
the origin is 1/2whA.

Similarly, we can obtain an analogous rule for normalizing the wave func-
tions of a motion infinite in both directions. The wave function will be
normalized by the delta function of energy if the sum of the probability cur-
rents in the waves travelling towards the origin fromx = +wand x = —
is 1/2nh.

§22. The potential well

As a simple example of one-dimensional motion, let us consider motion in
a square potential well, i.e. in a field where U(x) has the form shown in Fig. 1
(p. 64): U(x) =0for 0 < x < q, U(x) = Upforx < 0Dand x > a. Itis
evident a@ priori that for E < Up the spectrum will be discrete, while for
E > Up we have a continuous spectrum of doubly degenerate levels.
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ulx)

Fic. 1

In the region 0 < x < a we have Schrédinger’s equation

J(2m B E} = 0 (22.1)

(the prime denotes differentiation with respect to x), while in the region
outside the well

O 4 (2m B (E— U = 0 (22.2)

For x = 0 and » = a the solutions of these equations must be continuous
together with their derivatives, while for x = 40 the solution of equation
(22.2) must remain finite (for the discrete spectrum when E < U,, it must
vanish).

For E < U, the solution of equation (22.2) which vanishes at infinity is

J = constant Xxe7*%, where x == 1./[(2m/R2)(U,—E)]; (22.3)

the signs — and + in the exponent refer to the regions x > a and x <0
respectively. The probability [if|? of finding the particle decreases exponen-
tially in the region where E' < U(x). I[nstead of the continuity of 4 and ¢’
at the edge of the potential well, it 1s convenient to require the continuity of
i and of its logarithmic derivative y'/i. Taking account of (22.3), we obtain
the boundary condition in the form

iy = Fx (22.4)

We shall not pause here to determine the energy levels in a well of arbitrary
depth U, (see Problem 2), and shall analyse fully only the limiting case of
infinitely high walls (U, - o).

For U, = <0, the motion takes place only between the points x = 0 and
x = a and, as was peinted out in §18, the boundary condition at these points
18

J =0. (22.5)

(It is easy to see that this condition is also obtained from the general condition
(22.4). For, when Uy - o0, we have also kx - o0 and hence §’fyy » o0;
since ¢’ cannot become infinite, it follows that ¢ = 0.) We seek a solution
of equation (22.1) inside the well in the form

& = csin(kx+48), where k = /(2mE/R?). (22.6)
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The condition ¢ = 0 for x = 0 gives § = 0, and then the same condition for
x = a gives sin ka = 0, whence ke = nm, n being a positive integer,T or

E, = (m®h2ma®n?, n=12,3,.... (22.7)

This determines the energy levels of a particle in a potential well. The
normalized wave functions of the stationary states are

b, = +/(2/a) sin(mnx/a). (22.8)

From these results we can immediately write down the energy levels for a
particle in a rectangular ‘‘potential box”, 1.e. for three-dimensional motion
in a field whose potential energy U = Ofor0 < x < 2,0 <y < 5,0 <2 <¢
and U = oo outside this region. In fact, these levels are given by the sums
Epnn = (——+—-+———) (ny, g, 1, = 1,2,3,...), (22.9)
1737y 2m c2

a® ot

and the corresponding wave functions by the preducts

8 . TTnl . ng . 11’713
nngny, = J . sin—x SIn—y sin—z. (22.10)
abce

a b c

It may be noted that the energy Ep of the ground state is, by (22.7) or
(22.9), of the order of £2/mi2, where [ is the linear dimension of the region
in which the particle moves. This result is in accordance with the uncertainty
relation; vhen the uncertainty in the coordinate is ~/, the uncertainty in
the momentum, and therefore the order of magnitude of the momentum
itself, is ~#/l. The corresponding energy 1s ~ (%/)2/m.

PROBLEMS

ProeLeM §. Determine the probability distribution for varicus values of the momentum
for the normal state of a particle in an infinitely deep square potential well.

SoLutioN. The coefficients a(p) in the expansion of the function ¢; (22.8) in terms aof the
eigenfunctions of the momentum are

a

. LE |
a(py = J Yp*dr dx = :jSIH(—I)e - dx.
Nva

1]

a

Calculating the integral and squaring its modulus, we obtain the required probability distri-
bution:
3
2— = ——%h il cosiE dp.
whn

AP 5 = (p2a?—w2h22 2k

ProBLEM 2. Determine the energy levels for the potential well shown in Fig. 2 (p. 66).
SoruTtioN. The spectrum of energy values E < U, which we shall consider, is discrete.
In the region x < 0 the wave function is

¢ = c,en?, where «, = /[(2m/F2)(U,—E)},

+ For n = 0 we should have ¢ = 0 identically.
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u(x)

oy

a x
Fic. 2

while in the region x > a
i = ce~v%, where «, = +/[(2m.*)(U,—E)}.
Inside the well (0 < x < a) we lock for ¥ in the form
Y = ¢ sin(kx+8), where k=4 "(2mE/}?).
The condition of the continuity of /i at the edges of the well gives the equations
keot§ = x; = \[(2m 1)U, — k), k collka+8) = —xy = — 1 [(2m A?)U,— A2,

or
sin & = ki \/(2mU,), sin(ka+8) = — Kkl \/(2mU,).

Eliminating 3, we obtain the transcendental equation

ka = no—sini[kl/\/(2mU, )] —sin—[kh, 4 /(2mU,)] (1)

(where n = 1, 2, 3, ..., and the values of the inverse sine are taken between 0 and 3=), whose
roots determine the energy levels E = k*A%*/2m. For each n there is in general one rcot;
the values of n number the levels in order of increasing energy.

Since the argument of the inverse sire cannot exceed unity, it is clear that the values of &
can lie only in the range from 0 to +/(2mU,/k%). The left-hand side of equation (1) increases
monotonically with k, and the right-hand side decreases monotonically. Flence it is neces-
sary, for a root of equation (1) to exist, that for 2 = /(2mU,/k?) the right-hand side sheould
be less than the left-hand side. In particular, the inequality

a\'CmU\)h > dn—sin=\ (U, Uy), )

which is obtained for n = 1, is the condition that at least one energy level exists in the well.
We see that for given and unequal U,, U, there are always widths a of the well which are so
small that there is no discrete energy level. For U; = U,, the condition (2) is evidently always
satisfied.

For U; = U; = U, (a symmetrical well), equation (1) reduces to

sin~1[Ak \/(2mUp)) = d{nn—Fka). &)}
Introducing the variable § = }k&a, we obtain for odd s the equation
cos £ = 4yf, where ~ = (h a)y (2 mUy), (4)

and those roots of this equation must be taken for which tan § > 0. For even n we obtain
the equation
sin § = v, (5)
and we must take those roots for which tan £ < 0. The roots of these two equations deter-
mine the energy levels E = 2£2A2 ma?. The number of levels is finite when y # 0.
In particular, for a shallow well in which Uo < h2?/ma®, we have y 3> 1 and equation (5

has no root. Equation (4) has one root (with the upper sign on the right-hand side),
£ = 1'y—1/2y3. Thus the well contains only one energy level,

Ey = Up—(ma¥/2h?)U¢?,

which is near the top of the well.
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ProBLEM 3. Determine the pressure exerted on the walls of a rectangular “potential
box'’ by a particle inside it.

SoruTioN. The force on the the wall perpendicular to the x-axis is the mean value of the
derivative —@8FH/0a of the Hamilton’s function of the particle with respect to the length of
the box in the direction of the x-axis. The pressure is obtained by dividing this force by the
area be of the wall. According to the formula (11.16), the required mezan value is found by
differentiating the eigenvalue (22.9) of the energy. The result is

P = m2h2n2[madoc.

§23. The linear oscillator

Let us consider a particle executing small oscillations in one dimension
(what 1s called a lnear oscillator). The potential energy of such a particle
is imw?x?, where w 1s, in classical mechanics, the characteristic (angular)
frequency of the oscillations. Accordingly, the Hamiltonian of the oscillator
is

H =1 p¥m+imeix2. (23.1)

Since the potential energy becomes infinite for x = + oo, the particle can
have only a finite motion, and the energy eigenvalue spectrum is entirely
discrete.

Let us determine the energy levels of the oscillator, using the matrix
method}. We shall start from the equations of motion in the form (19.3);
in this case they give

F+ewix = 0. (23.2)
In matrix form, this equation reads
(XY mntwx,, = 0.
For the matrix elements of the acceleration we have, according to (11.8),
(D = 10mn(B)n = = WOpmp2,,- Hence we obtain
(Wmal—w®)x,, = 0.

Hence it is evident that all the matrix elements x;;, vanish except those for
which wmy = w Or wmy = —w. We number all the stationary states so that
the frequencies + w correspond to transitions n - n¥ 1, 1.e. wp,nx1 = + .
Then the only non-zero matrix elements are xy, 5_1.

We shall suppose that the wave functions i, are taken real. Since x is a real
quantity, all the matrix elements x,,, are real. The Hermitian condition
(11.10) now shows that the matrix x,,, is symmetrical:

Xmn — Xnm-

To calculate the matrix elements of the coordinate which are different

+ This was done by Heisenberg in 1925, before Schrddinger's discovery of the wave
equation.



68 Schrédinger’s Equation §23
from zero, we use the commutation rule
f—%% = —ik/m,
written in the matrix form
(%X) pn— (X%) . = —(ER/M)S ..
By the matrix multiplication rule (11.12) we hence have for m =

i? (wnlxnlxln—xnlwlﬂxln) =21 ZE walXal® = _ih/m-

In this sum, only the terms with / = n + 1 are different from zero, so that

we have
(% +1,11.)2 —(*n,n-1)% = hi2me. (23'3)

From this equation we deduce that the quantities (x,,1 »)® form an arith-
metic progression, which is unbounded above, but is certainly bounded
below, since it can contain only positive terms. * Since we have as yet fixed
only the relative positions of the numbers # of the states, but not their abso-
lute values, we can arbitrarily choose the value of n corresponding to the first
(normal) state of the oscillator, and put this value equal to zero. Accordingly
x¢—; must be regarded as being zero identically, and the application of equa-
tions (23.3) with n = 0, 1, ... successively leads to the result

(Xpn-1)? = nh[2me.

Thus we finally obtain the following expression for the matrix elements of
the coordinate which are difterent from zero:t

Xpn1 = Xnyn = V(nhl2mw). (23.4)
The matrix of the operator H is diagonal, and the matrix elements H,,,
are the required eigenvalues E,, of the energy of the oscillator. To calculate
them, we write
Hﬂﬂ. = Eﬂ = ém[(i.z)nn'*'wz(xz)nﬂ]
= éﬂl[ ? iwnlxnliwlﬂxln'*'wz Il: xnlxlﬂ.]
=1}m§ (w4 w ),
In the sum over /, only the terms with I = n41 are different from zero;
substituting (23.4), we obtain

E, = (n+3)bw, n=012,... (23.5)

Thus the energy levels of the oscillator lie at equal intervals of Aw from
one another. The energy of the normal state (» = 0) is $ hiw; we call atten-
tion to the fact that it is not zero.

1 W e choose the indeterminate phases &y, (see the second footnote to §11) so as to obtain the
plus sign in front of the radical in all the matrix elements (23.4). Such a choice 1s always
possible for a matrix in which only those elements are different from zero which correspond
to transitions between states with adjacent numbers
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The result (23.5) can also be obtained by solving Schrédinger’s equation.
For an oscillator, this has the form

ﬁ.}._(E-—- mawix®y = 0. (23.6)

Here it is convenient to introduce, instead of the coordinate x, the dimension-
less variable ¢ by the relation

£ = \/(mw/h)x. (23.7)
Then we have the equation
Y +[(2E/hew)—£] = O; (23.8)

here the prime denotes differentiation with respect to §.

For large ¢, we can neglect 2E[Aw in comparison with £%; the equation
J'" = ¢4 has the asymptotic integrals i = e*¥#’ (for differentiation of this
function gives ' = €%} on neglecting terms of order less than that of the
term retained). Since the wave function ¢y must remain finite as § -4 c0,
the index must be taken with the minus sign. It is therefore natural to make
in equation (23.8) the substitution

Y= €72 y(£). (23.9)

For the function x(£) we obtain the equation (with the notation (2E/ fiw) ="' =
2n; since we already know that E > 0, we have n > —3})

xu_fo'_*_znx = 0, (23.10)

where the function x must be finite for all finite £, and for £ -4 c0 must not
tend to infinity more rapidly than every finite power of £ (in order that the
function ¢ should tend to zero).

Such solutions of equation (23.10) exist only for positive integral (and
zero) values of n (see §a of the Mathematical Appendices); this gives the
eigenvalues (23.5) for the energy, which we know already. The solutions of
equation (23.10) corresponding to various integral values of # are x = con-
stant X H,(£), where H,(§) are what are called Hermite polynomials; these
are polynomials of the nth degree in £, defined by the formula

H(§) = (—1)ret’ dn(e~t)/dgm. (23.11)

Determining the constants so that the functions i, satisfy the normalization
condition

:j: YoHx)dx =1,

we obtain (see (2.7))

1/4
#nl) = ( 2n/2\/( e e IR (23.12)



70 Schrodinger’s Equation §23
Thus the wave function of the normal state is
dol) = (meofmh)lidg-msz1i2n, (23.13)
It has no zeros for finite x, whicﬂ:ﬁh 1s as it should be,
By calculating the integrals £ Yl € A€, we can determine the matrix ele-

ments of the coordinate; this calculation leads, of course, to the same values
(23.4).

Finally, we shall show how the wave functions i, may be calculated by the
matrix method. We notice that, in the matrices of the operators #4-iw#,
the only elements different from zero are

(FmieoX)y_y,n = —(Fpiex)ppy = —ir/(2whin/m). (23.14)

Using the general formula (11.11), and taking into account the fact that
-1 = 0, we conclude that

(% -~iurx)fy = 0.
After substituting the expression ¥ = —##%/m)d/dx, we obtain the equation
dyofds = — (meofR)xia,
whose normalized solution is (23.13). And, since
(XtiwX)Pn1 = (¥ +iwx)n,n18n = iV (2whn/m)d,,
we obtain the recurrence formula

¥n = +/(m|2whn)[ — (Rfm) d/dx + wx]pn-1

1 rd L .
= \/(2,1)( d§+§)¢’ﬂ—1 - \/(zn)e /2 d§(e—f /2 ‘)z’n—l)'

when this is applied #n times to the function (23.13), we obtain the expression
(23.12) for the normalized functions i,

PROBLEMS
ProBrEM 1. Determine the probability distribution of the various values of the momentum
for an oscillator.

SoruTION. Instead of expanding the wave function of the stationary state in terms of the
eigenfunctions of momentum, it is simpler in the case of the oscillator to start directly from
Schrédinger’s equation in the momentum representation. Substituting in (23.1) the coordi-
nate operator £ = iAd/dp (15.12), we obrain the Hamiltonian in the p representation,

H = 1p%m - Jmew2h? d2)dp2.

The corresponding Schrédinger's equation Ha(p) = Ea(p) for the wave function a(p) in the

momentum representation is
d?a(p) 2 P
—~——— | B =0,
dp? +mw"h’( Zm)a@)

This equation is of exactly the same form as (23.6); hence its solutions can be written down
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at once by analogy with (23.12). Thus we find the required probability distribution to be

lan(p)2 2. = L

ok = Tty Xl [mek]) cp.

ProsLEM 2. Determine the lower limit of the possible values of the energy of an oscillator,
using the uncertainty relation (16.7).

SoLuTION. Since x? = x?4(8x)3, p” = p+(6p)?, (16.7) gives for the mean value of the
energy of the oscillator

E= .}mng_z+ F/m 2 lmw?(dx)2 + }(8p)2im
> math2B(3p)2 +(8p/2m.

On determining the minimum value of this expression (regarded as a function of 8p), we
find the lower limit of the mean values of the energy, and therefore that of all possible values:

E > }w.

ProeLEM 3. Find the wave functions of the states of a linear oscillator that minimize the
uncertainty relation, i.e. in which the standard deviations of the coordinate and momentum
in the wave packet are related by 8p 8x = 44 (E. Schriédinger 1926).1

"SorLuTioN. The required wave functions must have the form

1 ipx  (x—x)2 .
. S— 2 v 2 )b 1
T~ S ®
Their dependence, on the coordinate at any instant is in accordance with (16.8), x = X(2)
and p = p(t) = mx(t) being the mean values of the coordinate and the momentum; according
to (19.3), we have. for a linear oscillator (U = }mw?x?), p = —muw?x, and therefore for the
mean values p = —muw?x or

Y(x, t) =

.-J—C--f- wix = 0, (2)

i.e. the funcrion X(z) satisfies the classical equation of motion. The constant factor in (1) is
determined by the normalization condition

fra
J'prrz dy = 1;

in addition to this factor, ¥ may contain a phase factor with a time-dependent phase $(1).
The unknown constant 8x and the unknown function () are found by substituting (1) n
the wave equation

B2 Py

- + lme?et = lh—.
2m Ox? ct

With (2), the substitution gives

Lea wefMi® 1 ) mix? ¥ 1 _@-]_
(o '“)( [ERTrIeTy R [ 2 T e i B9 =

Hence (8x)? = h/2mw and

b = SF -0 + o,
b= 5pR e dut
Thus we have finally
174 [ b — )2 B
‘F(x, t) = (%) , exp {E‘%{ - E-"J(;Tr)—} exp {— lent —'—‘;—;} 3)

When ¥ = 0 and § = 0, this becomes (x)e~1@¢/2 the wave function of the escillator ground
state.

+ These are called coherent states.
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The mean energy of the oscillator in a coherent state is
E=£2, imuw?x

_ *)
= P 1R Yhe = b+ 1),
Zm B
the quantity # is the mean “number’ of quanta fiw 1n the state. We see that the coherent
state is completely specified by the function x(r) satisfying the classical equation (2). The
general form of this function may be given as

mwX + ip

= ae —iwll 2 — 5 5
+/(2mhw) al " )
The function (3) can be expanded in wave functions of the stationary states of the oscillator:
[«
Y= T oa¥,,
n=g

Walx, 1) = fnx) exp {—iln+ Dot}.
The coefficients in this expansion are (cf. §41, Problem 1)

an = f Y'Y dx. (6)

The probability for the oscillator to be in the nth state is therefore

Wy = Iau|2 = e_a'—lﬂln!- (7)
the Poisson distribution.
Ulx)
x
-f
Fic. 3

PrOBLEM 4. Determine the energy levels for a particle moving in a field of potential energy
(Fig. 3)
Ulx) = A(e~2°*—2¢02)
(P. M. Morse).

SorLuTioN. The spectrum of positive eigenvalues of the energy is continuous (and the levels
are not degenerate), while the spectrum of negative eigenvalues is discrete,
Schrédinger’s equation reads

Aty /dad+ (2m/B3)(E— Ae~3e= 4 2 4e~=2) = 0.

We introduce a new variable
2v(@ma)

= ——

ok
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(taking values from 0 to o) and the notation {we consider the discrete spectrum, so that
E <0
s = (—2mE)ah, n=+/2mA)jch—(s+3}) (N

Schrédinger’s equation then takes the form

o Lo f n+r+i_i _
¢+E¢J+( i+ : fz)u,b—o.

As ¢ = o, the function | behaves asymptotically as e ¥, while as ¢ = 0 it is proportional to
£xs. From considerations of finiteness we must choose the solution which behaves as e~
as £ o and as £ as § = 0. We make the substitution

Y = e 5 2u(§)

anid obtain for w the equation

' (25 4+ 1~y +nw =0, (2)

which has to be solved with the conditions that w is finite as £ — 0, while as § > 0, 2 tends
to infinity not more rapidly than every finite power of £, Equation (2) is the equation for a
confluent hypergeometric function (see §d of the Mathematical Appendices):

w = F(—n, 25+1, £).

A solution satisfying the required conditions is obtzined for non-negative integral » (when
the function F reduces to a polynomial). According to the definitions (1), we thus obtzin
for the energy levels the values
2
],

—E =4l 1—
En [ v(zmA)(

where n takes positive integral values from zero to the greatest value for which v/(2mA), 2k >
n+4 % (so that the parameter s is positive in accordance with its definition) Thus the discrete
spectrum contains only a limited number of levels. 1f +/(2mA)/ak < 4, there is no discrete
spectrum at zll.

Ulx)
X
—UO
FiG. 4
ProBLEM 5. The same as Problem 4, but with U = —Up,fcosh?® ax (Fig. 4).

SoruTioN. The spectrum of positive eigenvalues of the energy is continuous, while that of
negative values is discrete; we shall consider the latter. Schrédinger’s equation s

d%y 2m Us
——+—(E+ ):,!: =0

dx? B2 cosh3ax
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We put { = tanh ax and use the notation

€ = (-2mE)hx,  2mUpla?h? = s(s+1).

r= (—1+J[l ;::"]

obtaining

afe-etf]ooon e

This is the equation of the associated Legendre polynomizals; it can be brought 1o hyper-
geometric form by making the substitution = (1 —£2)t/2 w(f) and temporarily changing
the variable to u = $(1 —¥§):
u(l —w)w” +(e+1)(1 — 2u)w’ — (e — s} e+ 5+ e = O.
The solution finite for § = 1 (i.e. for x = ) is
U= (1—82e2F[e—s, e+5+1, e+ 1, (1 =§)).
If ¢ remains finite for £ = —1 (i.e. for x = —®), we must have e—s = —n, where

n=20,1,2,...; then Fis a polynomial of degree n, which is finite for { = —1,
Thus the energy levels are determined by s — e =n, or

hza’ smUa $
E = __STH—[_(1+ZN)+J(1+=153 )] N

There is a finite number of levels, determined by the condition € > 0, i.e. n <.

§24. Motion in a homogeneous field

Let us consider the motion of a particle in a homogeneous external field.
We take the direction of the field as the axis of x; let F be the force acting
on the particle in this field. In an electric field of intensity E, this force is
F = eE, where e is the charge on the particle.

The potential energy of the particle in the homogeneous field is of the

form U = —Fx+constant; choosing the constant so that U = 0 for x = 0,
we have U = — Fx. Schridinget’s equation for this problem is
d2y/ds4(2m/2) E+ Fx)y = O. (24.1)

Since Utendsto + coasx — — oo, and vice versa, it1s clear that the energy
levels form a continuous spectrum occupying the whole range of energy
values E from —co to +c0. None of these eigenvalues i1s degenerate, and
they correspond to motion which is finite towards x = — co and infinite to-
wards x = + 0.

Instead of the coordinate x, we introduce the dimensionless variable

= (x4 E/F)(2mF|R*)\3, (24.2)
Equation (24.1) then takes the form
¥'+&h=0. (24.3)
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This equation does not contain the energy parameter. Hence, if we obtain a
solution of it which satisfies the necessary conditions of finiteness, we at
once have the eigenfunction for arbitrary values of the energy.

The solution of equation (24.3) which is finite for all x has the form (see
§b of the Mathematical Appendices)

P(§) = AD(—¢§), (24.4)
where

o

1
() = — | cos(hu+u) du
AT 9

is called the Airy function, while A is a normalization factor which we shall
determine below.

As £ - —c0, the function (£) tends exponentially to zero. The asymp-
totic expression which determines )(§) for large negative values of £ is (see

(b.4))
¢é) ~

s SXPL= 18] (24.5)

For large positive values of £, the asymptotic expression for (£) is (see

(b5t
Y(§) = AE1A sin(§§3/2+}w). (24.6)

Using the general rule (5.4) for the normalization of eigenfunctions of a
continuous spectrum, let us reduce the function (24.4) to the form normalized
by the delta function of energy, for which

[wenite) ax = 8(E'—B). (24.7)

In §21 we gave a simple method of determining the normalization coefficient
by means of the asymptotic expression for the wave functions. Following
this method, we represent the function (24.6) as the sum of two travelling
waves:

$(&) = AL exp(FP 1 —1m]) +3 A5/ exp(—if3 /2 —1n]).
The current density, calculated from each of these two terms, is
v(AJ26148)2 = /[2(E+ Fx)[m](A[2£"4)% = A2(2hF)/3[4m?/3,

and equating this to 1/2#% we find

(2m)1/3
A= (24.8)
1I2F1/852/8

t+ It may be noted, by way of anticipation, that the asyvmptotic expressions (24.3) and (24.6)
correspond to the quasi-classical expressions for the wave function in the classically inacces-
sible and accessible regions (§47).
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PROBLEM

Determine the wave funcuons 1n the momentum representation for a particle in 2 homo-

geneous field.
SoLvTion. The Hamiltonman in the momentum representaton is

I = p* 2m—ikFd dp,

so that Schrodinger’s equation for the wave function a(p) has the form

Solving this equation, we find the required functions

ag(p) = (2xhF)-172¢t MFXEp-p’som)

These functions are normalized by the condition

| ae*(p)ac(p) dp = BE~E).

§25. The transmission coefficient

Let us consider the motion of particles in a field of the type shown in
Fig. 5: U(x) increases monotonically from one constant limit (U =0 as
x > —o0) to another (U = U, as x - +c0). According to classical mech-
anics, a particle of energy E < U, moving in such a field from left to right,
on reaching such a ““potential wall”, is reflected from it, and begins to move
in the opposite direction; if, however, E > U, the particle continues to
move in its original direction, though with diminished velocity. In quantum
mechanics, a new phenomenon appears: even for E > U, the particle may
be reflected from the potential wall. The probability of reflection must in

principle be calculated as follows.

Fig, §

Let the particle be moving from left to right. For large positive values of
x, the wave function must describe a particle which has passed “above the
wall” and is moving in the positive direction of x, 1.e. it must have the asymp-
totic form

for x - o0, & Aet*iZ, where ky = (1/k)\/[2m(E—U,)] (25.1)

and A is a constant. To find the solution of Schrédinger’s equation which
satisfies this boundary condition, we calculate the asymptotic expression for
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x - —co; it is a linear combination of the two solutions of the equation of
free motion, i.e. it has the form

for x - — 0, & e*1T4-Be-tk%,  where k, = /(2mE)/k. (25.2)

The first term corresponds to a particle incident on the wall (we suppose
s normalized so that the coefficient of this term is unity); the second term
represents a particle reflected from the wall. The probability current
density in the incident wave is k;, in the reflected wave k,|B{2, and in the
transmitted wave k,| 4|2 We define the transmission coefficient D of the par-
ticle as the ratio of the probability current density in the transmitted wave
to that in the incident wave:

D = (kR 4] (25.3)

Similarly we can define the reflection coefficient R as the ratio of the density
in the reflected wave to that in the incident wave. Evidently R = 1—D:

R = |B* = 1—(ky/R)| 4]? (25.4)

(this relation between 4 and B is automatically satisfied).

If the particle moves from left to right with energy E < U, then &, is
purely imaginary, and the wave function decreases exponentially as x —» 4-co.
The reflected current is equal to the incident one, i.e. we have “‘total reflec-
tion” of the particle from the potential wall. We emphasize, however, that
in this case the probability of finding the particle in the region where £ < U
is still different from zero, though it diminishes rapidly as x increases.

In the general case of an arbitrary stationary state (with energy E > Up),
the asymptotic form of the wave function is given, both for x -— o and for
x — + oo, by a sum of waves propagated in each direction:

= A,etk1z 4 Bie—ikrz for X - — 00,
v =4 : } (25.5)

y = Agetk:Z | Boeg—ik:z for x —> 4 00,

Since these expressions are asymptotic forms of the same solution of a linear
differential equation, there must be a linear relation between the coefficients
Ay, By and A4;, Bs. Let Az = a4y +BB;, where «, B are constants (in general
complex) which depend on the specific form of the field U(x). The corres-
ponding relation for Bz can then be written down from the fact that Schro-
dinger’s equation is real. This shows that, if ¢ is a solution of a given
Schrédinger’s equation, the complex conjugate function * is also a solution.
The asymptotic forms

i = Ay*e—ikaz 4 B#eikiz for X > —C0,
y* = Aoke—ikaz | Boetkaz for x > oo

differ from (25.5) only in the nomenclature of the constant coefficients; we
therefore have Bo* = aB1* +8A41* or Be = 2*By + 8*A1. Thus the coefficients
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in (25.5) are related by equations of the form
Ay = 01 +BB1, By = B*A;+a¥B,. (25.6)
The condition of constant current along the x-axis leads to the relation
k(| 412 —|B1f?) = k(| A2l2—|B2f?).
Expressing Az, By in terms of A4;, B; by (25.6), we find
|22~ {B{% = ku/ke. (25.7)

Using the relation (25.6), we can show, in particular, that the reflection
coefficients are equal (for a given energy E > Up) for particles moving in the
positive and negative directions of the x-axis; the former case corresponds to
putting Bs = 0 in (25.5), and the latter case to 4; = 0. In these two cases,
By/A; = —B*ja* and Az/B; = B/a* respectively. The corresponding re-
flection coefhicients are

Ry = |By/As|? = |B*a¥[?,
Ry = |42iBal2 = [Blan,
whence i1t i1s clear that Ry = Rs.

It is natural to call B\j4,= — f*/o* and A,/B,= Bjo* the reflection
amplitudes for motion in the positive and negative directions respectively.
They are equal in modulus but may have different phase factors.

PROBLEMS

ProBLEM 1. Determine the reflection coefficient of a particle from a rectangular potential
wall (Fig. 6); the epergy of the particle E > U,

763

Fic, 6

SoLutioN. Throughout the region x > 0, the wave function has the form (25.1), while in
the region x < 0 its form is (25.2). "T'he constants A and B are determined from the condi-
tion that ¢ and dy/dx are continuous at x = 0:

148 = A, k(1=B) = kA,
A= Zku'(kx'l‘ka)s B = (kl_kz)l’(k.\'!‘kl)-

whence
The reflection coefficientt 1s (25.4)
R = (”1""*2)2 - Px-Pe)’
kK, hte.

For E = U, (k; = 0), R becomes unity, while for E -» o it tends to zero as (Us/4E)".

4+ In the limiting case of classical mechanics, the reflection coefficient must become zero.
The expression obtained here, however, does not contain the quantum constant at all. This
apparent contradiction is explained as follows. The classical limiting case is that in which



§25 " The transmission coefficient 79

PRrROBLEM 2. Determine the transmissioncoefficient forarectangular potential barrier(Fig. 7).
ulx)

U

a
Fic. 7

SoLuTION. Let E be greater than Uy, and suppose that the incident particle is moving from
left to right. Then we have for the wave function in the different regions expressions of the
form

for x < 0, g = R T ek,
for 0 < x << a, Y = Bethit 4 Bre-tkT,
for x > a, o = Cetkx

(on the side x > a there can be only the transmitted wave, propagated in the positive direc-
tion of x). The constants A, B, B’ and C are determined from the conditions of continuity
of ¢ and d¢/dx at the points x = 0 and a. The transmission coefficient is determined as
D = k|C|*k, = |C|®. On calculating this, we obtain

D 4k 2k
B (ht—ko?)? sinaky+ 32 %R,° ‘

For E < U,, k is a purely imaginary quantity; the corresponding expression for D is
obtained by replacing &; by ix,, where fix, = +/[2m(U,—E)]:

kB2

N (k2 F %) Sinhzﬂkz'ﬁ'"'klg"-zz-

ProBLEM 3. Determine the reflection coefficient for a potential wall defined by the formula
U{x) = Ugf(14e92) (Fig. 5); the energy of the particle is £ > U,

SoLuTtion. Schrédinger’s equation is

d¥y 2m Us
AL W
dx? A2 149

We have to find a solution which, as x — 4 o0, has the form
J = constant x e ®
We introduce a new variable
£ = —gat
(which takes values from = to 0), and seek a solution of the form

b = £-tkusen(g),

the de Broglie wavelength of the particle A~ k/p is small in comparison with the characteristic
dimensions of the problem, i.e. the distances over which the field U{x) changes nocticeably.
In the schematic example considered, however, this distance is zero {at the point x = 0), so
that the passage to the limit cannot be effected.
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where w(£) tends to a constant as £ - 0 (1.e. as x > o). For w(§) we find an equation of
hypergeometric type:

E(1 &) + (1 =21k, '2)(1 —)w' + (R — R Bee 22 = 0,
which has as its solution the hypergeometric function
w = F(i[k,— kp)/ot,—~ilky+ ke) o, — Zikzfu4-1, £)

{we omit a constant factor). As £ -> 0, this function tends to 1, i.e. it satisfies the condition
imposed.
The asymptotic form of the function y as £{ > —co (i.e. x > — ) ist

'.l' ~ E-ik. ,'n[cl( — f)i“‘.-k,? lag Cz( — E)l'(kl-rk') Jo ] —_ (_ ])—tk. Ia [C,e“‘-’ + C'ge‘"‘-’].

where
[(— 2ik, o) N(— 2ikyfat- 1)
b T D(—ih )R iRy ko) 1)
T'(2ik,Ja)T{ —2ikgja+ 1)
* T Tk~ k) @)k — B+ 1)
The required reflection coefficient is R = {C,/C,]?%; on calculating it by means of the well

known formula

L(x)T(1—x) = n/sin =x,

we have
_ (s—inh[-:r(k,—-ka)/u] 2
sinh[n{ky+kg)fa] /

For E = U, (k, = 0), R becomes unity, while for E— o0 it tends to zero as

2
(‘" Uo ) E’_’:,-u vmE) e
eh / E

In the limiting case of classical mechanics, R becomes zero, as it should.

ProeLEM 4. Determine the transmission coefficient for a potential barrier defined by the
formuta
U(x) = Uy/cosh¥ox

(Fig. 8); the energy of the particle is £ < Ul.

Uix)

¥ic. 8

t See formula (e.6), in each of whose two terms we mugst take only the first term of the
expansion, i.e. replace the hypergeometric functions of 1/z by unity.
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SorLuTioNn. The Schrédinger’s equation is the same as that obtained in the solution of
Problem 5, §23; it is necessary merely to alter the sign of U, and to regard the energy E
now as positive. A similar calculation gives the solution

¢ = (1 -y ke F—ikja—s, —ihat+s+1, —ikfa+ 1, }(1-£)),

where
§ = tanh ax, k= \/(2mE)/k,

§= *(—1+J[ i’:}i"]

This solution satisfies the condition that, as x — 0 (i.e. as § — 1, (1—§) = 2e~%x), the wave
function should include only the transmitted wave (~e%*%). The asymptotic form of the
wave function as x &+ —c0 ({ = —1) is found by transforming the hypergeometric function
with the aid of formula (e.7):

T(ek:a) C(1 = th: ) . C(—tk2) (] — ihra)

(-1 +9) P(—tkja—s)[(—tkla+5+1) @

'l’ ~ e tkrx

Taking the squared modulus of the ratio of coefficients in this function, we obtain the follow-
ing expression for the transmission coefficient D =1 — R:

sinh?(mk x)
B sinh*(mk/a)+cos?[dm /(1 —Bm Uy kEx?)]

(if 8mUg/h2a2<1), or
sinh?(m&; )
B sinh?(nkja)+ cosh 3 v/ (Bm Uy h%at—1)]

(if 8mUyp/k2a2 > 1). The first of these formulae holds also for the case Up < 0, i.e. when
the particle is passing over a potential well instead of a potential barrier. It is interesting to
note that in that case D = 1 if 1 +8mlUol/A%2 = (2n+1)2; thus, for certain values of the
depth [Us] of the well, particles passing over it are not reflected. This is evident from equation
{2), where the term in =% vanishes for positive integral s.

ProeLevm 5. Determine how the transmission coefficient tends 1o zero as £ — 0, assuming 1hat
the potential energy U7 v decreases rapidly at disiances |x| 3 a. where a is the dimension of the
mteraction region.

Sorvmion.  For distances k| x| € 1, £ can be neglected in Schridinger’s equation. If also |x | > a,
the potental energy can also be neglected. and the equation becomes — th?/2m) d%y Jdx? = 0; the
solution of this mav be written as

V=g +bx forx<0. ¥ =a,+bx forx>0. 1

'The relation between qy, b, and a,, 4, can be found by solving the equation at distances |x| ~ a.
11 is linear:

= pdy + ub,, by =va, + 1b,. (2

The coeflicients p, u, v and T are real and independent of the energy, which does not appear in the
equation.* The solution 1 must be the same as the first two terms in the expansion of (25.1; and
25.2° in powers of v. so that

—14B, b=k1—B  a=d, by=ihd
Substituting these in  2) and solving for 1, we get, for small £, 4 = 2ik v, whence D = 4k?)v? ~ E.

The transmission coefficient thus tends to zerc in proportion to the particle energy. This is of course
wrue for the examples in Problems 2 and 4.

T Since the flux is constant, pt — pv = 1.



CHAPTER IV

ANGULAR MOMENTUM

§26. Angular momentum

In §15, to derive the law of conservation of momentum, we have made use
of the homogeneity of space relative to a closed system of particles. Besides
its homogeneity, space has also the property of isotropy: all directions in it
are equivalent. Hence the Hamiltonian of a closed system cannot change
when the system rotates as a whole through an arbitrary angle about an
arbitrary axis. It is sufficient to require the fulfilment of this condition for an
infinitely small rotation.

Let 8¢ be the vector of an infinitely small rotation, equal in magnitude
to the angle &4 of the rotation and directed along the axis about which the
rotation takes place. The changes 8r, (in the radius vectors r, of the par-
ticles) in such a rotation are

or, = d¢p X 1,.
An arbitrary function (ry, Iy, ... ) 1s thereby transformed into the function

HEH O Ty B ) = (83T )+ E 8T Vo
= (1,5 ... )+ I& dep x1,. V¢
= (1+d¢p. %‘.ra X Va(ry, Iy, o00).

The expression
14-3¢p. % r,x Ve

is the operator of an infinitely small rotation. The fact that an infinitely smali
rotation does not alter the Hamiltonian of the system is expressed (cf. §15) by
the commutability of the “rotation operator’” with the operator H. Since
8¢ 1s a constant vector, this condition reduces to the relation

(Zrax va)H—H(g r,X V) =0, (26.1)

which expresses a certain law of conservation.

The quantity whose conservation for a closed system follows from the
property of isotropy of space is the angular momentum of the system {cf.
Mechanics, §9). Thus the operator X r, x V, must correspond exactly,
apart from a constant factor, to the total angular momentum of the system,
and each of the terms r,, x V,, of this sum corresponds to the angutar momen-
tum of an individual particle.

82
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The coeflicient of proportionality must be put equal to —i#; then the
expression for the angular momentum operator of a particle i1s —hir x V =
r xp and corresponds exactly to the classical expression r xp Hencefor-
ward we shall always use the anguiar momentum measured in units of 4. The
angular momentum operator of a particle, so defined, will be denoted by 1,
and that of the whole system by L.. Thus the angular momentum operator
of a particle is

H = rxp = —ibrx v, (26.2)
or, in components,

B, = yp,—zp,, K, = zp,—xp., Al = xpy,—yp..

For a system which is in an external field, the angular momentum is in
general not conserved. However, it may still be conserved if the field has a
certain symmetry. Thus, if the system is in a centrally symmetric field, all
directions in space at the centre are equivalent, and hence the angular momen-
tum about this centre will be conserved. Similarly, in an axially symmetric
field, the component of angular momentum along the axis of symmetry is
conserved. All these conservation laws holding in classical mechanics are
valid in quantum mechanics also.

In a system where angular momentum is not conserved, it does not have
definite values in the stationary states. In such cases the mean value of the
angular momentum in a given stationary state is sometunes of interest. Itis
easily seen that, in any non-degenerate stationary state, the mean value of the
angular momentum is zero. For, when the sign of the time is changed, the
energy does not alter, and, since only one staticnary state corresponds to a
given energy level, it follows that when ¢ is changed into —t the state of the
system must remain the same. This means that the mean values of all
quantities, and in particular that of the angular momentum, must remain
unchanged. But when the sign of the time is changed, so is that of the angular
momentum, and we have L. = —L, whence it follows that L. = 0. The same
result can be obtained by starting from the mathematical definition of the
mean value L as being the integral of y*Ly. The wave functions of non-
degenerate states are real (see the end of §18). Hence the expression

L= —ih | y*(Zrax Va)pdg

is purely imaginary, and since L must, of course, be real, it is evident that
L=0.

Let us derive the rules for commutation of the angular momentum operators
with those of coordinates and linear momenta. By means of the relations
(16.2) we easily find

{l‘,,x} =0, {[z,y} = iz, {Z,,z} = —iy, )
oy =0, {2} =ix, {5} = —iz, (26.3)
{ay =0, o=t =v, {Ly=—ix |
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For instance,

Ly—yl. = (UR)yp.—=b)y—3(3P—2p.)(1/h)
= —(z/hi)Y{p,.y} = iz.
All the relations (26.3) can be written in tensor form as follows:
{loxi} = e, (26.4)

where e, 1s the antisymmetric unit tensor of rank three,t and summation is
implied over those suffixes which appear twice (called dummy suffixes).

It is easily seen that a similar commutation rule holds for the angular
momentum and linear momentum operators:

{Iirﬁk} = ieiklﬁl- (26.5)
By means of these formulae, it is easy to find the rules for commutation of
the operators [, /., I, with one another. We have
h([:[y—[y[z) = iz(zﬁz_xﬁz)_(zﬁz_xﬁz)[z
= ([z‘z—z z)ﬁz_x([zﬁz_ﬁz[x)
= -—1yf),,+1xﬁ,, = ih[z.
Tﬁus
.0y =i, (,iy=il, (,i}=il, (26.6)
or
{[i;[k} = ieiklil- (26.7)

Exactly the same relations hold for the operators L., L, L, of the total
angular momentum of the system. For, since the angular momentum oper-
ators of different individual particles commute, we have, for instance,

E[avgiaz_éiazgtav = E([aytaz""[nziay) = i% [az-
Thus
(L,,L} =il, (L,L,}=i, {L,L,) =iL.. (26.8)
The relations (26.8) show that the three components of the angular momen-
tum cannot simultaneously have definite values (except in the case where all
three components simultaneously vanish: see below). In this respect the

angular momentum is fundamentally different from the linear momentum,
whose three components are simultaneously measurable.

1 The antisymmetric umt tensor of rank three, € (also called the umit axial tensor), is
defined as a tensor antisymmetric in all three suffixes. with ¢;;; = 1. It is evident that, of
its 27 components, only 6 are not zero, namely those in which the suffixes i, k&, / form some
permutation of 1, 2, 3. Such a component is + 1 if the permutation ¢, &, ! is obtained from
1, 2, 3 by an even number of transpositions of pairs of figures, and is —1 if the number of
transpositions is odd. Clearly epieikm = 28im, eiteirr = 6. The components of the vector
C = A xB which is the vector product of the two vectors A and B can be wrirten by means
of the tensor e in the form

C" = f[kIAkBl.
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From the operators L, Ly, L, we can form the operator of the square of
the modulus of the angular momentum vector, and which we denote by L2:

12 =F24L2+L2 (26.9)

This operator commutes with each of the operators L., Ly, L,

(L2 L) - 0, {L2,L} =0, {L3 L)} =0. (26.10)

Using (26.8), we have

{Lzzn Lz} = Lx{Lz, -Ez}+{E:u Ez}Lz

= —i(L.L,+L,L.),

{Lﬂzr Lz} = z(L:rEv'l'EyE:):

(L2 L} =o.
Adding these equations, we have {L2, L)} = 0. Physically, the relations
(26.10) mean that the square of the angular momentum, i.e. its modulus, can
have a definite value at the same time as one of its components.

Instead of the operators L, L, it is often more convenient to use the
complex combinations

Ly=L,+ilL,, [L[_.=L,~iL,. (26.11)

It is easily verified by direct calculation using (26.8) that the following
commutation rules hold:

{Lv,Ly=2L, {(L,Ly=L, } (26.12)
(L, Ly =-L_
and it is also not difficult to see that
fe=F. L +L>2-1,
=L E.+L2+L. (26.13)

Finally, we shall give some frequently used expressions for the angular
momentum operator of a single particle in spherical polar coordinates.
Defining the latter by means of the usual relations

x = rsin 8 cos ¢, y = rsinfsin ¢, 2 =rcosb,

we have after a simple calculation
°
[, = —i—, (26.14)
¢

8 é
I, = ezw( + — 41 cot e—). (26.15)
= 26 &b
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Substitution in (26.13) gives the squared angular momentum operator of the
particle:

) 1 #& 1 8 &
fo — _[ -2 sinB—)]. (26.16)
Sin®6 242 ' sinf 20 26

It should be noticed that this is, apart from a factor, the angular part of the
Laplacian operator.

§27. Eigenvalues of the angular momentum

In order to determine the eigenvalues of the component, in some direction,
of the angular momentum of a particle, it is convenient to use the expression
for its operator in spherical polar coordinates, taking the direction in question
as the polar axis. According to formula (26.14), the equation [ = Ly can
be written in the form

—ioyled = L. (27.1)

Its solution is
')b = f(r: 6)euz¢,

where f(7, 6) is an arbitrary function of r and 6. If the function ¢ is to be single-
valued, it must be periodic in ¢, with period 27. Hence we findt

l, =m, wherem =0,4+1,42,.... (27.2)

Thus the eigenvalues [, are the positive and negative integers, including
zero. The factor depending on ¢, which characterizes the eigenfunctions of
the operator [,, is denoted by

D) = (2m)L/2eimo, (27.3)

These functions are normalized so that

[ O B)Om($) d$ = B (27.4)

The eigenvalues of the z-component of the total angular momentum of the
system are evidently also equal to the positive and negative integers:

L, =M, where M =0,41,42,... (27.5)

(this follows at once from the fact that the operator L, is equal to the sum of
the commuting operators [, for the individual particles).

Since the direction of the z-axis is in no way distinctive, it is clear that the
same result is obtained for [, Ly and in general for the component of the
angular momentum in any direction: they can all take integral values only.
At first sight this result may appear paradoxical, particularly if we apply
it to two directions infinitely close to each other. In fact, however, it must

1 The customary notation for the eigenvalues of the angular momentum component is m,
which also denotes the mass of a particle, but this should not lead to any confusion
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be remembered that the only common eigenfunction of the operators
L., L,, L, corresponds to the simultaneous values
v p

L,=L,=L, =0;

in this case the angular momentum vector is zero, and consequently so is its
projection upon any direction. If even one of the eigenvalues L, L, L, is
not zero, the operators L, L., L have no common eigenfunctions. In other
words, there 1s no state in which two or three of the angular momentum
components in different directions simultaneously have definite values differ-
ent from zero, so that we can say only that one of them is integral.

The stationary states of a system which differ only in the value of M have
the same energy; this follows from general considerations, based on the
fact that the direction of the z-axis is in no way distinctive. Thus the
energy levels of a system whose angular momentum is conserved (and is not
zero) are always degenerate.t

Let us now look for the eigenvalues of the square of the angular momen-
tum. We shall show how these values may be found, starting from the
commutation rules (26.8) only. We denote by ins the wave functions of the
stationary states with the same value of L2, belonging to one degenerate
energy level, and distinguished by the value of M.}

First of all we note that, since the two directions of the z-axis are physically
equivalent, for every possible positive value M = || there is a correspond-
ing negative value M = —|M|. Let L (a positive integer or zero) denote the
greatest possible value of |M| for a given L2. The existence of this upper
limit follows because L2 ~L,2=L,2 +Ly2 is the operator of the essentially
positive physical quantity L;2+ L,2, and its eigenvalues therefore cannot be
negative.

Applying the operator L,L  to the eigenfunction iy of the operator L,
and using the commutation rule {L,, L.} = + L (26.12), we obtain

LLopor = (M4 1)L sy (27.6)

Hence we see that the function L .y is (apart from a normalization constant)
the eigenfunction corresponding to the value M + 1 of the quantity L;:

Yar+1 = constant x L+¢M, Yip-1 = constant x L g (27.7)

1+ This 1s a particular case of the general theorem, mentioned in §10, which states that the
levels are degenerate when two or more conserved quantities exist whose operators do not
cornmute. Here the components of the angular momentum are such quantities.

1 Here it is supposed that there is no additional degeneracy leading to the same value of
the energy for different values of the squared angular momentum. This is true for a discrete
spectrum (except for the case of what is called accidental degeneracy in a Coulomb field; see
§36) and in general untrue for the energy levels of a continuous spectrum. However, even
when such additional degeneracy is present, we can always choose the eigenfunctions so that
they correspond to states with definite values of L?, and then we can choose from these the
states with the same values of FE and L2 This is mathematically expressed by the fact thar the
matrices of commuting operators can always be simultaneously brought into diagonal form.
In whar follows we shall, in such cases, speak, for the sake of brevity, as if there were no
additional degeneracy, bearing in mind that the results obtained do not in fact depend on
this assumption, by what we have just said.
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If we put M = L in the first of these equations, we must have identically
Loy =0, (27.8)

since there is by definition no state with 1/ > L. Applying the operator L-
to this equation and using the relation (26.13), we obtain

L Ly =@@2~L2—L)y = 0.

Since, however, the i, are common eigenfunctions of the operators 1.2 and
L., we have

Loy = L0, Lo = Lo, Logr = Ly,
so that the equation found above gives
2 = L(L+1). (27.9)

Formula (27.9) determines the required eigenvalues of the square of the
angular momentum; the number L takes all positive integral values, including
zero. For a given value of L, the component L, = } of the angular momen-
tum can take the values

M=L1L-1,., ~L, (27.10)

i.e. 2ZL+1 different values in all. The energy level corresponding to the
angular momentum L thus has (2L + 1)-fold degeneracy; this is usually
called degeneracy with respect to the direction of the angular momentum.
A state with angular momentum L = 0 (when all three components are also
zero) is not degenerate The wave function of such a state is spherlcally
symmetric, as is evident from the fact that the change in it und.r any in-
finitesimal rotaticn, given by L-,L 1s in this case zero.

We shall often, for the sake of brevity, and in accordance with custom,
speak of the “angular momentum” L of a system, understanding by this an
angular momentum whose squareis L(L + 1); the z-component of the angular
momentum is usually called just the “‘angular momentum component”.

The angular momentum of a single parncle is denoted by the small letter
I, for which formula (27.9) becomes

B = I(I+1). (27.11)

Let us calculate the matrix elements of the quantities Ly and Ly in a
representation in which L, and L2, as well as the energy, are diagonal
(M. Born, W. Heisenberg and P. Jordan 1926). First of all, we note that,
since the operators L, and L, commute with the Hamiltonian, their matrices
are diagonal with respect to the energy, i.e. all matrix elements for transitions
between states of different energy (and different angular momentum L)
are zero. Thus it is sufficient to consider the matrix elements for transitions
within a group of states with different values of M, corresponding to a single
degenerate energy level.

It is seen from formulae (27.7) that, in the matrices of the operators
L,and L_, only those elements are different from zero which correspond
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to transitions M —1 - M and M — M —1 respectively. Taking this into
account, we find the diagonal matrix elements on both sides of the equation
(26.13), obtainingt

L(L+1) = (MILAM-1>{M—-1|L_|M)+M2-M.
Noticing that, since the operators [, and [, are Hermitian,
(M=1|L_|My = (MILyM—1)*,
we can rewrite this equation in the form
[KMIL 4| M =132 = KL+ H—MM~-1)

= (L—M+1)(L+M),
whence]
(MILAM—1> = (M—1|L_|M>
= VI(L+MYL—M+1)]. (27.12)

Hence we have for the non-zero matrix elements of the quantities L, and L,
themselves

(MILM =13 = (M—1|Lo|M> = 3v/[(L+MYL-M+1)],

}(27.13)
(MILJM~1y = —(M=1|Ly|M> = —}iv/[(L+MYL-M+1)].

The diageonal elements in the matrices of the quantities L, and L, are zero.
Since a diagonal matrix element gives the mean value of the quantity in the
corresponding state, it follows that the mean values L, and L, are zero in
states having definite values of L,. Thus, if the angular-momentum com-
ponent in a given direction in space has a definite value, the vector L itself is
in that direction.

§28. Eigenfunctions of the angular momentum

The wave function of a particle is not completely determined when the
values-of ! and m are prescribed. This is seen from the fact that the expres-
sions for the operators of these quantities in spherical polar coordinates
contain only the angles 6 and ¢, so that their eigenfunctions can contain an
arbitrary factor depending on r. We shall here consider only the angular
part of the wave function which characterizes the eigenfunctions of the
angular momentum, and denote this by Y,(8, ¢), with the normalization
condition

J'|Y,,,,|=do =1,

where do = sin 6 dfd¢ 1s an element of solid angle.

t+ In the symbols for the matrix elements, we omit for brevity all suffixes with respect 1o
which they are diagonal (including L).

1 The choice of sign in this formula corresponds to the choice of the phase factors in the
eigenfunctions of the angular momentum.
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We shall see that the problem of determining the cornmon eigenfunctions
of the operators 12 and [ admits of separation of the variables 8 and ¢, and
these functions can be sought in the form

Y1 = O n()0;,(6), (28.1)

where ®,(4) are the eigenfunctions of the operator [,, which are given by
formula (27.3). Since the functions @y, are already normalized by the condi-
tion (27.4), the ©,; must be normalized by the condition

f |©;,.|2sinfdf = 1. (28.2)
Q
The functions Y, with different / or m are automatically orthogonal:
on n
j f Yy m™® Vim sin 6 d6de = 8,8 o, (28.3)
1]

as being the eigenfunctions of angular momentum operators corresponding
to different eigenvalues. The functions &, (¢) separately are themselves
orthogonal (see (27.4)), as being the eigenfunctions of the operator /, cor-
responding to different eigenvalues m of this operator. The functions & ,,(6)
are not themselves eigenfunctions of any of the angular momentumn operators;
they are mutually orthogonal for different /, but not for different m.

The most direct method of calculating the required functions is by directly
solving the problem of finding the eigenfunctions of the operator {2 written
in spherical polar coordinates (formula (26.16)). The equation 12 = 12 is

1
)+ 1 = 0.

sin§ 26 sin%6 O¢?*

Substituting in this equation the form (28.1) for i, we obtain for the function
®,., the equation
1 d
—— —( sin#
sinf dé

delm
)— Q1+ 1)@, = 0. (28.4)

This equation is well known'in the theory of spherical harmonics. It has
solutions satisfying the conditions of finiteness and single-valuedness for
positive integral values of I > |m|, in agreement with the eigenvalues of the
angular momentum obtained above by the matrix method. The correspond-
ing solutions are what are called associated Legendre polynomials P7(cos 6)
(see §c of the Mathematical Appendices). Using the normalization condition
(28.2), we findt

Ounl) = (—1)"it v/ [3(204+1)(I— m) ) (14 m)V ] P(cos 6). (28.5)

+ The choice of the phase factor is not, of course, determined by the normalization condi-
tion. The definition {28.5) used in this book is the most natural from the viewpoint of the
theory of addition of angular momenta. It differs by a factor f! from the one usually adopted.
The advantages of this choice will be clear from the footnotes in §§60, 106 and 107.
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Here it is supposed that m > 0. For negative m, we use the definition

Ot —m1 = (=16 (28.6)

In other words, Oy, for m < 0 is given by (28.5) with |m| instead of m and
the factor (— 1y™ omitted.

Thus the angular momentum eigenfunctions are mathematically just
spherical harmonic functions normalized in a particular way. For reference,
the complete expression embodying the above definitions is

2041 (I— |m|) 22

Yin(8, $) = (=1)omsimdieit) ==

P,'m! (cos B)eime.  (28.7)

In particular,

Yio = il \/gl-ﬂPg(cos 9). (28.8)

It is evident that the functions differing in the sign of m are related by
(=1)mYy, = Yim™* (28.9)

For! = 0 (so that m = 0 also) the spherical harmonic function reduces to
a constant. In other words, the wave functions of the states of a particle with
zero angular momentum depend only on 7, i.e. they have complete spherical
symmetry, in agreement with the general statement in §27.

For a given m, the values of [ starting from || denumerate the successive
eigenvalues of the quantity 12in order of increasing magnitude. Hence, from
the general theory of the zeros of eigenfunctions (§21), we can deduce that the
function ©,, becomes zero for I—|m| different values of the angle 6; in
other words, it has as nodal lines /—|m{ “lines of latitude on the sphere. If
the complete angular functions are taken with the real factors cos g or
sin m¢ instead oft e*#im! ¢ they have as further nodal lines || “lines of longi-
tude’’; the total number of nodal lines 1s thus /.

Finally, we shall show how the functions ®,, may be calculated by the
matrix method. This is done similarly to the calculation of the wave func-
tions of an oscillator in §23. We start from the equation (27.8):

[+ Yu = 0.

Using the expression (26.15) for the operator [, and substituting
Y = (2n)~te'*@y(6), we obtain for ©; the equation

d@u/de—"l C0t5 @u = 0,

whence @ = constant X sin’f. Determining the constant from the normali-
zation condition, we find

Ou = (—if v[3(2I+ 1)1]2-41/11) sinb. (28.10)

t+ Each such function corresponds to a state in which /; does not have a definite value, but
can have the values +m with equal probability,
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Next, using (27.12), we write

[—Yl,m+l = (l—)m.m+1 Yim
= [(l—m)(I+m+1)] Y.
A repeated application of this formula gives

VIA—m(+m)] Yy = (222 Yy

The right-hand side of this equation is easily calculated by means of the
expression (26.15) for the operator /. We have

[_[f(6)etm#] = ettm—D¢ sinl-m d( f sin™F)/d(cos 6).
A repeated application of this formula gives
(L_y-me@,, = ¢™¢ sin-m@ d-"{sin? B . ©,)/d(cos )™,

Finally, using these relations and the expression (28.10) for ©y, we obtain
the formula

_ (214 1)(I+m)! 1 d-m=
Oinl®) =(—')l«/ [ 2(1—m)l ]2111 8 deostymn o (281D

which is the same as (28.5).

§29. Matrix elements of vectors

Let us again consider a closed system of particles;T let f be any scalar
physical quantity characterizing the system, and fthe operator corresponding
to this quantity. Every scalar is invariant with respect to rotation of the
coordinate system. Hence the scalar operator f does not vary when acted
on by a rotation operator, 1.e. it commutes with a rotation operator. We know,
however, that the operator of an infinitely small rotation is the same, apart
from a constant factor, as the angular momentum operator, so that

- A

(f Ly =o. (29.1)

From the commutability of f with the angular momentum operator it
follows that the matrix of f with respect to transitions between states with
definite values of L and M is diagonal with respect to these sufhxes. More-
over, since the specification of 3/ defines only the orientation of the system
relative to the axes of coordinates, and the value of a scalar is independent of
this orientation, we can say that the matrix elements {(n'LM| f |nLM) are
independent of the value of M ; n conventionally denotes all the quantum
numbers other than L and A which define the state of the system. A formal

t All the results in this section are valid also for a particle in a centrally symmetric field
(and in general whenever the total angular momentum of the system is conserved).
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proof of this assertion can be obtained from the commutativity of the
operators f and L _:

fL.—L.f=o. (29.2)

Let us write down the matrix element of this equation corresponding to the
transition #, L, M >, L, M+ 1. Taking into account the fact that the
matrix of the quantity L 4 has only elements withn, L, M —n, L, M +1, we
obtatn

', L, M+ 1 fin, L, M+1><{n, L, M+ 1|L |n, L, M) =
{n', L, M+ 1|L,\n', L, M> (n', L, M| f|n, L, M),

and since the matrix elements of the quantity L, are independent of the suffix
n, we find .

'y Ly M4 fln, L, 41> = 'y L, M| fim, L, M>,  (29.3)

whence it follows that all the quantities {(»n’, L, M| f |n, L, M) for different M/
(the other suffixes being the same) are equal.

If we apply this result to the Hamiltonian itself, we obtain our previous
result that the energy of the stationary states is independent of M, i.e. that
the energy levels have (2L 4 1)-fold degeneracy.

Next, let A be some vector physical q‘uantity characterizing a closed
system. When the system of coordinates is rotated (and, in particular, in
an infinitely small rotation, 1.e when the angular momentum operator
is applied), the components of a vector are transformed into linear functions
of one another. Hence, as a result of the commutation of the operators L,
with the operators 4;, we must again obtain components of the same vector,
A;. The exact form can be found by noticing that, in the particular case
where A is the radius vector of the particle, the formulae (26.4) must be
obtained. Thus we find the commutation rules

{I;f, rjk} = ie,-kl/:’fl. (294)

These relations enable us to obtain several results concerning the form
of the matrices of the components of the vector A (M. Born, W. Heisenberg
and P. Jordan 1926). First of all, it is possible to derive selection rules which
determine the transitions for which the matrix elements can be different
from zero. We shall not go through the fairly lengthy calculations here,
however, since it will appear later (§107) that these rules are actually a direct
consequence of the general transformation properties of vector quantities
and can be derived from the latter with hardly any calculation at all. Here
we shall merely give the rules, without proof.




94 Angular Momentum §29

The matrix elements of all the components of a vector can be different
from zero only for transitions in which the angular momentum L changes by
not more than one unit:

L—>L or L+1. (29.5)

There is a further selection rule which forbids transittons between any two
states with L = 0. This rule is an obvious consequence of the complete
spherical symmetry of states with angular momentum zero.

The selection rules for the angular momentum component A{ are different
for the different components of a vector: the matrix elements can be different
from zero for transitions where M changes as follows:

for Ay = A,+iA,, M->IM+1,
for A= Ap—idy, M—>M-1, (29.6)
for A, M - M.

Moreover, it is possible to determine a general form for the matrix elements
of a vector as functions of the number M. These important and frequently
used formulae are given here, also without proof, since they are actually
a particular case of more general relations derived in §107 for any tensor
quantities.

The non-zero matrix elements of the quantity 4, are given by the formulae

M

(W' LM| A |nLM) = L+ )ZL7 1] (n'L||A||nL>,

(' LM|An, L—1, M>

Le_ M2
\/L(ZL "L 1y LAl L1, 1 (29.7)

| L2—M?
VLEZL-1)2L+1)

(', L=1, M]AynLM> = (', L—1)| 4||nL>.

Here the symbol {n'L’'||A{|jnL) denotes a reduced matrix element, a quantity
independent of the quantum number /.1 These matrix elements are related
by

(WL AlInLy = (nLl|Alln'Lo Y%, (29.8)

which follows directly from the fact that the operator 4, is Hermitian.
The matrix elements of the quantities 4~ and A+ are also determined by

+ The appearance in formulae (29.7) and {29.9} of denominators which depend on L is in
accordance with the general notation used in §107. The convenience of these denominators
is shown, in particular, by the simple form of equation {29.12) for the matrix elements of the
scalar product of two vectors.

The symbol for the reduced matrix element 1s to be taken as a whole, in contrast to the
matrix element svmbol (see the comments following (11.17)).
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the reduced matrix elements. The non-zero matrix elements of 4_ are

{n', L, M —1|A_|nLM> h

_ \/(LL—M+1)(L+M) ('L Aj|nL>,
(L+1)(2L+1)

{n’y L, M—1]A_|n, L1, M)

_ [L=MiL-b)
L(2L—1)(2L+1)

> (29.9)

‘Li|A||n, L—-15,

'y L—1, M~1|A_|nLM>

_ [ MonLed o,
L(2L—1}2L+1)

—1||4]||nL>.

The matrix elements of A 4 need not be written out separately: since 4 and
Ay are real we have

(L' M| A f|nLM> = (nLM|A_|n'L' M'>*. (29.10)

There is a formula which expresses the matrix elements of the scalar A. B
in terms of the reduced matrix elements of the two vector quantities A and
B. The calculation is conveniently carried out by writing the operator
A .Bin the form

A.B=YyA.B.+4A_-B,)+A4,B.. (29.11)

1

The matrix of A. B (like that of any scalar) is diagonal with respect to L
and V. A calculation by means of formulae (29.7)-(29.9) gives the result

1
W LMIABIALM) = 5p— > (' L||Alln" L {n" L | B||nLY, (29.12)
=y

where L'’ takes the values L, L + 1.
For reference, we shall give the reduced matrix elements for the vector L
itself. A comparison of (29.9) and (27.12) shows that

CLILILY = V[L(L+1)2L+1)],

} (29.13)
(L-1|L||L> = <L{L||IL-1) = .

A quantity that often occurs in applications is the unit vector n along the
radius vector of the particle. Its reduced matrix elements can be calculated
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by finding, for example, the matrix elements of #n, = cos 8 for a zero angular-
momentum component, m = 0;

d—=1, 002,105 = | ©;_1.0* cos 6.0y sin 648,
5

with the functions ®g given by (28.11). The evaluation of the integralt gives

=1, 0[m|I0Y = il]\/[(21—1)21+1)].

The matrix elements for transitions / — [ are zero (as for anv polar vector of
an individual particle; see (30.8) below). Comparison with (29.7) then gives

A=y = =n||I-1) = iv/1,

29.14
izl = 0. } 19

PROBLEM
Average the tensor ninx —4 3; (where n is a unit vector along the radius vector of a particle)
over a state where the magnitude but not the direction of the vector 1 is given (ie. I; is
indeterminate).

SoLuTioN., The required mean value is an operator which can be expressed in terms of
the operator 1 alone. We seek it in the form

g — 6 = ﬂ[[iik +hdi— Bal(l+ 1))

this is the most general symmetrical tensc: of rank two with zero trace that can be formed
from the components of 1. To determine the constant a we multiply this equation on the left
by [; and on the right by I (summing over { and k). Since the vector n is perpendicular to
the vector Al = 2 xf, we have mli = 0. The product [ilififi = (19)2 is replaced by its
eigenvalue I%(I+1)2, and the product [;fk[,-fk is transformed by means of the commutation
relations (26.7) as follows:

Iy = Ll —ieqdiide
= (i2)2—}ie.-mfi([zlk—l‘klt)
= (122 + deviewmlilm
= (iz)z_ iz
= B+ 12=1(+1)

(using the fact that eixiemrr = 284m). After a simple reduction we obtain the result

a= —1f(2] - 1)21+3).

§30. Parity of a state

Besides the parallel displacements and rotations of the coordinate system,
the invariance under which represents the homogeneity and isotropy of space

1 By I—1 times integrating by parts with d cos 8; the general formula for integrals of this
tvpe is (107.14).
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respectively, there is another transformation which leaves unaltered the
Hamiltonian of a closed system. This 1s what is called the inversion trans-
formation, which consists in simuitaneously changing the sign of all the
coordinates, i.e. a reversal of the direction of each coordinate axis; a right-
handed coordinate system then becomes left-handed, and vice versa. The
invariance of the Hamiltonian under this transformation expresses the
symmetry of space under mirror reflections.} In classical mechanics, the
invariance of Hamilton’s function with respect to inversion does not lead to a
conservation law, but the situation is different in quantum mechanics.

Let us denote by P (for “parity”’) an inversion operator whose effect on a
wave function {r) is to change the sign of the coordinates:

Py(r) = $(—1). (30.1)

It is easy to find the eigenvalues P of this operator, which are determined
by the equation

~

Py(r) = P(r). (30.2)

To do so, we notice that a double application of the inversion operator
amounts to identity: the argument of the function is unchanged. In other
words, we have P2y = P2 = i, 1.e. P2 = 1, whence

P= 1l (30.3)

Thus the eigenfunctions of the inversion operator are either unchanged or
change in sign when acted upon by this operator. In the first case, the wave
function (and the corresponding state) is said to be even, and in the second it
1s said to be odd.

The invariance of the Hamiltonian under inversion (i.e. the fact that the
operators F and P commute) thus expresses the law of conservation of parity:
if the state of a closed system has a definite parity (i.e. if it is even, or odd)
then this parity is conserved in the course of time.}

The angular momentum operator also is invariant under inversion, which
changes the sign of the coordinates and of the operators of differentiation with
respect to them; the operator (26.2) thus remains unaltered. In other words,
the inversion operator commutes with the angular momentum operator, and
this means that the system can have a definite parity simultaneously with
definite values of the angular momentum L and its component 1. All states
that differ only in the value of 3 have the same parity; this is evident because
the properties of a closed system are independent of its orientation in space,

t Invariance under inversion exists also for the Harmiltoman of a svstem of particles in a
centralls svmmetric field with the centre at the ongin.

1 To avoid misunderstanding, it should be mentioned that this refers to the non-relativistic
theory. There exist interactions 1n Narture, falling 1n the realm of relativistic theory, which
violate the conservation of pariry
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and it can be formally demonstrated from the commutation rule L .P— PL,
=0 by the same method as in denving (29.3) from (29.2).

There are specific parity selection rules for the matrix elements of various
physical quantities. Let us first consider scalars. Here we must distinguish
true scalars, which are unchanged by inversion, from pseudoscalars, which
change sign, for instance the scalar product of an axial and a polar vector.
The operator of a true scalar f commutes with P; hence it follows that, if the
matrix of P is diagonal, then the matrix of f is diagonal also as regards the
parity sufhx, 1.e. the matrix elements are zero except for transitions g - g and
u — u (where g and u denote even and odd states respectively). For the
operator of a pseudoscalar quantity, we have Pf = —fP; the operators Pand
f anticommute. The matrix element of this equation for a transition g — g is
Pyyfog = —fegFPee» and so fyg = 0 since Py, = 1. Similarly we find that
fuu = 0. Thus, in the matnx of a pseudoscalar quantity, only those elements
can be different from zerc which correspond to transitions with change of
parity. The selection rules for the matrix elements of scalars are therefore:

true scalars g g u—>u;

} (30.4)

pseudoscalars g = u, 4 - g

These rules can also be obtained directly from the definition of the matrix
elements. Let us consider, for example, the integral fyu, = [ $u*fi, dg,
where the function , is even and ,, odd. When all the coordinates change
sign, the integrand does so if fis a true scalar; on the other hand, the integral
taken over all space cannot change when the varnables of integration are
renamed. Hence it follows that f,; = —fu,, 1.e. fue = 0.

We can similarly derive selection rules for vector quantities. Here 1t must
be recalled that ordinary (polar) vectors change sign on inversion, while
axial vectors (such as the angular momentum vector, which 1s the vector
product of the two polar vectors p and r) are unchanged by inversion. The
selection rules are found to be:

polar vectors g >uu—>g;

} (30.5)

axial vectors g >gu—>u

Let us determine the parity of the state of a single particle with angular
momentum /. The inversion transformation (x - —x,y - ~y, 2 > —z)
is, in spherical polar coordinates, the transformation

r—r, 8->7=8 ¢4 (30.6)

The dependence of the wave function of the particle on the angle is given by
the spherical harmonic Yy, which, apart from a constant that is here
unimportant, has the form P;"(cos t)ei™¢. When ¢ is replaced by = +¢,
the factor ¢ is multiplied by (—1)™, and when 6 is replaced by = —#,
Pm(cos 6) becomes Py™(—cos 0) = (—1)I-=P;m(cos §). Thus the whole
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function is multiplied by (—1)! (independent of m, in agreement with what
was said above), i.e. the parity of a state with a gtven value of / is

P=(- 1 (30.7)

We see that all states with even [ are even, and all those with odd { are odd.

A vector physical quantity relating to an individual particle can have non-
zero matrix elements only for transitions with I -/ or /41 (§29). Remem-
bering this, and comparing formula (30.7) with what was said above regarding
the change of parity in the matrix elements of vectors, we reach the result
that the matrix elements of vectors relating to an individual particle are zero
except for the transitions:
polar vectors I >1+1; } (30.8)

[ -1

axial vectors

§31. Addition of angular momenta

Let us consider a system composed of two parts whose interaction is weak.
If the interaction is entirely neglected, then for each part the law of conserva-
tion of angular momentum holds. The angular momentum L of the whole
system can be regarded as the sum of the angular momenta L; and Ly of its
parts. In the next approximation, when the weak interaction is taken into
account, L; and Lz are not exactly conserved, but the numbers Ly and Lo
which determine their squares remain “good” quantum numbers suitable for
an approximate description of the state of the system. Regarding the angular
momenta in a classical manner, we can say that in this approximation L, and
L rotate round the direction of L while remaining unchanged in magnitude.

For such systems the question arises regarding the “law of addition” of
angular momenta: what are the possible values of L for given values of L,
and Lg? The law of addition for the components of angular momentum is
evident: since L, = Ly, + Lo, it follows that

M = M+ Ms. (31.1)

There i1s no such simple relation for the operators of the squared angular
momenta, however, and to derive their "law of addition” we reason as
follows.

If we take the quantities L% L%, L,,, L,, as a complete set »f physi-
cal quantities,t every state will be determined by the values of the numbers
Ly, L,, M, M,. For given L, and L,, the numbers M, and M, take (2L, +1)
and (2L,+1) different values respectively, so that there are altogether
(2L,+1)(2L,+1) different states with the same L, and L,. We denote the
wave functions of the states for this representation by ¢ 1 7.4/ ar.-

Instead of the above four quantities, we can take the four quantities
L;2, Ls2, L2, L, as 2 complete set. Then every state is characterized by

+ Together with such other quantities as form a complete set when combined with these
four. These other quantities playv no part in the subsequent discussion, and for brevity we
shall ignore them enurely, and conventionallv call the above four quantities a complete set.
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the values of the numbers L,, L,, L, M (we denote the corresponding wave
functions by ¢ ; 7ar)- For given L, and L, there must of course be
(2L, +1)(2L,+1) different states as before, 1.e. for given L, and L, the pair
of numbers L and M must take (2L, +41)(2L,+1) pairs of values. These
values can be determined as follows.

By adding the various possible values of M; and M, we get the corres-
ponding values ot 1, as shown below:

M, M, M
Ll Lg L1+L2
L, L,—1 L+ L,~1
,—1 L, } T

L, L,—2

L,—1 L,—1 Li+L,—2
L

We see that the greatest possible value of Mis A = L; + Ly, corresponding
to one state ¢ (one pair of values of My and My). The greatest possible value
of M in the states ), and hence the greatest possible value of L also, is there-
fore Ly +Ls. Next, there are two states ¢ with M = Ly+Ls—~1. Con-
sequently, there must also be two states ¢y with this value of M; one of them
is the state with L = Ly + Lo(and M = L —1), and the otheristhatwith L =
Ly+Ls—1 (and M = L). For the value M = L;+ L;—2 there are three
different states ¢. This means that, besides the values L = Ly+ Ly, L =
Ly+Ls—1,thevalue L = L;j+ Ls—2 car occur.

The argument can be continued in this way so long as a decrease of M by
1 increases by 1 the number of states with a given M. It is easily seen that
this is so until M reaches the value |L; — Lo|. When M decreases further, the
number of states no longer increases, remaining equal to 2L +1 (if Ly < Ly).
Thus |L1—L2| is the least possible value of L, and we arrive at the result
that, for given L; and L, the number L can take the values

L = Ly Ly Ly+L,—1, ..., |L,—L,, (31.2)

that i1s 2L,+1 different values altogether (supposing that L, < L;). It is
easy to verify that we do in fact obtain (2L;41)(2L,+1) different values of
the pair of numbers A7, L. Here it is important to note that, if we ignore
the 2L+ 1 values of M for a given L, then only one state will correspond to
each of the possible values (31.2) of L.

This result can be illustrated by means of what is called the vector model.
If we take two vectors L, L, of lengths L, and L,, then the values of L are
represented by the integral lengths of the vectors L which are obtained by
vector addition of L; and L,; the greatest value of L is L,+L,, which is
obtained when L, and L, are parallel, and the least value is |L,—L,|, when
L; and L, are antiparallel.

In states with definite values of the angular momenta L,, L, and of the
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total angular momentum L, the scalar products L, . L,, L . L, and L. L, also
have definite values. These values are easily found. To calculate L, . L,,
we write L. = L, +L, or, squaring and transposing,

28, .1, —f2-L2 12

Replacing the operators on the right-hand side of this equation by their
eigenvalues, we obtain the eigenvalue of the operator on the left-hand side:

L, . L, = HL(L+1)—Ly(Li+ D) —Ly(Lo+1)}. (31.3)
Similarly we find
L.L, = {L(L+1)+Ly(L,+1)—Ly(L+ 1)} (31-4)

Let us now determine the ““addition rule for parities”. The wave “unction
¥ of a system consisting of two independent parts is the product of the wave
functions ¥ and ¥, of these parts. Hence it is clear that if the latter are of
the same parity (1.e. both change sign, or both do not change sign, when the
sign of all the coordinates is reversed), then the wave function of the whole
system is even. On the other hand, if ¥, and Wz are of opposite parity, then
the function ¥ is odd. These statements may be written

P = PPy, (31.5)

where P is the parity of the whole system and P,,Ps those of its parts. This
rule can, of course, be generalized at once to the case of a system composed of
any number of non-interacting parts.

In particular, if we are concerned with a system of particles in a centrally
symmetric field (the mutual interaction of the particles being supposed weak),
then the parity of the state of the whole system is given by

P = (1)t ; (31.6)

see (30.7). We emphasize that the exponent here contains the algebraic sum
of the angular momenta /;, and this is not in general the same as their ‘vector
sum’’, 1.e, the angular momentum L of the system.

If a closed system disintegrates (under the action of internal forces), the
total angular momentum and parity must be conserved. This circumstance
may render it impossible for a system to disintegrate, even if this is energetic-
ally possible.

For instance, let us consider an atom in an even state with angular momen-
tum L = 0, which is able, so far as energy considerations go, to disintegrate
into a free electron and an ion in an odd state with the same angular momen-
tum L = 0. It is easy to see that in fact no such disintegration can occur
(it is, as we say, forbidden). For, by virtue of the law of conservation of angu-
lar momentum, the free electron would also have to have zero angular momen-
tum, and therefore be in an even state (P = (—1)? = +1); the state of the
system ion +4-electron would then be odd, however, whereas the original state
of the atom was even.



CHAPTER V

MOTION IN A
CENTRALLY SYMMETRIC FIELD

§32. Motion in a centrally symmetric field

THE problem of the motion of two interacting particles can be reduced in
quantum mechanics to that of one particle, as can be done in classical mech-
anics., The Hamiltonian of the two particles (of masses mj, mg) interacting in
accordance with the law U(r) (where 7 is the distance between the particles)
is of the form
2 2
B = —-—}E—AI—-:—A2+ u(r), (32.1)

2m, my

where A; and Ap are the Laplacian operators with respect to the coordinates
of the particles. Instead of the radius vectors r; and r, of the particles, we
introduce new variables R and r:

t =r;—r,, R = (mrt;+mt,)/(m+m,); (32.2)

r is the vector of the distance between the particles, and R the radius vector
of their centre of mass. A simple calculation gives

B2
- 2(my+my)

h2
Drp——D4U(n), (32.3)
2m

where £ and A are the Laplacian operators with respect to the components
of the vectors R and r respectively, i, 4 m, is the total mass of the system, and
m = mymgf(my +ms) is the reduced mass. Thus the Hamiltonian falls into
the sum of two independent parts. Hence we can look for J(r;, r3) in the
form of a product $(R)y(r), where the function ¢(R) describes the motion
of the centre of mass (as a free particle of mass m; + mz), and J(r) describes
the relative motion of the particles (as a particle of mass m moving inthe cen-
trally symmetric field U(7)).

Schrédinger’s equation for the motion of a particle in a centrally sym-
metric field is

A+ 2B [E— U} = 0. (32.4)

Using the familiar expression for the Laplacian operator in spherical polar
102
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coordinates, we can write this equation in the form

-+

7 or ) 7 Lsing 20\° 86 sin?0 3¢2]+ hz[ — Ui =0.

(32.5)

If we introduce here the operator (26.16) of the squared angular momentum
we obtaint
h? o
rt— )+—|,[’]+U(T)I,[’ EY. (32.6)
2ml 72 2
The angular momentum is conserved during motion in a centrally sym-
metric field. We shall consider stationary states in which the angular
momentum [ and the component m have definite values. These values

determine the angular dependence of the wave functions. We thus seek
solutions of equation (32.6) in the form

¥ = R(r)Yin(6, ¢), (32.7)

where the Yi,,(0, ¢) are spherical harmonic functions.
Since 12Y,,, = [(I4+1)Y,,,, we obtain for the radial function R(r) the equa-
tion

1d ) 1(l+)

r? dr

R+—[E— U)]R = 0. (32.8)

This equation does not contain the value of [, = m at all, in accordance with
the (2/+ 1)-fold degeneracy of the levels with respect to the directions of the
angular momentum, with which we are already familiar.

Let us investigate the radial part of the wave functions. By the substitu-
tion

R(r) = x(r)/r (32.9)
equation (32.8) is brought to the form
I(I+1
+[__(E_U)_ ( : ):IX — 0, (32.10)
r

If the potential energy U(r) is everywhere finite, the wave function  must
also be finite in all space, including the origin, and consequently so must its

1 If we introduce the operator of the radial component pr of the linear momentum, in the
form

i 12 WZ R
pob = =ittty = =it (4=,
récr or r
the Hamiltonian can be written in the form
B = (12m)(p 2+ 112+ U,

which 1s the same 1n form as the classical Hamilton’s function in spherical polar coordinates.
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radial part R(r). Hence it follows that y(r) must vanish for r = 0:

x(0) = 0. (32.11)

This condition actually holds also (see §35) for a field which becomes infinite
as r — 0.

Equation (32.10) 1s formally identical with Schrodinger’s equation for
one-dimensional motion in a field of potential energy

e (41
Uyr) = U(r)+27n ¢

, (32.12)

72
which is the sum of the energy U(r) and a term
RA(14-1)/2mr? = B21%2me?,

which may be called the centrifugal energy. Thus the problem of motion in a
centrally symmetric field reduces to that of one-dimensional motion in a
region bounded on one side (the boundary condition for r = 0). The nor-
malization condition for the function y 1s also ‘“‘one-dimensional”, being
determined by the integral

T|R|2r2 dr = f|xl2 dr.
0 0

In one-dimensional motion in a region bounded on one side, the energy
levels are not degenerate (§21). Hence we can say that, if the energy is given,
the solution of equation (32.10), i.e. the radial part of the wave function, is
completely determined. Bearing in mind also that the angular part of the
wave function is completely determined by the values of I and m, we reach
the conclusion that, for motion in a centrally symmetric field, the wave func-
tion is completely determined by the values of E,  and m. In other words,
the energy, the squared angular momentum and the z-component of the
angular momentum together form 2 complete set of physical quantities for
such a motion.

The reduction of the problem of motion in a centrally symmetric field to a
one-dimensional problem enables us to apply the oscillation theorem (see
§21). We arrange the eigenvalues of the energy (discrete spectrum) for a
given ! in order of increasing magnitude, and give them numbers#,, the lowest
level being given the number n, = 0. Then n, determines the number of
nodes of the radial part of the wave function for finite values of  (excluding
the point r = 0). The number - is called the radial quantum number. The
number ! for motion in a centrally symmetric field is sometimes called the
aztmuthal quantum number, and m the magnetic quantum number.

There is an accepted notation for states with various values of the angular
momentum ! of the particle: they are denoted by Latin letters, as follows:

1=01234567..
spdfeght k..

(32.13)
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The normal state of a particle moving in a centrally symmetric field is
always the s state; for, if I 3 0, the angular part of the wave function in-
variably has nodes, whereas the wave function of the normal state can have
no nodes. We can also say that the least possible eigenvalue of the energy,
for a given /, increases with I. This follows from the fact that the presence
of an angular momentum involves the addition of the essentially positive
term 7A%(l41)/2mr?, which increases with /, to the Hamiltonian.

Let us determine the form of the radial function near the origin. Here
we shall suppose that

lifg Ulry* = 0. (32.14)
We seek R(7) in the form of a power series in 7, retaining only the first term
of the series for small r; in other words, we seek R(r) in the form R = con-
stant X 7*. Substituting this in the equation

d(r2 dRjdr)/dr—I(I+1)R = 0,

which is obtained from (32.8) by multiplying by #* and taking the limit as
r > 0, we find

s(s41) == [{I14-1).
Hence
s=1 or s=—(l+1).

The solution with s = —(I41) does not satisfy the necessary conditions;
it becomes infinite for » = 0 (we recall that I > 0). Thus the solution with
s = [ remains, i.e. near the origin the wave functions of states with a given /
are proportional to r*:

R; = constant x ri. (32.15)

The probability of a particle’s being at a distance between r and r+dr from
the centre is determined by the value of 7*|R|? and is thus proportional to
r2(+ We see that it becomes zero at the origin the more rapidly, the
greater the value of L

§33. Spherical waves

The plane wave
i, = constant X elé/Mp.r

describes a stationary state in which a free particle has a definite momentum p
(and energy E = p?[2m). Let us now consider stationary states of a free
particle in which it has a definite value, not only of the energy, but also of the
absolute value and component of the angular momentum. Instead of the
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energy, it is convenient to introduce the wave number
k = plh = +/(2ZmE)/h. (33.1)

The wave function of a state with angular momentum ! and projection
thereof m has the form

Yuam = Rya(r) Yim(6, ¢), (33.2)
where the radial function is determined by the equation
l(l+1)

Ry +—Rm +[ k2— Ry = (33.3)

(equation (32.8) with U(r) = 0). The wave functions {igim for the continuous
(with respect to k) spectrum satisfy the conditions of normalization and
orthogonality:

J. l,llk'l'm'*‘,bklm dV = all'amm's(k —k)

v

The orthogonality for different /, I’ and m, m’ is ensured by the angular func-
tions. The radial functions must be normalized by the condition

o0

fr2Rk-le; dr = 8(

0

k' —k

™

) = 2n8(k — k). (33.4)

If we normalize the wave functions, not on the “k/27 scale”, but on the
“energy scale”, i.e. by the condition

J' #Rg,Rg, dr = 8(E'—E),

then, by the general formula (5.14), we have

Re1 = R/ (1/27)+/(dk[/AE) = (1/h)~/(m|2nk)Ry,. (33.5)
For [ = 0, equation (33.3) can be written
d¥rR
(r k0)+k2rRko _0:
dr?

its solution finite for r = 0 and normalized by the condition (33.4) is (cf.

(21.9))

Ryo = : (33.6)

To solve equation (33.3) with [ 3 0, we make the substitution
Ry = r'xu. (33.7)
For x), we have the equation

Xk:"+2(l+1)Xm'/"+ Py = 0.
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If we differentiate this equation with respect to r, we obtain

A (5 3 ) 2(I+1)
X + ; Xkl +[k2— 2 ]Xk1'=0-

r

By the substitution x;" = 7xy, 141 it becomes

2(142)

r

Xeat1 + Xk 1+ + Bk = 0,

which is in fact the equation satisfied by x, ;,;. Thus the successive func-
tions y,; are related by

X+ = Xkl'/’. (33-8)

(1 dy\!
Xkt = - dr Xxor

and hence

where xpo = Ry, 1s determined by formula (33.6) (this expression can, of
course, be multiplied by an arbitrary constant).

Thus we finally have the following expression for the radial functions in
the free motion of a particle:

Ry =(-1)

,2rt (1 i } sinkr (33.9)

B \r dr r
(the factor £ is introduced for normalization purposes—see below— and
the factor ( — 1)! for convenience). The functions (33.9) can be expressed in
terms of Bessel functions of half-integral order, in the form

Rip = ~/(2akyr) Jiao(kr) = 2k (kr); (33.10)
the functions
Jl®) = V26 ase(x) (33.11)

are called spherical Bessel functions.t

To obtain an asymptotic expression for the radial function (33.9) at large
distances, we notice that the term which decreases least rapidly as r - o0 1is
obtained by differentiating the sine [ times. Since each differentiation —d/dr
of the sine adds — ! to its argument, we have the following asymptotic
eXpression:

_ 2 sin (kr — &lm)

Ry (33.12)
r
+ The first few of these are
SN X siny Cos ¢ 3 1 3cos x
Jo = ' h= — — N Jz = —3——smx— P
X X2 x x x X

Functions defined as x times these are also sometimes used
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The normalization of the tunctions Rj; can be effected by means of their
asymptotic expressions, as was explained in §21. Comparing the asymptotic
formula (33.12) with the normalized function Ry (33.6), we see that the func-
tions Ry, with the coefficient used in (33.9), are in fact normalized as they
should be.

Near the origin (r small) we have, expanding sin k7 in series and retaining
only the term containing the lowest power of r after the differentiation,t

(1 d \!sinkr

r dr r

v 1 d 2+,
= )(r dr/ (21+1)!

=(—1)tR2+1J(21+ DI
Thus the functions Ry near the origin have the form

t+1
Ru = 2K, (33.13)

ES I

in agreement with the general result (32.15).

In some problems (of scattering theory) it i1s necessary to consider wave
functions which do not satisfy the usual conditions of finiteness, but corres-
pond to a flux of particles from or to the centre. The wave function which
describes such a flux of particles with angular momentum / = 0 is obtained
by taking, instead of the ‘‘stationary spherical wave” (33.6), a solution 1n the
form of an outgoing spherical wave Ryo* or an ingoing spherical wave Ryo-,
with

Ryo* = (Afr)e*ikr, (33.14)

In the general case of an angular momentum I which is not zero, we obtain
a solution of equation (33.3) in the form

e::tk"
= (= 1)‘A——-( (33.15)
These functions can be expressed in terms of Hankel functions:
Ryy* = +i4 -\/(kw/Zr)H ( r), (33.16)

1+1/2

of the first and second kinds for the signs + and — respectively.

T The symbol !! denotes the product of all integers of the same parity up to and inciuding
the number In question.
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The asymptotic expression for these functions 1s

Ryt ~ Aexiter—tn2)y, (33.17)
Near the origin, it has the form
2l-1)1
Rklt ~ AL—LI‘—'_I. (33.18)

¥

We normalize these functions so that they correspond to the emission (or
absorption) of one particle per unit time. To do so, we notice that, at large
distances, the spherical wave can be regarded as plane in any small interval,
and the current density initisj = vyn}*, where v = kk/m is the velocity of a
particle. The normalization is determined by the condition §jdf =1,
where the integration is carried out over a spherical surface of large radius 7,
i.e. [ jr2 do = 1, where do is an element of solid angle. If the angular func-
tions are normalized as before, the coefficient A4 in the radial function must
be put equal to

A = 1/ vv = +/(m[kh). (33.19)

An asymptotic expression similar to (33.12) holds, not only for the radial
part of the wave function of free motion, but also for motion (with positive
energy) in any field which falls off sufficiently rapidly with distance.} At
large distances we can neglect both the field and the centrifugal energy in
Schrodinger’s equation, and there remains the approximate equation

1 d*(rRy)

r dr?

+ szkl = 0.

The general solution of this equation is

_ 2 sin(kr—4ln + )

¥

Ry (33.20)

where &, is a constant, called the phase shift, and the common factor is chosen
in accordance with the normalization of the wave function on the “k/2x
scale”.i The constant phase shift §; is determined by the boundary con-
dition (Rj; 1s finite as » — 0); to do this, the exact Schrédinger’s equation
must be solved, and &; cannot be calculated in a general form. The phase
shifts 8; are, of course, functions of both /[ and &, and are an important
property of the eigenfunctions of the continuous spectrum.

+ As we shall show in §124, the field must decrease more rapidly than 1/r.

I The term —4i7 in the argument of the sine is added so that 8; = 0 when the field is
absent. Since the sign of the wave function as a whole is not significant, the phase shifts &;
are determined to within n# (not 2nw). Their values may therefore always be chosen in the
range between 0 and ».
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PROBLEMS

ProBLEM 1. Determine the energy levels for the motion of a particle with angular momen-
tum / = 0 in a spherical square potential weil:

Ulry=—Uyforr<a, Ulr)=0forr>a

SoruTion. For / = 0 the wave functions depend only on r. Inside the well, Schrodinger's
equation has the form

1 42 1
DR = 0, b = o 2m(Uy— ED)

The solution finite for r = O is

sin kr

i

For r > a, we have the equation
1 42 . 1

The solution vanishing at infinity i

¢I = A'e"“’/r.
The condition of the continuity of the logarithmic derivative of ry at r = @ gives

kcotka = —x = — [(2mU, k%) —E?), 1)

or
sinka = + +/(h%2matU)ka. (2)

This equation determines in implicit form the required energy levels (we must take those
roots of the equation for which cot ka < D, as follows from (1)). The first of these levels
(with! = 0} is at the same time the deepest of all energy levels whatsoever, i.e. it corresponds
to the normal state of the particle.

If the depth U, of the potential well is small enough, there are no levels of negative energy,
and the particle cannot “stay’’ in the well. This is easily seen from equation (2), by means of
the following graphical construction. The roots of an equation of the form +sin x = ax
are given by the points of intersection of the line y = ax with the curves y = #*sin x, and
we must take only those points of intersection for which cot x < 0; the corresponding parts
of the curve y = sin x are shown in Fig, 9 by 2 continuous line, We see that, if z is
sufficiently large (U, small), there are no such points of intersection. The first such point
appears when the line y = ax occupies the position shown, i.e. for @ = 2/», and is at x = 37.

N -{in x AL 7

Fic. 9

Putting & = k/+/(2ma*U,), x = ka, we hence obtain for the minimum well depth to give a
single negative level

Up,min = m*h?/8ma?, 3)
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This quantity increases with decreasing well radius a. The position of the first level
E, at the point where it first appears is determined from ka = }n and is E} = 0, as we should
expect. Asthe well depth increases further, the normel level E, descends. When the difference

A = (Ug/Ugp min) — 1 18 small,
—E; = (72{16)Up, min L2 (4
PROBLEM 2. Determine the order of the energy levels with various values of the angular
momentum [/ in a very deep spherical potential well (U, > kt/ma?) (W. Elsasser 1933).

SoLuTIioN. The condition at the boundary of the well requires that y = 0 as Up — ®
(see §22). Writing the radial wave function within the well in the form (33.10), we thus have

the equation
Jisrya(ka) = 0,

whose roots give the position of the levels above the bottom of the well (U,—|E| = #%k3/2m)
for various values of I. The order of the levels from-the ground state is found to be

1s, 1p. 1d, 2s, 1f, 2p, lg, 2d, 1k, 3s, 2f, ...

The numbers preceding the letters give the sequence of levels for each L.}

ProBLEM 3. Determine the order of appearance of levels with various ! as the depth
Up of the well increases.

SorLurion. When it first appears, each new level has energy E = 0. The corresponding
wave function in the region outside the well, which vanishes as r — 0, is

R; = constant x =i+

(the solution of equation (33.3) with k = 0). Fromthe continuity of R; and R;" at the boundary
of the well it follows, in particular, that the derivative (rI*1R;)’ is continuous, and so we have
the following condition for the wave function within the well:

(1R =0 for r=a

This is equivalent] to the condition for the function Ri_, to vanish and, from (33.10), we
obtain the equation

Je-yolar(2mloyh) = 0;

for I = 0 the function J;_1y2 must be replaced by the cosine. This gives the following order
of appearance of new levels as Uy increases:

15, 1p, 1d, 2s, 1f, 2p, g, 2d, 3s, 1k, 2f, ...

It may be noted that differences from the vrder of ievels in a deep well occur only for compar-
atively high levels.

ProeiLem 4. Determine the energy levels of a three-dimensional oscillator (2 particle in a
field U = }pw®r?), their degrees of degeneracy, and the possible values of the orbital angular
momentum in the corresponding stationary states.

SoLuTioN. Schridinger’s equation for a particle in a field U = jpwi(x?+y?+2?) allows
separation of the variahles, leading to three equations like that of a linear oscillator. The
energy levels are therefore

E, = ho(n+ny+ny+ 1) = he(n+ ).

The degree of degeneracy of the nth level is equal to the number of ways in which n can be
divided into the sum of three positive integral {or zero) numbers;|| this is

Kn4 D(n+2).

+ This notation i1s customary for particle levels in the nucleus (see §118).

T According to (33.7) and (33.8) we have (r—'Ri)’ = r~'Ri,,. Since the equation (33.3)
is unaltered when / is replaced by —I—1, we also have (»!+*'R_;_,)" = r'* R _;. Finally, since
the functions R_; and R;_, satisfy the same equation, we obtain (r! +!'R;)" = ri*1R;_,, the
formula used in the text.

Il In other words, this is the number of ways in which n similar balls can be distributed
among three urns.
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The wave functions of the stationary states are

dimn,n, = constant x £-<'""2H,, (ax)H., (ay)H» (a2), ()

where o = 1/(mw/h) and m is the mass of the particle. When the sign of the coordinate
is changed, the polynomial H, is multiplied by (—1)". The paritv of the function (1) is
therefore (—1)M+"*n < (—1)*, Taking linear combinations of these functions with a
given sum m+n2+n3 = n, we can form the functions

thnim = constant x e~ 2rl(1 Logr® - ... +en gt ") Yinl(6, $)F( — jn+ 3, I+B.a%r2), (2)

where |m| = 0, 1, ..., ] and [ takes the values 0, 2, ..., nforeven nand 1, 3, ..., n for odd n;
F is the confluent hypergeometric function. This is evident from a comparison of the parities
(—1)* of the functions (1) and (—1)! of the functions (2), which must be the same. This
determines the possible values of the orbital angular momentum corresponding to the energy
levels considered.

The order of levels of the three-dimensional oscillator is, therefore, with the same notation
as in Problems 2 and 3,

(1s), (1p), (14, 2s), (1f, 2p), (g, 2d, 3s),

where the parentheses enclose sets of degenerate states.}

§34. Resolution of a plane wave

Let us consider a free particle moving with a given momentum p = &k
in the positive direction of the z-axis. The wave function of such a particle
is of the form

iy = constant x etkz,

Let us expand this function in terms of the wave functions i, of free motion
with various angular momenta. Since, in the state considered, the energy
has the definite value k2/%%[2m, it is clear that only functions with this & will
appear in the required expansion. Moreover, since the function ¢** has
axial symmetry about the z-axis, its expansion can contain only functions
independent of the angle ¢, i.e. functions with m = 0. Thus we must have

Prs) w
gikz = % au!szo = X aRy1 Y,
=0 I=o

where the a; are constants. Substituting the expressions (28.8) and (33.9)
for the functions Y;q and Ry;, we obtain

e "\’ /1 d\!sinkr
iz — S CP(cosM =) (= — = r cos 6},
¢ Z iFi(cos )(k) (r dr (= =7 )

{0

where the C, are other constants. These constants are conveniently deter-
mined by comparing the coefficients of (r cos 6)* in the expansions of the two
sides of the equation in powers of 7. On the right-hand side of the equation
this term occurs only in the nth summand; for / > n, the expansion of t-hc
radial function begins at a higher power of 7, while for I < = the polynomial

+ Note that levels with different angular momenta I are mutually degenerate; see the
footnote at the end of §36.
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P, (cos ) contains only lower powers of cos 8. The term in cos? 6 in P, (cos 6)
has the coefficient (21)!/2Y([!)2 (see formula (c.1)). Using also formula
(33.13), we find the desired term of the expansion of the right-hand side of
the equation to be

(20! (kr cos 8)}

— l
(=16 2R

On the left-hand side of the equation the corresponding term (in the expansion
of etk cos B) is
(ikr cos B)Y/11.

Equating these two quantities, we find C; = (—1){(2/4-1). Thus we finally
obtain the required expansion:

sk i (—i)21+1)P(cos 9)( ) (r - Sink'. (34.1)

= Ekr

At large distances this relation takes the asymptotic form

ekt Z 21+ 1)P{cos 8) sin(kr— ). (34.2)

T l=0

In (34.1) the z-axis 1s in the direction of the wave vector k of the plane
wave. This expansion can also be written in a more general form which does
not presurpose a particular choice of the coordinate axes. For this purpose
we must use the addition theorem for spherical harmonics (see (c.11)) to
express the polynomials P; (cos 6) in terms of spherical harmonic functions
of the directions of k and r (the angle between whichis #). The result is

or = dn T T iliy(ke) Yim*(KIE) Vin(x/). (34.3)

I=p m=—y

‘The functions j,(kr) (defined by (33.11)) depend only on the product k7, and
this makes evident the symmetry of the formula with respect to the vectors k
and r; it does not matter which of the two spherical harmonics is labelled as
the complex conjugate.

We normalize the wave function e*Z to give a probability current density
of unity, i.e. so that it corresponds to a flux of partlcles (parallel to the z-axis)
with one particle passing through unit area ih unit time. This function is

b = V2elks = /(m[RR)etéz, (34.49)

wherff v 1s the velocity of the particles; see (19.7). Multiplying both sides of
€quation (34.1) by +/(m/kh) and introducing on the right-hand side the
normalized functions Yxim* = Ry *(r) Yim(6, ¢), we obtain

b= \/[17(21+1)]—"(¢’ho ~ o).

[=0
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The squared modulus of the coefficient of i} ;4= (or ¢410") in this expansion
determines, according to the usual rules, the probability that a particle in a
current converging to (or diverging from) the centre has an angular momen-
tum / (about the origin). Since the wave function v—¢** corresponds to a
current of particles of unit density, this “probability” has the dimensions of
length squared; it can be conveniently interpreted as the magnitude of the
““cross-section’ (in the xy-plane) on which the particle must fall if its angular
momentum is . Denoting this quantity by ¢;, we have

o1 = m(20+1)[R2. (34.5)

For large values of I, the sum of the cross-sections over a range Al of [
(such that 1 € Al €1)is

. 2
Z o1 ~ 72l = 2m—AlL
Al k ?

On substituting the classical expression for the angular momentum, Al = pp
(where p is what is called the impact parameter), this expression becomes

2aplp,

in agreement with the classical result. This is no accident; we shall see
below that, for large values of /, the motion is quasi-classical (see §49).

PROBLEM

Expand a plane wave in wave functions of states having definite values of the y-components m
of the angular -momentum and p, of the momentum,

Sorution. We take cylindrical polar coordinates y, p, ¢ with the axis in the y-direction
The wave functions of the states in question have the form @, (p)e™e®"". If the angle ¢ is
measured from the z-axis, the expansion can be written as

'S
g'k" — erlcpms¢ - Z Qm(p)exmoﬁ

m= oc

(in this case p, = 0), whence

2n

1
Q.(p)= _[f"""‘”*"’*w' d¢p =i"J, {(kp),
27
0

where [ (x) is a Bessel function. When kp 3 |, we have the asymptotic expression
R 2 - | 1
Q. p)xi" [——sin[kp — in(m —3)].
kp

§35. Fall of a particle to the centre

To reveal certain properties of quantum-mechanical motion it is useful to
examine a case which, it is true, has no direct physical meaning: the motion
of a particle in a field where the potential energy becomes infinite at some
point (the origin) according to the law U(r) ~ —B[r?, B > 0; the form of the
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field at large distances from the origin is here immaterial. We have seen in
§18 that this is a case intermediate between those where there are ordinary
stationary states and those where a “fall” of the particle to the origin takes
place.

Near the origin, Schrédinger’s equation in the present case is

R"42R'[r+yR|rt =0, (35.1)

where R(r) is the radial part of the wave function, and we have introduced
the constant

and have omitted all terms of lower orders in 1/r; the value of the energy E
is supposed finite, and so the corresponding term in the equation is omitted
also.

Let us seek R in the form R ~ r*; we then obtain for s the quadratic
equation

s(s+1)+y =0,
which has the two roots

s =—3+v({E—y) s2=-%4— \/(i—)’)- (35.3)

For further investigations it is convenient to proceed as follows. We draw
a small region of radius 7, round the origin, and replace the function —y/[7?
in this region by the constant —y[r2. After determining the wave functions
in this “cut off” field, we then examine the result of passing to the himit
7o — O.

Let us first suppose that y < }. Then s, and s, are real negative quantities,
and s; > se. For r > rp, the general solution of Schrédinger’s equation
has the form (always restricting ourselves to small 7),

R = Ar 4 Br%, (35.4)
A and B being constants. For 7 < 7, the solution of the equation
R4 2R [r+yR|r? =
which is finite at the origin has the form

sin kr

r

For r = r,, the function R and its derivative R’ must be continuous It is
convenient to write one of the conditions as a condition of continuity of the
logarithmic derivative of rR. This gives the equation

A(s;+1)75% 4 B(sp 4 1)r o
Argsi Bry+1

= k cotkr,,
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or
Alsy4 D'+ B(sp+ 15
Aro'a-{-Bro't

= /vy cot V.

On solving for the ratio B[A, this equation gives an expression of the form

BJ/A = constant X515, (35.6)

Passing now to the limit r, - 0, we find that B/A - 0 (recalling that
s1 > s2). Thus, of the two solutions of Schrodinger’s equation (35.1) which
diverge at the origin, we must choose that which becomes infinite less rapidly:

R = A%, (35.7)
Next, let y > %. Then s; and s, are complex:
s = —=d+ivly—3) 5 =5%

Repeating the above analysis, we again arrive at equation (35.6), which, on
substituting the values of s; and s,, gives

BJ/A = constant xrgtV@r-), (35.8)
9

On passing to the limit r;, - 0, this expression does not tend to any definite
limit, so that a direct passage to the limit is not possible. Using (35.8), the
general form of the real solution can be written

R =constant xr~1/2 cos( +/(y—1) log (r/r¢)+ constant). (35.9)

This function has a number of zeros which increases without limit as 7
decreases. Since, on the one hand, the expression (35.9) is valid for the
wave function (when 7 is sufficiently small) with any finite value of the energy
E of the particle, and, on the other hand, the wave function of the normal
state can have no zeros, we can infer that the ‘“‘normal state” of a particle in
the field considered corresponds to the energy E = — c0. In every state of a
discrete spectrum, however, the particle is mainly in a region of space where
E > U. Hence, for £ -> — oo, the particle is in an infinitely small region
round the origin, i.e. the particle falls to the centre.

The “‘critical” field Ug for which the fall of a particle to the centre
becomes possible corresponds to the value y = }. The smallest value of the
coeficient of —1/r? is obtained for ! = 0, i.e.

U = —B2/8ma2. (35.10)

It is seen from formula (35.3) (for s5;) that the permissible solution of Schro-
dinger’s equation (near the point where U ~ 1/r%) diverges, as r — 0, not
more rapidly than 1/4/7. If the field becomes infinite, as 7 — 0, more slo»wfly
than 1/r2, we can neglect U(r), in Schrédinger’s equation near the origin,
in comparison with the other terms, and we obtain the same solutions
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as for free motion, i.e. ¢y ~ r! (see §33). Finally, if the field becomes infinite
more rapidly than 1/r% (as —1/r® with s > 2), the wave function near the
origin is proportional to r#*-1 (see §49, Problem). In all these cases the
product ) tends to zero at r = Q.

Next, let us investigate the properties of the solutions of Schrodinger’s
equation in a field which diminishes at large distances according to the law
U~ —pB/r?, and has any form at small distances. We first suppose that
y < }. It is easy to see that in this case only a finite number of negative
energy levels can exist.t For with energy £ = 0 Schrédinger’s equation
at large distances has the form (35.1), with the general solution (35.4). The
function (35.4), however, has no zeros (for r # 0); hence all zeros of the
required radial wave function lie at finite distances from the origin, and their
number is always finite. In other words, the ordinal number of the level
E = C which terminates the discrete spectrum is finite.

If ¥ > {, on the other hand, the discrete spectrum contains an infinite
number of negative energy levels. For the wave function of the state with
E = 0 has, at large distances, the form (35.9), with an infinite number of
zeros, so that its ordinal number is always infinite.

Finally, let the field be U = —pB/[r? in all space. Then, for y > }, the
particle falls, but if y < 1 there are no negative energy levels. For the
wave function of the state with £ = 0 1s of the form (35.7) in all space; it has
no zeros at finite distances, i.e. it corresponds to the lowest energy level (for
the given /).

§36. Motion in a Coulomb field (spherical polar coordinates)

A very important case of motion in a centrally symmetric field is that of
motion in a Cotdomb field

U=Z4afr
(where « is a positive constant). We shall first consider 2 Coulomb attraction,
and shall therefore write U = —afr. It is evident from general considera-

tions that the spectrum of negative eigenvalues of the energy will be discrete
(with an infinite number of levels), while that of the positive eigenvalues will
be continuous. -

Equation (32.8) for the radial functions has the form

d2R 2dR [l+1)
dr2 r dr_ r2

If we are concerned with the relative motion of two attracting particles, m
must be taken as the reduced mass.

' In calculations connected with the Coulomb field it is convenient to use,
instead of the ordinary units, special units for the measurement of all quanti-
ties, which we shall call Coulomb units. As the units of measurement of
mass, length and time, we take respectively

2m o
R+H(E+—)R = 0. (36.1)
h2 y

m, hz/ma) hs/maz,

t It is assumed that for small » the field is such that the particle does not fall.
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All the remaining units are derived from these; thus the unit of energy is
mo{ k2,

From now on, in this section and the following one, we shall always (unless
explicitly stated otherwise) use these units.t

Equation (36.1) in the new units is
d:R 2 dR Ul41)

dr2 » dr re

1
R+2(E+-—)R = 0. (36.2)
4

DISCRETE SPECTRUM

Instead of the parameter £ and the variable », we introduce the new
quantities

n =1/v(—2E), p=72rn (36.3)

For negative energies, 7 is a real positive number. The equation (36.2), on
making the substitutions (36.3), becomes

2 n l(I+1)
R'4+-R'+ [—i+-—— - :IR
P P P

=0 (36.4)

(the primes denote differentiation with respect to p).

For small p, the solution which satisfies the necessary conditions of finite-
ness 1s proportional to p! (see (32.15)). To calculate the asymptotic be-
haviour of R for large p, we omit from (36.4) the terms in 1/p and 1p? and
obtain the equation

R!I —_ iR’

whence R = ett*, The solution in which we are interested, which vanishes
at infinity, consequently behaves 1, e~ for large p.
It is therefore natural to make the substitution

R = gesl2aufp), (36.5)
when equation (36.4) becomes

pw' + (214 2—p)a' + (n—I— 1)z = 0. (36.6)

+ If m = 911 x 1028 g 15 the mass of the electron, and x = e? (where ¢ is the charge on
the electron), the Coulomb units are the same as what are called atomic umts. The atomic
unit of length is

hElme® = 0-329 %102 cm
(what is called the Bohr radius). The atomic unit of energy is
med Bt = 436 x10-11 erg = 27-21 electron-volts.

A quantity equal to one half of this umt s called a rydberg. The atomic unit of charge 1s
e = 4-80 X 10-° esu. We formally obtain the formulae 1n atomic units by putting e = m =
5 =1 For x = Ze® the Coulomb and atomic units are not the same.
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The solution of this equation must diverge at infinity not more rapidly than
every finite power of p, while for p = 0 it must be finite. The solution which
satisfies the latter condition is the confluent hypergeometric function

w = F(—n+1+1, 2142, p) (36.7)

(see §d of the Mathematical Appendices).t A solution which satisfies the
condition at infinity is obtained only for negative integral (or zero) values of
—n+Il+1, when the function (36.7) reduces to a polynomial of degree
n—I—1. Otherwise it diverges at infinity as e” (see (d.14)).

Thus we reach the conclusion that the number » must be a positive integer,
and for a given / we must have

n =141, (36.8)
Recalling the definition (36.3) of the parameter n, we find
E=—1/2n% n=12,... (36.9)

This solves the problem of determining the energy levels of the discrete
spectrum in a Coulomb field. We see that there are an infinite number of
levels between the normal level £y = — % and zero. The distances between
successive levels diminish as 7 increases; the levels become more crowded
as we approach the value £ = 0, where the discrete spectrum closes up into
the continuous spectrum. In ordinary units, formula (36.9) is1

E = —ms22R%n2, (36.10)

The integer # is called the principal quantum number. The radial quantum
number defined in §32 is

ny = n—I—=1.
For a given value of the principal quantum number, / can take the values
1=01,.., n—1, (36.11)

1.e. n different values in all. Only # appears in the expression (36.9) for the
energy. Hence all states with different / but the same n have the same energy.
Thus each eigenvalue is degenerate, not only with respect to the magnetic
quantum number m (as in any motion in a centrally symmetric field) but
also with respect to the number /. This latter degeneracy (called accidental
or Coulomb degeneracy) is a specific property of the Coulomb field. To each

value of / there correspond 27+ 1 different values of m. Hence the degree of
degeneracy of the nth energy level is

-1
I (@+1) =n (36.12)
=0

+ The second solution of equation (36.6) diverges as p~2 -} a8 p = 0.

1 For_rnula (36.10) was first dertved bv N. Bohr 1n 1913, before the discovery of quantum
mechanics. In quantum mechanics it was derived by W. Pauli in 1926 using the matrix
method, and a few months later by E. Schriodinger using the wave equation
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The wave functions of the stationary states are determined by formulae
(36.5) and (36.7). The confluent hypergeometric functions with both
parameters integral are the same, apart from a factor, as what are called the
generalized Laguerre polynomials (see §d of the Mathematical Appendices).

Hence

2l+1
R,; = constant x ple=s/2L .1 (p).

The radial functions must be normalized by the condition
[ Ratrar =1.
0

Their final form ist
2 —I-1) !
Ry=—— (=11 1)8_,,,1(21) Lffﬂ(EZ
n: AN [(n4 )3 n n

2 (n4-I)!

- 2V MF(—nl41, 2142, 2r/n);
RN iy e L 242, 2l

(36.13)

the normalization integral is calculated by (£.6).]

Near the origin, R,; has the form
241 n4-I)1
w1 (r+]) : (36.14)
w2141 N (n—1—1)!
At large distances,
. -

R~ (=111 rn-lg=T/n, (36.15)

Attt [(n+ 1) (n—1—1)]

The wave function R, ; of the normal state decreases exponentially at distances
of the order r ~ 1,i.e. r ~ h2[mx in ordinary units.

+ We give the first few funcrions Ry explicitly:
Ry = 2077,
Ryy = (1 \2)er 3(1—=1br),
Ry = (1,21 6)er'2r,

2 2
Ry = (231 3)er 3(1-—r+_r2),
327

1
Ry = (827 \fﬁ)e"'a’("a')'
R32 = (44’81 \/30)8_"372-

can also be calculated by substituting the expression (d.13)

I Then lization int 1
1 ormalization integra T .
parts (similarly to the calculation of the

for the Laguerre polynomials and integ_rating by
integral (c.8) for the Legendre polynomials).
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The mean values of the various powers of r are calculated from the formula

-]
rk = J. rk+2R 2 dr.
0

The general formula for rk can be obtained by means of formula (£.7). Here
we shall give the first few values of ;* (for positive and negative k):

7 =3I+ 1)], 7 = 5n24+1-3U(I+1)),
} (36.16)

=12, 2 = 1jm(+}).

CONTINUOUS SPECTRUM

The spectrum of positive eigenvalues of the energy is continuous and
extends from zero to infimty. Each of these eigenvalues 1s infinitely degener-
ate; to each value of E there corresponds an infinite number of states, with
[ taking all integral values from 0 to oo (and with all possible values of m for
the given ).

The number 7 and the vanable p, defined by the formulae (36.3), are now
purely imaginary:

n = —if(2E) = —ilk, p = 2ikr, (36.17)

where £ = 4/(2F).} The radial eigenfunctions of the continuous spectrum
are of the form

_ Cu
(214 1)

(2krYe % F(il R4+ 1, 2142, 2ikr), (36.18)

Rkl

where the Cy; are normalization factors. They can be represented as a
complex integral (see §d):

1 2tk
Ry = Cri(2krfe~tkr— § ef (1— i
2mi £

—d Jk—l-1
) a1,
(36.19)

which is taken along the contour] shown in Fig. 10. The substitution
¢ = 2ikr(t+ 1) converts this integral to the more symmetrical form

+ It wpuld be possible to define n and p by the complex conjugate expressions n = ¢jk,
p = —2kr; the real functions Rk do not, of course, depend on which definition is used.

I Instead of this contour we could use any closed loop passing round the singular points
£ =0 and { = 2ikr in the positive direction. For integral /, the function Vg =
§n-l(£—2ikr)" 1 (see §d) returns to its initial value on passing round such a contour,
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£-2ikr
=0
N %
Frc. 10
(—2kr)72 . ) .
Ru=C K § eBkr (g4 )R- (g )tk gy (36.20)
e

the path of integration passes in the positive direction round the points
t = +}. Itis seen at once from this representation that the functions Ry,
are real.

The asymptotic expansion (d.14) of the confluent hypergeometric function
enables us to obtain immediately a similar expansion for the wave functions
R The two terms in (d.14) give two complex conjugate expressions in the
function Ry, and as a result we obtain

-7 12k [ g—tkr—m(+1)/2-+(1 1K) log 2kr] 1
re - G+ 143k, i[k—1, —2ikr)}.

ko | D{41—ifk) (- 1+ifh )
(36.21)

Ry1=Chy

If we normalize the wave functions on the “%/2w scale’ (1.e. by the condition
(33.4)), the normalization coefhcient 1s

Cir = 2kes/2K|T(I+1—ifk). (36.22)

For the asymptotic expression for R, , when 7 is large (the first term of the
expansion (36.21)) 1s then of the form

Ry =~ _Z..Sin (kr + ilog 2kr-—%lw+31),
r (36.23)
8; = arg I'(I+1—1/k),

in agreement with the general form (33.20) of the normalized wave functions
of the continuous spectrum in a centrally symmetric field. The expression
(36.23) differs from (33.20) by the presence of a logarithmic term in the argu-
ment of the sine; however, since log r increases only slowly compared with 7
itself, the presence of this term is immaterial in calculating a normalization
integral which diverges at infinity. _ .

The modulus of the gamma function which appears in the expression
(36.22) for the normalization factor can be expressed in terms of elementary
functions. Using the familiar properties of gamma functions:

I'(z+1) = 2'(2), TI'(x)I'(1 —2) = mfsinmz,
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we have

D+ 14ifk) = (I+ifk) ... L+l R)(i[R)TG/R),

L(+1—ifk) = (I—i[R) ... 1—i[R)['(1—ik),

and also
|C(I4+1—ifk)| = [D(I4-1—i[RD(I414ik)]1/2
1 1\ . =
-J; [] J(45) st
Thus
VB T el L)
Cra = \/(1_8‘_2,‘,,6)1:1 J (s +3 ) (36.24)

for [ = O the product is replaced by unity.
The radial function for the special case of zero energy can be obtained by
taking the limit & — 0, for which

F(7:+1+1, 20+2, Zikr) —>F(é, 2042, Zikr)

B 2r + (2r)2
(21+2). 1" (21+2)21+3). 2!

= (2+ 1)1 (2r) 712 Jora(V/(87)),

where Jo141 1s a Bessel function. The coefhicients Cy; (36.24) for k£ -0
become

Cri = +/(8m)k 14112,

Hence

[Rit/ vklk-0 = /(47[r) Jar +1(/(81)). (36.25)
The asymptotic form of this function for large r ist
[Rki/ VE]k-0 = (8/r3)/4 sin (/(87) — Im — }m). (36.26)

The factor 4/k disappears if we change to normalization on the energy scale,

iée. from the functions Ry to Rg; given by (33.5); the latter remains finite as
- 0.

+ 'It may be pote‘d that this function corresponds to the quasi-classical approximation {§49)
applied to motion in the region (I+ §)? <€ r < k-2,
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In a repulsive Coulomb field (U = afr) there is only a continuous spectrum
of positive eigenvalues of the energy. Schrédinger’s equation in this field
can be formally obtained from the equation for an attractive field by changing
the sign of . Hence the wave functions of the stationary states are found
immediately from (36.18) by the same alteration. The normalization co-
efficient 1s again determined from the asymptotic expression, and as a result
we obtain

_ Cu ike (7 ;
Ry = m(Zkr)’e F(ilk+141, 214 2, —2ikr),

Ciy = 2 ke~ (14 1+i/k)|

4
V/(87k) J( 2 1
= § — I 36.27
e L1 (3 o
The asymptotic expression for this function for large r is
2 . 1
Ry = ; sm(kr—zlog Zkr—él-n--}-S,), (36.28)

& = arg I'(I4-14-i/k).

THE NATURE OF THE COULOMB DEGENERACY

In classical motion of a particle in a Coulomb field, there 1s a conservation
law peculiar to this type of field; if the field 1s an attractive one,

A = r/r—p x1 = constant (36.29)

(see Mechanics, §15). In quantum mechanics, the corresponding operator is
A =rfr-4px1-1xp), (36.30)

and is easily seen to commute with the Hamiltonian H = 1p2—1/r.
Direct calculation gives the following commutation rules for the operators
A; with one another and with the angular momentum operators:

{ii, A-A} = ie;1 Al {/L-, f_‘l‘k} = —2iHeirls (36.31)

The non-commutativity of the 4; means that the quantities Az, Ay, 4z
cannot simultaneously have definite values in quantum r.nechaniCs. Any one
of the operators, say A,, commutes with the corresponding angular momen-
tum component [,, but not with the squared angular momentum operator 12,
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The existence of a further conserved quantity, which cannot be measured
simultaneously with the others, leads (see §10) to an additional degeneracy
of the levels, and this is the “accidental”’ degeneracy of the discrete energy
levels, peculiar to the Coulomb field.

The origin of this degeneracy may also be formulated in terms of the
increased symmetry of the Coulomb problem in quantum mechanics, in
comparison with the symmetry relative to spatial rotations (V. A. Fok 1935).
For this purpose we note that, in discrete-spectrum states with a fixed
negative energy, we can replace H on the right of the second equation (36.31)
by E, and use instead of the A; the operators f; = Ai/+/(—2E). The com-
mutation rules for these operators are

(L, ) = teaaty, (B, f} = teal. (36.32)

These, together with the rule {I;, 1z} = iegal;, are formally identical with
the commutation rules for the operators of infinitesimal rotations in four-
dimensional Euclidean space.t This is the symmetry of the Coulomb
problem in quantum mechanics.]

From the commutation rules (36.32) we can again derive an expresston for
the energy levels in a2 Coulomb field.]| They can be rewritten by using
instead of 1and u the operators

h=3d+w), 3 =31-9) (36.33)
For these,
e fie} = teadju,  {fou, Jox} = teifer, {1, jox} = 0. (36.34)

These are formally identical with the commutation rules for two independent
three-dimensional angular momentum vectors. The eigenvalues of j;2 and
J¢? are therefore j1(j1 + 1) and jo(jo + 1), wherej1, j2 = 0, 4, 1, 3, ....11 On the
other hand, the definition of the operators iand I = r x p shows by a simple
calculation that

f.a=a.1=0,

t Here Iz, Iy, {; represent the operators of infinitesimal rotations in the yz, zx and xy planes
in four-dimensional Cartesian coordinates x, y, z, u; iz, #y, iz are the operators of infinitesimal
rotations in the xu, yu and zu planes.

! The symmetry appears explicitly in the wave functions in the momenrum representation:
see V. A. Fok, Zeitschrift fiir Physik 98, 145, 1935,

| This derivation is essentially as given by W. Pauli (1926).

t1 Here we anticipate the properties of the angular momentum that are to be described in
§54 (the possibility of integral and half-integral j).
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feyae = —1 - L
2F

with H again being replaced by E in calculating 124+ 42, Hence

(where j = j; = jo), and then E = —1/2(27+1)2. With the notation

2i+l=mn n=123,.., (36.35)

we get the required result £ = 1/2n2. The degree of degeneracy of the levels
is (2j1+ 1)(Z2j2+ 1) = (2j+1)2 = n?, as it should be. Lastly, since i= :1:1 +§2,
for a given value of j; = jo = 4(n—1) the orbital angular momentum / takes
values from O to 2j = n—1.T

PROBLEMS

PrOBLEM 1. Determine the probability distriburion of various values of the momentum
in the ground stare of the hydrogen arom.

SoLuTioN.}] The wave function of the ground state 1s ¢ = Ri0Yoo = (1/v/m)e". The
wave function of this state in the p representation is then given by the integral

a(p) = | w(o)e->= dv

(see (15.10)). The integral is calculated by changing to spherical polar coordinates with the
polar axis along p; the result is

+ The “accidental” degeneracy of levels with different values of / occurs also for motion
in a centrally symmetric field U = imw?* (a three-dimensional oscillator; see §33, Problem
4). This degeneracy is likewise due to the extra symmetry of the Hamiltonian. In this case,
the symmetry arises because in A = $?/2m+ imw?r? both the operators p: and the coordi-
nates xy occur as sums of squares. If they are replaced by the operators

be = mwx,+iﬁf
YT V(2mhw)
., mwxi—1f;
G = ———t,
+(2mhe)

we obtain
H = hw[a“‘. §+§].

This is invariant under any unitary transformations of the operators 4;* and 4 forming a
group that 1s wider than that of the three-dimensional rotations (under which the particle
Hamiltonian is invariant in any centrally symmetric field). _ )

The specific property of the Coulomb and oscillator fields in quantumn mechanics (presence
of accidental degeneracy) is in correspondence with the fact that in classical mechanics closed
particle trajectories exist in these (and only these) fields.

1 In Probléms 1 and 2, atomic units are used.
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_ 8/
) T

and the probability density in p-space is |a(p)|*/(27)®.
ProBLEM 2. Determine the mean potential of the field created by the nucleus and the
electron in the ground state of the hydrogen atom.

SoLuTiON. The mean potential ¢, created by an “electron cloud’ at an arbitrary point r
is most simply found as the spherically symmetric solution of Poisson’s equation with charge
density p = -—|¢{2:

1 ¢z
_ = 4p-2r
r dr"‘(ﬂ,ﬁ,) ¢

Integrating this equation, and choosing the constants so that ¢.(0) is finite and ¢.() = 0,
and adding the potential of the field of the nucleus, we obtain

1 1
6= +dtr) = (- +1)em
Y r

For r € 1 we have ¢ = 1/r (the field of the nucleus), and for r > 1 the potential ¢ &~ ¢—%
(the nucleus is screened by the electron).

uir)

Fic. 11

ProBLEM 3. Determine the energy levels of a particle moving in a centrally symmetric
field with potential energy U = A/r*—-Bjr (Fig. 11).

SoLuTioN. The spectrum of positive energy levels is continuous, while that of negative
levels is discrete ; we shall consider the latter. Schrédinger’s equation for the radial function is

FENIRT

d*:R 2dR 2Zm 2 1 A B
(E—z—l(l+ l)—-——2+—)R =0, )
o

m r?

We introduce the new variable
p =2V (—2mE)rh,
and the notation

2mAR+II+1) = s(s+1), @)

B(ml—=2E):h = n. 3)

Then equation (1) takes the form

2 1 1
R,.+_R.+(__+g_s(s+ ))R ~ 0,
P 4 p P
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which is formally identical with (36.4). Hence we can ar once conclude that the solution
satisfying the necessary conditions is

R = ple=ortF(—n+s+1, 2542, p),

where n—s—1 = p must be a positive integer (or zero), and s must be taken as the positive
root of equation (2). From the definition (3) we consequently obtain the energy levels

b

2B*m

—E, -—

[2p+ 14 v{(214+ 1)*+ 8m Ak} )2

ProBLEM 4. The same as Problem 3, but with U = A4/r*+Br? (Fig. 12).

SoruTtion. There is only a discrete spectrum. Schridinger’s equation is

d*R 2dR 2 R+ A
2 m[E (I+1) B’:IR

d s dr LT 2me

Introducing the variable

¢ = v(ZmB)rtih

um

Fic. 12

and the notation
I+ 1D)+2mA/R = 25254 1),

v(@m/B)Elk = 4(nts5)+3,

we obtain the equation
3
ERTHZR It s+ 1R —s(+ IR = 0.

The solution required behaves asymptotically as e~3 when £ — co, while for small £ it is
proportional to £f, where s must be taken as the positive quantity

s = H—14 v{(214+1)24+-8mAh}).
Hence we seek a solution in the form
R = e~t2f'u,
obrtaining for w the equation

3
w4 (2&‘+5—'f)w'+ﬂw =0,
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whence
3
=F - 2s ) ]
o = p(-n2de)

where n must be a non-negative integer. We consequently find as the energy levels the infinite
aet of equidistant values

E, = hv(B/2m)[dn+2+ V{(2l4+ 1)+ 8mAE], n = 0,1,2, ...

§37. Motion in a Coulomb field (parabolic coordinates)

- The separation of the variables in Schrédinger’s equation written in
spherical polar coordinates i1s always possible for motion in any centrally
symmetric field. In the case of a Coulomb field, the separation of the variables
is also possible in what are called parabolic coordinates. The solution of the
problem of motion in a Coulomb field in terms of parabolic coordinates is
useful in investigating a number of problems where a certain direction in
space is distinctive; for example, for an atom in an external electric field
(see §77).
The parabolic coordinates £, 7, ¢ are defined by the formulae

x = +/({y)cos¢, y = V(§n)sing, z =}({—n), } (37.1)
r = +/(x2+y242%) = HE+),
or conversely
£ =rtz 3 =r—z ¢ =tanl(y/x); (37.2)

¢ and 7 take values from 0 to oo, and ¢ from O to 27. The surfaces £ =
constant and 7 = constant are paraboloids of revolution about the z-axis,
with focus at the origin. This system of coordinates is orthogonal. The

element of length is given by the expression

(dIy? = H—n(df)z+%z(dn)2+fn(d¢)2 (37.3)
and the element of volume is
4V = }{E+n)dédnds. (37.4)
From (37.3) we have the Laplacian operator
L LTI A
E+nLoEN\" 3/ oy £n og*

Schrodinger’s equation for a particle in an attractive Coulomb field with
U= —1fr = =2{(£+7) is
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E+n % ) an( )]'}';} z::'*' ( +§—+; ¢ =0. (37.6)

Let us seek the eigenfunctions ¢ in the form

¥ = fi(§) fa(m)e'™, (37.7)

where m is the magnetic quantum number. Substituting this expression in
equation (37.6) multiplied by %(£+7), and separating the variables £ and 1,
we obtain for fi and f the equations

- E¢—m? 1Jh =0,
df(e + [BEE—Fm¥fE+BL)S,

(37.8)

dfy

d") 'E:)‘ +[3En—tmP[n+B,]fo = 0,

where the separation parameters By, Bz are related by

BitB: = 1. (37.9)

Let us consider the discrete energy spectrum (E < 0). We introduce in
place of E, £, 7 the quantities

n = 1/v(=2E), p =£EV(=2E) ={/n, pp =n/n, (37.10)
whereupon we obtailn the equation for f;

¥, 1 df, 1 flm|+1
+——+[—&+—( +n
dP1 A1 dP1 P1 2 1

=0, (37.11)
4'Pl

and a similar equation for fz, with the notation
n = —}(m|+1)+n6), n, = —§(|m|+1)+nf,. (37.12)

Similarly to the calculation for equation (36.4), we find that f, behaves as
e~tP: for large p; and as p,*™ for small p,. Accordingly, we seek a solution
of equation (37.11} in the form

filpy) = e#/2p, ™20, (p,),
and similarly for fs, obtaining for w; the equation
proy +(|m| +1—py ), +mew, = 0.

This is again the equation for a confluent hypergeometric function. The
solution satisfying the conditions of finiteness 1s

wy = F(—mn,, |m|+1, p1),

where m must be a non-negative integer.
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Thus each stationary state of the discrete spectrum is determined in para-
bolic coordinates by three integers: the parabolic quantum numbers n; and
ns, and the magnetic quantum number m. For 2, the principal quantum
number, we have from (37.9) and (37.12)

n = n,+n+|ml+1. (37.13)

For the energy levels, of course, we obtain our previous result (36.9).

For given n, the number |m| can take n different values from 0 1o n—1.
For fixed # and |m| the number n,; takes n —|m| values, from 0 to n— |m|—1.
Taking into account also that for given |m| we can choose the functions with
m = =4 |m|, we find that for a given n there are altogether

n—1
2 X (n—m)+(n~0) = n?
el
different states, in agreement with the result obtained in §36.
The wave functions i, n,m of the discrete spectrum must be normalizec
by the condition

[Wonal?dV =1 [[[ 1o 0 nl¥+n) didedn = 1. (37.14
000
The normalized functions are
V2 ¢ 7\ e
Frrgm = o) "*"‘(Z)f"*’"(ﬁ) V(2m) (37.15)
where
1 !
omtp) = [ D g, Il 1, pperrzpmis, (37.16)
|m]! p!

The wave functions in parabolic coordinates, unlike those in spherical
polar coordinates, are not symmetrical about the plane 2 = 0. For m > n
the probability of finding the particle in the direction z > 0 is greater than
that for 2 < 0, and vice versa for n; < no.

To the continuous spectrum (£ > 0) there corresponds a continuous spec-
trum of real values of the parameters B,, B, in equations (37.8) (connected as
before, of course, by the relation (37.9)). We shall not pause to write out here
the corresponding wave functions, since it is not usually necessary to employ
them. Equations (37.8), regarded as equations for the “‘eigenvalues’” of the
quantities f1, Bz, have also (for E > 0) a spectrum of complex values. The
corresponding wave functions are written out in §135, where we shall use
them to solve a problem of scattering in a Coulomb field.

'The existence of stationary states 'nynom> leads to an additional conser-
vation law (36.29). In these states, the quantities I, = m and A, as well as
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he energy, have definite values. Calculating the diagonal matrix elements of
he operator A,, we find that

A, = (m—m)fn. (37.17)

Here u, = n; —ns, and the components of the ‘“‘angular momenta’ {; and j»
) p J
are

j1z = 3(m+ny—n3) = i,

} (37.18)

Jez = H(m—mi+ns) = po.

These properties of the states |#ynem) (or, equivalently, |npjped) make it
easy to establish the relation between their wave functions and those of the
states |nlm). Since 1 = j; +j2, the change from one of these descriptions to
the other 1s essentially the construction of wave functions with addition of
'wo angular momenta, discussed in §106. In terms of the “‘angular momenta”’
j1 and Jz, the states {nlm) and |nynam) are described as |jyj2fm) and | jyjapape),
where, from (36.35) and (37.13),

J1=Jz = }¥n-1) = {m+nz+|m|). (37.19)
According to the general formulae (106.9)-(106.11),

'j’nlm = Z <lm|,ulﬂl2>',bnulu,y ‘

by =m
\  (37.20)

n—1

‘l’ﬂu,u, = Z <l; K1 +#2|#1,U-2>¢’nlm

1=0

(D. Park 1960).



CHAPTER VI

PERTURBATION THEORY

§38. Perturbations independent of time

THE exact solution of Schrodinger’s equation can be found only in a com-
paratively small number of the simplest cases. The majority of problems
in quantum mechanics lead to equations which are too complex to be solved
exactly. Often, however, quantities of different orders of magnitude appear
in the conditions of the problem; among them there may be small quantities
such that, when they are neglected, the problem is so much simplified that its
exact solution becomes possible. In such cases, the first step in solving the
physical problem concerned is to solve exactly the simplified problem, and
the second step is to calculate approximately the errors due to the small terms
that have been neglected in the simplified problem. There i1s a general
method of calculating these errors; 1t 1s called perturbation theory.

Let us suppose that the Hamiltonian of a given physical system is of the
form

H = Ho'}" V,

where I is a small correction (or perturbation) to the unperturbed operator H,.
In §§38, 39 we shall consider perturbations ¥ which do not depend explicitly
on time (the same is assumed regarding H, also). The conditions which are
necessary for it to be permissible to regard the operator ¥ as “small” com-
pared with the operator H will be derived below.

The problem of perturbation theory for a discrete spectrum can be formu-
lated as follows. It is assumed that the eigenfunctions i, (® and eigenvalues
E,® of the discrete spectrum of the unperturbed operator H, are known, i.e.
the exact solutions of the equation

By = E©jo (38.1)
are known. It is desired to find approximate solutions of the equation
Hy = (Ho+ V) = B, (38.2)

l.e. approximate expressions for the eigenfunctions i, and eigenvalues E,, of
the perturbed operator H.

In this section we shall assume that no eigenvalue of the operator H is

degenferate. Moreover, to simplify our results, we shall at first suppose that
there 1s only a discrete spectrum of energy levels.

The calculations are conveniently performed in matrix form throughout.

123
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To do this, we expand the required tunction ¢ in terms of the functions
5,0
U

= T e, (38.3)

Substituting this expansion in (38.2) we obtain

Z enl(EnO+ PYn® = Z cnBm®;

multiplying both sides of this equation by ,* and integrating, we find
(E—Ekm))ck = E Vk.mcm. (384)

Here we have introduced the matrix V,,, of the perturbation operator P,
defined with respect to the unperturbed functions ¥, (®:

Vim = J’ GO Py © dg. (38.5)

We shall seek the values of the coefficients c,, and the energy E in the form
of series

E =FOLEOLEDL | ¢, = O4cnM+c,, @4 ...,

where the quantities E®) and ¢,,®) are of the same order of smallness as the
perturbation P, the quantities E® and ¢,,® are of the second order of small-
ness, and so on.

Let us determine the cotrections to the nth eigenvalue and eigenfunction,
putting accordingly ¢, =1, ¢, = O form ¥ n. To find the first approxi-
mation, we substitute 1in equation (38.4) E = E O+ E W) ¢, = ¢, 04, Q)
and retain only terms of the first order. The equation with £ = n gives

EN =V, = |40y ®dg. 38.6
g

Thus the first-order correction to the eigenvalue E, (@ is equal to the mean
value of the perturbation in the state i, ).
The equation (38.4) with &k # n gives

P = Vi (E,@—E©) for k 5 n, (38.7)

while ¢, @ remains arbitrary; it must be chosen so that the function i, =
Pn'® 4, (1 is normalized up to and including terms of the first order. For
this we must put ¢,D = 0. For the functions

O = Z’ __VL_,;,’“(O) (38.8)

E0O_E, ©

(the prime means that the term with m = n is omitted from the sum) are
orthogonal to ¢,,(®, and hence the integral of |¢, @+, V|2 differs from unity
only by a quantity of the seccnd order of smallness.
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Formula (38.8) determines the correction to the wave functions in the first
approximation. Incidentally, we see from this formula the condition for the
applicability of the above method. This condition is that the inequality

lenl < lEn(D)_"Em(D)I (389)

must hold, i.e. the matrix elements of the perturbation must be small com-
~ pared with the corresponding differences between the unperturbed energy
levels.

Next, let us determine the correction to the eigenvalue E,(® in the second
approximation. To do this, we substitute in (38.4) £ = E, (O 4+ E Q4+ F @)
€ = x4,V +¢,@), and examine the terms of the second order of small-
ness. The equation with k = # gives

E®c,0® = X' Ve,
whence

Z' |V omal?
2 — —_—
Eﬂ B Eﬂ(m—Em(D) (3810)

(we have substituted ¢, from (38.7), and used the fact that, since the
operator P is Hermitian, Vi, = Viam™).

We notice that the correction in the second approximation to the energy
of the normal state is always negative; for, since E,® then corresponds to
the lowest value of the energy, all the terms in the sum (38.10) are negative.

The further approximations can be calculated in a similar manner,

The results obtained can be generalized at once to the case where the
operator H has also a continuous spectrum (but the perturbation is applied,
as before, to a state of the discrete spectrum). To do so, we need only add to
the sums over the discrete spectrum the corresponding integrals over the
continuous spectrum. We shall distinguish the various states of the continu-
ous spectrum by the suffix v, which takes a continuous range of values; by v
we conventionally understand an assembly of values of quantities sufficient
for a complete description of the state (if the states of the continuous spec-
trum are degenerate, which 1s almost always the case, the value of the energy

alone does not suffice to determine the state).t Then, for instance, we must
write instead of (38.8)

Pl = Z __1/_’."2___.;, © 4 _._.r_/ﬁ'_-.,b © dy (38.11)
" m E-n(o)'_Em(o) " En(O)—EP ’ ’ .

and similarly for the other formulae.

It is useful to note also the formula for the perturbed value of the matrix
eleme_nt of a physical quantity £, calculated as far as terms of the first order
by using the functions ¢, = Yp(® + (M, with ¥, given by (38.8). The

t Here the wave functions (% must be normalized by delta functions of the guantities ».



136 Perturbation Theory §38
following expression is easily obtained:

’

em S

v
_ © ﬂkfkm
fam = Fam®+ Z so_rwt 2 L (38.12)

In the first sum k& # n, while in the second % # m.

PROBLEMS

ProBLEM 1. Determine the correction ¢,(? in the second approximation to the eigen-
functions.

SoruTtioN. The coefficients ei!®) (B 5% n) are calculated from equations (38.4) with k # n,
written out up to terms of the second order, and the coefficient ¢,® is chosen so that the

function ¢y = Yn(® 4+ N 4+ $5,® is normalized up to terms of the second order. As a result
we find

| 4
(2) - Z z mk kn (0)'_ z rm mn¢ ©_ Ll'f; © Z mnl
fizw"gw m

Kw,,.
where we have introduced the frequencies
= (E9—E,°)h

PROBLEM 2. Determine the correction in the third approximation to the eigenvalues of the
energy

SoLuTion. Wrting out the terms of the third order of smallness in equation (38.4) with
k = n, we obtain

VoV oV | Vn?

PrROBLEM 3. Determine the energy levels of an anharmonic linear oscillator whose Hamil-
tonian is

H = }p2m+ Ymx20? + ax3+ Bxd,
SoLuTION. The matrix elements of ¥* and x* can be obtained directly according to the

rule of matrix multiplication, using the expression (23.4) for the matrix elements of x. We
find for the matrix elements of x® that are not zero

(xa)n-—a.n = (xs)n.n-s = (h/mw)an'\/[%"("—1)("_2)]!

(x’)n—l-n = (xs)n.n—:l = (h/mw)siz.\/(gns‘ls)_
The diagonal elements in this matrix vanish, so that the correction in the first approximation
due to the term ex® in the Hamiltonian (regarded as a perturbation of the harmonic oscillator)

is zero. The correction in the second approximation due to this term is of the same order as
that in the first approximation due to the term fx*. The diagonal matrix elements of x* are

() n.n = (BImw)? . 3{2n*+2n+1).

Using the general formulae (38.6) and (38.10), we find the following approximate expression
for the energy levels of the anharmonic oscillator:

E, = hw(ﬂ-{-i}—};-;—c:— —) ( -+n+——)+ ﬁ(—) (n*4-n+1d).
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PrROBLEM 4. A spherical potential well with infinitely high walls is subjected to a small
deformation (without change of volume) which gives it the form of a slightly prolate or
oblate spheroid with semi-axesa = band c. Find the splitting of the energy levels of a particle
in the deformed well {(A. B, Migdal 1959).

SoruTtion. The equation of the well boundary is

2 2 ~2

X° + a

_.y+_.=1'
a c

and by the change of variables x —»ax/R, y - ay/R, z > cz/R it is converted into
x14y?4 2% = R}, the equation of a sphere with radius R. The same change of variables
converts the Hamiltonian of the particle, H = p32M = —k*/A[2M (where M is the mass of
the particle and the énergy is measured from the bottom of the well) into H = H,+ 7V, where

Hy = —hEA2M,

h? RZ o2 o2 R2 g2
V= - —|[(=-1){==+ =)+ (=-1)=|
2M [\ a? dxz  ay? 2 0z2
Thus the problem of motion in an ellipsoidal well reduces to that of motion in a spherical

well. If the ellipsoid is almost a sphere of radius R = (a%)'/?, 7 may be regarded as a small
perturbation. If the ellipsoidality B (| 8] < 1) is defined by

a=R(1-18), = R(1+38),
the perturbation operator may be written

P = (BI3M)p?-3p22).

In the first order of perturbation theory, the change in the energy levels of the particle from
their values in the spherical well is

AEMm = Eﬂlm -'Enlf'o)
= {(nlm|V|nlm),

where / and m are the angular momentum of the particle and its component along the axis of
the spheroid; 7 numbers the levels in the spherical well for a given I, which are independent
of m. Since p*—3p.2is the zz-component of an irreducible tensor, Sixp?—3pipx, with zero
trace, we find from (107.2) and (107.6) that the matrix elernent {(nlm|V |nlm) is proportional to

(L)

and therefore

Cnlm| V|nbm = ( [ - ﬁ)@tm V|ni0).
: H+1)

A table of 3j-symbols is given in §106.
Next,

52 a2
= 2 (0 —_
<m0 Vinl0) = 3REn + B (nl0 —nl0)

A2 [ Oyfing'?

= 28F (0 _
$AEw bri | o

r2 dr do,

in the first term we have used Schridinger’s equation H,, $nim = Enit® $inim for a spherical well,
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and in the second term integrsted by parts. With Y, in the form (28.11), we find the deriva-
tive of ¢‘ﬂlo=Rn[(r) Y!g(e, ¢) to be

2 " ; -
Tl,bnlO = (CUS 6-:(; _ 2 b _i)dmw
cz cé

cr 7
(f+1)
= - — 77 , Y, -
[#{l+ 1)2— 1]='°( " ) et
i . Y
+ m Ry + ) 1-1, 0

The radial integrals are calculated by means of the formulae

[ RuiRat' 7dr = —4 | Ru2 dr,
0

[

o

J’ Ru'2r2 dr = ZhﬂE,u(U’ -I({{+1) J’ Ry;? dr,

[
which are derived by integrating by parts and using the radial Schrédinger’s equation (33.3)

2 I+1)

2M
R —'Rnl - 2 -
T

Rui = ““_En!m)
k2

The terms containing integrals of Ryni? cancel, and the final result is

I+ 1) me 1
AEwm = 4 - = {En',
mn = A s ey 3

Note that

i
-2—['1—1 z Eﬂ!m = Em(mn

mw=—|

1.e. the ‘‘centre of gravity’’ of the multiplet is not shifted.

§39. The secular equation

Let us now turn to the case where the unperturbed operator H, has de-
generate eigenvalues. We denote by ¢, ‘9, .19, ... the eigenfunctions be-
longing to the same eigenvalue E, © of the energy. The choice of these func-
tions is, as we know, not unique; instead of them we can choose any s (where
s is the degree of degeneracy of the level E, () independent linear combina-
tions of these functions. The choice ceases to be arbitrary, however, if we
subject the wave functions to the requirement that the change in them under
the action of the small applied perturbation should be small.

At present we shall understand by ¢,,(?, ¢,.?), ... some arbitrarily selected
unperturbed eigenfunctions. The correct functxons in the zeroth approxlma-
tion are linear combinations of the form

fn(o)'l‘n(m -+ Cn,(ﬂ),’[,n,(ﬂ) + ...
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The coefficients in these combinations are determined, together with the
corrections in the first approximation to the eigenvalues, as follows.

We write out equations (38.4) with & = »n, n’, ..., and substitute in them,
in the first approximation, E = E, O 4+ E®); for the quantities ¢,, it suffices
to take the zero-order values ¢, = ¢,‘9, ¢,. =¢,9, .. ; ¢, =0 for m # n,

7

n’,.... We then obtain
EW, 0 — Er V.0

or

% (Vint —E®8 i Jeur® = 0, (39.1)

where 7, n' take all values denumerating states belonging to the given un-
perturbed eigenvalue E,©. This system of homogeneous linear equations
for the quantities ¢,,(® has solutions which are not all zero if the determinant
of the coefhcients of the unknowns vanishes. Thus we obtain the equation

|V e —E®S,.-| = 0. (39.2)

This equation is of the sth degree in E®) and has, in general. s different real
roots. These roots are the required corrections to the eigenvalues in the first
approximation. Equation (39.2) 1s called the secular equation.t We notice
that the sum of its roots is equal to the sum of the diagonal matrix elements
Vins Vaenes - (this being the coefhicient of [E®™]5-! in the equation).

Substituting in turn the roots of equation (39.2) in the system (39.1) and
solving, we find the coefficients ¢,(®" and so determine the eigenfunctions
in the zeroth approximation.

As a result of the perturbation, an originally degenerate energy level
ceases in general to be degenerate (the roots of equation (39.2) are in general
distinct); the perturbation removes the degeneracy, as we say. The removal
of the degeneracy may be either total or partial (in the Iatter case, after the
perturbation has been applied, there remains a degeneracy of degree less than
the original one).

It may happen that for some reason all the matrix elements are particularly
small (or even zero) for transitions within 2 group of mutually degenerate
states , ', ... . It may then be useful to take into account not only in the first
order the matrix elements V,. but also in the higher orders the matrix
elements V,,, (m # n, #', ...) for transitions to states with a different energy.
Let us do this for the matrix elements V,,5 in the second order.

In equation (38.4) withk = nwe putonthe left E = E,© + E, (D (retaining
the notation EQ for the correction to the energy in the approximation

considered), and replace ¢, by ¢,'®. Since ¢, = Oforallm # n, n', ..., we
have

EMe,0) = S Fam€mV + Z Vnn'fn'(o)- (393)

m n'

t The name is taken from celestial mechanics.
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The equations (38.4) withk = m # n,»’, ... give as far as the first-order terms

(Ex® — E,, (0)cp, (1) = Z Vinn-cn O

nl

m(l) = Z Vmﬂ' C?l'(O)'
= E,O - F, (0

Substitution in (39.3) gives

V .
EMc,©® = ch O [V, Z nm ¥ man
E,© _E,©

These equations replace (39.1); the condition for them to be compatible
again leads to the secular equation, which differs from (39.2) by the change

whence

Vanmu
: 39.
Vnn - Vnn + zE (0}_Em(0) ( 9 4)
PROBLEMS

ProBLEM 1. Determine the corrections to the eigenvalue in the first approximation and
the correct functions in the zeroth approximation, for a doubly degenerate level.

Sorution. Equation (39.2) here has the form
I Vu_Em Vi

! V, 21 V. zz"E D

the suffixes 1 and 2 correspond to two arbitrarily chosen unperturbed eigenfunctions ,(%
and y,'? of the degenerate level in question). Solving, we find

1

EW = (Vi1 + Vag) + hwtl)], (1)

with the notation

hoD) = 3/{(Vi1— Ve)? + 4| Vizl2)

for the difference between the two values of the correction E. Solving also equations (39.1)
with these values of EfD), we obtain for the coefficients in the correct normalized function in

the zeroth approximation, ¢(9 = ¢,(® ;% 4 (0,9 the values

00 = Ve [ + Vu*Vza] 1’2,
2| V19| heo

- 7 — T 172
+ I/%l 1 5 Vu Pzz] _
2|12 Hwtd
PROBLEM 2. Derive the formulae for the correction to the eigenfunctions in the first

approximation and to the eigenvalues in the second approximation.

We shall suppose that the correct functions in the zeroth approximation ere
The matrix V... defined with respect to these is clearly diagonal

(2)

f2(0)

SoLuTION.
chosen as the functions ¥a{®.
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with respect to the suffixes n, n° (belonging to the same group of functions of a degenerate
level), and the diagonal elements Pn,, Vaa are equal to the corresponding corrections
E, W, E,.M . in the first approximation.

Let us consider & perturbation of the eigenfunction ¢in(®, so that in the zeroth approxima-
tion E = Ent9, ¢, = 1, cn'® = 0 for m # n. In the first approximation E = E;'® 4 Van,
Cn = 14,0, e = €Y. We write out from the system (38.4) the equation with k £ », n’, ..
retaining in it terms of the first order:

(Eno—Ek(O))cku) = Ifkﬂc“(u) = Ifkﬂl
whence
e = Vi J(ELO—E®) for k # n, o', .. (1

Next we write out the equation with kB = n’, retaining in it terms of the second order:
E e, M w Voo Wy BV, @
m

(the terms with m = n, o', ... dre omitted in the sum over m). Substituting E,()) = I/, and
the expression (1) for ¢m!l), we obtain for n” # n

1 ! Ifn' m Vrnn
(et = > (2)

I’ﬂﬂ_" Ifn ‘n' Enw’—Emw,

(In this approximation the coefficient ca'!! is zero.) Formulae (1) and (2) determine the
correction ¢¥al) = Zem'V ¢dm'® to the eigenfunctions in the first approximation.t

Finally, writing out the second-order terms in equation (38.4) with X = n, we obtain for
the second-order corrections to the energy the formula

! Vﬂ ™ I;mﬂ
2 _ E "
E® = E©_E ©' 3)

which is formally identical with (38.10).

ProeLEM 3. At the initial instant ¢ = 0, a system is 1n a state ,(® which belongs to a
doubly degenerate level. Determine the probability that, at a subsequent instant ¢, the
system will be in the state ;!® with the same energy; the transition occurs under the action
of a constant perturbation.

SoLuTioN. We form the correct functions in the zeroth approximation,

¥ =+, U= o),

where ¢, ¢4; ¢, ¢4’ are tweo pairs of coefficients determined by formulae (2) of Problem 1
(for brevity, we omit the index (% on all quantities).
Conversely,
o y—cf’
b=
Gy =6 &
The functions  and ¢’ belong to states with perturbed energies E+E(M and E+ E®Y, where
E) and E) are the two values of the correction (1) in Problem 1. On introducing the time
factors we pass to the tirme-dependent wave functions:

e /DEL ] fa

r . = . . T
¥, = 7'—[& Yo EMET o e~ MET I
1fa =6 ¢

1 Note that the condition for the quantities (1) and (2) to be small (and therefore the condi-
tion for this method of perturbation theory to be applicable) again requires the conditions
(38.9) to be satisfied only for transitions between states belonging to different energy levels.

Transitigns betwqen states belonging to the same degenerate level are taken into account
exactly (in a certain sense) by the secular equation.
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(at time t = 0, ¥, = 4). Finally, again expressing ¢, ¢ in terms of ¢y, ¢5, we obtain ¥,
as a linear combination of ¢, and ;, with coefficients depending on time. The squared modu-
lus of the coefficient of i, determines the required transition probability w,,. Calculation
with (1) and (2) from Problem 1 gives
2| I1al?

o " (hwtD)E 1=

cos willr}

We see that the probability varies periodically with time, with frequency wib).

For times ¢ which are small compared with the period in question, the expression in the
braces, and therefore w,,;, is proportional to t2: wy, = |V 5|%2/k®. This formula can be very
simply obtained by the method given in the next section {using equation (40.4)).

§40. Perturbations depending on time

Let us now go on to study perturbations depending explicitly on time. We
cannot speak in this case of corrections to the eigenvalues, since, when the
Hamiltonian is time-dependent (as will be the perturbed operator H = H,+
+ (1)), the energy is not conserved, so that there are no stationary states.
The problem here consists in approximately calculating the wave functions
from those of the stationary states of the unperturbed system.

To do this, we shall apply a method analogous to the well-known method
of varying the constants to solve linear differential equations (P. A. M. Dirac
1926). Let W@ be the wave functions (including the time factor) of the
stationary states of the unperturbed system. Then an arbitrary solution of the
unperturbed wave equation can be written in the form of asum Yt = 2Za;'¥' .
We shall now seek the solution of the perturbed equation

ih a% (ot = (Ho+ V)Y (40.1)
in the form of a sum

¥ = X a0, (40.2)

where the expansion coefhicients are functions of time. Substituting (40.2)
in (40.1), and recalling that the functions ¥ ,‘® satisfy the equation

it 6F, 08t = HY,9,

it Z lpktm = z a, V¥,0,

Multiplying both sides of this equation on the left by ¥,,(©* and integrating,
we have

we obtain

mi()ais (40.3)
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where
Vi) = f ¥, O PO dg

E. (0) — (0)
= mGeiwmkt) Wmk = il Ek ’

h

are the matrix elements of the perturbation, including the time factor (and
it must be borne in mind that, when I depends explicitly on time, the quanti-
ties I, also are functions of time).

As the unperturbed wave function we take the wave function of the nth
stationary state, for which the corresponding values of the coefficients in
(40.2) are @, =1, q,'9 =0 for £ £ n. To find the first approximation,
we seek g, in the form q, = q,'9+4q, 1), substituting a; = .9 on the
right-hand side of equation (40.3), which already contains the small quantities
Vi This gives

ik da,®/dt = Vin(2). (40.4)

In order to show the unperturbed function to which the correction is being
calculated, we introduce a second suffix in the coefficients ay, writing

¥, = P oDV,

Accordingly, we write the result of integrating equation (40.4) in the form
a Y = —(i/h) f Vin(t) dt = —(i,fh)J. Vin€@knt dt. (40.5)

This determines the wave functions in the first approximation.
Let us now consider in more detail the important case of a perturbation
which is periodic with respect to time, of the form

f = Feivt 4 Gewt, (40.6)

where F and G are operators independent of time. Since ¥ is Hermitian,
we must have

Fe—imt_i_(;'eimt = F+etmt+ G+e—imt’
whence G = F+, i.e.
Gum = Fnn*. (40.7)

This relation shows that

Vin(f) = Vipelornt = Fpeilom-o)t 4 F o *eitom +ot (40.8)
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Substituting in (40.5) and integrating, we obtain the following expression for
the expansion coefficients of the wave functions:

Fkﬂei(wk,,—w)l Fﬂ ¥ ety + )
QP = — — . (40.9)
A(wgn—w) fiwyn+w)

These expressions are applicable if none of the denominators vanishes,t i.e.
if for all k (and the given )

EO—E® % +ho. (40.10)

In a number of applications it is useful to have expressions for the matrix
elements of an arbitrary quantity f, defined with respect to the perturbed
wave functions. In the first approximation we have

fam(?) Tfnm(O)(t)+fﬂm(1)(t)i

where
fam®(t) = [ ¥ 0N ¥ 0 dg = f, O,
fnm(n(t) - f [\yn(o)*qum(:)+\1fﬂ(1)asqum(0)] dq.

Substituting here ¥, = X a,, WV ,.©, with g, determined by formula
(40.9), it is easy to obtain the required expression

()] {0)
fﬂm(l)(t) = Wyt Z { fﬂk ka N fkm Fnk e—iwl+
k

Ry m—w) Tﬁ(wk,,-}-w)

©) #* ) #*
fnk ka fkm )Fnk eiwl]

+ 40.11
Aoimtw)  Alwm—w) ( )

This formula is applicable if none of its terms becomes large, i.e. if none of
the frequencies wyn, wim is too close to w. For w = 0 we return to formula
(38.12).

In all the formulae given here, it is understood that there is only a discrete
spectrum of unperturbed energy levels. However, these formulae can be
immediately generalized to the case where there is also a continuous spectrum
(as before, we are concerned with the perturbation of states of the discrete
spectrum); this is done by simply adding to the sums over the levels of the
discrete spectrum the corresponding integrals over the continuous spectrum.

Here it is necessary for the denominators wy,zw in formulae (40.9), (40.11)
to be non-zero when the energy E;(® takes all values, not only of the discrete

but also of the continuous spectrum. If, as usually happens, the continuous

- P 1
+ More precisely, if none 1s so small that the quantities axn" are no longer small compared

with unity.
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spectrum lies above all the levels of the discrete spectrum, then, for instance,
the condition (40.10) must be supplemented by the condition

Ea®—E.® > e, (40.12)

where E_. (© is the energy of the lowest level of the continuous spectrum.

PROBLEM

Determine the change in the nth and mth solutions of Schrédinger’s equation in the
presence of a periodic perturbation (of the form (40.6)), of frequency w such that E, (9 —E (9
= h{w+¢€), where € 15 a small quantity.

SorvutrioN. The method developed in the text is here inapplicable, since the coefficient
ama?) in (40.9) becomes large. We start afresh from the exact equations (40.3), with 1 _.(?)
given by (40.8). It is evident that the most important effect is due to those terms, in the
sums on the right-hand side of equations (40.3), in which the time dependence is determined
by the small frequency wp,—w. Omitting all other terms, we obtain a system of two equa-
tions:

ihda,/dl = F ef®@mla, = F g,

ihda,/dt = F,_ *eitg .

We make the substitution
anel'll = b"

and obtain the equations
iﬁam = anbm ﬂi(bn—'—*—bn) = aniam-

Eliminating a,,, we have

b,—ieb, 4| F |2, 'i2 = 0.

We can take as two independent solutions of these equations

a, = 4, a_ = — ANz eodiF, * (1)

n

and

a, = Be‘iﬂ'lt, a, = Bhlge-in'“Frﬂn’l (2)

where 4 and B are constants (which have to be determined from the normalization condition),
and we have used the notation

2 = —4e+Q, o2=1e+()
Q= \/(5€2+|,7|2)_ n = an/h-

Thus, under the action of the perturbation, the functions W.(®, ¥,.(%) become a,¥ {9+
+an¥ (%, with a, and a,, given by (1) and (2).
Let the system be in the state ¥..(% at the initial instant (t = 0). The state of the system

at subsequent instants is given by a linear combination of the two functions which we have
obtained, which becomes ¥,(® for ¢t = 0:

W = emfz(cos Q- L sin Qt)‘-}'m(m — (in* Qe —ict2 sin Qf . 0, 3)

T
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The squared modulus of the coefficient of ¥,(°) is

In|? - 20) 4
2&2'3(1 cos 20¢) (4)

This gives the probability of finding the system in the state ¥, (0) at time 2. We see thatitisa
periodic tunction with frequency 2(), and varies from 0 to | 5|z
For € = 0 (exact resonance) the probability (4) becomes

31 — cos 2|9]s).

It varies periodically between 0 and 1; in other words, the system makes periodic transitions
from the state ¥ (9 to the state 1n(9.

§41. Transitions under a perturbation acting for a finite time

Let us suppose that the perturbation V(#) acts only during some finite
interval of time (or that V(#) diminishes sufficiently rapidly as ¢ - 4-0).
Let the system be 1n the nth stationary state (of a discrete spectrum) before
the perturbation begins to act (or in the limitast -» — o). Atany subsequent
instant the state of the system will be determined by the function

Y = Eakan'k(O),
k

where, in the first approximation,

4

;
G = Qg = -3 f Vin€“rat dt for k # n,

ot (41.1)
apy, = 144, = l—é .[V,,,, de;

—

the limits of integration in (40.5) are taken so that, as 1 - — oo, all the
arnl tend to zero. After the perturbation has ceased to act (or in the limit
t > + o), the coefficients ¢+, take constant values ay,( o), and the system
is in the state with wave function

Y = % (0¥, 9,

which again satisfies the unperturbed wave equation, but is different from
the original function ¥,(®. According to the general rule, the squared
modulus of the coefficient a,,(cc) determines the probability for the system
to have an energy E,'®, i.e. to be in the kth stationary state. ‘
Thus, under the action of the perturbation, the system may pass from its
initial stationary state to any other. The probablhty of a transition from
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the initial (ith) to the final ( f th) stationary state ist

7 " (41.2)

0
1 :
wpy = -'-:J Vietont dt
|
— &0
Let us now consider a perturbation which, once having begun, continues

to act for an indefinite time (always, of course, remaining small). In other
words, V() tends to zero as t - —oo and to a finite non-zero limit as ¢ —
+00. Formula (41.2) cannot be applied directly here, since the integral in
it diverges. This divergence, however, is physically unimportant and can
easily be removed. To do this, we integrate by parts:

t

¢
) . . i(JJ it' t ™ V . iw -t
app = ——| Vyelont dt = — Vietes + OVy eters de

-0 — o0

The value of the first term vanishes at the lower limit, while at the upper
limit it is formally identical with the expansion coefficients in formula (38.8);
the presence of an additional periodic factor efw;i¢ is merely due to the fact
that the ay; are the expansion coefficients of the complete wave function 'V,
while the ¢s; in §38 are the expansion coefficients of the time-independent
function . Hence it is clear that its limit as ¢t - o gives simply the change
in the original wave function 1;(® under the action of the *‘constant’ part
V(+ o) of the perturbation, and consequently has no relation to transitions
into other states. The probability of a transition is given by the squared
modulus of the second term and is

1

_ oVy 2
FPewy?

Letopit dt (41.3)

ct !

w fi

—3

8

The derivation is also valid when the transition is from a state of the discrete
spectrum to a state of the continuous spectrum. The only difference is that
here we have the probability of the transition from a given (ith) state to states
in a range of values of vy (see the end of §38) from vy to vy + dvy, so that, for
example, formula (41.2) must be written

w
! 2
dug = — J. Vyetont dt duy, (41.4)

[£=]

h

If the perturbation F(t) varies little during time intervals of the order of
the period 1/wy the value of the integral in (41.2) or (41.3) will be very

1 For uniformity, the initial and final states will henceforward be denoted by i and f when

transition p.robabilities are discussed. The suffixes of these probabilities will be written in
the order fi. the same as for matrix elements.
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small. In the limit when the applied perturbation varies arbitrarily slowly, the
probability of any transition with change of energy (i.e. with a non-zero
frequency wy;) tends to zero. Thus, when the applied perturbation changes
sufficiently slowly (adiabatically), a system in any non-degenerate stationary
state will remain in that state (see also §53).

In the opposite limiting case of a very rapid, “instantaneous’ application of
the perturbation, the derivatives ¢Vp;/¢t become infinite at the “‘instant of
application”. In the integral of (éVp/ét)eivst, we can take outside the
integral the comparatively slowly varying factor ef»;,! and use its value at
this instant. The integral is then found at once, and we obtain

W = |Vﬁ|2,’ﬁ2wﬁ2. (415)

The transition probabilities in instantaneous perturbations can also be
found in cases where the perturbation is not small. Let the system be in a
state described by one of the eigenfunctions ;@ of the original Hamiltonian
Hg. If the change in the Hamiltonian occurs instantaneously (i.e. in a time
short compared with the periods 1/wy; of transitions from the given state :
to other states), then the wave function of the system 1s “unable” to vary and
remains the same as before the perturbation. It will no longer, however, be
an eigenfunction of the new Hamiltonian H of the system, i.e. the state
;{0 will not be a stationary state. The probabilities wp; for transitions of
the system into the new stationary states are determined, according to the
general rules of quantum mechanics, by the coefficients in the expansion of the
function ;@ in terms of the eigenfunctions i of the Hamiltonian H:

wi = | [ a@iy* dgf2. (41.6)

We shall show how this general formula becomes (41.5) if the change
V = H—Hy in the Hamiltonian is small. We multiply the equations

Hofi® = E®yu®,  H*jy* = Enfy*

by s* and ;© respectively, integrate with respect to ¢ and subtract.
Using also the self-conjugacy of the operator H, we obtain

(Br—E®) [ g ® dg = [ 9Py ag.

If the perturbation ¥ is small, in the first approximation we can replace
Ey by the adjoining unperturbed level Ef©, and the wave function ¥y (on

the rlght -hand side of the equation) by the corresponding function (0.
This gives

J brrge® dg = — | rO*Ti@ dg,

C,l)_f{

and formula (41.6) becomes (41.5).
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PROBLEMS

ProBLEM 1. A uniform electric field is suddenly applied to a charged oscillator in the
ground state. Determine the probabilities of transitions of the oscillator to excited states
under the action of this perturbation.

Sorution. The potential energy of the oscillator in the uniform field (which exerts a
force F on it) is

L{x) = dmax2—Fx

= bme?(x —xg) + constant

(where xo = F m=?), i.e. has still the pure oscillator form but with the equilibrium positior
shifted. Hence the wave functions of the stationary states of the perturbed oscillator are
Yr(x —x0), where z(x) are the oscillator functions (23.12); the initial wave function is
Yo(x) (23.13). Using these functions and the expression (23.11) for the Hermite polynormials
we find

5 1)k £
f ¢Utm¢’k da = ( — 0" -'J- £-ss0 p-£=- 28k (€
\ (2Fak)) dgk '
- —ao

with the notation {o = xo\/(mw /i). On integrating % times by parts, the integral 6n the
right becomes

w

Eo | eTEHEadE = gyby mesetd,

~3C

Thus the transition probability (41.6) is

L. '
wor = e, E = 32 = F22mhet.

As a function of the number k& it represents a Poisson distribution for which the mean value
of kis k. N
Perturbation theory is applicable when F' is small, so that & <€ 1. Then the excitation

probabilities are small, and decrease rapidly with increasing k. The largest is w;, &~ k.
In the opposite case of large F (k > 1), excitation of the oscillator occurs with very high
probability: the probability that the oscillator will remain in the normal state is wog = &%,

ProBLEM 2. The nucleus of an atom in the normal state receives an impulse which gives
it a velocity v; the duration r of the impulse is assumed short in comparison both with the
electron periods and with a/v, where ais the dimension of the atom. Determine the probability
of excitation of the atom under the influence of such a “jolt’’ (A. B. Migdal 1939).

SoruTioN. We use a frame of reference K' moving with the nucleus after the impact.
By virtue of the condition = < a/v, the nucleus may be regarded as practically stationary
during the impact, so that the coordinates of the electrons in K’ and in the original frame K
immediately after the perturbation are the same. The initial wave function in K’ is

o = doexp(—iq. aS [ q = mvih,

where ¢ is the wave function of the normal state with the nucleus at rest, and the summation
in the exponent is over all Z electrons in the atom. The required probability of transition
to the kth excited state is now given, according to (+1.6), by

wro = (k| exp(—1iq. Ea'. ra)|0)|2.

In particplar, ifga <1, then by expanding the exponential factor in the integrand and noting
that the integral of yx*yo is zero because the functions o and % are orthogonal, we obtain

wro = [<Kl(q . T ra){0>]2.
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ProBLEM 3. Determine the total probability of excitation and ionization of an atom of
hydrogen which receives a sudden *‘jolt’’ (see Problem 2).

SoLutioN. The required probability can be ealculated as the difference

1—wgo = 1=| [ foPemior avie,

where 20q, ts the probability that the atom will remain in the ground state (y, = (=a®)~Yie-7/a
being the wave function of the ground state of the hydrogen atom, with @ the Behr radiuy)
Calculation of the integral gives

1—woo = 1=1/(1+}q%2)s.

In the limiting case ga <€ 1 this probability tends to zero as g2a?, while for ga 3> 1 it tends to
unity as 1 —(2/qa)®.

PROBLEM 4. Determine the probability that an electron will leave the K-shell of an atom
with large atomic number Z when the nucleus undergoes B-decay. The velocity of the
B-particle is assumed large in comparison with that of the K-electron (A. B. Migdal and
E. L. Feinberg 1941).

SoruTioN.t In the conditions stated the time taken by the B-particle to pass through the
K-shell 1s small compared with the period of revolution of the electron, so that the change in
the nuclear charge can be regarded as instantaneous. The perturbation is here represented
by the change V" = 1/7 in the field of the nucleus when the change in its charge is small
(1 corapared with Z). According to (41.5) the transition probability for one of the two K-shell
electrons with energy Eoc = —3 22 (here and below we use the fact that the state of the K-
electrons is hydrogen-like; see §74) to a state of the continuous spectrum with energy
E = }k%in the range dE = kdkis

HVoxl?
(k2-+Z2)2

In the range which determines the matrix element oz, the timportant part is that of short
distances (~1/2) from the nucleus, in which the hydrogen-like expression can again be used
for the wave function of a state of the continuous spectrum. The final state of the electron
must have angular momentum [ = 0 (the same as that of the initial state). By means of the
functions Ry, and Ro (normalized on the /27 scale), derived in §36 and formula (£.3) in the
Mathematical Appendices we find]

1 4+4/(2nk) (1 +1k/ZYZIK(1 —ik[Z) 21k
(;)ox (- 1 +k2Z2

and, since I(1+ia)t/e|2 = exp[—(2/e) tan— o},

27
f(kjZ)k 3k,

. . dor = ———
we obtain finally u Z4(1 + k72

1
with fiz) = m exp[—(4/a) tan—1 ]

The limiting values of the function f(«) are ¢4 for @ €1 and «/2x for « > 1.
‘T'he totat probability of 10nization of the K-shell is obtained by integration of dzz over all
energies of the emergent electron. A numerical evaluation gives w = 06522

PROBLEM §. Determine the probability of emergence of an electron from the _K-shell
of an atom with large Z in a-decay of the nucleus. The velocity of the a-particle is small

+ In Problems 4 and 5, atomic unts are used. _ . .
1 In the calculation it is convenient to use Coulomb units and then return to atomic units

in the final result,
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compared with that of the K-electron, but the time which it takes to leave the nucleus is small
in comparison with the time of revolution of the electron (A, B. Migdal 1941, ]. 5. Levinger
1953).

SoLuTioN. After the emergence of the a-particle, the perturbation acting on the electron
is adiabatic. The required effect is therefore determined essentially by the interval of time
close to the “instant of application®’ of the perturbation which destroys the adigbaticity, when
the a-particle, leaving the nucleus and moving freely, is still at a distance small compared with
the radius of the K-orbit. The perturbation I which causes the ionization of the atom is
here represented by the deviation of the combined field of the nucleus and the a-particle
from the purely Coulomb field Z/r. The dipole moment of two particles with atomic weights
4 and A—4, and charges 2 and Z—2, at a distance vt apart (where v is the relative velocity of

the nucleus and the a-particle), is

AA-4)—(Z-24  AA-2Z)
y o = y ve.

Hence the dipole term in the field of the nucleus and the a-particle is¢

 204-22) =
it Y
r3

where the z-axis is in the direction of the velocity v. The matrix element of this perturbation
re.iuces to that of z: taking the matrix element of the equation of motion of the electron
g = —Zz/r3, we obtain

(zIr¥)ox = (E— Ep)*zor/Z.

The required transition probability for one of the two electrons in the K-shell is, by (41.2),

[= 4]

' 2
dw = 2| [ VouertEe-En de| dk

¢
YA-2Z)ut dk
= e zok 2 —;
ArZ? 2=

to calculate the integral, we include in the integrand an additional damping factor e~*t with
A > 0, and then make A — 0 in the result. To calculate the matrix element of = = r cus ¥,
we note that, since the orbital angular momentum in the initial state is [ = 0, cos 8 has a non-
Zero matrix element only for the transition to a state with I = 1, and

[(cos 8)oif* = 4
and " .
[zox[* = }|roxf*.

Calculating rox by means of the radial functions Rgo and Ry, we find

21(A~22Z)%?
w = f(k|Z)k dk,
IARZ8(1 + k2 Z2)

the function f being as in Problem 4.

§42. Transitions under the action of a periodic perturbation

The results are different for the probability of transitions to the states of
the continuous spectrum under the action of a periodic perturbation. Let

t If the difference 4 —22Z is small, it may be necessary to take account of the next (quad-
rupole) term also.
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us suppose that, at some initial instant ¢ = 0, the system is in the ith station-
ary state of the discrete spectrum. We shall assume that the frequency o of
the periodic perturbation is such that

kCU > En]in_Ei(o), (42.1)

where E_;_ is the value of the energy where the continuous spectrum begins.

It is evident from the results of §40 that the chief part will be played by
states of the continuous spectrum with energies E very close to the resonance
energy Ei(® 4 Aiw, 1.e. those for which the difference ws; —w is small. For this
reason it is sufficient to consider, in the matrix elements (40.8) of the pertur-
bation, only the first term (with the frequency wy; —w close to zero). Sub-
stituting this term in (40.5) and integrating, we obtain

i

ag; = —;—;f Vfi(t) dt = —-Fﬁ

0

etlar—wlt ]

) 42.2
Fwsi—w) (#2.2)

The lower limit of integration 1s chosen so that ay; = 0 for ¢t = 0, in accord-
ance with the initial condition imposed.
Hence we find for the squared modulus of ay;

]aﬁ|2 = |Fﬁ|2 .4 Sinz[%(wﬁ —w)t] "fi2(wﬁ —w)z. (42.3)

It 1s easy to see that, for large ¢, this function can be regarded as propor-
tional to t. To show this, we notice that

sin®at

Iim
> el

= §(a). (42.4)

For when « s 0 this limit is zero, while for &« = 0 we have (sin%at)fta® = ¢,
so that the limit is infinite; finally, integrating over « from —o0 to + o,
we have (with the substitution az = §)

1 [ sinat 1 7 sin%
- f da = - .[ df = 1.
ar 2

s e? £

— -—

Thus the function on the left-hand side of equation (42.4) in fact satisfies ‘all
the conditions which define the delta function. Accordingly, we can write
for large ¢

|ail? = (1R2)| Fpil*mtd(3eosi — deo),
or, substituting hwp = E;~ E;® and using the fact that 8(ax) = (1/a)8(x),
lasil2 = (2n1h)| Fri|28(Es— E4O — Aew)t.
The expression |ay;|2 dvyis the probability of a transition from the original

state to one in the interval dvy. We see that, for large £, it 1s proportional to the
time interval elapsed since t = 0. The probablhty dey¢ of the transition per
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unit time ist

dws = (2r[h)| Fp|?8(Ef— E4© — hw) duy. (42.5)

As we should expect, it is zero except for transitions to states with energy
E; = E;® 4+ hw. If the energy levels of the continuous spectrum are not

degenerate, so that vs can be taken as the value of the energy alone, then the
whole “interval” of states dvs reduces to a single state with energy £ = E;(® +

+ %, and the probability of a transition to this state is
Wr = (Zﬂfh)lFEalz (426)

There is another method of deriving formula (42.5) that1s methodologically
instructive, in which the periodic perturbation 1s assumed not to be applied at
a time t = 0 but to increase slowly from t = — oo by an exponential law e#?
with a positive constant A which is then made to tend to zero (adiabatic
switch-on). The ininal condition a; = 01s accordingly appliedatt = — co.
The matrix element of the perturbation now has the form

Valf) = Freitepart+a,
and (42.2) becomes
4

af = — ;—i J\ Vﬁ(t) dt

- 30

ei(wfi—w)t +at

= —Fp . 42.7
" (wn—w—iA) (#2.7)
Hence
1 g24t
as|2 = — | Fpl? :
anl? = 3 Pl s
The transition probability per unit time is given by the derivative
dlasi|2/dt = 2A|az|®.
There 1s a formula
A 8(2), (42.8)

lim —— =
1=0 m(aZ+ A2)
valid in the same sense as (42.4); with this we find, taking the limit A - 0,

d

5 2 .
P |lagnl? — E’—;IFﬁIZS(wﬁ—w),

and thus return to (42.5).

t It is easy to venfy that, on taking account of the second term in (40.8), which we have

omitted, additional expressions are obtained which, on being divided by ¢, tend to zero as
t - +4 co.



154 Perturbation Theory §43
§43. Transitions in the continuous spectrum

One of the most important applications of perturbation theory is to calculate
the probability of a transition in the continuous spectrum under the action
of a constant (time-independent) perturbation. We have already mentioned
that the states of the continuous spectrum are almost always degenerate.
Having chosen in some manner the set of unperturbed wave functions cor-
responding to some given energy level, we can put the problem as follows.
It is known that, at the initial instant, the system is in one of these states;
it is required to determine the probability of the transition to another state
with the same energy. For transitions from the initial state 7 to states between
vy and vy + dvy we have at once from (42.5) (putting w = 0 and changing the
notation)

dwy = (2m/B)|V5i|28(Es— Ey) dvy. (43.1)

This expression is, as we should expect, zero except for E; = E;: under
the action of a constant perturbation, transitions occur only between states
with the same energy. It must be noticed that, for transitions from states
of the continuous spectrum, the quantity dwy; cannot be regarded directly
as the transition probability; it is not even of the right dimensions (1/time).
Formula (43.1) represents the number of transitions per unit time, and its
dimensions depend on the chosen method of normalization of the wave
functions of the continuous spectrum.+

Let us calculate the perturbed wave function, which before the action of
the perturbation is the same as the original unperturbed function y;(®.
Using the method given at the end of §42, we can regard the perturbation as
being adiabatically applied according to e*t with A — 0. From (42.7),
putting w = 0 and changing the notation, we have

exp {(¢/h)Es— E)t + At}
' E,—E;+id

a® = Vy (43.2)

The perturbed wave function is
¥, = V0 4 faﬁu)qff(m dvy,

where the integration is extended over the whole of the continuous spectrum.]
Substitution of (43.2) gives

* dv 1
gy, = (D) V (0)__f_.]ex (—-—E-t). (43-3)

t+ The phenomena comprised within the theory here discussed include, for exar_nple, various
types of collision; the system in its initial and final states 1s a set of fre_e p'amcles and the
perturbation is the interaction between them. \/Vith_appropnate normalization of the wave
functions, (43.1) may then be the collision cross-section (see §126). _ .

1 If there is also a discrete spectrum, then we must add to the integral in this formula (and
subsequent ones) the appropriate sum over the states of the discrete spectrum.
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In the limit as A — 0, the factor 4! becomes unity. The term +:0, denoting
the limit of A as A tends to zero from positive values, determines the manner
of integration with respect to the variable E; (dEy occurs as a factor in duy
together with the differentials of other quantities which describe the states of
the continuous spectrum). Without the term i, the integrand in (43.3)
would have a pole at Ey = Ej, near which the integral would diverge. The
term A moves this pole into the upper half-plane of the complex variable E;.
After the limit A — 0 is taken, the pole returns to the real axis, but we know
that the path of integration must pass beneath it:

E;
(43.4)

- \./ - Ef

The time factor in (43.3) shows that this function belongs, as 1t should, to
the same energy E; as the original unperturbed function. In other words, the
function

i = O+ J Vi Osbf‘”’ duy

E; - E_f +1
satisfies Schrédinger’s equation

(Ho+ V)i = Eas.

It is therefore natural that the expression obtained should correspond exactly
to (38.8).1

The calculations given above correspond to the first approximation of
perturbation theory. Itis not difficult to calculate the second approximation
as well. To do this, we must derive the formula for the next approximation
to 'I';; this is easily effected by using the method of §38 (now that we know the
method of dealing with the “divergent” integrals) A simple calculation
gives the formula

el ] V V .
g, = (0) Vi v v 4, |
i {'1["; + J[ fi+ J E—E.+i0 v

x M e—GIMEt (43.5)
E;— Ef+ 10

Comparing this expression with formula (43.3), we can write down the
corresponding formula for the probability (or, more precisely, the number)

t With this formula, the way 1n which the integral is to be taken can be found from the

condition that the asymptotic expression for ¢; at large distances should contain only an
outgoeing (and not an ingoing) wave (see §136).

OM3I-F "
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of transitions, by direct analogv with (43.1):

2 Ve b
desi = ==V — Lt 40 (E— Ey) d 43.6
fi it JE E+101( 7} dvr. (43.6)

It may happen that the matrix element Iy for the transition considered
vanishes. The effect is then zero in the first approximation, and (43.6)
becomes

277 I f I‘ \t
— i d 8 E;— E;) dvy. :

dw_fi =
In applications of this formula, the point Ev = E; is not usually a pole of the
integrand; the manner of integrating with respect to E. is then unimportant,
and the integral can be taken along the real axis.

The states v for which Iy, and V,; are not zero are usually called inter-
mediate states for the transition ¢ — f. Intuitively, we may say that this
transition takes place as if in two steps7 - vand v — f (but such a descriptior
must not be taken literally, of course). It may happen that the transition
1 — f can take place not through one but only through several successive
intermediate states. Formula (43.7) can be at once generalized to such cases.
For example, if two intermediate states are needed, we have

Vf\ Vv \Vnt

12
__._ dv dv' 8(Es— E;) duy. 43.8
(Ei— E)E E)VV (Ef z) vf ( )

dwft

Lastly, to clarify the mathematical significance of the integrals taken along
a path of the form (43.4), we shall prove the formula

f®dx _ p[f(x)dx (x_)_ A% 1 inf (), (43.9)

x—a—1i0

where the integration is along a segment of the real axis including the point
x = a. If we pass round the pole x = a along a semicircle of radius p, we find
that the whole integral is equal to the sum of the integrals along the real axis
from the lower limit to a— p and from a + p to the upper limit, together with
i times the residue of the integrand at the pole. In the limit p - 0, the
integrals along the real axis make the integral along the complete segment,
taken as a principal value (denoted by P), and the result is (43.9), which may
also be symbolically written

1 =P1

x—a—10 x—a

+imd(x—a); (43.10)

P here denotes the taking of the principal value when integrating the function

[ (x)/(x—a).
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§44. The uncertainty relation for energy

Let us consider a system composed of two weakly interacting parts. We
suppose that it is known that at some instant these parts have definite values
of the energy, which we denote by E and « respectively. Let the energy be
measured again after some time interval At; the values F’, ¢’ obtained are
in general different from E, e. It is easy to determine the order of magnitude
of the most probable value of the difference E’ + ¢ —F — e which is found as a
result of the measurement.

According to formula (42.3) with @ = 0, the probability of a transition of
the systern (after time ¢}, under-the action of a time-independent perturbation,
from a state with energy F to one with energy E’ is proportional to

sin?[(E’— E)t/2K)(E' —E)2.

Hence we see that the most probable value of the difference E'—E is of the
order of #ft. )

Applying this result to the case we are considering (the perturbation being
the interaction between the parts of the system), we obtain the relation

|E4+e—E —¢€'|At ~ A. (44.1)

Thus the smaller the time interval At, the greater the energy change that is
observed. It is important to notice that its order of magnitude #/At is inde-
pendent of the amount of the perturbation. The energy change determined
by the relation (44.1) will be observed, however weak the interaction betvween
the two parts of the system. This result is peculiar to quantum theory and has
a deep physical significance. It shows that, in quantum mechanics, the law
of conservation of energy can be verified by means of two measurements only
to an accuracy of the order of 7/ At, where At 1s the time interval between the
measurements.

The relation (#4.1) is often called the uncertainty relation for energy. How-
ever, it must be emphasized that its significance is entirely different from
that of the uncertainty relation ApAx ~ % for the coordinate and momen-
tum. In the latter, Ap and Ax are the uncertainties in the values of the
momentum and coordinate at the same instant; they show that these two
quantities can never have entirely definite values simultaneously. The
energies E, ¢, on the other hand, can be measured to any degree of accuracy
at any instant. The quantity (E+e)—(E'+4¢') in (#4.1) is the difference
between two exactly measured values of the energy E+e at two different
instants, and not the uncertainty in the value of the energy at a given instant.

If we regard E as the energy of some system and e as that of a ““measuring
apparatus’, we can say that the energy of interaction between them can be
taken into account only to within s/Az. Let us denote by AE, Ae, ... the

errors in the measurements of the corresponding quantities. In the favour-
able case when ¢, € are known exactly (Ae = A¢’ = 0), we have

A(E—E") ~ hiAt (44.2)
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From this relation we can derive important consequences concerning the
measurement of momentum. The process of measuring the momentum of a
particle (for definiteness, we shall speak of an electron) consists in a collision
of the electron with some other (“‘measuring”) particle, whose momenta
before and after the collision can be regarded as known exactly.t If we apply
to this collision the law of conservation of momentum, we obtain three equa-
tions (the three components of a single vector equation) in six unknowns
(the components of the momentum of the electron before and after the col-
lision). The number of equations can be increased by bringing about a
series of further collisions between the electron and ‘“‘measuring” particles,
and applying to each collision the law of conservation of momentum. This,
however, increases the number of unknowns also (the momenta of the electron
between collisions), and it is easy to see that, whatever the number of col-
lisions, the number of unknowns will always be three more than the number
of equations. Hence, in order to measure the momentum of the electron,
it is necessary to bring in the law of conservation of energy at each collision,
as well as that of momentum. The former, however, can be applied, as we
have seen, only to an accuracy of the order of #/At, where At is the time be-
tween the beginning and end of the process in question.

To simplify the subsequent discussion, it is convenient to consider an
imaginary idealized experiment in which the ‘“measuring particle’” is a
perfectly reflecting plane mirror; only one momentum .component is then
of importance, namely that perpendicular to the plane of the mirror. To
determine the momentum P of the particle, the laws of conservation of
momenturn and energy give the equations

p'+P—p—P =0, (44.3)

€'+ E —e—E| ~ hJAt, (44.4)

where P, E are the momentum and energy of the particle, and p, € those of
the mirror; the unprimed and primed quantities refer to the instants before
and after the collision respectively. The quantities p, p', €, € relating to the
““measuring particle’” can be regarded as known exactly, i.e. the errors in
them are zero. Then we have for the errors in the remaining quantities,
from the above equations:

AP = AP', AE'—AE|~#i/AL
But AE = (3EJ/oP)AP = vAP, where v is the velocity of the electron (before
the collision), and similarly AE’ = v'AP’ = v'AP. Hence we obtain
(V' y = v )AP,|~H/AL. (44.5)

We have here added the suffix x to the velocity and momentum, in order to
emphasize that this relation holds for each of their components separately.
This is the required relation. It shows that the measurement of the

+ In the present analysis it is of no importance how the energy of the “measuring’ particle

is ascertained.
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momentum of the electron (with a given degree of accuracy AP) necessarily
involves a change in its velocity (i.e. in the momentum itself). This change
becomes greater as the duration of the measuring process becomes shorter.
The change in velocity can be made arbitrarily small only as At - 0, but
measurements of momentum occupying 2 long time can be significant only
for a free particle. The non-repeatability of a measurement of momentum
after short intervals of time, and the “two-faced’’ nature of measurement in
quantum mechanics—the necessity of a distinction between the measured
value of a quantity and the value resulting from the process of measurement—
are here exhibited with particular clarity.}

The conclusion reached at the beginning of this section, which was based
on perturbation theory, can also be derived from another standpoint by con-
sidering the decay of a system under the action of some perturbation. Let
E, be some energy level of the system, calculated without any allowance for
the possibility of its decay. We denote by 7 the lifetime of this state of the
system, i.e. the reciprocal of the probability of decay per unit time. Then
we find by the same method that

|Eg—~E—¢e| ~ A/, (44.6)

where E, € are the energies of the two parts into which the system decays.
The sum E4¢, however, gives us an estimate of the energy of the system
before 1t decays. Hence the above relation shows that the energy of a system,
in some ‘‘quasi-stationary’’ state, which is free to decay can be determined
only to within a quantity of the order of Af7. This quantity is usually called
the width T of the level. Thus

T ~ k. (44.7)

§45. Potential energy as a perturbation

The case where the total potential energy of the particle in an external
field can be regarded as a perturbation merits special consideration. The
unperturbed Schrodinger’s equation is then the equation of free motion of
the particle:

Do R3O = 0, k = +/(2mE|ii®) = p/h, (45.1)

and has solutions which represent plane waves. The energy spectrum of
free motion is continuous, so that we are concerned with an unusual case of
perturbation theory in a continuous spectrum. The solution of the problem
is here more conveniently obtained directly, without having recourse to
general formulae.

The equation for the correction 1) to the wave function in the first ap-
proximation is

OO B = (2mU[B2), (45.2)

t The relation (4+.5) and the elucidation of the physical significance of the uncertainty
relation for energy are due to N. Bohr (1928).
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where U is the potential energy. The solution of this equation, as we know
from electrodynamics, can be written in the form of retarded potentials, i.e.
in the formt

(%, ¥,2) = —(m[2nh?) f YOU(x', ¥, z")etkr AV fr, (45.3)

where
dV’ = dx'dy’dz’, 7? = (x—x')2+(v—y" )2+ (z—2')2.

Let us find what conditions must be satisfied by the field U in order that
it may be regarded as a perturbation. The condition of applicability of per-
turbation theory is contained in the requirement that 44 <€ ¢(®). Let a be
the order of magnitude of the dimensions of the region of space in which the
field is noticeably different from zero. We shall first suppose that the energy
of the particle is so small that ka is at most of the order of unity. Then the
factor etkr in the integrand of (45.3) is unimportant in an order-of-magnitude
estimate, and the integral is of the order of 9|U|a?, so that

4 ] Uy,
and we have the condition

[Ul € h*/'ma® {for ka 2 1). (45.4)

We notice that the expression on the right has a simple physical meaning;
it is the order of magnitude of the kinetic energy which the particle would
have if enclosed in a volume of linear dimensions a (since, by the uncertainty
relation, its momentum would be of the order of %/a).

Let us consider, in particular, a potential well so shallow that the condition
(45.4) holds for it. It is easy to see that in such a well there are no negative
energy levels (R. Peierls 1929); this has been shown, for the particular case
of a spherically symmetric well, in §33, Problem. For, when E = 0, the
unperturbed wave function reduces to a constant, which can be arbitrarily
taken as unity: ${® =1, Since M) <€ (@ it is clear that the wave function
i = 144@ for motion in the well nowhere vanishes; the eigenfunction,
being without nodes, belongs to the normal state, so that E = 0 remains the
least possible value of the energy of the particle. Thus, if the well is sufh-
ciently shallow, only an infinite motion of the particle is possible: the particle
cannot be “captured’’ by the well. Note that this result is peculiar to quantum
theory; in classical mechanics a particle can execute a finite motion in any
potential well.

It must be emphasized that all that has been said refers only to a three-
dimensional well. In a one- or two-dimensional well (i.e. one in which the
field is a function of only one or two coordinates), there are always negative

+ This is a particular integral of equation (45.2), to which we may add any solution of the
same equation with zero on the right-hand side, i.e. the unperturbed equation (45.1).
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energy levels (see the Problems at the end of this section). This is related to
the fact that, in the one- and two-dimensional cases, the perturbation theory
under consideration is inapplicable for an energy E which is zero (or very
small).+

For large energies, when ka > 1, the factor ¢* in the integrand plays an
important part, and markedly reduces the value of the integral. The solution
(45.3) in this case can be transformed; the alternative form, however, is more
conveniently derived by returning to equation (45.2). We take as x-axis the
direction of the unperturbed motion; the unperturbed wave function then
has the form ¢ = ¢'*# (the constant factor is arbitrarily taken as unity).
Let us seek a solution of the equation

Dy 4 B2 = (2mh2) Ueik=

in the form ) = ¢*2f; in view of the assumed large value of £, it is suffi-
clent to retain in /M) only those terms in which the factor ' is differen-
tiated one or more times. We then obtain for f the equation

2k &f éx = 2mUIR2,
whence

YU = gikzf = —(im,’hzk)e““‘f U dx. (45.5)

An estimation of this integral gives || ~ m|Ula/h2k, so that the con-
dition of applicability of perturbation theory in this case 1s

|U| € (B%[ma®)ka = hv/a (ka > 1), (45.6)

where v = kfi/m is the velocity of the particle. It is to be observed that this
condition is weaker than (45.4). Hence, if the field can be regarded as a
perturbation at small energies of the particle, it can always be so regarded at
large energies, whereas the converse 1s not necessarily true

The applicability of the perturbation theory developed here to a Coulomb
field requires special consideration. In a field where U = ofr, it is impossible
to separate a finite region of space outside which U is considerably less than
inside it. The required condition can be obtained by writing in (45.6) a
variable distance » instead of the parameter a; this leads to the inequality

afbiv <€ 1. (45.7)

t In the two-dimensional case ¢(™ 1s expressed (as ts known from the theory of the two-
dimensional wave equation) as an integral similar to (45.3), in which, instead of e?*" dx’dy’dz’[r
we have inH (U(kr) dx’dy’, where H,(? is the Hankel function and 7% = (x—x")2+(y—y’)%
As k >0, the Hankel function, and therefore the whole integral, tend logarithmically to
infinity.

Similarly, 1n the one-dimensional case, we have, 1n the integrand, 2mieitr dx’/k, where
r = |x—x’|, and as & - 0 ¢ tends to infinity as 1/k.

1 In the one-dimensional case the condition for perturbation theory to be applicable is
given by the inequality (45 6) for all ka. The derivation of the condition (45.4) given above
for the three-dimensional case is not valid in the one-dimensional case,

. : ] owing to the divergence
of the resulting function ¢(1 (see the preceding footnote).
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Thus, for large energies of the particle, a Coulomb field can be regarded as a
perturbation.f

Finally, we shall derive a formula which approximately determines the
wave function of a particle whose energy E everywhere considerably exceeds
the potential energy U (no other conditions being imposed). In the first
approximation, the wave function depends on the coordinates in the same
way as for free motion (whose direction is taken as the x-axis). Accordingly,
let us look for ¢ in the form i = €#%F, where F i1s a function of the co-
ordinates which varies slowly in comparison with the factor €% (but we
cannot in general say that it is close to unity). Substituting in Schrédinger’s
equation, we obtain for F the equation

2ik OF [0x = (2m/k2)UF, (45.8)
whence
Y = é%*F = constant x eikZ¢-ti/mUdz, (45.9)

This 1s the required expression. It should, however, be borne in mind that
this formula 1s not valid at large distances. In equation (45.8) a term AF
has been omitted which contains second derivatives of F. The derivative
¢2F[ox2, together with the first derivative ¢F/éx, tends to zero at large
distances, but the derivatives wath respect to the transverse coordinates y
and z do not tend to zero, and can be neglected only if x € ka®.

PROBLEMS

ProBLEM 1. Determine the energy level in a one-dimensional potential well whose depth
is small. It is assumed that the condition (45.4) is satisfied.

SoLuTioN. We make the hypothesis, which will be confirrned by the result, that the
energy level |E} < |U|. Then, on the right-hand side of Schrédinger’s equation

dY(de? = (2m/i)[Ux)—E}W,

we can neglect E in the region of the well, and regard ¢ as a constant, which without loss of
generality can be taken as unity:

dhyjdat = 2mUjht

We integrate this equation with respect to x between two points % x; such that a € x; < 1/,
where a is the width of the well and x = 4/(2m|E|/}%). Since the integral of U(x) converges,
the integration on the right can be extended to the whole range from —o to + !

d/1» 2m |
[—“b == [ Uax (1)
dxl_, Kt J

At large distances from the well, the wave function is of the form ¢ = et*7. Substituting
this in (1), we find

—2x = (2m') [ Udx

4 It must be borne in mind that the integral (45.5) with a field U = a/r diverges (logarith-
mically) when x/1/(¥%+ 2?) is large. Hence the wave function in a Coulomb field, obtained

by means of perturbation theory, is inapplicable within a narrow cone about the x-axis.
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or

|E] = (m[2}i’)U U dx]‘.

We sce that, in accordance with the hypothesis, the energy of the level is a small quantity of a
higher order (the second) than the depth of the well.

ProBLEM 2. Determine the energy level in a two-dimensional potential well U(r) (where
r is the polar coordinate in the plane) of small depth; it is assumed that the integral rrU dr
converges. 0
SoLuTiON. Proceeding as in the previous problem, we have in the region of the well the
equation
.,b 2m
rdr dr - ke

Integrating this with respect to r from 0 to r, (where a &€ 7, <€ 1/x), we find

dys 2m
- ~ o f 7t dr- (M
At large distances from the well, the equation of free motion in two dimensions is

dﬁl’
- +_..
r dr dr B =

and has a solution (vanishing at infinity) ¢ = ¢onstant X Hy(Y(ixr); for small values of the
argument, the leading term in this function is proportional to log «x7. Bearing this in mind, we
equate the logarithmic derivatives of ¢ for r ~ g inside the well(the right-hand side of (1))

and outside it, obtaining

I

alog xa hza

J. Ulryr dr,

whence

w

2 2 -1
E| ~ 2 exp {‘f‘-— I Ur dr }
ma? m |

n

We see that the energy of the level is exponentially small compared with the depth of the
well.



CHAPTER VII

THE QUASI-CLASSICAL CASE

§46. The wave function in the quasi-classical case

IF the de Broglie wavelengths of particles are small in comparison with the
characteristic dimensions L which determine the conditions of a given
problem, then the properties of the system are close to being classical, just as
wave optics passes into geometrical optics as the wavelength tends to zero.

Let us now investigate more closely the properties of guasi-classical
systems. To do this, we make in Schrédinger’s equation

hz
D 5D e (E= Uy =0

the substitution

g = ét/Pr, (46.1)

For the function o we obtain the equation
1 th
E 2. E —_ = Hh—
d z—'nu(vuc) a zmaAaU E U (462)

Since the system is supposed almost classical in its properties, we seek o in
the form of a series:

6 = og+(Bl)oy+(hfifoy+ ..., (46.3)

expanded in powers of #.
We begin by considering the simplest case, that of one-dimensional motion
of a single particle. Equation (46.2) then reduces to

o'22m—iho" [2m = E—U(x), (46.4)

where the prime denotes differentiation with respect to the coordinate x.
In the first approximation we write ¢ = o, and omit from the equation the
term containing A:

oo %2m = E—U(x).
Hence we find

oo = & [ ViZmE—U(x)]} dx.

164
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The integrand is simply the classical momentum p(x) of the particle, expres-
sed as a function of the coordinate. Defining the function p(x) with the +
sign in front of the radical, we have

6, = & f pdx, p =/[2m(E-U)], (46.5)

as we should expect from the limiting expression (6.1} for the wave function.t
The approximation made in equation (46.4) is legitimate only if the second
term on the left-hand side is small compared with the first, i.e. we must have

lo”|a?| < 1or
|d(A/o")/dx| < 1.

In the first approximation we have, according to (46.5), o’ =p, so that the
condition obtained can be written

|d(N2m)jdx| < 1, (46.6)

where A(x) = 2#h/[p(x) is the de Broglie wavelength of the particle, expressed
as a function of x by means of the classical function p(x). Thus we have
obtained a quantitative quast-classicality condition: the wavelength of the
particle must vary only slightly over distances of the order of itself. The
formulae here derived are not applicable in regions of space where this condi-
tion is not satisfied.

The condition (46.6) can be written in another form by noticing that

dp d mdU mF
= = —V(E-U)] = — — =,
dx dx p dx 2
where F = —dU/dx is the classical force acting on the particle in the external
field. In terms of this force we find
mh| F|[p® < 1. (46.7)

It is seen from this that the quasi-classical approximation becomes inapplic-
able if the momentum of the particle is too small. In particular, it is clearly
inapplicable near turning points, i.e. near points where the particle, according
to classical mechanics, would stop and begin to move in the opposite direction.
These points are given by the equation p(x) = 0, i.e. E = U(x). Asp -0,
the de Broglie wavelength tends to infinity, and hence cannot possibly be
supposed small.

It must be emphasized, however, that the condition (46.6) or (46.7) alone
may be insufficient for the quasi-classical approximation to be valid. The
reason is that this condition has been derived from estimates of the various
terms in the differential equation (46.4), the term omitted containing a higher
derivative. It would be necessary, in fact, to stipulate the smallness of the

1 Asis well known, j ? dx is the time-independent part of the action. The total mechanical

actio_n S-of a p_artic_le 15 8 = —Ettjp dx. The term -—E? is absent from Oy, SINCE WE are
considering a time-independent wave function .
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subsequent expansion terms in the solution of this equation, and this need
not be ensured by the smallness of the term omitted. For example, if the
solution for o(x) contains a term which increases almost linearly with the
coordinate x, the smallness of the second derivative in the equation will not
prevent this term from becoming large at sufficiently great distances. Such a
situation occurs, in general, when the field extends to distances large in
comparison with the characteristic length L over which it varies by an
appreciable amount ; see the discussion of (46.11) below. The quasi-classical
approximation 1s then invalid for investigating the behaviour of the wave
function at large distances.

Let us now calculate the next term in the expansion (46.3). The first-order
terms in % in equation (46.4) give

50'01'+§°o" =0,

whence
o, = —ay" 20y = —p'[2p.
Integrating, we find
o, = —3 logp, (46.8)

omitting the constant of integration.
Substituting this expression in (46.1) and (46.3), we find the wave function
in the form

l,b _ Clp_.yze(i/n)jp dx_ CZP—IIZB-(UM]P dx, (46.9)

The factor 1/4/p in this function has a simple interpretation. The proba-
bility of finding the particle at a point with coordinate between x and x+ dx
is given by the square ||?, i.e. is essentially proportional to 1/p. This is
exactly what we should expect for a “‘quasi-classical’”’ particle, since, in
classical motion, the time spent by a particle in the segment dx is inversely
proportional to the velocity (or momentum) of the particle.

In the “classically inaccessible” parts of space, where E < U{x), the func-
tion p(x) is purely imaginary, so that the exponents are real. The general form
of the solution of the wave equation in these regions is

l,[l _ G1 e —(1/h) I|p|da:+ Ce e(l/h) Ilﬂldx, (4‘610)

© VIpl VP

It must, however, be borne in mind that the accuracy of the quasi-classical
approximation is not such as to allow the retention in the wave function of
exponentially small terms superimposed on exponentially large ones, and in
this sense it is usually not permissible to retain both terms in (46.10).
Although there is, as a rule, no need to use the higher-order terms in the
wave function, we shall derive the next term in the expansion (46.3), with a
view to noting some aspects of the accuracy of the quasi-classical approxi-

mation.
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The terms of order /42 in equation (46.4) give
0o 03 +30,2+146," =0,
whence (substituting (46.5) and (46.8) for oo and o)
oy = p"[4p*—3p"%[8p.

—

Integrating (by parts in the first term) and introducing the force F = pp'/m,
we obtain

6 = ImF|p*+m? [ (F2p9) dx.
The wave function in this approximation is of the form

b = ei/me = imacte (1 —ific,)
or
constant

= 1 —Yim#AiF[p3—4ihm?| (F2[p5) dx]ed/m fp dx, 46.11
b = —— 1= timnFlpt =it [ (Fp?) dle (46.11)

The occurrence of imaginary correction terms in the coefficient of the
exponential is equivalent to the presence of a similar correction in the phase of
the wave function, i.e. of an addition to the integral (1/4) { p dx in its exponent.
This correction is proportional to 4, i.e. is of order A/L.

The second and third terms in the brackets in (46.11) must be small in
comparison with unity. For the second term, this condition is the same as
(46.7); for the third term, an estimate of the integral gives (46.7) only if F2
tends to zero sufficiently rapidly at distances ~ L.

§47. Boundary conditions in the quasi-classical case

Let x = a be a turning point, so that U(a) = E, and let U > E for all
x > a, so that the region to the right of the turning point is classically
inaccessible. The wave function must be damped in this region. Sufficiently
far from the turning point, it has the form

'/’—m P(—‘—lfpdx

corresponding to the first term in (46.10). To the left of the turning point,
the wave function must be represented by a real combination (46.9) of two
quasi-classical solutions of Schrédinger’s equation:

sb——~1exp(‘fpd )+ 2 ( ; dx f
x —_— X —
/P J W, €xp fp ) or x <a. (47.2)

) for x> a, (47.1)
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To determine the coefficients in this combination we must follow the
variation in the wave function from positive x —a (where (47.1) holds) to
negative x—a. In doing so, however, it is necessary to pass through a region
near the turning point where the quasi-classical approximation is invalid,
and the exact solution of Schrédinger’s equation must be considered. For
small |x — a| we have

E—U(x) = Fo(x—a), Fo = —[dU/dx]z.4 < O; (47.3)

that is, the problem in this region is one of movement in a homogeneous
field. The exact solution of Schrédinger’s equation for this problem has been
found in §24, and the relation between the coefficients in (47.1) and (47.2)
can be derirved by comparison with the asymptotic forms (24.5) and (24.6) of
this exact solution on either stde of the turning point. Here it must be noted
that (47.3) gives p(x) = /[2mFg(x —a)}], so that the integral

I

2
H pdx = — V(mFo)x—a)?

a

is equal to the argument of the exponential in (24.5) or the sine in (24.6).
In this discussion it is important that the region where the expansion (47.3)
is valid and the quasi-classical region partly overlap: if the motion is quasi-
classical in almost the whole of the field region (as we assume), then there
exist values of |x —a| small enough for the expansion (47.3) to be valid but
also large enough for the quasi-classicality condition to be satisfied and for
the asymptotic forms (24.5) and (24.6) to be applicable.t

There 1s, however, another approach that s methodologically more
instructive and does not make use of the exact solution. For this, ¢(x) must
be formally regarded as a function of a complex variable x, and the passage
from positive to negative x —a must be along a path which is always suffi-
ciently far from the point x = a, so that the quasi-classicality condition is
formally satisfied along the whole path (A. Zwaan 1929). We then again
consider values of |x —a| such that the expansion (47.3) is also valid, so that
the wave function (47.1) has the form '

C £L
2[2m| Fo(x — a)'® *P { B FJ

a

¥x) =

V][(2m|Fo)Y2(x—a)] dx } (47.4)

Let us first examine the variation of this function on passing round the
point x = a from right to left along a semicircle of radius p in the upper half-

t The expansion (47.3) is valid for |x —a| <€ L, where L is the characteristic distance for
variation of the field U(x). The quasi-classicality condition (46.7) requires that |x—al>* »
KA/ (m]Fy|). These two conditions are compatible, since the quasi-classicality of the motion
far from the turning-point (i.e. for [x—a| ~ L) implies that L¥? » h/+/(m|Fl).
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plane of the complex variable x. On this semicircle,

z
x—a = petd, [ V(x—a)dx = 3p¥2(cos 34+ sin 3¢),

the phase ¢ varying from 0 to =. The exponential factor in (47.4) at first
(for 0 < ¢ < %) increases in modulus, and then decreases to modulus 1. At
the end of the semicircle the exponent becomes purely imaginary, equal to

Fy z

_’_;J v/ [2m|Fo|(a—x)] dx = —%Jp(x) dx.

a

In the coefficient of the exponential in (47.4), the change along the semicircle

1Q
(x__ a) -1/4 - (a —_ x) —11’48 —fﬂf‘l.

Thus the whole function (47.4) becomes the second term in (47.2) with
coefficient Co = 1Ce—tn/4,

The fact that by passing through the upper half-plane it is possible to
determine only the coefficient C; in (47.2) has a simple explanation. If we
follow the variation of the function (47.2) along the same semicircle in the
opposite direction (from left to right), we see that at the beginning the first
term rapidly becomes exponentially small in comparison wth the second
term. But the quasi-classical approximation does not allow us to include
exponentially small terms in ¢ superimposed on the large principal term, and
this is why the first term in (47.2) 1s ““lost” in the passage along the semicircle.

To determine the coefficient C;, we must pass from right to left along a
semicircle in the lower half-plane of the complex variable x. In a similar
manner, we find that formula (47.4) then becomes the first term in (47.2)
with coefhicient Cy = 1Cetr/4,

Thus the wave function (47.1) for x > a corresponds to the function

for x < a. Thisrule of correspondence may be written in 2 form independent
of the side of the turning-point on which the classically inaccessible region

lies:
C 1 f .1 ¢ 1 [
NI exp { 5 j.p dx,} _)\719 cos {ﬁ fp dxl — i—ﬂ} (47.5)

for U(x) > E for U(x) < E
(H. A. Kramers 1926),
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Let us once again emphasize what is obvious from the proof, namely that
this rule is associated with a particular boundary condition imposed on one
side of the turning-point, and in this sense it can be applied only in 2 particular
direction. Therule (47.5)1s derived with the boundary condition that b >0
into the classically inaccessible region, and must be applied to a passage from
the latter to the classically allowed region, as 1s shown by the arrow.?

If the classically accessible region is bounded (at x = @) by an infinitely
high “potential wall”, the boundary condition for the wave functionat x = «
is ¢ = 0 (see §18). The quasi-classical approximation is then valid up to
the wall itself, and the wave function is

¢ ']I dx  f
= — sin—~ or x < a,
v S R (47.6)
a

b=20 for x> a.

§48. Bohr and Sommerfeld’s quantization rule

States that belong to the discrete energy spectrum are quasi-classical for
high values of the quantum number n, the ordinal number of the state,
since this gives the number of nodes of the eigenfunction (see §21), and the
distance between adjacent nodes is equal in order of magnitude to the de
Broglie wavelength. For large n this distance is small, and the wavelength is
therefore small in comparison with the dimensions of the region of the
motion.

Let us derive the condition which determines the quantum energy levels
in the quasi-classical case. To do this we consider a finite one-dimensional
motion of a particle in a potential well; the classically accessible region
b £ x € ais bounded by two turning points.]

According to the rule (47.5), the boundary condition at x = b gives (in the
region right of this point) the wave function

b = < cos B-jp dx—%n:l. (48.1)

+ A passage in the opposite direction is meaningless 1n that even a small change of the wave
function on the right in (47.5) may give rise to an exponentially increasing term in the function
on the left. _

1 In classical mechanics, a particle in such a field would execute a periodic motion with
period (time taken in moving from ¥ = b to x = a and back)

a a
T=2[deo = 2m| dx p,
b »

where v is the velocity of the particle.
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Applying the same rule to the region left of the point x = 4, we obtain the
same function in the form

c 1
= —— C0S | - dx—}ﬂ':l.
v vp ° I:ﬁjp

If these two expressions are the same throughout the region, the sum of their
phases (which is a constant) must be an integral multiple of =:

a

% pdx—~in = nm,

with C = (—1)"C". Hence

1
= $pdx = n+4} (48.2)

where § p dx = 2 { p dx is the integral taken over the whole period of the

classical motion of the particle. This is the condition which determines
the stationary states of the particle in the quasi-classical case. It corresponds
to Bohr and Sommerfeld’s quantization rule in the old quantum theory.

The quantity /= (1/27)§p dx is called an adiabatic invariant (see
Mechanics, §49); the quantization condition (48.2) can be written as

I(E)=h(n +3%).

It has already been mentioned in §41 that, when the parameters vary
sufficiently slowly (“adiabatically”’), the system remains in the same
quantum state; in the present case, a state with a certain value of 7.
We sec that in the quasi-classical limit this statement is the same as
the classical theorem that the adiabatic invariant is constant when the
parameters vary slowly.

It is easy to see that the integer 7 is equal to the number of zeros of the
wave function, and hence it is the ordinal number of the stationary state.
For the phase of the wave function (48.1) increases from —}r at x = b to
(n+1)r at x = a, so that the cosine vanishes # times in this range (outside

the range b < x < a, the wave function decreases monotonically and has
no zeros at a finite distance).t

As has been shown previously, the number 7 is large in the quasi-classical
case. It must be emphasized, however, that the retention of the term } added

t Strictly speaking, the zeros should be counted by means of the exact form of the wave
function near the turning points If this is done, the resuit given in the text is confirmed.
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to n in (48.2) is nevertheless legitimate: to take account of the subsequent
correction terms in the phase of the wave functions would give only terms
~A/L on the right of (48.2), which are small in comparison with unity; see
the remark at the end of §46.1

In normalizing these wave functions, the integration of {)|2 can be re-
stricted to the range b < x < g, since outside this range ¢ decreases exponen-
tially. Since the argument of the cosine1n (48.1) is a rapidly varying function,

we can with sufficient accuracy replace the squared cosine by its mean value §.
This gives

jw,;zax ~ e [
) 5

= 7C%[2mw = 1,

where w = 2#/T is the frequency of the classical periodic motion. Thus
the normalized quasi-classical function is

J = \/% cos [%pr dx—}w]. (48.3)

It must be recalled that the frequency w is in general different for different
levels, being a function of energy.

The relation (48.2) can also be interpreted in another manner. The
integral § p dx is the area enclosed by the closed classical phase trajectory
of the particle (i.e. the curve in the px-plane, which is the phase space of the
particle). Dividing this area into cells, each of area 2#/, we have n cells
altogether; n, however, is the number of states with energies not exceeding
the given value (corresponding to the phase trajectory considered). Thus
we can say that, in the quasi-classical case, there corresponds to each quantum
state a cell in phase space of area 2n#i. In other words, the number of states
belonging to the volume element ApAx of phase space is

ApAx[27h. (48.4)

If we introduce, instead of the momentum, the wave number k = pfh, this
number can be written

AkAx(2,

It is, as we should expect, the same as the familiar expression for the number
of characteristic vibrations of a wave field (see Fields, §52).

+ In some cases the exact expression for the energy levels E(n) (as 2 function of the quantum
number 1), obrained from the exact Schrédinger’s equation, is such that 1t retains its form as
n - oo ; examples are the energy levels in a Coulomb field, and those of a harmonic oscillator.
In these cases, of course, the quantization rule (48.2), although really applicable only for large
n, gives for the function E(n) an expression which 1s the exact one.
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Starting from the quantization rule (48.2), we can ascertain the general
nature of the distribution of levels in the energy spectrum. Let AE be the
distance between two neighbouring levels, i.e. levels whose quantum numbers
n differ by unity. Since AE is small (for large #) compared with the energy
itself of the levels, we can write, from (48.2),

AE§ (9p/9E) dx = 2nh.
But ¢E/dp = v, so that
SG(ap/aE) dx = § dxfo = T.

Hence we have

AE = 208/T = how. (48.5)

Thus the distance between two neighbouring levels is fiw. The frequencies
w may be regarded as approximately the same for several adjacent levels (the
difference in whose numbers 7 is small compared with # itself). Hence we
reach the conclusion that, in any small range of a quasi-classical part of the
spectrum, the levels are equidistant, at intervals of Zw. This result could
have been foreseen, since, in the quasi-classical case, the frequencies cor-
responding to transitions between different energy levels must be integral
multiples of the classical frequency w.

It is of interest to investigate what the matrix elements of any physical
quantity f become in the limit of classical mechanics. To do this, we start
from the fact that the mean value f in any quantum state must become, in
the limit, simply the classical value of the quantity, provided that the state
itself gives, in the limit, a motion of the particle in a definite path. A wave
packet (see §6) corresponds to such a state; it is obtained by superposition of
a number of stationary states with nearly the same energy. The wave func-
tion of such a state is of the form

Y = Y a,Y,,
n

where the coefficients a, are noticeably different from zero only in some
range An of values of the quantum number 7 such that 1 € An <€ #n; the
numbers 7 are supposed large, because the stationary states are quasi-classical.
The mean value of f is, by definition,

f = J“F*f‘{’ dx = %g am'anfmneiw""‘t}

or, replacing the summation over # and m by a summation over z and the
difference m —n =,

f = §§ aﬂ+!#aﬂfﬂ+l, netw“n

where we have put w,,, = sw in accordance with (48.5).
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The matrix elements f,, calculated by means of the quasi-classical wave
functions decrease rapidly in magnitude as the difference m—n increases,
though at the same time they vary only slowly with # itself (m —# being fixed).
Hence we can write approximately

f — )7_:‘? a,*a, f’eiwal - § I an|2 g f’eiwst’

where we have introduced the notation f, = f;,, ;, 7 being some mean value
of the quantum number in the range An. But X |a,]? = 1; hence

f = E‘f,ef“’-"_

The sum obtained is in the form of an ordinary Fourier series. Since f
must, in the limit, coincide with the classical quantity f{t), we arrive at the
result that the matrix elements f,,,, in the limit become the components f__,
in the expansion of the classical function f{t) as a Fourier series.

Similarly, the matrix elements for transitions between states of the con-
tinuous spectrum become the components in the expansion of f(t) as a Fourier
integral. Here the wave functions of the stationary states must be normalized
by (1/#) times the delta function of energy.

All the above results can be generalized immediately to systems with
several degrees of freedom, executing a finite motion for which the problem
in classical mechanics allows a complete separation of the variables in the
Hamilton-Jacobi method (called a conditionally periodic motion; see
Mechanics, §52). After separation of the variables for each degree of freedom,
the problem reduces to a one-dimensional problem, and the corresponding
quantization conditions are

§pi dg: = Zoh(mi+y1), (48.6)

where the integral is taken over the period of variation of the generalized
coordinate g;, and y¢ is a number of the order of unity which depends on
the nature of the boundary conditions for the degree of freedom considered .t

In the general case of an arbitrary (not conditionally periodic) motion in
several dimensions the formulation of the quasi-classical conditions of
quantization calls for more far-reaching considerations.] The concept of

t+ For example, in motion in a centrally symmetric field we have

§ prdr = 20h(ny+4) § podf = 2nh(l—m+3), §pydg = 2mhm,

where 1y = n—/~—1 is the radial quantum number. The last of the three equations simply
expresses the fact that p¢ is the z-component of the angular momentum, equal to fim.
1 See ]. B. Keller, Annals of Physics 4, 180, 1958.



§49 Quasi-classical motion in a centrally symmetric field 175

“‘cells” in phase space is, however, applicable (in the quasi-classical approxi-
mation) in the same form always. This is clear from the above-mentioned
relationship between it and the number of characteristic vibrations of the
wave field in a given volume of space. In the general case of a system with s
degrees of freedom, there are

AN = Agy ... Agspy ... Apsf(2mh)s (48.7)

quantum states in a volume element in phase space.

PROBLEMS

ProsLEM 1. Determine (approximately) the number of discrete energy levels of a particle
moving in an arbitrary (not central) field U(r) which satisfies the quasi-classical condition.

SoLuTioN. The number of states belonging to a volurne of phase space which corresponds
to momenta in the range 0 € p < pmax and particle coordinates in the volume element dV/
15 #mpmax® dV/(27h)3. For given r the particle can have (in its classical motion) a momentum
satisfying the condition E = p%/2m + U(r) < 0. Substituting pmax = V[— 2mU(r)], we
obtain the total number of states of the discrete spectrum:

V2 mife
__J'(_U)m av,

Inz M

where the integration is over the region of space in which U < 0. This integral diverges
(i.e. the number of states is infinite) if IV decreases at infinity as r~* with s < 2, in accordance
with the results of §18.

ProBLEM 2. The same as Problem 1, but for a quasi-classical centrally symmetric field
U(r) (V. L. Pokrovskii).

SoLuTiON. In a centrally symmetric field the number of states is not the same as the
number of energy levels, on account of the degeneracy of the latter with respect to the
direction of the angular momentum. The required number can be found by noting that the
number of levels with a given value of the angular momentum MM is the same as the number
of (non-degenerate) levels for a one-dimensional motion 1n a field with potential energy
Uert = U(r)+ M?%2mr?. The maximum possible value of the momentum py, for given r and
energies E < 0 is pr,max = V/(~2mUert). The number of states (i.e. the required number of

levels) is therefore
dr dp, e
[ (o2
2nk 2R 2mr?

The required total number of discrete levels is obtained from this by integration with respect
to M!k (which replaces in the quasi-classical case the summation with respect to {), and is

(mj4h2) f (— U dr.

§49. Quasi-classical motion in a centrally symmetric field

In motion in a centrally symmetric field the wave function of a particle
falls, as we know, into an angular and a radial part. Let us first consider the
former.

The dependence of the angular wave function on the angle ¢ (determined
by the quantum number m) is so simple that the question of finding approxi-

t In particular, for one particle, d’p{(27#)? is the number of states for a range d¥ of values
of the momentum in unit volume of coordinate space. This explains the agreement of the
two methods of normalizing the plane wave (13.8), mentioned in the footnote to that formula,
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mate formulae for it does not arise. The dependence on the polar angle 8 is,
according to the general rule, quasi-classical if the corresponding quantum
number [ 1s large (this condition will be more precisely formulated below).

We shall here confine ourselves to deriving the quasi-classical expression
for the angular function for the case (the most important one in applications)
of states whose magnetic quantum number is zero (m = 0). This function
is, apart from a constant factor, the Legendre polynomial P, (cosf) (see
(28.8)), and satisfies the differential equation

d2P;/d62+cot 6 dP;/d6+{({+1)P; = 0. (49.1)
The substitution
Py(cos 6) = x(0)/+/sin @ (49.2)
reduces this to
x"+[(I+4)*+1 cosec®f]y = O, (49.3)

which does not contain the first derivative and is similar in appearance to
the one-dimensional Schrodinger’s equation.
In equation (49.3), the part of the de Broglie wavelength is played by

A =27 [(I43)°+3} cosec?f]-1/2,

The requirement that the derivative d(A/27)/dx is small (the condition (46.6))
gives the inequalities

Bl>1, (r—6)>1, (49.4)

which are the conditions that the angular part of the wave function 1s quasi-
classical. For large [ these conditions hold for almost all values of §, exclud-
ing only a range of angles very close to 0 or =.

When the conditions (49.4) are satisfied, we can neglect the second term
in the brackets in (49.3) compared with the first:

X'+(+8)% =0.
The solution of this equation is

x = 4/sinf Pycosf) = A sin[(I+3)f+c], (49.5)

where A and « are constants,
For argles 6 <€ 1, we can put in equation (49.1) cos § = 1/6; replacing
also /({+1) by the approximation (/+ })?, we obtain the equation
4P, 14P,

- (! 2P, =0,
e +B d8+(+%) 1

+ The opposite case, m = [, must correspond in the limit to motion 1n a classical orbit
lying in the equatorial plane 8 = }m, since Pi(cos 8) = constant X sin! 8, and as / -» ©
this function (and therefore ||?) tends to zero for all 8 # #m.
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which has as solution the Bessel function of zero order:

Pycos) = Jo[(I+3)6], €< 1. (49.6)

The constant factor is put equal to unity, since we must have P, =1 for
6 = 0. The approximate expression (49.6) for P; is valid for all angles
¢ < 1. In particular, it can be applied for angles in the range 1/I < § < 1,
where it must agree with the expression (49.5), which holds for all § > 1/
For 61> 1 the Bessel function can be replaced by its asymptotic expression
for large values of the argument, and we obtain

p o |20

- /6

(we can neglect } in the coefficient compared with /). On comparison with
(49.5), we find that 4 = 4/(2[nl), « = }m. Thus we obtain finally the

following expression for P(cos ), applicable in the quasi-classical case:t

2 sin[(I+3)8
Py(cosb) ~ ;Zsm[(j/'i:iﬂ]. (49.7)

The normalized spherical harmonic function Y)¢ 1s obtained from this as

(cf. (28.8))

Vi o L SolADOHEm] (49.8:
T \/siné

Let us now turn to the radial part of the wave function. It has been
shown in §32 that the function x(r) = rR(r) satisfies an equation identica]
with the one-dimensional Schrédinger’s equation, with the potential energy

R l(l+1
i) = U 2.

r2

Hence we can apply the results obtained in the previous sections, if the
potential energy is understood to be the function U (7).

The case [ = 0 is the simplest. The centrifugal energy vanishes and, if
the field U(r) satisfies the necessary condition (46.6), the radial wave
function will be.quasi-classical in all space. For r = 0 we must have y = 0,
and hence the quasi-classical function x(r) is determined by formulae (47.6).

If I # 0, the centrifugal energy also must satisfy the condition (46.6). In
the region of small r, where the centrifugal energy is of the same order as
the total energy, the wavelength A = 27h/p ~ r/l, and the condition (46.6)
gives I » 1. Thus, if /is small, the quasi-classical condition is violated by the

1 Note that, as a result of replacing I(/+1) by ({+ %)% we have obtained an expressior

:;l—zich 1z)multip1ied by (—1)} when f#is replaced by = — @; this is as it should be for the functior
{cos
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centrifugal energy in the region of small . It is easily seen that we obtain
the correct value of the phase of the quasi-classical wave function y(r) by
calculating it from the formulae for one-dimensional motion, replacing the
coefficient [(I+ 1) in the potential energy U,(r) by (I+})%:T

B2 (1+3)2
Ugr) = U(r)+ E{( 7 (49.9)

r2

The question of the applicability of the quasi-classical approximation to a
Coulomb field U = L «/r requires special consideration. The most import-
ant part of the whole region of the motion 1s that corresponding to distances
r for which |U| ~ |E|, 1.e. r ~ of|E|. The condition for quasi-classical
motion 1n this region amounts to the requirement that the wavelength
A ~h[+/(2Zm|E|) 1s small compared with the dimensions «f|E| of the
region; this gives

|E| < ma®/R2, (49 10)

i.e. the absolute value of the energy must be small compared with the energy
of the particle in the first Bohr orbit. This condition can also be written in
the form

alhe 3 1, (49.11)

where v ~ +/(|E|[m) is the velocity of the particle. It should be noticed
that this condition is the opposite of the condition (45.7) for the applicability
of perturbation theory to a Coulomb field.

The region of small distances (|U(r)| > FE)is without interest in a repulsive
Coulomb field, since for U > E the quasi-classical wave functions diminish
exponentially. In an attractive field, however, when [ 1s small it is possible
for the particle to penetrate into the region where |U| > E, so that we have
to consider the limits of applicability of the quasi-classical approximation in
this case. We use the general condition (46.7), putting there

F= —dUfdr = —afr?, p = /(2mU|) ~ +/(ma/r).

As a result, we find that the region of applicability of the quasi-classical
approximation 1s restricted to distances such that
r > hima, (49.12)

i.e. distances large in comparison with the ‘‘radius” of the first Bohr orbit.

PROBLEM

Determine the behaviour of the wave function near the origin, if the field becomes infinite
as * a/r?, with s » 2, whenr - (0,

+ For example, 1n the simple case of free motion (I = 0) the phase of the function calcula-
ted from formula (48.1) with L[/; from (49.9) will be the same as the phase of (33.12) for

large r, as it should be.
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SorurioN. For sufficiently small 7, the wavelength X ~ & /(m|U|) ~ Hrt2; 4/ (me),
so that dA'dr ~ Art/2-114/(ma) <€ 1; thus the quasi-classical condition is satisfied. In an
attractive field Uy = — @ when r-— 0. The region near the origin is in this case classically
accessible, and the radial wave function ¥ ~ 1 1/p, whence

l,!l ~pt -1

In a repulsive field, the region of small r is classically inaccessible. In this case the wave
function tends exponentially to zero as 7 — 0. Omitting the coefficient of the exponential

function, we have
r
1 2+/(2Zm
¥~ exPI:";-i fp dr ], or iy ~ exp[ VI m),.—mz-x) )

{7 (s—2)k

§50. Penetration through a potential barrier

Let us consider the motion of a particle in a field of the type shown in
Fig. 13, characterized by the presence of a potential barrier, 1.e. a region in
which the potential energy U(x) exceeds the total energy E of the particle.
In classical mechanics, a potential barrier is “impenetrable” to a particle;
in quantum mechanics, however, a particle can pass “through the barrier”:

Ux)

Fic. 13

the probability of this is not zero. The phenomenon is also called the tunnel
effect.t If the field U(x) satisfies the quasi-classical conditions, the trans-
mission coefficient for the barrier can be calculated in a general form. We
may remark that, in particular, these conditions give the result that the barrier
must be “wide”, and hence the transmission coefficient is small in the quasi-
classical case.

In order not to interrupt the subsequent calculations, we shall first solve
the following problem. Let the quasi-classical wave function in the region

to the right of the turning point x = 4 (where U(x) < E) have the form of a
travelling wave:

$ = -\%exp[;fp dx+gn‘w]. (50.1)

tExamples of this type have already occurred in §25, Problems 2 and 4
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We require to find the wave function of this state in the region x < 5. This
can be done by the same procedure as in §47, using the plane of the complex
variable x. Putting

E—-U(x) =~ Fo(x—0b), Fy > 0,
we can write the function (50.1) as

C i O
Plx) = exp {-h—(ZrnFo) V“J. V/(x—b) dx+}i1r},
b

[2mF o (x—B)]\/4

and pass from right to left along a semicircle in the upper half-plane:

x—b = pete, i [ 1/(x—b) dx = 3p¥%( —sin 3¢ +1 cos 3¢),
]

the phase ¢ varying from 0 to ». The function (x) at first decreases and then
increases in modulus, its value at the end of the semicircle being

b
C

— ! 1/2 o
¥ = [2mF o (b —x)|4eintd =P {;j VI@mFo) 2 (x b)) dx + im j’

x

Thus we obtain the correspondence rulet

C i . C 1 f
—exp{ - pdx+lm}-—>——exp{-— pdx
VP {hj T vl T

}. (50.2)
forx > & forx < b

It must be emphasized that this rule presupposes a particular form of the
wave function (a wave travelling to the right) in the classically allowed region,
and must be applied to go from the latter to the classically inaccessible regton.

Let us now go on to calculate the coefficient for the penetration of the
potential barrier. Let the particle be incident on the barrier from left to
right, coming from region I. Then, in region III beyond the barrier, there

+ In a passage from right to left through the lower half-plane, the function ¢(x) at first
increases and then decreases in modulus, becoming an exponentially small quantity on the
left-hand axis (¢ — —=), which it would not be legitimate to l:{eep supenr_nposed on the
exponentally large function (50.2). In the region where P(x) is exPonentnally large, _the
inexactness of the quasi-classical approximation loses the exponentially small correction
which for ¢ - —= could become 2an exponentially large term, and the latter is therefore

lost also.
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will be only the wave that has passed through the barrier and is propagated
to the right; the wave function in this region may be written

Y = \/ - exp fp dx + 4117) (50.3)

where v = p/m is the particle velocity and D the current density in the wave.
Using the rule (50.2), we can now find the wave function in region II, within

the barrier:
[}
D 1
= [= - d
b |v|exp(hfp x)

b z
D 1 | 1 '
I 2 dxi—=| | » dx ). 50.4
|v|exP(h jp g hjp "’i) (504

Finally, applying the rule (47.5), we have in region I in front of the barrier

\/__exp J|p| dx cos Jp dx—,gr)

b

D = exp (— %jlpl dx), (50.5)

If we put here

this becomes
I

= %cos (il_iJ\ P dx-i—%-n)

a

I

=_exp J‘pdx-i—lm +%exp(—é—jpdx—%iw).

a

This first term (which becomes a plane wave ¢ = el/AP% as x —» — )
represents a wave incident on the barrier, and the second a reflected wave.
The normalization chosen corresponds to a unit current density in the
incident wave, and therefore D, the current density in the transmitted wave,
is equal to the required transmission coefficient for the barrier. Note that

this formula is applicable only if the exponent is large, so that D itself is
srmall.+

t The exponential smallness of D is related to the fact that the amplitudes of the incident

and reflected waves in region I are found to be the same; the exponentially small difference
between them is lost in the quasi-classical approximation.
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It has been assumed in the foregoing that the field U(x) satisfies the quasi-
classical condition over the whole extent of the barrier (excluding only the
immediate neighbourhood of the turning points). In practice, however, we
often have to deal with barriers where the potential energy curve on one side
drops so steeply that the quasi-classical approximation is inapplicable. The
exponential factor in D remains the same in this case as in formula (50.5),
but the coefficient of the exponential (equal to unity in (50.5)) is different.
To calculate it we must, essentially, calculate the exact wave function in the
non-quasi-classical region and determine the quasi-classical wave function
inside the barrier in accordance with this.

PROBLEMS

ProBLEM 1. Determine the transmission coefficient for the potential barrier shown in
Fig. 14 (p. 182): U(x) = Oforx < 0, U{x) = U,—Fx for x > 0; only the exponential factor
need be calculated.

ulx)
Lo
——t = ——
\ .
Fic. 14
SoLuTION. A simple calculation gives the result
44/(2m)
D~ — (U, _E)a,'z}_
exP{ ShE
ProBLEM 2. Determine the probability that a particle (with zero angular momenturn) will
emerge from a centrally symmetric potential well with U(r) = — U, for r < ry, U(r) = a/r
for r > ry, (Fig. 15).%
ulr)
A -
-UD
Fi1c. 15

SoLuTioN. The centrally symmetric problem reduces to a one-dimensional one, so that
the formulae obtained above can be applied. We have

+ This problem was first discussed by G. Gamow (1928) and by R. W. Gurney and
E. U. Condon (1929) in connection with the theory of radioactive a-decay,
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cenf-5 T JlCor)] o)

Evaluating the integral, we finally obtain

el B o [ 2]

In the limiting case r, — 0, this formula becomes

W~ g MVIm | E) o p—2ro /v

These formulae are applicable when the exponent is large, i.e. when a/fiv 2> 1. This condi-

tion agrees, as it should, with the condition (49.11) for quasi-classical motion in a Coulomb
field.

ProerLEM 3. The field U{x) consists of two symmetrical potential wells (I and II in Fig.
16), separated by a barrier. If the barrier were impenetrable to a particle, there would be energy
levels corresponding to the motion of the particle in one or other well, the same for both
wells. The fact that a passage through the barrier is possible results in a splitting of each of
these levels into two neighbouring ones, corresponding to states in which the particle moves
simultaneously in both wells. Determine the magnitude of the splitting (the field U(x} is
supposed quasi-classical).

Ulx)

|
I
|
|
a
Fic. 16

SoLuTION. An approximate solution of Schrédinger’s equation in the field U(x), neglecting
the probability of passage through the barrier, can be constructed with the quasi-classical
wave function (x) which describes the motion with a certain energy E, in one well, say I,
i.e. which is exponentially damped on both sides of this well; the function ,(x) is assumed to
be norm~"zed so that the integral of ,? over well | is unity,. When the small probability of
tunnelling is taken into account, the level E; splits into levels E, and E,. The correct zero-
approximation wave functions corresponding to these levels are the symmetric and anti-
symmetric combinations of ¢y(x) and J(—x):

dn(x) = \/Lz[qbo(x)wo(-x)]. N
dolx) = %[u,bo(x)—c,bo(—x)].
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In well I, the function yy(—x) 1s vanishingly small in comparison with i(x); in well II the
opposite is true. The product o(x)fo(—x) is therefore vanishingly small everywhere, and
the functions (1) are normalized so that the integrals of their squares over wells [ and I

are unity.
Schrodinger’s equations are

o +2m/ AN Ey— Uy = 0, " +(2mB*YE,— Uply = 0;

we multiply the former by i, and the latter by i, subtract corresponding terms, and integrate
over ¥ from 0 to oo. Bearing in mind that, for x = 0, ; = 1/2¢, and ;" = 0, and that

f%”bi dx > —\;—zf%adx = 1/v/2,
we find o 0

Ey\—Ey = —(F*/m)o(O00'(0).

Similarly, we find for E;—E, the same expression with the sign changed. Thus
E,—E, = (2Zh%/m)o(O00'(0)-

By means of formula (47.1), with the coefficient C from (48.3), we find that

$o(0) = ,/ = exp[—;—fipl dx |, 4'(0) =%¢’0(0).
[+

279,

where v, = /[2(U;—Eg)/m]. Thus

wh 1
E—E =— exp[—-— J. 12l dx].
o 7
—-a
where a is the turning point corresponding to the energy E; see Fig. 16.
ProBLEM 4. Determine the exact value of the transmission coefficient D for the passage

of a particle through a parabolic potential barrier U(x) = — %ka® (supposing that D is not
small) (E. C. Kemble 1935).4

SoruTioN. Whatever the values of k and E, the motion is quasi-classical at sufficiently
large distances |x|, with

p = VIZH(E+IR)] = xy/(mk)+En/(miR),
and the asymptotic form of the solutions of Schrodinger’s equation is

i = constant xe*‘ftfﬂft'i'—h'2.
where we have introduced the notation
£ = x(mkHERS, ¢ = (Elh)r/(m[R)

We are interested in the solution which, as x - + o, contains only a wave which has
passed the barrier, i.e. 1s propagated from left to right. We put

as x— cc, ¢ = Belc‘:zgu 1 2 (N

asx —» — ¢, dl = e—iE"2( _‘f) 12_ 4008 f.’.( _ E)u-l 2 (2)

—

+ The solution of this problem can also be applied to penetration SUfﬁcie.ntly near the top
of any barrier U(x) whose dependence on x near the maximum 1s quadratic.
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In the expression (2), the first term represents the incident wave, and the second the reflected
wave (the direction of propagation of a wave is that in which its phase increases). The
relation between A and B can be found by using the fact that in this case the asymptotic
expression for ¢ is valid in the whole of a sufficiently distant region of the plane of the complex
variable £. Let us follow the vanation of the function (1) as we go round a semicircle of large
radius p in the upper half-plane of ¢:

£ = peivaf? = p¥ —sin 2¢ + 1 cos 2¢),

with ¢ varying from 0 to 7. As a result of traversing this semicircle, the function (1) becomes
the second term in (2), with coefficient

A= B(ei'n)i(-—h’2 - _IB“"R(; (3)

in the part of the path (37 < ¢ < =) where the modulus [¢i¢*/2} is exponentially large, the
exponentially small quantity which should give the first term in (2) is lost.}

With the normalization of the incident wave chosen in (2), the condition of conservation of
number of particles is

|42 +|B]2 = 1. (4)
From (3) and (4) we find the required transmission coefficient:

D = B2 = 1j(1 +e-2m),
This formula holds for any E. If the energy is large and negative, it gives D ~ ¢—2"!¢
in accordance with formula (50.3). For E > 0, the quantity

R =1-D = 1/(1 +em)

is the coefficient of reflection above the barrier.

§51. Calculation of the quasi-classical matrix elements

A direct calculation of the matrix elements of any physical quantity f with
respect to the quasi-classical wave functions presents great difficulty. We may
suppose that the energies of the states between which the matrix element is
calculated are not close to each other, so that the element does not reduce to
the Fourier component of the quantity f (§48). The difficulties arise because,
owing to the fact that the wave functions are exponential (with a large imagin-
ary exponent), the integrand oscillates rapidly.

We shall consider a one-dimensional case (motion in a field U(x)), and sup-
pose for simplicity that the operator of the physical quantity is merely a func-
tion f (x) of the coordinate. Let i and ¢ be the wave functions correspond-
ing to some values E, and E, of the energy of the particle (with E, > E,

Fig. 17); we shall suppose that i, and i}, are taken real. We have to calculate
the integral

t+ The passage through the lower half-plane to determine 4 would be unsuitable, since
on the part of thg pa_tlim (—7 < ¢ < —13=) that adjoins its left-hand end (where ¢ is given
by (2)), the term in €¥'2 is exponentially small in comparison with /2,
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fro = [ ifiadx. (51.1)

U (x)

Fic. 17

According to (47.5), the wave function ; in the regions on both sides of
the turning-point & = a3, but not in its immediate neighbourhood, 1s of the
form

Cl 1 F ‘
forx <a, i, = 27151 e:q:)l:—-’—_z fpl dx],
3

) (51.2)

c, 1
f = _ —
or x> a;, Y, S cos(h! P dx }w), ]

and similarly for ), (replacing the suffix 1 by 2).

However, the calculation of the integral (51.1) by substituting in it these
asymptotic expressions for the wave functions would not give the correct
result. The reason is, as we shall see below, that this integral is an exponen-
tially small quantity, whereas the integrand is not itself small. Hence even a
relatively small change in the integrand will in general change the order of
magnitude of the integral. This difficulty can be circumvented as follows.

We represent the function i, as a sum )y = gt +i3~, expressing the cosine
(in the region x > ag) as the sum of two exponentials. According to (50.2), we

have
z \
_1C2 F]_ ~
f < ’ = - dxl],
TS el TTLA) P
: }  (51.3)
- C ~: .
for x > a;, Yt = > _\/;2 €xp j Ps dx—im:l; ]

o»
Gy
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the function ¢,~ is the complex conjugate of it : i~ = (¢g*)*.

The integral (51.1) is also divided into the sum of two complex conjugate
integrals fi2 = fie*+/12-, which we shall proceed to calculate. First of all,
we note that the integral

et =_T tfibet du

converges. For, although the function {2+ increases exponentially in
the region x < g, the function ¢4, in the region ¥ < g;, tends exponentially
to zero still more rapidly (since we have [p,| > |p,| everywhere in the region
x < ap).

We shall regard the coordinate x as a complex variable, and displace the
path of integration off the real axis into the upper half-plane. When x
receives a positive imaginary increment, an increasing term appears in the
function ¢, (in the region x > @), but the function ¢,* decreases still more
rapidly, since we have p, > p, everywhere in the region x > @,. Hence the
integrand decreases.

The displaced path of integration does not pass through the points x = 4,
a, on the real axis, near which the quasi-classical approximation is inapplic-
able. Hence we can use for i, and 4", over the whole path, the functions
which are their asymptotic expressions in the upper half-plane. These are

 2[2m(U—E,) 114

" exp [}i f Vin(U-g) x|

(51.4)

. -G REI—
ot = | — [ venU-Eg e

where the roots are taken so as to be positive on the real axis for x < ay, as.
In the integral

_—iC, G,
T 4y/(2m)

Siet f exp[;l f V2m(U—E,)} dx_-:-i f V{2m(U—~Ep)} dx] X

y f(x)dx
(U—E)(U—E,)]4

we desire to displace the path of integration in such a way that the exponential
factor is diminished as much as possible. The exponent has an extreme value
only where U(x) = co (for E, # E,, its derivative with respect to x vanishes
at no other point). Hence the displacement of the contour of integration into
the upper half-plane is restricted only by the necessity of passing round the
singular points of the function U(x); according to the general theory of linear
differential equations, these coincide with the singular points of the wave
function ¥(x). The actual choice of the contour depends on the actual form

(51.5)
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of the field U(x). Thus, if the function U(x) has only one singular point
x = xq I the upper half-plane, the integration can be effected along the type
of path shown in Fig. 18. The immediate neighbourhood of the singular
point plays the important part in the integral, so that the matrix e'ement

fiz = 2 re fiz* required is practically proportional to an exponentially small
expression of the form

fiz ~ cxp{— %im[ f\/[zm(Ez- U)] dx— ] V[2m(Ey~ U)] dx]} (51.6)

(L. D. Landau 1932).1

©

X

(-]

Fic. 18

The lower limits of the integrals may be any points in the classically
accessible regions; their particular values evidently do not affect the imaginary
parts of the integrals. If the function U(x) has several singular points in the
upper half-plane, x¢ in (51.6) must be taken as that for which the exponent 1s
smallest in absolute value.}

Formula (51.6) becomes simpler when the energies E, and E, are
almost the same, so that the matrix element reduces, according to the
results in §48, to the Fourier time component of the classical quantity
Sf[x(£)]. Putting E, , = E + jhw,, and expanding in powers of hcw,,, we
find

f12~exp(—a)21 imj\/ﬁ-m_—[j)dx):exp(—wm imt). (5l.6a)

The quantity

1 In deriving formulae (51.5) and (51.6), we have replaced the wave functions by their
asymptotic expressions, since, in the integral taken along the contour shown in Fig. 18 (p. 188),
the order of magnitude of the integral is determined by that of the integrand ; hence a relatively
small change in the latter does not have any great effect on the value of the integral.

1 We assume that the quantity f(x) itself has no singular points.

The estimate (51.6) for the matrix element presupposes a “‘normal” order of magnitude for the
coefficient of the exponeniial. There can of course be cases where the nature of the problem makes
this coefficient unusually small. The simplest example is when f(x) = constant. The matrix element
is then zero because the wave filnctions are orthogonal; this is not shown by (51.6).
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0

T =.[\/de = jdx/v (x)

can be regarded as the complex time at which the particle reaches the point
%) in the complex x-plane. The quantity

2[E - U (x
v(x)=\/[ (x)]

m

is the corresponding complex velocity. It is easily seen that (51.6a) in fact
gives the approximate expression for the Fourier component of f[x (¢)]
if wyim1T > 1.

The quasi-classical matrix elements for motion in a centrally symmetric
field must be calculated by the same method. However, we must now replace
U(r) by the effective potential energy (the sum of the potential energy and
the centrifugal energy), which will be different for states with different 1.
In view of further applications of the method in question, we shall write the
effective potential energies in the two states in a general form, as Uh(r) and
Us(r). Then the exponent in the exponential factor in the integrand in (51.5)
has an extreme value not only at the points where Uj(r) or Ug(r) becomes
infinite, but also at those where

Uyr)— U, (r) = E,—E,. (51.7)
Hence, in the formula

fiz ~ exp{— %im [Jtn\/[Zm(Eg—— Us)} dr — fr:/[Zm(El— )] dr]} (51.8)

the possible values of r, include not only the singular points of U(r) and
Uy(r), but also the roots of equation (51.7).

The centrally symmetric case differs also in that the integration over r in
(51.1) is taken from 0 (and not from —o0) to co:

fiz = ]? x1fxz dr.

Here two cases must be distinguished. If the integrand is an even function
of 7, the integration can be formally extended to the whole range from —co
to o0, so that there is no difference from the previous case. This may occur
if Uy(r) and Uy(r) are even functions of r {U(—r) = U(r)]. Then the wave
functions y;(r) and y,(r) are either even or odd functionst (see §21), and,
if the function f(r) is also even or odd, the product y, fx, may be even.

~If, on the other hand, the integrand is not even (as always happens if U{r)
1s not even), the start of the path of integration cannot be moved away from

the: point 7 = 0, and this point must be included among the possible values of
ro 10 (51.8).

- + For even U(r), the radial wave function R(r) is even (or odd) when [ is even (or odd), as
ts seen from its behaviour for small » (where R ~ rt).
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PROBLEMS

ProeLEM 1. Calculate the quasi-classical matrix elements (exponential factor only) in a
ﬁeld U = er_oz.

SorutioN. U(x) becomes infinite only for x - — o0, Accordingly, we put x4 = — @
in (51.6). We can extend the integration to + co.

Each of the integrals diverges at the lower limit. Hence we first calculate them from —x
to o0, and then pass to the limit x — . We find

f1 g™ e—(‘ﬂmlaﬂ!v’-vl)'

where v1 = V/(2E\/m), ve = +/(2E2{m) are the velocities of the particle at infinity (x — ),
where the motion is free.

ProBLEM 2. The same as Problem 1, but in a Coulomb field U = a/r, for transitions be-
tween states with { = 0.

SoLuTiON. The only singular point of the function U(r) is r = 0. The corresponding
integral has been calculated in §50, Problem 2. As a result we have by formula (51.8)

e 53]

ProBLEM 3. The same as Problem 1, but for an anharmonic oscillator with potential energy
U (x) = 3mw®x® + Bx% under the condition

ho < E,, E, < m?0*B. (1)
SoruTion. The generalization of the analysis given in the text to the case of finite motion shows

that (51.6) remains valid. As x; we must take the points x — 1 c0. both of which give contributions
of the same order. Then

- —or

1
f12~exp(—ﬁli J JI2m(U — E))] dx — J J2m(U — E))] dx]).

ag ap

With the condition (1), the main contribution comes from the range
VEme?), (B mw?) <|x| < (mo?B), (2)
in which
smw’x? > E,, E,, fx*.

Expanding the exponent in powers of K, ,/U (the zero-order terms cancet) and neglecting fx*,

we have
Y £, dlxl_l_E: d|x|
g~expl — -~ | —+— :
2T The | xl T e | 5]
The logarithmically divergent integrals are to be cut off at the ends of the range {2): x ~ J(mw?B)
above and v ~a, ~/ E,jmw?), x ~a, ~ E/mw® below. The result is

E, mlwt E me“")

c~exp| =21 1
e "”‘p( ohw B BE, | 2how © BE,

With the state numbers n, = \EjJhw ), n, = (£, [hw,;, we can write this as

”n!:'z ﬁh ny-m 2
2

g™~
Sre nh z(mwj)
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Since large values of x are important in the solution, the result is valid if f (x) does not increase 100
rapidly at infinity. If f (x) is a polynomial, its degree must be much less than n, — n,.

§52. The transition probability in the quasi-classical case

Penetration through a potential barrier is an example of a process which
is entirely impossible in classical mechanics. In the quasi-classical case the
probability of such processes is exponentially small. The relevant exponent
can be determined as follows.

Considering a transition of any system from one state to another, we
solve the corresponding classical equations of motion and find the *“path’ of
the transition; this, however, is complex, in accordance with the fact that the
process cannot occur in classical mechanics. In particular, it is found that,
in general, the “transition point” go at which the formal transition of the
system from one state to the other occurs is complex; the position of this
point is determined by the classical conservation laws. We next calculate
the action Si(q1, go)+ S2(qgo, ¢2) for the motion of the system in the first
state from some initial position ¢; to the “‘transition point” go, and then in the
second state from ¢q to the final position ga. The required probability of the
process is then given by the formula

2
w ~ exp {— —im [S: (gug0) + 52 (@og2)]} (52.1)

If the position of the “‘transition point” is not unique, it must be chosen
so that the exponent in (52.1) has the smallest absolute value (which must yet,
of course, be sufficiently large for formula (52.1) to be valid).t

Formula (52.1) is tn accordance with the rule derived in §51 for calculating
the quasi-classical matrix elements. It should be emphasized, however, that
it would not be correct to use the square of the matrix element in calculating
the coefficient before the exponential in the probability of such transitions.

The method of complex classical paths based on (52.1) is a general one,
applicable to transitions in systems with any number of degrees of freedom
(L. D. Landau 1932). If the transition point is real, but lies in the classically
inaccessible region, then (in the simple case of one-dimensional motion)
formula (52.1) is the same as (50.5) for the probability of penetration through
the potential barrier.

REFLECTION ABOVE THE BARRIER

Let us apply (52.1) to the one-dimensional problem of reflection above the
barrier, i.e. reflection of a particle whose energy exceeds the height of the
barrier. In this case, go is to be taken as the complex coordinate xgp of the
“turning point” at which the particle reverses its direction of motion, i.e.
the complex root of the equation U(x) = E. We shall show how the reflection

_ t If the pote_ntial energy of the system has itself singular points, these also must be con-
sidered as possible values of g,.
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coefficient may then be calculated more precisely, including the coefficient
of the exponential.

We must again (as in §50) establish the relation between the wave functions
far to the right of the barrier (the transmitted wave) and far to the left (the
incident and reflected waves). This is easily done by a method similar to
that used in §§47 and 50, regarding i as a function of the complex variable x.

We write the transmitted wave in the form

1 . z
Yy = — exp(z J-pdx),
AP k

where x; is any point on the real axis, and follow its variation on passing along
a path C in the upper half-plane which encloses (at a sufficient distance) the
turning point xo (Fig. 19); the whole of the latter part of this path must
lie so far to the left that the error in the approximate (quasi-classical) wave
function of the incident wave is less than the required small quantity _.
Passage round the point xp causes a change in the sign of the root 4/[E — U(x}],
and after the return to the real axis the function i therefore becomes
J—, a wave propagated to the left (i.e. the reflected wave).t Since the ampli-
tudes of the incident and transmitted waves may be regarded as equal, the

Fig. 19

required reflection coefficient R is simply the ratio of the squared moduli

of y_ and -:

R = £2=exp(—%imfpdx). (52.2)
cC

Having derived this formula, we can deform the path of integration in the
exponent in any manner; if we convert 1t into the path C’ shown in Fig. 19,
the integral reduces to twice the integral from ¥ to xo, giving

R = exp( —4o(xy1, x0):h), o(x1, x¢) = tm fnp(x) dx; (52.3)

1 A passage along a path below the point x4 (simply going along the real axis, for example)
converts the function ¢ _ into the incident wave.
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since p x 1is real evervwhere on the real axis, the choice of x; 1s
immaterial.+ Note that the coefficient of the exponential in (52.3) is unity
V. L. Pokrovskii, S. K. Savvinykh and F. R. Ulinich 1958).1

As already mentioned, among the possible values of x; we must select the
one for which the exponent in  52.3) is smallest in absolute magnirude (and
this value must bhe large compared with unity).|| It is also implied that,
if the potential energy {7(x" itsclf has singularities in the upper half-plane,
the integral o:x), 1,) has larger values for such points§; otherwise the
exponent would be determined by one of these points, but the coefficient
of the exponenual would not be unity as in (52.3). This condition is
certainly not satisfied with increasing energy E if U (x) becomes infinite
anywhere in the upper half-plane: ultimately the point x; at which U = F
becomes so close to the point x,, where [” = o0 that the two points give
comparable contributions to the reflection coefficient (the integral
O3y, xq) ~ 1, and formula '52.3) becomes invalid. In the limit where E
is so large that this integral is small compared with unity, perturbation
theorvy becomes applicable (sce Problem 2).ft

PROBLEMS

ProBLEM 1. Using the quasi-classical approximation, with exponential accuracy, determine
the probability of disintegration of a deuteron 1n collision with a heavy nucleus regarded as
the fixed centre of 2 Coulomb field (E. M. Lifshitz 1939).

SorurioN. The principal contribution to the reaction probability comes from collisions
with zero orbital angular momentum, In the quasi-classical approximation these are the
head-on collisions, in which the movement of the particles becomes one-dimensional.

Let E be the deuteron energy 1n unuts of ¢, the binding energy of the proton and the neutron
in the deuteron; En and Ejp the energies of the released neutron and proton in the same units.
\We shall also use the dimensionless coordinate ¢ =er/Ze? (where Ze 1s the charge on the
nucleus), and denote by g, its value (which 1s 1n general complex) at the *‘transition point”,
i.e. at the “moment of disintegration” of the deuteron. We can write

E, = -‘_J‘Uﬂzl EjJ = 'I.'Q'P2+i‘ E = 2ld2+l; (1)
qo go

here v, 7'p and g are the velocities of the particles at the moment of disintegration, in units of
+ (¢/m), where m is the nucleon mass; 7'y is real and is the same as the velocity of the released
neutron, but v; and vy are complex. The conditions for the conservation of energy and
momentumn at the transition point give

t In somc cases, not only the amplitude relatons but also the phase relations between the incident
and reflected waves are of interest. These are deseribed by the reflection amplitude, expressed in
terms of the coeflicients % and i §23,. It is casily shown by the above arguments that, in particular,
the reflection amphitude for a wave incident from the lefi is

9
B* 2% = —1i r\plig (J-p dr +p|x'l)]. Y — — X,

Ihe factor —/is due o the change in the phase of the coeflicient of the exponential in passing round
the branch point §47
1 The proof given here is duc w0 L. D Landau 1961 .
(?['rnursc. oniy points 1, are considered for which ¢ > 0, i.c. points lying in the uppcr half-plane.
§ I'he contour € in Fig. 19 must pass below the singularities of {7y .

t+ An intermediate case is discussed by V. L. Pokrovskii and [. M. Khalawikov, Soviet Physics
JEFP 13, 1207, 1961. 3
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Ep+E" = E— l‘ t'p‘l"i'n = Z'E'd, (2)
whence
vp = 2+Tp, Tg =i+, I . E4+1 2,24 24,
g0

The action of the systern before the transition corresponds to the motion of the deuteron
in the field of the nucleus up to the point of disintegration; its Imaginarv part 18

Zez\/? imj:\/[ll-(f‘—é):' dg

Zez\/':n m {Zqo'vd ~ _13_E cosh “-\/(qu)}. (3)

im 8)

I

After the transition, the action corresponds to the motion of the neutron and the proton
away from the point of disintegration:

im S = Ze® \/ﬂim { I en dg+ _[ J [2(5,, - 1)] dq}
< q
= Zez\/?im {—rﬂqg—-tpqo+\/‘% cosh -1 y/(qup)}. 4)

According to (52.1), the probability of the process is

2Ze2 i [ 2 2
@ ~ exp {— he \/’%Im [\/-E_p cosh~U4/(goEy) *ﬁ cosh -1 -\/(qu)]}. (%)

In accordance with the fact that the two inverse hvperbolic cosines here come from (4) and
(3), the signs of their imaginary parts must be the same as those of im 5 and im 4 respectively,
and the signs of the latter in the solution of equations (2) are chosen so as to make
lm(S|+Sg) > 0.

Because w depends exponentially on Ej, the total probability of disintegration (with any
values of Ey and Ep = E—1—E,;) is given by the minimum absolute value of the exponent
as a function of Ea. Analysis shows that this occurs when £, — 0. Then ¢, = 1J(E+1), and
from (5) we find

w~e>(p{- 2ze ’—n[ 2 cos "1 E_l-—z——cos‘l £ .
’ h e \VE-1 E+l E E+l

The condition for this formula to be valid is that the exponent should be large compared
with unity.

Having calculated the imaginary part of the action § = §,+ 8§, for non-zero values of
En, we can find the energy distribution of the particles released. Near Fn = 0, we havet

. dim S
im S(En) — un S(0) ~ E,,[ e _o

A calculation of the derivative gives

dw 2Ze2 [m 3I-F 1 __1\/E-1:|}
~exp!{--— [—E, + cos e
dE, h € [(E—l)(E+l)"- VI[2E-1)] E+1
ProBLEM 2. Determine the coefficient of reflection above the barrier for particle energies
such that perturbation theory is applicable.

+ When E, = 0, the function 1m S(E) has a cusp from which it increases for both positive
and negative En (the negative values corresponding to the capture of the neutron by the

nucieus).
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SoLuTION. Formula (43.1) is used, the initial and final wave functions being plane waves
propagated in opposite directions and normalized respectively by unit current density and the
delta function of momentum divided by 27k, with dv = dp’/2nh and p° the momentum after

reflection. Carrying out the integration with respect to p’ (taking account of the delta function),
we obtain

m? £
- - 2ipz/h 2
= thzl ‘f U(x)e2pz/R dxj2, (D

This formula i. valid if the conditions for perturbation theory to be applicable are satisfied:
Ualkv <€ 1, where a is the width of the barrier (see the third footnote to §45), and also
palk 5 1. The latter condition ensures that the function R(p) 1s not exponential; otherwise
the question of the validity of formula (1) would require further investigation.

ProsLEM 3. Determune the coefficient of reflection above the barrier for a quasi-classical
barrier when the function U/{x) has a discontinuity of slope at x = x,.

SoruTtioN. If the function U(x) has a singularity for real x, the reflection coefficient is
determined mainly by the field near that point, and perturbation theory can be formatlly
applied to calculate it, without having to be valid for all x; the fulfilment of the quasi-classical
condition is sufficient. We then have formula (1) of Problem 2, the only difference being that

the momentum of the incident particle must be replaced by the value of p(x) at the singular
point. )

In this case we take the point of discontinuous slope as x = 0, and thus have near this point
U= —Fix for x>0, U= —Fox for x <0,

with different F1 and F3. The integration with respect to x is effected by including in the
integrand a damping factor ¢xA% and then letting A = 0. The result is

m2h?
R=——HFR-F)
16pe8

where po = p(0).

§53. Transitions under the action of adiabatic perturbations

It has already been mentioned in §41 that, in the limit of a perturbation
which varies arbitrarily slowly with time, the probability of a transition of
a system from one state to another tends to zero. Let us now consider this
problem quantitatively, by calculating the transition probability under the
action of a slowly varying (adiabatic) perturbation (L. D. Landau 1961).

Let the Hamiltonian of the system be a slowly varying function of time,
tending to definite limits as ¢ - + oo, and let (g, t) and E,(¢) be the eigen-
functions and the eigenvalues of the energy (depending on time as a para-
meter) obtained by solving Schrédinger’s equation H(t)fn = Enn; on
account of the adiabatic variation of H with time, the time variation of E,
and ¢y, with time will also be slow. The problem is to determine the proba-
bility 2oy of finding the system in a certain state y» as ¢t - + o, if it was in
the state ; as t - — cc.

The slow variation of the perturbation means that the duration of the
“‘transition process” is very long, and therefore the change in the action during

this time (given by the integral — [ E(z) d¢) is large. In this sense the problem

is quasi-classical, and the required probability is mainly determined by the
values zo of  for which
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Ei(to) = Ex(to) (53.1)

and which correspond, as it were, to the ‘“‘instant of transition” in classical
mechanics (cf. §52); in reality, of course, such a transition is classically
impossible, as is shown by the fact that the roots of equation (53.1) are
complex. Itis therefore necessary to examine the properties of the ~lutions
of Schrédinger’s equation for complex values of the paramerer 7 in the
neighbourhood of the point ¢t = ¢ at which the two eigenvalues of the energy
become equal.

As we shall see, the eigenfunctions 3, 2 vary rapidly with ¢ near this
point. To determine this dependence, we first define linear combinations
¢1, ¢2 of iy, o which satisfy the conditions

f $:2dg = f $o? dg = 0, f $1de dg = 1. (53.2)

This can always be achieved by suitable choice of the complex coefficients
(which are functions of t). The functions ¢y, ¢2 have no singularity at ¢t = ¢,
We now seek the eigenfunctions as linear combinations

!,b == a1¢1+a2¢3. (53.3)

Here it must be borne in mind that, when the “time” ¢ 1s comnplex, the operator
H(1) (of the form (17.4)) is still equal to its transpose (H = ﬁ), but is no
longer Hermitian (H # 1:7*), since the potential energy U(?) # U*(2).

We substitute (53.3) in Schrédinger’s equation, multiply on the left by
¢1 or ¢a, and integrate with respect to ¢. With the notation

Hy(n) = J qbiﬁsﬁk dq, (53.4)

and using the fact that Hys = H>; owing to the above-mentioned property
of the Hamiltonian, we obtain the equations

Hya +H oy = Eﬂz,
nai+Hy }(53'5)

Hysay+ Hosas = Eay.

The condition for these equations to have non-zero solutions is (Hi2e—E) =
Hj1H-3, and the roots of this give the energy eigenvalues

E = Hya+ + (Hi1Han). (53.6)
Then (53.5) gives
asjay = + y (Hu/Hzz). (53.7)

It is seen from (53.6) that, for a coincidence at the point 7 = o O_f the two
eigenvalues, either /1 or Hee must vanish at that point; let Hy; vanish there.
At a regular point, a function in general vanishes as 7 —1o, and therefore
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E(t)— E(to) = * constant x y, (t—tg), (53.8)

i.e. E(t) has a branch point at ¢ = to. We also have as ~ /(f—t0), and so
there is at the point ¢ = £, only one eigenfunction, ¢.

We now see that the problem is formally completely analogous to the
problem of reflection above the barrier discussed in §52. We have a wave
function 1'(¢) which 1s ‘‘quasi-classical with respect to time”, instead of the
function quasi-classical with respect to the coordinate in §52, and wish to
find the term of the form cafoe (E;t’? in the wave function for ¢ - + oo,
if the wave function W(#) = yneiE,t’2 as t - — co. This is analogous to the
problem of determining the reflected wave for x — — co from the transmitted
wave for x - + c©. The required transition probability ws; = |c2|2. The
action § = — [ E(t) dt is given by the time integral of a function having
complex branch points (just as the function p(x) in the integral [ p dx had
complex branch points). The problem under consideration is therefore
dealt with by means of a contour in the plane of the complex variable ¢
from large negative to large positive values, just as in §52 for the plane of the
variable x, and we shall not repeat the derivation here.

We shall suppose that E5 > E) on the real axis. Then the contour must lie
in the upper half-plane of the complex wvariable ¢ (where the ratio
e~1Et/Mle=iE t/n increases). The resulting formula (analogous to (52.2)) is

w1 = exp %im E(t) dt }, (53.9)
k

Cl

where the integration is along the contour shown in Fig. 19 (from left to
right).

On the left-hand branch of this contour £ = Ej, and on the right-hand
branch £ = E;. We can therefore write (53.9) in the form

iy
w1 = exp( —2im f wz1(1) dt), (53.10)
t

where wey = (E;— Ey)/k, and t; is any point on the real axis of ¢; #¢ must be
taken as that root of equation (53.1) lying in the upper half-plane for which
the exponent in (53.10) is smallest in absolute value.t In addition, besides
the direct transition from state 1 to state 2, there may be possible paths
through various intermediate states; the probabilities of these are given by
analogous formulae. For example, for a transition 1 -3 — 2 the integral
in (53.10) is replaced by a sum of integrals:

£, (1) 2,39
fwgl(t) dz + fwzg(t) dz,

+ Tht_: possible va_lu_lcs of t, must include any points at which E(t) becomes infinite; for
such points the coefficient of the exponential in (53.10) will not be unity
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where the upper limits are the “points of intersection” of the terms E|(t), F5(t)
and E,(t), E;(t) respectively. This result is obtained by means of a contour which
encloses both these complex points.

PROBLEM

Determine the change in the adiabatic invariant for a classical oscillator which obeys the equation
d%x[de? + 0 (£)x =0, ()

when the frequency w (¢) varies slowly from its value @, at { = ~cc tow, at ¢t — o0 (A. M. Dykhne
1960).

SoLution. Equation (1) is derived from Schrédinger’s equation by a change of notation:

Y —x, x =i px)h=k(x) = w(t);

the problem is then formally equivalent to that of reflection from a potential barrier (§25). This
allows the calculation of the change in the adiabatic invariant to be reduced to that of the reflection
amplitude.

We write the solution of (1) for { =+ F 00 as

x =A™+ A¥e ", x = —o0,

x =A™ + A¥e ™, x - 0.
From (25.6),

The adiabatic invarnant of the osaillator is Ejw, so that
I = mwx® = 2mw)| 4,2, L= 2mo, |4
or, substituting (2),
I = 2mesn [(la])? + [ B1* A1* + 2 re(af*AT)].
With the relation (25.7), which in the present notation is |at]* = | 8% + w, Jw,, we have
I~ 1, = 4meog [ 1B P 4,7 + re (af* 43)]. (3)

The case where w(t) varies slowly corresponds, in the barrier reflection problem, to the
quasi-classical case in §52. Then f is exponentially small, and |a|? & , jw, . (It is assumed that w? (f)
has no singularities or zeros on the real f-axis.) The procedure described in §52 for calculating the
reflection amplitude gives the estimate

]

Al =L -1 ~|B] ~cxp(—2im'[w(t)dt),

B

where £, is the singular point in the upper half-plane of ¢ that gives the greatest contribution to AL
This formula coincides with the results in Mechanics, §51, for the harmonic osciliator case considered.
When w?(¢) has a simple zero in the upper half-plane, the formulae in §52 allow the coefficient of
the exponential to be found also; see the footnote on p. 193.

The second {and principal) term in (3) depends on the initial phase of the oscillations. It becomes
zero when averaged over that phase, so that

Al ~ 2RI,

where R = (w,jw,)|B]? is the “reflection coefficient™.

t The intermediate states of a continuous spectrum require a special discussion.



CHAPTER VIII

SPIN

§54. Spin

IN BOTH classical and quantum mechanics, the law of conservation of angular
momentum is a consequence of the isotropy of space with respect to a closed
system. This already demonstrates the relation between the angular momen-
tum and the symmetry properties under rotation. In quantum mechanics,
however, the relation in question is a particularly far-reaching one, and
essentially constitutes the basic content of the concept of angular momentum,
especially as the classical definition of the angular momentum of a particle
as the product r x p has no direct significance in quantum mechanics, owing
to the fact that position and momentum cannot be simultaneously measured.

We have seen in §28 that, if the values of / and m are specified, the angular
dependence of the wave function of the particle 1s determined, and therefore
so are all its symmetry properties under rotation. The most general formula-
tion of these properties involves specifying the transformation of the wave
functions when the coordinate system is rotated.

The wave function {1y of a system of particles (with specified values of
the angular momentum L and its component M) remains unchangedt only
in a rotation of the coordinate system about the z-axis. Any rotation that
alters the direction of this axis has the result that the z-component of the
angular momentum does not have a definite value. This means that, in the
new coordinates, the wave function in general becomes a superposition (a
linear combination) of 2L+ 1 functions corresponding to the different
possible values of M for the given L. We can say that the 2L + 1 functions
Yirar are transformed into linear combinations of one another when the
coordinate system is rotated.] The law governing this transformation (i.e. the
coefficients in the superposition as functions of the angles of rotation of the
coordinate axes) is entirely determined by specifying the value of L. Thus
the angular momentum acquires the significance of a quantum number
which classifies the states of the system according to their transformation
properties under rotation of the coordinate system. This aspect of the
concept of angular momentum in quantum mechanics is particularly
important because it is not directly related to the explicit angular dependence
of the wave functions; the law of mutual transformation of these functions
can be stated without reference to that dependence.

t Apart from an unimportant phase factor.

1 In mathemarical terms, these functions are the irreducible representations of the rotation
group. The number of functions which are transformed into linear combinations of one
another is called the dimension of the representation; it is assumed that this number cannot
be made smaller by taking any other linear combinations of these functions.

199
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Let us consider a composite particle, such as an atomic nucleus, which is at
rest as 2 whole and 1s in a definite internal state. 1n addition to an internal
energy, it has also an angular momentum of definite magnitude L, due to the
motion of the particles within the nucleus. This angular momentum can
have 2L + 1 different orientations in space. Thus, in considering the move-
ment of a complex particle as a whole, we must assign to 1t, as well as its
coordinates, another discrete variable: the projection of its internal angular
momentum on some chosen direction 1n space.

However, with the preceding understanding of the concept of angular
momentum, the origin of 1t becomes unimportant, and we naturally arrive at
the concept of an *“‘intrinsic” angular momentum which must be ascribed
to the particle regardless of whether 1t 1s ““composite” or *‘elementary”

Thus, in quantum mechanics an elementary particle must be assigned a
certain “‘intrinsic” angular momentum unconnected with its motion in space.
This property of elementary particles 1s peculiar to quantum theory (it
disappears in the imit i — 0), and therefore has in principle no classical
interpretation.t

The intrinsic angular momentum of a particle is called its spin, as distinct
from the angular momentum due to the motion of the particle in space,
called the orbital angular momentum.] The particle concerned may be either
elementary, or composite but behaving 1n some respect as an elementary
particle (e.g. an atomic nucleus). The spin of a particle (measured, like the
orbital angular momentum, 1n units of ) will be denoted by s.

For particles having spin, the description of the state bv means of the wave
function must determine the probability not only of its different positions in
space but also of the possible orientations of the spin. Thus the wave function
must depend not only on three continuous variables, the coordinates of the
particle, but also on a discrete spin variable, which gives the value of the
projection of the spin on a selected direction in space (the z-axis) and takes a
limited number of discrete values, which we shall denote by o.

Let (x, y, ; o) be such a wave function. It is essentially a set of several
different functions of the coordinates, corresponding to different values of o;
these functions will be called the spin components of the wave function. The
integral

[19(,, 23 )2 dV

determines the probability that the particle has a certain value of o. The
probability that the particle is in the volume element d]” with any value of o is

AV (=, 3, =3 )2

+ In particular, it would be wholly meaningless to imagine the “intrinsic’’ angular
momentum of an elementary particle as being the result of its rotation “about its own axis’’.

1 The physical idea that an electron has an intrinsic angular momentum was put forwa.rd
by G. Uhlenbeck and 5. Goudsmit in 1925. Spin was introduced into quantum mechanics
in 1927 by W. Pauli.
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The quantum-mechanical spin operator, on being applied to the wave
function, acts on the spin variable o. In other words, it in some way linearly
transforms the components of the wave function into one another. The form
of this operator will be established later. However, it is easy to see from very
general considerations that the operators §,, §y, ¥, satisfv the same com-
mutartion conditions as the operators of the orbital angular momentum.

The angular momentum operator is essentially the same as that of an
infinitely small rotation. In deriving, in §26, the expression for the orbital
angular momentum operator, we considered the result of applying the rotation
operator to a function of the coordinates. In the case of the spin, this
derivation becomes invalid, since the spin operator acts on the spin variable,
and not on the coordinates. Hence, to obtain the required commutation
relations, we must consider the operation of an infinitely small rotation in a
general form, as a rotation of the system of coordinates. If we successively
perform infinitely small rotations about the x-axis and the y-axis, and then
about the same axes in the reverse order, 1t 1s easy to see by direct calculation
that the difference between the results of these two operations is equivalent
to an infinitely small rotation about the z-axis (through an angle equal to the
product of the angles of rotation about the x and y-axes). We shall not pause
here to carry out these simple calculations, as a result of which we again
obtain the usual commutation relations between the operators of the com-
ponents of angular momentum ; these must therefore hold for the spin oper-
ators also;

(8,8 =i, &8} =14, {§,§} =1, (54.1)

together with all the physical consequences resulting from them.

The commutation relations (54.1) enable us to determine the possible
values of the absolute magnitude and components of the spin. All the results
derived in §27 (formulae (27.7)-(27.9)) were based only on the commutation
relations, and hence are fully applicable here also; we need only replace L
in these formulae by s. It follows from formula (27.7) that the eigen-
values of the component of the spin form a sequence of numbers differing
by unity. However, we cannot now assert that these values must be integral,
as we could for the component L, of the orbital angular momentum (the
derivation given at the beginning of §27 is invalid here, since it was based
on the expression (26.14) for the operator /,, which holds only for the orbital
angular momentum).

Moreover, we find that the sequence of eigenvalues s, is limited above and
below by values equal in absolute magnitude and opposite in sign, which we
denote by +s. The difference 25 between the greatest and least values of s,

must be an integer or zero. Consequently s can take the values 0, 1, 1, 3, ... .
‘Thus the eigenvalues of the square of the spin are

$? = s(s+1), (54.2)

where 5 can be either an integer (including zero) or half an integer. For given
5, the component s, of the spin can take the values s, s—1, ..., —s,l.e 2541
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valuesinall. Accordingly, the wave function of a particle with spin s has 2s + 1
components.t

Experiment shows that the majority of the elementary particles (electrons,
positrons, protons, neutrons, p-mesons and all hvperons (A, , Z)) have a spin
of 3. There are also elementary particles, the 7#-mesons and the K-mesons,
whose spin is zero.

‘The total angular momentum of a particle 1s composed of its orbital angular
momentumn 1 and its spin s. Their operators act on functions of different
variables, and therefore, of course, commute. The eigenvalues of the total
angular momentum

are determined by the same “‘vector model” rule as the sum of the orbital
angular momenta of two different particles (§31). That is, for given
values of / and s, the total angular momentum can take the values [+s,
I+s—1, .., |l—s|. Thus, for an electron (spin {) with non-zero orbital angular
momentum /, the total angular momentum can be j = [4-1; for [ = 0 the
angular momentum j has, of course, only the one value j = 1.

The operator of the total angular momentum J of a system of particles is
equal to the sum of the operators of the angular momentum j of each particle,
so that its values are again determined by the vector model rules. The angular
momentum J can be put in the form

J=L+S, L=2%XI, S==%s, (54.4)
a a

where S may be called the total spin and L the total orbital angular momentum
of the system. We notice that, if the total spin of the system is half-integral
(or integral), the same is true of the total angular momentum, since the orbital
angular momentum is always integral. In particular, if the systemn consists
of an even number of similar particles, its total spin i1s always integral, and
therefore so 1s the total angular momentum.

'The operators of the total angular momentum j of a particle (or J, of a
system of particles) satisfy the same commutation rules as the operators of
the orbital angular momentum or the spin, since these rules are general com-
mutation rules holding for any angular momentum. The formulae (27.13)
for the matrix elements of angular momentum, which follow from the com-
mutation rules, are also valid for any angular momentum, provided that the
matrix elements are defined with respect to the eigenstates of this angular
momentum. Formulae (29.7)—(29.10) for the matrix elements of arbitrary
vector quantities also remain valid (with appropriate change of notation).

+ Since s is fixed for each kind of particle, the spin angular momentum Jis becomes zero
in the limit of classical mechanics (& — 0). This consideration does not apply to the orbxt:-al
angular momentum, since ! can take any value. The tra_nsitioq to _clas§ical mechanics 15
represented by % tending to zero and / simultaneously tending to infinity, in such a way that
the product #/ remains finite.
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PROBLEM

A particle with spin } is in a state with a definite vaiue s; = }. Determine the probabilities
of the possible values of the component of the spin along an axis z° at an angle 8 to the z-axis.

SOLUTION. The mean spin vector s is evidently along the z-axis and has magnitude $%.
Taking the cornponent along the z’-axis, we find that the mean value of the spin in that
direction is §z- = % cos . We also have s+ = ¥(w+—w-), where w: are the probabilities
of the values s;» = *+ 4. Since ws+w- = 1, we find w; == cos?}f, w. = sin21H.

§55. The spin operator

In the rest of this chapter we shall not be interested in the dependence of
the wave functions on the coordinates. For example, in speaking of the
behaviour of the functions (x, y, 2; o) when the system of coordinates is
rotated, we can suppose that the particle is at the origin, so that its coordinates
remain unchanged by such a rotation, and the results obtained will charac-
terize the behaviour of the function y with regard to the spin variable o.

The variable o differs from the ordinary variables (the coordinates) by
being discrete. The most general form of a linear operator acting on functions
of a discrete vanable o 1s '

(f¥)0) = Z foorf(o), (55.1)

where the f,, are constants. We put fif in parentheses in order to emphasize
that the spin argument following it is not that of the original function ¢ but
that of the function resulting from it under the action of the operator f. It is
easy to see that the quantities f,,. are the same as the matrix elements of the
operator, defined by the usual rule (11.5).F

The integration over the coordinates in (11.5) 1s here replaced by summa-
tion over the discrete variable, so that the definition of the matrix element is

faea, = § ')!’ag*(a)[f l1!’al(cr)]' (552)

Here i, (¢) and , (o) are the eigenfunctions of the operator §; corresponding
to the eigenvalues sz = oy and ga; each such function corresponds to a state
in which the particle has a definite value of s, i.e. in which only one com-
ponent of the wave function is non-zero:]

ltbd,(a) = 800‘1) S[‘o,(a) = 80‘«’,' (553)

T Note that the suffixes 1n the matnx elements on the right of (55.1) are written in an
order which is, in a sense, the reverse of the usual order in {11.11),
1 More precisely, we should write

‘}’6. (g) = 'J’(-’c: Y 2)8,_,;

in {35.3) the coordinate factors are omitted, being ummportant in this connection.

We must once again emphasize the distinction between the specified eigenvalue o, or g, of
sz and the independent variable o.
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According to (55.1),

wn

(fﬂl‘al)(a) = §fdd-¢,l(a')
= V‘;‘,faa aa‘a,
= faal,

and on substitution of this and ¢, (o) the equation (55.2) is satisfied iden-
tically; this completes the proof.

Thus the operators acting on functions of ¢ can be represented in the form
of (2s + 1)-rowed matrices. In particular, we have for the operator of the spin
itself, acting on the wave function, by (55.1),

(80)(c) = I 800 (o). (55.4)

According to what has been said at the end of §54, the matrices §,, §, §; are
identical with the matrices L, Ly, L, obtained in §27, where the letters L and
M need only be replaced by s and o:

(s:r)a,cr—l = (S:t)a—l.o = 3VI[(s+o)s—o41)],
($)o.om1 = =)o = —3iV/[(sF+0)(s—c+1)], (55.5)
(51)00 =rc

This determines the spin operator.

In the important case of a spin of {(s = 4, 0 = 4-}), these matrices have
two rows, and are of the form

§ = 14, (55.6)

" 0 1 N 0 -1 ; 1 0 -
Oz = (1 0), Oy = (1_ 0), 0y = (0 __1). (55.7)

These are called Pauli matrices. The matrix§, = }8,is diagonal, as it should
be, since it is defined in terms of the eigenfunctions of the quantity s itself.]

The following are some specific properties of the Pauli matrices. Direct
multiplication of the matrices (55.7) gives the equations

wheret

Qy
3]
3N
Il
‘:C!};
(]
1l
Qs
]
[&
i
fa—

A

Uy&z = 1-0'3;, &ZUI = i&y, 6'Iéy = 10z.

} (55.8)

t In the tabular matnces (55.7) the rows and columns are numbered by the values of o,
the row number corresponding to the first and the column number to the second suffix of
the matrix element. In the present case, these numbers are +4 and —#. The acuon of the
operator shown by {53.4) multiplies row o of the matrix by a column matrix containing the
components of the wave function:

b = ( P(3) )
w(-1)

1 There should be ro misunderstanding because of the use of the same letter to denote the
spin component and the Pauli matrices, since the latter always have the circumflex.
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Combining these with the general commutation rules (54.1), we find that

6i6k+6‘k6'i = 28;k, (559)

i.e. the Pauli matrices anticommute with one another. By means of these
equations, we can easily verify the following useful formulae:

62 =23, (6.a)é.b)=a.b+ié.axb. (55.10)

where a and b are any vectors.} According to these relations, any scalar
polynomial formed from the matrices &; can be reduced to terms independent
of & and terms linear in &; hence it follows that any scalar function of the
operator & reduces to a linear function (see Problem 1). Lastly, the values of
the traces (sums of diagonal elements) of the Pauli matrices and their products
are

tr oy = 0, tr oyop = 28 (5511)

Subsequent sections of this chapter give a more detailed account of the
spin properties of wave functions, including their behaviour under any
rotation of the coordinate systemn, but we may note immediately an important
property of these functions, namely their behaviour in respect of rotations
about the z-axis.

Let there be an infinitesimal rotation through an angle 8¢ about the
z-axis. The operator of such a rotation 1s expressed in terms of the angular
momentum operator (in this case, the spin operator) as 1 +:8¢.§,. As a
result of the rotation, the functions o) therefore become (o) + 8y(0),
where

8(o) = 18¢ . §2f(c) = toyf(o)dg.

Writing this relation in the form dy//d¢ = i0y(o) and integrating, we find
that a rotation through a finite angle ¢ changes the functions y(¢) into

Wo) = Y(a)eieo. (55.12)

In particular, a rotation through 2= multiplies them by a factor e2#ie, which
is the same for all o and is equal to ( —1)25 (since 2¢ always has the same
parity as 2s). Thus, in a complete rotation of the coordinate system about the
z-axis, the wave functions of particles with integral spin return to their
original values, and those of particles with half-integral spin change sign.

PROBLEMS

PROBLEM 1. Reduce an arbitrary function of the scalar a+b .5 linear in the Pauli matrices
to another linear function.

SoLtTioN. To determine the coefficients 1n the required formula fla+b.8d) = A+B .5,
we note that, when the z-axis is taken in the direction of b, the eigenvalues of the operator

t The terms on the right of (55.8)-(53.10) which are independent of & must, of course,
be understood as constants multiplying the unit two-by-two matrix.
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a+b.& are a+ b, and the corresponding eigenvalues of the operator f(a+b .8 ) are flat d).
Hence we find 4 = §[fla+b)+ fla—8)], B = (b/2b) [ f(a+ b)— f(a—b)].

ProBLEM 2. Determine the values of the scalar product s; . s2 of spins () of two particles
in states in which the total spin of the system, S = s1 4+ s2, has definite values (0 or 1),

SoLuTioN. From the general formula (31.3), which is vahid for the addition of any two
angular momenta, we findsi.sz = 3 forS§ =1,s1.8; = —} for S = 0.

ProBLEMm 3. Which powers of the operator § of an arbitrary spin s are independent?

SoLuTioN. ‘The operator
(fz'—‘S)(fz—S'*' 1) .es (§z+5)

formed from the differences between §; and all possible eigenvalues s, gives zero when itis
applied to any wave function, and is therefore ltself zero. Hence it follows that (§,)22+1 js
expressed in terms of lower powers of the operator §2, so that onlviis powers from 1 to 2s are
independent.

§56. Spinors

When the spin is zero, the wave function has only one component, i(0).
The effect of the spin operator is to reduce it to zero: § = 0. The relation
between 8 and the operator of an infinitesimal rotation implies that the wave
function of a particle with zero spin is invariant under rotation of the co-
ordinate system, 1.e. it is a scalar,

The wave function of a particle with spin } has two components, (}) and
J(—4). For convenience in later generalizations, we shall distinguish these
components by the superscripts 1 and 2 respectively. The two-component

quantity
()Gl e
1s called a spinor.

In any rotation of the coordinate system, the components of the spinor
undergo a linear transformation:

U = afl+bf2, ¥ = ol +dyl. (56.2)
This may be written
A = i = a b .
o= O, 0= (1) (56.3

where U is the transformation matrix.} Its elements are in general complex
functions of the angles of rotation of the coordinate axes. They are con-
nected by relations which follow directly from the phvsical conditions
imposed on the spinor as the wave function of a particle.

Let us consider the bilinear form

yrg2— 24, (56.4)

+ The notation Uy implies that the rows of the matrix U are multiplied by the column .
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where ¢ and ¢ are two spinors. A simple calculation gives
Yl g2 — 2 PV = (ad—be)(Y142 — Y2¢1),

i.e. (56.4) is transformed into itself when the coordinate system is rotated.
If, however, there is only one function which is transformed into itself, it can
be regarded as corresponding to zero spin, and therefore must be a scalar,
1.e. must remain unchanged when the coordinate system 1s rotated in any
manner. Hence we have

ad—bc = 1: (56.5)

the determinant of the transformation matrix i1s unity.t
Further relations follow from the requirement that the expression

PLPI* + RYRY, (56.6)
which determines the probability of finding the particle at a given point in

space, should be a scalar. A transformation which leaves unchanged the sum

of the squared moduli of the quantities 1s a unitary transformation, 1.e. we
must have U+ = U-1 (see §12). With the condition (56.5) the inverse

matrix is
0= (2,70)
—¢ a
Equating this to the Hermitian conjugate matrix
a* *
O+ = (b* d*),

a=d* b= —c* (56.7)

we find

By virtue of the relations (56.5) and (56.7), the four complex quantities
a, b, ¢, d actually contain only three independent real parameters, corres-
ponding to the three angles which define a rotation of a three-dimensional
system of coordinates.

Comparison of the expressions for the scalars (56.4) and (56.6) shows that
$1* and ¢2* must be transformed as 2 and — 1 respectively. It is easy to
verify that this is in fact so, using (56.5) and (56.7).1

It is possible to put the algebra of spinors in a form analogous to that of
tensor algebra. This is done by introducing, in addition to contravariant

1 Su(-:h a transformation of two quanuties is called a binary transformation.

T This property is closely associated with symmetry under time reversal. The latter
(fsee §18) involves the replacement of the wave function by its complex conjugate. Under
tme reversal, the angular momentum components also change sign. Hence the functions that
are the complex conjugates of the components ¢! = y(}) and Y= —-—i) must have proper-

ties quivalent to those of the components corresponding to spin projections —3} and %
respectively.
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spinor components ¢, 2 (with superscripts), the covariant components (with
subscripts), defined by

o= 4B e = — L (56.8)

The invariant combination (56.4) of the two spinors may also be written as a
scalar product

Yrgs = Jlo1+ YPge = Y162~ 2g1; (56.9)

here and below, summation over repeated (dummy) indices is implied, as in
tensor algebra. We may note the following rule which has to be borne in
mind 1n spinor algebra. We have

Jrd, = Ylgr+ Y2 = —fed? — i gl.
oy = — gt (56.10)

Thus

Hence it is evident that the scalar product of any spinor with itself is zero:
yrp, = 0. (56.11)

According to the foregoing discussion, the quantities 3 and i are
transformed as 1* and 2*, 1.e.

o = (O (56.12)

The product U*\ may also hz written as $U*, with the transposed matrix O+,
Since U is unitary, we have U* = U-1, sothat 4'; = (4U-1), or}

i = (¢'O),. (56.13)

Analogously to the transition from vectors to tensors in ordinary tensor
algebra, we can introduce the idea of spinors of higher rank. Thus, a quantity
Y, having four components which are transformed as the products yAg#
of the components of two spinors of rank one, is called a spinor of rank two.
Besides the contravariant components J* we can consider the covariant
components 4y, and the mixed components ¢ * which are transformed as
the products ;¢, and ;¢ respectively. Spinors of any rank are similarly
defined.

The transition from contravariant to covariant spinor components and
vice versa may be written

bi = Gade 91 =g i (56.14)

(gx) = (g*) = (0_1 (1)) (56.15)

+ The notation ¢UU (with ¢ to the left of ff) denotes that the components (¥} as a row
are multiplied by the columns of the matrix U.

where
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is the metric spinor in a vector space of two dimensions. Thus we have, for
example,

okt = g™, = L8 uotl?,

so that e = — ¢l = —¢2L, Y11 = 1% = 22, and so on.

The quantities g;, themselves form an antisymmetric unit spinor of rank
two. It is easy to see that the values of its components remain unchanged
under transformations of the coordinates, and that

ga8"" = 8%, (56.16)

where 811 = 802 = 1, 831 = §;2 = 0.

As in ordinary tensor algebra, there are two fundamental operations in
spinor algebra: multiplication, and contraction with respect to a pair of in-
dices. The multiplication of two spinors gives a spinor of higher rank; thus,
from two spinors of ranks two and three, ¢, and 4*#°, we can form a spinor
of rank five, i, 4*#°. Contraction with respect to a pair of indices (i.e. sum-
mation of the components over corresponding values of one covariant and
one contravariant index) decreases the rank of a spinor by two. Thus, a
contraction of the spinor ¢,”#” with respect to the indices u and v gives the
spinor i),##° of rank three; the contraction of the spinor i * gives the scalar
i2*. Here there is a rule similar to that expressed by formula (56.10):1if we
interchange the upper and lower indices with respect to which the contraction
is effected, the sign is changed (i.e. 3* = —¢4,). Hence, in particular, it
follows that, if a spinor 1s symmetrical with respect to any two of its indices,
the result of a contraction with respect to these indices is zero. Thus, for a
symmetrical spinor i, of rank two, we have % =

A spinor of rank # symmetrical with respect to all its indices is called a
symmetrical spinor of rank n. From an asymmetrical spinor we can construct a
symmetrical one by the process of symmetrization, i.e. summation of the com-
ponents obtained by all possible interchanges of the indices. From what has
been said above, it is impossible to construct (by contraction) a spinor of lower
rank from the components of a symmetrical spinor.

Only a spinor of rank two can be antisymmetrical with respect to all its
indices. For, since each index can take only two values, at least two out of
three or more indices must have the same value, and therefore the compo-
nents of the spinor are zero identically. Any antisymmetrical spinor of rank

two is a scalar multiple of the unit spinor g;,. We may notice here the fol-
lowing relation:

gAp¢v+gpv¢A+gvA¢h = 0 (56‘ 17)

(where i is any spinor), which follows from the above; this rule is simply a
consequence of the fact that the expression on the left is (as we may easily
verify) an antisymmetrical spinor of rank three.

The spinor which is the product of a spinor ae With itself, on contraction
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with respect to one pair of indices, becomes antisymmetrical with respect to
the other pair:

'i[')v‘tbpv = —iy vﬂb,u.v'

Hence, from what was said above, this spinor must be a scalar multiple of
the spinor g,,. Defining the scalar factor so that contraction with respect to
the second pair of indices gives the correct result, we find

oy = =8, (56.18)

The components of the spinor ), * which is the complex conjugate of
tfau... are transformed as the components of a contravariant spinor ¢,
and conversely. The sum of the squared moduli of the components of any
spinor is consequently invariant,

§57. The wave functions of particles with arbitrary spin

Having developed a formal algebra for spinors of any rank, we can now
turn to our immediate problem, to study the properties of wave functions of
particles with arbitrary spin.

This subject 1s conveniently approached by considering an assembly of
n particles with spin . 'The greatest possible value of the z-component of the
total spin is $n, which is obtained when s, = § for every particle (i.e. all the
spins are directed the same way, along the z-axis). In this case we can
evidently say that the total spin S of the system is also 3.

All the components of the wave function (o1, o, ..., on) of the system
of particies are then zero, except for (4, 3, ..., §). If we write the wave
function as a product of 7 spinors A¢# ... , each of which refers to one of the
particles, only the component with A 4, ... = 1 in each spinor is not zero.
Thus only the product ¢!...1s not zero. The set of all these products,
however, is a spinor of rank n which is symmetrical with respect to all its
indices. If we transform the coordinate system (so that the spins are not
directed along the z-axis), we obtain a spinor of rank », general in form except
that 1t is symmetrical as before.

The spin properties of wave functions, being essentially their properties
with respect to rotations of the coordinate system, are identical for a particle
with spin s and for a system of n = 2s particles each with spin § directed so
that the total spin of the systemiss. Hence we conclude that the wave function
of a particle with spin § is a symmetrical spinor of rank 7 = 2s.

It is easy to see that the number of independent components of a sym-
metrical spinor of rank 2s is equal to 2s+1, as it should be. For all those
components are the same whose indices include 2s ones and 0 twos; so are
all those with 2s—1 ones and 1 two, and so on up to 0 ones and Zs twos.

Mathematically, the symmetrical spinors provide a classification of the
possible types of transformation of quantities when the coordinate system

is rotated. If there are 2s+1 different quantities which are transformed
linearly into one another (and which cannot be reduced in number by any
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choice of linear combinations of them), then we can assert that their law of
transformation is equivalent to that of the components of a symmetrical spinor
of rank 2s. Any set of any number of functions which are transformed linearly
into one another when the coordinate system is rotated can be reduced (by
an appropriate linear transformation) to one or more symmetrical spinors.t

Thus an arbitrary spinor yy,,... of rank n can be reduced to symmetrical
spinors of ranks n, n—2, n—4, ... . In practice, such a reduction can be made
as follows. By symmetrizing the spinor i,,,... with respect to all its indices,
we form a symmetrical spinor of the same rank #. Next, by contracting the
original spinor ¢,, ~with respect to vartous pairs of indices, we obtain
spinors of rank n—2, of the form 4,,_ , which, in turn, we symmetrize, so
that symmetrical spinors of rank n—2 are obtained. By symmetrizing the
spinors obtained by contracting ¢, with respect to two pairs of indices,
we obtain symmetrical spinors of rank » —4, and so on.

We have still to establish the relation between the components of a sym-
metrical spinor of rank 2s and the 2541 functions y(c), where 0 = 5,5—1, ...,
—s. The component

11.-.1 22...2
¢ ,

S+ 5—0

in whose 1ndices 1 occurs s+ o times and 2 s— o times, corresponds to a value
o of the projection of the spin on the z-axis. For, if we again consider a system
of n = 2s particles with spin }, instead of one particle with spin s, the product
JIPL. .. x%p%. .. corresponds to the above component; this product belongs to a

s+a s—a

state in which s+ o particles have a projection of the spin equal to %, and
s—o a projection of — 3, so that the total projectionis ¥(s+0)—4(s—0o) = o.
Finally, the proportionality coefficient between the above component of
the spinor and (o) is chosen so that the equation

2 2
3 — 3) A2
JE W =, 2l (57.1)

holds; this sum is a scalar, as it should be, since it determines the probability
of finding the particle at a given point in space. In the sum on the right-hand
side, the components with (s +0) indices 1 occur

(25)!
(s+ o)l (s—o)!

times. Hence it is clear that the relation between the functions J(o) and the
components of the spinor is given by the formula

19 = M 15 €72

+ In othe_r words, the symmetrical spinors form what are called irreducible representations
of the rotation group (see §98).
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The relation (57.2) ensures the fulfilment not only of the condition (57.1),
but also, as we easily see, of the more general condition

P-dy, . = Z(=1)%(c)d(—0), (57.3)

where ¢+ and ¢),.. are two different spinors of the same rank, while
(o), (o) are functions derived from these spinors by formula (57.2); the
factor (—1)*~?is due to the fact that, when all the indices of the spinor com-
ponents are raised, the sign changes as many times as there are twos among
the indices.

Formulae (55.5) determine the result of the action of the spin operator
on the wave functions J(c). Itis not difficult to find how these operators act
on a wave function written in the form of a spinor of rank 2s. For a spin $,
the fun<tions (3), (— ) are the same as the components 1, ¢ of the spinor.
According to (55.6) and (55.7), the result of the spin operators’ acting on them
will be

) =45 ) = =4, (S = 3,

A A (57.4)
C)? =3 Gu) =4y, ()P = —4f2
To pass to the general case of arbitrary spin, we again consider a system
of 2s particles with spin §, and write its wave function as a product of 2s
spinors. The spin operator of the system is the sum of the spin operators
of each particle, acting only on the corresponding spinor, the result of this
action being given by formulae (57.4). Next, returning to arbitrary symmetri-
cal spinors, i.e. to the wave functions of a particle with spin s, we obtain

o dleea22 ... ... 22 ... 1 ...22...
(le,b);'- ;-—a- = %(S-['- G) ¢a+cr-—1 s—cr+1+é(s_c) s4+0+1 s—a—1
11...22 . . 11 o0 22 .. X 11 ... 22 ...
El)o = —Hlst oW o tHbl—ol ——— 1 (579)
s dle22, m...22...
(5:4) s+o 3-0 cN’L‘.s+cr —o ]

Hitherto we have spoken of spinors as wave functions of the intrinsic angular
momentumn of elementary particles. Formally, however, there is no difference
between the spin of a single particle and the total angular momentum of any
system regarded as a whole, neglecting its internal structure. It is therefore
evident that the transformation properties of spinors apply equally to the
behaviour, with respect to rotations in space, of the wave functions gy of any
particle or system of particles with total angular momentum j, independent of
whether orbital or spin angular momentum is concerned. There must therF:fOre
be some definite relation between the laws of transformation for the eigen-
functions i under rotations of the coordinate system and those for the

components of a symmetrical spinor of rank 2j.
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In establishing this relation we must, however, make a clear distinction
between two aspects of the dependence of the wave functions on the component
m (for a given value of j). The wave function may be regarded as the probability
amplitude for various values of 7, or may be considered for a given value of m.

These two aspects have already been discussed at the beginning of §55,
where we dealt with the eigenfunction &,,_ of the operator §, which corres -
ponds to s; = co. The mathematical difference between them is especially
clear for a particle of spin s = 4. In this case the spin function is, with respect
to the variable o, a contravariant spinor of rank 1, i.e. must be written in spinor
notation as 87, . With respect to oo it is therefore a covariant spinor.

This is evidently a general result: the eigenfunctions i, can be put in
correspondence with the components of a covariant symmetrical spinor of
rank 27 by means of formulae analogous to (57.2):f

Yym = &) fn1... 22 (57.6)
N GEmimm) |

J+m j—-m

The eigenfunctions of integral angular momentum j are spherical har-
monics Yjn. The casej = 11s of particular importance. The three spherical

harmonics Y1, are
.13 . /3
Y10=2J—0059=1J—n,,
4 4
.13 . .13 :
Y141 = F1 A/_‘ sinf e+ = F ZJ—(”zi'nv)p
’ 8 87

where n is a unit vector along the radius vector. It is seen that these three
functions are equivalent, as regards their transformation properties, to the
components of a vector a, with the relations

Y10 =1a;, Y= — ‘\/ii(az+iay), 1,11 = ‘\%(az_iay)- (57.7)

Comparing with (57.6), we see that the components of a symmetrical spinor
of rank two can be brought into correspondence with the components of the

1 This result can also be regarded somewhat differently. If the wave function ¢ of a particle
In a state with angular momentum j is expanded in terms of the eignfunctions jm:

¢ = L am ‘h‘m:

then the coefficients am are the probability amphlitudes for various values of m. In this sense
they correspond to the ““components’ ¢(m) of a spin wave function, and this gives their law
of transformation. On the other hand, the value of ¢ at a given point in space cannot depend
on the choice of the coordinate system, i.e. the sum X am ¥im must be a scalar. Comparing
with the scalar (57.3), we see that a;m must transform as (_1)) My .
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vector by the formulae

¢12 = ._.i._az, ¢11 = - ‘\;—z(ax+z'ay), 5622 = {/i—z(az—fdy), (578)

22
{ z ) t _
Y12 = — ﬁaz’ Pl = ﬁ(ax_wy)' Y22 = — ﬁ(a:c.;.zay). (57.9)
Conversely

] 1
L = /22, — 22 J11), = — (Jl1 o y22). (57.10
a; = ir/2 az —ﬁ(tﬁ ), ay \/2(55 +¢%2).  ( )

It is easily verified that with these definitions we have
Yaub’s = ab, (57.11)

where a and b are vectors corresponding to the symmetrical spinors *# and

¢*x. It is also not difficult to see that there is a correspondence between the
spinor and the vectort

i + 1d* and 4/2a xb. (57.12)
Formulae (57.10) may be compactly written by means of the Pauli matrices:

a= ol Y=~ a.d; (57.13)

V2 V2

the matrix indices of & are written as superscript and subscript in corres-
pondence with the position of the spinor indices in ¢%. The origin of this
formula is easily understood by considering the particular case where the
spinor of rank two ¢ reduces to a product of a spinor of rank one y» and its
complex conjugate ¢**, Then the quantity {y?*e4,y» is the mean value of the
spin (for a particle with wave function ¢#) and it is therefore evidently a
vector.

The relations (57.8) or (57.9) are a particular case of a general rule: any
symmetrical spinor of even rank 2j, where j 1s integral, can be correlated with a
symmetrical tensor of half the rank (j) which gives zero on contraction with
respect to any patr of indices; we call this an zrreducible tensor.

This follows from the fact that the numbers of independent components
of the spinor and of the tensor are the same (2j + 1), as may easily be seen.]
The relation between the components of the spinor and of the tensor can be
found by means of formulae (57.8)~(57.10), if we consider a spinor of the rank
concerned as the product of several spinors of rank two, and the tensor as a
product of vectors.

+ The mixed components of a symmetrical spinor may be written in the form :,!v:, without
distinction between ¢* and gb“‘l. _ ) '

1 We can say that the 2j+1 components of an irreducible tensor of rank J (an 1qtcgcr),
the 2j+1 spherical bharmonics Yjm, and the 2j+1 components of a symmetrical spinor of
rank 2; give the same irreducible representation of the rotation group.
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PROBLEMS
ProBLEM 1. Rewrite the definition (57.4) of the operator of spin } in terms of the spinor

components of the vector .
SoLuTiON. By means of formulae (57.9), which give the relation between the vector §
and the spinor §4#, the definition (57.4) can be written as

S'\'ud’p 2_\/_2_(4,4\ ,uv+¢#g)lv)

ProBLEM 2. Derive formulae which determine the effect of the spin operator on a vector
wave function of a particle with spin 1.

ScrLuTtion. The relatlon between the components of the vector function QJ and the com-
ponents of the spinor $*¥ is given by formulae (57.9), and from (57.5) we have

S =~y =g, Se=0
(where $4+ = Jrtiyy) or
lepbz = —i‘l’y; j'.z',lly = i',!’z, fz'l/z = 0.

The remaining formulae are derived from these by cyclic permutation of the suffixes x, y, z.
They can be written together as

Sabx = —ieaadn

The complex vector !.1) can be put in the form Y = e**(u+1:v), where u and v are real
vectors, which can be taken to be mutually perpendicular if the common phase « is suitably
chosen. The two vectors u and v determine a plane which has the property that the spin
component perpendicular to it can take only the values *+ 1.

§58. The operator of finite rotations

Let us now return to the transformation of spinors, and show how the
coefficients of this transformation can in fact be expressed in terms of the
angles of rotation of the coordinate axes.

By the definition of the angular momentum operator (in this case, the spin
operator), 1 +78¢ . n . § is the operator of a rotation through an angle d¢
about a direction specified by the unit vector n; for application to the wave
function of a particle with spin }, i.e. a spinor of rank one, we must take
§ = 1& in this operator. The operator of a rotation through a finite angle ¢
about the same direction will be correspondingly given by

U, = exp(iign . &); (58.1)

cf. (15.13). Like any function of the Pauli matrices (see §55, Problem 1), this
expression reduces to one that is linear in these matrices:

U, = cos }¢+in . & sin 34. (58.2)
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For example, with a rotation about the z-axis,

U9)

cos 3¢+ 14, sin
_ fetd2 0 c
a (0 e—fqb/z)' (38-3)

This means that the components of the spinor are transformed in such a
rotation according to

1o}
o

,71,1’ = ¢lei¢/2, ¢,2’ = ,1[,28—-7596/2_

In particular, in a rotation through-an angle 27 the spinor components change
sign; spinors of any odd rank must therefore have the same property (cf. the
end of §55). ’

Similarly, we can find the matrices of transformations consisting of a
rotation through an angle ¢ about the x-axis or the y-axis:

_fcos ¥4  isin 3¢ ‘
Us(9) = (i sin ¢  cos %¢)’

| ) (58.4)
o - (2,518

—sin 3¢ cos 1¢

J

We may note the particular case of a rotation through an angle = about the
y-axis, for which

Pl = g2, P2 = -yl
Yt = dn, Y = Jo. (58.5)

1.e.

It is now easy to write down the transformation matrix for any rotation of
the coordinate axes, as a function of the Eulerian angles which specify the
rotation.

A rotation of the axes, defined by the Eulerian angles a, 8, y, is carried out
in three stages: (1) a rotation through the angle o (0 < a < 2) about the
z-axis, (2) a rotation through the angle 8 (0 < 8 < 7) about the new position
of the y-axis (ON in Fig. 20, called the line of nodes), (3) a rotation through
the angle y (0 < ¥ < 27) about the resulting final position 2’ of the z-axis.t

It is evident that the angles « and B are the spherical polar angles ¢ and ¢
of the new z’-axis with respect to the xyz axes: « = ¢, 8 = 6.

In accordance with this manner of rotating the axes, the matrix of the

rd

+ The systems xyz and x’y’z” are, as always, right-handed, and a positive angle correspo_n:ls
to the movement of a corkscrew advanced in the positve direction of the axis of rotation.

The definition of the Eulerian angles given here (and usual 1n guantdm mechanics) dxﬂ'e_rs
from that in Mechanics, §35, in that the second rotation 1s about the_y—axis and not t}_me x-axis.
The angles &, B, y are related to the angles ¢, 6, ¢ used in Mechanics (not the spherical polar
angles ¢ and @) by ¢ = a+1in. 6 = B, 4 = y— 4.
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Fic. 20

complete transformation 1s equal to tr.a product of three matrices (58.3) an
(58.4): i i i i
Ul B, v) = Udy)UF)UxA().

By direct multiplication of the matrices we finally obtain

Ola, B, v) = ( (58.6

cos 1B . el tni2  sin 1B . e-ila=i2
—sin 48 . eia-N2 cos 3B . e—itz+ai2 )

Spinors of higher ranks are, by definition, transformed as products o
components of a spinor of rank one. In physical applications, however, w
are interested in the wave funcuons i, rather than the transformation law
of the spinors themselves.

Let the functions jm (m = j,j—1, ..., —j) describe, in a coordinate syster
xyz, a state having a definite value of the angular momentum j, and - th
same state for the axes x'y’2"; in the first case m is the value of j;, and in th
second case m’1s the value of j,.. The two sets of functions are connected b
linear relations, which we write in the form

Yim = r%' D(j)m’m(as B, v) bim’. (58'7

The coefficients D ., form a matrix of order 2j + 1 with respect to m’ an
m, called the finite-rotation matrix DU, its elements are functions of th
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angles &, B, y of rotation of the system x'y’2" relative to xys.

The finite-rotation matrix can be built up by means of the spinor represen-
tation of the functions ;. Forj = 1, the two functions ym(m = + §) form
a covariant spinor of rank 1. According to (56.13), its transformation from
x'y'z" to xyz is effected by the matrix U (58.6), so that D12 = Ut Its
elements may be written

D2 = emnd B Betms,

where
me = M= % _%
d%{‘i’i = 1 cos 1 sin 18 (58.8)
-1 —sin 38 cos 8

For any value of j, the functions i;, are related to the components of a
symmetrical covanant spinor of rank 2j by (57.6). The transformauon
matrix for the components of a spinor of rank 2; 1s the product of 2; matrices
D@72, each acting on one of the spinor indices. Carrying out the multipli-
cation and returning to the funcuions ijn, we find their transformation
matrix:

DD (e B, y) = em»d)) (Bletms, (58.9)

the functions d9?_(B) being given by]

20n8) = [ o] (s b e x

(7 +m)l(j—m)!
X (sin §g)ym —m PIV_ T M cos B), (58.10)

where

P,@, b(cos B) = %%)Tn(l —cos B)~4(1+cos f)~F x

x (dfTﬁ)n[(l —cos B)2+4(1 4 cos B)b+1] (58 11)

+ Note that the matrix indices in (58.7) are placed in the order that corresponds to mult_i-
plying the columns of the matrix 5!?) by the functions Jym’ arranged in a row. In the symbolic
notation, (58.7) would have to be written ¢ym = (' D)m in accordance with (56.13).

1 The calculations are described by A R. Edmonds, Angular Momentum in Quantum
Mechanics, Princeton, 1957. The definition of the functions Dy ) by (58.9) differs from
that used in Edmonds’s book by the interchange of « and y, this being the more natural
treatment in the approach given here.



§58 The operator of finite rotations 21¢

are called Jacobi polynomials.t We may note that
Pt O(—cos B) = (—1)"Pyb. 9)(cos ). (58.12

The functions dY), possess a number of symmetry properties whick
might be derived from the expressions (58.11) and (58.12), but it is simpler
to obtain them directly from the definition as coefficients in the rotational
transformation. :

The matrix DU is unitary, being the matrix of a rotational transformation.
Since the transformation inverse to the rotation (&, B, y) is the rotation

(—y, —B, — ), we have for the real matrix ) the relations

dP (=B = dF. . (B). (58.13)
The following equations are also valid:
dr (B =47 () (58.14)
42, (m) = (= 1)*"8m., —m, |
d:j;?m(—w) = (=1)-m8,,., _m, ) (58.15)
dif}m(O) = Smm. |

When j = } these are evident from (58.8); the generalization to arbitrary j 1
evident from the manner of construction of the transformation matrix,
described above.

A rotation through an angle = — 8 can be carried out as two successive
rotations through = and — 8:

dom(m=B) = Zd0 (0. (= F)
= (-1)y-md? _(-B)
or, using (58.13),
dd (n—B) = (=1)i-m'dD_. (). (58.16;

The result of two rotations about the same axis is independent of the
sequence in which they occur. We must therefore arrive at the same resull
by carrying out the rotations through — B and = in the opposite order.
Comparison of the result with (58.16) gives the relation

dN_(B) = (—1yn -mdD (B). (58.17

-, —-m

From (58.17), (58.14) and (58.13), it follows that

Lrm(B) = (= 1y =mdD_(B) = (—1y"'-mdD,(~B). (5818

t See §e of the Mathematical Appendices, formula (e.11), for the relation between thes
polynommuals and the hvpergeometric series.
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Using (58.13)(58.18), we can deduce various symmetry properties of the
complete matrix elements DY} . In particular, the complex conjugate

function 1s given by

Dz)'s:n(a’ B’ Y) = Dfrfz)'m(_a’ ﬁ’ _'Y)

= (_ 1)m'_mD(j)m'. _m(a' B, '}/)- (58.19)

Mathematically, the matrices D give the unitary irreducible represen-
tations of the rotation group having dimension 2 + 1 (see §98 below). Hence
we have immediately the orthonormality relation

i X dw 1
1) (. — .
[ D2t ) D B = 5By (5820

where dw = sin B da dB dy.

The orthogonality of the functions with respect to the suffixes m and m' is
ensured by the factor ¢fmz+m; that with respect to the index j arises from
the functions d'?, , for which we have

n

N . I
J e () - 4 sin B AB = 5oy, (58.21)

(1]

Lastly, we shall give for reference the expressions for the functions dy)
for various particular values of the parameters. Forj = 1, we have

m = 1 0 -1

1 3(1+cos B) —\%sinﬁ 3(1 - cos B)

My 1 1 58.22
Wn(f) =0 —5sinf cosp Zsnf (8.2
~1 1(1 —cos B) ——ézsin B H1+cos B)

For integral j = /and m’ = 0, formulae (58.10) and (58.11) give

[ —m)!
20,8 = (~1ya D) = (~ 1y [GokPmeos ). (58.23)

The derivation of this formula is easily seen from the original definition (58.7).
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We shall assign the values of the functions . on the right of (58.7) to the
z-axis, on which (forj = )

1
Yim(n;) =1 _Z!L_Sm .0 (58.24)

The function ¢;;, on the left is then the spherical harmonic function Yim(B, )
of the spherical polar angles ¢ = «, 6 = B giving the direction of the 2'-axis.
Substitution of (58.24) in (58.7) leads 1o

2!+1

Y[m(ﬁ cx) = tl 41T

Do (o B, v), (58.25)

which is equivalent to (58.23).
Lastly, there is the following expression for the function with the maximum
possible value of m or m':

1)) —_ (—1Yi- /)
dP(p) = (~1)imd

- [(j+n(z)2{();—m) Jw cosi+m }Bsinf-m 4B, (58.26)

§59. Partial polarization of particles

By a suitable choice of the direction of the z-axis, we can always cause one
component (e.g. ¢2) of a given spinor §*, the wave function of a particle with
spin 1, to vanish. This is evident from the fact that a direction in space 1s
determined by two quantities (angles), 1.e. the number of disposable parameters
is just equal to the number of quantities (the real and imaginary parts of the
complex 2} which it is desired to make zero.

Physically this means that, if a particle with spin 4 (for definiteness, we shall
speak of an electron) is in a state described by a spin wave function, then there
is a direction in space in which the component of the particle spin has the
definite value 6 = . We can say that in such a state the electron is completely
polarized.

There are also, however, states of an electron which may be said to be
partially polarized. Such states are not described by wave functions but only
by density matrices, i.e. they are mixed states (with respect to spin) (see §14).

‘The spin or polarization density matrix of an electron is a spinor p*# of rank
two normalized by the condition

P2 = pli+p2a= 1, (39.1)
and satisfying the “Hermitian’ condition
(P* )% = pri. (59.2)
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For a pure (i.e. completely polarized) spin state of the electron the spinor
p*. reduces to a product of components of the wave function ¢*:

Pl = (> (59.3)

Thediagonal components of the density matrix determine the probabilities
of the values + % and — } of the z-component of the electron spin. The mean
value of this component is therefore

Sz = H(pl1— p22),

or, using (59.1),

ph = b+5, = -5 (59.4)

In a pure state the mean value of the quantities 5, = sz + 75, is calculated as

E:— = ¢A*§+"b}"

§= = IS
Since, according to (55.6) and (55.7), the operators §; are given by the
matrices
p 0 1 . (0 0
§4 = N §_ = ’
0 0 1 0
we find that

S-:L — ¢1*l/}2’ §_ = ,)11241:!‘&1.=
Accordingly we have in a mixed state

pla = 5o,  pf = 54 (59.5)
Using the Pauli matrices, formulae (59.4) and (59.5) can be combined as
p*, = 3(8*.+28%,.8). (59.6)

Thus all the components of the polarization density matrix of the electron
are expressed in terms of the mean values of compenents of its spin vector. In
other words, the real vector § entirely determines the polarization properties of
a particle with spin 4. In the limit of complete polarization one of the com-
ponents of this vector (with an appropriate choice of the directions of the
axes) is 4 and the other two are zero. In the opposite case of an unpolarize.d
state all three components are zero. In the general case of an arbitrary partial
polarization and any choice of the coordinate system we have 0 < p < 1,
where
p = 22+ G+ RYV

is a quantity which may be called the degree of polarization of the electron.
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For a particle of arbltrary spin §, the density matrix is a spinor p##--
of rank 4s, symmetrical in the first 2s and the last 2s indices and satlsfymg the
conditions

Plp."lﬂ.--- = 1‘ (59.7)
(P“""pﬂ...)* = Ppa."lu---' (598)

To calculate the number of independent components of the density matrix,
we note that, among the possible sets of values of the indices A, u, ... (orp, o, ...)
there are only 25+ 1 which are essentially different. Using also the fact that
the components of the spinor p##---,,  arerelated by (59.7), we find that the
number of different components is (2s+1)2—1 = 4s(s+1). Although these
components are complex, the relation (59.8) shows that this does not increase
the total number of independent quantities describing the state of partial
polarization of the particle, which is therefore 4s(s+ 1).f For comparison, it
may be remarked that the state of complete polarization of the particle is de-
scribed by only 4s quantities (the 25 + 1 complex components of the wave function
du---, related by one normalization condition and containing one common
phase which i1s unimportant in the description of the state).

Like any spinor of rank 4s, the spinor pix---,, . is equivalent to a set of
irreducible tensors of ranks 4s, 4s—2, ..., 0. In the present case there is only
one tensor of each rank, since, on account of the symmetry properties of the
spinor pi-- .  each contracton of it can be carried out in only one way:
with respect to any one of the indices A, g, ..., and ene of p, o, .... In addition,

the scalar (tensor of rank 0) does not appear, reducing to unity by virtue of the
condition (59.7).

§60. Time reversal and Kramers’ theorem

The symmetry of motion with respect to a change in the sign of the time is
expressed in quantum mechanics by the fact that, if s is the wave function of
a stationary state of the system, the “time-reversed’’ wave function (which we
denote by T¢v) describes a possible state with the same energy. At the end o
§18 it has been pointed out that eV is the same as the complex conjugate
function y*. In this simple form the statement applies to wave functions where
the spin of particles is neglected. When spin is present, arefinement is necessary

Let us take the wave function of a particle of spin s in the form of the contra-
variant spinor "4 (of rank 2s). On taking the complex conjugate functior
Y4 * we obtain a set of quantities which are transformed as components of
covariant spinor. Hence the gperation of time reversal corresponds to a chang:

from the wave function ¢*#-- to a new wave function whose covariant com:
ponents are given by

rey

Y. = PrAro, (60.1

+ When these quantities are given, so are the mean values of the components of the vector &

and all their powers and products 2, 3, ., 25 at a time, which do not reduce to lower powers
(see §35, Problem 3).
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For a given set of values of the indices A, y, ..., the components of covariant
and contravariant spinors correspond to values of the angular-momentum
component which differ in sign. In terms of the functions i, therefore, time
reversal corresponds to a change from i, to i, __, as it should, since a change
in the sign of the time changes the direction of the angular momentum. The
exact relation is given by (60.1):

Psimo = hse*(— 1) (60.2)

Thus the change s, > fs.* required by the operation of time reversal
signifies the changet

Pt o = s (— 1) o, (60.3)

When this operation 1s repeated, we have

bsoe > s, o =177 > P — 1)1 mo(— 1) 40 = g~ 1)25.

Thus a twofold time reversal restores the wave function 1o its original value
only if the spin is integral; if the spin is half-integral, the sign of the wave
function is changed.

Let us consider an arbitrary system of interacting particles. The orbital and
spin angular momenta of such a system are not in general scparately conserved
when relativistic interactions are taken into account. Only the total angular
momentum ] is conserved. If there is no external field, each energy level of the
system has (2J+ 1)-fold degeneracy. When an external field 1s applied, the
degeneracy 1s removed. The question arises whether the degeneracy can be
removed completely, 1.e. so that the system has only simple levels. This 1s
closely related to the symmetry with respect to time reversal.

In classical electrodynamics the equations are invariant with respect to a
change in the sign of the time, if the electric field is left unchanged and the sign
of the magnetic field is reversed.] This fundamental property of motion must
be preserved in quantum mechanics. Hence, not only in a closed system but in
any external electric field (there being no magnetic field), there 1s symmetry
with respect to time reversal.

The wave functions of the system are spinors yA#---, whose rank » is twice
the sum of the spins s, of all the parucles (n = 2 X 5,); this sum may not be
equal to the total spin S of the system.

According to what was said above, we can assert that, in any electric field,
the wave function and its time reversal must correspond to states with the same
energy. If a level is non-degenerate, it is necessary that these states should be
identical, i.e. the corresponding wave functions must be the same apart from a

+ Note that the rule for the complex conjugate of a spherical harmonic function, according

to (28.9), coincides with the general rule (60.3).
1 See, for example, Fields, §17, and the end of §111 below.
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constant factor (both, of course, being expressed as similar (covariant or contra-
variant) spinors).
We write .,bj’lZ‘_’_. = C,,... or, by (60.1),

Jher = Cy, (60.4)

where C 1s a constant.
Taking the complex conjugate of both sides of this equation, we obtain

Poer = Co, .

We lower the indices on the left-hand side of the equation and correspond-
ingly raise them on the right. This means that we multiply both sides of the
equation by g,)gz,. .- and sum over the indices A, y, ... ; on the right-hand side
we must use the fact that

EarBEy - = (—1)"ghogss ...

As a result we have
(lb/\u.... = C*(—l)“¢ﬂu...#_

Substituting f24---* from (60.4), we find
‘)['f\/x..., = (—I)ncc#"h#...'

This equation must be satisfied identically, 1.e. we must have (- 1)"CC* = 1.
Since, however, |C|? is always positive, it is clear that this 1s possible only
for even n (1.e. for integral values of the sum X s;). For odd n (half-integral
values of X s5;) the condition (60.4) cannot be fulfilled.t

Thus we reach the result that an electric field can completely remove the
degeneracy only for a system with an integral value of the sum of the spins of
the particles. For a system with a half-integral value of this sum, in an
arbitrary electric field, all the levels must be doubly degenerate, and complex
conjugate spinors correspond to two different states with the same energy]
(H. A. Kramers 1930).

One further, mathematical, comment may be made. A relation of the form
(60.4) with a real constant C is mathematically the conditon that the com-
ponents of the spinor may be put in correspondence with a set of real
quantities, and may be called the condition for the spinor to be “real”.|| The
impossibility of fulfilling the condition (60.4) for odd » signifies that no real
quantity can correspond to a spinor of odd rank. For even 7, on the other
hand, the condition (60.4) can be satisfied, and C can be real. In particular, a

t When the sum X sq 1s integral (or half-integral), all possible values of the total spin S of
the system are also integral (or half-integral).

I If the elect_ric field possesses a high (cubic) symmetry, fourfold degeneracy may occur
(see §99, including the Problem).

[t is meaningless 1o cali the spinor real in the literal sense, since comnlex conjugate spinors
have different laws of transformation.
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real vector can correspond to a symmetrical spinor of rank two if the condition
(60.4) is satisfied with C = 1:

‘I’AF* = ‘I’Ay

(as 1s easily seen by means of (57.8) and (57.9)). The condition (60.4) with
C = 1 is in fact the condition for a symmetrical spinor of any even rank to be

“real’’.



CHAPTER IX

IDENTITY OF PARTICLES

§61. The principle of indistinguishability of similar particles

In classical mechanics, identical particles (electrons, say) do not lose their
“individuality”, despite the identity of their physical properties. For we
can imagine the particles at some instant to be ‘“‘numbered”, and follow the
subsequent motion of each of these in its path; then at any instant the particles
can be identified.

In quantum mechanics the situation is entirely different. We have
already mentioned several times that, by virtue of the uncertainty principle,
the concept of the path of an electron ceases to have any meaning. If the
position of an electron is exactly known at a given instant, its coordinates have
no definite values even at the next instant. Hence, by localizing and num-
bering the electrons at some instant, we make no progress towards identifying
them at subsequent instants; if we localize one of the electrons, at some other
instant, at some point in space, we cannot say which of the electrons has
arrived at this point.

Thus, in quantum mechanics, there is in principle no possibility of separ-
ately following each of a number of similar particles and thereby distinguish-
ing them. We may say that, in quantum mechanics, identical particles
entirely lose their “‘individuality”. The identity of the particles with respect
to their physical properties is here very far-reaching: it results in the complete
indistinguishability of the particles.

This principle of the indistinguishability of similar particles, as it is called,
plays a fundamental part in the quantum theory of systems composed of
identical particles. Let us start by considering a system of only two particles.
Because of the identity of the particles, the states of the system obtained
from each other by merely interchanging the two particles must be com-
pletely equivalent physically. This means that, as a result of this inter-
change, the wave function of the system can change only by an unimportant
phase factor. Let {(&,, £,) be the wave function of the system, ¢, and £, con-
ventionally denoting the three coordinates and the spin projection for each
particle. Then we must have

(€, &) = eog(é,, £y,

where « is some real constant. By repeating the interchange, we return to

the original state, while the function ¢ is multiplied by e¥>. Hence it follows
that ¢ =1, or & = 4 1. Thus

(€1 £2) = Hf(€a £y).
297
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We thus reach the result that there are only two possibilities: the wave
function is either symmetrical (i.e. it is unchanged when the particles are inter-
changed) or antisvmmetrical (i.e. it changes sign when this interchange is
made). It is obvious that the wave functions of all the states of a given system
must have the same symmetry; otherwise, the wave function of a state which
was a superposition of states of different symmetry would be neither sym-
metrical nor antisymmetrical.

This result can be immediately generalized to systems consisting of any
number of i1dentical particles. For it is clear from the identity of the particles
that, if any pair of them has the property of being described by, say, sym-
metrical wave functions, any other pair of such particles has the same pro-
perty. Hence the wave function of identical particles must either be un-
changed when any pair of particles are interchanged (and hence when the
particles are permuted in any manner), or change sign when any pair are
interchanged. In the first case we speak of a symmetrical wave function, and in
the second case of an anfisymmetrical one,

The property of being described by symmetrical or antisymmetrical wave
functions depends on the na